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ABSTRACT

Active Model-Based Inference for Muscle Strength Diagnostics

Rebecca Abbott

Muscle strength assessment is a standard part of any clinical evaluation. Due to

the kinematic and muscular redundancy in the human musculoskeletal system, muscle

strength can not be measured directly in vivo. Clinicians utilize specific postures and

forces to bias the muscles of interest, then infer the muscle strength from an indirect

measurement. This is particularly challenging in the cervical spine, where more than 25

muscle pairs with multiple attachments and multi-planar actions act across 7 interverte-

bral joints. As a result, there is currently no method for measuring individual neck muscle

strengths.

Model-based parameter estimation techniques infer the values of the unobservable

quantities by fitting measured data to a model. There is an opportunity to apply and

expand these methods to aid clinicians and researchers in evaluation of individual muscle

strengths in complex musculoskeletal systems. In a clinical setting, limiting the num-

ber of measurements is a priority due to time constraints and patient fatigue and pain.

This thesis presents an active learning approach to parameter estimation that utilizes
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information theoretic measures to query the clinician for the next measurement that will

maximize information gain relative to the unknown parameters, thus avoiding unnecessary

measurements.

This thesis is motivated by clinical questions that arose from imaging studies in in-

dividuals with persistent whiplash-associated disorders (WAD). Is there a link between

compositional changes in the deep cervical extensor muscles and motor dysfunction in

WAD? We begin with two studies confirming and expanding upon the compositional

muscle changes and exploring the potential biomechanical consequences of those changes

using a musculoskeletal model of the neck. The results illustrate the role of the deep

extensors in multi-directional neck strength and provide simulated evidence of altered

motor control patterns in WAD.

The lack of an existing method for non-invasive measurement of individual muscle

strengths motivates the main contribution of this thesis, a novel framework for active

model-based Bayesian inference for muscle strength diagnostics. We demonstrate the util-

ity of the approach for estimating individual neck muscle strengths from multi-directional

isometric neck strength measurements from 5 healthy participants. A framework for a

clinician-in-the-loop muscle strength estimator is presented, where in addition to accu-

rately estimating the strength of the deep cervical extensor muscles, the algorithm predicts

the benefit of taking additional measurements and selects the most informative next mea-

surement to take. The framework is a step towards producing a clinically translatable

test for individual neck muscle strengths.
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CHAPTER 1

Introduction

Kinematic and muscle redundancy in the human musculoskeletal system makes it dif-

ficult to isolate individual muscles for strength testing. As part of an evaluation, clinicians

utilize their knowledge of anatomy and kinesiology to problem solve and rule in or out

involvement of muscles through the application of various tests. Manual muscle tests use

specific joint angles and applied forces to bias the muscle of interest and have been devel-

oped for some muscles. Due to the complex musculature and partial observability of the

cervical spine, specific tests for individual neck muscle strength have not been developed

and it is particularly difficult to develop an intuition for ways to bias an individual neck

muscle.

There is an opportunity for musculoskeletal model based parameter estimation algo-

rithms to assist clinicians and researchers in muscle strength diagnostics in these complex

musculoskeletal systems. Musculoskeletal models can capture complicated biomechanical

relationships and allow for computation of internal loads that can not be measured in

vivo, like muscle forces. When combined in a Bayesian framework for parameter estima-

tion, the domain knowledge of the clinician and the mathematical representation in the

model sum to provide a more informative estimate of individual muscle strengths.

A parameter estimation algorithm attempts to infer the value of unknown parameters,

such as muscle strength, from a set of measured data, such as end effector forces. In

a clinical setting, limiting the number of measurements is a priority because of time
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limitations and patient fatigue and pain. This thesis uses an active learning approach to

parameter estimation to addresses this challenge, where the algorithm queries the clinician

for the next measurement that provides the greatest expected information gain. The focus

of this thesis is towards developing a clinically translatable framework for clinician-in-

the-loop individual muscle strength estimation utilizing non-invasive measurements in a

complex musculoskeletal system.

1.1. Main Contributions

This thesis is motivated by a clinical question requiring the ability to measure the

strength of individual neck muscles. The lack of an existing framework for in vivo mea-

surement of individual muscles strengths presented both a barrier to our progress and

an opportunity for a wider contribution to the field of musculoskeletal rehabilitation. We

employ an interdisciplinary approach, integrating clinical expertise, quantitative magnetic

resonance imaging, musculoskeletal modeling, Bayesian inference, optimal experimental

design, and information theory. The result is an algorithmic framework utilizing model-

based Bayesian inference for individual muscle strength estimation with automated test

sequence selection to maximize expected information gain and minimize the number of

measurements.

1.1.1. Deep cervical extensor muscle fat infiltration in WAD and its potential

biomechanical effects

Despite the personal and societal cost of the condition [21, 14], clinicians and researchers

have been unable to agree upon an underlying etiology or develop consistently successful
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treatments for moderate-severe chronic whiplash-associated disorders (WAD). Quanti-

tative Magnetic Resonance Imaging (MRI) studies have identified increased muscle fat

infiltration (MFI) throughout the neck muscles of individuals with persistent WAD, with

a particularly high concentration in the deep cervical extensors [22, 26]. If the logical as-

sumption is made that increased MFI indicates muscle atrophy and weakness, an obvious

next question is how weakness of this specific muscle group would affect neck and head

biomechanics. The complex, redundant kinematic and muscular architecture of the neck

makes answering this question difficult. Although the general function of the cervical

multifidus and semispinalis cervicis have been theorized based on anatomic and EMG

studies [4, 89], the role of the deep extensors and biomechanical effects of muscle weak-

ness in these muscles is unknown. This knowledge could inform diagnostic and treatment

strategies in WAD.

This thesis begins to address these questions in Chapter 3 by confirming and expanding

upon the findings of increased MFI in the deep extensors in WAD when compared to

recovered WAD and healthy controls. We analyze the magnitude and distribution of

MFI throughout the deep cervical extensor muscles, both across cervical levels (caudal-

cephalad) and within a cervical level (medial-lateral). The finding of a widespread increase

in MFI throughout the deep extensors further motivates and informs the design of the

study in the next chapter. Chapter 4 utilizes a musculoskeletal model of the neck to

determine the role of the deep cervical extensors in producing multi-directional neck

strength and the biomechanical effects of weakness of this muscle group. Musculoskeletal

models provide a valuable tool for exploring the effects of a changes in a parameter like

muscle strength that would be difficult or impossible to study in vivo.
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The contributions of chapters 3 and 4 are:

• We map the magnitude and spatial distribution of MFI within the deep cervical

extensor muscles in chronic WAD, recovered, and healthy controls.

• We show that the spatial distribution of MFI is similar between groups, but there

is an increased magnitude of MFI throughout the deep extensor muscles in the

WAD group.

• We illustrate, through simulation with a musculoskeletal model of the neck, how

deep extensor weakness affects neck strength and muscle activation patterns in 25

test directions mapped to locations on the skull where resistance can be applied

by a clinician

• We provide simulated evidence of altered muscle activation patterns that would

occur with weakness of the deep extensors, characterized by increased activation

of the longus capitis and superficial extensors, and decreased activation of the

suboccipitals.

• We reveal the effect of kinematic and muscle model complexity on simulated neck

strength and deep extensor muscle activation.

The work from Chapter 3 is published in [1].

1.1.2. Parameter estimation in a highly redundant musculoskeletal system

The problem of measuring individual muscle strength is difficult for a number of reasons.

The core issue is that muscle forces can not be measured directly. The human neck is a

complex musculoskeletal structure with 7 intervertebral joints and over 25 pairs of named

muscles, most having multiple attachments and crossing multiple joints. Wrench (force
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and torque) measurements are taken from the end effector of the neck, the head. The

kinematic and muscle redundancy sets up an under-constrained and ill-conditioned inverse

problem. An additional complication is that we are interested in the muscle strength, the

maximum force that a muscle can produce, not just the contribution of the muscle for a

particular end effector measurement.

Muscle parameters used in musculoskeletal models, including maximum isometric force

(strength), are typically derived from physiological cross sectional area (PCSA) measure-

ments from anatomic cadaver studies [108, 17]. This method produces a generic set of

muscle strengths that can be scaled uniformly based on subject specific measurements, but

does not address variations in individual muscle strength [78, 110]. Efforts to determine

subject-specific model parameters have been made in the hand and wrist [41, 59, 49, 15].

These studies utilize least squares optimization methods to minimize the difference be-

tween model predicted and measured data sets. A bounded, non-linear least squares

approach similar to these studies could be a viable approach to the strength estimation

problem in the neck, but the data available is often noisy and scarce, setting up an ill-

posed optimization problem that is known to give poor results for these standard methods

[5, 112]. Statistical Bayesian approaches are well-suited for dealing with non-linear models

and naturally include uncertainties such as measurement and modeling errors.

In Chapter 5, we develop a framework for parameter estimation in a highly redundant

musculoskeletal system. The novel method developed to fulfill this goal involves (1)

collecting neck strength in multiple directions and surface EMG profiles of a subset of

neck muscles in vivo, and (2) utilizing a simulation-based Bayesian estimator based on

Approximate Bayesian Computation (ABC) with rejection and importance sampling to
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infer subject specific individual muscle strength from the collected data. This probabilistic

framework provides uncertainties and correlations between parameters, rather than just

point estimates, which is beneficial in a system with the potential to have many solutions

[19].

The contributions of chapter 5 are as follows:

• We present a novel Bayesian framework for model-based parameter estimation in

a highly redundant, partially observable musculoskeletal system.

• We demonstrate the capabilities of the algorithm by applying it to models of

varying complexity and both simulated and experimental data sets, including a

24 muscle model and 25 multi-directional measurements.

• We show the feasibility of the approach through experimental data collection

of multi-directional neck strength and a subset of neck muscle EMG for n = 5

healthy participants.

• We show that the novel framework can identify weakness of the deep cervical

extensor muscles when provided a rich enough set of measurement data.

1.1.3. Automated Test Sequence Selection for Efficient Musculoskeletal Pa-

rameter Estimation

The full set of 25 test directions included in the experiment in Chapter 5 would be too

fatiguing for an individual with chronic WAD and too time consuming for clinicians. The

next step in making this framework practical for a clinical application is to reduce the

number of measurements required to obtain an informative estimate of individual mus-

cle strengths. Information theoretic measures have been used extensively in the fields of
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optimal experimental design [95], search [74], and source localization [111] to make mea-

surement selection decisions based on expected information gain. This type of approach

has not been attempted for musculoskeletal evaluation.

In Chapter 6, we present a novel framework for musculoskeletal evaluation that se-

quentially selects the next measurement that maximizes expected information gain. This

extension of the model-based Bayesian estimator from Chapter 5 keeps the clinician in

the loop, proposes the next measurement direction, and updates the parameter estimate

based on the result of that measurement at each iteration. We demonstrate how this

algorithm can provide information to the clinician enabling them to make an informed

decision on when to stop taking measurements.

The contributions of this chapter are:

• We develop a novel framework for clinician-in-the-loop automated test sequence

selection in musculoskeletal parameter estimation that selects the next measure-

ment to take based on expected information gain

• We demonstrate the utility of the approach by showing with a simulated data

set and 5 experimental data sets that the algorithm would provide information

allowing the clinician weigh the benefit of taking additional measurements.

• We present an example with an experimental data set where the algorithm enables

the number of measurements to be reduced from 7 to 4, without a significant

change in the strength estimates.
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1.2. Dissertation Outline

Chapter 2 presents background information from the multi-disciplinary array of fields

drawn upon in this work, including an introduction to chronic whiplash-associated dis-

orders (WAD), neck anatomy and biomechanics, musculoskeletal modeling, parameter

estimation, Bayesian inference, and information theory. The organization of the remain-

ing chapters follows the progression from the clinical motivating question, exploration

through musculoskeletal modeling, and finally the development of algorithmic solutions

to aid in musculoskeletal based parameter estimation.

We begin in Chapter 3 by investigating the deep cervical extensor muscle structural

changes in order to confirm and expand on the evidence of muscle atrophy that appears

to be unique to individuals that progress to chronic WAD. Results confirm an overall

increase in muscle fat infiltration (MFI) in these muscles in participants with chronic

WAD compared to the recovered and healthy control groups. The results further motivate

investigations of multi-directional neck strength and individual muscle strength changes

that could result from select atrophy of this group of muscles.

Chapter 4 explores the role of the deep cervical extensor muscles in multi-directional

neck strength through musculoskeletal simulation. We illustrate the effects of deep exten-

sor muscle weakness on neck strength and muscle activation patterns. We also evaluate

the effect of kinematic and muscle model complexity on simulated neck strength and the

role of the deep extensor muscles.

The final chapters develop a framework for estimating individual muscle strengths from

isometric neck strength measurements. Due to the high degree of kinematic and muscle
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redundancy in the neck, indirect inference is required to estimate the muscle strengths

that produce the maximum effort wrench measured at the head.

Chapter 5 develops a parameter estimation algorithm with an Approximate Bayesian

Computation (ABC) with rejection and importance sampling approach to infer the strength

of individual neck muscles based on a pre-collected data set of multi-directional neck

strength and electromyography (EMG) measurements. Feasibility of the approach was

demonstrated with experimental measurements from 5 healthy participants with data sets

measuring 6-D isometric neck strength in 25 directions with surface EMG recordings of

10 superficial neck muscles. The algorithm was able to identify deep extensor weakness

when utilizing the full spatial neck model and 25 test directions with simulated data sets.

Chapter 6 expands on the Bayesian estimator from the previous chapter with a

framework for clinician-in-the-loop automated test sequence selection for musculoskele-

tal parameter estimation. The algorithm selects the next measurement direction that

maximizes expected information gain. We demonstrate its utility with a 7 muscle planar

neck model and a simulated data set and experimental data sets collected in the previ-

ous chapter. We show that the automated test sequence and information provided by

the algorithm would allow the clinician to reduce the number of measurements without

significant change in individual neck strength estimate results. Reducing the number of

measurements is valuable because individuals with persistent WAD would not tolerate a

high number of strength measurements and the time available to clinicians for evaluation

is limited.
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CHAPTER 2

Background

The framework for musculoskeletal parameter estimation developed in this thesis

draws from a range of disciplines and research topics. This chapter provides the back-

ground and relevant work from these different fields. This includes an introduction to

persistent whiplash-associated disorders (WAD) and the associated muscle changes, neck

anatomy and biomechanics, musculoskeletal modeling, parameter estimation, Bayesian

inference, and information theory.

2.1. Whiplash-Associated Disorders

The development of persistent whiplash-associated disorders (WAD) occurs in as many

as 50% of individuals who sustain a whiplash injury in a motor vehicle collision (MVC),

contributing to a high economic and social burden [14, 21, 54]. Persistent WAD is asso-

ciated with a myriad of symptoms, including but not limited to, neck pain and stiffness,

headache, weakness, dizziness, and psychological distress [99, 14, 27]. Despite the societal

and personal impacts of the condition, the cause of the high rate of transition to chronic

pain and disability is unknown. There are generally no relevant pathological findings

on conventional imaging or other commonly used clinical tests to explain the severe and

persistent symptoms [13, 60, 88].

Quantitative Magnetic Resonance Imaging (MRI) studies have identified increased

muscle fat infiltration (MFI) throughout the neck muscles of individuals with persistent
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WAD, with a particularly high concentration in the deep cervical extensors [22, 26]. MFI

is associated with conditions such as denervation, disuse, and other musculoskeletal injury

pathologies like rotator cuff tears [36, 40, 55]. The cause of the increased MFI in the deep

cervical extensor muscles and the role that it plays in the maintenance of chronic pain and

disability in those with WAD remains unknown. It is reasonable to suspect that a muscle

with an increased percentage of fat would have less contractile tissue, indicating muscle

atrophy resulting in weakness. Previous research has identified changes in cervical motor

system function in WAD, including altered electromyographic (EMG) activity [79, 51, 31],

altered motor control [117, 116, 10, 43], and global neck weakness [82, 86]. However, a

link between MFI and motor dysfunction in WAD has yet to be established.

2.2. Neck Anatomy and Biomechanics

The human neck is a complex musculoskeletal system that is responsible for supporting

the weight of the head, flexible positioning of the sensory organs (eyes, ears, vestibular),

and protecting neural and vascular structures that connect the head and body.

2.2.1. Skeletal Anatomy and Biomechanics

Between the skull and the first thoracic vertebra, there are 7 cervical vertebrae. The

third through the sixth vertebrae (C3 - C6) are considered “typical” cervical vertabrae.

The upper two vertebrae, the atlas (C1) and axis (C2), are “atypical”, with geometry

that allows for a stable interface for the skull and a large amount of axial rotation. The

intervertebral junctions of the typical vertebrae include articulations at the intervertebral
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disc, a pair of facet (apophyseal) joints, and uncinate processes. This complex artic-

ular interface functions to support compressive loads and guide kinematics along with

ligamentous and capsular structures. Although the true kinematics are more complex,

intervertebral kinematics are typically described relative to 3 rotational degrees of free-

dom (DOF) (flexion-extension, axial rotation, and lateral bending) at each intervertebral

junction. With the cervical spine’s 7 intervertebral joints plus the atlanto-occipital junc-

tion (C0-C1), that sums to a total of 24 kinematic degrees of freedom for the head-neck

system.

Unless utilizing radiographic imaging, neck kinematics are appreciated by observing

movement or posture of the head relative to the thorax. Clinically, neck range of motion

(ROM) is typically measured as the change in angle of the head about one of the 3 axes

relative to its neutral starting posture [44]. In a lab setting, visual markers or inertial

measurement units (IMUs) on the head and thorax (sternum, acromion, and/or spinous

process of thoracic vertebra) are often used to capture neck kinematics. With all of these

methods, the position or movement of the end effector (the head) is used to represent

the composite joint angles of the cervical spine. Considering the head to have 6 DOFs

(3 rotational and 3 translational), the mapping from head position and orientation (6

DOF) to intervertebral joint angles (24 DOF) is under-constrained, meaning there are

infinitely many neck postures that could produce any given head posture. This concept

of kinematic redundancy will reappear throughout this thesis and presents a challenge for

musculoskeletal modeling and parameter estimation.
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2.2.2. Muscle Anatomy and Biomechanics

The musculature of the human neck is complex and comprised of layers of muscles, most

with multiple attachments and multi-planar actions over many joints. Detailed descrip-

tions of neck muscle anatomy can be found in the anatomic study by Kamibayashi &

Richmond [56], which is the original source for many of the muscle parameters used in

the neck models in this thesis. The muscles of the neck can be divided into a few major

groups based on their attachments.

The most superficial muscles, connecting the skull to the shoulder girdle, are the

sternocleidomastoid (SCM) and upper trapezius. The SCM is the largest lower cervical

flexor (C2-C7), but produces a small extension torque on the upper cervical spine (C0-C2).

The next layer of muscles connect the skull to the cervical spine. This intermediate group

includes the splenius capitis, semispinalis capitis, and longissimus capitis as extensors, and

the longus capitis as a flexor. Although grouped together here, the splenius, semispinalis,

and longissimus capitis muscles are oriented in very different directions, leading to different

actions for rotation. Another intermediate group of muscles connects the cervical spine to

the thorax. This includes the scalenes and levator scapulae. Like the trapezius, the levator

scapulae attach to the scapulae, so they are not independent of shoulder movement. The

hyoid muscles are a group of anterior neck muscles that connect the mastoid process and

mandible to the sternum through the hyoid bone. These muscles are generally considered

more important for swallowing and mastication, but they have the potential to produce

torques about the cervical spine.

The remaining muscles act locally in the spine, attaching vertebra to vertebra. Deep to

their capitis counterparts are the splenius cervicis, semispinalis cervicis, and longissimus
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cervicis. The longus colli spans the anterior aspect of the spinal column, acting to flex

the cervical spine. These muscles are made up of many distinct fascicles that each span

3-5 vertebrae. Finally, the deepest layer of muscles span only 1-3 vertebrae. The cervical

multifidus muscles attach a spinous process of a superior vertebra to a facet of a vertebra 2-

5 segments inferior [4]. The interspinales and intertransversarii muscles connect adjacent

spinous and transverse processes. The suboccipital muscles include 4 pairs of muscles

on the dorsal side of the neck that act locally in the upper cervical spine to produce

independent motion of the head on the neck.

The deep cervical extensors mentioned in Section 2.1 on WAD refers to the cervical

multifidus and semispinalis cervicis muscles, which originate from a spinous process of

superior vertebra and descend laterally to insert onto a transverse process of an inferior

vertebra. Throughout this thesis, these two muscles will often be referred to collectively

as the deep cervical extensor muscles.

A musculoskeletal system is considered to have muscle redundancy when it has more

muscles than kinematic DOFs, leading to an infinite set of muscle activation patterns

that can produce any given submaximal task [9]. It is difficult to say precisely how many

muscles are part of the head-neck system. While only 16 muscles were named in the

paragraphs above, many of the muscles are made up of multiple parts. Of course, each

neck muscle comes as a left-right pair. The scalenes are made up of 3 distinct muscles,

the anterior, middle, and posterior scalenes. The sternocleidomastoid has two heads but a

single cephalad insertion. Others, like the cervical multifidus and semispinalis cervicis, are

made up of many fascicular subgroups with independent attachments between vertebrae.

In addition to the number of muscles, other factors that influence the level of muscle
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redundancy include what level of independent neural control humans have within and

between neck muscles, the complexity of the task, and the specific distribution of muscles

across DOFs [62, 71]. Like the concept of kinematic redundancy, muscle redundancy will

be a recurrent topic in throughout this thesis.

2.2.3. Assessment of Neck Strength

Clinical assessment of neck strength is performed using manual muscle testing (grading

of 0 to 5) or dynamometry by applying a force to the head and instructing the patient

to hold an isometric posture. These tests do not attempt to isolate individual muscle

groups, instead referring to the general actions such as flexion, extension, side-bending,

or rotation. Daniels and Worthingham’s Muscle Testing book [44] offers distinct tests for

capital and cervical extension and flexion strength by adjusting the direction and location

of application of resistance by the clinician. They also present a manual muscle test for

SCM strength, which involves the patient in supine lifting their head against resistance in

a rotated neck posture. Kendall’s Muscles Testing and Function book [57] includes manual

muscle tests for more than 40 individual upper extremity muscles, but only 3 tests for

neck strength, none of which isolate an individual neck muscle group. Other neck muscle

assessments include clinical tests for neck extensor endurance [63], neck flexor endurance

[42], and deep cervical flexor neuromotor control [52]. Controlled lab studies have utilized

six degree of freedom (DOF) load cells and custom helmet fixtures or adjustable pads to

interface with the head to measure neck strength [33, 109, 82, 86]. These studies report

forces measured at the point of contact with the head or resolve forces into torques about

an axis in the lower cervical spine [109, 34]. This choice of axis is somewhat arbitrary and
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disregards the ability of the neck to produce a combination of forces and moments in 6

DOF. Although some of these studies have included submaximal bi-planar test directions

[109, 34], none have attempted to isolate the strength of individual neck muscles.

2.3. Musculoskeletal Modeling of the Neck

Musculoskeletal models enable us to explore quantities that would otherwise be dif-

ficult or impossible to measure in vivo. The following sections derive the computational

neck model used throughout this thesis.

2.3.1. Equations of Motion

The generalized equations of motion for a musculoskeletal kinematic chain withmmuscles,

n joint space DOFs, and d task space DOFs, can be expressed in the torque space as

(2.1) M(q) q̈ = R(q) [ Fa(q, q̇) α + Fp(q) ] + V (q, q̇) +G(q) + JT (q) w

where:

• q, q̇, and q̈ ∈ Rn×1: generalized coordinates of the model

• M(q) ∈ Rn×n: mass-inertia matrix

• R(q) ∈ Rn×m: moment arm matrix

• Fa(q, q̇) ∈ Rm×m: diagonal matrix of maximum active muscle force. Maximum

isometric muscle force (strength) is defined as the maximum force the muscle can

produce at optimal fiber length.

• α ∈ Rm×1: muscle activations, with elements ranging from 0 to 1.
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• Fp(q) ∈ Rm×1: passive muscle forces

• V (q, q̇) ∈ Rn×1: joint torques due to Coriolis forces

• G(q) ∈ Rn×1 : joint torques due to gravity

• J(q) ∈ Rd×n: Jacobian matrix mapping joint velocities to end effector velocities.

The transpose of the Jacobian, JT , maps end effector wrenches to joint torques.

• w ∈ Rd×1: end effector wrench. In the full spatial context, where d = 6, the

wrench has components w = [Mx,My,Mz, Fx, Fy, Fz]
T . In a planar context,

where d = 3, the wrench has components W = [Mz, Fx, Fy]
T

The generalized equations of motion can be simplified for an isometric task, where

q̇ = 0 and q̈ = 0. In this case, V (q, q̇) = 0 and M(q) q̈ = 0. If the neck is in a neutral

posture, the passive muscle forces are minimal, so Fp(q) = 0. If the head is secured in

a measurement device, like the one described in the experiments in later chapters, the

effects of gravity may also be ignored, so G(q) = 0. The simplified isometric equations of

motion are then:

(2.2) R F α− JT w = 0

The moment arm matrix, R, and Jacobian matrix, J , are still dependent on joint

angle, q, and must be updated if posture changes. In the context of this thesis, neck

strength is always measured in an upright neutral posture, so R and J remain constant

throughout. The maximum active muscle force, Fa(q, q̇), has been replaced by F , the

maximum isometric muscle (muscle strength) at optimal fiber length.
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2.3.2. Feasible Wrench Set

One way to think of multi-directional neck strength is as the feasible wrench set (FWS) of

the neck. A feasible wrench set is the set of all possible wrenches the nervous system (or

model) can produce at the end effector in a particular posture [105]. The boundaries of

this set are the maximum wrench magnitudes in every possible direction. Computational

geometry and linear algebra provide a structured analytical method for computing the

feasible wrench set, by mapping the vertices of the feasible activation space (a unit positive

m-dimensional cube) to the wrench space [107, 62]. This method is limited, however, by

the dimensionality of the muscle space and the availability of a direct mapping between

activation and wrench space. This direct mapping, w = [ J−T R F ] α = A α, relies on

our ability to invert the Jacobian matrix.

To be invertible, the Jacobian would need to be square and non-singular. This would

mean that n = d, or the number of joint DOFs would need to equal the number of task

space DOFs. Another option is use the pseudoinverse. However, a pseudoinverse is not

unique and introduces potentially false constraints. To avoid these limitations, a modified

feasible wrench set can be computed by finding the maximum wrench magnitude that can

be produced in a set of pre-defined wrench unit directions. This set of equations forms

the basis for the computational neck model introduced in Chapter 4 and used throughout

this thesis.

