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Abstract 

Stroke affects millions of people each year and although modern medicine has improved chances 

of survival after stroke, it has not yet been able to affect a change in repairing damaged neural 

tissue leaving one to two thirds of survivors with chronic disability in their affected upper-

extremity; specifically, hemiparesis, hypertonicity, loss of coordination, and spasticity. These 

impairments require survivors to adapt and compensate for the loss of function in their arm, wrist, 

and hand. These impairments also discourage many survivors and cause them to use their arm less 

and less leading to atrophy and limitations in range of motion. 

One phenomenon which limits in-part both the rehabilitation process as well as the efficacy of 

mechanical intervention (exoskeletons or wearable assistive devices) is the abnormal synergy, in 

which greater proximal effort of the arm leads to increased tone and contraction in a patterned way 

throughout the arm, wrist, and hand. Lifting the arm against gravity often causes unintentional co-

activation of elbow, wrist, and finger flexors. By reducing effort at the shoulder, this phenomenon 

is reduced thus enabling greater control and range of motion at these joints. Without arm support, 

individuals with stroke and any equipment they utilize must overcome these increased abnormal 

joint torques. With the advancement of exoskeletons, a powered device that supports humeral 

elevation is foreseeable but with that comes the requirement for a control system to control it. 

This dissertation explores the possibility of using pattern recognition, a type of machine learning, 

to control vertical support at the shoulder after stroke thus reducing the effort required and 

consequently reducing the severity of presentation of the abnormal synergy. It is hoped that this 

work will contribute towards the realization of a control paradigm that will aid in the rehabilitation 
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and assistance of those surviving stroke. These chapters progress from a purely isometric single 

direction shoulder task (Chapter 2) to a quasi-static, quasi-dynamic dual-task (Chapters 3 and 4), 

to finally real-time control of vertical support using machine learning (Chapter 5). The nature of 

this work limits any strong conclusive statements but ultimately has shown the promise and 

efficacy of such a control system. Specifically, Chapter 5 shows that myoelectric based pattern 

recognition control enables survivors of stroke to control both vertical support force and vertical 

position well enough to place their arm in a target window and improve their forward reach ability 

by increasing joint excursion at the elbow and the shoulder. 

Chapter 4 questions the presence of abnormal synergy within shoulder joint degrees of freedom. 

It concludes that a natural synergy exists between adduction/internal rotation based on normal 

muscle biomechanics that constrains shoulder movements “outside of synergy” such as 

adduction/external rotation or abduction/internal rotation. This is a deviation from the commonly 

accepted hypothesis that abduction or adduction drive causes patterned and obligatory torque 

coupling with external rotation and internal rotation respectively. 

Ultimately these results have advanced our understanding of control of the shoulder after stroke 

and have demonstrated the feasibility and efficacy of using a myoelectric based control system to 

control vertical support in order to increase function. Further work is required to refine and 

optimize these techniques and possibly develop automated decision making systems to aid in 

rehabilitation. 
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Chapter 1: Introduction 

Stroke affects millions of people worldwide each year with a significant portion (30-60%) 

retaining chronic upper-extremity impairments for the remainder of their lives. These impairments 

include weakness, increased tone, spasticity, loss of fine motor control, and loss of coordination 

and independent joint control. Stroke is the interruption of blood flow to the brain resulting in 

neuronal death and although modern medicine has increased survival rates of stroke, it has yet 

been able to effect a reduction in its incidence. Unfortunately, the human nervous system has little 

to no ability to repair itself after insult, leaving researchers to look for ways to minimize 

impairments and maximize function and quality of life for survivors of stroke.  

In the early 1950’s Thomas Twitchell documented the recovery of 121 patients with stroke noting 

commonalities and patterns.1 Since then the field of stroke recovery has expanded exponentially 

with current guidance directing intense, task specific, and repetitive practice.2 Although some 

progress has been made to enable increased independence and accomplishment of activities of 

daily living after stroke, impairments remain.2,3 In fact, six months after stroke, about 65 percent 

of patients cannot incorporate the affected hand into their usual activities.4 The persistence of these 

chronic impairments in addition to the advancement in robotics and exoskeletons have enabled 

researchers to explore, in new ways, the impairments and possible technologies to rehabilitate or 

to assist individuals after stroke. 

Since the late 1980’s and early 1990’s around the time of the development of the MIT-MANUS, 

research devoted to the use of robotics to understand impairments of neurologic injury and provide 

interventions to improve function rapidly expanded.5 Technological abilities have expanded but 



14 

 

 

 

long term meaningful improvement after stroke remains elusive as robotic therapy has not proven 

more effective than traditional therapy.6 At best it has effected small but significant changes due 

to pure repetition and intensity that it offers.7 Although robotics has not yet been able to effect 

great improvements in outcomes, it has offered insight into underlying impairments and offers a 

way to facilitate increased function via assistance. 

Twitchell described two abnormal patterns which commonly occur after stroke: a flexion synergy 

and an extension synergy. Specifically, the flexion synergy is described as unintentional movement 

of joints throughout the limb into a flexion pattern at the shoulder, elbow, wrist, and fingers. 

Conversely, the extension pattern was described as unintentional movement of the limb into 

extension at the shoulder, elbow, wrist, and fingers. These have since been elucidated 

quantitatively using isometric and robotic setups for both the upper- and lower- extremities. One 

critical finding is that the expression of these synergies is proportional to the amount of neural 

drive, or simply the amount of effort being used in attempt to move.  

By reducing the amount of effort at the shoulder, the unintentional co-activation of elbow, wrist, 

and finger muscles is reduced, improving reach and coordination. Using robotics, the amount of 

effort can easily and precisely be controlled by controlling the amount of load or support at the 

shoulder. Supporting the shoulder has proven to be an effective way of reducing abnormal co-

activation at the elbow, wrist, and fingers, improving reach area and distance as well as improving 

determination of intent of hand movements. 

These results have implications to the realm of assistive robotics. Devices targeting the elbow, 

wrist, and hand add weight to the arm, and thus increase the amount of shoulder effort required to 
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lift it. These devices then need to overcome or overpower, in addition to any forces, the increased 

presentation of the abnormal synergy at those joints. Although supporting the shoulder does not 

directly result in improved dexterity of the fingers, it does reduce the intensity of these abnormal 

co-activation patterns and subsequently the abnormal joint torques that result from shoulder effort. 

This has direct implication to the devices designed to aid the wrist and hand as they will have to 

overcome less resistance due to unintentional muscle activity and can better detect what the user 

is trying to do.  

Determining the intent of someone without neurological injury is relatively straight forward. But 

aberrant forces and muscle signal patterns due to the presentation of the abnormal synergy make 

it more difficult to discern what the user is truly trying to do. If underlying muscle activity is 

causing joint forces and movement that is not intended, how can true user intention be detected or 

inferred? In either case, force or EMG data can be used alongside machine learning techniques 

such as pattern recognition to decipher what a person is intending to do. Many groups continue 

focused lines research on what algorithms and what features result in the highest classification 

accuracy. That is not the intent of this work. This work uses linear discriminant analysis based 

pattern recognition as a starting point as it has proven computationally efficient and effective in 

the population with amputation to control powered prostheses.  

Of course many other machine learning classifying techniques exist and have proven as or even 

more accurate than an LDA based classifier. Additionally, many other features exist that may 

enable improved pattern recognition but we focus on the Hudgin’s feature set (mean absolute 

value, number of zero crossing, number of slope sign changes, and waveform length) combined 
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with 6th order autoregressive features. The Hudgin’s features have been tested and used 

extensively. The aforementioned techniques and features have been used for individuals post-

stroke in attempt to rehabilitate or assist the elbow, wrist, and hand.  

Chapter 2 begins my exploration of using muscle signals as a possible control signal to control a 

future device designed to support the shoulder and assist it to move the arm against gravity. It 

aimed to answer the question, can pattern recognition of muscle signals correctly discriminate 

between eight intended motions? Maximal isometric voluntary contractions and corresponding 

joint torques were used as it was assumed this was the worst case scenario in which the abnormal 

synergy would be maximally present. This work was published in its present form in JNER… 

Chapter 3 explores some findings springing from Chapter 2. Mainly, it attempted to determine if 

some of the classification errors found in Chapter 2 were the result of the design of the experiment 

or due to the abnormal synergy. Specifically, it used a robotic device (ACT3D) in a novel way to 

test the motions that were commonly confused in Chapter 2. This was accomplished using the 

ACT3D robotic setup combined with a dual-task requiring different amounts of shoulder abduction 

and adduction effort simultaneously with maximal isometric internal and external rotation. This 

chapter was published in its present form in TNSRE. 

Chapter 4 expounds on some of the joint torque data acquired in the same study as Chapter 3. The 

aim of this chapter is to understand how control of the shoulder compares between the paretic, the 

non-paretic, and the control shoulder in a dual-task of the shoulder. This was accomplished using 

the same setup on the ACT3D as in Chapter 3 with a dual-task requiring different amounts of 

shoulder abduction and adduction effort simultaneously with maximal isometric internal and 
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external rotation. This chapter has implications into the design requirements of a future device and 

if internal and external rotation must or should be controlled. This chapter has been submitted for 

publication in its present form. 

Chapter 5 moves from understanding the possibilities and consequences of stroke towards real-

time assistance using a robotic device by applying what has been learned in the previous chapters. 

An embedded controller, using the same machine learning techniques as Chapters 2 and 3, was 

used to control the vertical position and the vertical force applied to the users arm. The user was 

required to move their arm into a vertical target window and then reach out straight in front of 

them as far as possible. This chapter has also been submitted for publication in its present form. 

Chapter 6 discusses the results of the previous chapters and their implications to the field as a 

whole. Although there is significant work to be done, this line of research followed a path by taking 

the next logical step as best as we could discern, and has resulted in a promising outlook of future 

possibilities.  
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Chapter 2. Pattern Recognition of Isometric Shoulder Tasks after 

Stroke 

Kopke JV, Hargrove LJ, Ellis MD. Applying LDA-based pattern recognition to predict isometric 

shoulder and elbow torque generation in individuals with chronic stroke with moderate to severe 

motor impairment. J Neuroeng Rehabil. 2019;16 

2.1 Abstract 

Background 

Abnormal synergy is a major stroke-related movement impairment that presents as an 

unintentional contraction of muscles throughout a limb. The flexion synergy, consisting of 

involuntary flexion coupling of the paretic elbow, wrist, and fingers, is caused by and proportional 

to the amount of shoulder abduction effort and limits reaching function. A wearable exoskeleton 

capable of predicting movement intent could augment abduction effort and therefore reduce the 

negative effects of distal joint flexion synergy. However, predicting movement intent from 

abnormally-coupled torques or EMG signals and subsequent use as a control signal remains 

elusive. One control strategy that has proven viable, effective, and computationally efficient in 

myoelectric prostheses for use in individuals with amputation is linear discriminant analysis 

(LDA)-based pattern recognition. However, following stroke, shoulder effort has been shown to 

have a negative effect on classification accuracy of hand tasks due to the multi-joint torque 

coupling of abnormal synergy. This study focuses on the evaluation of an LDA-based classifier to 

predict individual degrees-of-freedom of the shoulder and elbow joints.  

Methods 
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Six degree-of-freedom load cell data along with eight channels of EMG data were recorded during 

eight tasks (shoulder abduction and adduction, horizontal abduction and adduction, internal 

rotation and external rotation, and elbow flexion and extension) and used to create feature sets for 

LDA-based classifiers to distinguish between these eight classes.  

Results 

Cross-validation yielded functional offline classification accuracies (>90%) for two of the eight 

classes using EMG-only, four of the eight classes using load cell-only, and six of the eight 

classes using a combined feature set with average accuracies of 83%, 91%, and 92% 

respectively.  

Conclusions 

The most common misclassifications were between shoulder adduction and internal rotation 

followed by shoulder abduction and external rotation. It is unknown whether the strategies used 

were due to abnormal synergy or other factors. LDA-based pattern recognition may be a viable 

control option for predicting movement intention and providing a control signal for a wearable 

exoskeleton assistive device. Future work will need to test the approach in a more complex multi-

joint task, specifically one that attempts to tease apart shoulder abduction/external rotation and 

adduction/internal rotation. 

Trial Registration: N/A 

Keywords 

hemiparesis, stroke, flexion synergy, shoulder, pattern recognition, linear discriminant analysis 
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2.2 Background 

Nearly 800,000 people in the U.S. and 16 million people worldwide suffer a stroke each 

year 8. Of these, an estimated 50% result with chronic hemiparesis 9 and up to 80% may have 

residual upper-extremity impairments 10. Commonly these survivors present with abnormal 

movement patterns referred to as abnormal synergies 1,11 described as loss of independent joint 

control due to coactivation of muscles across multiple joints 12. Proximal shoulder abduction effort 

causes involuntary elbow, wrist, and finger flexion, as well as forearm supination proportional to 

the amount of shoulder effort and is referred to as the flexion synergy 13-15. In the same manner, 

shoulder adduction produces involuntary elbow extension, wrist and finger flexion, and forearm 

pronation and is referred to as the extension synergy. The loss of independent joint control resultant 

from abnormal synergies is thought be the result of increased utilization of contralesional 

corticoreticulospinal tract 16,17.  

When shoulder effort is reduced, there is a proportional reduction in the expression of loss 

of independent joint control, enabling access to a greater functional workspace, with full support 

of the shoulder leading to near maximal reaching range of motion 13,18. While targeting this 

impairment with progressive abduction loading therapy has provided small benefit 19,20 the 

complete restoration of movement remains elusive. Therefore, one possible solution to aid these 

stroke survivors with persistent loss of independent joint control is to support their arm with a 

wearable exoskeleton. This exoskeleton could provide smart-support possibly leading to long-term 

improvements in workspace. At a minimum, a wearable device could assist and enable a survivor 

of stroke by minimizing the effects of abnormal synergy and therefore maximizing their functional 

work area, better engaging their environment, and/or supporting interventions for their hand, wrist, 
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and elbow. Powered exoskeletons, for both upper- 21 and lower- 22 extremity, are becoming more 

commonplace and are beginning to emerge as viable sources of rehabilitation and assistance. 

However, design requirements and feasible control techniques that consider the expression of 

abnormal synergy/loss of independent joint control have not been established. 

The application of wearable robotic technology has found success in individuals with 

amputation23 paving the way for potential use in individuals with stroke. Historically, these devices 

were controlled using simple amplitude-based thresholds, but recently the use of linear 

discriminant analysis (LDA) based pattern recognition has proven to be both accurate and 

computationally efficient and enables intuitive control of a greater number of degrees of freedom 

23-25.  Although LDA-based pattern recognition is often focused on controlling distal joints, pattern 

recognition of shoulder motions of healthy controls has been explored for the purposes of 

application to the population with amputation and have achieved classification accuracies above 

90% 26,27. 90% is significant, as it has been implicated as a transitional value between high 

functionality and extremely variable levels of functionality of a myoelectric prosthesis based on 

the user, classifier, and their interaction 28. 

Pattern recognition has been implemented with individuals with stroke with varying 

degrees of success. Electromyography (EMG) data from the forearm has been used to predict 

movement with low 29, mixed 30, and high 31 levels of accuracy. Additionally, EMG has been used 

to predict goal-directed horizontal reaching in both impaired and healthy controls reporting 

insufficient and sufficient accuracy respectively 32. Importantly, a limitation to these applications 

in individuals with stroke was that the participant’s arms were supported, minimizing the 

expression of the abnormal synergy and potentially inflating classification accuracies compared to 
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what they would be during active shoulder use common in activities of daily living.  In fact, 

classification accuracy for determining an individual’s desire to open their hand is significantly 

reduced when lifting as little as 25% of their abduction maximum 15,33. Advanced offline 

techniques for correcting synergy-induced classification errors only appreciably improved one 

subject’s accuracy 15. Even if these classification errors could be corrected, the effects of abnormal 

synergy at the elbow, wrist, and fingers (unintentional activation of muscles) would still exist, 

possibly limiting range of motion or requiring an exoskeleton to mechanically overpower each 

affected joint. To reduce synergy presentation and achieve success in classifying distal movement 

intent, abduction support (less required abduction torque generation) is required. With the 

advancement of wearable robotics, it is feasible to envision a device that could do this. Actively 

and smartly controlling abduction support would be desirable in hopes of both facilitating recovery 

and avoiding “slacking” (tendency to over utilize device support leading to increased weakness). 

Accurate classification of movement intent at the shoulder and perhaps the elbow would be 

required to realize this goal but has never been demonstrated. Therefore, as a first step, this study 

aims to determine if LDA-based pattern recognition of shoulder and elbow joints can achieve 

functionally useable classification accuracies (>90%) despite the existence of the abnormal 

synergies in a rigorously controlled and quantitative paradigm. 

Sensor fusion from multiple sources has been shown to supplement LDA-based pattern 

recognition to predict ambulation 34,35. The utilization of force and moment load cell data, is a 

unique and potentially powerful control option available for application of pattern recognition in 

individuals with stroke that is not available to individuals with amputation; the incorporation of 

which may augment the accuracy of a solely EMG-based classifier for individuals with stroke. 
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This study investigates how effectively LDA-based pattern recognition techniques applied to load 

cell, joint torque, EMG, and combined data, classify between maximal isometric torque tasks in 

eight different directions (shoulder abduction/adduction, shoulder horizontal abduction/adduction, 

shoulder internal/external rotation, and elbow flexion/extension). It was hypothesized that the 

combination of load cell and EMG data would result in the largest number of tasks with 

classification accuracies >90%. 

2.3 Methods 

2.3.1 Participants 

Informed consent was obtained from participants to complete the protocol approved by 

Northwestern’s Institutional Review Board. Thirty-five participants with chronic stroke and upper-

extremity Fugl-Meyer assessment (UE-FMA) scores between 10 and 45, classifying their motor 

impairment as moderate or severe, were recruited to participate in the experiment. Six participants 

were excluded; two for corrupted or absent data which resulted in less than three useable trials in 

a given direction and four for profound external rotation weakness. These four participants were 

unable to produce external rotation torque with the exception of that which occurred as a secondary 

torque (i.e. when testing in a different direction). Characteristics from the remaining 29 

participants: 21% female, 38% with affected/hemiparetic right arm, average UE-FMA score of 

27.4/66 ± 6.4 (15-43), average age of 57.1 ± 9.2 years (37.1-68.7), average time post-stroke 7.2 ± 

4.9 years (.98-24.6). Characteristics are presented as percentage or as average value ± standard 

deviation (minimum value – maximum value). 

2.3.2 Setup and instrumentation 



24 

 

 

 

Participants were seated in a rigid chair (Biodex, Shirley, NY; Model 830-110) and secured 

with two chest straps and a lap belt to minimize shoulder girdle and torso movement with feet 

supported by a footrest. Their paretic forearm, wrist, and hand were then casted using fiberglass 

casting material to provide rigid coupling to a load cell and prevent synergy induced wrist and 

finger flexion. Using a Delrin ring the forearm was attached to a 6-degree of freedom (DOF) load 

cell (JR3 Inc., Woodland, CA, USA; Model 45E15A) that provided instantaneous forces in three 

orthogonal directions and the moments about each of the three axes which enabled the calculation 

of joint torques at the elbow and shoulder. The custom device was then adjusted to place their 

paretic arm in a position of approximately 90° of abduction, 45° of horizontal adduction, neutral 

humeral internal-external rotation, and 90° elbow flexion resulting in the entire arm being in the 

transverse plane located at shoulder height (Figure 1). Skin was prepared using a dry scrub pad 

and alcohol wipe and electrode gel was 

applied to eight surface-EMG bipolar 

differential electrodes with 1cm 

interelectrode spacing (Delsys, 

Cambridge, MA, USA; 16 channel 

Bagnoli) that were attached over the 

following muscles: anterior deltoid, 

intermediate deltoid, posterior deltoid, 

pectoralis major, biceps brachii, triceps 

long head, triceps lateral head, and 

brachioradialis. Electrodes were placed 

 
Figure 1. Setup in Biodex chair with participant attached to load 

cell via rigid cast. Labels identify the following: A) Feedback 

display, B) Load cell, C) Delrin ring and cast. 
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by a physical therapist via use of anatomical landmarks and palpation as prescribed by the book 

Anatomical Guide for the Electromyographer 36. A ground reference electrode was placed over 

the acromion. These muscle sites were chosen as they could all be reached by the participants with 

intent to mimic feasible self-applied electrode sites for future applications. This choice became a 

limitation as EMG data from rotator-cuff muscles and latissimus dorsi may have improved 

differentiation between classes. 

