
 NORTHWESTERN UNIVERSITY

Sensing and Delivery of Biomolecules with Spherical Nucleic Acid Nanoparticle Conjugates

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Interdisciplinary Biological Sciences

By

Isaac Nathaniel Larkin

EVANSTON, ILLINOIS

September 2020

 2

© Copyright by Isaac Nathaniel Larkin 2020

All Rights Reserved

 3
ABSTRACT

Sensing and Delivery of Biomolecules with Spherical Nucleic Acid Nanoparticle Conjugates

Over the past fifty years, techniques for synthesizing and manipulating matter on the 1-100 nanometer

scale have led to the development of nanoparticle-based approaches to both disease diagnosis and treatment.

The modification of nanoparticles with biological macromolecules such as proteins and nucleic acids has

led to the development of highly sensitive detectors of disease biomarkers and has facilitated the delivery

of therapeutic molecules into target tissues and cells. Challenges and opportunities in the development of

biomolecule-functionalized nanoparticles include: (1) how to balance the sensitivity of a biomarker

diagnostic assay against the cost and complexity of the equipment required to perform the assay; (2)

developing design rules for the construction of nucleic-acid-based biosensors of small molecules; and (3)

cytosolic delivery of extracellular enzymes by avoiding endosomal entrapment. Present in this thesis is an

exploration of biomolecule-functionalized nanoparticles for addressing these challenges. Chapter one

surveys the origins and applications of a wide variety of bio-functionalized nanoparticles. In particular, I

focus on spherical nucleic acids (SNAs), nanoparticles densely functionalized with a highly oriented

oligonucleotide shell, which possess structural and biological properties distinct from linear nucleic acids

that have enabled the development of biosensors and new therapeutics. Chapter two details the use of

antibody-functionalized gold nanoparticles to develop a dual readout assay for device-free and highly

sensitive detection of an anthrax biomarker. Chapter three explores the properties and design rules of

aptamer NanoFlares, a class of SNA functionalized with DNA aptamers and hybridized with small

fluorophore-modified oligonucleotides, in the context of work aimed at developing an assay for small

molecule biomarkers of human stress. Chapter four investigates the possibilities and challenges of adapting

SNAs for the delivery of gene-editing enzymes, with the goal of using gene editing to better understand the

 4
endosomal escape of SNAs. Finally, chapter five discusses the challenges encountered during these projects

and provides perspective on how researchers could build on this work going forward.

Thesis Advisor: Professor Chad A. Mirkin

 5
ACKNOWLEDGMENTS

 This dissertation exists because of the help and support of an entire village’s worth of people. I owe

every one of them a debt of gratitude and will try to thank them here.

 I first thank my thesis advisor, Chad Mirkin, for welcoming me into a lab and a research group that

I have learned so much from, for pushing me to be the most rigorous, clear-minded and clear-spoken

scientist I can be, and for giving me the time and resources to pursue research projects that excited me, even

when they didn’t always pan out. I would like to thank my thesis committee, Rich Carthew, Keith Tyo and

Mike Jewett, for giving me advice when I truly needed it. I’d like to thank Carole Labonne, Jason Brickner,

and Josh Leonard, who in different ways are the reason I joined the IBIS program and had opportunity to

become part of the Northwestern University research community.

 I also thank the entire Mirkin office staff, Elizabeth, Pam, Tanushri and Sara, for their kindness,

their willingness and their bottomless capacity to help. I also thank Cathy Prullage, who cares for all the

IBiS students and without whom I certainly would have forgotten to register for the quarter on numerous

occasions.

 I thank all of my peers in Mirkin lab, who are some of the smartest, most motivated and most

helpful people I’ve ever met. Thank you to Hang, Gokay, Zhu, Kacper, Shuya, Caroline, Sasha and so many

others, for your collaboration and your company these past few years. Thank you as well to my collaborators

at the Air Force Research Lab, Peter, Jorge, BJ, Stephanie, and Monica, who made flying out to Ohio a

rewarding and intellectually stimulating experience.

 Thank you to Northwestern’s synthetic biology community, from the professors who helped attract

me to Northwestern in the first place, to the friends and collaborators I’ve learned from and look forward

to talking to. Perhaps the most valuable thing I have gained from my time as a graduate student is a deep

understanding of the problems I care about and the scientific, technological and other solutions I’m

passionate about helping to build. I learned these things through my conversations and the work we’ve

shared together. Joe, Weston, Sarah, Jordan, Adam, you were the highlights of my PhD.

 6
 Finally, I am deeply grateful to my family, especially my parents, Eric and Kathi, for raising me

and encouraging my love of the living world, for believing me and supporting me my whole life. I love

you. To my sisters, for being excellent sisters. I love you. To Galia, for welcoming me into your family and

helping to make Chicago feel more like home. I love you, and I will always be ready and willing to help

fix your electronics.

 And to my wife, Alida. What can I say? You are everything to me, even more so these past few

years. I don’t express often enough how lucky I feel to have met you, to be your partner, to have you as

mine. Thank you for your companionship, your wit, your kindness and your patience, and your support in

so many things. I truly would not be here, writing the acknowledgments on a finished dissertation, without

you. I can’t wait to build the rest of our lives together.

 7
TABLE OF CONTENTS

Contents

ABSTRACT.………………………………………………………………………………………..………3

ACKNOWLEDGMENTS………………………………………………………….………………………5

TABLE OF CONTENTS……………………………………………………………………..…………….7

CHAPTER 1: Introduction……………………………………………………………………….………..11

1.1 Summary……………………...…….…………………………….………….………………12

1.2 Nanoparticles in Diagnostics…….…………….…………………………………………..…12

1.3 Nanoparticles in Therapeutics………………………………………….…………….………14

1.4 Spherical Nucleic Acids…………………………………………………………..….………16

1.5 SNAs in Diagnostics……………………...………………………………………….………18

1.6 SNAs in Therapeutics…………………………………………………….………….…….…20

CHAPTER 2: Dual Readout Assay for Device-Free and Sensitive Anthrax Biomarker Detection………24

 2.1 Introduction………………….………………………………………………………………..25

 2.2 Design of Assay………………….…………………………………………………………...27

 2.3 Screen for Anti-PA83 Monoclonal Antibody Sandwich………………….…………………..28

 2.4 Colorimetric PA83 Detection in Phosphate Buffered Saline………………….………………31

 2.5 PA83 Detection in Human Serum………………….…………………………………………32

 2.6 Scanometric PA83 Detection………………….………………………………………………33

 2.7 Materials and Methods………………….……………………………………………………34

 2.7.1 Reagents………………….……………………………………………………..…34

 2.7.2 Buffered Solutions………………….…………………………………………...…35

 2.7.3 Synthesis of Antibody-Coated Gold Nanoparticles………………….………….…35

 2.7.4 Characterization of AuNP-mAbs………………….…………………………….…35

 2.7.5 Making Antibody-Coated Wells. ………………….………………………………36

 8
 2.7.6 Screening for Antibody Sandwich Pairs………………….………………………..36

 2.7.7 Colorimetric PA83 Detection Curves and Kinetics ………………….…………….37

 2.7.8 Serum PA83 Detection Curve………………….…………………………………...37

 2.7.9 Scanometric PA83 Detection………………….……………………………………37

 2.7.10 Monoclonal antibody orientation in PA83 sandwich…………………………...…38

 2.7.11 Optimization of H2O2 concentration in TMB/H2O2 solution. ……………………38

 2.7.12 Optimization of Pt reduction time. ………………….……………………………39

 2.7.13 Optimization of incubation times. ………………….………………………….…39

 2.7.14 ELISA. ………………….………………………………………………………..39

 2.7.15 Blind serum PA83 detection………………….……………………………………40

CHAPTER 3: Modeling, Measuring and Screening Aptamer NanoFlares Toward Detection of Human

Stress Biomarkers………………….……………………………………………………………………...41

3.1 Introduction………………….……………………………………………………………..…42

3.2 Initial Aptamer NanoFlare design………………….…………………………………………45

3.3 DIS11th_3T Truncated Aptamer NanoFlare Design………………….…………………...…46

3.4 Structural Response of DIS11th_3 and DIS11th_3T to DHEA-S...………………….………47

3.5 Backfilling Aptamer NanoFlares to Reduce Nonspecific Quenching….………………….…47

3.6 Measuring Flare Hybridization Efficiency………………….………………………………..50

3.7 Increasing Flare Strand Length………………….……………………………………………53

3.8 DHEA-S Detection and Batch-To-Batch Variability………………….……………………...55

3.9 Conformational Selection Model of Aptamer NanoFlares………………….……………..…56

3.10 Determining Aptamer-Flare and Aptamer-DHEA-S Dissociation Constants….…………...57

3.11 Predictions of Equilibrium Conformational Selection Model……………….……………...58

3.12 Induced Fit Kinetic Model of Aptamer NanoFlares………………….…………………..…61

3.13 Measuring Aptamer-Flare-DHEA-S Binding Kinetics with Bio-Layer Interferometry……65

 9
3.14 Effect of Flare Sequence and DHEA-S on Aptamer-Flare Binding Kinetics……………….67

3.15 Suitability of SNAs for Bio-Layer Interferometry…………………………………………..70

3.16 Cortisol Aptamer-Flare Binding Kinetics………………….………………………………..71

3.17 Microarray Screens for Aptamer-Flare Pairs………………….…………………………….72

3.18 Towards Discovery of Target-Responsive Aptamer-Flare Pairs………………….………...77

3.19 Materials and Methods………………….…………………………………………………...79

 3.19.1 Materials………………….………………………………………………………79

 3.19.2 Aptamer NanoFlare Synthesis………………….………………………………...79

 3.19.3 Nuclear Magnetic Resonance of Aptamers………………….……………………80

 3.19.4 Fluorescence Measurements………………….…………………………………..80

 3.19.5 Isothermal Titration Calorimetry………………….……………………………...80

 3.19.6 Bio-Layer Interferometry………………….……………………………………...80

 3.19.7 Microarray Screens………………….……………………………………………81

CHAPTER 4: Exploring the Limits of Cytosolic Enzyme Delivery with CRISPR SNAs……………..…82

 4.1 Introduction………………….……………………………………………………………..…83

 4.2 Potential SNA-Mediated CRISPR Delivery Methods………………….………………….…89

 4.3 Exploring Cas9/sgRNA Attachment to the Surface of SNAs……………………………...…90

 4.4 Exploring Direct Modification of Cas9 to Form CRISPR proSNAs………………………....92

 4.5 Cas9/sgRNA Encapsulation in Liposomal CRISPR SNAs…………………………………..95

 4.6 Liposomal CRISPR SNAs in Cells………………………………………………………….100

 4.7 Materials and Methods………………….………………………………………………...…102

 4.7.1 Materials………………….………………………………………………………102

 4.7.2 Cas9 Labeling and Quantification………………….…………………………….102

 4.7.3 Cas9 Ribonucleoprotein Synthesis and Concentration………………………...…103

 4.7.4 Synthesis and Purification of CRISPR SNAs………………….…………………103

 10
 4.7.5 Quantification of Cas9 and DNA Loading in Liposomal SNAs……………….…103

 4.7.6 In Vitro Cas9 DNA Cleavage Assay.………………….……………………….…104

 4.7.7 Protease Stability Studies………………….…………………………….……..…104

 4.7.8 Cell Uptake Studies………………….……………………………………………105

 4.7.9 Quantification of Gene Editing………………….………………………………..105

CHAPTER 5: Outlook, Future Directions………………….……………………………………………106

 5.1 Dual Readout Sandwich Immunoassay………………….………………………………….107

 5.2 Aptamer NanoFlares………………….……………………………………………………..108

 5.3 CRISPR SNAs………………….………………………………………………………...…111

REFERENCES…………………….…………………………………………………………………..…114

APPENDIX A: Supporting Tables for Chapter 3…………………….……………………………….…135

APPENDIX B: Supporting Tables for Chapter 4…………………….………………………………….137

APPENDIX C: Supporting Code for Chapter 3…………………….……………………………………141

 C.1 Conformational Selection Equilibrium Model Markdown File…………………………….141

 C.2 Induced Fit and Conformational Selection Kinetic Model Markdown File…………..……150

 C.3 Microarray Data Processing Markdown File……………………………………………….174

 C.4 Representative Microarray Data Analysis Markdown File…………………………………185

APPENDIX D: Supporting Code for Chapter 4…………………………………………………………225

 D.1 Script for Quantifying Gene Editing……………………………………………………..…225

 11

CHAPTER 1: Introduction

 12
1.1 Summary

In both diagnostic assays and therapeutics, nanoparticles display properties distinct from those of their

molecular-scale counterparts, and can serve as multifunctional platforms for the attachment and

combination of molecular functional groups.1 These properties enable nanoparticles to detect biomarkers

of disease sensitively and with multiple readout modalities, as well as to enter cells and serve as delivery

vehicles for therapeutic biomolecules. I present in this thesis an extensive exploration of biomolecule-

functionalized nanoparticles for the diagnosis and treatment of disease. I will first discuss the use of

antibody-functionalized gold nanoparticles to develop a highly sensitive and specific dual readout assay for

an anthrax biomarker. I will then investigate the properties and design rules of aptamer NanoFlares, gold

nanoparticles functionalized with DNA aptamers and hybridized with small fluorophore-modified

oligonucleotides, in the context of work towards an assay for human stress hormones. Finally, I will explore

the possibilities and challenges of oligonucleotide-functionalized liposomes (liposomal spherical nucleic

acids) for the delivery of gene-editing enzymes.

1.2 Nanoparticles in Diagnostics

One of the key insights of nanotechnology is that the properties of a nanoparticle can be dramatically

different than the properties of a larger mass of the same material. Gold nanoparticles (AuNPs), for instance,

display resonant waves of oscillating electrons at the boundary between the nanoparticle’s surface and the

medium in which it is dispersed.2 When confined to the surface area of 5-100 nm AuNPs, this surface

plasmon resonance (SPR) causes AuNPs to absorb light with extraordinary efficiency, with the wavelengths

of peak absorption dictated by the size and shape of the particle.3 Similarly, nanoparticles of semiconductors

such as cadmium sulfide (CdS) have energy levels in the conductance and valence orbital bands that are

quantized rather than continuous, with the size of the energy gap between the two bands dictated largely by

the size of the nanoparticle.4 These quantum dots display robust fluorescence emission in a narrow range

of wavelengths corresponding to the size of the band gap, meaning that particles with the same material

 13
composition but of different sizes will emit different wavelengths of light upon irradiation with ultraviolet

light.

The unique intrinsic properties of some nanoparticles have been harnessed for diagnostic assays and

measurements. For instance, the local SPR on the surface of 10-30 nanometer AuNPs gives dispersed

solutions of these particles a deep red color.5 However, aggregation of gold nanoparticles in solution causes

a coupling of the particles’ electron oscillations, a redshift in the SPR absorption peak, and a change of

solution color to blue.5 This aggregation-induced color change has been used as a visual readout in

diagnostics for proteins, nucleic acids and small molecules.6 Similarly, the narrow emission band and high

photostability of quantum dots has led to their development in multiplex diagnostics, with different analytes

detected with quantum dots of different colors.7 Iron oxide nanoparticles, which unlike bulk iron oxide are

superparamagnetic, have been developed as contrast agents for magnetic resonance imaging.8

Through both covalent chemical conjugation and noncovalent adsorption, nanoparticles can serve as a

platform or substrate for the attachment of bio-recognition elements that bind to disease biomarkers of

interest.9 Indeed, most nanoparticles employed in diagnostic assays are functionalized with biomarker-

binding biomolecules, including antibodies10 and other epitope-binding proteins,11 DNA and RNA

oligonucleotides,12 as well as nucleic acid13 and peptide14 aptamers. Researchers have used biomolecule-

functionalized nanoparticles to detect, among other things, biomarkers of cancers and infectious diseases.15,

16, 17, 18, 19 Many of these assays employ the intrinsic properties of the nanoparticles (e.g. visible color for

AuNPs and fluorescence for quantum dots) for detection, but others functionalize the nanoparticles with

signal generating moieties in addition to the bio-recognition elements. Nanoparticles have also been

functionalized with diverse signal-generating moieties, including enzymes like horseradish peroxidase,20

which can catalyze the conversion of a chemical substrate to a colorful species; catalytic metals such as

platinum, which can perform some of the same chemical reactions as enzymes;21 nanoparticles

encapsulating europium (III) ions, which are highly fluorescent;22 and organic fluorophores,23 which can be

quenched by proximity to AuNPs’ surface plasmon resonance and activated by displacement away from

 14
the nanoparticle. Finally, nanoparticles in diagnostic assays are frequently modified with passivating agents

that minimize non-specific binding of biomolecules or cells to the nanoparticle surface and increase the

particles’ colloidal stability. Passivating agents can be biomolecules, such as bovine serum albumin;24 or

they can be synthetic polymers and oligomers, such as thiol-modified polyethylene glycol (PEG).25

1.3 Nanoparticles in Therapeutics

The unique properties of nanoparticles, as well as their ability to serve as an attachment platform for

multiple functional groups, has inspired research and development of nanoparticle-based therapeutics. As

with diagnostics, many nanoparticles have intrinsic properties that enable therapeutic applications. For

instance, the energy from the light that an AuNP absorbs so efficiently is released from the particles as

infrared, which can heat the solution liquid surrounding the AuNP to temperatures that kill cells.26, 27

Researchers have investigated harnessing this phenomenon to perform photothermal therapy, or localized

heat-based killing by shining tissue-penetrating red light onto tumors suffused with AuNPs.28

Superparamagnetic iron oxide nanoparticles similarly heat their surrounding solution when subjected to an

oscillating magnetic field, and have been used to treat tumors with magnetically-mediated thermal

ablation.29

As in diagnostics, the modification of nanoparticles with multiple functional groups is key to their

utility as therapeutics. Importantly, for many therapeutic applications the functional groups are

encapsulated inside polymeric or biomolecular nanoparticles, in addition to being attached to the surface of

the nanoparticles. One widely used delivery format is the liposome, a nanoparticle made of at least one

phospholipid bilayer, which can carry small molecule and biomolecule drugs in its core.30

Nanoparticle functional groups can serve as passivating, targeting, and therapeutic agents. Passivating

agents, like chemically conjugated PEG molecules, reduce nonspecific binding or adsorption of

biomolecules and cells to the nanoparticles. Such passivation can improve the pharmacokinetic properties

of the nanoparticles in the bloodstream, increasing circulation time and thereby increasing the fraction of

nanoparticles that reach the target tissue.31 By both reducing immunogenicity and decreasing the fraction

 15
of therapeutic delivered to off-target tissues, passivation can also minimize the toxicity and increase the

therapeutic index of a drug. For example, the first FDA-approve nanomedicine was Doxil®, a PEGylated

liposome filled with the chemotherapeutic doxorubicin that delivers a higher dose of drug to tumors with

lower side effects than free doxorubicin.79

Targeting agents increase the efficiency with which nanoparticle therapeutics deliver their drug cargo

to the disease tissue, and reduce the rate of delivery to off-target tissues. Importantly, targeting of

nanoparticle therapeutics can be achieved both through the composition of the nanoparticle core, and

through the attachment of functional groups to the nanoparticle surface. Nanoparticle size plays a role in

tissue targeting: particles smaller than 10 nm are rapidly filtered and cleared by the kidneys,76 and particles

significantly larger than 100 nm are rapidly enveloped and cleared from the bloodstream by phagocytic

immune cells in the liver, lungs and spleen.33 Nanoparticles in the 10-100 nm size range tend to have longer

circulation half-lives, before ending up primarily in the liver, spleen, and lungs.34 In rodent models, particles

of this size also tend to accumulate in tissues where capillary walls are leaky, like tumors.35 The surface

charge of a nanoparticle also affects its targeting; nanoparticles with cationic surface charges tend to have

increased intracellular delivery (as well as cytotoxicity) compared to particles with neutral or anionic

surface charges.34 Furthermore, both surface charge and nanoparticle core composition can play a role in

the intracellular fate of nanoparticle therapeutics: particles with cationic surfaces or cationic core

components, such as liposomes doped with the cationic phospholipids dioleoylphosphatidylethanolamine

(DOPE) and 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP), increase endosomal escape and

delivery of nanoparticle cargo into the cytosol.36 Finally, more specific targeting of particular tissues and

cell types can be achieved by attachment of biomolecular recognition elements to the nanoparticles, which

bind to ligand molecules on the surface of the target cells. Antibodies,37 nucleic acid aptamers,38

carbohydrates,37 and even some small molecules39 like folic acid can all serve as recognition elements that

increase the efficiency of nanoparticle delivery to specific tissues.

 16
Therapeutic nanoparticles deliver both small molecule and macromolecule drugs. Frequently, toxic

chemotherapeutic agents are encapsulated inside the nanoparticle, as with Doxil®.40 Nucleic acids are

among the most promising and extensively researched cargo for nanoparticle therapeutics, because they

can treat disease through mechanisms inaccessible to small molecule drugs, and because without

encapsulation or functionalization on nanoparticles, unmodified nucleic acid is unstable in serum and

provokes a Toll-like receptor (TLR)-mediated innate immune response.41,42 Nucleic acid-carrying

nanoparticles can suppress target gene expression by siRNA-mediated mRNA cleavage and gene

silencing,43 stimulate the immune system through interaction with TLRs,44 and deliver DNA45 or mRNA46

gene therapies to express a therapeutic protein inside target cells. As one example, mRNA for the

FUS1/TUSC2 tumor suppressor gene has been delivered in DOTAP/cholesterol liposomes for the treatment

non-small cell lung cancer; this treatment is now in phase II clinical trials for the treatment of non-small

cell lung cancer.47,48 Finally, therapeutic proteins can be delivered as cargo inside nanoparticles;49 however,

inefficient endosomal escape has limited the translation of nanoparticles for intracellular protein delivery.50

1.4 Spherical Nucleic Acids

In 1996, a team led by Chad Mirkin attached a polyvalent shell of thiol-modified oligonucleotides to

gold nanoparticles via a gold-thiolate bond, generating the first spherical nucleic acids (SNAs).51 Both the

core and the oligonucleotide composition can be varied (Figure 1). In addition to AuNPs, SNAs have been

synthesized with cores made from, such diverse materials as iron oxide nanoparticles,52 metal-organic

Figure 1. Structure of SNAs. Gold (left), liposome (center, cutaway), and protein (right)
cores are radially functionalized with DNA oligonucleotides

 17
framework nanoparticles,53 quantum dots,54 silica nanoparticles,55 pH-responsive block copolymer

nanoparticles,56 liposomes,57 proteins,58 and micelles.59 There are even coreless spherical nucleic acids

formed by crosslinking oligonucleotides on an AuNP and then dissolving the gold.60 These empty SNAs

helped confirm that it is the dense and highly oriented oligonucleotide shell that cause gives SNAs the

unique properties that distinguish them from linear or circular nucleic acids. Oligonucleotides in an SNA

bind to complementary nucleic acids with dissociation constants roughly two orders of magnitude higher

than equivalent linear nucleic acids, and nucleic acid duplexes in an SNA not only have higher melting

temperatures than linear nucleic acid duplexes; but also have much sharper, narrower, and more cooperative

melting transitions as measured by the full width at half maximum of the melting curve’s first derivative

(~2ºC for SNAs versus >10º C for the same linear nucleic acid).61 This tighter and more cooperative binding

has the additional effect of destabilizing duplex mismatches, increasing the selectivity of oligonucleotide

hybridization in SNAs relative to linear nucleic acids.62 These properties stem primarily from the high

concentration of cations permeating the highly anionic oligonucleotide monolayer; theoretical and

experimental results suggest a loose network of cations each interact with and stabilize multiple

oligonucleotides, such that perturbation of this shared ion cloud (for instance, due to dehybridization of a

DNA duplex) destabilizes the surrounding dielectric environment (and with it, any surrounding nucleic acid

duplexes). 63,64

In 2006, it was discovered that SNAs enter mammalian cells rapidly and in large quantities (10^5-10^6

in an hour in cell lines).65 As with SNAs’ tight and cooperative hybridization to complementary DNA, this

remarkable property is not shared by linear nucleic acids, and is a function the SNAs’ 3-dimensional

architecture. Subsequent research has uncovered that SNAs are actively taken up by mammalian cells

expressing Scavenger Receptor A,66 which tightly bind the dense and highly oriented oligonucleotide shell

and endocytose the nanoparticles in a caveolae- and lipid raft-dependent process.67 SNAs have now been

tested on a multitude of mammalian cell lines and enter almost all of them, with the exception of red blood

cells.66

 18
Research in Mirkin lab has uncovered that, in addition to rapid uptake by mammalian cells, SNAs have

several other remarkable biological properties that distinguish them from their linear counterparts. While

linear nucleic acids are rapidly degraded by nucleases in serum and inside cells, SNAs resist nuclease

degradation in these environments.68 This nuclease resistance is hypothesized to result from the dense cloud

of ions around SNAs, which inhibits the nuclease enzymes. And while most linear nucleic acids trigger a

nonspecific TLR-mediated innate immune response in cells,69 SNAs are non-immunogenic, provoking a

25-fold lower immune reactions than the same sequence of linear nucleic acid in macrophages.70

1.5 SNAs in Diagnostics

The unique properties of SNAs have been exploited to develop many assays for detecting analytes of

interest. The first SNAs to be developed had AuNP cores, and the plasmonic properties of the AuNPs were

used to construct colorimetric detectors of nucleic acids. These were solutions of two non-complementary

SNAs which aggregated and changed color from red to blue in the presence of a specific polynucleotide

sequence that could hybridize to and form a bridge between both SNA sequences.71 Because of the

cooperativity of SNA hybridization, this assay was highly specific, able to distinguish between sequences

with single base mismatches. Subsequent SNA assays exploiting the same aggregation-triggered shift in

AuNP solution color were developed to distinguish between different types of DNA-binding molecules.72

After colorimetric, aggregation-based assays, scanometric assays were the next SNA-based diagnostics

to be developed.73 In scanometric assays, a glass slide is functionalized with an oligonucleotide

complementary to the target polynucleotide of interest, which hybridizes and captures the target from the

sample solution. Then, the slide is incubated with AuNP-SNAs complementary to a different region of the

target polynucleotide, forming a three-component sandwich with immobilized SNAs on the slide. After

washing, the slide is incubated with a plasmonic metal (silver or gold) salt reduction solution, and the

AuNPs catalyze the selective deposition of plasmonic metal onto the SNAs. These enlarged metal particles

scatter light with extraordinary efficiency, and can be detected by imaging the slide in a laser scanner. The

first SNA-based scanometric detection assays were capable of detecting oligonucleotide sequences with

 19
two orders of magnitude greater sensitivity than an analogous fluorophore-based assay.73 By functionalizing

SNAs with antibodies, forming a sandwich with a target antigen and antibody-modified magnetic particles,

and then hybridizing the captured SNAs on an oligonucleotide-functionalized chip, the scanometric assay

was adapted to detect proteins at attomolar concentrations.74 The scanometric assay has since demonstrated

ultrasensitive detection of prostate serum antigen,75 an important protein biomarker of prostate cancer.

Moreover, by functionalizing an array of capture oligonucleotides onto a glass slide, the scanometric assay

has been used to detect circulating microRNA (miRNA) patterns associated with prostate cancer in patient

samples, and has been able to identify high-risk aggressive cancers based on patients’ circulating miRNA

profile.76 Importantly, there is a trade-off between sensitivity and complexity in these SNA-based diagnostic

assays. While the colorimetric SNA assays take place in a one-pot reaction and have a simple, visible

readout, they are much less sensitive than the scanometric assays, which require multiple incubation steps

and specialized equipment to complete. An approach to reconciling this tradeoff will be discussed in chapter

2.

After SNAs were discovered to rapidly enter mammalian cells, a third class of SNA-based diagnostic

was developed: the NanoFlare.77 NanoFlares are SNAs with AuNP cores functionalized with thiolated DNA

oligonucleotides that are complementary to a target nucleic acid sequence of interest. A shorter,

fluorophore-labeled DNA oligonucleotide called a flare strand is hybridized to the thiolated strands, with

the fluorophore positioned close to the gold core. In the absence of the target sequence, the AuNP’s surface

plasmon resonance quenches the fluorescence of the flare. When the target sequence is present, it binds and

hybridizes to the complementary thiolated DNA attached to the gold, displacing the flare strand. No longer

quenched by close proximity to the gold, the flare’s fluorophore fluoresces to generate a signal which

enables the detection and quantification of the target sequence. NanoFlares are able to detect specific

mRNA sequences in living cells without requiring a cationic transfection reagent. Importantly, their ability

to do so implies that some fraction of SNAs are able to escape the endosome and enter the cytosol following

cell uptake.

 20
NanoFlares have subsequently been modified and improved in multiple ways. Multiplex NanoFlares,

in which a single SNA can detect two different mRNA sequences, have enabled cell-by-cell internal

controls in flare experiments and thereby improved quantitation of cancer-associated mRNA in living

cells.78 By measuring aberrantly high mRNA levels of metastasis-associated genes like vimentin,

NanoFlares have been used to detect and isolate tiny numbers of tumor cells from human whole blood and

mouse xenograft models.79 Sticky-Flares, in which the fluorophore-labeled oligonucleotide rather than the

AuNP-bound oligonucleotide hybridizes to the mRNA, enable the simultaneous quantification and tracking

of mRNA expression and localization in live cells.80 Finally, aptamer NanoFlares have been developed to

detect the small molecule ATP both extracellularly and intracellularly.81 Importantly, because this is the

only published example of an aptamer NanoFlare detecting a small molecule, it is unclear how generalizable

this diagnostic architecture is, and it is unknown how aptamer NanoFlare behavior and design rules may

differ from either linear NanoFlares or other aptamer-based biosensing architectures. These questions will

be explored further in chapter 3.

1.6 SNAs in Therapeutics

The combination of high cell uptake, low immunogenicity, nuclease resistance and tight

oligonucleotide binding makes SNAs promising candidates for a plethora of therapeutic applications,

including knockdown of gene expression, immune modulation, and protein delivery. Because SNAs are

densely functionalized with oligonucleotides, the first therapeutic avenue to be explored was

oligonucleotide-mediated gene regulation. The first paper on cellular SNA uptake demonstrated that the

DNA oligonucleotides in the SNA shell, could reduce the expression of targeted genes with complementary

mRNA sequences.65

After the early antisense SNA experiments, gene knockdown efficacy was increased by replacing the

single-stranded antisense DNA oligonucleotides with double-stranded silencing RNA (siRNA).82 Upon

entry into the cytosol, the siRNA sequences are cleaved off the particle by Dcr-2 and loaded into eukaryotic

Argonaute nucleases, which then chop up any mRNA containing a complementary sequence to the siRNA.83

 21
The first siRNA-SNA conjugates consisted of a gold nanoparticle attached via gold-thiol bond to a double

stranded RNA duplexes with one thiolated strand, and backfilled with thiolated oligo-ethylene glycol.82

Like other SNAs, these constructs are nontoxic, non-immunogenic, resist nuclease degradation compared

to linear RNA duplexes with the same sequence, and rapidly enter mammalian cells. These siRNA-SNA

conjugates knock down targeted gene expression in vitro without the need for transfection reagents. In a

mouse model of the deadly brain cancer glioblastoma multiforme, siRNA-SNAs were able to cross the

compromised blood-brain barrier and knock down Bcl2L12 oncogene expression, reducing tumor burden.84

siRNA-SNAs have also been shown to knock down expression of the insulin-resistance mediating gene

GM3 in human skin samples, and to improve wound healing in a mouse model of diabetes.85 siRNA-SNAs

have also been constructed with a liposomal core.57 In these constructs, the gold nanoparticle and thiolated

RNA are replaced with a 30 nm liposome and tocopherol- or cholesterol-modified RNA duplexes, and the

hydrophobic tocopherol or cholesterol moiety intercalates into the liposome to form the SNA structure.

Liposomal siRNA-SNAs are a biodegradable SNA-based plaform for siRNA delivery, and also knock down

gene expression in vitro. Importantly, as with NanoFlares, the efficacy of gene regulating SNAs is further

evidence that SNAs are capable of endosomal escape, because these SNAs’ mechanism of action depends

on interacting with cytosolic mRNA. However, the efficiency of endosomal escape is small enough that it

is difficult to accurately measure.86

In addition to gene regulation, SNAs have been developed as delivery vehicles for small molecule

therapeutics. The chemotherapeutic drug cisplatin binds and intercalates between DNA bases.87 Incubating

SNAs with with cisplatin enabled loading of the chemotherapeutic into the SNAs’ oligonucleotide shell,

followed by delivery of the drug upon cellular uptake of SNAs. SNA-mediated delivery increased the

cytotoxicity of cisplatin in several cell lines.88 Similarly, the chemotherapeutic paclitaxel has been

conjugated to SNAs and delivered into cells; this SNA-mediated delivery increased the solubility of

paclitaxel by 50-fold.89

 22
Some of the most promising therapeutic avenues for SNAs involve modulation of the immune system.

Although most SNAs provoke a minimal immune response, Mirkin lab has developed SNAs with specific

sequences that can stimulate or suppress an innate immune response.90 Immunostimulatory SNAs (IS-

SNAs) consist of a spherical nanoparticle core functionalized with a DNA sequence known to bind and

stimulate Tol-Like Receptor 9 (TLR9) in the endosome. IS-SNAs can have a gold core and thiol-modified

oligonucleotides, or a liposome core with tocopherol-, cholesterol- or phospholipid-modified DNA with a

phosphodiester or phosphorothioate backbone.91 IS-SNAs efficiently enter the endosome and provoke an

inflammatory cytokine immune response hundreds of times higher than linear nucleic acids with the same

sequence, both in vitro and in vivo.90 Moreover, IS-SNAs can be further functionalized by conjugating

antigenic peptides to DNA oligonucleotides and hybridizing the peptide/DNA conjugates to the strands of

the SNA. These rationally designed antigenic IS-SNAs stimulate a humoral (antibody-mediated) immune

response to the antigen. Antigenic IS-SNAs can stimulate the immune system to specifically attack tumor

cells expressing the antigen, thereby reducing tumor volume and increasing survival time in mouse

models.90, 92

Just as some nucleic acid sequences stimulate TLR9 signaling, others suppress it. Immunoregulatory

SNAs (IR-SNAs) consist of a nanoparticle functionalized with a DNA sequence known to suppress TLR9

signaling. IR-SNAs suppress macrophage innate immune responses in vitro, and decrease liver fibrosis in

a mouse model of the inflammatory liver disease nonalcoholic steatohepatitis.93 Immunomodulatory SNAs

thus show promise as both treatments for cancer and inflammatory disease.

While most applications of spherical nucleic acids have thus far focused on the delivery of DNA or

RNA into cells, recent work has explored the delivery of peptides and protein. As discussed above, antigenic

peptides have been conjugated to oligonucleotides and hybridized to IS-SNAs as cancer vaccines. Peptide

antigens have also been encapsulated in liposomal IS-SNAs and directly conjugated to cholesterol-

modified, liposome-intercalating immunostimulatory oligonucleotides on the SNA surface, though these

architectures were less effective than the hybridized antigen at provoking an immune response to antigen-

 23
expressing tumors in mouse models.92 The first full-length proteins attached to SNAs were antibodies,

functionalized with ~2 N-hydroxysuccinimide-tetraethylene glycol-azide (NHS-PEG4-N3) moieties that

covalently bound lysine primary amines.94 Alkyne-modified DNA strands were conjugated to the azide-

modified antibodies via click chemistry, and then the DNA-modified antibodies were hybridized to gold

SNAs and used to selectively target and knock gene expression down in certain cancer cell types. The early

immunomodulatory SNA work followed this model, functionalizing the model protein antigen ovalbumin

with a small number of DNA strands and hybridizing the protein to the surface of an SNA. Another SNA-

mediated protein delivery approach is to place the protein at the core of the SNA. This has been achieved

by functionalizing most of the lysines on a protein with NHS-PEG4-N3 and then clicking DNA on,

generating a protein-core SNA (proSNA) with a protein core.58 These proSNAs have been shown to deliver

functional enzymes, in particular ß-galactosidase, into cells in vitro.95 These studies all demonstrate that

SNAs could be an effective platform for delivering proteins into mammalian cells, and provide evidence

that some fraction of SNAs are able to escape the endosome. However, the mechanism enabling SNA

endosomal escape remains unknown, and the difficulty of quantifying endosomal escape have meant that

it remains murky how SNA parameters might be tuned to increase endosomal escape. Moreover, while

SNA-protein conjugates have been developed and demonstrated to enter cells, no study thus far has proven

that protein delivered by SNA can enter the cytosol, because measurements of protein delivery to date do

not differentiate between endosomal protein and cytosolic protein. These questions will be explored further

in chapter 4.

 24

CHAPTER 2: Dual Readout Assay for Device-Free and Sensitive Anthrax Biomarker

Detection.

Portions of this chapter are adapted from Larkin et al., Anal. Chem., 2020

Collaborators include Chad Mirkin, Hang Xing, Vis Garimella, Gokay Yamankurt, & Alexander Scott

 25
2.1 Introduction

Technologies for the detection of disease biomarkers are key to improving both healthcare and

biosecurity around the world.96 For example, anthrax is a severe bacterial infection caused by handling

animal products or other materials contaminated with Bacillus anthracis spores. Pathogenic exposure to B.

anthracis results in up to 89% mortality without proper treatment, and an estimated 2,000 anthrax cases are

reported annually.97 Anthrax pathogenesis depends on an exotoxin consisting of three protein components:

protective antigen (PA), lethal factor (LF), and edema factor (EF). The 83 kDa PA protein (PA83) is cleaved

by protease to yield a 63 kDa fragment (PA63), which self-assembles into heptamer and octamer rings.98 The

PA heptamer subsequently binds with LF and EF, is endocytosed, and forms a pore that translocates LF and

EF from the endosome to the cytosol.99 Because of PA83's role as an exotoxin protein expressed early during

anthrax infections, and because PA83 levels track levels of bacteremia in anthrax animal models,100 PA83 has

been used for years as a biomarker for the early detection of anthrax.101, 102, 103, 104, 105, 106 Methods to identify

and develop bioassays specific for PA and other such disease biomarkers are of significant value.

Immunoassays that use antibodies as target recognition elements are the most widely used methods for

biomarker detection because of their speed, ease of use, and capacity to detect a wide range of biomarkers

and biomolecules.107 Conventional immunoassays conjugate antibodies to fluorophores or enzymes to

convert target binding to detectable fluorescent or colorimetric signals.108, 109 However, these enzymatic

fluorogenic and chromogenic methods have well-known drawbacks, including low stability, pH and

temperature sensitivity, and limited sensitivity.110, 111

Over the past twenty years, nanomaterials with tailorable physical properties have been employed in

biomarker assays that compare favorably with the molecular fluorophore or enzyme methods on

sensitivity.112, 113, 114, 115 A variety of nanoparticle-based readouts, including colorimetric,116, 117, 118, 62, 71, 119

fluorescent, 78, 79, 81, 104, 120, 121, 122 light scattering, 75, 76, 123 electrochemical,124, 125 and Raman scattering,126, 127

show promise for the development of high sensitivity detection systems. However, a general tradeoff is

observed between high assay sensitivity and high sample throughput.

 26
For example, anisotropic platinum nanoparticles (PtNPs) and Pt-coated gold nanoparticles (AuNPs)

have been deployed in assays as robust, enzyme-free replacements for horseradish peroxidase, where Pt

catalyzes the decomposition of H2O2 and oxidation of a chromogenic substrate to produce a colorimetric

signal.119, 128, 129, 130 Such assays require only a few hours of processing time, can analyze many parallel (96-

384) samples, and enable device-free visual detection of the target that, in principle, can function in point-

of-care or field tests; but their limit of detection is typically confined to the nanomolar to picomolar range.

26, 130

By contrast, scanometric AuNP-based assays have achieved ultrasensitive detection of protein and

nucleic acid targets by sandwiching the target between two recognition elements, one immobilized on a

glass slide and one attached to the AuNP. 74, 75, 76, 123, 131 By reducing Ag+ or AuCl4
- ions from solution onto

the AuNPs, the light scattering signal in a laser scanning instrument can be amplified to achieve detection

of femtomolar to attomolar concentrations of target molecules. However, such assays typically require

longer processing time and a specialized scanning instrument; and while the glass slides can accommodate

multiplexed analysis of the biomarkers in each sample, the number of samples that can be analyzed in

parallel is limited.

The tradeoffs between assay field

deployability, sample throughput, and assay

sensitivity can be reconciled with dual-readout

nanoparticle assays, which generate two different

types of signal from the same constructs. By

combining orthogonal detection methods with

different sensitivities, dual readout assays have

been shown to lower the limits of detection and

quantitation,132 expand the dynamic range,21 and enable both high-throughput and ultrasensitive target

detection.131, 133

Figure 2. Dual-readout AuNP-based immuno-
assay to detect anthrax protective antigen.

 27
We present a dual-readout, colorimetric and scanometric sandwich immunoassay by depositing either

Pt or Au onto antibody-AuNP conjugates (Figure 2). The higher-throughput Pt-based colorimetric readout

was used to screen for monoclonal antibody sandwich pairs that bind to anthrax protective antigen (PA83),

detecting nanomolar concentrations of PA83 in both PBS and human serum. The Au-based scanometric

readout showed a 1000-fold increase in assay sensitivity with the same nanoparticles, enabling detection of

sub-picomolar PA83 concentrations.

2.2 Design of Assay

The dual-readout sandwich immunoassay begins with the immobilization of one set of antibodies (Ab1)

via lysine conjugation onto an N-hydroxy-succinimidyl-ester (NHS)-modified surface (either in a 96-well

plate for colorimetric detection, or on a glass slide for scanometric detection). In parallel, a facile synthesis

of Ab-AuNP conjugates is performed by mixing and incubating a second set of antibodies (Ab2) with

AuNPs in a buffered solution. Strong Ab2 adsorption to AuNPs proceeds through electrostatic,

hydrophobic, and cysteine-gold interactions,9 after which the AuNP-Ab2 conjugates are blocked by

incubation in a bovine serum albumin (BSA) solution and cleaned via centrifugation (Figure 3), generating

monodisperse nanoparticles that can bind selectively to the antibody’s antigen (Figure 4). The Ab1-

modified surface is incubated with samples to capture the target molecule and washed with BSA solution

to block nonspecific binding. The solution of Ab2-AuNP conjugates is then incubated on the surface,

generating an Ab1-PA83-Ab2-AuNP sandwich structure. Colorimetric detection with signal amplification is

Figure 3. AuNP-Ab synthesis workflow. Abs adsorb to citrate capped AuNPs, which are then
backfilled with BSA. Centrifugation removes unbound antibodies.

 28

achieved through incubation with a reducing agent (ascorbic acid) in a platinum salt solution to selectively

reduce Pt onto the nanoparticles. This process forms a Pt shell on the AuNPs which catalyzes the splitting

of hydrogen peroxide and subsequent oxidation of the chromogenic dye 3,3',5,5'-tetramethylbenzidine

(TMB) to yield a blue color which can be quantified on a

plate reader.130 To achieve scanometric detection, the

Ab1-PA83-Ab2-AuNP sandwich is generated on an NHS-

activated glass slide and incubated in a solution of Au3+

salt with a reducing agent (hydroxylamine) to selectively

reduce gold onto the nanoparticles. After washing, light

scattering from the gold on the slide is quantified in a

Scano-miR instrument.

2.3 Screen for Anti-PA83 Monoclonal Antibody

Sandwich

To evaluate the scalability of the assay’s colorimetric

readout method, we screened monoclonal antibodies

(mAbs) of anthrax protective antigen to discover pairs that could function in a sandwich assay. While many

Figure 4. Characterization of Ab-AuNP conjugates after 1 week refrigeration at 4ºC. (a) UV-vis
absorption and (b) DLS results show that AuNPs-Abs are stable (no blue-shift in the AuNP absorption
peak) and selectively bind to PA83.

Figure 5. Pairwise anti-PA83 antibody
screen for binding and detection of PA83
in a sandwich assay. Ab1992 and Ab8240
form a sandwich and detect PA83. Each
column contains a different Ab immobilized in
the well, while each row is incubated with a
different mAb-AuNP nanoparticle. Ab1992
and Ab8240 form a sandwich pair and detect
PA83 in both orientations (blue and red).

 29
anti-PA83 monoclonal antibodies are commercially

available and a few anti-PA83 monoclonal antibody

sandwich pairs have been reported,134 no sandwich

pairs of monoclonal antibodies for PA83 are

commercially available, potentially limiting the

long-term reproducibility of any given PA83

immunoassay.135, 136

We addressed this by investigating 7 different

anti-PA83 antibodies from Abcam: Ab8240, Ab1988, Ab1990, Ab1992, Ab13808 and Ab38725 (Figure 5).