The mathematical model for computing the maximum wrench magnitude, w, and

associated muscle activation pattern, α, given a set of individual muscle strengths f and

unit wrench direction u is:
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M(f, u) =

(2.3)

max
α,w

w

s.t.

[
R diag(f) −JTu

]α
w

 = 0,

0 ≤ α ≤ 1,

0 ≤ w

2.4. Parameter Estimation

The objective of a parameter estimation problem is to determine the values of some

unobservable parameters, θ, based on some observable quantities, x. The mathemati-

cal model relates these quantities through a forward problem, M(θ) = x. Parameter

estimation methods seek to solve the inverse problem. A wide array of computational

techniques have been developed and the choice of technique depends on the structure and

well-posedness of the inverse problem.

The mathematical model (Equation 2.3) relating individual muscle strengths, f , to

maximum wrench magnitudes, w, is a linear programming optimization. However, the ex-

istence of the bounded and strictly positive muscle activation hyperparameters, α, and low

rank of both the Jacobian, J , and moment arm matrix, R, make the problem nonlinear,

non-unique, and ill-conditioned. Regularization techniques that are commonly used to

produce usable solutions to otherwise intractable ill-conditioned problems rely on impos-

ing additional constraints that bias the solution [5]. The Bayesian approach bypasses the

need for these regularization techniques by treating all variables as random variables and
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allowing for a full probability distribution of solutions, rather than requiring somewhat

arbitrary constraints.

2.5. Bayesian Inference

We can think of parameter estimation in the Bayesian framework as a statistical quest

for information about the unknown parameter. In the context of the mathematical model

(Equation 2.3), there are some directly observable quantities, such as the wrench measure-

ments, but the primary quantities of interest, the muscle strengths, are not observable.

The Bayesian approach allows us to extract information about the muscle strengths that

are dependent on the observable quantities through the model. Instead of finding a single

estimate of the individual muscle strengths, a set of probability distributions is produced

that can be used to obtain estimates and a level of uncertainty about the estimates. In

this way, the inverse problem is no longer ill-posed, but instead it produces the range of

possible answers in the larger space of probability distributions.

Bayes’ theorem states that the posterior probability distribution of the unobservable

random variable, θ, given the observed measurement X = x, is:

(2.4) p(θ|x) =
p(x|θ) p(θ)

p(x)

The posterior distribution, p(θ|x), expresses what we know about θ after the mea-

surement data X = x is observed. Information that is known about the unobservable

quantity, θ, can be encoded in the prior density p(θ). The likelihood function p(x|θ)

relates the variables to the model and indicates how likely it is to observe the data x
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under the model with parameters θ. In other words, the likelihood function describes the

relationship between the observed measurements and the unknown quantity that we are

trying to estimate. For some models, this is simply a forward solution to the problem

and can be expressed analytically. In the case of the mathematical model presented in

Equation 2.3, the likelihood function can not be specified analytically, so a likelihood-free

approach is necessary.

2.5.0.1. Approximate Bayesian Computation. In cases where the likelihood func-

tion is intractable, Approximate Bayesian Computation (ABC) is a useful alternative to

the traditional Bayesian approach. In ABC, the likelihood function is replaced with a

simulation of the model to produce an artificial data set that can be compared to the

measured data. Specifically, samples of the unknown parameter, θ, are taken and used

to simulate data xsim. The simulated data set is then compared to observed data x by

computing some distance metric.

In its simplest form, an ABC rejection sampler [85] for a discrete system (Algorithm

1) involves repeatedly sampling candidate parameter values from the prior distribution,

θ′ ∼ f(θ), generating data with the model, xsim = M(θ′), and accepting or rejecting the

candidate parameter value based on some distance metric, ρ(xsim, xmeas) ≤ η.

Algorithm 1 ABC Rejection Sampler

for i = 1 to N do
repeat

Sample θ′ ∼ f(θ)
Generate data xsim from M(θ′)

until ρ(xsim, xmeas) ≤ η
set θi = θ′

end for
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Figure 2.1. Approximate Bayesian Computation Algorithm. A high
level visualization of an ABC algorithm. Samples are generated from the
prior distribution. Data is simulated with the model and compared to the
observed data. For a rejection sampler, like Algorithm 1, the filter rejects
candidate parameter values that produce data with error larger than some
cutoff error.

Many specific extensions of the basic ABC framework have been developed to address

challenges with sampling the parameter space and convergence, including MCMC, sequen-

tial Monte-Carlo methods importance sampling, and regression adjustments [103, 101, 70].

2.6. Information Theoretic Measures

In robotics, search, and source localization applications, information theoretic mea-

sures have been used quite extensively to maximize information gain in a Bayesian frame-

work. Information theory originated from a single paper written in 1948 by Claude

Shannon [90] that provides a quantitative metric for measuring the loss of information
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during transmission of a communication signal. The work introduces entropy as a met-

ric for encoding the expected uncertainty in a signal. Information theoretic measures

have been used extensively in the field of optimal experimental design [95], where the

primary objective in the context of parameter estimation is to select an experiment that

will produce the best statistical quality of the parameter estimates [77]. One strategy is

to maximize the information gain, from prior to posterior. The field of information theory

defines self-information of an event x as I(x) = − log(p(x)). I(x) can be thought of as

the information content of the random variable X. Shannon entropy [90], the average

amount of information in a probability distribution, is computed using Equation 2.6 by

taking the expected value of the self-information over all possible values of x. Shannon

entropy can also be thought of as the measure of uncertainty of a probability distribution

[48].

The expected value of a distribution of a random variable is the weighted sum of the

probabilities over the domain of the random variable.

(2.5) E[X] =
∑
x

x p(x)

So the average entropy over x is:

(2.6) S(x) = E(I(x)) =
N∑
i=1

−p(xi) log(p(xi))

where X takes N possible values xi, i = 1, ..., N . Note that S ≥ 0 and S = 0 only

if there is no uncertainty in X. The maximum value that S can have is lnN , where all
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possible outcomes of X have equal probability (a uniform distribution over the full range

of X).
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CHAPTER 3

The Geography of Fatty Infiltrates within the Cervical

Multifidus and Semispinalis Cervicis in Individuals with

Chronic Whiplash-Associated Disorders

3.1. Abstract

We aim to quantify the magnitude and distribution of muscle fat infiltration (MFI)

within the cervical multifidus and semispinalis cervicis muscles of individuals with chronic

whiplash-associated disorders (WAD) as compared to healthy controls and those who fully

recover from a whiplash injury secondary to a motor vehicle collision (MVC).

Previous research has established the presence of increased MFI throughout the entire

cervical extensor muscles of WAD patients when compared to healthy controls. These

changes appear to be greater in deepest muscles (e.g. multifidus and semispinalis cervicis)

than the more superficial muscles. A detailed analysis of the specific distribution of MFI

within these deep extensor muscles in WAD, recovered, and control groups may provide

foundation investigating specific mechanisms, etiologies, and targets for treatments.

Fifteen participants in 3 Groups: WAD (n=5), Recovered (n=5), and Controls (n=5)

were studied using a 3 dimensional (3D) Fat/Water separation magnetic resonance imag-

ing (MRI) sequence. Bilateral measures of cervical multifidus and semispinalis cervicis

MFI in four quartiles (Q1 – Q4; medial to lateral) at cervical levels C3 through C7 were

included in the analysis. Intra- and Inter-rater reliability was established. A mixed model
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analysis was performed to control for covariates, identify interaction effects, and compare

MFI distribution between groups.

The Limits of Agreement confirmed strong inter- and intra- rater agreement at all

levels (C3-C7). Gender, age, and BMI were identified as significant covariates on MFI.

Significant interactions were found between group and muscle quartile (p < 0.001) and

between muscle quartile and cervical level2 (p < 0.001). Pairwise comparisons for intra-

quartile MFI between groups revealed a significantly greater MFI in the WAD group when

compared to the Recovered and Control groups in Q1 and Q2 (p < 0.002) and greater

MFI over the recovered group in Q3 and Q4.

This study provides preliminary data mapping the spatial distribution of MFI in the

cervical multifidus and semispinalis cervicis muscles in chronic WAD, recovered, and

healthy controls. MFI is more concentrated in the medial portion of the muscles in

WAD, recovered, and healthy control participants. However, the magnitude of MFI in

each quartile is greatest in those with chronic WAD.

3.2. Introduction

Previous studies using magnetic resonance imaging (MRI) have demonstrated wide-

spread fatty infiltrates in the neck extensor [24] and flexor [28] muscles of individuals with

chronic whiplash associated disorders (WAD). These high levels of muscle fat infiltration

(MFI) were not present in those with chronic non-traumatic neck pain6 or those with-

out a history of neck disorders [24]. While widespread, the greatest magnitude of MFI

was consistently observed in the deepest muscular layer of the extensors (e.g. the multi-

fidus and semispinalis cervicis) when compared to the more superficial musculature (e.g.
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semispinalis capitis, splenius capitis and upper trapezius) [24, 29]. However, the specific

role of MFI in the development and maintenance of chronic WAD is not fully understood

[26, 98]. Improvements in our mechanistic understanding of the development of struc-

tural changes (e.g. composition and morphology) in the cervical muscles of patients with

chronic WAD may shed light on their potential contribution to poor functional recovery.

The extensor and flexor muscles of the human neck are responsible for the majority

of the postural stability of the cervical spinal column [81]. The extensors are layered

and can be divided into functional groups based on location and attachments. The most

superficial extensor muscles bypass the vertebrae to attach the shoulder girdle to the

cranium (e.g. upper trapezius). Intermediate extensors (e.g. portions of the splenius

and semispinalis capitis), attach the shoulder girdle to individual vertebrae, or individual

vertebrae to the cranium. The deep extensors, including the cervical multifidus and the

semispinalis cervicis, attach vertebrae directly to other vertebrae. These deep extensors

likely play a specific role in segmental support of the cervical spine and fine head/neck

postural control [69]. Degeneration of these complex muscles, as the MFI might indicate,

may have implications for altered biomechanics of the neck and postural stability in

those with chronic WAD. However, the associations between MFI and commonly observed

impairments (e.g. proprioceptive functioning) and other functional characteristics, such

as stiffness and altered motor control, are yet to be quantified.

Previous animal work suggests specific patterns of MFI are a consequential marker of

induced experimental injuries involving the lumbar spine [68]. Clinically, the magnitude

and anatomical location of their presence alters plan of care with respect to surgical man-

agement of rotator cuff tears [39, 45, 75]. Furthermore, measurement of and histological
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confirmation for MFI with a quantitative MRI approach has been produced in both an

animal [93] and human model [37].

Accordingly, this preliminary study aims to establish the reliability of an MRI mea-

sure for mapping the magnitude and spatial distribution of MFI in the cervical multifidus

and semispinalis cervicis and to provide preliminary data for comparing WAD, recov-

ered whiplash, and healthy control groups. Such data is necessary to better understand

potential altered biomechanics (e.g. changes in joint torques) and control patterns (e.g.

changes in task-dependent muscle activation) that may lead to or perpetuate persistent

pain and disability in those with chronic WAD.

3.3. Methods

3.3.1. Study Population

A total of fifteen participants were included in this analysis. Five gender and age matched

participants were selected for each group (WAD, Recovered, and Controls) from a con-

current prospective study. The MRI measures for MFI were performed by two-raters

that were blind to the clinical severity of each participant. Each participant in the WAD

group (n=5) had chronic neck pain (3 months – 5 years post MVC) and a neck disability

index (NDI) greater than 30%. The Recovered group (n=5) nominated full resolution

of symptoms and were scanned at 3 months post MVC with an NDI score of less than

10%. The Control group (n=5) had no history of neck pain that required treatment in the

past 10 years. Additional inclusion criteria included no cervical spine fracture following

MVC, no previous neck injury, and no previously diagnosed nervous system disorders. All

participants provided informed consent before participating in the study.
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3.3.2. MRI Measures and Analysis

A three-dimensional multi-echo gradient echo acquisition was performed to collect the

data required for the analysis of phase related to the precessional differences in muscle fat

and water. A standard 12-channel head coil and 4-channel neck coil were used as receiver

coils to improve signal-to-noise. The axial FLASH dual echo, gradient echo sequence was

4:23 minutes with an in-plane resolution of 0.7mm using a rectangular field of view of 75%

and thickness of 3mm and slab oversampling of 22% with 36 partitions to prevent aliasing,

TR/TE1/TE2 6.59/2.45/3.68 ms with a FOV of 190 x 320 mm. This scan covered the

cephalad portion of C3 through the caudal portion of the C7 vertebral end plate. By

collecting data at an echo time when water and fat are in-phase and at an echo time when

water and fat are out of phase, two images are produced. The ratio of the pixel intensities

within a voxel gives an index of muscle fat infiltration.

The MRI analysis consisted of manually tracing defined regions of interest (ROI) over

the bilateral cervical multifidus and semispinalis cervicis muscles on axial MR slices. A

customized program was developed using MATLAB (MathWorksTM USA) to quantify the

magnitude of MFI in each quartile of the ROI. Quartiles were defined by two dimensional

coordinates containing an equal number of pixels running from medial (Quartile 1- Q1) to

lateral (Quartile 4 – Q4) based on the orientation of the muscle as viewed in the transverse

plane, as shown in Figure 3.1. The measure of fat within the muscle was calculated as

the ratio of pixel intensities from the fat and water images:

MFI =
IF

IF + IW
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where IF = fat intensity and IW = water intensity

The quartile and whole MFI value at each cervical level (C3-C7) is the average of

measurements at 5 axial slices that span the length of the vertebral level. For example, the

MFI value of Q2 at cervical level C4 of Subject A, is the average of 5 MFI measurements

from sequential axial MR slices that span from the top to the bottom of the C4 vertebral

body. An MFI measure for all four quartiles was created in this manner bilaterally at

each level for each subject.

To test repeatability, two authors (RA and MH) experienced in this technique, inde-

pendently traced the ROI for each cervical level of 6 randomly selected participants (4

WADs and 2 Controls) while being blind to the other’s assessment.

Figure 3.1. Multifidus and Semispinalis Cervicis MFI was analyzed bilat-
erally (only one side shown above) at 5 cervical levels (C3-C7) in quartiles
(Q1 (medial) -Q4 (lateral)).
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3.3.3. Statistical Analysis

Intra- and inter- rater reliability of intra-quartile MFI were examined through construction

of Bland-Altman plots and calculation of the limits of agreement (LOA) using the method

proposed by Bland & Altman [73]. Intra-class correlation coefficients (ICCs) were also

calculated for both intra- and inter- rater reliability data using a two-way random effects

structure and absolute agreement (ICC[2,1]).

A repeated measures linear mixed model approach was used to investigate differences

between groups in the magnitude and spatial distribution of MFI. A within subject factor

of level * quartile was used to account for the spatial repetition of measures of MFI across

cervical level and muscle quartile. Preliminary investigation of MFI across all cervical

levels revealed a non-linear quadratic-type relationship between MFI and cervical level.

Thus, the quadratic effect of cervical level (i.e. cervical level) on MFI was entered into

the model as a fixed effect. The main and interactive effects of muscle quartile and group

(WAD, recovered, control) and the 3-way interactive effect of muscle quartile with group

and cervical level were also included in the model. Inter-subject differences in the change

in MFI across cervical level (cervical level) and across quartiles were included in the model

as random effects. Age, gender, and BMI were entered as covariates given the previous

evidence of their effect on MFI. Pairwise comparisons with Bonferroni corrections for

multiple comparisons were used to investigate between group differences in intra-quartile

MFI. All statistical procedures were carried out using IBM SPSS 22.0 (IBM). For all

analyses, the significance level was set to p ≤ 0.05.



47

3.4. Results

Both inter- and intra-rater agreement were confirmed with Bland & Altman tests

(Figure 3.2 a, b) and ICCs (Figure 3.2 c, d). Bland & Altman plots showed no systematic

relationship between MFI values and absolute differences for either inter- or intra-rater

data. LOA showed slightly better agreement within (-0.04, 0.06) than between raters

(-0.07, 0.07).

ICC values for both inter- (ICC[2,1] = 0.93, 95% CI = 0.90, and 0.94) and intra-

(ICC[2,1] = 0.98, 95% CI = 0.97, 0.98) rater reliability showed excellent levels of agree-

ment.

Gender
(Females)

Age
(years)

Body Mass Index
(BMI)

Neck Disability Index
(x/100)

Chronic Whiplash
(n=5)

3 30.6 ± 9.0 29.6 ± 4.6 41.2 ± 13.6

Recovered Whiplash
(n=5)

3 32.8 ± 7.5 26.4 ± 1.1 1.6 ± 2.6

Healthy Controls
(n=5)

3 35.0 ± 8.9 25.8 ± 5.0

Table 3.1. Demographic data (Mean ± SD)

Mixed model analysis revealed a significant effect of the covariates gender (F[1, 30.9]

= 11.8, p = 0.002) and BMI (F[1, 30.9] = 28.0, p < 0.001) on MFI. There was no

significant effect for age on MFI (F[1, 30.9] = 1.0, p=0.316). There was a significant

interaction between group and muscle quartile (F[6, 211.7] = 6.4, p < 0.001) and between

muscle quartile and cervical level (F[3, 216.9] = 29.6, p < 0.001) but not between group

and cervical level (F[2, 29.5] = 0.5, p = 0.61). The three-way interaction between group

cervical level and muscle quartile was not significant (F[6, 216.9] = 1.2, p = 0.32 indicating

that between-group differences in intra-quartile MFI were consistent across cervical levels.
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Figure 3.2. Inter- and Intra- rater reliability for the MFI quantification
method. a) Bland-Altman Plot for intra-rater reliability (LOA=(-0.04,
0.06)), b) Bland-Altman Plot for inter-rater reliability (LOA=(-0.07, 0.07)),
c) Intra-rater correlation (ICC[2,1] = 0.98, 95% CI = 0.97, 0.98), d) Inter-
rater correlation (ICC[2,1] = 0.93, 95% CI = 0.90, 0.94).

Pairwise comparisons for intra-quartile fat between study groups are shown in Figure

3.3. The WAD group had significantly higher MFI values than the recovered group in

Q1 (df = 45.2, p < 0.001), Q2 (df = 46.17, p < 0.001) and Q3 (df = 47.6, p = 0.03).

Significantly higher MFI was also observed in the WAD group in comparison to the control

group in Q1 (df = 43.0, p = 0.002) and Q2 (df = 43.8, p = 0.045). No significant differences

between the control and WAD groups were observed in Q3 or Q4. The recovered group

showed significantly lower MFI in comparison to the control group in Q1 (df = 48.6, p =

0.048).
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Control Recovered WAD
MFI SD MFI SD MFI SD

C7

Q1 0.289 0.079 0.252 0.085 0.381 0.08
Q2 0.188 0.057 0.146 0.044 0.265 0.098
Q3 0.148 0.051 0.119 0.027 0.195 0.071
Q4 0.158 0.06 0.13 0.031 0.197 0.11
Whole 0.199 0.06 0.164 0.045 0.266 0.08

C6

Q1 0.267 0.064 0.214 0.056 0.363 0.074
Q2 0.165 0.044 0.131 0.041 0.227 0.073
Q3 0.112 0.04 0.097 0.022 0.161 0.064
Q4 0.122 0.048 0.116 0.021 0.158 0.091
Whole 0.17 0.045 0.142 0.034 0.234 0.071

C5

Q1 0.217 0.073 0.177 0.018 0.313 0.075
Q2 0.166 0.06 0.141 0.041 0.252 0.057
Q3 0.113 0.034 0.108 0.016 0.178 0.052
Q4 0.126 0.031 0.134 0.021 0.176 0.06
Whole 0.157 0.048 0.141 0.021 0.234 0.048

C4

Q1 0.206 0.049 0.19 0.061 0.305 0.077
Q2 0.179 0.074 0.155 0.044 0.259 0.074
Q3 0.129 0.052 0.11 0.021 0.184 0.062
Q4 0.147 0.041 0.14 0.027 0.214 0.049
Whole 0.167 0.051 0.15 0.031 0.244 0.056

C3

Q1 0.232 0.064 0.231 0.033 0.332 0.09
Q2 0.232 0.083 0.22 0.032 0.319 0.096
Q3 0.218 0.056 0.206 0.046 0.304 0.067
Q4 0.231 0.056 0.239 0.044 0.325 0.052
Whole 0.23 0.061 0.226 0.032 0.323 0.065

Table 3.2. Muscle Fat Infiltration by group, level, and quartile

3.5. Discussion

This study provides preliminary data mapping the regional distribution and magni-

tude of MFI in the deep extensor muscles in a small sample of individuals with chronic

WAD, recovered whiplash, and healthy controls. Consistent with previous studies, the

WAD group presents with the greatest average MFI throughout the deep extensors when
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Figure 3.3. Mean MFI for between group comparison at each quartile (Q1-
medial, Q4- lateral) averaged over all cervical levels. The values are esti-
mated marginal means and were based on the covariate values of age = 32.8
years, BMI = 27.27, and cervical level = C4. Significance is denoted as *
for p¡0.05, ** for p<0.01, and *** for p<0.001.

compared to controls [24] and those that recover from an MVC [26]. Between group com-

parisons of intra-quartile MFI revealed a significantly greater MFI in Q1 and Q2 in the

WAD group compared to both the recovered and control groups. Oddly, intra-quartile

MFI was significantly higher in the WAD group compared to the recovered group, but not

control group in Q3. Another unexpected result is that the recovered group demonstrated

significantly lower MFI in Q1 and Q2 compared to the control group. These two observa-

tions are difficult to explain, but may be the result of low subject numbers or traumatic

factors [20, 39], such as inflammation [64], that may drive (or inhibit) the development

of MFI [98]. Further mechanistic investigation of local and systemic serum quantities of
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Figure 3.4. Mapping of the MFI across quartiles for controls (a), recov-
ered (b), and WAD (c) subjects and across cervical levels for controls (d),
recovered (e), and WAD (f).

inflammatory biomarkers (e.g. TNF-α, C-Reactive Protein, and IL-1β) [98] is warranted

as this could help explain the differential response (and presence) of MFI between the re-

covered and control participants. Also, while we did not collect data regarding the various

treatments being received by any of the subjects with whiplash, it remains plausible that

the presumed healthier muscle tissue (e.g. less MFI) in recovered participants compared

to the controls was, in part, influenced by an intervention effect. This is currently being

documented and investigated in a larger prospective study.

Despite low subject numbers, data from the plot of limits of agreement suggest that

the MFI quartile analysis is repeatable between and within raters experienced in this

method. Because each ROI is considered an independent data point (5 cervical levels x

2 sides = 10 data points per subject) and the images were presented in a randomized
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fashion, the sample size is adequate to determine reliability for this measure. According

to Walter and colleagues, assuming a minimum agreement (ICC) of 0.80, with a null

hypothesis of 0.4, a minimum of 9 independent observations provides an acceptable 5%

alpha error rate (p < 0.05) and 20% beta error rate [113]. There can be a strong level of

confidence in accepting the results of the measure as is demonstrated by the widths of the

95% CI for the WAD group mean inter-rater differences in MFI across all cervical levels.

Also of interest are the interactions between quartile, cervical level, and group. Inter-

quartile differences in MFI differed across cervical levels. MFI appears to be relatively

equally distributed between quartiles at the highest analyzed cervical level (C3), but at

lower cervical levels Q1 is the highest of the quartiles while Q2, Q3, and Q4 decrease or

stay the same (See Figure 3.4 a,b,c). This general pattern that is apparent in all groups

may be related to the architecture of the deep muscles rather than a true indicator of

degeneration at these levels. The second significant interaction reveals that MFI within

muscle quartiles differs between the study groups (Figure 3.3). These between-group

differences are consistent across cervical levels. While preliminary, the findings support

further prospective investigation with a larger cohort that may reveal the development

of a characteristic MFI distribution pattern amongst participants with varying levels of

pain-related disability. Such work is currently underway, aiming to identify specific injury

mechanisms underlying MFI, biomechanical consequences of MFI, and potential treatment

targets.

Although higher measurements of total MFI in the multifidus muscles have been at-

tributed to WAD, these current observations suggest the intra-muscular changes may be
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more regionally situated than previously thought. The multifidus and semispinalis cervi-

cis muscles have a complex architecture, with fascicles attaching to the spinous process

(falling into Q1) of a superior vertebrae and then traveling laterally to attach to the trans-

verse process of an inferior vertebrae (falling into Q4). While the precise biomechanical

consequences of the specific spatial patterns of MFI within the deep extensors observed

in this study are unknown, several hypotheses can be generated. If local MFI increases

translate to deficits in motor function, the location of high MFI in specific neck muscles

is relevant to the clinical presentation and the development of biomechanical models of

the human head/neck. To our knowledge, the distribution and magnitude of MFI has not

factored into the development of and use for current modeling efforts.

The magnitude and location of structural muscle changes may have implications for

ongoing neck pain following a MVC, as they could alter the internal forces in joints and

muscles. The multifidus and semispinalis cervicis both have attachments to the facet cap-

sules, which have been consistently implicated in the generation of and maintenance for

neck pain following whiplash [68, 80, 91, 115]. Treatments targeting facetogenic pain are

available. Radiofrequency neurotomy (RFN) interventions have been shown to attenuate

the psychophysical signs/symptoms (e.g. thermal/pressure pain thresholds) [93]. How-

ever, the long-term biomechanical consequences of RFN are unknown. Equivocal findings

with respect to the influence of the lumbar spine muscle system were found by Smuck et

al [94]. Further exploration with current quantitative methods are warranted to better

understand the biomechanical consequences of RFN [2].
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3.6. Conclusions

The results of this study provide preliminary evidence of unique patterns of MFI dis-

tribution within the deep extensor muscles of WAD, recovered whiplash, and healthy

controls. This provides foundation to explore whether the geography and magnitude of

MFI contributes to persistent functional deficits common to some patients with WAD.

Further study to verify this pattern and to determine the potential influence of rehabili-

tative exercise amongst a larger cohort with varying amounts of MFI is warranted.

3.7. Key Points

Findings: The distribution of MFI in the deep cervical extensor muscles differs between

groups in a small sample of WAD, recovered whiplash, and control groups.

Implications: Quantifying the magnitude and distribution of MFI in the cervical mus-

cles may elucidate the mechanisms underlying disturbed neuromuscular control of posture

and dynamic stability of the head and neck following whiplash injuries. Accordingly, such

information may provide foundation for exploring and developing more informed treat-

ment regimens targeting specific muscle groups, improved health, and functional recovery.