2.3.3 Experimental Protocol 

Maximum isometric voluntary torques were tested in eight different directions: shoulder 

abduction (AB) and adduction (AD), horizontal abduction (HAB) and adduction (HAD), internal 

rotation (IR) and external rotation (ER), and elbow flexion (EF) and extension (EE). Here we 

define shoulder abduction as the torque around an axis in the transverse plane running through the 

glenohumeral joint perpendicular to the humerus. Abduction would cause the humerus to rotate 

cranially while adduction would cause the humerus to rotate caudally, down toward the torso. 

Horizontal adduction torque would cause rotation around the vertical axis running through the 

glenohumeral joint in which the humerus would rotate in the transverse plane toward the front of 

the body and horizontal abduction would rotate the humerus out to the side and then behind the 

body. Internal rotation torque is similar to what is used in arm-wrestling or overhand throwing and 

causes rotation of the humerus along the long-axis of the bone. Internal rotation is what allows 

individuals to reach the small of their back while external rotation allows them to reach behind 

their head. Torque generated in the testing direction is considered the primary torque while 

concurrent torques generated in the other directions are labeled as secondary. The order of testing 

direction was randomized. Each direction was tested a minimum of three and maximum of six 



26 

 

 

 

trials aiming to satisfy the following criteria: three trial maximum primary torques within 10% of 

each other with the last trial not being the greatest. Three trials were chosen to allow for adequate 

data to train and validate each classifier and to allow for some natural variation in task completion 

without causing fatigue. Verbal directions and visual demonstrations were provided prior to 

execution of each task. Real-time visual feedback of torque production in the testing (primary) 

direction was provided via large monitor and custom round dial display. The visual feedback 

offered additional encouragement in addition to  auditory encouragement to ensure maximum 

torque was attained. Trials were 5 seconds long and recorded at 1 kHz via a data acquisition device 

(National Instruments, NI-DAQ, Austin, TX, USA). A minimum of one minute of rest was given 

between trials to ensure adequate recovery time and prevent fatigue. Representative data is 

presented in Figure 2. 

2.3.4 Data processing 

All data collection, processing, classification, and analysis were accomplished with 

MATLAB (Release 2012a and 2017a, The MathWorks, Inc., Natick, MA, USA) via custom code. 

Upon inspection of raw EMG data, a small amount of power line noise was noted, so in addition 

to the Delsys hardware bandpass filter between 20 to 450 Hz, EMG from each trial was digitally 

notch filtered between 58 and 62 Hz and subsequent harmonics using a 6th order Butterworth to 

remove the power line noise. The proceeding analysis was accomplished for both filtered and 

unfiltered data and the filtered data performed slightly better, but not significantly (1-2%). An in-

depth comparison between these datasets was outside the scope of this study. Isometric joint 

torques were calculated using  a series of matrix translations and rotations of the raw six degree-

of-freedom load cell data (three forces and three moments) based on limb anthropometrics and 
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relative limb and load cell location and orientation.  Maximum voluntary torque values were 

 
Figure 2. Sample joint torque for one trial of two different shoulder tasks, shoulder adduction and internal rotation 

with delineation of which data were selected (>20% max in tested direction) for use in the classifier (top). Sample 

EMG for 2 of the 8 channels: anterior deltoid (used during internal rotation), and pectoralis major (used in 

adduction and internal rotation). Horizontal abduction (HAB)/adduction (HAD); Abduction (AB)/adduction 

(AD); External (ER)/internal (IR) rotation; Elbow flexion (EF)/ extension (EE); Newton-meters (Nm); Volts (V); 

Milliseconds (ms). 
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calculated using a 200 ms moving average. Data were used from the three trials with maximum 

torque values. Within each trial, automatic segmentation when the primary torque was >20% of 

the maximum generated torque for that direction was used for subsequent analysis (classification). 

Only data when the torque in the primary direction was greater than 20% was used. This somewhat 

arbitrary cutoff of 20% was used to help ensure that the participant was actually doing what they 

were tasked to do as well as ensure there was sufficient data to train and validate the classifier for 

all participants. True maximum strength values are normally achieved for approximately 1 second, 

so additional data was used to create a richer and lengthier dataset. 

2.3.5 Classification 

To evaluate the possibility of predicting user-intent during these shoulder tasks, pattern 

recognition analyses were performed which considered the following signal sources: raw 

measurements from the load cell only, computed joint torques of the shoulder and elbow only, 

EMG signals only, and a combination of load cell and EMG sensor sources.  The pattern 

recognition system used in this work is similar to a real-time pattern recognition control system 

that has been developed to control advanced upper-limb prostheses 37. The control algorithm 

contains three basic functions: data windowing, feature extraction, and classification. Windows 

were formed from 200 ms of data and decisions were made every 25 ms (ie 175 ms of overlapping 

data) which maximizes decision density and minimized delay without significant loss in accuracy 

38. The features used depended on the input signals: for load cell data and computed joint torques, 

only the mean of each of the channels over each window was used, while for EMG data, the time-

domain features proposed by Hudgins 39 were calculated for each of the eight channels. These 

included mean absolute value, number of zero crossings and slope sign-changes, and waveform 
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length. This resulted in a six-dimensional feature set using load cell, four dimensional set for joint 

torque data (shoulder abduction/adduction, shoulder horizonal abduction/adduction, shoulder 

external rotation/internal rotation, and elbow flexion/extension), 32-dimension set for EMG, and 

38 for a combined set (6 dimensions from load cell data and 32 from EMG). The extracted features 

were supplied to an LDA-based classifier. A trial wise leave-one-out-cross-validation was used in 

which each set of two trials was used to train a classifier which was then tested against the third 

and the accuracies averaged.  

2.4 Results 

This study takes a focused look at classifying movement patterns at the shoulder and elbow 

post-stroke following prior work reporting challenges in classifying movements at the forearm, 

wrist, and hand. Confusion matrices for the load cell and the EMG time-domain feature sets are 

shown in Tables 1 and 2 respectively. Accuracies above 90% have been shown to be functionally 

useable while accuracies between 

Table I. Confusion matrix of all 8-classes using load cell dataset 

Load cell dataset 
Predicted Class 
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  Elbow Flexion (EF) 92 4 3 1 0 0 0 0 

 Abduction (AB) 3 87 10 0 0 0 0 0 

 External Rotation (ER) 2 8 89 1 0 0 0 0 

 Horizontal Abduction (HAB) 0 0 2 97 0 0 0 0 

 Elbow Extension (EE) 0 0 0 0 98 1 0 0 

 Adduction (AD) 0 0 1 0 1 84 13 0 

 Internal Rotation (IR) 0 0 0 0 1 14 83 2 

 Horizontal Adduction (HAD) 0 0 0 0 1 0 2 96 
Table I. Confusion matrix for classifier using the load cell data. Movements implicated in flexion synergy are in 

upper/left portion of table while extension synergy movements are in lower/right portion. Larger bordered box 

delineates classes that are most often confused for each other. Flexion synergy: Elbow flexion (EF), shoulder 

abduction (AB), external rotation (ER) and horizontal abduction (HAB). Extension synergy: elbow extension (EE), 

shoulder adduction (AD), internal rotation (IR), and horizontal adduction (HAD).  
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65% and 90% may or may not be, depending on the user, the classifier, and their interaction 28. 

Both matrices show error primarily occurring “within synergy”, i.e. between directions that have 

been implicated in the typical abnormal movement patterns (identified by the major row and 

column divisions). Classification errors 

between abduction and external rotation 

and adduction and internal rotation are 

the highest and are most commonly 

confused for each other as indicated by 

the bordered boxes in the middle of two 

quadrants of the confusion matrix.  

A summary of classification accuracies 

across all participants for each data set is 

displayed in Table 3. It is clear that the 

Table II. Confusion matrix of all 8-classes using EMG dataset 

EMG dataset 
Predicted Class 
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  Elbow Flexion (EF) 88 5 3 2 0 0 1 1 

 Abduction (AB) 6 76 17 1 0 0 0 0 

 External Rotation (ER) 2 17 76 4 0 0 0 0 

 Horizontal Abduction (HAB) 2 1 6 91 0 0 0 0 

 Elbow Extension (EE) 0 0 0 0 89 5 3 2 

 Adduction (AD) 0 0 0 0 3 78 17 2 

 Internal Rotation (IR) 0 0 0 0 3 18 76 4 

 Horizontal Adduction (HAD) 0 0 0 0 1 3 6 90 
Table II. Confusion matrix for classifier using EMG data. Refer to Table 1 text for description. Larger classification 

errors using EMG alone as compared to other classifiers.  

Table III. Classification Accuracies for each dataset 

  Dataset 

Class 

EMG-

TD 
Torque Load cell EMG+LC 

EF 88 89 92 94 

AB 76 85 87 90 

ER 76 87 89 90 

HAB 91 97 97 97 

EE 89 97 98 97 

AD 78 80 84 87 

IR 76 76 83 87 

HAD 90 96 96 98 

Average 83 88 91 92 
Table III. Summary of classification accuracies for each 

classifier across all participants. EMG-TD refers to EMG time-

domain features, Torque to the mean-absolute value (MAV) of 

torques generated at the shoulder and elbow only, load cell refers 

to MAV from the raw load cell data, and EMG+LC are the EMG 

time-domain features and the MAV from the raw load cell data 

combined together. Bold indicates ≥ 90% accuracy. 
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classifier using the load cell dataset outperforms the one using the EMG features dataset and that 

EMG features add a small improvement when used in conjunction with load cell data, especially 

with adduction and internal rotation. Abduction, external rotation, adduction and internal rotation 

have the lowest average accuracies across all datasets.  

Figure 3a parses out how each class performs using the load cell classifier across all 

participants. The load cell based classifier generally classifies well (>90%) for 20 of 29 of the 

participants. Figure 3b shows the same information but only for the four most confused classes. 

The classification accuracy for these four classes was as low as 50%, 48%, 42%, and 3% for 

abduction, adduction, external rotation, and internal rotation respectively.  

In attempt to understand why the classifier was less accurate with these nine participants 

in these directions, the normalized abduction/adduction joint torque was plotted against the 

corresponding external/internal rotation joint torque. Trials of representative participants that had 

low, moderate, and high classification accuracy in these four classes (participants 2, 15, and 29 in 

Fig 3a), are plotted in Figure 4. Although this representation does not take into account all data 

that are used to train and test each classifier, a trend emerges.  

The participant with the low classification accuracy has the greatest overlap between the 

torques generated during these different shoulder tasks. It appears that this participant is doing the 

same or a very similar action for both abduction and external rotation as well as adduction and 

internal rotation. The plot labeled moderate classification accuracy shows some overlap in the 

torque generation pattern used to accomplish these single-DOF tasks. Finally, the participant with 

the highest classification accuracy has the greatest difference in torque patterns in these directions.  
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Figure 3. Classification Accuracies by rank ordered subject. A) Stacked bar graph of accuracies from the load cell 

based classifier for all classes and participants. Classes ordered from most accurate at the bottom to least accurate 

at the top. B) A simpler representation for the four worst classified classes. Participants rank ordered based on 

total accuracy of the presented classes. Black horizontal line represents a general cutoff for highly functional levels 

of classification accuracy (90%). Classification accuracy for these four lowest classes range from 50 to 99%, 42 

to 95%, 48 to 99%, and 3 to 99% for External rotation, Abduction, Adduction, and Internal rotation respectively. 
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A post hoc analysis was 

completed to explore possible 

correlation between classification 

accuracy and synergy presentation, 

measured clinically with the FMA-UE 

outcome measure (Fig 5a) and the 

laboratory-based measure of reaching 

distance under limb weight (Fig 5b)20. 

Spearman rank correlations were 

calculated for the FMA-UE scores vs 

accuracy (ρ = -0.028, p = 0.884) as the 

FMA scores are ordinal data and for 

reach distance vs accuracy (ρ = 0.12, p 

= 0.554) due to non-bivariate 

normality. Neither one showed a 

significant correlation. An additional 

Spearman rank correlation was tested 

using a subset of the Fugl-Meyer 

assessment data: sections I-IV of the 

assessment which are focused on the 

shoulder and elbow (ρ = 0.15, p = 

0.430). Recognizing that our data had 

 

Figure 4. Representative plots of Abduction(AB)/Adduction(AD) 

vs External rotation (ER)/Internal rotation (IR) normalized 

torques for 3 participants: low accuracy, moderate accuracy, and 

high accuracy during all abduction, adduction, internal and 

external rotation trials. Discrimination between these classes 

improves as each task is performed in a more unique fashion. 
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a cluster of scores at a from the twelve participants who had the lowest classification accuracies. 

No correlations were found in plateau near maximal classification accuracy, these three 

correlations were repeated using only the data these analyses: FMA-UE vs accuracy (ρ = 0.29, p 

= 0.358), reach data vs accuracy (r = 0.059, p = .856), and FMA-UE sections I-IV (ρ = 0.20, p = 

0.520). Pearson’s correlation was used for this correlation of reach data as the removal of the 

plateau made the data bivariate normal.  

2.5 Discussion 

This is the first time that a pattern recognition analysis has been accomplished on shoulder 

movements for the population with chronic stroke. The classification accuracies for most 

participants and classes was greater than 90%, indicating that LDA-based pattern recognition may 

be a viable control scheme for this population and these tasks. The combination of EMG data with 

load cell data provided the best classification accuracy averaging 92%, while load cell data alone 

 

Figure 5. Scatter plots of Classification Accuracy vs UE-FMA (a) and Reach area (b) for all participants. No 

significant correlations were found using this data or subsets. 
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averaged 91%, and EMG alone averaged 83%. Classification errors (Table 1 and Table 2) occurred 

within the  defined abnormal synergy movement patterns (flexion synergy: shoulder abduction, 

elbow flexion, external rotation, and horizontal shoulder abduction; extension synergy: shoulder 

adduction, elbow extension, internal rotation, and horizontal shoulder adduction) but primarily 

between adduction and internal rotation and abduction and external rotation.  

Table 3 shows that similar trends in error between adduction and internal rotation and 

abduction and external rotation apply across all datasets. Classifier accuracy using EMG data is 

much lower when used on its own compared to the other datasets. This may be influenced by the 

fact that EMG was only recorded from major muscles of the upper extremity. This likely impacted 

the accuracy of the classifier and could potentially be improved through EMG acquisition from 

rotator cuff muscles and other involved muscle groups. For example, high classification accuracies 

(>92%) have been achieved for shoulder movements within a healthy population using eight 

channels of EMG over muscles of the back and torso and slightly longer window lengths 26,27. 

Despite the aforementioned limitation, the EMG data does a fair job of classifying and, as seen in 

the combined data set, offers an improvement especially to the most confused classes, increasing 

the group average for each class closer to the control scheme goal of >90%. 

The effect of abnormal synergy within the shoulder joint has been described clinically 1,11 

and noted scientifically 12. However, the results of this work brings question to the validity of using 

a single-DOF task to quantify this abnormal coupling. In a study using single-DOF tasks, Dewald 

et al. stated “the control group exhibited a significant coupling between external rotation and 

abduction and between internal rotation and adduction that was not present in the nonparetic limb 

of the hemiparetic group”12. This is applicable to these findings as 1) coupling was noted in a 
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control population and 2) was not noted on the non-paretic side of the population with stroke. This 

suggests that a 1-DOF task may be testing tendency rather than true neurologically mandatory 

patterns or true ability. The groups exploring the abnormal synergy effect on the elbow, wrist and 

fingers have moved away from a 1-DOF in favor of a 2-DOF task, which may come closer to 

testing true ability rather than general tendency. A similar shift in paradigm to a more complex or 

less constrained task is necessary for testing pattern recognition within the shoulder, as we cannot 

confidently say if these classification errors were a function of the task, posture, neural constraints 

of the population after stroke, or lack of ability of the classifier. 

To implement a control scheme in a wearable device it would be ideal to have all necessary 

data come from sites proximal to and including limb segments that are being assisted. In other 

words, it is best to keep distal and possibly non-supported limb segments free from sensors, thus 

it is necessary to know if any sensors are required to be placed on the forearm in order to distinguish 

between these shoulder tasks. Thus, we tested a classifier which used only shoulder and elbow 

joint torque data as opposed to using all available load cell data. Classification accuracy of a 

majority of classes was reduced using this dataset, with the most pronounced loss in discriminating 

adduction and internal rotation (80% and 76% percent accuracy respectively). This indicates that 

there may be a pronation/supination component, or something else distal to the elbow occurring 

during adduction, which is different from what is occurring during internal rotation, enabling 

improved discrimination. Ultimately, this classifier shows promise in being able to control a device 

without more distal torque information, but further testing is required to determine if higher levels 

of discrimination between adduction and internal rotation is possible without it. 
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For many participants, these classifiers adequately discriminated between 

abduction/external rotation and adduction/internal rotation, but for others they did not. One reason 

these tasks were not classified as accurately for a cohort of participants is that these individuals 

were accomplishing different tasks similarly. Those supporting the idea that abnormal synergy is 

affecting task performance might say that these participants are physically unable to produce 

torque in those directions without also generating torque in unintended (secondary) directions. 

Meaning that these participants are locked into typical or predictable patterns due to their 

neurophysiologic adaptation to their stroke. If so, classification accuracy would be generally 

associated with the severity of expression of abnormal synergy. In an ad hoc exploration, we 

looked for, but did not find, a correlation between the UE-FMA outcome measure and 

classification accuracy (Figure 5a). Because this outcome measure has limited resolution, 

classification accuracies were also compared to reaching distance data available for most of these 

participants from a recent study 20 but similarly, were not associated (Figure 5b). The reported 

reach distance is presented as a percent of excursion attained toward a standardized target near end 

range of motion under limb weight. This does not indicate that these measures are a poor measure 

of abnormal joint coupling, but that abnormal coupling within the shoulder may not exist or at 

least not to the same extent as more distal joints (elbow, wrist, fingers). This may also indicate that 

an alternative explanation is more likely. It is possible that due to the nature of an isometric task, 

the posture selected for this study, or of being told to push or pull as hard as they can, these 

participants used strategies to maximize their torque production that serendipitously or veraciously 

reflected the previously described constrained abnormal synergy pattern (shoulder adduction and 

internal rotation or shoulder abduction and external rotation). This suggests that single-DOF 
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isometric torque generation tasks are either not as accurate at quantifying loss of independent joint 

control as multi-DOF tasks such as reaching dynamics under differing loads 40, or are possibly 

inadequate altogether. Another alternative is that these participants were not performing the same 

task consistently during the three analyzed trials, causing increased classification error. 

Considering each of these possibilities, application of the classifier on a more complex task is 

warranted to determine accuracies in a task that truly represents impairment such as the ability to 

move outside of these patterns. While a correlation between classification accuracies and 

expression of abnormal synergy may emerge, the present data would lead one to hypothesize that 

adequate classification accuracies are possible. 

Other features and other classification techniques were not used or explored in this initial 

analysis as many participants had adequate classification accuracy and we do not feel the loss of 

accuracy for the others was due to lack of classifier abilities. Rather we think that these participants 

completed the task in a different way than the others. Specifically, in an attempt to maximize their 

torque generation, they may be coupling these directions producing a similar pattern whether 

attempting to elicit torque in one direction or another. The degree to which this multi-joint pattern 

observed during the single-joint task  represents abnormal synergy in unclear. Future work will 

need to explore classification accuracies in multi-DOF movements outside of these patterns as well 

as attempt to automatically detect the onset of expression of abnormal synergy in order to move 

toward real-time control of a wearable shoulder assistive device during functional movements.  

2.6 Conclusion 

Here we have demonstrated the possibility to classify user-intent of these eight upper-

extremity directions to an adequate level for control for most of the individuals (20 of 29) in this 
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study. For some individuals, the classifier had difficulty discriminating between shoulder 

adduction and internal rotation and shoulder abduction and external rotation. It is unknown if this 

is due to manifestation of the negative effects of abnormal synergy, a limitation inherent in the 

posture chosen, or a volitional strategy to maximize torque production. This warrants the 

evaluation of a more complex multi-DOF task representing a pattern outside of the abnormal 

synergy. Evaluation of the LDA-based classifier under these conditions including the use of 

sensors on rotator cuff muscles may also improve accuracies for the challenging torque 

combinations of abduction/external rotation and adduction/internal rotation.  

Accurate classification of movement intent is necessary for the successful implementation 

of a sensor-driven actuated exoskeleton. This work provides initial evidence supporting the ability 

to differentiate shoulder and elbow movements despite previous challenges in differentiating more 

distal upper extremity actions. This suggests that continued work is warranted to investigate if an 

LDA-based classifier can be an effective solution for the control of a more proximal assistive 

device. Such a device would have both assistive and restorative potential. 
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Chapter 3: Pattern Recognition of Partly Dynamic Shoulder Tasks 

Kopke JV, Ellis MD, Hargrove LJ. Determining User Intent of Partly Dynamic Shoulder Tasks 

in Individuals With Chronic Stroke Using Pattern Recognition. Ieee T Neur Sys Reh. 

2020;28(1):350-358. 