The seven PA83-binding antibodies were immobilized in 8-well rows to form an 8x8 well array on an NHS-

modified 96-well plate and washed with a BSA blocking solution. All wells were incubated with 500 nM

PA83, washed with blocking solution, and then incubated pairwise with different mAb-AuNP conjugates to

generate all possible mAb1-PA83-mAb2-AuNP sandwiches. After washing again with blocking solution, a

Pt salt solution was reduced onto the

immobilized particles. After gently

rinsing the wells with DI water, they

were incubated with TMB and 50 mM

H2O2. One mAb pair, Ab8240 and

Ab1992, was visually identified as a

potential hit, as it gave a colorimetric

and UV-Vis absorbance signal 20-fold

higher than BSA control and 8-fold

higher than any other antibody pair

(Figure 5 and 6). Although the initial

screen indicated that immobilized

Figure 6. Heatmap of pairwise screen of seven
commercial anti-PA83 antibodies for binding
and detection of PA83 in a sandwich assay.

Figure 7. Sandwich assay performs device-free PA83
detection in either antibody orientation. (a) Detection of
PA83 in PBS with immobilized Ab1992 and Ab8240-AuNP. (b)
Detection of PA83 in PBS with immobilized Ab8240 and
Ab1992-AuNP.

 30

Ab8240 and Ab1992-AuNP generated greater colorimetric signal than immobilized Ab1992 and Ab8240-

AuNP, further experiments showed that both antibody pair orientations in the sandwich gave similar

detection sensitivity (Figure 7). To validate the obtained antibody pairs, we tested them in a standard

Figure 8. Screened antibody pair functions in an ELISA. (a) Scheme of ELISA sandwich detection
strategy for PA83, incorporating an immobilized antibody and a horseradish peroxidase-conjugated
antibody. (b) ELISA detection curve of PA83 in 1X PBS, with different PA83-binding antibody pairs, 15 min
after incubation with 50 mM H2O2 in TMB.

Figure 9. Optimization of sandwich assay for H2O2 concentration. (a) Sandwich assay response
to 1, 10, and 100 nM PA83 in 1X PBS, using TMB blended with 20, 50, or 100 mM H2O2. (b) Triplicate
sandwich assay response to 0 and 1 nM PA83, using TMB blended with 20, 50, or 100 mM H2O2.

 31
ELISA. #Ab1992 and #Ab8240 readily detected PA83 in an ELISA, while other antibody pairs either

displayed no response above background or only responded to higher PA83 concentrations (Figure 8).

2.4 Colorimetric PA83 Detection in Phosphate-Buffered Saline

Having discovered an antibody pair with

high selectivity for PA83, we explored its ability

to colorimetrically detect PA83 in PBS. Reaction

conditions including H2O2 concentration (20-100

mM), Pt reduction time (10-120 min), and PA83

and mAb-AuNP incubation times (15-60 min)

were varied to maximize colorimetric response to

PA83 and minimize background signal (Figures

9-11). 1 h PA83 and mAb-AuNP incubation steps,

a 120 min Pt reduction step, and 100 mM H2O2

Figure 10. Optimizing time of sandwich assay incubation steps. (a) PA83 detection curves with 15
min, 30 min, or 1 h incubation steps and a 10 min platinum reduction. (b) PA83 detection curves with
15 min, 30 min, or 1 h incubation steps and a 90 min platinum reduction.

Figure 11. Optimization of sandwich assay for
platinum reduction time. Sandwich assay response
to 0 or 10 nM PA83 in PBS, after running the
platinum reduction for a range of reaction times.

 32

concentrations in the TMB/H2O2 solution produced the largest response to the lowest [PA83] relative to

background signal. The colorimetric readout provides the ability to detect PA83 over the 1 to 500 nM

dynamic range (Figure 12), with visual detection of

1 nM PA83 after a 20 min incubation and colorimetric

detection of 1 nM PA83 within 2 min of adding TMB

in a plate reader.

2.5 PA83 Detection in Human Serum

One of the primary advantages of sandwich

assays is their ability to specifically detect analytes

in a complex solution, like bodily fluids. Therefore,

the ability of the antibody pair to detect PA83 in

human serum was tested over the 0.5 to 100 nM

range in 1:1 PBS:human serum samples (Figure 13).

To determine the utility of the antibody sandwich, direct detection with a single mAb was attempted, by

Figure 12. Visual and colorimetric detection of PA83. (a) Triplicate visual detection of PA83 after 1 h Pt
reduction and 20 min of TMB/H2O2 reaction. Control condition: 1 µM BSA. (b) Kinetics of PA83 detection
with TMB/ H2O2. (c) Colorimetric PA83 detection calibration curve. Concentration-dependent calibration
curve for Pt-based colorimetric detection of PA83 in 1X PBS with the absorbance at 655 nm measured on
Synergy H4 Plate Reader.

c

Figure 13. Detection of PA83 in serum. (a)
Detection of PA83 spiked into 1:1 PBS:human
serum with a single Ab (blue) and with the
sandwich mAb pair (red). (b) Blind detection of
nanomolar PA83 in human serum. (*p < 0.01,
Student’s t-test).

 33
incubating PA83-spiked serum samples directly in unblocked NHS-ester modified wells, before adding the

mAb-AuNP conjugate. After a 20 min incubation in colorimetric detection solution, the mAb sandwich

displayed a dose response from 10 to 100 nM PA83, while the single mAb failed to detect any PA83

concentration, thereby demonstrating the importance of the sandwich assay for detecting protective antigen

in complex, physiologically relevant solutions. In a blinded experiment, colorimetric PA83 detection in 1:1

PBS:serum could be further improved to 5 nM PA83 by allowing the final incubation in colorimetric

detection solution to run overnight. Because the serum is diluted 1:1 in PBS, these experiments demonstrate

detection down to 10-20 nM PA83 (830-1660 ng/mL) in whole serum. This is within the physiological range

of PA83 concentrations observed in the serum of rabbits (1-100,000 ng/mL) and guinea pigs (1-5,000 ng/mL)

during the progression of inhalational anthrax.136 However, the PA83 concentrations detected by this

colorimetric assay correspond to more advanced stages of anthrax rather than the early, potentially treatable

stage, at least in these two animal models; so more sensitive methods of signal amplification and detection

are desirable to make an assay that could potentially enable early diagnosis and successful treatment of

anthrax.

2.6 Scanometric Detection of PA83

Although the colorimetric mAb-AuNP

sandwich was successfully used to screen for

and discover an antibody sandwich pair that

could detect pathogenically relevant

concentrations of PA83, sensitivity to even

lower concentrations could potentially

enable earlier diagnosis and successful

treatment. This is particularly important for

anthrax, as the expression of protective

antigen facilitates the endocytosis of the

Figure 14. Scanometric detection of PA83 via gold
reduction onto mAb-AuNP sandwich. (a) Quantification
of scanometric PA83 detection using 633 nm light
scattering. (b) Detection of sub-picomolar concentrations
of PA83.

 34
lethal factor and edema factor toxins

required for disease progression.98, 99

We therefore sought to determine

whether measuring the scanometric

readout of the sandwich

immunoassay increased detection

sensitivity (Figure 14). mAb 1992

was functionalized on an NHS-ester activated glass slide and incubated first with PA83 and then with mAb-

AuNP 8240, with blocking steps in between. A gold reduction solution was added to the slide to amplify

the gold signal. Scattering of 633 nm laser light across the slide was collected in a Scano-miR instrument

(Figure 15) and quantified with GenePix software. The scanometric assay detected PA83 at concentrations

ranging from 600 fM to 60 nM in PBS with 1% BSA and 0.02% Tween, with a limit of detection of 550

fM. This is over 1000 times more sensitive than the Pt-based colorimetric assay of PA83 in the same solution.

These results underscore the observation that gold reduction and scanometric readout is a general strategy

for increasing the sensitivity of antibody sandwich assays. This could be particularly useful for biomarkers

of infection such as PA83, for which early identification of the pathogen can be critical for successfully

treating the disease. 97

2.7 Materials and Methods

2.7.1 Reagents. Citrate capped gold nanoparticles (13 nm and 40 nm) were purchased from Ted Pella or

synthesized as previously described.137 The seven screened Anti-PA83 antibodies (Ab8240, Ab1988,

Ab1990, Ab1991, Ab1992, Ab13808, and Ab38725) were purchased from AbCam. N-hydroxy succinimide

(NHS)-activated 96-well plates (divided into 8-well strips), NHS-activated glass slides for scanometric

detection, aliquots of mAb 1992, and EZ-Link Plus activated peroxidase kits for horseradish peroxidase-

antibody conjugation were purchased from Thermo Fisher. All other materials, buffers and reagents,

including platinum and gold salts, were purchased from Sigma Aldrich.

Figure 15. Representative light scattering image of an 8-well
glass slide showing scanometric detection of PA83.

 35
2.7.2 Buffered solutions. Blocking solution, used for all blocking and washing steps during mAb-AuNP

synthesis and PA83 detection assays, contained 1X phosphate-buffered saline (PBS), 1% bovine serum

albumin (BSA), and 0.02% Tween 20. Platinum deposition solution, used during colorimetric detection,

contained 10 mM citrate buffer (pH 3), 20 mM L-ascorbic acid, and 2 mM potassium hexachloroplatinate

(K2PtCl6). Colorimetric detection solution contained 50 mM H2O2 in 3,3’,5,5’-tetra-methylbenzidine

(TMB); and was prepared fresh before each colorimetric detection experiment. Gold reduction solution

contained 10 mM chloroauric acid (HAuCl4) with 10 mM hydroxylamine (NH2OH), and was prepared fresh

before each gold reduction reaction.

2.7.3 Synthesis of Antibody-Coated Gold Nanoparticles. Antibodies were noncovalently adsorbed onto the

surface of AuNPs, similar to previously described methods.9 In a 15 or 50 mL plastic conical tube, a solution

of 10 nM of citrate-capped AuNPs in water (40 nm diameter for dynamic light scattering (DLS) particle

size measurements; 13 nm diameter for all other experiments) was adjusted to pH 7 using 0.2 M NaOH,

and Tween 20 was added to a final concentration of 0.02%. Unmodified antibodies were added to a final

concentration of 15 µg/mL, and the solution was mixed gently by inverting the tube 4-6 times. The tube

was incubated overnight at room temperature in the dark. The mAb-AuNP mixture was then diluted 1:1

with blocking solution, gently mixed by inverting the tube 4-6 times, sealed by capping the tube and

wrapping the cap in parafilm, and incubated for 3 h in the dark at room temperature. The crude mAb-AuNPs

were cleaned via two rounds of pelleting (4,000 RCF for 30 min at room temperature in 1.5 mL low-

retention plastic tubes), supernatant removal, and resuspension in blocking solution. This protocol generates

antibody-mAb nanoparticles that maintain function for at least 3 months at 4 ºC.

2.7.4 Characterization of AuNP-mAbs. Nanoparticle concentration was measured by UV-Vis spectroscopy

on a Cary5000 spectrophotometer (gold absorption peak at 520 nm, extinction coefficient 2.7*10-8

L/mol/cm). To characterize protein adsorption to the gold surface, particles were twice centrifuged at 4000

RCF for 30 min and resuspended in 1X PBS with 0.02% Tween (no BSA), then absorption at 280 nm was

measured via UV-Vis. To measure the size of mAb-coated AuNPs, mAb-AuNPs were twice centrifuged at

 36
4000 RCF and resuspended in 1X PBS (no BSA or Tween), diluted to 0.5-1 nM AuNP, and measured in a

Malvern Zetasizer DLS instrument.

2.7.5 Making Antibody-Coated Wells. 50 µL of 2 mg/mL antibody solution was diluted with an equal

volume of 1X PBS (pH 7.5) to make 100 µL of 1 mg/mL antibody. 10 µL of 1 mg/mL antibody solution

was carefully and evenly added to the center of each well in a strip of 8 NHS ester modified wells. The strip

was incubated overnight in a sealed chamber with a water reservoir (roughly 50% humidity). Then 100 µL

of blocking solution was pipetted into to each well and gently mixed. After 2 min of incubation, the liquid

was removed from the strip. These washing steps were repeated twice more. The strips were stored in a

humid chamber before use to avoid them drying out. For screening, eight antibody-coated 8-well strips

were made, one for each antibody and a BSA control. For further PA83 detection assays, mAb 1992 was

functionalized on the NHS-activated surface.

2.7.6 Screening for Antibody Sandwich Pairs. 3 mL of 500 nM PA83 solution in 1X PBS and 1 mL of 1 µM

BSA solution in 1X PBS were prepared. To each of the eight 8-well strips, 50 µL of the 500 nM PA83

solution was added. The strips were incubated in the humid chamber for 1 h, and then washed three times

with blocking solution. Next, 50 µL of 10 nM of antibody functionalized nanoparticles was added to each

well, such that every combination of immobilized antibody and mAb-AuNP was tested, along with the BSA

negative controls. The strips were incubated in the humid chamber for 1 h and then washed with blocking

solution three times. During incubation, a 4 mL batch of platinum deposition solution, which uses ascorbic

acid to reduce Pt(IV) ions onto gold nanoparticles,130 was prepared from stock solutions. 50 µL platinum

deposition solution was added to each well. After incubating the strips for 1.5 h in the humid chamber, all

wells were gently washed five times with DI water. 10 mL of colorimetric detection solution was prepared,

and 100 µL was added to each well. Strips were incubated in a dark humid chamber for 20 min, avoiding

light to minimize background signal. PA83 detection was assessed qualitatively by eye, imaged on an Alpha-

Innotech FluorChem Q imager, and quantitatively measured via absorbance at 655 nm in a Bio-Tek H4

plate reader.

 37
2.7.7 Colorimetric PA83 Detection Curves and Kinetics. Three 8-well strips were coated with mAb 1992,

and 5 mL AuNPs coated with mAb 8240 were prepared as described above. A dilution series of PA83 in 1X

PBS was prepared, comprising 1 mL each of 500, 100, 20, 5, 1, 0.5, and 0.1 nM PA83, as well as a 1 µM

BSA control. 50 µL of each PA83 concentration and the BSA control were added in triplicate to the coated

8-well strips. Incubation, washing, addition of mAb-AuNPs, and platinum reduction was performed as

described above. Then a colorimetric detection solution was added to all the wells. The strips were

immediately placed in a Bio-Tek H4 plate reader, and the absorbance at 655 nm was measured every minute

for 25 min. The strips were then photographed with an Alpha Innotech FluorChem Q imager, under white

light.

2.7.8 Serum PA83 Detection Curve. Triplicate mAb 1992-functionalized 8-well strips, and a 5 mL batch of

8240-functionalized AuNPs were prepared as described above. Human serum solution was prepared by

diluting human serum 1:1 in 1X PBS. A dilution series of PA83 concentrations (500, 100, 20, 5, 2, 1, and

0.5 nM) was prepared by serially diluting 8 µM stock PA83 into human serum solution. Incubation of PA83

dilutions and the control 1 µM BSA in human serum, and subsequent colorimetric detection were performed

as described above. The absorbance at 655 nm was quantified by plate reader after 20 min of incubation

with colorimetric detection solution.

2.7.9 Scanometric PA83 Detection. 200 µL of 1 mg/mL mAb 1992 solution was prepared by diluting

antibody stock 1:1 in 1X PBS. NHS-activated glass slides were divided into 10 wells by attachment of a

rubber gasket. Two replicate 5 µL spots of mAb 1992 solution were pipetted into each well, and the slide

was incubated overnight in the humid chamber. The slide wells were then washed three times with blocking

solution. To determine the scanometric detection range of PA83, a dilution series of PA83 concentrations (60

nM, 6 nM, 600 pM, 60 pM, 6 pM, and 600 fM) were prepared in 1X PBS, and incubated in two replicate

wells for 1 h in the humid chamber. The wells were washed 3 times with blocking solution, and then

incubated for 1 h with 10 nM of 8240-modified AuNPs. Wells were washed 3 more times with blocking

solution, and then two gold reductions were performed to amplify the signal.75

 38
To perform gold reductions, the slide was removed from the rubber gaskets. Solutions of 10 mM HAuCl4

and 10 mM hydroxylamine (NH2OH) were prepared in separate 10 mL syringes. The syringes were

connected by a T-junction to a single output tube, to enable rapid mixing of the solutions. 4 mL of a 1:1

HAuCl4/NH2OH mixture was spread evenly over the surface the slide for 30 s, then the slide was immersed

in a DI water bath to wash gold reduction solution away, gently rinsed with running DI water, and blown

dry with N2. The gold reduction, washing, and drying steps were repeated once more. The slide was then

imaged with a Tecan LS Reloaded scanner. Light scattering signal intensities from the two replicate spots

for each PA83 concentration were quantified by GenePix Pro 6 software. The limit of detection was

determined using 3.5 sigma above the negative control and fitting the data points to a Hill equation.

2.7.10 Monoclonal antibody orientation in PA83 sandwich. Three 8-well strips were coated with mAb 1992,

and three were coated with mAb 8240. 5 mL each of gold nanoparticles (AuNPs) coated with either mAb

8240 or mAb 1992 were prepared as described above. Seven concentrations of PA83 (500, 100, 20, 5, 1, 0.5,

and 0.1 nM) were prepared in 1X PBS as described in the main text. 50 µL of each PA83 concentration and

the BSA control were added in triplicate to the coated 8-well strips. Incubations, washes, addition of AuNP-

mAbs (AuNP-mAb 1992 to the 8240-coated wells, and AuNP-mAb 8240 to the 1992 coated wells),

platinum reduction, and qualitative colorimetric detection with the Alpha-Innotech FluorChem Q imager

was performed as described in the screening assay in the main methods section.

2.7.11 Optimization of H2O2 concentration in TMB/H2O2 solution. Three 8-well strips were coated with

mAb 1992, and 5 mL AuNPs coated with mAb 8240 were prepared as described in the main text. Three

concentrations of PA83, 100, 10, and 1 nM, were prepared in 1X PBS. 50 µL of each PA83 concentration and

the BSA control were added in triplicate to the coated 8-well strips. Incubations, washes, addition of AuNP-

mAbs, and platinum reduction was performed as described in the screening assay in the main text. Three

colorimetric detection solutions were prepared, by mixing 20, 50, or 100 mM H2O2 in TMB. The strips

were then placed in a Bio-Tek H4 plate reader, and the absorbance at 655 nm was measured after 20 min of

incubation.

 39
2.7.12 Optimization of Pt reduction time. Five 8-well strips were coated with mAb 1992, and 5 mL AuNPs

coated with mAb 8240 were prepared as described in the main text. 10 nM PA83 was prepared in 1X PBS

as described in the main text. 50 µL of 10 nM PA83 was added to 18 wells, and 50 µL blocking solution was

added to 18 control wells. 50 µL Pt reduction solution was added to each well. For both the 10 nM PA83 and

the 0 nM control condition, 3 wells each were incubated with the Pt reduction solution for 0, 10, 30, 60, 90,

and 120 min before rinsing 5 times with water. 100 µL colorimetric detection solution with 50 mM H2O2 in

TMB was added to each well and the absorbance at 655 nm was measured in a Bio-Tek H4 plate reader

after 20 min.

2.7.13 Optimization of incubation times. Six 8-well strips were coated with mAb 1992, and 5 mL AuNPs

coated with mAb 8240 were prepared as described in the main text. Solutions of 100, 10, and 1 nM PA83

were prepared in 1X PBS as described above. 12 wells were filled with 50 µL of 100, 10, 1 nM PA83 or a

blocking solution control. For each PA83 concentration, four wells were incubated with PA83 for 15 min,

four were incubated for 30 min, and four were incubated for 60 min before washing 3X with blocking

solution. 20 µL of 10 nM AuNP-mAb was added to each well, and incubated for the same amount of time

as the PA83 solution (i.e. 15, 30, or 60 min depending on the well). Then, for each set of four replicate wells,

two were incubated with Pt reduction solution for 10 min, and two for 90 min, before washing 5X with

water. Colorimetric detection solution was added and absorbance after 20 min was measured as described

above.

2.7.14 ELISA. 8-well strips functionalized with mAb 1992, 8240, 13808, and 38725 were prepared as

described in the main text. 100 µL of 1 mg/mL mAb 1992, 8240, and 1990 were run through NAP-5

columns equilibrated in 1X PBS to remove the sodium azide preservative (required for the use of the HRP

conjugation kit). Then horseradish peroxidase was conjugated to mAb 1992, 8240, and 1990 using an EZ-

Link Plus activated peroxidase kit. A PA83 dilution series (100, 20, 5, 1, 0.5, and a 1 µM BSA control) was

prepared, and incubated/washed in each 8-well strip as described above. A 1:100 dilution of each HRP-

mAb was incubated in the wells for 1 h in the following arrangement: 1992-8240-HRP, 8240-1992-HRP,

 40
13808-1990-HRP and 38725-8240-HRP sandwich pairs. The wells were then washed with blocking

solution 3 times, and 100 µL colorimetric detection solution was added. After 20 min incubating in the

dark, the wells were imaged in FluorChem Q imager and the absorbance at 655 nm was quantified on the

plate reader. Fold change in absorbance was calculated and plotted by dividing the absorbance at each PA83

concentration by the absorbance of the negative control.

2.7.15 Blind Serum PA83 Detection. Two mAb-functionalized 8-well strips and a 5 mL batch of AuNP-

mAbs were prepared as described above. Three replicate 50 µl aliquots of 10, 5, 1, and 0 nM PA83 in 1:1

serum:PBS were prepared and divided into three 50 µL aliquots in labeled 1.5 mL Eppendorf tubes. These

aliquots were given to a third party, who randomly transferred their contents to fresh Eppendorf tubes which

were numbered 1-12, recording in their notebook what concentration of PA83 was transferred to each

numbered tube. The numbered tubes were returned to the experimenter without revealing their contents.

The wells on the two mAb-functionalized strips were labeled 1-12, and 50 µL from the numbered aliquots

were added to each corresponding well. The PA83 incubation, AuNP-mAb incubation, and Pt reduction

were performed as described in the main text. Colorimetric detection solution was added and incubated

overnight in a dark chamber, after which absorbance at 655 nm was measured in the plate reader. Finally,

the key recording each numbered aliquot’s PA83 concentration was retrieved from the third party.

 41

CHAPTER 3: Modeling, Measuring and Screening Aptamer NanoFlares Toward

Detection of Human Stress Biomarkers

Collaborators include Chad Mirkin, Caroline Kusmierz, Sasha Ebrahimi, Jorge Chavez, Peter Mirau,

Nancy Kelly Loughnane, Rachel Krabacher, Monica Wolfe, and Alyssa Chinen

 42
3.1 Introduction

Although some stress is required for optimal human function, too much stress is detrimental to

performance and leads to the dysregulation of multiple physiological systems, damaging human health by

impairing cardiovascular, immune, metabolic, and neuroendocrine function.138, 139 Moreover, the same

stressors can increase some individuals’ performance, while overloading and damaging others’

performance and health.140 These realities have generated research interest into ways to measure

individuals’ stress levels, their allostatic load,141 in order to better manage and improve performance,

psychological and physiological wellbeing.

One approach to this challenge is to develop methods to quantify the concentration of biomarkers that

are indicative of allostatic load in human samples such as sweat, saliva, urine and blood. Molecular

biomarkers of neuroendocrine, cardiovascular, immune and metabolic health include cortisol,

dehydroepiandrosterone-sulphate (DHEA-S), insulin, glycosylated hemoglobin, creatinine, albumin,

pancreatic amylase, C-reactive protein, fibrinogen, serum triglycerides, serum cholesterol, high-density

lipoprotein.142 DHEA-S and cortisol, in particular, are widely studied as biomarkers of human stress. Both

DHEA-S and cortisol are adrenal glucocorticoid steroid hormones, secreted as part of the hypothalamic-

pituitary-adrenal axis of the fight-or-flight response.143 However, while high cortisol concentrations induce

physiological stress and suppress immune and digestive function,144 high DHEA-S concentrations are

correlated with lower levels of stress and improved neurophysiological health and performance.145

The standard methods for detecting and measuring DHEA-S and cortisol concentrations are liquid

chromatography-tandem mass spectrometry (LC-MS/MS), and immunoassays like competitive ELISA.146

While LC-MS/MS measures different glucocorticoid hormone levels with high accuracy, it requires an

expensive specialty instrument and a high degree of technical expertise to run.147 Immunoassays are simpler

and less expensive to run than LC-MS/MS, but still require multiple time-consuming and potentially error-

prone liquid handling steps, and suffer from cross-reactivity of the antibodies for structurally similar

 43
glucocorticoid hormones, which reduces assay sensitivity and specificity.148 A simple and specific one-pot

assay for different glucocorticoid stress biomarkers would be valuable.

Oligonucleotide aptamers may provide a path to developing such an assay. These are single-stranded

DNA or RNA oligonucleotides that adopt a 3-dimensional structure that binds to a target molecule of

interest.149 Some RNA aptamers evolved naturally as riboswitches that bind and respond structurally to

intracellular metabolites, thereby regulating gene expression.150 However, most interest in aptamers focuses

on the ability to rapidly evolve and select for aptamers that bind novel targets through the process of

systematic evolution of ligands by exponential enrichment (SELEX).151 By incubating a starting pool of

1012-1015 diverse oligonucleotides with magnetic nanoparticle-bound or otherwise immobilized target

molecules, then performing successive rounds of washing, PCR amplification, target binding, and

separation from the pool, researchers have been able to select for aptamers that bind to a vast range of

molecular targets, from proteins152 to small molecules153 to monoatomic ions.154 These aptamers have

subsequently been used to build biosensors for the electrochemical,155 fluorescent,156 and colorimetric157

detection of their target molecules. Sometimes called ‘molecular antibodies,’ aptamers have several

theoretical advantages over their immunoglobulin counterparts: they are molecularly defined and can be

chemically synthesized, potentially increasing reproducibility; they are much more stable and have longer

shelf lives than antibodies, potentially increasing their utility for ‘field’ diagnostics;158 and finally, with the

right set of negative selection steps during SELEX, aptamers can be rapidly evolved to discriminate

between structurally similar target molecules with low cross-reactivity.159 In one relevant example,

researchers reported evolving a library of aptamers that bind specifically to one steroid hormone (including

DHEA-S and cortisol) with nanomolar affinities and without binding to other steroid hormones.160

Over the past two decades, Mirkin lab has developed numerous nanoparticle-based assays of disease

biomarkers, including nucleic acids,71 proteins,74 and small molecules.72 One of the most well-developed is

the NanoFlare,77 a gold nanoparticle (AuNP) SNA functionalized with thiolated DNA oligonucleotides that

are hybridized to fluorophore-modified oligonucleotide ‘flare’ strands. Proximity to the AuNP quenches

 44
the fluorophores on the flare strand; however, in the presence of a target polynucleotide sequence that is

complementary to the thiolated oligonucleotide, the target hybridizes to the SNA and displaces the flare

strand. The displaced flare diffuses away from the AuNP and is no longer quenched, generating a

fluorescent signal. NanoFlares represent a tailorable platform for the simple and rapid detection of

numerous biomarkers. Because SNAs readily enter cells, NanoFlares can detect nucleic acid targets both

extracellularly and intracellularly.79 Multiplex NanoFlares which can simultaneously detect two different

target sequences using two different thiolated oligonucleotides and two flare strands with different

fluorophores conjugated to them have already been demonstrated, opening the possibility of one-pot

analysis of multiple biomarkers using NanoFlares.78

Aptamer NanoFlares are an intriguing and underexplored class of NanoFlares (Figure 16).81 Aptamer

NanoFlares are AuNPs functionalized with a thiolated DNA aptamer that binds to a target molecule of

interest an contains a hairpin stem. The flare strand is hybridized onto the hairpin stem, displacing the

Figure 16. Aptamer NanoFlares for small molecule detection. (A) Synthesis of Aptamer
NanoFlares from citrate-capped gold nanoparticles, thiolated DNA Aptamers, and complementary
fluorophore modified Flare strands. (B) Small molecule recognition with aptamer NanoFlares by
stabilizing the folded aptamer and/or destabilizing the aptamer-flare duplex.

Thiolated DNA
Aptamer

DNA
Flare Strand

Adsorption
+ Salt Aging

Hybridize

Aptamer SNA Aptamer NanoFlare

Gold
Nanoparticle

ATP
Small Molecule

Recognition

B

A

 45
aptamer’s self-complementary duplex and partially disrupting the aptamer’s structure. Then, in the presence

of the target molecule, the folded conformation of the aptamer is stabilized, re-forming the self-

complementary duplex and displacing the flare strand, which diffuses away from the AuNP and generates

a fluorescent signal. The first demonstrated aptamer NanoFlare bound to and detected ATP in vitro, could

distinguish ATP from other nucleoside triphosphates in a one-pot reaction, and could enter cells and detect

when ATP production was halted.81 However, few if any subsequent aptamer NanoFlare designs have been

reported, meaning that the generalizability of this biosensor architecture is unknown. Moreover, the first

aptamer NanoFlare paper demonstrated biosensing function without delving deeply into the mechanisms

and design considerations undergirding that function. Whether and how the behavior and the design rules

for minimizing the detection limit of aptamer Nanoflares differ from either nucleic acid-sensing NanoFlares

or nanoparticle-free aptamer biosensors remains unknown.

To address these questions, this chapter presents our efforts to model, measure, and screen for aptamer

NanoFlares to detect DHEA-S and cortisol biomarkers of stress.

3.2 Initial Aptamer NanoFlare design

To begin building and testing aptamer NanoFlares for detection of biomarkers of stress, we selected as

a first model the aptamer DIS11th_3, which had been designed by running SELEX with 7 rounds of positive

selection for DHEA-S binding, then 3 rounds of

counterselection against several non-DHEA-S steroids,

and then one final round of positive DHEA-S binding

selection.160 This aptamer has a predicted secondary

structure with three hairpins, and the DHEA-S is predicted

to bind at the juncture of the three hairpins. To adapt the

aptamer for functionalization on an SNA, a 7-adenosine

(7A) spacer and then a thiol modification were added to the

3’ end of the aptamer. The initial flare strand was designed

Figure 17. Architecture of initial
DHEA-S aptamer NanoFlare design.

C

C
C

T
G

G

A

G

C

C
T

Cy5A7
S

G

C
C C C

C

C

T
T
T T T

T
T
T

T
G

GGG

G

G

G
A
A

A
A

A A

G

G

C
A

DHEA-S
binding

site

5’-

 46
to hybridize to the 8 base pairs on the 3’ end of the aptamer, theoretically bringing the flare’s 5’ Cy5

modification into close proximity to the AuNP core of the

SNA and quenching its fluorescence (Figure 17).

Using this design, aptamer NanoFlares were

synthesized, and their ability to detect DHEA-S was tested.

The initial aptamer NanoFlare design did not display an

increase in fluorescence in the presence of 1 mM DHEA-S

(Figure 18).

3.3 DIS11th_3T truncated aptamer NanoFlare design.

The increasing background signal with increasing

temperature in this aptamer NanoFlare design suggests that

the flare strand does not hybridize stably, possibly due to the

competing internal duplex that is formed when the aptamer

is folded. We hypothesized that a shorter, less stable aptamer

hairpin might function better, because it would be more

accessible to hybridization with the flare strand. We

therefore designed a truncated version of the DIS11th_3,

named DIS11th_3T, which shortened the hairpin stem by

4 base pairs (Figure 19). In this design, the flare strand

now is longer than the aptamer’s self-complementary

duplex, and extends into the DHEA-S binding site. After

synthesizing aptamer NanoFlares with this design, a

preliminary DHEA-S detection experiment indicated

that DIS11th_3T could detect high (1 mM)

concentrations of DHEA-S (Figure 20).

Figure 18. Initial DHEA-S aptamer
NanoFlare design does not detect
DHEA-S. Fluorescent response of
aptamer NanoFlare is shown in the
presence (red) and absence (blue) of 1
mM DHEA-S.

4 25 37
0

20000

40000

60000

Temperature (°C)

Fl
uo

re
sc

en
ce

 (A
FU

)

-DHEAS
+DHEAS

4 25 37
0

20000

40000

60000

Temperature (°C)
Fl

uo
re

sc
en

ce
 (A

FU
)

-DHEAS
+DHEAS

Figure 19. Truncated aptamer
NanoFlare design.

C
C C C

C

C
C

T
T
T T T

T
T
T

T
G

GGG

G

G

G
A
A

A
A

A A

G

G
G

C

C
A

Cy5A7
S

DHEA-S
binding

site
A
A

T

G

Figure 20. Truncated aptamer NanoFlare
design may detect DHEA-S. Fluorescent
response of aptamer NanoFlare is shown in
the presence (red) and absence (blue) of 1
mM DHEA-S.

4 25 37
0

20000

40000

60000

Temperature (°C)

Fl
uo

re
sc

en
ce

 (A
FU

)

-DHEAS
+DHEAS

4 25 37
0

20000

40000

60000

Temperature (°C)

Fl
uo

re
sc

en
ce

 (A
FU

)

-DHEAS
+DHEAS

 47

3.4 Structural response of DIS11th_3 and DIS11th_3T to DHEA-S.

We sought to test the hypothesis that the truncated aptamer’s structure was destabilized relative to the

original DIS11th_3. In collaboration with Peter Mirau’s lab, we generated NMR spectra for the two

aptamers in the presence and absence of DHEA-S (Figure 21). The imino protons in unpaired guanine and

thymine nucleobases rapidly exchange with solvent, such that they do not generate measurable NMR peaks.

However, in G-C and A-T base pairs, these imino protons are protected from solvent, and can appear as

peaks on the NMR spectra. The original DIS11th_3 aptamer has largely the same spectrum in the presence

and absence DHEA-S, indicating that the presence of target molecule does not change the structure of the

aptamer. However, for the truncated DIS11th_3T aptamer, the presence of DHEA-S causes at least 3 new

peaks, at 11 ppm, 12 ppm and 14.5 ppm, to appear on the NMR spectrum. This indicates that DHEA-S

induces a conformational change in DIS11th_3T, which is promising from the standpoint of designing a

biosensor that responds structurally to the presence of target molecule.

3.5 Backfilling aptamer NanoFlares to reduce nonspecific quenching

In order to efficiently probe parameters governing aptamer Nanoflare performance, it was important to

establish the minimum background and maximum fluorescence signal the particles can produce. In

Figure 21. NMR of aptamer structural response to DHEA-S. (A) Imino proton NMR spectra for
the original DIS11th_3 aptamer in the presence and absence of a 1.25-fold excess of DHEA-S. (B)
NMR spectra of DIS11th_3T in the presence and absence of 1.25X DHEA-S.

+ DHEA-S

- DHEA-S

C"

C"
C"

T"
G"

G"

A"
G"

C

C C
C

C

C

T
T

T T T

T

T
T

T
G

G G G

G

G

G

A
A

A
A

A A

G

DHEA-S
binding

site

C

C C
C

C

C

G

G

G

G G G

A

A

A
AA

A

G

G

T

T

T

T

T T

T
T

T

C G

C

C

G

G
T A

A7

C

C C
C

C

C
C

T
T

T T T

T

T
T

T
G

G G G

G

G

G

A
A

A
A

A A

G

DHEA-S
binding

site

C
C

C C
C

C

C

G
G

G

G

G G G

A

A

A
AA

A

G

G

T

T

T

T

T T

T
T

T

A7

+ DHEA-S

- DHEA-S

DIS11th_3 DIS11th_3TA B

 48
particular, we hypothesized that inefficient binding/hybridization of the flare strand to the aptamer SNA

might increase background fluorescence and reduce the dynamic range and signal to noise ratio of the

biosensor. To determine how efficiently the particles quench flare fluorescence, and whether that quenching

is due to hybridization with the aptamer stem, we measured the fluorescence from DHEA-s flare strands

alone, flares in the presence of gold nanoparticles, and flares in the presence of either the DIS11th_3T

aptamer SNA or MN19,161 a non-complementary cocaine aptamer SNA (Figure 22; sequences in Table

A1).

The nanoparticles efficiently quenched the flare strand, generating a >10-fold decrease in fluorescence

relative to free flare. However, the quenching appeared to be nonspecific: free AuNPs with no aptamer

strands attached and non-complementary aptamer SNAs both efficiently quenched the flare strand,

indicating that hybridization with the aptamer stem is not required for the flare strand to be quenched. Free

DNA strands are known to interact nonspecifically with AuNPs,162 so we suspected that most of the flare

strands were adsorbing onto the surface of the gold nanoparticles in the spaces between the aptamer strands.

Figure 22. Fluorescence and quenching mechanism for flare strands. Both DHEA-S and cocaine
flares were incubated in PBS at 37ºC in the presence of bare gold nanoparticle, matching aptamer SNA
(i.e. DHEA flare with DHEA aptamer), or with a mismatched aptamer SNA (i.e. cocaine flare with DHEA
aptamer).

 49
We hypothesized that disrupting the flare strand’s ability to access the gold nanoparticle’s surface

would reduce non-specific quenching of the flare. We tested the effect of backfilling the aptamer-SNA

particles with thiolated PEG oligomers (average MW = 800 Da), and measured the change in fluorescence

(Figure 23).

Functionalizing the surface of the bare gold nanoparticles with PEG almost completely eliminated

quenching of either flare strand. This suggests that the nonspecific quenching was due to adsorption of the

flare strand with the gold nanoparticle’s surface.

We next sought to determine whether the backfilled aptamer-SNAs would still hybridize and quench

their flare strands in a sequence-dependent manner (Figure 24). We also sought to measure whether how

much of a change in fluorescence could be induced by de-hybridizing the flare strands off the particle. We

therefore incubated DHEA aptamer SNAs with either DHEA flare strands or cocaine flare strands, and

measured fluorescence in the presence and absence of urea.

Figure 23. Backfilling Aptamer SNAs with PEG greatly reduces non-specific quenching.
Both DIS11th_3T and MN19 flare strands were incubated by themselves, with bare AuNPs, or
with gold nanoparticles incubated with an excess of thiolated PEG oligomers (1,000:1
PEG:AuNP).

 50

While PEGylated AuNPs did not efficiently quench the DHEA flare strand, the PEGylated DIS11th_3

aptamer SNA did. This indicated that the flare strand interacts with the DIS11th_3 aptamer SNA via a

distinct mechanism from the bare gold nanoparticle interaction. Further, the fluorescence of the backfilled

DIS11th_3 NanoFlare increased more than 8-fold upon addition of urea to the solution, suggesting that

denaturation and de-hybridization destroyed the flare strand-aptamer SNA interaction. Finally, the cocaine

flare strand was not efficiently quenched by the backfilled DIS1th_3 aptamer SNA, suggesting that the

interaction of the flare strand with backfilled nanoparticles was sequence-dependent.

3.6 Measuring flare hybridization efficiency

We wanted to determine how well backfilled aptamer Nanoflares could detect small molecules of

interest. Surprisingly, we observed no increase in fluorescence when DIS11th_3 aptamer NanoFlares were

added to solutions with 1 mM DHEA-S. We suspected that non-hybridized flare strands in solution may be

Figure 24. Backfilled Aptamer Nanoflares demonstrate reversible, sequence-dependent
quenching. DIS11th_3 flare strand (blue bar) was incubated with bare gold nanoparticle, backfilled gold
nanoparticle, backfilled DIS11th_3 aptamer SNA, and backfilled DIS11th_3 aptamer SNA in the presence
of urea. MN19 cocaine flare (red bar) was also incubated with backfilled DIS11th_3 aptamer SNA.

DIS11th_3
NanoFlare +

PEG

DIS11th_3
NanoFlare +
PEG + Urea

MN19
NanoFlare +
PEG + Urea

 51
causing high background fluorescence levels, thus impairing detection. We therefore synthesized aptamer

Nanoflares with different numbers of flare strands per particle, hypothesizing that some optimal number of

flare strands would provide the lowest background fluorescence levels. However, none of the particles we

synthesized detected DHEA-S (Figure 25).

Hypothesizing that inefficient flare quenching may reduce aptamer Nanoflare performance, we sought

to measure how efficiently the DIS11th_3 SNAs quench increasing numbers of DHEA-S flare strands. We

measured the fluorescence of Aptamer Nanoflares with different ratio of aptamer strands to flare strands,

Figure 25. Flare Loading versus DHEA-S detection. DIS11th_3 aptamer NanoFlares are synthesized
with different numbers of flare strands per particle. Then fluorescence is measured with (red) and
without (blue) 1 mM DHEA-S.

0
100
200
300
400
500
600
700
800
900

1000

38 30 24 18 12 6 0

Fl
uo

re
sc

en
ce

 (A
U

)

Flare Strands Per Particle

no DHEA
1 mM DHEA

Figure 26. Flare loading versus flare quenching. Aptamer Nanoflares were synthesized with varying
loadings of flare strand, expressed as a ratio of aptamer strands to flare strand. The aptamer Nanoflare
fluorescence (blue) is compared to the fluorescence of PEGylated gold nanoparticles mixed with the
same number of flare strands, and the ratio of the two is labeled.

1.2

0.7

0.5
0.6

0
0.2
0.4
0.6
0.8

1
1.2
1.4

2 3 7 20

N
or

m
al

iz
ed

Fl

uo
re

sc
en

ce

Aptamer Strands per Flare Strand

Flare+AuNP-PEG
Aptamer Nanoflare

 52
compared to PEGylated AuNPs with the same

number of flare strands (Figure 26). We found

that NanoFlares with 7 aptamer strands per

flare strand showed the most efficient

quenching, causing a 2-fold decrease in

fluorescence. As 2-fold quenching is much less

efficient than has been observed for other

NanoFlare systems, we re-synthesized the

aptamer, flare, and scrambled flare sequences and repeated the experiment with fresh reagents. We again

observed at most a 2-fold quenching effect, with most efficient quenching observed at a ratio of 10 aptamer

strands per flare strand.

We hypothesized that the flare strands may be quenched inefficiently because they melt off the SNA at

low temperatures. We therefore ran a melting experiment on the aptamer Nanoflares in the plate reader,

measuring the fluorescence of the constructs as we raised the temperature from 25ºC to 65ºC (Figure 27).

Surprisingly, we observed that aptamer Nanoflare fluorescence decreased with increasing temperature, in

contrast to what would be expected for

a fluorophore-labeled oligonucleotide

hybridized onto a gold nanoparticle.

The fluorescence of free flare strands

alone in solution also decreased in

fluorescence with increasing

temperature.

This led us to hypothesize that the

DIS11th_3 flare strand-aptamer duplex

had an even lower melting temperature

Figure 28. Flare strand annealing. 1 nM DIS11th_3 aptamer
NanoFlares (‘DHEA Aptaflare’, blue) are slowly cooled in a
fluorimeter from 37ºC to 9ºC. Control samples including flare
only (red), flare + PEGylated gold nanoparticle (black), and
DIS11th_3 SNA (DHEA SNA) + scrambled flare (green) are
shown.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

10 20 30 40N
or

m
al

iz
ed

 F
lu

or
es

ce
nc

e

Temperature (C˚)

Flare Only

Flare + PEG Au NP

DHEA SNA +
Scrambled Flare
DHEA Aptaflare

Figure 27. DIS11th_3 aptamer NanoFlare Melt (Plate
Reader). The fluorescence of Aptamer NanoFlares
(blue) and flare strands by themselves (red) is
measured as temperature rises from 25ºC to 65ºC.

0

500

1000

1500

25 35 45 55 65Fl
uo

re
sc

en
ce

 (A
U

)

Temperature (ºC)

Aptamer
NanoFlare

 53
than 25ºC. We therefore used a fluorimeter to measure annealing of the flare strand to the particle as the

temperature was slowly (1ºC/minute) lowered from 37ºC to 9ºC (Figure 28). Under these conditions,

fluorescence of the aptamer Nanoflare constructs decreased 2-fold between 30ºC and 15ºC. We suspected

that the flare strands had a relatively low melting temperature because they were only 8 base pairs long.

We concluded that the stability of the flare-aptamer duplex needed to be increased in order to increase the

potential signal the aptamer NanoFlares were capable of generating.

3.7 Increasing flare strand length

We hypothesized that a longer flare that more strongly hybridized to the aptamer stem would be

quenched more efficiently, leading to lower baseline fluorescence in the aptamer NanoFlare biosensor. We

therefore designed and synthesized a 12 base flare strand (Figure 29), which is 4 bases longer and has a

predicted melting temperature 20ºC higher than the original 8 bp DIS11th_3T flare (40ºC versus 20ºC). We

also synthesized fresh aptamer SNAs, achieving a loading density of 40 aptamers/AuNP as measured by

Oligreen.

