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Abstract

The spatial autoregressive model has been widely applied in science, in areas such as

economics, public finance, political science, agricultural economics, environmental stud-

ies and transportation analyses. The classical spatial autoregressive model is a linear

model for describing spatial correlation. In this work, we expand the classical model

to include time lagged observations, related exogenous variables, possibly non-Gaussian,

high volatility errors, and a nonlinear neural network component. The nonlinear neural

network component allows for more model flexibility — the ability to learn and model

nonlinear and complex relationships. We use a maximum likelihood approach for model

parameter estimation. We establish consistency and asymptotic normality for these es-

timators under some standard conditions on the spatial/space-time model and neural

network component. We investigate the quality of the asymptotic approximations for

finite samples by means of numerical simulation studies. Next, we discuss the model se-

lection in the proposed space-time autoregressive model. We employ the Shakeout noise

injection method to conduct feature selection and use the likelihood ratio test for the time

lag order selection. We evaluate the performance of Shakeout noise injection technique in

a simulated dataset and also investigate the asymptotic approximation of the likelihood
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ratio test statistics by simulations. Finally, we apply our proposed spatial and space-time

autoregressive models to a real world application.
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CHAPTER 1

Partially Specified Spatial Autoregressive Model with Artificial

Neural Network

One commonly used assumption in regression analysis is that observations are uncor-

related, but this assumption is sometimes impossible to be defended in the analysis of

spatial data when one observation may be related to neighboring entities. The nature

of the covariance among observations may not be known precisely and researchers have

been dedicated for years to building appropriate models to describe such correlation. The

collection of techniques to investigate properties in the spatial models is considered to

have begun in the domain of spatial econometrics first proposed by Paelinck in the early

1970s [35]. Later, the books by Cliff and Ord [18], Anselin [3] and Cressie [14] detailed

research results related to spatial autocorrelation, purely spatial dependence as well as

cross-sectional and/or panel data.

So why has estimating the spatial correlation drawn so much attention? In some

applications estimating the spatial structure of the dependence may be a subject of interest

or provide a key insight; in other contexts, it may be regarded as serial correlations.

However, in either case, inappropriate treatment of data with spatial dependence can

lead to inefficient or biased and inconsistent estimates. These consequences may result in

misleading conclusions in the analysis of real world problems. Therefore, it is important to

describe spatial dependence; some standard parametric models are spatial autoregressive
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models (SAR), spatial error models (SEM) and spatial Durbin models (LeSage, R. Pace,

[26]). According to the spatial autoregressive model, values of the dependent variable are

linearly related to observations in neighboring regions. The SAR model has been widely

discussed in the literature, and researchers have proposed various parameter estimation

techniques such as the method of maximum likelihood by Ord [34] and Smirnov and

Anselin [40], the method of moments by Kelejian and Prucha [22, 24, 23] and the method

of quasi-maximum likelihood estimation by Lee [25].

In a SAR model with covariates, the observations are modeled as a weighted average

of neighboring observations with weights determined by the distance between them plus

a function of the covariates:

ys = ρ
n∑
i=1

wsiyi + x′sβ + εs s = 1, 2, . . . , n

where ys denotes the observation of interest and xs denotes the value of a p dimensional

independent variable at location s ∈ {1, 2, . . . , n}. wij is the (i, j) entry of a n×n weight

matrix Wn; it is a nonnegative weight which measures the degree of interaction between

units i and j. By convention, we always set wii = 0. The random disturbances {εs}ns=1

are uncorrelated with zero means and equal variances; often in the literature these are

taken to be normally distributed. The model has parameter vector θ = (ρ, β′). However,

parametric models are vulnerable to the preciseness of model specification: a misspec-

ified model can draw misleading inferences. Whereas a nonparametric model is more

robust even though it sacrifices the precision. In this sense, to combine the advantages

of these two models, we consider a semi-parametric model in the spatial context. The

suggested model, a partially specified spatial autoregressive model (PSAR) [44], is defined
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as follows:

(1.1) ys = ρ
n∑
i=1

wsiyi + x′sβ + g(zs) + εs s = 1, 2, . . . , n

where g(·) is an unknown function and zs denotes a q dimensional vector of explanatory

variables at location s. This PSAR model has a more flexible functional form than the

ordinary spatial autoregressive model. Methods of parameter estimation for the PSAR

model include profile quasi-maximum likelihood estimation by Su and Jin [44] and a sieve

method by Zhang [51]. In Su and Jin [44], they used profile quasi-maximum likelihood

estimators for independent and identically distributed errors and gave an asymptotic

analysis using local polynomials to describe g. This method showed its advantage in

dimension reduction when maximizing concentrated likelihood function with respect to

one parameter ρ but involved in two-stage maximization if we wanted to obtain other

parameter estimators such as β’s. However, in Zhang [51], they were using a sieve method

(Ai, Chen [1]) to approximate the nonparametric function. They applied a sequence of

known basis functions to approximate g(·) in equation (1.1), and used the two-stage least

squares estimation with some instrumental variables to obtain consistent estimators for

the PSAR model.

Both methods use Gaussian likelihood techniques. But normality is unreasonable in

many cases when we observe errors with heavy tails or abnormal patterns. If this is the

case, maximum likelihood estimation can be more efficient than Gaussian-based quasi-

maximum likelihood estimation. Another difference is that we are using neural network

models to estimate the nonlinear function g(·) whereas Su and Jin [44] applied a finite
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order of local polynomials about some explanatory variables and Zhang [51] used a linear

combination of a sequence of known functions to estimate g(·).

The purpose of this paper is to extend an autoregressive artificial neural network model

(Medeiros, Teräsvirta, Rech [32]) developed in the context of time series data to a partially

specified spatial autoregressive model and we regard the artificial neural network part as

a nonlinear statistical component to approximate the nonparametric function g(·) in the

PSAR model (1.1). The use of an ANN (Artificial Neural Network) model is motivated by

mathematical results showing that under mild conditions, a relatively simple ANN model

is competent in approximating any Borel-measurable function to any given degree of ac-

curacy (see for example Hornik et al. [19], Gallant and White [16]). Under this theoretical

foundation, we would expect our model to perform well when modeling nonparamatric

components in spatial contexts. Another improvement is that, in our model, the random

error is independent and identically distributed but does not necessarily follow a normal

distribution. We derive parameter estimates by maximizing the corresponding likelihood

function and discuss the asymptotic properties of our estimators under conditions that the

spatial weight matrix is nonsingular and the log likelihood function has some dominated

function with a finite mean.

In Sections 2 and 3, our model PSAR-ANN is given and a likelihood function for

corresponding parameters is derived. In Sections 4 and 5, we discuss model identification

and establish consistency and asymptotic normality for MLEs of model parameters. In

section 6, we describe numerical simulation studies to investigate how well the behavior

of estimators for finite samples matches the limiting theory, i.e., the quality of the normal

approximation. In the real data example, we would like to explore spatial dynamics in
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U.S. presidential elections and a PSAR-ANN model is fit to the proportion of votes cast

for 2004 U.S. presidential candidates at the county level.

1.1. Model Specification

The main focus of this paper is to approximate the nonparametric function g(·) in

the partially specified spatial autoregressive model (1.1) by an artificial neural network

model. The model in matrix form is defined as

(1.2) Yn = Xnβ + ρWnYn + F (Xnγ
′)λ+ εn

where Yn = {ys}ns=1 contains observations of the dependent variable at n locations. The

independent variable matrix Xn = (x1, x2, . . . , xn)′ ∈ Rn×q contains values of exogenous

regressors for the n regions, where for each region, xs = (xs1, . . . , xsq)
′, s = 1, 2, . . . , n,

is a q dimensional vector. εn = {εs}ns=1 denotes a vector of n independent identically

distributed random noises with density function f(·), mean 0 and variance σ2 = 1.

Exogenous parameters β = (β1, . . . , βq)
′ ∈ Rq and scalar ρ, the spatial autoregres-

sive parameter, are assumed to be the same over all regions. Wn = {wij} ∈ Rn×n de-

notes a spatial weight matrix which characterizes the connections between neighboring

regions. For the ease of illustration, we define some additional notations. Given a func-

tion f ∈ C1(R1) continuous on R, we define a new matrix mapping Rn → Rn as f

s.t. f(x1, . . . , xn) = (f(x1), . . . , f(xn))′. Using this notation, the artificial neural network
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component (Medeiros et al. [32]) can be written as F (Xnγ
′)λ with

F (Xnγ
′) =



F (x′1γ1) F (x′1γ2) . . . F (x′1γh)

F (x′2γ1) F (x′2γ2) . . . F (x′2γh)

...
...

. . .
...

F (x′nγ1) F (x′nγ2) . . . F (x′nγh)


∈ Rn×h

This matrix represents a single layer neural network with h neurons for every loca-

tion. The value of h is determined by researchers and can be selected by compar-

ing AIC/BIC. Under this setting, the parameter matrix γ = (γ1,γ2, . . . ,γh)
′ ∈ Rh×q,

γi = (γi1, . . . , γiq)
′ ∈ Rq, i = 1, 2, . . . , h, contains all the weights in a neural network

model. F (·) is called the activation function and we discuss the situation when it is the

logistic function with range from 0 to 1 (the logistic activation function is the most com-

mon choice in neural network modeling [32]). For given information xs at region s, the

corresponding output of ith neuron in a single layer neural network is

F (x′sγi) = (1 + e−x
′
sγi)−1, s = 1, 2, . . . , n, i = 1, 2, . . . , h

Parameter vector λ = (λ1, λ2, . . . , λh)
′ denotes weights for h neurons. So F (Xnγ

′)λ =

F (x′1γ1) F (x′1γ2) . . . F (x′1γh)

F (x′2γ1) F (x′2γ2) . . . F (x′2γh)

...
...

. . .
...

F (x′nγ1) F (x′nγ2) . . . F (x′nγh)





λ1

λ2

...

λh


=



∑h
i=1 λiF (x′1γi)∑h
i=1 λiF (x′2γi)

...∑h
i=1 λiF (x′nγi)


∈ Rn

One important element in the model (1.2) is the spatial weight matrix Wn. The spatial

weights depend on the definition of a neighborhood set for each observation. In our

applications we begin by using a square symmetric n×n matrix with (i, j) element equal

to 1 if regions i and j are neighbors and wij = 0 otherwise. The diagonal elements

of the spatial neighbors matrix are set to zero. Then we row standardize the weight
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matrix, so the nonzero weights are scaled so that the weights in each row sum up to

1. In convention, people usually use the row standardized weight matrices because row

standardization creates proportional weights in cases where features have an unequal

number of neighbors; also this normalized matrix has nice properties in the range of

eigenvalues (this will be mentioned later). As LeSage [27] suggests, there is a vast number

of ways to define neighbors and to construct a weight matrix. In the following we discuss

some commonly used methods in lattice cases and non-lattice cases. In a lattice case

shown in the following Figure 1.1, we have 9 locations and we label them as 1, 2, . . . , 9

at left bottom corners in each cell. Suppose i is the target location and j identifies a

neighbor of i.

• Rook Contiguity (Fig 1 (a)): two regions are neighbors if they share (part of) a

common edge (on any side)

• Bishop Continuity (Fig 1 (b)): two regions are spatial neighbors if they share a

common vertex (or a point)

• Queen Contiguity (Fig 1 (c)): this is the union of Rook and Bishop contiguity.

Two regions are neighbors in this sense if they share any common edge or vertex

In practice, we may not always have a problem in a lattice. So an analog of an edge

and a vertex is called “snap distance” [5] such that any border larger than this “snap

distance” will be regarded as an edge or otherwise a vertex. So the Queen contiguity may

be interpreted as that two regions are neighbors as long as they are connected no matter

how short the common border is. Under the Queen criterion, for example, based on the

example illustrated in Figure (1.1(c)), a 9 × 9 weight matrix for nine locations is shown

below.
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Figure 1.1. Examples of Rook (a), Bishop (b) and Queen Contiguity (c)



0 1 0 1 1 0 0 0 0

1 0 1 1 1 1 0 0 0

0 1 0 0 1 1 0 0 0

1 1 0 0 1 0 1 1 0

1 1 1 1 0 1 1 1 1

0 1 1 0 1 0 0 1 1

0 0 0 1 1 0 0 1 0

0 0 0 1 1 1 1 0 1

0 0 0 0 1 1 0 1 0



(1.3)

However, in a non-lattice case when units, such as cities, are only points, this neighbor-

hood definition does not work because all units/points do not share any common edge

or vertex. So a distance based method is utilized to deal with such point case. Denote

dij ≡ d(i, j) as the distance between two units/points i and j, then some commonly used

ways to define neighborhoods are

• Minimum Distance Neighbors:

A neighbor j of unit i satisfies that their distance dij ∈
(

0, max
i={1,...,n}

min
j 6=i

d(i, j)
]
.



24

This method controls that every unit has at least one neighbor but usually in-

cludes a large number of irrelevant connections.

• K-nearest Neighbors:

Neighbors of i are restricted by the user-defined parameter K. A unit j is a

neighbor of i if j ∈ NK(i), where NK(i) defines the K-nearest neighbors of i.

This method also guarantees that there is no neighborless unit and has less noise

then the Minimum Distance Neighbors. However, the user-choice parameter K

may not reflect the true level of connectedness or isolation between points.

• Sphere of Influence Neighbors:

For each point i ∈ S = {1, . . . , n}, ri = mink 6=i d(i, k) and denote Ci as a circle

of radius ri centered at i. Units i and j are neighborhoods whenever Ci and

Cj intersect in exactly two points. This graph-based method improves the K-

nearest Neighbors in a way that relatively long links are avoided and the number

of connections per unit is variable. This method works well even with irregularly

located areal entities and precludes the intervention of user-defined parameter K

in the previous method (See Figure 1.2).

According to Figure 1.2, the weight matrix for A, B, C and D is:

0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0



To write our model (1.2) more explicitly, for each location s, s = 1, 2, . . . , n

(1.4) ys = x′sβ + ρ
n∑
i=1

wsiyi +
h∑
i=1

λiF (x′sγi) + εs
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Figure 1.2. Sphere of Influence Graph: A,B,C,D represent four units.
Where the circles around each city overlap in at least two points, the cities
can be considered neighbors. In the current example, A is a neighbor of
only B, B is a neighbor to all, C is a neighbor of B and D, D is a neighbor
of B and C but not A.

The term
∑h

i=1 λiF (x′sγi), a linear combination of logistic functions with weights λi, i =

1, 2, . . . , h, forms a hidden layer of this neural network with h neurons (Medeiros, Teräsvirta,

Rech [32]). This neural network helps discover nonlinear relationship between the response

variable and its covariates.

1.2. Likelihood Function

Rewriting the equation in (1.2), we have

(1.5) (In − ρWn)Yn −Xnβ − F (Xnγ
′)λ = εn

where In is an n×n identity matrix. We denote θ = (β1, . . . , βq, ρ, λ1, . . . , λh,γ
′
1, . . . ,γ

′
h)
′ ∈

R(q+1)(h+1) with true value θ0.

For the analysis of identification and estimation of this spatial autoregressive model

(1.2), we adopt the following assumptions:

Assumption 1. The (q + 1)(h+ 1)-dimensional parameter vector
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θ = (β′, ρ, λ′,γ ′1, . . . ,γ
′
h)
′ ∈ Θ, where Θ is a subset of the (q+ 1)(h+ 1)- dimensional

Euclidean space R(q+1)(h+1). Θ is a closed and bounded compact set and contains the true

parameter value θ0 as an interior point.

Assumption 2. The spatial correlation coefficient ρ satisfies ρ ∈ (−1/τ, 1/τ), where

τ = max{|τ1|, |τ2|, . . . , |τn|}, τ1, . . . , τn are eigenvalues of spatial weight matrix Wn. To

avoid the non-stationarity issue when ρ approaches to 1, we assume supρ∈Θ |ρ| < 1.

Assumption 3. We assume Wn is defined by queen contiguity and is uniformly

bounded in row and column sums in absolute value as n → ∞ so (In − ρWn)−1 is also

uniformly bounded in row and column sums as n→∞.

Assumption 4. Xn is stationary, ergodic satisfying E |xs|2 <∞, s = 1, . . . , n and Xn

is full column rank.

Assumption 5. The error terms εs, s = 1, 2, . . . , n are independent and identically

distributed with density function f(·), zero mean and unit variance σ2 = 1. The moment

E(|εs|2+r) exists for some r > 0 and E |ln f(εs)| <∞.

Assumption 2 defines the parameter space for ρ as an interval around zero such that

In−ρWn is strictly diagonally dominant. By the Levy-Desplanques theorem [45], it follows

that In − ρWn is nonsingular for any values ρ in that interval.

Note that the diagonal entries in In − ρWn are all 1 (because wii = 0). Using Ger-

shgorin circle theorem [17, p. 749-754], we can show that the largest eigenvalue of a

row-standardized matrix Wn is bounded by 1. Using the 9 × 9 non-standardized weight

matrix (1.3) constructed under Queen’s criterion in the section 2, the interval for ρ is

(−0.207, 0.207) whereas the row standardized weight matrix corresponds to (−1, 1).
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It is natural to consider the neighborhood by connections and in many practical stud-

ies, since entries scaled to sum up to 1, each row of Wn sums up to 1, which guarantees

that all nonzero weights are in (0, 1]. For simplicity, we define the weight matrix Wn using

the queen criterion and do row standardization. Assumption 3 is originated by Kelejian

and Prucha (1998 [22], 2001 [23]) and is also used in Lee (2004 [25]). Restricting Wn to be

uniformly bounded prevents the model prediction from exploding when n goes to infinity.

By Lemma A.4 in Lee [25], we can prove that (In − ρWn)−1 is also uniformly bounded in

row and column sums for ρ ∈ (−1/τ, 1/τ).

From Assumptions 2 and 3 we can also decomposeWn by its eigenvalue and eigenvector

pairs τi, vi: Wn = PΛP−1, where Λ is a diagonal matrix with eigenvalues τi on its diagonals

and P = [v1, v2, . . . , vn] (we assume vi’s are normalized eigenvectors). So

Wn = P



τ1 0 · · · 0

0 τ2 · · · 0

0 0
. . . 0

0 0 · · · τn


P−1, (In − ρWn)−1 = P



1
1−ρτ1 0 · · · 0

0 1
1−ρτ2 · · · 0

0 0
. . . 0

0 0 · · · 1
1−ρτn


P−1(1.6)

This decomposition will later help us compute the likelihood function.

Assumption 4 guarantees the stationarity of {xs} so we can apply ergodic theorem

later in the proofs.

Assumption 5 imposes restrictions for the random error. We assume that errors {εs}ns=1

have an identical density function f(·). So to derive the likelihood function of θ, it

is necessary to introduce the Jacobian coefficient which allows us to derive the joint

distribution of Yn = {ys}ns=1 from that of {εs}ns=1, through equation (1.5):

(1.7) J = det(∂εn/∂Yn) = |In − ρWn|
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Hence, based on the joint distribution for the vector of independent errors {εs}ns=1, and

using (1.7) the log-likelihood function for θ is given by (Anselin [3, p. 63])

Ln(θ) = ln |In − ρWn|+
n∑
s=1

ln f(εs(θ))(1.8)

εs(θ) = ys − x′sβ − ρ
n∑
i=1

wsiyi −
h∑
i=1

λiF (x′sγi)

In practice, the density function f could be chosen by looking at the distribution for

observations and model residuals εs(θ). Common choices are normal distribution, t-

distribution and Laplace distribution. We examined these three distributions (with unit

variances under Assumption 5) and the corresponding log-likelihood functions functions

are given below.

When εs ∼ N(0, 1),

f(εs) =
1√
2π

exp(−ε
2
s

2
)

Ln(θ) = ln |In − ρWn| −
n

2
ln(2π)− 1

2

n∑
s=1

ε2s(θ)

When εs has the rescaled t distribution with degree of freedom ν (ν > 2, known)

which is symmetric about zero and has variance 1:

f(εs) =

√
ν

ν − 2

Γ[12(ν + 1)]
√
νπ Γ(12ν)

·
(

1 +
ε2s

ν − 2

)− 1+ν
2

Ln(θ) = ln |In − ρWn| −
n

2
ln(ν − 2)π + n ln

Γ[12(ν + 1)]

Γ(12ν)
− 1 + ν

2

n∑
s=1

ln
(
1 +

ε2s(θ)

ν − 2

)
When εs ∼ Laplace distribution with mean µ = 0 and scale parameter b =

√
2/2,

f(εs) =
1√
2

exp
(
−
√

2|εs|
)

Ln(θ) = ln |In − ρWn| −
n

2
ln 2−

n∑
s=1

√
2|εs(θ)|
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In the following sections, we will discuss model identifiability and establish asymptotic

properties for the maximum likelihood estimator θ̂ = arg max
θ∈Θ
Ln(θ).

1.3. Model Identification

We now investigate the conditions under which our proposed model is identified. By

Rothenberg [38], a parameter θ0 ∈ Θ is globally identified if there is no other θ in Θ that

is observationally equivalent to θ0 such that f(y; θ) = f(y; θ0); or the parameter θ0 is

locally identified if there is no such θ in an open neighborhood of θ0 in Θ. The model

(1.4), in principle, is neither globally nor locally identified and the lack of identification of

Neural Network models has been discussed in many papers [20], [32]. Here we extend the

discussion to our proposed PSAR model. Three characteristics imply non-identification

of our model: (a) the interchangeable property: the value in the likelihood function may

remain unchanged if we permute the hidden units. For a model with h neurons, this

will result in h! different models that are indistinguishable from each other and have

equal local maximums of the log-likelihood function; (b) the “symmetry” property: for

a logistic function, F (x) = 1 − F (−x) allows two equivalent parametrization for each of

the hidden units; (c) the reducible property: the presence of irrelevant neurons in model

(1.4) happens when λi = 0 so parameters γi in this neuron would remain unidentified.

Conversely, if γi = 0, the output of that sigmoid function is a constant so λi can take any

value without affecting the value of likelihood functions.

The problem of interchangeability (as mentioned in (a)) can be solved by imposing

the following restriction, as in Medeiros et al. [32]:

Restriction 1. parameters λ1, . . . , λh are restricted such that: λ1 ≥ · · · ≥ λh.
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And to tackle (b) and (c), we can apply another restriction:

Restriction 2. The parameters λi and γi1 should satisfy:

(1) λi 6= 0, ∀i ∈ {1, 2, . . . , h}; and

(2) γi1 > 0, ∀i ∈ {1, 2, . . . , h}.

To guarantee the non-singularity of model matrices and the uniqueness of parameters, we

impose the following basic assumption:

Assumption 6. The true parameter vector θ0 satisfies Restrictions 1-2.

Referring to the section 4.3 by Medeiros et al. [32], we can conclude the identifiability

of the PSAR-ANN model

Lemma 1. Under the Assumptions 1-6, this partially specified spatial autoregressive

model (1.4) is globally identified.

1.4. Asymptotic Results

1.4.1. Preliminary

Denote the true parameter vector as θ0 and the solution which maximizes the log-

likelihood function (1.8) as θ̂n . Hence, θ̂n should satisfy

θ̂n ≡ arg max
θ∈Θ
Ln(θ) ,

Ln(θ) = ln |In − ρWn|+
n∑
s=1

ln f
(
ys − x′sβ − ρ

n∑
i=1

wsiyi −
h∑
i=1

λiF (x′sγi)
)

Suppose we have a n1 × n2 lattice where we consider asymptotic properties of θ̂n when

n = n1n2 → ∞. Write the location s as the coordinate (sx, sy) in the [1, n1] × [1, n2]

lattice space. The distance between two locations s, j is defined as d(s, j) = max(|sx −
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jx|, |sy − jy|). So if observations at s, j locations are neighbors (by queen criterion), their

coordinates should satisfy (sx − jx)2 + (sy − jy)2 ≤ 2 or d(s, j) = 1.

In a spatial context, we should notice that the functional form of ys is not identical for

all the locations due to values of the weights wsi. For example, in a lattice, units at edges,

vertexes or in the interior have different density functions due to different neighborhood

structures (Figure 1.3). For an interior point (Figure 1.3(c)), its neighborhood set Ns

contains eight neighbors where wsj = 1/8 if d(s, j) = 1 otherwise wsj = 0, for j =

1, 2, . . . , n. Similarly, an edge point (Figure 1.3(b)) has five neighboring units with wsj =

1/5 and the weight of a vertex neighborhood is 1/3 because a vertex unit has only three

neighbors. This is known as an edge effect in spatial problems. To deal with this, referring

s j

j j

(a)

j j

js

jj

(b)

j j j

j s j

j j j

(c)

Figure 1.3. Vertex (a), Edge (b) and Interior Points (c) Neighborhood
Structures: s is the target location and j represents the neighborhood of s

to Yao and Brockwell [50], we construct an edge effect correction scheme based on the way

that the sample size tends to infinity. In a space [1, n1] × [1, n2], we consider its interior

area as S = {(sx, sy) : b1 ≤ sx ≤ n1 − b1, b2 ≤ sy ≤ n2 − b2}, where b1, b2, n1, n2 → ∞

satisfying that b1/n1, b2/n2 → 0 and other locations belong to the boundary areas M.

Therefore the set S contains n∗ = (n1 − 2b1)(n2 − 2b2) interior locations while the setM

contains n − n∗ boundary locations. Then n∗/n → 1 and Ln(θ) can be split into a sum
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of two parts (interior S and boundary M parts):

Ln(θ) =
∑
s∈M

l(θ|xs, ys) +
∑
s∈S

l(θ|xs, ys)

l(θ|xs, ys) = n−1 ln |In − ρWn|+ ln f
(
ys − x′sβ − ρ

n∑
i=1

wsiyi −
h∑
i=1

λiF (x′sγi)
)

Therefore, given that limn1,n2→∞
|M|
n

= 0, n−1
∑

s∈M l(θ|xs, ys) vanishes a.s. as n tends

to infinity for any θ ∈ Θ. Therefore,

lim
n1,n2→∞

n−1Ln(θ) = lim
n1,n2→∞

(n1n2)
−1
( ∑
s∈M

l(θ|xs, ys) +
∑
s∈S

l(θ|xs, ys)
)

= lim
n1,n2→∞

(n1n2)
−1
∑
s∈S

l(θ|xs, ys) a.s.

In this equation, every location s ∈ S has eight neighboring units under the queen cri-

terion with nonzero weights wsj = 1/8. Hence for an interior unit s ∈ S,
∑n

i=1wsiyi =∑n
j=1

1
8
yjI{d(s,j)=1}. And the log likelihood function Ln(θ) is approximately

(1.9) n−1Ln(θ) ≈ n−1
∑
s∈S

l(θ|xs, ys) for large n

So the maximum likelihood estimator θ̂n approximately maximizes n−1
∑

s∈S l(θ|xs, ys).

θ̂n ≈ arg max
θ∈Θ

n−1
∑
s∈S

l(θ|xs, ys)

1.4.2. Consistency Results

To establish the consistency of θ̂n, the heuristic insight is that because θ̂n maximizes

n−1Ln(θ), it approximately maximizes n−1
∑

s∈S l(θ|xs, ys). By (1.9), n−1Ln(θ) can gen-

erally be shown tending to a real function L : Θ→ R with maximizer θ0 as n→∞ under

mild conditions on the data generating process, then θ̂n should tend to θ0 almost surely.
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Before the formal proof of the consistency, we need the following assumptions on density

function f(·) satisfied (similar assumptions are made in White [48], Andrews, Davis and

Breidt [2], Lii and Rosenblatt [29]).

Assumption 7. For all s ∈ R, f(s) > 0 and f(s) is twice continuously differentiable

with respect to s.

Assumption 8. The density should satisfy the following equations:

•
∫
sf ′(s) ds = sf(s)|∞−∞ −

∫
f(s) ds = −1

•
∫
f ′′(s) ds = f ′(s)|∞−∞ = 0

•
∫
s2f ′′(s) ds = s2f ′(s)|∞−∞ − 2

∫
sf ′(s) ds = 2

Assumption 9. The density should follow the following dominance condition:∣∣∣f ′(s)f(s)

∣∣∣, ∣∣∣f ′(s)f(s)

∣∣∣2, ∣∣∣f ′(s)f(s)

∣∣∣4, f ′′(s)
f(s)

, and f ′′(s)f ′2(s)
f3(s)

are dominated by a1 + a2 |s|c1 , where a1, a2, c1

are non-negative constants and
∫∞
−∞ |s|

c1+2 f(s) ds <∞.

