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ABSTRACT

Characterizing and Modeling Transient Photoconductivity

in Amorphous In-Ga-Zn-O Thin Films

Jiajun Luo

Amorphous In-Ga-Zn-O (a-IGZO) and other amorphous oxide semiconductors are at-

tracting increasing attention from the display industry for their high electron mobility,

ease of large-area manufacture, and potential for future flexible electronics. However, such

amorphous materials often show instability under gate voltage bias, temperature, and il-

lumination stress, with extremely slow relaxation times. Previous research has focused on

empirical solutions to the instability problem, such as laser-assisted annealing and passi-

vation to reduce device degradation. But a complete characterization of the degradation

process is still lacking, and understanding of the underlying physical mechanism is still

limited.

This work focuses on the transient photoresponse of a-IGZO thin films. By measuring

the basic electrical properties of the thin films under photo-excitation and dark relax-

ation, it is confirmed that the conductivity photoresponse is mostly due to the creation

and trapping of free electrons, while electron mobility remains mostly constant. However,
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transient photoresponse in a-IGZO does not follow the simple exponential behavior typ-

ically observed crystalline materials. It shows a faster transient at short time scales and

slower transient at long time scales comparing to a simple exponential response.

Proper characterization of such a photoresponse requires improvements to the con-

ventional van der Pauw and Hall measurement methods. To make fast and accurate Hall

measurements, a heterodyne Hall method is developed using simple analog signal pro-

cessing. This method not only enables continuous measurement of the carrier density

transient at a single magnetic field, but also extends the lowest mobility that can be mea-

sured by Hall effects. For the non-exponential photoresponse in a-IGZO with fast initial

transient and extremely slow long-term transient, a modulated time-division multiplexing

apparatus is also introduced to measure several samples in parallel while capturing the

initial transients in all samples with high time-resolution.

While many previous reports analyzed non-exponential transients by assuming the

transients to follow certain function forms, this work introduces a distributed time con-

stant analysis that can be applied to any relaxation response. By transferring the transient

response as a function of log-scale time, any relaxation response can be represented as

the convolution of a time constant distribution. Therefore, the minimum measurement

duration to correctly characterize the response is identified as the inflection point on

a semi-log plot versus log-scale time. With the visual features on the semi-log plot, a

method to estimate the entire distribution spectrum is also introduced. This allows rea-

sonable estimation of the asymptotic response value, which cannot be directly measured

in systems involving large time constants.
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In the a-IGZO system, the transient photoresponse fits best to a stretched exponential

function. This work discusses the applications and properties of the stretched exponential

function. Two contrasting physical explanations to the stretched exponential behavior,

the distributed activation energy model and the continuous-time random walk model,

are discussed. While the distributed activation energy model fails to explain why an

asymmetric activation energy distribution appears universally in many distinct systems,

the continuous-time random walk model explains the stretched exponential behavior as

arising from an exponential tail of activation energies, which fits the disordered nature of

amorphous materials. Based on the continuous-time random walk model, a microscopic

photoresponse mechanism compatible with the observed stretched exponential transient

is proposed for the a-IGZO system.
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voltage heterodyne circuit (b) generates a single output voltage

VO = VBD(t)Vb(t)−VAC(t)Va(t)
VR

through analog adders and multipliers. A

calibration potentiometer RP is included to match the amplitude of

Va and −Vb. 84



19

3.7 Measurement results of Rxy using the conventional Hall method on

the 200 nm 5 mTorr PLD-grown a-IGZO test sample. 86

3.8 Magnetic field sweep results using the heterodyne Hall method on

the 200 nm 5 mTorr PLD-grown a-IGZO test sample. (a) Directly

measured amplitude and phase of output signal Vout as a function

of time t. A linear drift of Vout phase can be observed. (b) The

amplitude and phase of Vout after synchronicity correction plotted

as a function of magnetic field B. The results for the up-sweep and

down-sweep now align well with each other. Note the |Vout| still does

not reach 0 at B = 0 even after synchronicity correction. (c) The real

and imaginary part of Vout after synchronicity correction plotted as a

function of magnetic field B. Note the real part depends linearly on

B, and there is a constant non-zero offset in the imaginary part. 87

3.9 Schematic illustration of the components that added up to produce

the measured output Vout. (left) Vout decomposed as the sum of

the multiplier outputs in an ideal circuit. Vout is 0 at B = 0, and

changes linearly with B. (right) Vout decomposed as the sum of
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3.13 Second round of conductivity transients measurement results for

the a-IGZO thin film samples. (a) Transient conductivity change of

pristine a-IGZO thin film samples after PLD deposition. (b) Transient
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10 τ0 are displayed as white windows from left to right in each panel.
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the Gaussian distributed spectra with the width parameter s = 1.003,

1.729, and 5.042 respectively. (d-f) Comparison of the skew normal
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carbon-doped a-Si:H sample at various annealing temperatures TA

as measured by Stutzman et al. [113] Following the distributed

activation energy model, the decay curves are plotted as a function of

activation energy E assuming the attempt-to-escape frequency to be

(a) ν = 1010 s−1, and (b) ν = 106 s−1. On those plots, the activation

energy distributions D(E) are the derivatives of the decay curves with

respect to E. With ν = 106 s−1, all annealing temperatures yield the

same decay curve, indicating a correct choice of frequency scale ν. 151

5.7 Schematics of the continuous-time random walk process. (a)

Illustration of the random walk path of a mobile defect moving from
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position 1 to position 2 on a two-dimensional lattice from the work of

Metzler. [117] The defect has equal probability to “walk” to a nearest

neighboring site in each step. The circle diameters at each visited site

symbolizes the waiting time t that the defect stays in the site before

making the next step. (b) Illustration of a frozen dipole waiting to be

relaxed by mobile defects from the work of Shlesinger. [118] The X

in the center represents the dipole. The circle represent neighboring

defects. The relaxation happens when any one of the defects visits

the dipole for the first time. 154

5.8 (a) Schematic illustrations of a defect diffusing through a 1-D lattice

with distributed activation energies, where a deeply bound activation

energy well ∆ corresponds to a longer expected waiting time t

at the site, and vise-versa. (b) An exponential tail distribution

f(∆) ∝ exp(−∆/kBT0) for the activation energies ∆. The

characteristic energy scale (average energetic distribution width) for

the exponential tail is kBT0. Such an exponential activation energy

distribution f(∆) will result in a power-law waiting time distribution

ψ(t) ∼ t
−1− T

T0 provided that T < T0. 155

5.9 Illustration of stretched exponential relaxations and temperature

dependence in the a-Si:H system as measured by Kakalios et al. [89]

(a) Time dependence for the shallow occupied band-tail state density

nBT plotted versus log-time. The solid circles are the experimental

results, and the solid lines are the stretched exponential fitting results
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determining the β values at each temperature. (b) Temperature

dependence of exponent β. The solid circles are obtained from the

stretched exponential fitting in (a) to the nBT relaxation. The open

circles are obtained from the power-law fitting to hydrogen diffusion

coefficient transient (not shown) in p-type samples, and the open

square from the n-type samples. The β values obtained from different

experiments and different samples follow the same linear temperature

dependence, as indicated by the line. 160

5.10 Successive steps illustrating a microscopic model for dangling

bonds created by hydrogen diffusion in a-Si:H from the work

of Morigaki. [122] At step (1) there are no dangling bonds. A

spontaneous thermally generated anti-bonding of a pair of neighboring

Si atoms is shown in step (2). Steps (3) to (5) show the Si-H bond

switching associated with H diffusion. In the final step (6), two

separate dangling bonds are created. 161

5.11 Transient photoconductivity after steady UV illumination in capped

(dark red, dark green) and uncapped (light red, light green) a-IGZO

samples. Results for 50 nm PLD-grown samples deposited at 5

mTorr and 10 mTorr are shown. Both capped samples showed the

conductivity decreasing monotonically with decreasing rate, while

both uncapped samples showed irregular step-like conductivity change

at long time scales. 164
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5.12 Schematic band diagrams showing the likelihood of hole trapping at

the IGZO/dielectric interfaces adapted from the work of Jeong. [24]

(a) Band diagram of the IGZO/SiNx interface. The valence band

maximum of the SiNx layer is higher than that of the a-IGZO layer,

so holes can be trapped at the IGZO/SiNx interface, causing device

instability. (b) Band diagram of the IGZO/SiO2 interface. The

valence band maximum of the SiO2 layer is much lower than that of

the a-IGZO layer. The large hole energy barrier prevents holes from

being trapped at the interface. 165

5.13 Molecular dynamics simulation results from Medvedeva showing

the metastable under-coordinated metallic bonds M-M where M

= {In,Ga,Zn}. [127] Such bonds fit the description of an “oxygen

vacancies” since the local coordination number with oxygen atoms is

reduced. (a) Local structure surrounding an under-coordinated In-Zn

metallic bond with In atoms pink, Zn atoms gray, Ga atoms green,

and O atoms red. The areas with yellow color indicate high electron

probability densities. (b) The same region of the sample but now

the local structure reveals an undercoordinated In-In metallic bond.

Note that when transitioning from the In-Zn bond to the In-In bond,

there is also a change in oxygen positions. The binding energy of

the In-Zn bond is shallower (∼ 0.8 eV; lower local electron density

0.66 e−) than the binding energy of the In-In bond (∼ 1.2 eV; higher

local electron density 1.06 e−). (c) The metal-metal distance dM−M
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between neighboring cations, showing the In-In pair (purple trace)

and a neighboring In-Zn pair (orange trace) during the molecular

dynamics quench from high temperature (left) to low (right). At high

temperatures, higher-energy configurations of the under-coordinated

cations such as the In-Zn metallic bond can be identified, such as

the In-Zn bond that was observed at 1300 K when the In-Zn bond

distance showed a dip and the In-In bond distance simultaneously

showed a peak. 168

A.1 The circuit schematic of a MTDM unit for measuring the transient

photoconductivity of a-IGZO samples. VD;in and VM ;in are voltage

inputs to the current sources for the dedicated mode and the

multiplexed mode, respectively. The difference between VD+ and VD−

is the four-point voltage across the sample that is being measured in

the dedicated mode. The difference between VM+ and VM− is the

voltage across the sample in the multiplexed mode that is indexed by

the two multiplexers. A computer program written in Python indexes

the multiplexers using pins VMUX0 through VMUX3. 184
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CHAPTER 1

Introduction

1.1. Amorphous oxide semiconductors and a-IGZO

Although crystalline silicon-based traditional semiconductor devices have been suc-

cessfully scaling down for decades, they cannot be easily adapted in large-area electronics

such as display devices. Instead, silicon in the amorphous form (a-Si) has been widely

used for making the thin films transistor (TFT) circuits that control the pixels in display

devices. However, the amorphous structure significantly affects the electrical performance

for a-Si. Compared to single-crystal silicon with electron mobility of 1400 cm2/Vs at room

temperature, a-Si only has electron mobility below 1 cm2/Vs. For next generation dis-

plays with faster refresh rates and increased pixel densities, each pixel has to respond

much faster, thus requiring the controlling TFTs to have higher mobilities. For exam-

ple, a 4K display device with resolution of 3840 × 2160 operating at a refresh of 120 Hz

requires TFTs with minimum mobility ∼ 3 cm2/Vs. [1] Such a mobility value is higher

than that can be achieved with a-Si. New amorphous materials with higher mobilities are

therefore needed.

In 1996, Hosono et al. proposed that amorphous ionic oxides with large, spherical

s orbitals around the metal ions will maintain a high mobility even in the amorphous

phase. [2,3] Fig. 1.1 compares the schematic structure of conventional covalent semicon-

ductors and ionic oxide semiconductors. In covalent semiconductors such as silicon, carrier
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Figure 1.1. Schematic illustration of the conduction mechanism of tradi-
tional covalent semiconductor and ionic oxide semiconductor in crystal and
amorphous phases. Figure reproduced from reference [4].

transport is conducted through the strongly directional tetragonally oriented sp3 orbitals.

The overlap of neighboring orbitals decreases drastically in amorphous phase, leading to

much lower mobility in amorphous silicon than in crystalline and poly-crystalline silicon.

On the other hand, in ionic oxides with s orbital cations, electron transport is through

the overlap of the spherical s orbits. Since the overlap has little directional dependence,

the mobility is not as strongly reduced in the amorphous phase.

Based on the theory of electron conduction through s orbital overlap, it is further

predicted that In, Ga, Zn, and Sn are the best candidate elements for cations that have

low toxicity, high earth abundance, and large s-orbital overlaps. [5] In 2004, Hosono’s

group demonstrated the first amorphous In-Ga-Zn-O (a-IGZO) based transparent flexible
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thin film transistor (TFT) fabricated at room temperature. [4] Those films showed Hall

mobility around 10 cm2/Vs, significantly large than that of a-Si (< 1 cm2/Vs), and

comparable with single-crystalline IGZO. [6] Since then, amorphous oxide semiconductors

(AOSs), especially a-IGZO, received increasing attention, and were later adapted by the

display industry as one of the most widely used alternates for a-Si since 2012. [1,7,8]

Besides high electron mobility, a-IGZO has several advantages over traditional a-Si

and high mobility poly-crystalline silicon. It generally has a large band gap (larger than

3 eV), and is thus mostly transparent to visible light. This transparency nature makes it

the ideal material for the electrodes and controlling circuits in solar cells and augmented

reality devices. [1,7,9] Due to their amorphous nature, deposition of a-IGZO thin films is

more cost-efficient, uniform, scalable, and can be processed entirely at room temperature,

making a-IGZO compatible with flexible electronics on organic substrates. [1,4,10,11]

1.2. Electronic structure of a-IGZO

Unlike crystalline materials, there is no well-defined band-gap in amorphous materials.

Instead, the band structure in amorphous materials are usually defined by their mobility

edges, analogous to the conduction band minimum and valence band maximum in crys-

talline semiconductors. [12] The electron mobility edge is defined as the minimum energy

level at which electrons can hop around in the material for a given operating temperature,

while electrons below the mobility edge are localized. Thus the states below the electron

mobility edge are categorized as localized, or trap states. Similarly for the hole mobility

edge, holes below it are free to move and holes above it are localized.
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Figure 1.2. A schematic illustration of the AOS band structure. Figure
reproduced from reference [10]. This band diagram plots segments of the
density of state (DOS) distribution measured by different experiments in
a single graph. Thus the density at the same energy level measured from
different experiments may not be consistent with each other.

Similar to crystalline semiconductors, the states between mobility edges have signif-

icant influence on the electrical and optical properties of amorphous oxides. Combining

density of states (DOS) segments measured from optical absorption, X-ray photoemission

spectroscopy and C-V analysis on the same plot, Kamiya et. al. proposed a model for

the electronic structure of a-IGZO as shown in Fig. 1.2. [10, 13–15] In Fig. 1.2, the

mobility edges are shown as dashed line. The red curves are the tail states below electron
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mobility edge and above hole mobility edge. Tails states near the mobility edges, also

called Urbach tails, are commonly observed in amorphous materials, and often modeled

to have an exponential distribution. [16–18] The states close to the electron mobility edge

were proposed to be the donor levels. And they were suggested to originate from oxygen

vacancies in the oxide structure. [19] The states ∼ 0.2 eV below the mobility edge were

not observed after annealing. They were reported responsible for the hysteresis observed

in the C-V and TFT characteristics. [15] The traps states ∼ 1 eV below conduction band

were associated by Hosono et al. with the slow photoresponse, [20] which will be further

investigated in this work. The deep level traps near the valence band were found to have

very high density. This might explain why a-IGZO based transistors cannot operate in

the p-channel mode. [13] The states between the mobility edges also depends heavily on

the fabrication processes. [14]

The band structure proposed in Fig. 1.2 provides a quick summary of many different

effects observed in a-IGZO. However, it assumes that a unified density of state (DOS)

distribution governs all those properties in a-IGZO, and each experiment separately tests

a segment of the entire DOS distribution. Before making such assumptions, the measure-

ment methods and results need to be carefully examined and alternate models explored,

lest the interpretation as sub-gap DOS distribution peaks be too hastily adopted.

Electron transport in amorphous IGZO is also very different from that in crystalline

semiconductors. It is observed that the electron mobility increases with increasing electron

doping density in a-IGZO, [4] as shown in Fig. 1.3(a), whereas the electron mobility

decreases with doping density in crystalline silicone. This observations suggests that the

electron transport in a-IGZO should be described as percolation in a random distribution
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Figure 1.3. (a) Hall mobility in a-IGZO measured as a function of carrier
concentration. (b) Schematic illustration of the electron percolation process.
The arrows indicate electron conduction paths. Bottom part is the cross-
section of the potential distribution, where EF is the Fermi level, and Eth

is the threshold energy above which electrons move freely. Figures adapted
from reference [4] and [21] by Hosono et al.

of potential barriers, [21] as illustrated in Fig. 1.3(b). The potential barriers described by

the percolation model typically have barrier heights about 0.1 eV above the conduction

band mobility edge, shown as the green band in Fig. 1.2.

1.3. Instability under illumination

The biggest challenge currently for a-IGZO and other AOSs is their instability under

stress. [7,8,22,23] Bias-, thermal-, and illumination-stress are all observed to induce a

shift in the turn-on threshold for transistor devices, and the shift is not static, but relaxes

with a slow relaxation time. [20, 23–26] Such instability can result in increased power

consumption, performance degradation, or even device failure. As of 2016, as reported

at the Gordon Research Conference on Hybrid Electronic and Photonic Materials and



37

Phenomena, illumination induced instability remains one of the major unsolved problems

in a-IGZO community. [27] In this work, we will focus on the transient behavior of illu-

mination induced instability, as being representative of the general problem. Instability

under thermal stress and electrical fields are expected to have similar kinetics. [28]

In a flat panel device, the a-IGZO channel is constantly under simultaneous stress

from negative bias and back-light illumination. Thus the negative bias illumination stress

(NBIS) instability is the most widely studies instability in the a-IGZO system. [24] As

shown in Fig. 1.4(a) and (b), there is a large and slow shift of the threshold voltage

under NBIS, and illumination is required to induce the instability. [29] Several possible

mechanisms have been proposed to explain NBIS instability, including surface interaction

with ambient air, [30,31] photo-ionization inducing oxygen vacancies in the thin film, [26,

32] and carrier trapping at the interface. [33] The overall response might be a combination

of all those mechanisms. [24]

Though many works have tried to reduce NBIS instability using empirical methods

such as annealing and passivation, [20,24,33–36] the photoresponse remains an intrinsic

property of the a-IGZO thin film. Lee et. al. measured the transient photoresponse

in a-IGZO thin films for around one day, then fitted the transient with three time con-

stants, which was interpreted as being caused by the existence of three discrete transition

energy levels. [20] The transient response and the fitted energy distributions are shown

in Fig. 1.4(c) and (d). However, those conclusions cannot be fully supported by their

experimental data for the following reasons. Firstly, the report simply assumed the dark

conductivity to be the initial conductivity, and stopped the measurement before the tran-

sient curve reached an asymptotic behavior. The photoconductivity amplitude under such



38

Figure 1.4. (a) I-V curve as a function of negative-bias stress (NBS) time
in an a-IGZO based TFT. (b) I-V curve as a function of negative-bias illu-
mination stress (NBIS) time in an a-IGZO based TFT illuminated by white
light. There is only a small threshold voltage shift under NBS in (a) and
a very large threshold voltage shift under NBIS in (b). (c) Transient pho-
toconductivity data obtained by 3.1 eV photo excitation on an unannealed
a-IGZO thin film. Inset shows an zoom-in view of the initial transient un-
der illumination. Note the illumination was stopped before reaching the
saturation conductivity. (d) Density of trap states associated with the slow
photo response in a-IGZO thin films assuming a distributed activation en-
ergy model. Panels (a) and (b) are adapted from reference [29], and panels
(c) and (d) from reference [20].
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an incomplete dataset can be significantly underestimated. Secondly, the fitting with 3

discrete time constants was tentatively argued as being cause by three different defect

complexes, one at each energy. However, a continuous time constant distribution is ex-

pected in amorphous systems, and if there are any discrete energy scales, they would be

significantly broadened by inhomogeneities. Thirdly, the proposed time constants were

directly related to the assumption of a standard activation energy model for trap states.

This assumption of a distributed activation energy model, is not the only possibility, and

it is exactly what will be re-examined for the case of the a-IGZO system in the present

work.

This work will discuss transient photoresponse in a-IGZO thin films, focusing on how

it can be fully characterized and modeled. A complete description of the overall photore-

sponse will help to identify an alternate candidate for the underlying physical mechanism,

and may inspire new approaches to eventually solve the longstanding instability problem.

1.4. Thesis outline

In Chapter 2, the standard experimental methods for a-IGZO sample preparation

and characterization will be reviewed, and experimental results of instability due to gate

bias, thermal stress, and illumination will be presented. Based on the observed transient

photoresponse features, several improvements to the standard measurement methods are

presented in Chapter 3. Notably, a heterodyne Hall circuit is invented for fast and accurate

Hall measurements. It allows the transient of carrier density to be measured in a-IGZO for

the first time, to our knowledge, permitting the transient mobility to be separated from

the transient carrier density in transient photoconductivity. This method also extends
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the lower limit of the measurable mobility of the Hall effect. A modular time division

multiplexer is also designed and built, allowing simultaneous transient photoconductivity

measurements in several a-IGZO thin films over a time scale from ∼ 30 ms to 4 months,

much wider than any previous reports. Chapter 4 introduces a mathematical method to

analyze general non-exponential transients. By plotting the response transients on a semi-

log plot, the transients are shown to be the convolution of the time constant distributions

and a simple exponential decay. Therefore, the minimum measurement duration needed

to accurately characterize a transient is identified as the inflection point on the semi-log

plot. An empirical way to estimate the time constant distribution directly from the semi-

log plot is also introduced. Chapter 5 will discuss the stretched exponential function that

provides the best fitting to transient photoresponses in a-IGZO. Two possible physical

models – the distributed activation energy model and the continuous time random walk

model – that can explain the stretched exponential transients are reviewed and compared.

A possible microscopic mechanism to explain stretched exponential responses in a-IGZO

will also be developed.
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CHAPTER 2

General properties and transients of a-IGZO

This chapter discusses general properties of the amorphous In-Ga-Zn-O thin films.

Section 2.1 explains how a-IGZO thin films are prepared, and Section 2.2 shows how the

samples are patterned and encapsulated for electrical measurements. Section 2.3 reviews

the traditional measurement methods for electrical properties such as conductivity, carrier

density, and mobility. The measurement results using those methods are shown in Section

2.4. For a-IGZO thin films, transient responses due to gate bias, thermal stress, and

illumination have been observed. Section 2.5 focuses on illumination-induced transients,

and shows our first round of transient photoresponse results using methods discussed in

Section 2.3. Based on the observed photoresponse features, several improvements to the

traditional measurement methods will be presented in Chapter 3.

2.1. Thin film growth

The first step for a-IGZO study is thin film growth. The most common growth meth-

ods are pulsed laser deposition (PLD) and sputtering. Both PLD and sputtering are

physical deposition methods that use one or more pre-made precursor targets of a given

stoichiometry to deposit a-IGZO thin films on the substrates. PLD is commonly used for

prototyping a-IGZO and other AOS materials in research labs. [4,14,37] This method

hits the target with high energy laser pulses, and the ejected target material is deposited

as a thin film on the substrates. Oxides with multiple cations can be deposited using
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multiple targets, where different desired stoichiometry can be easily obtained by changing

the number of pulses on each target during each deposition cycle. [38,39] The pulse power

is typically chosen to deposit less than one monolayer of atoms in one cycle to ensure film

uniformity. Also, PLD can be conducted with the substrates at room temperature or

even lower temperatures, which helps the oxides materials such as In2O3 to maintain an

amorphous state. [40] For industrial fabrication, radio frequency (RF) [41,42] or direct

current (DC) [43] magnetron sputtering is used instead. Instead of using a laser beam as

in PLD, magnetron sputtering ejects the target material with energetic ions generated in

a glow discharge plasma. A magnetic field is applied to confine secondary electrons near

the target surface, which increases the overall deposition rate. [44] Magnetron sputtering

allows film deposition over a large area. Uniform deposition of a-IGZO thin films over a

2.14 × 2.40 m2 area using magnetron sputtering has been reported. [1]

When applied as the channel material in thin film transistor (TFT) devices, the thin

amorphous oxide films should also have a known initial carrier density. This doping can be

achieved by tuning the oxygen partial pressure PO2 during PLD deposition or sputtering.