We then compared the quenching efficiency of the 12 bp and 8 bp flare strands in a fluorimeter melt

experiment (Figure 30). While the 12 bp flares achieved 3-fold quenching of flare strand below 30ºC, the

8 bp flare strands displayed little quenching and a higher background even at 10ºC. This experiment

demonstrated that NanoFlares made with the 12 bp flare strand quenched baseline fluorescence more

efficiently and at higher temperatures than previous constructs made with the 8 bp flares. The aptamer

NanoFlares appeared to detect DHEA-S.

Figure 29. Original, shorter 8 bp DIS11th_3 flare sequence (red), and longer 12 bp DIS11th_3 flare
sequence (blue). Melting temperatures predicted the IDT Oligo Analyzer tool are shown.

 54

Figure 30. Fluorimeter melt of 8 bp flare strand (red) versus 12 bp flare strand (blue) on backfilled
aptamer SNAs.

Figure 31. DHEA-S detection over a range of concentrations. Aptamer Nanoflare fluorescence was
measured in a fluorimeter in the presence of a range of DHEA-S concentrations. Physiological
concentrations of DHEA-S in blood and saliva are also shown.

0

1

2

3

4

5

0 1000 2000 3000 4000

R
el

at
iv

e
Fl

uo
re

sc
en

ce
 (A

U
)

[DHEA-S] (µM)

[DHEA-S] = 29 µM
1.6-fold increase

O

O

H

HSHO

OO
H

DHEA-S
3-30 µM in blood
0.6-70 nM in saliva

 55
3.8 DHEA-S detection and batch-to-batch variability

We next tested whether aptamer NanoFlares with the 12bp flare strands could detect DHEA-S. The

fluorescence of aptamer NanoFlares was measured in the presence of a dilution series of DHEA-S

concentrations, ranging from 3.75 mM to 30 µM DHEA-S (Figure 31). Fluorescence increased for all

concentrations of DHEA-S, increasing roughly linearly in proportion to the logarithm of DHEA-S

concentration. In this experiment the aptamer NanoFlares appeared to detect DHEA-S.

However, subsequent experiments have not consistently replicated this DHEA-S detection curve. For

example, we synthesized several batches of aptamer NanoFlares with a variety of loading densities, ranging

from 88 aptamers/particle to 56 aptamers/particle, in order to test the effect of aptamer loading density on

DHEA-S detection (Figure 32). The resulting detection curves showed a wide variation in fluorescence

response between particle batches that did not correlate with loading density: while particles with the

highest loading density (88 aptamers/particle) showed the greatest relative increase in fluorescence, the

second greatest fluorescent response came from particles with the lowest loading density (56

aptamers/particle). The two particles with intermediate aptamer loading densities showed the lowest

fluorescent response. The source of this batch-to-batch variability is still unclear.

Figure 32. Detection of DHEA-S by multiple batches of aptamer Nanoflares. Plate reader data of
the fluorescence response to a range of DHEA-S concentrations by aptamer NanoFlare batches with
different loading densities. Experimental data is in triplicate.

 56
3.9 Conformational selection model of aptamer NanoFlares

In order to move beyond a specific aptamer NanoFlare system and seek to improve the design and

performance of aptamer NanoFlares in a generalizable way, we sought to build, validate and refine

mathematical models of aptamer NanoFlares. In collaboration with Peter Mirau, we first designed a 3-state

conformational model of the aptamer NanoFlare system (Figure 33).

Five equations define the aptamer Nanoflare 3-

state model (Figure 34). Three equations state that

the overall concentration of aptamer strand,

DHEA-S small molecule, and flare strand, are

constant during each experiment. These overall

concentrations are known and set by the initial

conditions of each experiment, while the

concentrations of free flare strand, aptamer, DHEA-S, flare-aptamer duplex and DHEA-S-aptamer complex

are unknown. The most important parameters in the model are the two dissociation constants (KD’s). The

dissociation constant of the aptamer-DHEA-S interaction (KD
Apt) influences how much the presence of

small molecule stabilizes the aptamer. The dissociation constant of the aptamer-flare strand hybridization

Figure 33. 3-state conformational selection model of the aptamer Nanoflare system. The
unfolded aptamer and hybridized flare strand (on the left) exist in equilibrium with the folded aptamer
and dissociated flare (in the center), and in which the addition of DHEA-S stabilizes the folded state of
the aptamer (on the right).

KD
Apt

KD
Hyb

Figure 34. Equations of the conformational
selection aptamer NanoFlare model. Equations 1
and 2 define the dissociation constants of the
aptamer-flare and aptamer-DHEA-S interaction.
Equations 3, 4 and 5 define the fixed concentration
of aptamer (A), flare strand (F), and DHEA-S (D) in
each experiment.

(3)

(4)

(5)

(1)

(2)

KD
Hyb	=	 F A

AF

KD
Apt	=	 A D

AD

[A] + [AD] + [AF] = ATot

[D] + [AD] = DTot

[F] + [AF] = Ftot

 57
interaction (KD

Hyb) influences how efficiently the flare strand hybridizes, and therefore the background

fluorescence of aptamer NanoFlares. Determining these dissociation constants will result in a set of 5

equations with 5 unknowns, which can be solved to generate predictions about aptamer NanoFlare behavior.

Using Jupyter Notebooks, we built a Python-based version of this equilibrium, conformational selection

model (Code C1).

3.10 Determining aptamer-flare and aptamer-DHEA-S dissociation constants.

We performed isothermal titration calorimetry to measure KD
Apt (Figure 35), measuring the heat

released as DHEA-S was titrated into a solution of free aptamer in 1X PBS. A curve was then fitted to the

∆H vs DHEA-S concentration. We ran this experiment with two different concentrations of DHEA-S and

aptamer to make sure the measurement was consistent, and obtained an average KD
Apt of 27 µM ± 2 µM.

We hypothesized the value of KD
Hyb could be inferred by comparing the predicted behavior of the model

for a range of KD
Hyb values to the experimentally observed behavior of the particles. Toward this end, we

compared the experimentally observed flare quenching efficiency from the fluorescence melt in Figure 30

to the model’s predicted quenching efficiency for a range of KD
Hyb values (Figure 36). For 1 nM Aptamer

SNA (40 nM aptamer) and 4 nM flare strand in 1X PBS, fluorescence at 30ºC was 66% lower than

Figure 35. Measuring KDApt with isothermal titration calorimetry. The ∆H released from the titration
of DHEA-S is plotted as a function of the molar ratio of DHEA-S to Aptamer. Two different titration
curves, plotting either titration of 1.8 mM DHEA-S into 0.09 mM aptamer (A) or titration of .3 mM DHEA-
S into .02 mM aptamer (B). The calculated KDApt from each titration curve is shown and the average
KDApt of the two measurements (bottom) is shown.

1.8mM DHEA-S into 0.09mM Aptamer
25 x 2.0µL

0.3mM DHEA-S into 0.02mM Aptamer
25 x 2.0µL

KD
Apt = 24 µM KD

Apt = 30 µM

DHEA-S:Aptamer Molar Ratio DHEA-S:Aptamer Molar Ratio

 58

fluorescence at 50ºC. The model requires a KD
Hyb of 11 nM in order to reproduce 66% quenching of flare

strands at these concentrations of aptamer and flare strand.

3.11 Predictions of equilibrium conformational selection model

Having determined the dissociation constants required to solve the conformational selection

mathematical model, we sought to use it as a guide for future optimizations of aptamer NanoFlare designs

and assays. Three main model parameters could affect assay performance: the concentration of aptamer

Nanoflare, the strength of flare-aptamer binding (KD
Hyb), and the strength of the aptamer-DHEA-S

interaction (KD
Apt). We plotted model predictions about the relative fluorescence response to DHEA-S for

a range of aptamer NanoFlare concentrations (Figure 37). The model predicted that higher concentrations

of aptamer Nanoflare would lead to larger relative fluorescence increases in the presence of similar

concentrations of DHEA-S. For instance, 1 nM particle was predicted to only generate a maximum 3.5-fold

increase, 10 nM particle was predicted to generate up to a 20-fold fluorescence increase in the presence of

10 mM DHEA-S. This made sense, because mass action meant that higher concentrations of aptamer and

flare would translate to a higher proportion of flare hybridized onto the aptamer SNA and quenched.

Therefore, a larger proportion of flare strands could be displaced by high concentrations of DHEA-S.

Figure 36. Model-based inference of KDHyb. Model prediction of fraction of free flare strand (equal to 1
minus the quenching efficiency) versus different values of KDHyb.

0
10
20
30
40
50
60
70
80
90

100

0.1 1.0 10.0 100.0 1,000.0 10,000.0

Pe
rc

en
t o

f F
la

re
 U

nq
ue

nc
he

d

KDHyb (nM)

Modeled Quenching Efficiency Versus KDHyb

66%
Quenching

KDHyb = 11 nM

 59

However, higher concentrations of DHEA-S did not translate to a lower predicted detection limit;

approximately the same concentration of DHEA-S was required to generate a predicted 1.5-fold

fluorescence increase in 1 nM aptamer Nanoflare as was needed at 10 nM or 100 nM aptamer NanoFlare.

Next, we examined how varying the value of KD
Hyb affected the model’s behavior (Figure 38). Perhaps

unsurprisingly, lower KD
Hyb values were predicted to produce larger relative fluorescence changes in the

presence of DHEA-S. For instance, while an 11 nM KD
Hyb was predicted to generate at most a 3.5-fold

fluorescence increase, a 1 nM KD
Hyb was predicted to generate up to a 25-fold fluorescence increase. This

Figure 37. Predicted DHEA-S detection as a function of aptamer NanoFlare concentration.
Aptamer Nanoflare concentrations are expressed as gold nanoparticle concentrations with 30 aptamers
per particle, and 5 flare strands per particle.

0
10
20
30
40
50

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07R
el

at
iv

e
Fl

uo
re

sc
en

ce

[DHEA-S], nM

Predicted DHEA-S Detection as a Function of
Aptamer Nanoflare Concentration

0.1 nM AuNP
1 nM AuNP
10 nM AuNP

Figure 38: Predicted DHEA-S detection as a function of KDHyb.

0

5

10

15

20

25

30

35

40

45

50

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

R
el

at
iv

e
Fl

uo
re

sc
en

ce

[DHEA-S], nM

Predicted DHEA-S Detection as a Function of Kd_Hyb

Kd_Hyb = 0.1 nM
Kd_Hyb = 1 nM
Kd_Hyb = 11 nM
Kd_Hyb = 100 nM

 60
was because tighter binding flares more efficiently hybridize and quench aptamer SNAs. Importantly,

however , the model assumed no noise in the fluorescence measurement, so the largest predicted fold

changes in fluorescence may come from unrealistically low predictions about background noise and

baseline fluorescence. As with varying the construct’s concentration, the higher relative fluorescence with

lower KD
Hyb did not translate to a decrease in the predicted detection limit of the assay—the amplitude of

the sigmoid fluorescent response to DHEA-S increased, but the sigmoid did not shift to lower

concentrations of DHEA-S.

We then plotted predicted DHEA-S detection performance as a function of the strength of aptamer-

DHEA-S binding, KD
Apt (Figure 39). This was the only parameter that was clearly predicted to affect the

detection limit of the aptamer NanoFlares: the stronger the aptamer-small molecule interaction (and

therefore the lower the KD
Apt), the more the detection response curve shifted to lower concentrations of

DHEA-S. The sigmoid fluorescent response also became sharper at lower KD
Apt values, because most of the

DHEA-S in solution would bind to the aptamer and displace flare strands. These results suggested that

significantly reducing the detection limit of aptamer Nanoflares would requires optimization of the aptamer

structure to bind more tightly to the target molecule. However, KD
Apt has no effect on the amplitude of the

fluorescent response to large concentrations of DHEA-S.

Figure 39: Predicted DHEA-S detection as a function of KDApt. Predicted detection curve with
experimentally determined KDApt (27 µM) in black.

 61
3.12 Induced fit kinetic model of aptamer NanoFlares

The conformational selection model assumed that the flare and aptamer dynamically associate and

dissociate, that DHEA-S stabilizes the folded, flare-inaccessible conformation of the aptamer, and that the

equilibrium between flare-aptamer duplex and aptamer-DHEA-S complex is governed by the dissociation

constants of the two interactions (KD
Hyb and KD

Apt) and the concentrations of the three molecules. However,

we hypothesized that the assumption that flare strands rapidly and dynamically hybridize and dissociate

from the SNA was not accurate, particularly given that SNAs are known to hybridize more stably to

complementary DNA than equivalent linear oligonucleotides.61 We investigated an alternative, induced fit

model of aptamer Nanoflare dynamics (Figure 40). In an induced fit regime, the flare strand hybridizes

stably with the aptamer and its dissociation rate (kR
Hyb) is low. To displace the flare strand, the target

molecule binds to the flare-aptamer duplex and induces it to change shape, into an intermediate structure in

which the flare dissociation rate (kR
Hyb*) is higher, and de-hybridization becomes more favorable.

One observable difference between the conformational selection and induced fit models is that in an

induced fit system, the flare strand rarely dissociates in the absence of the aptamer’s target molecule. To

test hybridized flare strands’ tendency to dynamically dissociate from the aptamer, DIS11th_3T aptamer

NanoFlares with 12 bp flare strands were incubated in PBS at room temperature for 15 minutes and pelleted

via centrifugation, and then the supernatant was pipetted off and measured for fluorescence. This was

Figure 40. Induced fit model of aptamer Nanoflares.

 62
repeated five times, and then the pellet was resuspended in 2 M urea, incubated and pelleted once more

(Figure 41). If the DIS11th_3T aptamer NanoFlare system were governed by conformational selection

dynamics, then some fraction of the flare strands would be expected to dissociate with each cycle of

pelleting and resuspending in fresh buffer, leading to fluorescence in the supernatant. However, if an

induced fit model better described aptamer NanoFlare behavior, little to no flare would be measured in the

supernatant, even after repeated rounds of pelleting, removing the supernatant, and washing with fresh

buffer. Fluorescence would appear in the supernatant only after, for instance, denaturing the aptamer-flare

duplex with concentrated urea. This is precisely what is observed in the pelleting experiment.

The pelleting results suggested that the aptamer NanoFlares had a very low aptamer-flare dissociation

rate: the amount of flare dissociating in each round of washing and 30 minutes of incubation was at most

1/120th of the total flare hybridized on the particle. This result was interesting for three primary reasons:

first, pelleting could be a useful strategy when optimizing aptamer nanoflare response to low concentrations

of target molecule, because it appears to greatly reduce background fluorescence relative in the fluorimeter.

Second, in an induced fit system the stability of the flare-aptamer duplex could affect how well the target

Figure 41. Pelleting experiment to qualitatively measure the aptamer-flare dissociation rate.

24
1

31
7

20
0

28
1

26
6

40
18

4

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

1st wash 2nd wash 3rd wash 4th wash 5th wash 6th wash +
2M urea

Fl
uo

re
sc

en
ce

 (C
PS

)

Supernatant Fluorescence

Pellet

No
free
flare

Pellet

No
free
flare

Pellet

No
free
flare

Pellet

No
free
flare

Pellet Pellet

No
free
flare

free
flare

Wash w/
2M urea

Re-Pellet

 63
molecule is able to change the conformation of the aptamer to displace the flare; so optimization for the

stablest possible flare strand many not be ideal.

In order to further explore the induced-fit regime of aptamer NanoFlare dynamics, it was necessary to

build a kinetic computational model of the system. This model would incorporate the additional species

(aptamer-flare-DHEA-S intermediate, or ADF) and rate constants (kF
Apt and kR

Apt for the DHEA-S binding

and dissociation from ADF, kF
Hyb and kR

Hyb for flare binding and dissociation from ADF) required for

induced fit. Using the PySB software package, we developed aptamer Nanoflare kinetic models of both

conformational selection and induced fit dynamics (Code C2).

While we had previously determined the equilibrium dissociation constants for the aptamer-flare and

aptamer-DHEA-S interactions, the rate

constants for both interactions are unknown.

To explore the effects of different rate

constants on the conformational selection

model, we plotted the response of 100 nM of

simulated aptamer-flare duplex to 1 mM

DHEA-S while varying kF
Hyb and kR

Hyb and

holding kR
Hyb / kF

Hyb = KD
Hyb constant at the

experimentally determined value of ~10 nM

(Figure 42). While modifying the rate

constants had no effect on the theoretical final

concentration of unbound flare strand, it had a

large effect on how quickly that final concentration is achieved; and particularly for kR
Hyb values lower than

0.00001 s-1, the model predicted aptamer NanoFlares would take hours to days to reach equilibrium.

Figure 42. Conformational selection model’s
predicted response to 1000 µM DHEA-S, as a
function of kFHyb and kRHyb. From darkest blue to
lightest blue, kRHyb values are 0.1, 0.01, 0.001, 0.0001,
and 0.00001 s-1. kFHyb values are adjusted to keep kFHyb
and kRHyb / kFHyb = KDHyb = 10 nM.

1.0

1.5
2.0

2.5
3.0

3.5
4.0

4.5
5.0

0 100 200 300 400

Fo
ld

 C
ha

ng
e

in
 [F

re
e

Fl
ar

e]

Time (s)

Conformational Selection,
1000 µM DHEA-S

kR
Hyb = 0.1

kR
Hyb = 0.00001

 64

We next explored how the new induced fit mathematical model behaved while varying its parameters.

We plotted the response of 100 nM simulated aptamer-flare duplex to 100 µM DHEA-S while holding the

aptamer-flare and aptamer-DHEA-S binding rates constant, and instead varying the dissociation rate of the

flare strand (kR
Hyb*) and DHEA-S (kR

Apt*) from the ADF intermediate complex (Figure 43). The higher the

flare dissociation rate from the ADF complex, the larger the fluorescent response was to DHEA-S. This

means for optimal sensor performance, the ADF intermediate should ideally destabilize the aptamer-flare

interaction as much as possible. Second, the lower the rate of DHEA-S dissociation from the ADF complex,

the larger the fluorescent response was to DHEA-S. This means for optimal sensor performance, the ADF

intermediate should feature as stable an aptamer-DHEA-S interaction as possible.

These results suggested important design rules/trade-offs for aptamer Nanoflare optimization. Given

that the dissociation rate of flares from the ADF intermediate is likely connected to the stability of the

aptamer-flare duplex, making a flare strand bind too tightly to the aptamer could actually decrease

Nanoflare sensitivity to DHEA-S. Moreover, given that DHEA-S dissociation rate from the ADF

Figure 43. Induced fit model’s response to 100 µM DHEA-S, as a function of (A) kRHyb*, or (B) kRApt*.
For (A), kFHyb stays constant at 0.1 M-1s-1, while kRHyb*, from darkest to lightest orange, equals 0.001,
0.01, 0.015, 0.03, and 0.05 s-1. For (B), kFApt stays constant at 0.001 M-1s-1, while kRHyb*, from darkest to
lightest blue, equals 10, 1, 0.1, and 0.01 s-1.

0.9

1.4

1.9

2.4

2.9

0 200 400

Fo
ld

 C
ha

ng
e

in
 [F

re
e

Fl
ar

e]

Time (s)

Induced Fit, 100 µM DHEA-S,
Vary kR

Hyb*

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

0 200 400

Fo
ld

 C
ha

gn
e

in
 [F

re
e

Fl
ar

e]

Time (s)

Induced Fit, 100 µM DHEA-S,
Vary kR

Apt*

kRApt* = 10

kRApt* = 0.01
kRHyb* = 0.001

kRHyb* = 0.05

A B

 65
intermediate is inversely related to Nanoflare response to target, it could be important to design flare strands

to bind to aptamers in regions that minimize disruption of the aptamer’s target molecule binding pocket.

3.13 Measuring aptamer-flare-DHEA-S binding kinetics with bio-layer interferometry

Since the kinetic models for describing aptamer-Nanoflares require the binding and dissociation rates

of the aptamer-flare and aptamer-DHEA-S interactions as parameters, measuring these rate constants is

necessary to test and refine the accuracy of the models. We therefore sought to determine the aptamer-flare

association rate (kF
Hyb) and dissociation rate (kR

Hyb) using bio-layer interferometry, or BLI (Figure 44). In

the BLI experiments, biotinylated flare oligonucleotides were immobilized on the tip of single-use

streptavidin-coated fiber optic probes. After equilibration in PBS buffer, each probe was incubated in a

solution of aptamer, and the aptamer-flare binding was measured by the shift in the wavelength of light

reflected from the tip of the

BLI probe. Transferring the

probe back to an aptamer-free

buffer solution then allowed

measurement of the aptamer-

flare dissociation rate.

Measuring the association and

dissociation curves across a

range of aptamer

concentrations enables the

determination of the aptamer-flare association rate (kF
Hyb) and dissociation rate (kR

Hyb). Moreover, it is

possible to test the effect of DHEA-S on aptamer-flare dynamics by comparing aptamer-flare binding and

dissociation rates in the presence and absence of DHEA-S.

Figure 44. Measuring aptamer-flare hybridization with bio-layer
interferometry (BLI). Representative BLI association and dissociation
curves across a range of aptamer (Apt) concentrations, in the presence
(blue) and absence (orange) of DHEA-S (D). For the blue curves, [D] =
300 µM.

 66
 One potential limitation of BLI is that modifying the flare oligonucleotide with biotin and

immobilizing it on a streptavidin-coated surface may perturb its ability to bind to the aptamer. We therefore

synthesized and screened three biotinylated flare variants (Figure 45): a 3’biotin flare, in which a biotin

phosphoramidite was added directly to the

3’ end of the flare sequence; a 3’biotin-

Sp182 flare, which added two flexible

spacer-18 (hexa(ethylene glycol))

phosphoramidites between the flare

sequence and the 3’ biotin; and a 5’biotin-

Sp182 flare, in which the biotin and spacer-

18 phosphoramidites were conjugated to

the 5’ end of the flare. The aptamer

binding capacity of these flare variants

was tested by fitting BLI binding and dissociation curves of each variant in the presence of 5 µM, 1.35 µM,

and 450 nM aptamer (Figure 45B). The 3’biotin flare had the weakest binding (highest value) at KD
Hyb =

481 nM. This was almost 50-fold weaker than the KD previously estimated from melting curves (11 nM).

We hypothesized that steric hindrance due to the flare’s proximity to the streptavidin inhibited aptamer

binding. This hypothesis was supported by the fact that the 3’biotin-Sp182 flare had a higher kF
Hyb and lower

kR
Hyb than the 3’biotin flare, resulting in a 9-fold lower KD

Hyb of 54 nM. This is only 5-fold weaker than the

previously estimated KD
Hyb. We trieated this value as a lower bound for aptamer-flare binding strength.

Somewhat surprisingly, the 5’biotin-Sp182 flare displayed considerably weaker binding (KD
Hyb = 177 nM)

than its 3’biotin-Sp182 counterpart. This weaker binding may have been due to differences in the stability

or accessibility of different parts of the aptamer’s hairpin duplex, which made it easier for complementary

oligonucleotides with an unbound 5’ end (like the 3’biotin-Sp182 flare) to invade and displace the hairpin.

Figure 45: Screening biotinylated flare probes for BLI
experiments. (A) Sequences of the biotinylated flare
probes that were synthesized and tested. Sp18 = spacer 18
hexa(ethylene glycol) phosphoramidite. (B) Aptamer-flare
binding parameters measured with different biotinylated
flare probes. Parameters calculated from fitting BLI curves
of 5, 1.35, and .45 µM aptamer.

 67
Due to the strong binding for the 3’biotin-Sp182 flare variant, we used this architecture for subsequent BLI

measurements.

3.14 Effect of flare sequence and target molecule concentration on aptamer-flare binding kinetics.

The effect of flare length and structure on aptamer binding kinetics was investigated (Figure 46). Four

truncated and biotinylated variants

of the DIS11th_3T 12bp flare

(12bpF) were synthesized: two 10

base pair variants, missing two

nucleotides from either the 3’ end

(10bpF v1) or 5’ end (10bpF v2) of

12bpF; and two 8 base pair variants,

missing four nucleotides from either

the 3’ end (8bpF v1) or the 5’ end

(8bpF v2) of 12bpF. For each flare,

BLI curves were generated for

binding to the aptamer at a range of

concentrations: 10, 5, 2.5, and 1.25

µM aptamer (12bpF, 10bpFv1); 20, 10, 5, and 2.5 µM aptamer (10bpFv2, 8bpFv1); or 40 and 20 µM

aptamer (8bpFv2). Higher aptamer concentrations were used for the flares with weaker binding, in order to

generate measurable binding curves. As expected, the 12bpF flare has the lowest overall dissociation

constant (KD
Hyb). This is primarily due to its much lower dissociation rate, as the 10bpF v1 association rate

is similar to that of 12bpF. Both association rates are higher than that of 10bpF v2, suggesting that the two

bases at the 5’ end of the flare strand are important for rapid binding to the aptamer. As these bases bind to

the end of the aptamer’s self-complementary hairpin, they may be required to rapidly invade and displace

it. Flares with truncated 5’ ends (10bpF v2 and 8bpF v2) display slower binding and more rapid dissociation

Figure 46: Effect of flare length on aptamer-flare binding
kinetics. (A) Sequences of the biotinylated flare probes that were
synthesized and tested. Sp18 = spacer 18 hexa(ethylene glycol)
phosphoramidite. (B) Aptamer-flare binding parameters
measured with different biotinylated flare probes.

 68
than flares of the same length with truncated 3’ ends (10bpF v1 and 8bpF v1); in fact, binding is almost

unmeasurably small for 8bpF v2. This is probably partly due to the role of the 5’ nucleotides in aptamer

hairpin displacement. Additionally, because most of the 10bpF v2 and 8bpF v2 sequences span a smaller

hairpin in the aptamer, they are predicted to fold into hairpins which may disfavor hybridization to a

complementary strand. These experiments suggest that flares should be designed to bind at the terminus of

aptamer secondary structure, and that flare sequences that span hairpins should be avoided if possible.

We next sought to determine

how flare length and location affect

the response of aptamer-flare

binding to the presence of DHEA-S

(Figure 47). Aptamer binding to

and dissociation from 12bpF, 10bpF

v1 and 10bpF v2 was measured with

0, 30, 100, 300, and 1000 µM

DHEA-S in the buffer. For all the

flares, the more DHEA-S there was

in the buffer, the lower the measured

aptamer-flare association rate was.

This indicated that DHEA-S competed with all the flares for binding to free aptamer. However, the

dissociation rate for 12bpF responded to DHEA-S differently than either 10bpF v1 and 10bpF v2. For the

tighter-binding 12bpF, adding DHEA-S slightly increases the dissociation rate, consistent with an induced-

fit model of aptamer NanoFlare dynamics. Notably, the 12bpF dissociation rate decreased at the highest

DHEA-S concentration; one possible explanation for this behavior is that at high concentrations the

relatively hydrophobic DHEA-S may have formed transient micelles, which changed the way it interacted

with the aptamer-flare duplex. Surprisingly, and unlike for 12bpF, the aptamer-flare dissociation rate for

Figure 47: Effect of DHEA-S concentration on 12bp and 10bp
flare-aptamer binding kinetics. (A) Observed kF

Hyb as a function
of DHEA-S concentration. (B) Observed kR

Hyb as a function of
DHEA-S concentration (red scale bar applies to 12bpF; blue scale
bar applies to 10bpF v1 and 10bpF v2).

 69
both 10bpF v1 and v2 decreased when DHEA-S is added—in other words, the presence of DHEA-S

appeared to stabilize, rather than destabilize, the aptamer-flare duplex. This counterintuitive effect

replicated in multiple experiments performed on different days.

We sought to determine whether the

surprising stabilizing effect of DHEA-S on

10bpF-aptamer binding was an aptamer-

specific phenomenon, and to more

generally measure the effect of aptamer

structure on flare binding kinetics, by

comparing aptamer-flare binding kinetics

and DHEA-S response to a control

sequence that contained the flare binding

site but lacked the rest of the aptamer’s

structure (Figure 48). A control sequence

(ctrl) was synthesized, which contained the

12bp region of the aptamer complementary

to the flare strand, but replaced the rest of

the sequence with adenosine nucleotides; this sequence should be able to bind to flare strands, but not to

fold into the aptamer’s secondary or tertiary structure. The association and dissociation rates of 10bpF v1

flare binding to both the aptamer and the control were measured in 0, 100, and 1000 µM DHEA-S. In the

absence of DHEA-S, 10bpF v1 both bound and dissociated more quickly from the control sequence,

suggesting that aptamer structure both inhibited flares from binding to free aptamers, and somehow

stabilized already hybridized aptamer-flare duplexes. The effects of DHEA-S on aptamer-10bpF v1 binding

and dissociation replicated: DHEA-S again appeared to compete for unbound aptamer (reducing observed

kF
Hyb) and stabilize aptamer-flare duplexes (reducing observed kR

Hyb). There was no observable trend in the

Figure 48: Effect of aptamer structure on flare binding
kinetics and DHEA-S response. (A) Sequences of the
DHEA-S binding aptamer (Apt), and a control sequence
(Ctrl) which contains the flare-binding region of the
aptamer but replaces all other bases with adenine. kF

Hyb
(B) and kR

Hyb (C) were measured as a function of DHEA-S
concentration, for 10bpF v1 binding to the Apt (blue) and
Ctrl (green) sequences.

 70
effect of DHEA-S on Ctrl-10bpF v1 association; and DHEA-S to had little to no effect on the dissociation

rate of Ctrl-10bpF v1 duplexes. This suggested that the duplex-stabilizing effect of DHEA-S on aptamer-

10bpF interactions was specific to and dependent on the structure of the aptamer.

3.15 Suitability of SNAs for bio-layer

interferometry experiments

We tried using BLI to measure the

kinetics of aptamer SNA binding to the flare

strand, in order to see how they differ from

free aptamer in solution. (Figure 49). BLI

curves of four concentrations of aptamer

SNAs binding to 12bpF flare were measured

and fitted. This experiment was performed

on SNAs with loading densities of 10, 31,

and 55 aptamers per particle. The aptamer

SNA-flare binding was specific: no binding

is observed when aptamer SNAs were incubated with bare BLI probes in the absence of immobilized flare

strands (data not shown). The aptamer-flare association rate for SNAs was roughly an order of magnitude

lower than for free aptamers, though slightly higher for the SNA with the lowest loading density; this may

reflect the relatively lower diffusion rate of the nanoparticles. Consistently, the dissociation rate of the

SNA-flare interaction was so small the BLI instrument could not measure it. In fact, for some binding

curves, the binding signal actually increased slightly during the dissociation step, when there are no SNAs

free in the solution. Unmeasurably small dissociation rates were also observed in individual BLI curves of

SNA binding to 10bpF v1, 10bpF v2, 8bpF v1, and 8bpF v2 (not shown). Moreover, addition of 1 M urea

in the dissociation buffer failed to induce SNA-12bpF dissociation, though it increases the flare dissociation

rate from free aptamer (not shown). We hypothesized that the source of this anomalously low dissociation

Figure 49: Aptamer SNA-flare binding kinetics. (A) BLI
curves of aptamer SNA binding to 12bpF flare. A = aptamer.
(B) Kinetic parameters of aptamer-flare binding, for different
SNA loading densities. Parameters derived from fitting BLI
curves of 4 different SNA concentrations.

 71
rate was polyvalent aptamer-flare interactions:

since each SNA presented multiple aptamers

on its surface, a single SNA could bind to

multiple immobilized flare strands; and

dissociation therefore required the

simultaneous dehybridization of multiple

independent aptamer-flare duplexes, a very

rare event. These experiments suggest that

kinetic measurement techniques that rely on

flare immobilization to a surface may not be

able to yield meaningful dissociation data for

aptamer Nanoflares; kinetic measurements of

fluorescence may be a more tractable way to

measure these parameters in the future.

3.16 Cortisol aptamer-flare binding

kinetics

We investigated whether the kinetic

behavior of one aptamer-flare pair could

predict the behavior of a different aptamer-

flare pair with a similar design architecture, by

designing aptamer-flare pairs for the cortisol-

binding aptamer Cor10F (Figure 50). Chavez

and Mirau labs had previously shown that

Cor10F had a cortisol dissociation constant of

750 nM; and mFold structural prediction

Figure 51: Response of (A) aptamer-flare association
rate (kF

Hyb) and (B) aptamer-flare dissociation rate
(kR

Hyb) to the presence of target molecule, for DHEA-S
and cortisol binding aptamers. DHEA-S binding aptamer
DIS11th_3t in red, cortisol binding aptamer Cor10F in blue.
Target molecule added is DHEA-S for DIS11th_3T and
cortisol for Cor10F.

Figure 50: Design of cortisol-binding aptamer-flare
pair. (A) Name, target, and sequence of the DHEA-S
binding aptamer we have investigated (DIS11th_3T), and
of a cortisol-binding aptamer (Cor10F). Flare-binding
aptamer sequence in red. (B) mFold structure predictions
of DIS11th_3T and Cor10F.

 72
suggests that Cor10F has a 3-stem secondary structure similar to that of DIS11th_3T (Figure 50B). Cor10F

was synthesized, along with 10 bp, 3’ biotinylated flare sequences designed to hybridize to the aptamer’s

3’ end, similar to the DIS11th_3T flares we had already investigated. Then, the kinetics of aptamer-flare

binding and dissociation were measured in the presence and absence of the aptamer’s target molecule, using

BLI (Figure 51). The Cor10F aptamer-flare pair displayed lower association (kHyb
F) and dissociation (kHyb

R)

rates than the DIS11th_3t aptamer-flare pair, possibly due to the longer Cor10F terminal hairpin and lack

of flare secondary structure, respectively. While increasing concentrations of DHEA-S led to lower

observed kHyb
F and kHyb

R for the 10 bp flares of DIS11th_3T, no similar trend was observed for Cor10F in

the presence of increasing concentrations of cortisol. These results suggested, narrowly, that this particular

Cor10F aptamer-flare pair did not respond structurally to the presence of its target molecule; and generally

reinforced the idea that in the absence of modeling and design rules that better represent aptamer-flare-

target dynamics, more comprehensive exploration of aptamer-flare design space was required.

3.17 Microarray screens of aptamer-flare pairs

In order to more comprehensively explore aptamer-flare design space, we designed and performed

microarray screens for stable aptamer-flare duplexes that respond to DHEA-S (Figure 52). Chavez lab first

compiled a list of known DHEA-S binding aptamers, as well as aptamers that bind to other target molecules

Figure 52. Microarray screen for stable and DHEA-S responsive aptamer-flare pairs. An array of
8-12 bp flare variants is incubated and washed for 30 minutes with Cy3- and Cy5-labeled aptamers and
scanned to identify stable aptamer-flare pairs. In the first round of experiments, the array was incubated
with DHEA-S for 20 minutes, washed and scanned, and then incubated again with DHEA-S for 12 hours
before a final washing and scanning, with the goal of identifying aptamer-flare pairs that dissociate in
the presence of the target molecule.

 73
of interest like cortisol, dopamine, and TNT (Table A2). Then, for each aptamer, a library of every possible

8 bp, 9 bp, 10 bp, 11 bp and 12 bp complementary flare sequence was generated. 7 replicate spots of each

flare sequence were arranged in a random position of a 60,000 feature array, and then 8 identical copies of

that array were synthesized in 8 positions (wells) on Agilent slides. Cy3-modified DNA or Cy5-modified

RNA aptamers were then hybridized onto the arrays, and the arrays were scanned to measure aptamer-flare

hybridization efficiency. In a first set of experiments, three subarrays were then incubated with 30 µM

DHEA-S, three subarrays were incubated with 300 µM DHEA-S, and two control wells were incubated

with PBS buffer. In a second round of microarray experiments, subarrays were incubated for 300 µM

DHEA-S and cortisol in both PBS and SELEX buffer 1 hour at 25ºC with. And in a third round of

experiments, subarrays were incubated with 300 µM of various other target molecules for 1 hour at 25ºC,

including TNT, riboflavin, dopamine and theophylline.

A computational analysis pipeline was developed for processing the microarray data using Jupyter

Notebooks and Python (Code C3). The fluorescence intensity values of every array feature from each step

of a microarray experiment (roughly 2 million data points) was consolidated into a Pandas DataFrame and

labeled with relevant information for analysis, such as the flare sequence, the name and sequence of the

aptamer the flare binds to, the flare length and binding position along the 5’-3’ sequence of the aptamer,

the sub-array within which the feature is located, and experimental step and conditions of the sub-array the

feature occupies. Then, the data set was cleaned to remove all array features flagged by the Agilent software

as having high background, nonuniform signal across the feature spot, or whose fluorescence intensity was

an outlier relative to the other replicate spots with the same sequence in that sub-array. Then the mean,

median, and standard deviation of the fluorescence intensities of the remaining replicate spots were

calculated in each sub-array for each experimental step. The mean fluorescence intensity thus calculated

was used as the basis for subsequent analysis.

 74
Having cleaned, labeled, and processed the raw array fluorescence data, we first sought to determine

the effect of flare length and flare binding position on aptamer-flare hybridization efficiency (Figure 53).

This analysis initially focused on the DIS11th_3 aptamer, because the aptamer we have been using to

develop and test aptamer Nanoflares for the past year is a truncated version of DIS11th_3. The dataset was

filtered to include only data from the initial hybridization step of the experiment. Then, the data for all the

DIS11th_3 flare strands across all the sub-arrays were grouped by either flare length, or by the position of

the 5’ end of the flare-binding region of the aptamer along the aptamer sequence, and the average and

standard deviation of each of these groupings was plotted. Average aptamer-flare hybridization increased

as flare length increased, as would be expected (Figure 53A). However, the large standard deviations

indicated that for any given flare length, there was a lot of variation in hybridization efficiency. Plotting

hybridization efficiency as a function of flare binding position revealed the source of some of this variation

(Figure 53B): flare binding position strongly affected hybridization efficiency. In the case of the 12bp

flares for DIS11th_3, flares binding at the 5’ and 3’ ends of the aptamer hybridized efficiently, as did those

that start binding in a region 11-14 bases inside the aptamer sequence, while a region 20-25 bases along the

Figure 53. Effect of flare length and binding position on hybridization efficiency to DIS11th_3
aptamer. (A) Flare hybridization efficiency (as measured by mean fluorescence on the array) as a
function of flare length. (B) Flare hybridization efficiency as a function of the start position of the flare
binding region on the 5’—3’ aptamer sequence, for 12bp flares.

 75
aptamer sequence barely hybridized at all. We hypothesized that the middle region that hybridized well

represented an area with more open or accessible secondary structure, while the region that did not hybridize

well was part of a stable hairpin.

We next sought to determine if there were any consistent patterns or design rules for well-hybridizing

flares across all the aptamers we tested. Toward this end, heat maps of aptamer-flare hybridization

efficiency as a function of flare length and binding position were generated with MatPlotLib for every

aptamer tested (two representative heatmaps for aptamers Dopa2 and 10_51 are show in Figure 54).

The flare binding profile of 10_51 is consistent with what was observed DIS11th_3: the 3’ and

particularly the 5’ end of the aptamer show strong flare binding. By contrast, the Dopa2 aptamer shows

little flare hybridization at its 3’ or 5’ ends, but strong hybridization at particular internal sites. The heatmaps

plotted hybridization intensity as a function of the length of the flare strand, and of the location along the

aptamer sequence where the 3’ end of the flare strand starts to bind. Both the Dopa2 and the 10_51 heatmap

showed diagonal features (underlined by the dotted red, blue, green and yellow lines in Figure 4) which

suggested that the 5’ end of flare strands initiate binding at particular bases on the aptamer (such as the 3’

end of the aptamer in the case of 10_51). We hypothesized that labile secondary and tertiary aptamer

Figure 54: Initial aptamer-flare hybridization heatmaps for the Dopa2 dopamine-binding RNA
aptamer, and the 10_51 DHEA-S binding DNA aptamer. Colored lines represent regions of sequence
within which flares can stably bind. Solid lines represent core regions required for flares of any length to
bind.

 76

structure susceptible to strand invasion by the 5’ end of the flare strand is the source of these diagonal

features on the heatmaps.

To further understand the structural basis of efficient aptamer-flare binding, we compared mFold

secondary structure predictions for the aptamers to the heatmap regions that show strong flare binding

(Dopa2 and 10_51 shown as examples in Figure 55). Consistent with our hypothesis that strong flare

binding correlates with labile secondary structure, flares tended to bind to Dopa2 where multiple unpaired

bases were predicted, such as in loops or at terminal overhangs. For 10_51, the most stable aptamer-flare

pairs were formed at a predicted unpaired overhang on the 5’ end of the aptamer. Importantly, not every

predicted loop region hybridized to flares on the microarray, and the 5’ and 3’ aptamer ends didn’t always

generate stable flare pairs either; but it was generally the case across multiple aptamers that stably

hybridizing flares cluster in these regions of sequence. Further work and more detailed modeling may reveal

which loops and termini are more or less suitable for flare binding.

Figure 55: Structural analysis of flare-binding aptamer regions for the (A) Dopa2 and (B) 10_51
aptamers with mFold. Colored lines represent regions of sequence within which flares can stably bind,
corresponding to Figure 4. Solid lines represent core regions required for flares of any length to bind.

 77
In addition to analyzing the structural determinants of aptamer-flare binding, we also explored the

ability of a thermodynamic model of to predict hybridization efficiency. In collaboration with Chavez lab

at AFRL, UNAFold software was used to generate predictions of the ∆G of aptamer-flare hybridization

(∆GHyb) in 1X PBS at 25ºC, for every flare on the microarray. The relationship between experimental

hybridization and both flare length and ∆GHyb was then plotted (Figure 56). Consistent with previous

microarray experiments, flare length alone is a poor predictor of hybridization efficiency: while there is a

weak overall trend of higher hybridization fluorescence with longer flares, a large proportion of flares of

every length completely fail to hybridize to

the complementary aptamer. Even the

shortest 8 bp flares contained a significant

population that hybridized to the aptamer.

By contrast, UNAFold’s calculated ∆GHyb

values showed more predictive ability than

flare length, especially at the margins: no

flare with a predicted ∆GHyb > -10 kcal/mol

hybridized to the aptamer, while every flare

with a predicted ∆GHyb < -16 kcal/mol

hybridized to at least some extent with the

aptamer. These guidelines will be useful for

designing future flare constructs, enabling the exclusion of flare designs that won’t work, and also

potentially guiding designers toward shorter flare strands that can stably bind an aptamer while disrupting

a smaller portion of its secondary and tertiary structure.

3.18 Towards discovery of target-responsive aptamer-flare pairs

We analyzed the response of all the tested aptamer-flare pairs to incubation with DHEA-S (Code C4).

Relative loss of hybridization for each flare sequence in each sub-array was calculated by dividing the

Figure 56: Relationship between hybridization
efficiency, flare length, and predicted ∆G of flare
hybridization (∆GHyb), for the aptamer DCA6th_23. (A)
Flare hybridization versus flare length. (B) Flare
hybridization versus -∆GHyb, as calculated by UNAFold.

 78
fluorescence after incubation with DHEA-S by the

fluorescence measured in the previous experimental

step. Then, for the three sub-arrays treated with 300 µM

DHEA-S, the change in fluorescence of each flare

sequence was averaged; and the same was done for the

three sub-arrays treated with 30 µM DHEA-S. To

correct for loss of fluorescence due to spontaneous

aptamer dehybridization during washing and incubation

steps, and due to bleaching of the Cy3 fluorescence, the

change in hybridization was calculated for one of the

two the sub-arrays treated only with PBS (the other

showed anomalously high fluorescence at all array

features during one of the experimental steps, and was

excluded from analysis). Then, the averaged relative

changes in hybridization fluorescence for the wells

treated with DHEA-S were normalized to the change in fluorescence observed for each flare sequence in

the PBS-only well. In this way, a ‘Hybridization Signal’ value of 1 means that the aptamer-flare pair lost

exactly as much fluorescence as the PBS control; a value >1 means the pair lost less fluorescence than the

control; and a signal <1 means the pair lost more fluorescence than the control, which is what would indicate

a response to DHEA-S. To minimize artifacts due to low hybridization efficiency, we excluded from

analysis all the data from all flare sequences with initial hybridization signals less than 5 standard deviations

higher than the background fluorescence signal of nonbinding features on the array.

Despite these measures, we were unable to identify aptamer-flare pairs that consistently, across

replicate subarrays, dehybridized relative to controls in the presence of the aptamer’s target molecule.

Particularly confounding was the observation that measured hybridization fluorescence actually increased

Figure 56: Variation in fluorescence of the
microarray’s positive controls between
subarrays and experimental steps.

 = mean, = median, | = standard deviation,
 = maximum, = minimum.

 79
after incubation for some aptamer-flare pairs, which seemed likely to be the result of an error in the

instrument’s measurement. Each subarray contained 12 replicate Bright Spot positive controls, which were

array features covalently modified with Cy3 fluorophores. To better understand the sources of noise in our

experimental system, we calculated and plotted statistics on these array positive controls within each

subarray, and for each step in the experiment: (1) hybridization scan 1, (2) hybridization scan 2, (3)

incubation 1 scan, and (4) incubation 2 scan (Figure 56). The measured fluorescence intensity of the array

positive controls varies both between subarrays and between experimental steps, in some cases (like step 4

in subarray 3) by a great deal.