Caution: It is necessary to establish a larger dataset of within muscle variation of MFI

across all muscles in the cervical spine in participants with WAD before more definitive

biomechanical conclusions can be made. Furthermore, a scan-rescan reliability measure

is also warranted to account for potential acquisition variability.
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CHAPTER 4

The Role of the Deep Cervical Extensor Muscles in

Multi-Directional Isometric Neck Strength

In the previous chapter, we confirmed the widespread increase in muscle fat infiltra-

tion throughout the deep cervical extensor muscles of individuals with WAD. An obvious

next question is, what are the biomechanical consequences of these compositional muscle

changes? This chapter utilizes a musculoskeletal model of the neck to explore the role of

the deep cervical extensor muscles in multi-directional neck strength and the biomechani-

cal consequences of weakness of this muscle group. Through simulation, we illustrate how

deep extensor muscle weakness affects neck strength and muscle activation patterns in

25 test directions mapped to locations on the skull where resistance could be applied by

a clinician. The results predict that an individual with decreased deep extensor muscle

strength would present with decreased neck strength in the posterior and postero-lateral

directions, but would still be able to produce forces in all 25 test directions. We also show

that deep extensor weakness could lead to an altered muscle activation pattern char-

acterized by increased activation of the superficial extensors (splenius and semispinalis

capitis) and upper cervical flexors (longus capitis) along with a decrease in activation

of the suboccipital muscles. These simulation results could help explain some reported

motor dysfunction in WAD and warrants further investigation.
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4.1. Introduction

Imaging studies have confirmed the development of increased muscle fat infiltra-

tion (MFI) in the neck muscles of individuals with chronic whiplash-associated disorders

(WAD), with the greatest concentration of MFI found in the deep cervical extensor mus-

cles (multifidus and semispinalis cervicis) [1, 23]. While the role of MFI in the development

and maintenance of movement dysfunction and chronic WAD is unknown [117, 100], it is

indicative of muscle atrophy, and associated with a decrease in force generating capacity

of the deep cervical extensor muscles. Previous studies have shown that individuals with

chronic WAD exhibit a marked decrease in isometric neck strength in all cardinal planes

(flexion/extension, lateral flexion, and rotation) when compared to healthy controls, with

the greatest relative weakness reported in extension [82, 86, 61]. Altered muscle activa-

tion patterns in WAD during dynamic tasks are characterized by decreased and delayed

anticipatory recruitment of the deep cervical flexors (longus colli and capitis) [51] and

increased tonic recruitment of superficial muscles (sternocleidomastoid, upper trapezius,

scalenes, and levator scapulae) [53, 31]. In order to establish the link between muscle

atrophy of the deep extensors and motor dysfunction in WAD, it is crucial to understand

the biomechanical role of the deep extensor muscles within the complex system of the

neck. The human neck is structurally complex, with 7 joints and more than 20 muscle

pairs with attachments to multiple points that cross one or more joints, acting on one or

more degrees of freedom [56]. Kinematic and muscle redundancy prevent the direct com-

putation of individual muscle contribution to neck strength measurements, as any forces

and moments measured at the head could be produced by many non-unique combinations

of active muscle sets and muscle forces. In this study, we utilize a computational model
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of the neck to investigate the effect of deep cervical extensor weakness on the maximum

isometric strength of the neck and resultant muscle activation patterns.

To our knowledge, no studies have attempted to identify the influence of deep exten-

sor weakness on neck strength and function in vivo. One barrier is the invasiveness of

intramuscular EMG for the deep extensor muscles, which requires inserting the electrode

through several layers of muscle and fascia before reaching the muscles. Spatial tuning of

neck muscles measured by surface and intramuscular electromyography (EMG) in healthy

individuals has given insights into the directional recruitment of specific muscle groups

when producing isometric multi-directional forces [110, 58, 34, 11]. An important observa-

tion is that the preferred direction of most neck muscles does not align with the muscle’s

biomechanical line of action, highlighting the complex interdependence of muscles may

not be intuitive when balancing torques across multiple joints to produce forces at the

head [58].

Clinically, neck strength is tested in the cardinal directions (flexion/extension, lateral

flexion, rotation) by the clinician providing manual resistance at points on the head [44].

Unique postures are described to target the capital joint (upper cervical spine) vs. the cer-

vical spine, but the contribution of specific muscle groups is not clear [44]. Experimental

studies of isometric neck strength and muscle spatial tuning typically define test directions

as torques about 3 axes crossing at the C7-T1 intervertebral joint [109, 34]. This mapping

from 6-D measurements at the head to 3-D torques ignores important degrees of freedom

available to the neck and head, specifically the differential contribution of torques about

the upper vs. lower cervical spine, which would significantly affect muscle contributions.

The contribution of particular muscles forces to joint torques and end effector forces can
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also be explored using computational models. One way to conceptualize strength of a

model is the feasible force set (FFS), defined as the bounds of the biomechanical capa-

bility to produce static forces in all directions from its end effector [106]. The FFS has

been used to probe the role of particular muscles in producing end effector forces in the

finger [104], cat hindlimb [96], and leg [62, 97]. This study presents results of the FFS in

25 unique points and force directions located on landmarks on the skull to account for all

6 degrees of freedom of the head on the neck and better replicate clinical strength tests.

There is no available method for measuring muscle strength directly in humans. Com-

putational models can serve as valuable tools because they allow access to all parameters

and state variables, many of which are not manipulable or measurable in the real system,

such as muscle force and activation. Neck models in the literature vary considerably in

their kinematic and muscle complexity, from planar single joint inverted pendulums with

2 muscles to 48 Degree of Freedom (DOF), 129 muscle element models [17]. It is unclear

how much independent control humans have over activation of individual neck muscles.

An oversimplified muscle model may over-constrain muscle groups to activate together in

a way that removes valid solutions from the solution space, while a model with too many

muscle elements may be overly robust to constraints and no longer exhibit the behaviors

of the human neck. In the absence of a scientific consensus on how neck muscles are

controlled by the nervous system, this study compares models with several levels of kine-

matic and muscle redundancy. When making decisions on model complexity, there is a

trade-off between minimizing complexity to maintain interpretability and having enough

complexity for the model to produce realistic behaviors for the specified task. The role of



59

the deep extensor muscles is likely to be influenced by the level of kinematic and muscle

redundancy in the system [97].

The primary objective of this study is to determine the effect of deep extensor weakness

on the neck strength and muscle activation patterns when producing forces at 25 locations

on the head. A secondary objective is to evaluate the effect of kinematic and muscle

model complexity on 1) neck strength and 2) the role of the deep extensor muscles. These

aims are achieved with a detailed analysis of muscle contributions to neck strength in

simulation using musculoskeletal modeling of the neck. The results of this study can

be readily translated to the clinic to support the delivery of tailored physical therapy

interventions to target specific neck muscles in WAD.

4.2. Methods

Neck strength is represented in this study as the set of maximum wrench magnitudes

generated across 25 pre-defined test directions. The wrench refers to the set of moments

and forces measured at the end effector (the head). We examine the role of the deep

cervical extensor muscles by varying the deep extensor muscle strength in a musculoskele-

tal model and simulating the resulting multi-directional neck strength and corresponding

changes in muscle activation patterns.

The design choice of computational model can have a significant effect on the outcome

and interpretation of a study. The number of kinematic degrees of freedom, individual

muscle elements, and the constraints of the task are likely to affect the outcomes of

interest: neck strength and muscle activation patterns [97]. To address this issue, we

compare neck models with varying kinematic and muscle complexity.
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4.2.1. Musculoskeletal Models

The geometry and muscle properties are derived from the generic OpenSim Neck Model

developed by Vasavada et al [108] with the addition of the hyoid muscles [78]. The cervical

spine is configured in a neutral, upright posture. The OpenSim Matlab API is used to

access the moment arm matrix R, maximum isometric forces F , and the skull frame

Jacobian J . All computations and simulations are performed in Matlab. The full neck

model contains 7 joints (C0-C1 through C6-C7), each with 3 rotational DOF, for a total

of 21 DOF. It has 96 individual muscle elements.

4.2.1.1. Kinematic Complexity Variants. Six models with varying kinematic com-

plexity are derived from the full neck model. The three planar variants are the 7 joint (7

DOF), 3 joint (3 DOF), and 2 joint (2 DOF) models. The planar models have their joints

oriented in the sagittal plane (flexion/extension). The task space (in coordinates of the

skull frame) is 3-D, so that the end effector (skull) wrench is represented in coordinates

w = (Mz, Fx, Fy).

The three spatial variants are the 7 joint (21 DOF), 3 joint (9 DOF), and 2 joint (6

DOF) models. Each joint allows 3 rotational DOF (pitch, roll, and yaw). The task space

for the spatial models is 6-D, so that the end effector (skull) wrench is represented in

coordinates w = (Mx,My,Mz, Fx, Fy, Fz).

4.2.1.2. Muscle Complexity Variants. Four variants of muscle complexity are com-

pared for the spatial models. Each muscle group is constrained to activate together. The

first variant allows all 96 muscle elements (m = 96) to be activated independently. The

second variant groups muscles by their sagittal and axial actions across joints in the 3

joint model, for a total of 21 muscle pairs (m = 42). For example, muscles that produce a
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flexion and ipsilateral rotation moment about C6-C7 are grouped together. Muscles pro-

ducing torques about multiple joints are grouped separately from those producing torques

about individual joints. The third variant groups muscles by only their sagittal action,

resulting in 12 muscle pairs (m = 24). The fourth variant groups muscles by anatomical

name, resulting in 12 muscle pairs (m = 24). Planar muscle groupings are the same as

the spatial, except with the left and right muscle elements combined, resulting in half of

the number of muscle groups. Note that the second variant (sagittal and axial action) is

not relevant in the planar models, because the axial plane is removed.

4.2.1.3. Simplified Model Parameters. All model variants are derived from the full

7 joint spatial (d=6) model with n = 21 DOF and m = 96 independent muscles. The

transpose of the frame Jacobian JT ∈ Rn×d projects wrenches from the d = 6 DOF task

(or wrench) space to torques in n = 21 DOF joint space. To obtain the Jacobian for

the simplified 3 joint spatial variant model, the rows corresponding to the n = 9 joint

coordinates are selected, resulting in a new JT ∈ R9×6. For the planar models, only the

columns that correspond to the task space coordinates (Mz, Fx, Fy) are included, resulting

in an (m× 3) Jacobian transpose.

The moment arm matrix R ∈ Rn×m is simplified in a similar manner for the kinematic

model variants. Only rows that correspond to the n coordinates are included. For exam-

ple, for the planar 2 joint (n = 2) model, only rows 1 and 19, which correspond to C0-C1

pitch and C6-C7 pitch are included, resulting in a (2×m) moment arm matrix.

Two equivalent methods for grouping muscles are described here. First, we construct

an (m×g) binary muscle grouping matrix, Sm. Here, m is the number of muscles elements

in the full model and g is the number of muscle groups. If muscle i is to be in group j, a 1
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is placed in location Sm(i,j), while all other elements of row i remain 0. In the case where

all muscle elements are controlled independently, Sm = Imxm. This simple example of a

muscle grouping matrix would group 6 muscles (rows) into 3 muscle groups (columns),

group 1 containing muscles 2 and 3, group 2 containing muscles 1 and 4, and group 3

containing muscle 5.

Sm =



0 1 0

1 0 0

1 0 0

0 1 0

0 0 1


We utilize the muscle grouping matrix in our linear mapping between muscle activa-

tions and joint torques.

τn×1 = Rn×m diag(F )m×m Sm×gm αg×1

Where the superscripts represent the dimensions of the matrix or vector.

The muscle activations, α, are now reduced to the number of muscle groups g. All mus-

cles within a group are constrained to share the same activation. However, the strength

vector (in diagonal form here) and the moment arm matrix are still defined in terms of all

m = 96 individual muscle elements. We can scale the strength of a muscle group by scal-

ing all elements in that group individually. However, if a lower dimensional representation

of the model is desired, strength is defined for each muscle group.
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To obtain a representative simplified moment arm matrix Rg ∈ Rn×g and strength

vector Fg ∈ Rg×1, we can use a weighted average approach.

First, we compute the contribution of each group to the joint torques, τg ∈ Rn×g, using

the Sm matrix.

τg = R diag(F ) Sm

Each element of the new strength vector, Fg, is computed as the norm of the strengths

of the muscles in that group.

Fg(i) = ‖F � Sm(:, i)‖

Finally, the equivalent moment arm matrix for the simplified model is computed for

each muscle group in the corresponding column, so that the ith column of Rg is constructed

by dividing the joint torque contribution of the group, τg(:, i) by the group strength Fg(i).

Rg(:, i) =
τg(:, i)

Fg(i)

The resulting grouped moment arm matrix, Rg, and muscle strength vector, Fg, rep-

resent simplified models that have the same joint torque producing capabilities as the

m = 96 muscle model when individual muscle elements are constrained to be activated

together. This approach is useful when it is desirable to reduce the number of parameters.

4.2.2. Neck Strength Computation

We define the neck strength of a model as the set of maximum wrenches the model

can produce from the head in 25 directions. This concept is similar to a feasible force
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set (FFS), which is a method for representing the set of all feasible forces that can be

produced at an end effector using computational geometry to map polytopes from muscle

activation space to end effector task space [106]. FFS has been used for lower dimensional

systems, such as a finger [104] and a planar leg [62], but our 96 dimensional muscle space

and non-invertible Jacobian make the FFS approach unrealistic. Instead, we use linear

programming to compute the maximum end effector force that can be produced by the

model when constrained to a specific direction.

To insure that the task is isometric, the joint torques produced by the wrench on the

head must be balanced by the joint torques produced by the muscle activity.

∑
τ = JTw −R diag(F ) α = 0

If we break down the wrench into a magnitude w = ‖w‖ and unit vector u = w/ ‖w‖,

we can express our constraint in matrix form.

[
R diag(F ) −JTu

]α
w

 = 0

The maximum wrench magnitude w* that can be produced in direction u by a model

with muscle strengths F is computed by maximizing the wrench magnitude w over (α,w).

The equality constraint is the matrix form of the joint torque balance equations. Addi-

tional constraints include that muscle activations α are between 0 and 1, and the wrench

magnitude w must be positive.

FFS(ui, F ) = (α,w)∗i ∀ i = 1, ...25
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(4.1)

max
α,w

w

s.t.

[
R diag(F ) −JTu

]α
w

 = 0,

0 ≤ α ≤ 1,

0 ≤ w

4.2.3. Test Directions

Twenty-five locations on the surface of the skull were selected as test points. The points

were selected based on the following criteria: (1) directions where a force could reasonably

be produced (the crown of the skull would not be a reasonable choice), (2) an attempt was

made to provide good coverage of all possible directions, and (3) where a clinician could

reasonably provide resistance to head movement. The test directions are force vectors

F = (Fx, Fy, Fz) oriented approximately normal to the skull surface at each test point as

shown in Figure 4.1. A 3×3 grid, shown in Figure 4.2 displaying the test directions in slices

of the sagittal, transverse, and coronal planes was used to visualize the multi-directional

neck strength.

4.2.3.1. Coordinate Transformations. The neck strength computation calls for the

direction vector ui to be a unit wrench vector in the skull frame. The skull frame is

located at the base of the skull, at the C0-C1 joint, and oriented with the x-axis directed

anterior, y-axis superior, and z-axis to the right.
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To transform a force Fa = (Fax, Fay, Faz) applied at the location of a test point

p = (px, py, pz) to a 6-D wrench in the skull frame (wskull), we use the adjoint of the

spatial transform adTp.

wskull = adTp ∗ Fa

adT =

 R 0

p̂ R R

 where p̂ =


0 −pz py

pz 0 −px

−py px 0

 and R = I3x3

The unit wrench vector is then u = wskull/ ‖textbfwskull‖.

Figure 4.1. The markers represent test locations where a force is applied
perpendicular to the surface of the skull. The location and orientation of
the skull frame is indicated by the axes: x-axis (red) points anterior, y-axis
(green) points superior, and the z-axis (blue) points to the right.
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Figure 4.2. A 3x3 grid showing the test directions in multiple planes used
to visualize the neck strength and muscle activation patterns. Note that
some test positions appear in multiple planes. The top row shows the right-
, mid-, and left- sagittal plane test directions. The middle row shows the
superior-, mid-, and inferior- transverse plane test directions. The bottom
row shows the anterior-, mid-, and posterior- coronal plane test directions.

4.2.4. Muscle Strength

The default muscle strength (maximum isometric muscle force, F ) for all the muscles

was obtained from the OpenSim Neck Model 1.6 [108] with the addition of the hyoid

muscles from [78]. The muscle parameters from the Vasavada neck model [108] were
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derived primarily from anatomical studies by Kamibayashi and Richmond [56]. Note that

this study was interested only in isometric strength in a neutral posture, therefore other

muscle parameters, such as optimal fascicle length and pennation angle were ignored.

Muscle strength (peak force) was computed by scaling physiological cross-sectional area

(PCSA) by a muscle specific tension coefficient of 35N/cm2. While the magnitude of this

scaling factor is debated in the literature, the relative strength between muscles remains

unaffected by this choice. Noting a relative weakness in cervical flexion strength in the

model, previous studies chose to scale the flexors and extensors independently to better

match experimental data [78]. This study used the default strength values based on

anatomical studies in order to preserve the relative strength between individual muscles

based on PCSA.

4.3. Results

4.3.1. Deep extensor muscle activation

The directions in which the right deep extensor muscles are active at its default strength

are shown in Figure 4.3. The muscle group is most active in the test directions oriented

posterior in the mid-sagittal plane (pure extension), but it is also active in posteriorly

oriented directions that combine extension, side-bending, and rotation. In addition, it

acts bilaterally, as shown in the coronal-posterior frame of Figure 4.3.

4.3.2. Effect of Deep Cervical Extensor Strength on Neck Strength

The effect of deep cervical extensor strength on multi-directional neck strength is fur-

ther analyzed using the spatial 3 joint (n = 9) model with the logical muscle grouping
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Figure 4.3. Muscle activation of the right deep extensor muscles during
simulated maximum isometric strength measurements using the spatial 3
joint (n = 9 DOF) with logical muscle grouping (m = 24) model. The
magnitude in the radial axis corresponds to muscle activation between 0
and 1.

(m = 24). This model has a level of both kinematic and muscle redundancy that creates

behaviors that mimic the full model for this isometric strength task, but with muscles

grouped in a way that is logical and interpretable.

Neck strength increases as the deep cervical extensor strength increased for test di-

rections with a posterior component, with the greatest effect in the mid sagittal posterior

directions. Figure 4.4 shows neck strength in the sagittal plane with varying deep extensor
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muscle strength. The strength of the deep extensors did not influence neck strength in

directions anterior to the mid coronal line.

Figure 4.4. Neck strength with varying strength of the bilateral deep ex-
tensor muscles (0x, 0.5x, 1x, and 2x) using the spatial 3 joint (n = 9 DOF)
and logical muscle grouping (m = 24 muscles) model. The magnitude in
the radial axis represents the maximum force the model can produce in the
indicated direction in Newtons.

4.3.3. Effect of Deep Cervical Extensor Strength on Muscle Activation Pattern

The relationship between deep cervical extensor strength and the activation pattern of

all muscles can be visualized in Figure 4.5. The 24 muscle by 25 direction grid gives

a heat map representation of the slope of the regression line for bilateral deep extensor
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muscle strength vs. muscle activation level. Muscles that increased their activation with

a decrease in deep extensor strength are represented in blue color (negative slope). It is

apparent that activation of the semispinalis capitis and longus capitis was increased in

response to deep extensor muscle weakness, while suboccipitals and longus colli activation

level increased when the deep extensors were stronger. Directions in which the deep ex-

tensors were not normally active did not produce altered activation patterns with changes

in strength.

Another way to visualize how individual muscle activation responds to deep extensor

weakness relies on polar plots in a single plane, where each axis contains the activation

levels for an individual muscle. Figure 4.6 shows the sagittal-mid, sagittal-right, and

coronal-post planes, respectively. The mid-sagittal view (Figure 4.6a) reveals that, in the

absence of the deep extensors, the deep capital extensors (suboccipitals) were no longer

active in the posterior (extension) directions, while the deep capital flexors (longus capitis)

and superficial capital extensors (splenius capitis) became more active. The impact of deep

extensor weakness becomes more complex in the directions that involve axial rotation and

side-bending components. The coronal-posterior plane views (Figures 4.6b) reveals that

deep extensor weakness led to a reduction in SCM and hyoid activation in some directions.

The other superficial capital extensor (semispinalis capitis) became more active in the

absence of the deep extensors for directions that were not mid-sagittal.
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Figure 4.5. Slope of the linear regression of the activation of muscle on the y-
axis vs. bilateral deep extensor strength. The model used in this simulation
in the 3 joint (n = 9 DOF) with the logical muscle groupings (24 muscle
groups). The color represents the slope, with warmer colors depicting more
positive slope, and cooler colors representing a negative slope.

4.3.4. Effect of Model Complexity on Neck Strength and the Role of the Deep

Extensor Muscles

Figure 4.7 shows that increasing the kinematic degrees of freedom while maintaining the

same muscle set generally decreases neck strength in all directions. Model variants with
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(a) Sagittal-Mid Plane

(b) Coronal-Posterior Plane

Figure 4.6. Muscle activation [0 1] for individual muscles in the logical
muscle group (m=24) for the full strength model (1x deep extensors, green)
and with the deep extensors (mf-R and mf-L) removed from the model
(0x deep extensors, purple). Note the particular muscle groups that change
their activation with the loss of the deep extensors: suboccipitals, SCM, and
hyoids reveal decreased activation while the longus capitis (LCap), splenius
capitis (spcap), semispinalis capitis (semicap), levator scapulae (levscap),
and splenius cervicis (spcerv) increase activation in some directions.
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a high number of degrees of freedom and low number of muscles were unable to produce

forces in some test directions.

Increasing the number of muscle groups while maintaining the same kinematic degrees

of freedom increased neck strength in most directions. This relationship is seen in Figure

4.8. However, the choice of which muscles to group plays a role, as seen when comparing

the logical (m = 24) and sag (m = 24) cases, where both have 24 independent muscles.

The logical grouping variant produced greater neck strength in most directions compared

to the sagittal variant. There does appear to be a ceiling effect, as seen when comparing

muscle grouping variants applied to the 2 and 3 joint planar models.

The difference in neck strength with and without the deep cervical extensor muscles

is shown in both figures 4.7 and 4.8. The shaded area is the contribution of the deep

extensors. To be clear, the deep extensors could not produce this force alone, but instead

work in concert with other muscles.

4.4. Discussion

This study utilized computational modeling of the neck musculoskeletal system to

examine the role of the deep cervical extensor muscles in multi-directional neck strength.

The spatial 3 joint (n=9 DOF) musculoskeletal model with muscles grouped anatomically

into 12 pairs (m = 24 muscles groups) was used to simulate neck strength in 25 directions

with varying deep extensor muscle strength. As would be expected based on the line of

action, the strength of the deep extensor muscles impacted neck strength in the posterior

directions (extension), with the greatest contribution in the mid-sagittal plane. Even in

the case of complete loss of the bilateral deep extensor muscles, force could be generated in
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(a) Spatial model

(b) Planar Model

Figure 4.7. Effect of Kinematic Complexity on neck strength and the role
of the deep cervical extensor muscles. The logical muscle grouping, where
muscles are grouped by anatomical name, is used for each model. The
deeper shade portion of some bars represents the additional contribution of
the deep extensor muscles to the force output.
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(a) Spatial model

(b) Planar Model

Figure 4.8. Effect of muscle complexity on neck strength and the role of the
deep extensors using the 3 joint models (planar: n=3, spatial: n=9). The
darker shade portion of some bars represents the additional contribution of
the deep extensor muscles to the force output.
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all 25 test directions. Two primary synergistic strategies for neck extension were observed

in response to varying the strength of the bilateral deep extensor muscles. As the deep

extensor strength increased, the activation of the suboccipitals also increased. In the

presence of a weak deep extensors, activation of the superficial capital extensors (splenius

and semispinalis capitis) and deep capital flexors (longus capitis) was increased.

Model complexity had an influence on both the simulated neck strength and the role of

the deep extensor muscles in generating endpoint forces. Generally speaking, as kinematic

degrees of freedom increase, neck strength decreases. As the number of muscle groups

increases, neck strength also increases. This relationship is not linear in all directions,

affecting some directions more than others. The ratio of kinematic DOF to number of

independent muscle groups must be low enough to allow sufficient control of all degrees of

freedom. The role of the deep extensors expands in model variants with more independent

muscle groups, where the right and left deep extensors activate independently from each

other and some elements become active in directions that do not involve a posteriorly

directed force.

The functional role of the deep extensor muscles has been described as a local stabi-

lizer, acting to stiffen and stabilize the vertebral segments independent of direction [8, 16].

Studies that agree with the local stabilizer concept tend be open chain, low load, with

an anticipatory stabilization task [31, 46]. These are arguably more realistic for everyday

function and may be more representative of normal behavior. Studies that have inves-

tigated spatial tuning of muscles with isometric resistance have generally found specific

preferred directions more representative of phasic muscles, even for the deep cervical ex-

tensors [11, 110]. The task simulated in this study is a maximal isometric force in a
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specific direction, with the head and torso fixed to ground. For diagnostic and muscle

strengthening purposes, the role of the deep extensors for the isometric, statically sup-

ported task is appropriate. However, it is important to keep in mind that as the task

changes, the neural control of the muscles will also change.

The simulations revealed two synergistic strategies for producing forces in posterior

directions (extension), as shown in Figures 4.5 and 4.6. The first strategy, which we

will call the ”local” strategy, pairs the deep cervical extensors and suboccipital muscles

to produce independent torques about the lower and upper cervical spines. The second

strategy combines the actions of the superficial extensors (splenius capitis and semispinalis

capitis) with the deep capital flexors (longus capitis). The longus capitis is needed to

counteract the excessive extension torque that the superficial extensors apply to the upper

cervical spine. This pattern is consistent with a common observation of individuals with

chronic neck pain, where the more superficial muscles exhibit high tone. Interestingly, the

deep cervical flexors (longus capitis and colli) have been shown to exhibit dysfunctional

feedforward activation in individuals with chronic WAD [30]. These muscles appear to be

particular important when the deep extensors are weak, adding to the complex clinical

picture.