Assumption 10. If c1 > 2 in previous assumption, we further assume E |xs|c1 <∞.

Discussed in Breidt, Davis, Lii and Rosenblatt [8] and Andrews, Davis and Breidt [2,

p. 1642-1645]), these assumptions on the density f(·) are satisfied in the t-distribution

case when ν > 2 and the mixed Gaussian distribution. The assumption E | ln f(s)| < ∞

(see Assumption 5) is also checked satisfied in the normal and t-distribution (ν > 2).

The Laplace distribution does not strictly satisfy the Assumptions 7-9, since it is not

differentiable at 0 but it satisfies these boundedness conditions almost everywhere so

we believe the consistency and asymptotic normality results remain valid for parameter

estimates. This will be shown in the simulation section. Assumption 10 is a necessary to

boundedness conditions in later proof.
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Lemma 2. Given Assumptions 1-9,

(1.10) θ0 = max
θ∈Θ

ELn(θ) ≡ max
θ∈Θ

E
Ln(θ)

n
for all n

Proof. Ln(θ) is the log of the likelihood function Ln(θ),

Ln(θ) = ln |In − ρWn|+
n∑
s=1

ln f(εs(θ))

ELn(θ)− ELn(θ0) = E ln
Ln(θ)

Ln(θ0)

Denote Zn = (Yn, Xn). By Jensen’s inequality,

E ln
Ln(θ)

Ln(θ0)
≤ lnE

Ln(θ)

Ln(θ0)
= ln

∫ ∞
−∞

Ln(θ)

Ln(θ0)
Ln(θ0) dZn = 0

So ELn(θ) ≤ ELn(θ0). By Lemma 1, the PSAR model is globally identified and therefore,

ELn(θ) is uniquely maximized at θ0 for all n. Since the parameter vector θ0 does not

depend on sample size n, it is equivalent to say that, θ0 = maxθ∈Θ
1
n
ELn(θ). �

In the following, to simplify the expression, denote g(xs,θ) = x′sβ + F (x′sγ)λ. Define

the Hadamard product ◦ as,

a ◦B =



a1b11 a1b21 · · · a1bn1

a2b12 a2b22 · · · a2bn2

...
...

. . .
...

anb1n anb2n · · · anbnn


, a ◦ b1 =



a1b11

a2b12

...

anb1n


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where a, b1, . . . , bn ∈ Rn, a matrix B = (b1, . . . , bn) ∈ Rn×n. And let

k0 =

∫ ∣∣∣∣f ′(s)f(s)

∣∣∣∣ f(s) ds

k1 =

∫ ∣∣∣∣∣f ′
2
(s)

f2(s)
− f ′′(s)

f(s)

∣∣∣∣∣ f(s) ds

k2 =

∫ ∣∣∣∣∣sf ′
2
(s)

f(s)
− sf ′′(s)

f(s)

∣∣∣∣∣ f(s) ds

k3 =

∫ ∣∣∣∣∣s2f ′
2
(s)

f(s)
− s2f ′′(s)

f(s)

∣∣∣∣∣ f(s) ds

Lemma 3. Given Assumptions 1-10

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
s=1

ln f(εs(θ))− E
1

n

n∑
s=1

ln f(εs(θ))

∣∣∣∣∣ p−→ 0 as n→∞(1.11)

Proof. As illustrated in equation (1.9), in a lattice with size n1 × n2,

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
s=1

ln f(εs(θ))− 1

n

∑
s∈S

ln f(εs(θ))

∣∣∣∣∣ a.s.−−→ 0 as n1, n2 →∞

Therefore, to prove (1.11) is equivalent to show that

sup
θ∈Θ

∣∣∣∣∣ 1n∑
s∈S

ln f(εs(θ))− E
1

n

∑
s∈S

ln f(εs(θ))

∣∣∣∣∣ p−→ 0 as n→∞(1.12)

where S denotes the interior units mentioned before. Since the interior units have the

same neighboring structure, the space process for them is stationary when n1, n2 go to

infinity. We first show
∣∣ 1
n

∑
s∈S ln f(εs(θ))− E 1

n

∑
s∈S ln f(εs(θ))

∣∣ p−→ 0 for fixed θ (Similar

proof in [25, Theorem 3.1,4.1]).

To prove this, we want to show that E| ln f(εs(θ))| <∞, s ∈ S. Expanding ln f(εs(θ))

around θ0 with respect to θ,

ln f(εs(θ)) = ln f(εs(θ0)) +

∣∣∣∣∣f ′(εs(θ̃n))

f(εs(θ̃n))

∂εs(θ̃n)

∂θ′

∣∣∣∣∣ (θ − θ0)
E| ln f(εs(θ))| ≤ E| ln f(εs(θ0))|+ E

∣∣∣∣∣f ′(εs(θ̃n))

f(εs(θ̃n))

∂εs(θ̃n)

∂θ′

∣∣∣∣∣ |θ − θ0|
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where θ̃n is between θ and θ0. Under the true parameter values εs(θ0) (denoted as εs or

εn as its vector form in the following) is independent and identically distributed. From

Assumption 5, E |ln f(εs)| <∞. For E
∣∣∣f ′(εs(θ̃))
f(εs(θ̃))

∂εs(θ̃)
∂θ′

∣∣∣, ∣∣∣∂εs(θ̃)∂θ

∣∣∣ can be expressed as∣∣∣∣∣∂εs(θ̃)

∂β

∣∣∣∣∣ = |xs|∣∣∣∣∣∂εs(θ̃)

∂λ

∣∣∣∣∣ =
∣∣F (x′sγ̃)′

∣∣ ≤ 1h(1.13)

∣∣∣∣∣∂εs(θ̃)

∂γi

∣∣∣∣∣ =

∣∣∣∣λ̃i∂F (x′sγ̃i)

∂x′sγi
xs

∣∣∣∣ =
∣∣∣λ̃iF (x′sγ̃i)(1− F (x′sγ̃i))xs

∣∣∣
≤ max

λi∈Θ
|λi|
|xs|
4∣∣∣∣∣∂εs(θ̃)

∂ρ

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

wsiyi

∣∣∣∣∣ =
∣∣∣[Mn(g(Xn, θ̃n) + εn(θ̃n))]s

∣∣∣ =

∣∣∣∣∣
n∑
k=1

msk(g(xk, θ̃n) + εk(θ̃n))

∣∣∣∣∣
where mij is (i, j) element of Mn = Wn(In−ρWn)−1. Mn is bounded uniformly in column

and row sums (see Assumption 3) so
∑n

j=1mij,
∑n

i=1mij are bounded by a constant b for

i, j = 1, . . . , n. The logistic function F (x) is bounded by 1 and its derivative F ′(x) is also

bounded by 1. Consider εn(θ̃n),

|εn(θ̃n)| =
∣∣∣(In − ρ̃Wn)Yn − g(Xn, θ̃n)

∣∣∣
=
∣∣∣εn + (ρ0 − ρ̃)WnYn + (g(Xn,θ0)− g(Xn, θ̃n))

∣∣∣
= |εn + (ρ0 − ρ̃)Mnεn + (ρ0 − ρ̃)MnXnβ0

+ (ρ0 − ρ̃)MnF (Xnγ
′
0)λ0 +Xn(β0 − β̃) + F (Xnγ

′
0)λ0 − F (Xnγ̃

′)λ̃
∣∣∣

< |εn + (ρ0 − ρ̃)Mnεn + (ρ0 − ρ̃)MnXnβ0

+ (ρ0 − ρ̃)MnF (Xnγ
′
0)λ0 +Xn(β0 − β̃)

∣∣∣+ ||λ0 − λ̃|| · 1n
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Denote P (xc) is a polynomial about x with highest order c. Since we have assumed that

Mn is uniformly bounded in column and row sums so Mn is finite. By Assumption 9-

10,
∣∣∣f ′(εs(θ̃n))
f(εs(θ̃n))

∣∣∣ < a1 + a2|εs(θ̃n)|c1 and E
∣∣∣f ′(εs)f(εs)

∣∣∣ ,E ∣∣∣f ′(εs)f(εs)

∣∣∣2 are dominated by a1 + a2|εs|c1 ,

E|εs|c1 <∞, E|xs|c1 <∞. Let c∗ = max(1, c1), then,

E

∣∣∣∣∣f ′(εs(θ̃n))

f(εs(θ̃n))

∣∣∣∣∣
2

< P (E |εs|c
∗
) + P (E |xs|c

∗
) + Constant <∞

So also E
∣∣∣f ′(εs(θ̃n))
f(εs(θ̃n))

∣∣∣ < ∞. With Cauchy–Schwarz inequality [43] and the finite second

moment of Xn, we can have,

E

∣∣∣∣∣f ′(εs(θ̃n))

f(εs(θ̃n))

∂εs(θ̃n)

∂β

∣∣∣∣∣ = E

∣∣∣∣∣f ′(εs(θ̃n))

f(εs(θ̃n))
xs

∣∣∣∣∣ <
E

∣∣∣∣∣f ′(εs(θ̃n))

f(εs(θ̃n))

∣∣∣∣∣
2

E |xs|2
1/2

<∞

E

∣∣∣∣∣f ′(εs(θ̃n))

f(εs(θ̃n))

∂εs(θ̃n)

∂λ

∣∣∣∣∣ = E

∣∣∣∣∣f ′(εs(θ̃n))

f(εs(θ̃n))
F (x′sγ̃)′

∣∣∣∣∣ ≤ E

∣∣∣∣∣f ′(εs(θ̃n))

f(εs(θ̃n))
1h

∣∣∣∣∣ <∞(1.14)

E

∣∣∣∣∣f ′(εs(θ̃n))

f(εs(θ̃n))

∂εs(θ̃n)

∂γi

∣∣∣∣∣ ≤ E

∣∣∣∣∣f ′(εs(θ̃n))

f(εs(θ̃n))
λ̃ixs

∣∣∣∣∣ <∞
E

∣∣∣∣∣f ′(εs(θ̃n))

f(εs(θ̃n))

∂εs(θ̃n)

∂ρ

∣∣∣∣∣ = E

∣∣∣∣∣f ′(εs(θ̃n))

f(εs(θ̃n))

n∑
k=1

msk(g(xk, θ̃n) + εk(θ̃n))

∣∣∣∣∣
< b · E

∣∣∣∣∣εs(θ̃n)f ′(εs(θ̃n))

f(εs(θ̃n))

∣∣∣∣∣+ k0E

∣∣∣∣∣
n∑
k=1

mskg(xk, θ̃n)

∣∣∣∣∣
Since E |xs|2 < ∞ for all s, E|g(xk, θ̃n)| is finite for θ̃n ∈ Θ. Xn is stationary with

finite second moment, so component E
∣∣∣∑n

k=1mskg(xk, θ̃n)
∣∣∣ is finite. E

∣∣∣ εs(θ̃n)f ′(εs(θ̃n))
f(εs(θ̃n))

∣∣∣ is

dominated by P (E |εs|c
∗+1) so with the dominance assumption, E

∣∣∣ εs(θ̃n)f ′(εs(θ̃n))
f(εs(θ̃n))

∣∣∣ is finite.

Hence, with (1.14) finite, E| ln f(εs(θ0))| <∞, we can conclude that E| ln f(εs(θ))| <∞.

Then, by ergodic theorem,∣∣∣∣∣ 1n∑
s∈S

ln f(εs(θ))− E
1

n

∑
s∈S

ln f(εs(θ))

∣∣∣∣∣→p 0, n→∞
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To complete the proof of uniform convergence, we also need to show the equicontinuity

of 1
n

∑
s∈S ln f(εs(θ)), i.e., for all θ1,θ2 ∈ Θ,

1

n

∣∣∣∣∣∑
s∈S

ln f(εs(θ1))−
∑
s∈S

ln f(εs(θ2))

∣∣∣∣∣ ≤ ||θ1 − θ2||Op(1)(1.15)

Applying the mean value theorem to the left side in (1.15):

1

n

∣∣∣∣∣∑
s∈S

ln f(εs(θ1))−
∑
s∈S

ln f(εs(θ2))

∣∣∣∣∣ ≤ 1

n

∣∣∣∣∣∑
s∈S

∂ ln f(εs(θ̃n))

∂θ′

∣∣∣∣∣ ||θ1 − θ2||
=

1

n

∣∣∣∣∣∑
s∈S

f ′(εs(θ̃n))

f(εs(θ̃n))

∂εs(θ̃n)

∂θ′

∣∣∣∣∣ ||θ1 − θ2||
where θ̃n is some value between θ1 and θ2.

By the ergodic theorem, 1
n

∣∣∣∑s∈S
f ′(εs(θ̃n))

f(εs(θ̃n))

∂εs(θ̃n)
∂θ

∣∣∣ a.s.−−→ E
∣∣∣ f ′(εs(θ̃))
f(εs(θ̃n))

∂εs(θ̃n)
∂θ

∣∣∣. Since θ is in

a compact set Θ, we show in (1.16) that, for all s, εs(θ) is bounded by some function of

Yn, Xn not depending on θ.

|εn(θ)| =
∣∣Yn − ρWnYn −Xnβ − F (Xnγ

′)λ
∣∣

≤ |(In − ρWn)Yn|+ |Xnβ|+
∣∣F (Xnγ

′)λ
∣∣(1.16)

≤ (In + max
ρ∈Θ
|ρ|Wn)|Yn|+ |Xn|max

β∈Θ
|β|+ max

λ∈Θ
||λ||1n

Similarly, referring to (1.13), it is easy to show that
∣∣∣∂εs(θ)∂θ

∣∣∣ is also bounded by some

function about Yn and Xn. Therefore, due to the dominance of
∣∣∣f ′(s)f(s)

∣∣∣ (see Assumption

9) and stationarity of Xn, Yn, for θ̃n between θ1 and θ2, there exists a constant M such

that

1

n

∣∣∣∣∣∑
s∈S

f ′(εs(θ̃n))

f(εs(θ̃n))

∂εs(θ̃n)

∂θ′

∣∣∣∣∣ ≤M for n→∞(1.17)

Hence, for θ1,θ2 ∈ Θ

1

n

∣∣∣∣∣∑
s∈S

ln f(εs(θ1))−
∑
s∈S

ln f(εs(θ2))

∣∣∣∣∣ = ||θ1 − θ2||Op(1)
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So 1
n

∣∣∑
s∈S ln f(εs(θ))

∣∣ is equicontinuous for θ ∈ Θ. With the pointwise convergence and

equicontinuity, we can conclude the uniform convergence in (1.12) and furthermore (1.11)

follows. �

We now give a formal statement of consistency of the maximum likelihood estimator

θ̂n.

Theorem 1. Given Assumptions 1-10, θ̂n − θ0
p−→ 0 as n→∞.

Proof. Similar to the proof in Lung-fei Lee [25], we need to show the stochastic

equicontinuity of 1
n

ln |In − ρWn| to have the uniform convergence of the log likelihood

function Ln(θ). Applying the mean value theorem,∣∣∣∣ 1n(ln |In − ρ1Wn| − ln |In − ρ2Wn|)
∣∣∣∣ =

∣∣∣∣(ρ1 − ρ2) 1

n
tr(Wn(In − ρ̃nWn)−1)

∣∣∣∣
where ρ̃n is between ρ1 and ρ2. Since Wn is a row standardized matrix, the row sum

equals to 1. By Assumption 2 and 3, supρ∈Θ |ρ| < 1, Wn is bounded in both row and

column sums uniformly and using (1.6),∣∣∣∣ 1ntr(Wn(In − ρ̃nWn)−1)

∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

τi
1− ρ̃nτi

∣∣∣∣∣ ≤ C1

where C1 is a constant not depending on n. So
∣∣ 1
n
(ln |In − ρ1Wn| − ln |In − ρ2Wn|)

∣∣ ≤
|ρ1 − ρ2|C1 and with Lemma 3 we can conclude the uniform convergence that

sup
θ∈Θ

∣∣∣∣ 1nLn(θ|Yn, Xn)− E
1

n
Ln(θ|Yn, Xn)

∣∣∣∣ p−→ 0.(1.18)

With Assumptions 1-9, the parameter space Θ is compact; 1
n
Ln(θ|Yn, Xn) is continuous in

θ ∈ Θ and is a measurable function of Yn, Xn for all θ ∈ Θ. E 1
n
Ln(θ|Yn, Xn) is continuous

on Θ and by Lemma 2, E 1
n
Ln(θ|Yn, Xn) has a unique maximum at θ0. Referring to

Theorem 3.5 in White[47], with the uniform convergence in (1.18), we can conclude that

θ̂n − θ0
p−→ 0 as n→∞. �
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1.4.3. Asymptotic Distribution

Assumption 11. The limit A(θ0) = − limn→∞ E 1
n
∂2Ln(θ0)
∂θ∂θ′

is nonsingular.

Assumption 12. The limit B(θ0) = limn→∞ E 1
n
∂Ln(θ0)
∂θ

∂Ln(θ0)
∂θ′

is nonsingular.

These assumptions are to guarantee the existence of the covariance matrix of the

limiting distribution of parameters in a PSAR-ANN model. We now give the asymptotic

distribution of the maximum likelihood estimator θ̂n.

Theorem 2. Under Assumptions 1-12,

(1.19)
√
n(θ̂n − θ0)

d−→ N(0,Ω0)

where Ω0 = A(θ0)
−1B(θ0)A(θ0)

−1 = A(θ0)
−1.

Proof. Since θ̂n maximizes Ln(θ), ∂Ln(θ̂n)
∂θ

= 0. By the mean value theorem, expand

∂Ln(θ̂n)
∂θ

around θ0 with respect to θ,

∂Ln(θ̂n)

∂θ
=
∂Ln(θ0)

∂θ
+
∂2Ln(θ̃n)

∂θ∂θ′
(θ̂n − θ0)

0 =
∂Ln(θ0)

∂θ
+
∂2Ln(θ̃n)

∂θ∂θ′
(θ̂n − θ0)

where θ̃n is between θ̂n and θ0. Therefore, we can have the following equation:

√
n(θ̂n − θ0) =

[
− 1

n

∂2Ln(θ̃n)

∂θ∂θ′

]−1
1√
n

∂Ln(θ0)

∂θ
(1.20)

We first show the limiting distribution of 1√
n
∂Ln(θ0)
∂θ

. Under θ0, εn(θ0) = εn,

εn(θ0) = (In − ρ0Wn)Yn −Xnβ0 − F (Xnγ
′
0)λ0 = εn(1.21)
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Denote f ′(εn(θ))
f(εn(θ))

as Vn(θ) ∈ Rn and f ′(εn)
f(εn)

as Vn ∈ Rn, then the first order derivatives

are

1√
n

∂Ln(θ)

∂θ
=



− 1√
n

(
(WnYn)′Vn(θ) + tr(Wn(In − ρWn)−1)

)
− 1√

n
X ′nVn(θ)

− 1√
n

(F (Xnγ
′))′Vn(θ))

− λ1√
n
X ′n(F (Xnγ1) ◦ Vn(θ))

...

− λh√
n
X ′n(F (Xnγh) ◦ Vn(θ))


(1.22)

By Lemma 2, the true parameter values maximize 1
n
E(Ln(θ)), so 1

n
∂E(Ln(θ0))

∂θ
= 0. In

(1.14) and (1.16), we showed that E
∣∣∣∂ ln f(εs(θ))∂θ

∣∣∣ is dominated by some function not re-

lated to θ and (1.17) indicates that E
∣∣∣∂ ln f(εs(θ))∂θ

∣∣∣ is bounded for interior units in S.

Hence, E∂ ln f(εs(θ))
∂θ

= ∂
∂θ
E ln f(εs(θ)), it follows that, with 1

n
Ln(θ) = 1

n
ln |In − ρ0Wn| +

1
n

∑n
s=1 ln f(εs(θ)), we can have,

1

n

∂ELn(θ0)

∂θ
=

1

n
E
∂L(θ0)
∂θ

= 0

Therefore, with Assumption 12

V ar

(
1√
n

∂Ln(θ0)

∂θ

)
= −E 1

n

∂2Ln(θ0)

∂θ∂θ′
= E

1

n

∂Ln(θ0)

∂θ

∂Ln(θ0)

∂θ′
→ B(θ0)

And under this A(θ0) = B(θ0) when n → ∞. From (1.22), we can see that ∂Ln(θ0)
∂θ

is a sum of n identical and ergodic random variables. By the central limit theorem for

stationary ergodic processes [33], we can conclude the limiting distribution of 1√
n
∂Ln(θ0)
∂θ

is N(0, B(θ0)).

Next, we want to show that 1
n
∂2Ln(θ̃n)
∂θ∂θ′

− 1
n
∂2Ln(θ0)
∂θ∂θ′

p−→ 0. Following the results in (1.22),

define Un(θ) = f ′′(εn(θ))
f(εn(θ))

− f ′2(εn(θ))

f2(εn(θ))
∈ Rn and Un(θ0) = Un so the second order derivatives
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are given below − 1
n
∂2Ln(θ)
∂θ∂θ′

=

1

n



G0(θ) (WnYn)′G1(θ) (WnYn)′G2(θ) (WnYn)′H1(θ) · · · (WnYn)′Hh(θ)

G′1(θ)WnYn X ′nG1(θ) X ′nG2(θ) X ′nH1(θ) · · · X ′nHh(θ)

G′2(θ)WnYn G′2(θ)Xn F (Xnγ
′)′G2(θ) F (Xnγ

′)′H1(θ) · · · F (Xnγ
′)′Hh(θ)

+K1(θ) · · · +Kh(θ)

H ′1(θ)WnYn H ′1(θ)Xn H ′1(θ)F (Xnγ
′)

+K1(θ)′

...
...

... J(θ)

H ′h(θ)WnYn H ′h(θ)Xn H ′h(θ)F (Xnγ
′)

+Kh(θ)′



(1.23)

Jij(θ) =


λiX

′
n(F ′′(Xnγi) ◦ Vn(θ) ◦Xn) + λiX

′
n(F ′(Xnγi) ◦Hi) i = j

λi(F
′(Xnγi) ◦Hj)

′Xn i > j i, j = 1, 2, . . . , h

λiX
′
n(F ′(Xnγi) ◦Hj) i < j

G0(θ) =
(
−WnYn ◦WnYn)′Un(θ) + tr((Wn(In − ρWn)−1)2

)
G1(θ) = −Un(θ) ◦Xn

G2(θ) = −Un(θ) ◦ F (Xnγ
′)

Hi(θ) = −Un(θ) ◦ (λiF
′(Xnγi) ◦Xn) i = 1, . . . , h

Ki(θ) = [Vn(θ) ◦ F ′(Xnγ
′)]′Xn ◦ ei i = 1, . . . , h k = 1, . . . , h

ei,k =

 1 k = i

0 k 6= i
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Since θ̃n is between θ̂n and θ0, θ̂n
p−→ θ0 so θ̃n also converges to θ0 in probability as

n→∞. By Assumption 9,
∣∣∣f ′(s)f(s)

∣∣∣ , ∣∣∣f ′′(s)f(s)

∣∣∣ and
∣∣∣f ′2(s)f2(s)

∣∣∣ are continuous and are bounded by

a1 + a2 |s|c1 so Vn(θ), Un(θ) are continuous. With ρ ∈ (− 1
τ
, 1
τ
), tr((Wn(In − ρWn)−1)2) =∑n

i=1
τ2i

(1−ρτi)2 is also a continuous function of ρ.

Therefore elements in 1
n
∂2Ln(θ)
∂θ∂θ′

are continuous functions for θ in Θ. By the continu-

ity,

1

n

∂2Ln(θ̃n)

∂θ∂θ′
− 1

n

∂2Ln(θ0)

∂θ∂θ′
p−→ 0, as θ̃n

p−→ θ0(1.24)

Finally, show that
∣∣∣ 1n ∂2Ln(θ0)∂θ∂θ′

− E 1
n
∂2Ln(θ0)
∂θ∂θ′

∣∣∣ p−→ 0.

Since Yn, Xn are stationary, we can first show that for each s,

E

∣∣∣∣∣ ∂2

∂θ∂θ′

(
1

n

n∑
i=1

ln(1− ρ0τi) + ln f(εs(θ0))

)∣∣∣∣∣ <∞(1.25)

We first discuss the expected value of second derivative with respect to ρ in (1.25). By tri-

angular inequality, E
∣∣∣ ∂2

∂ρ∂ρ

(
1
n

∑n
i=1 ln(1− ρ0τi) + ln f(εs(θ0))

)∣∣∣ < E
∣∣∣ 1n∑n

i=1
∂2 ln(1−ρ0τi)

∂ρ∂ρ

∣∣∣+
E
∣∣∣∂2 ln f(εs(θ0))∂ρ∂ρ

∣∣∣. Because
∑n

i=1
∂2 ln(1−ρ0τi)

∂ρ∂ρ
= tr(M2

n) (defined in (1.14)), this can be further

simplified to

1

n
tr(M2

n) + E

∣∣∣∣∣∣
(
f ′

2
(εs)

f2(εs)
− f ′′(εs)

f(εs)

)(
n∑
k=1

wskyk

)2
∣∣∣∣∣∣(1.26)

Because Mn is uniformly bounded in column and row sums, 1
n
tr(M2

n) <∞,
∑n

k=1msk < b

so
∑n

j=1

∑n
k=1msjmsk < (

∑n
k=1msk)

2 < b2.

We need to show E
∣∣∣(f ′2 (εs)f2(εs)

− f ′′(εs)
f(εs)

)
(
∑n

k=1wskyk)
2
∣∣∣ <∞.
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Because Yn = (In−ρ0Wn)−1(g(Xn,θ0)+εn), WnYn = Mn(g(Xn,θ0)+εn),
∑n

k=1wskyk =∑n
k=1msk(g(xk,θ0) + εk). It follows that E

∣∣∣(f ′2 (εs)f2(εs)
− f ′′(εs)

f(εs)

)
(
∑n

k=1wskyk)
2
∣∣∣ =

E

∣∣∣∣∣∣
(
f ′

2
(εs)

f2(εs)
− f ′′(εs)

f(εs)

)(
n∑
k=1

msk(g(xk,θ0) + εk)

)2
∣∣∣∣∣∣

<E

∣∣∣∣∣
(
f ′

2
(εs)

f2(εs)
− f ′′(εs)

f(εs)

)
n∑
k=1

m2
sk[g(xk,θ0) + εk]

2

∣∣∣∣∣
+ E

∣∣∣∣∣∣
(
f ′

2
(εs)

f2(εs)
− f ′′(εs)

f(εs)

)
n∑

j=1,j 6=k

n∑
k=1

mskmsj [g(xk,θ0) + εk][g(xj ,θ0) + εj ]

∣∣∣∣∣∣
By assumption, E εkεj = 0 if k 6= j, E

∣∣∣ εsf ′2 (εs)f2(εs)
− εsf ′′(εs)

f(εs)

∣∣∣ < ∞, E
∣∣∣ ε2sf ′2 (εs)f2(εs)

− ε2sf
′′(εs)

f(εs)

∣∣∣ <
∞. Through mathematical computation, we can prove that E

∣∣∣∂2 ln f(εs(θ0))∂ρ∂ρ

∣∣∣ is finite, i.e.,

E

∣∣∣∣∣ ∂2

∂ρ∂ρ

(
1

n

n∑
i=1

ln(1− ρ0τi) + ln f(εs(θ0))

)∣∣∣∣∣ <∞
Because 1

n

∑n
i=1 ln(1 − ρ0τi) in (1.25) only relates to ρ, this term goes away when taken

second derivative with respect to other parameters. Hence, other elements in (1.25) equal
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to those in E
∣∣∣∂2 ln f(εs(θ0))∂θ∂θ′

∣∣∣ and we can show that those expectations are also finite.