These measurements are highly useful for designing array experiments and analysis going forward. For

one thing, it is clear that absolute fluorescence/hybridization values cannot be compared between subarrays;

normalization relative to a previous experimental step is required. Moreover, this normalized change in

fluorescence must be further corrected for variation in the intensity of the scanner’s measurement—this

might be achieved through normalizing to the array’s bright spot controls, or (if measured fluorescence

intensity varies across a single subarray) it may require the design of a larger number of fluorescent control

features into future arrays. These results are encouraging, because they indicate that the difficulty thus far

in identifying aptamer-flare pairs could be corrected by implementing these changes to the experimental

design and analysis.

3.19 Materials and Methods

3.19.1 Materials. Unless otherwise noted, all reagents were purchased from commercial sources and

used as received. Oligonucleotides are synthesized using phosphoramidites and associated reagents Glen

Research, Co. (Sterling, VA, USA); or ordered from Integrated DNA Technologies. 13 nm Citrate capped

gold nanoparticles were synthesized as previously described.137 Microarray slides were purchased from

Agilent. All other reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA).

3.19.2 Aptamer NanoFlare Synthesis. Thiolated aptamer sequences were reduced by incubation with

10 mM DTT in 100 mM Tris buffer for 30 minutes. DTT was removed from the aptamer solution by size

 80
exclusion on a GE NAP5 column. Flare strand is then added to the thiol-aptamer solution, which is then

heated to 65ºC and slowly cooled to room temperature to anneal flare and aptamer. AuNPs were mixed

with 0.2% Tween 20 detergent, and 5 M NaCl was added to a final concentration of 150 mM NaCl. AuNP

solution is vortexed, and then thiolated aptamer is added to the AuNPs in a 400:1 aptamer:AuNP solution.

The solution is vortexed for 20 seconds, sonicated, and incubated in a covered shaking container overnight.

Then more NaCl was added to the solution from 5 M stock solution, bringing the final NaCl concentration

to 0.35 M. 1000-fold excess of thiolated PEG oligomer was then added to the solution, which was then

incubated for 6 hours. Excess oligonucleotides were removed by repeatedly pelleting the particles in a

centrifuge (10-20,000 RCF), and then resuspending in fresh 1X PBS. DNA loading density was quantified

by Oligreen assay.

3.19.3. Nuclear Magnetic Resonance of Aptamers. Lyophilized DIS11th_3 and DIS11th_3T were

resuspended to a concentration of 0.1 M in 20 mM deuterated Tris, 50 mM NaCl, and 10 mM MgCl2 at pH

7 in 90:10 H2O:D2O. For the aptamer with DHEA-S measurements, 1 mg/mL DHEA-S dissolved in MeOH

was dried in a microcentrifuge tube centrivap, then resuspended in the aptamer solution to a 1.25:1 DHEA-

S:aptamer ratio. Spectra were acquired on a 600 MHz Bruker spectrometer using the Watergate pulse

sequence for water suppression.

3.19.4 Fluorescence measurements. Fluorescence of aptamer NanoFlares was measured in a Bio-Tek

H4 plate reader, or in a Horiba Fluorolog-QM fluorimeter. Fluorimeter samples were prepared in 1 mL

quartz sample cuvettes

3.19.5 Isothermal titration calorimetry. ITC experiments were performed on a Malvern MicroCal

PEAQ-Automated instrument. Cell and syringe buffers were equilibrated by NAP column. Enthalpic curve

fitting was performed using MicroCal ITC-Origin analysis software.

3.19.6 Bio-layer interferometry. BLI experiments were performed on a BLItz Bio-Layer Interferometer;

binding curves were fitted and analyzed with BLItz Pro software. Before use, streptavidin-modified probe

tips were hydrated in PBS for 10 minutes. Flare-modified probe tips were prepared by vortex-incubating

 81
300 µL of 10 µM biotinylated flare sequences suspended in 1X PBS with streptavidin modified probe tips

for 2 min, then vortex-incubating the tip in 1X PBS for 2 more minutes. 300 µL samples of 10, 5, 2.5, 1.25

and 0.625 µM aptamer in PBS were incubated with the flare modified probe tip for 2 minutes to measure

association rate, and then the tip was vortex-incubated with buffer alone for 2, 5, or 10 minutes to measure

dissociation rate. For samples testing DHEA-S response, the DHEA-S was added to both the

aptamer/association solution, and to the buffer-only/dissociation solution.

3.19.7 Microarray screens. Each Agilent microarray slide was blocked against nonspecific binding by

submerging in SuperBlock buffer in a gentle rotary shaker for 30 minutes. After blocking, a 2 µM mixture

of Cy3-DNA and Cy5-RNA aptamers in 1XPBS + 0.05% Tween 20 was incubated in the wells for 30

minutes at 25ºC to form flare-aptamer duplexes. The arrays were then washed and scanned in the Cy3 and

Cy5 channels with an Agilent SureScan Dx Microarray Scanner to measure flare hybridization. Incubation

for 30 more minutes in fresh buffer at 25ºC followed by washing and scanning was performed to identify

aptamer-flare pairs that hybridized stably to each other. The wells were then incubated for 20 minutes at

25ºC with the target molecule(s) in 1X PBS + 10 mM MgCl2 + 5 mM KCl + 0.05% Tween 20 (hereafter

PBSb), or in 20 mM HEPES + 1 M NaCl + 10 mM MgCl2 + 5 mL KCl + 0.05% Tween 20 (hereafter

SELEXb), which is the buffer many SELEX aptamer evolution experiments are conducted in. After

collecting all the scans, Agilent analysis software was used to align the array images with maps of the array

spot names and identities. To test for rapid aptamer-flare response to target molecule, the wells were then

incubated for 20 minutes at 25ºC with DHEA-S in PBS + 0.05% Tween 20 before washing and scanning.

For this experiment, three wells were incubated with 30 µM DHEA-S, three wells were incubated with 300

µM DHEA-S, and two control wells were incubated with PBS + Tween. To test for aptamer-flare pairs that

respond more slowly to the presence of target molecule, the wells were incubated overnight (~12 hours)

with the same concentrations of DHEA-S as before, and the slide was washed and scanned one last time.

After collecting all the scans, Agilent analysis software was used to align the array images with maps of

the array spot names and identities.

 82

CHAPTER 4: Exploring the Limits of Cytosolic Enzyme Delivery with CRISPR SNAs

Collaborators included Jessica Rouge, Jeff Brodin, Resham Banga, Kevin Zhao, Robert Stawicki and

Chad Mirkin

 83
4.1 Introduction

CRISPRs are Clustered Regularly Interspersed Short Palindromic Repeats of DNA in the genomes of

many bacteria and archaea.163 In type II CRISPR systems, the operon containing these repeats produces two

RNA molecules, the CRISPR RNA (crRNA) and the trans-activating crRNA (tracrRNA), which hybridize

to form a constant hairpin tertiary structure with a 5' variable (or guide) region ~20 bases long.164 In 2012,

Doudna lab demonstrated that these two RNAs can be fused by a short hairpin to produce a single short

guide RNA (sgRNA) without any loss of function.165 This RNA structure binds to a large nuclease called

CRISPR-Associated protein 9 (Cas9), forming a 200 kilodalton

Cas9/sgRNA ribonucleoprotein complex (RNP) (Figure 57).

The Cas9/sgRNA ribonucleoprotein (RNP) binds to and

interrogates double stranded DNA for a short sequence motif,

called Protospacer Adjacent Motif (PAM), which the Cas9

recognizes.166 In the most extensively studied CRISPR/Cas9

system, derived from Streptococcus pyogenes, the SpCas9

nuclease recognizes an NGG PAM, where N is any nucleotide.166 The Cas9/sgRNA complex cleaves DNA

duplexes that are adjacent to a PAM and complementary to the sgRNA’s 17-20 bp guide region.167 Changing

the guide region of the sgRNA programs the SpCas9 nuclease to cleave any ~20 bp DNA duplex that is

followed by an NGG motif.165 In 2013, Zhang lab demonstrated this programmable CRISPR endonuclease

can edit loci in the genomes of mammalian cells.168

CRISPR is not the first tool developed for targeted genome editing of mammalian cells, but it has

several advantages over its predecessors. Zinc finger nucleases (ZFNs) and transcription activator-like

effector nucleases (TALENs) can also be designed to cleave specific DNA sequences.169, 170 However,

designing a zinc finger nuclease to target a new DNA sequence requires several months of protein

engineering and costs thousands of dollars, because the protein sequence of ZFN does not dictate DNA

sequence binding specificity in a predictable, programmable way.171 TALENs are programmable: each

Figure 57. Cas9/sgRNA ribo-
nucleoprotein complex. Cas9
(blue) binds sgRNA (red).

 84
subunit binds one DNA base, and its sequence specificity is dictated by two amino acids.172 However, a

new TALEN gene must be synthesized for each new targeted sequence, and the repeated sequences from

each subunit make such synthesis complex.173 By contrast, reprogramming the Cas9 nuclease only requires

changing the 20 bp at the 5' end of the sgRNA, a process simple enough that two sgRNAs can be

simultaneously introduced into a gene editing plasmid with a single commercially purchased DNA

oligonucleotide.174

SpCas9 was the first CRISPR nuclease to be successfully applied to genome editing in mammalian

cells, but it is not the only one. Since 2013, myriad gene editing tools have been developed from the CRISPR

nucleases of different species. Staphylococcus aureus Cas9 (SaCas9) is similar to spCas9, but has a different

PAM and is 20% smaller, which allows the saCas9 gene to be more easily packaged into adeno-associated

viral gene therapy vectors.175 CRISPR protein from Prevotella and Francisella (Cpf1) nucleases from the

class II CRISPR system differ significantly from SaCas9 or SpCas9: the native CRISPR-Cpf1 system uses

a single crRNA which is half the size of the fused sgRNA of SaCas9 or SpCas9, recognizes an AT-rich

PAM that enables it to target regions of genomes where the GC-rich PAMs of saCas9 or spCas9 are rare,

and is more specific than Cas9, generating very few off-target cleavage events in edited cells or embryos.176,

177 CRISPR systems have been further engineered through rational design and directed evolution to increase

genome cleavage specificity, and to function with a broader range of PAM sequences.178, 179

Since 2012, CRISPR has been deployed in an explosion of precision genome editing applications in

both basic biological research and therapeutics. Cleaving gene sequences with CRISPR frequently induces

insertion/deletion (indel) mutations, which can shift the reading frame of a gene and disable its function. 168

One reason CRISPR is so powerful is that delivering multiple sgRNAs enables Cas9 to easily target and

knock out multiple sites or genes simultaneously. Cas9 has been used to specifically and simultaneously

knock out up to 62 genes in a single cell.180 Alternatively, Cas9 delivered with a library of sgRNAs targeting

every gene in a cell (called a Genome-scale Cas9 Knock Out library, or GeCKO) can be transduced into

 85
cells to screen for genes responsible for relevant phenotypes, like synthetic lethal genes or genes which

promote metastasis when knocked out in cancer cells.181, 182

In addition to destroying gene function via indel mutations, Cas9/sgRNA RNPs can also introduce

highly specific gain-of-function edits or gene insertions. RNPs can be co-delivered with donor template

DNA containing homology arms identical to the DNA sequence near the site targeted by the sgRNA. Cells

can use the donor template DNA to repair the double strand break via homology directed repair.183

Combining CRISPR with homology directed repair of a donor template therefore enables the one-step

insertion of precise genetic edits.184 In models like mice where such editing was previously difficult and

time-intensive, CRISPR now enables easy tagging of genes with epitope tags or conditional knockout

machinery, and the introduction at precise loci of large genetic constructs, such as an inducible Cas9 gene.185

By fusing nuclease-null Cas9 (dCas9) genes to adenine or cytosine deaminase domains, it is even possible

to directly interconvert specific DNA bases, introducing precise genomic edits without requiring a DNA

template in a process now known as base editing.186, 187, 188 By fusing dCas9 to a reverse transcriptase domain,

it is even possible to use an extended version of the guide RNA as a template to introduce sequence-defined

genetic insertions, deletions, and other conversions directly into a cell’s genome without requiring donor

template DNA or homologous recombination.189

CRISPR systems have also been modified to perform a number of functions besides genetic editing.

Catalytically inactivated dCas9 has been fused to transcriptional activation and repression domains, thereby

enabling programmable control of gene expression.190, 191 The dCas9 transcriptional activator in particular

enables novel screens analogous to siRNA or CRISPR knockout libraries, but where genes are over-

expressed.192 dCas9 fused to fluorescent proteins allows microscopic tracking of specific sites in the genome

and the study of sequence-specific nuclear organization.193 Finally, active Cas9 can be targeted to cleave a

variety of nonfunctional genomic regions in a zygote, and the frequency and sequence of the mutations in

each cell of the mature organism can be used to track lineages of cell differentiation during embryonic

development.194

 86
One of the most exciting applications for CRISPR and programmable nucleases is the prospect of

correcting disease with a precise genetic knockout or edit. Previous gene therapies either randomly inserted

or temporarily expressed genes to replace loss of function mutations.195 CRISPR enables the correction of

disease alleles at their native site in the genome, such as a loss of function in Fah causing tyrosinemia.196

CRISPR also enables treatments that knock out genes. For instance, HIV requires the cell surface receptor

CCR5 to infect T cells, and using CRISPR ex vivo to knock out CCR5 in hematopoietic cells renders

humanized mice resistant to HIV infection.197

With the explosion in research and application of CRISPR and RNA-guided nucleases, the rate limiting

challenge in gene editing has shifted from experimental design to delivery, particularly in vivo.198 While in

vitro methods including ribonucleoprotein transfection and lentiviral transduction can achieve relatively

rapid, efficient, and error-free delivery, in vivo strategies remain limited by low delivery efficiencies.

Several different methods will deliver Cas9/sgRNA nucleases into cells in vitro. Genes for Cas9 and

sgRNA can be delivered by plasmid transfection or viral transduction. Transfection of plasmids expressing

Cas9 and the sgRNA was the first successful CRISPR delivery strategy, and remains one of the simplest;168

but the need for cellular Cas9 and sgRNA expression leads to longer experiments, and extended expression

increases the rate of off-target DNA cleavage.199 Viral transduction is useful for screening a library of

sgRNA because the viral vector integrates into the genome and provides an sgRNA barcode of cells with

the phenotype of interest.181 However, making viral particles is time-intensive, and extended expression

causes similar off-target effects to plasmid transfection. Co-delivery of Cas9 mRNA and sgRNA, either via

microinjection or transfection, achieves high cleavage efficiencies with low off-target effects; however, to

achieve high cleavage efficiency requires chemical modification of the sgRNA.200, 201, 202 Direct delivery of

Cas9/sgRNA ribonucleoprotein (RNP) complexes is a promising strategy. RNP complexes have been

delivered via electroporation and transfection using cationic lipids.203, 204 They act rapidly and transiently in

the cell, leading to high efficiency gene editing with few off-target effects.

 87
Several approaches have been pursued for in vivo delivery of CRISPR gene editing components.

Hydrodynamic injection, in which a large volume of solution containing Cas9+sgRNA genes and donor

template DNA is rapidly injected into the bloodstream so that hydrodynamic forces permeabilize the

membranes of endothelial cells to DNA, was used to treat murine liver hepatocytes with hereditary

tyrosinemia.196 Paired adeno-associated viral (AAV) vectors, one containing the Cas9 gene and the other

the sgRNA gene and donor template, have been used to deliver CRISPR machinery to correct a urea cycle

disorder in liver hepatocytes of baby mice.205 Cas9 mRNA has been delivered in lipid nanoparticles, in

conjunction with an AAV vector containing the sgRNA gene and donor template DNA, to treat liver

hepatocytes with tyrosinemia in adult mice.206 Finally, cationic lipid transfection reagents have been mixed

with Cas9/sgRNA RNP complexes and spread on the inner ear of a murine model, with GFP knockout

observed in outer hair cells.204

While the progress made on in vivo delivery of CRISPR/Cas9 is promising, there are clear drawbacks

and challenges to the strategies that have been pursued so far. Chief among them is delivery efficiency:

only a small fraction of cells actually undergo gene editing, even in the target organ. Hydrodynamic

injection, for instance, only corrected one in every 250 hepatocytes.196 The dual-AAV delivery strategy and

the AAV/lipid nanoparticle performed somewhat better, modifying 10% and 6% of hepatocytes

respectively.206, 207 Delivery of Cas9/sRNA complexes with cationic lipid edited only 20% of outer hair

cells, right on the surface of the inner ear.205 For comparison, editing efficiencies of mouse zygotes in vitro

can approach 90%.207 Other challenges are specific to the different techniques. Hydrodynamic injection is

hazardous, as the excess of liquid impairs cardiac function.208 AAV vectors are efficiently taken up by cells,

but they also generate a humoral, acquired immune response that makes repeated delivery difficult.209

Nonviral delivery methods are promising because they are non-immunogenic and thus repeated treatments

are more feasible; however, high doses of cationic lipids are cytotoxic and provoke inflammatory

responses.210

 88
An alternative CRISPR/Cas9 delivery strategy, which overcomes some of these challenges, is needed.

Based on previous research, a mechanism for delivering Cas9/sgRNA RNP complexes could enable rapid

and efficient editing without off-target effects. A nontoxic, non-immunogenic, non-viral nanoparticle would

enable repeated gene editing treatments without provoking an acquired immune response. To maximize

efficacy, these particles should be stable in serum and rapidly taken up by mammalian cells, and should

have a track record of delivering macromolecules into the cytosol.

Spherical nucleic acids (SNAs), nanoparticles modified with a shell of radially oriented

oligonucleotides, have many of the desired properties of an improved CRISPR delivery vehicle. (ref) The

highly oriented oligonucleotide shell gives these nanoparticles (which can have cores made of gold,

liposomes, proteins, or other materials) rapid endocytosis into mammalian cells, low immunogenicity, and

resistance to nucleases.211 SNAs have been used as a delivery platform for DNA and RNA cellular

diagnostics and therapeutics, including hybridization-based intracellular biosensors of mRNA (NanoFlares)

and gene regulation via transfection-agent-free delivery of siRNA.77, 82 Both these applications

demonstrated that SNAs are able to escape the endosome, because the mRNA targets upon which both

NanoFlares and siRNA-SNAs act are in the cytosol.86

However, an understanding of the mechanisms and parameters that govern the escape of SNAs from

the endosome are missing. This is a particularly important knowledge gap, as increased efficiency of

endosomal escape could greatly increase the efficacy of SNA therapeutics. It is possible that delivery of

Figure 58. Potential SNA-mediated CRISPR delivery methods. Cas9/sgRNA RNPs could be
hybridized to the surface of SNAs (left), encapsulated in a liposomal SNA (center), or chemically
modified with oligonucleotides to form a protein-core SNA.

 89
Cas9/sgRNA into cells could serve as a sensitive measure of endosomal escape, since the rate of cytosolic

delivery could be correlated with the rate of genomic editing in the cell population. Chapter 4 explores the

efficacy of spherical nucleic acids as a strategy to efficiently deliver SpCas9/sgRNA CRISPR RNPs into

cells, and of RNP delivery as a means to study the cell uptake and endosomal escape of SNAs.

4.2 Potential SNA-mediated CRISPR delivery methods

There are three mechanisms by which protein might be combined with SNAs and delivered into the

cytosol: attachment to an SNA’s surface, direct chemical modification with DNA to form a protein-SNA,

or encapsulation in the core of a liposomal SNA (Figure 58). Protein directly modified with DNA to form

a protein-SNA (proSNA) has been verified to deliver active enzymes into cells.95 However, it is not known

whether those enzymes escaped into the cytosol. Moreover, the enzyme previously delivered, ß-

galactosidase, acts on a small molecule substrate. Cas9

undergoes extensive conformational changes to bind both its

sgRNA and a double stranded DNA molecule, and may not

tolerate being extensively functionalized with DNA while

maintaining endonuclease activity. SNAs have been constructed

in which a protein or peptide is modified with a single DNA

strand that then hybridizes to the SNA’s surface; these constructs

have also been shown to enter cells.90, 94 However, this approach exposes the protein to the serum, either in

vivo or in the media for in vitro experiments, possibly increasing the particle’s immunogenicity and

reducing its stability. Attaching too many proteins to an SNA’s surface may also reduce cellular uptake.

Liposomal encapsulation of protein does not require extensive modification of the encapsulated protein,212

and protects the protein from the external environment, potentially enabling full use of SNAs’ low

immunogenicity. Moreover, an encapsulation strategy enables diverse stability and escape properties to be

probed by varying the LSNA’s liposome composition and the DNA attachment chemistry.

Figure 57. Cas9/sgRNA ribo-
nucleoprotein complex. Cas9
(blue) binds sgRNA (red).

 90
4.3 Exploring Cas9/sgRNA attachment to the surface of SNAs

Previous work has attached protein (specifically, immunoglobulins) to the surface of an SNA by

chemically modifying the protein with a DNA oligonucleotide strand, and hybridizing the DNA

oligonucleotide to the SNA. We hypothesized that SpCas9 would not need to be directly modified, because

it binds to an oligonucleotide (its sgRNA) with picomolar affinity, and because additional RNA sequence

has been added to the 3’ end of the sgRNA without affecting Cas9/sgRNA function. Therefore an

attachment strategy was pursued in which a 12 base 3’ linker sequence was added to the sgRNA, and this

linker sequence was then hybridized to the DNA strands on the SNA.

If SNA surface-attached Cas9/sgRNA complexes do enter cells, the Cas9/sgRNA complex may need a

way to dissociate from the nanoparticle in order to enter the nucleus and cleave DNA. Two sets of sgRNA-

SNA linker systems were therefore designed: one in which a ubiquitously expressed mRNA (gamma-actin)

could hybridize to the SNA and displace the sgRNA, and one in which the linker sequence was scrambled

so no mRNA would be likely to hybridize and displace the sgRNA. Three SNA and three sgRNA sequences

were designed to pursue this strategy (Table B1). The first SNA sequence, called the Hyb_SNA_F-Actin

(or Act SNA), was terminated by 12 bases which are complementary to gamma-actin mRNA, and are based

on a Nanoflare positive control from Prigodich et al.78 The second SNA sequence, called

Hyb_SNA_Scrambled_Actin (or Scr SNA), was terminated by a scrambled version of the last 12 bases in

the Act SNA sequence (scrambling performed by the online siRNA Wizard widget). The three sgRNAs

were named Hyb_sgRNA_Act_eGFP (or GFP-Act),

Hyb_sgRNA_Scr_eGFP (or GFP-Scr), and

Hyb_sgRNA_Scr_AAVS1_1 (or NT-Scr). The GFP-Act

sgRNA targets GFP and has a 12 base 3’ linker identical to

a region of gamma-actin mRNA. The GFP-Scr sgRNA

targets GFP and has a linker which is complementary to the

scrambled sequence on the Scr SNA. Finally, the NT-Scr

Figure 59. In vitro DNA cleavage with
Cas9 and designed sgRNAs.

 91
sgRNA targets the human AAVS1 gene and has the same scrambled linker as GFP-Scr. Synthesis of the

SNAs proceeded as described in the literature. DNA loading was measured using a Quant-iT Oligreen

assay, showing that Scr SNA had ~200 strands per particle, and Act SNA had ~140 strands per particle.

Particle size was measured using a Malvern Dynamic Light Scattering (DLS) instrument, indicating a

diameter of 18 nm for Act SNA, and 19 nm for Scr SNA, compared to 11 nm for unmodified gold

nanoparticle.

The sgRNAs were synthesized using the in vitro transcription protocol from Rouge et al.213 After in

vitro transcription, sgRNA synthesis was verified using PAGE, and concentration measured via UV-Vis.

Each sgRNA was mixed with SpCas9 and tested for activity with an in vitro cleavage assay (Figure 59).

Cas9/sgRNA complexes with the GFP-Act and GFP-Scr sgRNAs cleaved the EGFP gene, while the NT-

Figure 60. Characterizing Cas9/sgRNA attachment to SNAs. (A) DLS number average of SNA
diameter before and after adding sgRNA. (B) Agarose gel of SNAs after sgRNA hybridization. (C)
DLS number average and polydispersity index (PDI) of SNA diameter after adding sgRNA and Cas9.
(D) Agarose gel of SNAs after incubating with sgRNA and Cas9 for 12 hours.

 92
Scr sgRNA did not. This confirmed that the GFP-targeting sgRNAs were still active after the 3’ linkers had

been added.

We next tested whether the Cas9/sgRNA ribonucleoprotein would bind to the SNAs in a hybridization-

dependent manner (Figure 60). These experiments were performed first on Act SNA. An incubation of 10

nM SNA with no sgRNA, with 1 µM of either GFP-Act or NT-Scr sgRNA for 12 hours in PBS at 37ºC,

then added either nothing or 100 nM SpCas9, and incubated for 2 hours. Particle size was measured by

dynamic light scattering (DLS) and by running the particles in a 2% Agarose gel at 100V for 2 hours. While

it was expected that GFP-Act to bind the SNA and NT-Scr not to, no increase in particle size and no gel

shift on agarose was observed when either sgRNA was added alone. A substantial increase in the

polydispersity of the particles (indicating aggregation) was observed when SpCas9 was added to the SNAs,

whether or not sgRNA was present. Mixing SpCas9 with the SNAs led to smearing of SNA bands on the

agarose gel regardless of the presence of sgRNA, which indicates nonspecific binding of SpCas9 to the

SNA. The nanoparticle solution also visibly precipitated in the hours after SpCas9 was added.

SpCas9 most likely binds SNAs nonspecifically because it is highly positively charged. In order to

dynamically interact with sgRNA and a DNA duplex, SpCas9 has a clamshell shape, and its interior channel

is lined with lysine and arginine residues. The surface of a spherical nucleic acid meanwhile is covered with

negative charge from the oligonucleotides’ phosphodiester backbones. SpCas9’s clamshell structure may

enable it to bind very tightly to such a negative surface, shield much of the SNA’s charge, and reduce the

particle’s colloidal stability, leading to the observed precipitation. Whatever the explanation, SpCas9’s

nonspecific binding of SNAs makes the characterization of any Cas9/sgRNA particles which could actually

hybridize to the SNA difficult. Combined with SpCas9’s tendency to precipitate the nanoparticles and the

potential immunological drawbacks of exposing unmodified SpCas9 to serum for in vivo delivery, this led

us to pursue other approaches to SNA-mediated Cas9/sgRNA delivery.

4.4 Exploring direct modification of Cas9 to form CRISPR proSNAs

 93
We next sought to determine the ability of Cas9 to function as the core of a protein SNA, while

maintaining its enzymatic activity. The most well-validated strategy to attach DNA directly onto protein

requires irreversible modification of the primary amines (lysine residues and N-terminus) with an N-

hydroxy succinimide ester-oligoethylene glycol-azide (NHS-OEG-azide) moiety that enables alkyne-

modified DNA to covalently attach via copper-free click chemistry.95 We also modified some lysine

residues with an NHS ester-fluorophore conjugate, to make detection and quantification of SpCas9 easier

in later experiments. SpCas9, as a DNA and RNA binding protein, has many lysine residues which are

important for stabilizing its interaction with highly anionic nucleic acids.166 Modification with NHS-OEG-

azide converts lysines from cationic to uncharged groups, and may disrupt these interactions and SpCas9’s

enzymatic function, or even destabilize its folding.

To get a preliminary sense of how much lysine modification Cas9 can tolerate, we performed a

fluorophore modification experiment. For fluorophore modification, Alexa 647 was chosen because it is

highly soluble, and because very few other molecules measurably absorb at 647 nm, so it is relatively easy

to detect and quantify in a mixture. 1 mL of 5 µM SpCas9 in PBS was mixed with a 50 µM final

concentration of NHS ester-conjugated Alexa 647 and the reaction was incubated overnight at 4ºC. Excess

fluorophore was washed away by buffer exchanging 5 times in an Amicon 50k filter column. The

absorbances at 280 nm and 647 nm and divided by extinction coefficients produced the final concentrations

of both SpCas9 and Alexa, and therefore the number of Alexa modifications per protein. Modification

Figure 61. Cas9 activity test after Alexa-647 Modification. Numerical ratios represent a dilution
series of Cas9, to see activity at different Cas9 concentrations. Negative control band uses NT Scr
sgRNA.

 94
reactions generally conjugated ~2 Alexa fluorophores per protein, with a low of 0.7 and a high of 5 (data

not shown).

After modification, the in vitro Cas9 cleavage assay was performed as described above on a dilution

series of Cas9, to try to detect any loss of DNA cleavage activity due to modification (Figure 61). We ran

50 µL linearized pcDNA3-EGFP digest tests with 1 picomole, 0.1 picomole, and 0.01 picomole unmodified

Cas9+GFP sgRNA, or the same amount of Alexa-Cas9+GFP sgRNA. The gel results show either no

decrease or a slight decrease in cleavage activity, depending on the experiment. This indicates that SpCas9

largely tolerates a small number of lysine modifications, but it may not tolerate a larger number.

To test whether SpCas9 can tolerate many lysine modifications, one nanomole of ~1 µM SpCas9 was

incubated with a large excess (~480 nanomoles) of NHS-OEG-azide, as described in Brodin et al.95 A

subsequent in vitro cleavage assay showed that the heavily modified SpCas9’s activity had been completely

abolished (Figure 62). A second azide modification was performed on pre-mixed Cas9/sgRNA complexes

that had incubated together for an hour, in order to determine if SpCas9 binding to the sgRNA in any way

protected essential lysine residues from modification. The Cas9/sgRNA complex’s activity was also

abolished. These experiments show that while SpCas9 tolerates a small number of irreversible lysine

modifications that enable active

Cas9 to be labeled and tracked

with NHS-fluorophores, it

cannot remain active when a

large number of its lysine

residues are modified; making

direct Cas9 modification a less

promising approach for

delivering active CRISPR

RNPs into cells’ cytosol.

Figure 62. Cas9 activity test after NHS-azide modification. Three
bands to the left are unmodified Cas9; three middle bands use Cas9
mixed with NHS-azide; three bands to the right use pre-assembled
Cas9/sgRNA RNPs mixed with NHS-azide

 95
4.5 Cas9/sgRNA encapsulation in liposomal CRISPR SNAs

The third approach we explored SNA-mediated CRISPR delivery was RNP encapsulation in liposomes.

We planned to synthesize liposomal CRISPR SNAs with a range of phospholipid compositions, in order to

explore different potential mechanisms of endosomal escape. For liposomal SNAs in particular, there are

two primary mechanisms by which macromolecules could be delivered into the cytosol: lysis of the

endosomal membrane, or fusion with the endosomal membrane. Endosomal membrane lysis is

hypothesized to be facilitated by the “proton sponge effect,” in which polycations act as buffers in the late

endosome and lysosome, increasing the flow of protons and counterbalancing chloride ions into the

vesicles, causing lysis due to osmotic pressure.214, 215 Liposomes containing dioleoyldiaminopropane

(DODAP), a cationic lipid with a pKa of 5.8, could facilitate endosomal lysis by this mechanism. Fusion

of liposomes with the endosomal membrane is primarily facilitated by mixing a bilayer-forming lipid like

Figure 63. Synthesis of Liposomal CRISPR-SNAs. Concentrated Cas9 RNPs are encapsulated in
liposomes, most unencapsulated RNPs are removed via SEC, liposomes were extruded to reduce
polydispersity, DBCO-DNA is added to functionalize liposomes with DNA, liposomes are incubated with
proteinase K to digest remaining unencapsulated Cas9, and finally digested Cas9 is removed via SEC.

 96
DOPC with lipids that do not stably form bilayers or liposomes on their own, such as

dioleoylphosphatidylethanolamine (DOPE).216 However, the two membrane bilayers must touch in order

for fusion to occur. However, for the initial experiments, we synthesized liposomes primarily containing

the non-fusogenic phospholipid dioleoylphosphatidylcholine (DOPC).

To construct and test liposomal CRISPR SNAs, we designed new sgRNA and SNA sequences (Table

A2). We pursued a covalent oligonucleotide attachment strategy to the liposomes, by doping the liposomes

with 1% dipalmitoylphosphaditylcholine-azide (DPPE-azide) and then incubating with a

dibenzocyclooctyne (DBCO)- and Cy3-modified DNA oligonucleotide (DBCO-Cy3-DNA). To increase

the scale of sgRNA synthesis and increase sgRNA chemical stability, we synthesized split crRNA and

tracrRNA sequences with phosphorothioate and 2’O-methyl modifications that make the RNA resistant to

Figure 64. Quantification of DNA and RNP loading in liposomal CRISPR SNAs. (A) DLS of
CRISPR SNAs after DNA functionalization and cleaning. (B) Standard curve of Cy3-DNA fluorescence,
with SNA sample (diluted by half). (C) ICP-OES quantification of phosphorus (and therefore
phospholipid) concentration in CRISPR SNA sample, including standard curve (blue), SNA sample
(red), and SNA sample after correcting for the concentration of DNA obtained in B. SNA concentration
is calculated using equation 1. (D) Standard curve of Alexa647-RNP fluorescence, with SNA sample
(blue) plotted with a linear fit.

 97
nucleases without abolishing Cas9 activity.202 In addition to a GFP-targeting crRNA, we synthesized

crRNAs with guide sequences targeting the human EMX1 and FANCF genes, which have previously been

validated as model target loci to quantify CRISPR gene editing efficiency.205 To make RNPs, crRNA and

tracrRNA were hybridized together before mixing with the Cas9. We developed a synthesis strategy for

making and cleaning liposomal CRISPR SNAs (Figure 63), which involved rehydrating a lyophilized lipid

film with concentrated RNP solution, running this rehydrated solution through several freeze/thaw cycles

to generate single unilamellar vesicles (SUVs), running this solution through size exclusion columns to

remove most un-encapsulated RNPs, extruding the liposomes through a 0.1 µm filter, functionalizing with

DBCO-modified DNA, and finally incubating with proteinase K and size-excluding again to remove any

remaining unencapsulated RNPs.

We developed a set of experiments to quantify the concentration of liposomes, surface-functionalized

oligonucleotides, and RNPs on the synthesized liposomal CRISPR SNAs. (Figure 64). We measured

liposome concentration by measuring phospholipid concentration using inductively coupled plasma optical

emission spectrometry (ICP-OES), correcting for phosphorus from the functionalized oligonucleotides, and

then dividing the phospholipid concentration by the approximate number of phospholipids per liposome,

using the equation in Figure 65. The concentration of oligonucleotides was measured in a plate reader by

treating SNA samples with 0.1% Tween 20 detergent (to disrupt the liposomes and disperse the

oligonucleotides), and comparing Cy3 fluorescence in SNA samples to a standard curve generated from

Figure 65. Equation for calculating liposome concentration. D is the diameter (Z average) of the
liposomes (or Z average of the SNAs, minus 5 nm for the DNA shell). Alpha (α) is the footprint of the
lipid head group, which for DOPC = 0.72 nm^2.

 98
free DBCO- and Cy3-labeled oligonucleotides. The concentration of liposomes was determined with ICP-

OES as above, with phosphorus concentration corrected based on the concentration of oligonucleotides and

the number of phosphorus atoms per oligonucleotide. The concentration of RNPS was determined by

measuring Alexa 647 fluorescence from the liposome samples, and then plotting it on the linear regression

of the Alexa-RNP standard curve in a plate reader. In a representative synthesis, we generated 115 nm

CRISPR SNAs with ~450 DNA strands per particle, and encapsulated ~3 RNPs per liposome.

We tested whether CRISPR RNPs could remain active through the liposomal CRISPR SNA synthesis

(Figure 66). We incubated 200 nanograms linearized plasmids with the 1 pmol and 0.1 pmol Alexa RNP

immediately after making them, after freeze/thaw cycling, after size exclusion, and after extrusion. The

RNPs maintain activity at all stages of CRISPR SNA synthesis.

Figure 66. RNPs remain active throughout SNA synthesis procedure. (A) Schematic of the in vitro
Cas9 activity test. (B) Activity tests of fresh Cas9 RNPs (B1), Cas9 RNPs that have been modified with
Alexa dye (B2), then concentrated with Amicon 10K filters (B3), then subjected to 7 cycles of
freeze/thaw/sonication (B4), then run through Sepharose 6b SEC columns (B5), then extruded 3X
through 0.2 µM and 0.1 µM PES membranes (B6).

 99
We next sought to determine if RNPs were actually encapsulated in the clean liposomal CRISPR SNAs

(Figure 67). Clean CRISPR SNAs, and empty SNAs mixed with RNPs, were incubated with proteinase K.

Then, both samples were run through a size exclusion column and imaged for DBCO-Cy3-DNA and Alexa

647-modified RNP fluorescence. The unencapsulated RNPs were clearly degraded, as their Alexa-647

fluorescence elutes separately from the Cy3 signal of the liposomal SNAs. By contrast, the fluorescence of

Figure 67. CRISPR-SNAs protect active RNPs from protease, indicating encapsulation. (A) Size
exclusion fractions collected from a Superdex 200 column after incubating proteinase K with a mixture
of empty SNAs and Alexa-RNPs (top) or CRISPR SNAs with encapsulated Alexa-RNPs (bottom). Cy3
(DNA) fluorescence is shown in red, Alexa647 (Cas9) fluorescence in blue, and co-localization of Cy3
and Cas9 fluorescence in pink. (B) In vitro Cas9 activity tests were run with no Cas9 (1); fresh Cas9
without proteinase K (2) and with proteinase K (3); Alexa-modified Cas9 without proteinase K (4) and
with proteinase K (5); CRISPR liposomes without proteinase K (6), with proteinase K (7); and with
proteinase K added after disrupting liposomes with Tween 20 (8); and finally, CRISPR SNAs without
proteinase K (9), with proteinase K (10), and with proteinase K added after disrupting liposomes with
Tween 20 (11).

 100
the RNPs in the CRISPR SNAs co-elute with the Cy3 signal of the liposomal SNAs, suggesting that the

RNPs remain protected and encapsulated in the liposomes after the protease digestion. Further, when the

CRISPR SNA samples are mixed with Tween 20 detergent to disrupt the liposomes, Cas9 cleavage activity

is measurable in the in vitro cleavage assay after proteinase K digestion of the CRISPR SNAs, while the

cleavage activity of Cas9/sgRNA RNPs mixed with empty SNAs was abolished after proteinase K

digestion.

4.6 Liposomal CRISPR SNAs in cells

We next tested whether CRISPR SNAs could deliver Cas9/sgRNA RNPs into mammalian cells (Figure

68). We incubated C166-GFP cells with CRISPR SNAs, empty SNAs, RNPs encapsulated in bare

liposomes, and RNPs complexed with RNAiMAX transfection reagent, for 16 hours in Opti-MEM reduced

Figure 68. CRISPR-SNAs are actively taken up into mammalian cells. After incubating 5 picomole-
equivalents of Alexa RNP of each sample with C166-GFP cells for 16 hours, Alexa 647 fluorescence
measured on the allophycocyanin (APC) excitation and emission filter. Histogram of Alexa-RNP
fluorescence for untreated cells (red, overlaps with Empty LSNA), empty Cy3-modified LSNA (bright
green), RNPs encapsulated in liposomes (orange), Alexa-RNPs transfected with RNAiMax, and finally
CRISPR SNAs (dark green).

 101
serum media. Uptake of RNPs labeled with Alexa Fluor 647 was then measured via flow cytometry. Cells

treated with CRISPR-SNAs had higher median fluorescence and a higher proportion of highly fluorescent

(fluorescence >1000 AU) cells than those treated with RNP/RNAiMAX mixtures or RNPs encapsulated in

bare liposomes, while untreated cells showed almost no fluorescence. This data indicates that gene-editing

enzymes encapsulated in liposomal SNAs are actively taken up into mammalian cells.

We next tested whether liposomal SNA-mediated delivery of Cas9/sgRNA could induce gene editing

in mammalian cells (Figure 69). CRISPR SNAs with liposomes containing a range of fusogenic DOPE

phospholipid (5, 10, and 15%) were synthesized, and 140 nM Cas9/sgRNA in CRISPR SNAs was incubated

with HeLa cells in OptiMEM. As a positive control, Cas9/sgRNA complexes were also mixed with

Lipofectamine 2000 transfection reagent, and incubated with cells under the same conditions. After 48

hours, we extracted DNA from the cells, amplified the EMX1 or the FANCF locus by PCR (Table A3),

Figure 69. Efficiency of CRISPR-induced mutation at the EMX1 locus in HeLa cells. (A)
Experiment testing CRISPR SNAs with 0% DOPE and 10 % DOPE liposomes, compared to a positive
control of CRISPR RNPs transfected with Lipofectamine 2000. (B) Experiment testing the editing
activity of CRISPR SNAs with 15% DOPE liposomes.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Pos Ctrl Neg Ctrl 100% DOPC
CRISPR SNA

10% DOPE
CRISPR SNA

M
ut

at
io

n
R

at
e

(%
)

0

0.1
0.2
0.3
0.4
0.5
0.6

M
ut

at
io

n
R

at
e

(%
)

CRISPR Targeting of EMX1 locus in HeLa
Cells, 15% DOPE in liposomes

(A) Positive Ctrl
(B) Negative Ctrl
(C) CRISPR SNAs

A

B

0% DOPE
CRISPR SNA

 102
and sequenced on an Illumina MiSeq. A Matlab script from Kevin Zhao in David Liu’s lab was used to

calculate the mutation rate from the percent of full FASTQ reads from the Illumina run which contain an

insertion or deletion mutation within 5 bases of the predicted Cas9 cleavage site (Code D1). Although gene

editing was detectable in the transfected positive controls across multiple experiments, gene editing with

the CRISPR SNA constructs was not, even when doped with 10% and 15% fusogenic DOPE. So far, SNAs

have not been able to successfully deliver gene editing enzymes into mammalian cells.

4.7 Materials and Methods

4.7.1 Materials. Unless otherwise noted, all reagents were purchased from commercial sources and used as

received. For oligonucleotide, crRNA and tracrRNA synthesis, all phosphoramidites and reagents were

purchased from Glen Research, Co. (Sterling, VA, USA). All lipids were purchased from Avanti Polar

Lipids (Alabaster, AL, USA) either in dry powder form or chloroform and used without further purification.

EnGen® Cas9 NLS (Cas9) and proteinase K were purchased from New England Biolabs (Ipswich, MA,

USA). Alexa Fluor 647 NHS ester dye (Alexa 647) was purchased from Lumiprobe Corp. (Cockneysville,

MD, USA). Plasmids were purchased from AddGene (Cambridge, MA, USA. GelRed dye was purchased

from Biotium Inc. (Fremont, CA, USA). All other reagents were purchased from Sigma-Aldrich (St. Louis,

MO, USA). C166-GFP cells were purchased from ATCC (Manassas, VA, USA), and Opti-MEM was

purchased from Life Technologies (Carlsbad, CA).

4.7.2 Cas9 labeling and quantification. In order to track and quantify Cas9, 2 nanomoles of Cas9 were

incubated with 10 nanomoles of Alexa 647 NHS Ester, in 1X HBS overnight at 4ºC, generating Alexa-

Cas9. To remove unreacted dye, Alexa-Cas9 was run through a NAP5 column equilibrated in 1X HBS, and

eluted in 1 mL 1X HBS. 2 nanomoles unmodified Cas9 was exchanged into 1X HBS using a NAP5 column,

and combined with the Alexa Cas9. The concentration of Cas9 and Alexa dye were calculated using the

absorbance at 280 nm and 650 nm, respectively; and the molar ratio of Alexa dye to Cas9 was calculated.

The Alexa-Cas9 is then diluted to 1 µM. A 20 µL aliquot is reserved for activity and concentration assays.

 103
4.7.3 Cas9 ribonucleoprotein synthesis and concentration. 10 nanomoles crRNA and tracrRNA were

generated by incubating 10 µM crRNA with 10 µM tracrRNA in 1X HBS at 95ºC for 5 minutes, and

allowed to cool to room temperature for 10 minutes. 10 nanomoles of crRNA/tracrRNA complex is then

mixed with 4 nanomoles of 1 µM Alexa-Cas9 and allowed to sit at room temperature for 10 minutes, to

form the Cas9 ribonucleoprotein (RNP). RNPs were then concentrated in Amicon 10K spin filters. 5 minute

stretches, then resuspending, until the retained liquid volume reaches 500 µL or less. Cas9 concentration

was again quantified using the absorbance of the Alexa 647 dye. 20 µL were set aside for activity and

concentration measurements.