The musculoskeletal model used in our simulations had 3 joints (9 DOF) and 12

muscle pairs (24 independent muscle groups). This simplification from 96 muscle elements

to 24 allows a more manageable number of parameters to interpret. As shown in our

analysis, kinematic and muscle complexity in model design affect both multi-directional

neck strength and the role of the individual muscle groups. Note that design decisions

pertaining to muscle grouping make assumptions regarding the neural control of muscles,
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which is poorly understood for the cervical spine [11]. Additionally, recruitment patterns

are known to change in response to neck pain and WAD, therefore, assumptions based on

”healthy” control patterns may not apply to these conditions.

There are several limitations and assumptions that have an impact on the results and

interpretations from this study. First, an important assumption in the formulation of the

neck strength computation (Equation 4.1) is that the model is producing a maximum

effort in each specified direction. The only constraints are that joint torque equilibrium

be maintained (no intervertebral movement) and muscles can only pull (not push). In

reality, humans may have additional objectives or constraints besides force balance, such

as avoiding pain or maintaining a margin of stability, that would affect neck strength and

activation patterns. Second, the muscle strengths are derived from the generic OpenSim

neck model [108, 78], which combined several anatomical studies to obtain PCSA and

geometrical data for the neck muscles. We chose to use the unscaled strength values

to maintain relative strength magnitudes between muscles rather than scaling arbitrary

groups to match experimental neck strength values. While we investigated the effect

of varying the strength of the deep extensors, we did not vary the strengths the other

muscles. Third, the model design choice of muscle groupings has a significant effect on

both neck strength and muscle activation. While we believe that the muscle grouping used

in this model provides appropriate redundancy and constraint for the task, other muscle

grouping choices based on innervation, experimental EMG studies, or muscle action could

be easily defended. Finally, the computational models analyzed in this study ignore

passive components such as joint stiffness or passive muscle forces. However, joint stiffness

is very low in a neutral spine posture according to the neutral zone hypothesis [80]. The
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passive and active length tension curve for the neck muscles was also ignored because our

analysis was restricted to isometric task in a neutral posture. In reality, no task is truly

static and these components could play a small role.

The computational approach in this study allows us to examine the role of the deep

cervical extensor muscles in multi-directional neck strength and determine how weakness

of the group would affect neck strength and muscle activation patterns. The test directions

were selected relative to specific landmarks on the skull such that a clinician could replicate

the test by applying a normal force at the location of the marker (shown in Figure 4.1)

to target specific muscles. While others have characterized the directional preference and

spatial tuning of individual neck muscles using EMG [110, 11, 33, 58], this study is the first

to demonstrate the effect of an individual muscle weakness on neck strength and activation

patterns. Such results could support the delivery of tailored exercise interventions to

target specific neck muscles.

The increased activation of the superficial capital extensors (splenius and semispinalis

capitis) and deep capital flexors (longus capitis) in response to deep cervical extensor

weakness may be clinically relevant and merits further investigation. The fact that deep

cervical flexor dysfunction has been reported in WAD [30] makes this particular compen-

satory pattern more interesting and concerning. The general idea of deep spinal stabilizers

becoming weak or less active while the more superficial, global muscles are over-active in

pain conditions is not new [16], but a biomechanical explanation following from weakness

of a particular muscle group had not previously been reported. The longus capitis is a par-

ticularly difficult muscle to access for EMG measurement, but verification of dominance
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of this muscle pattern in WAD compared to controls would provide further evidence of

deep cervical extensor muscle dysfunction or weakness.
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CHAPTER 5

Model-Based Bayesian Inference for Individual Muscle Strength

Estimation

In this chapter, we present a novel framework for individual muscle strength estimation

that involves (1) collecting neck strength in 25 test directions and surface EMG profiles of a

subset of neck muscles, and (2) utilizing a model-based Bayesian estimator to infer specific

individual muscle strengths from the collected data. The feasibility of the approach is

demonstrated through experimental data collection with n = 5 healthy participants. We

show that the algorithm can identify weakness of the deep cervical extensor muscles when

provided a rich enough set of measurement data.

5.1. Introduction

Imaging evidence suggests that individuals with chronic whiplash-associated disorders

(WAD) develop muscle fat infiltration (MFI) in the deep cervical extensor muscles in the

months after their whiplash injuries [28, 29]. An obvious assumption is that increased

MFI leads to a decrease in functional muscle strength, but there are significant barriers

to testing this hypothesis. Neck strength is grossly reduced in WAD [82, 86, 76] in the

cardinal directions (flexion/extension, lateral flexion, and rotation), but the strength of

individual muscles has not been assessed.

The problem of identifying individual muscle strength is difficult for several reasons.

The core issue is that muscle forces cannot be measured directly. In the case of the neck,
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wrench (force and torque) measurements are taken from the end effector of the neck, the

head. Clinically, this involves the patient resisting a force applied to a location on the head

by the clinician, and the clinician grading the strength on a 0-5 scale or using a linear force

sensor [44]. The human neck is a complex musculoskeletal structure with 7 intervertebral

joints and over 20 pairs of named muscles, most having multiple attachments and crossing

multiple joints. The kinematic and muscle redundancy sets up an under-constrained and

ill-conditioned inverse problem. An additional complication is that we are interested in the

muscle strength, the maximum force that a muscle can produce, not just the contribution

of the muscle for a particular end effector measurement.

Estimates of muscle strength used in musculoskeletal modeling are typically derived

from physiological cross sectional area (PCSA) measurements from anatomic cadaver stud-

ies, which is considered to be proportional to the maximum isometric force that the muscle

can produce [108, 17]. This method produces a generic set of muscle strengths based on

geometry and muscle size that can be scaled uniformly so that the model produces out-

puts similar to experimental measurements [78, 110]. The uniform scaling method does

not address the individual muscle strengths in a clinical population, where the relative

strengths of muscles may change significantly. Subject specific measures of PCSA have

been attempted using Magnetic Resonance Imaging (MRI), but this method is time con-

suming and costly, neck muscles are particularly difficult to segment, and it may not

differentiate between functional contractile tissue and injured tissue.

Efforts to determine subject-specific model parameters, such as individual muscle

strength, have been made in the hand and wrist [41, 59, 49, 15]. These studies utilize

least squares optimization methods to minimize the difference between model predicted
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and measured data sets. A bounded, non-linear least squares approach similar to these

studies could be a viable approach to the strength estimation problem in the neck, the

data available is often noisy and scarce, setting up an ill-posed optimization problem that

is known to give poor results for these standard methods [5, 112]. Statistical Bayesian

approaches are well-suited for dealing with non-linear models and naturally include un-

certainties such as measurement and modeling errors. In fact, Approximate Bayesian

Computation (ABC) methods are similar to least squares optimizations in some ways.

In a least squares optimization, the sum of the squared error between the simulated and

observed data is minimized in an attempt to find a point estimate of the parameters. Like

a least squares optimization, ABC relies on a metric to compare the simulated data to ob-

served data but with a different goal: to obtain an estimate of the posterior distributions

for the unknown parameters [103]. This probabilistic framework provides uncertainties

and correlations between parameters, rather than just point estimates, which is beneficial

in a system with the potential to have many solutions [19].

The over-arching goal of this work is to indirectly measure the strength of individual

neck muscles using non-invasive methods for application in the chronic WAD population.

The novel method developed to fulfill this goal involves (1) collecting neck strength in

multiple directions and surface EMG profiles of a subset of neck muscles in vivo, and (2)

utilizing a simulation-based Bayesian estimator based on Approximate Bayesian Compu-

tation (ABC) with rejection and importance sampling to infer subject specific individual

muscle strength from the collected data. The primary contribution of this work is a

model-based algorithm that provides a framework for parameter estimation in a highly
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redundant and partially observable musculoskeletal system. The ability to identify in-

dividual muscle strength deficits would enable clinicians and researchers to understand

the biomechanical implications of muscle changes seen in imaging in WAD and to guide

diagnosis and treatment.

5.2. Methods

From a high level view, this framework involves collecting a rich set of experimental

data that contains information about the parameters of interest and utilizing a model-

based ABC algorithm to estimate the parameter values. Because the parameter of interest

is the maximum isometric force of individual muscles, the models presented here compute

the maximum task space wrench (forces and moments measured at the head) given a set of

muscle strengths and a target direction. The experimental protocol to create experimental

data sets, likewise, requires that the subject produce a maximum effort in a set of target

directions. The algorithm attempts to find individual muscle strengths that would produce

simulated wrench measurements matching the experimental data set.

5.2.1. Model

The geometrical and muscle properties of the musculoskeletal model of the neck is derived

from the generic OpenSim Neck Model [108] with several modifications, as described in

Chapter 4. The cervical spine is configured in a neutral, upright posture and is constrained

to maintain static equilibrium through all joints while isometrically resisting forces applied

to the head. The moment arm matrix, R = R(q), and skull frame Jacobian, J = J(q), for

the neutral neck posture with joint angles, q, are obtained through the OpenSim Matlab
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API. All further computations are made in Matlab (Mathworks, Inc., Natick, MA). The

following description of the model equations applies to any of the model variants presented

in the applications section of the chapter.

To insure that the task is isometric, the joint torques produced by the wrench measured

in the skull frame, τw must be balanced by the joint torques produced by the muscle

activity τm. Muscle force is the product of a diagonal matrix of the muscle strength,

f ∈ Rm, and a vector of muscle activations α ∈ Rm. Each muscle activation is a scalar

that can vary between 0 to 1.

∑
τ = τw + τm = 0(5.1)

= JTw−R diag(f) α = 0

Taking a closer look at Equation 5.1, there are two known constants, J ∈ Rd×n and

R ∈ Rn×m, the measured quantity w ∈ Rd, a independent variable α ∈ Rm, and the

unknown model parameter f ∈ Rm. The quantities d, n, and m, represent the dimensions

of the task (wrench), joint (torque), and muscle (force) spaces respectively. Both the

forward and inverse solutions (from muscle activations to wrench or wrench to muscle

activations) are ill-posed because both the Jacobian, J , and moment arm matrix R, are

not invertible. The inverse problem is under-constrained, meaning that for a given sub-

maximal wrench there may be many solutions for α.

We avoid the need to invert the Jacobian or moment arm matrix by setting up the

joint torque constraint equations in the torque space. In order to put the joint torque
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constraint in matrix form, the wrench is broken down into a scalar magnitude, w = ‖w‖,

and unit vector, u = w/‖w‖.

Algorithm 2 Maximum Wrench Model

function M(f ,u,[αlb αub])

(5.2)

max
α,w

w

s.t.
[
R diag(f) −JTu

] [α
w

]
= 0,

αlb ≤ α ≤ αub

return {w, α}
end function

The problem is now set up as a parameter estimation problem, with the muscle

strengths f as the unknown parameter of interest, and the maximum wrench magnitude

w as the measurement variable. The model equation M(f, u, [αlb αub]) = {w, α} shown

in Algorithm 2 provides a mapping between muscle strength f and maximum wrench

magnitude w in direction u.

5.2.2. Algorithm

The purpose of the algorithm is to estimate the m individual neck muscle strengths,

f ∈ Rm, given the experimental neck strength measurements and subset of m′ muscle ac-

tivations measured by surface electromyography (EMG), {wmeas ∈ RNU , αmeas ∈ RNU×m′},

where NU is the number of test directions. In constructing the algorithmic pipeline, in-

spiration is taken from Approximate Bayesian Computation (ABC) algorithms [70, 7, 66].

ABC algorithms are used instead of traditional Bayesian Inference when the likelihood

function is intractable [101]. They approximate the posterior distribution by producing

simulated data with a model and updating the estimate based on the discrepancy between
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simulated and experimental data. The algorithm leverages rejection- and importance-

based sampling, in conjunction with a muscle specific weighting function to generate mus-

cle strength estimates. Clinical domain knowledge is encoded in the prior distribution and

muscle model specification.

The algorithm for neck muscle strength estimation is described in pseudocode in Al-

gorithm 3. A visual representation of the full algorithm is shown in Figure 5.1. Each

component of the algorithm and associated functions are described in detail in the fol-

lowing subsections. The technical algorithm, Algorithm 4, is presented at the end of the

section.

5.2.2.1. Constructing an Informative Prior. In Bayesian statistics, the prior is a

probability distribution that represents beliefs about the parameter before data is avail-

able. Particularly for a system with significant redundancy and potential for multiple

solutions, thoughtful selection of a prior can improve performance.

A baseline muscle strength estimate, fbase ∈ R96, is extracted from the maximum

isometric force parameter in the OpenSim Vasavada neck model [108] and more recent

model updates [78, 110]. This and other model parameters are reported in Appendix 7.2

[add ref to specific appendix section]. Muscle parameters, including maximum isometric

muscle force, in musculoskeletal models are derived from published anatomical cadaver

studies that report physiological cross-sectional area (PCSA) of the cervical spine muscles

or cross-section area from imaging studies.

To create a computationally tractable and interpretable model, the neck muscle model

was simplified from its original 96 muscle elements to m muscle groups. The detailed

procedure for computing the muscle strength and moment arm for each grouped muscle
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Figure 5.1. Full Bayesian Estimator for Strength Estimation. A high
level view of the full algorithm. The pseudocode Algorithm 3 provides a step
by step explanation of blocks. It starts with constructing the prior. The
Sample Distribution is a multivariate Gaussian taking it’s parameters from
the current point estimate fc and spread parameter σc. A set of candidate
strength vectors is sampled from the Sample Distribution. Inside the green
box is the likelihood function approximation, where compare data simulated
with the model with the measured data through the rejection and weighting
filter.

is presented in the previous chapter, in Section 4.2.1.3. In brief, the strength of each

muscle group is computed as the norm of individual muscle elements within the group.

The new moment arm matrix is computed to maintain the torque producing potential of

the muscles from the original model. The resulting f ′base ∈ Rm is the baseline strength

estimate for the associated reduced model, serving as a reasonable starting point with

realistic relative strengths between muscle groups.

The final step for computing the initial point estimate is to bootstrap the baseline

strength estimate to a single, subject-specific measured wrench from the data set. The
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Figure 5.2. Importance Sampling. The importance sampling component
of the of the algorithm iteratively updates the sampling distribution. The
Update Sample Distribution box shows a visual representation of equations
5.10 and 5.11, which compute the new central point estimate fc and spread
parameter σc from the posterior distribution. The updated sample distri-
bution is a multivariate Gaussian centered at fc with a standard deviation
of σc. Three values are sampled from each muscle’s sample distribution
according to Equation 5.4. Finally, the set of candidate strength vectors
F is computed from every unique permutation of the 3 samples from each
muscle.

resulting point estimate maintains the relative strengths of individual muscle groups based

on PCSA, but is scaled to produce a maximum isometric wrench matching an experimental

data point. This generic muscle strength scaling procedure is common in musculoskeletal

modeling to create subject specific models [110, 78].

The scaled strength estimate, f0 = af ′base, is computed by finding the scalar, a, that

minimizes the difference between the measured wrench magnitude, wmeas and simulated

wrench magnitude, wsim, in a single direction, u. We compute wsim = M(af ′base, u) from

the model function in Algorithm 2.
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Algorithm 3 Individual Muscle Strength Estimation Pseudocode

Construct Prior
(1) Derive initial point estimate fbase ∈ R96 from literature
(2) Compute equivalent strengths for simplified model f ′base ∈ Rm

(3) Bootstrap initial strength estimate to single measurement direction by scalar a:
f0 = af ′base
Current iterate, c = 0
repeat

(1) Sample: Construct set of candidate strength vectors F = {fk ∀ k = 1, .., NF}
from the current point estimate fc and spread parameter σc.
(2) Simulate Data: Compute simulated wrench magnitude and muscle activations
M(fk, ui, αmeas) = {wsim, α}i,k for each candidate strength vector fk ∈ F and test
wrench direction ui ∈ U.
(3) Data Discrepancy Score: Compute the data discrepancy score
d(wsim,i,k, wmeas,i) ∀ fk, ui based on the error between the measured and simulated
data
(4) Rejection: Reject the fk strength candidates data discrepancy below the q
percentile
(5) Update Posterior: Compute the posterior probability as the normalized
weighted sum of the muscle-specific composite data discrepancy scores dj,k for each
remaining candidate strength vector
(6) Update Sample Distribution: Compute the updated point estimate, fc, as
the expected value of the posterior, and the updated spread variable, σc, based on
the shape of the posterior.
Update Current Iterate, c = c+ 1;

until convergence criterion is met
return Muscle Strength Estimate and Spread {fc, σc}

(5.3)
min
a

|wmeas − wsim|

s.t. 0 ≤ a ≤ ∞

where wsim = M(af ′base, u)
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The initial point estimate, f0, is now computed by simply scaling the baseline strength,

f ′base by a.

The final component of the prior is the initial spread parameter, σ0. The spread

parameter is the standard deviation of the sampling distribution, therefore dictating the

size of the parameter space that is sampled on the first iteration. A good starting point

for our data is σ0 = 0.2. Note that a small σ0 may lead to slower convergence if the initial

point estimate is far from the true value.

5.2.2.2. Sample. The sampling function produces a set of candidate strength estimates,

F = {fk ∈ Rm; k = 1, .., NF}, based on the current strength estimate, fc, and spread, σc,

parameters. In a more traditional ABC framework, strength estimates would be proposed

by randomly sampling from a prior distribution. However, the inherent high dimension-

ality of the neck model, even with the dimension reduction achieved by grouping similar

muscles (a reduction from m = 96 to m = 24 muscles), necessitates a different sampling

strategy. The magnitude of the sampling problem can be illustrated by considering that

in order to sample every permutation of just 3 discrete values for each muscle in a m = 24

muscle model would require over NF = 324 = 2.8× 1011 samples. That is over 2 times the

estimated number of neurons in the human brain, but would still not be nearly enough

to adequately sample the parameter space. Instead of taking a single pass at sampling

the full parameter space, which would be computationally intractable, we employ an it-

erative approach to adequately sample a region of the parameter space in each iteration,

and adjust the sampled region for the next iteration based on the updated estimate. The

diagram in Figure 5.2 provides a visual representation of the importance sampling scheme.
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The sampling distribution is an m-dimensional multivariate Gaussian distribution cen-

tered on the current muscle strength point estimate, fc ∈ Rm, with individual standard

deviations of σc ∈ Rm. Rather than randomly sampling from this Gaussian distribution,

three values are sampled explicitly from each muscle, essentially discretizing the multivari-

ate distribution to a set of 3 values for each muscle to insure that representative samples

are obtained. For convenience and to capture the full distribution, the three sampled

values are the mean (fc), one standard deviation below the mean (fc (1 − σc)) and one

standard deviation above the mean (fc (1 + σc)), as shown in Equation 5.4.

We use the superscript p on pf to indicate a discrete sampled value, where p = 1, 2, or 3

for the low, mid, and high values respectively.

(5.4) fc =


flow

fmid

fhigh

 =


1fc

2fc

3fc

 =


fc · (1− σc)

fc

fc · (1 + σc)


where each fc ∈ Rm and fc ∈ Rp×m.

The set of candidate strength estimates, F, is composed of every unique permutation

of fc for each muscle. This combinatorial problem can also be described in terms of m-

tuples of 3-sets, where every unique m-dimension ordered list drawn from the 3 values of

each muscle makes up the set F. Because there are three sample values for each muscle,

the set contains NF = 3m fk candidate strength vectors. This number of samples is much

less than would be required to adequately randomly sample from the full parameter space.
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5.2.2.3. Simulate Data. A simulated maximum wrench and associated muscle activa-

tion pattern, M(fk, ui, αmeas,i) = {wsim, α}i,k, is produced for each sample muscle strength

candidate, fk, and unit wrench direction, ui, at each iteration of the algorithm. The model

is represented by Equation 5.2, taking as its inputs fk, ui, and any available upper and

lower bounds on muscle activations αmeas,i = [αlb, αub]. Including the lower and upper

bounds on activation of individual muscles allows for optional inclusion of electromyogra-

phy (EMG) data from accessible muscles during an experiment. If the muscle activation

range is not available, the default muscle activation range is 0 ≤ α ≤ 1.

The data simulation step is by far the most computationally expensive part of the algo-

rithm. Because the model is evaluated independently for each candidate muscle strength

and wrench direction, parallel computing is employed to speed up this step in the algo-

rithm.

5.2.2.4. Data Discrepancy Score. The data discrepancy function assigns an error

score to each candidate strength sample, fk, in each wrench direction, ui, based on a

Gaussian radial basis function with a tuning parameter, ε = 3.

di,k = e−(εδi,k)2(5.5)

where δi,k = ‖wsim,i,k − wmeas,i
wmeas,i

‖

The choice of a Gaussian radial basis function as the metric for data discrepancy gives

us the benefit of an exponential function where the result is strictly positive and a small

error is highly rewarded (for a steeper function, the shape parameter ε can be increased).
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5.2.2.5. Rejection Step. The rejection step removes the lowest scoring candidate strength

vectors. First, a composite score for each fk is computed as the mean of the NU data

discrepancy scores (one for each direction).

(5.6) Dk =

∑NU

i=1 di,k
NU

The candidate strength vectors with composite scores below the q percentile are dis-

carded, while the remaining fk candidates are included in the posterior update. The

remaining set of fk strength candidates is denoted F′.

By considering the scores on candidate strength vectors in this step, we maintain the

multivariate property. In the remaining steps of the iteration, the weighting and distri-

butions are considered on a muscle by muscle basis, essentially decoupling the strength

vectors for the posterior updates. It can be informative to visualize this step using a

parallel coordinate plot as shown in Figure 5.3. Each vertical axis represents a muscle

strength, and each trace is an individual candidate strength vector, fk. The yellow traces

are the candidate strength samples fk that scored in the 90th percentile and above.

5.2.2.6. Update Posterior. Recall that the set of candidate strength vectors, F, is

formed by all unique permutations of 3 sampled values for each muscle. The domain of

the posterior PDF of muscle j is, therefore, the three discrete sampled values fsamples,j =

{1f, 2f, 3f}j. The posterior PDF for muscle j, denoted πj, is computed as the discretized,

weighted sum of the data discrepancy scores across test directions and candidate strength

vectors and normalized to a sum of 1. Equation 5.7 shows the weighted sum computation

for muscle j and sample p. Each score is weighted by the muscle activation level, αj,i,k,
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(a) Iteration 1

(b) Iteration 5

Figure 5.3. Parallel coordinate plots can be be informative for visualizing
the multivariate parameter space. These plots show all NF = 37 fk muscle
strength candidate vectors at the (a) first and (b) fifth iterations using the
p2m7 model (planar n = 2, m = 7). There are seven vertical axes, one for
each muscle (see Figure 5.6b). The colormap represents the percentile of
composite data discrepancy score Dk, where a higher percentile means less
error (better score). The red circles are the true strengths.

for muscle j, in direction ui, simulated with strength, fk. Recall that the superscript p in

pf indicates one of 3 sampled values from a particular muscle. The indicator function in

Equation 5.8 essentially sorts the candidate strength vectors, subscripted by k, into the

appropriate domain value.
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φj,p =

NF ′∑
k

NU∑
i=1

αj,i,kdi,k1p(fk,j)(5.7)

1p(fk,j) =


1 fk,j = pfj

0 else

(5.8)

The posterior for muscle j is then computed in Equation 5.9 by normalizing the

elements of the weight function by the sum across the domain, resulting in a discrete

PDF that sums to 1.

πj =
Φj∑3
p=1 φj,p

where:(5.9)

Φj = [φj,1 φj,2 φj,3]

By utilizing the simulated muscle activation level in the weighted sum for Equation

5.7, only data discrepancy scores that are relevant to each individual muscle will affect the

posterior update for that muscle. This point is illustrated by observing the distribution of

di,k values across the test directions, as shown in Figure 5.4. Recall that a data discrepancy

score, di,k, is computed for each candidate strength vector, fk, in each of the test directions,

ui. Muscles are not active in every test direction, in fact, most muscles are predicted

to have an activation level, α of 0, in approximately half of the test directions in the

simulations. The histograms show that all candidate strength vectors produce wrenches in

the ”back”, ”backLow”, and ”backHigh” directions that very closely match the measured
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wrenches (very low error), but there is more variation in score in the other test directions.

This weighted sum approach helps minimize the loss of information that occurs when

combining the scores across test directions, only averaging scores that are relevant to the

particular muscle based on activation level.

Figure 5.4. Distributions of data discrepancy score di,k by test direction for
a single iteration of the algorithm. Scores range from 0 to 1, with a score of
1 indicating no error between the measured wrench and simulated wrench
magnitude in that direction. All data discrepancy scores in the “back”
directions (backHigh, back, and backLow) are above 0.95, indicating very
low error. The scores in the other 4 directions vary quite significantly. By
utilizing the simulated muscle activation level in the weighted sum in Equa-
tion 5.7, only data discrepancy scores that are relevant to each individual
muscle will affect the posterior update for that muscle.

5.2.2.7. Update Point Estimate. The updated point estimate, fc, is computed as the

expected value of the posterior taken over fsamples for each muscle, Equation 5.10. The

spread parameter, σc, is updated to reflect confidence in the point estimate based on the

relative probabilities of the three discrete samples for each muscle. In the case where
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the probability of the middle valued sample (π(2f)) is greatest, σc is decreased relative to

the difference in magnitude in order to reflect increased confidence in the posterior point

estimate. When the middle value is not greatest, σc is increased to sample a larger region

of the parameter space for that muscle for the next iteration. The spread parameter

update function, Kσ(π(f)), is computed according to Equation 5.12. We limit the value

for σc to a range of [0.01 0.3] to avoid too narrow or wide of a sampling region.

(5.10) fc = Ep(π(f))) =
3∑
p=1

pf π(pf)

(5.11) σc = Kσ(π(f))σc−1

Kσ(π(f)) =


1−∆ if max(π(f)) = π( 2f)

1 + e(−5∆−1) else

(5.12)

where ∆ = max(π(f))−min(π(f))

5.2.2.8. Convergence Criteria. The simulation continues until the convergence crite-

ria is met or the number of iterations exceeds maxIter. The simulation is considered

to have converged when all candidate strength vectors fk in F have a composite data

discrepancy score Dk above the cutoff εD, which we set at εD = 0.95. A composite data

discrepancy score Dk above 0.95 indicates that the candidate strength vector fk produces
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simulated maximum wrenches very close to the measured wrenches. A perfect match

would result in Dk = 1. Figure 5.5 shows the distribution of Dk scores by iteration, with

convergence being met at iteration c = 10.

Figure 5.5. Histogram plots of composite data discrepancy scores, Dk, for
all candidate strength vectors over 10 iterations. Plotting the distribution
of Dk scores by iteration can be informative for visualizing convergence.
By iteration 10, all scores are above 0.95, indicating very low discrepancy
between the measured data set and simulated wrenches.