[21,46] As shown in Fig. 2.1(a), carrier concentration drops with increasing PO2 for PLD

deposited samples. [21] A similar trend is also observed in sputtered thin films, [46] and

can be attributed to suppression of oxygen vacancies with increasing PO2 , since oxygen

vacancies are attributed to electron generation in a-IGZO. [19] The stoichiometry of the

target, thus the thin films, also alters the film properties. As shown in Fig. 2.1(b), In-rich

samples (bottom right corner) tend to have higher carrier density and mobility, while

Ga-rich samples (top corner) tend to have lower carrier density and mobility. [10,21]
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Figure 2.1. Electrical properties in the In2O3−Ga2O3−ZnO ternary system
as measured by Nomura et al. [45] (a) Carrier concentration as a function
of oxygen partial pressure during PLD deposition in amorphous InZnO
(a-IZO) thin films and a-IGZO thin films. (b) Electron mobilities and con-
centrations measured from the Hall effects for PLD-grown amorphous thin
films in the In2O3−Ga2O3−ZnO ternary system. The values in (b) denote
the electron Hall mobility (cm2/Vs) with density (1018 cm3) in parentheses.

In recent years, solution-processed amorphous oxide thin films are receiving increased

attention for their potential in cost-efficient, large-scale fabrication. By spin-coating pre-

cursor solutions on the substrates and annealing at 400 �, amorphous oxide thin films

were successfully formed as reported by Kim et al. [47] To be compatible with flexible

organic substrates, the annealing temperature can be lowered to only 250 � by adding

“fuels” in the precursor solutions to trigger a self-heating combustion reaction. [48] Yu

et al. further optimized the combustion process by spraying the precursor solutions on

heated substrates. [49] Such a spray process can readily adapted to high-throughput roll-

to-roll fabrications. And amorphous oxides based thin film transistors prepared by the
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spray combustion synthesis have already achieved performance as good as those fabricated

by optimized magnetron sputtering. [49]

2.2. Sample preparation

In this work, we will be focusing on PLD-grown a-IGZO thin films. PLD-grown thin

films used in this work are provided by D. Bruce Buchholz and Woongkyu Lee from

Prof. Chang’s group at Northwestern University. During PLD deposition, a 248 nm KrF

excimer-laser with a 25 ns duration, operated at 2 Hz and a beam energy set to 200

mJ/pulse is used. The beam is focused to a 1 mm × 2 mm spot on the target material.

For consistency, a dense, hot-pressed, ceramic InGaO3(ZnO)2 (In:Ga:Zn = 1:1:2) target

is used in all following experiments. To prevent localized heating, the target is rotated at

5 rpm and the laser beam is rastered. The substrates used are either fused quartz slides,

or Si slides with 300 nm SiO2 on top. The target-substrate separation is fixed at 10 cm.

Thickness is controlled by the total number of deposition cycles, and measured using a

spectral reflectometer (Filmetrics F20).

For electrical property measurements, the thin films are connected to measurement

instruments through wires contacted by a cold-pressed drop of indium (In). In is used to

ensure good ohmic contacts with a-IGZO, because its work function, WIn = 4.08 eV,

is slightly lower than the electron affinity in a-IGZO, which is χa−IGZO = 4.2 ∼ 4.3

eV. [50, 51] Common metals like gold (WAu = 5.10 eV), nickel (WNi = 5.24 eV), and

chromium (WCr = 4.60 eV) all have work function that is too high to form good Ohmic

contacts with a-IGZO. For fabrications that involve patterning of the electrodes, deposited

aluminum (WAl = 4.28 eV) can form good Ohmic contacts, [52] though it will be easily
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oxidized when exposed to air. Previous reports also used highly conductive AOSs such

as amorphous InSnO (a-ITO) [4] and amorphous InZnO (a-IZO) [42] to make Ohmic

contacts with a-IGZO.

To separate the effects that originate from a-IGZO itself and those caused by exposure

to ambient air, some samples are also encapsulated immediately after the PLD deposition,

by putting quartz slides on top and sealing the surrounding edges with epoxy. The en-

capsulated samples will labeled as “capped”, while those not encapsulated will be labeled

as “uncapped”. During electrical measurements, the four corners of each capped sample

need to remain accessible to make electrical contacts. Thus the thin films are patterned

to the shape shown in Fig. 2.2 using Scotch tape. The tape is pasted on the substrates

before the deposition to form a shadow mask. After the deposition, the tape is removed

and the thin films with the desired shape are left on the substrates. Then, the top surfaces

of the films are covered by UV-transparent fused quartz slides and the edges are sealed

by air-tight Loctite Quick Set epoxy. Fig. 2.2 shows the schematics of the encapsulation

procedure as well as the pictures of a metal film test sample. The test sample uses metal

film instead of a-IGZO thin film to better illustrate the film area (since a-IGZO is itself

transparent) and to test the encapsulation protocol. The sample is patterned to have a

central area connected with four corner areas through thin lines of the film material. The

covering slide has to cover the entire central area and the epoxy can only touch the corner

areas and the connecting lines. As will be explained in the next section, by putting elec-

trical contacts on the four corners, one can measure the electrical properties of just the

central area. Effects from the four corners that are not encapsulated and contaminated
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Figure 2.2. Procedure to encapsulate a thin film sample. Scotch tape cov-
ers part of the substrate during the deposition to provide the desired film
pattern. The tape is removed after the deposition, then the sample is cov-
ered with quartz slide on top and sealed with epoxy on the cover edges to
isolate the film at the center area from ambient air. The left column shows
the schematics and the right column shows the sample pictures at each cor-
responding step. A metal film test sample is used to better show the film
area since a-IGZO is transparent.
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by epoxy will not affect the measurement results. For the uncapped samples, cold-pressed

indium contacts can be directly placed on the corners or edges without patterning.

2.3. Measurement setup

This section introduces the measurement setup used in the first round measurements

of the a-IGZO thin film samples. The instability response with a time scale up to one day

was measured in the first round and presented in Section 2.4 and 2.5. Based those results,

Chapter 3 will show improved measurement setup, as well as second round transient

photoresponse results with an increased time scale up to several months.

2.3.1. Van der Pauw measurement setup

One of the most important electrical properties of a material is the electrical conductivity

σ, which is measured using the van der Pauw method in this work. For a uniform thin

film with thickness d, σ can be determined by measuring the sheet resistance Rsheet =
1
σd
.

Van der Pauw proposed a method to accurately measure the sheet resistance Rsheet for

a uniform thin film of arbitrary shape, using 4 contacts that are sufficiently small and

located on the circumference of the sample. [53] As illustrated in Fig. 2.3, by applying a

current IAB through pin A to B, and measuring the voltage difference VDC between pin D

and C, one can get a 4-point resistance RAB,DC = VDC/IAB. Since the driving current and

the voltage measurements are through different contacts, the measured 4-point resistance

is unaffected by the contact resistance. Similarly, one can measure the 4-point resistance

RCB,DA. Then Rsheet can be calculated with Eq. (2.1).

(2.1) Rsheet =
π

ln 2

RAB,DC +RCB,DA

2
f
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Figure 2.3. Contact configurations for the two 4-point resistances in a van
der Pauw measurement. In the left configuration, by applying current IAB

through pin A to B and measuring voltage VDC between pin D and C, 4-
point resistance RAB,DC is measured. Similarly, in the right configuration,
by applying current ICB through pin C to B and measuring voltage VDA

between pin D and A, 4-point resistance RCB,DA is measured.

The geometry factor f in the above equation can be approximated by Eq. (2.2).

(2.2) f ≈ 1−
(
RAB,DC −RCB,DA

RAB,DC +RCB,DA

)2
ln 2

2
−

(
RAB,DC −RCB,DA

RAB,DC +RCB,DA

)4 [
(ln 2)2

4
− (ln 2)3

12

]

When RAB,DC and RCB,DA are similar in value, f ≈ 1.

A pair of 4-point resistances need to be measured in a van der Pauw measurement.

Those two resistances are typically measured in succession to switch the contacts. How-

ever, for a transient photoresponse measurement, where the thin film resistance is changing

rapidly, one needs to measure the pair of resistances simultaneously. This can be achieved

using the non-switching van der Pauw methods discussed in Chapter 3.
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Figure 2.4. A typical Hall measurement setup (left) and measurement result
for an n-type semiconductor. The magnetic field B perpendicular to the
thin film is swept during the measurement. By applying a current IAC

through pin A to C and measuring the voltage VBD between two pins B
and D, the transverse resistance Rxy defined as Rxy = RAC,BD = VBD/IAC

is recorded during the sweep. Carrier density and mobility are extracted
using the linear fit (red line in the right panel) of Rxy as a function of B.

2.3.2. Hall measurement setup

Once the conductivity σ is known, it is also important to know how much of the conduc-

tivity can be attributed to carrier density n and mobility µ. In the Drude model, sample

conductivity σ is determined by their product through Eq. (2.3), where e is the charge of

a single electron.

(2.3) σ = neµ

In typical experiments, the carrier density n is measured directly using Hall effect, then

mobility µ can be calculated.

Fig. 2.4 shows a typical Hall measurement setup and the results. A current IAC is

applied through pin A to C, and the voltage VBD between two pins B and D on difference

sides of the current contacts is measured. The resulting 4-point resistance is defined as
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the transverse resistance Rxy = RAC,BD = VBD/IAC . A magnetic field B perpendicular

to the thin film surface is applied and swept, during which the transverse resistance Rxy

is recorded. The field sweep results are fitted into Eq. (2.4), in which e is the charge of a

single electron, d is the film thickness, and n is the carrier density.

(2.4) ∆Rxy =
∆B

ned

Hall measurements require the same contact setup as van der Pauw measurements. [53]

For arbitrarily placed contacts, the measured transverse resistance Rxy usually has a com-

ponent of the longitudinal resistance defined as Rxx, causing zero-field Rxy to deviate from

0. Thus only the slope is used for the linear fit in Eq. (2.4). Considering that the Rxx

component varies symmetrically with field B, the difference between Rxy measured from

the forward sweep R+
xy and backward sweep R−

xy is usually used to get more accurate

results since the symmetric Rxx contribution automatically cancels. However, when the

carrier density is changing rapidly during the magnetic sweep, such as during a tran-

sient photoresponse measurement, the traditional Hall measurement to be measured in

a-IGZO for the first time, to our knowledge, is not appropriate. Therefore, a heterodyne

Hall method designed to directly extract carrier density n or mobility µ from a single

measurement at a single magnetic field B will be introduced in Chapter 3.

2.3.3. Illuminating and annealing setup

For measurements of instability under illumination and thermal stress, a light source and

a temperature controller are also needed in the measurement setup. Fig. 2.5(a) shows

the schematic of the setup. A UV LED light source is placed directly over the sample for
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illumination, and the sample substrate is thermally connected to the thermistor and heater

using a copper strip. To eliminate any influence from ambient light, all photoresponse

measurements are conducted either in a tabletop aluminum dark box or an enclosed

cryostat free of ambient room light. Constant current sources are used as LED power

supplies to ensure constant illumination intensity during the measurements. Electrical

toggle switches are used to turn on/off LEDs instantaneously. The thin film samples are

contacted using the van der Pauw method described in Section 2.3.1. Then the changes of

conductivity σ, carrier density n, and mobility µ over an extended time scale are measured

and recorded. Over long time scales, the conductivity is measured by recording only one

of the two 4-point resistances needed in the van der Pauw method, by assuming uniform

photoresponse and thus a constant van der Pauw geometry factor f . The light source

and the temperature controllers are implemented slightly differently between the first and

second rounds of measurements, as will be described in the following.

For the first round of measurements, an apparatus shown Fig. 2.5(b) is used. A

through-hole LED operating at 10 mA forward current is placed ∼ 2 cm above the sam-

ple for illumination, and a heater resistor is attached to the copper stripe with thermal

epoxy to provide heating power. Elevated temperature is achieved by supplying a constant

current to the heater, and the sample temperature is monitored using a thermistor ther-

mally attached to the copper stripe. The whole apparatus is placed inside an aluminum

box or a cryostat to provide an otherwise dark environment.

A dedicated sample chamber is designed for the second round of measurements. As

shown in Fig. 2.5(c), a high power UV LED is used as the light source. The high power

LED, which operates at a forward current of 700 mA, provides an illumination intensity
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Figure 2.5. Experiment setup for the illumination and annealing measure-
ments. (a) Schematic setup of illuminating and annealing a sample. The
sample is illuminated with a UV LED placed on top, and annealed with
a temperature controller unit thermally attached to the sample through a
copper stripe. The sample is electrically contacted using the van der Pauw
configuration for electrical measurements. (b) Setup during the first round
of measurements. A through-hole UV LED is used as light source. Temper-
ature is controlled with a heater resistor and monitored with a thermistor.
(c) Sample chamber used in the second round or measurements, with 1. a
high-power UV LED to illuminate the sample, 2. a sample holder directly
under the LED and thermally attached to the aluminum box, and 3. an
aluminum heat sink to dissipate LED heat.
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much stronger than that used in the first round. To prevent heating the sample, the

LED is directly mounted on a heat sink, and the heat sink is constantly cooled by an

external fan. As we tested with a thermistor on the sample holder, temperature increase

caused by LED heating was less than 0.5 K. Heater resistors are not utilized in the second

round of measurements, but the sample temperatures are continuously monitored using

thermistors thermally attached to the samples.

2.4. Electrical properties

This section and the next section show the first round measurement results. General

electrical properties of the a-IGZO thin films deposited by PLD at various PO2 will be

presented in this section, and the characteristics of illumination-induced responses will

be discussed. Various signatures of instabilities in gate bias stress and thermal stress are

highlighted.

2.4.1. Carrier density and mobility at various PO2

For 200 nm thin films deposited at PO2 = 5, 10, and 15 mTorr, the initial carrier density

n and mobility µ are measured by Hall measurements, as shown in Fig. 2.6. All samples

are determined by Hall effect to be n-type semiconductors. There is a general trend of

exponentially decreasing carrier density n with linearly increasing PO2 in Fig. 2.6(a).

Also, for the pristine samples right after deposition, there is a trend of weakly increasing

mobility µ with exponentially increasing carrier density n Fig. 2.6(b). Both the measured

values and the trends in our samples with stoichiometry In:Ga:Zn = 1:1:2 agree well with
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Figure 2.6. Electrical properties of pristine a-IGZO thin films right after
PLD deposition. (a) Dependence of carrier densities n as a function of
oxygen pressure PO2 during deposition. (b) Dependence of initial electron
mobility µ as a function of initial carrier density n for pristine samples
deposited at different oxygen pressure PO2 . Note that mobility µ is only
increasing linearly by less than 25% when carrier density n increases expo-
nentially by two orders of magnitude.

that shown in Fig. 2.1(a), reported for a-IGZO thin films with stoichiometry In:Ga:Zn =

1:1:1. [21]

2.4.2. Gate voltage dependence, hysteresis, and threshold instability

In thin film transistor (TFT) applications, the electrical conductivity of the a-IGZO thin

films are controlled through a gate voltage bias. This requires a low intrinsic carrier

density and a small film thickness. For the study of gate voltage dependence, a 50 nm

PLD-grown a-IGZO thin film sample is used. The sample is deposited at a high oxygen

partial pressure PO2 = 18 mTorr to keep the film lightly doped. The film is deposited on

a Si/SiO2 substrate, which has 300 nm SiO2 on top of heavily doped Si. The substrate is

used as the gate terminal. The I-V curve between two contacts of the sample is plotted
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Figure 2.7. (a) Gate voltage Vg dependence of the drain-source current IDS

with the drain-source voltage VDS = 1 V and 10 V. The inset shows the
same transfer characteristic with log-scale current. The sweep rate for gate
voltage Vg is 20 V/min. (b) Gate voltage Vg dependence of thin film con-
ductivity σ. VDS = 0.1 V was used to ensure the device was operating in the
linear region. The sweep rate for gate voltage Vg is 4 V/min. The sweep
directions are labeled by the arrows in both panels. Hysteresis between
the up-sweep and down-sweep is observed in both measurements indicating
bias-stress instability.

in Fig. 2.7(a), and the thin film conductivity measured with the van der Pauw method

is plotted in Fig. 2.7(b). Without a gate bias, the thin film is highly resistive. This is

expected from the carrier density dependence on PO2 discussed in the previous subsection.

With a large positive bias, the current I and sample conductivity σ increase almost linearly

with the applied gate voltage Vg, and the slope increases linearly with the drain-source

voltage VDS, implying that the sample is operating in the linear region. By modeling

the dielectric layer as a capacitor, the field effect transistor (FET) mobility µFET can be

estimated from the relation between thin film conductivity σ and gate bias Vg through

Eq. (2.5).

(2.5) ∆σ = ∆n · e · µFET = ∆VgCoxµFET/d
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Figure 2.8. (a) Gate voltage Vg dependence of the thin film capacitance C
with sweep rate of 6, 4, 2, and 1 V/min. The hysteresis increased with
decreasing sweep rate. (b) Gate voltage Vg dependence of thin film con-
ductivity σ, measured on the same sample in three different dates. The
gate sweep rate was 4 V/min. The entire transfer curve shifted over days
without bias stress.

The film thickness of this sample is d = 50 nm, and the dielectric capacitance of the 300

nm SiO2 layer is Cox = 11.6 nF/cm2. Using the linear region slope ∆σ/∆Vg≈0.023 S/Vcm

shown in Fig. 2.7(b), the estimated FET mobility is µFET≈10 cm2/Vs, consistent with

the Hall mobility of similar grown samples. With a negative bias, the film is completely

depleted. No p-type conduction is observed with large negative bias, which may be

attributed to a large number of trap states near the valence band. [13]

Unlike ideal TFTs with fast responses, the a-IGZO thin films also show slow responses

during gate operation. There is a small hysteresis in the transfer characteristics in Fig.

2.7, as indicated by the arrows. The hysteresis effectively causes a threshold voltage Vth

difference between up-sweep and down-sweep. Such a threshold shift becomes more obvi-

ous in the capacitance-voltage (C-V) measurement in Fig. 2.8(a). The C-V measurement

is conducted using a 17 Hz AC voltage of 0.01 V amplitude added on the DC gate bias Vg.
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Vg is swept at different sweep rates, and the AC current between the back-gate and the

sample contacts is measured every 1 V during the sweep. As shown in Fig. 2.8(a), with

decreasing sweep rate, the hysteresis become stronger when sweeping from a negative bias

to a positive bias.

The hysteresis can be attributed to instability caused by negative bias stress (NBS).

NBS instability is a major challenge for amorphous oxide applications in display devices,

because the amorphous oxide TFT transistors are under negative bias over 90 % of a

typical operation cycle. [24] The origin of NBS instability is often attributed to holes

trapped at the gate insulator interface. [24, 35, 54, 55] With a negative bias, holes are

attracted to the interface, and trapped by hole traps at the interface. With a positive

bias, holes release from the traps are depleted from the interface by the electrical field.

This leads to the hysteresis observed between up-sweep and down-sweep. Many reports

have tried to reduce NBS instability using gate insulator materials with less interfacial

trap states. [35,56]

An extremely slow threshold voltage Vth shift is also observed for this sample when

stored without gate-bias stress. As shown in Fig. 2.8(b), there is a slow and steady shift

of the whole transfer curve over several days. This is probably due to photoconductivity

since the sample was initially exposed to UV illumination during PLD growth and kept

in dark afterwards. Gate bias sweep does not stop or reset this Vth shift, suggesting that

instability under illumination and gate bias are caused by different mechanisms.
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Figure 2.9. Conductivity transient during and after 80� annealing on desk-
top in a dark environment for 200 nm a-IGZO thin films. The samples were
deposited by PLD at PO2 = (a) 5 mTorr, (b) 10 mTorr, and (c) 15 mTorr.
Even though the samples showed different transients during annealing, all
samples had decreased conductivity after about a day of annealing.

2.4.3. Effects of annealing on conductivity stability

For as-deposited a-IGZO thin films, it has been proposed that defect states near the

electron mobility edge can be reduced through an annealing process. [14] To study the

effect of annealing, the 200 nm samples were annealed in the dark and in ambient air at

80 � (350 K) for around 1 day, while the conductivity was measured, as shown in Fig.

2.9. For the 5 mTorr sample, the conductivity kept increasing for several hours before an
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Figure 2.10. In-situ resistivity change in a 100 nm a-InZnO thin film dur-
ing 200 � annealing, as measured by Lee et al. [57] The resistivity was
increasing initially and started to decrease after ∼ hours of annealing.

overall net decrease. For the 10 mTorr and 15 mTorr samples, conductivity only increased

for a few minutes when the annealing started. All samples showed a long-term decrease

of conductivity during the annealing process.

The overall reduction in conductivity after annealing may be due to oxidization of oxy-

gen vacancies by ambient air during the annealing, which then reduces carrier density. [14]

However, multiple physical processes might happen simultaneously during the annealing.

Lee et al. measured the opposite sign of resistivity change in an related a-InZnO thin

film during 200 � annealing for 70 hours, and observed a resistivity peak (as opposed to

our conductivity peak) followed by a slow resistivity decrease at long time scale, as shown

in Fig. 2.10. The eventual conductivity increase in their work was attributed to carriers

generated in the slow local structure relaxation. [57]
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2.5. Characteristics of photoresponse and photo-instability

Besides instability under bias stress and thermal stress, a-IGZO thin films also shows

instability under illumination. This section discusses the important characteristics of

illumination induced instability in a-IGZO system, including its dependence on illumina-

tion wavelength, deposition oxygen pressure, and annealing statues. It is also observed

that mobility remains constant for each sample during illumination and relaxation even

through conductivity can change by orders of magnitudes.

2.5.1. Wavelength dependence

To study the dependence on illumination wavelength, a 140 nm PO2 = 15 mTorr a-IGZO

thin film sample was illuminated using red (630 nm), green (565 nm), blue (430 nm) and

UV (405 nm) LEDs in an otherwise dark environment. As shown in Fig. 2.11, significant

photoresponse was only observed under blue and UV illumination, whose photon energy

is ∼ 3 eV. Reports on the wavelength dependence in a-IGZO based TFT transfer curves

also showed that strong photo-induced effects only exist for wavelength smaller than 420

nm. [58] Therefore, we chose UV LEDs with 405 nm wavelength (3.06 eV photon energy)

in the first round of measurements and UV LEDs with 385 nm wavelength (3.22 eV photon

energy) in the second round of measurements. Note that even though the threshold

photon energy is close to a-IGZO band-gap (∼ 3 eV), [4] the physical mechanisms for

photoresponse remains a controversial topic. Chapter 5 will review several candidate

models for photoresponse in a-IGZO system.
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2.5.2. Transient responses at various PO2

The transient photoconductivity of 200 nm a-IGZO thin films deposited at PO2 = 5, 10,

and 15 mTorr was studied. The films were illuminated by 405 nm UV LEDs for at least

24 hours and relaxed for at least 24 hours. The results are shown as the black curves in

Fig. 2.12.