4.7.4 Synthesis and purification of CRISPR SNAs. To synthesize liposomes encapsulating Cas9 RNPs, a

dehydrated phospholipid film was generated by lyophilizing a mixture of 3 mg DOPC and 0.15 mg DPPE-

Azide in chloroform. The lipid film was then rehydrated with 400 µL of Alexa 647-labeled

ribonucleoprotein complexes (Alexa-RNPs) in 1X HBS, at a concentration of 5-8 µM. This solution was

then subjected to 7 freeze/thaw cycles using liquid nitrogen and a room-temperature bath sonicator to

generate single unilamellar vesicles (SUVs). The SUVs were run through a column packed with Sepharose

6B and equilibrated in 1X HBS to separate them from unencapsulated RNPs. To reduce polydispersity, the

SUVs were extruded twice through 200 nm and then 100 nm membrane filters. To remove the remaining

unencapsulated RNPs, SUVs were incubated for 1 hour at room temperature with proteinase K (10 U, in

500 µL 1X NEB Buffer 2 + 1X HBS). SUVs were separated from digested RNPs using a column packed

with Superdex 200 and equilibrated in 1X HBS. To generate SNAs, the SUVs were then incubated

overnight with oligonucleotides functionalized on the 5’ end with DBCO and internally with Cy3 (~1 DNA

per 20 phospholipids). SNAs were then separated from free oligonucleotides using a column packed with

Superdex 200 and equilibrated in 1X HBS.

4.7.5 Quantification of Cas9 and DNA loading. To measure SUV concentrations, inductively coupled

plasma optical emission spectrometry (ICP-OES) and a phosphorus standard were used to calculate

phospholipid concentration. Liposome diameter was measured via dynamic light scattering (DLS), and the

 104
number of phospholipids per liposome were calculated. SUV concentration was calculated by dividing

phospholipid concentration by the number of phospholipids per SUV. The concentration of

oligonucleotides was measured in a Bio-Tek H4 plate reader by treating SNA samples with 0.1% Tween

20 detergent (to disrupt the liposomes and disperse the oligonucleotides), and comparing Cy3 fluorescence

in SNA samples to a standard curve generated from free DBCO- and Cy3-labeled oligonucleotides. The

concentration of liposomes was determined with ICP-OES as above, with phosphorus concentration

corrected based on the concentration of oligonucleotides and the number of phosphorus atoms per

oligonucleotide. To calculate the concentration of RNPs, a standard curve of Alexa-647 fluorescence was

generated from an Alexa-RNP aliquot in the plate reader. The concentration of RNPs was determined by

measuring Alexa-647 fluorescence from the liposome samples, and then plotting it on the linear regression

of the Alexa-RNP standard curve in a plate reader.

4.7.6 In vitro Cas9 DNA cleavage assay. RNPs targeting the EGFP gene were synthesized and used to make

CRISPR SNAs. Purified pcDNA3-EGFP plasmid was linearized by digesting with restriction enzyme

SmaI. Active RNPs incubated with the linearized plasmid cleave it into a 2 kb and a 4 kb fragment, which

can be seen on a 1% agarose electrophoresis gel run in TBE buffer for 30 minutes. 200 nanograms linearized

plasmids with the 1 pmol and 0.1 pmol Alexa RNP immediately after making them, after freeze/thaw

cycling, after size exclusion, and after extrusion.

4.7.7 Protease stability studies. To verify that RNPs are encapsulated inside SNAs, clean CRISPR SNAs

were incubated with proteinase K in NEB’s restriction enzyme buffer 2 for 1 hour at room temperature. As

a control, Alexa-RNPs were mixed with empty SNAs and incubated with proteinase K. The incubated

samples were then eluted in 200 µL fractions through a Superdex 200 size exclusion column equilibrated

in 1x HBS. These fractions were then imaged in a fluorescent gel scanner for Cy3 and Alexa Fluor 647

fluorescence. To verify that the encapsulated RNPs are still active liposomes in CRISPR SNAs were

disrupted with 0.1% Tween 20 detergent either before or after incubating them with proteinase K as above.

 105
Then proteinase K was inactivated with 1 mM 1 mM phenylmethylsulfonyl fluoride (PMSF), and the in

vitro cleavage assay was run as above.

4.7.8 Cell uptake studies. C166-GFP cells were incubated with CRISPR SNAs, empty SNAs, RNPs

encapsulated in bare liposomes, and RNPs complexed with RNAiMAX transfection reagent, for 16 hours

in Opti-MEM reduced serum media. Uptake of RNPs labeled with Alexa Fluor 647 was then measured via

flow cytometry.

4.7.9 Quantification of Gene Editing. CRISPR SNAs were synthesized using several different liposome

compositions, including 98% DOPC + 2% DPPE-Azide, 88% DOPC + 10% DOPE + 2% DPPE-Azide,

and 83% DOPC + 15% DOPE + 2% DPPE-Azide. Cas9/sgRNA RNPs encapsulated in the SNAs contained

an equimolar mixture of crRNAs targeting these loci. HeLa cells were incubated with 140 nM Cas9/sgRNA

complexes in CRISPR SNAs (quantified by Alexa 647 fluorescence) for 12 hours at 37ºC in OptiMEM

culture media. As a positive control, Cas9/sgRNA complexes were also mixed with Lipofectamine 2000

transfection reagent, and incubated with cells under the same conditions. OptiMEM was removed and

replaced with DMEM + 10%FBS, and cells were allowed to grow for 48 hours. Then, genomic DNA from

each well was extracted with a Qiagen kit, the sequence for the EMX1 locus was amplified and barcoded

by PCR using the Nextera Illumina library preparation kit, and sequenced on an Illumina MiSeq. The

mutation rate was calculated from the percent of full reads from the Illumina run which contain an insertion

or deletion mutation within 5 bases of the predicted Cas9 cleavage site, using the script Code D1.

 106

CHAPTER 5: Outlook, Future Work

 107
5.1 Dual Readout Sandwich Immunoassay

The dual-readout sandwich immunoassay presented in chapter 2 enables both device-free visual and

colorimetric analysis of samples, as well as highly sensitive scanometric target detection. Previous work on

dual-readout Pt-coated AuNP detection strategies used AuNP local surface plasmon resonance (LSPR) to

detect them colorimetrically, and therefore required the careful deposition of only a few layers of Pt atoms

onto the AuNPs to avoid disrupting their LSPR.21 In this approach, the Pt-based colorimetric readout is

more sensitive than the Au-based colorimetric detection. By contrast, our assay demonstrates much greater

sensitivity through the gold-based readout than the Pt-based one, highlighting the value of the gold

amplification step and scanometric detection method. The sub-picomolar scanometric readout’s detection

sensitivity is comparable to other ultrasensitive nanoparticle-based PA83 assays employing europium

nanoparticle-based fluorescence and silver nanoparticle-enhanced fluorescence.103, 104

One way to improve this assay in the future would be to reduce the time required to get a colorimetric

readout. This could be achieved by shortening the platinum deposition step. The platinum metal precursor

solution used in this work is based on prior research into the synthesis of colloidally stable Au@Pt

nanostructures.129 However, in our assay, the colloidal stability of the immobilized AuNPs after Pt

deposition is unimportant; what matters is that Pt is deposited specifically on the AuNPs, and not on surfaces

that lack AuNPs. It may be that a Pt deposition solution with a higher concentration of metal precursor

could achieve the same level of AuNP-specific Pt deposition (and therefore colorimetric signal

amplification) in a shorter period of time.

Another approach to minimize time-to-readout could be to conjugate antibodies directly to peroxidase-

mimicking nanoparticles217 which are capable of both catalytic H2O2 splitting and nucleating gold particle

growth from reduced ions. Gold nanoclusters (AuNCs), for instance, can catalyze the splitting of O2 and

subsequent oxidation of TMB when illuminated with visible light.218 Alternatively, anisotropic platinum

nanoparticles (PtNPs) can split H2O2 and oxidize TMB without requiring a reduction step, and have been

functionalized with immunoglobulins to create model immunoassays.119 If PtNPs could serve as nuclei for

 108
gold reduction, then mAb-PtNP nanoparticles could provide even more rapid device-free colorimetric

antigen detection, while still enabling highly sensitive scanometric detection with the same particles.

The colorimetric detection readout developed in this work has similar sensitivity to colorimetric

immunoassays employing the enzyme horseradish peroxidase (e.g. ELISA).219 Another H2O2-decomposing

enzyme, catalase, has been combined with gold nanoparticles to achieve ultrasensitive visual detection of

protein biomarkers.220 However, in contrast to most enzymes, Pt remains catalytically active across a wide

range of temperature and pH,119 broadening the range of applications and potentially enhancing the field

deployability of similar colorimetric assays. Although less sensitive than the scanometric readout, in

principle, the colorimetric readout could be employed in pairwise device-free screens to discover pairs of

recognition elements, whether antibodies, aptamers, or hyper-stable designer protein binders;221 while the

scanometric detection method can be used to significantly increase the sensitivity of any discovered

sandwich pairs. These paired recognition elements, like the anti-PA83 mAb pair discovered using the

colorimetric readout, could serve as practical tools for the sensitive, specific, and reproducible detection of

anthrax and other disease biomarkers.

5.2 Aptamer NanoFlares

So far for the aptamer NanoFlare project, our main conclusion is that it is it is difficult to know a priori

how a given aptamer-flare pair will respond to target molecule, because target-dependent aptamer-flare

dehybridization depends in complicated ways on the 3-dimensional structure of the aptamer, the aptamer-

flare duplex, and the hypothesized aptamer-flare-target intermediate structure. To address this challenge,

the flare microarray experiments and the analytical pipeline we’ve built enable comprehensive exploration

of the aptamer-flare design space, and have shown that aptamer structural loops and 5’ and 3’ termini favor

stable aptamer-flare hybridization, as does a calculated ∆G of hybridization stronger than -10 kcal/mol.

Even if mathematical models of aptamer NanoFlares cannot rationally predict the ‘best’ aptamer-flare pair,

the microarray experiments and analytical pipeline may make it possible to identify this ‘needle in a

haystack’ anyway.

 109
The next step in this project is to successfully identify target-responsive aptamer-flare pairs from the

microarray screens. Toward this end, the microarrays should be redesigned to normalize and correct for

several sources of experimental noise that have so far prevented us from identifying target-responsive

aptamer-flare pairs from the array data. Specifically, internal hybridization positive controls should be

added across the array, that bind a 20 bp fluorophore-modified control oligonucleotide that serves as an

internal reference for any changes in absolute fluorescence measured across the array. Another element that

has been missing from previous experiments is a detection positive control, a set of aptamer-flare pairs that

are known to respond to a target molecule, and can be used to check that the analysis pipeline can actually

detect ‘hits.’ To address this, new microarray designs incorporate all the flares for a known ATP-responsive

aptamer that has previously been shown to detectably de-hybridize from a subset of complementary

oligonucleotides via an induced fit mechanism in similar microarray experiments.222 The ATP aptamer

positive control will be used to validate and improve the analytical workflow, and then this workflow can

be used to screen aptamer-flare pairs responsive to DHEA-S, cortisol, or any other target molecule of

interest.

Answering the other questions raised by this project, like what effect attachment to a nanoparticle has

on aptamer folding, flare hybridization, and target binding, requires the identification of at least one

aptamer-flare pair that consistently detects the target molecule. In addition to continuing the screening

experiments to discover such a pair, one place to look for such aptamer-flare ‘hits’ is the literature. For

instance, the Stojanovic group have already reported several aptamer-complementary oligonucleotide pairs

that de-hybridize in the presence of different steroid hormones.160 If at least one of these biosensors could

be replicated and validated in a nanoparticle-free, black-hole-quencher-based aptamer fluorescence assay,

it could serve as the baseline from which to compare the flare hybridization and target detection behavior

of aptamer NanoFlare nanoparticles with different DNA loading densities.

One problem that has stymied such experiments so far is the strange batch-to-batch variability we have

observed in DHEA-S detection behavior for our aptamer NanoFlares. One potential source of variability

 110
that hasn’t been ruled out yet is the poly-A spacer on the thiolated aptamer sequences. Poly-A DNA

oligonucleotides adsorb strongly to the surface of citrate-capped gold nanoparticles; this adsorption of the

ostensible spacer sequence in our SNA designs may interfere with aptamer folding, flare hybridization or

target molecule binding. In future experiments, the aptamer NanoFlare constructs we have investigated

could be synthesized with a poly-T spacer sequence instead,223 and target detection performance and

consistency could be compared to constructs with the poly-A spacer.

A potential limitation of the aptamer NanoFlare architecture we have studied here is that the target

molecule must compete with a flare strand that is actively disrupting the aptamer structure in order to bind

to the aptamer and stabilize its folded conformation. It is possible that this competition introduces a trade-

off between low background fluorescence and target molecule-induced flare dissociation: designing a

highly stable aptamer-flare duplex may make it less thermodynamically favorable for the flare to be

displaced and replaced with the target molecule. Conversely, designing a highly labile aptamer-flare duplex

that is easily disrupted by the target molecule may result in a higher intrinsic aptamer-flare dissociation

constant and rate, and therefore a higher concentration of unbound flare in solution even when the target

molecule is absent. There is some evidence that this type of target-flare competition reduces the

performance of aptamers: in the original ATP aptamer Nanoflare paper, the effective dissociation constant

of the aptamer-ATP interaction was 100-fold weaker when the aptamer was hybridized to the flare strand

than when there was no flare strand to compete with.81 This poses a serious challenge to the utility of

aptamer NanoFlares as steroid stress biomarkers of DHEA-S or cortisol, since the physiological

concentrations of these molecules in saliva (1-10 nM for cortisol;224, 225 0.6-70 nM for DHEA-S226, 227) are

already lower than the dissociation constants of most aptamers for their targets.

One way to address this challenge could be to replace the aptamer NanoFlare design with Mirkin lab’s

recently reported forced-intercalation (FIT) aptamer design.228 FIT aptamers don’t require a flare strand;

instead, one of the aptamer’s nucleotides is replaced with fluorescent dye, such as thiazole orange, that

selectively fluoresces when sandwiched between and conformationally constrained by the stacked

 111
nucleoside bases of a DNA double helix.229 If the dye is placed in a location on the aptamer that is not

hybridized unless stabilized by binding the target molecule, then it will serve as a fluorescent biosensor of

the target. There are many aptamers that alter their structural conformation upon binding their targets; for

instance, Mirau lab’s NMR data in Figure 21 shows that the truncated DIS11th_3 aptamer undergoes some

sort of conformational change upon binding DHEA-S. It’s possible that, in the absence of a competing flare

strand, such ‘induced fold’ FIT aptamers could more sensitively detect their target molecule. SNA

architecture could still play an important role in these constructs: for aptamers that fold stably even in the

absence of target molecule, perhaps dense packing on the surface of a nanoparticle could destabilize native

structure enough to insert a FIT dye with low background fluorescence, while still enabling target molecules

to stabilize the aptamer’s folded conformation and turn FIT fluorescence back on.

5.3 CRISPR SNAs

The fundamental challenge facing any project aimed at nonviral, cytosolic delivery of proteins in vivo

remains endosomal escape (for in vitro delivery into cell lines, cationic transfection reagents remain useful

tools and positive controls). The liposomal CRISPR-SNAs we synthesized had active ribonucleoprotein

enzymes inside them, and were endocytosed by cells, but no gene editing was observed. One of the

challenges with this result is that because endosomal escape by SNAs is so rare and difficult to quantify,

it’s not clear by what mechanism the liposomal CRISPR SNAs are failing. It’s possible that, despite doping

with DOPE, none of the liposomes ever fuse with the endosomal membrane or escape, intact, into the

cytosol. It’s possible that some liposomes escape into the cytosol intact, but that the Cas9 RNPs never

escape from inside them, which they must do to travel to the nucleus and start gene editing. Or it’s possible

that some liposomes are fusing with the endosomal membrane, and some RNPs are escaping into the

cytosol, but the escaped RNP concentration is too low (or the activity of the RNPs is too degraded somehow

by the encapsulation process) to detectably mutate genomic DNA. In order to address any of these

hypotheses, a sensitive and quantitative method for measuring the endosomal escape of all the

nanoparticles’ different components is required. We had hypothesized at the beginning of this project that

 112
genomic editing could serve as such a method to sensitively measure endosomal escape; but so far that

supposition has not been borne out.

Split GFP-based sensors230 could be an alternative method to sensitively measure endosomal escape.

Fluorescent proteins with one of the beta strands in the beta barrel removed, split GFP variants only

fluoresce when complemented by the addition of the missing beta strand into solution. Split GFPs now

come in several colors, including a photoactivatable variant that can be used in super-resolution

microscopy.231 Split GFPs have already been used to quantify endosomal escape during the engineering and

optimization of cell-penetrating peptides.232 By expressing the incomplete beta barrel in the cytosol of

model cell lines, it’s possible that SNAs carrying the complementing beta strand could enter cells and, even

when very rare, report endosomal escape events with fluorescence. Just as Shuya Wang et al. investigated

the effect of antigen peptide attachment location and mechanism on the efficacy of immune-stimulating

SNA cancer vaccines,92 split GFP beta strands could be encapsulated within, attached via intercalation to,

or hybridized onto the oligonucleotide shell of liposomal SNAs with varying phospholipid compositions;

and the liposome composition and peptide orientation that causes the most cellular fluorescence could be

pursued as a cytosolic peptide/protein delivery vehicle. Once the concept is demonstrated, cytosolic

delivery of larger proteins (perhaps even Cas9) could be tracked and quantified by fusing the

complementary beta strand to the N or C terminus of the protein to be delivered.

One of the main factors limiting the rate at which different iterations of liposomal CRISPR SNAs could

be designed, built and tested was the inefficiency of Cas9 RNP encapsulation inside the liposomes. Because

the RNPs were not modified with a phospholipid-bilayer-binding moiety, the enzymes had to be

encapsulated by chance. Even at the highest stable RNP concentrations we achieved (roughly 8 µM), only

about 2 RNPs would likely be encapsulated by chance inside the volume of a 100 nm liposome. If

encapsulation in liposomal SNAs is ever to become a successful and standard method for delivering proteins

into cells, the encapsulation efficiency must increase. This could be achieved by modifying the liposome

composition and/or fusing a tag to the protein that increases the electrostatic attraction between protein and

 113
phospholipid bilayer; or by chemically conjugating an intercalating moiety to the protein via a labile, bio-

reducible bond.

This project also made clear that the standard chemical conjugation method for generating functional

protein-core SNAs does not work for CRISPR enzymes. We hypothesize that more generally, irreversible

NHS-ester mediated attachment of oligonucleotides to lysine residues is only a viable strategy for creating

enzyme SNAs with functional cores if the enzymes in question don’t have many structurally important

lysines, and don’t require large conformational changes that could be blocked by an oligonucleotide shell

in order to perform catalysis. Cas9 violates both these criteria, so any future attempts to deliver Cas9 RNPs

in proSNA format should investigate how to modify the protein’s surface amino acids with traceless,

bioreducible linkers. The traceless linker Skakuj et al. have recently applied to SNA-mediated antigen

peptide delivery for cancer immunotherapy could merit investigation.233

 114
REFERENCES

1. Kreuter, J. Nanoparticles—a historical perspective. Int. J. Pharm. 2007. 331, 1–10.

2. Yeh, Y.-C.; Creran, B.; Rotello, V. M. Gold nanoparticles: preparation, properties, and applications in

bionanotechnology. Nanoscale. 2012. 4, 1871–80.

3. Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated Absorption and Scattering

Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in

Biological Imaging and Biomedicine. J. Phys. Chem. B. 2006. 110, 7238–7248.

4. Bera, D., Qian, L., Tseng, T.-K. & Holloway, P. H. Quantum Dots and Their Multimodal

Applications: A Review. Materials (Basel). 2010. 3, 2260–2345.

5. Daniel, M.-C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-

Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev.

2003. 104, 293–346.

6. Jazayeri, M. H.; Aghaie, T.; Avan, A.; Vatankhah, A.; Ghaffari, M. R. S. Colorimetric detection

based on gold nano particles (GNPs): An easy, fast, inexpensive, low-cost and short time method in

detection of analytes (protein, DNA, and ion). Sens. Bio-Sensing Res. 2018. 20, 1–8.

7. Kim, J.; Biondi, M. J.; Feld, J. J.; Chan, W. C. W. Clinical Validation of Quantum Dot Barcode

Diagnostic Technology. ACS Nano 2016. 10, 4742–4753.

8. Yen, S. K.; Padmanabhan, P.;Selvan, S. T. Multifunctional iron oxide nanoparticles for diagnostics,

therapy and macromolecule delivery. Theranostics 2013. 3, 986–1003.

9. Jazayeri, M. H.; Amani, H.; Pourfatollah, A. A.; Pazoki-Toroudi, H.; Sedighimoghaddam, B. Various

methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens. Bio-Sensing Res. 2016. 9, 17–

22.

10. Billingsley, M. M.; Riley, R. S.; Day, E. S. Antibody-nanoparticle conjugates to enhance the

sensitivity of ELISA-based detection methods. PLoS One 2017. 12, e0177592.

 115
11. Li, D.-L. et al. Multifunctional superparamagnetic nanoparticles conjugated with fluorescein-labeled

designed ankyrin repeat protein as an efficient HER2-targeted probe in breast cancer. Biomaterials

2017. 147, 86–98.

12. Franco, R.; Pedrosa, P.; Carlos, F. F.; Veigas, B.; Baptista, P. V. Gold Nanoparticles for DNA/RNA-

Based Diagnostics. Handbook of Nanoparticles. 2015. 1–25.

13. Xu, H. et al. Aptamer-Functionalized Gold Nanoparticles as Probes in a Dry-Reagent Strip Biosensor

for Protein Analysis. Anal. Chem. 2009. 81, 669–675.

14. Xia, N.; Chen, Z.; Liu, Y.; Ren, H.; Liu, L. Peptide aptamer-based biosensor for the detection of

human chorionic gonadotropin by converting silver nanoparticles-based colorimetric assay into

sensitive electrochemical analysis. Sensors Actuators B Chem. 2017. 243, 784–791.

15. Huh, Y.-M. et al. In Vivo Magnetic Resonance Detection of Cancer by Using Multifunctional

Magnetic Nanocrystals. J. Am. Chem. Soc. 2005. 127, 12387-12391.

16. Chen, L.; Chen, C.; Li, R.; Li, Y.; Liu, S. CdTe quantum dot functionalized silica nanosphere labels

for ultrasensitive detection of biomarker. Chem. Commun. 2009. 2670-2672.

17. Hussain, M. M.; Samir, T. M.; Azzazy, H. M. E. Unmodified gold nanoparticles for direct and rapid

detection of Mycobacterium tuberculosis complex. Clin. Biochem. 2013. 46, 633–637.

18. Gill, P., Alvandi, A.-H., Abdul-Tehrani, H. & Sadeghizadeh, M. Colorimetric detection of

Helicobacter pylori DNA using isothermal helicase-dependent amplification and gold nanoparticle

probes. Diagn. Microbiol. Infect. Dis. 2008. 62, 119–124.

19. Liu, Y. et al. Colorimetric detection of influenza A virus using antibody-functionalized gold

nanoparticles. Analyst 2015. 140, 3989–95.

20. Li, Y. et al. Horseradish peroxidase-loaded nanospheres attached to hollow gold nanoparticles as

signal enhancers in an ultrasensitive immunoassay for alpha-fetoprotein. Microchim. Acta 2014. 181,

679–685.

 116
21. Gao, Z. et al. Platinum-Decorated Gold Nanoparticles with Dual Functionalities for Ultrasensitive

Colorimetric in Vitro Diagnostics. Nano Lett. 2017. 17, 5572–5579.

22. Härmä, H.; Soukka, T.; Lövgren, T. Europium Nanoparticles and Time-resolved Fluorescence for

Ultrasensitive Detection of Prostate-specific Antigen. Clin. Chem. 2001. 47, 561–568.

23. Wang, J.; Achilefu, S.; Nantz, M.; Kang, K. A. Gold nanoparticle–fluorophore complex for

conditionally fluorescing signal mediator. Anal. Chim. Acta 2011. 695, 96–104.

24. Choi, D. H. et al. A dual gold nanoparticle conjugate-based lateral flow assay (LFA) method for the

analysis of troponin I. Biosens. Bioelectron. 2010. 25, 1999–2002.

25. Rauta, P. R.; Hallur, P. M.; Chaubey, A. Gold nanoparticle-based rapid detection and isolation of

cells using ligand-receptor chemistry. Sci. Rep. 2018. 8, 2893.

26. Harris, N.; Ford, M. J.; Cortie, M. B. Optimization of Plasmonic Heating by Gold Nanospheres and

Nanoshells. J. Phys. Chem. B 2006. 110, 10701–10707.

27. Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic

resonance guidance. Proc. Natl. Acad. Sci. U. S. A. 2003. 100, 13549–54.

28. Vines, J. B.; Yoon, J.-H.; Ryu, N.-E.; Lim, D.-J.; Park, H. Gold Nanoparticles for Photothermal

Cancer Therapy. Front. Chem. 2019. 7, 167.

29. Kruse, A. M., Meenach, S. A., Anderson, K. W. & Hilt, J. Z. Synthesis and characterization of

CREKA-conjugated iron oxide nanoparticles for hyperthermia applications. Acta Biomater. 2014. 10,

2622–2629.

30. Akbarzadeh, A. et al. Liposome: classification, preparation, and applications. Nanoscale Res. Lett.

2013. 8, 102.

31. Suk, J. S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a strategy for improving

nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016. 99, 28–51.

32. Barenholz, Y. Doxil® — The first FDA-approved nano-drug: Lessons learned. J. Control. Release

2012. 160, 117–134.

 117
33. Li, S.-D.; Huang, L. Pharmacokinetics and Biodistribution of Nanoparticles. Mol. Pharm. 2008. 5,

496–504.

34. He, C.; Hu, Y.; Yin, L.; Tang, C.; Yin, C. Effects of particle size and surface charge on cellular

uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010. 31, 3657–3666.

35. Danhier, F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is

the future of nanomedicine? J. Control. Release 2016. 244, 108–121.

36. Kim, B.-K. et al. DOTAP/DOPE ratio and cell type determine transfection efficiency with DOTAP-

liposomes. Biochim. Biophys. Acta - Biomembr. 2015. 1848, 1996–2001.

37. Friedman, A. D.; Claypool, S. E.; Liu, R. The smart targeting of nanoparticles. Curr. Pharm. Des.

2013. 19, 6315–29.

38. Farokhzad, O. C. et al. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate

cancer cells. Cancer Res. 2004. 64, 7668–72.

39. Sun, Y. et al. Folic acid receptor-targeted human serum albumin nanoparticle formulation of

cabazitaxel for tumor therapy. Int. J. Nanomedicine 2019. 14, 135–148.

40. Chen, Z. (Georgia). Small-molecule delivery by nanoparticles for anticancer therapy. Trends Mol.

Med. 2010. 16, 594.

41. Kratschmer, C.; Levy, M. Effect of Chemical Modifications on Aptamer Stability in Serum. Nucleic

Acid Ther. 2017. 27, 335–344.

42. Xiao, T. Innate immune recognition of nucleic acids. Immunol. Res. 2009. 43, 98–108.

43. Zhuang, J. et al. Targeted gene silencing in vivo by platelet membrane–coated metal-organic

framework nanoparticles. Sci. Adv. 2020. 6, eaaz6108.

44. Buss, C. G.; Bhatia, S. N. Nanoparticle delivery of immunostimulatory oligonucleotides enhances

response to checkpoint inhibitor therapeutics. Proc. Natl. Acad. Sci. 2020. 01569.

45. Choi, J. et al. Nonviral polymeric nanoparticles for gene therapy in pediatric CNS malignancies.

Nanomedicine Nanotechnology, Biol. Med. 2020. 23, 102115.

 118
46. Tang, X. et al. Therapeutic Prospects of mRNA-Based Gene Therapy for Glioblastoma. Front. Oncol.

2019. 9, 1208

47. Ito, I. et al. Liposomal vector mediated delivery of the 3p FUS1 gene demonstrates potent antitumor

activity against human lung cancer in vivo. Cancer Gene Ther. 2004. 11, 733–739.

48. Lu, C. et al. Phase I Clinical Trial of Systemically Administered TUSC2(FUS1)-Nanoparticles

Mediating Functional Gene Transfer in Humans. PLoS One 2012. 7, e34833.

49. Yu, M.; Wu, J.; Shi, J.; Farokhzad, O. C. Nanotechnology for protein delivery: Overview and

perspectives. J. Control. Release 2016. 240, 24–37.

50. Smith, S. A.; Selby, L. I.; Johnston, A. P. R.; Such, G. K. The Endosomal Escape of Nanoparticles:

Toward More Efficient Cellular Delivery. Bioconjug. Chem. 2019. 30, 263–272.

51. Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. A DNA-based method for rationally

assembling nanoparticles into macroscopic materials. Nature 1996. 382, 607–609.

52. Cutler, J. I.; Zheng, D.; Xu, X.; Giljohann, D. A.; Mirkin, C. A. Polyvalent oligonucleotide iron oxide

nanoparticle “click” conjugates. Nano Lett. 2010. 10, 1477–80.

53. Morris, W.; Briley, W. E.; Auyeung, E.; Cabezas, M. D.; Mirkin, C. A. Nucleic Acid–Metal Organic

Framework (MOF) Nanoparticle Conjugates. J. Am. Chem. Soc. 2014. 136, 7261–7264.

54. Mitchell, G. P.; Mirkin, C. A.; Letsinger, R. L. Programmed Assembly of DNA Functionalized

Quantum Dots. J. Am. Chem. Soc. 1999. 121, 8122–8123.

55. Young, K. L. et al. Hollow spherical nucleic acids for intracellular gene regulation based upon

biocompatible silica shells. Nano Lett. 2012. 12, 3867–71.

56. Zhu, S.; Xing, H.; Gordiichuk, P.; Park, J.; Mirkin, C. A. PLGA Spherical Nucleic Acids. Adv. Mater.

2018. 30, 1707113.

57. Banga, R. J.; Chernyak, N.; Narayan, S. P.; Nguyen, S. T.; Mirkin, C. A. Liposomal spherical nucleic

acids. J. Am. Chem. Soc. 2014. 136, 9866–9.

 119
58. Brodin, J. D., Auyeung, E. & Mirkin, C. A. DNA-mediated engineering of multicomponent enzyme

crystals. Proc. Natl. Acad. Sci. U. S. A. 2015. 112, 4564–9.

59. Banga, R. J. et al. Cross-Linked Micellar Spherical Nucleic Acids from Thermoresponsive

Templates. J. Am. Chem. Soc. 2017. 139, 4278–4281.

60. Cutler, J. I. et al. Polyvalent Nucleic Acid Nanostructures. J. Am. Chem. Soc. 2011. 133, 9254–9257.

61. Lytton-Jean, A. K. R.; Mirkin, C. A. A Thermodynamic Investigation into the Binding Properties of

DNA Functionalized Gold Nanoparticle Probes and Molecular Fluorophore Probes. J. Am. Chem.

Soc. 2005. 127, 12754–12755.

62. Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Selective colorimetric

detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles.

Science 1997. 277, 1078–81.

63. Park, S. Y.; Gibbs-Davis, J. M.; Nguyen, S. T.; Schatz, G. C. Sharp Melting in DNA-Linked

Nanostructure Systems: Thermodynamic Models of DNA-Linked Polymers. J. Phys. Chem. B 2007.

111, 8785–8791.

64. Stepp, B. R.; Gibbs-Davis, J. M.; Koh, D. L. F.; Nguyen, S. T. Cooperative Melting in Caged Dimers

of Rigid Small Molecule-DNA Hybrids. J. Am. Chem. Soc. 2008. 130, 9628–9629.

65. Rosi, N. L. et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation.

Science 2006. 312, 1027–30.

66. Patel, P. C. et al. Scavenger Receptors Mediate Cellular Uptake of Polyvalent Oligonucleotide-

Functionalized Gold Nanoparticles. Bioconjug Chem. 2010. 21, 2250–2256.

67. Choi, C. H. J.; Hao, L.; Narayan, S. P.; Auyeung, E.; Mirkin, C. A. Mechanism for the endocytosis of

spherical nucleic acid nanoparticle conjugates. Proc. Natl. Acad. Sci. 2013. 110, 7625–7630.

68. Seferos, D. S.; Prigodich, A. E.; Giljohann, D. A.; Patel, P. C.; Mirkin, C. A. Polyvalent DNA

nanoparticle conjugates stabilize nucleic acids. Nano Lett. 2009. 9, 308–11.

 120
69. Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like

receptors. Nat. Immunol. 2010. 11, 373–384.

70. Massich, M. D.; Giljohann, D. A; Schmucker, A. L.; Patel, P. C.; Mirkin, C. A. Cellular response of

polyvalent oligonucleotide-gold nanoparticle conjugates. ACS Nano 2010. 4, 5641–5646.

71. Storhoff, J. J; Elghanian, R; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. One-Pot Colorimetric

Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes.

J. Am. Chem. Soc. 1998. 120, 1959–1964.

72. Han, M. S.; Lytton-Jean, A. K. R.; Oh, B.-K.; Heo, J.; Mirkin, C. A. Colorimetric Screening of DNA-

Binding Molecules with Gold Nanoparticle Probes. Angew. Chemie Int. Ed. 2006. 45, 1807–1810.

73. Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. Scanometric DNA Array Detection with Nanoparticle

Probes. Science 2000. 289, 1757-1760.

74. Nam, J.-M.; Thaxton, C. S.; Mirkin, C. A. Nanoparticle-based bio-bar codes for the ultrasensitive

detection of proteins. Science 2003. 301, 1884–6.

75. Kim, D.; Daniel, W. L.; Mirkin, C. A. A Microarray-based Multiplexed Scanometric Immunoassay

for Protein Cancer Markers Using Gold Nanoparticle Probes. Anal. Chem. 2009. 81, 9183-9187.

76. Alhasan, A. H. et al. Circulating microRNA signature for the diagnosis of very high-risk prostate

cancer. Proc. Natl. Acad. Sci. 2016. 113, 10655-10660.

77. Seferos, D. S.; Giljohann, D. A.; Hill, H. D.; Prigodich, A. E.; Mirkin, C. A. Nano-Flares: Probes for

Transfection and mRNA Detection in Living Cells. J. Am. Chem. Soc. 2007. 129, 15477–15479.

78. Prigodich, A. E. et al. Multiplexed nanoflares: mRNA detection in live cells. Anal. Chem. 2012. 84,

2062–6.

79. Halo, T. L. et al. NanoFlares for the detection, isolation, and culture of live tumor cells from human

blood. Proc. Natl. Acad. Sci. 2014. 111, 17104–17109 .

80. Briley, W. E.; Bondy, M. H.; Randeria, P. S.; Dupper, T. J.; Mirkin, C. A. Quantification and real-

time tracking of RNA in live cells using Sticky-flares. Proc. Natl. Acad. Sci. 2015. 112, 9591–9595.

 121
81. Zheng, D.; Seferos, D. S.; Giljohann, D. A.; Patel, P. C.; Mirkin, C. A. Aptamer Nano-flares for

Molecular Detection in Living Cells. Nano Lett. 2009. 9, 3258–3261.

82. Giljohann, D. A.; Seferos, D. S.; Prigodich, A. E.; Patel, P. C.; Mirkin, C. A. Gene Regulation with

Polyvalent siRNA−Nanoparticle Conjugates. J. Am. Chem. Soc. 2009. 131, 2072–2073.

83. Yamankurt, G. et al. The effector mechanism of siRNA spherical nucleic acids. Proc. Natl. Acad. Sci.

U. S. A. 2020. 117, 1312–1320.

84. Jensen, S. A. et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for

glioblastoma. Sci. Transl. Med. 2013. 5, 209ra152.

85. Randeria, P. S. et al. siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic

mice by ganglioside GM3 synthase knockdown. Proc. Natl. Acad. Sci. 2015. 112, 5573–5578.

86. Wu, X. A., Choi, C. H. J., Zhang, C., Hao, L. & Mirkin, C. A. Intracellular fate of spherical nucleic

acid nanoparticle conjugates. J. Am. Chem. Soc. 2014. 136, 7726–33.

87. Dasari, S.; Bernard Tchounwou, P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur.

J. Pharmacol. 2014. 740, 364–378.

88. Dhar, S.; Daniel, W. L.; Giljohann, D. A.; Mirkin, C. A.; Lippard, S. J. Polyvalent Oligonucleotide

Gold Nanoparticle Conjugates as Delivery Vehicles for Platinum(IV) Warheads. J. Am. Chem. Soc.

2009. 131, 14652–14653.

89. X, T. et al. Blurring the Role of Oligonucleotides: Spherical Nucleic Acids as a Drug Delivery

Vehicle. J. Am. Chem. Soc. 2016. 138, 10834-10837.

90. Radovic-Moreno, A. F. et al. Immunomodulatory spherical nucleic acids. Proc. Natl. Acad. Sci. U. S.

A. 2015. 112, 3892–7.

91. Yamankurt, G. et al. Exploration of the nanomedicine-design space with high-throughput screening

and machine learning. Nat. Biomed. Eng. 2019. 3, 318–327.

92. Wang, S. et al. Rational vaccinology with spherical nucleic acids. Proc. Natl. Acad. Sci. U. S. A.

2019. 116, 10473–10481.

 122
93. Guan, C. et al. RNA-Based Immunostimulatory Liposomal Spherical Nucleic Acids as Potent

TLR7/8 Modulators. Small 2018. 14, e1803284.

94. Zhang, K.; Hao, L.; Hurst, S. J.; Mirkin, C. A. Antibody-linked spherical nucleic acids for cellular

targeting. J. Am. Chem. Soc. 2012. 134, 16488–91.

95. Brodin, J. D., Sprangers, A. J., McMillan, J. R. & Mirkin, C. A. DNA-Mediated Cellular Delivery of

Functional Enzymes. J. Am. Chem. Soc. 2015. 137, 14838–14841.

96. Speers, D. J. Clinical Applications of Molecular Biology for Infectious Diseases. Clin. Biochem. Rev.

2006, 27, 39–51.

97. Kamal, S. M.; Rashid, A. K. M. M.; Bakar, M. A.; Ahad, M. A. Anthrax: an update. Asian Pac. J.

Trop. Biomed. 2011. 1, 496–501.

98. Kintzer, A. F. et al. The protective antigen component of anthrax toxin forms functional octameric

complexes. J. Mol. Biol. 2009. 392, 614–29.

99. Singh, Y.; Klimpel, K. R.; Goel, S.; Swain, P. K.; Leppla, S. H. Oligomerization of anthrax toxin

protective antigen and binding of lethal factor during endocytic uptake into mammalian cells. Infect.

Immun. 1999. 67, 1853–9.

100. Kobiler, D. et al. Protective antigen as a correlative marker for anthrax in animal models. Infect.

Immun. 2006. 74, 5871–6.

101. Mabry, R. et al. Detection of anthrax toxin in the serum of animals infected with Bacillus

anthracis by using engineered immunoassays. Clin. Vaccine Immunol. 2006. 13, 671–7.

102. Morel, N. et al. Fast and sensitive detection of Bacillus anthracis spores by immunoassay. Appl.

Environ. Microbiol. 2012. 78, 6491–8.

103. Dragan, A. I.; Albrecht, M. T.; Pavlovic, R.; Keane-Myers, A. M.; Geddes, C. D. Ultra-fast pg/ml

anthrax toxin (protective antigen) detection assay based on microwave-accelerated metal-enhanced

fluorescence. Anal. Biochem. 2012. 425, 54–61.

 123
104. Tang, S. et al. Detection of anthrax toxin by an ultrasensitive immunoassay using europium

nanoparticles. Clin. Vaccine Immunol. 2009. 16, 408–13.

105. Ghosh, N. et al. Detection of protective antigen, an anthrax specific toxin in human serum by

using surface plasmon resonance. Diagn. Microbiol. Infect. Dis. 2013. 77, 14–19.

106. Oh, B. N. et al. Sensitive fluorescence assay of anthrax protective antigen with two new DNA

aptamers and their binding properties. Analyst 2011. 136, 3384–8.

107. Slagle, K. M.; Ghosn, S. J. Immunoassays: Tools for Sensitive, Specific, and Accurate Test

Results. Lab. Med. 1996, 27, 177–183.

108. Lequin, R. M. Enzyme Immunoassay (EIA)/Enzyme-Linked Immunosorbent Assay (ELISA).

Clin. Chem. 2005, 51, 2415–2418.

109. Porstmann, T.; Kiessig, S. T. Enzyme Immunoassay Techniques. An Overview. J. Immunol.

Methods, 1992, 150, 5–21.

110. Tang, S.; Hewlett, I. Nanoparticle-Based Immunoassays for Sensitive and Early Detection of

HIV-1 Capsid (p24) Antigen. J. Infect. Dis. 2010, 201, S59–S64.

111. Díez-Buitrago, B.; Briz, N.; Liz-Marzán, L. M.; Pavlov, V. Biosensing Strategies Based on

Enzymatic Reactions and Nanoparticles. Analyst, 2018, 143, 1727–1734.

112. Zheng, A.-X.; Li, J.; Wang, J.-R.; Song, X.-R.; Chen, G.-N.; Yang, H.-H. Enzyme-Free Signal

Amplification in the DNAzyme Sensor Via Target-Catalyzed Hairpin Assembly. Chem. Commun.

2012, 48, 3112 -3114.

113. Farka, Z.; Juřík, T.; Kovář, D.; Trnková, L.; Skládal, P. Nanoparticle-Based Immunochemical

Biosensors and Assays: Recent Advances and Challenges. Chem. Rev. 2017, 117, 9973–10042.

114. Rossi, N. L.; Mirkin, C. A. Nanostructures in Biodiagnostics. Chem. Rev 2005, 105, 1547-1562.

115. Kelley, S. O.; Mirkin, C. A.; Walt, D. R.; Ismagilov, R. F.; Toner, M.; Sargent, E. H. Advancing

the Speed, Sensitivity and Accuracy of Biomolecular Detection using Multi-Length-Scale

Engineering. Nat. Nanotechnol. 2014, 9, 969 –980.

 124
116. El-Ansary, A.; Faddah, L. M. Nanoparticles as Biochemical Sensors. Nanotechnol. Sci. Appl.

2010, 3, 65–76.

117. Lee, J.-S.; Ulmann, P. A.; Han, M. S.; Mirkin, C. A. A DNA−Gold Nanoparticle-Based

Colorimetric Competition Assay for the Detection of Cysteine. Nano Lett. 2008, 8, 529-533

118. Ambrosi, A.; Airò, F.; Merkoçi, A. Enhanced Gold Nanoparticle Based ELISA for a Breast

Cancer Biomarker. Anal. Chem. 2010, 82, 1151–1156.

119. Gao, Z.; Xu, M.; Hou, L.; Chen, G.; Tang, D. Irregular-Shaped Platinum Nanoparticles as

Peroxidase Mimics for Highly Efficient Colorimetric Immunoassay. Anal. Chim. Acta, 2013, 776,

79–86.

120. Chinen, A. B.; Guan, C. M.; Ferrer, J. R.; Barnaby, S. N.; Merkel, T. J.; Mirkin, C. A.

Nanoparticle Probes for the Detection of Cancer Biomarkers, Cells, and Tissues by Fluorescence.

Chem. Rev. 2015, 115, 10530–10574.

121. Geißler, D.; Charbonnière, L. J.; Ziessel, R. F.; Butlin, N. G.; Löhmannsröben, H.-G.;

Hildebrandt, N. Quantum Dot Biosensors for Ultrasensitive Multiplexed Diagnostics. Angew. Chemie

Int. Ed. 2010, 49, 1396–1401.

122. Bilan, R.; Ametzazurra, A; Brazhnik, K.; Escorza, S.; Fernández, D; Uríbarri, M; Nabiev, I;

Alyona Sukhanova, A. Quantum-Dot-Based Suspension Microarray for Multiplex Detection of Lung

Cancer Markers: Preclinical Validation and Comparison with the Luminex xMAP® System. Sci. Rep.

2017, 7, 44668.

123. Scott, A. W.; Garimella, V.; Calabrese, C. M.; Mirkin, C. A. Universal Biotin–PEG-Linked Gold

Nanoparticle Probes for the Simultaneous Detection of Nucleic Acids and Proteins. Bioconjug.

124. Tian, D.; Duan, C.; Wang, W.; Cui, H. Ultrasensitive ElectroChemiluminescence Immunosensor

Based on Luminol Functionalized Gold Nanoparticle Labeling. Biosens. Bioelectron. 2010, 25, 2290–

2295.

 125
125. Arya, S. K.; Estrela, P. Recent Advances in Enhancement Strategies for Electrochemical ELISA-

Based Immunoassays for Cancer Biomarker Detection. Sensors. 2018, 18, 2010.