5.2.3. Experiment

Maximum neck strength measurements and muscle activation of a subset of superficial

neck muscles were collected from 5 healthy participants, as detailed in Appendix A. In

brief, participants were seated and attached to a custom built neck strength measurement

system that couples the head to a 6-DOF load cell. Real-time feedback of the 6-DOF

wrench produced by the participant and the target direction were visible on a screen placed

in front of the participant. Participants were instructed to produce a maximum effort

while matching the direction of the wrench in each of 25 directions in a randomized order.
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Algorithm 4 Individual Muscle Strength Algorithm

Require: initial point estimate f0 and spread parameter σ0

c = 0
repeat

fc =

fc · (1− σc)fc
fc · (1 + σc)

 . Sample

F = {fk ∈ Rm; k = 1, .., 3m} . every unique permutation of fc
for all fk ∈ F do

for all ui ∈ U do
{wsim, α}i,k = M (fk,ui,αmeas,i) . Simulate Data: Equation 5.2

δi,k = ‖wsim,i,k−wmeas,i

wmeas,i
‖

di,k = e−(εδi,k)2 . Data Discrepancy Score
end for

Dk =
∑NU

i=1 di,k
NU

. Composite Data Discrepancy Score
end for
F′ = {fk ∀ k s.t. Dk > q percentile} . Rejection Step
for all j = 1, ...,m do

for all p = 1, 2, 3 do

1p(fk,j) =

{
1 fk,j = pfj
0 else

φj,p =
∑NF ′

k

∑NU

i αj,i,kdi,k1p(fk,j) . Posterior Update
end for
πj =

Φj∑3
p=1 φj,p

fc = Ep(π(f))) =
∑3

p=1
pf π(pf) . Point Estimate Update

∆ = max(π(f))−min(π(f))

Kσ(π(f)) =

{
1−∆ if max(π(f)) = π( 2f)

1 + e(−5∆−1) else

σc = Kσ(π(f))σc−1 . Spread Parameter Update
end for
c+ +
ConvCrit = (minDk > εD) or (c > maxIter)

until ConvCrit

Each direction was repeated 2-3 times, with the maximum value taken as the measured

wrench wmeas for that direction. EMG activity of 5 pairs of muscles was simultaneously
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recorded, including the right and left sternocleidomastoid (SCM), upper trapezius (trap),

semispinalis capitis (SSCap), splenius capitis (SpCap), and levator scapulae (LS). The

low pass filtered full wave rectified EMG data were normalized to the maximum over

all trials for each muscle as a measure of activation. The value at 250 ms prior to the

maximum wrench across trials in each direction was taken as the muscle activation for that

direction to account for muscle fiber activation delays. The data set from each participant

includes measured wrenches for the six cardinal directions, flexion, extension, left and

right sidebending, and left and right rotation, as well as the 25 unit wrench directions

that make up the test direction set U. For more details regarding the experiment and

neck strength results, refer to Appendix A.

5.3. Applications

The algorithm was applied to several variations of the neck model to demonstrate the

utility of the method and highlight particular limitations, categorized based on computa-

tional shortcomings or intrinsic biomechanical properties. First, two planar neck models

that reduce the biomechanics to the sagittal plane (flexion/ extension) are presented. The

lower dimensionality allows for a clear demonstration of the process and easy interpreta-

tion of results. Application of the algorithm was then expanded to the full spatial model,

with a parameter space of m = 24 muscles and NU = 25 test wrench directions. For each

variation of the model, we present results for both simulated and experimental data sets

(collected from n=5 healthy controls).

The advantage of exploring the simulated data sets is that the true muscle strengths

are known, and therefore, accuracy of the final estimate can be assessed. Additionally,
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simulated data sets can be designed to mimic particular deficits that we are interested in,

such as weak deep extensor muscles. The experimental data sets offer the opportunity to

demonstrate feasibility of the framework estimating individual neck muscle strength in a

laboratory environment, and the potential to translate to clinical settings.

Two simulated experimental data sets were created for each model variant, one healthy

and one weak, where the strength of the muscle corresponding to the deep extensors is

reduced. First, the ’actual’ muscle strength vector fa ∈ Rm for the ’healthy’ model was

computed by pseudo-randomly perturbing the fbase baseline strength estimate for our

model by scaling by a factor a = 1.5 and adding random Gaussian noise with a variance

of v = 0.4fa. The simulated experimental data set was then computed using the model

Equation 5.2: {wmeas, αmeas}i = M(fa, ui) ∀ ui ∈ U. We limit αmeas to the superficial

muscles for which we recorded surface EMGs in the experiments with participants and

that apply to the corresponding model variant. To produce the ’weak’ data set, the

strength of the deep extensor muscle(s) of the ’healthy’ muscle strength vector fa was

scaled by 25%.

5.3.1. Planar Neck Models

Muscle geometry is symmetric about the sagittal plane, allowing the left and right muscles

to be combined, reducing the muscle space dimensionality, m, in half for a planar model

compared to the spatial model. Additionally, the kinematic degrees of freedom at each

joint are reduced from three in the spatial model to one in a planar model. Overall, the

ratio of number of muscles to kinematic DOFs increases, which tends to indicate increased

muscle redundancy.
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Models that are constrained to the sagittal plane have a task (wrench) space dimension

of d = 3, so the test direction unit wrench has 3 components, u = [Mz, Fx, Fy]. The task

space wrench is applied to a frame located at the base of the skull (coincident with the

upper cervical spine joint). The subset of sagittal plane wrench directions, Up is a set of

NUp = 7 directions, applied at the markers shown in Figure 5.6a.

5.3.1.1. Models. The most simplified neck model, the p2m7 model (Figure 5.6b), has

n = 2 kinematic DOFs and m = 7 muscles. The muscles are grouped according to

their torque contribution about each joint, with single vs. multi-joint muscles grouped

separately. For example, muscles that cross only the lower cervical joint and produce

an extension torque are grouped together, separately from muscles that cross both the

lower and upper cervical joints. The other planar model, the p3m12 model is reduced to

n = 3 kinematic DOFs and m = 12 muscles. The muscles are grouped logically based on

anatomical name, as opposed to the systematic groupings of the p2m7 model that were

based on moment arms.

5.3.1.2. Results with Simulated Data Sets. The simulation results of the individual

muscle strength estimation algorithm with simulated healthy and weak data sets for the

p2m7 and p3m12 models are shown in Figures 5.7 and 5.8 respectively. The initial

strength estimate from each model, fbase, was bootstrapped to the wrench measurement

taken in the ”back” direction. The initial spread parameter was set at σ0 = 0.3. The

simulations for the p2m7 model are shown for 30 iterations, and the simulations for the

p3m12 model are shown for 20 iterations, but all 4 simulations met the convergence

criteria at earlier iterations. The final point estimate, fc, and spread parameter, σc, and
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(a) (b)

Figure 5.6. (a) Sagittal Plane Test Locations: Each circle marks the loca-
tion of force application for a test direction in the subset of 7 test directions
for the sagittal plane. The unit wrench direction for a test direction is com-
puted by transforming the force applied normal to the surface of the skull
to the skull frame at the base of the skull, and then normalized to a unit
vector. (b) The p2m7 model. The naming scheme for the p2m7 muscles is
based on the muscle attachment and action, where T = trunk, C = C-spine,
S = Skull, E = Extension, F = Flexion, and B = Both (the SCM produces
a flexion torque about the lower c-spine and an extension torque about the
upper c-spine).

the final composite data discrepancy score Dfc are tabulated in Table 5.1 and 5.2 for

models p2m7 and p3m12, respectively.

All 4 simulations for the planar models with simulated data sets met the convergence

criteria of min(Dk) > 0.95, indicating that even the lowest scoring candidate strength

estimate fk produced maximum wrenches that closely fit the simulated data set. Con-

vergence criteria was met at iteration c = 6 for the p2m7 healthy model, c = 15 for the

p2m7 weak model, c = 6 for the p3m12 healthy model, and c = 12 for the p3m12 weak

model.
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(a) healthy

(b) weak deep extensors (TC-E)

Figure 5.7. Parameter Estimation Results for Simulated Data Sets
with p2m7 model. Each subplot represents a muscle group (defined in
Figure 5.6b). Accuracy and convergence vary between muscles, with similar
patterns emerging between the two data sets for which muscles are able to
produce accurate and confident estimates. The baseline strength estimate,
f ′base, prior to bootstrapping is marked by an x on the y-axis. The ”actual”
strength is the dashed red trace. The current point estimate, 2fc = fc is
the black trace. The low and high samples, 1fc and 3fc are the dashed blue
traces.
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(a) healthy

(b) weak deep extensors (multif)

Figure 5.8. Parameter Estimation Results for Simulated Data Sets
with p3m12 model. Each subplot represents a muscle group. Accuracy
and convergence vary between muscles, with similar patterns emerging be-
tween the two data sets for which muscles are able to produce accurate and
confident estimates. The baseline strength estimate, f ′base, prior to boot-
strapping is marked by an x on the y-axis. The ”actual” strength is the
dashed red trace. The current point estimate, 2fc = fc is the black trace.
And the low and high samples, 1fc and 3fc are the dashed blue traces.
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TC-E TC-F TS-B TS-E TS-F CS-E CS-F D(fc) Iters
fa 275 197 247 510 270 249 112
fc 284 146 258 272 276 251 85norm
σc 0.01 0.20 0.04 0.16 0.01 0.03 0.20

1.00 6

fa 69 197 247 510 270 249 112
fc 85 52 307 107 278 182 27weak
σc 0.01 0.20 0.03 0.13 0.01 0.20 0.20

0.98 15

fc 184 12 259 207 128 60 338
S003

σc 0.01 0.30 0.02 0.03 0.01 0.05 0.05
0.78 30+

fc 85 2 98 2 12 45 126
S004

σc 0.01 0.30 0.01 0.30 0.08 0.23 0.04
0.65 30+

fc 160 54 189 169 180 26 40
S005

σc 0.03 0.25 0.02 0.29 0.04 0.15 0.30
0.99 11

fc 199 93 183 163 344 59 178
S006

σc 0.01 0.13 0.01 0.01 0.15 0.05 0.05
0.86 30+

fc 293 139 178 283 47 41 69
S007

σc 0.01 0.04 0.01 0.04 0.01 0.30 0.04
0.84 30+

Table 5.1. Parameter Estimation Results using the p2m7 model.
Results are tabulated for the two simulated data sets (norm and weak) and
five experimental data sets (S003 - S007). The algorithm was able to identify
weakness of the deep extensor muscle group (TC-E) in the “weak” data
set, with high confidence. Similar patterns emerge among the simulations
regarding the relative uncertainty in the estimates (represented by the value
of the spread parameter σc). Note the large error in the strength estimate for
muscle group TS-E for the two simulated data sets (comparing fa with fc).
Despite this error, the fit of the data was excellent for these two data sets,
with a data discrepancy score of D(fc) = 1.00 and 0.98, indicating that an
alternative solution was found that fit the data and there was not enough
information in the data set or model to discriminate between solutions.
[KEY : fa: “actual” muscle strength; fc: final strength point estimate; σc:
final spread parameter value; D(fc): data discrepancy score for final point
estimate; Iters: number of iterations to convergence; TC-E, TC-F, TS-B,
TS-E, TS-F, CS-E, CS-F: 7 muscles groups of the p2m7 model (as defined
in Figure 5.6b)]

The accuracy of the final point estimates varied by muscle. Taking the p2m7 weak

data set simulation (Figure 5.7b) for example, the final point estimates for muscles TC-E,
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hy SCM scal Lc LC trap spC ssC LS mf spc SO D(fc) Iters
fa 164 237 139 47 79 297 195 261 279 203 134 141
fc 170 216 196 46 98 271 148 248 254 228 139 208norm
σc 0.02 0.02 0.11 0.20 0.20 0.14 0.20 0.20 0.05 0.08 0.04 0.16

1.00 6

fa 164 237 139 47 79 297 195 261 279 51 134 141
fc 167 229 141 49 60 264 100 156 205 180 100 181weak
σc 0.01 0.01 0.09 0.16 0.20 0.11 0.20 0.20 0.09 0.02 0.13 0.17

1.00 12

fc 278 206 122 64 80 204 170 305 230 248 87 220
S003

σc 0.02 0.03 0.20 0.15 0.20 0.20 0.04 0.06 0.02 0.03 0.01 0.02
0.57 20+

fc 69 90 44 18 34 185 59 99 40 118 68 68
S004

σc 0.03 0.20 0.20 0.19 0.20 0.20 0.06 0.06 0.20 0.06 0.06 0.12
0.56 20+

fc 289 137 49 27 45 52 30 77 64 157 120 229
S005

σc 0.05 0.03 0.14 0.20 0.20 0.20 0.14 0.20 0.20 0.04 0.08 0.14
0.97 20+

fc 304 224 80 33 71 59 37 95 27 223 131 109
S006

σc 0.09 0.03 0.20 0.20 0.20 0.20 0.20 0.16 0.20 0.06 0.04 0.03
0.82 20+

fc 223 157 101 54 96 130 31 199 287 237 225 161
S007

σc 0.18 0.15 0.20 0.20 0.20 0.20 0.20 0.14 0.06 0.03 0.03 0.14
0.69 20+

Table 5.2. Parameter Estimation Results using the p3m12 model
: Results are tabulated for the two simulated data sets (norm and weak)
and the five experimental data sets (S003-S007). The algorithm was not
able to identify the weakness of the deep extensor muscle group (mf) using
this model (note the error between fa and fc for the weak data set in the
mf column). Despite this error, the fit of the parameter estimate to the
data set was excellent, with a data discrepancy score of D(fc) = 1.00.
This indicates that an alternative solution was found. The data available
combined with the planar models may not have enough information to
discriminate between solutions due to the level of redundancy in the system.
[KEY : fa: “actual” muscle strength; fc: final strength point estimate; σc:
final spread parameter value; D(fc): data discrepancy score for final point
estimate; Iters: number of iterations to convergence]

TS-B, TS-F, and CS-E are within 5% of the true value. However, the algorithm produces

an estimate for muscle TS-E of 107 N, when the muscle’s factual value was 510 N, for

an error of 79%. The p3m12 weak data set simulation over-estimates the true strength

of the multifidus muscle by more than double, for an error of 255%, and underestimates

the strength of the two more superficial extensors, the splenius capitis and semispinalis

capitis by 48% and 40%, respectively.
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Despite the significant error in the strength estimate of several muscles when compared

to the actual strengths that produced the data sets, the final point estimates produce

nearly identical maximum wrench measurements in each test direction when compared

to the simulated data sets, as shown in Figure 5.9 and indicated by the composite data

discrepancy score for the final point estimate, fc, of Dc = 1.00. This indicates that the

algorithm found an alternate solution - another set of muscle strengths that produce the

same set of maximum wrench measurements.

5.3.1.3. Distinguishing between healthy vs. weak deep extensor data sets.

A primary motivation of this work is to identify weak deep extensor muscles from neck

strength measurements. While it is clear from the radar plots in Figure 5.9 that measured

wrenches in the extension direction (test directions “back”, “backlow”, and “backHigh”)

are reduced, muscle redundancy leads to multiple muscle strength solutions that are not

disambiguated by the test directions. For example, the p3m12 weak data set simulation

(Figure 5.8b) ends with an estimate that overestimates the strength of the multifidus

(the deep extensor muscle) and underestimates the strength of the semispinalis capitis

and splenius capitis (the superficial extensors). In this case, the weak deep extensors

would be missed by the algorithm. These results lead to the conclusion that there is not

enough information in the planar data sets to distinguish between the superficial and deep

extensor muscles with the models constrained to the sagittal plane with 7 test directions.

5.3.2. Spatial Neck Model

With a transition to a spatial neck model and data set, the task (wrench) space di-

mension increases to d = 6, so that a test direction unit wrench has 6 components,
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(a) p2m7 Healthy (b) p2m7 Weak

(c) p3m12 Healthy (d) p3m12 Weak

Figure 5.9. Radar Plots Showing Parameter Estimate Fit to Data
Set: These plots compare the maximum wrench measurements wmeas from
the simulated data set (red trace) vs. maximum wrenches produced by
the final point estimate wsim(fc) for simulations (black trace) with the two
planar models (a & b) p2m7 and (c & d) p3m12. The dashed blue line
shows the maximum wrenches produced by the baseline strength estimate
for each model. The black traces overlay the red traces nearly identically,
indicating an excellent fit of the parameter estimates to the to the measured
data. This is confirmed by the near perfect data discrepancy scores D(fc) =
1.00, 0.98, 1.00, and 1.00 for (a-d) respectively.

u = [Mx,My,Mz, Fx, Fy, Fz]. The set of test directions, U, for the spatial data sets is

now NU = 25, applied at the markers shown in Figure 5.10. Each joint in the model is

associated with 3 kinematic DOFs: pitch, roll, and yaw.
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Figure 5.10. Spatial test locations: Each of the 25 circles marks the
location of force application for a strength test. The unit wrench direction
for a test direction is computed by transforming the force applied normal
to the surface of the skull to the skull frame at the base of the skull, and
then normalized to a unit vector.

5.3.2.1. Model. The spatial neck model, s3m24, has 3 joints (n = 9 kinematic DOFs)

and m = 24 muscles. The muscles are grouped in the same manner as the p3m12 model,

but with right and left muscle pairs, resulting in twice the number of muscles. In order

to make the simulations computationally feasible, we make an assumption during our

sampling step that the right and left muscle pairs have equal strength. This assump-

tion is reasonable for our population of interest, chronic WAD, where muscle atrophy is

distributed throughout the deep extensor muscles bilaterally [1]. This reduces the set of

candidate muscle strengths F to NF = 312 from NF = 324.

5.3.2.2. Results with Simulated Data Sets. The results of the muscle strength es-

timation algorithm with simulated healthy and weak deep extensor data sets and the

spatial s3m24 model are shown in Figures 5.11a and 5.11b respectively. The results are

also tabulated in Table 5.3. As with the planar model simulations, the initial strength
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estimate, f ′base was bootstrapped to the wrench measurement taken in the ”back” direc-

tion. The initial spread parameter was set at σ0 = 0.2. The simulations were run for

15 iterations, with both meeting the convergence criteria of min(Dk) < 0.95 by iteration

c = 9.

The final point estimates for the individual muscle strength estimation simulations

for the ’healthy’ and ’weak mf’ data sets both produced excellent fits to the simulated

experimental data set, with composite data discrepancy scores of Dc = 1.00 for each.

The algorithm converged to the set of wrench measurements produced by the fa strength

vector representing the true strength for all muscles. To further confirm that the final

strength estimates produce a wrenches that closely match the data set, the distribution of

data discrepancy scores for each candidate strength vector in the final iteration is shown

in Figure 5.12 for the s3log12 weak deep extensor simulation. As shown in Figure 5.12b,

nearly all individual data discrepancy scores are above di,k = 0.95 in each test direction,

indicating an excellent fit of all candidate strength vectors by iteration c = 9 to the

simulated data set. The error of the point estimate , fc, at convergence compared with

the actual strength vector, fa, is below 10% error with the exception of the scalenes,

splenius capitis, semispinalis capitis, and longus capitis.

5.3.2.3. Results with Experimental Data Sets. The results of the muscle strength

estimation simulations for two of the n = 5 participants is shown in Figures 5.13a and

5.13b. All simulation parameters were set the same as for the simulated data sets in the

previous section. The algorithm was run for 20 iterations, and the convergence criteria of

min(Dk) > 0.95 was not achieved for any of the simulations.
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(a) Simulated Normal

(b) Simulated Weak (mf-R)

Figure 5.11. Parameter Estimation Results for Simulated Data Sets
with s3m24 model. Each subplot represents a muscle group. The base-
line strength estimate, f ′base, prior to bootstrapping is marked by an x on
the y-axis. The ”actual” strength is the dashed red trace. The current point
estimate, 2fc = fc is the black trace. And the low and high samples, 1fc and
3fc are the dashed blue traces. The algorithm was able to identify isolated
weakness of the deep extensor muscle group (mf) and the final parameter
estimates achieved an excellent fit to the data, with data discrepancy scores
of D(fc) = 1.00.
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(a) Distribution of Composite Data Discrepancy Scores (Dk) over 20 Iterations

(b) Distribution of Data Discrepancy Scores by Test Direction at Iteration c = 9

Figure 5.12. Distributions of Data Discrepancy Scores for the Weak
Data Set and s3m24 Model. (a) The distribution of all NF composite
data discrepancy scores over 20 iterations. By the 9th iteration, all Dk scores
were above 0.95, indicating that the algorithm had met the convergence
criteria. (b) The data discrepancy scores (di,k) for all 25 test directions
at iteration c = 9 shows that all fk strength candidates produce wrench
magnitudes that closely match the measured data set in all directions (where
a di,k = 1 would indicate no error).
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(a) Experimental Data S003

(b) Experimental Data S004

Figure 5.13. Parameter Estimation Results for two Experimental
Data Sets with s3m24 model. The left and right muscles of each muscle
pair are assumed to have equal strengths, so only the right side muscles are
shown here. The baseline strength estimate, f ′base, prior to bootstrapping
is marked by an x on the y-axis. The ”actual” strength is the dashed red
trace. The current point estimate, 2fc = fc is the black trace. And the low
and high samples, 1fc and 3fc are the dashed blue traces. The algorithm
was run for 20 iterations, and the convergence criteria of min(Dk) > 0.95
was not achieved for any of the simulations. The data discrepancy of the
final point estimates of these two simulates was D(fc=20) = 0.66 and 0.54,
indicating a moderate fit of the final parameter estimates to the data.
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hy SCM scal Lc trap spC ssC LS mf spc SO LC D(fc) Iter
fa 125 160 184 37 350 84 132 233 184 84 149 62
fc 133 147 241 41 346 140 165 221 197 89 163 78norm
σc 0.05 0.04 0.14 0.19 0.09 0.20 0.17 0.03 0.08 0.05 0.09 0.20

1.00 9

fa 125 160 184 37 350 84 132 233 46 84 149 62
fc 131 152 219 35 371 108 151 213 68 91 158 64weak
σc 0.03 0.03 0.12 0.20 0.13 0.20 0.17 0.05 0.20 0.10 0.08 0.20

1.00 9

fc 346 174 216 38 353 120 140 214 19 197 211 98
S003

σc 0.02 0.03 0.20 0.10 0.12 0.05 0.06 0.03 0.20 0.05 0.02 0.20
0.66 20+

fc 113 101 60 63 294 31 38 21 44 133 8 21
S004

σc 0.20 0.03 0.20 0.05 0.08 0.08 0.15 0.20 0.20 0.06 0.20 0.20
0.54 20+

fc 263 198 66 46 128 131 76 47 31 299 138 54
S005

σc 0.07 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.10 0.20
0.56 20+

fc 314 131 43 46 274 176 164 50 32 276 105 60
S006

σc 0.09 0.05 0.20 0.10 0.20 0.04 0.20 0.20 0.11 0.04 0.05 0.20
0.50 20+

fc 70 251 141 40 1096 41 140 396 165 156 111 94
S007

σc 0.06 0.20 0.20 0.18 0.14 0.20 0.20 0.20 0.20 0.01 0.20 0.20
0.22 20+

Table 5.3. Parameter Estimation Results using the s3m24 model :
Results are tabulated for the two simulated data sets (norm and weak) and
the five experimental data sets (S003-S007) utilizing all 25 test directions.
The algorithm was able to identify the weakness of the deep extensor muscle
group (mf) using this model (note the error between fa and fc for the norm
and weak data sets in the mf column). The parameter estimates for the
simulated data sets were also able to achieve an excellent fit to the data, with
a data discrepancy scores of D(fc) = 1.00. The results for the experimental
data sets reveal some difficulty with convergence and achieving confidence
in estimates, with spread parameter values remaining relatively high for
most muscles. [KEY : fa: “actual” muscle strength; fc: final strength point
estimate; σc: final spread parameter value; D(fc): data discrepancy score
for final point estimate; Iters: number of iterations to convergence]

While it is not possible to verify the accuracy of the final point estimate in the sim-

ulations for the experimental data sets, a closer look at the data discrepancy scores for

Participant 1 (Figure 5.14a) reveals that at the final iteration (c = 20), the composite

scores were all between 0.65-0.70. This indicates that there was a moderate fit to the

data, but error still remains. Investigating the distribution of data discrepancy scores in

each direction at iteration c = 20 in Figure 5.14b, it is clear that there was a better fit



118

for some directions than others. The composite data discrepancy score of the model for

the final point estimate, fc, for 4 of the 5 participants was between 0.50− 0.66.

5.4. Discussion

This chapter provides a framework for parameter estimation in musculoskeletal sys-

tems and demonstrates its use in the particularly complex and redundant human neck.

The model-based algorithm draws from Approximate Bayesian Inference with rejection

and importance sampling and flexibly allows for inclusion of any number of muscle acti-

vation measurements that can be adjusted based on available information. The algorithm

can handle moderately high dimensionality due to the incorporation of iterative sampling

from a sample distribution, requiring 3m samples for each iteration. The feasibility of

the approach is demonstrated with both simulated data sets and neck strength and EMG

measurements collected from 5 healthy participants.

There are several limitations to the framework. The algorithm itself does not solve

the issue of multiple solutions that is inherent in a redundant musculoskeletal system like

the neck. The model and data set must contain enough information to differentiate be-

tween muscles, as demonstrated in the example applications where the simulations with

the planar models and data sets were prone to finding alternate solutions. The algorithm

also becomes prohibitively computationally expensive for models with more than 12 inde-

pendent muscles. While utilizing parallel processing will improve the speed, the computa-

tional cost increases exponentially with each additional muscle. The models presented in

this chapter compute a maximum task space wrench in a specified direction based purely

on torque balance, not considering other factors that may affect the maximum effort in
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(a) Distribution of Composite Data Discrepancy Scores (Dk) over 15 Iterations

(b) Distribution of Data Discrepancy Scores by Test Direction at Iteration c = 20

Figure 5.14. Distributions of Data Discrepancy Scores for the Ex-
perimental S003 Data Set and s3m24 Model (a) The distribution
of all NF composite data discrepancy scores over 20 iterations. The al-
gorithm had not reached the convergence criteria of all Dk > 0.95 by the
20th iteration. (B) The data discrepancy scores (di,k) for all 25 test direc-
tions at iteration c = 20 shows a wide degree of variance between error
in the different test directions. Excellent fit to the data was achieved in
some directions (forehead, backL, earL, backLowL, backLowR, and back-
UnderL), a high degree of error persists in other directions (templeAboveR,
templeAboveL, aboveEarR). The algorithm was unable to find a better fit
to the data given the constraints of the model.
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a human experiment like coordination, understanding the task, and pain. The level of

cocontraction of the superficial muscles that was measured in the experimental data sets

was higher than what would be predicted by the models, indicating the models did not

capture some factors contributing to muscle activation. This difference makes inclusion

of the surface EMG measurements into the data set even more important, because it

constrains the muscle activations to more closely match those in the experiment.