3.1 Abstract 

Stroke remains the leading cause of long-term disability in the US. Although therapy can achieve 

limited improvement of paretic arm use and performance, weakness and abnormal muscle 

synergies—which cause unintentional elbow, wrist, and finger flexion during shoulder 

abduction—contribute significantly to limb disuse and compound rehabilitation efforts. Emerging 

wearable exoskeleton technology could provide powered abduction support for the paretic arm, 

but requires a clinically feasible, robust control scheme capable of differentiating multiple shoulder 

degrees-of-freedom.  

This study examines whether pattern recognition of sensor data can accurately identify user intent 

for 9 combinations of 1- and 2- degree-of-freedom shoulder tasks. Participants with stroke (n=12) 

used their paretic and non-paretic arms, and healthy controls (n=12) used their dominant arm to 

complete tasks on a lab-based robot involving combinations of abduction, adduction, and internal 

and external rotation of the shoulder. We examined the effect of arm (paretic, non-paretic), load 

level (25% vs 50% maximal voluntary torque), and dataset (electromyography, load cell, or 

combined) on classifier performance.   

Results suggest that paretic arm, lower load levels, and using load cell or EMG data alone reduced 

classifier accuracy. However, this method still shows promise. Further work will examine 
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classifier–user interaction during active control of a robotic device and optimization/minimization 

of sensors. 

Index Terms—Linear discriminant analysis, Pattern recognition, Stroke, Robotic therapy.  

 

3.2 Introduction 

Stroke remains the leading cause of serious long-term disability in the US 41. An estimated 7 

million individuals in the United States, and 82.9 million individuals worldwide, have experienced 

a stroke 41 and approximately 30-66% live with permanent upper extremity impairment 42,43. In 

addition to limb weakness (paresis), involuntary co-activation of upper limb muscles after a stroke 

impedes coordinated use of the paretic arm 44. This motor discoordination—sometimes described 

as primitive, automatic, reflexive, obligatory, stereotypical, or whole-limb movement patterns, and 

referred to here as abnormal flexion or extension synergies—significantly increases difficulty in 

accomplishing activities of daily living (ADLs) 45. Abnormal synergies may stem from a 

neurophysiological reliance on more diffuse cortico-bulbar-spinal pathways to compensate for 

damage to, or loss of corticospinal projections due to stroke 16.  

Flexion synergy in the upper extremity is observed when lifting the arm against gravity (shoulder 

abduction), which causes unintentional co-activation of elbow, wrist, and finger flexors, limiting 

functional use of the affected limb 46. The complete flexion pattern includes scapular retraction 

and elevation, shoulder abduction, and external rotation, elbow flexion, forearm supination, and 

flexion of wrist and digits 47. However, with support or reduction of proximal shoulder effort, 

flexion synergy intensity decreases 46, with a subsequent increase in reach distance 45,48.  



42 

 

 

 

Conversely, upper-extremity extension synergy occurs when adducting the humerus against 

resistance, causing involuntary elbow extension. The full extension synergy includes protraction 

of the scapula, shoulder adduction and internal rotation, elbow extension, and forearm pronation 

47. The effects of extension synergy on wrist and finger activity are not as predictable, but most 

commonly still result in flexion of both the wrist and fingers. However, extension synergy is 

typically not as important or detrimental as flexion synergy, as there is rarely a need to adduct the 

humerus against resistance.  

Both flexion and extension synergies present in proportion to effort. For flexion synergy, small yet 

significant improvements in unsupported reach distance have been obtained using a training 

paradigm that takes advantage of this relationship 19,20. By progressively increasing the abduction 

load as reaching goals are met, individuals with stroke are able to reach further without external 

physical support. However, the maximal potential benefits of this rehabilitation strategy are 

unknown, possibly due to unknown effects of dosage and limitations on participation/intervention 

time. 

A wearable device that reduces shoulder effort based on user intent and need may provide a novel 

solution to address activity limitations caused by weakness and abnormal synergies, allowing the 

user to better engage with their environment, and facilitating other therapeutic interventions to 

restore elbow, wrist, and hand function. Such devices have been proposed 49-51, and some have 

recently become commercially available for healthy individuals 52,53, but appropriate control 

strategies for individuals with stroke with abnormal synergies are lacking.  

Machine learning techniques such as support vector machines, neural networks, and linear 

discriminant analysis (LDA) have been used with sensor data—e.g., force, acceleration, muscle 
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activity (i.e., electromyography, EMG)—to predict user intent 54. In individuals with amputation, 

EMG pattern recognition has been used to determine user intent to control powered upper 37,55 and 

lower 56-58 limb prostheses. LDA-based classifiers have enabled control of multiple degree-of-

freedom (DOF) myoelectric prostheses; are generally considered to be accurate, robust, and 

computationally efficient 23-25; and have been cleared for commercial sale for individuals with 

amputation 59,60.  

Successful application of wearable robotic technology in individuals with spinal cord injury 61 or 

with amputation 23 has paved the way for use in other populations, including individuals with 

stroke. However, accurately and reliably controlling a wearable robotic device will be a 

challenging problem in individuals with stroke due to pathological muscle activation. 

Incorporating user intent information into the control strategy overcomes the disadvantages of 

passive or pre-planned movement patterns (i.e., “slacking” and restricted freedom of movement, 

respectively) by requiring user effort and active participation 62. Pattern recognition of EMG 

during shoulder movement was explored as a control system for persons with amputation, and 

classification error rates below 10% were achieved in a healthy control population 26,27. However, 

for individuals with stroke, classification of user intent for simply opening and closing the paretic 

hand was negatively affected by lifting at the shoulder at only 25% of maximum effort 15,33. EMG 

from the paretic forearm predicts intended movement with a broad range of outcomes including 

high 31, mixed 30, and low 29 error rates. EMG has also been used to predict goal-directed reaching 

with sufficient accuracy in a healthy control population but insufficient accuracy for individuals 

with stroke32. Our previous work 63 demonstrated low classification error (<10%) for 8 isometric 

shoulder and elbow tasks in a majority of participants with stroke. However, some participants had 
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high error rates, possibly because in our experimental design only a single-DOF was being tested 

or controlled at any one time. It is possible that participants were consciously or unconsciously 

completing different tasks using a similar multi-DOF strategy to maximize strength readings. For 

example, they could have simultaneously maximized external rotation and abduction effort and 

used that strategy for both external rotation and abduction testing, making the torque and muscle 

activation patterns similar and difficult to distinguish. 

Our present work aims to understand how abnormal synergies due to stroke affect the ability of an 

LDA-based classifier to discriminate between different 1- and 2-DOF shoulder tasks. We extended 

our preliminary analysis 64 to evaluate performance of classifiers using data from non-paretic arms 

of individuals with stroke as well as age- and gender-matched healthy controls. Additionally, we 

evaluated the effect of lifting-load (25% or 50% maximal voluntary torque) and dataset type 

(EMG, load cell, or a combined data set) on classification error rate.   

We hypothesized that, due to muscle co-activation patterns caused by abnormal synergy after a 

stroke, classification accuracy of control participants would be higher than that for the paretic arm 

of the participants with stroke. Classifier performance on the non-paretic (or less-affected 65) arms 

was hypothesized to be higher than paretic but lower than control classifier performance. We also 

hypothesized that classification error for the paretic arm would be higher at higher levels of 

proximal shoulder effort due to increased synergy presentation. Finally, we hypothesized that the 

accuracy of classifiers using EMG would be lower than those using raw load cell data, and that 

classifiers using a single data set would be lower than those using a combined data set. 
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3.3 Methods 

3.3.1 Participants 

All participants provided informed consent to participate in the protocol, which was approved 

by the Northwestern University Institutional Review Board (IRB #: STU00205835). We recruited 

12 age- and gender- matched control participants and 14 participants with chronic (> 1 year) 

hemiparetic stroke with moderate to severe motor impairments, as determined by a score on the 

upper-extremity portion of the Fugl-Meyer assessment (FMA-UE) of > 10 and < 45. These 

individuals exhibit flexion synergy at levels of effort less than limb weight (approximately 50% 

shoulder abduction strength) and could benefit from using a powered assistive device for the 

shoulder. Two participants with stroke were excluded from the study: one was unable to 

accomplish the dual-task protocol and the other had no external rotation strength. Consequently, 

12 participants with stroke (50% female, who were, on average, 60.8±10.3 years old, with an 

FMA-UE score of 26.9 ± 8.4, and 16.8 ± 8.3 years post-stroke, along with 12 control participants 

(50% female, mean age 59.1 years old ± 9.9) completed the study. For participants with stroke, 

both arms were tested (non-paretic then paretic); for control participants, only the dominant arm 

was tested. 

3.3.2 Setup and instrumentation 

To measure maximal isometric strength, participants were seated in a rigid chair (Biodex, 

Shirley, NY; Model 830-110). Torso movement was minimized by securing them with a lap belt 

and two chest straps and placing their feet on a foot rest. A fiberglass cast was applied to their 

anatomically neutral forearm, wrist, and hand to rigidly and securely attach their arm to a 6-DOF 
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load cell (JR3 Inc., Woodland, CA, USA; Model 45E15A). This custom setup was adjusted to 

place the participant’s arm in 90° of abduction, 45° of horizontal adduction, and 90° of elbow 

flexion. A licensed physical therapist applied bipolar EMG electrodes (Delsys, Cambridge, MA, 

USA; 16 channel Bagnoli), with 1cm interelectrode spacing, over 11 muscles—deltoid (anterior, 

intermediate, and posterior), upper-trapezius, supraspinatus, infraspinatus, latissimus dorsi, teres 

complex, pectoralis major sternal fibers, biceps brachii, and triceps lateral head)—located using 

guidelines set forth in Anatomical Guide for the Electromyographer 36 using palpation and 

anatomical landmarks. A ground electrode was placed over the acromion. Maximal torque 

measurements (Section II.C) were collected in this setup to minimize wear on the ACT3D robot 

(Section II.D) 

3.3.3 Isometric maximal voluntary torque measurements 

Maximal isometric voluntary torques were determined for six movements: shoulder abduction, 

adduction, external and internal rotation, and elbow flexion and extension and used to inform the 

second part of the experiment. Verbal encouragement was provided to ensure maximal effort. 

Forces, moments, and EMG were collected at 1 kHz. 

3.3.4 Dual task setup on ACT3D 

Participants were then moved to a customized ACT3D haptic master robot 40,66 with a 6-DOF 

load cell (JR3 Inc., Woodland, CA, USA; Model 51E20A) attached under the end effector. The 

load cell allows precise control of abduction and adduction (vertical) loading while simultaneously 

measuring forces and moments in three orthogonal directions. Participants were secured in the 

rigid chair as described in Section II.B and connected to the ACT3D with a custom setup that 



47 

 

 

 

centered the medial epicondyle (center of rotation of elbow) over the load cell. The custom device 

clamped the medial and lateral epicondyles between foam pads, and secured the cast to the device 

at the forearm (Fig. 1A, top). The arm position was similar to that described for isometric torque 

measurements. Movement in the transverse plane was constrained and a “ceiling” and “floor” were 

created to prevent elbow movement beyond 5 cm above and below 90° of abduction, respectively. 

This enabled movement in the vertical direction equating to approximately ± 10° of 

abduction/adduction while minimizing change of alignment of the medial epicondyle over the load 

cell (0.4 cm).  

3.3.5 Dual task protocol 

Participants were required to abduct (lift, +) and adduct (depress, -) at 0, ± 25, and ± 50% of 

their maximum joint torque determined by isometric testing. For 0%, the entire limb weight was 

supported by the ACT3D, which is equivalent to no effort. Each trial lasted 10 seconds. For the first 

5 seconds the participant was asked to move and maintain their arm between the ceiling and floor, 

with proprioceptive and visual feedback from their limb. At 5 seconds the participant was provided 

a verbal and visual cue via a graphical user interface (Fig. 1A middle) to begin either maximal 

isometric external or internal rotation while continuing to keep their arm off the horizontal 

surfaces. The order of testing conditions was randomized. A minimum of 3 and a maximum of 10 

trials of each condition were completed with the goal of having 3 trials with isometric humeral 

rotation maximums within 10% of each other and at least 3 seconds of active rotation. This resulted 

in data for 3 trials of 10 conditions (0, ± 25, ± 50% abduction/adduction for both external and 
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internal rotation).  

3.3.6 Data Processing 

 The Delsys EMG collection system bandpass filtered signals between 20-450 Hz, and force and 

moment data were transformed to joint torques. External and internal rotation was calculated for 

 

Figure 6.  (A) Top: depiction of setup with participant connected to ACT3D robot. Arrows indicate that the robot 

can move and control the load applied in the vertical direction. This participant provided written agreement to the 

use of this image. Middle: real-time feedback of internal/external rotation isometric torque, Bottom: data 

acquisition and conditioning details. (B) Top: Raw force and moment data received from load cell mounted under 

participant’s elbow. Middle: Raw EMG for infraspinatus of a control participant during a 25% adduction, external 

rotation trial. Bottom: Steps involved in classification of raw data.  

 

Figure 7. Visual comparison of representative trials of participants from each arm type for 25% adduction (first 5 

seconds) followed by external rotation (last 5 seconds). Top row is calculated shoulder joint torques (blue = 

adduction(-)/abduction(+), red = internal rotation(-)/external rotation(+), yellow = horizontal adduction (-

)/abduction(+). Bottom 3 rows are normalized root mean squared EMG over 200 ms windows for the posterior 

deltoid, infraspinatus, and pectoralis major muscles. 
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each trial. For the subsequent analysis, we used the three trials from each condition in which the 

greatest humeral rotational torques were achieved and the arm was maintained off of the horizontal 

surfaces during the periods of interest (1.5s-4.5s and 6.5-9.5s). Representative joint torques and 

normalized EMG data for each group are presented in Fig. 2. The purpose of two time segments 

was to extract pure abduction-, adduction-, or no- loading time (occurs during first 5 seconds) as 

opposed to dual-task time (occurs during last 5 seconds). Different load-levels (0, 25, and 50% of 

abduction and adduction) were used in attempt to elicit different degrees of the abnormal synergy 

so we could run an analysis of the effect of lifting effort on classification accuracy. 

3.3.7 Classification 

Two sets of LDA-based classifiers were created from each dataset type: EMG data, raw load 

cell data, and a combined dataset (EMG and raw load cell data, appended post feature extraction). 

One set of classifiers was created using the 0% and ±25% lifting condition data and the second set 

of classifiers was created using the 0% and ±50% lifting condition data. The data from the 0% lift 

condition was used as a baseline in both sets of classifiers to create no movement, external rotation 

only, and internal rotation only classes. 

Data collected between 1.5s to 4.5s and between 6.5 and 9.5s in each trial were extracted and 

labeled according to the task being accomplished during each time period. Data were windowed 

into 200ms windows using 20ms steps (180ms overlap). This allowed the load cell data recorded 

at 50 Hz and the EMG data recorded at 1000 Hz to be combined after windowing without down-

sampling. Four time-domain features (mean absolute value, zero-crossing, slope sign change, and 

waveform length) 67 were extracted from EMG data and mean absolute values were extracted for 
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load cell data. These features have proven accurate and robust in other myoelectric control 

applications 68. 

Classifiers were trained and tested using a trial-wise leave-one-out cross validation, i.e., two of 

the three trials were used to create a classifier and tested against the third. Each combination was 

tested and classification accuracies for each dataset were averaged within and across participants 

for comparison.  

3.3.8 Statistics 

Two linear mixed-effects models (equation 1) were used to test the effect of the fixed factors: 

arm type (non-paretic vs paretic and non-paretic vs control), load level (25%, 50%), and dataset 

type (EMG, load cell, combined) on classification error rate. Two models were used since only the 

dominant arm of the control group was tested making the design unbalanced. One benefit of using 

a linear model is that it allows an analysis of the effect of each factor (magnitude and direction) as 

opposed to a pure comparison of group means. A mixed-effect model was chosen to allow 

individuals to be treated as random effects so each could have their own response. The model also 

included arm*load and arm*dataset interaction terms to detect any interaction between these terms. 

This would be expected if, as we hypothesized, load level or dataset behaved differently for each 

arm-group; specifically we expected that load level and paretic arm would have an interaction with 

heavier lift, yielding greater error rates due to increased presentation of abnormal synergy. These 

models and post-hoc statistical analysis were completed using MiniTab® Statistical Software 

(Minitab, Inc., State College, PA, USA). Main effects (arm, load, dataset) are implicit in this 

model. 
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𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 ~ 1 +  𝑎𝑟𝑚 ∗ 𝑙𝑜𝑎𝑑 +  𝑎𝑟𝑚 ∗ 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 +   (1 | 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡)       (1) 

3.4 Results 

3.4.1 Linear mixed-effects model (LMEM) 

A summary of results from the two models is presented in Tables I (paretic vs non-paretic) and 

II (control vs non-paretic). No interaction terms were significant for either model. Significant 

differences exist between non-paretic and paretic arms (p = <0.00001) and lift at 25% vs 50% 

(p=0.00083) with estimated pattern recognition classification error differences of -8.6% and 

3.63%, respectively. Thus classification error for paretic arms increased by 8.6% compared to non-

paretic arms and lifting at 50% maximum joint torque improved classification by 3.63% over 

lifting at 25%. The model also predicted the model coefficient for the combined dataset classifier 

as better than the load cell data classifier by 4.09%, and the load cell classifier was better than the 

EMG classifier by 3.14%. Similar results were found in the comparison between the control group 

and the non-paretic arm group (Table II). The classifiers built using the control arm, 50% load 

level, and the combined dataset performed better than all other classifiers.  

 

 

 

 

 

 

Table IV. Non-paretic vs Paretic LMEM Results 

NP vs P F p-value Compare Δ coef 

Arm 66.22 <0.0001 NP vs P -8.62 

Load 

Level 
11.73 0.0008 25% vs 50% 3.63 

Dataset 16.31 <0.0001 Comb vs LC -4.09 

   EMG vs LC 3.14 

Table V. Control vs Non-paretic LMEM Results 

C vs NP F p-value Compare Δ coef 

Arm 9.8 0.0049 C vs NP -4.52 

Load 

Level 
8.22 0.0049 25% vs 50% 2.00 

Dataset 12.69 <0.0001 Comb vs LC -2.45 

   EMG vs LC 0.87 
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3.4.2  Classifier Performance 

Table III shows the confusion matrix for the combined dataset of the participants with stroke for 

the 50% load level condition. Each row represents what the user intended (actual) while the 

predicted classes are represented by the columns. Grey shading indicates single-DOF conditions.  

 

 

 

 

 

 

 

AD = adduction, AB = abduction, ER = external rotation, 

IR = internal rotation, Mvt = movement. 

Group averages of classification error rate for the 25% lift condition are presented in Table IV 

and the 50% lift condition in Table V, with standard deviations presented within parentheses (n=12 

for each group and condition). 

 

 

 

 

 

Table VI. Confusion Matrix for Paretic Arm,  

50% Lift, Combined Dataset 
50%          

Comb. 
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No Mvt 94 - 1 2 - - 3 1 - 

AD 2 92 - - 4 - 1 1 - 

AB 1 - 95 1 - 2 - - - 

ER 10 - - 86 - 2 1 - - 

ER+AD 1 9 - 2 87 1 - - - 

ER+AB - - 9 2 - 86 - - 3 

IR 10 2 1 1 - - 85 - 1 

IR+AD 4 4 - - 2 - - 90 - 

IR+AB - - 4 - - 3 1 - 92 
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P = paretic, NP = non-paretic, C = Control arms; LC = load cell data, 

Comb = combined data; Avg. = average. 

 

Averaged results from each group and 

dataset are presented in Fig 3. Although the 

50% lift condition was significantly better 

than the 25% condition, the two levels are 

averaged for figure clarity since their 

differences were relatively small. 

Post-hoc comparisons of dataset 

performance revealed that the combined 

dataset performed significantly better than 

both the load cell and EMG dataset 

(p=0.0005, p<0.0001 respectively for paretic 

vs non-paretic and p<0.0001, p=0.0005 

respectively for control vs non-paretic). 

Table VII. Average Classification Error  

for 25% Lift Condition 

25% EMG LC Comb Avg. 

P 24.2 (13.7) 20.0 (11.6) 14.0 (11.3) 19.4 (12.6) 

NP 11.3 (6.7) 11.0 (10.4) 4.9 (4.1) 9.1 (7.9) 

C 5.1 (3.1) 6.4 (7.9) 2.3 (2.1) 4.6 (5.2) 

Avg. 13.5 (11.9) 12.4 (11.3) 7.0 (8.5)  

Table VIII. Average Classification Error  

for 50% Lift Condition 

50% EMG LC Comb Avg. 