126. Ashley, M. J.; Bourgeois, M. R.; Murthy, R. R.; Laramy, C. R.; Ross, M. B.; Naik, R. R.; Schatz,

G. C.; Mirkin, C. A. Shape and Size Control of Substrate-Grown Gold Nanoparticles for Surface-

Enhanced Raman Spectroscopy Detection of Chemical Analytes. J. Phys. Chem. C, 2018, 122, 2307–

2314.

127. Zhang, K.; Wang, Y.; Meiling Wu, M.; Liu, Y.; Shi, D.; Liu, B. On-Demand Quantitative SERS

Bioassays Facilitated by Surface-Tethered Ratiometric Probes. Chem. Sci. 2018, 9, 8089–8093.

128. Li, Y.; Lu, Q.; Wu, S.; Wang, L; Shi, X. Hydrogen Peroxide Sensing Using Ultrathin Platinum-

Coated Gold Nanoparticles with Core@Shell Structure. Biosens. Bioelectron. 2013, 41, 576–581.

129. Roy, R. K.; Njagi, J. I.; Farrell, B.; Halaciuga, I.; Lopez, M.; Goia, D.V. Deposition of

Continuous Platinum Shells on Gold Nanoparticles by Chemical Precipitation. J. Colloid Interface

Sci., 2012, 369, 91–95.

130. He, W. et al. Au@Pt Nanostructures as Oxidase and Peroxidase Mimetics for Use in

Immunoassays. Biomaterials, 2011, 32, 1139–1147.

131. Hill, H. D.; Mirkin, C. A. The Bio-Barcode Assay for the Detection of Protein and Nucleic Acid

Targets Using DTT-Induced Ligand Exchange. Nat. Protoc. 2006, 1, 324–336.

132. Zhao, J.; Wang, S; Lu, S.; Liu, G.; Jian Sun, J.; Yang, X. Fluorometric and Colorimetric Dual-

Readout Immunoassay Based on an Alkaline Phosphatase-Triggered Reaction. Anal. Chem. 2019, 91,

7828–7834.

133. Zhang, R.; Li, N.; Sun, J.; Gao, F. Colorimetric and Phosphorimetric Dual-Signaling Strategy

Mediated by Inner Filter Effect for Highly Sensitive Assay of Organophosphorus Pesticides. J. Agric.

Food Chem. 2015, 63, 8947–8954.

134. Rudenko, N. V.; Abbasova, S. G.; Grishin, E. V. Preparation and Characterization of Monoclonal

Antibodies to Bacillus Anthracis Protective Antigen. Bioorg. Khim. 2011, 37, 354–360.

 126
135. Siddiqui, M. Z. Monoclonal Antibodies as Diagnostics; an Appraisal. Indian J. Pharm. Sci. 2010,

72, 12–17.

136. Savransky, V. et al. Pathology and Pathophysiology of Inhalational Anthrax in a Guinea Pig

Model. Infect. Immun. 2013, 81, 1152–1163.

137. Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold

Suspensions. Nat. Phys. Sci. 1973, 241, 20–22.

138. Henry, J. P. Biological basis of the stress response. Integr. Physiol. Behav. Sci. 1992. 27, 66–83.

139. Juster, R.-P.; McEwen, B. S.; Lupien, S. J. Allostatic load biomarkers of chronic stress and

impact on health and cognition. Neurosci. Biobehav. Rev. 2010. 35, 2–16.

140. Stegers-Jager, K. M.; Savas, M.; Waal, J.; Rossum, E. F. C.; Woltman, A. M. Gender-specific

effects of raising Year-1 standards on medical students’ academic performance and stress levels. Med.

Educ. 2020. 54, 538–546.

141. Mauss, D.; Li, J.; Schmidt, B.; Angerer, P.; Jarczok, M. N. Measuring allostatic load in the

workforce: a systematic review. Ind. Health 53, 5 (2015).

142. Juster, R.-P. et al. A clinical allostatic load index is associated with burnout symptoms and

hypocortisolemic profiles in healthy workers. Psychoneuroendocrinology 2011. 36, 797–805.

143. RM, S.; LM, R.; AU, M. How Do Glucocorticoids Influence Stress Responses? Integrating

Permissive, Suppressive, Stimulatory, and Preparative Actions. Endocr. Rev. 2000. 21, 55-89.

144. Katsu, Y.; Iguchi, T. Cortisol. Handb. Horm. 2016. 533-e95D-2.

145. Kroboth, P. D.; Salek, F. S.; Pittenger, A. L.; Fabian, T. J.; Frye, R. F. DHEA and DHEA-S: A

Review. J. Clin. Pharmacol. 1999. 39, 327–348.

146. Werner, M. et al. Preclinical challenges in steroid analysis of human samples. J. Steroid Biochem.

Mol. Biol. 2010. 121, 505–512.

147. Stanczyk, F. Z.; Lee, J. S.; Santen, R. J. Standardization of Steroid Hormone Assays: Why, How,

and When? Cancer Epidemiol. Biomarkers & Prev. 2007. 16, 1713–1719.

 127
148. Krasowski, M. D. et al. Cross-reactivity of steroid hormone immunoassays: clinical significance

and two-dimensional molecular similarity prediction. BMC Clin. Pathol. 2014. 14, 33.

149. Song, K.-M.; Lee, S.; Ban, C. Aptamers and their biological applications. Sensors (Basel). 2012.

12, 612–31.

150. Edwards, T. E.; Klein, D. J.; Ferré-D’Amaré, A. R. Riboswitches: small-molecule recognition by

gene regulatory RNAs. Curr. Opin. Struct. Biol. 2007. 17, 273–279.

151. Darmostuk, M.; Rimpelova, S.; Gbelcova, H.; Ruml, T. Current approaches in SELEX: An

update to aptamer selection technology. Biotechnol. Adv. 2015. 33, 1141–1161.

152. Godonoga, M. et al. A DNA aptamer recognising a malaria protein biomarker can function as

part of a DNA origami assembly. Sci. Rep. 2016. 6, 21266.

153. Zimmermann, G. R.; Wick, C. L.; Shields, T. P.; Jenison, R. D.; Pardi, A. Molecular interactions

and metal binding in the theophylline-binding core of an RNA aptamer. RNA 2000. 6, 659–67.

154. Yang, D. et al. Aptamer-based biosensors for detection of lead(ii) ion: a review. Anal. Methods

2017. 9, 1976–1990.

155. Xu, D. et al. Label-free electrochemical detection for aptamer-based array electrodes. Anal.

Chem. 2005. 77, 5107–13.

156. MN, S.; P, de P.; DW, L. Aptamer-based Folding Fluorescent Sensor for Cocaine. J. Am. Chem.

Soc. 2001. 123, 4928-4931.

157. W, Z.; W, C.; MA, B.; Y, L. Simple and Rapid Colorimetric Biosensors Based on DNA Aptamer

and Noncrosslinking Gold Nanoparticle Aggregation. Chembiochem 2007. 8, 727-731.

158. Thiviyanathan, V.; Gorenstein, D. G. Aptamers and the next generation of diagnostic reagents.

Proteomics. Clin. Appl. 2012. 6, 563–73.

159. Kalra, P.; Dhiman, A.; Cho, W. C.; Bruno, J. G.; Sharma, T. K. Simple Methods and Rational

Design for Enhancing Aptamer Sensitivity and Specificity. Front. Mol. Biosci. 2018. 5, 41.

 128
160. Yang, K.-A. et al. High-Affinity Nucleic-Acid-Based Receptors for Steroids. ACS Chem. Biol.

2017. 12, 3103–3112.

161. Neves, M. A. D., Slavkovic, S., Churcher, Z. R. & Johnson, P. E. Salt-mediated two-site

ligand binding by the cocaine-binding aptamer. Nucleic Acids Res. 2016. 45, gkw1294.

162. Zhang, X., Servos, M. R. & Liu, J. Surface Science of DNA Adsorption onto Citrate-

Capped Gold Nanoparticles. Langmuir. 2012. 28, 3896–3902.

163. Sander, J. D.; Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes.

Nat. Biotechnol. 2014. 32, 347–355.

164. Karvelis, T. et al. crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus

thermophilus. RNA Biol. 2013. 10, 841-851.

165. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial

immunity. Science. 2012. 337, 816–821.

166. Anders, C.; Niewoehner, O.; Duerst, A.; Jinek, M. Structural basis of PAM-dependent target

DNA recognition by the Cas9 endonuclease. Nature. 2014. 513, 569–573.

167. Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M. & Joung, J. K. Improving CRISPR-Cas nuclease

specificity using truncated guide RNAs. Nat. Biotechnol. 2014. 32, 279–284.

168. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013. 339,

819–23.

169. Durai, S. et al. Zinc finger nucleases: custom-designed molecular scissors for genome

engineering of plant and mammalian cells. Nucleic Acids Res. 2005. 33, 5978–90.

170. Joung, J. K.; Sander, J. D. TALENs: a widely applicable technology for targeted genome editing.

Nat. Rev. Mol. Cell Biol. 2012. 14, 49–55.

171. Paschon, D. E. et al. Diversifying the structure of zinc finger nucleases for high-precision genome

editing. Nat. Commun. 2019. 10, 1133.

 129
172. Moscou, M. J.; Bogdanove, A. J. A Simple Cipher Governs DNA Recognition by TAL Effectors.

Science. 2009. 326, 1501.

173. Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector-based

constructs for DNA targeting. Nucleic Acids Res. 2011. 39, e82.

174. Aparicio-Prat, E. et al. DECKO: Single-oligo, dual-CRISPR deletion of genomic elements

including long non-coding RNAs. BMC Genomics. 2015. 16, 846.

175. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015. 520,

186–91.

176. Zetsche, B. et al. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System.

Cell. 2015. 163, 759–771.

177. Kim, D. et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells.

Nat. Biotechnol. 2016. 34, 863-868.

178. Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.

Nature. 2018. 556, 57–63.

179. Kleinstiver, B. P. et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide

off-target effects. Nature. 2016. 529, 490–495.

180. Yang, L. et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science.

2015. 350, 1101–1104.

181. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014.

343, 84–7.

182. Hart, T. et al. High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific

Cancer Liabilities. Cell. 2015. 163, 1515–1526.

183. Chu, V. T. et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced

precise gene editing in mammalian cells. Nat. Biotechnol. 2015. 33, 543–548.

 130
184. Chu, V. T. et al. Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6

zygotes. BMC Biotechnol. 2016. 16, 4.

185. Dow, L. E. et al. Inducible in vivo genome editing with CRISPR-Cas9. Nat. Biotechnol. 2015. 33,

390–394.

186. Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of

living cells. Nat. Rev. Genet. 2018. 19, 770-788.

187. Lee, H. K. et al. Targeting fidelity of adenine and cytosine base editors in mouse embryos. Nat.

Commun. 2018. 9, 4804.

188. Yu, Y. et al. Cytosine base editors with minimized unguided DNA and RNA off-target events and

high on-target activity. Nat. Commun. 2020. 11, 2052.

189. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor

DNA. Nature. 2019. 576, 149–157.

190. Gilbert, L. A. et al. CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in

Eukaryotes. Cell. 2013. 154, 442–451.

191. Zalatan, J. G. et al. Engineering Complex Synthetic Transcriptional Programs with CRISPR RNA

Scaffolds. Cell. 2015. 160, 339-350.

192. Gilbert, L. A. et al. Genome-Scale CRISPR-Mediated Control of Gene Repression and

Activation. Cell. 2014. 159, 647–61.

193. Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized

CRISPR/Cas system. Cell. 2013. 155, 1479–1491.

194. McKenna, A. et al. Whole organism lineage tracing by combinatorial and cumulative genome

editing. Science. 2016. 42, 237–241.

195. Giacca, M.; Zacchigna, S. Virus-mediated gene delivery for human gene therapy. J. Control.

Release 2012. 161, 377–388.

 131
196. Yin, H. et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype.

Nat. Biotechnol. 2014. 32, 551–553.

197. Wang, W. et al. CCR5 Gene Disruption via Lentiviral Vectors Expressing Cas9 and Single

Guided RNA Renders Cells Resistant to HIV-1 Infection. PLoS One. 2014. 9, e115987.

198. Doudna, J. A. et al. Genome editing. The new frontier of genome engineering with CRISPR-

Cas9. Science. 2014. 346, 1258096.

199. Cho, S. W. et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided

endonucleases and nickases. Genome Res. 2014. 24, 132–41.

200. Hashimoto, M. et al. Electroporation enables the efficient mRNA delivery into the mouse zygotes

and facilitates CRISPR/Cas9-based genome editing. Sci. Rep. 2015. 5, 11315.

201. Long, C. et al. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of

germline DNA. Science. 2014. 345, 1184–1188.

202. Hendel, A. et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in

human primary cells. Nat. Biotechnol. 2015. 33, 985–989.

203. Kim, S.; Kim, D.; Cho, S. W.; Kim, J.; Kim, J.-S. Highly efficient RNA-guided genome editing

in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014. 24, 1012–1019.

204. Zuris, J. A. et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based

genome editing in vitro and in vivo. Nat. Biotechnol. 2014. 33, 73–80.

205. Yang, Y. et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver

disease in newborn mice. Nat. Biotechnol. 2016. 34, 334–338.

206. Yin, H. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR

system components in vivo. Nat. Biotechnol. 2016. 34, 328–333.

207. Chen, S.; Lee, B.; Lee, A. Y.-F.; Modzelewski, A. J.; He, L. Highly Efficient Mouse Genome

Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes. J. Biol. Chem. 2016. 291, 14457-

14467.

 132
208. Suda, T.; Liu, D. Hydrodynamic Gene Delivery: Its Principles and Applications. Mol. Ther. 2007.

15, 2063–2069.

209. Daya, S.; Berns, K. I. Gene therapy using adeno-associated virus vectors. Clin. Microbiol. Rev.

2008. 21, 583–593.

210. Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 2014. 15, 541–555.

211. Cutler, J. I., Auyeung, E. & Mirkin, C. a. Spherical nucleic acids. J. Am. Chem. Soc.

2012. 134, 1376–1391.

212. Colletier, J.-P., Chaize, B., Winterhalter, M. & Fournier, D. Protein encapsulation in liposomes:

efficiency depends on interactions between protein and phospholipid bilayer. BMC Biotechnol. 2002.

2, 9.

213. Rouge, J. L.; Hao, L.; Wu, X. A.; Briley, W. E.; Mirkin, C. A. Spherical Nucleic Acids as a

Divergent Platform for Synthesizing RNA–Nanoparticle Conjugates through Enzymatic Ligation.

ACS Nano. 2014. 8, 8837–8843.

214. Logisz, C. C. & Hovis, J. S. Effect of salt concentration on membrane lysis pressure. Biochim.

Biophys. Acta. Biomembr. 2005. 1717, 104–108.

215. Cho, Y. W., Kim, J.-D. & Park, K. Polycation gene delivery systems: escape from endosomes to

cytosol. J. Pharm. Pharmacol. 2003. 55, 721-734.

216. Lonez, C. et al. Fusogenic activity of cationic lipids and lipid shape distribution. Cell. Mol. Life

Sci. 2010. 67, 483-94.

217. Huang, Y.; Ren, J.; Qu, X. Nanozymes: Classification, Catalytic Mechanisms, Activity

Regulation, and Applications. Chem. Rev. 2019, 119, 4357–4412.

218. Wang, G.-L.; Jin, L.-Y.; Dong, Y.-M.; Wu, X.-M.; Li, Z.-J. Intrinsic enzyme mimicking activity

of gold nanoclusters upon visible light triggering and its application for colorimetric trypsin detection.

Biosens. Bioelectron. 2015, 64, 523–529.

 133
219. Moayeri, M.; Wiggins, J. F.; Leppla, S. H. Anthrax Protective Antigen Cleavage and Clearance

from the Blood of Mice and Rats. Infect. Immun. 2007, 75, 5175-5184.

220. de la Rica, R.; Stevens, M. M. Plasmonic ELISA for the ultrasensitive detection of disease

biomarkers with the naked eye. Nat. Nanotechnol. 2012. 7, 821–824.

221. Chevalier, A. et al. Massively Parallel De Novo Protein Design for Targeted Therapeutics.

Nature. 2017, 550, 74–79.

222. Munzar, J. D.; Ng, A.; Juncker, D. Comprehensive profiling of the ligand binding landscapes of

duplexed aptamer families reveals widespread induced fit. Nat. Commun. 2018 9, 343.

223. Hurst, S. J.; Lytton-Jean, A. K. R.; Mirkin, C. A. Maximizing DNA Loading on a Range of Gold

Nanoparticle Sizes. Anal. Chem. 2006. 78, 8313-8318.

224. Raff, H.; Raff, J. L.; Findling, J. W. Late-Night Salivary Cortisol as a Screening Test for

Cushing’s Syndrome 1. J. Clin. Endocrinol. Metab. 1998. 83, 2681–2686.

225. Vining, R. F.; McGinley, R. A.; Maksvytis, J. J.; Ho, K. Y. Salivary cortisol: a better measure of

adrenal cortical function than serum cortisol. Ann. Clin. Biochem. 1983. 20 (Pt 6), 329–35.

226. Whetzel, C. A.; Klein, L. C. Measuring DHEA-S in saliva: time of day differences and positive

correlations between two different types of collection methods. BMC Res. Notes 2010. 3, 204.

227. Jorge Chavez lab, AFRL, unpublished.

228. Ebrahimi, S. B.; Samanta, D.; Cheng, H. F.; Nathan, L. I.; Mirkin, C. A. Forced Intercalation

(FIT)-Aptamers. J. Am. Chem. Soc. 2019. 141, 13744–13748.

229. Köhler, O.; Jarikote, D. V.; Seitz, O. Forced Intercalation Probes (FIT Probes): Thiazole Orange

as a Fluorescent Base in Peptide Nucleic Acids for Homogeneous Single-Nucleotide-Polymorphism

Detection. ChemBioChem. 2005 6, 69–77.

230. Kamiyama, D. et al. Versatile protein tagging in cells with split fluorescent protein. Nat.

Commun. 2016. 7, 11046.

 134
231. Feng, S. et al. Improved split fluorescent proteins for endogenous protein labeling. Nat. Commun.

2017. 8, 370.

232. Lönn, P. et al. Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular

Biologic Therapeutics. Sci. Rep. 2016. 6, 32301.

233. Skakuj, K. et al. Conjugation Chemistry-Dependent T-Cell Activation with Spherical Nucleic

Acids. J. Am. Chem. Soc. 2018. 140, 1227–1230.

 135
APPENDIX A: Supplementary Tables for Chapter 3

Table A1. Oligonucleotide sequences for PEG backfilling experiments.

Name Sequence

DIS11th_3T DHEA-S

Aptamer

5'-GGA CGT GGA TTT TCC GCA TAC GAA

GTT GTC C AAA AAA A-SH-3'

8bp DIS11th_3T flare 5'-Cy5-GGA CAA CT-3'

MN19 cocaine aptamer

5'-GACAA GGAAA ATCCT TCAAC GAAGT

GGGTC AAA AAA A-SH-3'

8bp MN19 flare 5'-Cy5-GAC CCA CT-3'

 136
Table A2. Aptamers tested in the microarray experiments.

Name Target Sequence

10_51 DHEA-S Cy3-CTCTCGGGACGACGCCAGAAGTTTACGAGGATATGGTAACATAGTCGTCCC

15-1 DHEA-S Cy3-GAATGGATATGGGCAATGCGGGGTGGAGAATGGTTGCCGCACTTCGGC

15-3 None Cy3-GAATGGATGAGGGTTGGAAGGGAGGGGCCCGGGGTGGGCCATCGTTCG

CSS.1

DHEA-S/

Cortisol Cy3-CTCACGACGCCCGCATGTTCCATGGATAGTCTTGACTAGTCGT

DCA6th_23 DHEA-S Cy3-GGCTCTCGGGACGACaaGGATTTTCCtagaACGAAGTtgGTCGTCCC

DIS11th_3 DHEA-S Cy3-GGCTCTCGGGACGtGGATTTTCCgcatACGAAGTtGTCCC

FMN Riboflavin Cy5-GGCGUGUAGGAUAUGCUUCGGCAGAAGGACACGCC

THY Theophylline Cy5-GGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACC

TNT TNT

Cy5-

GUCUAGACUGCAGAGUUAGUGGCCGGUGUCUGUAUGAGUCGAGUUUUGCAUUUCUGCAG

GUCGAC

Dopa2 Dopamine

Cy5-

GGGAAUUCCGCGUGUGCGCCGCGGAAGAGGGAAUAUAGAGGCCAGCACAUAGUGAGGCC

CUCCUCCC

 137
APPENDIX B: Supplementary Tables for Chapter 4

Table A1: Sequences for CRISPR SNA hybridization studies.

Name Sequence

Hyb_SNA_

F-Actin 5'-HS-(C3H6)-AAA AAA TCC TAC TAT CGC TCG CT-3'

Hyb_SNA_

Scrambled_

Actin 5’-HS-(C3H6)-AAA AAA CCA TTG CGA CCC CGC CT-3’

Hyb_sgRNA

_Act_AAVS

1_1 IVT

Template

5'-

TGGCTAATACGACTCACTATAGGGAGAGTCACCAATCCTGTCCCTAGGTTTTAGAG

CTATGAAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCA

CCGAGT CGGTGCTT-ACGGCTCCGGCA-3'

Hyb_sgRNA

_Act_AAVS

1_1 sgRNA

5'-GUCACCAAUCCUGUCCCUAG-

GUUUUAGAGCUAUGAAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUU

GAAAAAGUGGCACCGAGUCGGUGCUUGAGAUGCUA-ACGGCUCCGGCA-3'

Hyb_sgRNA

_Scr_eGFP

IVT

Template

5'-

TGGCTAATACGACTCACTATAGGGAGAGAGCTGGACGGCGACGTAAAGTTTTAGA

GCTATGAAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGC

ACCGAGTCGGTGCTT-GAGATGCTAACG-'3

Hyb_sgRNA

_Scr_eGFP

sgRNA

5'-GAGCUGGACGGCGACGUAAA-

GUUUUAGAGCUAUGAAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUU

GAAAAAGUGGCACCGAGUCGGUGCUUGAGAUGCUA-GAGATGCTAACG-3'

Hyb_sgRNA

_Act_eGFP

IVT

Template

5'-

TGGCTAATACGACTCACTATAGGGAGAGAGCTGGACGGCGACGTAAAGTTTTAGA

GCTATGAAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGC

ACCGAGTCGGTGCTT-ACGGCTCCGGCA-3'

 138
Hyb_sgRNA

_Act_eGFP

_1 sgRNA

5'-GAGCUGGACGGCGACGUAAA-

GUUUUAGAGCUAUGAAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUU

GAAAAAGUGGCACCGAGUCGGUGCUUGAGAUGCUA-ACGGCUCCGGCA-3'

 139
Table A2: Sequences for liposomal CRISPR SNA studies. Red = 2’O-methyl RNA base, * =

phosphorothioate backbone between RNA bases.

 140
Table A3: Primers for CRISPR SNA gene editing studies.

Name Sequence

EMX1_HTS_F
5'-ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT ACA

TCG CAG CTC AGC CTG AGT GTT GA-3'

EMX1_HTS_R
5'-TGG AGT TCA GAC GTG TGC TCT TCC GAT CTC TCG TGG

GTT TGT GGT TGC-3'

FANCF_HTS_F
5'-ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT TGG

TCA CAT TGC AGA GAG GCG TAT CA-3'

FANCF_HTS_R 5'-TGG AGT TCA GAC GTG TGC TCT TCC GAT CTG GGG TCC
CAG GTG CTG AC-3'

 141
APPENDIX C: Supplementary Code for Chapter 3

Code C1. Conformational Selection Equilibrium Model Markdown File
```python 
#import required packages/functions: numpy, fsolve, matplotlib.pyplot 
import numpy as np 
from scipy.optimize import fsolve 
import matplotlib.pyplot as plt 
get_ipython().magic(u'matplotlib inline') #Enables jupyter to plot matplotlib 
things in-line 
``` 
```python 
#Set the values for total Aptamer + Flare strand concentration, and a range of 
DHEA-S concentrations 
#Okay. Let's try a range of parameter changes.  
#Let's try for 0.1 nM NP, 1 nM NP, 10 nM NP, and 100 nM NP. 
#Let's also try for Kd_Hyb = 0.1 nM, 1 nM, 10 nM, and 100 nM 
#Let's also try for Kd_Apt = 0.01 nM, 0.1 nM, 1 nM, 10 nM, 100 nM, 1 µM, 10 µM, 
and 100 µM 
 
#First, 10 nM Aptamer NanoFlare 
A_totalConc = 300   #Total Aptamer concentration, in nM 
F_totalConc = 37.5   #Total Flare strand, in nM 
numDataPoints = 100 #This variable dictates how many data points to consider 
and plot 
 
D_concArray = np.zeros(shape=(numDataPoints,1)) 
D_concArray[0] = 1 #Smallest concentration we'll try is 1 nM. 
 
D_increment = (1e9)**(1/float(numDataPoints)) #This will set a geometrically 
even increment between data points on a log axis plot. 
 
DHEASconc = 1 #This concentration (in nM) value will incrementally increase as 
the FOR loop iterates 
 
for i in range(1,numDataPoints-1): 
    DHEASconc = DHEASconc * D_increment 
    D_concArray[i] = DHEASconc 
 
for i in range(0, numDataPoints-1): 
    if D_concArray[i] == 0: 
        D_concArray[i] = np.NaN 
``` 
```python 
#Set the Kd_Apt and Kd_Hyb values. 
Kd_Apt = 27000  #Experimentally determined value of Kd_Apt, in nM 
Kd_Hyb = 11    #Experimentally estimated value of Kd_Hyb, in nM 
 



 142 
#Set the initial concentration of free flare strand. This may not be necessary 
if I get rid of DeltaF_Rel.  
F_0 = .1 
``` 
```python 
#Now define arrays of values for A, D, F, AD, AF, Kd_Det, and DeltaF_Rel 
A_array = np.zeros(shape=(numDataPoints,1)) 
F_array = np.zeros(shape=(numDataPoints,1)) 
D_array = np.zeros(shape=(numDataPoints,1)) 
AF_array = np.zeros(shape=(numDataPoints,1)) 
AD_array = np.zeros(shape=(numDataPoints,1)) 
Kd_DetArray = np.zeros(shape=(numDataPoints,1)) 
DeltaF_RelArray = np.zeros(shape=(numDataPoints,1)) 
DeltaF_Tricky_RelArray = np.zeros(shape=(numDataPoints,1)) 
``` 
```python 
#Now set up a FOR loop to generate values in all these arrays based on changing 
DHEA-S concentrations 
 
for i in range(0,numDataPoints-1): 
    #Define all the equations here, in X*Y+C^2-D format. All equations should 
= 0. 
    def equations(p): #defines a dummy variable, tells which variables are 
working 
        A, D, F, AD, AF = p 
        return (abs(A) + abs(AD) + abs(AF) - A_totalConc,  
                abs(D) + abs(AD) - D_concArray[i],  
                abs(F) + abs(AF) - F_totalConc,  
                abs(D)*abs(A)/abs(AD) - Kd_Apt,  
                abs(F)*abs(A)/abs(AF) - Kd_Hyb) 
    #Use fsolve to computaionally solve the equations for a given set of input 
parameters. 
    #Note: Something's wrong with DeltaF_Rel; only spits out the value 1. 
Unclear if it's even necessary. 
    A, D, F, AD, AF = fsolve(equations, 
                                (A_totalConc,  
                                D_concArray[i],  
                                F_totalConc,  
                                A_totalConc,  
                                F_totalConc,  
                                )) 
    A_array[i] = A 
    F_array[i] = F 
    D_array[i] = D 
    AF_array[i] = AF 
    AD_array[i] = AD 
    Kd_DetArray[i] = (abs(AF)+abs(A))*abs(D)/abs(AD) 
 



 143 
for i in range(0,numDataPoints-1): 
    DeltaF_RelArray[i] = F_array[i] / F_array[0] 
``` 
```python 
#Now, 'absolutize' all the arrays. Sometimes fsolve converges to -1 * the 
correct variable. 
cleanA = np.absolute(A_array) 
cleanF = np.absolute(F_array) 
cleanD = np.absolute(D_array) 
cleanAF = np.absolute(AF_array) 
cleanAD = np.absolute(AD_array) 
cleanKd_Det = np.absolute(Kd_DetArray) 
cleanDeltaF_Rel = np.absolute(DeltaF_RelArray) 
``` 
```python 
#Sometimes fsolve spits out obviously wrong answers, which show up as outliers. 
#Make a function cleanModels that removes array values that deviate too 
drastically from their immediate neighbors. 
#Works for a vertical 1D array 
def cleanModels(array): 
    arraySize = array.shape[0] 
    cleanArray = np.zeros(shape=(arraySize,1)) 
    delta = np.zeros(shape=(arraySize,1)) #make an array for recording the 
change in value from one element to the next 
#    for i in range(0,array.shape[0]-1): 
#        delta[i] = abs(array[i] - array[i+1]) 
 
#Get rid of the very last data point, which can be an outlier 
    array[arraySize-1] = np.NaN 
 
#If I could be a little cleverer about defining delta I bet all of this would 
go away 
#Define delta based on the median of the nearest five data points 
#This generates an array of Delta values (the difference between one point and 
the five points around it) 
#Perhaps the best way to spot and eliminate outliers is to compare the median 
Delta to the average delta 
#The trouble with this approach is that it has difficulty removing many outliers 
in a row 
    for i in range(0,4): 
        delta[i] = abs(array[i] - np.median(array[i:i+5])) 
    for i in range(5, array.shape[0]-2): 
        delta[i] = abs(array[i] - np.median(array[i-2:i+2])) 
    for i in range(array.shape[0]-2, array.shape[0]-1): 
        delta[i] = abs(array[i] - np.median(array[i-5:i]))          
     
    #Make medianDelta into an array, segment into chunks of 10 data points 
    medianDelta = np.zeros(shape=(array.shape[0],1)) 



 144 
    for i in range(0, array.shape[0]-11): 
        medianDelta[i] = np.median(delta[i:i+10]) 
 
    for i in range(1,array.shape[0]): 
        if delta[i] > 10*(medianDelta[i]): 
            cleanArray[i] = np.NaN 
        else: 
            cleanArray[i] = array[i] 
             
    for i in range(1,array.shape[0]): 
        if array[i] > 10*np.average(array): 
            cleanArray[i] = np.NaN 
        else: 
            cleanArray[i] = array[i] 
    return cleanArray 
``` 
```python 
#Now, clean up all the arrays of values! 
cleanA = cleanModels(cleanA) 
cleanF = cleanModels(cleanF) 
cleanD = cleanModels(cleanD) 
cleanAF = cleanModels(cleanAF) 
cleanAD = cleanModels(cleanAD) 
cleanKd_Det = cleanModels(cleanKd_Det) 
cleanDeltaF_Rel = cleanModels(cleanDeltaF_Rel) 
 
#Now, try to delete the first values of all the arrays to get rid of that 
annoying first value that shows up as zero 
D_concArray[0] = np.NaN 
#Hey, it worked! 
``` 
```python 
#Now, plot the cleaned up data as a function of [DHEA-S]! 
plt.figure(1) 
plt.semilogx(D_concArray, cleanDeltaF_Rel, 'ro') 
plt.xlabel('[DHEA-S], nM') 
plt.ylabel("Relative Delta [F]") 
plt.show() 
 
plt.figure(2) 
plt.semilogx(D_concArray, cleanF, 'bo') 
plt.xlabel('[DHEA-S], nM') 
plt.ylabel('[Free Flare], nM') 
plt.show() 
 
plt.figure(3) 
plt.semilogx(D_concArray, cleanA, 'go') 



 145 
plt.xlabel('[DHEA-S], nM') 
plt.ylabel('[Free Aptamer], nM') 
plt.show() 
 
plt.figure(4) 
plt.semilogx(D_concArray, cleanAF, 'ro') 
plt.xlabel('[DHEA-S], nM') 
plt.ylabel('[Aptamer-Flare complex], nM') 
plt.show() 
 
plt.figure(5) 
plt.semilogx(D_concArray, cleanAD, 'bo') 
plt.xlabel('[DHEA-S], nM') 
plt.ylabel('[Aptamer-DHEAS complex], nM') 
plt.show() 
 
plt.figure(6) 
plt.semilogx(D_concArray, cleanKd_Det, 'bo') 
plt.xlabel('[DHEA-S], nM') 
plt.ylabel('[Kd_Det], nM') 
plt.show() 
``` 
```python 
#Export the relative fluorescence change data to a csv 
 
import csv 
 
csvfile = "filename.csv" 
with open(csvfile, "w") as output: 
    writer = csv.writer(output, lineterminator='\n') 
    for val in cleanDeltaF_Rel: 
        writer.writerow(val) 
``` 
```python 
#Okay. Now, I've got a sense of how cranky the equations solver function is. 
What I would like to do now is test out 
#whether I can get the F_relative fluorescence to work based 
#on the equation I derived 
``` 
```python 
#Now define arrays of values for A, D, F, AD, AF, Kd_Det, and DeltaF_Rel 
A_array = np.zeros(shape=(numDataPoints,1)) 
F_array = np.zeros(shape=(numDataPoints,1)) 
D_array = np.zeros(shape=(numDataPoints,1)) 
AF_array = np.zeros(shape=(numDataPoints,1)) 
AD_array = np.zeros(shape=(numDataPoints,1)) 
Kd_DetArray = np.zeros(shape=(numDataPoints,1)) 



 146 
DeltaF_RelArray = np.zeros(shape=(numDataPoints,1)) 
DeltaF_derived_RelArray = np.zeros(shape=(numDataPoints,1)) 
``` 


```python 
#Now set up a FOR loop to generate values in all these arrays based on changing 
DHEA-S concentrations 
for i in range(0,numDataPoints-1): 
    #Define all the equations here, in X*Y+C^2-D format. All equations should 
= 0. 
    def equations(p): #I think this defines a dummy variable, tells which 
variables are working 
        A, D, F, AD, AF = p 
        return (abs(A) + abs(AD) + abs(AF) - A_totalConc,  
                abs(D) + abs(AD) - D_concArray[i],  
                abs(F) + abs(AF) - F_totalConc,  
                abs(D)*abs(A)/abs(AD) - Kd_Apt,  
                abs(F)*abs(A)/abs(AF) - Kd_Hyb) 
 
 
    #Use fsolve to computationally solve the equations for a given set of input 
parameters. 
    #Note: Something's wrong with DeltaF_Rel; only spits out the value 1. 
Unclear if it's even necessary. 
    A, D, F, AD, AF = fsolve(equations, 
                                (A_totalConc,  
                                D_concArray[i],  
                                F_totalConc,  
                                A_totalConc,  
                                F_totalConc,  
                                )) 
    A_array[i] = A 
    F_array[i] = F 
    D_array[i] = D 
    AF_array[i] = AF 
    AD_array[i] = AD 
    Kd_DetArray[i] = (abs(AF)+abs(A))*abs(D)/abs(AD) 
    DeltaF_RelArray[i] = F_array[i] / F_array[1] 
    DeltaF_derived_RelArray[i] = 1 + (abs(A)*abs(D)/(Kd_Apt*abs(AD))) 
``` 


```python 
#Now, just do the cleaning and stuff for DeltaF_RelArray and 
DeltaF_derived_RelArray 
 
cleanDeltaF_Rel = np.absolute(DeltaF_RelArray) 



 147 
cleanDeltaF_derived_RelArray = np.absolute(DeltaF_derived_RelArray) 
 
cleanDeltaF_Rel = cleanModels(cleanDeltaF_Rel) 
cleanDeltaF_derived_RelArray = cleanModels(cleanDeltaF_derived_RelArray) 
``` 
```python 
#Now, plot the cleaned up data as a function of [DHEA-S]! 
plt.figure(1) 
plt.semilogx(D_concArray, cleanDeltaF_Rel, 'ro') 
plt.xlabel('[DHEA-S], nM') 
plt.ylabel("Relative Delta [F]") 
plt.show() 
 
#Now, plot the cleaned up data as a function of [DHEA-S]! 
plt.figure(1) 
plt.semilogx(D_concArray, cleanDeltaF_derived_RelArray, 'bo') 
plt.xlabel('[DHEA-S], nM') 
plt.ylabel("Derived Relative Delta [F]") 
plt.show() 
 
#Okay. So the derived Relative Delta F Doesn't actually give a 
#meaningful number. It's literally just 1 + 1. 
``` 
```python 
#Now, time to plot data recapitulating Mirau lab's  
#aptamer quenching experiments. 
#In this case, the species that decreased over time is [A], 
#While the species that increases over time is [AD] 
#(with increasing concentrations of flare strand) 
 
F_totalConc = 200.0   #Total Flare Strand concentration, in nM 
 
A_concArray = np.zeros(shape=(10,1)) #Total Aptamer-BHQ conc, in nM 
 
A_concArray[0] = 10.0 
A_concArray[1] = 14.0 
A_concArray[2] = 30.0 
A_concArray[3] = 40.0 
A_concArray[4] = 80.0 
A_concArray[5] = 200.0 
A_concArray[6] = 400.0 
A_concArray[7] = 700.0 
A_concArray[8] = 1200.0 
A_concArray[9] = 2000.0 
 
#In this case, the concentration of D is always 0. 
D_totalConc = 0 



 148 
 
#numDataPoints = 100 #This variable dictates how many data points to consider 
and plot 
#D_concArray = np.zeros(shape=(numDataPoints,1)) 
#D_concArray[0] = 100 #Smallest concentration we'll try is 1 nM. 
 
#D_increment = (1e5)**(1/float(numDataPoints)) #This will set a geometrically 
even increment between data points on a log axis plot. 
 
#DHEASconc = 100 #This concentration (in µM) value will incrementally increase 
as the FOR loop iterates 
 
#for i in range(1,numDataPoints-1): 
#    DHEASconc = DHEASconc * D_increment 
#    D_concArray[i] = DHEASconc 
``` 
```python 
#Now define arrays of values for A, D, F, AD, AF, Kd_Det, and DeltaF_Rel 
A_array = np.zeros(shape=(10,1)) 
F_array = np.zeros(shape=(10,1)) 
AF_array = np.zeros(shape=(10,1)) 
DeltaF_RelArray = np.zeros(shape=(10,1)) 
 
#Set the Kd_Hyb value. 
Kd_Hyb = 100    #Experimentally estimated value of Kd_Hyb, in nM 
 
``` 
```python 
#Now set up a FOR loop to generate values in all these arrays based on changing 
DHEA-S concentrations 
 
for i in range(0,9): 
    #Define all the equations here, in X*Y+C^2-D format. All equations should 
= 0. 
    def equations(p): #I think this defines a dummy variable, tells which 
variables are working 
        A, F, AF = p 
        return (abs(A) + abs(AF) - A_concArray[i],   
                abs(F) + abs(AF) - F_totalConc,  
                abs(F)*abs(A)/abs(AF) - Kd_Hyb) 
    #Use fsolve to computationally solve the equations for a given set of input 
parameters. 
 
    A, F, AF = fsolve(equations,(50, F_totalConc, 50)) 
    A_array[i] = A 
    F_array[i] = F 
    AF_array[i] = AF 
    DeltaF_RelArray[i] = F_array[i] / F_array[0] 



 149 
     
#Now, 'absolutize' all the arrays. Sometimes fsolve converges to -1 * the 
correct variable. 
cleanA = np.absolute(A_array) 
cleanF = np.absolute(F_array) 
cleanAF = np.absolute(AF_array) 
cleanDeltaF_Rel = np.absolute(DeltaF_RelArray) 
 
``` 
```python 
#Now, plot the cleaned up data as a function of [DHEA-S]! 
plt.figure(1) 
plt.semilogx(A_concArray, cleanDeltaF_Rel, 'ro') 
plt.xlabel('[Aptamer-BHQ], nM') 
plt.ylabel("Relative Delta [F]") 
plt.show() 
 
#Now, plot the cleaned up data as a function of [DHEA-S]! 
plt.figure(1) 
plt.semilogx(A_concArray, cleanF, 'bo') 
plt.xlabel('[Aptamer-BHQ], nM') 
plt.ylabel("[F], nM") 
plt.show() 
 
#Now, plot the cleaned up data as a function of [DHEA-S]! 
plt.figure(1) 
plt.semilogx(A_concArray, cleanAF, 'go') 
plt.xlabel('[Aptamer-BHQ], nM') 
plt.ylabel("[AF], nM") 
plt.show() 
``` 

```python 
#Export the relative fluorescence change data to a csv 
 
import csv 
 
csvfile = "20180203_FlareBindingModelPredictions_KdHyb_100nM.csv" 
 
with open(csvfile, "w") as output: 
    writer = csv.writer(output, lineterminator='\n') 
    for val in cleanDeltaF_Rel: 
        writer.writerow(val)    
``` 


 150

Code C2. Induced fit and conformational selection kinetic models markdown file.
```python 
#Import all the relevant packages 
 
#PySB, which runs the model 
from pysb import * 
 
#ODE Solvers 
from pysb.integrate import odesolve 
from pysb.simulator import ScipyOdeSimulator 
#import cython 
#^at some point, learn to run the ODEs off cython, which is faster than python 
 
#Plotting packages 
import numpy as np 
import pylab as pl 
from pylab import plot, linspace 
import pygraphviz 
 
#For exporting network and simulation results to CSV/Excel/py/dot/PDF files 
from pysb.export import export 
import pandas as pd 
``` 


```python 
!pip freeze > requirements.txt 
``` 


```python 
#now, build the two models: conformational selection and induced fit. 
#Instead of storing the model code in different .py files, make functions that 
will generate/return the models 
#This way, the model parameters can be changed more easily 
#First, Conformational Selection model 
 
#This time, define k_HybF and k_HybR using the experimentally determined 
parameters 
 
#BLI experimentally determined k_HybF: 18,000 1/(M*s) * 1 M / 1,000,000 µM = 
.018 
#BLI experimentally determined k_HybR: 0.00555 1/s 
 
def genAFCSmodel(k_HybF=0.018, 
                 k_HybR=0.00555, 



 151 
                 k_AptF=0.1, 
                 k_AptR=3, 
                 AF_0=1, 
                 D_0=1000, 
                 A_unb_0=0.01, 
                 F_unhyb_0=0.01, 
                 AD_0=0):   
    #define the Model object that the function will return 
    a = Model() 
     
    #Define the molecules in the model, and their associated parameters/binding 
sites 
    Monomer('A', ['sf', 'sd']) 
    Monomer('F', ['sf']) 
    Monomer('D', ['sd']) 
     
    #Define the reaction rate parameters required for the model 
    Parameter('kHybF', k_HybF)  
    Parameter('kHybR', k_HybR) 
    Parameter('kAptF', k_AptF) 
    Parameter('kAptR', k_AptR) 
     
    #Define the initial concentration parameters required for the model 
    Parameter('AF_init', AF_0) 
    Parameter('D_init', D_0) 
    Parameter('A_unb_init', A_unb_0) 
    Parameter('F_unhyb_init', F_unhyb_0) 
    Parameter('AD_init', AD_0) 
     
    #Define the initial molecular species and concentrations at the start of 
the model simulation 
    Initial(A(sf=1, sd=None) % F(sf=1), AF_init) 
    Initial(D(sd=None), D_init) 
    Initial(A(sf=None, sd=None), A_unb_init) 
    Initial(F(sf=None), F_unhyb_init) 
    Initial(A(sf=None, sd=1) % D(sd=1), AD_init) 
     
    #Define the reactions the molecules in the model can undergo, with their 
associated rates 
    #Reaction 1: A + F <> AF 
    Rule('A_binds_F', A(sf=None, sd=None) + F(sf=None) | A(sf=1, sd=None) % 
F(sf=1), kHybF, kHybR) 
    #Reaction 2: A + D <> AD 
    Rule('A_binds_D', A(sf=None, sd=None) + D(sd=None) | A(sf=None, sd=1) % 
D(sd=1), kAptF, kAptR) 
     
    #Define all the molecular species you want to be able to call, return, and 
plot after simulating 



 152 
    Observable('AF', A(sf=1, sd=None) % F(sf=1)) 
    Observable('F_unhyb', F(sf=None)) 
    Observable('D_unb', D(sd=None)) 
    Observable('A_unb', A(sf=None, sd=None)) 
    Observable('AD', A(sf=None, sd=1) % D(sd=1)) 
     
    #Return the model 
    return a 
``` 


```python 
#And now, the induced fit model 
 
#Now create a method to generate an IF model with specified parameters 
#Set default values here 
def genAFIFmodel(k_HybF=0.018, 
                 k_HybR=0.00555, 
                 k_AptF=0.1, 
                 k_AptR=3, 
                 k_AptIF_F=0.001, 
                 k_AptIF_R=10, 
                 k_HybIF_F=0.01, 
                 k_HybIF_R=0.01, 
                 AF_0=1, 
                 D_0=1000,   #100 µM DHEA-S 
                 A_unb_0=0.01, 
                 F_unhyb_0=0.01, 
                 AD_0=0, 
                 ADF_0=0):   
    #Define the Model object that the function will return 
    a = Model() 
     
    #Define the molecules in the model, and their associated parameters/binding 
sites 
    Monomer('A', ['sf', 'sd']) 
    Monomer('F', ['sf']) 
    Monomer('D', ['sd']) 
     
    #Define the reaction rate parameters required for the model 
    Parameter('kHybF', k_HybF)  
    Parameter('kHybR', k_HybR) 
    Parameter('kAptF', k_AptF) 
    Parameter('kAptR', k_AptR) 
    Parameter('kAptIF_F', k_AptIF_F) 
    Parameter('kAptIF_R', k_AptIF_R) 
    Parameter('kHybIF_F', k_HybIF_F) 



 153 
    Parameter('kHybIF_R', k_HybIF_R) 
    Parameter('AF_init', AF_0) 
     
    #Define the initial concentration parameters required for the model 
    Parameter('D_init', D_0) 
    Parameter('A_unb_init', A_unb_0) 
    Parameter('F_unhyb_init', F_unhyb_0) 
    Parameter('AD_init', AD_0) 
    Parameter('ADF_init', ADF_0) 
     
    #Define the initial molecular species and concentrations at the start of 
the model simulation 
    Initial(A(sf=1, sd=None) % F(sf=1), AF_init) 
    Initial(D(sd=None), D_init) 
    Initial(A(sf=None, sd=None), A_unb_init) 
    Initial(F(sf=None), F_unhyb_init) 
    Initial(A(sf=None, sd=2) % D(sd=2), AD_init) 
    Initial(A(sf=1, sd=2) % D(sd=2) % F(sf=1), ADF_init) 
     
    #Define the reactions the molecules in the model can undergo, with their 
associated rates 
    #Reaction 1: A + F | AF 
    Rule('A_binds_F', A(sf=None, sd=None) + F(sf=None) | A(sf=1, sd=None) % 
F(sf=1), kHybF, kHybR) 
    #Reaction 2: A + D | AD 
    Rule('A_binds_D', A(sf=None, sd=None) + D(sd=None) | A(sf=None, sd=2) % 
D(sd=2), kAptF, kAptR) 
    #Reaction 3: AF + D | ADF 
    Rule('AF_binds_D', A(sf=1, sd=None) % F(sf=1) + D(sd=None) | A(sf=1, sd=2) 
% D(sd=2) % F(sf=1), kAptIF_F, kAptIF_R) 
    #Reaction 4: AD + F | ADF (The reverse of ADF | AD + F) 
    Rule('AD_binds_F', A(sf=None, sd=2) % D(sd=2) + F(sf=None) | A(sf=1, sd=2) 
% D(sd=2) % F(sf=1), kHybIF_F, kHybIF_R) 
 
     
    #Define all the molecular species you want to be able to call, return, and 
plot after simulating 
    Observable('AF', A(sf=1, sd=None) % F(sf=1)) 
    Observable('F_unhyb', F(sf=None)) 
    Observable('D_unb', D(sd=None)) 
    Observable('A_unb', A(sf=None, sd=None)) 
    Observable('AD', A(sf=None, sd=2) % D(sd=2)) 
    Observable('ADF', A(sf=1, sd=2) % D(sd=2) % F(sf=1)) 
     
    #Return the model 
    return a 
``` 


 154

```python 
#Now, explain the reaction rate parameters 
#We don't know any of the reaction rate constants. 
#However, we have experimentally estimated that  
#Kd_Hyb = kHybR / kHybF = 10 nM, and  
#Kd_Apt = kHybR / kHybF = 30 µM 
 
#The rate constants for the binding/dissociation reactions of the ADF 
intermediate are unknown. 
 
#However, we can bet that, for an unstable intermediate, the forward (binding) 
reaction 
#Will be equal to or lower than for the binding reaction of two species without 
the third. 
 
#That is, kAptF ≥ kAptF*, for A + D --kAptF--> AD  and  AF + D --kAptF*--> ADF 
#Likewise, kHybF ≥ kHybF*, for A + F --kHybF--> AF  and  AD + F --kHybF*--> ADF 
 
#Similarly, we can bet that, for an unstable intermediate, the reverse 
(dissociation) reaction 
#Will be equal to or higher than for the dissociation reaction of two species 
without the third. 
 
#That is, kAptR ≤ kAptR*, for A + D <--kAptR-- AD  and  AF + D <--kAptR*-- ADF 
#Likewise, kHybR ≤ kHybR*, for A + F <--kHybR-- AF  and  AD + F <--kHybR*-- ADF 
 
#So, a reasonable way to constrain the initial parameter space is to say  
#kHybR / kHybF = 10 nM 
#kHybR / kHybF = 30 µM 
#kAptF ≥ kAptF* 
#kHybF ≥ kHybF* 
#kAptR ≤ kAptR* 
#kHybR ≤ kHybR* 
 
#To start, let's say kHybF = 0.1, kHybR = 0.001, kAptF = 0.1, and kAptR = 3 
#And kAptF* = 0.001, kAptR* = 10, kHybF* = 0.01, kHybR* = 0.01  
 
#And for initial concentrations, assume 100 nM of aptamer-flare duplex. 
#Also have 1 nM free aptamer and 1 nM free flare, just so beginning free flare 
concentrations ≠ 0. 
 