This framework requires that all measurements are collected prior using the algorithm.

Particularly in a clinical setting, it would be advantageous to limit the number of mea-

surements required. The spatial model data set included 25 test directions, which was

fatiguing even for healthy participants without neck pain. A real-time iterative approach

to selecting the next measurement direction based on information measures would be a

practical extension of this approach. Another extension that would likely improve per-

formance of the algorithm for individual muscle estimation would be including different

postures to take advantage of muscle length-tension curves and altered moment arms to

further differentiate muscles, in addition to the multiple test directions.

This chapter presented a framework for parameter estimation in musculoskeletal sys-

tems and demonstrated its use on the difficult problem of estimating individual neck mus-

cle strengths from non-invasive wrench and EMG measurements. When provided with a

rich enough data set and representative model, including spatial wrench measurements

and surface EMG of a subset of muscles, the algorithm can identify weakness of the deep

cervical extensor muscles. This method can be extended to other musculoskeletal systems

and parameters estimation problems that are challenging to solve due to redundancy.
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CHAPTER 6

Automated Test Sequence Selection for Musculoskeletal

Parameter Estimation

This chapter expands on the individual strength estimator from the previous chap-

ter. Clinicians have limited time for their evaluations and individuals with chronic WAD

would not tolerate the number of neck strength measurements included in the experiment

due to pain and fatigue. The next step in making this framework practical for clinical

application is to reduce the number of measurements to obtain an informative estimate

of individual muscle strengths. In this chapter, we propose a novel framework for mus-

culoskeletal parameter estimation that sequentially selects the next measurement that

maximizes expected information gain. We demonstrate the utility of the approach by

showing with simulated data sets and 5 experimental data sets that the algorithm would

provide information allowing the clinician to take fewer measurements. While limited by

computational cost in its current form, this algorithmic framework is a step towards a

clinically translatable test for clinician in the loop, efficient musculoskeletal parameter

estimation.

6.1. Introduction

Individuals with chronic whiplash-associated disorders (WAD) present with a wide

range of symptoms, which can include persistent pain, weakness, motor dysfunction, dizzi-

ness, and psychological distress [100, 99, 25]. Despite the severity of pain and disability
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in WAD, no salient pathoanatomical lesion has been identified, hindering diagnosis and

treatment. Imaging studies have identified increased muscle fat infiltration in the deep

cervical extensor muscles, which could indicate muscle atrophy and weakness [1, 29]. The

complex structure of the neck, with its kinematic and muscle redundancy, is a barrier

for determining individual muscle strengths. There is currently no available method to

test the hypothesis that these individuals have functional weakness of the deep extensor

muscles, which would be valuable for understanding mechanisms, diagnosis, and guiding

treatment decisions.

To address this need, a model-based Bayesian estimator was presented in the previous

chapter to estimate individual muscle strengths from maximum isometric wrench (moment

and force) measurements taken at the head. The framework involved collecting a full set

of data that included 2-3 trials of maximum efforts in 25 test directions. The data was

collected in full, then processed by the algorithm post-hoc to find the set of individual

strength estimates that best fit the data. The framework was successful at identifying

muscle strength deficits in the deep cervical extensors with the simulated data sets and the

feasibility of the approach was demonstrated with experimental data sets from 5 healthy

participants. The strength testing protocol was found to be fatiguing and uncomfortable,

even for some healthy individuals, making it unlikely that someone with chronic pain would

tolerate the full protocol. The next step in making this framework practical for a clinical

application is to reduce the number of measurements required to obtain an informative

estimate of individual muscle strengths.

There is an opportunity for clinician-in-the-loop algorithms to automate aspects of

clinical examination and evaluation. These algorithms are not intended to replace the



123

clinicians intuition, in fact the clinician is a critical part of the framework. The complex

architecture of the human neck, with its kinematic and muscular redundancy, is an ideal

setting for musculoskeletal modeling and computational algorithms for parameter estima-

tion. The complexity makes it difficult for a clinician to have good intuition about how

to isolate individual muscles. A Bayesian framework allows for a priori knowledge of the

clinician to be incorporated through construction of the prior and interpretation of the

parameter estimate, which is presented as a probability distribution rather than a single

solution. Clinicians are accustomed to working with uncertainty as they consider differen-

tial diagnoses and responses to treatment. Building on the intuition of the clinician who

formulates the prior belief and hypotheses, we propose an extension of the model-based

Bayesian estimator of individual neck muscle strengths that keeps the clinician in the

loop, proposes the next measurement, and updates the parameter estimate based on the

result of that measurement.

The primary contribution of this chapter is a method for automated sequential experi-

mental design for individual muscle strength estimation. This implementation is the next

step towards developing a framework that can be translated to the clinic. The framework

utilizes a model-based likelihood-free estimator based on Approximate Bayesian Computa-

tion (ABC) algorithms [103] for parameter estimation and an entropy-reducing procedure

based on infotaxis [111], a technique that seeks to maximize information gain with each

new measurement. The clinician is an integral part of the process, exchanging informa-

tion with the algorithm at each iteration. The algorithm optimizes the strength testing

sequence, ultimately reducing the number of measurements that the clinician would need

to perform to achieve a useful estimate of individual neck muscle strength. Challenges
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with computational efficiency and translation of measurement methods from the lab to

the clinic will need to be address before implementation in a clinical setting. For the

remainder of the chapter, we will refer to the individual interacting with the algorithm as

the “user”. We envision the “user” being a physical therapist or rehabilitation physician

for a clinical implementation of the framework in the future. The clinical implications for

a tool that assists with selection of diagnostic testing is improved efficiency and accuracy

in diagnosis and therapeutics. For the specific application of interest in this thesis, esti-

mation of individual neck muscle strength in individuals with chronic WAD, reducing the

number of tests is crucial because patients with WAD are not able to tolerate extensive

or invasive tests due to high levels of pain.

6.2. Background

The goal of a parameter estimation problem is to produce an estimate of the set of

the unknown parameters, θ, given observations X. In the previous chapter, the data

set (observations) were collected independently and the parameter estimation algorithm

was performed post-hoc on the full data set. In this chapter, the user is in the loop,

exchanging information with the algorithm at each iteration. The algorithm proposes the

next measurement for the user to take and updates the muscle strength estimate after

the measurement is taken. The next sections introduce necessary background information

on Bayesian inference, experimental design, and information theoretic measures that are

utilized in framework.
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6.2.1. Bayesian Inference

The set of unknown parameters is θ. The observations (or measurements) are represented

by the random variable X, where a single observation is denoted X = x.

Baye’s rule, shown in Equation 6.1, is used to update the belief about the parameter

after data has been collected.

(6.1) p(θ|x) =
p(x|θ) p(θ)

p(x)
where p(x) =

∫
p(x|θ)p(θ)dθ

The set of prior distributions, p(θ), for parameter set θ, reflects the prior beliefs about

the parameter values before data is available. The likelihood function p(x|θ) relates the

variables to the model and indicates how likely it is to observe the data x under the

model with parameters θ. The posterior distribution p(θ|x) is the probability density

function (PDF) over θ after having observed the data x. In other words, it expresses

the uncertainty about the parameter set θ after the prior and data have been taken into

account. The denominator, p(x), is the marginal likelihood of the data and describes what

the data should look like according to the model, prior to any observations. This value

computes to a scalar, so that the posterior is proportional to the product of the prior and

likelihood, p(θ|x) ∝ p(x|θ) p(θ). Direct computation of the evidence p(x), which can be

computationally expensive, can be avoided by simply normalizing the numerator to sum

to 1.

The algorithms in this and the previous chapter (Chapter 5) are modeled from Ap-

proximate Bayesian Computation (ABC), a family of numerical approximation techniques
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for situations where the likelihood function is either computationally intractable or not

available [103]. These methods approximate the likelihood function through point-wise

model simulations. The likelihood function, p(x|θ), gives the probability of observing the

data x given the fixed parameter values θ. The approximation of the likelihood function

is achieved by creating a simulated data set through repeated model simulations with

parameter values sampled from the prior, p(θ), and utilizing some metric to compare the

simulated and measured data. Many specific extensions of the basic ABC framework have

been developed to address challenges with sampling the parameter space and convergence,

including MCMC, sequential Monte-Carlo methods importance sampling, and regression

adjustments [103, 66, 101, 70]. The implementation in this chapter utilizes a relatively

low parameter space (m = 7 muscles), so the sampling scheme simply randomly samples

from the initial prior distribution.

6.2.2. Statistical Information Theoretic Approaches

Information theoretic measures have been used quite extensively in the field of optimal

experimental design (OED) [95]. An objective of OED in the context of parameter es-

timation is to select an experiment that will produce the best statistical quality of the

parameter estimates [77]. One strategy is to maximize the information gain, from prior

to posterior. The field of information theory defines self-information of an event x as

I(x) = − log(p(x)). I(x) can be thought of as the information content of the random

variable X. Shannon entropy [90], the average amount of information in a probability
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distribution, is computed using Equation 6.3 by taking the expected value of the self-

information over all possible values of x. Shannon entropy can also be thought of as the

measure of uncertainty of a probability distribution [48].

The expected value of a distribution of a random variable is the weighted sum of the

probabilities over the domain of the random variable.

(6.2) E[X] =
∑
x

x p(x)

So the average entropy over x is

(6.3) S(x) = E(I(x)) =
N∑
i=1

−p(xi) log(p(xi))

where X takes N possible values xi, i = 1, ..., N . Note that S ≥ 0 and S = 0 only

if there is no uncertainty in X. The maximum value that S can have is lnN , where all

possible outcomes of X have equal probability (a uniform distribution over the full range

of X).

The strategy of utilizing information theoretic measures for reducing uncertainty is

used in applications involving search processes and source localization, where the unknown

parameter is the location of an object or chemical source. A particular entropy reducing

controller designed for locating a chemical source with sparse information is infotaxis

[111]. As new measurements are acquired, the algorithm updates the posterior p(θ|x), to

reflect the updated belief about parameter θ based on measurement x.
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In a search problem, the control authority is over where to move to collect data for

the next observation. For example, if the search area is divided into a grid, the decision

that the controller needs to make is which neighboring grid location to search next. The

infotaxis algorithm makes this decision at each iteration based on maximizing expected

entropy reduction. The pseudocode algorithm for infotaxis: entropy reducing control for

source localization is presented in Algorithm 5. In this search application, the entropy

measure S should be reduced at each step as more information is collected and will equal

zero when the source is located.

Algorithm 5 Infotaxis - Entropy Reducing Control for Source Localization

Input: prior p(θ)
Compute initial entropy: S0 = −

∑
x p(θ) log(p(θ))

repeat
(1) Take Measurement x

(2) Compute Posterior p(θ|x) = p(x|θ) p(θ)
p(x)

(3) Update Prior: p(θ) = p(θ|x)
(4) Compute Entropy: S = −

∑
x p(θ) log(p(θ))

(5) Compute Control ui = arg maxu E[∆S(u)]
(6) Apply Control: move to the next area according to ui

until S = 0

Several important modifications to the infotaxis algorithm are required for implemen-

tation in the musculoskeletal parameter estimation application. First, the problem is

higher dimensional in both the parameter and measurement space, meaning that a metric

will be required to make the control decision based on the set of differential entropies. Sec-

ond, the posterior update will be computed using a likelihood-free, Approximate Bayesian

Computation (ABC) method due to the intractable likelihood function. Third, instead of

a local optimization considering just the neighboring grid squares in the search, the next

test direction will be selected from the full set of test directions with the condition that
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(a) Test Locations (b) p2m7 Model

Figure 6.1. Labeled test locations and a schematic of the p2m7
model. (a) The 7 test directions in the set UP are created by a force
applied perpendicular to the skull surface at the location of each of the pink
markers. The test directions are referred to by labelled name or direction
index (in parentheses). (b) The p2m7 model with n = 2 DOF and m = 7
muscles. The muscle names represent the attachment points (T: trunk, C:
c-spine, S: skull) and action (E: extensor, F: flexor, B: both).

each direction can only be tested once. Finally, entropy is not expected to go to zero, so

the stop criteria will be based on a metric on the expected gain in information.

6.3. Model

The musculoskeletal parameter estimation problem addressed in this chapter is to

estimate the strength of m = 7 muscles of an n = 2 DOF neck model limited to the

sagittal plane based on wrench (moment and force) measurements taken at the head and

EMG measurements from a subset of muscles. The wrench measurements can be taken

in 7 predefined test directions, represented by the set of sagittal plane test directions

UP = {ui ∈ R3 ∀ i = 1, ..., 7}.
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Algorithm 6 Data Generating Model

function M(f , u, [αlb, αub])

max
α,w

w

s.t.
[
R diag(f) −JTu

] [α
w

]
= 0,

αlb ≤ α ≤ αub

return {w, α}
end function

The baseline geometric and muscle parameters for the model, including the moment

arm matrix R ∈ Rn×m and Jacobian J ∈ R3×n, are taken from the OpenSim Neck Model

[108], and simplified for the p2m7 model as described in detail in Chapter 5. The wrench

is the set of moments and forces measured at the end effector (the head), which for a

planar model is w = [Mz, Fx, Fy]. For the remainder of the chapter, we will denote a

scalar magnitude of the wrench as w = ‖w‖ with unit direction u = w/‖w‖, where a

bold-face w is the wrench vector in R3.

The data generating model function (Algorithm 6) computes the maximum isometric

end effector wrench magnitude and set of corresponding muscle activations, {w, α}, that

can be produced given the set of muscle strengths, f , and wrench direction ui. Lower and

upper bounds on individual muscle activations can also be specified, [αlb, αub] if available.

This replicates the physical experiment, where participants produce a maximum isometric

wrench matching a target wrench direction while observing feedback on a screen. During

the experiment, the wrench magnitude and a subset of muscle activations are collected.

For the full experimental protocol, see Appendix A.

In the source localization problem, the unknown parameter, θ, was the location of

the chemical plume, the observations, x, were the number of odor encounters, and the
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algorithm had control authority over which direction to move for the next search, ui. In the

musculoskeletal parameter estimation application of interest in this chapter, the unknown

parameters are individual neck muscle strengths, θ = f ∈ Rm, where m is the number of

muscles in the model. The observations are neck strength (wrench) measurements and a

subset of muscle activation measurements, x = {wmeas, αmeas}. The control authority is

over which unit wrench test direction, ui ∈ U, to measure next. The discrete set of test

directions, U, is a set of unit wrenches mapped from locations on the skull where a user

can provide resist force to test neck strength (Figure 6.1b).

6.4. Algorithms

6.4.1. Sequential Muscle Strength Estimation Algorithm

The framework for musculoskeletal parameter estimation presented in Chapter 5 was

centered on an algorithm drawn from ABC algorithms with rejection and importance

sampling. While there are similarities in this implementation, there are some important

differences that are clarified here. (1) The parameter estimate is updated sequentially

as each new measurement is collected, rather than a post-hoc analysis of a full set of

collected data. This allows the user to be in the loop, exchanging information with the

algorithm at each iteration. (2) This algorithm does not utilize importance sampling,

where a sampling function is updated to sample a new subset of the parameter space each

iteration, eventually converging to a solution. Instead, candidate strength samples used

across iterations are drawn from the initial prior, which is selected to encompass the full

set of possible solutions.
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Figure 6.2. Active Sequential Strength Estimation Algorithm. Al-
gorithm 7 details the steps of the algorithm visualized here. The set of
candidate strength vectors F is sampled a single time from the initial prior
distribution. At each iteration of the algorithm, a test direction is selected, a
measurement is taken, data is simulated with the model, the data-likelihood
function approximates the likelihood, and the posterior is updated based
on the single measurement.

The Sequential Muscle Strength Estimation Algorithm, Algorithm 7, begins with

defining the initial prior, p(f) = N (f0, σ
2
0), which is a multivariate Gaussian distribu-

tion centered on the initial point estimate and variance, f0, σ
2
0 ∈ Rm. A Gaussian was

selected to increase sampling in the region of the initial point estimate, fc, which is an

informed estimate based on anatomic studies and subject specific uniform scaling. In a

context where less is known about possible parameter values, the prior could be a uniform

distribution, centered on the point estimate and with lower and upper bounds represent-

ing the range of possible parameter values. A set of NF candidate strength vectors, fk,

are randomly drawn from the prior to form the set F.
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Figure 6.3. Diagram for Select Next Test Direction Algorithm. This
algorithm is executed at each iteration of the full Active Sequential Strength
Estimation Algorithm 7 shown in the Select Next Test Direction block in
Figure 6.2. For each remaining test direction, ui, the update to the pos-
terior distribution is simulated for NS simulated wrench measurements in
that direction. The test direction with the minimum average entropy of
simulated posterior updates is selected as the next test direction.

Each iteration begins with selection of the test direction, ui ∈ U, that maximally re-

duces the expected entropy of the prior using the entropy reducing controller detailed in

Algorithm 9. For this application, the heuristic decision is made that each test direction

can only be tested a single time to ensure coverage, so once test direction ui has been

tested, it is removed from set U. The details of the test direction selection algorithm are

explained in detail in the next section, Section 6.4.2. Once a test direction is selected, a

measurement is taken by the user, {wmeas, αmeas}i, in the selected direction ui. This mea-

surement is the maximum wrench magnitude that the subject can produce in the specified

direction, ui. The option of including surface electromyography (EMG) measurements of
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muscle activation, αmeas, adds more information to the data set, increasing the chance

that the algorithm will converge to a single solution.

Steps 3-4 of Algorithm 7 are what classify the approach as an Approximate Bayesian

Computation algorithm. Because the likelihood function is intractable, the conditional

probability of the observed measurement, wmeas, on the unknown parameter, f , is ap-

proximated using simulated data. First, the maximum wrench and muscle activations,

{wsim, αsim}i,k in direction ui, are simulated for each candidate strength vector, fk, in set

F with the model (Algorithm 6). The data-likelihood function (Algorithm 8) serves as an

approximation to a likelihood function, producing p(wmeas|F), the conditional probability

of the observed measurement, wmeas, given the set of candidate strength vectors F. The

function computes the data discrepancy scores (Equation 6.4), a measure of error between

the observed and simulated wrenches, to reject samples with poor performance (low data

discrepancy score) and then approximates the likelihood as the sum of data discrepancy

scores of the remaining samples weighted by muscle specific predicted activation levels

(Equation 6.5).

The posterior update is computed as the product of the data-likelihood probability

and the current prior, p(f |wmeas,i) ∝ p(wmeas,i|F) p(f), and then normalized to a sum

of 1. For the start of the next iteration, the prior is updated as the current posterior.

This process is repeated until convergence is achieved or the set of test directions, U, is

exhausted.

Note that, because the set of candidate strength vectors, F, is sampled from the initial

prior and is not updated each iteration, the simulated data and data likelihood functions

are not dependent on previous iterations. This decoupling means that the order of the
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tests does not change the final estimate as long as the same set of directions are measured.

This design choice makes sense for our application, because we would not want to remove

areas of the parameter space due to a single noisy measurement early in the experiment.

However, there could be applications where it would be advantageous to resample from

the updated posterior at each iteration.

The next section further details step (1) of Algorithm 7, the selection of the test

direction ui ∈ U that maximizes entropy reduction of the current estimate.

6.4.2. Entropy-Reducing Sampler for Test Sequence Selection

The motivation behind using an information theoretic metric such as maximum entropy re-

duction to select the next measurement is to avoid performing unnecessary measurements.

In the human subject experiment presented in Appendix A, participants were asked to

provide maximum efforts in 25 test directions, with multiple trials in each direction. The

experiment proved to be fatiguing, sometimes uncomfortable, and time-consuming, even

for healthy control participants. This algorithm, applied to that experiment, could poten-

tially identify the most informative test directions and reduce the number of test directions

required to obtain an estimate of individual muscle strength.

The Entropy-Reducing Test Selection procedure, Algorithm 9, is run at step (1) of

each iteration of the Sequential Muscle Strength Estimation Algorithm. The question

it answers is: which of the available test directions in set U will produce the greatest

reduction the entropy of the posterior? In other words, which test direction will provide

the most informative update? To answer this question, the NextTest function compares
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Algorithm 7 Sequential Individual Muscle Strength Estimation

Require: f0 ∈ Rm: initial point estimate of muscle strengths
v0 ∈ Rm: variance
m: number of muscles (dimension of parameter space)
U: set of test directions
NF : number of fk samples to draw from prior
NS: number of simulated wmeas for entropy reduction algorithm 9

Define Initial Prior:

p(f) = N (f0, σ
2
0) where f0, σ0 ∈ Rm

Sample from Prior:

F = {fk ∼ p(f) ∀ k = 1, ..., NF}
Precompute General Simulated Data Set:

{wsim, αsim}gi,k = M(fk, ui) ∀ fk ∈ F and ui ∈ U

repeat

(1) Select Test Direction: ui ∈ U . Algorithm 9

ui = NextTest(p(f),U, NS, {wsim, αsim}g)

(2) Take Measurement: Collect {wmeas, αmeas}i in direction ui

(3) Simulate Data: . Algorithm 6

{wsim, αsim}i,k = M(fk, ui, αmeas,i) ∀ fk ∈ F

(6) Compute Data-Likelihood: . Algorithm 8

p(wmeas,i|F) = DataLikelihood({wsim, αsim}i,k, wmeas,i) ∀ fk ∈ F

(7) Update Posterior:

p(f |wmeas,i) ∝ p(wmeas,i|F) p(f)

(8) Update Prior: to current posterior p(f) = p(f |wmeas,i)
(9) Remove ui from set U

until U = ∅ or convergence criteria met

possible outcomes of the next posterior update for each remaining test direction. Specifi-

cally, the expected entropy change, the difference between the entropy of the current prior
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Algorithm 8 Data-Likelihood Function

Require: {wsim, αsim}k ∀ fk ∈ F: Set of simulated data
wmeas: wrench measurement

function DataLikelihood({wsim, αsim},wmeas)
(1) Compute Data Discrepancy scores: dk ∀ fk ∈ F

(6.4) dk = e−(εδk)2 where δk = ‖wsim,k − wmeas
wmeas

‖

(2) Rejection Step: keep subset F′ ⊆ F where dk ≥ q percentile
(3) Compute Data-Likelihood: over domain f , for each muscle j

(6.5) p(wmeas|F′) ∝
NF ′∑
k

αj,k dk

return p(wmeas|F′)
end function

and the simulated posterior updates, is compared across test directions, and the direction

with the maximum predicted reduction in entropy is selected as the next test direction.

Computing the expected entropy change through forward simulation can be prohib-

itively computationally expensive, particularly in a high dimensional parameter space.

Two important modifications are made to reduce the computational cost. First, a set

of baseline simulated data is precomputed prior to the start of the repeat loop in Al-

gorithm 7. This set contains a simulated wrench magnitude and activation pattern,

{wsim, αsim}i,k = M(fk, ui) for each fk ∈ F and ui ∈ U. Because it is computed prior

to any experimental data collection, measured muscle activations are not input to the

model, so it defaults to a range of [0 1]. This data set is used in the Entropy-Reducing

Test Sequence Selection function for the forward simulation step, avoiding the need to

repeat the costly simulations at each iteration. The second modification that decreases

computation cost is to forward simulate the posterior update with only a subset of NS
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randomly selected wrenches from the simulated data set, wsmeas,i ∼ {wsim}i. This subset

can be orders of magnitude lower than NF , the number of candidate muscle strength

samples used to approximate the likelihood function.

6.5. Application

The implementation of the framework is demonstrated through our example prob-

lem initially introduced in Section 6.3. The objective is to estimate the strength of neck

muscles from wrench (moment and force) measurements taken at the head and EMG mea-

surements from a subset of muscles using planar neck model with m = 7 muscles and n = 2

DOF. The wrench measurements can be taken in 7 predefined test directions, represented

by the set of sagittal plane test directions UP = {ui ∈ R3 ∀ i = 1, ..., 7} and visualized

in Figure 6.1. The parameter estimation results incorporating all 7 test direction mea-

surements are presented first in Section 6.5.2. Then, the utility of the entropy-reduction

sampler for automated test sequence selection is presented in Section 6.5.3. We show that

the framework gives users the opportunity to take fewer measurements by selecting the

most informative tests first.

6.5.1. Implementation

The algorithm was implemented for a simulated data set, where the “actual” muscle

strengths are known, and for 5 experimental data sets. To produce the simulated data set,

the “actual” muscle strength vector fa ∈ Rm was formed by pseudo-randomly perturbing

the f ′base baseline strength estimate for the p2m7 model by scaling by a factor 1.5 and

adding random Gaussian noise with a variance of v = 0.4fa. The simulated data set
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Algorithm 9 Entropy-Reducing Next Test Selection

Require: p(f) : current prior
U: set of test directions
NS: number of simulated samples
{wsim, αsim}i,k = M(fk, ui) ∀ ui ∈ U and fk ∈ F : set of simulated data

function NextTest(p(f), U, NS, {wsim, αsim})

Compute Current Entropy:

Sc = −
∑

p(f) log p(f)

for all ui ∈ U do

Randomly sample NS wrenches wsmeas,i ∼ {wsim}i in direction ui

for all s = 1, ..., NS do

Compute Data-Likelihood: . Algorithm 8

p(wsmeas,i|F) = DataLikelihood({wsim, αsim}i, wsmeas,i)
Compute Simulated Posterior:

p(f |wsmeas,i) ∝ p(wsmeas,i|F) p(f)

Compute Entropy of Simulated Posterior:

Sssim,i = −
∑

p(f |wsmeas,i) log p(f |wsmeas,i)

end for

Compute Average Entropy Change for direction ui:

(6.6) ∆Si = Sc −
∑NS

s Sssim,i
NS

where ∆Si ∈ Rm

end for

Find test direction with maximum entropy reduction (across m muscles):

(6.7) max
i

∑m
j ∆Si,j

m
for j = 1, ..,m

return test direction ui
end function

was computed using the model function in Algorithm 6: {wmeas, αmeas}i = M(fa, ui) for

all 7 test directions in the sagittal plane, ui ∈ UP . The experimental data sets were
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collected from 5 healthy participants as described in Chapter A. Only the subset of data

from the 7 sagittal plane test directions was used. Muscle activation measurements for

the sternocleidomastoid (SCM) and semispinalis capitis (SSCap) muscles were mapped

to the TS-B and TS-E muscles of the p2m7 model (See Figure 6.1).