E
∣∣∣∣∂2 ln f(εs(θ0))

∂ρ∂β′

∣∣∣∣ ≤ |x′s| ·
(
k2|mss|+ k1|b−mss| · E|εs|+ k1

∣∣∣∣∣
n∑
k=1

mskg(xk,θ0)

∣∣∣∣∣
)

(1.27)

E
∣∣∣∣∂2 ln f(εs(θ0))

∂ρ∂λ′

∣∣∣∣ ≤ 1′h ·

(
k2|mss|+ k1|b−mss| · E|εs|+ k1

∣∣∣∣∣
n∑
k=1

mskg(xk,θ0)

∣∣∣∣∣
)

(1.28)

E
∣∣∣∣∂2 ln f(εs(θ0))

∂ρ∂γ′i

∣∣∣∣ ≤ |λi0x′s|4
·

(
k2|mss|+ k1|b−mss| · E|εs|+ k1

∣∣∣∣∣
n∑
k=1

mskg(xk,θ0)

∣∣∣∣∣
)

(1.29)

E
∣∣∣∣∂2 ln f(εs(θ0))

∂β∂β′

∣∣∣∣ = k1|xsx′s|(1.30)

E
∣∣∣∣∂2 ln f(εs(θ0))

∂β∂λ′

∣∣∣∣ = k1|xsF (x′sγ0)|(1.31)

E
∣∣∣∣∂2 ln f(εs(θ0))

∂β∂γ ′i

∣∣∣∣ ≤ k1
4
|λi0xsx′s|(1.32)

E
∣∣∣∣∂2 ln f(εs(θ0))

∂λ∂λ′

∣∣∣∣ = k1
∣∣F (x′sγ0)

′F (x′sγ0)
∣∣ ≤ k1 · 1h×h(1.33)

E
∣∣∣∣∂2 ln f(εs(θ0))

∂λ∂γ ′i

∣∣∣∣ =
k1
4
|λi0F ′(x′sγi0)| · |F (x′sγ0)

′x′s| ≤
k1|λi0|

4
· |F (x′sγ0)

′x′s|(1.34)

E

∣∣∣∣∣∂2 ln f(εs(θ0))

∂γi∂γ
′
j

∣∣∣∣∣ ≤ k1|λi0λj0|
16

· |xsx′s|, i 6= j(1.35)

E
∣∣∣∣∂2 ln f(εs(θ0))

∂γi∂γ
′
i

∣∣∣∣ ≤ k1λ
2
i0

16
· |xsx′s|+

√
3k0|λi0|

18
|xsx′s|(1.36)

With assumptions 1-10, (1.26)-(1.36) are finite. Then we can apply the ergodic theorem

[4] and conclude that ∣∣∣∣ 1n ∂2Ln(θ0)

∂θ∂θ′
− E

1

n

∂2Ln(θ0)

∂θ∂θ′

∣∣∣∣ p−→ 0

We have proved that
∣∣∣ 1n ∂2Ln(θ̃n)∂θ∂θ′

− 1
n
∂2Ln(θ0)
∂θ∂θ′

∣∣∣ p−→ 0 so it is trivial that∣∣∣∣∣ 1n ∂2Ln(θ̃n)

∂θ∂θ′
− E

1

n

∂2Ln(θ0)

∂θ∂θ′

∣∣∣∣∣ p−→ 0(1.37)
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Recall the equation (1.20), we have proved that 1√
n
∂Ln(θ0)
∂θ

has the limiting distribution

N(0, B(θ0)). With (1.37), for θ̃n between θ̂n and θ0, − 1
n
∂2Ln(θ̃n)
∂θ∂θ′

p−→ A(θ0) so we can

conclude that
√
n(θ̂n − θ0)

d−→ N(0,Ω0), where Ω0 = A−1(θ0)B(θ0)A
−1(θ0). �

1.5. Numerical Results

1.5.1. Simulation Study

In this section, we conduct simulation experiments to examine the estimators’ behavior

for finite samples. For estimation purposes it is often useful to reparametrize the logistic

function F (x′sγi) as

(1.38) F

(
||γi|| · x′s

γi
||γi||

)
=
(

1 + e
−||γi||·x′s

γi
||γi||

)−1
, i = 1, . . . , h

where ||γi||, i = 1, . . . , h is the L2-norm of γi. We use a univariate exogenous variable

and let Xn = (x1, . . . , xn)′. For illustration, we only include the nonlinear component

of Xn. Usually we would like to normalize predictors before fitting a neural network

model to avoid the computation overflow [32] so we add a centralizing constant γ0 in this

simulation. The model becomes

(1.39) ys = ρ

n∑
i=1

wsiyi + λF (γ1(xs − γ0)) + εs

For identification reasons mentioned in Restriction 1 and 2, we impose γ1 > 0.

We sample n = 2500, 4900 random errors respectively from three distributions (stan-

dard normal, rescaled t-distribution and Laplace distribution) with variance 1 and X

is a univariate exogenous variable, values of which sampled from a normal distribution

N(0.5, 32). We set the true parameters to be ρ0 = 0.6, λ0 = 5, and weights in the neural

net γ00 = 0.5, γ10 = 1. The log-likelihood function Ln(θ) is given in (1.40) and we use

L-BFGS-B method[12, 52] (recommended for bound constrained optimization) to find the
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parameter estimates θ̂ which maximize (1.40).

Ln(θ) = ln |In − ρWn|+
n∑
s=1

ln f(εs(θ))(1.40)

εs(θ) = ys − ρ
n∑
s=1

wsiyi − xsβ − λF (γ1(xs − γ0))(1.41)

For the model under consideration, we estimated the covariance of the asymptotic normal

distribution equation (1.19). Since matrices A(θ0) and B(θ0) involve expected values

with respect to the true parameter θ0, given merely observations, in practice they can be

estimated as follows:

Â(θ̂) =
1

n

n∑
s=1

−∂
2l(θ̂|xs, ys)
∂θ∂θ′

B̂(θ̂) =
1

n

n∑
s=1

∂l(θ̂|xs, ys)
∂θ

∂l(θ̂|xs, ys)
∂θ′

where

l(θ|xs, ys) =
1

n
ln |In − ρWn|+ ln f(εs(θ))

Using (1.22) and (1.23), we can calculate Â(θ0), B̂(θ0) to assess the asymptotic properties

of parameter estimates. Note that the derivative of the log-likelihood with respect to ρ

cannot be calculated directly because it requires taking derivative with respect to a log-

determinant of In−ρWn. For small sample sizes, we can compute the determinant directly

and get the corresponding derivatives; but for large sample sizes, for example a dataset

with 3000 observations, Wn is a 3000× 3000 weight matrix which makes it impossible to

calculate the derivative directly. Since Wn is a square matrix, we can apply the spectral

decomposition such that Wn can be expressed in terms of its n eigenvalue-eigenvector

pairs in (1.6). So we can apply the following approach to calculate the derivative of
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ln |In − ρWn|, which greatly reduce the burden of computations (Viton [46]).

ln |In − ρWn| = ln

(
n∏
s=1

(1− ρτi)

)
Further the derivatives of the log-likelihood function with respect to ρ is

∂ls(θ|xs, ys)
∂ρ

=
1

n

n∑
i=1

−τi
(1− ρτi)

+ {ys − ρ
n∑
i=1

wsiyi − λF (γ1(xs − γ0)} ·

(
n∑
i=1

wsiyi

)

∂2ls(θ|xs, ys)
∂ρ∂ρ

= − 1

n

n∑
i=1

 τ2i
(1− ρτi)2

+

(
n∑
i=1

wsiyi

)2


Finally we can estimate the covariance matrix by equation (1.42).

Ω̂ = Â−1(θ0)B̂(θ0)Â
−1(θ0)(1.42)

In our simulation study, we computed θ̂ the for 200 replicates for each n = 2500, 4900.

The estimate Ω̂ of the asymptotic covariance matrix is computed based on a sample

with 10000 simulated observations. Table 1.1 compares the empirical mean and standard

errors (in parentheses) of parameter estimators with the true value and their asymptotic

standard deviations (in squared brackets) respectively. Comparing the simulation results

when ε follows a standard normal distribution with simulation results when ε follows

a t(4) distribution, means of the estimates over 200 replicates are closer to the true

values and their empirical standard deviations are smaller when ε follows the heavy tailed

distribution. For all these experiments with different error distributions, the empirical

standard deviations of θ̂ are close to the asymptotic standard deviations which implies

that the estimators’ finite sample behavior roughly matches their asymptotic distributions.

Note that when ε is sampled from a Laplace distribution, this covariance matrix cannot be

computed because its second order derivative is not differentiable at 0. But the simulated



49

θ̂’s still appear consistent properties. Normal plots for parameter estimates are shown in

Figure 1.4 and give a strong indication of normality.

ε
n = 2500

ρ̂ λ̂ γ̂0 γ̂1

N(0, 1)

0.6178 4.8504 0.5410 1.0576
(0.0075) (0.0812) (0.0425) (0.0431)
[0.0046] [0.0639] [0.0417] [0.0354]

t(4)

0.6132 4.8952 0.5326 1.0411
(0.0060) (0.0623) (0.0364) (0.0320)
[0.0044] [0.0562] [0.0353] [0.0310]

Laplace 0.6107 4.9132 0.5283 1.0358
(0,
√
2
2

) (0.0053) (0.0562) (0.0295) (0.0291)

ε
n = 4900

ρ̂ λ̂ γ̂0 γ̂1

N(0, 1)

0.6175 4.8617 0.5435 1.0517
(0.0056) (0.0572) (0.0297) (0.0303)
[0.0033] [0.0456] [0.0298] [0.0252]

t(4)

0.6130 4.8957 0.5312 1.0380
(0.0051) (0.0526) (0.0274) (0.0246)
[0.0031] [0.0426] [0.0260] [0.0235]

Laplace 0.6096 4.9242 0.5217 1.0268
(0,
√
2
2

) (0.0047) (0.0487) (0.0239) (0.0233)

Table 1.1. Empirical mean and standard errors (in parentheses) of param-
eter estimates when ε is sampled from a standard normal, standardized
student t distribution and a Laplace distribution. The asymptotic stan-
dard errors are displayed for reference in square brackets.
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Figure 1.4. Normal plots for parameter estimates ρ (1st row), λ (2nd row),
γ0 (3rd row) and γ1 (4th row) when εs follows a standard normal distribution
(first column), standardized t distribution (middle column) and Laplace
distribution (last column) n = 70× 70

1.5.2. Real Data Example

Spatial models have a lot of applications in understanding spatial interactions in cross-

sectional data. Among them, the study of electoral behavior has attracted considerable

attention by political scientists. Poole and Rosenthal [37] found that the spatial variation

plays an important role in presidential electoral dynamics. And mentioned by Braha
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and de Aguiar (2017 [7]), most studies in the U.S. consider vote choices as the result of

attitudinal factors such as evaluations of the candidates and government performances as

well as social factors such as race, social class, and region. Inspired by their research, we

would like to understand this electoral dynamics using our proposed partially specified

spatial autoregressive model and to help identify how social factors influence people’s

voting preferences.

Here, we focus on the proportion of votes cast for U.S. presidential candidates at the

county level in 2004. Counties are grouped by state, and let Y be the corresponding

fraction of votes (vote-share) in a county for the Democratic candidate (John Kerry)

in 2004. Predictors X are chosen from economic and social factors covering the living

standard, economy development and racial distribution. Figure 1.5 shows the observed

Figure 1.5. Fractions of Vote-shares per County for Democratic presidential
candidate in 2004

values of Yn for 2004. This heat map exhibits strong correlation between observations

in neighboring counties which is supported by Moran’s Test on Y (test statistic = 52.4,
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P-value < 2.2× 10−16). This indicates that Y , the fraction of vote-share for Democratic

candidate, is not independently distributed across the space. So we consider fitting a

spatial model to the data.

In our analysis, we exclude the four U.S. counties with no neighbors (San Juan, Dukes,

Nantucket, Richmond) to avoid the non-singularity of our spatial weight matrix Wn in

the modeling, so the total number of observations is n = 3107.

First we fit a linear regression model to see if it is sufficient to explain the voting

dynamic using explanatory variables X = (X1, . . . , X5). From the preliminary analysis

fitting Y on all the available variables, we chose the five most significant ones for modeling

out of more than 20 different variables. The chosen predictors are percent residents

under 18 years X1 (UNDER18), percent white residents X2 (WHITE), percent residents below

poverty line X3 (pctpoor), per capita income X4 (pcincome) and USDA urban/rural code

X5 (urbrural, 0 = most rural, 9 = most urban). The corresponding least-squares line

is as follows:

Ŷ = 80.4− 0.932X1 − 0.250X2 + 0.324X3 + 2.76× 10−5X4 − 1.24X5(1.43)

These six parameter estimates are all significant at α = 0.05 and by looking at signs, it

is easy to tell how these covariates relate to the voting behaviors. However, one major

drawback of this linear model is that the fitted residuals are still correlated across the

space (null hypothesis of independence rejected in Moran’s Test, test statistic = 54.1,

P-value < 2.2× 10−16 ; see Figure 1.6) so a multiple linear regression fails to adequately

describe the spatial dependence in Y . Another concern is that a Gaussian estimation

procedure was used; it is not most efficient when there appears to be heavy tailed errors.

Figure 1.7 shows the histogram of Y/8 (men 4.87, standard deviation 1.57) which looks

closer to a t-distribution than a normal distribution (scaled to have the same mean and
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Figure 1.6. Residuals after fitting a linear regression model

Figure 1.7. Histogram of (scaled by 1
8
) fraction of vote-shares per county

for Democratic presidential candidate in 2004 overlaid with a scaled t and
a normal density curves. The mean is 4.87 and the standard deviation is
1.57.

standard deviation as those of Y/8). Figure 1.8 also demonstrates the tail distribution

of Y/8, where the vertical axis is the sample quantiles of Y/8 and horizontal axis is the

theoretical quantiles of scaled t(8) and normal distribution. Clearly the observation Y/8 is

heavy tailed. To address these, we would like to fit a spatial autoregressive model to those
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Figure 1.8. Q-Q plots of Y versus scaled t(8) and standard normal distri-
butions: Y-axis is the sample quantiles of Y/8 and X-axis is the theoretical
quantiles of a t-distribution (left) and a normal distribution (right).

data and assume that the random error follows a scaled t(8) distribution (scaled t(8) has a

closer density curve to Y/8 shown in Figure 1.7 and 1.8). We maximized the corresponding

log-likelihood function to obtain parameter estimates. For simplicity, we then only selected

the three most significant variables as predictors X based on the linear regression results;

they are UNDER18, WHITE and pctpoor. The weight matrix Wn is generated through

a shapefile [42] (a geospatial vector storage format for storing geometric location and

associated attribute information) using the queen criterion. Scatter plots of X1, X2 and

X3 versus Y are shown in Figure 1.9. We can clearly observe the nonlinear trend between

X2, X3 and Y . In the linear model X1 is the most significant variable but despite the linear

trend, the scatter plot of UNDER18 versus Y has lots of noises around the center range from

20 to 30 percent. This may be caused by some spatial correlation in X1 itself so we try

despatializing X1 by fitting an ordinary spatial autoregressive model X1 = ρxW3107X1+ε.

The spatial correlation of X1 is estimated as 0.6 so we define the despatialized variable

X̃1 = (In−0.6W3107)X1 (the scatter plot of X1 in Figure 1.9 does not show specific pattern
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even though this variable is significant from our preliminary analysis. So we consider

de-spatializing X1 and
∑n

s=1 ε̂
2
s of the model fitted with despatializated X1 is smaller

than that of the model fitted with original X1). In addition, to avoid the computation

overflow when maximizing the corresponding log-likelihood function, we normalized these

predictors to have zero means and unit variances and also rescaled Y by 1
8
. We conduct

the following analysis using these transformed variables Y ∗, X∗ = (X∗1 , X
∗
2 , X

∗
3 ).

Y ∗ = Y/8

X∗1 =
X̃1 −Average(X̃1)

Std(X̃1)

X∗2 =
X2 −Average(X2)

Std(X2)

X∗3 =
X3 −Average(X3)

Std(X3)

The first spatial model we tried is the ordinary spatial autoregressive model with X∗1 , X∗2 ,

Figure 1.9. Scatter plots: percentage residence under 18 (left), percent
white residents (middle) and percent below poverty line (right) in U.S.
counties. The red lines are the Lowess smoothing curve between Y ∗ and
predictors.

X∗3 and we assume the error follows a scaled t distribution with df = 8 (Y ∗ = ρW3107Y
∗+

X∗β + ε; the fitted residual variance is about 1 when we assume the t distribution with

df = 8 referring to Figure 1.7). The model fit via maximizing log-likelihood function is
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shown below:

Y ∗ = 0.744W3107Y
∗ + 1.222− 0.284X∗1 − 0.451X∗2 + 0.03X∗3 + ε(1.44)

The spatial correlation parameter ρ̂ = 0.744 indicates pretty high spatial dependence

in Y ∗ and the spatial dependence in the residuals is insignificant (Moran’s test statis-

tics = 1.38, P-value = 0.167). However, in Figure 1.9, there appears to be a nonlinear

relationship between Y and X2, X3. To address this, we would like to fit our proposed

PSAR-ANN model to the same dataset and still we assume a t(8) distributed error. The

log-likelihood function in this case should be

L3107(θ) = ln |I3017 − ρW3017| − 4.5
3107∑
s=1

ln(1 +
εs(θ)2

6
)(1.45)

ε(θ) = (I3017 − ρW3017)Y
∗ −X∗β − F (X∗γ ′)λ(1.46)

Since the PSAR-ANN model has both linear and nonlinear components, we optimize

these two parts iteratively to find the maximum likelihood estimators. Many optimiza-

tion algorithm are sensitive to the choice of starting-values and people usually train neural

network models starting at very small initial values. So especially each time instead of

using the previous parameter estimates for neural network component, we always reini-

tialize the starting values for the neural network component and use L-BFGS-B algorithm

[12] to search the optimum. The optimization steps are outlined below:

• Step 0: Based on some pre-knowledge about the parameters, set starting values

(ρ0, β0, λ0,γ0) and predetermine bounds for parameters in the optimization.

• Step 1: In the ith iteration for the linear component optimization, fixing λi−1,

γi−1, use (ρi−1, βi−1, λi−1,γi−1) as starting values and apply L-BFGS-B algorithm

[12, 52] to find ρ(i) and β(i) which maximize L3107(θ) in (1.45) given λi−1, γi−1.
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• Step 2: In the ith iteration for the nonlinear component optimization, fixing

ρ(i), β(i) from Step 1, randomly initialize λ,γ starting values from a small interval

(0, 0.05) (to avoid the computation overflow when calculating exponentials) and

again use L-BFGS-B algorithm [12] to find λ(i),γ(i) which maximize L3107(θ) in

(1.45) given ρ(i), β(i).

• Step 3: Repeat Step 1, 2 until the difference of the corresponding log-likelihood

function values in Step 1 and 2 is smaller than some threshold value (for example

10−2).

The following is the estimated PSAR-ANN model

Y ∗ =0.721W3107Y
∗ + 1.693− 0.185X∗1 − 0.658X∗2 + 0.181X∗3

− 0.937F (1.509X∗1 − 2.544X∗2 + 2.268X∗3 ) + ε̂(1.47)

In model (1.47), the correlation estimate is roughly the same as the model (1.44) indi-

cating that people in neighboring counties tend to have similar voting preferences. The

Moran’s test statistic for the residuals is 1.78 with P-value = 0.0745. We compare the

SAR model with our proposed model and find that even though the new model has

more parameters, it has lower AIC (AIC = 2(#parameters) − 2 lnLn(θ̂)) compared to

the original spatial autoregressive model (See table 1.2). Through likelihood ratio test

(H0: SAR model is adequate, H1: PSAR-ANN model is adequate), the test statistic

−2 lnLSAR + 2 lnLPSAR−ANN = 157.45 with df = 4, P-value < 0.05, so we rejected H0

and conclude that the PSAR-ANN model is a better fit than SAR model. Figure 1.10

shows the residuals (of PSAR-ANN model) heat map and its histogram. Through the

residual histogram, assuming the error density as a standardized t(8) (df is chosen by the
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SAR PSAR-ANN

# Parameters 5 9

Moran’s Test
0.167 0.0745

(1.3808) (1.7836)

− lnL 1958.08 1879.35

AIC 3926.16 3776.17

Table 1.2. Comparison of SAR and PSAR-ANN model by # parameters,
Moran’s test P-value (test statistics), − lnL and AIC

shape of the residual histogram) seems to be more appropriate than a standard normal

distribution.

Figure 1.10. Heat map (left) and histogram (right) of residuals of the
PSAR-ANN model

The covariance matrix for parameter estimates in model (1.47) is calculated and the

95% confidence intervals for the model parameters are shown in table 1.3. From the

table, all the parameters are significant at 95% significance level. Looking at the signs

of parameter estimates, we can learn that a county with more young residence under

18 and white residence is more likely to support Republicans while people struggling to
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make ends meet are prone to support the Democrat. This opposite effect can also be

observed in Figure 1.9. The neural network component in our model helps to capture

the nonlinear relationship between X and Y . Parameter λ is significant so the nonlinear

component is appreciable in modeling and γ’s are all significant at 95% confidence level.

Figure 1.11 shows scatter plots of X∗1 , X
∗
2 , X

∗
3 , where points are colored by the value of the

fitted neural network component −0.937F (1.509X∗1 − 2.544X∗2 + 2.268X∗3 ). Observations

with green color are counties tending to have more voters for the Democratic candidate

while the red points represent counties tending to have more voters for the Republican

candidate. From the distribution of these colored points, it appears that counties with

more people below poverty line and less white residence tend to have more Democratic

voters. On the other hand, voters in counties with more children and higher percent white

residence tend to be less likely to vote Democratic. These findings also correspond to the

trend we can find in the linear component but they are presented in a non-linear way.

Figure 1.11. Scatter plot of X∗1 , X
∗
2 , X

∗
3 colored by the output of fitted neu-

ral network component −0.937F (1.509X∗1 − 2.544X∗2 + 2.268X∗3 ).
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To conclude, our proposed model PSAR-ANN appears to successfully capture some

spatial election dynamics. It allows for non-Gaussian random errors and is flexible in

learning nonlinear relationships between the response and exogenous variables.

Parameter Estimate Std. 95% C.I.

ρ 0.721 0.0102 (0.7010, 0.7410)
β0 1.693 0.0573 (1.5807, 1.8053)
β1 -0.185 0.0219 (−0.2279,−0.1421)
β2 -0.658 0.0288 (−0.7144,−0.6016)
β3 0.181 0.0243 (0.1334, 0.2286)

λ -0.937 0.0581 (−1.0464,−0.8276)
γ1 1.509 0.0239 (1.4622, 1.5558)
γ2 -2.544 0.0137 (−2.5709,−2.5171)
γ3 2.268 0.0157 (2.2372, 2.2988)

Table 1.3. Parameter estimates of PSAR-ANN model with 95% confidence
intervals



61

CHAPTER 2

Partially Specified Space Time Autoregressive Model with

Artificial Neural Network

In Chapter 1, we proposed a PSAR model enhanced by a neural network component

which aims at explaining the spatial dependence through a nonlinear approach. However,

sometimes we may collect data across time as well as space. For this type of data, we

want to construct a model with dependence over time taken into consideration which has

a broad application especially in environmental sciences. One interesting application is

forecasting the weather. For example, in a fixed location, the everyday temperature will

change from time to time but in the meanwhile, it would also be affected by temperatures

in the neighboring locations.

A class of such linear models known as space-time autoregressive (STAR) and space-

time autoregressive moving average (STARMA) models was introduced by Cliff and Ord

(1973) and Martin and Oeppen (1975) in 1970s. In general, STAR models contain a

hierarchical ordering of “neighbors” of each site. For instance, on a regular grid, one

can categorize neighbors of a site as first-order and second-order neighborhoods and so

on. An observation at each site is then modeled as a linear function of the previous time

observations at the same site and of the weighted previous observations at the neighboring

sites of each order. Let {Yt : t = 0,±1,±2, . . .} be a multivariate time series of n location

components. Weights are incorporated in weight matrices W (k) for order k. An STAR
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model with autoregressive order p and spatial order (λ1, . . . , λp) considerded in Borovkova

et.al (2008) is defined as

Yt =

p∑
i=1

λi∑
k=0

φikW
(k)Yt−i + εt

where λi is the spatial order of the ith autoregressive term, φik is the autoregressive

parameter at time lag i and spatial lag k. Similarly an STAR model with n space locations

and q exogenous variables is given by Stoffer (1985) as, for Yt ∈ Rn,

Yt =

p∑
i=1

λi∑
k=0

φikW
(k)Yt−i +

p′∑
i=0

Xt−iβi + εt

where values of the exogenous variables {Xt : t = 0,±1,±2, . . .} are n × q covariate

matrices containing q values of exogenous variables for all n locations at time t. Xt =

(x1,t, . . . , xn,t)
′ and xs,t ∈ Rq. p′ is the autoregressive order for {Xt} and βi is a q × 1

model parameter.

STAR models have been widely applied in many areas of science. In genomics, Epper-

son (1993) analyzed population gene frequencies using STAR models where he assumed

genes may vary over space and time. This model is also well known in economics (Gi-

acomini and Granger, 2004) and has been applied to forecasting regional employment

(Hernandez and Owyang, 2004) as well as traffic flow (Garrido 2000; Kamarianakis and

Prastacos, 2004). For instance, the traffic flow of a road network observed at different

fixed locations can be simultaneously modelled as a linear combination of past observa-

tions and current observations at neighboring sites. Through weight matrices, an STAR

model assumes that near sites exert more influence on each other than distant ones.
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In this chapter, we want to extend an STAR model to a semi-parametric model such

that this new model can capture nonlinear dependence between covariates and the spatial

observations of interest.

2.1. PSTAR-ANN(p) model

We define a Partially Specified Space-Time Autoregressive model with Artificial Neural

Network (PSTAR-ANN(p)) as follows.

Yt =

p∑
i=0

φiWnYt−i +Xtβ + F (Xtγ
′)λ+ εt, T = 1, . . . , T(2.1)

where Yt = {ys,t}ns=1 contains observations of dependent variables at n locations and at

time t. The independent variable matrix Xt = (x1,t, . . . , xn,t)
′ is the covariate matrix at

time t, where xs,t ∈ Rq×1 is a vector containing exogenous regressors at location s and

time t, s = 1, . . . , n. εt = {εs,t}ns=1 denote a vector of n noise terms which are independent

identically distributed across s and t with density function f , mean 0 and variance σ2 = 1.

Exogenous parameters β = (β1, . . . , βq)
′ ∈ Rq and scalars φi, i = 0, 1, . . . , p, the

spatial/space-time autoregressive parameters, are assumed to be the same over all re-

gions. Wn = {wij} ∈ Rn×n is a known spatial weight matrix which characterizes the

connection between neighboring regions. For the ease of illustration, we define some no-

tations. Given a function f ∈ C1(R1) continuous in R, we define a new matrix map

Rn → Rn as f s.t. f(x1, . . . , xn) = (f(x1), . . . , f(xn))′.

Using the notation defined above, the artificial neural network component (Medeiros

et al. [32]) can be written as
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F (Xtγ
′)λ =



F (x′1,tγ1) F (x′1,tγ2) . . . F (x′1,tγh)

F (x′2,tγ1) F (x′2,tγ2) . . . F (x′2,tγh)

...
... · · ·

...

F (x′n,tγ1) F (x′n,tγ2) . . . F (x′n,tγh)





λ1

λ2

...

λh


∈ Rn

F (Xtγ
′)λ represents two layer NN component where the first layer has h-neurons with

the sigmoid activation function and the second layer has only one neuron with an identity

activation function. In the first layer, the input is Xt and weights are γ = (γ ′1, . . . ,γ
′
h) ∈

Rh×q where γi = (γi1, . . . , γiq)
′ is the weights in the ith neuron. F (·) is the sigmoid

activation function in this layer.

F (x′s,tγi) = (1 + e−x
′
s,tγi)−1, s = 1, 2, . . . , n, i = 1, 2, . . . , h

In the second layer, the inputs are F (x′s,tγi), i = 1, . . . , h and the weights are λ1, . . . , λh.

So final output is
∑h

i=1 λiF (x′s,tγi) for each xs,t.