Figure 2.11. Wavelength dependence of photoresponse in a 140 nm PO2 =
15 mTorr a-IGZO thin film sample. Conductivity σ versus time t under
illumination with (a) 630 nm red LED, (b) 565 nm green LED, (c) 430
nm blue LED, and (d) 405 nm UV LED are shown. The areas with white
backgrounds indicate the time under illumination, and the areas with gray
backgrounds indicate the time in dark. Red and green LEDs show no de-
pendence on illumination, with the same decay with time as under dark
conditions. Blue and UV LEDs show an order of magnitude increase in
conductivity after illumination.
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Figure 2.12. Comparison of photo-excitation and dark relaxation conduc-
tivity σ (left axis) over time t for thin films deposited at oxygen pressure
PO2 = 5, 10, and 15 mTorr for panels (a), (b), and (c), respectively. All
measurements were conducted at room temperature in a He-flow cryostat.
The conductivity measurement was briefly interrupted and the Hall mobility
was measured at discrete time points, as shown by the green squares (right
axis) in each graph. All samples showed approximately constant mobility
µ during photo-excitation and dark relaxation.

Among the three samples, the most lightly-doped sample with PO2 = 15 mTorr in

panel (c) shows the largest relative photoresponse, over one order of magnitude conduc-

tivity enhancement due to illumination. For all three samples, even after a whole day
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of illumination, the conductivity did not reach a saturation value with the curves still

showing a significant slope at the end of the day. Note in Fig. 2.12(a) how the slope

barely changes between day 1 and day 2, indicating the extreme slowing of the response

at long times. This is in contrast to previous works on a-IGZO which only illuminated

for 3 hours – insufficient time to characterize the time dependence of the illumination

behavior [20] – or on related crystalline ZnO films which revealed what appears to be a

stretched exponential behavior during illumination that the authors of that work neither

explicitly mention nor analyze. [59] In the dark relaxation, the sample conductivity for

all three samples did not reach a steady-state value after a whole day. As can be seen

in Fig. 2.12, the rate of photoconductivity change under dark relaxation appears to be

significantly slower than the corresponding change during UV excitation rate for each

sample.

2.5.3. Mobility stability during illumination

During the photoconductivity measurements, the data collection was interrupted occa-

sionally for Hall effect measurements to determine the free carrier density. By sweeping

magnetic field between -2 T to 2 T, the electron density n at that time was determined.

The mobility µ was deduced and plotted as a green square in Fig. 2.12. For the 5

mTorr sample, mobility increased slightly from ∼16 cm2/Vs before illumination to ∼17

cm2/Vs during and after illumination. Similarly, mobility of the 10 mTorr sample in-

creased slightly from ∼15 cm2/Vs to ∼16 cm2/Vs under illumination, and mobility of the

15 mTorr sample increased slightly from ∼13 cm2/Vs to ∼14 cm2/Vs. Due to the finite

time for the magnetic field sweep, measured mobilities tend to have large error shortly
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after the LED was switched on or off, when carrier density was changing rapidly. Even

with this error, mobility was mostly constant to within a standard deviation of 5% for

each sample, whereas conductivities changed up to orders of magnitude. Therefore, the

large changes in conductivity can be attributed principally to changes in carrier density,

and the mobility can be assumed approximately constant. In the discussions of the fol-

lowing chapters, we will assume the mobility of each sample is a constant throughout the

measurement.

2.5.4. Effect of annealing on photoresponse instability

Thermal annealing of amorphous oxide thin films has been widely observed to improve

device stability in that decay amplitudes are reduced and decay time constants tend to

be slower. [60–62] By measuring sub-gap density of state distribution through optical

absorption and x-ray photoemission spectroscopy, Kamiya and Nomura et al. suggested

that the improved stability is due to decrease of sub-gap defect states during annealing.

[17,63]

Heating up the thin films should increase the rate of any thermally activated processes,

but may also promote reactions which alter the chemistry and/or stoichiometry of the

films, as shown in section 2.4.3. Photoconductivity curves during both illumination and

dark relaxation were measured, under as-grown (300 K), annealing (350 K), and post-

anneal (300 K) conditions, where each sample was annealed in 350 K for two days in a

He-filled cryostat. Fig. 2.13 shows the results for the same 200 nm a-IGZO samples used

in Fig. 2.12. For all those samples, the elevated temperature during the anneal is observed

to enhance both the photo-excitation and dark relaxation amplitudes and rates. When
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Figure 2.13. Comparison of the photoresponses under as-grown, anneal, and
post-anneal states in a-IGZO thin films. The left column (a), (c), and (e)
are LED illumination transients and the right column (b), (d), and (f) are
dark relaxation transients. The first row (a) and (b) are the transients in
the PO2 = 5 mTorr sample, the second row (c) and (d) are the transients in
the 10 mTorr sample, are the third row (e) and (f) are the transients in the
15 mTorr sample. The transients of the conductivity σ(t) was measured,
and the relative conductivity ∆σ(t) = σ(t)−σ(t = 0) is plotted. The initial
conductivity σ(t = 0) was measured right before the LED was turned on or
off. For all samples, enhanced photoresponses were observed during 350 K
annealing, and decreased photoresponses were observed at 300 K post-
anneal.
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the temperature was lowered back to 300 K after annealing, both rates were suppressed,

implying that the 350 K anneal resulted in changes in the thin film properties for our

experiment conditions.

2.6. Summary

In this chapter, we reviewed the typical methods for sample preparation and electrical

property characterization, and presented the first round of measurement results with those

methods. The thin films can be prepared by either physical deposition methods such as

pulsed laser deposition (PLD) and magnetron sputtering, or chemical synthesis methods

such as combustion-based solution processes. The PLD-grown thin films were studied

by measuring their conductivity using the van der Pauw method, and carrier density

and mobility using the Hall method. The electrical properties of the a-IGZO thin films

showed strong dependence on deposition oxygen pressure PO2 . A large and slow instability

response was also observed when the sample was under negative bias stress, thermal stress,

or illumination stress. Discussions in the following chapters will focus on illumination-

induced response as a representative of the general instability problems. Based on the

characteristics observed in the first round of transient photoresponse measurements, a set

of improvements to the existing measurement methods will be developed, and the results

of a second round of transient photoconductivity measurements will be presented in the

next chapter.
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CHAPTER 3

Novel methods for measuring transients

This chapter shows the improvements we have made for the second generation of

transient photoconductivity measurements. Section 3.1 discusses the challenges for the

existing measurement methods, and the goals our new methods are trying to achieve.

Section 3.2 reproduces the frequency-modulated non-switching method for measuring a

pair of van der Pauw resistances simultaneously. Section 3.3 introduces a newly invented

heterodyne method that measures the sum (or difference) of two four-point resistances on

the same sample instantaneously without switching contacts. This heterodyne method

can be applied to both the van der Pauw (resistance sum) and the Hall (resistance dif-

ference) measurements. The heterodyne Hall method allows for fast and accurate Hall

measurements, so that the transient of carrier density and mobility can be measured.

The heterodyne Hall method also promises increased accuracy for Hall characterization

of low-mobility samples. Finally, Section 3.4 introduces a modular time division multi-

plexer design that allows continuous measurement of multiple samples over time-scales

spanning several orders of magnitudes with minimal measurement equipment.

3.1. Need for new measurement methods

As shown in Section 2.5, the conductivity and carrier density of the a-IGZO thin films

are constantly changing during and after photo-excitation, and asymptotic values can
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not be reached in the time scale of days. Those unique features have presented several

challenges for designing an accurate and efficient measurement setup.

(1) Simultaneous measurement of resistances

The standard van der Pauw measurement requires a pair of 4-point resistances both

made using different configurations of the same four contacts. For a sample in steady-

state, one can simply conduct both measurements in succession. But during a fast pho-

toresponse, the sample resistance can change dramatically during the time it takes to

switch contacts and remeasure, inducing a large measurement error. Thus one needs to

measure the two resistances simultaneously without switching the contacts.

(2) Rapid measurement of Hall effect

In a conventional Hall measurement, a magnetic field sweep that takes at least 10

minutes is required to get a single data point. During a photoresponse measurement, the

carrier density may have changed significantly during the Hall measurement. An improved

Hall measurement method is needed to determine electron density and thus mobility in a

much shorter time.

(3) Rapid and slow transients

The observed photoresponses in the a-IGZO samples exhibit transient time scales

spanning from less than a second to several months. Thus a measurement setup is required

that would measure fast transitions at the start of excitation/relaxation with a resolution

much shorter than 1 s, then dynamically reduce resolution as the response slows down.

(4) Long-term measurements of multiple samples

The properties of the a-IGZO samples vary dramatically with different oxygen pressure

during deposition and other preparation parameters. So a complete characterization of
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the a-IGZO system requires measurements on many different samples, and sequential

measurements of the samples would take extremely long. Thus a measurement apparatus

is needed that can measure multiple samples in parallel, without sacrificing resolution for

the fast initial transient response.

In the following sections, several improvements to the conventional van der Pauw and

Hall methods will be presented to solve the challenges mentioned above.

3.2. Frequency modulated non-switching van der Pauw method

This section reproduces the method first proposed and demonstrated by Kim et al.,

[64] and then goes beyond this work to analyze the signal interference between the two

modulation frequencies. The uniformity of the photoresponse in a-IGZO thin films is also

studied with this method.

3.2.1. Advantages of simultaneous van der Pauw measurement

In a standard van der Pauw measurement, a pair of 4-point resistances are required to

determine the sheet resistance Rsheet. For samples with constant Rsheet, this is done by

measuring with two contact configurations in succession. However, during a photoresponse

measurement, where the thin film resistance could be changing rapidly, the time used to

switch contacts will introduce extra error in the measurement results. One way to avoid

contact switching is to use the TFT structure, where the channel length and width are pre-

determined. With the known geometry, the ratio between the measured 2-point resistance

and the sheet resistance Rsheet can be estimated. However, such a 2-point measurement

cannot exclude contact resistances. Alternatively, one may assume a constant van der
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Pauw geometry factor between the sheet resistance and a given 4-point resistance. Thus

only one 4-point resistance needs to be recorded. This assumption requires the photo-

illumination to be uniform over the entire sample, in the case of photo-induced transients.

This assumption of uniformity has been verified in our experiments by measuring a pair

of 4-point resistances simultaneously.

Simultaneous measurements of two 4-point resistances is achieve using frequency mod-

ulation. Kim et al. [64] proposed to use two different modulation frequencies for the two

contact configurations. In principle, the driving current applied at each frequency is in-

dependent from that at a different frequency. Thus the 4-point resistance excited by the

current source at each frequency can be obtained by only measuring the voltage ampli-

tude at the corresponding modulation frequency, and the need for contact switching is

eliminated.

3.2.2. Circuit design

Fig. 3.1 shows the circuit design of the frequency modulated non-switching van der Pauw

method, after Kim et al. (Ref. [64]). The current IAB is modulated at frequency f1,

and the current ICB is modulated at frequency f2. Therefore, RAB,DC appears in the f1

component of voltage VDC, RAB,DC = VDC

IAB
|f=f1 . And similarly, RCB,DA = VDA

ICB
|f=f2 . For

simplicity, the two longitudinal resistances will be referred to as Rxx1 and Rxx2. Notice

that even though the signal at each frequency is independent of those at other frequencies,

the ground contact B is common for all frequencies. In our experiments, two SRS 830 lock-

in amplifiers are used to provide the modulated AC input voltages, which are converted

to the modulated AC currents through two constant current sources. The same lock-in
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Figure 3.1. Schematic illustration of combining two van der Pauw mea-
surement circuits of different contact configurations into a single frequency-
modulated non-switching van der Pauw circuit. Note the current ground
contact labeled B is shared by both frequencies.

amplifiers are used to measure the output voltages. Each lock-in amplifier only measures

the signal at its reference frequency. The signals at other frequencies are ideally filtered

away and non-idealities resulting in signal interference are discussed in the next section.

The functionality of this circuit has been verified on a GaAs quantum well sample.

We measured the longitudinal resistances while repeatedly sweeping the magnetic field B

between -5 T and +5 T at 195 K, each time with a different circuit configuration. As

shown in Fig. 3.2, this non-switching van der Pauw method using f1 = 29 Hz and f2 =

17 Hz yields almost the same results as those measured sequentially using the standard

van der Pauw method, while reducing the total measurement duration by half. A clear
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Figure 3.2. Magnetoresistance measurement results in a test GaAs quantum
well sample measured by the standard van der Pauw method (thick black
curves) and the frequency-modulated non-switching van der Pauw method
(thin colored curves). The results shown are (a) Rxx1 = R13−14,12−15, (b)
Rxx2 = R15−14,12−13, and (c) sheet resistivity ρxx during magnetic sweeps
between -5 T and 5 T. The inset of (a) shows the contact geometry.

drawback of this non-switching method, however, is the increased noise in the signal

caused by interference of the two measurement frequencies.
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3.2.3. Signal interference analysis

For ideal experimental setup and lock-in amplifiers, there would be no interference be-

tween the two modulation frequencies. However, such interference is inevitable in real

experiments. As shown in Fig. 3.2, the non-switching method gives significantly higher

noise than sequential measurement due to this interference. The original paper by Kim et

al. only verified the circuit correctness without discussing the interference problem. [64]

Here we will show how the noise level can be reduced by choosing appropriate modulation

frequencies and an appropriate ground contact.

The standard deviation ∆Rxx1 and ∆Rxx2 are used to quantify the noise level at

constant magnetic field and temperature, 1 data point per second for 120 s. Separate

measurements of Rxx1 and Rxx2 at B = 0 and T = 195 K with the same lock-in amplifiers

at f = 17 Hz show that Rxx1 = 242.6 Ω, ∆Rxx1 = 0.13 Ω, Rxx2 = 49.8 Ω, and ∆Rxx2

= 0.09 Ω. Therefore ∆Rxx ≈ 0.1Ω is the minimum noise level we can expect from this

sample in the same experiment condition, corresponding to no interference. Any increased

noise level will be attributed to signal interference.

The noise level depends significantly on the choice of the modulation frequencies f1

and f2. Fig. 3.3(a-c) shows the noise level as various f1 and f2 choices. As shown in

Fig. 3.3(a), with f2 fixed at 17 Hz, increasing f1 from 13 Hz up to 113 Hz tends to

decrease the noise level. With the frequency values chosen for f1 and f2 swapped, the

same trend is observed, as shown in Fig. 3.3(b). Similarly, with both f1 and f2 increased

by 60 Hz such that the frequency difference remains the same, the noise level also remains

the same, as shown in Fig. 3.3(c). Those trends can be explained by the design of lock-in

amplifiers. When a lock-in amplifier receives a measurement signal, it first multiplies the
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Figure 3.3. Noise level of the frequency modulated non-switching van der
Pauw method measured with (a) f1 = 13, 29, 73, 113 Hz and f2 = 17 Hz,
(b) f1 = 17 Hz and f2 = 13, 29, 73, 113 Hz, (c) f1 = 73, 89, 133, 173 Hz and
f2 = 77 Hz, (d) f1 = 29 or 73 Hz and f2 = 17 Hz, using contact # 12, 13,
14, and 15 alternately as the ground contact. From panels (a-c), the noise
level appears to depend mostly on the frequency difference f1 − f2. Panel
(d) shows that the choice of the ground contact also affects the interference
noise level. The contact geometry is shown as the inset of Fig. 3.2(a).

signal by a sine wave at the reference frequency, then passes the multiplied signal to a low-

pass filter and measures only the DC component. [65] The interference is caused by the

frequency components that are not effectively filtered away. Therefore, the interference

level is decided primarily by the frequency difference |f1 − f2|, not the absolute value of

f1 and f2. Only a further increase in the frequency difference would be expected to reduce

the interference between the two signals.
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The noise level is also affected by the choice of the ground contact. Fig. 3.3(d) shows

the noise of the GaAs test sample when using different contacts as the ground. As

is obvious from Fig. 3.3(d), certain ground contact choices lead to noise levels much

lower than that achieved by tuning the frequencies, and the overall contribution from

interference can be mostly eliminated by combining a large frequency difference with a

good choice of the ground contact. The large signal interference associated with certain

ground contacts might be explained by the harmonics generated when currents are flowing

through a non-linear common ground contact. Thus one should test for the most linearly

resistive ground contact before applying the non-switching method.

3.2.4. Test of non-switching method: uniformity of a-IGZO photoresponse

The non-switching van der Pauw method has been applied on a 50 nm a-IGZO thin

film grown by PLD at PO2 = 10 mTorr to verify whether the photoresponse is uniform

across the whole sample. Any non-uniform stoichiometry might cause local variations

in the relaxation time and lead to a time-varying anisotropy in the sheet resistivity.

Fig. 3.4(a) shows the two measured 4-point resistances dynamically changing with time,

and (b) shows the calculated sheet resistance and the ratios between the sheet resistance

and the measured 4-point resistances. For a whole day of dark relaxation after steady

illumination, the geometry factors Rsheet/Rxx1 and Rsheet/Rxx2 were almost constant, even

though the sheet resistance Rsheet showed significant relaxation. Fig. 3.4(c) plots the

sample conductivity calculated from both Rxx1 and Rxx2, and shows the estimation error

of measuring only Rxx1 or Rxx2 and assuming constant geometry factor. For a conductivity

response around 10 %, the error of assuming a constant geometry factor is only 0.5
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Figure 3.4. Comparison of the transients for 4-point resistances and the
sheet conductivity. (a) Measured dark relaxation of longitudinal resistances
Rxx1 and Rxx2 in a 50nm PLD-grown 10 mTorr a-IGZO thin film after
UV LED illumination. (b) Calculated sheet resistance Rsheet and geometry
factors Rsheet/Rxx1 and Rsheet/Rxx2 during the relaxation transient. The
geometry factors were almost constant during the relaxation. (c) Calculated
conductivity σ and the error ϵ when σ is estimated using only Rxx1 or
Rxx2 assuming constant geometry factors. With conductivity changing by
more than 10 %, the error caused by assuming an illumination-independent
geometry factors was less than 1 %.

%. Therefore, for a-IGZO photoresponse measurements, one can reasonably assume a

constant geometry factor, measure it either at the start or the end of the measurement,
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and record the response of only one 4-point resistance to calculate the time evolution of

the sheet resistance and the conductivity.

3.3. Heterodyne method for van der Pauw and Hall measurements

The non-switching van der Pauw method introduced in the last section allows for

simultaneous measurement of two resistances, but it suffers from increased noise levels,

and two measurement instruments are required. Here, based on the same idea of frequency

modulation, we invent a new heterodyne method that can improve both measurement

efficiency and accuracy. The heterodyne method works for both Hall measurements, and

van der Pauw measurements, where the latter case holds provided that the geometry

factor remains constant.

3.3.1. Heterodyne van der Pauw method

The heterodyne van der Pauw method directly measures the sum of two longitudinal re-

sistances instead of measuring them with separate instruments. The circuit flow chart

of the heterodyne van der Pauw method is shown in Fig. 3.5. The upper current source

circuit of Fig. 3.5, similar to the frequency-modulated non-switching van der Pauw circuit,

supplies modulated constant currents Ia and Ib through contact A and contact C, respec-

tively. The lower voltage heterodyne circuit generates a single output signal VO from two

longitudinal voltages VDC and VDA, using the analog signal processing of Fig. 3.5 with

adders and multipliers.
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Figure 3.5. Circuit design for the heterodyne van der Pauw method. The
current source circuit (a) provides the driving current Ia at frequency
ωa from contact A to B, and Ib at frequency ωb from contact C to
B. The voltage heterodyne circuit (b) generates a single output voltage

VO = VDC(t)Vb(t)+VDA(t)Va(t)
VR

through analog adders and multipliers.

Two AC voltage sources, Va and Vb, operating at different frequencies, ωa and ωb, and

the same amplitude, V0, are used as signal sources.

(3.1)
Va(t) = V0 cos (ωat+ θa)

Vb(t) = V0 cos (ωbt+ θb)
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The AC voltages are sent to current source circuits with reference resistance RI , to gen-

erate input currents Ia and Ib as followed, where I0 = V0/RI .

(3.2)
Ia(t) = I0 cos (ωat+ θa)

Ib(t) = I0 cos (ωbt+ θb)

Four contacts on the sample, arranged in the van der Pauw configuration, are connected

to the circuit. Current Ia is supplied from contact A to B, and current Ib is supplied from

contact C to B. Contact B is used as the common ground for all frequencies.

The longitudinal voltages VDC and VDA are therefore defined by Eq. (3.3), where

ZAB,DA = VDA

IAB
and ZCB,DC = VDC

ICB
are the 3-point impedances that result from current

through contacts AB or CB, respectively.

(3.3)
VDC (t) = I0 [RAB,DC cos (ωat+ θa) + ZCB,DC cos (ωbt+ θb)]

VDA (t) = I0 [RCB,DA cos (ωbt+ θb) + ZAB,DA cos (ωat+ θa)]

They include contributions from both the thin film and the contacts, and might have

capacitive components when the contacts are not ohmic. For the heterodyne van der

Pauw method, the detailed compositions of ZAB,DA and ZCB,DC are irrelevant, as long as

they remain constant.

The voltages excited by the current source circuit are then proceed by the voltage

heterodyne circuit. The longitudinal voltage VDC is multiplied by Vb, and VDA is multiplied

by Va. The multiplied signals are added together to produce a single output voltage VO, as

given in Eq. (3.4), where VR is the the amplitude of the reference used in the heterodyne
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multipliers.

(3.4)

VO =
VDC (t)Vb (t) + VDA (t)Va (t)

VR

=
V 2
0

2VRRI



[RAB,DC + RCB,DA] cos [(ωa + ωb) t + (θa + θb)]

+ [RAB,DC + RCB,DA] cos [(ωa − ωb) t + (θa − θb)]

+Re (ZCB,DC) cos [2 (ωbt+ θb)]− Im (ZCB,DC) sin [2 (ωbt+ θb)]

+ Re (ZAB,DA) cos [2 (ωat+ θa)]− Im (ZAB,DA) sin [2 (ωat+ θa)]

+ Re (ZCB,DC) + Re (ZAB,DA)


The output signal VO has 5 frequency components. The desired value RAB,DC + RCB,DA

appears at frequency ωa + ωb and ωa − ωb. All other signals are separated to different

frequencies. Thus one only needs to measure the voltage amplitude at either frequency

ωa+ωb or ωa−ωb to know RAB,DC +RCB,DA. In this work, the root-mean-square (RMS)

amplitude at frequency ωa±ωb of VO is measured and defined as |Vout|. Using the van der

Pauw Eq. (2.1), the sheet resistance Rsheet can be calculated from Vout through Eq. (3.5),

where the geometric factor f may be assumed to be a constant set by the sample geometry

according to the standard van der Pauw method.

(3.5) Rsheet =
π

ln 2

[RAB,DC +RCB,DA]

2
f =

π

ln 2

√
2VRRI

V 2
0

f

The heterodyne van der Pauw method has been verified using a 200 nm 5 mTorr

PLD-grown a-IGZO thin film sample with steady electrical properties. First, the geometry

factor f should be calibrated from Eq. (2.2) using the standard van der Pauw method. The

two longitudinal resistance measured are Rxx1 = 3.67 kΩ and Rxx2 = 1.73 kΩ, respectively,
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giving a geometry factor is f ≈ 0.95. Thus and the sheet resistance determined by the

standard van der Pauw method is Rsheet = 11.67 kΩ. When applying the heterodyne

van der Pauw method, the parameters V0 =
√
2 V, VR = 10 V, RI = 100 kΩ, ωa = 17

Hz, and ωb = 51 Hz were used. The directly measured output amplitude at frequency

ωa + ωb = 68 Hz is |Vout| = 3.80 mV. By plugging in those numbers and f = 0.95 into

Eq. (3.5), the sheet resistance determined by the heterodyne van der Pauw method is

Rsheet = 11.7 kΩ. Note that even though the geometry factor f needs to be calibrated

before the measurements, only one output signal from the the heterodyne circuit needs

to be measured to give the sum of longitudinal resistances Rxx1 +Rxx2, thereby allowing

transient resistivities to be measured, as was the goal.