P 18.3 (10.3) 14.1 (9.3) 9.7 (7.0) 14.1 (9.4) 

NP 8.4 (4.2) 8.3 (5.3) 4.7 (3.5) 7.1 (4.7) 

C 1.9 (1.0) 4.0 (3.9) 1.7 (2.6) 2.5 (2.9) 

Avg. 9.5 (9.3) 8.8 (7.6) 5.4 (5.8)  

 

Figure 8. Summary of classifier error rates for all groups 

and dataset types. Rectangular boxes indicate 1st-3rd 

interquartile range, with ‘X’ indicating means, horizontal 

bars are medians, and error bars indicate standard deviation. 

The bold horizontal line denotes a 10% error rate 

controllability cutoff for myoelectric devices [44]. P = 

paretic, NP = non-paretic, C = Control arms; LC = load cell 

data, Comb = combined data. 
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Performance of load cell and EMG datasets alone were not significantly different from each other 

(p=0.212 for paretic vs non-paretic and p=0.679 for control vs non- paretic).  

3.5 Discussion 

The aim of our study was to investigate the feasibility of determining user intent for movement 

of the shoulder of the paretic limb in individuals with stroke. This approach could allow future 

development of an exoskeleton to provide abduction support for the paretic arm. In particular, we 

were interested in the relationship between controlling internal/external rotation and shoulder 

abduction/adduction simultaneously. Overall, we found that using a pattern recognition system 

based on the combination of EMG and load cell information in individuals with stroke resulted in 

an average error rate as low as 9.7%. These results are promising as related work in controlling 

myoelectric prostheses has shown that systems with error rates in the range of 0 – 10% allow good 

control of a device 28. Control system error rates as high as 35% can be used, but result in greater 

variability in performance between individuals. Thus, our next phase of research is to implement 

the combined control system on an embedded system to allow real-time control of a lab-based 

robot. 

We hypothesized that classification of control limb data would be better than non-paretic arm 

data, which would be better than paretic arm data. Our results support this hypothesis. Differences 

in classifier error rate between paretic and non-paretic arms are likely due to stroke sequelae 

(weakness, spasticity, etc) caused by the damage to the cortical neurons. Additional weakness 

could be attributed to limb disuse.  
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Classification accuracies using data from non-paretic limbs were significantly lower than from 

control arm data, although still within a useable range. We speculate that the difference may be 

related to damage due to stroke, possibly in structures that are bilaterally activated. We did not use 

imaging to locate stroke-related damage nor did we control for stroke location. While the FMA-

UE confirmed hemiparesis within a specified range, this test has a known ceiling effect for 

detecting deficits in a non-paretic limb 69. A more detailed evaluation of the non-paretic limb was 

beyond the scope of this study; however, we acknowledge that the “less affected” limb is known 

to have subtle impairments after stroke 65 that may have reduced classifier accuracy compared to 

controls.  

Abnormal flexion synergy that presents proportional to proximal shoulder effort 48 and 

represents the primary impairment contributing to reaching dysfunction 70, did not seem to explain 

any error since greater shoulder effort caused an improvement in classification accuracy similar to 

the other groups. In fact, the 50% lift condition was significantly better than the 25% condition. 

Thus, we reject our hypothesis that the greater loading condition (50%) has a negative effect on 

classification accuracy.  It may be that even at low loading levels, abnormal synergy is fully 

expressed in the shoulder DOFs, thus higher loads do not cause a further decrease in classification 

accuracy. Evaluation of torque coupling within the shoulder was beyond the scope of this 

discussion but may shed light on the possibility. These results are intuitive in retrospect, if we 

ignore the possible effects of abnormal synergy, due to the inner workings of an LDA. An LDA 

linearly separates groups by maximizing distance between means and minimizing overlap of 

variance. A higher load level would create greater distance between data clusters, which would 

result in better classification accuracy. The paretic arms were weaker, as expected post-stroke, thus 
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reducing separation between the classes. Additionally, the no-movement class was based on 0% 

effort which may have some amount of torque generated in other directions and/or co-contraction 

with concurrent EMG generation. Greater abduction and adduction effort required in the 50% 

condition generate greater distance between data clusters from the 0% condition compared to the 

25% condition, thus increasing classification accuracy.  

Classifier performance using load cell data was not statistically different than using EMG data; 

however, the combination of both types of data performed significantly better. Therefore, we can 

accept the hypothesis that the combined data set provided the best classification accuracy yet reject 

the hypothesis that load cell data would perform better than EMG. This indicates that the load cell 

and the EMG sensors provide some complementary information as Huang et al also found 35. We 

expected that the load cell data would outperform EMG because EMG signals are noisy and 

difficult to measure from small or deep muscles involved in movement while load cells are 

sensitive and accurate to all changes in forces and moments. Since we used 11 EMG sensors on 

the back, shoulder, and arm, it is possible that we were able to overcome these disadvantages. 

Unlike the muscles in the forearm or arm which are commonly used to control many degrees of 

freedom of the hand, wrist, and elbow after amputation, the muscles that accomplish the actions 

tested in this study are larger and have a greater amount of separation possibly enabling higher 

levels of classification accuracy. Surface EMG sensors are inexpensive, non-invasive, and easy to 

apply but come with their own disadvantages including sensitivity to sweat, movement, and fatigue 

and must be applied generally in the correct area and orientation 71. Implantable EMG sensors 

could be a solution to these disadvantages and is a promising avenue of exploration. Further 

analysis is needed to determine if common muscle sites provided the most useful information 
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across participants or groups and how much the number of sensors could be reduced. We suspect 

there is an optimal subset of surface EMG channels, maybe 4 to 6, for each individual that may 

not be shared across groups or participants similar to the results found in Hargrove 2007 72. A 

detailed analysis extends beyond the scope of the present study. 

While mounting a load-cell to the ACT3D robot was straightforward, incorporating a load cell to 

measure forces and moments from a paretic limb in a portable wearable device has challenges. 

Although not considered in this study, data from other sensors could be incorporated into a pattern 

recognition approach. For example, force sensitive resistors used to measure interface pressures or 

inertial sensors to measure joint orientation could provide valuable information. Classification 

error rates were higher using single sources of information compared to using combined EMG and 

load cell data, but still showed promise. EMG data may be sufficient on its own but classification 

accuracy could be improved using other sensors that would be easier to implement than a load cell 

35,71. 

As depicted by the confusion matrix of paretic arm data in Table III there were increased errors 

between the single task motions, internal and external rotation, and the no movement class. 

Additional significant error existed between the external rotation dual-tasks and their 

corresponding 1-DOF lift condition counterpart (e.g. adduction + external rotation being confused 

as pure adduction). Determining the underlying cause of these errors is outside the scope of this 

study but we offer two hypotheses to explain them.  

These sources of error could be explained by arm weakness; participants may not generate 

enough torque or EMG during these tasks to allow these classes to be distinguished from others. 

In addition to rotating the humerus, rotator cuff muscles are also used to maintain dynamic stability 
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within the glenohumeral joint 73. Additionally, muscles that adduct (latissimus dorsi, pectoralis 

major, and teres major) also internally rotate the humerus 74. Together, these factors may limit the 

amount of external rotation torque that can be generated during adduction. These 

anatomical/neuromuscular phenomenon are present in all arms/populations but may only affect 

the classification accuracies of the paretic arm due to its underlying weakness. 

Additionally, a loss of independent DOF control within the shoulder joint, similar to that 

observed between joints (shoulder, elbow, and hand) 46,75,76, could account for diminished 

classification accuracies in the paretic arm. In the present example, a reduced ability to produce 

external rotation torque during adduction would be considered a “task-dependent weakness” in the 

context of loss of independent joint/DOF control 77, further reducing the distance between means 

and increasing classification error in an LDA. In fact, abnormal co-contraction of each part of the 

deltoid has also been found in paretic arms of individuals with stroke 78.  

We performed an offline analysis to compute the classification error rate of the collected data. 

The relationship between offline analysis and real-time performance is an open topic with some 

studies showing weak or no correlation 79, with others showing positive correlation within certain 

ranges of the classification error rate metric 28. One drawback of offline analyses of pattern 

recognition for amputees is that they do not have proprioceptive or visual feedback of their 

attempted movements. In our study, participants had force and proprioceptive feedback from their 

limbs (although these feedback mechanisms may have been altered as a result of the stroke) and 

real-time visual feedback from their arm and the graphical user interface. Thus while our analysis 

was performed offline, the participants were attempting to perform real-time movements and did 
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have access to feedback. Future work controlling an actual device will investigate how users’ 

response to generated errors affects their performance.  

 This study is limited by the small sample size for the number of conditions tested, the 

minimal amount of movement permitted only in one degree of freedom, and the use of a large 

amount of sensors, possibly limiting the generalizability of these findings to an entire population 

or to a future control scheme. Despite these limitations, this work is a logical and necessary step 

towards understanding user-in-the-loop control of a device that can minimize expression of 

abnormal synergy within the paretic population. 

  This work extends our prior work 63 by comparing the non-paretic arm and healthy control 

arms with the paretic arm. Additionally, instead of a pure isometric 1-DOF task we used a mixed, 

partly-dynamic partly-isometric task enabling intuitive control of an additional DOF. In our 

previous study, participants were asked to generate their maximum strength in one of eight 

directions without regard to what torques were being generated in the other directions. This made 

it impossible to determine if classification errors were due to limitations caused by the stroke or 

by selection of a strategy or preference in completing the task. By imposing a dual task paradigm, 

we ensured that each participant was controlling what was happening in the directions that were 

most commonly confused in the previous study (abduction/adduction and internal/external 

rotation). By incorporating a mixed dynamic and isometric task, we moved towards a less 

constrained task and enabled intuitive control of torque generation in one degree of freedom while 

measuring maximum torque generation in the other. As a result, we believe that the higher error 

rates in our prior work were caused by the strategy selected by certain participants to achieve the 
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task rather than their impairments due to stroke or the capability of a pattern recognition system to 

classify the data. 

3.6 Conclusion 

Using a testing paradigm that enabled control of the level of effort in one DOF via dynamic 

movement along with inherent proprioceptive and visual feedback enabled us to begin to better 

discern the ability of an LDA-based classifier to determine user intent in single- and dual- shoulder 

tasks after a stroke. Using linear mixed-effects models, estimates of contribution to classifier 

accuracy, in addition to group differences were obtained. This provided insight not only into which 

groups were different but in which direction and by how much. Although the classifier trained 

with paretic arm data performed the worst, sufficient classification accuracies suggest that future 

work is warranted to examine active control of a robotic device using LDA-based classification 

for this population.  
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Chapter 4: Shoulder Joint Torques during Dual-Task 

Mechanical Coupling of Shoulder Joint Torques of Individuals with Chronic Stroke Mirrors 

Controls, with Additional Non-Load-Dependent Negative Effects in Dual-Task 

Authors: Joseph V. Kopke, Levi J. Hargrove, Michael D. Ellis 

 

4.1 Abstract 

Background: After stroke, motor control is often negatively affected leaving survivors with less 

strength, less coordination, and increased tone throughout their affected upper-extremity. Humeral 

internal and external rotation has been included in the definitions of abnormal synergy but have 

yet to be studied in-depth. 

Objective: Determine ability of the paretic, non-paretic, and control shoulders to generate internal 

and external rotation torque under different abduction and adduction loads. 

Methods: 24 participants, 12 with impairments after stroke and 12 controls completed this study. 

A robotic device controlled abduction and adduction loading to 0, 25, and 50% of maximum 

strength in each direction. Once established against the vertical load, each participant generated 

maximum internal and external rotation torque. 

Results: Linear mixed-effects models tested the effect of group (control, non-paretic, and paretic), 

load (0, 25, 50% adduction or abduction), and their interaction. Group was significant in all task 

combinations. Paretic arms were less able to generate dual-task normalized torque across loads. 

There was a significant effect of load in three of four load/task combinations. Load-level and group 

interactions were not significant. This indicates that abduction and adduction loading affected each 
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group in a similar manner. Open-Sim modeling was used to confirm a biomechanical basis for the 

commonly observed behavior. 

Conclusion: Biomechanical constraints explain limitations in external and internal rotation 

strength during adduction and abduction dual-tasks respectively. Additional non-load-dependent 

effects cause a negative offset in dual-task strength in individuals with stroke. These results do not 

support the existence of load-dependent “abnormal synergy” during these tasks (abduction or 

adduction with simultaneous maximal internal or external rotation) after stroke, but rather support 

the presence of a more global effect such as hypertonia.  

4.2 Background 

Approximately 610,000 new strokes occur each year in the US and 16.9 million worldwide 

41. Currently 6.6 million Americans are living post stroke and approximately 30-60% of whom are 

expected to have chronic upper extremity motor impairments 42,43, Impairments after stroke include 

weakness, loss of coordination, hypertonicity, and spasticity. Weakness and loss of coordination 

may affect a majority of activities of daily living involving the upper-extremity requiring control 

of proper arm position, stiffness, damping, and inertia 80 to enable the hand to accomplish a task 

including eating, dressing, preparing food, carrying objects, opening doors, etc.  

One factor that contributes to the loss of coordination after stroke is an unintentional co-

contraction of muscles throughout a limb and is described as abnormal synergy or the loss of 

independent joint control 1,11,75. Shoulder abduction is reported as being accompanied by shoulder 

external rotation, elbow flexion, supination, and wrist and finger flexion while adduction is often 

accompanied by shoulder internal rotation, elbow extension, and wrist and finger flexion 47. 
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Using an isometric task in single directions, Dewald et al. compared control, non-paretic, 

and paretic internal and external rotation torques generated during abduction and found 

inconsistencies compared with the expectations of the abnormal synergy hypothesis 12. 

Specifically, the paretic and control groups had similar secondary torque generation patterns in 

internal and external rotation which was different from the non-paretic arm group. The group has 

henceforth largely ignored this degree of freedom in preference of investigation of the more robust 

effects of abductor drive on distal joints including elbow, wrist, and fingers 16.  

We have also moved away from analyzing secondary torques (torques generated in 

directions that participants are not instructed to control or have feedback on) during single 

direction isometric tasks because of the difficulty in determining if those torques are pathologic 

(mandatory), normal physiologic, or just how these individuals chose (consciously or 

unconsciously) to perform the task 75,81. We have subsequently moved towards multi-degree of 

freedom (DOF) tasks which tests ability in two or more directions simultaneously 13,40. Although 

adding a possible confounding cognitive load, the tasks are simple enough that we believe allow 

us to better test true limitations, whether neural or mechanical, after stroke. This dual-task 

paradigm has not been completed for within shoulder movements such as internal and external 

rotation during abduction. This is an important step for understanding the underlying impairment 

and how to target it in rehabilitation. 

Although normative strength data exists for an unimpaired population, there is minimal 

work published which attempts to quantify torque generation capacity at the shoulder 

(glenohumeral joint) during multi-DOF tasks. Baillargeon et al. recently published a study 

examining feasible torque space of the shoulder in young healthy adults 82. They noted that external 
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rotation during adduction and internal rotation during abduction were the weakest directions of the 

shoulder. Although these data are from unimpaired individuals, these torque combinations are 

considered to be the “out of synergy” in individuals with stroke. Beer et. al confirmed that 

hemiparetic external rotation weakness was profound (33%) however this weakness was unrelated 

to reaching performance while supported and against gravity 83. Humeral rotation impairments 

after stroke have been assumed to be resultant of abnormal neural drive limiting “out of synergy” 

strength but it remains to be demonstrated.  

This study examines dual-task internal and external rotation torque generation ability 

(strength) during abduction and adduction using a two-DOF task utilizing the capabilities of a 

robot to precisely control the required torques in one direction (abduction/adduction) while testing 

maximal isometric strength in another (internal/external rotation). This paradigm is similar to that 

first described by Beer et. al. investigating “task dependent weakness” albeit measuring elbow 

flexion/extension during abduction/adduction 77. In line with the described clinical presentation 

and laboratory-based findings of multi-joint synergistic movement and posturing following a 

stroke, we hypothesized that the paretic arm would reflect abnormal synergy within the DOFs of 

the glenohumeral joint such that external rotation would be weaker during adduction and stronger 

during abduction and conversely internal rotation would be stronger during adduction and weaker 

during abduction in comparison to individuals without stroke.  

4.3 Methods 

Fourteen participants with chronic hemiparetic stroke with moderate to severe upper-

extremity motor impairments were recruited and provided consent to participate. A licensed 

physical therapist determined moderate to severe motor impairment using the upper-extremity 



65 

 

 

 

portion of the Fugl-Myer Assessment with a score between 10 and 45 out of 66. Two of these 

participants were excluded from analysis, one was not able to generate any external rotation torque 

and another was unable to execute the required dual-task. Twelve age- and gender- matched 

participants without stroke were also recruited to serve as controls. Thus, 12 participants with 

hemiparetic stroke with chronic motor impairments (50% female, who were, on average, 60.8 ± 

10.3 years old, with a Fugl-Myer Upper-Extremity Assessment score of 26.9 ± 8.4, and were 16.8 

± 8.3 years post-stroke), along with 12 control participants (50% female, mean age 59.1 ± 9.9 years 

old) completed the study. The non-paretic (NP) then the paretic (P) arms were tested in those with 

stroke, while only the dominant (right) arm was tested in control participants. All participants 

provided written consent to participate in the study in accordance with Northwestern University 

Institute Review Board (IRB #: STU00205835). 

4.3.1   Setup and Instrumentation 

Once seated in a rigid chair (Biodex, Shirley, NY; Model 830-110) with waist and shoulder 

straps fastened and secured, each participant’s arm was placed in 90° of abduction, 45° of 

horizontal adduction, and 90° of elbow flexion using a custom setup which put the arm in the 

transverse plane at shoulder height. The forearm was rigidly attached to the custom setup via a 

fiberglass cast which covered the hand, wrist, and forearm enabling a 6-DOF load cell (JR3 Inc., 

Woodland, CA, USA; Model 45E15A) to measure 3-axis force and moment data.  

4.3.2   Single-DOF Isometric Strength 

Isometric strength was collected via a single-DOF isometric task in six different directions 

in the following order: shoulder abduction, shoulder adduction, external rotation, internal rotation, 

and elbow flexion and extension. Five second trials with verbal encouragement and visual 
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feedback of real-time torque were repeated until three trials were collected in which the maximum 

torques in the testing direction was within 10% of each other and the last one was not the greatest. 

Load cell data and the corresponding anthropometrics for each participant were used to calculate 

maximal joint torques, a precision measurement of strength. The maximal adduction and abduction 

joint torque was used as input to the subsequent dual-task strength protocol.  

4.3.3   Dual-Task Strength Setup 

Participants moved from the 

isometric setup to a customized robotic 

setup which was comprised of a modified 

ACT3D HapticMaster with an added 6-

DOF load cell (JR3 Inc., Woodland, CA, 

USA; Model 51E20A) at the end effector. 

Each participant sat in a similar chair as 

described above. Participants were 

rigidly connected to the load cell using a custom device that secured the medial and lateral 

epicondyles between foam centered over the load cell and attached the casted forearm to a rigid 

bar extending from the load cell as depicted in Fig. 1. The elbow was centered over the load cell 

to minimize sensitivity to measurement error. The robot and the participants were adjusted so their 

arm position was the same as in the isometric single-DOF strength testing (90° abduction, 45° 

horizontal adduction, and 90° elbow flexion).  

4.3.4   Dual-Task Strength Testing 

 

Figure 9. Dual-task setup. Custom ACT3D with load cell (in 

blue under elbow) with casted arm attached via custom 

device. Movement of the robot was limited to the vertical 

direction. This participant’s arm is resting on lower 

horizontal surface. 
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Using the maximal abduction and adduction joint torque data from the isometric single-

DOF strength testing, vertical loads (accounting for limb weight) were calculated and programmed 

into the device. These loads would require each participant to use 0, 25, or 50% of their maximal 

abduction or adduction strength to move the robot vertically depending on the condition being 

tested (5 loading conditions). An upper- and lower- vertical limit was created as a ceiling, 5 cm 

above and floor, 5 cm below 90° of abduction (joint position) to control how far the shoulder could 

abduct or adduct. Forces applied by the robot during adduction trials forced the at-rest limb to the 

ceiling while abduction loads would force it to the floor. During each trial the participant was 

required to adduct or abduct the specified load off of the limit and maintain it there (quasi-

static/dynamic). Each trial consisted of 5 seconds of single task abduction or adduction off of the 

limit (5 levels: 0, ± 25, ± 50%) followed by 5 seconds of maximal isometric internal or external 

rotation. Internal and external rotation torques that were generated while the limb made incidental 

contact with the floor or ceiling were not included in the analysis. A digital screen provided 

feedback of real-time calculated internal and external rotation joint torque. A visual and audible 

cue was given for both the start to the lift condition (first 5 seconds) and the lift plus rotation 

condition (last 5 seconds). Our lab has found that quasi-static/dynamic control of shoulder 

abduction and adduction position while under load alleviates the cognitive burden of the dual-task 

as it is more functionally intuitive than a fully isometric dual-task. Conditions were randomized 

between the abduction/adduction loads and between internal and external rotation efforts resulting 

in 10 conditions (5 levels for external rotation and the 5 levels for internal rotation). Trials were 

repeated within each condition until 3 trials were acquired in which the maximal internal or 

external rotation torque was within 10% of each other and the last one was not the greatest. Fig 2. 
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shows representative trials for each combination of tasks (abduction or adduction paired with 

external or internal rotation) of a participant in each group.  