The weight matrix Wn is a measure of distance between the spatial units, and in our

application, we begin by using a square symmetric matrix with (i, j) element equals to

1 if regions i and j are neighbors and 0 otherwise. The diagonal elements of the matrix

are set to zero. Then we row standardize this matrix denoted by Wn. For more details

on construction of the weight matrix, you can refer to the previous chapter or LeSage

[27]. The following plot provides a preview of the data we are working with. This data

is generated from a PSTAR-ANN(2) model in a 10 by 10 lattice. The model equation is

shown below:
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Yt = 0.6WnYt − 0.274WnYt−1 +Xt

0.24

−0.7

+ 1.5F (Xtγ
′) + εt, Xt =

x11,t . . . x1n,t

x21,t . . . x2n,t


′

(2.2)

γ = (0.75,−0.35), with {x1i,t}ni=1, {x2i,t}ni=1 are generated i.i.d from N(0, 1.52), N(0, 32)

and the error εt is from N(0, 1). Figure 2.1 shows the heatmaps of Yt simulated at

t = 30, 29, 28 using (2.2).

Figure 2.1. Heat map of Y30, Y29 and Y28 simulated from a PSTAR-ANN(2)
model

The color scale represents the value in each cell. We can observe colors in cells changing

gradually with the spatial and time dependence (φ1 = −0.274, there is a little flip in cell

color comparing the left figure with the middle one).

2.2. The Model and the Likelihood Function

2.2.1. The Model

Let

A0 = In − φ0Wn, Ai = φiWn i = 1, . . . , p
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Suppose A0 is invertible, then model (2.1) can be rewritten as:

A0Yt =

p∑
i=1

AiYt−i +Xtβ + F (Xtγ
′)λ+ εt

Yt = A−10

p∑
i=1

AiYt−i +A−10 Xtβ +A−10 F (Xtγ
′)λ+A−10 εt

Let L be the usual backshift operator such that LiYt = Yt−i, A(L) = A0 −
∑p

i=1AiL
i.

Assuming that A−1(L) exists, we can rewrite Yt as

Yt = A(L)−1(Xtβ + F (Xtγ
′)λ+ εt)(2.3)

In order to derive asymptotic properties, we also need Yt to be a causal spatial temporal

process. Referring to the definition in Brockwell and Davis [9], the process Yt is causal

if there exists matrices {Ψj} with absolutely summable components such that A−1(L) =∑∞
j=0 ΨjA

−1
0 Lj. Let A(z) = A0−A1z−A2z

2−· · ·−Apzp = A0(In−A−10 A1z−A−10 A2z
2−

· · · − A−10 Apz
p) be a matrix-valued polynomial. Causality is equivalent to the condition

det(A(z)) 6= 0 for all z ∈ C such that |z| ≤ 1.

The matrices Ψj can be found recursively from the equations

Ψj = Θj +

∞∑
k=1

A−10 AkΨj−k(2.4)

where we define Θ0 = In, Θj = 0n for j > 0, Aj = 0n for j > p and Ψj = 0n for j < 0.

Therefore, this gives us

Ψ0 = In

Ψ1 = A−10 A1

Ψ2 = (A−10 A1)
2 +A−10 A2

· · ·
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Then

Yt =
∞∑
j=0

ΨjA
−1
0 (Xt−jβ + F (Xt−jγ

′) + εt−j)(2.5)

With this expansion, we need few assumptions on
∑∞

j=0 ΨjA
−1
0 and will be discussed

later.

2.2.2. Likelihood Function

Denote θ = (φ0, φ1, . . . , φp, β1, . . . , βq, λ,γ
′
1, . . . ,γ

′
h)
′ ∈ Θ. Since εs,t has an identical

density function f , the conditional joint density of YT , YT−1, . . . , Y1 conditioned on a finite

number of past values {Y0, . . . , Y1−p} and {Xt}Tt=1 is

fYT ,YT−1,...,Y1(θ|Y0, . . . , Y1−p, {Xt}) =
T∏
t=1

fYt(θ|Yt−1, . . . , Y1−p, {Xt})

Since

fYt(θ|Yt−1, . . . , Y1−p, {Xt}) =|A0|
n∏
s=1

f(εs,t(θ))

we have

fYT ,YT−1,...,Y1(θ|Y0, . . . , Y1−p, {Xt}) =|A0|T
T∏
t=1

n∏
s=1

f(εs,t(θ))

Hence, the log-likelihood function of θ is given by [3, p. 63],

Ln,T (θ) = T ln |A0|+
T∑
t=1

n∑
s=1

ln f(εs,t(θ))(2.6)

where εt(θ) = {εs,t(θ)}ns=1 = A(L)Yt −Xtβ − F (Xtγ)λ for t = 1, . . . , T .

For the analysis of identification and estimation of the PSTAR-ANN(p) model, we

adopt the following assumptions:

Assumption 13. The p+ (q + 1)(h+ 1) parameter vector



68

θ = (φ0, φ1, . . . , φp, β
′, λ′,γ ′1, . . . ,γ

′
h)
′ ∈ Θ, where Θ is a subset of the p+(q+1)(h+1)

dimensional Euclidean space, Rp+(q+1)(h+1). Θ is a closed and bounded compact set and

contains the true parameter value θ0 as an interior point.

Assumption 14. The spatial correlation coefficient φ0 satisfies |φ0| < 1 and φ0 ∈

(−1/τ, 1/τ), where τ = max{|τ1|, |τ2|, . . . , |τn|}, τ1, . . . , τn are eigenvalues of spatial weight

matrix Wn. To avoid the non-stationarity issue when φ0 approaches to 1, we assume

supφ0∈Θ |φ0| < 1.

Assumption 15. We assume Wn is defined by queen contiguity and is uniformly

bounded in row and column sums in absolute value as n → ∞ so A−10 is also uniformly

bounded in both column and row sums as n→∞.

Assumption 16. We assume a causal spatial process Yt which means that every z

which solves

det

[
zpA0 −

p∑
i=1

φiWnz
p−i

]
= 0

lie inside a unit circle. So the operator A(L) is causal [36].

Assumption 17. Xt is stationary, ergodic satisfying E |xs,t|2 < ∞ and Xt is full

column rank for t = 1, 2 . . . , T .

Assumption 18. The error terms εs,t, s = 1, 2, . . . , n, t = 1, 2 . . . , T are independent

and identically distributed with density function f(·), zero mean and unit variance σ2 = 1.

The moment E(|εs,t|2+r) exists for some r > 0 and E| ln f(εs,t)| <∞.

Assumption 14 defines the parameter space for φ0 such that A0 is strictly diagonally

dominant. By the Levy-Desplanques theorem [45], it follows that A−10 exists for any values
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φ0 in (−1/τ, 1/τ). In real applications, since Wn is row standardized, one just searches

φ̂0 over a parameter space on (−1, 1) to find the optimizer [17, p. 749-754].

It is natural to consider the neighborhood by connections and in many practical stud-

ies, since entries scaled to sum up to 1, each row of Wn sums up to 1, which guarantees

that all nonzero weights are in (0, 1]. For simplicity, we define the weight matrix Wn using

the queen criterion and do row standardization. Assumption 15 is originated by Kelejian

and Prucha [22, 23] and is also used in Lee [25]. With Wn to be uniformly bounded,

we can prove that (In − φ0Wn)−1 is also uniformly bounded in row and column sums

for φ0 ∈ (−1/τ, 1/τ) and supφ0∈Θ |φ0| < 1, by Lemma A.4 in Lee[25]. This result is a

necessary condition for Assumption 16.

From Assumption 14 and 15, we can decompose Wn by its eigenvalue and eigenvector

pairs τi, vi: Wn = PΛP−1, where Λ is a diagonal matrix with eigenvalues τi on its diagonals

and P = [v1, v2, . . . , vn] (we assume vi’s are normalized eigenvectors). So

W = P



τ1 0 · · · 0

0 τ2 · · · 0

0 0
. . . 0

0 0 · · · τn


P−1, A−10 = P



1
1−φ0τ1 0 · · · 0

0 1
1−φ0τ2 · · · 0

0 0
. . . 0

0 0 · · · 1
1−φ0τn


P−1(2.7)

It is trivial that A−10 Wn = WnA
−1
0 .

Assumption 16 guarantees that A(L) is a causal operator and there exists a casual

solution {Yt} to the system of the model equation (2.1). Then
∑∞

j=0 ΨjA
−1
0 is absolutely

summable. This requirement serves to determine a region of possible φi values that will

result in a stationary process {Yt}.



70

Assumption 17 is a trivial one when exogenous variables are included in a space time

model. Similar to previous chapter, the stationarity of {xs,t} is necessary in the ergodic

theorem in later proofs.

Assumption 18 imposes restrictions for the random error. In this paper we mainly

consider the heavy tailed density functions such scaled t distributions and Laplace dis-

tributions. When the degrees of freedom goes to infinity, the scaled t distribution would

approximate a standard normal distribution. So we would like to concentrate more on

the scaled t distribution with lower degrees of freedom.

2.3. Model Identification

In the previous section, we have some restrictions on the weight matrices Wn and

Ai’s to guarantee the identification of a classical spatial time autoregressive model. We

now investigate the conditions under which PSTAR(p)-ANN model is identified. By

Rothenberg [38], a parameter θ0 ∈ Θ is globally identified if there is no other θ in Θ

that observationally equivalent to θ0 such that f(y, θ) = f(y, θ0); or the parameter θ0 is

locally identified if there is no such θ in an open neighborhood of θ0 in Θ. The model

(2.1), in principle, is neither globally nor locally identified due to the neural network

component. The lack of identification of neural network models has been discussed in

many papers (Hwang and Ding [20]; Medeiros et al. [32]). Here we extend the discussion

to our proposed PSTAR(p)-ANN model. Three characteristics imply non-identification

of our model: (a) the interchangeable property: the value of the likelihood function may

remain unchanged if we permute the hidden units. For a model with h neurons, this will

result in h! different models that are indistinguishable from each other and have equal



71

local maximums of the log-likelihood function; (b) the “symmetry” property: for a logistic

function, F (x) = 1− F (−x) allows two equivalent parametrization for each hidden unit;

(c) the reducible property: the presence of irrelevant neurons in model (2.1) happens when

λi = 0 for at least one i and parameters γi remain unidentified. Conversely, if γi = 0,

F (Xtγi) is a constant and λi can take any value without affecting the value of likelihood

functions.

The problem of interchangeability (as mentioned in (a)) can be solved by imposing

the following restriction, as in Medeiros et al. [32]:

Restriction 1. parameters λ1, . . . , λh are restricted such that: λ1 ≥ · · · ≥ λh.

And to tackle (b) and (c), we can apply another restriction:

Restriction 2. The parameters λi and γi1 should satisfy:

(1) λi 6= 0, ∀i ∈ {1, 2, . . . , h}; and

(2) γi1 > 0, ∀i ∈ {1, 2, . . . , h}.

To guarantee the non-singularity of model matrices and the uniqueness of parameters, we

impose the following basic assumption:

Assumption 19. The true parameter vector θ0 satisfies Restrictions 1-2.

Referring to the section 4.3 by Medeiros et al. [32], we can conclude the identifiability

of the PSAR-ANN model.

Lemma 4. Under the Assumptions 13-19, this PSTAR-ANN(p) model (2.1) is globally

identified.
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2.4. Asymptotic Results

Let the true parameter vector as θ0 and the solution which maximizes the log-

likelihood function (2.6) as θ̂n,T . Hence, θ̂n,T should satisfy

θ̂n,T = arg max
θ∈Θ
Ln,T (θ)

Suppose as n is large enough, T goes to infinity, θ̂n,T is equivalent to maximizing the

average of the likelihood function Ln,T (θ) shown as follows:

1

nT
Ln,T (θ) =

1

n
ln |A0|+

1

nT

n∑
s=1

T∑
t=1

ln f(εs,t(θ))

θ̂n,T = arg max
θ∈Θ

(
1

n
ln |A0|+

1

nT

n∑
s=1

T∑
t=1

ln f(εs,t(θ))

)

εs,t(θ) = ys,t −
p∑
i=0

n∑
k=1

φiwskyk,t−i − x′s,tβ −
h∑
i=1

λiF (x′s,tγi)

At specific time t, suppose we have a n1 × n2 lattice where we consider asymptotic prop-

erties of θ̂n,T when n = n1n2 → ∞. Write the location s as the coordinate (sx, sy) in

the [1, n1] × [1, n2] lattice space. The distance between two locations s, j is defined as

d(s, j) = max(|sx − jx|, |sy − jy|). So if observations at s, j locations are neighbors (by

queen criterion), their coordinates should satisfy (sx− jx)2 + (sy− jy)2 ≤ 2 or d(s, j) = 1.

In a spatial context, we should notice that the functional form of ys,t is not identical

for all the locations due to values of the weights {wsi}ni=1. For example, in a lattice,

units at edges, vertexes or in the interior have different density functions due to different

neighborhood structures (Figure 2.2). Denote Ns as a neighborhood set for location s.

For an interior point (Figure 2.2(c)), its neighborhood set Ns contains eight neighbors

where wsj = 1/8 if d(s, j) = 1 otherwise wsj = 0, for j = 1, 2, . . . , n. Similarly, an edge
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point (Figure 2.2(b)) has five neighboring units with wsj = 1/5 for j ∈ Ns and the weight

of a vertex neighborhood is 1/3 because a vertex unit has only three neighbors. This is

known as an edge effect in spatial problems.

s j

j j

(a)

j j

js

jj

(b)

j j j

j s j

j j j

(c)

Figure 2.2. Vertex (a), Edge (b) and Interior Points (c) Neighborhood
Structures: s is the target location and j represents the neighborhood of s

To deal with this, referring to Yao and Brockwell [50], we construct an edge effect cor-

rection scheme based on the way that the sample size tends to infinity. In a space

[1, n1]× [1, n2], we consider its interior area as S = {(sx, sy) : b1 ≤ sx ≤ n1− b1, b2 ≤ sy ≤

n2 − b2}, where b1, b2, n1, n2 → ∞ satisfying that b1/n1, b2/n2 → 0 and other locations

belong to the boundary areasM. Therefore the set S contains n∗ = (n1 − 2b1)(n2 − 2b2)

interior locations while the set M contains n − n∗ boundary locations. Then n∗/n → 1

and Ln,T (θ) can be split into a sum of two parts (interior S and boundaryM parts):

Ln,T (θ) =

T∑
t=1

(∑
s∈M

l(θ|zs,t) +
∑
s∈S

l(θ|zs,t)

)

l(θ|zs,t) =
1

n
ln |A0|+ ln f(ys,t −

p∑
i=0

n∑
k=1

φiwskyk,t−i − x′s,tβ −
h∑
i=1

λiF (x′s,tγi))

where Zt = (WnYt,WnYt−1, . . . ,WnYt−p, Xt) and zs,t is the s row of Zt.
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Therefore, given that limn1,n2→∞
|M|
n

= 0, n−1
∑

s∈M l(θ|zs,t) vanishes a.s. as n tends

to infinity for any θ ∈ Θ. Therefore,

lim
n,T→∞

(nT )−1Ln,T (θ) = lim
T→∞

1

T

T∑
t=1

lim
n1,n2→∞

1

n1n2

(∑
s∈M

l(θ|zs,t) +
∑
s∈S

l(θ|zs,t)

)

= lim
T→∞

1

T

T∑
i=1

lim
n1,n2→∞

1

n1n2

∑
s∈S

l(θ|zs,t) a.s.

In this equation, every location s ∈ S has eight neighboring units under the queen

criterion with nonzero weights wsj = 1/8. Hence for an interior unit s ∈ S,
∑n

i=1wsiyi =∑n
j=1

1
8
yjI{d(s,j)=1}. And the log likelihood function Ln,T (θ) is approximately

(2.8) (nT )−1Ln,T (θ) ≈ 1

nT

T∑
i=1

∑
s∈S

l(θ|zs,t) for n1, n2, T →∞

So the maximum likelihood estimator θ̂n,T approximately maximizes

θ̂n,T ≈ arg max
θ∈Θ

lim
T→∞

n1,n2→∞

1

nT

T∑
i=1

∑
s∈S

l(θ|zs,t)

2.4.1. Consistency Results

To establish the consistency of θ̂n,T , the heuristic insight is that because θ̂n,T maxi-

mizes 1
nT
Ln,T (θ), it approximately maximizes 1

nT

∑T
i=1

∑
s∈S l(θ|zs,t). By equation (2.8),

1
nT
Ln,T (θ) can generally be shown tending to a real function L : Θ→ R with maximizer

θ0 as n, T → ∞ under mild conditions on the data generating process, then θ̂n,T should

tend to θ0 almost surely. Before the formal proof of the consistency, we need the following

assumptions on the density function f(·) satisfied (similar assumptions are made in White

[48], Andrews, Davis and Breidt [2], Lii and Rosenblatt [29]).
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Assumption 20. For all s ∈ R, f(s) > 0 and f(s) is twice continuously differentiable

with respect to s.

Assumption 21. The density should satisfy the following equations:

•
∫
sf ′(s) ds = sf(s)|∞−∞ −

∫
f(s) ds = −1

•
∫
f ′′(s) ds = f ′(s)|∞−∞ = 0

•
∫
s2f ′′(s) ds = s2f ′(s)|∞−∞ − 2

∫
sf ′(s) ds = 2

Assumption 22. The density should follow the following dominance conditions:∣∣∣f ′(s)f(s)

∣∣∣, ∣∣∣f ′(s)f (s)

∣∣∣2, ∣∣∣f ′(s)f(s)

∣∣∣4, f ′′(s)
f(s)

, and f ′′(s)f ′2(s)
f3(s)

are dominated by a1 + a2 |s|c1 , where a1, a2, c1

are non-negative constants and
∫
|s|c1+2 f(s) ds <∞.

Assumption 23. If c1 > 2 in previous assumption, we further assume E |xs,t|c1 <∞.

Discussed in Breidt, Davis, Lii and Rosenblatt [8] and Andrews, Davis and Breidt [2,

p. 1642-1645], these assumptions on the density f(·) are satisfied by the t-distribution case

when ν > 2 and by a mixture of Gaussian distributions. The assumption E| ln f(s)| <∞

(see Assumption 18) is also checked satisfied by the normal and t distributions (ν > 2).

The Laplace distribution does not strictly satisfy the Assumptions 20-22, since it is not

differentiable at 0 but it satisfies these boundedness conditions almost everywhere so

we believe the consistency and asymptotic normality results remain valid for parameter

estimates. This will be shown in the simulation section. Assumption 23 is a necessary to

boundedness conditions in later proof.

Lemma 5. Given Assumptions 13-22,

θ0 = max
θ∈Θ

ELn,T (θ) ≡ max
θ∈Θ

E
1

nT
Ln,T (θ)



76

Proof. Ln,T is the joint density function of Yt, Xt for t = 1, . . . , T .

ELn,T (θ)− ELn,T (θ0) = E ln
Ln,T (θ)

Ln,T (θ0)

Denote Z = (YT , XT , . . . , Y1, X1). By Jensen’s inequality,

E ln
Ln,T (θ)

Ln,T (θ0)
≤ lnE

Ln,T (θ)

Ln,T (θ0)
= ln

∫ ∞
−∞

Ln,T (θ)

Ln,T (θ0)
Ln,T (θ0) dZ = 0

So ELn,T (θ) < ELn,T (θ0). By Lemma 4, the PSTAR(p)-ANN model is globally identified

and therefore ELn,T (θ) is uniquely maximized at θ0 for all n, T . Since the parameter vec-

tor θ does not depend on n and T , it is equivalent to say that θ0 = maxθ∈Θ E 1
nT
Ln,T (θ).

�

We define a Hadamard product denoted by ◦, s.t. for vectors a, b1, . . . , bn ∈ Rn, a

matrix B = (b1, . . . , bn) ∈ Rn×n,

a ◦B =



a1b11 a1b21 · · · a1bn1

a2b12 a2b22 · · · a2bn2

...
...

. . .
...

anb1n anb2n · · · anbnn


, a ◦ b1 =



a1b11

a2b12

...

anb1n


And let

k0 =

∫ ∣∣∣∣f ′(s)f(s)

∣∣∣∣ f(s) ds

k1 =

∫ ∣∣∣∣∣f ′
2
(s)

f2(s)
− f ′′(s)

f(s)

∣∣∣∣∣ f(s) ds

k2 =

∫ ∣∣∣∣∣sf ′
2
(s)

f(s)
− sf ′′(s)

f(s)

∣∣∣∣∣ f(s) ds

k3 =

∫ ∣∣∣∣∣s2f ′
2
(s)

f(s)
− s2f ′′(s)

f(s)

∣∣∣∣∣ f(s) ds

To facilitate the proof later on, we provide a lemma as follows.
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Lemma 6. Given Assumptions 13-23,

(2.9) sup
θ∈Θ

∣∣∣∣∣ 1

nT

n∑
s=1

T∑
t=1

ln f(εs,t(θ))− E
1

nT

n∑
s=1

T∑
t=1

ln f(εs,t(θ))

∣∣∣∣∣ p−→ 0 as n, T →∞

Proof. As illustrated in equation (2.8), in a lattice with size n1 × n2,

sup
θ∈Θ

∣∣∣∣∣ 1

nT

T∑
t=1

n∑
s=1

ln f(εs,t(θ))− 1

nT

T∑
t=1

∑
s∈S

ln f(εs,t(θ))

∣∣∣∣∣ a.s.−−→ 0 as n1, n2, T →∞

Therefore, to prove (2.9) is equivalent to show that

sup
θ∈Θ

∣∣∣∣∣ 1

nT

T∑
t=1

(∑
s∈S

ln f(εs,t(θ))− E
1

n

∑
s∈S

ln f(εs,t(θ))

)∣∣∣∣∣ p−→ 0 as n1, n2, T →∞(2.10)

where S denotes the interior units mentioned before. Since the interior units have the

same neighboring structure, the space process for them is stationary when n1, n2 go to

infinity. We first show
∣∣∣ 1
nT

∑T
t=1

(∑
s∈S ln f(εs(θ))− E 1

n

∑
s∈S ln f(εs(θ))

)∣∣∣ p−→ 0 for fixed

θ.

To prove this, we want to show that E | ln f(εs,t(θ))| < ∞. Expanding ln f(εs,t(θ))

around θ0 with respect to θ,

ln f(εs,t(θ)) = ln f(εs,t(θ0)) +

∣∣∣∣∣f ′(εs,t(θ̃n,T ))

f(εs,t(θ̃n))

∂εs,t(θ̃n,T )

∂θ′

∣∣∣∣∣ (θ − θ0)
E | ln f(εs,t(θ))| ≤ E | ln f(εs,t(θ0))|+ E

∣∣∣∣∣f ′(εs,t(θ̃n,T ))

f(εs,t(θ̃n,T ))

∂εs,t(θ̃n,T )

∂θ′

∣∣∣∣∣ |θ − θ0|
where θ̃n,T is between θ and θ0. Under the true parameter values, εs,t(θ0) (denoted as

εs,t or εt as its vector form in the following) is independent and identically distributed.

From Assumption 18, E | ln f(εs,t)| < ∞. For E
∣∣∣f ′(εs,t(θ̃n,T ))
f(εs,t(θ̃n,T ))

∂εs,t(θ̃n,T )

∂θ′

∣∣∣, ∣∣∣∂εs,t(θ̃n,T )∂θ

∣∣∣ can be
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expressed as∣∣∣∣∣∂εs,t(θ̃n,T )

∂β

∣∣∣∣∣ = |xs,t|∣∣∣∣∣∂εs,t(θ̃n,T )

∂λ

∣∣∣∣∣ =
∣∣F (x′s,tγ̃n,T )′

∣∣ ≤ 1h(2.11)

∣∣∣∣∣∂εs,t(θ̃n,T )

∂γi

∣∣∣∣∣ =

∣∣∣∣∣λ̃i∂F (x′s,tγ̃i)

∂x′s,tγi
xs,t

∣∣∣∣∣ =
∣∣∣λ̃iF (x′s,tγ̃i)(1− F (x′s,tγ̃i))xs,t

∣∣∣
≤ max

λi∈Θ

|λixs,t|
4∣∣∣∣∣∂εs,t(θ̃n,T )

∂φi

∣∣∣∣∣ =

∣∣∣∣∣
n∑
k=1

wskyk,t−i

∣∣∣∣∣ =
∣∣∣[WnA

−1(L)(g(Xt−i,θ0) + εt−i(θ0)
]
s

∣∣∣
where A−1(L)(g(Xt−i,θ0)+εt−i(θ0) =

∑∞
j=0 ΨjA

−1
0 (g(Xt−i−j,θ0)+εt−i−j(θ0)). Function

g(xs,t,θ) = x′s,tβ + F (x′s,tγ)λ. Consider εt(θ̃n,T ),

|εt(θ̃n,T )| =

∣∣∣∣∣(In − φ̃0Wn)Yt −
p∑
i=1

φ̃iWnYt−i − g(Xt, θ̃n,T )

∣∣∣∣∣
=

∣∣∣∣∣εt(θ0) +

p∑
i=0

(φi0 − φ̃i)WnYt−i + (g(Xt,θ0)− g(Xt, θ̃n,T ))

∣∣∣∣∣
=

∣∣∣∣∣∣εt +

p∑
i=0

(φi0 − φ̃i)Wn

∞∑
j=0

ΨjA
−1
0 εt−i−j +

p∑
i=0

(φi0 − φ̃i)Wn

∞∑
j=0

ΨjA
−1
0 Xt−i−jβ0

+

p∑
i=0

(φi0 − φ̃i)Wn

∞∑
j=0

ΨjA
−1
0 F (Xt−i−jγ

′
0)λ0 +Xt(β0 − β̃)

+ F (Xtγ
′
0)λ0 − F (Xtγ̃

′)λ̃
∣∣∣

<

∣∣∣∣∣∣εt +

p∑
i=0

(φi0 − φ̃i)Wn

∞∑
j=0

ΨjA
−1
0 εt−i−j +

p∑
i=0

(φi0 − φ̃i)Wn

∞∑
j=0

ΨjA
−1
0 Xt−i−jβ0

+

p∑
i=0

(φi0 − φ̃i)Wn

∞∑
j=0

ΨjA
−1
0 F (Xt−i−jγ

′
0)λ0 +Xt(β0 − β̃)

∣∣∣∣∣∣+ ||λ0 − λ̃|| · 1n
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Denote P (xc) is a polynomial about x with highest order c. Since we have assumed that

A−1(L) existed and the expansion
∑∞

j=0 ΨjA
−1
0 is absolutely summable so Wn

∑∞
j=0 ΨjA

−1
0

is finite. By Assumption 22-23,
∣∣∣f ′(εs,t(θ̃n,T ))
f(εs,t(θ̃n,T ))

∣∣∣ < a1+a2|εs,t(θ̃n,T )|c1 and E
∣∣∣f ′(εs,t)f(εs,t)

∣∣∣ ,E ∣∣∣f ′(εs,t)f(εs,t)

∣∣∣2
are dominated by a1 +a2|εs,t|c1 , E|εs,t|c1 <∞, E|xs,t|c1 <∞. Let c∗ = max(1, c1), then,

E

∣∣∣∣∣f ′(εs,t(θ̃n,T ))

f(εs,t(θ̃n,T ))

∣∣∣∣∣
2

< P (E |εs,t|c
∗
) + P (E |xs,t|c

∗
) + Constant <∞

So also E
∣∣∣f ′(εs,t(θ̃n,T ))
f(εs,t(θ̃n,T ))

∣∣∣ < ∞. With Cauchy–Schwarz inequality [43] and the finite second

moment of xs,t, we can have,

E

∣∣∣∣∣f ′(εs,t(θ̃n,T ))

f(εs,t(θ̃n,T ))

∂εs,t(θ̃n,T )

∂β

∣∣∣∣∣ = E

∣∣∣∣∣f ′(εs,t(θ̃n,T ))

f(εs,t(θ̃n,T ))
xs,t

∣∣∣∣∣ <
E

∣∣∣∣∣f ′(εs(θ̃n,T ))

f(εs(θ̃n,T ))

∣∣∣∣∣
2

E |xs,t|2
1/2

<∞

(2.12)