Transient measurements using the heterodyne van der Pauw method have a reduced

error compared to those using only one 4-point resistance. One reason is that the geometric

factor f only changes slightly even with a large change of the longitudinal resistance ratio

Rxx1/Rxx2. For example, for a transient response where Rxx1/Rxx2 increases from 2 to 3

would only give an error ∼ 5 % for the final Rsheet result. As a final advantage, only one

measurement lock-in amplifier is needed for the heterodyne van der Pauw method.

The heterodyne van der Pauw method also allows measurements over a much wider

frequency range. The previous non-switching method discussed in Section 3.2 requires

both modulation frequencies to be within the lock-in frequency range, which is typically

below 10 kHz, while conductivity measurements at higher frequencies are necessary for

many material systems. For example, for the ionic conductor system, Almond et al. pro-

posed a method to separate conductivity contributions from carrier density and hopping

rate by measuring the frequency-dependent AC conductivity to 10 MHz at a few different



82

temperatures. [66] Such a high measurement frequency can be achieved using the het-

erodyne van der Pauw method, as long as the frequency difference ωa − ωb is within the

measurement range of lock-in amplifiers.

3.3.2. Heterodyne Hall method

The Hall effect method is the standard way to separate the carrier density n and mobility

µ in the overall conductivity σ of a semiconductor material. It requires a transverse 4-

point resistance to be measured in a magnetic field. In practice, it is usually not measured

in a constant magnetic field but rather as the slope of a magnetic field B sweep. Since

the contacts cannot be perfectly symmetric, the directly measured transverse resistance

RAC,BD at a fixed B field usually has a longitudinal component aRxx and a transverse

Hall component Rxy, making RAC,BD ̸= 0 when B = 0. In the Drude model, one have

Rxx(+B) = Rxx(−B), and Rxy(+B) = −Rxy(−B). Thus the aRxx component can be

eliminated by measuring at two opposite B fields, as shown in Eq. (3.6).

(3.6)

RAC,BD(+B) = Rxy(+B) + aRxx(+B)

RAC,BD(−B) = Rxy(−B) + aRxx(−B)

RAC,BD(+B)−RAC,BD(−B) = 2Rxy(+B) + 0

The method of Eq. (3.6) as they stand still requires flipping the magnetic field. This

can be avoided using the Onsager-Casimir symmetry RBD,AC(+B) = RAC,BD(−B). [67–
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70]. Thus the measurement can be significantly simplified, as shown in Eq. (3.7).

(3.7)

RAC,BD(+B) = Rxy(+B) + aRxx(+B)

RBDAC(+B) = RAC,BD(−B) = Rxy(−B) + aRxx(−B)

RAC,BD(+B)−RBD,AC(+B) = 2Rxy(+B) + 0

The circuit implementation of this Hall effect measurement using the heterodyne 4-

point method is as follows. The basic circuit design of the heterodyne Hall method is

shown in Fig. 3.6, where care should be taken to notice the slightly different contact

configuration compared to the heterodyne van der Pauw method shown in Fig. 3.5. The

current Ia at frequency ωa flows through contact A to C, and the current Ib at a different

frequency ωb flows through contact D to B independently. Contact C remains the ground

for all signals, and current sources with output currents Ib and −Ib are used to allow

contacts B and D to be at any voltage.

The resulting diagonal voltages VBD and VAC are defined by Eq. (3.8), where ZBD =

VBD

IBD
and ZAC = VAC

IAC
are the 2-point impedances across contacts BD and AC, respectively.

Both 2-point impedances include contributions from the contacts, thus may not be per-

fectly ohmic. Nevertheless, the heterodyne Hall method can be applied as long as both

ZBD and ZAC remain constant.

(3.8)
VBD (t) = I0 [Rxy(+B) cos (ωat+ θa) + ZBD cos (ωbt+ θb)]

VAC (t) = I0 [Rxy(−B) cos (ωbt+ θb) + ZAC cos (ωat+ θa)]
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Figure 3.6. Circuit design of the heterodyne Hall method. The current
source circuit (a) provides current Ia at frequency ωa from contact A to C,
and current Ib at frequency ωb from contact D to B. The voltage hetero-

dyne circuit (b) generates a single output voltage VO = VBD(t)Vb(t)−VAC(t)Va(t)
VR

through analog adders and multipliers. A calibration potentiometer RP is
included to match the amplitude of Va and −Vb.
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With the circuit design in Fig. 3.6, the output voltage VO would be as following.

(3.9)

VO =
VBD (t)Vb (t)− VAC (t)Va (t)

VR

=
V 2
0

2VRRI



[Rxy(+B) − Rxy(−B)] cos [(ωa + ωb) t + (θa + θb)]

+ [Rxy(+B) − Rxy(−B)] cos [(ωa − ωb) t + (θa − θb)]

+Re (ZBD) cos [2 (ωbt+ θb)]− Im (ZBD) sin [2 (ωbt+ θb)]

− Re (ZAC) cos [2 (ωat+ θa)] + Im (ZAC) sin [2 (ωat+ θa)]

+ Re (ZBD)− Re (ZAC)


VO has 5 frequency components. The desired value Rxy(+B) − Rxy(−B) appears at the

first two terms in the bracket, frequency ωa + ωb and ωa − ωb. All other signals occur at

different frequencies. Thus, similar to the van der Pauw heterodyne method, one needs the

voltage amplitude at either frequency ωa+ωb or ωa−ωb to know Rxy(+B)−Rxy(−B). In

this work, the root-mean-square (RMS) amplitude at frequency ωa±ωb of VO is measured

and defined as Vout. Using the Hall effect Eq. (2.4), carrier density n is directly related to

Vout through Eq. (3.10).

(3.10)

|Vout| =
VO,ωa±ωb√

2
=

V 2
0

2
√
2VRRI

[2Rxy(+B)] =
V 2
0√

2VRRI

· B

ned
,

Thus n =
B

ed
· 1

|Vout|
· V 2

0√
2VRRI

.

Mobility µ can therefore be calculated from n when the sheet resistance Rsheet =
1

nedµ
is

also known.
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Figure 3.7. Measurement results of Rxy using the conventional Hall method
on the 200 nm 5 mTorr PLD-grown a-IGZO test sample.

3.3.3. Verification and error analysis of the heterodyne Hall method

To verify the heterodyne Hall method, the circuit was built and tested on the same 200

nm 5 mTorr PLD-grown a-IGZO thin film sample used to verify the heterodyne van der

Pauw method. The sample had steady sheet resistance Rsheet = 11.67 kΩ. Fig. 3.7 shows

the results when measured using the conventional 4-point Hall method, with magnetic

field B sweeping between -5 T to 5 T. From the Rxy slope, it is determined that n = 1.55

× 1018 cm−3 and µ = 17.3 cm2/Vs. In the measured Rxy results, background offset is

aRxx = 1.84 kΩ and the response Rxy/B is only 20 Ω/T.

The heterodyne Hall method was tested with magnetic field cycling from 0 to 5 T,

then to -5 T, then back to 0. The parameters are chosen as V0 =
√
2 V, VR = 10 V, and

RI = 100 kΩ, ωa = 1.7 Hz, and ωb = 6.8 Hz. The directly measured output signal Vout is

plotted in Fig. 3.8(a). Note the apparent phase drift in panel (a).
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Figure 3.8. Magnetic field sweep results using the heterodyne Hall method
on the 200 nm 5 mTorr PLD-grown a-IGZO test sample. (a) Directly
measured amplitude and phase of output signal Vout as a function of time
t. A linear drift of Vout phase can be observed. (b) The amplitude and
phase of Vout after synchronicity correction plotted as a function of magnetic
field B. The results for the up-sweep and down-sweep now align well with
each other. Note the |Vout| still does not reach 0 at B = 0 even after
synchronicity correction. (c) The real and imaginary part of Vout after
synchronicity correction plotted as a function of magnetic field B. Note the
real part depends linearly on B, and there is a constant non-zero offset in
the imaginary part.

It is clear from the phase drift in this data that the directly measured data needs to

be corrected before applying Eq. (3.10). As shown in Fig. 3.8(a), where the magnitude

and phase of the output voltage are plotted in time, the Vout phase showed the expected

180-degree phase shift when the magnetic field changes polarity, but in addition there
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was an overall slope indicating an unexpected phase drift in time. The phase drift can

be explained by the synchronicity error from the frequency mismatch between the out-

put signal and the lock-in reference signal arising because ωa and ωb are not perfectly

synchronized. Estimating from the phase drift rate, the frequency difference between

the lock-in reference signal and the output signal is only 0.00016 Hz, smaller than the

frequency accuracy of 0.001 Hz for the oscillators in the lock-in amplifiers we used as

signal sources. A synchronicity correction was performed after the fact, by assuming a

constant phase drift rate. The Vout after synchronicity correction is plotted in Fig. 3.8(b).

Now the output phase remains the same for up-sweep and down-sweep, and only changes

polarity with magnetic field B. After the synchronicity correction, Vout still has non-zero

amplitude at B = 0. This non-zero output is caused by an offset error. By plotting the

real and imaginary parts of Vout as Fig. 3.8(c), it is clear that the real part is the desired

Hall signal that changes linearly with B, and the imaginary part is just a constant offset

independent of B.

This imaginary offset error can be explained by the phase misalignment of the two

output components VaVAC/VR and −VbVBD/VR. Fig. 3.9 demonstrates how those two

components add up to generate the output signal Vout. In an ideal circuit, the two vector

components have exactly opposite phases, and exactly the same amplitude at B = 0,

giving Vout = 0 at B = 0. During the magnet sweep, both components remain opposite

to each other, with only the amplitudes changing linearly with B. Thus Vout also changes

linearly with B in an ideal circuit. In a real circuit, however, the two components are

not exactly opposite to each other, giving a small offset Voffset at B = 0. During the

magnet sweep, the amplitudes of the two components change linearly with B, but the



89

amplitude of their vector sum Vout is not linear with B. The output signal Vout can be

decomposed as the vector sum of the offset signal Voffset and the desired Hall signal VHall.

As shown in the right panel of Fig. 3.9, Voffset remains constant during magnet sweep,

and VHall is perpendicular with Voffset. Therefore, amplitude of the Hall signal |VHall| can

be calculated from the output amplitude |Vout| and the offset amplitude |Voffset| from the

following equation, where |Voffset| can be measured at B = 0.

(3.11) |Vout|2 = |VHall|2 + |Voffset|2

The Hall signal amplitude |VHall| is then inserted into Eq. (3.10) to calculate carrier density

n and thus mobility µ.

For most experiments like the one in Fig. 3.8, the offset correction can be skipped

because |Voffset| is so small that |VHall| ≈ |Vout| for |B| > 0.5 T. Thus only one fixed large

B field is needed for Hall measurements, making the heterodyne Hall method ideal for

measuring fast transient of n and µ. As shown in Fig. 3.8(b), the |VHall|/B slope can

be directly identified from a single data point at any sufficiently large B field. Using the

output amplitude at B = 4 T, the calculated carrier density n is 1.54 × 1018 cm−3 and the

sample mobility µ is 17.3 cm2/Vs, both agree to within less than 1% with that obtained

from the standard Hall measurement reported at the start of this section.

In the cases where only small magnetic fields are available, a high-accuracy Hall mea-

surement is possible with only two data points, one at zero field to measure |Voffset| and the

other at magnetic field B0 to measure |Vout|. When estimating the offset |Voffset|, there is

inevitably some error that can lead to large error in the desired signal |VHall|. To increase
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Figure 3.9. Schematic illustration of the components that added up to pro-
duce the measured output Vout. (left) Vout decomposed as the sum of the
multiplier outputs in an ideal circuit. Vout is 0 at B = 0, and changes lin-
early with B. (right) Vout decomposed as the sum of multiplier outputs in a
real circuit, where the phase misalignment causes non-zero Voffset at B = 0.
Vout measured in a real circuit can be decompose as the vector sum of VHall

and Voffset, where VHall changes linearly with B and Voffset remains constant.

the signal-to-noise ratio, an alternative way is to intentionally tune the calibration poten-

tiometer RP in the circuit so that |Vout| ≫ |Voffset| at B = 0, and then measure |Vout| at B

= 0 and B = B0. This gives ∆|VHall| ≈ ∆|Vout|, and carrier density n and mobility µ can

be estimated from ∆|VHall|/B0 using Eq. (3.10). This two-field method has been tested

on the same a-IGZO sample with B0 = ± 0.1 T. |Vout| measured at frequency ωa + ωb is

shown in Fig. 3.10. From the slope, the calculated carrier density n is 1.50 × 1018 cm−3
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Figure 3.10. Measurement results of |Vout| using the heterodyne Hall
method on the 200 nm 5 mTorr PLD-grown a-IGZO test sample with max-
imum field of only Bmax = ± 0.1 T. The calibration potentiometer RP was
intentionally off-calibrated to have |Vout| ≫ |Voffset| at B = 0. The sweep
was repeated several times to check reproductivity of the results.

and the sample mobility µ is 17.8 cm2/Vs, very close to those measured with an order of

magnitude larger magnetic fields.

3.3.4. Advantages of the heterodyne Hall method

Comparing with the conventional Hall method, the heterodyne Hall method reduces the

measurement time needed, while increasing the measurement accuracy. With the hetero-

dyne Hall method, the carrier density transient can therefore be directly measured, and

Hall effect measurements can be applied to materials with extremely low mobilities.

One major limitation of the conventional Hall method is that it cannot accurately

measure the carrier density transient continuously. Previously, Hall measurements could

only be conducted at a few discrete time points (see for example Fig. 2.12), because each
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Hall measurement requires either sweeping the magnetic field or switching the contacts.

Thus one could at best interpolate an average electron density n and mobility µ during

that time period. Moreover, the longitudinal resistance component aRxx may also change

during the magnet sweeping or contact switching, introducing extra measurement error.

Indeed, when measuring mobility change during transient photoresponse using the con-

ventional Hall method, increased variance in the Hall mobility µ was observed right after

LED switch, when conductivity σ was changing rapidly (Fig. 2.12).

As we shall demonstrate, the heterodyne Hall method allows continuous measurements

of carrier density transient. By applying a constant magnetic field, the carrier density n

can be calculated from a continuous transient of the heterodyne Hall output Vout through

Eq. (3.10). The carrier density transient in a 50 nm capped PO2 = 15 mTorr sample

was measured and plotted in Fig. 3.11. The heterodyne Hall circuit was calibrated so

that carrier density n can be directly calculated from Vout with magnetic field B = 5 T.

From the graph, the initial and final carrier densities are 5.6 × 1017 cm−3 and 13.5 × 1017

cm−3, respectively. The initial and final sheet resistances measured using the van der Pauw

method are 128.3 kΩ and 49.6 kΩ, respectively. Thus the mobility has increased from

17.4 cm2/Vs to 18.7 cm2/Vs during the illumination-induced transient measurement. This

data represents, to our knowledge, the first direct measurement of illumination-induced

carrier density transient in amorphous oxide systems. Previous reports only measured the

conductivity transients, and assumed constant mobility without verification. [20,71,72]

As a result of the present work, this assumption can now be verified using the heterodyne

Hall method, to identify any mobility transient response.
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Figure 3.11. Carrier density transient measured using the heterodyne Hall
method on the 50 nm 15 mTorr capped PLD-grown a-IGZO thin film sam-
ple. The magnetic field was kept at 5 T during the measurement. The
sample was illuminated by a 385 nm UV LED operating at 10 mA constant
current. The time range with LED on is indicated by the white background.
The sample was kept in dark when not illuminated, as indicated by the gray
background.

We also show below that the heterodyne Hall method might be able to measure samples

with unprecedented low mobilities, or be able to measure useful Hall signals in unprece-

dented low magnetic fields. The limits of accuracy of a Hall measurement for low mobility

samples or at low magnetic fields is usually limited by the minimum µB product that can

be accurately measured. This is because in a Hall measurement, the desired signal is the

Rxy component, the Rxx component sets the scale for all background effects which can

obscure this signal, such as an overall offset which might drift with time and noise. Thus

the effective signal-to-noise ratio (SNR) is proportional to the ratio of Rxy divided by Rxx
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which is simply the product of µ and B.

(3.12) SNR ∝ Rxy

Rxx

∝ B/ned

1/neµd
= µB

Therefore, accurate Hall measurements in low mobility materials can normally only be

handled by applying huge magnetic fields.

Many previous reports have tried to improve the capability of the conventional Hall

method by decoupling the desired Rxy component from the aRxx background. The most

widely used approach is the AC magnetic field method, which modulates the magnetic

field B, thus Rxy, by a low frequency, and measures only the signal at the modulation

frequency. [73, 74] The AC magnetic field is usually generated by a specially designed

electromagnet which can tolerate a large oscillating current. Gunawan et al. proposed

a more compact and cost-effective way to generate the AC magnetic field with a pair

of cylindrical diametric magnets rotating mechanically at the modulation frequency. [75]

Nevertheless, all AC magnetic field systems require very low modulation frequencies,

typically 0.1 Hz or lower, and have limited maximum available magnetic field, typically

around 1 T. [76] Thus they can only be applied to samples with mobility of 0.1 cm2/Vs

or higher, and need very long measurement times on the scale of an hour or more to get

a single data value.

In the face of these daunting measurement difficulties, low-mobility materials are show-

ing increasing technological importance. For example, transparent p-type amorphous ox-

ides are necessary for making transparent, flexible, all-oxide complementary field-effect

transistors together with n-type amorphous oxides such as a-IGZO. P-type amorphous ox-

ide such as delafossite CuAlO2 was reported to have a Hall mobility µ = 0.03 cm2/Vs. [77]
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Another important low mobility material is the ionic conductors, also known as solid

electrolytes. Ionic conductors are receiving increasing applications for energy conversion

devices including Li-ion batteries and solid oxide fuel cells. [78, 79] Electricity is con-

ducted in ionic conductors by ions instead of electrons or holes, thus carrier mobility can

be very low due to the ionic mass which exceeds the electron and hole masses by almost 4

orders of magnitude. Ionic conductor RbAg4I5 was reported to have a mobility µ = 0.05

cm2/Vs. [80] Such low mobility cannot be easily characterized using the standard Hall

effect techniques.

The heterodyne Hall method makes it much easier to measure Hall mobilities in low

mobility materials. This is achieved by canceling the background signal component aRxx

through the experimental design. Thus the heterodyne Hall method can be much more

cost effective compared to previous methods based on modulated AC magnetic field, and is

readily compatible with all kinds of DC magnetic field sources. Estimating from Fig. 3.10,

using electrical components with higher accuracy, the smallest field to extract a slope with

10% accuracy is Bmin ≈ 0.01 T. Eq. (3.12) shows that the minimum measurable µB sets

the capability of Hall measurements, which equals to

µBmin ≈
(
15 cm2/Vs

)
× (0.01 T) =

(
0.0015 m2/Vs

)
× (0.01 T) = 1.5× 10−5.

Using a simple table-top Hall effect setup made of 2 rare earth magnets above and below

the sample, a magnetic field around 0.3 T can be easily achieved. Together with the

heterodyne Hall method, the minimum measurable mobility is µmin(0.3T) = 1.5 ×10−5 /

0.3 T = 0.5 cm2/Vs, which is good enough for most semiconductor materials, including

n-type amorphous oxides such as a-IGZO. In comparison, a commercially-designed Ecopia
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HMS-3000 Hall measurement system requires sample mobility to be twice as large above 1

cm2/Vs with a much more cumbersome 0.58 T permanent magnet that must be mechan-

ically flipped from +B to -B polarity for a single measurement. Using the 15 T magnet

in our lab, the minimum measurable mobility can be further reduced to only µmin(15T)

= 1.5 ×10−5 / 15 T = 0.01 cm2/Vs, which is capable for measuring low mobility materi-

als including p-type amorphous oxides and ionic conductors. The minimum measurable

mobility can be as low as µmin(45T) = 1.5 ×10−5 / 45 T ≈ 0.003 cm2/Vs using the 45 T

DC magnetic field at the National High Magnetic Field Lab in Tallahassee.

3.4. Modular time division multiplexer for efficient simultaneous

characterization of fast and slow transients in multiple samples

3.4.1. System design

In this section, a modular time division multiplexer (MTDM) will be introduced to mea-

sure multiple samples with transient responses exhibiting a broad range of time constants.

This work was recently accepted for publication. [81] Transient photoresponse in a-IGZO

thin films exhibits a very fast transient at short time scales right after the LED turns

on / off, and the response becomes extremely slow at long time scales. Thus the mea-

surement setup should collect data initially with a temporal resolution as fine as possible,

then decrease the time resolution at longer times for the slow response to reduce redun-

dancy. Previous reports only focused on time scales shorter than one day. Such a short

measurement duration can lead to an underestimation of the time scales and the total

response amplitude. Measurement duration up to months are necessary for a complete

characterization of the transient photoresponse in a-IGZO thin films. Also, since a-IGZO
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properties depend heavily on the growth conditions, multiple samples need to be charac-

terized to fully understand the material system, thus the measurement setup should utilize

a minimal number of measurement instruments efficiently to measure as many samples

as possible with as few instruments as possible. MTDM units are designed to meet the

above requirements.

Fig. 3.12 shows the system design of the MTDM unit. It has two different modes,

labeled as the dedicated mode and the multiplexed mode. The dedicated mode measures

the initial fast response and the multiplexed model measures the subsequent slow response.

Since the fast response only accounts for a small portion of total response duration, there

is no need to measure the fast response of all samples simultaneously. Thus, at most

one sample is measured in the so-called dedicated mode at any given time and all other

samples are measured simultaneously in the multiplexed mode. The complete circuit

diagram of a MTDM unit is included in Appendix A.

3.4.2. Dedicated mode and multiplexed mode

The dedicated mode directly connects one sample with one measurement instrument, thus

the data collection from this sample can be the as fast as the measurement instrument can

support. As shown in Fig. 3.12, the sample connected to the dedicated mode is selected

by a rotary switch to make sure that at most one sample is connected to the dedicated

mode. There is also an open position in the switch, which connects the dedicated mode

measurement device to an open circuit. This position is selected when all samples are

measured in the multiplexed mode.
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Figure 3.12. System design of the modular time division multiplexer
(MTDM) unit. Solid lines symbolize the dedicated mode connections.
Dashed lines represent the multiplexed mode connections. The hollow lines
are data bus signals to and from the computer. A two-layer hierarchy with
4 channels in each layer is shown. The slave MTDM units have the same
internal design as the master MTDM unit. At the top of the figure, the
measurement instruments are used for the dedicated mode and the multi-
plexed mode respectively. The rotary switch is in position 1 indicating that
the k = 1 sample is in the dedicated mode.

The multiplexed mode applies the time-division multiplexing method to measure mul-

tiple samples with a single measurement instrument. All samples are connected to the

same measurement instrument through a multiplexer, which receives control signals from

a computer and allows only one sample to be connected with the measurement instrument

at a time. The computer sends control signals to cycle through all samples in sequence.

Therefore, the measurement interval for each sample, ΘM , long enough to exceed the
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stabilization time of the measurement instrument after selecting the next sample, τs,

multiplied by the total number of samples connected, N .

(3.13) ΘM ≥ N · τs

The maximum number of samples in one single MTDM unit is limited by both the

space available for the sample housing units as well as by the number of selector channels

on the multiplexer chip. This limitation is solved by using a hierarchy of multiplexers.