``` 
```python 
#All right, I've generated all the models. Now I want to write the method to 
auto-generate the simulation lists 
#Inputs for genSimDF: a Model list mList, a TimeSpan t, and a list of observables 
to retrieve 



 155 
def genSimDF(mList, t, variedParameter, observables): 
    m_df = pd.DataFrame() 
    mList_yOut = list() 
    m_df['Time (s)'] = t 
     
    for n in range(0, len(mList)): 
        simRes = ScipyOdeSimulator(mList[n], tspan = t, 
compiler='python').run() 
        mList_yOut.append(simRes.all) 
        for i in range(0, len(observables)): 
             
            m_df['[' + observables[i] + '], ' + variedParameter + ' = ' + 
str(mList[n].parameters[variedParameter].value)] = 
mList_yOut[n][observables[i]]  
     
    paramsList = ['']*t.size 
    rulesList = ['']*t.size 
    m_params = mList[0].parameters[:] 
    m_rules = mList[0].rules[:] 
    for n in range(0,len(m_params)): 
        paramsList[n] = m_params[n] 
 
    for n in range(0, len(m_rules)): 
        rulesList[n] = m_rules[n] 
     
    m_df['Parameters'] = paramsList 
    m_df['Rules'] = rulesList 
    return m_df 
 
``` 
```python 
#Cool, so I've got DFs of all the simulations I might want. 
#Now I want to generate fold-change-in-fluorescence dataframes. 
def convertToFoldChange(df100D, dfNoD): 
    numCols = df100D.shape[1] - 2 
    FCdf = df100D.copy() 
     
    for i in range(1, numCols): 
        FCdf.iloc[:,i] = df100D.iloc[:,i] / dfNoD.iloc[:,i] 
     
    return FCdf 
``` 
```python 
#Now generate plotting functions 
#Something weird is happening; need to plot all the species to figure out what's 
going on 
def plotModelSims(modelDF, variedParam, paramList, yLabel, timespan): 
    numCols = modelDF.shape[1] - 2 



 156 
    colorDecimal = 1.0 / numCols 
    pl.ion() 
    for n in range(1,numCols): 
        pl.plot(modelDF['Time (s)'][0:timespan],  
                modelDF.iloc[0:timespan,n],  
                label = (variedParam + ' = ' + str(paramList[n-1])),  
                color=[colorDecimal*n,0.3,0.3]) 
    pl.legend() 
    #Title the plot either 'Induced Fit' or 'Conformational Selection' 
    if(modelDF.iloc[9,numCols] == ''): 
        pl.title('Conformational Selection') 
    else: 
        pl.title('Induced Fit') 
 
    pl.xlabel('Time (s)') 
    pl.ylabel(yLabel) 
    pl.figure() 
``` 
```python 
#Now, let's run plotting scripts to show the effects of varying all the different 
parameters 
#First, generate lists of parameter values 
#Span 5 orders of magnitude, by factors of 10 
#use np.logspace(exponent1, exponent2, numPoints, base) 
 
logBase10of3 = np.log(3)/np.log(10) 
logBase10of5 = np.log(5)/np.log(10) 
 
k_HybFlist = np.logspace(-4, 0, num=5, base=10)  #0.0001 - 1 
k_HybRlist = np.logspace(-6, -2, num=5, base=10) #0.000001 - 0.01 
k_AptFlist = np.logspace(-6, -1, num=6, base=10) #0.000001 - 0.1 
k_AptRlist = np.logspace(logBase10of3 - 5, logBase10of3, num=6, base=10) 
#0.00003 - 3 
k_AptIF_Flist = np.logspace(logBase10of5-7, logBase10of5-3, num=5, base=10)  
#0.0000005 - 0.005 
k_AptIF_Rlist = np.logspace(-5, -1, num=5, base=10)                          #0.00001 
- 0.1 
k_HybIF_Flist = np.logspace(logBase10of5-5, logBase10of5-1, num=5, base=10)  
#0.00005 - 0.5 
k_HybIF_Rlist = np.logspace(logBase10of5-6, logBase10of5-2, num=5, base=10)  
#0.000005 - 0.05 
 
AF_0list = np.logspace(-3, 1, num=5, base=10)      #0.001 - 10 
D_0list = np.logspace(-2, 4, num=7, base=10)      #0.01 - 10000 
A_unb_0list = np.logspace(logBase10of5-4, logBase10of5, num=5, base=10)   
#0.0001 - 1 
F_unhyb_0list = np.logspace(-4, 0, num=5, base=10) #0.0001 - 1 
AD_0list = np.logspace(-4, 0, num=5, base=10)      #0.0001 - 1 



 157 
ADF_0list = np.logspace(-6, -2, num=5, base=10)        #0.000001 - 0.01 
``` 
```python 
#Now show how these methods are deployed in practice. 
#generate a list of numbers, varying parameter(s) of interest 
#Possible reaction parameters to vary: 
    #Both models: k_HybF, k_HybR, k_AptF, k_AptR 
    #IF model only: k_HybIF_F, k_HybIF_R, k_AptIF_F, k_AptIF_R 
#Possible initial concentrations to vary: 
    #Both models: D_0, F_unhyb_0, A_unb_0, AF_0, AD_0 
    #IF model only: ADF_0 
     
D_0list = np.logspace(-2, 4, num=7, base=10)      #0.01 - 10000 
k_AptRlist = np.logspace(logBase10of3 - 5, logBase10of3, num=6, base=10) 
#0.00003 - 3 
#Next, generate a list of models, with each one varying by the parameters in 
the list just generated 
#Show how to vary [D], and how to vary another parameter, while outputting fold 
change in fluorescence 
CS_test_Dlist = [genAFCSmodel(D_0 = D_0list[n]) for n in range(0,len(D_0list))] 
CS_test_kAptRlist_noD = [genAFCSmodel(k_AptR = k_AptRlist[n], D_0 = 0) for n in 
range(0,len(k_AptRlist))] 
CS_test_kAptRlist_100D = [genAFCSmodel(k_AptR = k_AptRlist[n], D_0 = 100) for 
n in range(0,len(k_AptRlist))] 
#Next, set some timespan parameters, and set a list of molecular species to 
observe (observables) during simulations 
timeSpan = pl.linspace(0, 4000, num = 400) 
allSpeciesIF = ['F_unhyb', 'AF', 'AD', 'ADF', 'A_unb'] #All the species 
observable in IF simulations 
allSpeciesCS = ['F_unhyb', 'AF', 'AD', 'A_unb']        #All the species 
observable in CS simulations 
FFonly = ['F_unhyb']   #Only observing [Free Flare] 
 
#Now, generate a Pandas DataFrame containing Time (s), and the concentrations 
of all selected observables  
#over the simulated time frame.  
#The first column in the DataFrame is Time(s), and the last two columns list 
the starting parameters 
#of the simulation, and the reactions/rules of the model being simulated 
#Note that if varying the initial concentrations of molecular species, here are 
the variedParameter options: 
    #Both models: D_init, F_unhyb_init, A_unb_init, AF_init, AD_init 
    #IF model only: ADF_init 
CS_test_D_df_FFonly = genSimDF(mList=CS_test_Dlist, t=timeSpan, 
variedParameter='D_init', observables=FFonly) 
CS_test_kAptR_noD_df_FFonly = genSimDF(mList=CS_test_kAptRlist_noD, 
t=timeSpan, variedParameter='kAptR', observables=FFonly) 
CS_test_kAptR_100D_df_FFonly = genSimDF(mList=CS_test_kAptRlist_100D, 
t=timeSpan, variedParameter='kAptR', observables=FFonly) 



 158 
 
#Now, demonstrate how to convert to fold change in fluorescence for any 
parameter except D_0 
CS_test_kAptR_100D_df_FoldChangeFF = 
convertToFoldChange(CS_test_kAptR_100D_df_FFonly, CS_test_kAptR_noD_df_FFonly) 
 
#Now demonstrate how to convert to fold change in fluorescence for varying D_0 
numCols = CS_test_D_df_FFonly.shape[1] - 2 
CS_test_D_df_FoldChangeFF = CS_test_D_df_FFonly.copy() 
for i in range(1, numCols): 
    CS_test_D_df_FoldChangeFF.iloc[:,i] = CS_test_D_df_FFonly.iloc[:,i] / 
CS_test_D_df_FFonly.iloc[:,1] 
 
 
#Now, demonstrate how to plot these models 
plotModelSims(CS_test_D_df_FFonly, 'D_0', D_0list, yLabel = '[Free Flare], uM', 
timespan=4000) 
plotModelSims(CS_test_D_df_FoldChangeFF, 'D_0', D_0list, yLabel = 'Fold Change 
in [Free Flare]', timespan=4000) 
plotModelSims(CS_test_kAptR_noD_df_FFonly, 'No D, kAptR', D_0list, yLabel = 
'[Free Flare], uM', timespan=4000) 
plotModelSims(CS_test_kAptR_100D_df_FFonly, '1000 uM D, kAptR', D_0list, yLabel 
= '[Free Flare], uM', timespan=4000) 
plotModelSims(CS_test_kAptR_100D_df_FoldChangeFF, '1000 uM D, kAptR', D_0list, 
yLabel = 'Fold Change in [Free Flare]', timespan=4000) 
 
 
#Now, demonstrate how to export the results of these models to an excel 
spreadsheet. 
writer = pd.ExcelWriter('test_CSmodelSimAndExport.xlsx') 
 
CS_test_D_df_FFonly.to_excel(writer,'Vary D_0, F only') 
CS_test_D_df_FoldChangeFF.to_excel(writer,'Vary D_0, Fold Change F') 
CS_test_kAptR_noD_df_FFonly.to_excel(writer,'Vary kAptR, 0 uM D, F only') 
CS_test_kAptR_100D_df_FFonly.to_excel(writer,'Vary kAptR, 1000 uM D, F only') 
CS_test_kAptR_100D_df_FoldChangeFF.to_excel(writer,'V kAptR, 1000 uM D, 
FoldChnge F') 
 
writer.save() 
``` 
```python 
#And show how to check them for accuracy and how to export their structure to 
a PDF file 
#First, export the generated models to flat .py files ('pysb_flat') 
    #flat .py files just reproduce the model, don't contain options for 
simulating the models. 
    #By contrast, exporting to .py returns a more sophisticated model that 
doesn't play well with render_reactions 
    #But enables rapid and flexible simulation. 



 159 
#.py files didn't work. maybe try .sbml files? 
CS = genAFCSmodel() 
IF = genAFIFmodel() 
 
CS_pyFlat = export(CS, 'pysb_flat') 
with open('CSmodelFlat.py', 'w') as f: 
    f.write(CS_pyFlat) 
 
IF_pyFlat = export(IF, 'pysb_flat') 
with open('IFmodelFlat.py', 'w') as f: 
    f.write(IF_pyFlat) 
 
#Now, use PySB's render_reactions function to export these .py files to a .dot 
file 
!python -m pysb.tools.render_reactions CSmodelFlat.py > 
jupyterPlots/CSmodel.dot 
!python -m pysb.tools.render_reactions IFmodelFlat.py > 
jupyterPlots/IFmodel.dot 
 
#And now export those .dot files of the reaction networks to PDFs 
!dot jupyterPlots/CSmodel.dot -T pdf -O 
!dot jupyterPlots/IFmodel.dot -T pdf -O 
 
#Excellent, this worked well 
 
``` 
```python 
#Now, how do I generalize the previous code into a method I can call to make 
things easier? 
#Excellent. Now I can export the dataframe to a csv file. 
#NOTE that at the end of writing all these simulations to individual csv files, 
I will also export them all to 
#a single excel file, like so: 
#writer = pd.ExcelWriter('output.xlsx') 
#>>> df1.to_excel(writer,'Sheet1') 
#>>> df2.to_excel(writer,'Sheet2') 
#>>> writer.save() 
 
#Now, to abstract all the work I've done before, these are the functions I'd 
like to write: 
#1. genSimDF: Given an data frame of models varying by 1 parameter, generate a 
dataframe of simulations with parameters and rules as metadata 
#2. plotSims: Given an array of simulations, plot them all, labeled by the 
changing parameter, and varying in  
    #shaded color intensity 
#3. ExportSimDFtoCSV--this one I can probably just use to_csv for 
#4. ExportSimDFstoExcel--this one I can probably also just use to_excel for 



 160 
#5. Also want a way to show fraction of free flare (FracFF), and Fold Change in 
Free Flare (FoldChangeFF) 
 
``` 
```python 
#0. Varying the concentration of DHEA-S 
CS_Dlist = [genAFCSmodel(D_0 = D_0list[n]) for n in range(0,7)] 
IF_Dlist = [genAFIFmodel(D_0 = D_0list[n]) for n in range(0,7)] 
``` 

```python 
#Now, when varying other parameters, generate model lists for 100 µM DHEA-S and 
for 0 µM DHEA-S 
#Now, what models do we want to make? 
#1. Models varying kHybF 
CS_kHybFnoD_list = [genAFCSmodel(k_HybF = k_HybFlist[n], D_0 = 0) for n in 
range(0,len(k_HybFlist))] 
CS_kHybF100D_list = [genAFCSmodel(k_HybF = k_HybFlist[n], D_0 = 100) for n in 
range(0,len(k_HybFlist))] 
 
IF_kHybFnoD_list = [genAFIFmodel(k_HybF = k_HybFlist[n], D_0 = 0) for n in 
range(0,len(k_HybFlist))] 
IF_kHybF100D_list = [genAFIFmodel(k_HybF = k_HybFlist[n], D_0 = 100) for n in 
range(0,len(k_HybFlist))] 
``` 

```python 
#2. Model varying kHybR 
CS_kHybRnoD_list = [genAFCSmodel(k_HybR = k_HybRlist[n], D_0 = 0) for n in 
range(0,len(k_HybRlist))] 
CS_kHybR100D_list = [genAFCSmodel(k_HybR = k_HybRlist[n], D_0 = 100) for n in 
range(0,len(k_HybRlist))] 
 
IF_kHybRnoD_list = [genAFIFmodel(k_HybR = k_HybRlist[n], D_0 = 0) for n in 
range(0,len(k_HybRlist))] 
IF_kHybR100D_list = [genAFIFmodel(k_HybR = k_HybRlist[n], D_0 = 100) for n in 
range(0,len(k_HybRlist))] 
#IF_kHybR100D_list[4].parameters 
 
``` 

```python 
#3. Model varying kAptF 
CS_kAptFnoD_list = [genAFCSmodel(k_AptF = k_AptFlist[n], D_0 = 0) for n in 
range(0,len(k_AptFlist))] 
CS_kAptF100D_list = [genAFCSmodel(k_AptF = k_AptFlist[n], D_0 = 100) for n in 
range(0,len(k_AptFlist))] 
 



 161 
IF_kAptFnoD_list = [genAFIFmodel(k_AptF = k_AptFlist[n], D_0 = 0) for n in 
range(0,len(k_AptFlist))] 
IF_kAptF100D_list = [genAFIFmodel(k_AptF = k_AptFlist[n], D_0 = 100) for n in 
range(0,len(k_AptFlist))] 
#IF_kAptF100D_list[4].parameters 
 
``` 

```python 
#4. Model varying kAptR 
CS_kAptRnoD_list = [genAFCSmodel(k_AptR = k_AptRlist[n], D_0 = 0) for n in 
range(0,len(k_AptRlist))] 
CS_kAptR100D_list = [genAFCSmodel(k_AptR = k_AptRlist[n], D_0 = 100) for n in 
range(0,len(k_AptRlist))] 
 
IF_kAptRnoD_list = [genAFIFmodel(k_AptR = k_AptRlist[n], D_0 = 0) for n in 
range(0,len(k_AptRlist))] 
IF_kAptR100D_list = [genAFIFmodel(k_AptR = k_AptRlist[n], D_0 = 100) for n in 
range(0,len(k_AptRlist))] 
#IF_kAptR100D_list[4].parameters 
 
``` 

```python 
#5. Model varying kAptR+F while keeping KdApt constant 
CS_kApt_KdAptConst_noD_list = [genAFCSmodel(k_AptR = k_AptRlist[n], 
                                            k_AptF = k_AptFlist[n],  
                                            D_0 = 0) for n in 
range(0,len(k_AptRlist))] 
CS_kApt_KdAptConst_100D_list = [genAFCSmodel(k_AptR = k_AptRlist[n],  
                                             k_AptF = k_AptFlist[n],  
                                             D_0 = 100) for n in 
range(0,len(k_AptRlist))] 
 
IF_kApt_KdAptConst_noD_list = [genAFIFmodel(k_AptR = k_AptRlist[n],  
                                            k_AptF = k_AptFlist[n],  
                                            D_0 = 0) for n in 
range(0,len(k_AptRlist))] 
IF_kApt_KdAptConst_100D_list = [genAFIFmodel(k_AptR = k_AptRlist[n],  
                                             k_AptF = k_AptFlist[n],  
                                             D_0 = 100) for n in 
range(0,len(k_AptRlist))] 
#IF_kApt_KdAptConst_100D_list[4].parameters 
 
``` 

```python 
#6. Model varying kHybR while keeping KdHyb constant 
CS_kHyb_KdHybConst_noD_list = [genAFCSmodel(k_HybR = k_HybRlist[n], 



 162 
                                            k_HybF = k_HybFlist[n],  
                                            D_0 = 0) for n in 
range(0,len(k_HybRlist))] 
CS_kHyb_KdHybConst_100D_list = [genAFCSmodel(k_HybR = k_HybRlist[n],  
                                             k_HybF = k_HybFlist[n],  
                                             D_0 = 100) for n in 
range(0,len(k_HybRlist))] 
 
IF_kHyb_KdHybConst_noD_list = [genAFIFmodel(k_HybR = k_HybRlist[n],  
                                            k_HybF = k_HybFlist[n],  
                                            D_0 = 0) for n in 
range(0,len(k_HybRlist))] 
IF_kHyb_KdHybConst_100D_list = [genAFIFmodel(k_HybR = k_HybRlist[n],  
                                             k_HybF = k_HybFlist[n],  
                                             D_0 = 100) for n in 
range(0,len(k_HybRlist))] 
#IF_kHyb_KdHybConst_100D_list[4].parameters 
 
``` 

```python 
#7. Model varying kHybF* 
IF_kHybIF_F_noD_list = [genAFIFmodel(k_HybIF_F = k_HybIF_Flist[n], D_0 = 0) for 
n in range(0,len(k_HybIF_Flist))] 
IF_kHybIF_F_100D_list = [genAFIFmodel(k_HybIF_F = k_HybIF_Flist[n], D_0 = 100) 
for n in range(0,len(k_HybIF_Flist))] 
#IF_kHybIF_F_100D_list[0].parameters 
 
``` 

```python 
#8. Model varying kHybR* 
IF_kHybIF_R_noD_list = [genAFIFmodel(k_HybIF_R = k_HybIF_Rlist[n], D_0 = 0) for 
n in range(0,len(k_HybIF_Rlist))] 
IF_kHybIF_R_100D_list = [genAFIFmodel(k_HybIF_R = k_HybIF_Rlist[n], D_0 = 100) 
for n in range(0,len(k_HybIF_Rlist))] 
#IF_kHybIF_R_100D_list[4].parameters 
 
``` 

```python 
#9. Model varying kAptF* 
IF_kAptIF_F_noD_list = [genAFIFmodel(k_AptIF_F = k_AptIF_Flist[n], D_0 = 0) for 
n in range(0,len(k_AptIF_Flist))] 
IF_kAptIF_F_100D_list = [genAFIFmodel(k_AptIF_F = k_AptIF_Flist[n], D_0 = 100) 
for n in range(0,len(k_AptIF_Flist))] 
#IF_kAptIF_F_100D_list[4].parameters 
 
``` 


 163

```python 
#10. Model varying kAptR* 
IF_kAptIF_R_noD_list = [genAFIFmodel(k_AptIF_R = k_AptIF_Rlist[n], D_0 = 0) for 
n in range(0,len(k_AptIF_Rlist))] 
IF_kAptIF_R_100D_list = [genAFIFmodel(k_AptIF_R = k_AptIF_Rlist[n], D_0 = 100) 
for n in range(0,len(k_AptIF_Rlist))] 
 
 
``` 

```python 
#Now, generate data frames from the model lists I created above 
#For DHEA-S concentration ranges, make all species DFs and a DF with just Free 
Flare (FF) 
#Actually, just do that for all of them; why not? 
tspan = pl.linspace(0, 4000, num = 400) 
allSpeciesIF = ['F_unhyb', 'AF', 'AD', 'ADF', 'A_unb'] 
allSpeciesCS = ['F_unhyb', 'AF', 'AD', 'A_unb'] 
FFonly = ['F_unhyb'] 
``` 

```python 
#0. Models varying [DHEA-S] 
CS_D_df_allSpecies = genSimDF(mList=CS_Dlist, t=tspan, 
variedParameter='D_init', observables=allSpeciesCS) 
CS_D_df_FFonly = genSimDF(mList=CS_Dlist, t=tspan, variedParameter='D_init', 
observables=FFonly) 
 
IF_D_df_allSpecies = genSimDF(mList=IF_Dlist, t=tspan, 
variedParameter='D_init', observables=allSpeciesIF) 
IF_D_df_FFonly = genSimDF(mList=IF_Dlist, t=tspan, variedParameter='D_init', 
observables=FFonly) 
#IF_D_df_allSpecies 
``` 

```python 
#1. Models varying kHybF 
CS_kHybFnoD_df_allSpecies = genSimDF(mList=CS_kHybFnoD_list, t=tspan, 
variedParameter='kHybF', observables=allSpeciesCS) 
CS_kHybF100D_df_allSpecies = genSimDF(mList=CS_kHybF100D_list, t=tspan, 
variedParameter='kHybF', observables=allSpeciesCS) 
 
CS_kHybFnoD_df_FFonly = genSimDF(mList=CS_kHybFnoD_list, t=tspan, 
variedParameter='kHybF', observables=FFonly) 
CS_kHybF100D_df_FFonly = genSimDF(mList=CS_kHybF100D_list, t=tspan, 
variedParameter='kHybF', observables=FFonly) 
 



 164 
IF_kHybFnoD_df_allSpecies = genSimDF(mList=IF_kHybFnoD_list, t=tspan, 
variedParameter='kHybF', observables=allSpeciesCS) 
IF_kHybF100D_df_allSpecies = genSimDF(mList=IF_kHybF100D_list, t=tspan, 
variedParameter='kHybF', observables=allSpeciesCS) 
 
IF_kHybFnoD_df_FFonly = genSimDF(mList=IF_kHybFnoD_list, t=tspan, 
variedParameter='kHybF', observables=FFonly) 
IF_kHybF100D_df_FFonly = genSimDF(mList=IF_kHybF100D_list, t=tspan, 
variedParameter='kHybF', observables=FFonly) 
 
``` 

```python 
#2. Models varying kHybR 
CS_kHybRnoD_df_allSpecies = genSimDF(mList=CS_kHybRnoD_list, t=tspan, 
variedParameter='kHybR', observables=allSpeciesCS) 
CS_kHybR100D_df_allSpecies = genSimDF(mList=CS_kHybR100D_list, t=tspan, 
variedParameter='kHybR', observables=allSpeciesCS) 
 
CS_kHybRnoD_df_FFonly = genSimDF(mList=CS_kHybRnoD_list, t=tspan, 
variedParameter='kHybR', observables=FFonly) 
CS_kHybR100D_df_FFonly = genSimDF(mList=CS_kHybR100D_list, t=tspan, 
variedParameter='kHybR', observables=FFonly) 
 
IF_kHybRnoD_df_allSpecies = genSimDF(mList=IF_kHybRnoD_list, t=tspan, 
variedParameter='kHybR', observables=allSpeciesCS) 
IF_kHybR100D_df_allSpecies = genSimDF(mList=IF_kHybR100D_list, t=tspan, 
variedParameter='kHybR', observables=allSpeciesCS) 
 
IF_kHybRnoD_df_FFonly = genSimDF(mList=IF_kHybRnoD_list, t=tspan, 
variedParameter='kHybR', observables=FFonly) 
IF_kHybR100D_df_FFonly = genSimDF(mList=IF_kHybR100D_list, t=tspan, 
variedParameter='kHybR', observables=FFonly) 
 
``` 

```python 
#3. Models varying kAptF 
CS_kAptFnoD_df_allSpecies = genSimDF(mList=CS_kAptFnoD_list, t=tspan, 
variedParameter='kAptF', observables=allSpeciesCS) 
CS_kAptF100D_df_allSpecies = genSimDF(mList=CS_kAptF100D_list, t=tspan, 
variedParameter='kAptF', observables=allSpeciesCS) 
 
CS_kAptFnoD_df_FFonly = genSimDF(mList=CS_kAptFnoD_list, t=tspan, 
variedParameter='kAptF', observables=FFonly) 
CS_kAptF100D_df_FFonly = genSimDF(mList=CS_kAptF100D_list, t=tspan, 
variedParameter='kAptF', observables=FFonly) 
 
IF_kAptFnoD_df_allSpecies = genSimDF(mList=IF_kAptFnoD_list, t=tspan, 
variedParameter='kAptF', observables=allSpeciesCS) 



 165 
IF_kAptF100D_df_allSpecies = genSimDF(mList=IF_kAptF100D_list, t=tspan, 
variedParameter='kAptF', observables=allSpeciesCS) 
 
IF_kAptFnoD_df_FFonly = genSimDF(mList=IF_kAptFnoD_list, t=tspan, 
variedParameter='kAptF', observables=FFonly) 
IF_kAptF100D_df_FFonly = genSimDF(mList=IF_kAptF100D_list, t=tspan, 
variedParameter='kAptF', observables=FFonly) 
 
``` 

```python 
#4. Models varying kAptR 
CS_kAptRnoD_df_allSpecies = genSimDF(mList=CS_kAptRnoD_list, t=tspan, 
variedParameter='kAptR', observables=allSpeciesCS) 
CS_kAptR100D_df_allSpecies = genSimDF(mList=CS_kAptR100D_list, t=tspan, 
variedParameter='kAptR', observables=allSpeciesCS) 
 
CS_kAptRnoD_df_FFonly = genSimDF(mList=CS_kAptRnoD_list, t=tspan, 
variedParameter='kAptR', observables=FFonly) 
CS_kAptR100D_df_FFonly = genSimDF(mList=CS_kAptR100D_list, t=tspan, 
variedParameter='kAptR', observables=FFonly) 
 
IF_kAptRnoD_df_allSpecies = genSimDF(mList=IF_kAptRnoD_list, t=tspan, 
variedParameter='kAptR', observables=allSpeciesCS) 
IF_kAptR100D_df_allSpecies = genSimDF(mList=IF_kAptR100D_list, t=tspan, 
variedParameter='kAptR', observables=allSpeciesCS) 
 
IF_kAptRnoD_df_FFonly = genSimDF(mList=IF_kAptRnoD_list, t=tspan, 
variedParameter='kAptR', observables=FFonly) 
IF_kAptR100D_df_FFonly = genSimDF(mList=IF_kAptR100D_list, t=tspan, 
variedParameter='kAptR', observables=FFonly) 
 
``` 

```python 
#5. Models varying kHybR while keeping KdHyb constant 
CS_kHyb_KdHybConst_noD_df_allSpecies = 
genSimDF(mList=CS_kHyb_KdHybConst_noD_list, t=tspan, variedParameter='kHybR', 
observables=allSpeciesCS) 
CS_kHyb_KdHybConst_100D_df_allSpecies = 
genSimDF(mList=CS_kHyb_KdHybConst_100D_list, t=tspan, variedParameter='kHybR', 
observables=allSpeciesCS) 
 
CS_kHyb_KdHybConst_noD_df_FFonly = genSimDF(mList=CS_kHyb_KdHybConst_noD_list, 
t=tspan, variedParameter='kHybR', observables=FFonly) 
CS_kHyb_KdHybConst_100D_df_FFonly = 
genSimDF(mList=CS_kHyb_KdHybConst_100D_list, t=tspan, variedParameter='kHybR', 
observables=FFonly) 
 



 166 
IF_kHyb_KdHybConst_noD_df_allSpecies = 
genSimDF(mList=IF_kHyb_KdHybConst_noD_list, t=tspan, variedParameter='kHybR', 
observables=allSpeciesCS) 
IF_kHyb_KdHybConst_100D_df_allSpecies = 
genSimDF(mList=IF_kHyb_KdHybConst_100D_list, t=tspan, variedParameter='kHybR', 
observables=allSpeciesCS) 
 
IF_kHyb_KdHybConst_noD_df_FFonly = genSimDF(mList=IF_kHyb_KdHybConst_noD_list, 
t=tspan, variedParameter='kHybR', observables=FFonly) 
IF_kHyb_KdHybConst_100D_df_FFonly = 
genSimDF(mList=IF_kHyb_KdHybConst_100D_list, t=tspan, variedParameter='kHybR', 
observables=FFonly) 
``` 

```python 
#6. Models varying kAptR while keeping KdApt constant 
CS_kApt_KdAptConst_noD_df_allSpecies = 
genSimDF(mList=CS_kApt_KdAptConst_noD_list, t=tspan, variedParameter='kAptR', 
observables=allSpeciesCS) 
CS_kApt_KdAptConst_100D_df_allSpecies = 
genSimDF(mList=CS_kApt_KdAptConst_100D_list, t=tspan, variedParameter='kAptR', 
observables=allSpeciesCS) 
 
CS_kApt_KdAptConst_noD_df_FFonly = genSimDF(mList=CS_kApt_KdAptConst_noD_list, 
t=tspan, variedParameter='kAptR', observables=FFonly) 
CS_kApt_KdAptConst_100D_df_FFonly = 
genSimDF(mList=CS_kApt_KdAptConst_100D_list, t=tspan, variedParameter='kAptR', 
observables=FFonly) 
 
IF_kApt_KdAptConst_noD_df_allSpecies = 
genSimDF(mList=IF_kApt_KdAptConst_noD_list, t=tspan, variedParameter='kAptR', 
observables=allSpeciesCS) 
IF_kApt_KdAptConst_100D_df_allSpecies = 
genSimDF(mList=IF_kApt_KdAptConst_100D_list, t=tspan, variedParameter='kAptR', 
observables=allSpeciesCS) 
 
IF_kApt_KdAptConst_noD_df_FFonly = genSimDF(mList=IF_kApt_KdAptConst_noD_list, 
t=tspan, variedParameter='kAptR', observables=FFonly) 
IF_kApt_KdAptConst_100D_df_FFonly = 
genSimDF(mList=IF_kApt_KdAptConst_100D_list, t=tspan, variedParameter='kAptR', 
observables=FFonly) 
``` 

```python 
#7. Model varying kHybF* 
IF_kHybIF_F_noD_df_allSpecies = genSimDF(mList=IF_kHybIF_F_noD_list, t=tspan, 
variedParameter='kHybIF_F', observables=allSpeciesCS) 
IF_kHybIF_F_100D_df_allSpecies = genSimDF(mList=IF_kHybIF_F_100D_list, 
t=tspan, variedParameter='kHybIF_F', observables=allSpeciesCS) 
 



 167 
IF_kHybIF_F_noD_df_FFonly = genSimDF(mList=IF_kHybIF_F_noD_list, t=tspan, 
variedParameter='kHybIF_F', observables=FFonly) 
IF_kHybIF_F_100D_df_FFonly = genSimDF(mList=IF_kHybIF_F_100D_list, t=tspan, 
variedParameter='kHybIF_F', observables=FFonly) 
``` 

```python 
#8. Model varying kHybR* 
IF_kHybIF_R_noD_df_allSpecies = genSimDF(mList=IF_kHybIF_R_noD_list, t=tspan, 
variedParameter='kHybIF_R', observables=allSpeciesCS) 
IF_kHybIF_R_100D_df_allSpecies = genSimDF(mList=IF_kHybIF_R_100D_list, 
t=tspan, variedParameter='kHybIF_R', observables=allSpeciesCS) 
 
IF_kHybIF_R_noD_df_FFonly = genSimDF(mList=IF_kHybIF_R_noD_list, t=tspan, 
variedParameter='kHybIF_R', observables=FFonly) 
IF_kHybIF_R_100D_df_FFonly = genSimDF(mList=IF_kHybIF_R_100D_list, t=tspan, 
variedParameter='kHybIF_R', observables=FFonly) 
``` 

```python 
#9. Model varying kAptF* 
IF_kAptIF_F_noD_df_allSpecies = genSimDF(mList=IF_kAptIF_F_noD_list, t=tspan, 
variedParameter='kAptIF_F', observables=allSpeciesCS) 
IF_kAptIF_F_100D_df_allSpecies = genSimDF(mList=IF_kAptIF_F_100D_list, 
t=tspan, variedParameter='kAptIF_F', observables=allSpeciesCS) 
 
IF_kAptIF_F_noD_df_FFonly = genSimDF(mList=IF_kAptIF_F_noD_list, t=tspan, 
variedParameter='kAptIF_F', observables=FFonly) 
IF_kAptIF_F_100D_df_FFonly = genSimDF(mList=IF_kAptIF_F_100D_list, t=tspan, 
variedParameter='kAptIF_F', observables=FFonly) 
``` 

```python 
#10. Model varying kAptR* 
IF_kAptIF_R_noD_df_allSpecies = genSimDF(mList=IF_kAptIF_R_noD_list, t=tspan, 
variedParameter='kAptIF_R', observables=allSpeciesCS) 
IF_kAptIF_R_100D_df_allSpecies = genSimDF(mList=IF_kAptIF_R_100D_list, 
t=tspan, variedParameter='kAptIF_R', observables=allSpeciesCS) 
 
IF_kAptIF_R_noD_df_FFonly = genSimDF(mList=IF_kAptIF_R_noD_list, t=tspan, 
variedParameter='kAptIF_R', observables=FFonly) 
IF_kAptIF_R_100D_df_FFonly = genSimDF(mList=IF_kAptIF_R_100D_list, t=tspan, 
variedParameter='kAptIF_R', observables=FFonly) 
``` 

```python 
#Also make custon dataframes for the Dlist simulations to calculate fold change 
in fluorescence 
numCols = CS_D_df_FFonly.shape[1] - 2 
CS_D_df_FoldChange = CS_D_df_FFonly.copy() 



 168 
IF_D_df_FoldChange = IF_D_df_FFonly.copy() 
for i in range(1, numCols): 
    CS_D_df_FoldChange.iloc[:,i] = CS_D_df_FFonly.iloc[:,i] / 
CS_D_df_FFonly.iloc[:,1] 
    IF_D_df_FoldChange.iloc[:,i] = IF_D_df_FFonly.iloc[:,i] / 
IF_D_df_FFonly.iloc[:,1] 
 
``` 

```python 
#CS_D_df_FoldChange 
#CS_D_df_FFonly 
``` 

```python 
#Now, generate all the foldChange dataframes 
CS_kHybF_df_FoldChange = convertToFoldChange(CS_kHybF100D_df_FFonly, 
CS_kHybFnoD_df_FFonly) 
CS_kHybR_df_FoldChange = convertToFoldChange(CS_kHybR100D_df_FFonly, 
CS_kHybRnoD_df_FFonly) 
 
IF_kHybF_df_FoldChange = convertToFoldChange(IF_kHybF100D_df_FFonly, 
IF_kHybFnoD_df_FFonly) 
IF_kHybR_df_FoldChange = convertToFoldChange(IF_kHybR100D_df_FFonly, 
IF_kHybRnoD_df_FFonly) 
 
CS_kAptF_df_FoldChange = convertToFoldChange(CS_kAptF100D_df_FFonly, 
CS_kAptFnoD_df_FFonly) 
CS_kAptR_df_FoldChange = convertToFoldChange(CS_kAptR100D_df_FFonly, 
CS_kAptRnoD_df_FFonly) 
 
IF_kAptF_df_FoldChange = convertToFoldChange(IF_kAptF100D_df_FFonly, 
IF_kAptFnoD_df_FFonly) 
IF_kAptR_df_FoldChange = convertToFoldChange(IF_kAptR100D_df_FFonly, 
IF_kAptRnoD_df_FFonly) 
 
CS_kHyb_KdHybConst_df_FoldChange = 
convertToFoldChange(CS_kHyb_KdHybConst_100D_df_FFonly, 
CS_kHyb_KdHybConst_noD_df_FFonly) 
CS_kApt_KdAptConst_df_FoldChange = 
convertToFoldChange(CS_kApt_KdAptConst_100D_df_FFonly, 
CS_kApt_KdAptConst_noD_df_FFonly) 
IF_kHyb_KdHybConst_df_FoldChange = 
convertToFoldChange(IF_kHyb_KdHybConst_100D_df_FFonly, 
IF_kHyb_KdHybConst_noD_df_FFonly) 
IF_kApt_KdAptConst_df_FoldChange = 
convertToFoldChange(IF_kApt_KdAptConst_100D_df_FFonly, 
IF_kApt_KdAptConst_noD_df_FFonly) 
 



 169 
IF_kHybIF_F_df_FoldChange = convertToFoldChange(IF_kHybIF_F_100D_df_FFonly, 
IF_kHybIF_F_noD_df_FFonly) 
IF_kHybIF_R_df_FoldChange = convertToFoldChange(IF_kHybIF_R_100D_df_FFonly, 
IF_kHybIF_R_noD_df_FFonly) 
 
IF_kAptIF_F_df_FoldChange = convertToFoldChange(IF_kAptIF_F_100D_df_FFonly, 
IF_kAptIF_F_noD_df_FFonly) 
IF_kAptIF_R_df_FoldChange = convertToFoldChange(IF_kAptIF_R_100D_df_FFonly, 
IF_kAptIF_R_noD_df_FFonly) 
``` 

```python 
#Plot all the varied parameters 
plotModelSims(CS_D_df_FoldChange, 'D_0', D_0list, yLabel = 'Fold Change in 
[Free Flare]', timespan=4000) 
plotModelSims(IF_D_df_FoldChange, 'D_0', D_0list, yLabel = 'Fold Change in 
[Free Flare]', timespan=4000) 
plotModelSims(CS_kHybF_df_FoldChange, 'kHybF', k_HybFlist, yLabel = 'Fold 
Change in [Free Flare]', timespan=4000) 
plotModelSims(IF_kHybF_df_FoldChange, 'kHybF', k_HybFlist, yLabel = 'Fold 
Change in [Free Flare]', timespan=4000) 
plotModelSims(CS_kHybR_df_FoldChange, 'kHybR', k_HybRlist, yLabel = 'Fold 
Change in [Free Flare]', timespan=4000) 
plotModelSims(IF_kHybR_df_FoldChange, 'kHybR', k_HybRlist, yLabel = 'Fold 
Change in [Free Flare]', timespan=4000) 
 
plotModelSims(CS_kAptF_df_FoldChange, 'kAptF', k_AptFlist, yLabel = 'Fold 
Change in [Free Flare]', timespan=4000) 
plotModelSims(CS_kAptR_df_FoldChange, 'kAptR', k_AptRlist, yLabel = 'Fold 
Change in [Free Flare]', timespan=4000) 
plotModelSims(IF_kAptF_df_FoldChange, 'kAptF', k_AptFlist, yLabel = 'Fold 
Change in [Free Flare]', timespan=4000) 
plotModelSims(IF_kAptR_df_FoldChange, 'kAptR', k_AptRlist, yLabel = 'Fold 
Change in [Free Flare]', timespan=4000) 
 
plotModelSims(CS_kHyb_KdHybConst_df_FoldChange, 'KdHyb=10nM, kHybR', 
k_HybRlist, yLabel = 'Fold Change in [Free Flare]', timespan=4000) 
plotModelSims(IF_kHyb_KdHybConst_df_FoldChange, 'KdHyb=10nM, kHybR', 
k_HybRlist, yLabel = 'Fold Change in [Free Flare]', timespan=4000) 
plotModelSims(CS_kApt_KdAptConst_df_FoldChange, 'KdApt=30uM, kAptR', 
k_AptRlist, yLabel = 'Fold Change in [Free Flare]', timespan=4000) 
plotModelSims(IF_kApt_KdAptConst_df_FoldChange, 'KdApt=30uM, kAptR', 
k_AptRlist, yLabel = 'Fold Change in [Free Flare]', timespan=4000) 
 
plotModelSims(IF_kHybIF_F_df_FoldChange, 'kHybF*', k_HybIF_Flist, yLabel = 
'Fold Change in [Free Flare]', timespan=4000) 
plotModelSims(IF_kHybIF_R_df_FoldChange, 'kHybR*', k_HybIF_Rlist, yLabel = 
'Fold Change in [Free Flare]', timespan=4000) 
plotModelSims(IF_kAptIF_F_df_FoldChange, 'kAptF*', k_AptIF_Flist, yLabel = 
'Fold Change in [Free Flare]', timespan=4000) 



 170 
plotModelSims(IF_kAptIF_R_df_FoldChange, 'kAptR*', k_AptIF_Rlist, yLabel = 
'Fold Change in [Free Flare]', timespan=4000) 
 