The initial prior was selected using the process described in the previous chapter

(section 5.2.2.1), reiterated briefly here. The baseline point estimates, f ′base ∈ R7, for the

p2m7 model are the 2-norm of the individual muscle elements that make up the muscle

groups (derived from the OpenSim model). For each data set, the baseline point estimate

was bootstrapped to the data by uniformly scaling by the average scalar value, a, that

minimized the difference between the measured wrench magnitude, wmeas and simulated

wrench magnitude, wsim, across the 7 test directions. The simulated wrench measurements

were computed from the model function in Algorithm 6, wsim = M(af ′base, u). The prior

was then set as the multi-variate Gaussian p(f) = N (f0, v0), with f0 = af ′base and v0 =

0.3f0.

The prior was randomly sampled to create a set of candidate strength vectors F of size

NF = 500, 000. The number of simulated wrench measurements for the Entropy-Reducing

Next Test Selection Algorithm (Algorithm 9) was set at NS = 100.

6.5.2. Parameter Estimation Results

Muscle strength estimation results for the simulated and experimental data sets are tab-

ulated in Table 6.1. Figures 6.4 and 6.5 show the (a) posterior updates and (b) iterative

point value estimates and variance for the simulated data set and experimental data set

for participant S005, respectively. The algorithm produced estimates with low variance
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TC-E TC-F TS-B TS-E TS-F CS-E CS-F D(fc)
fa 275 197 247 510 270 249 112
fc 290 180 253 354 251 304 100Sim
vc 14 49 30 255 6 80 10

0.97

fc 284 104 146 191 139 161 59
S003

vc 20 35 35 118 30 118 10
0.23

fc 125 39 56 62 59 24 21
S004

vc 9 29 31 107 13 20 10
0.41

fc 160 86 131 165 119 117 48
S005

vc 2 33 22 149 13 133 10
0.58

fc 297 97 142 196 131 149 57
S006

vc 17 34 31 148 24 157 11
0.23

fc 303 104 142 226 125 177 63
S007

vc 14 29 38 136 26 117 10
0.44

Table 6.1. Results of the simulations for the simulated data set
(Sim) and the 5 experimental data sets (S003-S007) with the p2m7
model. The 7 muscle groups and the data discrepancy value for the final
point estimate, D(fc), are the column headers. fa is the “actual” strength
of the muscles in the simulated data set. fc is the final individual muscle
strength point estimate, computed as the expected value of the posterior
distribution after all 7 measurements have been considered. vc is the vari-
ance of the same final posterior distribution. The data discrepancy score,
D(fc), is a measure of fit of the final point estimate to the measured data,
where D(fc) = 1 would be a perfect fit (no error). The data discrepancy
score for the simulated data set indicates an excellent fit, but the fit was
much lower for the experimental sets, implying that the model may not
capture the full biomechanics of the human subjects. A similar pattern of
variance emerges among the data sets, where the estimates for particular
muscles have a relatively low variance (TC-E) and others have a relatively
high variance (TS-E).

for a subset of muscles but indicates less confidence in the estimates of others. Com-

paring the subplots for muscle group TC-E vs. TS-E in Figure 6.4a, the final posterior

PDF (in blue) for muscle TC-E has a low variance of 13.9 N2 and is closely aligned with

the “actual” strength (red vertical line). In contrast, the final posterior PDF for muscle
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(a) Posterior Updates

(b) Expected Value and Variance by Iteration

Figure 6.4. Parameter estimation results for the simulated data set.
Because this is a simulated data set, the “actual” strength is known and
shown in red. (a) The posterior PDFs for each of the 7 muscles over all 7
iterations. The expected value is represented by the dashed vertical lines.
(b) The expected value of the posterior PDF (black) and variance (blue)
over the 7 iterations. The values on the x-axis refer to the test direction
index (see Figure 6.1). Note that the algorithm was able to achieve low
variance for some muscles (TC-E, TS-F, CS-F) but not others (TS-E, CS-
E) and that those with greater error in the point estimate also have a larger
variance.
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(a) Posterior PDF

(b) Expected Value and Variance

Figure 6.5. Parameter estimation results for the experimental data
set of Participant S005. (a) The posterior PDFs for each of the 7 mus-
cles over all 7 iterations. The expected value is represented by the dashed
vertical line. (b) The expected value of the posterior PDF (black) and
variance (blue) over the 7 iterations. The values on the x-axis refer to the
test direction index (see Figure 6.1). Note that the algorithm was able to
achieve low variance for some muscles (TC-E, TS-F, CS-F) but not others
(TS-E, CS-E).

TS-E is close to the initial estimate (in green) with a variance of 255.2 N2 and an error

of 155.6 N between the expected value of the final posterior and the “actual” strength.

Although the ideal result would be a confident estimate in all muscle strengths, this result



144

(a) Simulated Data Set (b) Experimental Data Set

Figure 6.6. Radar plots showing the fit of the final parameter esti-
mate to the (a) simulated data set and (b) experimental data set
for subject S005. The point estimate, fc, is the expected value of the final
posterior PDF. The black trace is the set of maximum wrenches computed
by the model with strengths fc. The blue and green traces are the wrenches
computed with model for the baseline strength and scaled baseline strengths
respectively. The algorithm was able to find a set of muscle strengths that
fit the simulated data set (a) accurately. The fit of the parameter estimates
for (b) was good in some directions (backHigh, back, and backLow), but
less accurate for others (particularly noseBelow and chinFront).

is informative, revealing that the data did not provide enough information to distinguish

between all possible solutions in this redundant system.

A point estimate for muscle strength is computed as the expected value of the posterior

PDF of each muscle. The fit of the final point estimate to the data set was analyzed

by computing the set of maximum wrenches that the model could produce with final

point estimate, fc, and comparing these values to the measured wrenches in the data

set. Figure 6.6 shows the fit of the final point estimate for (a) the simulated data set

and (b) the experimental data set for subject S005. The final point estimates received

data discrepancy scores of 0.97 and 0.58 for the simulated and experimental data sets

respectively, where a score of 1 indicates no error.
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The variance in the final posterior PDFs for the simulated and experimental data sets

exhibit a similar pattern across muscles. Although the “actual” strength of the muscles

in the experimental data set is unknown, the higher variance for muscles TS-E and CS-

E (Figure 6.5b) give an indication that there is less confidence in the estimate for these

muscles. Also note that there is very little change in both the expected value and variance

in the final 3 iterations for all muscles in Figure 6.4b. The implications of this plateau,

related to the automated test sequence selection, are discussed in the next section.

6.5.3. Performance of the Automated Test Sequence Selection

The utility of the entropy-reducing sampler for automated test sequence selection is

demonstrated by (1) comparing iterative results of the algorithm utilizing the entropy-

reducing sampler vs. using a random test sequence and (2) showing that the number

of tests can be reduced without significant change in outcome when using the entropy-

reducing sampler to select the most informative tests.

Figure 6.7 shows the average entropy of the posterior PDFs at each iteration for the

entropy-reducing sampler sequence (red trace) and all possible random test sequences

(blue box plots). For 7 test directions, there are 7!− 1 = 3049 permutations to represent

all possible sequences (excluding the sequence selected by the entropy-reducing sampler).

The entropy-reducing sampler selected test directions performed well on the experimental

data sets for participants (c) S004 and (d) S007, reducing entropy of the posterior PDFs

more rapidly than 75% of random sequences in all but one iteration. It performed less

well for the (a) simulated data set and (b) experimental data set of participant S003,

producing posterior PDFs with entropy higher than the median of random sequences
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(a) Simulated (b) S003

(c) S004 (d) S007

Figure 6.7. Entropy of the posterior PDF by iteration for (a) the
simulated data set and (b-d) experimental data sets for partici-
pants S003, S004, and S007. The box plots show the distributions of
the results for all other possible test sequences (permutations of 1 through
7, producing (7!− 1) = 5039 random test sequences). The red trace repre-
sents the results for the sequence selected by the entropy-reducing sampler.
The ideal result would show the entropy-reducing test sequence producing
posteriors with the lowest entropy at each iteration. The sampler performed
well for (c) participant S004 and (d) participant S007, producing posterior
updates with entropy in the lowest quartile for all but one iteration. The
sampler performed less well for (a) the simulated data set and (b) partici-
pant S003, with entropy values closer to the median value in most iterations.
The sampler selects the sequence based on average predicted change in en-
tropy across simulated measurements. The actual change in entropy results
from the value of the measurement and may not match the prediction.
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in several iterations. An optimal result would be if the entropy of the posterior PDFs

in the sequence selected by the sampler was less than all random sequences at each

iteration. However, the entropy-reducing technique is optimal on average, not for every

measurement result. The average entropy change (Equation 6.6) averages across the

entropy of the forward simulated posterior distributions created by all NS = 50 randomly

sampled simulated wrench measurements. The posterior update that results from an

individual measurements is not guaranteed to follow the prediction. Note that the entropy

of the prior and final iterations do not depend on the test sequence. If all 7 test directions

are measured, the final estimate will be the same regardless of test sequence when using

this algorithm. However, if only a subset of test directions are measured, the test directions

included in that subset will affect the parameter estimate. The entropy-reducing sampler

prioritizes the test directions that it predicts will produce the greatest decrease in average

entropy of the posterior PDFs, resulting in a more rapid decrease in entropy (decrease in

uncertainty) in the estimates.

We have demonstrated that the automated test sequence selection algorithm produces

a sequence of tests that reduces the average uncertainty in the individual strength esti-

mates more rapidly than most random test sequences. This result is beneficial if it enables

us to predict when further testing would not improve the parameter estimate so that fewer

tests can be performed.

Further investigation into the expected entropy change provides insights to aid deci-

sions as to when to stop taking measurements. The expected change in entropy, ∆S from

Equation 6.6, is an NU×m matrix (in this case, NU = 7 test directions by m = 7 muscles)

that represents the predicted change in entropy of the posterior for each individual muscle
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in each remaining test direction. The expected entropy change over all 7 iterations for

the experimental data set of subject S005 is shown in Figure 6.8. It is difficult to define

a cutoff for expected entropy reduction that justifies taking an additional measurement,

as this is context dependent, with factors to weigh such as time, cost, level of acceptable

confidence, and patient comfort, among others. However, a relative comparison between

the expected entropy reduction from a measurement in any test direction selected in It-

eration 1 and those remaining in Iterations 5-7, reveals there is likely little additional

benefit in continuing to take measurements.

Figure 6.9 confirms what was identified in the analysis of expected entropy reduction

by iteration in Figure 6.8 and the actual entropy reduction in Figure ??, that minimal

change occurs in the posterior PDF after the 4th measurement. The posterior PDF after

4 measurements is traced in blue and the posterior PDF after the full 7 measurements

is traced in black. The point estimates, computed by the expected values, are indicated

by the vertical dashed lines. The blue and black traces nearly completely overlay each

other, indicating that there was little change produced by the 3 final measurements. This

indicates that the number of tests can be reduced without a significant change in outcome

when using the automated test sequence algorithm.

The entropy-reducing sampler for automated test sequence selection provides a method

for selecting the most informative tests and determining at what point to stop taking

measurements. Clinical tests, such as the neck strength measurements in our application,

can be time consuming and uncomfortable for the patient. This framework allows for

the number of tests to be minimized, while providing information for the user to make

informed decisions.
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Figure 6.8. Expected entropy reduction of the posterior PDF (∆S)
from Equation 6.6. Each subplot presents ∆S for a single call to the func-
tion NextTest in Algorithm 9 over the course of 7 iterations. The x-axis
shows the test direction indices, with the selected index in green, and the
unavailable (already previously selected) indices in grey. The y-axis is the
total expected entropy reduction of the posterior PDFs from forward sim-
ulations. Each element in the stacked bars represent the contribution of an
individual muscle group, defined by color in the legend. This information
could be utilized by the user to weigh the benefit vs. costs of taking an addi-
tional measurement. For example, the total reduction in entropy predicted
for Iteration 5, in the direction selected by the entropy-reducing sampler
(test direction 3), is small when compared to the scale of the changes pre-
dicted in the previous iterations. By the 5th iteration, there is little benefit
to taking additional measurements.

6.6. Discussion

6.6.1. Challenges and Limitations

There are several limitations to this experimental design and parameter estimation frame-

work in its present form. First, the scalability to higher dimensional parameter spaces is
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Figure 6.9. Posterior PDFs for each of the 7 muscles after 4 mea-
surements (blue traces) and after 7 measurements (black traces) for
the experimental data set of Participant S005. The vertical dashed
lines represent the expected value of the posterior PDF . The prior is shown
in green. The black and blue traces almost entirely overlay one another,
indicating that there is very little change in the posterior PDFs between
measurement 4 and measurement 7. This confirms the conclusion that the
final 3 measurements add little additional information to the parameter
estimate.

limited due to computational and memory cost associated with sampling and computing

expected entropy on forward simulations in addition to the parameter estimation step.

Implementation of the importance sampling techniques from Chapter 5, as described in

the previous section, would partially address this issue. However, the algorithm needs to

run sufficiently fast to provide the next test direction to measure during clinical testing.

Additional solutions for improving efficiency also need to be considered.

Another limitation of this, and any other framework that would attempt to reduce the

number of measurements, is that the algorithm cannot predict a particularly unexpected

measurement that would dramatically change the strength estimate. Figure 6.10 shows

an example of a late change in strength estimate for muscle group TC-E after the 5th
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Figure 6.10. Expected value (black) and variance (blue) of the
strength estimate over 7 iterations with the experimental data
set from Participant S006 using model p2m7 . The values on the
x-axis refer to the test direction index - see Figure 6.1. Note the large jump
in the point estimate of the strength for muscle group TC-E at the 5th esti-
mate (test direction index 3). If only 4 measurements had been taken, the
strength estimate for this muscle would be more than 33% lower. Despite
a low variance, a single unexpected measurement can change an estimate
dramatically.

measurement. If the user had decided to stop testing after 4 measurements due to low

expected entropy change with the remaining test directions, the point estimate for muscle

TC-E would be 33% lower.

A strength of the Bayesian approach is that it is able to represent the uncertainty

in the parameter estimates, which is particularly relevant in the muscularly redundant

human neck. This framework does not “solve” the problem of redundancy, but it does

present user with the full space of solutions so they can use their domain knowledge to

make informed decisions based on the information available. It is important to note that

the point estimate of the muscle strength estimate, which is computed by taking the

expected value of the posterior PDF, is not guaranteed to represent the best solution
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or even the most probable solution. The parameter estimate in this framework is a set

of probability distributions that can be interpreted by a clinician in the context of the

uncertainty of the estimates and the presentation of the patient in front of them.

6.6.2. Extensions and Future Directions

There are opportunities to extend this framework to allow for integration of other sources

of information or parameter estimation applications. One example is the situation where

domain knowledge from a clinician is available regarding which muscles are priorities for

improving strength estimates. For example, the clinician could have interest in a particular

muscle due to a known mechanism of injury or nerve injury. In this case, Algorithm 9 can

be modified to include an input, γ ∈ Rm that weights the importance of each muscle in the

maximum entropy computation in Equation 6.7. The equation would then be rewritten

as:

(6.8) max
i

∑m
j γj ∆Si,j

m

This simple modification allows input from the user to prioritize particular muscles over

others.

Other physiological based insights can be incorporated into the algorithm to improve

performance in a context-specific manner. The selection of the prior distribution is one

way that the clinician can add insight to the framework. The candidate strength vectors

are sampled from the prior distribution, so it is important to make sure that the prior

covers the possible range of strength values. One way to improve the algorithm’s ability

to distinguish between muscles would be to add different neck postures in addition to the
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set of test directions. The force-length relationship affects maximum muscle force [87] and

could help further reduce the space of solutions by selectively biasing particular muscle

groups.

The sequential approach presented in this chapter, in which the next test direction is

proposed by the algorithm and a measurement is taken at each iteration, can be combined

with the importance sampling techniques employed in the previous chapter. This would

create a hierarchical scheme, where within each measurement iteration, the estimate is fit

to the data through iterative sampling from the sampling distribution. This modification

to the sampling would allow the algorithm to be used with higher dimensional parameter

spaces, such as the 24 muscle model in Chapter 5.

6.6.3. Clinician-Algorithm Interface

The interface between the clinician and the algorithm in the proposed framework requires

active input and interpretation on the part of the clinician. The role of the algorithm is to

compute and update probability distributions representing the parameter estimates and

suggest the next test. The clinician is responsible for interpreting these outputs in the

context of the patient in front of them, while being aware of the limitations of any model-

based simulation of a complex musculoskeletal system. This would require training, but

as described in the introduction of this chapter, Bayesian inference should be intuitive

to a clinician as it mimics the clinical decision-making process. Cooperation between the

algorithm and clinician can be facilitated by ensuring sufficient control of the procedure

by the clinician, who is the domain expert using the algorithm as a tool.
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6.7. Conclusion

This chapter provides a framework for automated test sequence selection for model-

based estimation of individual muscle strengths with the clinician in the loop. The method

is applied to estimate the strength of individual muscles based on neck strength measure-

ments taken at 7 test locations on the head. It was demonstrated that the entropy-

reducing sampler for test sequence selection optimizes the testing sequence, ultimately

reducing the number of tests that the clinician would need to perform. Before this frame-

work can be used in a clinical context, the computational efficiency of the algorithm would

need to be improved. The clinical implications of a tool that optimizes selection of clinical

tests is the potential to improve efficiency and accuracy in diagnosis and therapeutics.

For the specific application of interest in this thesis, estimation of individual neck muscle

strength in individuals with chronic Whiplash Associated Disorders (WAD), reducing the

number of tests is crucial because patients with WAD are not able to tolerate extensive

or invasive tests due to high levels of pain.
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CHAPTER 7

Conclusions and Future Directions

This work began with a motivation to expand our understanding of muscle changes

and motor dysfunction in chronic whiplash-associated disorders (WAD) in order to im-

prove clinical outcomes and advance diagnostic and treatment regimes. We began with

a relatively straightforward, clinically motivated question: Are the deep cervical extensor

muscles functionally weak in chronic WAD? Analyzing the functional impact of com-

positional muscle changes requires the ability to isolate the strength of individual neck

muscles. The lack of an existing framework for in vivo measurement of individual muscles

strengths presented both a barrier to our progress and an opportunity for a wider contri-

bution to the field of musculoskeletal rehabilitation. A multi-disciplinary approach was

employed, drawing from the fields of physical therapy, quantitative magnetic resonance

imaging, musculoskeletal modeling, Bayesian inference, optimal experimental design, and

information theory. In the end, the major contribution of this thesis is a framework for

clinician-in-the-loop individual muscle strength estimation utilizing non-invasive measure-

ments in a complex musculoskeletal system.

The first step towards unravelling the muscle changes and motor dysfunction in chronic

WAD was to confirm and expand on the evidence of muscle composition changes that ap-

pears to be unique in individual with chronic WAD. In Chapter 3, we mapped the

magnitude and spatial distribution of muscle fat infiltration (MFI) within the deep cer-

vical extensor muscles in individuals with chronic WAD, recovered WAD, and healthy
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controls. Results confirmed an overall increase in MFI in these muscles in the chronic

WAD group, further motivating investigations into the functional implications of these

compositional changes. In Chapter 4, we investigated the functional role of the deep

cervical extensor muscles in producing multi-directional neck strength and examined how

weakness of this muscle group affects overall strength and muscle activation patterns uti-

lizing a musculoskeletal model of the neck. We demonstrated how kinematic and muscle

model complexity impacts the predicted neck strength and muscle activations. The re-

sults contribute to our understanding of the function of the deep cervical extensor muscles,

but no clear set of test directions for isolating the strength of the deep cervical extensor

muscles emerged.

The next two chapters develop frameworks for determining individual muscle strengths

from neck strength measurements. In Chapter 5, a parameter estimation algorithm

with an Approximate Bayesian Computation (ABC) with rejection and importance sam-

pling approach was developed to infer the strength of individual neck muscles based on

a pre-collected data set of multi-directional neck strength and electromyography (EMG)

measurements. The algorithm was able to identify deep extensor weakness when utilizing

the full spatial neck model and 25 test directions with simulated data sets. Feasibility

of the approach was demonstrated with experimental measurements from 5 healthy par-

ticipants. Chapter 6 presented a sequential framework to include the clinician in the

loop and an entropy-reducing sampler to select the next test direction that provides the

most informative update to the individual muscle strength estimates. Feedback regarding

expected information gain is provided to the clinician to make informed decisions about
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when to stop collecting data, which is particularly valuable when testing individuals with

chronic neck pain.

7.1. Technical Challenges

Several technical challenges remain to be addressed before the frameworks presented

in the final chapters can firmly answer the motivating question: are the deep cervical

extensor muscles weak in WAD? These challenges are detailed here, and a road map for

addressing the challenges is presented.

7.1.1. Scalability and Efficiency

The framework for clinician-in-the-loop sequential individual muscle strength estimation

presented in Chapter 6 was implemented on the 7 muscle p2m7 model limited to the

sagittal plane due to the computational cost of increasing dimensionality of the parameter

space. The s3m24 model, with 25 test directions and 24 muscle groups performed better

in Chapter 5 to identify weakness of the deep extensor muscles. However, even with the

simplified p2m7 model, the computation time is unrealistic for real-time use in the clinic

in its current state. The following extensions to the framework are proposed to address

the scalability and efficiency limitations.

7.1.1.1. Sampling Methods. A major drawback of ABC approaches is their immense

computational cost, requiring repeated simulation of the model over sampled parameter

values. The additional entropy-reducing test sequence selection component of the sequen-

tial individual muscle strength estimation framework adds additional computational cost.
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It requires averaging over forward simulated data sets in order to estimate expected infor-

mation content. For this reason, Bayesian experimental design approaches have mainly

focused on linear models with conjugate priors and tractable likelihood functions [38].

There is an inherent trade-off between computational and statistical efficiency. Reducing

the number of samples reduces the computational cost, but can also decrease the accuracy

and confidence of the estimates. Sampling strategies have been developed to overcome

this limitation by intelligently sampling the parameter space in areas of higher likelihood.

The sampling strategy used in Chapter 6 consisted of simply sampling parameter

values randomly from the prior distribution. This standard prior sampling scheme, utilized

in the original ABC-Rejection framework [85], samples parameter values from the prior

distribution. This approach may be reasonable for a low dimensional parameter space

and with informative priors, but the number of samples required for coverage increases

exponentially with each additional parameter. One might consider this a brute force

sampling method.

The sampling strategy used in the algorithm in Chapter 5 was based on importance

sampling (IS) methods. Instead of sampling from the prior distribution, samples are

drawn from a proposal distribution that is iteratively updated to move to a region of

higher likelihood. This modification enabled us to use the s3m24 model with 24 muscles

and data sets with 25 test directions. However, the framework in this chapter relied on

all data being collected prior to the parameter estimation step. A fusion of the Chapter 5

and 6 frameworks would require a multi-level iterative algorithm with sequential impor-

tance sampling occurring after each measurement is taken to approximate the likelihood

function, and within the entropy-reducing sampler algorithm to forward simulate and
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determine the most informative next test. While this strategy may produce a tractable

computation, additional steps will be required to improve efficiency enough to be clinically

usable.

A number of extensions to the standard ABC algorithm have been developed and ex-

panded upon in the literature with the specific motivation to improve efficiency through

more intelligent sampling [6, 66]. The Markov Chain Monte Carlo (MCMC) ABC algo-

rithm uses the Metropolis-Hastings MCMC kernel that is common in Bayesian statistics.

Instead of sampling from the prior distribution, candidate parameters are iteratively pro-

posed from the Metropolis-Hastings kernel [72]. One important downside to MCMC is

that the simulations are no longer independent, so the code is not easily parallelized. Ease

of parallelization is a practical advantage of traditional ABC and crucial when speed of

computation is important. Sequential Monte Carlo (SMC) ABC methods perform several

steps of ABC to iteratively concentrate the sampling effort on areas of the parameter

space with a high likelihood [7]. The preliminary simulations are used to identify a set of

particles that are then repeatedly resampled according to a weighting scheme, perturbed

via a transition kernel, and filtered [92, 102]. An advantage of this approach over the im-

portance sampling scheme used in Chapter 5 and MCMC methods is that the algorithm

avoids getting caught in local minima by initially sampling coarsely over the full prior.

While the SMC ABC approach is computationally more efficient than the classic ABC

rejection algorithm, the overall computational burden relies not only on the complexity of

the model and amount of data, but also on the details of the specific sequential scheme.

There is a trade-off between convergence and exhaustive exploration of the parameter

space in regards to selection of the particular perturbation kernel and rejection cutoff
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schedule. Strategies for selecting optimal kernels have been proposed in several studies,

with promising results [35, 65]. Optimization of the sampling scheme for improving effi-

ciency of the algorithm will be a crucial step for feasible for real-time, clinician-in-the-loop

implementation.

7.1.1.2. Computational Efficiency. The computational power of standard computers

continues to increase rapidly, with a basic office computer now able to perform comput-

ing tasks that required a super computer a decade ago. As technology progresses, the

computational cost of these algorithms will be less of a barrier. In the meantime, thought-

ful parallelization and use of approximations can decrease the computational cost. The

costliest parts of the ABC framework is the data generating step, where the sampled

parameter values are simulated through the model to produce a simulated data set. This

step occurs in our algorithm in Chapter 6 in both the strength estimate update and the

entropy-reducing test sequence selection algorithm. The set of sampled candidate strength

vectors are independent from one another, so these simulations can be split to multiple

independent workers. All computations in this thesis were run in Matlab. Translation to a

platform with less overhead would improve efficiency. In fact, there are libraries available

in python and R for ABC that my provide a starting point for these implementations

[50, 67].

7.1.2. Redundancy

The level of biomechanical kinematic and muscle redundancy in the neck underlies the

challenge of obtaining estimates of individual neck muscle strength. The interactions be-

tween model complexity and the resulting neck strength and muscle activation patterns
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were explored in Chapter 4, revealing the importance of balancing the number of kine-

matic degrees of freedom with the number and structure of independent muscle groups.

Redundancy is also related to task specification [62]. The more complex the task (the

more constraints), the less redundancy the system will appear to have.