As shown in Fig. 3.12, multiple MTDM units are used, with one labeled as the master

unit and others labeled as the slave units. The output from the slave units are sent to the

master unit, where all output signals from the first layer of multiplexers are selected by a

second layer multiplexer. If only k samples are allowed for a single multiplexer, a two layer

hierarchy would accommodate k2 samples, and the number can be easily increased with

more layers of hierarchy. Note the control signals generated from the computer should

provide synchronized control for all multiplexers.

3.4.3. Decay time constant estimation: Switching from the dedicated to the

multiplexed mode

When measuring a transient response, it is important to identify how rapidly the sample

is decaying at any given instant to decide which measurement mode one should be in.

Because the signal transient is always slowing down, the only transition that the system

needs to monitor is that from dedicated to multiplexed mode. In the MTDM measure-

ments, the decay time constant τn at time tn is estimated by fitting the last q = 50

collected data with a simple exponential response ξn(t) = Ane
−t/τn + Bn, where An and
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Bn are just two fit parameters. The best fit for τn is determine using the least square error

method. Once τn is known, the desire measurement interval Tn is decided proportional to

τn, i.e. Tn = R · τn, where R is a user-specified constant defining measurement resolution.

The desired measurement interval Tn also decides when one sample should be switched

from the dedicated mode to the multiplexed mode. At the beginning of each measurement,

the sample is put in the dedicated mode and the data is collected at the maximum rate.

When there is enough data to estimate Tn, the data collection interval is dynamically

adjusted to Tn to reduce redundant data. When Tn further increases to be larger than

the measurement interval in the multiplexed mode ΘM , defined in Eq. (3.13), this sample

can be switched to the multiplexed mode. In real experiments, considering the errors in

τn estimation, samples are switched from the dedicated mode to the multiplexed mode

only when Tn is significantly larger then ΘM .

3.5. Second round: Transient photoconductivity for a-IGZO thin films

Once the improved MTDM measurement system became operational, second round of

measurements of the transient photoresponse in a-IGZO thin films with time scales up to

several months was conducted using the MTDM of Section 3.4. The MTDM unit we built

supports 4 samples measured simultaneously using one multiplexer, and the second layer

multiplexer was included for future expansion. Two SR830 lock-in amplifiers were used

as the measurement instruments. A Python program was developed to generate control

signals, estimate the decay time constant in real time, adjust measurement interval in the

dedicated mode, and collect data from the lock-in amplifiers.
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Figure 3.13. Second round of conductivity transients measurement results
for the a-IGZO thin film samples. (a) Transient conductivity change of
pristine a-IGZO thin film samples after PLD deposition. (b) Transient
photoconductivity of a-IGZO thin films under UV LED illumination. (c)
Transient photoconductivity of a-IGZO thin films during dark relaxation
after prolonged UV LED illumination.

In the second round of transient photoresponse measurements, a batch of 50 nm a-

IGZO thin film samples were deposited by PLD at PO2 = 5, 10, 15 mTorr. Both capped

and uncapped samples, were used in the measurement. Fig. 3.13 compares the transient

responses at different phases of the photoresponse measurements. With the help of the

MTDM unit, transient responses were measured with initial measurement intervals as
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rapid as 30 ms and the total measurement durations as long as 107 s (4 months). Without

the MTDM unit, measurements for the presented data would have taken over 2 years to

take sequentially.

We now review the results of these measurements starting with the dark relaxation

response of pristine samples shown in Fig. 3.13(a). As expected, the initial conductivity

σ of the samples right after deposition is larger for lower oxygen pressure PO2 during

deposition and monitored for several weeks. The pristine samples are kept in the dark

after deposition. For all pristine samples, conductivity increased slowly after deposition.

This is probably due to structural relaxation, as PLD growth of IGZO thin films at room

temperature is a non-equilibrium process. In the 15 mTorr sample, the conductivity

started to decrease after a week, around 106 seconds, whereas all other more heavily

doped samples grown at lower PO2 show a weakly increasing conductivity appearing to

level-off at long times. This decrease in conductivity in the 15 mTorr sample may be the

result of a post-illumination relaxation since the samples are exposed to UV light during

PLD growth and such dark relaxations are known to exhibit reduced conductivities.

Photoresponses during UV illumination and dark relaxation in Fig. 3.13 panels (b) and

(c), respectively, clearly indicate the importance of encapsulation. For both illumination

and relaxation, the capped samples (dark green, dark red) showed simple monotonic

response with decreasing rate, whereas, the 10 mTorr uncapped sample in particular (light

green) showed a small conductivity decrease after two weeks of UV illumination in panel

(b), and both uncapped samples showed apparently random steps of rapid conductivity

decrease during dark relaxation in panel (c). Data analysis in the following chapters
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will discuss these results with special emphasis on the very smooth month-long transient

observed in the post-illumination dark relaxation of the encapsulated samples.
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CHAPTER 4

Mathematical Analysis of General Transient Response

This chapter talks about how any general transient response towards an asymptotic

steady state can be modeled as the superposition of exponential transients with distributed

time constants. Section 4.1 shows its mathematical representation and the condition to

apply this analysis. Section 4.2 discusses common fitting methods to the directly measured

transient response data that can extract a time constant distribution. A classification of

fitting methods as descriptive and predictive is proposed, and the dependence of the fitted

spectrum on measurement duration is studied. In Section 4.3, using the properties of the

convolution integral for the transient on a semi-log plot versus log-time, it is revealed

that the log-scale derivative plot can be used to directly identify features of the the log-

scale decay spectrum. From this analysis, we derive the minimum required measurement

duration to characterize the time constant distribution as the inflection point on the

semi-log plot. With the convolution integral, Section 4.4 develops a simple method that

directly estimates the decay spectrum and the asymptotic value of the decay using easily

identifiable features on the semi-log transient plot. The application of the distributed

time constant analysis methods is demonstrated in Section 4.5 with experimental data

from a-IGZO photoconductivity transients.
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4.1. Generalized transient response with distributed time constants

Simple exponential decay, which successfully describes transient response in many

crystalline systems, fails to fit transient photoresponse in a-IGZO thin films. Fig. 4.1

shows the best simple exponential fit for the initial 1/3 and the final 1/3 of the long-

term photoconductivity transients observed in the encapsulated a-IGZO samples. For all

responses, the initial segments show decay rates significantly faster than the corresponding

final segments in the same response. Thus the measured transients clearly have more

than one time constant involved. To have a complete description of such non-exponential

transients, this section will generalize them as a summation of exponential decays over a

distribution of time constants.

Time constants characterize the dynamic response of non-equilibrium carrier concen-

trations in solid state systems. In crystalline materials, decays are typically characterized

by a single exponential decay time constant or a few discrete time constants, whereas

amorphous systems are better described by a statistical distribution of time constants. [82]

As an example for crystalline systems, Shockley-Read-Hall theory assumes a single activa-

tion energy for the emission rate from each defect species to the nearest energy band. [83]

For crystals with multiple species of ionic dopants, the photoresponse can have a dif-

ferent time constant associated with each defect level. This has been experimentally

verified by photoinduced current transient spectroscopy (PICTS) experiments. [84, 85]

In amorphous semiconductors, on the other hand, the observed transient responses are

typically more complicated. [20,28,86] Although some groups have modeled transients

in amorphous systems in terms of a handful of discrete relaxation time constants, [20,87]

the justification for such an interpretation is unclear due to structural randomness which
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Figure 4.1. Transient photoconductivity of a-IGZO compared to simple
exponential fits in (a) photo-illumination and (b) dark relaxation of the 5
mTorr capped sample, and (c) photo-illumination and (d) dark relaxation
of the 10 mTorr capped sample. The measured transient photoconductivity
is plotted as the thick red curves for the 5 mTorr sample, and the thick
green curves for the 10 mTorr sample. The best simple exponential fit to
the initial 1/3 of each curve is plotted as a dotted gray line, and the best
simple exponential fit to the final 1/3 of each curve is plotted as a dashed
gray line. Note the best simple exponential fits at short time scales do not
match those at long time scales.

seems to preclude sub-populations of nominally identical defects. Instead, interpreta-

tions of relaxation behavior in amorphous systems more typically assume a continuum

of time constants which are statistically distributed. [55,86,88] Alternatively, such non-

exponential transient responses can be modeled with a time-dependent time constant,
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such as predicted in the dispersive diffusion model, whereby a power-law behavior of the

time constant results in a stretched exponential transient response. [28,89] Regardless of

the underlying physical mechanism of the non-exponential decay, any such transient can

always be mathematically decomposed into an amplitude spectrum of exponential decays

with different time constants, whereby the shape of the spectrum serves as a fingerprint

of the physical mechanism behind the non-exponential decay. [90]

The analysis method developed here assumes that the transient response of interest

f(t) has a positive definite decay spectrum when expressed as a sum of exponential decays.

This is satisfied if and only if the decay amplitude is decreasing monotonically with time,

and all higher derivatives also increase or decrease monotonically with alternating sign of

derivative order. [91]

(4.1) (−1)n
dnf(t)

dtn
> 0, n = 1, 2, 3 · · ·

In practice, due to the large noise in higher order derivatives, it is usually only possible

to accurately verify the first and the second order derivatives of the transient to apply

the methods developed here. The above property is observed in almost all experimen-

tally measured decay responses as long as the system is damped or overdamped (not

underdamped) and there is no oscillatory term in the response. [91] Many other transient

responses, including the generation and annealing of excess carriers and structural defects

due to thermal stress, electric field, and illumination are proposed to have similar relax-

ation kinetics. [28] Thus the analysis methods developed here also apply to more general

non-exponential relaxation problems.
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The continuous time constant distribution case can be generalized from the simpler

case of discrete time constants. The simplest transient response is a simple exponential

response with a single time constant τ0, amplitude A0 at t = 0, and an asymptotic

background f∞ for t→ +∞.

(4.2) f(t) = f∞ + A0e
−t/τ0

For multi-exponential response with a finite number of discrete time constants τ1, τ2 · · · τn,

the overall response f(t) is just the sum of simple exponentials, with amplitudeA1, A2 · · ·An

for each time constant.

(4.3) f(t) = f∞ +
n∑

i=1

Aie
−t/τi

The number of fit parameters can become statistically large as the time-constant

resolution increases, and the response function soon crosses over to the continuum limit.

Such a generic transient response signal f(t) over time t can be expressed in a Fredholm

integral equation of the first kind, as Eq. (4.4), with the simple exponential decay function

h(t, τ) = e−t/τ as the kernel function of the continuous decay spectrum variable τ , and a

signed distribution density function g(τ) defined for each time constant τ taking the role

of the discrete amplitude parameters An, over an asymptotic constant background f∞.

(4.4)

f(t) = f∞ +

∫ +∞

0

g(τ)e−t/τdτ

= f∞ +

∫ +∞

0

g(τ)h(t, τ)dτ
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Johnston used a similar expression to decompose the stretched exponential function as a

Fredholm integral of a decay rate distribution. [90] As Zorn has shown, [91] Eq. (4.4)

can describe any transient response that satisfies the general monotonic behavior of Eq.

(4.1).

Non-exponential transients usually consist of time constant distributions that span

several orders of magnitude. Thus it is often more convenient to re-write Eq. (4.4) as

a function of ln τ . To distinguish from the linear-scale transient f(t), we will label the

log-scale transient functions with upper-case letters as F (x). Similarly, log-scale simple

exponential decay is labeled as H(x), and log-scale decay spectrum is labeled as G(u). For

the log-scale time, one can select an arbitrary unit time τ ∗ such as τ ∗ = 1s, and define

variables as a function of log-scale time x = ln(t/τ ∗) and the log-scale time constant

u = ln(τ/τ ∗), or the equivalent inverse expressions, t = τ ∗ex and τ = τ ∗eu. Substituting

t = τ ∗ex and τ = τ ∗eu into Eq. (4.4) gives Eq. (4.5) for the log-scale response F (x), with

G(u) = τg(τ) being the log-scale decay spectrum, and H(x) = exp[− exp(x)] being the

simple exponential decay with time constant τ = τ ∗ represented as a function of log-scale

time x.

(4.5)

F (x) = f∞ +

∫ +∞

−∞
G(u)e−ex−u

du

= f∞ +

∫ +∞

−∞
G(u)H(x− u)du

Note in particular the argument of the exponentiated exponential in the top line of

Eq. (4.5), whereby x and u appear only in terms of their difference. This fact allows us to

write the second line of Eq. (4.5) which explicitly identifies the convolution form. Thus

by plotting the response with respect to log-scale time x, the difficult-to-invert Fredholm
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integral problem of Eq. (4.4) has been converted into a far more tractable convolution

integral form in Eq. (4.5), with impulse response H(x). Note that the impulse function

H(x) in the convolution integral Eq. (4.5) is simply the kernel function h(t, τ ∗) = e−t/τ∗ in

the Fredholm integral Eq. (4.4) expressed in log-time x. Whereas the transient response

f(t) and its derivative f ′(t) in linear time are changing monotonically versus time t as in

Eq. (4.1), Section 4.3 will show that F (x) always has an inflection point on a semi-log

plot versus x, meaning that the first derivative in log-time dF (x)
dx

has an extremum versus

x. Therefore it can be highly illuminating to plot the transient response on a semi-log

plot versus log-time.

The generalized transient response function Eq. (4.4) in linear time and (4.5) in log-

time clearly can be applied for discrete time constants, as well. Starting with the simple

exponential response in Eq. (4.2), this corresponds to a decay spectrum g(τ) = A0δ(τ−τ0)

in Eq. (4.4), and a log-scale decay spectrum G(u) = A0δ(u − u0) in Eq. (4.5), where

u0 = ln(τ0/τ
∗). Thus the log-scale transient response would be Eq. (4.6).

(4.6) F (x) = f∞ + A0H(x− u0)

The multi-exponential response in Eq. (4.3) corresponds to the decay spectrum g(τ) =∑
Aiδ(τ − τi), and therefore the log-scale spectrum becomes G(u) =

∑
Aiδ(u− ui) with

ui = ln(τi/τ
∗). This G(u) spectrum, when entered into the defining integrals of Eqs.

(4.5), would give the following log-scale response F (x).

(4.7) F (x) = f∞ +
n∑

i=1

AiH(x− ui)
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4.2. Fitting methods for transients with distributed time constants

In most experiments, only the transient response f(t) can be measured directly. The

continuous decay spectrum of interest g(τ) and G(u) are determined by inverting Eq. (4.4)

or (4.5) respectively in linear- or log-time, thereby finding the spectrum that best fits the

experimental data f(t) or equivalently F (x). Several fitting methods have been developed

in literature. The three of them that have been widely used to characterize transient

responses will be discussed below as examples. The continuum multi-exponential (CME)

fit developed here approximates the continuous integral Eqs. (4.4) and (4.5) as multi-

exponential decays with a large number of discrete time constants, without making any

prior assumption about the decay spectrum shape or the transient behavior. Alternatively,

one can assume a decay spectrum shape a priori, such as the Gaussian distribution fit, or

a specific transient behavior, such as the stretched exponential fit, and achieve a best fit

under that constraint, with significantly fewer fit parameters.

4.2.1. Continuum multi-exponential fit

To extend the multi-exponential fit used for transient photoresponse in amorphous mate-

rials previously, [20,87] here we develop a continuum multi-exponential fit method which

works any continuous time constant distribution given sufficient data to describe the whole

transient response f(t). [92]

To numerically solve the inverse integral of Eqs. (4.4) or equivalently (4.5), one can

approximate the continuous decay spectrum as a sum of finely-spaced discrete decay time

constants. It is instructive to sample the log-scale decay spectrum G(u) in a finite range

from umin to umax at a fixed interval ∆u, corresponding to sampling the linear-scale decay
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spectrum g(τ) at exponentially increasing time constant points τi+1 = e∆uτi. The log-

scale decay spectrum G(u) is sampled at log-scale time constants u1, u2, · · · ui, · · · ,

equivalent to sampling the linear-scale decay spectrum g(τ) at time constants τ1 = τ ∗eu1 ,

τ2 = τ ∗eu2 , · · · τi = τ ∗eui , · · · . The distribution density G(u) in the range [ui, ui+1) is

assumed to be a constant Gi, which is equivalent to assuming a constant distribution

density gi = Gi/τi in the range [τi, τi+1). Therefore, the Fredholm integral Eq. (4.4)

is approximated by the multi-exponential form Eq. (4.8a), where ∆τi is the sampling

interval between two adjacent τ values as ∆τi = τi+1 − τi. And the convolution integral

Eq. (4.5) is approximated by the multi-exponential form Eq. (4.8b), where ∆u is a

constant.

f(t) = f∞ +
∑
i

gie
−t/τi∆τi(4.8a)

F (x) = f∞ +
∑
i

GiH(x− ui)∆u(4.8b)

With interval ∆u→ 0, the linear-scale Eq. (4.8a) becomes equivalent to the log-scale Eq.

(4.8b). The two discrete multi-exponential sum equations provide good approximations

to the continuous integral Eqs. (4.4) and (4.5) respectively. [92]

In a real experiment, what one measures is the response fm = f(tm) at m discrete

sampling times t1, t2, · · · tm, and the decay spectrum gi = g(τi) = Gi/τi is also sampled

at n predetermined discrete time constants τ1, τ2, · · · τn. Eq. (4.8) is then reduced to a

matrix multiplication.

(4.9) f =Mθ
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where f =



f (t1)

f (t2)

...

f (tm)


, M = exp


−



0 t1/τ1 t1/τ2 · · · t1/τn

0 t2/τ1 t2/τ2 · · · t2/τn

...
...

...
. . .

...

0 tm/τ1 tm/τ2 · · · tm/τn




, and θ =



f∞

G1∆u

G2∆u

...

Gn∆u


.

In this matrix representation, t1, t2, · · · tm are the time points when measurement

is taken, and τ1, τ2, · · · τn are the spectrum of time constants decided a priori, so each

element in matrix M is known in advance. Vector f is the measured transient response.

All one need to do is to invert this linear equation to get the vector θ and thus the

decay spectrum. However, direct matrix calculation may not yield the best fit result. In

practice, one would choose n < m, so Eq. (4.9) is over-determined, but a small noise in

the measurement data can still lead to a large variation in the decay spectrum solution.

To avoid overfitting measurement noise, the solution to Eq. (4.9) has to be constrained

to minimize the total cost function C defined in Eq. (4.10).

(4.10) C =
∥Mθ − f∥2

2m
+ λ

n∑
i=1

g2i

2m

In this cost function, the first term is just the average square error of the fitted response

Mθ relative to the experimental response f . The second term is the Tikhonov regular-

ization term to suppress false signals coming from noise and overfitting, where λ is the

regularization parameter to determine how much one wants to smooth the decay spectrum

against measurement noise. [88] Note the asymptotic value, f∞, should not be included

in the regularization term.
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A significant advantage of the continuum multi-exponential fit method is that it re-

quires no prior assumptions for the shape of the decay spectrum. As long as data is

taken at time scales long enough to identify the asymptotic background, the continuum

multi-exponential method can be successfully applied to extract decay spectra of any

shape.

4.2.2. Gaussian distribution fit

In many applications, however, the decay spectrum G(u) can be assumed to have a known

distribution, such as the Gaussian distribution fit to be discussed here significantly sim-

plifying the fit procedure.

In a disordered system, the statistical nature of the local coordination configuration

leads one to expect that any activation energy would become broadened to generate a

Gaussian distribution in energy E. [88, 93] Assuming a thermally activated decay re-

sponse, each relaxation time constant τ can be related to an activation energy E through

Eq. (4.11), where ν is the attempt-to-escape frequency, often assumed to be the phonon

frequency, kB is Boltzmann’s constant, and T is the temperature. [88,94]

(4.11) τ = τ ∗eu =
1

ν
eE/kBT

Thus a Gaussian distribution with respect to energy E corresponds to a Gaussian dis-

tributed decay spectrum G(u) in log-time. The Gaussian distributed G(u) has the form

as Eq. (4.12), with integrated spectral weight A, centered at u0, and standard deviation
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s.

(4.12) G(u) =
A

s
√
2π

e−
(u−u0)

2

2s2

This spectral distribution cannot be directly inserted into equation (4.5) to get the tran-

sient response because it does not give a closed form expression for either f(t) or F (t).

In real applications, it is only necessary to numerically calculate the response between

limited time-scales from tmin to tmax, and therefore only a limited decay constant range

between umin and umax needs to be considered, where umin and umax are chosen so that

exp(umin) = τmin ≪ tmin, and exp(umax) = τmax ≫ tmax. With this choice of time con-

stant range, states with time constants below umin have fully relaxed for all data points

at t > 0, and states with time constants above umax would have not started to relax when

the measurement ends. Thus decay spectrum distribution out of the [umin, umax] range

would not affect the transient response in the measurement time range from tmin to tmax].

A Gaussian spectrum exponential response on the log-scale would therefore have the fol-

lowing numerical form, where the asymptotic value f∞ is determined as f∞ = f0−A, and

f0 is the initial value measured at t = 0.

(4.13)

F (x) = f∞ +
A

s
√
2π

∑umax

umin

e−
(ui−u0)

2

2s2 H(x− ui)∆u

+ A

[
1

2
− 1

2
erf

(
umax − u0√

2s

)]
The linear-scale transient response f(t) with time t > 0 can then be calculated from

equation (4.13). By varying the values of fit parameters A, u0, and s, the best Gaussian



116

distribution fit is determined as the parameter set that gives the least square fit to the

experimentally measured transient.

4.2.3. Stretched exponential fit

The transient response f(t) could alternately be assumed to follow a stretched exponential

in time, as discussed here. Historically, stretched exponential transients were observed in

many disordered systems over a large range of time scales. [71,86,89,95–97] The stretched

exponential function corresponds to transient responses with the following linear-scale

and log-scale form, where τ0 is the characteristic time constant, u0 = ln(τ0/τ
∗) is the

characteristic time constant on log-scale, A is total response amplitude, and β is the

stretching exponent.

(4.14)

f(t) = f∞ + Ae−(t/τ0)β

F (x) = f∞ + Ae−(e
x−u0)

β

= f∞ + A ·H[β(x− u0)]

Compared with the simple exponential response in Eq. (4.6), the stretched exponential

function only added a stretched factor β to the log-scale time x inside the argument of H.

Thus on a semi-log plot, the stretched exponential response is just the simple exponential

response literally stretched horizontally by a factor of 1/β around u0.

The stretched exponential decay satisfies Eq. (4.1), thus can be decomposed to dis-

tributed time constants with a decay spectrum G(u). For stretched exponentials with

rational β values, G(u) can be expressed in a closed analytical form. For example, the

stretched exponential decay with β = 1/2 has the analytical expression for G(u) as Eq.
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(4.15). [90]

(4.15) G(u) = A
eu−u0/2

2
√
π

[H(u− u0)]
1/4

Johnston calculated the analytical function of G(u) for a few different rational β values,

and showed that the stretched exponential transient always yields a continuous asymmet-

ric single-peak decay spectrum G(u) for 0 < β < 1. [90] The relationship between the

decay spectrum G(u) features and the fit parameters A, τ0, and β in Eq. (4.14) will be

discussed in detail in Chapter 5.

By varying the values of parameters τ0, A, and β, the least-square fit assuming

stretched exponential transient can be determined. The corresponding decay spectrum

G(u) is then calculated through numerical inverse Laplace transform of Eq. (4.14). [98]

4.2.4. Fitting accuracy for descriptive methods and predictive methods

To distinguish the utility of the various fit methods mentioned above, we propose to

classify a fitting method as being either descriptive, if it makes no a priori assumptions

about the spectrum distribution, or predictive, if it assumes a functional lineshape for the

spectrum that is to be parameterized by a small number of variables. [99]

Descriptive methods attempt to solve the inverse integral Eqs. (4.4) and (4.5) directly

from only the experimental data with no assumption about the time constant distribu-

tion. One example of the descriptive methods is the continuum multi-exponential method.