E

∣∣∣∣∣f ′(εs,t(θ̃n,T ))

f(εs,t(θ̃n,T ))

∂εs,t(θ̃n,T )

∂λ

∣∣∣∣∣ = E

∣∣∣∣∣f ′(εs,t(θ̃n,T ))

f(εs,t(θ̃n,T ))
F (x′s,tγ̃)′

∣∣∣∣∣ ≤ E

∣∣∣∣∣f ′(εs,t(θ̃n,T ))

f(εs,t(θ̃n,T ))
1h

∣∣∣∣∣ <∞
(2.13)

E

∣∣∣∣∣f ′(εs,t(θ̃n,T ))

f(εs,t(θ̃n,T ))

∂εs,t(θ̃n,T )

∂γi

∣∣∣∣∣ ≤ E

∣∣∣∣∣f ′(εs,t(θ̃n,T ))

f(εs,t(θ̃n,T ))
λ̃ixs,t

∣∣∣∣∣ <∞
(2.14)

E

∣∣∣∣∣f ′(εs,t(θ̃n,T ))

f(εs,t(θ̃n,T ))

∂εs,t(θ̃n,T )

∂φi

∣∣∣∣∣ = E

∣∣∣∣∣f ′(εs,t(θ̃n,T ))

f(εs,t(θ̃n,T ))

[
WnA

−1(L)(g(Xt−i,θ0) + εt−i(θ0)
]
s

∣∣∣∣∣
(2.15)

< E

∣∣∣∣∣f ′(εs,t(θ̃n,T ))

f(εs,t(θ̃n,T ))

[
WnA

−1(L)εt−i(θ0)
]
s

∣∣∣∣∣(2.16)

+ k0E
∣∣∣[WnA

−1(L)g(Xt−i,θ0)
]
s

∣∣∣ i = 0, . . . , p(2.17)

Because WnA
−1(L) is well defined and Xt is stationary with finite second moment, so

component (2.17) is finite. (2.16) is dominated by P (E |εs,t|c
∗+1) so with the dominance

assumption, (2.16) is finite. Hence, with (2.12)-(2.17) finite, E | ln f(εs,t(θ0))| < ∞, we
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can conclude that E | ln f(εs,t(θ))| <∞. Then by ergodic theorem [4],∣∣∣∣∣ 1

nT

T∑
t=1

(∑
s∈S

ln f(εs,t(θ))− E
1

n

∑
s∈S

ln f(εs,t(θ))

)∣∣∣∣∣ p−→ 0, n1, n2, T →∞

To complete the proof of uniform convergence, we also need
1

nT

T∑
t=1

∑
s∈S

ln f(εs,t(θ)) is

equicontinuous for θ ∈ Θ, i.e., for all θ1,θ2 ∈ Θ,

1

nT

∣∣∣∣∣
T∑
t=1

∑
s∈S

(
ln f(εs,t(θ1))− ln f(εs,t(θ2))

)∣∣∣∣∣ ≤ ||θ1 − θ2||Op(1)(2.18)

Applying the mean value theorem to the left side in (2.18):

1

nT

∣∣∣∣∣
T∑
t=1

∑
s∈S

(
ln f(εs,t(θ1))− ln f(εs,t(θ2))

)∣∣∣∣∣ ≤ 1

nT

∣∣∣∣∣
T∑
t=1

∑
s∈S

∂ ln f(εs,t(θ̃n,T ))

∂θ′

∣∣∣∣∣ ||θ1 − θ2||
=

1

nT

∣∣∣∣∣
T∑
t=1

∑
s∈S

f ′(εs,t(θ̃n,T ))

f(εs,t(θ̃n,T ))

∂εs,t(θ̃n,T )

∂θ′

∣∣∣∣∣ ||θ1 − θ2||
where θ̃n,T is some value between θ1 and θ2. Since θ is in a compact set Θ, we show in

(2.19) that, for all s, t, εs,t(θ) is bounded by some function of Zt not depending on θ.

|εt(θ)| =

∣∣∣∣∣Yt − φ0WnYt −
p∑

k=1

φkWnYt−k −Xtβ − F (Xtγ
′)λ

∣∣∣∣∣
≤ |(In − φ0Wn)Yt|+ |

p∑
k=1

φkWnYt−k|+ |Xnβ|+
∣∣F (Xnγ

′)λ
∣∣(2.19)

≤ (In + max
φ0∈Θ

|φ0|Wn)|Yt|+
p∑

k=1

max
φi∈Θ

Wn|φiYt−k|+ |Xn|max
β∈Θ
|β|+ max

λ∈Θ
||λ||1n

Similarly, referring to (2.11), it is easy to show that
∣∣∣∂εs,t(θ)∂θ

∣∣∣ is bounded by some function

about Yt and Xt. Therefore, due to the dominance of
∣∣∣f ′(s)f(s)

∣∣∣ (see Assumption 22) and

stationarity of Xt, Yt, for θ̃n,T between θ1 and θ2, there exists a constant M such that

1

nT

∣∣∣∣∣
T∑
t=1

∑
s∈S

f ′(εs,t(θ̃n,T ))

f(εs,t(θ̃n,T ))

∂εs,t(θ̃n,T )

∂θ′

∣∣∣∣∣ ≤M for n1, n2, T →∞(2.20)
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Hence, for θ1,θ2 ∈ Θ

1

nT

∣∣∣∣∣
T∑
t=1

∑
s∈S

(
ln f(εs,t(θ1))− ln f(εs,t(θ2))

)∣∣∣∣∣ = ||θ1 − θ2||Op(1)

So 1
nT

∑T
t=1

∑
s∈S ln f(εs,t(θ)) is equicontinuous for θ ∈ Θ. With the pointwise conver-

gence and equicontinuity, we can conclude the uniform convergence in (2.10) and further-

more (2.9) follows. �

Similar to Chapter 1, we now give a formal statement of the consistency results.

Theorem 3. Given Assumptions 13-23, θ̂n,T
p−→ θ0 as n, T →∞.

Proof. Similar to the proof by Lung-fei Lee [25], we need to show the stochastic

equicontinuity of 1
n

ln |A0| to have the uniform convergence of the log likelihood function

Ln,T (θ). Applying the mean value theorem,∣∣∣∣ 1n(ln |In − φ†0Wn| − ln |In − φ‡0Wn|)
∣∣∣∣ =

∣∣∣∣(φ†0 − φ‡0) 1

n
tr(Wn(In − φ∗0n,TWn)−1)

∣∣∣∣
where φ∗0n,T is between φ†0 and φ‡0. By Assumption 14 and 15, supφ0∈Θ |φ0| < 1, Wn is

bounded in both rows and column sums uniformly and using (2.7),∣∣∣∣ 1ntr(Wn(In − φ∗0n,TWn)−1)

∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

τi
1− φ∗0n,T τi

∣∣∣∣∣ ≤ C1

where C1 is a constant not depending on n. So
∣∣∣ 1n(ln |In − φ†0Wn| − ln |In − φ‡0Wn|)

∣∣∣ ≤
C1|φ†0 − φ

‡
0| and with Lemma 6 we can conclude the uniform convergence that

sup
θ∈Θ

∣∣∣∣ 1

nT
Ln,T (θ)− E

1

nT
Ln,T (θ)

∣∣∣∣ p−→ 0.

With the assumptions 13-22, the parameter space Θ is compact; 1
nT
Ln,T (θ) is continuous

in θ ∈ Θ and is a measurable of Yt, Xt, t = 1, . . . , T for all θ ∈ Θ. E 1
nT
Ln,T (θ) is

continuous on Θ and by Lemma 5, E 1
nT
Ln,T (θ) has a unique maximum at θ0. Referring
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to Theorem 3.5 in White [47] with the uniform convergence in (2.9), we can conclude that

θ̂n,T
p−→ θ0 as n, T →∞. �

2.4.2. Asymptotic Distribution

Assumption 24. The limit A(θ0) = − limn,T→∞ E 1
nT

∂2Ln,T (θ0)
∂θ∂θ′

is nonsingular.

Assumption 25. The limit B(θ0) = limn,T→∞ E 1
nT

∂Ln,T (θ0)
∂θ

∂Ln,T (θ0)
∂θ′

is nonsingular.

These assumptions are to guarantee the existence of the covariance matrix of the lim-

iting distribution of parameters in a PSTAR(p)-ANN model. We now give the asymptotic

distribution of the maximum likelihood estimator θ̂n,T .

Theorem 4. Under Assumptions 13-25,

(2.21)
√
nT (θ̂n,T − θ0)

d−→ N(0,Ω0)

where Ω0 = A(θ0)
−1B(θ0)A(θ0)

−1 = A(θ0)
−1

Proof. Since θ̂n,T maximizes Ln,T (θ),
∂Ln,T (θ̂n,T )

∂θ
= 0. By the mean value theorem,

expand
∂Ln,T (θ̂n,T )

∂θ
around θ0 with respect to θ,

∂Ln,T (θ̂n,T )

∂θ
=
∂Ln,T (θ0)

∂θ
+
∂2Ln,T (θ̃n,T )

∂θ∂θ′
(θ̂n,T − θ0)

0 =
∂Ln,T (θ0)

∂θ
+
∂2Ln,T (θ̃n,T )

∂θ∂θ′
(θ̂n,T − θ0)

where θ̃n,T is between θ̂n,T and θ0. Therefore, we can have the following equation:

(2.22)
√
nT (θ̂n,T − θ0) =

[
− 1

nT

∂2Ln,T (θ̃n,T )

∂θ∂θ′

]−1
1√
nT

∂Ln,T (θ0)

∂θ

From (2.11), denote f ′(εtθ)
f(εt(θ))

as Vt(θ) ∈ Rn and f ′(εtθ0)
f(εt(θ0))

= Vt.
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Recall that Zt = (WnYt,WnYt−1, . . . ,WnYt−p, Xt) so the first order derivatives can be

expressed as

1√
nT

∂Ln,T (θ)

∂θ
=



− 1√
nT

∑T
t=1

(
(WnYt)

′Vt(θ) + tr(WnA
−1
0 )
)

− 1√
nT

∑T
t=1 Z

′
tVt(θ)

− 1√
nT

∑T
t=1

(
F (Xtγ

′)
)′
Vt(θ)

− λ1√
nT

∑T
t=1X

′
t

(
F ′(Xtγ1) ◦ Vt(θ)

)
...

− λh√
nT

∑T
t=1X

′
t

(
F ′(Xtγh) ◦ Vt(θ)

)



(2.23)

By Lemma 5, the true parameter values maximize 1
nT

ELn,T (θ), so 1
nT

∂ELn,T (θ0)
∂θ

= 0. In

(2.12)-(2.17) and (2.19), we showed that E
∣∣∣∂ ln f(εs,t(θ))∂θ

∣∣∣ is dominated by some function

not related to θ and (2.20) indicates that E
∣∣∣∂ ln f(εs,t(θ))∂θ

∣∣∣ is bounded for interior units in

S. Hence,E ∂ ln f(εs,t(θ))

∂θ
= ∂

∂θ
E ln f(εs,t(θ)), it follows that, with 1

nT
Ln,T (θ) = 1

n
ln |A0| +

1
nT

∑n
s=1

∑T
t=1 ln f(εs,t(θ)), we can have,

1

nT

∂ELn,T (θ0)

∂θ
=

1

nT
E
∂Ln,T (θ0)

∂θ
= 0

Therefore, with Assumption 25,

Var(
1√
nT

∂Ln,T (θ0)

∂θ
) = −E 1

nT

∂2Ln,T (θ0)

∂θ∂θ′
= E

(
1

nT

∂Ln,T (θ0)

∂θ

∂Ln,T (θ0)

∂θ′

)
→ B(θ0)

And under this A(θ0) = B(θ0). Since
∂Ln,T (θ0)

∂θ
is the sum of T identical and ergodic

random variables, by the central limit theorem for stationary ergodic processes [33], the

limiting distribution of 1√
nT

∂Ln,T (θ0)
∂θ

is N(0, B(θ0)).

Next we would like to show that 1
nT

∂2Ln,T (θ̃n,T )
∂θ∂θ′

− 1
nT

∂2Ln,T (θ0)
∂θ∂θ′

p−→ 0. Following the

results in (2.23), define Ut(θ) = f ′′(εt(θ))
f(εt(θ))

− f ′2(εt(θ))

f2(εt(θ))
∈ Rn, and write Ut = Ut(θ0) so the
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second order derivatives are given below − 1
nT

∂2Ln,T (θ)
∂θ∂θ′

=

1

nT

T∑
t=1



G0,t(θ) (WnYt)′G1,t(θ) (WnYt)′G2,t(θ) (WnYt)′H1,t(θ) ··· (WnYt)′Hh,t(θ)

G′1,t(θ)WnYt Z′tG1,t(θ) Z′tG2,t(θ) Z′tH1,t(θ) ··· Z′tHh,t(θ)

G′2,t(θ)WnYt G′2,t(θ)Zt F (Xtγ′)′G2,t(θ) F (Xtγ′)′H1,t(θ) ··· F (Xtγ′)′Hh,t(θ)

+K1,t(θ) ··· +Kh,t(θ)

H′1,t(θ)WnYt H′1,t(θ)Zt H′1,t(θ)F (Xtγ′)

+K1,t(θ)′

...
...

... J(θ)
H′h,t(θ)WnYt H′h,t(θ)Zt H′h,t(θ)F (Xtγ′)

+Kh,t(θ)
′


(2.24)

Jij,t(θ) =



λiX
′
t(F

′′(Xtγi) ◦ Vt(θ) ◦Xt) + λiX
′
t(F

′(Xtγi) ◦Hi,t) i = j

λi(F
′(Xtγi) ◦Hj,t)

′Xt i > j i, j = 1, 2, . . . , h

λiX
′
t(F

′(Xtγi) ◦Hj,t) i < j

G0,t(θ) =
(
−WnYt ◦WnYt)

′Ut(θ) + tr((WnA
−1
0 )2

)
G1,t(θ) = −Ut(θ) ◦ Zt

G2,t(θ) = −Ut(θ) ◦ F (Xtγ
′)

Hi,t(θ) = −Ut(θ) ◦ (λiF
′(Xtγi) ◦Xt) i = 1, . . . , h

Ki,t(θ) = [Vt(θ) ◦ F ′(Xtγ
′)]′Xt ◦ ei i = 1, . . . , h k = 1, . . . , h

ei,k =


1 k = i

0 k 6= i

Since θ̃n,T is between θ̂n,T and θ0, θ̂n,T
p−→ θ0 so θ̃n,T also converges to θ0 in probability

as n→∞. By Assumption 22,
∣∣∣f ′(s)f(s)

∣∣∣ , ∣∣∣f ′′(s)f(s)

∣∣∣ and
∣∣∣f ′2(s)f2(s)

∣∣∣ are continuous and are bounded

by a1 + a2 |s|c1 so Ut(θ), Vt(θ) are continuous. With φ0 ∈ (− 1
τ
, 1
τ
), tr((WnA

−1
0 )2) =∑n

i=1
τ2i

(1−φ0τi)2 is also a continuous function of φ0.
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Therefore elements in 1
nT

∂2Ln,T (θ)
∂θ∂θ′

are continuous functions for θ in Θ. Then by the

continuity,

1

nT

∂2Ln,T (θ̃n,T )

∂θ∂θ′
− 1

nT

∂2Ln,T (θ0)

∂θ∂θ′
p−→ 0, as θ̃n,T

p−→ θ0(2.25)

Finally we will prove that
∣∣∣ 1
nT

∂2Ln,T (θ0)
∂θ∂θ′

− E 1
nT

∂2Ln,T (θ0)
∂θ∂θ′

∣∣∣ p−→ 0. Since ln |A0| can be

decomposed as
∑n

i=1 ln(1− φ0τi), to show E 1
nT

∂2Ln,T (θ0)
∂θ∂θ′

<∞ is equivalent to show

E

∣∣∣∣∣ ∂2

∂θ∂θ′

(
1

nT

T∑
t=1

n∑
s=1

ln(1− φ00τs) + ln f(εs,t(θ0))

)∣∣∣∣∣ <∞(2.26)

We first discuss the second derivative with respect to φ0 component in (2.26). By trian-

gular inequality,

E

∣∣∣∣∣ ∂2

∂φ0∂φ0

1

nT

T∑
t=1

n∑
s=1

(
ln(1− φ00τs) + ln f(εs,t(θ0))

)∣∣∣∣∣ < E

∣∣∣∣∣ 1n
n∑
s=1

∂2 ln(1− φ00τs)
∂φ0∂φ0

∣∣∣∣∣
+E

∣∣∣∣∂2 ln f(εs,t(θ0))

∂φ0∂φ0

∣∣∣∣
where φ00 is the true value of φ0. Consider E

∣∣∣ 1n∑n
s=1

∂2 ln(1−φ00τi)
∂φ0∂φ0

∣∣∣ + E
∣∣∣∂2 ln f(εs,t(θ0))∂φ0∂φ0

∣∣∣,
under stationarity, it can be simplified as

1

n
tr(WnA

−1
0 )2 + E

∣∣∣∣∣∣
(
f ′

2
(εs,t)

f2(εs,t)
− f ′′(εs,t)

f(εs,t)

)(
n∑
k=1

wskyk,t

)2
∣∣∣∣∣∣(2.27)

Define Mn = {mi,j} = WnA
−1
0 and by assumptions, Mn is uniformly bounded in row and

column. Suppose the row sum or column sum of Mn is bounded by a constant b. We know

1
n
tr(WnA

−1
0 )2 <∞. So we only need to show E

∣∣∣∣(f ′
2
(εs,t)

f2(εs,t)
− f ′′(εs,t)

f(εs,t)

)
(
∑n

k=1wskyk,t)
2

∣∣∣∣ <∞.

By simple linear algebra,

Yt =

∞∑
j=0

ΨjA
−1
0 (Xt−jβ + F (Xt−jγ

′) + εt−j)

=
∞∑
j=0

ΨjA
−1
0 (g(Xt−j ,θ0) + εt−j)
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So WnYt = Wn

∑∞
j=0 ΨjA

−1
0 (g(Xt−j,θ0) + εt−j). Therefore (

∑n
k=1wskyk,t)

2 is the sth

component of (WnYt ◦WnYt) and we expand (WnYt ◦WnYt)s =Wn

∞∑
j=0

ΨjA
−1
0 g(Xt−j ,θ0) ◦Wn

∞∑
j=0

ΨjA
−1
0 g(Xt−j ,θ0)


s

(2.28)

+

2Wn

∞∑
j=0

ΨjA
−1
0 g(Xt−j ,θ0) ◦Wn

∞∑
j=0

ΨjA
−1
0 εt−j


s

(2.29)

+

Wn

∞∑
j=0

ΨjA
−1
0 εt−j ◦Wn

∞∑
j=0

ΨjA
−1
0 εt−j


s

(2.30)

From assumptions 15 and 16, we know that Wn is uniformly bounded and
∑∞

j=0 ΨjA
−1
0

is absolute summable so (2.28) < ∞ under the stationary condition of Xt. Hence,

E
∣∣∣∣(f ′

2
(εs,t)

f2(εs,t)
− f ′′(εs,t)

f(εs,t)

)
· (2.28)

∣∣∣∣ <∞.

For (2.29), when j > 0, εt−j is independent from εt. So for all k when j > 0,

E

∣∣∣∣∣∣
(
f ′

2
(εs,t)

f2(εs,t)
− f ′′(εs,t)

f(εs,t)

)
·

Wn

∞∑
j=1

ΨjA
−1
0 εt−j


s

∣∣∣∣∣∣ = k1 ·

Wn

∞∑
j=1

ΨjA
−1
0 E |εt−j |


s

<∞

when j = 0, this reduces to E
∣∣∣∣(f ′

2
(εs,t)

f2(εs,t)
− f ′′(εs,t)

f(εs,t)

)
·
[
WnA

−1
0 εt

]
s

∣∣∣∣ < k1|b−mss|+ k2|mss|.

So E
∣∣∣∣(f ′

2
(εs,t)

f2(εs,t)
− f ′′(εs,t)

f(εs,t)

)
· (2.29)

∣∣∣∣ <∞.

For (2.30), similar to (2.29), we can have E
∣∣∣∣(f ′

2
(εs,t)

f2(εs,t)
− f ′′(εs,t)

f(εs,t)

)
· (2.30)

∣∣∣∣ < Constant ·

(k2 + k3 + E|εs,t|) <∞.

Therefore combining all these components together,

E

∣∣∣∣∣∣
(
f ′

2
(εs,t)

f2(εs,t)
− f ′′(εs,t)

f(εs,t)

)(
n∑
k=1

wskyk,t

)2
∣∣∣∣∣∣

= E

∣∣∣∣∣
(
f ′

2
(εs,t)

f2(εs,t)
− f ′′(εs,t)

f(εs,t)

)(
(2.28) + (2.29) + (2.30)

)∣∣∣∣∣ <∞
So equation (2.27) is finite.
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Because
∑T

t=1

∑n
s=1 ln(1 − φ0τs) in (2.26) only relates to φ0, this term goes away

when taken second derivative with respect to other parameters. Similar to the proof of

E
∣∣∣∂2 ln f(εs,t(θ0))∂φ0∂φ0

∣∣∣ < ∞, we can show that E
∣∣∣∂2 ln f(εs,t(θ0))∂φi∂φj

∣∣∣ < ∞ for i = 0, 1, . . . , p and

j = 1, . . . , p, i.e.,

E

∣∣∣∣∣ ∂2

∂φi∂φj

1

nT

T∑
t=1

n∑
s=1

(
ln(1− φ00τs) + ln f(εs,t(θ0))

)∣∣∣∣∣ <∞ for i, j = 0, 1, . . . , p

Other elements in the matrix (2.26) equal to those in E
∣∣∣∂2 ln f(εs,t(θ0))∂θ∂θ′

∣∣∣ and they are also

finite.

E
∣∣∣∣∂2 ln f(εs,t(θ0))

∂φi∂β′

∣∣∣∣ ≤ Constant · |x′s,t| (k2 + k1E|εs,t|)(2.31)

E
∣∣∣∣∂2 ln f(εs,t(θ0))

∂φi∂λ′

∣∣∣∣ ≤ Constant · 1′h (k2 + k1E|εs,t|)(2.32)

E

∣∣∣∣∣∂2 ln f(εs,t(θ0))

∂φi∂γ′j

∣∣∣∣∣ ≤ Constant · |λj0x′s,t|4
(k2 + k1E|εs,t|)(2.33)

E
∣∣∣∣∂2 ln f(εs,t(θ0))

∂β∂β′

∣∣∣∣ = k1|xs,tx′s,t|(2.34)

E
∣∣∣∣∂2 ln f(εs,t(θ0))

∂β∂λ′

∣∣∣∣ = k1|xs,tF (x′s,tγ0)|(2.35)

E

∣∣∣∣∣∂2 ln f(εs,t(θ0))

∂β∂γ ′j

∣∣∣∣∣ ≤ k1
4
|λj0xs,tx′s,t|(2.36)

E
∣∣∣∣∂2 ln f(εs,t(θ0))

∂λ∂λ′

∣∣∣∣ = k1
∣∣F (x′s,tγ0)

′F (x′s,tγ0)
∣∣ ≤ k1 · 1h×h(2.37)

E

∣∣∣∣∣∂2 ln f(εs,t(θ0))

∂λ∂γ ′j

∣∣∣∣∣ =
k1
4
|λj0F ′(x′s,tγj0)| · |F (x′s,tγ0)

′x′s,t| ≤
k1|λj0|

4
· |F (x′s,tγ0)

′x′s,t|(2.38)

E

∣∣∣∣∣∂2 ln f(εs,t(θ0))

∂γk∂γ
′
j

∣∣∣∣∣ ≤ k1|λk0λj0|
16

· |xs,tx′s,t|, k 6= j(2.39)

E

∣∣∣∣∣∂2 ln f(εs,t(θ0))

∂γj∂γ
′
j

∣∣∣∣∣ ≤ k1λ
2
j0

16
· |xs,tx′s,t|+

√
3k0|λj0|

18
|xs,tx′s,t|(2.40)
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Then we can apply the ergodic theorem [4] and conclude that∣∣∣∣ 1

nT

∂2Ln,T (θ0)

∂θ∂θ′
− E

1

nT

∂2Ln,T (θ0)

∂θ∂θ′

∣∣∣∣ p−→ 0(2.41)

Recall the equation (2.22), we have proved that 1√
nT

∂Ln,T (θ0)
∂θ

has the limiting distribution

N(0, B(θ0)). With (2.41), for θ̃n,T between θ̂n,T and θ0, − 1
nT

∂2Ln,T (θ̃n,T )
∂θ∂θ′

p−→ A(θ0) so we

can conclude that
√
nT (θ̂n,T − θ0)

d−→ N(0,Ω0), where Ω0 = A−1(θ0)B(θ0)A
−1(θ0). �

2.5. Numerical Results

2.5.1. Simulation Study

In this section, we conduct simulation experiments to examine the estimators’ behavior

for finite samples. We look at two PSTAR-ANN(1) models with one and two neurons

with model parameters specified below:

Yt = φ0WnYt + φ1WnYt−1 + F (Xtγ
′)λ+ εt(2.42)

φ0 = 0.6, φ1 = −0.274, λ = 1.5

γ = (γ1, γ2)
′ = (0.75,−0.35)′

Yt = φ0WnYt + φ1WnYt−1 +Xtβ + F (Xtγ
′
1)λ1 + F (Xtγ

′
2)λ2 + εt(2.43)

φ0 = 0.6, φ1 = −0.274, β = (0.24,−0.7)′

λ1 = 2, γ1 = (γ11, γ12)
′ = (0.75,−0.35)′

λ2 = 0.8, γ2 = (γ21, γ22)
′ = (0.35,−0.5)′

Simulations are conducted in a 30 by 30 lattice grid, so n = 900 and p = 1, T =

30. Random errors are sampled respectively from three distributions (standard normal,

rescaled t-distribution and Laplace distribution) with variance 1. We generated data for

two exogenous variables, observed at different time points t and location s.
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Let

Xt =

x11,t . . . x1n,t

x21,t . . . x2n,t


′

Usually we would like to normalize predictors before fitting a neural network model to

avoid the computation overflow [32] so values of xs,t[i], i = 1, 2, were generated indepen-

dently from normal distributions N(0, 1.52) and N(0, 32) respectively. The log-likelihood

function Ln,T (θ) is given in (2.44) and we use L-BFGS-B method [12, 52] (recommended

for bound constrained optimization) to find the parameter estimates θ̂ which maximize

(2.44).