4.3.5   Data Processing  

Load cell data was transformed into joint torques using anthropometric measurements and 

a series of coordinate transformations for both the single- and the dual-task. All data were 

smoothed/averaged over 200ms windows. The highest internal and external rotation torque was 

identified within each trial. As mentioned, torques acquired while contact was made with the 

ceiling or the floor limit were ignored. The largest torque for each condition and each participant 

was used for the analysis below. This resulted in one external rotation torque and one internal 

rotation torque for each of the 5 load-levels (-50, -25, 0, 25, 50%) representing the humeral rotation 

strength as a function abduction/adduction load.  

4.3.6   Data Analysis 

Four linear mixed-effects models were generated from normalized dual-task strength data 

to test the effects of group, load-level, and their interaction on internal and external rotation 

strength (equation 1). Abduction and adduction data were separated as were external and internal 

rotation data. The 0% data was used in both the adduction and the abduction analyses resulting in 

the use of 3 torques for each person in each group. Gender was initially included as a main effect 

but removed due to lack of significance and was not our primary comparison of interest. The 

models were formulated as follows with group and load as main factors and participant as a random 

factor: 

𝐸𝑞 1: 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑜𝑟𝑞𝑢𝑒 ~ 𝑔𝑟𝑜𝑢𝑝 +  𝑙𝑜𝑎𝑑 + 𝑔𝑟𝑜𝑢𝑝 ∗ 𝑙𝑜𝑎𝑑 +  (1|𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) 
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4.4 Results 

Isometric strength values are summarized in Table I for all groups and directions presented 

as group mean (standard error) with N = 6 for each group and gender. Raw strength values were 

averaged by gender since we did not collect or control for muscle mass or cross-sectional area and 

a known relationship exists between gender and muscle mass and muscle mass and strength 

resulting in gender differences in strength of 40 or 50% 84,85. Combined results for women and 

men is also provided for comparison with other published data that may not have been split by 

gender. Paired (P-NP) t-tests were run for internal and external rotation strength for both men and 

women and all four tests were significant at α=0.05 indicating that the paretic arms are significantly 

 

Figure 10. Representative trials for each lifting/humeral rotation direction combination for each group. Solid 

lines are the isometric humeral rotation joint torques (Nm; External Rotation(+) in the top panels, Internal 

Rotation(+) in the bottom panels) indicated by the left y-axis. Dashed lines are the vertical position of the 

robot (cm; 0 indicating midpoint between ceiling (+) and floor (-) limits) during the task indicated by the 

right y-axis. The starting position of the vertical position on the left two plots was 5cm illustrating the 

participant beginning in contact with the ceiling limit. Similarly, the starting position of the vertical position 

on the right two plots was -5cm illustrating the participant beginning in contact with the floor limit. The 

vertical black line indicates the transition cues (visual and verbal) from the single-task to the dual-task. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. ER/IR joint torque data – representative trial for each condition and each group 
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weaker than the non-paretic arms in these two directions (Women IR: p=0.028, Women ER: 

p=0.001, Men IR: p=0.007, Men ER: p= 0.005). A family-wise correction factor for multiple t-

tests was not used as it was deemed overly conservative and weakness is an established impairment 

following stroke. Relative strength ratios between each group are provided to give a general 

indication of how the strengths compared between groups. Strength ratios presented in Table I are 

ratios of the group averages since participants were not matched at the individual level. The 

strength of the paretic arms generally ranges between 25 and 50% compared to the non-paretic 

arms and controls.  

 

Table IX Single-DOF Isometric Strength (torque, Nm) 

Women AB AD ER IR EF EE 

C 39.6 (1.3) 38.9 (1.5) 19.4 (1.7) 16.6 (1.1) 38.8 (2.1) 24.4 (1.3) 

NP 25.8 (3.6) 28.7 (3.5) 16.7 (1.7) 14.7 (2.3) 32.2 (1.2) 22.2 (1.9) 

P 16.3 (2.0) 19.5 (2.6) 4.6 (1.0) 7.8 (1.1) 15.8 (1.1) 10.6 (2.5) 

NP/C 0.65 0.74 0.86 0.88 0.83 0.91 

P/NP 0.63 0.68 0.28 0.53 0.49 0.48 

P/C 0.41 0.50 0.24 0.47 0.41 0.44 

 

Men AB AD ER IR EF EE 

C 66.4 (8.6) 66.8 (6.9) 38.2 (4.9) 33.6 (3.2) 70.4 (9.4) 41.3 (4.5) 

NP 57.7 (4.9) 59.1 (6.9) 35.8 (3.3) 32.0 (3.4) 67.2 (8.4) 47.1 (6.7) 

P 28.1 (2.9) 30.6 (5.0) 10.3 (2.4) 12.3 (2.2) 32.2 (5.5) 19.7 (3.9) 

NP/C 0.87 0.89 0.94 0.95 0.96 1.14 

P/NP 0.49 0.52 0.29 0.38 0.48 0.42 

P/C 0.42 0.46 0.27 0.37 0.46 0.48 

 

Combined AB AD ER IR EF EE 

C 53.0 (5.8) 52.8 (5.4) 28.8 (3.8) 25.1 (3.0) 54.6 (6.6) 32.9 (3.4) 

NP 41.8 (5.6) 43.9 (5.9) 26.3 (3.4) 23.4 (3.3) 49.7 (6.6) 34.7 (5.0) 

P 22.2 (2.1) 25.0 (3.0) 7.5 (1.5) 10.1 (1.0) 24.0 (2.2) 15.1 (1.7) 

NP/C 0.79 0.83 0.91 0.93 0.91 1.05 

P/NP 0.53 0.57 0.28 0.43 0.48 0.44 

P/C 0.42 0.47 0.26 0.40 0.44 0.46 

AB=Abduction, AD=Adduction, ER=External Rotation, IR=Internal Rotation, EF=Elbow 

flexion, EE=Elbow Extension, C=Control, NP=Non-paretic, P=Paretic 
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Dual-task results are presented in Fig 3. as bar plots of the internal and external rotation 

strength at each load-level for each group (Fig 3.a-d presents actual joint torque, Fig 3.e,f presents 

joint torques normalized to each individual’s maximal voluntary torque in the corresponding 

direction).   



72 

 

 

 

 

 
Figure 11. Dual-task performance. Bar plots with standard error of the isometric internal (a, c) and external 

(b, d) rotation torque generated under the different loading conditions for women (n=6/group) and men 

(n=6/group). Negative x-axis is % max adduction while positive x-axis is % max abduction and 0 indicating 

the unloaded or arm-weight fully supported condition. The bottom plots (e, f) depict the average internal and 

external strengths of the 12 participants in each group normalized to their maximal strengths. 
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Table II shows the results of the four linear mixed-effects models (LMM) on the 

normalized strength data. External rotation (ER) and internal rotation (IR) during adduction are 

listed first while external rotation and internal rotation during abduction are listed last. Each linear 

model was run within one task combination (e.g. external rotation during adduction). The 0% load 

condition was used in both the adduction as well as the abduction models resulting in four models 

with three load-levels and three groups

 

 

Table X Linear Mixed Models   

External Rotation during Adduction 
 DF Num DF Den F-Value P-Value 

Group 2 46.91 5.96 0.0049 

Load-Level 2 78.87 8.98 0.0003 

Group*Load 4 78.87 0.85 0.4988 
     

Internal Rotation during Adduction 
 DF Num DF Den F-Value P-Value 

Group 2 51.5 8.96 0.00046 

Load-Level 2 80.67 12.45 0.00002 

Group*Load 4 80.67 1.2 0.32 
     

External Rotation during Abduction 
 DF Num DF Den F-Value P-Value 

Group 2 45.65 4.17 0.022 

Load-Level 2 78.07 0.69 0.50 

Group*Load 4 78.07 0.41 0.80 
     

Internal Rotation during Abduction 
 DF Num DF Den F-Value P-Value 

Group 2 49.01 18.32 0.00000 

Load-Level 2 79.85 13.12 0.00001 

Group*Load 4 79.85 0.35 0.84 
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As seen in Table II, group was a significant main effect for each combination of adduction 

or abduction with external rotation or internal rotation. In each of the task combinations, paretic 

arms generated less torque (relative to their maximum) compared to the control and non-paretic 

arms averaged across all load-levels (ER during Adduction: p=0.0049, IR during Adduction: 

p=0.00046, ER during Abduction: p=0.022, IR during Abduction: p<0.00000). 

Load-level was significant for all task combinations except for external rotation during 

abduction (ER during Adduction: p=0.0003, IR during Adduction: p=0.00002, ER during 

Abduction: p=0.503, IR during Abduction: p=0.00001). This indicates that abduction and 

adduction loading has an effect on internal and external rotation torque generation in each group 

for all combinations except the abduction external rotation task.  

4.5 Discussion 

This study examined single-DOF, and for the first time, dual-task internal and external 

rotation strength after stroke. Importantly, it attempted to better understand the contributing factors 

to the conventional inclusion of internal/external rotation in stroke-related stereotypical or synergy 

patterns of movement.  

We hypothesized that the paretic arm would be less able to generate external rotation torque 

during adduction and less able to generate internal rotation torque during abduction secondary to 

the elicitation of the abnormal synergy. As shown in Fig. 3a-d and even more so in Fig. 3e-f, a 

common trend emerges across groups: all groups appear to behave as the paretic arm was expected 

to, being less able to generate “out of synergy” joint torques. The group and load-level interaction 

was not significant in any task combination indicating that the differences in external and internal 

rotation strength across load-levels was not different between groups (their slopes are the same). 
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These results agree with recent results from Baillargeon et al, 2019 in which the weakest torque 

directions in a young healthy population were combinations of abduction and internal rotation as 

well as adduction and external rotation suggesting an alternative explanation for multi-DOF 

coupling in the glenohumeral joint 82.  

The unexpected finding that the ability to generate “out of synergy” torques was not 

different between individuals with stroke and control supports the alternative explanation that there 

is a primary mechanical constraint limiting behavior. We posit that biomechanical constraints due 

to muscle attachments and their corresponding actions naturally limit control of DOFs within the 

glenohumeral joint. Specifically, the primary adductors (latissimus dorsi, pectoralis major, and 

teres major) have moment arms with a strong component acting in internal rotation as well as in 

adduction 74,86,87. Conversely, aside from the subscapularis (a more pure internal rotator), those 

same muscles are the primary internal rotators with a significant component of the muscle pull 

acting in adduction. Thus, when a task requires adduction, the pectoralis major and latissimus dorsi 

are activated and intrinsically generate internal rotation torque thus limiting the amount of net 

external rotation that can be generated. Conversely, when a task requires internal rotation, 

adduction torque will automatically be generated opposing any desired abduction torque 

generation. Thus, in a dual-task where the abduction load must be controlled, the amount of 

internal rotation that can be generated will be limited by the amount of abduction that can offset 

or negate the biomechanically coupled adduction torque that occurs during internal rotation.  

We found that paretic arms are weaker (decreased single-DOF strength). This is consistent 

with the conventional stroke sequela of hemiparesis or weakness. Our results appear generalizable 

since the magnitude of weakness observed in the present study is similar to prior work. 
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Specifically, our data reflect previously reported baseline strength values for abduction (25Nm), 

adduction (33Nm), external rotation (8Nm), and internal rotation (12Nm) in a similar but larger 

cohort (N=32) as part of a recent chronic stroke rehabilitation trial 20. We accounted for the 

profound strength impairment by normalizing dual-task strength by the single-DOF strength prior 

to evaluating the effect of load-level and group.  

With this lack of strength accounted for, we found a negative offset in performance of the 

paretic arm resulting in an effect of group in all four task conditions. Because there was no 

difference in slope (no interaction effect of group by load-level) we believe the load-dependent 

abnormal synergy could not be responsible, but instead perhaps another stroke-related sequela 

such as hypertonia (generalized increase in background muscle activity) that presents during tasks 

or movement 88-91. 

The scaled down performance of the affected arm could also reflect changes in cognitive 

motor planning and subsequent execution of the dual-task. This is less likely since performance 

was not different between the non-paretic and control arms implying that participants with stroke 

were cognitively capable of completing the task in similar fashion to controls. 

We conducted musculoskeletal modeling via OpenSim using a previously validated model 

of the shoulder 92,93 to expound how external rotation during adduction and internal rotation during 

abduction can be limited in both individuals with and without stroke.  We matched the model 

posture to our experimental setup which equated to 40° “elevation angle”, 90° “shoulder 

elevation”, 50° “shoulder rotation”, and 90° of “elbow flexion”. Muscle parameters for muscles 

crossing the shoulder were extracted and provided to customized optimization software written in 

MATLAB (Release 2017a, The MathWorks, Inc., Natick, MA, USA). 



77 

 

 

 

Prior work identified that this model 

under-predicts the moment arm of the teres 

minor compared to values found via 

cadaveric testing so we extracted values for 

the teres minor as well as for the other rotator 

cuff muscles from anatomical moment arm 

studies to better approximate the rotator cuff 

musculature 74,87. Additionally, the model is 

based on the 50% male size and young male 

muscle volume. Muscle volume (peak force) 

was adjusted by multiplying each muscle by 

its ratio between an older adult male or 

female and the young male adult data that 

was used to generate the model 94,95. 

Hypothetical joint torque maximums 

were acquired by using the customized 

software to optimize muscle activations to 

maximize the joint torques in each of the 

directions (abduction, adduction, external 

rotation, and internal rotation). Next, 

abduction and adduction loading was 

simulated by creating inequality constraints 

 

Figure 12. Modeled dual-task strength. Solid lines are 

simulated maximal joint torques using OpenSim setup with 

similar posture to the prescribed protocol. Experimental 

data overlayed with mean (± standard error). Top) Women, 

Middle) Men, Bottom) All normalized to maximum 

humeral rotation torque (external or internal). For 

comparison with Figure 3, note that internal rotation here 

is represented differently as a negative number.  
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of abduction and adduction loads ranging between 0% and 100% ±1% of the maximum torque. 

The optimization was then run to maximize torque in internal and external rotation while 

simultaneously meeting the abduction or adduction loading constraints. This resulted in 

simulations of the described dual-task protocol but across all possible load-levels. The red lines in 

Fig. 4 depict the simulated joint torques across all load-levels -100% (maximal adduction) to 100% 

(maximal abduction).  

To better simulate the weakness experienced after stroke and to cause the model to generate 

torques closer to those expressed by our participants with stroke, all muscle forces were simulated 

as having strength that was 25%, 50%, or 75% of the maximal strength (Fig 4). Each of these limits 

was applied across all 18 muscles included in the model. The optimization was run again to 

maximize internal and external rotation torque under the prescribed strength and load constraints. 

As seen in the blue and gold lines of Fig. 4, study data from all of our participants are reflected in 

the results of the biomechanical model. This observation supports our conclusion that there is a 

biomechanical constraint due to muscle attachments and lines of action that limits internal rotation 

and external rotation during abduction and adduction. Of note, there was no detected difference 

between non-paretic and control arm performance in these tasks indicating that all participants had 

the cognitive resources to understand and perform the task. 

What is left to explain then is why the paretic arms had a global limitation in normalized 

dual-task strength (they were less able to generate dual-task internal or external rotation torque 

compared to their maximum under all loading conditions). This is apparent in the effect of group 

resulting in negative offset in performance of the paretic arms as compared to the others. Further 

work is needed, but we hypothesize that the reliance on of upregulation of different neural tracts 
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secondary to the damage due to stroke, specifically the extrapyramidal corticobulbospinal tracts 

such as the reticulospinal tract, contributes to this phenomenon. This tract has been shown to be 

upregulated in stroke on the impaired side16,96. This tract is also implicated in control of postural 

adjustments and muscular tone97. We postulate that the increased activity of the reticulospinal tract 

results in increased global background activity or hypertonia during effortful tasks. The 

implications of this for the dual-task in this study is that there will be increased activity of the 

antagonists resulting in added constraints limiting the amount of internal or external rotation 

torque that can be generated. The increased background activity of the agonists is overshadowed 

by or incorporated with their intentional activation to complete the task. 

The fact that we do not see a load-dependence specific to stroke as seen in work with more 

distal joints is that the proximal effort required to maximize internal or external rotation exists 

under all load conditions and possibly activates or recruits the reticulospinal tract to its maximal 

extent even without any abduction or adduction loading. 

Limitations in this model include that it assumes intact/unimpaired motor control, 

cognition, vision/perception, and other common stroke sequelae. While these are mostly accounted 

for through study inclusion/exclusion criteria, they may partly explain differences between model 

output and study participant performance. The model was also built using bone and muscle 

size/length equivalent to the 50th percentile male and while adjustments to muscle volume were 

made, adjustments to bone size and length were not. This may explain why the fit to the female 

data is not as close as it is for the male data. 

Finally, the overall study design had some relevant limitations. Despite significant main 

effects, the small sample size and increased variance within individuals with stroke may have 
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underpowered the statistical evaluation of an interaction effect of group x load. However, the 

striking similarity with the musculoskeletal model minimizes this possibility. Regarding 

methodology, we did not test at higher load-levels (>50% abduction/adduction strength) during 

the dual task paradigm that is known to maximize upper extremity synergy expression. While 

testing at higher loads becomes difficult secondary to motor control, fatigue, and discomfort, it 

may expose a minimal contribution of abnormal synergy to performance of the affected arm that 

was not observed in the present study.  

4.6 Conclusion 

This study examined humeral rotation strength under different abduction and adduction 

loads in an attempt to evaluate the underlying factors impacting the control of the glenohumeral 

joint. With generalized stroke-related weakness accounted for (task performance normalized to 

maximal strength values), we conclude that a mechanical constraint (muscle action) is the primary 

contributor to the ability to control multiple DOFs within the glenohumeral joint. This effect was 

common across all groups, paretic, non-paretic, and controls. A load-dependent change (abnormal 

synergy) was not detected for the participants with stroke that was different from the other groups. 

However, a negative effect of stroke limiting dual-task performance was detected across all loads 

and may be attributed to hypertonicity, another sequela of stroke, caused by the upregulation of or 

greater reliance on brainstem motor pathways. 
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Chapter 5: Human-In-The-Loop Myoelectric Pattern Recognition 

Control of an Arm-Support Robot 

 

Human-In-The-Loop Myoelectric Pattern Recognition Control of an Arm-Support Robot to 

Improve Reaching in Stroke Survivors 

 

Authors: Joseph V. Kopke, Michael D. Ellis, Levi J. Hargrove 

 

5.1 Abstract 

Vertical arm support improves reaching ability in persons with stroke. Whereas static control 

mechanisms for arm support are well established, dynamic control based upon an individual’s real-

time muscle activations has the potential to offer patient-specific applications and advance existing 

strategies.  Muscle activation impairments after stroke include paresis, hypertonia, loss of inter-

joint coordination, hyperactive stretch reflexes, and altered timing resulting in heterogeneous 

signals challenging implementation of dynamic control. However, in individuals with stroke, 

supporting the arm compensates for gravity and diminishes neural drive to proximal muscles, 

partially ameliorating these impairments and improving reaching ability. A machine learning 

(linear discriminant analysis)-based myoelectric pattern recognition system was used to control 

incremental changes (in 25ms windows) in either vertical position or vertical support-force during 

a reach and retrieve task, with the goal of improving reaching function based upon movement 

intent as determined by real-time muscle activation. Both vertical support paradigms were 

successfully implemented and resulted in greater forward reaching performance as demonstrated 

by increased elbow extension and horizontal shoulder adduction compared to reaching under 
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normal gravitational loading. Muscle activation levels with real-time support were lower than for 

the no-support condition and similar to those observed during static support paradigms. The 

computational power of machine learning prevailed despite the abnormal muscle activations 

associated with stroke and should be considered in the development of future rehabilitation 

approaches.  