Because no knowledge about the decay spectrum is assumed a priori in descriptive meth-

ods, a large number of fit parameters are required to adapt to all possible spectrum

lineshapes. In addition, the finite time scales for experimental measurements limit the
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range of time constants that can be studied by descriptive methods. Previous reports on

transient responses observed in amorphous oxides usually have time scales from 1 s to 1

day, [20,71,86,97] which is often insufficient to realistically describe decay spectra with

significant spectral weight at time constants much longer than 1 day. As we will show

in Section 4.3, careful consideration however, does allow one to properly identify when

the measurement duration is sufficient to accurately characterize the bulk of the spectral

distribution.

In some other cases, the response is known to have a certain lineshape for either the

decay spectrum G(u) or for the transient f(t). We will label such fitting methods as

predictive methods because the behavior at long time scales can be extrapolated from

a limited sampling time range of experimental data at short times. The Gaussian dis-

tribution fit and the stretched exponential fit discussed above as examples of predictive

methods. Both fitting methods have only 3 fit parameters. In general, predictive meth-

ods require far fewer fit parameters compared to descriptive methods because the general

structure of the decay spectrum G(u) is predetermined.

To identify the best predictive method for the a-IGZO system and the minimum

measurement time needed to get reliable fitting results, transient responses are simulated

with ideal spectral lineshapes, and fitted with all three fitting methods introduced above.

The two generated datasets assume initial response f0 = 1 and the asymptotic response

f∞ = 0. The first dataset follows the Gaussian spectrum distribution Eq. (4.12), assuming

total spectrum amplitude A = 1, average time constant τ0, and standard deviation s =

ln 10. The model spectrum is plotted as the light blue area in Fig. 4.2(a), and the

corresponding transient response F (x) is calculated through Eq. (4.13). The second
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dataset follows the stretched exponential transient Eq. (4.14), assuming total response

amplitude A = 1, effective time constant τ0, and stretched exponent β = 0.5. The model

spectrum for the second dataset is calculated with Eq. (4.15), and is plotted as the light

green area in Fig. 4.2(b). Transient data is generated from t = 10−5τ0 to t = 103τ0,

with 2000 data points evenly spaced on the semi-log versus log-scale time x. The fitting

accuracy of each fitting method is characterized by the root-mean-square (RMS) fitting

error ε. For each artificial transient responses, the model spectrum for each dataset is

known a priori, and the spectra of the best fits from the fitting methods can be compared

against this model spectrum. The fitting results are plotted in Fig. 4.2(a) and (b), and

the decay spectra corresponding to the fitting results are plotted in Fig. 4.2(c) and (d).

Fig. 4.2 shows that the predictive method is only effective when the correct lineshape

is known in advance. When assuming a Gaussian distributed spectrum in the first dataset

as in Fig. 4.2(a), the Gaussian distribution method (blue dashed line) correctly fits the

transient with negligible fitting error ε < 0.001%, while the stretched exponential method

(green dotted line) fails to fit the transient and exhibits noticeable fitting error ε > 1%.

Similarly, when assuming a stretched exponential transient in the second dataset as in Fig.

4.2(b), the stretched exponential method (green dotted line) correctly fits the transient

with ε < 0.001%, while the Gaussian distribution method (blue dashed line) fails with

much larger error ε > 1%. The difference of the assumptions behind different predictive

methods are more obvious when comparing their decay spectra as in Fig. 4.2(c) and (d).

The stretched exponential method always assumes an asymmetric decay spectrum, thus

fails to fit transient response with symmetric Gaussian distributed spectrum. And the

Gaussian distribution method always assumes a symmetric decay spectrum, thus fails to
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Figure 4.2. (a) Simulated log-scale transient response F (x) (thick gray
line) assuming Gaussian distributed spectrum and (b) simulated transient
response F (x) (thick gray line) assuming stretched exponential transient,
and the fitting results using the continuum multi-exponential (CME) fit
(red solid line), the Gaussian distribution fit (blue dashed line), and the
stretched exponential (SE) fit (green dotted line). (c) and (d) Decay spectra
G(u) corresponding to the fitted responses in (a) and (b), respectively. The
model Gaussian spectrum is plotted as the light blue area, and the model
SE spectrum is plotted as the light green area.

fit the stretched exponential transient with asymmetric decay spectrum. Therefore, the

predictive methods can only be applied when the decay spectrum G(u) structure is known

a priori.
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On the other hand, the descriptive CME method always yields a good fit to the

transient response F (x) and reconstructs the correct decay spectrum G(u) as long as the

measurement lasts long enough to reach the asymptotic value f∞. As shown by the red

lines in Fig. 4.2(a) and (b), the continuum multi-exponential method correctly fits both

datasets with fitting error ε ≈ 0.1%. The decay spectra for the CME fits, plotted as the

red lines in Fig. 4.2(c) and (d), can be symmetric or asymmetric to adapt to model decay

spectra with any shape.

4.2.5. Convergence trend of fitting methods

In many experiments, the data collection is stopped before the response reaches the as-

ymptotic value f∞. This subsection discusses the dependence of the accuracy of the fits

on the measurement duration.

To test the accuracy of fits that work with restricted datasets of reduced measurement

durations tmeas, the generated transient data is truncated at tmeas = 0.1 τ0, τ0, 10 τ0 before

applying the fitting methods. Fig. 4.3 shows the decay spectra G(u) obtained with limited

measurement durations. In Fig. 4.3(a), for the transient response that assumes a Gaussian

distribution as Eq. (4.12), the continuum multi-exponential (CME) descriptive method

gives a good approximation to the whole spectrum only after tmeas = 10 τ0 when the

measurement time exceeds the “mode” or peak in the model spectrum by one order of

magnitude, while the Gaussian predictive method fit accurately reconstructs the whole

spectrum already at tmeas = 0.1 τ0. The incorrect stretched exponential lineshape fails to

reconstruct the model Gaussian spectrum regardless of measurement duration. A similar

trend is observed in Fig. 4.3(b) in the dataset that assumes a stretched exponential decay
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Figure 4.3. (a) Plot of a simulated Gaussian distributed spectrum (light
blue area), and (b) of a simulated spectrum associated with the stretched
exponential (SE) model (light green area), with curves indicating the de-
cay spectra corresponding to the Gaussian predictive method (blue dashed
lines), stretched exponential (SE) predictive method (green dotted lines),
and continuum multi-exponential (CME) descriptive method (red lines).
Three measurement durations tmeas = 0.1 τ0, τ0, 10 τ0 are displayed as
white windows from left to right in each panel. When the predictive line-
shape matches the simulated data lineshape, the measurement duration can
be quite short, only 1/10 of the τ0 time scale. However, if the predictive
lineshape does not match the simulated data lineshape, the convergence
is poor. The CME method, on the other hand always converges well, but
requires a measurement of 10 times τ0.
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Figure 4.4. Convergence plots: The convergence trend of the decay spec-
trum shape from the Gaussian predictive method (blue), the stretched
exponential (SE) predictive method (green), and the continuum multi-
exponential (CME) descriptive model (red) as a function of measurement
duration tmeas when applied to (a) a transient generated assuming a Gauss-
ian distributed spectrum, and (b) a stretched exponential transient. Line-
shape accuracy is identified by the spectral peak position up, the linewidth
∆u, the integrated area A, and the RMS error ε.

following Eq. (4.14). The CME descriptive method reconstructs the whole spectrum

only at tmeas = 10 τ0, while the stretched exponential predictive method reconstructs the

spectrum even at tmeas = 0.1 τ0. The Gaussian predictive method cannot reconstruct the

stretched exponential spectrum since it is the wrong lineshape.

The convergence trends of fitted decay spectra as a function of measurement duration

tmeas using different fitting methods are compared in Fig. 4.4. To graphically illustrate

the fitting accuracy of all methods, the lineshape of log-scale decay spectrum G(u) is

characterized with three main features: the mode position up, full-width-half-maximum
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width ∆u, and the total spectrum amplitude A. The convergence trends of the RMS

fitting error ε are also plotted. When the correct predictive method is used, the fitted

decay spectrum converges before tmeas = 0.1 τ0, with error ε keeping low. However, when

a descriptive method or a wrong predictive method is used, the fitted decay spectrum only

starts to converge from tmeas = 10 τ0. Since the descriptive CME method can adapt to any

decay spectrum shape, the fitting error ε of the descriptive method remains low, while an

incorrect predictive method that fails to fit the transient will have a large, non-converging

error ε with increasing tmeas.

With this convergence trend, we propose an experimental approach for fitting arbi-

trary non-exponential transients. Here the Gaussian distribution method and stretched

exponential method are used as examples, but this approach can be applied to any other

predictive method. First, the most accurate predictive method should be identified from

candidate models in the literature. Any such predictive method should start to converge

at a measurement duration significantly smaller than the mode or peak time constant

τp = τ ∗eup in the fitted spectrum G(u), i.e. tmeas ≪ τp. If a predictive method is not

available or needs to be verified, then the descriptive method should be used but will

require significantly longer time to converge, namely tmeas ≫ τp. For a-IGZO system, the

estimated measurement duration using descriptive methods can be several months, while

using predictive methods can reduce it to several hours. [86]

In the next section, a more generalizable analytical method is derived to identify

the dominant time constant in the decay spectrum, which is also the minimum useful

measurement duration for characterizing a distributed decay response, without having to

fit the transient response.
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4.3. Semi-log transient plot and log-scale derivative

As shown by Eq. (4.5), transient response F (x) has the convolution form when plotted

on the semi-log plot as a function of log-time x. This section will discuss the advantage of

semi-log plots and use the properties of convolution integrals to identify experimentally

necessary information such as the minimum useful measurement duration directly from

transient data plotted on a semi-log scale.

Since Eq. (4.5) has the convolution form, the derivative F ′(x) with respect to log-scale

time x is also a convolution of G(u) with impulse response H ′(x), as shown in Eq. (4.16).

Equivalently, higher order derivatives can be expressed as the convolution of G(u) with

impulse response H ′′(x), H ′′′(x) · · · etc.

(4.16) F ′(x) =

∫ +∞

−∞
G(u)H ′(x− u)du

For transient responses with large time constant components, it is often hard to determine

the asymptotic background f∞ accurately. Solving the decay spectrum G(u) from the

derivative form Eq. (4.16) would help increase the accuracy of f∞ estimation.

The shape of the kernel function h(t, τ0) = e−t/τ0 in Eq. (4.4) and the impulse functions

H(x) = exp[−exp(x)] and −H ′(x) in Eqs. (4.5) and (4.16) are plotted in Figure 4.5, with

the unit time τ ∗ chosen to be τ ∗ = τ0. The curve of H(x) shows an inflection point at x =

0, corresponding to a “unimodal” or single-peak structure of −H ′(x). The derivative peak

−H ′(x) shows integrated area
∫ +∞
−∞ −H ′(x)dx = 1, mode position xH,p = 0, mode height

−H ′(xH,p) ≈ 0.37, and average position
∫ +∞
−∞ −x · H ′(x)dx = −Eu, where Eu ≈ 0.577

is Euler constant. The asymmetric −H ′(x) peak has full-width half maximum (FWHM)
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Figure 4.5. Plots of (a) simple exponential decay function h(t, τ0), (b) unit
decay response H(x) as a function of log-time x, and (c) derivative of unit
decay response −H ′(x). The derivative peak maximum xH,p is indicated
with the solid circle and the vertical line. The width at half maximum is
indicated with the horizontal line.

∆xH ≈ 2.45, with larger asymmetric left width ∆x−H ≈ 1.46 and smaller right width

∆x+H ≈ 0.99.

As shown by Eq. (4.16) and Fig. 4.5, the derivative peak−F ′(x) is just the convolution

of decay spectrum G(u) with the unimodal impulse response −H ′(x). Therefore, −F ′(x)

would signatures of the lineshape of G(u). To illustrate the connection between the

log-scale responses and the decay spectrum shapes, transient responses assuming simple

exponential decays (simple), Gaussian-shaped spectrum decays (Gaussian spectrum), and

stretched exponential decays (stretched) are generated and compared in Fig. 4.6. All

decays assume an initial value f0 = 1 and an asymptotic background f∞ = 0, so that they
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all have total response amplitude A = 1. The characteristic time constant for all decays

are τ0. The Gaussian distribution spectrum is chosen with a standard deviation s = ln 10,

representing a time constant distribution spanning around 2 orders of magnitude, and

the stretched exponential decay assumes a stretching exponent β = 0.5, representing a

typical β value reported for stretched exponential decays.

The comparison of the linear-scale response f(t), the semi-log response F (x), the semi-

log plot derivatives −F ′(x), and the corresponding log-scale decay spectrum G(u) for the

generated transient responses are plotted in Fig. 4.6. In Fig. 4.6(a), all decay responses

look similar as they all obey Eq. (4.1). Transient responses with distributed time con-

stants (Gaussian spectrum and stretched exponential) show faster decay at short time

scales and slower decay at long time scales compared to the simple exponential response.

In Fig. 4.6(b), simple exponential clearly shows the steepest decay on the semi-log plot.

Any transient response with distributed time constants would have a more gradual decay

on the semi-log plot than a simple exponential. Consequently, on the semi-log derivative

plot Fig. 4.6(c), simple exponential decay shows the highest peak height with the nar-

rowest peak width. The Gaussian spectrum decay shows a derivative peak that is almost

symmetric while the stretched exponential decay shows a peak with heavier tail on the

short time side. When deconvoluted to the log-scale decay spectra in Fig. 4.6(d), the

Gaussian spectrum is perfectly symmetric while stretched exponential spectrum has a

heavier tail with small time constants. The simple exponential decay spectrum is just a

delta function, which has the narrowest possible spectrum width 0. The visually identi-

fied features of the semi-log derivative peaks and the log-scale decay spectra, namely the

peak (mode) position, peak height, and the full-width at half-maximum (FWHM) width
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Figure 4.6. (a) Transient responses f(t) following simple exponential (red
solid line), Gaussian distributed multi-exponential (blue dashed line), and
stretched exponential (green dotted line) in linear time scale t. (b) Transient
responses F (x) in (a) plotted in log-time x = ln(t/τ0). (c) The derivative
−F ′(x) with respect to log-time x. Inflection points xp in the original semi-
log plot appear as maxima in the derivatives in panel (c) and are indicated
with solid circles and vertical lines. Full width at half-maximum ∆x are
indicated with horizontal lines. (d) Time constant distribution spectrum
G(u) in log time-constant scale u = ln(τ/τ0) for transient responses in
panels (a) and (b). The solid circles and vertical lines in panel (d) indicate
the maxima u0,p in the decay spectra, and the horizontal lines indicate the
half-maximum width ∆u0 of the each spectrum.

of each curve, are labeled in Fig. 4.6(c) and (d). The features of the semi-log deriva-

tive correspond to analogous features of the log-scale decay spectrum since the derivative
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peak −F ′(x) is just the convolution of the decay spectrum G(u) with the unimodal im-

pulse function −H ′(x). Section 4.4 will exploit this correlation to directly construct an

estimated decay spectrum G(u) using those visually identified features of the semi-log

derivative peak −F ′(x).

Just as with the example transients in Fig. 4.6(b), a general log-scale transient F (x)

always has at least one inflection point with d2F (x)/dx2 = 0. For any transient response

f(t) relaxing from a starting value f0 to an asymptotic value f∞, the log-scale response

F (x) has asymptotic values for x→ ±∞, as limx→−∞ F (x) = f0 and limx→+∞ F (x) = f∞.

Therefore the derivative −F ′(x) also has asymptotic values limx→±∞−F ′(x) = 0. For a

decay transient, −F ′(x) > 0, thus −F ′(x) has at least one maximum, corresponding to

an inflection point for F (x). Consequently, since −F ′(x) is the convolution of the decay

spectrum G(u) and the unimodal impulse response −H ′(x), as shown in Eq. (4.16), the

log-scale decay spectrum G(u) would also have at least one maximum with asymptotic

behavior limu→±∞G(u) = 0. Most time constant distributions G(u) reported in literature

have a unimodal structure with only one maximum. [91] Thus the following discussions

will only consider the cases with unimodal G(u) spectra.

The inflection point on the semi-log plot defines the minimum measurement duration

needed to give a reliable characterization of a non-exponential transient response. Here

we define the log-scale inflection point position as xp and the corresponding linear time

tp = τ ∗exp . With measurement duration shorter than tp, one cannot reliably extrapolate

the inflection point position xp and the derivative at x > xp without knowing the decay

spectrum shape a priori. As demonstrated in the section 4.2.5, lack of long term transient
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data would cause spurious artifacts in the extracted decay spectrum when using descrip-

tive methods. In contrast, with measurement duration far beyond the inflection point tp,

the large time-scale side of the derivative peak −F ′(x) can be more reliably extrapolated

from the measured segment of the peak without reaching the asymptotic value f∞.

Therefore, the best way to represent a non-exponential transient response is on a

semi-log plot that plots data as amplitude vs. log t. Many previous reports showed

the transient data on linear plots [20,86,100,101], log-log plots [20,100], or log-linear

plots with amplitude on log-scale and t on linear scale [71]. Those representations of the

data make it difficult to identify the inflection point tp and the spread of time constant

distribution ∆x, which can result in insufficient data collection and misinterpretation of

the transient behavior. On the other hand, the semi-log plots, such as used by Kakalios

et al., allow one to identify the dominant time constant τ and the decay spectrum line

width ∆u dependence on temperature T in a-Si:H thin films. [89]

4.4. Introducing the skew normal: Best estimation of time constant

distribution

In this section, we propose a new fit function, the skew-normal or skew-Gaussian

lineshape, which is more powerful that the Gaussian or stretched exponential alone, and

can, in fact, interpolate reasonably well between these two lineshapes with the help of

one additional fit parameter to control skewness. Fig. 4.6 and Eq. (4.16) show that the

structure of the derivative peak −F ′(x) can be correlated with key features of the decay

spectrum G(u). Therefore, it is possible to estimate G(u) directly from −F ′(x) without
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doing data fitting. This section will develop a set of empirical equations to construct an

estimated decay spectrum G(u) from a few key visual features of −F ′(x).

Several attempts have been made by other authors to estimate the decay spectrum

G(u) without using the fitting methods we introduced in Section 4.2. By approximating

the convolution impulse function −H ′(x) as a delta function, Jackson et al. proposed

to use −F ′(x) directly as a rough estimation of the decay spectrum G(u). [102] This

method provides a good approximation only when the width ∆u of the decay spectrum is

significantly wider than the width ∆xH of the impulse function −H ′(x), i.e. ∆u≫ ∆xH ,

and the estimated decay spectrum can only achieve a time resolution of order ∆xH .

The decay spectrum G(u) was subsequently connected to the log-scale derivative −F ′(x)

through their moments in log-time by Zorn. [91] Using the properties of the convolution

integral, Zorn showed that the first, second, and third central moments of the derivative

peak −F ′(x) in log-time can each be expressed as the sum of the moments of the decay

spectrum G(u) added to the corresponding moments of the impulse function −H ′(x).

Therefore, the moments of the decay spectrum G(u) can be calculated from those of

the measured derivative −F ′(x), and the decay spectrum can be constructed from the

moments. However, calculating the moments of −F ′(x) requires a complete measurement

of the response from x = −∞ to +∞, corresponding to linear-scale time from t = 0

to ∞. In a real experiment, the measurement resolution may not be able to cover the

initial response at short times, or the entire tail of the response at long times. Thus the

restricted range of any experimentally accessible set of data makes Zorn’s method difficult

to implement in practice.
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Instead, in this section, we propose a more robust way to visually identify four key fea-

tures to characterize the semi-log derivative −F ′(x) and thereby estimate the 4 paramters

of the skew-normal distribution. The first feature is the characteristic time scale of the

response, characterized by the inflection point position xp. The second feature is the

amplitude of the response, characterized by the height B at the inflection point. The

spread of time constant distribution is characterized by the full width at half-maximum

∆x of the derivative peak, constituting the third feature. And the asymmetry 1 < ϵ < 1

is quantified using the half width ∆x− and ∆x+ of the derivative peak at half-maximum

point to the left of xp and to the right of xp, respectively, defining the unitless asym-

metry ϵ = (∆x+ − ∆x−)/∆x as the fourth and final feature needed to characterize the

derivative peak −F ′(x). With a measurement duration sufficient to estimate the right

half-maximum slope point on the semi-log plot, the values for all four features can be

identified with an incomplete dataset achieving significant advantage over the method of

Zorn.

The skew normal distribution function GSN(u) is defined in Eq. (4.17), with the four

parameters A, α, u0, and s.

(4.17) GSN(u) =
A√
2π

e−
(u−u0)

2

2s2

[
1 + erf

(
α · u− u0√

2s

)]

The skew normal distribution function is chosen to estimate the decay spectrum because

it has two independent parameters s and α to describe the distribution line width and

asymmetry respectively, allowing a single function to approximate most experimentally

observed decay spectra which are unimodal (single-peak). Empirical functions that have
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been used to fit the decay spectrum or the transient response previously have not in-

cluded an adjustable asymmetry parameter. [91] For example, the Gaussian distribution

fit function Eq. (4.12) assumes the spectrum to be symmetric, and the stretched ex-

ponential fit Eq. (4.14) assumes a correlation between spectrum width and asymmetry.

On the other hand, for the skew normal distribution, spectral line-width is mainly de-

termined by the parameter s, and asymmetry is mainly determined by the parameter α.

Other asymmetric distribution functions with four parameters, such as the split normal

distribution, [103] can also be used to fit the peak shape. However, without introducing

more shape parameters, those functions do not necessarily apply to a wider range of decay

spectra. [104]

What remains, then, is to identify an empirical relation that defines the four skew

normal parameters A, α, u0, and s in terms of the four lineshape measures of the exper-

imental data B, ϵ, xp, and ∆x. For the skew normal distribution function GSN(u), its

first uSN,1 and second uSN,2 central moments can be calculated analytically as shown in

Eq. (4.18).

uSN,1 = ⟨u⟩ = u0 + sδ

√
2

π
, where δ =

α√
1 + α2

(4.18a)

uSN,2 =
⟨
u2
⟩
− ⟨u⟩2 = s2

(
1− 2δ2

π

)
(4.18b)

Combining the moments of the skew normal distribution GSN(u) with the relationship

between the moments of the decay spectrum G(u) and log-scale derivative −F ′(x) shown

by Zorn, here we developed a set of empirical equations to find the skew normal fitting

parameters of the decay spectrum from the derivative peak features, Eqs. (4.19), where
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−Eu ≈ −0.5772 is mean position of the impulse response −H ′(x), and ϵH ≈ −0.192 is

the asymmetry of the impulse response −H ′(x).

δ(ϵ,∆x) =

{[
(ϵ− ϵH)

∆x2

∆x2 −∆x2H
+ ϵH

]
/0.173

}1/5

(4.19a)

α(ϵ,∆x) = δ(ϵ,∆x)/
√
1− δ(ϵ,∆x)2(4.19b)

s(ϵ,∆x) =

√
∆x2 −∆x2H

8 ln 2[1− 2δ(ϵ,∆)x2/π]
(4.19c)

u0(xp, ϵ,∆x) = xp + Eu · ∆x
2 −∆x2H
∆x2

−
√

2

π
s · erf

[
δ(ϵ,∆x)

√
π

2

]
(4.19d)

A(B,∆x) = B ·∆x/0.93(4.19e)

The above equations have been empirically identified as described below. The asym-

metry parameter δ and therefore α of GSN(u) is directly estimated from ϵ and ∆x in the

log-scale derivative −F ′(x) with Eq. (4.19b). For very wide spectra, −F ′(x) has almost

the same asymmetry as GSN(u); and for very narrow spectra, −F ′(x) has almost the

same asymmetry as −H ′(x). This justifies the weighting factor ∆x2

∆x2−∆x2
H

that is multi-

plied to ϵ in Eq. (4.19a). The width parameter s of GSN(u) increases with the width of

−F ′(x) following the empirical Eq. (4.19c), where the factor
√
8 ln 2 is the ratio between

FWHM and standard deviation in Gaussian distribution, and the factor
√
1− 2δ2/π in

the denominator of Eq. (4.19c) is the ratio between the standard deviation and the width

parameter s in skew normal distribution in Eq.(4.18b). The position parameter u0 of

GSN(u) in Eq. (4.19d) is estimated from the mean position (first central moment uSN,1 in

Eq.(4.18a)) of GSN(u) and the mean position difference Eu between GSN(u) and −F ′(x).