Ln,T (θ) = T ln |In − φ0Wn|+
T∑
t=1

n∑
s=1

ln f(εs,t(θ))(2.44)

for model (2.42): εs,t(θ) = ys,t −
p∑
i=0

n∑
k=1

φiwskyk,t−i − F (x′s,tγ)λ

for model (2.43): εs,t(θ) = ys,t −
p∑
i=0

n∑
k=1

φiwskyk,t−i − F (x′s,tγ1)λ1 − F (x′s,tγ2)λ2

For the models under consideration, we estimated the covariance of the asymptotic normal

distribution equation (2.21). Since matrices A(θ0) and B(θ0) involve expected values

with respect to the true parameter θ0, given merely observations, in practice they can be

estimated as follows:

Â(θ0) =
1

nT

T∑
t=1

n∑
s=1

−∂
2ls,t(θ0)

∂θ∂θ′

B̂(θ0) =
1

nT

T∑
t=1

n∑
s=1

∂ls,t(θ0)

∂θ

∂ls,t(θ0)

∂θ′

where

ls,t(θ) =
1

n
ln |In − φ0Wn|+ ln f(εs,t(θ))



90

Using (2.23) and (2.24), we can calculate Â(θ0), B̂(θ0) to assess the asymptotic prop-

erties of parameter estimates. Note that the derivative of the log-likelihood with respect

to φ0 cannot be calculated directly because it requires taking derivative with respect

to a log-determinant of In − φ0Wn. For small sample sizes, we can compute the de-

terminant directly and get the corresponding derivatives; but for large sample sizes, for

example a dataset with n = 900 observations, Wn is a 900 × 900 weight matrix which

makes it impossible to calculate the derivative directly. Since Wn is a square matrix, we

can apply the spectral decomposition such that Wn can be expressed in terms of its n

eigenvalue-eigenvector pairs in (2.7). So we can apply the following approach to calculate

the derivative of ln |In−φ0Wn|, which greatly reduces the burden of computations (Viton

[46]).

ln |In − φ0Wn| = ln

(
n∏
s=1

(1− φ0τi)

)
Further the derivatives of the log-likelihood function with respect to φ0 is

∂ls,t(θ)

∂φ0
=

1

n

n∑
i=1

−τi
(1− ρτi)

+ {ys,t −
p∑
i=0

φi

n∑
j=1

wsjyj,t−i − λF (x′s,tγ)} ·

 n∑
j=1

wsjyj,t


∂2ls,t(θ)

∂φ0∂φ0
= − 1

n

n∑
i=1

 τ2i
(1− φ0τi)2

+

 n∑
j=1

wsjyj,t

2
Finally we can estimate the covariance matrix by equation (2.45).

Ω̂ = Â−1(θ0)B̂(θ0)Â
−1(θ0)(2.45)

In each simulation study, we compute θ̂ for each of 200 replicates. The estimated Ω̂ of the

asymptotic covariance matrix Ω̂ is computed based on a sample with n = 10000, T = 100

simulated observations. Table 2.1 and 2.2 compare the empirical mean and standard

errors (in parentheses) of θ̂ with the true value and their estimated asymptotic standard

deviations. From simulation results of the two models, the empirical standard deviations
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of θ̂ are close to the asymptotic standard deviations, which implies that the estimators’

large finite sample behavior roughly matches their asymptotic distributions. Note that

when εt is sampled from a Laplace distribution, this covariance matrix cannot be computed

because its second order derivative is not differentiable at 0. But the simulated θ̂’s still

exhibit normal properties. Normal plots for parameter estimates are shown in Figure 2.3

and give a strong indication of normality.

Model 1: Yt = φ0WnYt + φ1WnYt−1 + F (Xtγ
′)λ+ εt

εt φ̂0 φ̂1 λ̂ γ̂1 γ̂2

true value 0.6 −0.274 1.50 0.75 −0.35

N(0, 1)

0.5997 -0.2743 1.5025 0.7485 -0.3476
(0.0065) (0.0079) (0.0274) (0.0269) (0.0134)
[0.0079] [0.0085] [0.0308] [0.0310] [0.0147]

t(4)

0.5994 -0.2737 1.5000 0.7531 -0.3507
(0.0059) (0.0069) (0.0236) (0.0249) (0.0112)
[0.0068] [0.0071] [0.0259] [0.0258] [0.0122]

Laplace 0.5999 -0.2736 1.4992 0.7501 -0.3504
(0,
√
2
2

) (0.0048) (0.0058) (0.0199) (0.0196) (0.0097)

Table 2.1. Empirical means and standard errors (in parentheses) of pa-
rameter estimates when ε is sampled from a standard normal, standardized
student t distribution and a Laplace distribution. The asymptotic standard
errors are displayed for reference in square brackets.

2.5.2. Real Data Example

Spatial models have a lot of applications in understanding spatial interactions in cross-

sectional data. In our first chapter we applied a partially specified spatial autoregressive

model to understand the relationships between vote choices and social factors. In this
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Model 2: Yt = φ0WnYt + φ1WnYt−1 +Xtβ + F (Xtγ
′
1)λ1 + F (Xtγ

′
2)λ2 + εt

εt φ̂0 φ̂1 β̂ λ̂1

0.6 −0.274 0.24 −0.70 2

N(0, 1)

0.6000 -0.2748 0.2402 -0.6985 1.9927
(0.0039) (0.0046) (0.0137) (0.0140) (0.0928)
[0.0040] [0.0044] [0.0135] [0.0141] [0.0921]

t(4)

0.5999 -0.2740 0.2402 -0.7005 2.0008
(0.0036) (0.0034) (0.0130) (0.0106) (0.0727)
[0.0035] [0.0036] [0.0116] [0.0113] [0.0759]

Laplace 0.6006 -0.2743 0.2408 -0.6997 1.9983
(0,
√
2
2

) (0.0030) (0.0030) (0.0100) (0.00995) (0.0638)

εt γ̂1 λ̂2 γ̂2

0.75 0.7 0.8 0.35 −1

N(0, 1)

0.7503 0.7030 0.8076 0.3577 -1.0159
(0.0962) (0.0369) (0.0450) (0.0899) (0.1209)
[0.0920] [0.0390] [0.0449] [0.0835] [0.1243]

t(4)

0.7496 0.7016 0.7989 0.3521 -1.0078
(0.0714) (0.0332) (0.0392) (0.0749) (0.0972)
[0.0324] [0.0371] [0.0758] [0.0697] [0.1026]

Laplace 0.7509 0.7026 0.8034 0.3477 -1.0089
(0,
√
2
2

) (0.0624) (0.0256) (0.0293) (0.0621) (0.0873)

Table 2.2. Empirical means and standard errors (in parentheses) of pa-
rameter estimates when ε is sampled from a standard normal, standardized
student t distribution and a Laplace distribution. The asymptotic standard
errors are displayed for reference in square brackets.

chapter, we want to use a partially specified space time autoregressive model to further

analyze the time influence in the electoral dynamics.

We focus on the proportion of votes cast for U.S. presidential candidates at the county

level in 2004. Counties are grouped by state, and let Yt, Yt−1 (so t = 1, 2, i.e., observe Y1

and Y2) be the corresponding fraction of votes (vote-share) in a county for the Democratic
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Figure 2.3. Normal plots for parameter estimates φ0 (1st row), φ1 (2nd row),
λ (3rd row) and γ1 (4th row), γ2 (5th row) of model (2.42) when εs follows
a standard normal distribution (first column), standardized t distribution
(middle column) and Laplace distribution (last column) n = 30×30, T = 30



94

candidate in 2004 and 2000. Predictors Xt are chosen from economic and social factors

covering the living standard, economy development and racial distribution. Figure 2.4

Figure 2.4. Fractions of vote-shares per county for Democratic presidential
candidate in 2004 (left) and 2000 (right)

shows the observed values of Y2 for 2004 and Y1 for 2000 in a US map. Despite the strong

spatial correlation (by Moran’s Test on Yt test statistic = 52.4, P-value < 2.2 × 10−16),

these heat maps also exhibit the correlation across time since the two heat maps look

rather similar. This indicates that Yt, the fraction of vote-share for Democratic candidate,

is not independently distributed across the space or time. Therefore we consider fitting a

space time model to the data.

In our analysis, we exclude the four U.S. counties with no neighbors (San Juan, Dukes,

Nantucket, Richmond) to avoid the non-singularity of our spatial weight matrix Wn in

the modeling, so the total number of observations is n = 3107. Continuing our analysis in

the first chapter, the selected explanatory variables are percent residents under 18 years

in 2004 X1,t (UNDER18), percent white residents in 2004 X2,t (WHITE), percent residents

below poverty line in 2004 X3,t (pctpoor).
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We also assume the random error follows a scaled t(8) distribution and, similar to

previous chapter, perform variable transformations as follows:

Y ∗t = Yt/8

Y ∗t−1 = Yt−1/8

X̃1,t = (I3107 − 0.6W3107)X1,t

X∗1,t =
X̃1,t −Average(X̃1,t)

Std(X̃1,t)

X∗2,t =
X2,t −Average(X2,t)

Std(X2,t)

X∗3,t =
X3,t −Average(X3,t)

Std(X3,t)

Figure 2.5 illustrates histograms of Y ∗t (first row) and histograms of exogenous variables

X∗1,t, X
∗
2,t, X

∗
3,t when t = 1, 2, 3 (t = 3 represents the year 2008) respectively. Comparing

their histograms at different years, we can observe that the distributions look similar so

we may consider Xt and Yt as stationary processes across time.

The estimated PSAR-ANN model in chapter 1 is:

Y ∗t =0.721W3107Y
∗
t + 1.693− 0.185X∗1,t − 0.658X∗2,t + 0.181X∗3,t

− 0.937F (1.509X∗1,t − 2.544X∗2,t + 2.268X∗3,t) + ε̂t(2.46)

In this chapter we would like to add time into the model and we fit two PSTAR-ANN(1)

models with one and two neurons respectively. Similarly we find the parameter esti-

mates by maximizing the corresponding log-likelihood functions and use the L-BFGS-B

algorithm to search for the optimum. Detailed optimization steps are similar to those

in chapter 1. The model fits are shown below. One is the PSTAR-ANN(1) with one
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Figure 2.5. Histograms of Y ∗t (1st row), X∗1,t (2nd row), X∗3,t (3rd row) and
X∗3,t (4th row) for t = 1, 2, 3 corresponding to the year 2000 (left), 2004
(middle) and 2008 (right)

neuron:

Y ∗t = 0.425W3107Y
∗
t + 0.464W3107Y

∗
t−1 − 1.173 + 0.148X∗1,t − 1.177X∗2,t − 0.153X∗3,t

+ 3.056F (−0.722X∗1,t + 1.689X∗2,t + 0.248X∗3,t) + ε̂t(2.47)
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Another is the PSTAR-ANN(1) with two neurons:

Y ∗t = 0.417W3107Y
∗
t + 0.467W3107Y

∗
t−1 − 1.576 + 0.203X∗1,t − 1.222X∗2,t − 0.057X∗3,t

+ 0.699F (−1.249X∗1,t + 0.084X∗2,t − 3.247X∗3,t)(2.48)

+ 3.180F (−0.621X∗1,t + 1.621X∗2,t + 0.495X∗3,t) + ε̂t

Comparing the three models (2.46), (2.47) and (2.48), the coefficients estimates are all

positive so it is apparent that there exist a positive space correlation, between ys,t and

its neighbors, and also a positive time correlation between Yt and Yt−1. The P-values

of Moran’s test statistic of PSTAR-ANN(1) model residuals (residuals of model (2.47)

and (2.48)) are higher than that of model (2.46), which indicates that PSTAR-ANN(1)

models are able to describe more spatial correlations than the PSAR-ANN model. For

Figure 2.6. Residuals heat map (calculated from the PSTAR-ANN model
with one neuron)

the preliminary comparison purpose, we compare the AICs (AIC = 2#parameters −

2 lnLn,T (θ̂)) of the three models (See table 2.3). For likelihood ratio test (H0: Model

(2.46) is adequate, H1: model (2.47) is adequate), the test statistic −2 lnLModel (2.46) +
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2 lnLModel (2.47) = 287.17 with df = 6, P-value < 0.05, so we rejected H0 and conclude

that the PSTAR-ANN(1) model with one neuron is a better fit. Similarly we apply the

same method to compare the two PSTAR-ANN(1) models and conclude that the model

with two neurons is better (the test statistic −2 lnLModel (2.47) + 2 lnLModel (2.48) = 40.33

with df = 4, P-value < 0.05). The covariance matrices for the parameter estimates of

Models
PSAR-ANN PSTAR-ANN PSTAR-ANN

(one neuron) (one neuron) (two neurons)

# Parameters 9 10 14

Moran’s Test
0.0745 0.2336 0.3368

(1.7836) (−1.1910) (−0.9604)

− lnL 1879.35 1734.5 1710.33

AIC 3776.17 3489 3448.669

Table 2.3. Model Comparisons: PSAR-ANN model with one neuron (2.46),
PSTAR-ANN models with one (2.47) and two neurons (2.48)

model (2.47) and (2.48) are calculated and the 95% confidence intervals for the model

parameters are shown in Tables 2.4 and 2.5. From Table 2.4, all the parameters, except

X3,t (pctpoor), are significant at 0.05 significance level. Table 2.5 shows the 95% level of

parameter estimates in model (2.48).

From Table 2.4 and 2.5, we can see that values of ys,t are positively spatially correlated

in both space and time. Looking at the signs of parameter estimates of coefficients, we

can see that the sign of variable UNDER18 in model (2.46) is negative while positive in

model (2.47) and (2.48). Considering its parameter estimate significant in all models,

this indicates that age and vote-shares for Democratic candidates can be dependent but

the percent residents under 18 may not be a good measurement for this social factor.
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Parameter Estimate Std. 95% C.I.

φ0 0.425 0.0086 (0.4081, 0.4419)
φ1 0.464 0.0182 (0.4283, 0.4997)
β0 -1.173 0.3283 (−1.8165,−0.5295)
β1 0.148 0.0697 (0.0114, 0.2846)
β2 -1.177 0.1638 (−1.4980,−0.8560)
β3 -0.153 0.1079 (−0.3645, 0.0585)∗

λ 3.056 0.6397 (1.8022, 4.3098)
γ1 -0.722 0.1278 (−0.9725,−0.4715)
γ2 1.689 0.1762 (1.3436, 2.0344)
γ3 0.248 0.1890 (−0.1224, 0.6184)∗

Table 2.4. Parameter estimates of PSTAR-ANN model (2.47) parameters
with 95% confidence intervals (∗ indicates the insignificance)

Parameter Estimate Std. 95% C.I.

φ0 0.417 0.0086 (0.4000, 0.4339)
φ1 0.467 0.0178 (0.4321, 0.5019)
β0 -1.576 0.3063 (−2.1764,−0.9756)
β1 0.203 0.0731 (0.0598, 0.3462)
β2 -1.222 0.1507 (−1.5174,−0.9266)
β3 -0.057 0.0926 (−0.2385, 0.1245)∗

λ1 3.180 1.2624 (0.7057, 5.6543)
γ11 -0.621 0.1193 (−0.8548,−0.3872)
γ12 1.621 0.1521 (1.3230, 1.9190)
γ13 0.495 0.1063 (0.2866, 0.7034)
λ2 0.699 0.2397 (0.2291, 1.1689)
γ21 -1.294 0.6060 (−2.4368,−0.0612)
γ22 0.084 0.4859 (−0.8683, 1.0363)∗

γ23 -3.247 0.3570 (−3.9469,−2.5471)

Table 2.5. Parameter estimates of PSTAR-ANN model (2.48) parameters
with 95% confidence intervals (∗ indicates the insignificance)

We should consider using other age related variables to predict Yt such as the percent

young voters between 18 and 30 years old. Variable WHITE is negatively correlated with
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Yt in all three fitted models and this negative correlation accords with our common sense

that white voters tend to support the Republican candidate. The last variable pctpoor

is bit tricky because it is not significant in model (2.47) but is significant in the neural

network component in model (2.48). Regarding to this, it needs further assessment to

decide if pctpoor should be included in the model. In chapter 3, we will further discuss

the model selection in detail. To conclude, our proposed model PSTAR-ANN appears

to successfully capture some presidential election dynamics over both space and time. It

allows for non-Gaussian random errors and is flexible in learning nonlinear relationships

between the response and exogenous variables.
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CHAPTER 3

Model Selection in Partially Specified Space Time

Autoregressive Model with Artificial Neural Network

In previous chapters, we discussed the asymptotic properties of maximum likelihood

estimators for the parameters of a partially specified spatial and/or temporal autore-

gressive model with artificial neural network (equation (3.1)) under the assumption of

stationarity. When p = 0 in equation (3.1), the PSTAR-ANN(p) model will reduce to a

PSAR-ANN model. A PSTAR-ANN(p) model is given by

Yt =

p∑
i=0

φiWnYt−i +Xtβ + F (Xtγ
′)λ+ εt(3.1)

A first problem is to select useful predictors Xt to describe Yt. One aspect is to select

exogenous variables in the linear component and some standard methods include step-wise

selection, likelihood ratio test and AIC/BIC criteria. Another aspect is to select exogenous

variables in the neural network component and to determine a proper size of the network

so as to provide desired outcomes in test data. The complexity of artificial neural network

regression makes it difficult to apply many existing analytical variable selection methods.

Recent papers [31] [28] [21] [41] showed experimentally that the robustness of neural

networks can be remarkably enhanced by adding random noise to the inputs (predictors)

during the training. This idea is based on the principle [31] that a robust network should

be as insensitive as possible to a reasonable variation of inputs. By injecting noise into

inputs, we could add randomness into a training set when we only have limited number
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of samples. Mathematical proofs [31] have shown that minimizing a loss function with

noise injected in raw data is equivalent to adding a penalty in the loss function with the

raw data. In this way noise injection realizes penalizing the number and magnitudes of

parameters in a network, which mitigate the over-fitting in neural networks. In this paper,

we discuss one of the noise injection methods, Shakeout (Kang and Li [21]), and elaborate

its penalization effect in a PSTAR-ANN(p) model: selecting useful exogenous variables,

controling the size of the neural network component and stabilizing the learned network.

Secondly we will talk about AR order selection in this spatial context. One way

to estimate the time lag p is the likelihood ratio test [49] by which we can test the

significance of parameter φp in model (3.1). Because the goal is to test if a higher time

lag is significant, we apply the likelihood ratio test to the nested model selection and

prove the asymptotic distribution of the test statistic. In practice, analogous to order

selection in the time series, we can also look at the sample autocorrelations (ACF) and

partial autocorrelations (PACF) to approximate p. The detailed calculation method will

be discussed later.

Section 2 presents the methodology of Shakeout technique in selecting exogenous vari-

ables and we demonstrate its penalization effects in the linear and nonlinear component

of a PSTAR-ANN(p) model. Section 3 presents autoregressive order selection using tech-

inque sample ACF, sample PACF and the likelihood ratio test for nested model selection.

In section 4, we show via simulation that the asymptotic distribution of the likelihood

ratio test statistic in previous section is approximately valid for finite large samples and

we illustrate the penalization effects of Shakeout by experiments. We also apply the likeli-

hood ratio test to the real data example to find an appropriate autoregressive order in the
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US presidential election results. Due to limited access to historical election data and other

records of social variables, we do not perform the Shakeout method in the real example.

Finally, section 6 discuss potential future development in PSTAR-ANN(p) models.

3.1. Feature Selection

As mentioned in the introduction, due to the neural network component in our model,

one important aspect in feature selection is to select a proper size of the network and

useful exogenous variables in a net because the redundant neurons in a network can cause

non-identifiability and over-fitting problems. When we only have limited training data,

the estimated network can be pretty unstable due to random sampling errors. To avoid

this, many papers have proposed a noise injection method – injecting noises in the inputs

of a network [31], [41], [21], [28]. It has been mathematically shown that the noise injection

is essentially a regularization in neural networks such that it can control both the size of

a network and magnitudes of weights [31], [21], [28]. “Regularization” is a technique of

adding constraints to the model parameters, which attempts to learn a simpler model from

the training data. A regularization is equivalent to adding a penalization or a regularizer

in the loss function and the resulting estimators are called regularized estimators. For

example, in ridge regression, we impose a restriction in the sum of squares of parameters

(known as L2 regularization) while in the lasso, we impose the restriction in the sum of

absolute value of parameters (known as L1 regularization). In this section, we are going to

apply the Shakeout, first proposed by Kang et al. [21], to select inputs/predictors and to

prune the network in a PSTAR-ANN(p) model. In the meanwhile, we will mathematically

show the regularization effect of this technique.
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3.1.1. Shakeout Regularization

We now illustrate how to inject “Shakeout” noise in the linear component and it is also

the same in the neural network component. Suppose we would like to minimize some loss

function, the intermediate output of one neuron is a weighted sum of inputs x1, . . . , xq

with a set of starting values for weights denoted by βj, j = 1, . . . , q.
q∑
j=1

βjxj

When optimizing the loss function, Shakeout [21] adjusts the weights βj to β̃j in some

way that we can control the variable xj in or out of this neuron:

Step 1: Draw rj from the distribution


Pr(rj = 0) = τ

Pr(rj = 1
1−τ ) = 1− τ

Step 2: Adjust the weight according to rj ,
β̃j = −csj , if rj = 0 (A)

β̃j = (βj + cτsj)/(1− τ), otherwise (B)

where sj = sgn(βj) takes ±1 depending on the sign of βj or take 0 if βj = 0, c is

a positive constant, τ ∈ (0, 1). τ and c are hyper-parameters in Shakeout and rj is

randomly generated from a scaled Bernoulli with the parameter τ . As shown above,

Shakeout proposes two different modifications on the weights βj. (A) sets the weights to

constant values with the opposite sign of the original weights. (B) updates the weights

by a factor 1
(1−τ) and a bias cτsj. The Dropout method [41] is a special case of Shakeout

when c = 0. One crucial improvement of Shakeout over Dropout is that Shakeout avoids

setting the weights directly to zero and preserves the zero values of original weights.

Hence, the expected value of updated weighted sum with respect to the noise r is unbiased
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Er(
∑q

j=1 β̃jxj) =
∑q

j=1 βjxj. The hyper-parameters τ ∈ (0, 1) and c ∈ (0,+∞) determine

the structure of the penalization term (detailed expression will be shown later in the

prove) and therefore decide the regularization effect invoked by Shakeout.

In our model, we can utilize this technique to select features Xt in the linear part

and prune the neural network part separately. Recalling the model (3.1), parameters

we can update using the Shakeout are β and λ,γ. Intuitively we could also update the

space time autoregressive parameters φi, i = 0, 1, . . . , p but additional restrictions are

required to guarantee that the model remains stationary after updating parameters using

Shakeout. For now, we only consider selecting exogenous variables Xt as well as the size

of the neural network
∑h

k=1 λkF (Xtγk) and will discuss alternative methods for selecting

the autocorrelation parameters, φi’s, in the later section.

Figure 3.1 shows the weights update in the linear component in our model. The

Figure 3.1. Shakeout regularization of the linear component Xtβ in a
PSTAR-ANN model. Shakeout modifies the parameter β through random
variable rj. Define P (rj = 0) = τ, P (rj = 1

1−τ ) = 1 − τ . When rj = 0, βj

will be replaced by a constant β̃j = csj, where sj = sgn(βj); otherwise, the

weight will be updated to β̃j = βj + cτsj.
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nonlinear part F (Xtγ
′)λ can be regarded as a two layer neural network: F (Xtγ

′) can be

treated as the first layer where the inputs are Xt and weights γ1, . . . ,γh. The activation

function is the sigmoid function F so the outputs of this layer are F (Xtγ1), . . . ,F (Xtγh);

the second layer receives the F (Xtγ1), . . . ,F (Xtγh) as its inputs and the weights are

λ1, . . . , λh respectively. The activation function of this layer is the identity function so

the final output is
∑h

i=1 F (Xtγi)λi. Figure 3.2 shows the parameter updates of this two

layer neural network.

Figure 3.2. Shakeout regularization of nonlinear component in PSTAR-
ANN model. (Left) the first layer ith neuron: the input is Xt and the
associated parameters in the kth neuron are γk = (γk,1, . . . , γk,p)

′. The ac-
tivation function is the sigmoid function F . (Right) the second layer with
one neuron: the input is F (Xtγ1), . . . ,F (Xtγh) and weights are λ1, . . . , λh
respectively. The activation function is the identity function.

Shakeout, inherently, injects multiplicative noises to the observations or inputs in

neurons. For example, for a input x ∈ Rq in the kth neuron with associated weight

γk ∈ Rq, Shakeout randomly updates γkj, the jth component in γk, j = 1, . . . , q. This

is equivalent to scale the jth component of x as x̃j by rj +
c(rj−1)
|γkj |

where rj is randomly

draw from {0, 1
1−τ } with probability τ, 1− τ respectively. One thing to notice is that r is

repeatedly and randomly chosen for every component in xs,t for all s, t. In this way, we

can guarantee the randomness in all the injected noise. By calculation, it is easy to show
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Erj(x̃j) = xj. We can rewrite this multiplicative noise as an additive noise:

In the kth neuron, jth component of input variable x,

x̃j = xjej ,where ej =


−c
|γkj | Pr = τ

1
1−τ

(
1 + cτ

|γkj |

)
Pr = 1− τ

= xj + ej ,where ej =


−xj

(
1 + c

|γkj |

)
Pr = τ

xj

(
τ

1−τ + cτ
(1−τ)|γkj |

)
Pr = 1− τ

This reformulated additive noise depends on the associated variable xj, which implies

that extreme noise values may be generated if |xj| is large [28]. In return, this extreme

value in noise can lead to harsher penalty on parameters connected to large variables and

therefore improve the robustness in model fitting (details will be discussed later).

3.1.2. Regularization Effects

Using the Shakeout noise injection, we define the loss function of a PSTAR-ANN(p) model

as the negative of its log-likelihood function given X = {Xt}Tt=1, Y = {Yt}Tt=1:

loss(θ) = −T ln |In − φ0Wn| −
T∑
t=1

n∑
s=1

ln f(εs,t(θ))(3.2)

where εs,t(θ) = ys,t−
∑n

i=1 φ0wsiyi,t−
∑p

i=1 φi
∑n

j=1wsjyj,t−i− x′s,tβ−
∑h

k=1 λkF (x′s,tγk).

Considering our model formulation, we justify Shakeout as a noise injection regularization

technique from two aspects. On the one hand, in the linear component, τ and c controls

the structure of penalty term about model parameters; for example, different choices of

τ and c can lead to different combination of L0, L1, L2 penalizations (this will be shown

later). On the other hand, in the network component, adding random noise to the inputs

can enhance robustness of the learned neural network [21]. In the following, we are going
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to demonstrate this mathematically. We define a Hadamard product denoted by ◦, s.t.

for vectors a, b1, . . . , bn ∈ Rn, a matrix B = (b1, . . . , bn) ∈ Rn×n,

a ◦B =



a1b11 a1b21 · · · a1bn1

a2b12 a2b22 · · · a2bn2

...
...

. . .
...

anb1n anb2n · · · anbnn


, a ◦ b1 =



a1b11

a2b12

...

anb1n


Using the expression of multiplicative noises, we denote (u,v) as multiplicative noise

in linear and NN part respectively. Specifically, in linear part, u = {us,t} where s =

1, . . . , n, t = 1, . . . , T . For jth component of an observation at location s and time t,

denoted as xs,t[j], the multiplicative noise us,t[j] = { −c|βj | ,
1

1−τ (1 + cτ
|βj |)} with probability

τ and 1 − τ respectively. x̃s,t denotes the observation after injecting noises in the linear

part.

Input Shakeout Noise Updated Input Output

xs,t =



xs,t[1]

xs,t[2]

...

xs,t[q]


q

us,t =



us,t[1]

us,t[2]

...

us,t[q]


q

Shakeout−−−−−→ x̃s,t =



xs,t[1]us,t[1]

xs,t[2]us,t[2]

...

xs,t[q]us,t[q]


q

linear−−−→ x̃s,tβ
(3.3)

While in the NN part, we have two layers so v = {vs,t} = {v(1)s,t , v
(2)
s,t } denotes the noise in

the first and second layer in the network. In the first layer, v
(1)
s,t = {v(1,1)s,t , v

(1,2)
s,t , . . . , v

(1,h)
s,t }

represents a collection of noises in all h neurons for every input xs,t. So in the kth neuron

v
(1,k)
s,t [j] = { −c|γkj | ,

1
1−τ + cτ

|γkj |
} for j = 1, . . . , q. x̂

(k)
s,t denotes the observation after injecting
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noises in the kth neuron and the noise is independent among all neurons in this layer.

Input Shakeout Noise Updated Input Output

xs,t =



xs,t[1]

xs,t[2]

...

xs,t[q]


q

v
(1,k)
s,t =



v
(1,k)
s,t [1]

v
(1,k)
s,t [2]

...

v
(1,k)
s,t [q]


q

Shakeout−−−−−→ x̂
(k)
s,t =



xs,t[1]v
(1,k)
s,t [1]

xs,t[2]v
(1,k)
s,t [2]

...

xs,t[q]v
(1,k)
s,t [q]


q

Sigmoid−−−−−→
function

F (x̂
(k)′

s,t γk)
(3.4)

In the second layer, the inputs are the outputs from the first layer F (x′s,tγ) so v
(2)
s,t [k] =

{ −c|λk| ,
1

1−τ + cτ
|λk|
}, with probability τ and 1 − τ . F̃ (x̂′s,tγ) denotes the observation after

injecting noises in the second layer.

Input Shakeout Noise Updated Input Output

F (x̂′s,tγ) =



F (x̂
(1)′

s,t γ1)

F (x̂
(2)′

s,t γ2)

...