5.2 Introduction 

Worldwide, an estimated 80 million people have survived a stroke (7 million in the US), 17 million 

strokes occur each year (800,000 in US), and 36-44% of survivors are left with chronic 

disability.41,98,99 Most commonly, this entails upper extremity impairments including weakness, 

hypertonia, loss of joint coordination, spasticity, and abnormal muscle activation timing,44,100-102 

each of which affect, and often limit, daily function. These impairments contribute to differing 

electromyographic (EMG) signal patterns compared to those of non-injured persons such as 

alterations in signal amplitude,103,104 increased background activation,105 and stereotypical 

abnormal activation patterns.12,106 

Some of these impairments present in proportion to the amount of neural drive, or simply, muscular 

effort.13,70,107 Movement of the arm at the shoulder requires greater effort than movement of the 

distal upper-extremity joints, as the shoulder must move greater mass at a greater distance against 

the force of gravity (i.e., the shoulder does more mechanical work). Anti-gravity (shoulder 

abduction) assistance at the shoulder alleviates the severity of stroke-related impairments by 

reducing hypertonia, abnormal synergy, and abnormal excitation, thus enabling more joint 

excursion, better coordination, and greater reaching.13,76 Additionally, pattern recognition of hand 

grasp intent seems to improve when the shoulder is supported.33 Research groups have used a 
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broad range of devices, from simple surfaces or limb-weight support systems to complex robotic 

systems to support the arm in different ways, both to achieve and explore this phenomenon.40,108  

Exoskeletal devices to address the above impairments have been designed for all joints of the upper 

extremity, either to assist in therapeutic intervention or in accomplishing activities of daily 

living.109-112 However, support at the shoulder is crucial in this population due to the negative 

functional effects of exerting effort at the shoulder (e.g., reduced reach distance; increased 

unintentional flexion throughout the elbow, wrist, and hand; reduced accuracy of classifying hand 

movement intention), which these devices must then overcome. Few devices have used a human-

in-the-loop approach to control the amount of support applied at the shoulder. Makowski et al. 

used a neural network to predict and apply horizontal planar forces during reaching on a modified 

HapticMaster with some success (i.e., slightly improved reach but impaired control and movement 

characteristics).113 They also reported an equal improvement in reach distance but no detriment to 

movement characteristics when a static vertical force-offset, equal to half of the participants’ limb 

weight, was applied. These results, in addition to our finding that providing a horizontal surface 

or off-loading the weight of the limb reduces impairments and maximizes reach distance, led us to 

explore real-time control of vertical support. 

Here we demonstrate real-time myoelectric pattern recognition control of a robotic arm (modified 

HapticMaster) to provide two types of vertical support in a small sample (n=5) of individuals with 

chronic moderate stroke. The goal of this study was to test the feasibility of this approach and 

enable preliminary analysis of its effectiveness in improving reaching ability. We hypothesized 

that real-time control of vertical support, either through position or force, would enable greater 

elbow and horizontal shoulder adduction excursion compared to the no-support condition 
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reflecting the conventional mode of static vertical limb-weight support. The dynamic vertical 

support mechanism developed here has the potential to advance existing rehabilitation strategies 

such as progressive abduction loading therapy20 by utilizing a physiological signal to determine 

optimal vertical support/loading.  

5.3 Results  

Participants completed 10 reaching trials under five different vertical support conditions: no 

support (requiring the participant to lift the full weight of their limb), tabletop support, full limb-

weight support, and two conditions in which real-time pattern recognition was used to control (i) 

vertical velocity or (ii) the time rate of change in vertical force, across each time window (25ms). 

The tabletop condition was simulated by generating a vertical lower limit within the robot’s 

workspace located in the transverse plane at 90° of humeral elevation, and the limb-weight support 

was provided by directing the robot to apply a vertical force equivalent to the weight of the limb. 

These two support conditions did not change throughout the trial (static support) while the two 

controller-based conditions incrementally changed either the vertical position or the supporting 

force every 25ms (dynamic support).  

Each trial consisted of four arm movement components: lift, reach, return, and lower. Lift required 

the arm to be moved into a target window between 80° and 100° of shoulder abduction. Reach 

consisted of the participant reaching as far out in front as possible. Reach distance was decomposed 

into both horizontal shoulder adduction angle and elbow extension angle to aid in understanding 

where improvements or limitations in reach distance originated. Results for each participant, as 

well as average maximal joint angles during the five support conditions are displayed in figure 1. 

Data were only used if the participant’s arm was within the vertical target window.  
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EMG signal amplitude was recorded to assess relative effort and to identify abnormal control 

 

 
Figure 13. Maximum Reach Characteristics. A) Maximum elbow extension and B) maximum horizontal shoulder 

adduction attained during forward reach under five conditions: Tabletop support (arm resting on rigid frictionless 

horizontal surface provided by robot), ΔP controller (position based real-time control), No support (participant lifting 

the full weight of limb), ΔF controller (force based real-time control), Full Limb-Weight Support (by the robot). 

Averages of each condition are provided on right side of each plot. Squares represent static (unchanging) support 

conditions, while triangles represent dynamic (changing) support conditions based on the output of the controller. 

Purple represents position based support and orange represents force based support. The green horizontal bar 

indicates functional elbow extension, and black bar indicates near-full elbow extension. 
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patterns across different tasks. EMG data 

were rectified and a moving average 

applied using 200ms windows, followed 

by normalization of each channel to the 

maximal value recorded throughout each 

study session. Normalized EMG from all 

trials of each condition and participant 

were averaged. Figure 2 displays a time 

series heatmap depicting relative EMG 

activity for four channels involved in 

lifting the arm against gravity (anterior, 

intermediate, and posterior deltoid and 

upper-trapezius) across all trials of each condition. These data indicate the amount of proximal 

muscle activation required during reaching for each condition.  

As well as providing intended support, the controller should avoid directing unintended changes 

in support during other unrelated movements such as movement at the elbow, hand, or bringing 

the arm across the chest (horizontal adduction). As the increased tone and common muscle activity 

patterns that emerge after stroke might prevent successful discrimination between shoulder 

abduction or adduction (vertical movements) and other movements, we also explored the 

feasibility of using pattern recognition to control a wearable exoskeleton while the upper extremity 

is moving in other directions and in other ways.  

 

Figure 14 Average normalized EMG during each 

condition. Averaged smoothed (200ms) normalized EMG is 

shown for all participants across all trials. Ant – Anterior, Int 

– Intermediate, Post – Posterior, Up – Upper, Trap – 

Trapezius. Note that the no support condition is positioned in 

the middle to allow easier comparison between the support 

paradigms. 
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Additional data acquired from a subset of study participants (n=3) were examined to determine the 

ability of the classifier to identify untrained and unrelated (i.e., not vertical abduction or adduction) 

activities as “no-movement”. Four combinations of tasks were selected: horizontal shoulder 

adduction and abduction, internal and external (isometric) rotation, elbow flexion and extension, 

and hand open and close. Each combination of tasks was accomplished in an alternating fashion 

under two different conditions, limb-weight support and tabletop support, simulating the ideal 

support that could be provided via the real-time controllers. As above, limb-weight support  

entailed the robot providing a supportive force equivalent to 100% of the limb weight while the 

tabletop support was a rigid and frictionless horizontal plane, similar to a smooth table. 

Forty-five seconds of each combination of tasks was recorded during three, 15 second trials. EMG 

data were subsequently classified offline using the classifier established for the real-time control 

described above. Classification of these motions should result in one of three possible classes 

(abduction, adduction, or neither/no-movement). Since this control scheme is concerned with only 

controlling vertical support, ideally all data from these other movements would classify as no-

movement. Successful discrimination would indicate that characteristics of these tasks are more 

similar to the no-movement class than to the abduction and adduction movement classes and would 

eliminate the need to include training data from these motions into a future classifier. Tables I 

(device providing limb-weight support) and II (device providing tabletop support) show the 

average percentage of data windows for each unrelated movement that were classified as one of 

these three options.  

To evaluate the potential (best case scenario) of offline classification using this experimental setup 

and data, we averaged the best performance of each participant and task combination, resulting in 
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classification accuracies of 91, 90, 100, and 94%, respectively, for the four tasks during the limb-

weight support condition and 84, 89, 96, and 85%, respectively, for the four tasks during the 

tabletop support condition. 

Table XI Limb-Weight Support 

Unrelated Movement 

Classification 

N
o
 M
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em

en
t 
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A
d
d
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Horizontal Add/Abd 78 6 16 

Internal/External Rot 70 15 15 

Elbow Flex/Extend 96 3 1 

Hand Open/Close 84 16 1 

Average – all tasks 82 10 8 

    

Table XII Rigid Tabletop Support 

Unrelated Movement 

Classification 

N
o
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em

en
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A
b
d
u
ct

io
n

 

A
d
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Horizontal Add/Abd 63 13 23 

Internal/External Rot 74 20 6 

Elbow Flex/Extend 88 7 6 

Hand Open/Close 75 24 0 

Average – all tasks 75 16 9 

Add - Adduction, Abd - Abduction, Rot - Rotation. 

 

5.4 Discussion  

In this study, we assessed the feasibility of using human-in-the-loop myoelectric pattern 

recognition controllers to control a robot that provided vertical shoulder support after stroke, to 

enable the user to accomplish a voluntary forward reaching task. The controllers were used to 

provide vertical support via position or force, both known to improve reaching performance when 

provided statically.40 Additionally, we examined relative EMG activity under each condition and, 

in a subset of participants, the ability of the classifier to discriminate other non-related tasks. 

Reaching performance, in terms of both elbow and shoulder horizontal adduction excursion, 

improved in all participants for both controllers. This indicates that each participant was able to 

interact with the pattern recognition controllers well enough to accomplish the task and that both 

types of support improved reaching performance compared to the no-support condition. Assuming 
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reach performance would be at least as good as the no-support condition, a one-tailed paired t-test 

showed that both types of control were statistically significantly better than no support, even given 

the small study cohort (elbow: p=0.028 for position, p = 0.033 for force, shoulder: p=0.0098 for 

position, p = 0.0059 for force); the larger variability in elbow excursion improvement reduced the 

test statistic (t-score) of this difference. 

Participants 3 and 4 showed a marked reduction in reaching performance (Fig. 1a and 1b) when 

using the dynamic support offered by the controllers (triangles) compared to static support 

(squares). We postulate that this difference could be reduced through additional time using and 

getting accustomed to the control system.114  

Makowski et al used functional electrical stimulation (FES) to assist humeral elevation after stroke 

in attempt to reduce post-stroke impairments and improve reach with mixed results.115 FES has 

limitations including muscle fatigue due to recruitment of larger more fatigable muscle fibers first 

as well as reduced ability to determine user-intent once stimulation is on. Makowski et al also 

attempted to use EMG to control anterior-posterior horizontal reaching forces with robotic 

assistance.113 They found reaching was better assisted with non-changing vertical support (equal 

to half the weight of the limb) alone or vertical support in combination with EMG triggered 

horizontal support. Our technique enables real-time control of vertical support force up to the entire 

weight of the limb or even slightly over which should enable even greater reaching ability. Other 

groups have examined classification of shoulder movements but without application to real-time 

control of a device.26,116-118 

When participants used the online controller, EMG activity was reduced to levels similar to those 

of the static support conditions, indicating that the participants were using less effort than during 
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the no-support condition, which manifested as improved reaching performance. Furthermore, this 

indicates that the participants were working with, rather than against the robot during the specified 

tasks. These results are similar to those of Lenzi et al who used proportional surface EMG control 

of robotic assistance at the elbow.119 

Qualitative feedback from participants on how they felt about using real-time control included the 

following comments: “this is great, I feel like I am hardly working at all,” “the first one [referring 

to the position-based controller] was a bit jerky, kind of like driving a big truck,” and “I really like 

this one [the force-based controller] since it is smoother and helps me reach further without having 

to work so hard.” Modifications to the control scheme, including the possible use of velocity filters 

or rate-limiters, may reduce the feeling of jerkiness but this would require further development 

and testing. 

Using the classifier to discriminate between abduction and adduction and other unrelated motions 

in offline tests resulted in high error rates. The precise relationship between online and offline 

performance for pattern recognition myoelectric controllers is not well understood. In online 

control tasks, subjects have the opportunity to correct small mistakes, which may not impact 

completion of the task. We also note that the offline error rates were within the range expected for 

a usable online controller.28  Furthermore, the trials with the highest accuracy for each participant 

and task combination show what may be possible even without real-time adjustments. The addition 

of training data incorporating these or other unrelated movements to the classifier may improve 

the ability to discriminate between abduction/adduction and other unrelated movements not 

requiring a change in vertical support. Of course the hope would be to minimize required training 

data. 
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Tabletop support resulted in greater prediction errors for abduction and adduction than during full 

limb-weight support. This may be because participants could engage other muscles or generate 

forces up or down without a change in vertical position as happens in the limb-weight support 

condition. It is possible that, during the tabletop support condition, participants were engaging the 

abnormal muscle co-activation pattern of shoulder adductor/elbow extensor that are common after 

stroke as they attempted to move their limb. The limb-weight support condition would reduce the 

participant’s ability to utilize such abnormal patterns because use of abductors or adductors would 

cause the limb to move outside of the required vertical target window. The offline nature of this 

analysis limits our ability to assess what would happen in real-time use specifically with the 

position control as mentioned above. This finding has implications for how control of a future 

device should be implemented: position control may enable greater range of motion and even 

better task performance but possibly at the expense of allowing abnormal muscle activation 

patterns. Preventing reinforcement of the neural pathways underlying such patterns may require 

either use of force-based support or ensuring that any abnormal patterns result in an unwanted 

vertical movement that the user must attempt to avoid. 

Elbow flexion and extension movements, which were included in the classifier as part of the 

supported reach and return components in the training data, had the lowest classification errors. 

However, horizontal shoulder adduction and abduction movements had significant 

misclassification rates as vertical adduction. These errors may have resulted from only using EMG 

from the pectoralis major, the primary horizontal adductor, in this study and not including EMG 

from the latissimus dorsi or teres major, which would be active during vertical adduction tasks but 

less active in horizontal adduction tasks. Thus addition of EMG data from the latissimus dorsi and 



92 

 

 

 

possibly the teres complex may reduce these errors. Accuracy of classification of the internal and 

external rotation task was confounded by the fact that it was isometric and thus participants could 

not perceive how their arm would move in response to their effort, and no joint torque feedback 

was provided. Our prior work has shown that these degrees of freedom can be discriminated to a 

level that should enable real-time control of a device.120,121 A different device or at minimum a 

different method of connecting the participant to the device would be necessary to free and enable 

testing of this degree-of-freedom. The hand open and close data most prominently showcases the 

abnormal muscle patterns attributed to stroke, which explains why attempts to open and close the 

hand were misclassified as shoulder abduction. Since no quantitative limits or criteria were used 

to determine the amount of effort participants expended during these movements, it is possible that 

participants were trying really hard to open or close their hand, tasks which are often severely 

impaired after stroke and not always possible. Although the classifier was able to classify other 

unrelated and untrained motions as no (vertical) movement most of the time, further work using 

an online controller with additional EMG sensors and more degrees of freedom would help in 

clarifying what is possible. 

Study limitations include the small number of participants, which limits the generalizability and 

statistical power of the study, and the absence of a shoulder tracking task, although we believe 

there are many ways in which the body can be positioned and moved to accommodate and 

compensate for minor errors in position. Comparison of the efficacies of the two types of control 

(force and position) is not possible without a larger cohort. Additionally, without running an online 

analysis in which the user can learn and attempt to adjust to misclassifications, an offline analysis 

offers limited insight aside from the fact that initial results were promising. 
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Ultimately we have shown that control of vertical support via myoelectric pattern recognition is 

feasible and efficacious after stroke despite heterogeneous muscle activation patterns. Both the 

position and force-based controllers improved elbow and shoulder joint excursion during forward 

reach compared to the no-support condition, enabling greater reaching distance. Providing support 

reduces the effort needed to counter gravity throughout the task, reducing muscular activity and 

the subsequent movement impairments experienced post stroke.  

Immediate next steps include a multi-session study to determine the extent to which the use of the 

controller can be learned to maximize reaching and an online assessment of the interaction between 

the participant, the classifier, and unrelated movements. Including additional EMG channels and 

even force sensitive resistors followed by optimization may also be beneficial. Future steps include 

the design and application of these techniques to a wearable device that supports the shoulder in 

similar ways.  

Future work could incorporate these techniques into a rehabilitation program helping users to 

identify and avoid the abnormal muscle activation and movement patterns as they recover. 

Optimization of limb support could be systematically implemented thereby mimicking 

“progressive abduction loading therapy” proposed by Ellis et al.19 but utilizing a direct 

physiological signal as opposed to task performance to progress the intervention.  Ultimately, 

incorporating smart support into daily life and activities of daily living with a wearable device 

could help expand and explore a new avenue of stroke rehabilitation. 
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5.5 Materials and Methods 

Ten participants consented to enroll in this study, which was approved by the Northwestern 

University IRB (IRB# STU00210805). Inclusion criteria included having had a unilateral stroke 

more than six months prior to the study, with motor deficits limited to one side, and having 

moderate motor impairment as determined by the upper-extremity portion of the Fugl-Myer 

Assessment (10<score<40). Participants also had to be able to follow a set of 4-step sequential 

instructions. Exclusion criteria included lack of shoulder or elbow volitional control or 

proprioception, any range of motion limitations that prevented safe participation and interaction 

with the parameters set for the robot (100° of shoulder abduction/scaption with neutral humeral 

rotation), any shoulder or spine pain, and any major medical conditions that may preclude safe 

participation. Four individuals did not qualify due to motor impairments that were too minor (2) 

or too major (2), and one participant’s body type together with a contracture of their pectoralis 

major caused the load cell to consistently touch their body, so they were removed from the study 

due to safety concerns. Thus, five participants completed this single session, four-hour, feasibility 

study and were included in the data analysis. 

5.5.1 Experimental Setup 

The participant was positioned in the Biodex 

chair (Biodex Medical Systems, Inc., Shirley, 

NY), with their affected arm/shoulder abducted 

90º and horizontally adducted 45º from the frontal 

plane. The participant was then strapped into the 

 

Figure 15 Setup. Participant setup in the ACT3D. 
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Biodex chair with nylon belts to constrain movement of the upper body and torso. A lightweight 

fiberglass cast was applied to the participant’s paretic forearm (not crossing the elbow or wrist 

joints) and then attached to the ACT3D haptic device end effector via custom hardware (Fig. 3). 

The ACT3D consists of the admittance-controlled HapticMaster robot (Moog Inc., The 

Netherlands) with a six-degree-of-freedom load cell end effector (JR3, Woodland, CA).  

The robot was programmed to allow free unconstrained movement in the transverse (horizontal) 

plane (including horizontal shoulder abduction/adduction and elbow flexion/ extension). Internal 

and external rotation were constrained due to the design of the gimbal and the way the participant 

was secured to the robot. Virtual rigid surfaces were programmed to limit the amount of vertical 

movement to between 70° and 100° shoulder abduction to protect the shoulder.  

Twelve pairs of Ag/Ag-Cl gel EMG electrodes were placed over the following muscle sites, 

according to the guidelines in the Anatomical Guide for the Electromyographer: anterior, middle, 

and posterior deltoid, upper-trapezius, pectoralis major, supraspinatus, infraspinatus, and biceps 

brachii, with two pairs over the wrist and finger extensors and two over the flexors. A custom 

amplifier system based on the Texas Instruments ADS1299 was used to sample EMG at a 

frequency of 1 kHz, with a gain of 1k, and with band pass filtering of 70-350Hz. 

5.5.2 Position- and Force- Controller Description 

Although it is possible to use other inputs to a controller, myoelectric pattern recognition, which 

is successfully used by persons with an amputation, was chosen both because it allowed us to take 

advantage of the lead time that occurs prior to the intended movement in order to minimize 

response delay.34,122,123  
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A linear discriminant analysis–based pattern recognition controller consisting of three classes was 

used to control the robot in the vertical direction in two different ways: position-control and force-

control. The position-based controller consisted of applying classifier output (class and speed) at 

and across each decision window (25ms) to the vertical position of the robot. More explicitly, a 

velocity was applied across each 25ms window that was proportional as described in Equations 1, 

2, and 3 from Scheme et al.124 Similarly, for the force-based controller, incremental changes were 

made to the vertical force using the direction and magnitude output from the proportional control 

classifier. In this way the robot responded to the intent of the user each 25ms.  