As shown by Eq.(4.20), the integrated amplitude A of GSN(u) equals to the integrated
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amplitude of −F ′(x), which is approximated by the product of mode height B and FWHM

width ∆x of −F ′(x), giving the empirical Eq. (4.19e).

(4.20)

∫ ∞

−∞
−F ′(x)dx =

∫ ∞

−∞
GSN(u)du

∫ ∞

−∞
−H ′(x)dx =

∫ ∞

−∞
GSN(u)du = A

The empirical Eqs. (4.19) have been tested with datasets assuming the Gaussian spec-

trum as well as the stretched exponential function. Several different values for the width

parameter s in the Gaussian spectra and the stretched exponent β in the stretched expo-

nential transients are used to generate model spectra with different widths and shapes.

Fig. 4.7 shows comparison of the approximated skew normal spectra (gray lines) using

the empirical Eq. (4.19) with the model spectra (blue and green lines) used to generate

the test transient responses. For all model spectra assuming a Gaussian shape, Eq. (4.19)

constructs skew normal spectra that have over 90 % overlapped area with the model spec-

tra. The same level of accuracy is also achieved for model spectra assuming a stretched

exponential transient except when β → 1. As β → 1, the spectrum width ∆u → 0, thus

the structure of the derivative peak −F ′(x) is mainly determined by −H ′(x) instead of

G(u), making it hard to accurately estimate the G(u) structure from −H ′(x). Neverthe-

less, for all model spectra shapes, the estimated skew normal spectra have less than 3 %

error for the integrated spectral amplitudes.

4.5. Analysis of long term transient photoresponse in a-IGZO

The data analysis methods developed in the previous section will be applied to analyze

the long-term transient photoresponse measured in a-IGZO thin film samples. The 5

mTorr capped sample is used here as a example.
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Figure 4.7. (a-c) Comparison of the skew normal (SN) distribution spectra
with the Gaussian distributed spectra with the width parameter s = 1.003,
1.729, and 5.042 respectively. (d-f) Comparison of the skew normal (SN)
distribution spectra with the Gaussian distribution spectra with the SE
shape parameter β = 0.7, 0.5, and 0.2 respectively. The semi-log response
F (x), semi-log derivative −F ′(x), and log-scale spectrum G(u) of the model
Gaussian spectrum transients are plotted as the blue lines, and those of the
model stretched exponential transients are plotted as the green lines. All
corresponding skew normal fits are plotted as the light gray lines and in
general show the ability to provide excellent fits to both the Gaussian and
stretched exponential lineshapes.
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Fig. 4.8(a) and (b) shows the transient responses of photo-excitation and dark re-

laxation on semi-log plots. Even though the transients seems to be approaching their

asymptotic value when plotted as a function of linear-scale time in Fig. 4.1, the semi-log

plots clearly indicate that both transients are still far from the steady state values. Fig.

4.8(c) and (d) shows the semi-log derivative of photo-excitation and dark relaxation as

the red lines. The dark relaxation is yet to reach the inflection point, while the photo-

excitation has clearly passed the inflection point xp, but not yet the right half-maximum

point. The right half width ∆x+ can still be estimated by extrapolating the semi-log de-

rivative plot. From Fig. 4.8(c), the visual features of the derivative peak are xp = 12.97,

B = 24.55 S/cm, ∆x− = 1.8, and ∆x+ = 2.82. Therefore, ∆x = ∆x− + ∆x+ = 4.62,

and ϵ = (∆x+ −∆x−)/∆x = 0.22. The fact that ∆x > ∆xH = 2.45 clearly indicates the

existence of distributed time constants.

By putting the values of the visual features into Eq. (4.19), parameters of the skew

normal distribution spectrum can be calculated as α = 4, s = 2.63, u0 = 11.95, and

A = 122 S/cm. Fig. 4.8(e) shows the log-scale decay spectrum estimated assuming

a skew normal distribution. An asymmetry spectrum with a heavier tail on the large

time constant side and mode time constant around 5 × 105 s is expected. From the

skew normal spectrum, the asymptotic steady state conductivity under illumination is

estimated as 256 S/cm. Transient photoconductivity and its log-scale derivative following

the estimated skew normal spectrum are plotted in Fig. 4.8(a) and (c) as the orange

lines. Note there is a small bump in the measured log-scale derivative at around 3× 103

s in Fig. 4.8(c). This bump does not affect the main peak position nor width, thus is not
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reconstructed in the skew normal spectrum. However, it causes an underestimated skew

normal photoconductivity as shown in Fig. 4.8(a).



139

Figure 4.8. (a) Semi-log plot of measured transient photoconductivity of
the 5 mTorr capped sample during photo-illumination (thick red line) and
the transient photoconductivity corresponding to the estimated skew nor-
mal decay spectrum (thin orange line). (b) Semi-log plot of transient pho-
toconductivity of the 5 mTorr capped sample during dark relaxation. (c)
Derivative of the semi-log photo-excitation transient plots in (a). Both the
measured derivative (thick red line) and the derivative from the estimated
skew normal decay spectrum (thin orange line) are plotted. The maximum
derivative point in the measured derivative is indicated by the solid circle
and the vertical line. The half-maximum derivative points are indicated
by the horizontal line. (d) Derivative of the semi-log dark relaxation tran-
sient plot in (b). (e) Skew normal decay spectrum of the photo-excitation
transient plot in (a), estimated using the empirical Eq. (4.19).
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CHAPTER 5

Physical Mechanisms for Transient Photoresponse in a-IGZO

This chapter discusses how the stretched exponential function empirically fits the

measured photoresponse, and which physical mechanisms possibly lead to the stretched

exponential response. Section 5.1 introduces the stretched exponential function, which

describes both the short-term and long-term transient photoresponse in a-IGZO in a single

function. Section 5.2 analyzes the stretched exponential transients using the distributed

time constant method discussed in Chapter 4. Section 5.3 and 5.4 introduce two contrast-

ing physical models that can explain the experimentally observed stretched exponential

responses, the first assuming distributed activation energies and the second a continuous-

time random walk process, respectively. Section 5.5 reviews microscopic mechanisms for

the a-IGZO photoresponse proposed in literature, and discusses why they may not explain

the observed stretched exponential transients. Based on molecular dynamics simulation

results and the continuous-time random walk model, a possible microscopic mechanism

is then proposed to explain the stretched exponential photoresponse in a-IGZO.

5.1. Stretched exponential fit for transient photoresponse in a-IGZO

The stretched exponential function is given by

(5.1) f(t) = f∞ + Ae−(t/τ0)β ,
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where f(t) evolves towards an equilibrium asymptotic value f∞ in response to a sudden

change of the excitation.

On the semi-log plot, the log-scale equation for the stretched exponential function is

given by

(5.2) F (x) = f∞ + A ·H[β(x− u0)],

where x = ln(t/τ ∗) is log-scale time with unit time scale defined as τ ∗, u0 = ln(τ0/τ
∗)

is the characteristic log-scale time constant, and H(x) = e−ex is the simple exponential

function exp(−t/τ ∗) plotted with respect to log-scale time x.

There are three fit parameters in the stretched exponential function. Parameter A is

the total response amplitude, which is also the integrated decay spectrum density when

analyzed as distributed time constants. The asymptotic value f∞ is determined from A

using the initial value f0 at t = 0.

(5.3) f0 = f(t = 0) = f∞ + A

Parameter τ0 is the characteristic time constant, which is also the inflection point of the

transient when plotted on a semi-log plot versus log t. However, it is not the average time

constant of the decay spectrum, nor the most probable time constant. [90] Parameter β

is the stretching exponent, constrained to be 0 < β ≤ 1. When β = 1, the stretched

exponential reverts to the simple exponential.

To understand the parameter dependence of the stretched exponentials, transient re-

sponses with various β values simulated and compared. Stretched exponential responses

can be normalized to have unit amplitude. Transients with different characteristic time
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Figure 5.1. The stretched exponential responses for β = 1, 0.75, 0.50, and
0.25, respectively. The transient responses are plotted versus linear time
t in (a) and log-scale time x in (b). Note that the stretched exponential
curves in (b) have the same shape as the simple exponential curve with
β = 0, except linearly stretched by a factor of 1/β.

constant τ0 can also be normalized on the time axis to have unit characteristic time con-

stant, which is equivalent to a horizontal translation on the semi-log plot versus log t.

Thus all simulated responses assume a unit response amplitude A = 1, and the charac-

teristic time constant τ0 is used as a reference on the time axes. The stretching exponent

β is the only remaining shape parameter for the transient response curve and the decay

spectrum.

Fig. 5.1 plots the simulated transient responses as a function of linear time t and log

time x = ln(t/τ ∗). All stretched exponential transients relax to 1/e of the initial amplitude

at the characteristic time constant τ0. Smaller β values would make the transient faster at

all time scales smaller than τ0, and slower at all time scales larger than τ0. By calculating

the derivative of the linear-scale transient f(t), it is clear that the stretched exponential

has infinite derivative at t = 0 for all β < 1. Comparing the stretched exponential

transients with 0 < β < 1 to the simple exponential transient with β = 1, it is clear from
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Eq. (5.1) that the scaling factor β within the argument of H results in the semi-log plots

with different β being the same as a simple exponential decay scaled or “stretched” by a

factor of 1/β around u0.

The stretched exponential function has been widely used to describe many non-

exponential transient responses. The first application can be dated back to 1854 when

R. Kohlrausch applied it to describe the charge decay of a capacitor. [105] His son F.

Kohlrausch later applied the same function to describe mechanical relaxation in glass

fibers. [106] In 1970, Williams and Watts rediscovered the stretched exponential function

to empirically fit the time evolution of dielectric relaxation, which was previously analyzed

in the frequency-domain by assuming a dielectric constant with real and the imaginary

frequency dependencies. [107] Thus the stretched exponential function is also referred to

as the Kohlrausch function or the Kohlrausch-Williams-Watts function in literature. [108]

Since then, the stretched exponential function has been adapted to empirically fit non-

exponential transients in many different systems. For example, the structural relaxation

in glassy materials, [109] the defect generation and relaxation in a-Si, [89,110] the thresh-

old voltage drift in amorphous oxide thin film transistors, [60,111] the photoconductivity

in amorphous oxide thin films, [71,86] and even the survival probability evolution in stock

market [112] are all found to follow the stretched exponential function.

The stretched exponential function can also be applied to fit the transient photocon-

ductivity measured in a-IGZO thin films. Fig. 5.2 shows the fit results for the capped 50

nm a-IGZO thin film sample deposited at PO2 = 5 mTorr. For both the photo-excitation

and dark relaxation transients, the stretched exponential function shows a good fit over
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Figure 5.2. Stretched exponential fit for transient responses measured in
the 50 nm capped 5 mTorr sample. Panel (a) shows the photo-excitation
transient, and panel (b) shows the dark relaxation transient. The mea-
sured transient photoconductivities are plotted as the red squares, and the
stretched exponential fittings are plotted as the gray lines.

time scales of almost 7 orders of magnitude, ranging from t < 1 s to 7 × 106 s (around

four months), using only three fit parameters.

5.2. Time constant distribution of the stretched exponential transients

Transient responses following the stretched exponential function satisfy Eq. (4.1), thus

can be analyzed using the distributed time constant method introduced in Chapter 4.

With the analytical expression for the transient response f(t) as in Eq. (5.1), the time

constant distribution g(τ) and G(u) can be directly calculated through numerical inverse

Laplace transformation of Eq. (5.1). [98]

The semi-log decay spectra G(u) for stretched exponentials with different β values are

compared in Fig. 5.3(a), and an empirical relation is proposed to relate the linewidth ∆u

to the exponent β. When β = 1, the spectrum is simply a delta function with all spectral
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Figure 5.3. (a) Log-scale time constant distribution G(u) corresponding to
stretched exponential responses with different β values. The left-right arrow
indicates the full-width at half-maximum linewidth ∆u. (b) Dependence
of ∆u on the β values for stretched exponential responses. Squares are
calculated directly using inverse Laplace transform and the solid line is the
empirical relation in Eq. (5.4). The inset shows how well the empirical fit
matches the calculated spectrum linewidths on a log-log scale.

density concentrated at u0 = ln(τ0/τ
∗). When β decreases, the spectrum expands to have

a wider distribution. All β < 1 distributions show an asymmetric shape with a longer

tail on the short time constant side. The spread of the time constant distribution can be

characterized by the full-width at half maximum (FWHM) ∆u of the decay spectrum.

As plotted in Fig. 5.3(b), ∆u decreases monotonically with increasing β. Thus ∆u and

β for a stretched exponential can be directly estimated from each other. The correlation

between β and ∆u can be approximated by a simple empirical equation as Eq. (5.4),

which has error within 8% for any β in the range 0.05 < β ≤ 1. The log-log inset to

Fig. 5.3(b) illustrates the accuracy of Eq. (5.4).

(5.4) ∆u = 4.6
(
β−0.81 − 1

)
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Figure 5.4. Log-scale decay spectra G(u) for the stretched exponential
fittings to transient photoconductivity during (a) photo-excitation and (b)
dark relaxation in the 50 nm capped 5 mTorr a-IGZO sample. The decay
spectra are deduced from inverse Laplace transforms of stretched exponen-
tial fittings. The dark red segments of the curves correspond to the time
scales with directly measured responses, and the red segments correspond
to an extrapolation following the stretched exponential function beyond the
measured time scales.

Note that although the characteristic time constant τ0 is the inflection point for the

semi-log transient, it cannot be directly identified from the visual features of the decay

spectrum.

The distributed time constant analysis is also applied to the stretched exponential

fits to the photoresponse in the capped 5 mTorr a-IGZO thin film sample, as shown in

Fig. 5.4. The segments with dark red color indicate the time scales that are directly

measured, while the segments at larger time scales are extrapolated using the stretched

exponential function. Note that for the dark relaxation transient, the directly measured

time range only covers a small portion of the total spectrum, but nonetheless the stretched

exponential function provides a reasonable extrapolation, and predicts a smooth spectral

shape with the most probable time constant much larger than the measurement duration.
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The stretched exponential fit allows extrapolation of the photoresponse to longer time

scales. The original experimental data were taken between tmin = 30 ms and tmax ≈ 7×106

s (3 months), while the stretched exponential fit predicts decay components with time

scale up to 6 × 107 s (2 years) as shown in Fig. 5.4. The advantage of the stretched

exponential fit is that it has been verified up to month-long time scale in amorphous

systems. [89,95,110] Thus, photoresponse at times shorter than tmin or longer than tmax

can be extrapolated by at least an order of magnitude. One can therefore estimate the time

constant distribution over a broader range than that is directly measurable. Extrapolating

further by orders of magnitude allows one to predict even the peak and the linewidth of the

dark relaxation decay spectrum, though this result may be more speculative. Note that a

direct measurement to the half maximum of the photo excitation spectrum on the large

time constant side would have required 5 weeks, and a measurement of the same features

of the dark relaxation spectrum would have required 18 months. Thus, the stretched

exponential fit establishes a time-saving protocol for predicting the decay spectrum of

transients with extremely slow time constant components in their distribution.

It is worth noting that an accurate decay spectrum requires proper estimation of

the asymptotic value f∞. Due to the extremely slow response of the photoconductivity,

the asymptotic conductivity cannot be simply assumed to be the initial dark value as

proposed previously, [20] since the as-grown samples may not be at equilibrium. The

best way to assess the asymptotic value is with a time-dependent study and a stretched

exponential line fit as described above. For a transient response with a large characteristic

time constant τ0, most of the spectral weight is found at time scales much longer than
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the measurement duration. Underestimating the total response amplitude will cause the

decay spectrum to be artificially cut off at time scales around the measurement duration.

5.3. Distributed activation energy model

The distributed time constants observed in non-exponential transients have been pre-

viously modeled by some groups as being physically the result of distributed activation

energies. [20, 113] IF one considers a thermally activated relaxation process to a state

with a binding energy E, the relaxation time constant τ would have a one-to-one corre-

spondence with the energy level E through the reciprocal of an activated rate equation

shown in Eq. (5.5), in which ν is the attempt-to-escape frequency, assumed to be the same

for all activation energies, kB is Boltzmann’s constant, and T is the temperature.

(5.5) τ =
1

ν
eE/kBT

Thus the log-scale decay constant u is thus linearly related to the activation energy E.

(5.6) u = ln τ = E/kBT − ln ν

With different assumptions for the ν value, the activation energy distributions D(E) will

shift to higher or lower energy levels, while the distribution shape, height, and linewidth

will remain the same. In such a model, D(E) will be directly proportional to the conduc-

tivity decay spectrum G(u) according to Eq. (5.7), where µ is the carrier mobility.

(5.7) D(E) =
1

kBT

G[u(E)]

µe
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Figure 5.5. Assuming the distributed activation model, one can plot the
density of state (DOS) distributions D(E) for the stretched exponential
fittings to the transient photoconductivities in the capped PO2 = 5 mTorr
sample. E indicates binding energy below the mobility gap, such that
states to the right would be more deeply bound. Panel (a) shows the DOS
for photo-excitation and panel (b) for dark relaxation. The segments with
dark red color indicate energy ranges with time constants that were directly
measured. The DOS distributions are derived assuming the attempt-to-
escape frequency ν = 1013 Hz.

Following the distributed activation energy model, DOS distributions for the transient

photoconductivities in the 5 mTorr capped a-IGZO sample can be calculated. Fig. 5.5

shows the DOS for photo-excitation and dark relaxation calculated using their stretched

exponential fittings. Here we assume the attempt-to-escape frequency to be ν = 1013

Hz, the same as the phonon frequency, [86, 87] and consistent with a previous report

on a-IGZO TFTs that also suggested ν to be between 1012 and 1013 Hz. [96] The DOS

distributions are calculated with en electron mobility µ = 17 cm2/Vs, which is the average

Hall mobility we measured in PLD-grown a-IGZO thin films deposited at PO2 = 5 mTorr.

The stretched exponential fits in Fig. 5.4 are inverse-Laplace transformed here instead

of using the directly measured transients so that the DOS distributions at large energy
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levels can be extrapolated. Because of the linear correlation between the log-scale decay

spectrum G(u) and DOS distribution D(E), extending the density of states D(E) by

a larger energy interval requires measuring the transient response spectrum G(u) for

exponentially longer time scales. For activation energies lower than the critical level,

reasonable DOS distribution D(E) can be obtained directly from measure data, while for

activation energies higher than that, D(E) can only be obtained through extrapolation.

Energy ranges are indicated by the dark red segments in Fig. 5.5 where the D(E) energy

scale is supported by the measured data log-time scale G(u). At higher energies, the light

red segment indicates extrapolation assuming the validity of the stretched exponential

fit. Under this model, the DOS related to the photo-excitation would have a wide peak

around 1.13 eV, while the DOS related to the dark relaxation would have a narrow peak

around 1.21 eV. Other reports on a-IGZO photoresponse assuming the same model also

arrived at activation energies distributed between 0.9 eV and 1.2 eV. [20,96]

The distributed activation energy model has been applied in previous reports to explain

the non-exponential transient responses in the a-Si system. Stutzman et al. measured

the photo-induced defect density transients and related the transients to the distributed

activation energies. With a proper choice of the attempt-to-escape frequency ν value,

transients measured at different temperatures can be explained by the same activation

energy distribution, as shown in Fig. 5.6. [113] Deane et al. applied the same analysis

to the bias-induced threshold voltage shift measured in a-Si TFTs, and argued that one

activation energy distribution could explain the data measured over a wide range of time

scales (1 < t < 105 s) and temperatures (303 < T < 403 K). [114]
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Figure 5.6. Normalized decay curves for photo-induced defect density in a
carbon-doped a-Si:H sample at various annealing temperatures TA as mea-
sured by Stutzman et al. [113] Following the distributed activation energy
model, the decay curves are plotted as a function of activation energy E
assuming the attempt-to-escape frequency to be (a) ν = 1010 s−1, and (b)
ν = 106 s−1. On those plots, the activation energy distributions D(E) are
the derivatives of the decay curves with respect to E. With ν = 106 s−1,
all annealing temperatures yield the same decay curve, indicating a correct
choice of frequency scale ν.

The distributed activation energy model can be applied to any transient response with

distributed time constants. But it does not give any insights to the origin of the states with

such activation energies, other than to indicate what their energetic distribution would

be. Strikingly, however, for the commonly observed stretched exponential transients, the

distributed activation energy model always predicts asymmetric DOS distributions with

longer tails on the low energy side and a more abrupt cut-off on the high energy side.

There is no obvious physical reason for why such an energetically asymmetric distribution

should be universally observed in so many disordered systems. In an amorphous system,

one would have expected a statistically broadened Gaussian lineshape to the DOS instead.

The lack of a physical explanation for this asymmetric lineshape presents the principle

argument against the distributed activation energy model, requiring further exploration
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as to fundamental physical mechanisms that might give rise to a stretched exponential

time response. We are not the only authors to reach this verdict against the likelihood of

an activated DOS model, quoting Kakalios, et al. [89]

This [activation energy model] yields an asymmetric distribution in E...

However, there is no obvious reason why this distribution of relaxation

times results in a stretched-exponential decay of electronic properties, nor

does it give any insight into the [physics]... Moreover,... there is no universal

or natural connection [underlying] this distribution of relaxation times...

The next section will review the continuous-time random walk model which can pro-

vide a physical basis for the stretched exponential transients assuming a more physically

reasonable exponential tail of trap states.

5.4. Continuous-time random walk model

The continuous-time random walk (CTRW) model reviewed here was originally used

by Shlesinger and Montroll to explain the stretched exponential dielectric relaxation ob-

served in polymer systems and glasses, [115] based on original work by Montroll and Weiss

which laid out the mathematics of the CTRW theory in 1965. [116] They considered a

system with electric dipoles locked at fixed positions in the presence of mobile defects

randomly diffusing in the lattice. When an electrical field is applied, the dipoles experi-

ence a torque to align in the direction of the externally applied field. But the dipole can

only rotate to minimize its energy when the otherwise locked dipole is visited by a mobile

defect for the first time. Thus the relaxation process is limited by defect diffusion, which

can be modeled as a random walk in a lattice of allowed sites. For simplicity, a periodic
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lattice is assumed with each step having equal probability to “walk” in any direction to

a nearest neighboring site, as shown in Fig. 5.7(a).

Under the conditions of a standard ”random walk,” each step would take place at

an equal time interval τ . However, the ”continuous time” aspect of the walk arises if

the time interval between steps itself follows a distribution function. Then remarkably

different diffusion kinetics can arise depending on the distribution of waiting times t on

each site before the defect steps in a random direction to a neighboring site. The waiting

time distribution ψ(t) is defined as the probability ψ(t)dt that the wait time on a given

site will be between t and t+ dt, and is assumed to be a continuous distribution.