F (x̂
(h)′

s,t γh)


h

v
(2)
s,t =



v
(2)
s,t [1]

v
(2)
s,t [2]

...

v
(2)
s,t [h]


h

Shakeout−−−−−→ F̃ (x̂′s,tγ) =



F (x̂
(1)′

s,t γ1)v
(2)
s,t [1]

F (x̂
(2)′

s,t γ2)v
(2)
s,t [2]

...

F (x̂
(h)′

s,t γh)v
(2)
s,t [h]


h

linear−−−−−→
function

F̃ (x̂′s,tγ)λ

(3.5)

Now we can rewrite the loss function with Shakeout noise injected as

loss(θ|u,v) = −T ln |In − φ0Wn| −
T∑
t=1

n∑
s=1

ln f(εs,t(θ|u,v))(3.6)

εs,t(θ|u,v) = ys,t −
n∑
j=1

φ0wsjyj,t −
p∑
i=1

φi

n∑
j=1

wsjyj,t−i − x̃′s,tβ −
h∑
k=1

λkF̃ (x̂
(k)′

s,t γk)(3.7)

where x̃s,t, x̂s,t, F̃ (·) are defined in equations (3.3), (3.4) and (3.5). In the following, the

expressions are all conditioned on X, Y so we omit X, Y in the conditional notation for

simplicity.
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In the following, we are going to demonstrate the Shakeout regularization effects in

linear and nonlinear components in a PSTAR-ANN(p) model. These theorems give ap-

proximate results. Similar work can be seen in Matsuoka [31], Li and Liu [28], Kang et al.

[21].

Define loss(θ|u) as the loss function with Shakeout noise injected in the linear part.

Theorem 1 below establishes that the expected value of loss(θ|u) over the distribution

of injected noise u is a roughly penalized loss function (3.6) with the original data, more

specifically, the loss function with the original data plus a combination of L0, L1 and L2

regularization terms, π(β).

Theorem 5 (Regularization on β in a PSTAR-ANN model with Shakeout).

The expectation of Equation (3.6) over the distribution of noise u is

Eu[loss(θ|u)] = loss(θ) + π(θ)(3.8)

where

π(θ) = −
T∑
t=1

n∑
s=1

Eu[ln f(εs,t(θ|u))− ln f(εs,t(θ))]

≈ τ

2(1− τ)

T∑
t=1

n∑
s=1

(
f ′2(εs,t(θ)

f2(εs,t(θ))
− f ′′(εs,t(θ)

f(εs,t(θ))

)
||xs,t ◦ (β +

cβ

|β|
)||22(3.9)

where ||xs,t ◦ (β + cβ
|β|)||

2
2 =

∑q
j=1(xs,t[j]βj)

2 + 2c
∑q

j=1 x
2
s,t[j]|βj|+ c2

∑q
j=1 x

2
s,t[j] · 1βj 6=0 so

π(θ) is a combination of L0, L1 and L2 regularization [21].

Proof.

π(θ) = Eu loss(θ|u)− loss(θ)

= −
T∑
t=1

n∑
s=1

Eu ln f(εs,t(θ|u))− ln f(εs,t(θ))



111

And the residuals after injecting noise u are

εs,t(θ|u) = ys,t −
n∑
k=1

φ0wskyk,t −
p∑
i=1

φi

n∑
k=1

wskyk,t−i − x̃′s,tβ −
h∑
k=1

λkF (x′s,tγk)

By the property of Shakeout, Eu(x̃′s,tβ) = x′s,tβ. So expanding Eu ln f(εs,t(θ|u)) around

x′s,tβ with regards to the noise distribution [28, Lemma 1],

Eu ln f(εs,t(θ|u)) ≈ ln f(εs,t(θ)) +
∂ ln f(εs,t(θ))

∂(x′s,tβ)
Eu(x̃′s,tβ − x′s,tβ)

+
1

2

∂2 ln f(εs,t(θ))

∂(x′s,tβ)∂(x′s,tβ)′
Eu(x̃′s,tβ − x′s,tβ)2

≈ ln f(εs,t(θ)) +
1

2

∂2 ln f(εs,t(θ))

∂(x′s,tβ)∂(x′s,tβ)′
Varu(x̃′s,tβ)(3.10)

And, we can compute Varu(x̃′s,tβ) by

Varu(x̃′s,tβ) = Eu(x̃′s,tβ − x′s,tβ)2

=

q∑
j=1

(xs,t[j]βj)
2(1 +

c

|βj |
)2 · τ + (xs,t[j]βj)

2(
τ

1− τ
+

1 + c

|βj |
)2 · (1− τ)

=

q∑
j=1

(xs,t[j]βj)
2(1 +

c

|βj |
)2

τ

1− τ

=
τ

1− τ
||xs,t ◦ (β +

cβ

|β|
)||22(3.11)

Substituting (3.10), (3.11) into π(β),

π(θ) ≈ −1

2

T∑
t=1

n∑
s=1

∂2 ln f(εs,t(θ))

∂(x′s,tβ)∂(x′s,tβ)′
Varu(x̃′s,tβ)

≈ 1

2

T∑
t=1

n∑
s=1

(
f ′2(εs,t(θ)

f2(εs,t(θ))
− f ′′(εs,t(θ)

f(εs,t(θ))

)
Varu(x̃′s,tβ)

≈ τ

2(1− τ)

T∑
t=1

n∑
s=1

(
f ′2(εs,t(θ)

f2(εs,t(θ))
− f ′′(εs,t(θ)

f(εs,t(θ))

)
||xs,t ◦ (β +

cβ

|β|
)||22

where β+ cβ
|β| =

(
β1 + cβ1

|β1| , . . . , βq + cβq
|βq |

)′
. ||xs,t ◦ (β+ cβ

|β|)||
2
2 can be decomposed into [see

21, pg. 1248]:
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q∑
j=1

(xs,t[j]βj)
2 + 2c

q∑
j=1

x2s,t[j]|βj |+ c2
q∑
j=1

x2s,t[j] · 1βj 6=0

�

From the term ||xs,t◦(β+ cβ
|β|)||

2
2, we could also see that, in a linear model, the Shakeout

tends to penalize those parameters whose corresponding features’ magnitudes are large.

On the other hand, parameters whose features have more zeros are less penalized. With

c > 0, the penalization terms
∑q

j=1 x
2
s,t[j]|βj| and

∑q
j=1 x

2
s,t[j] ·1βj 6=0 can help with feature

selection. This penalization can train the parameters to be more confident about its

prediction [21].

Next we discuss injecting Shakeout noise in the neural network component. Matsuoka

[31] brought up an assumption on the property of neural networks: “the output of the

network after learning should be as insensitive as possible to input variation, as long

as the error is within a reasonable bound”. The mentioned “error” in his assumption

refers to the loss function in the OLS estimation, the sum of squared residuals. This

statement means that similar inputs tend to produce similar outputs even if the input

is not trained before. Suppose the random disturbance for input xs,t is ds,t, d = {ds,t}.

Matsuoka [31] and Li and Liu [28] assumed ds,t has identical distributions for all s, t. But

in some occasions, larger |xs,t| may have larger value of perturbations and variances so

the identical distributed perturbation is not always true. To accommodate this, we define

a Shakeout perturbation ds,t as follows:

ds,t[j] =


−hj Pr = τd

hjτd+1
1−τd Pr = 1− τd

j = 1, 2, . . . , q(3.12)
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where hj, τd are hyper-parameters and hj is positive. We allow hj varying across differ-

ent predictors so that the injected noise can vary with predictors. Assume E ds,t = 1q,

Var(ds,t) = τd
1−τd

diag((h1 + 1)2, . . . , (hq + 1)2) for s = 1, . . . , n, t = 1, . . . , T , then the

perturbed observation xs,t are

Input Perturbance Perturbed Input

xs,t =



xs,t[1]

xs,t[2]

...

xs,t[q]


q

ds,t =



ds,t[1]

ds,t[2]

...

ds,t[q]


q

External−−−−−−−−→
perturbation

xs,t ◦ ds,t =



xs,t[1]ds,t[1]

xs,t[2]ds,t[2]

...

xs,t[q]ds,t[q]


q

(3.13)

We can consider xs,t ◦ ds,t as an input pattern similar to the training input xs,t. This

simulates the situation when the training data is disturbed by external disturbances even

if they are sample from a same distribution [31]. Combined with Shakeout noise v
(1)
s,t , v

(2)
s,t ,

the output of the ANN component is given by

Input Perturbance Shakeout Noise Final Output

xs,t =



xs,t[1]

xs,t[2]

...

xs,t[q]


q

ds,t =



ds,t[1]

ds,t[2]

...

ds,t[q]


q

v
(1)
s,t =



v
(1,1)′

s,t

v
(1,2)′

s,t

...

v
(1,h)′

s,t



′

q×h

v
(2)
s,t =



v
(2)
s,t [1]

v
(2)
s,t [2]

...

v
(2)
s,t [h]


h

Shakeout−−−−−→



F
(

(x̂
(1)
s,t ◦ ds,t)′γ1

)
v
(2)
s,t [1]

F
(

(x̂
(2)
s,t ◦ ds,t)′γ2

)
v
(2)
s,t [2]

...

F
(

(x̂
(h)
s,t ◦ ds,t)′γh

)
v
(2)
s,t [h]





λ1

λ2

...

λh



(3.14)

Hence the variation of the ANN output after Shakeout noises and random perturbation

should be

δs,t =
h∑
k=1

λkF̃
(

(x̂
(k)
s,t ◦ ds,t)′γk

)
− λF (x′s,tγk)(3.15)

=

h∑
k=1

λkv
(2)
s,t [k]F

(
(x̂

(k)
s,t ◦ ds,t)′γk

)
− λF (x′s,tγk)
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Based on the definition by Matsuoka [31], in a PSTAR-ANN(p) model, we can define

the sensitivity of a learned ANN component as the mean ratio of the variance of δs,t and

|ds,t|, where f is the density of random error and εs,t(θ) is the residual at location s, time

t evaluated at θ.

R(θ) =
T∑
t=1

n∑
s=1

∂2 ln f(εs,t(θ))

∂2εs,t(θ)

Varvs,t,ds,t(δs,t)∑q
j=1 Vards,t(ds,t[j])

Following Li and Liu’s work, we want to justify that the Shakeout noise procedure

can stabilize a learned network in the sense that external perturbations in the training

data can be taken into account. More specifically, because the training data can vary

from sample to sample, under proper settings of hyper-parameters, Shakeout noises can

be considered as external perturbations in the data generating process. In this sense,

training a network with Shakeout can be robust with respect to the outcome parameters.

Theorem 2 supports the idea that minimizing the original loss function (with original

inputs) plus a penalty for the sensitivity of a network is approximately equivalent to

minimizing the original loss function with original observations and a set of Shakeout

noise v∗ (different parameterization from v). And it illustrates that injecting Shakeout

noise in the neural network component can simulate the situation when we are training

the network with perturbed inputs. The procedure of the proof is shown in Figure 3.3.

Theorem 6 (Low sensitivity of a learned ANN component in a PSTAR-ANN

(p) model with Shakeout). Given X and Y , the expected value of the noise perturbed

loss function over the distribution of the injected Shakeout noise v∗ is approximately
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Figure 3.3. Steps of the proof in Theorem 2

equivalent to the original loss function plus the sensitivity of the neural network.

Ev∗ loss(θ|v∗) ≈ loss(θ) + aR(θ)(3.16)

where a =
τd

∑q
i=1(hi+1)2

2(1−τd)
, hi, τd are hyper-parameters of Shakeout noise ds,t (ds,t is the

perturbation in the input variable xs,t, see definition in (3.12)). The sensitivity is defined

as

R(θ) =
T∑
t=1

n∑
s=1

∂2 ln f(εs,t(θ))

∂2εs,t(θ)

Varvs,t,ds,t(δs,t)∑q
j=1 Vards,t(ds,t[j])

=

T∑
t=1

n∑
s=1

(
f ′

2
(εs,t(θ))

f2(εs,t(θ))
− f ′′(εs,t(θ))

f(εs,t(θ))

)
Evs,t,ds,t(δ2s,t)∑q

j=1 Vards,t(ds,t[j])

=
1− τd

τd
∑q

i=1(hi + 1)2

T∑
t=1

n∑
s=1

(
f ′

2
(εs,t(θ))

f2(εs,t(θ))
− f ′′(εs,t(θ))

f(εs,t(θ))

)
Ψ′s,tΛΨs,t

where δs,t =
∑h

k=1 λkF̃
(

(x̂
(k)
s,t ◦ ds,t)′γk

)
− λF (x′s,tγk). vs,t is the Shakeout noise with

hyper-parameter τ, c defined previously in (3.4) and (3.5). Ψs,t is the gradient of the

ANN structure with regard to vs,t, ds,t.
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Λ =


(

(Ih + Λ2)⊗ Iq
)

Λ1 0

0 Λ2


h(q+1)×h(q+1)

The details of this matrix will be discussed in the following proof. The injected Shakeout

noise v∗ which leads to equation (3.16) is: for the first layer, v
∗(1)
s,t = {v∗(1,1)s,t , . . . , v

∗(1,h)
s,t },

where v
∗(1,k)
s,t = 

hjc
|γkj | Pr = τdτ

−c(hjτd+1)
|γkj |(1−τd) Pr = (1− τd)τ

−hj
1−τ (1 + cτ

|γkj |) Pr = τd(1− τ)

hjτd+1
(1−τ)(1−τd)(1 + cτ

|γkj |) Pr = (1− τd)(1− τ)

for k = 1, . . . , h, j = 1, . . . , q. For the kth input nodes in the second layer, v
∗(2)
s,t =

−c
|λk| Pr = τ

1
1−τ (1 + cτ

|λk|) Pr = 1− τ

for k = 1, . . . , h.

Proof. First we want to prove that Ev,dloss(θ|v,d) ≈ loss(θ) + aR(θ).

Consider the Shakeout noise v, and external disturbed input xs,t ◦ ds,t,

Ev,dloss(θ|v,d)− loss(θ) =

T∑
t=1

n∑
s

Ev,d ln f(εs,t(θ|v,d))− ln f(εs,t(θ))

Expanding Ev,d ln f(εs,t(θ|v,d)) around εs,t(θ), we have,
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Ev,d ln f(εs,t(θ|v,d))− ln f(εs,t(θ)) ≈∂ ln f(εs,t(θ))

∂εs,t(θ)
Ev,d(εs,t(θ|v,d)− εs,t(θ))

+
1

2

∂2 ln f(εs,t(θ))

∂2εs,t(θ)
Ev,d(εs,t(θ|v,d)− εs,t(θ))2

≈1

2

∂2 ln f(εs,t(θ))

∂2εs,t(θ)
Ev,d(δ2s,t)(3.17)

where δs,t is given by

δs,t =εs,t(θ|v,d)− εs,t(θ)

=
h∑
k=1

λkF̃ ((x̂
(k)
s,t ◦ ds,t)′γk)− λkF (x′s,tγk)

=

h∑
k=1

λkF̃ ((x̂
(k)
s,t ◦ ds,t)′γk)− λkF̃ (x′s,tγk) + λkF̃ (x′s,tγk)− λkF (x′s,tγk)

≈
h∑
k=1

λk
∂F̃ (x′s,tγk)

∂x′s,t
(x̂

(k)
s,t ◦ ds,t − xs,t) + λk

(
F̃ (x′s,tγk)− F (x′s,tγk)

)
(3.18)

where

x̂
(k)
s,t =v

(1,k)
s,t ◦ xs,t, F̃ (x′s,tγk) = F (x′s,tγk)v

(2)
s,t [k]

Hence,

Ev,dloss(θ|v,d) ≈ loss(θ) +
1

2

T∑
t=1

n∑
s=1

∂2 ln f(εs,t(θ))

∂2εs,t(θ)
Ev,d(δ2s,t)

Then we can expand δs,t as follows. Equation (3.18) shows an approximation of δs,t

through the first order Taylor expansion and we can rewrite this in matrix form δs,t ≈
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Ψs,t(θ)′ns,t, where Ψs,t(θ), ns,t are:

Ψs,t(θnn) =



λ1F
′(x′s,tγ1)(xs,t ◦ γ1)

λ2F
′(x′s,tγ2)(xs,t ◦ γ2)

...

λhF
′(x′s,tγh)(xs,t ◦ γh)

λ1F (x′s,tγ1)

λ2F (x′s,tγ2)

...

λhF (x′s,tγh)



, ns,t =



v
(2)
s,t [1]

(
v
(1,1)
s,t ◦ ds,t − 1q

)
v
(2)
s,t [2]

(
v
(1,2)
s,t ◦ ds,t − 1q

)
...

v
(2)
s,t [h]

(
v
(1,h)
s,t ◦ ds,t − 1q

)
v
(2)
s,t [1]− 1

v
(2)
s,t [2]− 1

...

v
(2)
s,t [h]− 1


In the following, we use Ψs,t in place of Ψs,t(θ). It is easy to show that Evs,t,ds,t(δs,t) = 0.

Therefore,

1

2

T∑
t=1

n∑
s=1

∂2 ln f(εs,t(θ))

∂2εs,t(θ)
Ev,d(δ2s,t) =

1

2

T∑
t=1

n∑
s=1

(
f ′

2
(εs,t(θ))

f2(εs,t(θ))
− f ′′(εs,t(θ))

f(εs,t(θ))

)
Ψ′s,tΛΨs,t

where Λ =


(

(Ih + Λ2)⊗ Iq
)

Λ1 0

0 Λ2

,

Λ1 =



Λ1,1

Λ1,2 0
Λ1,3

. . .

Λ1,h


Λ2 =

τ

1− τ



(1 + c
|λ1|)

2 0 · · · 0

0 (1 + c
|λ2|)

2 · · · 0

...
...

. . .
...

0 0 · · · (1 + c
|λh|)

2


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where Λ1,k is a q × q diagonal matrix with jth diagonal entry:(τ(1 + c
|γkj |)

2

1− τ
+ 1
)(τd(1 + hj)

2

1− τd
+ 1
)
− 1, j = 1, . . . , q

Because Var(ds,t) = τd
1−τd

diag((h1+1)2, . . . , (hq+1)2),
∑q

j=1 Vards,t(ds,t[j]) =
τd

∑q
i=1(hi+1)2

1−τd
.

So

R(θ) =
T∑
t=1

n∑
s=1

∂2 ln f(εs,t(θ)

∂2εs,t(θ)

Varvs,t,ds,t(δs,t)

Vards,t(|ds,t|)

=
T∑
t=1

n∑
s=1

(
f ′

2
(εs,t(θ))

f2(εs,t(θ))
− f ′′(εs,t(θ))

f(εs,t(θ))

)
Evs,t,ds,t(δ2s,t)
Vards,t(|ds,t|)

=
1− τd

τd
∑q

i=1(hi + 1)2

T∑
t=1

n∑
s=1

(
f ′

2
(εs,t(θ))

f2(εs,t(θ))
− f ′′(εs,t(θ))

f(εs,t(θ))

)
Ψ′s,tΛΨs,t

aR(θ) =
1

2

T∑
t=1

n∑
s=1

(
f ′

2
(εs,t(θ))

f2(εs,t(θ))
− f ′′(εs,t(θ))

f(εs,t(θ))

)
Ψ′s,tΛΨs,t

Therefore, we can show that

Ev,dloss(θ|v,d) ≈ loss(θ) + aR(θ)

This equation indicates that minimizing the loss function with the original data plus a

penalty for the sensitivity of a network is approximately equivalent to minimizing the loss

function with perturbed inputs (perturbation d) and Shakeout noise v.

The next step is to prove that there exists a set of Shakeout noise v∗ whose regular-

ization effect is equivalent to injecting Shakeout noise v into perturbed inputs. We show

this by first prove that

Ev∗ loss(θ|v∗) ≈ loss(θ) + aR(θ)

And then we can show that Ev∗loss(θ|v∗) is approximately equivalent to Ev,dloss(θ|v,d).
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To achieve this, we define v∗ as follows: in the first layer, v
∗(1)
s,t = {v∗(1,1)s,t , . . . , v

∗(1,h)
s,t },

where v
∗(1,k)
s,t [j] = 

hjc
|γkj | Pr = τdτ

−c(hjτd+1)
|γkj |(1−τd) Pr = (1− τd)τ

−hj
1−τ (1 + cτ

|γkj |) Pr = τd(1− τ)

hjτd+1
(1−τ)(1−τd)(1 + cτ

|γkj |) Pr = (1− τd)(1− τ)

for k = 1, . . . , h, j = 1, . . . , q. For the kth input nodes in the second layer, v
∗(2)
s,t [k] =

−c
|λk| Pr = τ

1
1−τ (1 + cτ

|λk|) Pr = 1− τ

for k = 1, . . . , h. Under this setting, it is easy to see that v
∗(1,k)
s,t = v

(1,k)
s,t ◦ ds,t and

v
∗(2)
s,t = v

(2)
s,t . So εs,t(θ|v∗) = εs,t(θ|v,d). Let es,t = εs,t(θ|v∗)− εs,t(θ). Then,

δs,t =εs,t(θ|v,d)− εs,t(θ)

=εs,t(θ|v∗)− εs,t(θ)

=es,t

And we can validate that Ev∗s,t es,t = 0, Ev∗s,t(e
2
s,t) = Ψ′s,tΛΨs,t. Previously we have shown

that

aR(θ) =
1

2

T∑
t=1

n∑
s=1

(
f ′

2
(εs,t(θ))

f2(εs,t(θ))
− f ′′(εs,t(θ))

f(εs,t(θ))

)
Ψ′s,tΛΨs,t

Similar to (3.17), we can show that

Ev∗ loss(θ|v∗) ≈loss(θ) +
1

2

T∑
t=1

n∑
s=1

(
f ′

2
(εs,t(θ))

f2(εs,t(θ))
− f ′′(εs,t(θ))

f(εs,t(θ))

)
Ev∗s,t(e

2
s,t)(3.19)

≈loss(θ) + aR(θ)(3.20)
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Expanding loss(θ) in (3.19), with the second order Taylor expansion,

Ev,dloss(θ|v,d) ≈

(
−T ln |In − φ0Wn|+

T∑
t=1

n∑
s=1

ln f(εs,t(θ))

)

+
1

2

T∑
t=1

n∑
s=1

∂2 ln f(εs,t(θ))

∂2εs,t(θ)
Ev∗s,t (e2s,t)

≈− T ln |In − φ0Wn|+
T∑
t=1

n∑
s=1

(
ln f(εs,t(θ)) +

1

2

∂2 ln f(εs,t(θ)

∂2εs,t(θ))
Ev∗s,t (e2s,t)

)

≈− T ln |In − φ0Wn|+
T∑
t=1

n∑
s=1

(
ln f(εs,t(θ)) +

∂ ln ln f(εs,t(θ))

∂εs,t(θ)
Ev∗s,t (e2s,t)

+
1

2

∂2 ln f(εs,t(θ))

∂2εs,t(θ)
Ev∗s,t (e2s,t)

)

≈− T ln |In − φ0Wn|+
T∑
t=1

n∑
s=1

ln f(εs,t(θ) + es,t)

≈Ev∗ loss(θ|v∗)

Hence, Ev∗loss(θ|v∗) is approximately equivalent to Ev,dloss(θ|v,d). �

The right side in equation (3.16) combines the loss function with the original data

plus a penalty which is the sensitivity of a neural network component. This penalization

measures the deviation of a network output when the input variables are perturbed by

a multiplicative noise. So this new objective loss function mitigates the overfitting or

instability problem in the original loss function (3.2). Note that a is a function of τd

and hj and it can be regarded as a tuning parameter by adjusting the values of hyper-

parameters τd and hj. When τd is larger, a will increase so the learned network will be

more stable. When the magnitude of input variable xs,t[j] is large, hj can be set as some

larger constant so a will be larger. In return, the term aR(θ) will be larger so we impose

a harsher penalization in the sensitivity of a network. On the other hand, choosing a
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smaller τd or hj results in a smaller a and the learned network will be rather vulnerable

if inputs are disturbed by external random errors. So by adjusting the hyper-parameters

of ds,t, we can tune a and are able to find a network minimizing the sum of the original

loss function and its sensitivity. Further discussion about hyper-parameter selection can

be found in Kang et al. [21].

3.2. Space-time Autoregressive Order

In this section, we are going to discuss some techniques in selecting space-time autore-

gressive order p. First we will construct a likelihood ratio test for nested model selection

and prove the asymptotic distribution of the LR test statistic. In practice, for preliminary

analysis, we also suggest plotting sample ACF and PACF, which is an intuitive way to

get a rough idea about the choice of p.

3.2.1. Likelihood Ratio Test

We know that the likelihood ratio test [13, pp. 488–492] can be used to select models

which are nested so we can compare two PSTAR-ANN(p) models with different time lag p.

For example, to test a model with order p versus p+1, the null and alternative hypothesis

can be:

H0 : Yt = φ0WnYt +

p∑
i=1

φiWnYt−i +Xtβ + F (Xtγ
′)λ+ εt

H1 : Yt = φ0WnYt +

p+1∑
i=1

φiWnYt−i +Xtβ + F (Xtγ
′)λ+ εt
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Or

H0 : φp+1 = 0

H1 : φp+1 6= 0

Let the parameter estimates under the null and alternative be θ̂
(0)
, θ̂

(1)
respectively. Then

the Likelihood ratio test statistic is

LR = −2
(
Ln,T (θ̂

(0)
)− Ln,T (θ̂

(1)
)
)

and, under the null, is distributed asymptotically as χ2(1). If the null is rejected, we may

consider the model with (p+ 1) time lags; otherwise, we can continue test if φp = 0 until

rejected. In the following, we are going to derive the asymptotic distribution of this test

statistics [49, pg. 76-78].

Assumption 26. The limit A(θ0) = − limn,T→∞ E 1
nT

∂2Ln,T (θ0)
∂θ∂θ′

is nonsingular.

This assumption is to guarantee the existence of the covariance matrix of the limiting

distribution of parameters in a PSTAR(p)-ANN model. And we need all other assump-

tions in chapter 2.

Theorem 7. Consider θ ∈ Θp+1 and rewrite θ = (φp+1,ψ). Let θ̂p+1, θ̂p be the

MLEs of a PSTAR-ANN(p+1) model and its sub-model PSTAR-ANN(p) (with φp+1 = 0)

respectively, Ln,T (θ) is the corresponding log-likelihood function with respect to θ.

θ̂p+1 = arg max
θ∈Θp+1

Ln,T (θ), θ̂p = arg max
θ∈Θp

Ln,T (θ)

where Θp = {θ ∈ Θp+1 : φp+1 = 0}. For the hypothesis test:

H0 : φp+1 = 0

H1 : φp+1 6= 0
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the likelihood ratio test statistic is

LR = −2
(
Ln,T (θ̂p)− Ln,T (θ̂p+1)

)
(3.21)

and, under H0, LR
d−→ χ2(1) as n, T →∞.

Proof. We prove this by following Severini’s work [39, p. 113-115].

Expanding equation (3.21) by second order Taylor series around θ̂p+1,

LR = −2(θ̂p − θ̂p+1)
′∂Ln,T (θ̂p+1)

∂θ
− (θ̂p − θ̂p+1)

′∂
2Ln,T (θ̃)

∂θ∂θ′
(θ̂p − θ̂p+1)

where θ̃ is between θ̂p and θ̂p+1. Suppose the true unknown parameter under the null

is θ0 = (0,ψ0)
′ in the interior of Θp+1. From the property of MLE proved in chapter 2,

under the null, θ̂p+1
p−→ θ0 so θ̃

p−→ θ0 and we have

∂Ln,T (θ̂p+1)

∂θ
= 0, − 1

nT

∂2Ln,T (θ̃)

∂θ∂θ′
p−→ A(θ0) as θ̃

p−→ θ0

Hence,

LR =− (θ̂p − θ̂p+1)
′∂

2Ln,T (θ̃)

∂θ∂θ′
(θ̂p − θ̂p+1)

≈
√
nT (θ̂p − θ̂p+1)

′A(θ0)
√
nT (θ̂p − θ̂p+1)(3.22)

Then term θ̂p+1− θ̂p is of the form (φ̂p+1−0, ψ̂p+1−ψ̂p)
′ where ψ̂p denotes the maximum

likelihood estimator of ψ for fixed φp+1 = 0.