𝑃𝐶𝑖 = (
1

𝐶𝑖
∑ 𝑆𝑖,𝑗𝑀𝐴𝑉𝑗 

𝑁𝐶𝐻

𝑗=1
)

2

   (1) 

where PCi is the proportional control output for each class for a given window, NCH is the number 

of channels used, MAVj is the mean absolute value of channel j within the given window, Si,j is the 

stored set of values representing the centers of each class and channel that were calculated and 

stored during classifier training by (2) 

𝑆𝑖,𝑗 =
1

𝐾𝑖,𝑗
∑ 𝑀𝐴𝑉𝑖,𝑗,𝑘

𝑇𝑟  
𝐾𝑖,𝑗

𝑘=1
   (2) 

where 𝑀𝐴𝑉𝑖,𝑗,𝑘
𝑇𝑟 is the mean absolute value of the training data from class i, channel j, and 

computation window k, and Ki,j is the total number of computation windows (k) for class i and 

channel j. Ci is the stored set of per-class normalization factors calculated and stored during 

classifier training by using (3). These are the channel-sum of squared centers found using (2) in 

the following: 

𝐶𝑖 = ∑ 𝑆𝑖,𝑗
2𝑁𝐶𝐻

𝑗=1      (3) 
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Additional gains to the proportional control for each class and controller-type were adjusted to 

each participant based on the following guidelines: gains were lowered if the participant 

consistently lifted their arm directly into the ceiling limit upon first effort to lift their arm; 

conversely, gains were increased if their elbow was lifting off the load cell or it appeared that the 

participant was waiting on the robot to respond. Different gains were used for the position and 

force paradigms as well as between the positive and negative vertical directions. A graphical 

depiction of the control scheme is presented in figure 4. 

5.5.3 Control System Training 

Training data consisted of three sets of 

two, 10-second trials of each movement 

type (abduction, adduction, no movement) 

with each set occurring at a different 

horizontal adduction position (0°, 45°, and 

90°). Additionally, five supported reach 

trials on a rigid table-like surface at 90° 

abduction and five limb-weight supported reach trials were included into the no-movement class 

training data. Supported reaching trials were included to aid the classifier in discriminating 

between pure abduction and adduction and reaching, since common muscle activation patterns 

across movements, as well as generalized increased muscle tone during tasks occur after stroke. In 

total, 28, 10-second trials were used as training data.  

5.5.4 Data Segmentation and Feature Extraction 

 

Figure 16 Block diagram of control schemes. Dashed line 

indicates that only during the force-based control can muscle 

activity directly affect the movement or stiffness of the arm.  
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Similar procedures were used for segmentation and feature extraction for both online and offline 

classifiers and analyses. All 12 channels of EMG were processed using 200ms windows and 25ms 

steps (175ms overlap). Within each window, the Hudgin’s feature set (mean absolute value, 

number of slope sign changes, number of zero-crossings, and waveform length) was extracted in 

addition to 6th order autoregressive features. In total, 12 channels, each with 10 feature vectors, for 

a total of 120 features, were used to train and test both the online and offline classifiers.67  

5.5.5 Lift and Reach Task Description 

The two controllers were then used to control the robot in a reaching task, which was also 

completed under a no-support condition, a tabletop condition, and a limb-weight supported 

condition. The tabletop and limb-weight support conditions were added as hypothetical best cases 

for comparison with the real-time control data. Ten lift-reach-return-lower trials were performed 

under each condition. The participant was required to lift their arm to achieve a vertical target 

window between 80 and 100 degrees of abduction, then reach out straight in front of them as far 

as they could, return to the starting position, and lower their arm below 80° abduction. Although 

ultimately arbitrary, these limits were implemented to protect the glenohumeral joint and because 

many compensations can accommodate inaccuracies in shoulder control. During the supported 

conditions, the limb was already in the vertical target window, so only the forward reach and return 

portions of the task were required. Verbal instructions to participants generally included phrases 

such as “lift, reach out in front of you as far as you can, return, and lower your arm.” No mention 

was made of speed, as ballistic motions are not used functionally. Figure 5 depicts joint kinematic 

data as well as forces provided and sensed during a position control trial as well as a force control 

trial. 
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For each participant, the order of support conditions was randomized. Data recorded for each trial 

included calculated joint angles, position and velocity of the end effector, the forces and moments 

at the load cell under the end effector, and 12 channels of surface EMG.  

5.5.6 Unrelated Movement Task 

In order to test how well the classifier could inherently discriminate other (non-trained and non-

controlled) degrees of freedom, an offline task and analysis was performed. Four sets of two paired 

tasks including horizontal shoulder adduction and abduction, isometric internal and external 

rotation, elbow flexion and extension, and hand open and close were performed in random order 

under two types of vertical support: tabletop support and limb-weight support. Each participant 

 

Figure 17 Representative trials. Representative lift and reach trials of each control type: position control (left) 

and force control (right) with joint kinematics (top) and robot forces (bottom). The large negative force (-30N) 

displayed in the bottom left is a participant engaging an abnormal synergy pattern in order to maximize reach; the 

controller successfully identified the reach and prevented the robot from lowering its vertical position outside of 

the target window to enable a greater reach. In the bottom right at the end of the reach around 11 seconds can be 

seen a minimal drop in support force as the classifier has difficulty recognizing adduction when the arm only need 

be relaxed in order to lower to the starting position. 
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attempted the four sets of movements, through their full range of motion, for a total 45 seconds for 

each pair. Internal and external rotation were isometric so participants were asked to “use about 

the same strength that is required to move your arm like this” (and an external rotation motion 

moving from neutral to 90° while the humerus was abducted to 90° was demonstrated). The 

transverse plane was unconstrained. Data for this task was collected in three of the five 

participants. 
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Chapter 6: Concluding Remarks 

6.1 Summary 

This collection of work has attempted to understand control of the shoulder after stroke, the 

feasibility of using muscle signals as a control signal for a powered device, and applied machine 

learning techniques to control robotic arm support to test its effect on reaching distance. 

Specifically, weakness, increased tone (increased activation of all muscles throughout the limb), 

and loss of independent joint control (abnormal synergy causing patterned activation of all flexors 

or extensors throughout the limb) were all implicated as possibly having a negative effect on 

correctly determining user-intent after stroke. 

A major takeaway from this collection of work is that using myoelectric pattern recognition to 

control either the vertical force or vertical position of a robotic support device is possible and 

efficacious for individuals after stroke. Key contributions from each chapter are outlined here: 

Chapter 2: Even under isometric and maximum voluntary contraction conditions, in which we 

would expect the greatest presentation of abnormal synergy, a Load cell and EMG-based classifier 

was able to distinguish to a satisfactory (>90%) level of accuracy, 4 of the 8 classes of movement, 

two at the shoulder and two at the elbow. External rotation and abduction were often confused for 

each other as were internal rotation and adduction. Although the results were promising, we 

questioned whether the misclassifications were due to the nature of the task and the setup or 

whether they were true limitations in pattern recognition of the shoulder after stroke. 
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Chapter 3: attempted to examine the questions uncovered in Chapter 2, mainly, could the four 

motions identified as most challenging, be correctly discriminated. A specially designed apparatus 

connecting the participants arm to the ACT3D attempted to isolate humeral long-axis rotation 

(internal and external rotation) from abduction and adduction. The robot required certain levels of 

abduction and adduction effort prior to requiring maximal internal and external rotation. This study 

demonstrated that indeed these four motions could be detected and discriminated but only for a 

partly dynamic task. This indicates that the isometric setup and single-DOF task negatively 

affected the classifiers ability to discriminate between motions as the participant could perform the 

same combined motion to maximize torques for two different degrees of freedom.  

Chapter 4: explored some neuromechanistic implications in regards to the biomechanics of the 

shoulder and the joint torques generated under the four different dual-tasks presented in Chapter 

3. Paretic, non-paretic, and control shoulders followed similar patterns across the different load 

levels. This at least partly dispels conventional thought that these patterns are part of the abnormal 

synergy due to stroke. All groups were better able to generate external rotation during abduction 

and less able to generate it during adduction. The opposite was true for internal rotation, with 

participants generating increased torque during adduction and decreased internal rotation during 

abduction. The paretic arms were less able to generate normalized internal and external rotation 

torques across all load levels, possibly indicating the presence of a more global effect such as 

hypertonicity, causing co-activation of both agonists and antagonists simultaneously, limiting 

torque generation under all of the conditions.  
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Chapter 5: attempted to realize the techniques examined in the previous chapters and test their 

effect on reaching distance. Participants were able to control both the vertical force and the vertical 

position using online real-time myoelectric pattern recognition control of the ACT3D robot. This is 

the first documented success of real-time control of vertical shoulder support in stroke. Participants 

raised their arm into a vertical target window and reached out as far as they could. Participant’s 

elbow and shoulder excursion improved significantly with the real-time support as compared to 

the no support condition. Their muscle activity was reduced to levels near those of the fully 

supported condition 

6.2 Implications 

Although this work did not include the design of a wearable device, it moves us one step closer to 

a realization of one. The techniques explored here could be used to control a device in two distinct 

manners, assistive or rehabilitative. Assistive referring to a mode that would maximize 

performance and would be provided for as long as it is needed. Alternatively, rehabilitative 

referring to a mode that would attempt, as the name implies, to rehabilitate function of the users 

arm; little by little improving the ability to activate the shoulder and distal upper extremity outside 

the typical patterns and with reduced tone. Once a wearable device is realized, therapy could be 

incorporated into all activities of daily living, maximizing meaning, dose, and repetition. Support 

could be modified over time ensuring that participants are having to work while simultaneously 

being assisted to be more successful. In either case, it may be possible to use machine learning to 

help individuals understand and avoid when they are trying too hard and engaging negative 

patterns.  
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6.3 Limitations 

Generally the studies within this body of work were small, especially Chapter 6 which was 

adversely affected by the presence of COVID-19, thus limiting the strength of conclusions and 

broader generalization. This thesis used surface EMG which is non-invasive but has its own unique 

set of limitations, especially considering future application requiring daily or long-term use. This 

work also used two different types of LDA based classifiers with limited number of features. There 

are many more classifier algorithms as well as features out there that could be explored and that 

may ultimately provide some benefit. All studies used nylon straps to minimize movement of the 

torso and scapula but movement, especially of the latter, still occurred. For more specific 

limitations of each study, please refer to the discussion section of each chapter and appendix. 

6.4 Future Directions 

I believe that good science brings some answers, but more importantly brings more good questions, 

progressively stepping closer and closer to truth. This body of work is only one step of many that 

hopes to bring permanent positive change to those negatively affected by stroke. This thesis 

specifically explored the feasibility and efficacy of using myoelectric pattern recognition to control 

a future powered shoulder device after stroke. Logical next steps then might include expanded 

testing on the ACT3D or other comparable device with increased online testing with a couple more 

EMG channels as mentioned in Chapter 6. Some thought would need to be given as to what would 

constitute successful control of shoulder support beyond what was attempted here. Another 

somewhat straightforward step may include the use of implantable electrodes to minimize the 

limitations of using surface electrodes. 
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Although this thesis explored control for use on a powered device, a single-DOF passive shoulder 

device, similar to that presented in Cole Simpson’s dissertation125 could also provide the support 

needed to minimize abnormal co-activation of the affected limb. With minor modifications, a 

motor and non-backdrivable gearbox could be mounted on the exoskeletal system proposed by 

Simpson. Once a powered version of a single-DOF shoulder support device is developed, 

comparisons could be made between the manual- and the powered- versions. Insight could also be 

gained as to timing and dose (volume and intensity) of intervention as Ellis has shown a positive 

effect of arm support intervention training on the ACT3D without note of a ceiling effect.  

It would be interesting to investigate the use of a powered wearable exoskeleton as an intervention. 

The machine learning techniques tested here could be used to help users avoid the tendency to 

engage the abnormal synergy and the maximal amount of support could be modified over time as 

strength and ability to operate outside the synergy improves. 

Ultimately, combinations of simpler more robust exoskeletal systems may enable modular 

application to individuals, thus tailoring assistance and intervention possibilities to target the 

specific and unique impairments of each person. I can imagine a single-DOF shoulder support 

device working alongside a hand opening/closing device that is mechanical, electrically 

stimulated, or both to aid or rehabilitate reach and grasp function after stroke. 
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Appendix A: Preliminary Analysis of Pattern Recognition of Quasi-

Static Shoulder Tasks 

Kopke JV, Hargrove LJ, Ellis MD. Application of an LDA Classifier for Determining User-Intent 

in Multi-DOF Quasi-Static Shoulder Tasks in Individuals with Chronic Stroke: Preliminary 

Analysis. Conf Proc IEEE Eng Med Biol Soc. 2018;2018:2312-2315. 

A.1 Abstract 

Abnormal synergies commonly present after stroke, limiting function and accomplishment of 

ADL’s. They cause co-activation of sets of muscles spanning multiple joints across the affected 

upper-extremity. These synergies present proportionally to the amount of shoulder effort, thus the 

effects of the synergy reduce with reduced effort of shoulder muscles. A promising solution may 

be the application of a wearable exoskeletal robotic device to support the paretic shoulder in hopes 

to maximize function. To date, control strategies for such a device remain unknown. This work 

examines the feasibility of using two different linear discriminant analysis classifiers to control 

shoulder abduction and adduction as well as external and internal rotation simultaneously, two 

primary degrees of freedom that have gone largely unstudied in hemiparetic stroke. Forces, 

moments, and muscle activity were recorded during single and dual-tasks involving these degrees 

of freedom. A classifier that classified all tasks was able to determine user-intent in 14 of the 15 

tasks above 90% accuracy. A classifier using force and moment data provided an average 94.3% 

accuracy, EMG 79%, and data sets combined, 94.9% accuracy. Parallel classifiers identifying user-

intent in either abduction and adduction or internal and external rotation were 95.4%, 92.6%, and 

97.3% accurate for the respective data sets. These preliminary results indicate that it seems possible 
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to classify user-intent of the paretic shoulder in these degrees of freedom to an adequate accuracy 

using load cell data or load cell and EMG data combined that would enable control of a powered 

exoskeletal device. 

A.2 Introduction 

Stroke is the leading cause of serious long-term disability in the U.S. 126 and the second leading 

cause worldwide, with fifteen million strokes occurring annually, 33% of which result in 

permanent disability 42. Motor discoordination due to stereotypical movement patterns called 

abnormal synergies is a major factor in limiting ADLs 45. These synergies cause involuntary co-

activation of muscles throughout the upper-limb impeding coordinated use of upper extremity 

joints 44. The upper extremity flexion synergy is expressed during shoulder abduction causing 

unintentional elbow, wrist, and finger flexion 46. The flexion synergy limits functional use of the 

arm, wrist, and hand 45. However, with assistance or reduction of abduction effort, the amplitude 

of flexion synergy decreases resulting in an increase in reach distance 45,48 and a decrease in 

abnormal coupling of wrist and finger flexion 46 commonly seen during functional tasks. 

A device that reduces shoulder effort employing real-time sensing may provide a novel solution 

to activity limitations caused by flexion synergy impairment. Such a 

device is feasible, but comprehensive design and control requirements 

remain undefined. Humeral rotation (Fig. 1), for example, is an 

important degree of freedom (DOF) of movement required for many 

bimanual tasks such as carrying a load. Although shoulder 

internal/external rotation is thought to be part of abnormal synergy 

patterns, it has been largely ignored in static and dynamic 

 

Figure 18. Depiction of 

humeral internal/external 

rotation (black) and 

abduction/adduction (blue) 
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investigations 45,48,127. Therefore, it is currently unknown how much humeral rotation is induced 

due to abnormal synergy and if it can be controlled independently of shoulder abduction/adduction. 

Knowledge of paretic internal/external rotation capabilities and effects of associated abnormal 

synergy will help determine if this DOF needs to be actuated, passively supported, or left unaided 

in order to assist function with a wearable device.   

One control paradigm that has proven to work well with wearable human assistive robotics for 

neuropathological populations is EMG-based control 119. EMG-based controllers enable a short 

device response time 119, prevent increasing user-reliance on the device 128, and encourage 

neuroplastic improvements by requiring active participation 129. Pattern recognition assumes that 

distinct recognizable patterns exist within data and that these data can be sorted by those patterns 

to be used as a control signal 130. User-intent has been effectively predicted based on muscle 

activity patterns in individuals with amputation to control powered upper- 37,55 and lower- 56-58 

limb prostheses. Linear discriminant analysis (LDA) pattern recognition systems have been found 

to be more robust, comparably accurate, and less computationally intensive compared to other 

pattern recognition algorithms 25 thus this method was chosen for this analysis. This paradigm is a 

good place to start as it is intuitive, requires the user to produce effortful contractions, and has been 

effective in other populations. Additionally, the level of activation can be monitored and reduced 

through active support by the device, thus controlling synergy expression.    

This work aims to understand functional limitations and synergy presentation post-stroke in a 

degree of freedom (humeral rotation) that has yet to be explored. It is hypothesized that 

classification accuracy of humeral rotation movements will be lower at higher levels of abduction 

and adduction effort due to increased synergy presentation.  
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A.3 Methods 

A.3.1 Participants 

Four moderately to severely impaired chronic stroke survivors, as determined by the upper-

extremity portion of the Fugl-Meyer assessment (10 < FMA-UE score < 45), have been recruited 

to participate with a sample goal of n=8. This population exhibits the flexion synergy at levels of 

effort less than limb weight (approximately 50% shoulder abduction strength) and constitute the 

population that a powered device would benefit most. The experimental procedures involving 

human subjects described in this paper were approved by Northwestern University’s Institutional 

Review Board.  

A.3.2 Equipment and Instrumentation 

This study used the Arm Coordination Training 3-D (ACT3D) device (Fig. 2) developed at 

Northwestern University that has been used in prior studies exploring abnormal synergies after 

stroke 127. The end effector integrates a 6-DOF load cell to measure forces and torques and an 

instrumented gimbal to measure joint angles and enables control of pure abduction/ adduction 

(vertical) loads while simultaneously enabling control of horizontal 

plane parameters. Data from the ACT3D was recorded at 50Hz. 12 

channels of surface EMG (anterior, intermediate, and posterior 

deltoid, upper-trapezius, supraspinatus, infraspinatus, teres 

complex, latissimus dorsi, pectoralis major, biceps brachii, triceps 

lateral head, and brachioradialis) were recorded at 1000 Hz using a 

Delsys Bagnoli-16 (Delsys, Cambridge, MA). 

 

Figure 19. Participant in setup. 

Robot arm extends toward bottom 

right. Entire arm is able to abduct 

(up) and adduct (down) 2 inches in 

either direction. Forearm is held 

via rigid cast. 
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A.3.3  Protocol 

Subjects were required to dynamically 

abduct/adduct at 5 different levels of 

effort (0%, ±25%, and ±50% max 

abduction(+) and adduction(-)) based on 

maximum isometric voluntary torque 

measured at the beginning of the 

experiment. Horizontal haptic surfaces 

(actuator-emulated physical constraints) 

were positioned 5cm above and below 90 

degrees of abduction. This allowed the subject to remain safe while actively manipulating the loads 

within a defined range of motion. Loads were applied and subjects were required to raise (abduct) 

or lower (adduct) the load off the surfaces. While maintaining the required abduction/adduction 

effort, the participant attempted to elicit their maximal isometric external or internal rotation 

torque. This paradigm is labeled “dual-task.” For each 10-second trial, the first 5 seconds consisted 

of one abduction/adduction effort followed by the addition of isometric internal/external rotation 

for the last 5s of the trial. Fig. 3 depicts the vertical position, abduction torque, and external rotation 

torque during a sample trial at 25% max abduction. A minimum of three trials of each condition 

were completed. Additional trials were added as necessary to obtain three correctly performed 

trials with maximum rotation torques within 10% of each other. These trials were used in the 

subsequent analysis.  

A.3.4.    Signal Processing 

 

Figure 20. Raw data from ACT3D. Vertical position of robot 

in blue, lifting off haptic surface at 2.2s (marked with blue 

vertical line). Abduction joint torque in red during 25% 

abduction max trial. Visual and auditory cue to externally 

rotate provided at green vertical line. External rotation torque 

in green.  
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Force, moment, and EMG data for each trial was segmented and labeled into the appropriate 

class as follows. Data within the first 5 seconds of the trial in which the subject had their arm off 

both haptic surfaces (abducting or adducting at the appropriate load) was segmented and labeled 

either abduction or adduction with corresponding load level as appropriate. Data between 6.5 to 

9.5 seconds in each trial was segmented and labeled as external or internal rotation with 

corresponding load level as applicable. Forces and moments were not able to be used 

independently to delineate proper class or data cutoff due to the natural coupling of these degrees 

of freedom. Rotation torque commonly occurred during the pure abduction and adduction portion 

of the trial and at higher load levels subjects were less able to produce torque outside of this 

coupling (e.g. produced minimal change towards external rotation during 50% maximal 

adduction).  

EMG data were band pass filtered between 20Hz and 400Hz and notch filtered around applicable 

multiples of 60 ± 3Hz using a 6th order Butterworth filter. Four time-domain features were 

extracted for each 200ms window of EMG data, stepping through by 25ms, including mean-

absolute value, number of zero-crossings, number of slope-sign changes, and the length of the 

waveform. For force and moment data, only mean values were used for each 200ms window.   