When the functional form of ψ(t) is known, the relaxation transient N(t) of polarized

dipole density can be calculated with the CTRW model. For a ψ(t) distribution with a

finite average waiting time ⟨t⟩ =
∫∞
0
tψ (t) dt/

∫∞
0
ψ (t) dt, such as the exponential distri-

bution ψ (t) = λ exp (−λt), where ⟨t⟩ = 1/λ, Bordewijk showed that the relaxation with

time will follow a simple exponential decay when the defects are allowed to diffuse in 3

dimensions. [119]

(5.8) N(t) = N(0) exp(−ct), when ⟨t⟩ exists.

Shlesinger and Montroll later considered the case of a waiting time distribution with an

inverse power-law tail as Eq. (5.9).

(5.9) ψ (t) ∼ t−1−α (0 < α < 1)

For such a ψ (t) distribution, the average waiting time ⟨t⟩ is undefined and approaches

infinity. The resulting relaxation transient N(t) has the form of a stretched exponential
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Figure 5.7. Schematics of the continuous-time random walk process. (a)
Illustration of the random walk path of a mobile defect moving from position
1 to position 2 on a two-dimensional lattice from the work of Metzler. [117]
The defect has equal probability to “walk” to a nearest neighboring site in
each step. The circle diameters at each visited site symbolizes the waiting
time t that the defect stays in the site before making the next step. (b)
Illustration of a frozen dipole waiting to be relaxed by mobile defects from
the work of Shlesinger. [118] The X in the center represents the dipole. The
circle represent neighboring defects. The relaxation happens when any one
of the defects visits the dipole for the first time.

function, with stretching exponent β = α for 3D diffusion. [115]

(5.10) N(t) = N(0) exp(−ctα)

As pointed out by Shlesinger in a subsequent review article, [118] when ψ (t) has an

infinite expected value for the wait time between steps ⟨t⟩, the asymptotic form of the re-

laxation transient will always be a stretched exponential. This may explain why stretched

exponential responses are observed universally in so many different systems.
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Figure 5.8. (a) Schematic illustrations of a defect diffusing through a 1-D
lattice with distributed activation energies, where a deeply bound activation
energy well ∆ corresponds to a longer expected waiting time t at the site,
and vise-versa. (b) An exponential tail distribution f(∆) ∝ exp(−∆/kBT0)
for the activation energies ∆. The characteristic energy scale (average ener-
getic distribution width) for the exponential tail is kBT0. Such an exponen-
tial activation energy distribution f(∆) will result in a power-law waiting

time distribution ψ(t) ∼ t
−1− T

T0 provided that T < T0.

The power-law waiting time distribution in Eq. (5.9) will arise in disordered media

whenever there is activated behavior from an exponential tail of trap states. We follow the

derivation below of Bendler and Shlesinger. [120] Diffusion through distributed activation

energies is illustrated in Fig. 5.8. Assume the diffusion of a defect to the neighboring site

is a thermally activated jump over a given activation energy barrier ∆ with attempt-to-

escape frequency ν as shown with the red arrow in Fig. 5.8(a), and assume the jumping

is a Poisson process. Then the expected waiting time distribution to exit this particular
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trap before taking the next step in the random walk is

(5.11) ψ(t) = λ exp(−λt), where λ = ν exp(−∆/kBT ),

where λ is the characteristic Poisson rate for escaping that defect. Because the next trap

will have a different binding energy, one must consider the likelihood of the wait time

for the next step from the distribution of barrier heights f(∆). The ensemble average of

traps will result in the following wait time distribution, whereby Eq. (5.11) is replaced by

(5.12) ψ(t) =

∫ ∞

0

λe−λtρ(λ)dλ.

Here the probability density of Poissonian rates is ρ(λ) = f(∆)
∣∣d∆
dλ

∣∣, derived following

the chain rule. When the activation energies themselves have an exponential distribution

(5.13) f(∆) ∝ exp(−∆/kBT0)

with average energetic width kBT0, the waiting time distribution determined from Eqs. (5.11)

and (5.12) and shows the anticipated inverse power-law form:

(5.14) ψ(t) ∼ t
−1− T

T0 as t→ ∞.

Note that if T ≥ T0, the average waiting time ⟨t⟩ has a finite value, and a simple expo-

nential decay with characteristic time constant τ = ⟨t⟩ will result. If, on the other hand,

T < T0, the average waiting time ⟨t⟩ is infinity, leading to a stretched exponential decay

with stretching exponent β = T/T0. [115,118] The exponentially distributed activation

energy tail of Eq.(5.13) is expected to occur below the conduction band mobility edge for
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many disordered systems and has been observed in many amorphous materials. [12,121]

Therefore, it becomes clear why the stretched exponential behavior is so universally ob-

served in amorphous media.

Though the original CTRW model was developed by Shlesinger and Montroll in the

context of dielectric relaxation, the CTRW model can be adapted to other general re-

laxation processes in amorphous systems. To this end, Table 5.1 is introduced which

shows the essence of the CTRW model along with various physical realizations thereof

that demonstrate stretched-exponential behavior. In order to be mapped to the CTRW

model, the system should have non-equilibrium metastable sites, randomly diffusing mo-

bile “walkers” in the lattice, and a relaxation process triggered when a metastable site is

visited by a mobile walker for the first time. These essential elements for a generic CTRW

model are listed in the first column of Table 5.1. The second column summarizes the pre-

viously introduced model for dielectric relaxation whereby the frozen dipoles represent

the metastable sites; the mobile defects represent the walkers; and the reorientation of

the frozen dipole when it is visited by the defect for the first time represents the relax-

ation process for the model. Thus, according to the CTRW model, the dipole relaxation

kinetics is entirely determined by the diffusion of the defects with characteristic energy

scale kT0 = kT/β. The stretched exponential relaxation observed in amorphous or glassy

dielectrics can be explained by defects diffusing among trap states with an exponential-tail

distribution in energy.
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Table 5.1. Comparison of different stretched-exponential systems with the generic CTRW model.

Generic CTRW model Dielectric relaxation a-Si:H relaxation a-IGZO relaxation

ϕ(t) = ϕ exp[(t/τ)β] ϵ(t) = ∆ϵ exp[(t/τ)β] + ϵ∞
nBT (t) =
∆nBT exp[(t/τ)β] + nBT,∞

σ(t) = ∆σ exp[(t/τ)β] + σ∞

Metastable sites Frozen dipoles
Shallow occupied band-tail
states

Oxygen-coordinated In-In
bond

Mobile walkers Mobile defects Hydrogen atoms

Migrating M-M metallic
bonds where M = (In, Ga,
Zn); also known as ”oxygen
vacancies”

Relaxed sites Relaxed dipoles
Dangling bonds created
through bond switching

In-In deep bonds

Montroll & Weiss [116]
and Schlesinger &
Montroll [115]

Kohlrausch [105] and
Williams & Watts [107]

Kakalios et al. [89] This work
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5.5. Microscopic CTRW mechanism for a-Si:H band tail electron relaxation:

Hydrogen diffusion

Kakalios et al. adapted the CTRW model to explain experimental results in hydro-

genated amorphous silicon (a-Si:H), whereby a stretched exponential decay was observed

for the density of shallow occupied band-tail states nBT . [89] In their experiments, the

a-Si:H samples were annealed at 210 � for 10 minutes and rapidly cooled to freeze the

electrons in the shallow occupied states. Each metastable state effectively was matched

with one electron that was donated to the concentration of shallow occupied states. As

the metastable states relaxed to form deep traps NDT for the electrons, the concentration

of electrons in the shallow band-tail states would decrease, ∆NDT = −∆nBT . As shown

in Fig. 5.9(a), the relaxation transients of nBT at temperatures ranging from 22 � to

125 � all showed stretched exponential behavior. And the fitted β values increased lin-

early with increasing temperature T , as shown by the closed circles in Fig. 5.9(b), where

T0 ≈ 600 K. This linear temperature dependence of β fits Bendler and Shlesinger’s pre-

diction for stretched exponential decay arising from exponentially distributed activation

energies since T < T0.

Kakalios et al. further identified that the mobile walkers in the CTRW model for

a-Si:H were the hydrogen atoms, themselves. They measured the time-evolution of the

hydrogen diffusion coefficient DH(t), and observed a power-law decrease of the diffusion

coefficients over time as DH(t) ∝ t−α. By defining a decay rate ν(t) = −d∆nBT /dt
∆nBT

for

the relaxation of the overall change in the number of band-tail states ∆nBT , a stretched

exponential decay ∆nBT ∝ exp[−(t/τ)β] yields ν(t) ∝ tβ−1. If the power-law decay of ν(t)

has the same underlying cause as the power-law decay of the hydrogen diffusion coefficient
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Figure 5.9. Illustration of stretched exponential relaxations and tempera-
ture dependence in the a-Si:H system as measured by Kakalios et al. [89]
(a) Time dependence for the shallow occupied band-tail state density nBT

plotted versus log-time. The solid circles are the experimental results, and
the solid lines are the stretched exponential fitting results determining the
β values at each temperature. (b) Temperature dependence of exponent
β. The solid circles are obtained from the stretched exponential fitting in
(a) to the nBT relaxation. The open circles are obtained from the power-
law fitting to hydrogen diffusion coefficient transient (not shown) in p-type
samples, and the open square from the n-type samples. The β values ob-
tained from different experiments and different samples follow the same
linear temperature dependence, as indicated by the line.
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Figure 5.10. Successive steps illustrating a microscopic model for dangling
bonds created by hydrogen diffusion in a-Si:H from the work of Morigaki.
[122] At step (1) there are no dangling bonds. A spontaneous thermally
generated anti-bonding of a pair of neighboring Si atoms is shown in step (2).
Steps (3) to (5) show the Si-H bond switching associated with H diffusion.
In the final step (6), two separate dangling bonds are created.

DH(t), they should have the same exponent. The plot of the power-law exponents β and

1 − α as the filled circles and open symbols, respectively, shows the expected relation

that β = 1 − α in Fig. 5.9(b). Therefore they suggested that the stretched exponential

conductivity relaxation arises from the diffusion of the hydrogen dopants.

A possible microscopic model for the hydrogen-assisted relaxation process in the a-

Si:H system was later proposed by Morigaki. [122] According to this model, hydrogen

atoms passivating a dangling bond as shown in Fig. 5.10 step (1) can weaken the Si-Si

bonds in the amorphous structure, allowing two dangling bonds to be created, as step

(2) in Fig. 5.10. When a hydrogen dopant diffuses to the bond site, the Si-H bond

switches positions with dangling bonds through steps (3-5) in Fig. 5.10. Through bond
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switching, the two dangling bonds are separated and can no longer recombine with each

other spontaneously. This process increases the density of deep dangling bonds, trapping

electrons and thereby decreasing the density of shallow occupied band-tails states.

Combining the work of Kakalios et al. with the molecular model of Morigaki, each

ingredient of the stretched exponential relaxation in a-Si:H can be mapped to the CTRW

model, as shown in the third column of Table 5.1. What remains is to identify a mapping

between the stretched exponential relaxation in a-IGZO to the CTRWmodel, as discussed

in the next section.

5.6. Candidate mechanisms for photoconductivity in a-IGZO

In the last two sections, the dynamics of the transient photoresponse was discussed

with the distributed activation energy model and the CTRW model. The CTRW model

fits more naturally with the observed stretched exponential transients, but the species

playing the role of the metastable sites and the mobile walkers have not been identified.

Understanding the possible microscopic mechanisms at the molecular level will help to

identify the ones that are compatible with CTRW model. In this section, I will briefly

review previously proposed candidate microscopic mechanisms for photoresponse in the

a-IGZO system, and discuss how they are consistent or inconsistent with our experimental

observations. Then based on the molecular dynamics simulation results, a possible map-

ping of the a-IGZO system to the continuous-time random walk model will be proposed.

Based on the location where illumination-induced effects happen in the thin film struc-

ture, all microscopic mechanisms for electron doping can be classified as either interfacial

effects or bulk effects. For samples directly exposed to the ambient without encapsulation
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or passivation, the IGZO/ambient gas interface plays an important role in carrier density

instability. The oxygen species can be adsorbed to and desorbed from the a-IGZO surface.

The ambient oxygen, adsorbed oxygen, and free electrons maintain a dynamic equilibrium

through Eq. (5.15), where the adsorbed oxygen species may exist in various forms such

as O2−, O−, or O−
2 . [30]

(5.15) O2(gas) + e− � O−
2 (solid)

Those weakly adsorbed oxygen species can be desorbed during illumination, releasing

free electrons to the bulk material. During dark relaxation, the adsorbed oxygen species

is proposed to act as an electron trap at the IGZO/ambient interface, causing a slow

conductivity decay. [123] Besides oxygen, moisture in the air was also found to accelerate

the photo-induced instability response. [124]

In our measurements of transient photoconductivity in a-IGZO thin films, encapsula-

tion was used on some samples to isolate them from ambient oxygen or moisture. The en-

capsulated samples showed simple monotonic transients with decreasing relaxation rates,

while the uncapped samples showed step-like responses after sufficiently long dark relax-

ation, as shown in Fig. 5.11. The step-like behavior observed here might be caused by a

structural change such as spontaneous crystallization of domains induced by oxygen and

moisture accumulated at the IGZO/ambient interface. Regardless of the cause, it is clear

that encapsulation or passivation in necessary for all a-IGZO based devices. However, am-

bient gas effects alone cannot account for the widely observed photoresponse in a-IGZO,

as the capped samples also showed significant photoresponse in Fig. 5.11. Also, Adler et

al. observed that the conductivity transient in a-IGZO thin films that was caused by an
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Figure 5.11. Transient photoconductivity after steady UV illumination in
capped (dark red, dark green) and uncapped (light red, light green) a-IGZO
samples. Results for 50 nm PLD-grown samples deposited at 5 mTorr and
10 mTorr are shown. Both capped samples showed the conductivity de-
creasing monotonically with decreasing rate, while both uncapped samples
showed irregular step-like conductivity change at long time scales.

ambient oxygen pressure change at 200 � had two discrete time constants, inferring both

surface and bulk reactions with oxygen affecting the thin film conductivity. [19]

Another important interface to consider is the one between the a-IGZO thin film and

the underlying dielectric layer. For TFT applications, the a-IGZO channel layer is typi-

cally deposited on top of a dielectric gate insulator layer, and then covered by the top pas-

sivation layer, forming two IGZO/dielectric interfaces. Ji et al. showed that the a-IGZO

TFTs using SiO2 as gate insulator had improved stability under illumination compared

with those using SiNx. [33] This was explained by the band alignment between IGZO and

the dielectric material. As shown in Fig. 5.12, since SiNx has bandgap significantly lower
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Figure 5.12. Schematic band diagrams showing the likelihood of hole trap-
ping at the IGZO/dielectric interfaces adapted from the work of Jeong. [24]
(a) Band diagram of the IGZO/SiNx interface. The valence band maximum
of the SiNx layer is higher than that of the a-IGZO layer, so holes can be
trapped at the IGZO/SiNx interface, causing device instability. (b) Band
diagram of the IGZO/SiO2 interface. The valence band maximum of the
SiO2 layer is much lower than that of the a-IGZO layer. The large hole
energy barrier prevents holes from being trapped at the interface.

than SiO2, the IGZO/SiNx interface has no hole barrier, while the IGZO/SiO2 interface

has a significant one ∼ 2.4 eV. [125] Therefore, holes generated during illumination were

more easily trapped by the defects at the IGZO/SiNx interface, causing increased insta-

bility for the devices that used a SiNx gate dielectric compared to those using SiO2. Other

dielectric materials, such as Y2O3, [35] Al2O3, [56], and HfO2 [126] etc., have been used

to improve illumination stability for a-IGZO TFTs. In all our experiments, SiO2 (fused

quartz) or SiO2 coated Si wafers were used as substrates. Because the energy difference

between the conduction band minimum of a-IGZO and the valence band maximum of

SiO2 is much larger than the photon energy for illumination (3.22 eV for the 385 nm UV

LEDs), hole traps at the IGZO/SiO2 interface are not likely to be the main reason for the
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large illumination-induced responses. The instability in the capped samples can instead

be attributed principally to the bulk effects for a-IGZO.

Previous studies of the bulk effect focused on the ionization of oxygen species. If

one were to assume the distributed activation energy model, transient photoresponses in

a-IGZO would typically have activation energies around 1 eV. Thus many reports have

attempted to identify the chemical reaction that releases or consumes free electrons while

having an activation energy ∼ 1 eV. Nahm et al. [54] showed that the ionization of the

stable oxide state O2− to the metastable peroxide state O2−
2 would release free electrons

through process

(5.16) O2− +O2− + 2h+ + 2e− → O2−
2 + 2e−,

and the metastable O2−
2 would relax in the dark through

(5.17) O2−
2 + 2e− → O2− +O2−.

Using theoretical simulation with the hybrid density functional theory, they showed that

the relaxation process had an activation energy of 0.97 eV, consistent to the expected

value of ∼ 1 eV. Instead of bulk oxygen, Robertson et al. considered the relaxation of

photo-ionized interstitial oxygen I2−O to the charge neutral state IO, and arrived at similar

activation energy ∼ 0.9 eV. [32] As suggested by Migliorato et al., the ∼ 1 eV activation

energy may also be explained by the ionization of the oxygen vacancies [VO], which forms

shallow singly ionized [V +
O ] and deep doubly ionized [V 2+

O ] under illumination. [26] How-

ever, all the above photo-ionization models only considered the activation energy height.

For the widely observed stretched exponential responses, the asymmetric activation energy
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distribution corresponding to the distributed activation energy model has not been either

observed or justified. Instead, illumination-induced response may be better explained by

other microscopic mechanisms which might prove compatible with the continuous-time

random walk model.

5.7. Microscopic CTRW mechanism for a-IGZO photoconductivity

relaxation: Introducing the metallic bond diffusion model

In analogy to the hydrogen diffusion model in the a-Si:H system, here we propose a

possible mapping of the a-IGZO system to the CTRW system, which we call the “metallic

bond-diffusion model”.

Using molecular dynamics simulation combined with density function theory calcu-

lations, our collaborator Medvedeva identified that there are under-coordinated metallic

bonds in the amorphous structure. [127] Upon examination of Fig. 5.13 panels (a) and

(b), it is clear that these M-M bonds between cations M = { In, Ga, Zn } have the follow-

ing signatures: 1) there is an enhanced electron density between the two bonded metal

atoms; 2) the M-M bond has a shorter bond length than the typical intercation distance

when no bond is present; 3) the binding energy of the M-M bond tends to be in the 0.8

eV-1.2 eV range. The In-In bond in particular seems to be the deepest binding energy

∼1.2 eV) compared to the In-Zn with ∼0.8 eV. It also has a higher localized e− density

with around 1.06 electrons between the In-In bonded atoms compared with 0.66 electrons

in the In-Zn bond. Ga-Zn, Ga-Ga, and Zn-Zn under-coordinated metallic bonds would

be expected to have even shallower binding energies, thought there is not yet simulation

data to support this conjecture.
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Figure 5.13. Molecular dynamics simulation results fromMedvedeva showing the metastable under-
coordinated metallic bonds M-M where M = {In,Ga,Zn}. [127] Such bonds fit the description of an
“oxygen vacancies” since the local coordination number with oxygen atoms is reduced. (a) Local
structure surrounding an under-coordinated In-Zn metallic bond with In atoms pink, Zn atoms gray,
Ga atoms green, and O atoms red. The areas with yellow color indicate high electron probability
densities. (b) The same region of the sample but now the local structure reveals an undercoordinated
In-In metallic bond. Note that when transitioning from the In-Zn bond to the In-In bond, there
is also a change in oxygen positions. The binding energy of the In-Zn bond is shallower (∼ 0.8
eV; lower local electron density 0.66 e−) than the binding energy of the In-In bond (∼ 1.2 eV;
higher local electron density 1.06 e−). (c) The metal-metal distance dM−M between neighboring
cations, showing the In-In pair (purple trace) and a neighboring In-Zn pair (orange trace) during
the molecular dynamics quench from high temperature (left) to low (right). At high temperatures,
higher-energy configurations of the under-coordinated cations such as the In-Zn metallic bond can
be identified, such as the In-Zn bond that was observed at 1300 K when the In-Zn bond distance
showed a dip and the In-In bond distance simultaneously showed a peak.
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Panel (c) shows the molecular dynamics simulation of the quench process which

achieved this amorphous state calculation. During the simulation, a crystalline struc-

ture is used as the initial state. To remove the memory of the atomic arrangement, the

initial structure is melted computationally at 3000 K. Next, the melt is cooled to 1700 K

at the rate of 100 K/1.2 ps, and then rapidly quenched to 100K using a faster quench rate

of 200 K/1.2 ps. [128] The final structure is equilibrated at 300 K. Under-coordinated

metallic bonds can be identified in the final amorphous structure as seen in panels (a)

and (b) of Fig. 5.13. In particular, the simulations at high temperature show a greater

fluctuation of the bond length and are therefore sampling higher energy configurations.

One can therefore use the high temperature simulations to identify various alternate con-

figurations of the local atoms which have ever higher energies. Although these high energy

states do not arise at room temperature during the ∼ 50 ps simulation, they most cer-

tainly could occur at room temperature given enough time. Thus one can think of the

under-coordinated M-M metallic bond as a defect that can hop through the amorphous

matrix from site-to-sit. In terms that the a-IGZO community would be more familiar

with, this work identifies the molecular nature of the “oxygen vacancy” that can diffuse

through the structure.

The migration of the M-M bond from the In-Zn site to the In-In bond site can be

considered within the context of the CTRW model as a mobile defect. The stretched

exponential transients in a-IGZO could then be explained as follows. During illumination,

non-equilibrium states such as the under-coordinated In-Zn bonds are formed and their

weaker binding energy allows electrons to be donated to the large density of states at

higher energies above the mobility gap. Upon stop of illumination, those bonds will slowly
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relax to the stable In-In bonds, trapping more electrons in these deep In-In bonds, and

thereby decreasing the electron concentration and reducing the conductivity. To complete

the final column of Table 5.1, the non-equilibrium In-Zn bonds existing with oxygen-

coordinated In-In bonds can be mapped to the metastable states, the M-M migrating

bonds (“oxygen vacancies”) can be mapped to the mobile “walkers”, and the stable In-In

bonds can be mapped to the relaxed sites.

Following this mapping to the CTRW model, the long-standing problem of persistent

photoresponse in a-IGZO may be eventually solved. Firstly, the temperature dependence

of the stretching exponent β describing the photoconductivity transients should be mea-

sured. If β is proportional to temperature T , then the stretched exponential behavior

can be truly associated with an exponential tail of activation energies, as in the a-Si:H

system. If there is no temperature dependence, then the non-exponential transient may

still give rise to a CTRW mechanism, but through a tunneling process. [89] In the case of

β ∝ T , the exponential tail of activation energies would characterize the average distribu-

tion width kBT0. The empirical treatments previously reported to reduce photoresponse,

such as annealing, can now be studied with respect to the change of activation energy

distribution by measuring the stretching exponent β before and after the treatment. If

annealing, or any other treatment, can make T0 small enough that T > T0 at room tem-

perature, then the transient photoresponse reduces to a simple exponential decay. The

photoresponse will no longer be “persistent” and would instead decay in a well-behaved

manner with a characteristic decay time ⟨t⟩. All the large time constant components in

the long term response will be eliminated, improving the long-term stability of a-IGZO

based devices.
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APPENDIX A

Circuit schematic of a MTDM unit

Figure A.1. The circuit schematic of a MTDM unit for measuring the tran-
sient photoconductivity of a-IGZO samples. VD;in and VM ;in are voltage
inputs to the current sources for the dedicated mode and the multiplexed
mode, respectively. The difference between VD+ and VD− is the four-point
voltage across the sample that is being measured in the dedicated mode.
The difference between VM+ and VM− is the voltage across the sample
in the multiplexed mode that is indexed by the two multiplexers. A com-
puter program written in Python indexes the multiplexers using pins VMUX0
through VMUX3.
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