7.1.2.1. Model Selection. Model-based parameter estimation methods attempt to tune

the model parameters to best fit the experimental data collected. In this thesis, the model

computes the maximum end effector wrench and muscle activations given a set of mus-

cle strengths and a target direction (Algorithm 6). This computation is dependent on

several important assumptions, including geometric properties such as number of joints,

joint angles, and subject specific dimensions (encoded in the Jacobian and Moment Arm

Matrix) and independent muscle groupings (encoded in the muscle strength vector and

moment arm matrix). The OpenSim neck model [108] is equipped with m = 96 muscle el-

ements, each with independent activation control. While research regarding how humans

control neck muscles and the level of independent control over muscles is scarce [34, 11],

an independent muscle set in the range of 24 muscles is likely more realistic. The level of

muscle complexity should be considered in the context of kinematic complexity. As seen

in Chapter 4, the ratio between kinematic degrees of freedom and number of independent

muscle groups has an effect on the wrench producing capability of the model (note: the

distribution of the muscle groups is also important, not just the quantity).

Techniques for model selection, between a discrete set of candidate models, are avail-

able in the Bayesian parameter estimation framework. The ABC framework provides a

straightforward way to investigate the goodness-of-fit of a model. This is demonstrated

in Chapters 5 and 6 with the data discrepancy scores and radar plots which show how
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close the simulated data are to the measured data. A low final data discrepancy score

may indicative of a deficient model. An interesting extension of this work could include

an analysis of model fit to healthy control data sets comparing candidate models with

various muscle groupings and model complexities. These results would reveal the levels of

kinematic and muscle redundancy inherent in a multi-directional isometric neck strength

task.

7.1.2.2. Informative Measurements. The information content in the observed data is

another important component in resolving redundancy and reducing parameter estimate

uncertainty. Observing the intermediate steps in the Bayesian algorithm can provide

insight into how well the observed data discriminates between parameter values. Specif-

ically, analyzing the shape of the approximated likelihood function, the data-likelihood

function Algorithm 8, can indicate whether the data is providing sufficient information

to identify the model parameters. In both Chapters 5 and 6, the parameter estimation

results using the p2m7 model (planar, 2 DOF, 7 muscle) produced muscles strength esti-

mates with high confidence for some muscles, but consistently low confidence for others

(TS-E and CS-E specifically). The data-likelihood function produces an essentially flat

distribution for these muscles for measurements in each of the 7 planar test directions,

indicating that the model output is not sensitive to the sampled muscle strength values

of those particular muscles in those test directions. More informative measurements that

can discriminate between parameters would improve performance.

One strategy to produce more informative measurements is to take advantage of the

muscle length-tension curve and state dependent Jacobian and moment arm matrix by

including various neck postures in addition to test directions. The relative contribution
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of a muscle group to the end effector wrench can be manipulated by altering joint angles.

This is a common procedure for clinicians when performing strength testing. To test

the strength of the brachialis muscle, for example, a clinician will resist elbow flexion

with the forearm pronated to reduce the contribution of the biceps. Biceps strength is

tested with the forearm in supination. The OpenSim model is equipped with the muscle

parameters, based on anatomic studies, required for providing the Jacobian, moment arm

matrix, and force-length scalar, given a particular neck posture. The automated test

sequence selection framework in Chapter 6 would be valuable for selecting the subset of

postures and test directions to test, as increasing the number of measurements would be

burdensome on the clinician and patient.

7.1.2.3. Summary Statistics. The optimal choice of summary statistics, a mapping

of the raw observations to a lower dimensional and simpler set of metrics, can improve

performance ABC algorithms. The composite data discrepancy score is the analogue to

the summary statistic in the algorithms presented in this thesis. Equation 5.5 computes

a data discrepancy score for each candidate strength vector in each test direction using a

Gaussian radial basis function on the error between the simulated and measured wrench.

The performance of a candidate strength vector is determined by the composite data

discrepancy score, which is the average data discrepancy score across all test directions.

Other statistics could be used to score performance, such as metrics on the 3-D shape

of the wrenches (ellipsoid axes or PCA), the minimum error or maximum error, or some

combination of these measures. Methods have been developed to analyze the sufficiency of

the summary statistics and to select an optimal subset given a set of candidate statistics
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[84, 32, 12]. Improving the summary statistics has the potential to improve both efficiency

and accuracy, as it shapes the comparison between simulated and observed data.

7.1.3. Validation

While validation with respect to the accuracy of the muscle strength estimates is not

possible because there is no other method to determine individual muscle strengths, there

are several steps that can be taken to verify parts of the framework. First, a more extensive

experimental study including intra-muscular EMG of additional neck muscles would help

to verify the muscle activation patterns being proposed by the algorithm. There is no

direct mapping from EMG activity to muscle force when the muscle strength is unknown,

but the additional EMG data would provide a check that the muscle activation pattern

producing the maximum wrench magnitude corresponds between the model and a human

participant. Implementation of the framework for a different area of the body, such as the

shoulder, would be a good test of generalizability and would make it possible to obtain a

full set of EMG measurements. As described in the model selection section above (Section

7.1.2.1), the goodness of fit of the model can be evaluated based on the data discrepancy

scores. Other tests of the ABC algorithm performance have been suggested that involve

testing the final posterior distribution to assess whether the spread is appropriate and

check for coverage [114, 83].

The neck is a particularly complex musculoskeletal system, making the muscle strength

estimation problem challenging due to the high dimensionality of the parameter space,

level of redundancy, and measurement difficulties. A clinical tool for individual muscle
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strength estimation is a valuable contribution to entire field of musculoskeletal rehabili-

tation, as the problem of isolating individual muscle strength is not limited to the neck

alone. The technical challenges and potential solutions may be less relevant for other

simpler body systems with fewer muscles and less redundancy. However, implementation

of the framework for the neck is an excellent test of its capabilities and potential.

7.2. Clinician in the Loop Design

Diagnostic and therapeutic tools utilizing the latest advances in computational pa-

rameter estimation and optimization of experiments have the potential to complement

and enhance the knowledge and skills of clinicians. In the Bayesian frameworks presented

in this thesis, domain knowledge from the expert (clinician) is an integral part of ev-

ery step of the process. Any semi-automated framework faces challenges related to the

human-algorithm interface. There is an inherent trade-off between flexibility and usabil-

ity. We could compare this to the difference between running Linux vs. a mac OS. With

Linux, the user has the power to customize and optimize the operating system to suit

their specific needs. However, they also have the power to make mistakes and crash the

system. On the other hand, a mac OS gives little power to the user to either optimize

the system or to mess it up. This trade-off is important to consider in the context of

implementation of this proposed framework and the benefits vs. risks associated. It is my

opinion that if a user is given the appropriate initial training and orientation, the power

and flexibility of the Linux OS is worthwhile and risks can be mitigated. The clinician-

in-the-loop Bayesian framework for musculoskeletal diagnostics builds upon the clinical

expertise of the clinician with the computational advances in musculoskeletal modeling
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and computational methods for parameter estimation to integrate information to enhance

clinical decision making.

Clinical decision making is a natural fit for Bayesian inference. Whether or not they

use the language, clinicians formulate hypotheses and differential diagnoses based on the

interview and screen (prior), perform clinical tests (observations) to update their beliefs

(posterior). An experienced clinician even optimizes the subset and sequence of clinical

tests to provide the most information that discriminates between differential diagnoses,

minimizes uncertainty, and minimizes the number of tests that need to be performed

(entropy-reducing test sequence selection). When framed in this way, clinicians should

have an intuitive understanding of the framework and the ways in the framework can

complement the diagnostic work flow. While the user does not need to understand the

technical details of the computational algorithms, training should include the limitations

of musculoskeletal modeling and model based parameter estimation. It is crucial that

users know that the algorithm is fitting the model to the data, and is limited by the

assumptions inherent in the model. Clinicians should be encouraged to trust their clinical

judgement and use the tool to add to the information available to make a clinical deci-

sion, considering the uncertainty of the parameter estimates. Example scenarios are now

presented to demonstrated possible uses of this framework for aiding in clinical diagnosis

and therapeutics.

Scenario 1 : Targeted muscle weakness in WAD A clinician is evaluating a

patient with chronic neck pain and disability after a whiplash injury. From the interview

and screen, general neck weakness and poor postural endurance are noted. It is unclear

from available clinical tests whether the patient has global neck weakness or weakness
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of a specific subset of muscles. To refine the PT diagnosis and target a treatment plan,

the clinician utilizes the individual muscle strength estimation framework with entropy-

reducing test sequence selection. The algorithm iteratively suggests the sequence of test

directions in which to take maximum isometric strength measurements from the patient.

It also provides a visual representation of the expected information gain (reduction in

uncertainty) for the next measurement. Weighing the comfort and fatigue of the patient,

the confidence of the specific muscle strength estimates, and the expected information gain

for the next measurement, the clinician decides to stop testing after the 5th measurement.

Results of the parameter estimation reveals a high confidence of bilateral weakness of

the deep cervical extensors and flexors relative to the superficial muscles, but with low

confidence in the estimates of strength estimate of the suboccipital and scalene muscles.

The clinician targets the treatment plan on strengthening the deep cervical extensors and

flexors, while continuing to monitor and consider the possibility of specific dysfunction of

the muscle groups with higher uncertainty in their estimates.

Scenario 2 : Automated Rotator Cuff Strength Testing Extension of this

framework to individual muscle strength estimation of muscles at the shoulder would be

relatively straight-forward. Musculoskeletal models of the shoulder, with well-defined,

state dependent muscle parameters are freely available through Opensim [18]. A testing

setup that allows for multiple joint configurations and 6-DOF force/torque measurements

would provide the necessary data for discriminating between muscles. If necessary, surface

EMG measurements of the deltoid, biceps, and triceps would provide additional informa-

tion for parameter discrimination. The entropy-reducing sampler remains important in
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this context, allowing the clinician to prioritize the strength estimates of particular mus-

cles of interest and reducing the number of measurements to gain the desired information.

A clinician who suspects a rotator cuff tear has a series of clinical tests that can be

performed to attempt to identify the muscles involved, with varying levels of sensitivity,

specificity, and repeatability [47]. This framework would provide the clinician with quan-

titative estimates of individual muscle strengths, which can be selectively biased towards

reducing uncertainty in the 4 rotator cuff muscles.

Much of the work of this thesis was motivated by the lack of an available method for

measuring the strength of individual neck muscles to test the hypothesis that individu-

als with chronic WAD have weak deep extensor muscles. The framework for individual

muscle strength estimation with entropy-reducing test sequence selection proposed in the

final chapter represents a step towards answering this and other open parameter estima-

tion questions in musculoskeletal rehabilitation. The proposed solution integrates clinical

expertise, musculoskeletal modeling, Bayesian inference, and information theory. While

limited to lower dimensional models in its current form, the framework has the potential

to have a clinical impact if some of the extensions proposed in this chapter are imple-

mented. Clinician-in-the-loop, musculoskeletal model-based Bayesian inference for indi-

vidual muscle strength estimation offers a flexible, quantitative method for determining

muscle strength.
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APPENDIX A

Neck Strength Experiment

A.0.1. Methods

Isometric neck strength measurements were taken using a custom made device. Partici-

pants were seated in a comfortable, neutral posture with the torso restrained to the chair

using two crossed straps. The head was rigidly attached to a 6-axis load cell with 10 pads

and a chin strap firmly tightened around the head, as shown in Figure A.1.

Figure A.1. Custom pads to interface with the head for strength measure-
ment device.
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Load cell and EMG measurements were sampled at 1000 Hz by a data acquisition

device (NI-DAQ 6218). Load cell measurements were averaged over a 100 ms window for

feedback and direction matching.

The moments and forces measured by the load cell are resolved to a wrench ws =

(Mx,My,Mz, Fx, Fy, Fz) at the skull frame, with its origin at the occipito-axial joint, the

x-axis directed anteriorly, y-axis superiorly, and the z-axis to the right, horizontal to

the ground. The lower posterior pad is adjusted to be centered just under the occipital

protuberance. The location of the occipito-axial joint (C0-C1) is then estimated as 8 cm

anterior and 2 cm inferior to the to the center of the lower posterior pad.

The target direction and real-time feedback was provided in 6-DOF on a screen in front

of the participant. The wrench direction was represented by the posture of an anthropo-

metric figure of the head and neck, with a pyramidal head where apex of the pyramid is

the nose facing into the screen, as shown in Figure A.2. The participant was instructed

to match the direction of the wrench while maximizing the magnitude, indicated by the

height of bars on each side of the screen. If unable to match the direction for at least 2

seconds, the trial was repeated. A maximum effort was measured in each target direction

at least 2 times. A third measurement was taken if the second measurement magnitude

was more than 10% greater than the first (indicating that learning may still be occurring).

The largest magnitude of the measurements was taken as the true value of the set.

Maximum wrenches in each of the 6 cardinal directions (extension, flexion, right

sidebending, left sidebending, right rotation, left rotation) were measured at the begin-

ning and end of the experiment to test for fatigue and allow for comparison to other neck

strength literature. For these directions, feedback was limited to the relevant components
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Figure A.2. Visual target and feedback for 6-DOF wrench direction pro-
vided to the participant during the experiment. The apex of the pyramid
represents the participant’s nose. The bars on the either side of the screen
change color to green when the direction is matched within the allowable
error.

(for flexion/extension, the Mz, Fx, and Fy), and error window for direction matching was

increased to allow variation in the center of rotation (ratio of moments to forces).

Maximum wrenches in each of the 25 target directions were measured in randomized

order. The target directions (shown in Figure A.3) were selected as locations and normal

forces on the surface of the skull where resistance could be applied manually by a clinician.

These locations and force directions were mapped to 6-D wrenches in the skull frame. To

transform a force Fa = (Fax, Fay, Faz) applied at the location of a test point p =

(px, py, pz) to a 6-D wrench in the skull frame (wskull), we use the adjoint of the spatial

transform adTp.
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wskull = adTp ∗ Fa

adT =

 R 0

p̂ R R

 where p̂ =


0 −pz py

pz 0 −px

−py px 0

 and R = I3x3

Verbal directions to the participant included the location of the point on the skull to

push into (for example, ’push into a point located over your R ear’).

An error of 20 degrees was allowed in the unit vector direction of the moment and

force components and an error of 10% was allowed in the force-moment ratio.

The 6-DOF wrench ws = (Mx,My,Mz, Fx, Fy, Fz) is a vector with components that

have different units (moments in Newton-meters, forces in Newtons). Representation of a

wrench as magnitude and direction components is not strictly proper, as it would involve

summing different units. In order to fairly assess wrench direction matching without

biasing the force or moment components, wrench directions are represented as a moment

unit vector (Mu), force unit vector (Fu), and ratio between force and moment magnitudes

(Rfm).

w =

M
F

 M =


Mx

My

Mz

 F =


Fx

Fy

Fz

(A.1)
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Figure A.3. A 3x3 grid showing the test directions in multiple planes used
to visualize the neck strength and muscle activation patterns. Note that
some test positions appear in multiple planes. The top row shows the right-
, mid-, and left- sagittal plane test directions. The middle row shows the
superior-, mid-, and inferior- transverse plane test directions. The bottom
row shows the anterior-, mid-, and posterior- coronal plane test directions.

Mu =
M

|M |
Fu =

F

|F |
Rfm =

|F |
|M |+|F |

(A.2)
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Electrode Placement
Sternocleidomastoid Over muscle belly, ∼ 1/3 of its length rostral to sternal attachment
Trapezius Over muscle belly, at the level of C6-C7
Semispinalis Capitis At level of C1/C2 spinous process, 2 cm lateral to midline
Splenius Capitis Between trapezius and sternocleidomastoid, 3 cm below mastoid process
Levator Scapulae Between trapezius and sternocleidomastoid at C4/C5 level

Table A.1. EMG Electrode Placement. These locations are based on
[58] and [3]

Note that if a target direction Rfm = 0, then it is a pure moment, and if Rfm = 1,

it is a pure force. In that case, the unit direction for the other component is meaningless

therefore ignored. Instead, the error window on Rfm captures the component that should

maintain a zero magnitude.

Surface electrodes were placed bilaterally on the sternocleidomastoid (SCM), upper

trapezius (Trap), splenius capitis (SpCap), semispinalis capitis (SSCap), and levator

scapulae (LS). Electrode placement is described in Table A.1, and verified by palpation.

The ground electrode was placed over the right acromion.

EMG records were rectified and filtered using a moving average filter centered over a

250 ms window. EMG levels were normalized with respect to the maximum value obtained

over all trials for each muscle. The normalized EMG level at the timepoint 250 ms prior

to the maximum wrench magnitude for each trial was taken as the muscle activation level

for that trial.

A.1. Results

Five healthy participants with no history of neck pain were tested according to the

protocol. The maximum strength measurements in 9 planes for all 5 subjects are visualized

in Figure A.4. Overlaid on the strength measurements is the strength prediction from the
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s3log24 model, with 3 joint (n = 9) and m = 24 muscle model with f ′base baseline strength

values.

Figure A.4. Neck strength measurements from (n=5) participants (dashed
lines). The maximum wrench magnitude from the ’s3log24’ neck model
(spatial 3 joint (n = 9) and m = 24 muscle model) is the red solid line.

The muscle activations measured from the 5 pairs of muscles with surface EMG during

production of the maximum wrench are presented for the mid-sagittal and mid-transverse

planes in Figure A.5. The predicted activation from the from the s3log24 model is overlaid

in red.

The muscle activations of each of the 10 muscles is illustrated in Figures A.6 - A.13.

In each radar plot, the red dashed trace is the muscle activation level predicted by the

s3m24 model with the baseline muscle strengths. The experimentally measured EMG
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(a) mid-sagittal view

(b) mid-transverse view

Figure A.5. Muscle activation measured by surface EMG for n = 5 healthy
participants during maximum effort (dashed lines). The predicted muscle
activation using the ’s3log24’ model (spatial 3 joint (n = 9) and m = 24
muscle model) is the red solid line.

values for all muscles exhibit more co-activation and less directional preference than the

model prediction.
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Maximum Force (N)
S003 S004 S005 S006 S007 Avg SD

forehead 102.7 28.7 101.2 100.8 107.3 88.16 33.32
backHigh 186.9 92.5 193.4 234.8 329.0 207.32 85.66
templeAboveR 156.0 58.3 122.5 118.9 128.3 116.81 35.84
templeAboveL 149.0 69.6 113.7 125.0 145.0 120.45 31.90
backR 153.1 70.4 115.9 106.9 122.8 113.84 29.84
backL 138.8 38.3 123.6 193.1 155.5 129.89 57.35
styloidR 113.1 57.3 102.6 88.9 88.3 90.05 21.03
styloidL 98.9 49.7 99.6 76.3 68.1 78.53 21.27
earR 148.8 55.4 124.1 99.8 138.6 113.33 37.27
earL 99.8 48.1 139.4 121.3 139.6 109.66 38.09
aboveEarR 173.0 51.3 110.0 76.0 130.8 108.23 47.43
aboveEarL 146.9 51.0 136.3 104.9 143.5 116.51 40.22
cheekR 119.4 52.9 109.0 77.9 89.6 89.74 26.21
cheekL 100.2 37.1 105.0 83.4 92.1 83.56 27.22
chinFront 129.1 42.1 102.5 107.8 111.3 98.57 33.12
chinUnder 108.6 61.1 121.3 98.6 31.5 84.23 37.06
backLow 157.6 64.2 158.1 176.2 273.0 165.85 74.25
backLowL 165.8 50.5 171.3 267.1 193.4 169.63 77.90
backLowR 154.0 81.2 147.6 276.1 194.0 170.57 71.57
back 262.6 110.7 149.8 277.2 276.0 215.28 79.03
noseBelow 107.3 28.8 89.5 100.1 108.4 86.82 33.30
templeR 120.8 55.1 135.0 132.4 142.0 117.07 35.46
templeL 131.8 56.0 125.6 85.9 134.8 106.82 34.59
backUnderR 133.1 69.0 133.4 149.2 122.6 121.46 30.84
backUnderL 179.4 50.6 123.5 150.1 87.9 118.29 50.69

Table A.2. The maximum force magnitude (in Newtons) measured in each
test direction for each participant (Denoted S00 ).
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Normalized Activation at Max Force
S003 S004 S005 S006 S007 Avg SD

forehead 0.50 0.42 0.81 0.72 0.77 0.64 0.17
backHigh 0.02 0.19 0.06 0.32 0.06 0.13 0.13
templeAboveR 0.37 0.44 0.41 0.51 0.36 0.42 0.06
templeAboveL 0.32 0.29 0.47 0.46 0.52 0.41 0.10
backR 0.32 0.46 0.55 0.84 0.24 0.48 0.23
backL 0.57 0.14 0.26 0.96 0.22 0.43 0.34
styloidR 0.36 0.40 0.29 0.69 0.25 0.40 0.17
styloidL 0.21 0.19 0.25 0.61 0.17 0.28 0.18
earR 0.32 0.45 0.31 0.56 0.38 0.40 0.11
earL 0.17 0.25 0.28 0.69 0.24 0.33 0.21
aboveEarR 0.36 0.32 0.33 0.58 0.28 0.37 0.12
aboveEarL 0.20 0.18 0.29 0.46 0.25 0.28 0.11
cheekR 0.41 0.45 0.87 0.47 0.46 0.53 0.19
cheekL 0.25 0.29 0.58 0.33 0.47 0.38 0.14
chinFront 0.29 0.28 0.28 0.09 0.58 0.30 0.17
chinUnder 0.44 0.28 0.59 0.51 0.29 0.42 0.14
backLow 0.02 0.21 0.09 0.10 0.06 0.10 0.07
backLowL 0.15 0.08 0.17 0.66 0.15 0.24 0.24
backLowR 0.23 0.25 0.15 0.50 0.23 0.27 0.13
back 0.07 0.02 0.10 0.31 0.05 0.11 0.11
noseBelow 0.36 0.30 0.41 0.25 0.58 0.38 0.13
templeR 0.24 0.31 0.45 0.66 0.27 0.39 0.17
templeL 0.23 0.30 0.31 0.58 0.35 0.35 0.13
backUnderR 0.06 0.14 0.13 0.18 0.04 0.11 0.06
backUnderL 0.09 0.16 0.16 0.35 0.03 0.16 0.12

Table A.3. The normalized muscle activation level measured at the time of
maximum effort in each test direction for each participant (Denoted S00 ).
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Table B.2. Muscle groupings for the s3m24 neck model. Only 12 muscle
groups are listed here but each has a left and right component, resulting in
24 muscle groups.

hyoids SCM scalenes LC Lcap mf
digastric post stern mast scalenus ant long col c1thx long cap sklC4 semi cerv C3thx
digastric ant cleid mast scalenus med long col c1c5 mult sup C45C2
mylohyoid ant cleid occ scalenus post long col c5thx mult sup C56C2
mylohyoid post mult sup C67C2
stylohyoid lat mult sup T1C4
stylohyoid med mult sup T1C5
sternohyoid mult sup T2C6
geniohyoid mult deep C45C2
sternothyroid mult deep C56C3
omohyoid mult deep C67C4

mult deep T1C5
mult deep T1C6
mult deep T2C7

trap spcap semicap levscap spcerv subocc
trap cl splen cap sklc6 semi cap sklc5 splen cerv c3thx longissi cerv c4thx rectcap post maj
trap acr splen cap sklthx semi cap sklthx levator scap iliocost cerv c5rib rectcap post min

longissi cap sklc6 obl cap sup
obl cap inf
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Table B.4. Muscle groupings for the p3m12 planar neck model. The right
and left muscles are combined due to the symmetry in the sagittal plane.

hyoids SCM scalenes Lcol Lcap multif
digastric post stern mast scalenus ant long col c1thx long cap sklC4 semi cerv C3thx
digastric ant cleid mast scalenus med long col c1c5 mult sup C45C2
mylohyoid ant cleid occ scalenus post long col c5thx mult sup C56C2
mylohyoid post mult sup C67C2
stylohyoid lat mult sup T1C4
stylohyoid med mult sup T1C5
sternohyoid mult sup T2C6
geniohyoid mult deep C45C2
sternothyroid mult deep C56C3
omohyoid mult deep C67C4

mult deep T1C5
mult deep T1C6
mult deep T2C7

trap spcap semicap levscap spcerv subocc
trap cl splen cap sklc6 semi cap sklc5 splen cerv c3thx longissi cerv c4thx rectcap post maj
trap acr splen cap sklthx semi cap sklthx levator scap iliocost cerv c5rib rectcap post min

longissi cap sklc6 obl cap sup
obl cap inf

Table B.5. Muscle parameters for the p3m12 planar neck model. The mus-
cle groupings are listed in Table B.4. The moment arm is in the sagittal
plane where: (+) Extension, (-) Flexion

Name
Strength Moment Arm (m)
(N) C6-C7 C4-C5 C0-C1

1 hyoids 138.6 -0.0334 -0.0403 -0.0891
2 SCM 149.1 -0.0594 -0.0355 0.0198
3 scalenes 126.1 -0.0119 -0.0009
4 Lcol 35.3 -0.0087 -0.0101
5 Lcap 67.8 -0.0170
6 trap 186.6 -0.0008 0.0201 0.0710
7 spcap 118.5 0.0459 0.1082 0.1081
8 semicap 193.4 0.0453 0.0670 0.1262
9 levscap 169.9 0.0787 0.0591
10 multif 163.9 0.0882 0.0848
11 spcerv 89.9 0.0628 0.0250
12 subocc 142.1 0.0653
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Table B.6. Muscle groupings for the p2m7 planar neck model. The right
and left muscles are combined due to the symmetry in the sagittal plane.

TC-E TC-F TS-B TS-E TS-F CS-E CS-F
scalenus post scalenus ant stern mast trap cl digastric post splen cap sklc6 long cap sklC4
splen cerv c3thx scalenus med cleid mast splen cap sklthx digastric ant
semi cerv c3thx long col c1thx cleid occ semi cap sklthx mylohyoid ant
levator scap long col c5thx mylohyoid post
longissi cerv c4thx stylohyoid lat
iliocost cerv c5rib stylohyoid med
mult sup C67C2 sternohyoid
mult sup T1C4 geniohyoid
mult sup T1C5 sternothyroid
mult sup T2C6 omohyoid
mult deep C67C4
mult deep T1C5
mult deep T1C6

Table B.7. Muscle parameters for the p2m7 planar neck model. The muscle
groupings are listed in Table B.6. The moment arm is in the sagittal plane
where: (+) Extension, (-) Flexion

Name
Strength Moment Arm (m)
(N) T1-C7 C0-C1

1 TC-E 254.8 0.1323
2 TC-F 118.4 -0.0172
3 TS-B 149.1 -0.0594 0.0198
4 TS-E 247.2 0.0569 0.1285
5 TS-F 138.6 -0.0334 -0.0891
6 CS-E 213.1 0.1314
7 CS-F 67.8 -0.0170
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