A.3.5  Classification 

Labeled data sets were provided to a linear discriminant analysis (LDA) classifier. A three-way 

trial-wise cross-validation was utilized to average the effects of possible poor trials. Classification 

accuracies for all 15 classes (5 single-task abduction/adduction and 10 dual-task 

abduction/adduction plus maximal external or internal rotation) were calculated for three data sets: 

forces and moments (FM), EMG only, and combined forces (Comb), moments and EMG.  
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An alternative method of classification in which two classifiers run parallel was also evaluated 

131. One classifier for abduction, adduction or neither and a separate one for external rotation, 

internal rotation, or neither. Although as described, this method eliminates the ability to classify 

between different load levels it may offer increased classification accuracies of each movement 

type and could allow for the intensity of movement to be estimated using a different method. Data 

were relabeled to accommodate this simpler structure. All data with abduction or adduction were 

labeled as such and likewise for all data with internal or external rotation. Dual-task data were thus 

used as part of the abduction/adduction train and test sets as well as part of the internal and external 

rotation classifier train and test sets. A three-way trial-wise cross-validation was again used. 

A.4 Results and Discussion 

A.4.1  15-Class Classifier 

Table I shows the confusion matrix identifying classifier accuracy and error using the combined 

data set (forces, moments, and sEMG). 14 of the 15 classes were classified above 90 percent 

accuracy, indicating a usable and functional control signal 28. Although this does not characterize 

the independence of these movements within the stroke population, it does indicate that there is 

enough difference between these movements to make control of a device possible as accuracies 

are at or above 90% 28. Not shown are the confusion matrices for the other data sets. Table II shows 

the summary of all data sets including within movement averages. Force and moment data 

provided an average 94.3% accuracy, EMG 79%, and data sets combined, 94.9% accuracy.  



130 

 

 

 

Classification errors using the forces and moments data set generally occurred along the 

diagonals of other movement types (e.g. misclassify ER as AB). This indicates that there may be 

internal or external rotation occurring during the first component where only abduction or 

adduction is being attempted. Future work is needed to determine if this is particular to the 

abnormal synergy post-stroke or if this is a normal physiologic limitation. In other words, 

individuals may not be able to completely isolate these movements in this device. Alternatively, it 

may indicate impaired ability to generate patterns out-of-synergy (e.g. internal rotation during 

abduction) thus resulting in misclassification. The classifier 

using EMG had much lower accuracies in general but the errors 

were within movement type (e.g. ER at 25% AB misclassified 

as ER at 50% and 0% AB). These findings indicate that this 

LDA-based classifier is not able to adequately discriminate 

between activation levels. 

It is interesting to note that within the combined classifier, 

EMG generally has a negative effect during adduction    (AD) 

Table XIV. Summary of Confusion 

Matrices 

 

FM EMG Comb

50% AB 99.21 96.27 99.58

25% AB 99.53 92.44 99.43

0% 99.62 72.77 98.54

25% AD 98.11 77.60 96.80

50% AD 97.17 79.40 94.73

98.73 83.70 97.82

50% AB 94.55 81.09 97.47

25% AB 89.34 79.28 98.49

0% 94.38 65.06 94.21

25% AD 94.99 77.76 87.61

50% AD 98.74 69.39 93.62

94.40 74.52 94.28

50% AB 93.50 73.13 96.71

25% AB 85.71 77.53 93.04

0% 89.64 80.13 93.13

25% AD 92.46 75.54 90.02

50% AD 87.72 87.64 90.05

89.81 78.80 92.59IR Avg

15-Class                     

Accuracies

Data Sets

AB/

AD

ER

IR

AB/AD Avg

ER Avg

Table XIII. Confusion Matrix 15-Class Classifier 

 

Green = accuracy > 90%, Orange = 65% < accuracy < 90% Yellow > 5% error.  

 

50% AB 25% AB 0% 25% AD 50% AD 50% AB 25% AB 0% 25% AD 50% AD 50% AB 25% AB 0% 25% AD 50% AD

50% AB 99.58 0.42

25% AB 99.43 0.57

0% 98.54 1.46

25% AD 96.80 0.17 3.03

50% AD 94.73 5.27

50% AB 1.34 97.47 1.19

25% AB 1.51 98.49

0% 5.26 94.21 0.53

25% AD 87.61 12.39

50% AD 3.08 93.62 3.30

50% AB 1.05 2.25 96.71

25% AB 6.96 93.04

0% 4.71 2.17 93.13

25% AD 1.50 8.48 90.02

50% AD 3.01 6.93 90.05

ER

IR

AB/AD

Confusion                                  

Matrix
AB/AD ER IR

Predicted Class using LDA of combined data
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loads as opposed to a positive effect during abduction (AB) loads. It is hypothesized that since the 

muscles that are primary adductors are also primary internal rotators that the classifier has a 

difficult time making distinctions between the two.  

A.4.2  Parallel Classifier 

Parallel classification is an alternate classification method and, as trained, eliminates the need or 

ability to discriminate between different levels of effort. The output of each classifier would then 

control its own respective DOF, one for abduction/adduction and one for external/internal rotation. 

Classification accuracies were generally higher compared to the 15-class classifier as shown in 

Table III, especially for external and internal rotation. The combined data set may provide adequate 

control in both degrees of freedom whereas the load cell data may be best for abduction and 

adduction and the EMG data best for internal and external rotation. The limitation of this simpler 

classification strategy is the loss of discrimination between levels of abduction and adduction effort, 

which may be especially useful in rehabilitation and to prevent the loss of strength over time. This 

loss of strength could result from reliance on an assistive 

device but could be minimized or eliminated by requiring the 

user to produce effortful contractions of a certain level. 

Future work may explore the possibility of expanding this 

classifier to include different abduction/adduction levels. 

A.5 Conclusion 

This work is a good and necessary first step in determining a useable control strategy for a 

wearable shoulder exoskeleton post-stroke. These two classification methods show promise in 

Table XV. Summary Parallel Classifier 

 

 

FM EMG Comb

No AB/AD 99.39 81.53 99.66

ABD 96.66 92.71 96.86

ADD 98.21 89.83 96.95

Avg AB/AD 98.09 88.02 97.82

No ER/IR 97.20 98.07 98.20

ER 94.14 95.93 95.71

IR 86.86 97.74 96.65

Avg ER/IR 92.73 97.25 96.85

Parallel 

Accuracies

Data Sets
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being able to control a device supporting or controlling shoulder abduction and adduction 

simultaneously with external and internal rotation. Future work will attempt to minimize required 

number of inputs, maximize accuracy, and test these strategies real-time on a robotic device.  
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Appendix B. Feasibility of Myoelectric Control of Robot after 

Stroke – Case Study 

Kopke JV, Ellis MD, Hargrove LJ. Feasibility of Two Different EMG-Based Pattern Recognition 

Control Paradigms to Control a Robot After Stroke – Case Study. Paper presented at: 2020 8th 

IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics 

(BioRob); 29 Nov.-1 Dec. 2020, 2020. 

B.1 Abstract 

Stroke often results in chronic motor impairment of the upper-extremity yet neither 

traditional- nor robotics-based therapy has been able to affect this in a profound way. Supporting 

the weak affected shoulder against gravity improves reaching distance and minimizes abnormal 

co-contraction of the elbow, wrist, and fingers after stroke. However, it is necessary to assess the 

feasibility and efficacy of real-time controllers for this population as technology advances and a 

wearable shoulder device comes closer to reality. The aim of this study is to test two EMG-based 

controllers in this regard. 

 A linear discriminant analysis based classifier was trained using extracted time domain and 

auto-regressive features from electromyographic data acquired during muscle effort required to 

move a load equivalent to 50 and 100% limb weight (abduction) and 150 and 200% limb weight 

(adduction). While rigidly connected to a custom lab-based robot, the participant was required to 

complete a series of lift and reach tasks under two different control paradigms: position-based 

control and force-based control. 
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 The participant successfully controlled the robot under both paradigms as indicated by first 

moving the robot arm into the proper vertical window and then reaching out as far as possible 

while remaining within the vertical window. 

 This case study begins to assess the feasibility of using electromyographic data to classify 

the intended shoulder movement of a participant with stroke during a functional lift and reach type 

task. Next steps will assess how this type of support affects reaching function. 

B.2 Introduction 

Stroke is the leading cause of long-term disability in the U.S. and the second leading cause 

worldwide 41. Fifteen million strokes occur annually around the world 41, up to two- thirds of which 

result in permanent disability of the upper-extremity 42. Unfortunately, traditional physical therapy 

and robotics based therapies result in little functional improvement (less than the clinically 

important difference) in chronic stroke, leaving many stroke survivors impaired for life 42. 

Common upper-extremity motor impairments include weakness, abnormalities of muscle tone, and 

motor discoordination 16,107.  

Several robotics groups have worked on lab-based devices, targeting rehabilitation through 

neuroplasticity using intensive, long-duration, repetitive and task oriented therapy.  Those devices 

have proven to be as effective as dose matched conventional therapy but neither mode of therapy 

has resulted in long term clinically relevant improvements in motor control 132-135.  

Conversely, many groups have shown significant positive effects during force- or position-based 

support of the paretic shoulder. Specifically, the abnormal co-contraction of elbow, wrist, and 

finger flexors that often occurs during shoulder abduction is minimized or avoided, enabling 
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greater reaching distance and less unintentional and undesired movement of the wrist and fingers 

13,14,76,107. Thus, a novel solution may be to extend the concept of humeral elevation support to a 

wearable exoskeleton for continuous assistance. Prior to design and development of such a device, 

it is essential to determine control feasibility and efficacy and to determine how the sequelae of 

stroke might affect control of the wearable device. This work used a lab-based robot to test the 

feasibility of two real-time user-in-the-loop control paradigms; force-control and position-control.   

Based on our prior work, it is feasible to discriminate between 8 different isometric shoulder and 

elbow tasks using electromyographic (EMG)-based linear discriminant analysis pattern 

recognition 63,64. Further work successfully extended this concept to a dual-task and slightly less 

constrained environment requiring dynamic adduction or abduction against prescribed loads 

simultaneously with isometric external or internal rotation 120.  

An EMG based time-delayed artificial neural network has been used to predict assistive forces 

for the paretic arm within the sagittal plane 

during target based reaching 113. It was 

concluded that EMG from residual effort can 

produce an effective command signal for 

post-stroke assistive devices and that 

“residual movement coupled with assistive 

forces could enable functional movements 

following stroke”, but also noted some 

general issues with respect to stability. We 

hypothesize that our control scheme will be 

 

Figure 21. Real-time, user in the loop, EMG-based pattern 

recognition control scheme which modifies the vertical 

position or vertical force supporting the arm. Dashed line 

applicable to Force support condition as force generated 

from muscle contributes to task completion but reduces 

over time as controller continues to adjust force based on 

EMG. Note that Δ signifies an incremental change in either 

the vertical position or vertical support force as determined 

by the output of the controller and the mode. 
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more successful because it operates in only 1 degree of freedom - the vertical direction. 

Furthermore, as opposed to continuously predicting force, our control scheme induces incremental 

changes to force or position based on the output of an EMG-based pattern recognition system every 

25ms (Fig. 1). 

The purpose of this case study is to demonstrate control feasibility and efficacy of such a 

paradigm and enable the next steps in design of a powered upper extremity orthosis to aid stroke 

survivors in ADLs. This study will generate knowledge of how real-time control of humeral 

elevation support affects reaching function. Determining how distal limb effort affects active 

control of a device will also help determine if control of a device is feasible and advantageous.  

B.3 Methods 

For this feasibility case-study, one participant with moderate chronic motor impairments after 

stroke has been consented per Northwestern University IRB STU00210805. Moderate motor 

impairment was determined through use of the upper extremity portion of the Fugl-Meyer 

Assessment with a score within the range of 10 and 45. Data were collected over one session.  

B.3.1    Experimental Setup 

The participant was seated and secured in a Biodex chair (Biodex Medical Systems, Inc., Shirley, 

NY) with nylon belts to constrain movement of the upper body and positioned with her shoulder 

abducted 85º with 0° horizontal adduction and with neutral internal and external rotation. The 

elbow center of rotation was positioned over a freely rotating mount with a rotational 

potentiometer (acting as a digital goniometer) to measure elbow rotation. The medial and lateral 

epicondyles were clamped with foam in the custom mount. A lightweight fiberglass cast was 
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applied to her forearm (not crossing the elbow or wrist joints) to facilitate a comfortable rigid 

attachment of the arm to the robot at the forearm (Fig. 2).  

Eight pairs of Ag/Ag-Cl gel electrodes were placed over the following muscle sites as prescribed 

in the guidelines set forth in Anatomical Guide for the Electromyographer: anterior, middle, and 

posterior deltoid, pectoralis major, teres complex, latissimus dorsi, biceps, and triceps 136. A 

custom amplifier system based on the Texas Instruments ADS1299 was used to sample EMG at a 

frequency of 1 kHz and with a gain of 1k. 

B.3.2    Robot Description  

The ACT3D consists of the admittance 

controlled HapticMaster robot (Moog Inc., 

The Netherlands) with a six degree of 

freedom load cell end effector (JR3, 

Woodland, CA) (Fig. 2). Similar equipment 

configurations have been used in prior 

studies; however, in this work the control of 

vertical position or vertical force provided by 

the robot comes from information acquired 

from an embedded real-time EMG-based 

pattern recognition controller. The robot was configured to be unconstrained in the transverse 

(horizontal) plane and allowed horizontal shoulder abduction/adduction and elbow 

flexion/extension movement while controlling either the force or the position in the vertical 

direction. Horizontal surfaces were programmed to limit the amount of vertical movement to +5/-

 

Figure 22. Participant set up in the ACT3D robot. Humeral 

abduction angle reduced for visual appreciation. Robot is 

controlled via force or position but only in the vertical 

direction (denoted by arrows) via online classifier. 

Shoulder internal and external rotation are fixed at 

anatomical neutral. All other motions at the shoulder and 

elbow are free and controlled solely by the participant. 
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10 cm (ceiling/floor) from the 85° abduction position described above. The target vertical window 

during lift and reach trials is ±5 cm from the 85° initial condition equating to approximately ±11° 

of humeral elevation. 

B.3.3    Control System Training   

The participant’s arm was weighed, and 

force support was provided so that the 

participant lifted 50% and 100% of the weight 

of their arm. Additionally, a positive vertical 

force equivalent to 150% and 200% of her 

limb weight was applied, forcing her arm into 

the “ceiling”. Within each of these 

conditions, 3 trials of 3 seconds each were 

collected in which the participant either lifted 

(abducted) or depressed (adducted) her arm 

between the starting surface and the opposite one. Three trials of 3 seconds of rest as well as gentle 

movement with the limb weight fully supported were also recorded. The EMG data (Fig. 3) from 

these initial trials were used to train the abduction/adduction/no-movement classifier (Fig. 4) 

which was used to control the robot during a lift and reach task (Section F).  

B.3.4    Data Segmentation and Feature Extraction 

Data were segmented into 200ms windows and steps of 25ms (175ms overlap) were taken 

through the data. Four time-domain features (mean relative value, waveform vertical length, 

 

Figure 23. One second of representative raw EMG data 

from 2 channels (Anterior Deltoid and Pectoralis Major) 

during 3 movement classes (Adduction, No Movement, and 

Abduction). 
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number of zero crossings, and number of slope sign changes) and autoregressive features from a 

6th order model were extracted from each channel of EMG and concatenated to form a 80-element 

(8 channels x 10 features) feature vector 137. The mean relative value is the absolute value of the 

signal amplitude around a reference point that is the mean of all values in the data window (200ms). 

The waveform vertical length is the sum of the absolute values of the difference in signal amplitude 

between adjacent points. No data normalization or standardization was performed. This type of 

pattern recognition classifier has been successfully used to control prosthetic limbs and showed 

promise in our preliminary offline studies 34,63,120,122,123.  

B.3.5    Position- and Force- Controller 

The 200ms windows of EMG feature data are classified by the classifier every 25ms, and the 

decision resulted in both a class prediction (abduction, adduction, or no-movement) and a  

proportional movement speed prediction 124. The direction and speed were then input to the robot 

controller and applied to the robot over the next 25ms window (Fig. 1 and Fig. 4). Thus, when the 

position-based controller detects a person is attempting to lift (abduct) or depress (adduct) their 

arm it will incrementally change the robots position accordingly, proportional to the amount of 

 

Figure 24. Data flow: classifier training, and classifier output to control the ACT3D. Top line: Training data 

collected under different loading conditions followed by data segmentation, feature extraction, and determination 

of class discriminator. Bottom: use of real-time controller feeding output to low-level controller at 40Hz to induce 

incremental changes in the vertical position or the vertical force supplied by the ACT3D depending on the mode. 

Note that Δ signifies an incremental change in either the vertical position or vertical support force as determined 

by the output of the controller and the selected mode. 
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EMG activity. The force controller worked similarly but instead of changing the position each 

frame, the force support was incrementally changed each frame in proportion to the amount of 

EMG activity. For example, if a participant is trying to lift their arm, the controller will detect this 

and continually add increments of vertical support force each 25ms until the participant is no 

longer using their shoulder abduction muscles. 

B.3.6    Lift and Reach Task 

To test the usability and efficacy of the classifier we implemented a lift and reach task in which 

the participant would lift their arm from the “floor” into the target window and extend their elbow 

as far as possible. The arm is supported by changing the vertical position or force via EMG input 

to the proportional on-off based controller and subsequent output to the robot. This online 

controller portion included 10 lift and reaches in each support condition (position support and force 

support). Five of the reaches in each condition were followed by maximal hand opening. The 

participant lifted her arm up off of a horizontal plane (located 10cm below 85° of abduction), to a 

vertical window ±5cm from 85° and then reached out as far as possible and then lowered her arm. 

Each trial lasted a maximum of 15 seconds. 

B.4 Results 

The participant successfully controlled the robot under both paradigms as indicated by first 

moving the robot arm into the proper vertical window and then reaching out at far as possible while 

remaining within the vertical target window. These results support the idea that these modes of 

control are feasible and warrant completion of this study. 
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Results from a representative lift and reach trial from each control paradigm are presented in 

Fig. 5. The left column presents the position control and the right column presents the force control. 

Each vertical stack represents the same trial under the prescribed condition. The top plots depict 

both what the robot experienced (black line) as well as a reconstruction of the output of the 

controller (cumulative sum of velocity*time increment) (gray line). The middle plots depict the 

shoulder abduction angle (black line) with the target abduction window outlined between the gray 

 

Figure 25. Real-time Position-control (Left) and Force-control (Right) during lift and reach task. Top) Black line: 

the actual position (left) and force (right) of the robot; gray line: the calculated position and force using the output 

from the classifier (both class and velocity). Middle) Shoulder Abduction angle in black, with target window for 

task completion marked in gray. “Ceiling” and “floor” safety boundaries not depicted. Bottom) Elbow angle 

during the lift and reach task with 0° equal to arm fully extended. 
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lines. The bottom plot simply shows the elbow angle with a change towards elbow extension (0°) 

during the reach in both control paradigms. 

B.5 Discussion 

This case study examines the feasibility of using EMG-based pattern recognition control to 

control vertical support of a lab-based robot after stroke. We intend to extend this study to compare 

the efficacy of these two control paradigms on improving reaching ability to expand the user’s 

workspace. Additionally, we hope to demonstrate different control schemes on lab-based robots 

to emulate a wearable device to determine design requirements (e.g. most important degrees of 

freedom to actuate/control) and efficacy of different proposed control schemes on functional tasks.  

As seen in Fig 5. this participant was able to effectively control the vertical position (left) and 

force (right) of the robot during a lift and reach task. She lifted her arm into and maintained it 

within a target range while reaching out. The force controller shows marked increase in oscillation 

in shoulder abduction angle induced by the interplay between the force produced by the 

participants muscle effort and the controller/robot response to the EMG associated with that effort. 

More participants must complete the protocol to examine and comment on the generalizability of 

this effect.  

The discrepancy between the controller and the robot in the top left plot is because only the floor 

(negative vertical) was constrained. Thus a misclassification of abduction for no-movement did 

not change the position of the robot but the participant was still able to lift their arm up off the 

supportive surface. We plan to impose both floor and ceiling constraints moving forward to better 
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simulate a humerus being rigidly attached to a wearable device. These preliminary results hint that 

real-time and closed-loop EMG-based pattern recognition after stroke is possible. 

This work is primarily limited by having only one participant. However the uncertainty 

surrounding successful implementation warrants this initial “proof-of-concept.” Additionally, 

training data were limited in depth (9-18 seconds of each class) and breadth as it did not include 

any muscle activity of other shoulder-based motions. Future work will address these concerns to 

fully evaluate these two real-time control paradigms as compared to preset or prescribed position 

or force support. 

B.6 Conclusion 

This participant was able to control the robot under the prescribed conditions. This study will 

continue and be complete when 14 participants complete the protocol. Future work will focus on 

optimizing and minimizing EMG channels and necessary training data as well as identifying ways 

to implement therapeutic training using the force based controller, possibly by gradually reducing 

the maximal force support over time. 