If we expand the score function
∂Ln,T (θ̂p+1)

∂θ
around θ0,

∂Ln,T (θ̂p+1)

∂θ
−
∂Ln,T (θ0)

∂θ
=
∂2Ln,T (θ∗)

∂θ∂θ′
(θ̂p+1 − θ0), θ∗ is between θ̂p+1,θ0

Hence,

√
nT (θ̂p+1 − θ0) =

[
− 1

nT

∂2Ln,T (θ∗)

∂θ∂θ′

]−1
1√
nT

∂Ln,T (θ0)

∂θ

≈A−1(θ0)
1√
nT

∂Ln,T (θ0)

∂θ
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Expand this equation, we have φ̂p+1 − 0

ψ̂p+1 −ψ0

 ≈ A−1(θ0) 1

nT

∂Ln,T (θ0)
∂φp+1

∂Ln,T (θ0)
∂ψ


For the model with φp+1 = 0 fixed, similarly,

(ψ̂p −ψ0) ≈ A−1ψψ(θ0)
1

nT

∂Ln,T (θ0)

∂ψ

where Aψψ(θ0) is the bottom right hand corner of the (φp+1,ψ) partition of A(θ0). For

simplicity, we define the following notation:

A−1(θ0) =

Aφp+1φp+1(θ0) Aφp+1ψ(θ0)

Aψφp+1(θ0) Aψψ(θ0)


−1

=

A11(θ0) A12(θ0)

A21(θ0) A22(θ0)


From the results above, it follows that

√
nT (ψ̂p+1 − ψ̂p) ≈ A21(θ0)

1√
nT

∂Ln,T (θ0)

∂φp+1
+
(
A22(θ0)−A−1ψψ(θ0)

) 1√
nT

∂Ln,T (θ0)

∂ψ
.

Therefore,

√
nT

 φ̂p+1 − 0

ψ̂p+1 − ψ̂p

 ≈ (A−1(θ0)−H)
1√
nT

∂Ln,T (θ0)

∂θ

where H =

0 0

0 A−1ψψ(θ0)

. Substituting this expression into equation (3.22) yields,

LR ≈ 1√
nT

(
∂Ln,T (θ0)

∂θ

)′
(A−1(θ0)−H)A(θ0)(A

−1(θ0)−H)
1√
nT

(
∂Ln,T (θ0)

∂θ

)

Since under the null 1√
nT

∂Ln,T (θ0)
∂θ

asymptotically follows N(0, A(θ0)) (refer to the proof

in chapter 2), it follows that the asymptotic distribution of LR is the distribution of Z ′Z
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where Z has a multivariate normal distribution with mean 0 and covariance matrix

A1/2(θ0)(A
−1(θ0)−H)A(θ0)(A

−1(θ0)−H)A1/2(θ0)(3.23)

This covariance (3.23) can be reduced to

Σ = A1/2(θ0)(A
−1(θ0)−H)A1/2(θ0)

It is easy to show that Σ = ΣΣ since HA(θ0)H = H, and tr(Σ) = tr(Idim(θ)−A(θ0)H) =

1.

Therefore under the null, LR
d−→ χ2(1) as n, T →∞. �

3.2.2. Sample ACF and PACF

Now we discuss some practical suggestion in estimating p.

Pfeifer and Deutrch [36] suggested a space time autocovariance function which de-

scribes the covariance between units lagged both in space and time. Based on their

work, we can also calculate the autocorrelations of a PSTAR-ANN(p) model. Recall the

PSTAR-ANN(p) model,

Yt = φ0WnYt +

p∑
i=1

φiWnYt−i +Xtβ + F (Xtγ
′)λ+ εt

where p is the autoregressive order and φi, i = 1, . . . , p are the associated parameters.

Here we only consider first order spatial weights, Wn ∈ Rn×n. Sample autocorrelations

and partial autocorrelation functions are useful for model selection in linear time series.

Theoretically, since a PSTAR-ANN(p) model is a nonlinear space-time model, ACF and

PACF are not sufficient for lag identification. However, in practice, they can still give us

some preliminary knowledge of the lag order p.
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Assuming Yt is stationary over both space and time, we can compute the correlation

coefficient at time difference h at a single location by

ρ(h) =
E[(ys,t − µ)(ys,t+h − µ)]

σ2

where µ is the mean of {Yt} and σ2 is the variance of {Yt}. This can be estimated by

ρ̂(h) =
1

n(T − h)

T−h∑
t=1

∑n
s=1(ys,t − ȳt)(ys,t+h − ȳt+h)

σ̂tσ̂t+h

where ȳt =
∑n

s=1 ys,t and σ̂2
t = 1

(n−1)
∑n

s=1(ys,t − ȳt)2. For the partial correlation, the 1st

order partial autocorrelation equals to the 1st order autocorrelation. For hth order partial

autocorrelation, h > 1, denote the regression of Yt+h on {Yt+h−1, . . . , Yt+1} as

Ŷt+h = a0 + a1Yt+h−1 + · · ·+ ah−1Yt+1

and let Ŷt denote the regression of Yt on {Yt+1, . . . , Yt+h−1}

Ŷt = b0 + b1Yt+1 + · · ·+ bh−1Yt+h−1

Denote Et = Yt − Ŷt, Et = {es,t}ns=1. Then the hth order sample partial autocorrelation of

Yt denoted φ̂hh is

φ̂hh =
1

(T − h)

T−h∑
t=1

∑n
s=1 es,t+hes,t√∑n

s=1 e
2
s,t+h

∑n
s=1 e

2
s,t

For a linear AR(p) process, the partial autocorrelations beyond lag p equal to 0 [9].

Hence sample PACF can be useful for model selection. Figures 3.4 and 3.5 show the sam-

ple ACF and PACF of Yt generated from model (3.24) and (3.25). X1,t, X2,t are generated

independently from N(0, 1.52) and N(0, 32) respectively. The error εt is generated inde-

pendently from N(0, 1). Both of these two series are stationary because the autoregressive
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polynomial is stationary (|φ0|+ |φ1|+ |φ2| < 1).

Yt = 0.6WnYt − 0.274WnYt−1 + 0.24X1,t − 0.7X2,t + 2F (0.75X1,t + 0.7X2,t) + εt(3.24)

Yt = 0.6WnYt + 0.1WnYt−1 + 0.25WnYt−2 + 0.24X1,t − 0.7X2,t + 2F (0.75X1,t + 0.7X2,t) + εt

(3.25)

Figure 3.4. Sample ACF and PACF of model (3.24), p = 1

Figure 3.5. Sample ACF and PACF of model (3.25), p = 2

In Figures 3.4 and 3.5, the sample autocorrelations die down more gradually than

the sample partial autocorrelations, which roughly cut off after time lag p = 1 and p = 2
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respectively. Therefore a sample PACF can be a useful tool to obtain a rough range about

the autoregressive order in a PSTAR-ANN(p) model. However, to effectively estimate the

order p, we recommend using the likelihood ratio test.

3.3. Simulations and Real Example

3.3.1. LR test for lag p

In section 3, we introduce likelihood ratio test for the time lag order selection in a PSTAR-

ANN(p) model and prove its asymptotic distribution. In this subsection, we are going

to evaluate the asymptotic distribution of this LR test statistic derived in section 3. We

generate observations Yt from a PSTAR-ANN(1) model in a 30× 30 grid, T = 30:

Yt = 0.6WnYt − 0.274WnYt−1 + 0.24Xt,1 − 0.7Xt,2 + 2F (0.75Xt,1 + 0.7Xt,2) + εt, t = 1, . . . , 30

(3.26)

where Xt,1, Xt,2 are generated independently from N(0, 1.52), N(0, 32). εt are generated

independently from a heavy tailed distribution, where we use t(4) and Laplace(0,
√
2
2

) for

illustration. The purpose is to test if a PSTAR-ANN(2) model is a good fit for Yt:

H0 : φ2 = 0

H1 : φ2 6= 0

We fit the simulated data on models under the null and alternative hypothesis respec-

tively. θ̂1, θ̂2 are parameter estimates of a PSTAR-ANN(1) and PSTAR-ANN(2) model.

The LR test statistic is given by −2
(
Ln,T (θ̂1) − Ln,T (θ̂2)

)
. We conduct the likelihood

ratio tests for 1000 replicates and compute the test statistic in each replicate. Table 3.1

shows the percentage of rejected tests at different significance level α (critical values are

based on χ2(1)) out of 1000 simulated tests with standard normal, t(4) and Laplace (0,
√
2
2

)
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error distributions respectively. We can see that the percentages approximately match

the Chi-squared significance levels. Therefore we can believe that under the null, the LR

test statistic roughly follows a χ2(1) distribution when n, T →∞.

χ2(1) Rejected Test %

α Critical Value N(0, 1) t(4) Laplace(0,
√
2
2

)

0.01 6.635 0.01 0.01 0.01

0.02 5.411 0.02 0.03 0.02

0.05 3.841 0.05 0.05 0.05

0.10 2.706 0.09 0.10 0.08

0.90 0.016 0.91 0.91 0.89

Table 3.1. Percentage of rejected tests at nominal significance level α out
of 1000 simulated tests where data are generated from equation (3.26) with
different error densities

3.3.2. Shakeout in Linear Regression

In this subsection, we will evaluate the feature selection effect of the Shakeout in model

fitting. Plenty of simulation studies of implementing Shakeout in neural networks were

discussed and demonstrated its flexible effects in pruning neural networks in Kang et al.

[21]. So in the following we will illustrate the Shakeout regularization in linear models on

simulated datasets. Let sample size n = 100 and the number of predictors q = 20. To

better simulate real world problems where we do not always observe independent predic-

tors, we generate 20 correlated predictors X = (X1, . . . , X20) ∈ Rn×q with Xi ∼ N(0,Σ),

where Σjk = 0.5|j−k| + 0.2Ij 6=k (this is a popular setting to generate correlated predictors

[30]). We select X1, X2, . . . , X7 as true predictors and the other thirteen variables are

not predictors. The coefficients βj, j = 1, . . . , 7, are shown below. Random error ε are
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generated independently from N(0, In). The dependent variable Y is given by

Y = 1.5X1 + 2X2 − 2X3 + 2.5X4 − 1.5X5 + 3X6 + 2.1X7 + ε

Then we fit a linear regression model on Y with all these 20 predictors and obtain the

parameter estimates β̂mle by maximizing the log-likelihood function with the raw data

. To compare, we also compute the parameter estimates β̂sko by maximizing the log-

likelihood function with the Shakeout noise injected data under different hyper-parameters

τ and c. We calculate the asymptotic covariance matrix of coefficients by (X ′X)−1 and

construct 95% confidence intervals for β̂mle, β̂sko. Predictors whose associated parameters

are significant will be selected. Even though β̂sko is biased, we can still construct confidence

intervals with the asymptotic covariance matrix for β̂mle for a reference. For evaluation

metrics, we consider the precision, recall and the number of selected predictors, where

precision and recall are given by,

Precision =
#correctly selected predictors

#selected predictors

Recall =
#correctly selected predictors

#true predictors

Table 3.2 compares L1, L2 norms (||β̂||1, ||β̂||22) of β̂mle and β̂sko and the number of signif-

icant parameters using a 95% confidence interval.

From the comparison, we can see that using Shakeout in estimating parameters impose

penalty on L1 and L2 norms of parameter estimates, which controls the magnitude of the

estimators and further assists with feature selection. Comparing τ and c in Table 3.2,

fixing c = 0, larger values of τ , or fixing τ = 0.5, larger values of c result in smaller values

in ||β̂||1, ||β̂||22 with less variables selected. Hence, when τ or c is large, this penalization is

more severe resulting in smaller ||β̂||1, ||β̂||22 and less predictor selected. Figure 3.6 show

distribution curves for values of parameter estimates β̂mle and β̂sko. Looking at these
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Method
Hyper-parameters ||β̂||1 ||β̂||22

# predictors
Recall Precision

(τ, c) selected

MLE – 13.92 21.03 15 1.00 0.47

Shakeout

(0.3, 0) 9.18 9.75 6 0.71 0.83

(0.5, 0) 8.20 6.72 7 0.86 0.86

(0.5, 0.5) 3.68 2.31 4 0.57 1.00

(0.5, 1) 1.70 0.51 3 0.43 1.00

Table 3.2. Compare β̂mle and β̂sko by ||β̂||1, ||β̂||22 and the number of pre-
dictors selected

curves, we can see that Shakeout method tends to shrink the magnitudes of parameter

estimates, which agrees with our conclusion from Table 3.2.

Figure 3.6. Distribution curves for values of parameter estimates β̂mle and
β̂sko with (τ, c) settings in Table 3.2
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Regarding the evaluation metrics precision and recall, we can see that when c or τ are

getting larger, stronger penalization will lead to less predictors selected and under proper

settings, using Shakeout can achieve higher precision and recall for example comparing

τ = 0.5, c = 0 and τ = 0.3, c = 0. However, sometimes, too strong penalization can

lower the recall (τ = 0.5, c = 1). In practice, if we want to implement the Shakeout

for feature selection, we need to carefully select hyper-parameters for a trade-off between

different evaluation metrics for example the precision and recall. One of the practical and

popular ways is to partition the training data into a training set and a validation set and

to evaluate the prediction performance of Shakeout with different τ and c (refer to [21]

for further reading).

3.3.3. Likelihood Ratio Test in the Election Example

In previous chapters we applied PSAR-ANN and PSTAR-ANN(1) models to the US

presidential election data and investigated the spatial dynamics in the proportion of vote

cast for the presidential candidates at county level in 2004. In this subsection, we will

employ the likelihood ratio test to compare the two models.

Recall the election problem: the dependent variable Yt is the fraction of votes in a

county for the Democratic candidate at time point t. The number of spatial units is

n = 3107, excluding those U.S. counties with no neighbors and the weight matrix Wn

is the first order spatial matrix by queen contiguity (refer to Chapter 1 for the weight

matrix definition). In previous analysis, we choose three exogenous variables to learn

their relationship with Yt: X1,t (under18) is the percent residents under 18 years old at

time t; X2,t (white) is the percent white residents at time t; X3,t (pctpoor) is the percent
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residents below poverty line at time t. Refer to Chapter 2, we transform Yt, X1,t, X2,t, X3,t

for analysis purposes and denote the transformed variables as Y ∗t , X
∗
1,t, X

∗
2,t, X

∗
3,t. Let

t = 1, 2 represent the years 2000 and 2004 respectively.

The fitted PSAR-ANN model is based on observations in 2004:

Y ∗2 =0.721W3107Y
∗
2 + 1.693− 0.185X∗1,2 − 0.658X∗2,2 + 0.181X∗3,1

− 0.937F (1.509∗1,2 − 2.544X∗2,2 − 2.268X∗3,2) + ε2(3.27)

The fitted PSTAR-ANN(1) model is based on observations in 2004 and 2000.

Y ∗2 =0.425W3107Y
∗
2 + 0.464W3107Y

∗
1 − 1.173 + 0.148X∗1,2 − 1.177X∗2,2 − 0.153X∗3,2

+ 3.056F (−0.722X∗1,2 + 1.689X∗2,2 + 0.248X∗3,2) + ε2(3.28)

Comparing model (3.27) and (3.28), the hypothesis is:

H0 : φ1 = 0

H1 : φ1 6= 0

The LR test statistics is −2(1734.5 − 1879.35) = 289.7 � χ2
0.95(1), which indicates that

including the first space time lag is significant and the model (3.28) is preferable to the

model (3.27).

3.4. Future Work

In this section, we discuss some additional problems of interest and future directions

of the current work. They include detecting non-stationarity in space-time processes and

making improved forecasts.
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3.4.1. Spatial Nonstationarity

In our work, we derive asymptotic properties of parameter estimates of a PSTAR-ANN(p)

model under stationarity. If this assumption is violated, the asymptotic distributions of

the parameter estimates are no longer reliable. For stationary processes, corresponding

statistical properties are constant over both space and time. Non-stationarity can some-

times be detected by looking the data. Corresponding tests are also useful in practice.

In the context of the PSTAR-ANN(p) model, non-stationarity exists, for instance, when

φ0 = 1 or the autoregressive polynomial is non-stationary. Future extensions of this work

includes tests for those cases.

To demonstrate stationarity versus non-stationarity, we simulate observations from

PSTAR-ANN(1) (time lag parameter φ1) and PSTAR-ANN(2) (time lag parameters

φ1, φ2) respectively. Let φ0 = 0.6, X1,t, X2,t, εt are generated independently fromN(0, 1.52),

N(0, 32) and N(0, 1) respectively. Yt are simulated from equation (3.29) with different p

and φi for i = 1, 2 (see Table 3.3).

Yt = 0.6WnYt +

p∑
i=1

φiWnYt−i + 0.24X1,t − 0.7X2,t + 2F (0.75X1,t + 0.7X2,t) + εt, t = 1, . . . , 30

(3.29)

Table 3.3 exemplifies several stationary and non-stationary space-time processes. To

evaluate the stationarity of a space-time process, instead of checking |φ0| < 1, we should

consider the autoregressive polynomial stationarity mentioned in chapter 2 assumption 4.

So we want to have that every z which solves det[zp(In − φ0Wn) −
∑p

i=1 φiWnz
p−i] = 0

should lie inside a unit circle. When φ0 = 0.6 and p = 1, series with φ1 = 0.45 and

φ1 = −0.45 are non-stationary processes; series with φ1 = 0.2 and φ1 = 0.39 are stationary.
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Model Parameter Stationary Process Non-stationary Process

p = 1 φ1
0.2 −0.45

0.39 0.45

p = 2 φ1, φ2
0.1, 0.25 0.1, 0.32

−0.1, 0.25 −0.1, 0.32

Table 3.3. Stationary versus non-stationary space time process in PSTAR-
ANN(p)

Figure 3.7 display heatmaps of observations in a 30× 30 grid at a single time, generated

from PSTAR-ANN(1) models in Table 3.3. The color at each unit represents the value

(a) φ0 = 0.6, φ1 = 0.2 (b) φ0 = 0.6, φ1 = 0.39

(c) φ0 = 0.6, φ1 = −0.45 (d) φ0 = 0.6, φ1 = 0.45

Figure 3.7. Simulated observations PSTAR-ANN(1) models: (a), (b) shows
the observations from stationary space-time process; (c), (d) show those
from non-stationary processes.
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of observation at that location. We can clearly see that observations generated from

non-stationary space-time processes exhibit clear trends.

When φ0 = 0.6 and p = 2, by checking the stationarity of the autoregressive polyno-

mial (if the roots solving (1−φ0τi)z
2−φ1τiz−φ2τi = 0 are in the unit circle for all τi, where

τi are eigenvalues of Wn), series with (φ1, φ2) = (−0.1, 0.32) and (φ1, φ2) = (0.1, 0.32) are

non-stationary processes while series with (φ1, φ2) = (0.1, 0.25) and (φ1, φ2) = (−0.1, 0.25)

are both stationary. Figure 3.8 shows the trend of Ȳt = 1
n

∑n
s=1 ys,t over the time t, where

Yt are generated from PSTAR-ANN(2) models in Table 3.3. It is clear to see that Ȳt

increases exponentially with time t when (φ1, φ2) = (0.1, 0.32) or increases with high

fluctuation when (φ1, φ2) = (−0.1, 0.32). Compared to the stationary cases, the high

fluctuation or large variance of a space time series over the time can be an alert for the

non-stationarity.

(a) φ1, φ2 = −0.1, 0.25 is stationary;
φ1, φ2 = −0.1, 0.32 is non-stationary

(b) φ1, φ2 = 0.1, 0.25 is stationary; φ1, φ2 =
0.1, 0.32 is non-stationary

Figure 3.8. Means of Yt versus time t, where Yt are generated from
PSTAR(2)-ANN models with different parameter φ1, φ2

From the comparison shown above, often nonstationary spatial processes, with mo-

ments that are not constant, can be detected in practice. Non-stationarity can make it
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harder to make predictions. In this sense, it is important to check the space and space-time

stationarity of the variable of interest. In the future, we can research more in identifying

non-stationary space-time processes.

3.4.2. Spatial Correlation φ0 Localization

In our proposed model, we assume the uniform space correlation φ0 and time lag autore-

gressive parameters φi, i = 1, . . . , p for all space units. In practice, this assumption may

be violated. For instance in the election example, if we take a closer look into counties

in a single state, we can find that the dependence structure can be different. Figure 3.9

shows the fractions of vote-shares per county for 2004 Democratic presidential candidate

in Texas and Illinois. Most counties in Texas are positively correlated with their neighbors

while few counties near the south corner have negative correlations with some neighbors.

On right side, spatial correlations in counties in Illinois looks more consistent than those

in Texas.

0%

25%

50%

75%

100%
Percentage

0%

25%

50%

75%

100%
Percentage

Figure 3.9. Fractions of vote-shares per county for 2004 Democratic presi-
dential candidate in Texas (left) and Illinois (right)
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To accommodate this localized spatial dependence, one approach is to use geographi-

cally weighted regression (GWR) to estimate φi,k for a location k [10], [15]. Brunsdon et al

[10] and Fotheringham et al [15] discussed this calibration in a simple spatial autoregres-

sive model and we can extend their work to a PSTAR-ANN(p) model. Suppose we want

to estimate the spatial autoregressive parameter φi,k at a sample location k, the technique

is to weight the data according to the geographical location with respect to k. We define

a diagonal matrix Dk where the diagonals are given by a monotone increasing function

of distance between the sample location k and other locations. So different matrix Dk

will be initialized based on the geographical properties of the location k. Referring to

Brunsdon [11], a PSTAR-ANN(p) model is now modified as,

Yt =

p∑
i=0

φi,kWnYt−i +Xtβ + F (Xnγ
′)λ+Dkεt(3.30)

Looking at the term Dkεt, this modification is equivalent to scaling the identically dis-

tributed errors εt by a distance-based function. Also, in the maximum likelihood esti-

mation, observations which have larger variances will be downweighted. So in order to

put more weight on locations closer to k, the entries in Dk should be proportional to the

distance from k which means that observations in closer neighborhoods around the sample

point k have smaller variances [10] and have more weight in the likelihood function. Then

the error term in (3.30) can be rewritten as

εt = Uk(In − φ0,kWn)Yt −
p∑
i=1

φi,kUkWnYt−p − UkXtβ − UkF (Xtγ
′)λ(3.31)

where UkDk = In. Therefore the conditional log-likelihood function of the model (3.30)

becomes

LGW−PSTAR(θ) = T ln |Uk(In − φ0,kWn)| −
T∑
t=1

n∑
s=1

ln f(εs,t(θ))
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Brunsdon [11] provided a convenient approach to re-estimate the spatial autoregres-

sive parameters at any sample point k and his method allowed flexibility in defining the

distance-based matrix Dk. To apply this in practice, because it can be expensive to

estimate spatial autoregressive parameters for every location, we need to have a good un-

derstanding of the geographic property in the space and carefully choose the representative

sample locations to estimate their local spatial correlations.

Another method is to use a generalized PSTAR-ANN(p) model referred in Borovkova’s

work [6]. A generalized PSTAR-ANN(p) is defined as

Yt =

p∑
i=0

ΦiWnYt−i +Xtβ + F (Xtγ
′)λ+ εt, t = 1, . . . , T(3.32)

where Φi = diag(φi1, . . . , φin) for i = 0, 1, . . . , p, containing local autoregressive parame-

ters and Wn is the first order spatial weight matrix.

Borovkova [6] proposed least square estimators in his generalized space-time autore-

gressive model where he let Φ0 = 0 in equation (3.32) and derived the asymptotic property

of the least square estimates when T →∞. However, In our case, Φ0 6= 0 and we can use

maximum likelihood estimation to estimate parameters. Note that we allow n, T → ∞

in a PSTAR-ANN(p) model so due to model identification, we should restrict the rank of

Φi bounded by some constant di < n for i = 0, . . . , p. Then the log-likelihood function of

model (3.32) should be:

LGPSTAR(θ) = T ln |In − Φ0Wn)| −
T∑
t=1

n∑
s=1

ln f(εs,t(θ))(3.33)

εs,t(θ) = (In − Φ0Wn)Yt −
p∑
i=1

ΦiWnYt−i −Xtβ − F (Xtγ
′)λ

Based on the discussion above, there are two approaches that can be applied to consider

local spatial correlations in a PSTAR-ANN(p). Further work is needed to find and prove
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the limiting distributions of maximum likelihood estimators of parameters in model (3.30)

and (3.32). And the problem of having only local stationarity will be considered in the

future.

3.4.3. Prediction for the Election Problem

In the election problem, due to the limited access to exogenous variables associated with

social factors, we fitted PSTAR-ANN(1) and PSTAR-ANN(2) models using the data

observed in year 2000 and 2004. Theoretically the limiting distribution of parameter

estimates in a PSTAR-ANN(p) model are derived assuming n, T → ∞. So fitting the

model using the dataset with two time points does not exactly satisfy the condition that

T →∞. In chapter 2, even though histograms of Yt and Xt indicate stationarity over the

time, we still suggest including more time points in the analysis to obtain reliable results.

In chapter 2, analysis on the parameter estimates suggested that some exogenous variables

such as UNDER18 and pctpoor are not great predictors. To improve this, we should also

consider finding other measures for age and social economic level. In addition, due to the

limited time points in the data, we are not able to perform the variable selection using

the Shakeout method because the dataset can not be split into training and test sets.

On the other hand, regarding to the data collection, we can hardly guarantee that

exogenous variables included in the analysis are collected in historical records. Some

variables recorded at time t may be only estimators based on previous years or they

are replaced by other variables. This uncertainty makes it difficult in data collection so

we should pay more attention in the future when selecting exogenous variables for the

analysis.
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To conclude, in the future, we would like to collect more data observed at different

time points. With more observations and exogenous variables over the time , we can

be more confident in the fitted parameter estimates. In the meanwhile we are able to

employ the Shakeout method to discover better exogenous variables to explain the spatial

dynamic in the election problem.
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[6] Svetlana Borovkova, Hendrik P Lopuhaä, and Budi Nurani Ruchjana. Consistency
and asymptotic normality of least squares estimators in generalized star models.
Statistica Neerlandica, 62(4):482–508, 2008.

[7] Dan Braha and Marcus A. M. de Aguiar. Voting contagion: Modeling and analysis of
a century of u.s. presidential elections. PLOS ONE, 12(5):1–30, 05 2017. doi: 10.1371/
journal.pone.0177970. URL https://doi.org/10.1371/journal.pone.0177970.

[8] F Jay Breid, Richard A Davis, Keh-Shin Lh, and Murray Rosenblatt. Maximum
likelihood estimation for noncausal autoregressive processes. Journal of Multivariate
Analysis, 36(2):175–198, 1991.

[9] Peter J Brockwell, Richard A Davis, and Matthew V Calder. Introduction to time
series and forecasting, volume 2. Springer, 2002.

[10] Chris Brunsdon, A Stewart Fotheringham, and Martin E Charlton. Geographically
weighted regression: a method for exploring spatial nonstationarity. Geographical

https://doi.org/10.1371/journal.pone.0177970


144

analysis, 28(4):281–298, 1996.

[11] Chris Brunsdon, A Stewart Fotheringham, and Martin Charlton. Spatial nonsta-
tionarity and autoregressive models. Environment and Planning A, 30(6):957–973,
1998.

[12] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory al-
gorithm for bound constrained optimization. SIAM Journal on Scientific Computing,
16(5):1190–1208, 1995.

[13] George Casella and Roger L Berger. Statistical inference, volume 2. Duxbury Pacific
Grove, CA, 2002.

[14] Noel Cressie. Statistics for spatial data. John Wiley & Sons, 2015.

[15] A Stewart Fotheringham, Martin Charlton, and Christopher Brunsdon. Two tech-
niques for exploring non-stationarity in geographical data. Geographical Systems, 4
(1):59–82, 1997.

[16] A Ronald Gallant and Halbert White. On learning the derivatives of an unknown
mapping with multilayer feedforward networks. Neural Networks, 5(1):129–138, 1992.

[17] Semyon Aranovich Gershgorin. Uber die abgrenzung der eigenwerte einer matrix.
Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences mathématiques
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