``` 

```python 
#Now let's export all this simulation data to excel sheets, and then send it to 
Peter and Jorge 
``` 

```python 
#First, the Conformational Selection, All Molecular Species spreadsheet 
writer = pd.ExcelWriter('20190205_CS_ModelOutputs_AllConcentrations.xlsx') 
CS_D_df_allSpecies.to_excel(writer,'Vary D_0') 
CS_kHybFnoD_df_allSpecies.to_excel(writer,'Vary kHybF (no D)') 
CS_kHybF100D_df_allSpecies.to_excel(writer,'Vary kHybF (100uM D)') 
CS_kHybRnoD_df_allSpecies.to_excel(writer,'Vary kHybR (no D)') 
CS_kHybR100D_df_allSpecies.to_excel(writer,'Vary kHybR (100uM D)') 
CS_kAptFnoD_df_allSpecies.to_excel(writer,'Vary kAptF (no D)') 
CS_kAptF100D_df_allSpecies.to_excel(writer,'Vary kAptF (100uM D)') 
CS_kAptRnoD_df_allSpecies.to_excel(writer,'Vary kAptR (no D)') 
CS_kAptR100D_df_allSpecies.to_excel(writer,'Vary kAptR (100uM D)') 
CS_kHyb_KdHybConst_noD_df_allSpecies.to_excel(writer,'KdHyb=10nM, kHyb (no 
D)') 
CS_kHyb_KdHybConst_100D_df_allSpecies.to_excel(writer,'KdHyb=10nM, kHyb (100uM 
D)') 
CS_kApt_KdAptConst_noD_df_allSpecies.to_excel(writer,'KdApt=10nM, kApt (no 
D)') 
CS_kApt_KdAptConst_100D_df_allSpecies.to_excel(writer,'KdApt=10nM, kApt (100uM 
D)') 
writer.save() 
``` 

```python 
#Next, the Induced Fit, All Molecular Species spreadsheet 
#First, the Conformational Selection, All Molecular Species spreadsheet 
writer = pd.ExcelWriter('20190205_IF_ModelOutputs_AllConcentrations.xlsx') 
IF_D_df_allSpecies.to_excel(writer,'Vary D_0') 
IF_kHybFnoD_df_allSpecies.to_excel(writer,'Vary kHybF (no D)') 
IF_kHybF100D_df_allSpecies.to_excel(writer,'Vary kHybF (100uM D)') 
IF_kHybRnoD_df_allSpecies.to_excel(writer,'Vary kHybR (no D)') 
IF_kHybR100D_df_allSpecies.to_excel(writer,'Vary kHybR (100uM D)') 
IF_kAptFnoD_df_allSpecies.to_excel(writer,'Vary kAptF (no D)') 
IF_kAptF100D_df_allSpecies.to_excel(writer,'Vary kAptF (100uM D)') 
IF_kAptRnoD_df_allSpecies.to_excel(writer,'Vary kAptR (no D)') 
IF_kAptR100D_df_allSpecies.to_excel(writer,'Vary kAptR (100uM D)') 
IF_kHyb_KdHybConst_noD_df_allSpecies.to_excel(writer,'KdHyb=10nM, kHyb (no 
D)') 



 171 
IF_kHyb_KdHybConst_100D_df_allSpecies.to_excel(writer,'KdHyb=10nM, kHyb (100uM 
D)') 
IF_kApt_KdAptConst_noD_df_allSpecies.to_excel(writer,'KdApt=10nM, kApt (no 
D)') 
IF_kApt_KdAptConst_100D_df_allSpecies.to_excel(writer,'KdApt=10nM, kApt (100uM 
D)') 
 
IF_kHybIF_F_noD_df_allSpecies.to_excel(writer,'kHybIF_F (no D)') 
IF_kHybIF_R_100D_df_allSpecies.to_excel(writer,'kHybIF_R (100uM D)') 
IF_kAptIF_F_noD_df_allSpecies.to_excel(writer,'kAptIF_F (no D)') 
IF_kAptIF_R_100D_df_allSpecies.to_excel(writer,'kAptIF_R (100uM D)') 
writer.save() 
``` 

```python 
#Now, the Conformational Selection, Only [Free Flare] spreadsheet 
writer = pd.ExcelWriter('IF_ModelOutputs_FFonly.xlsx') 
CS_D_df_FFonly.to_excel(writer,'Vary D_0') 
CS_kHybFnoD_df_FFonly.to_excel(writer,'Vary kHybF (no D)') 
CS_kHybF100D_df_FFonly.to_excel(writer,'Vary kHybF (100uM D)') 
CS_kHybRnoD_df_FFonly.to_excel(writer,'Vary kHybR (no D)') 
CS_kHybR100D_df_FFonly.to_excel(writer,'Vary kHybR (100uM D)') 
CS_kAptFnoD_df_FFonly.to_excel(writer,'Vary kAptF (no D)') 
CS_kAptF100D_df_FFonly.to_excel(writer,'Vary kAptF (100uM D)') 
CS_kAptRnoD_df_FFonly.to_excel(writer,'Vary kAptR (no D)') 
CS_kAptR100D_df_FFonly.to_excel(writer,'Vary kAptR (100uM D)') 
CS_kHyb_KdHybConst_noD_df_FFonly.to_excel(writer,'KdHyb=10nM, kHyb (no D)') 
CS_kHyb_KdHybConst_100D_df_FFonly.to_excel(writer,'KdHyb=10nM, kHyb (100uM 
D)') 
CS_kApt_KdAptConst_noD_df_FFonly.to_excel(writer,'KdApt=10nM, kApt (no D)') 
CS_kApt_KdAptConst_100D_df_FFonly.to_excel(writer,'KdApt=10nM, kApt (100uM 
D)') 
 
writer.save() 
``` 

```python 
#Now, the Induced Fit, Only [Free Flare] spreadsheet 
writer = pd.ExcelWriter('20190205_IF_ModelOutputs_FFonly.xlsx') 
IF_D_df_FFonly.to_excel(writer,'Vary D_0') 
IF_kHybFnoD_df_FFonly.to_excel(writer,'Vary kHybF (no D)') 
IF_kHybF100D_df_FFonly.to_excel(writer,'Vary kHybF (100uM D)') 
IF_kHybRnoD_df_FFonly.to_excel(writer,'Vary kHybR (no D)') 
IF_kHybR100D_df_FFonly.to_excel(writer,'Vary kHybR (100uM D)') 
IF_kAptFnoD_df_FFonly.to_excel(writer,'Vary kAptF (no D)') 
IF_kAptF100D_df_FFonly.to_excel(writer,'Vary kAptF (100uM D)') 
IF_kAptRnoD_df_FFonly.to_excel(writer,'Vary kAptR (no D)') 
IF_kAptR100D_df_FFonly.to_excel(writer,'Vary kAptR (100uM D)') 



 172 
IF_kHyb_KdHybConst_noD_df_FFonly.to_excel(writer,'KdHyb=10nM, kHyb (no D)') 
IF_kHyb_KdHybConst_100D_df_FFonly.to_excel(writer,'KdHyb=10nM, kHyb (100uM 
D)') 
IF_kApt_KdAptConst_noD_df_FFonly.to_excel(writer,'KdApt=10nM, kApt (no D)') 
IF_kApt_KdAptConst_100D_df_FFonly.to_excel(writer,'KdApt=10nM, kApt (100uM 
D)') 
 
IF_kHybIF_F_noD_df_FFonly.to_excel(writer,'kHybIF_F (no D)') 
IF_kHybIF_R_100D_df_FFonly.to_excel(writer,'kHybIF_R (100uM D)') 
IF_kAptIF_F_noD_df_FFonly.to_excel(writer,'kAptIF_F (no D)') 
IF_kAptIF_R_100D_df_FFonly.to_excel(writer,'kAptIF_R (100uM D)') 
writer.save() 
``` 

```python 
#Now, the Conformational Selection, Fold Change in [Free Flare] spreadsheet 
writer = pd.ExcelWriter('20190205_CS_ModelOutputs_FoldChangeFF.xlsx') 
CS_D_df_FoldChange.to_excel(writer,'Vary D_0') 
CS_kHybF_df_FoldChange.to_excel(writer,'Vary kHybF') 
CS_kHybR_df_FoldChange.to_excel(writer,'Vary kHybR') 
CS_kAptF_df_FoldChange.to_excel(writer,'Vary kAptF') 
CS_kAptR_df_FoldChange.to_excel(writer,'Vary kAptR') 
CS_kHyb_KdHybConst_df_FoldChange.to_excel(writer,'KdHyb=10nM, Vary kHyb') 
CS_kApt_KdAptConst_df_FoldChange.to_excel(writer,'KdApt=10nM, Vary kApt') 
writer.save() 
``` 

```python 
#Now, the Conformational Selection, Fold Change in [Free Flare] spreadsheet 
writer = pd.ExcelWriter('20190205_IF_ModelOutputs_FoldChangeFF.xlsx') 
IF_D_df_FoldChange.to_excel(writer,'Vary D_0') 
IF_kHybF_df_FoldChange.to_excel(writer,'Vary kHybF') 
IF_kHybR_df_FoldChange.to_excel(writer,'Vary kHybR') 
IF_kAptF_df_FoldChange.to_excel(writer,'Vary kAptF') 
IF_kAptR_df_FoldChange.to_excel(writer,'Vary kAptR') 
IF_kHyb_KdHybConst_df_FoldChange.to_excel(writer,'KdHyb=10nM, Vary kHyb') 
IF_kApt_KdAptConst_df_FoldChange.to_excel(writer,'KdApt=10nM, Vary kApt') 
IF_kHybIF_F_df_FoldChange.to_excel(writer,'Vary kHybIF_F') 
IF_kHybIF_R_df_FoldChange.to_excel(writer,'Vary kHybIF_R') 
IF_kAptIF_F_df_FoldChange.to_excel(writer,'Vary kAptIF_F') 
IF_kAptIF_R_df_FoldChange.to_excel(writer,'Vary kAptIF_R') 
writer.save() 
``` 

```python 
#Now, the Conformational Selection, Fold Change in [Free Flare] spreadsheet 
writer = pd.ExcelWriter('20190205_IF+CS_ModelOutputs_FoldChangeFF.xlsx') 



 173 
 
IF_D_df_FoldChange.to_excel(writer,'IF, Vary D_0') 
CS_D_df_FoldChange.to_excel(writer,'CS, Vary D_0') 
IF_kHybF_df_FoldChange.to_excel(writer,'IF, Vary kHybF') 
CS_kHybF_df_FoldChange.to_excel(writer,'CS, Vary kHybF') 
IF_kHybR_df_FoldChange.to_excel(writer,'IF, Vary kHybR') 
CS_kHybR_df_FoldChange.to_excel(writer,'CS, Vary kHybR') 
IF_kAptF_df_FoldChange.to_excel(writer,'IF, Vary kAptF') 
CS_kAptF_df_FoldChange.to_excel(writer,'CS, Vary kAptF') 
IF_kAptR_df_FoldChange.to_excel(writer,'IF, Vary kAptR') 
CS_kAptR_df_FoldChange.to_excel(writer,'CS, Vary kAptR') 
IF_kHyb_KdHybConst_df_FoldChange.to_excel(writer,'IF, KdHyb=10nM, Vary kHyb') 
CS_kHyb_KdHybConst_df_FoldChange.to_excel(writer,'CS, KdHyb=10nM, Vary kHyb') 
IF_kApt_KdAptConst_df_FoldChange.to_excel(writer,'IF, KdApt=10nM, Vary kApt') 
CS_kApt_KdAptConst_df_FoldChange.to_excel(writer,'CS, KdApt=10nM, Vary kApt') 
 
IF_kHybIF_F_df_FoldChange.to_excel(writer,'IF, Vary kHybIF_F') 
IF_kHybIF_R_df_FoldChange.to_excel(writer,'IF, Vary kHybIF_R') 
IF_kAptIF_F_df_FoldChange.to_excel(writer,'IF, Vary kAptIF_F') 
IF_kAptIF_R_df_FoldChange.to_excel(writer,'IF, Vary kAptIF_R') 
writer.save() 
``` 


 174
Code A3. Microarray data processing markdown file.
```python 
#Refactored version of the 20170709 notebook to make it easier to follow. 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import time 
``` 
```python 
#Oh, wait. I'm forgetting to find all the improperly named ACEs. 
#Now I want a way to generate the reverse complement of all the aptamer 
sequences. Do that. 
def revComp(seq): 
    seqLength = len(seq) 
    #print seqLength 
    revSeq = seq[::-1] 
    #print 'revSeq = ' + revSeq 
    #print 'len(revSeq) = ' + str(len(revSeq)) 
    revCompSeq = '' 
    for i in range(0, seqLength): 
        currentBase = revSeq[i] 
        if(currentBase == 'A' or currentBase == 'a'): 
            revCompSeq = revCompSeq + 'T' 
        if(currentBase == 'T' or currentBase == 't'): 
            revCompSeq = revCompSeq + 'A' 
        if(currentBase == 'G' or currentBase == 'g'): 
            revCompSeq = revCompSeq + 'C' 
        if(currentBase == 'C' or currentBase == 'c'): 
            revCompSeq = revCompSeq + 'G' 
    return revCompSeq 
 
def revComp_RNA(seq): 
    seqLength = len(seq) 
    #print seqLength 
    revSeq = seq[::-1] 
    #print 'revSeq = ' + revSeq 
    #print 'len(revSeq) = ' + str(len(revSeq)) 
    revCompSeq = '' 
    for i in range(0, seqLength): 
        currentBase = revSeq[i] 
        if(currentBase == 'A' or currentBase == 'a'): 
            revCompSeq = revCompSeq + 'U' 
        if(currentBase == 'U' or currentBase == 'U'): 
            revCompSeq = revCompSeq + 'A' 
        if(currentBase == 'G' or currentBase == 'g'): 
            revCompSeq = revCompSeq + 'C' 
        if(currentBase == 'C' or currentBase == 'c'): 



 175 
            revCompSeq = revCompSeq + 'G' 
    return revCompSeq 
 
#Let's just make a quick function to make it quicker and easier to return the 
sequence of an aptamer 
#From the aptamer array 
def returnAptSeq(aptName, aptArray): 
    aptSeq = aptArray[aptArray['uniqueAptNames'] == 
aptName].iloc[0]['uniqueAptSequences'] 
    return aptSeq 
 
#Great, now make a quick method to automatically generate the number of ACEs, 
given an aptamer length, a minimum 
#ACE length, and a maximum ACE length 
def numACEs(aptLen, minACElen, maxACElen): 
    ACEcounter = 0 
    for i in range(minACElen, maxACElen+1): 
        ACEcounter = ACEcounter + aptLen - i + 1 
    return ACEcounter 
 
#Now automate the process of generating all the ACES for a given aptamer and 
span of ACE lengths 
def genACEs(aptName, aptSeq, minACElen = 8, maxACElen = 12): 
 
    aptLen = len(aptSeq) 
    aptRevComp = revComp(aptSeq) 
    arraySize = numACEs(aptLen, minACElen, maxACElen) 
     
    ACEarray = {'AptName': pd.Series('' for i in range(arraySize)), 
                'AptSeq': pd.Series('' for i in range(arraySize)), 
                'ACEnum': pd.Series(0 for i in range(arraySize)), 
                'ACEname': pd.Series('' for i in range(arraySize)), 
                'ACEseq': pd.Series('' for i in range(arraySize)), 
                'ACElength': pd.Series('' for i in range(arraySize)), 
                'ACEstartPos': pd.Series('' for i in range(arraySize)) 
#Starting position along the 5'-3' aptamer sequence (5' apt = 0) 
             } 
    ACEframe = pd.DataFrame(data = ACEarray) 
     
    counter = 0 
    for n in range(minACElen, maxACElen+1): 
        seqStart = aptLen-n 
        for i in range(0, seqStart+1): 
            start = seqStart-i 
 
            ACEframe.at[counter, 'AptName'] = aptName 
            ACEframe.at[counter, 'AptSeq'] = aptSeq 
            ACEframe.at[counter, 'ACEnum'] = counter 



 176 
            ACEframe.at[counter, 'ACEname'] = aptName + '_' + str(counter) 
             
            ACEframe.at[counter, 'ACEseq'] = aptRevComp[start:start+n] 
             
            ACEframe.at[counter, 'ACElength'] = len(aptRevComp[start:start+n]) 
            ACEframe.at[counter, 'ACEstartPos'] = int(i) 
             
            counter = counter+1 
 
    return ACEframe 
``` 

```python 
MN4seq = 'GGCGACAAGGAAAATCCTTCAACGAAGTGGGTCGCC' 
MN6seq = 'GACAAGGAAAATCCTTCAACGAAGTGGGTC' 
``` 

```python 
#Make a data frame with all the aptamer names and their sequences 
filepath = '/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20190703_ArrayAnalysis/JorgeAptSequencesAndFlareList/20190708_Fla
resAptamersSequences_Sorted.csv' 
flaresAptamersSeqs = pd.read_csv(filepath, delimiter = ',') 
 
#Now make an array containing all the aptamer names 
aptSeqs = [flaresAptamersSeqs.AptamerName.unique(), 
flaresAptamersSeqs.AptamerSequence.unique()] 
numApts = len(flaresAptamersSeqs.AptamerName.unique()) 
 
#Is there an easier way to do this? 
flaresAptamersSeqs['uniqueAptNames'] = pd.Series('' for i in range(numApts)) 
flaresAptamersSeqs['uniqueAptSequences'] = pd.Series('' for i in 
range(numApts)) 
 
for i in range(numApts): 
    flaresAptamersSeqs.at[i, 'uniqueAptNames'] = aptSeqs[0][i] 
    flaresAptamersSeqs.at[i, 'uniqueAptSequences'] = aptSeqs[1][i] 
     
uniqueApts = flaresAptamersSeqs[['uniqueAptNames', 
'uniqueAptSequences']][0:61] 
#uniqueApts.tail() 
``` 
```python 
uniqueApts.at[61, 'uniqueAptNames'] = 'MN4' 
uniqueApts.at[61, 'uniqueAptSequences'] = MN4seq 
uniqueApts.at[62, 'uniqueAptNames'] = 'MN6' 
uniqueApts.at[62, 'uniqueAptSequences'] = MN6seq 
``` 


 177
```python 
MN4_ACEs = genACEs(aptName = 'MN4', 
                  aptSeq = returnAptSeq(aptName = 'MN4', aptArray = 
uniqueApts)) 
 
MN4_ACEs = MN4_ACEs.drop(['ACElength', 'ACEstartPos'], axis=1) 
 
MN4_ACEs.columns = ['Name', 'VariantNumber', 'ID', 'AptamerName', 
'AptamerSequence'] 
 
MN6_ACEs = genACEs(aptName = 'MN6', 
                  aptSeq = returnAptSeq(aptName = 'MN6', aptArray = 
uniqueApts)) 
 
MN6_ACEs = MN6_ACEs.drop(['ACElength', 'ACEstartPos'], axis=1) 
 
MN6_ACEs.columns = ['Name', 'VariantNumber', 'ID', 'AptamerName', 
'AptamerSequence'] 
 
MN6_ACEs.tail() 
``` 
```python 
#Read in the list of flare names, features, etc 
myACEarrayPath = 
"/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20190703_ArrayAnalysis/JorgeAptSequencesAndFlareList/20190708_Fla
resAptamersSequences_Sorted.csv" 
myACEarray = pd.read_csv(myACEarrayPath, delimiter = ',') 
 
myACEarray.tail() 
``` 
```python 
#NOW, APPEND THE MN4_ACEs and MN6_ACEs data to myACEarray 
myACEarray = myACEarray.append(MN4_ACEs) 
myACEarray = myACEarray.append(MN6_ACEs) 
myACEarray.tail() 
``` 
```python 
#Now also read in data from a single raw array 
TestMicroarrayDataPath = 
"/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20190703_ArrayAnalysis/20190520_1253_Hyb/SG17044572_258594510002_
S001_GE2 locbkrd 3x_1_1_PBS.txt" 
TestMicroarrayData = pd.read_csv(TestMicroarrayDataPath, delimiter = '\t', 
header = 9) 
 
``` 

```python 



 178 
#Now, need a way to filter the feature number, row, column, and probeName 
arrayDataLayout = TestMicroarrayData.filter(['FeatureNum', 'Row', 'Col', 
'ControlType', 'ProbeName'], axis = 1) 
``` 

```python 
#Want to bind the probeName in arrayDataLayout to the matching column values in 
myACEarray 
ACEarrayLength = myACEarray.shape[0] 
myACEarray['ACEnumber'] = pd.Series(range(0,ACEarrayLength)) 
myACEarray = myACEarray.reset_index(drop = True) 
myACEarray.tail() 
``` 
```python 
#myACEarray 
``` 

```python 
#Now, get ready to bind 
arrayDataLayout['ID'] = pd.Series('') 
arrayDataLayout['AptamerName'] = pd.Series('') 
arrayDataLayout['VariantNumber'] = pd.Series(0) 
arrayDataLayout['AptamerSequence'] = pd.Series('') 
arrayDataLayout['ACEnumber'] = pd.Series(0) 
``` 

```python 
#Iterate through the whole layout array to bind the correct aptamer name and 
sequence etc to the right features. 
#Will take about 10 minutes for 62,000 features. 
arrayDataLength = arrayDataLayout.shape[0] 
startingIndex = arrayDataLayout.index.tolist()[0] 
tic = time.clock() 
 
for x in range(0, arrayDataLength): 
    probeName = arrayDataLayout['ProbeName'][startingIndex + x] 
    ACEarraySubset = myACEarray.loc[myACEarray['Name'] == probeName] 
    nameIsPresent = ACEarraySubset.index.tolist() != [] 
    if nameIsPresent: 
        ACEsubsetIndex = ACEarraySubset.index.tolist()[0] 
        #print myACEarray.loc[ACEsubsetIndex, 'ID'] 
        arrayDataLayout.loc[startingIndex + x, 'ID'] = 
myACEarray.loc[ACEsubsetIndex, 'ID'] 
        arrayDataLayout.loc[startingIndex + x, 'AptamerName'] = 
myACEarray.loc[ACEsubsetIndex, 'AptamerName'] 
        arrayDataLayout.loc[startingIndex + x, 'VariantNumber'] = 
myACEarray.loc[ACEsubsetIndex, 'VariantNumber'] 



 179 
        arrayDataLayout.loc[startingIndex + x, 'AptamerSequence'] = 
myACEarray.loc[ACEsubsetIndex, 'AptamerSequence'] 
        arrayDataLayout.loc[startingIndex + x, 'ACEnumber'] = 
myACEarray.loc[ACEsubsetIndex, 'ACEnumber'] 
 
toc = time.clock() 
timespan = toc-tic 
print timespan 
``` 

```python 
#Just export all the layout data for MN6 and MN4 
MN6_Layout = arrayDataLayout[arrayDataLayout['AptamerName'] == 'MN6'] 
MN4_Layout = arrayDataLayout[arrayDataLayout['AptamerName'] == 'MN4'] 
MN6_Layout.to_csv("/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL
_C-
ABN_Project/20190703_ArrayAnalysis/JorgeAptSequencesAndFlareList/MN6_Layout.c
sv") 
MN4_Layout.to_csv("/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL
_C-
ABN_Project/20190703_ArrayAnalysis/JorgeAptSequencesAndFlareList/MN4_Layout.c
sv") 
``` 
```python 
#I got the sequence hybridization deltaGs and self-complementary deltaGs for 
all the flare/ACE sequences from Slava 
#and Jorge. They used a commercial UNAfold software package (the melt.pl method) 
to calculate them. 
#Now, import that csv 
deltaGsArrayPath = 
"/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20190703_ArrayAnalysis/JorgeAptSequencesAndFlareList/20190710_Fla
res_DeltaGs.csv" 
deltaGsArray = pd.read_csv(deltaGsArrayPath, delimiter = ',') 
``` 

```python 
#Now, the goal is to add a 'DeltaG' and 'Self dG' column to the larger array 
arrayDataLayout['DeltaG'] = pd.Series() 
arrayDataLayout['Self dG'] = pd.Series() 
``` 

```python 
#Now add DeltaG and Self dG values to the entire layout array 
ArrayLayoutLength = arrayDataLayout.shape[0] 
startingIndex = arrayDataLayout.index.tolist()[0] 
 
tic = time.clock() 
 



 180 
for x in range(0, ArrayLayoutLength): 
     
    probeName = arrayDataLayout['ProbeName'][startingIndex + x] 
    dGarraySubset = deltaGsArray.loc[deltaGsArray['Flares_ID'] == probeName] 
#Returns an empty array if probeName isn't present in myACEarray 
    nameIsPresent = dGarraySubset.index.tolist() != [] #Boolean that checks if 
that probe name is present in myACEarray 
    if nameIsPresent: 
        ACEsubsetIndex = dGarraySubset.index.tolist()[0] 
        arrayDataLayout.loc[startingIndex + x, 'DeltaG'] = 
deltaGsArray.loc[ACEsubsetIndex, 'DeltaG'] 
        arrayDataLayout.loc[startingIndex + x, 'Self dG'] = 
deltaGsArray.loc[ACEsubsetIndex, 'Self dG'] 
 
toc = time.clock() 
timespan = toc-tic 
print timespan 
``` 

```python 
#Good. Now, need to build a method to automate the process of extracting a 
well's raw data, 
#specifying the experiment conditions for that well's data, 
#and appending all the relevant layout and experimental condition info. 
def genLabeledMicroarrayData(dataFilePath, 
                             layoutFilePath, 
                             ExptStepIndex,  
                             ExptStep,  
                             Block,  
                             BlockIndex, 
                             BlockCondition, 
                             BlockDHEASconc_uM, 
                             DHEASaddedThisStep): 
     
    #Generate data frames from the selected microarray data file and array 
layout file 
    arrayData = pd.read_csv(dataFilePath, delimiter = '\t', header = 9) 
    print arrayData.iloc[0,13] 
    arrayLayout = pd.read_csv(layoutFilePath, index_col=0) 
     
    #Generate array to populate with experimental conditions 
    ExptConditionArray = arrayLayout.filter('FeatureNum') 
     
    #Get length of the layout array 
    arrayLength = len(arrayLayout['FeatureNum']) 
     
    ##Populate the Experimental Condition Array with the appropriate columns 



 181 
    ExptConditionArray['ExptStepIndex'] = pd.Series(ExptStepIndex for i in 
range(arrayLength)) 
    ExptConditionArray['ExptStep'] = pd.Series(ExptStep for i in 
range(arrayLength)) 
    ExptConditionArray['Block'] = pd.Series(Block for i in range(arrayLength)) 
    ExptConditionArray['BlockIndex'] = pd.Series(BlockIndex for i in 
range(arrayLength)) 
    ExptConditionArray['BlockCondition'] = pd.Series(BlockCondition for i in 
range(arrayLength)) 
    ExptConditionArray['BlockDHEASconc_uM'] = pd.Series(BlockDHEASconc_uM for 
i in range(arrayLength)) 
    ExptConditionArray['DHEASaddedThisStep'] = pd.Series(DHEASaddedThisStep 
for i in range(arrayLength)) 
     
    #Join the ExptConditionArray to the layout array 
    joinedLayoutArray = ExptConditionArray.join(arrayLayout, lsuffix = '', 
rsuffix = '_redundant') 
     
    #Now join the joinedLayoutArray to the data array, appending 'redundant' to 
any columns with redundant names 
    joinedDataArray = 
joinedLayoutArray.set_index('FeatureNum').join(arrayData.set_index('FeatureNu
m'), 
                                                                     lsuffix = 
'', rsuffix = '_redundant') 
    #Now list all the redundant column names 
    colsToDrop = [col for col in joinedDataArray.columns if 'redundant' in col] 
    #Now use that list to remove all the redundant columns 
    joinedDataArray = joinedDataArray.drop(colsToDrop, axis=1) 
     
    print joinedDataArray.iloc[0, 4] 
     
    #Finally, return the joinedDataArray 
    return joinedDataArray 
``` 


```python 
#Now, the question is, it just wasting time to construct a method that automates 
the extraction process? 
#I don't think so.  
#This function (extractLabeledSlideData) can take as inputs a list to be filled 
with data frames, 
#a folder path and the experimental conditions, and then run 
genLabeledMicroarrayData 
 
def extractLabeledSlideData(folder, 
                            ExptStepIndex,  
                            ExptStep, 



 182 
                            TargetAddedThisStep, 
                            pathToFolders = 
"/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20190703_ArrayAnalysis/",  
                            constantPartOfFileName = 
"SG17044572_258594510002_S001_GE2 locbkrd 3x_", 
                            wellNameList = ['1_1_PBS', '1_2_300D', '1_3_300D', 
'1_4_300D', '2_1_PBS', '2_2_30D', '2_3_30D', '2_4_30D'], 
                            suffix = '.txt',  
                            layoutPath = 
"/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20190703_ArrayAnalysis/20190718_arrayDataLayout.csv", 
                            BlockList = ['1_1', '1_2', '1_3', '1_4', '2_1', 
'2_2', '2_3', '2_4'],  
                            BlockIndexList = [1, 2, 3, 4, 5, 6, 7, 8], 
                            BlockConditionList = ['PBS Only', '300 uM DHEAS', 
'300 uM DHEAS', '300 uM DHEAS', 
                   'PBS Only', '30 uM DHEAS', '30 uM DHEAS', '30 uM DHEAS'],  
                            BlockTargetConcList = [0, 300, 300, 300, 0, 30, 30, 
30]): 
     
    arrayList = [[],[],[],[],[],[],[],[]] 
     
    for i in range(0, len(arrayList)): 
        arrayPath = pathToFolders + folder + constantPartOfFileName + 
wellNameList[i] + suffix 
        arrayList[i] = genLabeledMicroarrayData(dataFilePath = arrayPath, 
                                                layoutFilePath = layoutPath, 
                                                ExptStepIndex = ExptStepIndex,  
                                                ExptStep = ExptStep,  
                                                DHEASaddedThisStep = 
TargetAddedThisStep, 
                                                Block = BlockList[i],  
                                                BlockIndex = 
BlockIndexList[i], 
                                                BlockCondition = 
BlockConditionList[i], 
                                                BlockDHEASconc_uM = 
BlockTargetConcList[i]) 
     
    return arrayList 
     
``` 

```python 
#Now make it into a function that compiles/appends together array data from 
different wells/experiments 
def compileArraysData(arraysList, removeRedundantIndex = False): 
    compiledArrays = arraysList[0] 
    for i in range(1,len(arraysList)): 



 183 
        compiledArrays = compiledArrays.append(arraysList[i]) 
    compiledArrays = compiledArrays.reset_index() 
    if(removeRedundantIndex): 
        compiledArrays = compiledArrays.drop(['index'], axis = 1) 
    return compiledArrays 
``` 

```python 
#Now, can quickly extract and label all the data from all the wells and all the 
steps 
step1_hybArrays = extractLabeledSlideData(folder = '20190520_1253_Hyb/', 
                                          ExptStepIndex = 1,  
                                          ExptStep = 'Hyb', 
                                          TargetAddedThisStep = False) 
 
step2_washArrays = extractLabeledSlideData(folder = 
'20190520_1417_HybAndPBSwash/', 
                                           ExptStepIndex = 2,  
                                           ExptStep = 'PBS Wash', 
                                           TargetAddedThisStep = False) 
 
step3_10minDHEASarrays = extractLabeledSlideData(folder = 
'20190520_1516_DHEAS10minInc/', 
                                                 ExptStepIndex = 3,  
                                                 ExptStep = '10 min DHEAS 
Incubation', 
                                                 TargetAddedThisStep = True) 
 
step4_overnightDHEASarrays = extractLabeledSlideData(folder = 
'20190521_0949_DHEAS_OvernightInc/', 
                                                 ExptStepIndex = 4,  
                                                 ExptStep = 'Overnight DHEAS 
Incubation', 
                                                 TargetAddedThisStep = True) 
 
``` 

```python 
#Compile all the data from the different experiment steps into their own data 
frames 
fullHybSlide = compileArraysData(step1_hybArrays) 
fullWashSlide = compileArraysData(step2_washArrays) 
full10minIncSlide = compileArraysData(step3_10minDHEASarrays) 
fullOvernightIncSlide = compileArraysData(step4_overnightDHEASarrays) 
``` 
```python 
#Now make an array of those data frames... 



 184 
fullExptArray = [fullHybSlide, fullWashSlide, full10minIncSlide, 
fullOvernightIncSlide] 
``` 

```python 
#...And compile them all together to generate the final, fully synthesized data 
set 
tic = time.clock() 
allExptData = compileArraysData(fullExptArray, removeRedundantIndex = True) 
toc = time.clock() 
print toc - tic 
``` 

```python 
#Now, let's write that compiled data set to a .csv file so it can be easily 
retrieved 
tic = time.clock() 
 
filePath = '/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20190703_ArrayAnalysis/' 
allExptData.to_csv(path_or_buf = filePath + '20190730_allExptData.csv') 
 
toc = time.clock() 
print toc - tic 
``` 

```python 
#Excellent, I've refactored the data processing and consolidation steps into 
something much easier to read 
#and replicate. Now actually move on to analysis! 
``` 


 185
Code C4. Representative microarray data analysis markdown file.
```python 
#Import relevant software packages 
import pandas as pd 
import numpy as np 
import matplotlib 
import matplotlib.pyplot as plt 
import matplotlib.font_manager as font_manager 
from matplotlib.lines import Line2D 
from matplotlib.pyplot import figure 
from matplotlib import colors 
import time 
``` 

```python 
#Now, import the full 20191009 all expt data .csv file 
exptArrayPath = '/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/20191009_allExptData.csv' 
 
allExptData = pd.read_csv(exptArrayPath, delimiter = ',') 
 
``` 

```python 
allExptData.head() 
allExptData.tail() 
allExptData.iloc[0:5, 3:25] 
``` 

```python 
#Pull out the relevant data for Dopa2 and for a negative control aptamer I 
didn't use--let's say Dopa130_169 
Dopa2_all = allExptData[allExptData['ProbeName'].str.contains('Dopa2')] 
 
``` 

```python 
Dopa2_all.info() 
 
#Note: not a lot of features with the Dopa130 name! Because a lot BE9th aptamers 
with similar sequences. 
#Will need to find the alternatively named flare sequences and add them to the 
data frame 
``` 

```python 
Dopa2_all.AptamerSequence.values[0] 
``` 


 186

```python 
#Make a data frame with all the aptamer names and their sequences 
 
#NOTE: When Monica finishes what she's doing, can use her frame here 
filepath = '/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/JorgeAptSequencesAndFlareList/20191009_F
laresAptamersSequences_Updated.csv' 
flaresAptamersSeqs = pd.read_csv(filepath, delimiter = ',') 
 
#Now make an array containing all the aptamer names 
aptSeqs = [flaresAptamersSeqs.AptamerName.unique(), 
flaresAptamersSeqs.AptamerSequence.unique()] 
numApts = len(flaresAptamersSeqs.AptamerName.unique()) 
 
#Is there an easier way to do this? 
flaresAptamersSeqs['uniqueAptNames'] = pd.Series('' for i in range(numApts)) 
flaresAptamersSeqs['uniqueAptSequences'] = pd.Series('' for i in 
range(numApts)) 
 
for i in range(numApts): 
    flaresAptamersSeqs.at[i, 'uniqueAptNames'] = aptSeqs[0][i] 
    flaresAptamersSeqs.at[i, 'uniqueAptSequences'] = aptSeqs[1][i] 
     
uniqueApts = flaresAptamersSeqs[['uniqueAptNames', 'uniqueAptSequences']] 
uniqueApts.iloc[50:80, 0:] 
 
uniqueApts.at[69, 'uniqueAptNames'] = 'Dopa2' 
uniqueApts.at[69, 'uniqueAptSequences'] = 'GGACGTGGATTTTCCGCATACGAAGTTGTCC' 
 
``` 

```python 
#Now I want a way to generate the reverse complement of all the aptamer 
sequences. Do that. 
def revComp(seq): 
    seqLength = len(seq) 
    #print seqLength 
    revSeq = seq[::-1] 
    #print 'revSeq = ' + revSeq 
    #print 'len(revSeq) = ' + str(len(revSeq)) 
    revCompSeq = '' 
    for i in range(0, seqLength): 
        currentBase = revSeq[i] 
        if(currentBase == 'A' or currentBase == 'a'): 
            revCompSeq = revCompSeq + 'T' 
        if(currentBase == 'T' or currentBase == 't'): 
            revCompSeq = revCompSeq + 'A' 



 187 
        if(currentBase == 'G' or currentBase == 'g'): 
            revCompSeq = revCompSeq + 'C' 
        if(currentBase == 'C' or currentBase == 'c'): 
            revCompSeq = revCompSeq + 'G' 
    return revCompSeq 
 
#Also make a way to generate the reverse complement of an RNA aptamer, in DNA 
def revComp_RNAtoDNA(seq): 
    seqLength = len(seq) 
    #print seqLength 
    revSeq = seq[::-1] 
    #print 'revSeq = ' + revSeq 
    #print 'len(revSeq) = ' + str(len(revSeq)) 
    revCompSeq = '' 
    for i in range(0, seqLength): 
        currentBase = revSeq[i] 
        if(currentBase == 'A' or currentBase == 'a'): 
            revCompSeq = revCompSeq + 'T' 
        if(currentBase == 'U' or currentBase == 'u'): 
            revCompSeq = revCompSeq + 'A' 
        if(currentBase == 'G' or currentBase == 'g'): 
            revCompSeq = revCompSeq + 'C' 
        if(currentBase == 'C' or currentBase == 'c'): 
            revCompSeq = revCompSeq + 'G' 
    return revCompSeq 
 
#Let's just make a quick function to make it quicker and easier to return the 
sequence of an aptamer 
#From the aptamer array 
def returnAptSeq(aptName, aptArray = uniqueApts): 
    aptSeq = aptArray[aptArray['uniqueAptNames'] == 
aptName].iloc[0]['uniqueAptSequences'] 
    return aptSeq 
 
#Great, now make a quick method to automatically generate the number of ACEs, 
given an aptamer length, a minimum 
#ACE length, and a maximum ACE length 
def numACEs(aptLen, minACElen, maxACElen): 
    ACEcounter = 0 
    for i in range(minACElen, maxACElen+1): 
        ACEcounter = ACEcounter + aptLen - i + 1 
    return ACEcounter 
 
#Now automate the process of generating all the ACES for a given aptamer and 
span of ACE lengths 
def genACEs(aptName, aptSeq, minACElen = 8, maxACElen = 12): 
 
    aptLen = len(aptSeq) 



 188 
    aptRevComp = revComp(aptSeq) 
    arraySize = numACEs(aptLen, minACElen, maxACElen) 
     
    ACEarray = {'AptName': pd.Series('' for i in range(arraySize)), 
                'AptSeq': pd.Series('' for i in range(arraySize)), 
                'ACEnum': pd.Series(0 for i in range(arraySize)), 
                'ACEname': pd.Series('' for i in range(arraySize)), 
                'ACEseq': pd.Series('' for i in range(arraySize)), 
                'ACElength': pd.Series('' for i in range(arraySize)), 
                'ACEstartPos': pd.Series('' for i in range(arraySize)) 
#Starting position along the 5'-3' aptamer sequence (5' apt = 0) 
             } 
    ACEframe = pd.DataFrame(data = ACEarray) 
     
    counter = 0 
    for n in range(minACElen, maxACElen+1): 
        seqStart = aptLen-n 
        for i in range(0, seqStart+1): 
            start = seqStart-i 
 
            ACEframe.at[counter, 'AptName'] = aptName 
            ACEframe.at[counter, 'AptSeq'] = aptSeq 
            ACEframe.at[counter, 'ACEnum'] = counter 
            ACEframe.at[counter, 'ACEname'] = aptName + '_' + str(counter) 
             
            ACEframe.at[counter, 'ACEseq'] = aptRevComp[start:start+n] 
             
            ACEframe.at[counter, 'ACElength'] = len(aptRevComp[start:start+n]) 
            ACEframe.at[counter, 'ACEstartPos'] = int(i) 
             
            counter = counter+1 
 
    return ACEframe 
``` 

```python 
#See if the above methods work to generate ACE arrays for Dopa2 and Dopa130 
Dopa2_ACEs = genACEs(aptName = 'Dopa2', 
                         aptSeq = returnAptSeq(aptName = 'Dopa2', aptArray = 
uniqueApts)) 
 
``` 

```python 
#Check that it worked: 
Dopa2_ACEs['AptSeq'][0] 
 



 189 
``` 

```python 
#Here's a method for returning all the ACEs for an aptamer that are missing/named 
differently on the array 
#Note: be careful not to run this method with ACE frames for different aptamers. 
def genMissingACEframe(generatedACEframe, dataACEframe): 
    #Want to verify that generatedACEframe and dataACEframe are for the same 
aptamer 
    genACEaptName = generatedACEframe.AptName[0] 
    dataACEaptName = dataACEframe.AptamerName.unique()[0] #Note that the 
dataACEframes have a different aptName vs aptamerName 
    print 'Just to check, the generated ACE frame is for the aptamer ' + 
genACEaptName + '.' 
    print 'Just to check, the data ACE frame is for the aptamer ' + 
dataACEaptName + '.' 
    num_genACEs = len(generatedACEframe['ACEnum']) 
     
    dataACEframe_varNums = dataACEframe.VariantNumber.unique() 
 
    dataACEframe_varNumsInts = [] 
    #Now figure out how to fill in the gaps 
    for i in range(0, len(dataACEframe_varNums)): 
        dataACEframe_varNumsInts.append(int(dataACEframe_varNums[i])) 
     
    missingVarList = [] 
    for i in range(0, num_genACEs): 
        if(i not in dataACEframe_varNumsInts): 
            missingVarList.append(i) 
     
    numMissingACEs = len(missingVarList) 
     
    print 'Generated ACE frame has ' + str(num_genACEs) + ' ACEs.' 
    print 'Data ACE frame has ' + str(num_genACEs - numMissingACEs) + ' ACEs.' 
    print 'Data ACE frame is missing ' + str(numMissingACEs) + ' ACEs compared 
to generated ACE frame;' 
    print 'Return data frame containing all the ACEs in generated ACE frame 
missing from data ACE frame.' 
    missingACEframe = 
generatedACEframe.loc[generatedACEframe['ACEnum'].isin(missingVarList)] 
 
    return missingACEframe 
``` 

```python 
 
Dopa2_missingACEframe = genMissingACEframe(generatedACEframe = Dopa2_ACEs,  
                                         dataACEframe = Dopa2_all) 



 190 
 
Dopa2_missingACEframe.head() 
``` 


```python 
#Method to get a list of ACE sequences from a data frame containing an 'ACEseq' 
column 
def getACEseqList(ACEframe): 
    num_ACEs = len(ACEframe.ACEseq) 
     
    ACEseqList = [] 
     
    #Reindex in case the data frame has missing ACEs or is a subset of a 
different data frame 
    ACEframe_RI = ACEframe.reset_index() 
     
    for i in range(0, num_ACEs): 
        ACEseqList.append(ACEframe_RI.ACEseq[i]) 
     
    return ACEseqList 
``` 

```python 
#Use method to generate a list of the missing/alternatively named ACEs 
Dopa2_missingACElist = Dopa2_missingACEframe.ACEseq.values 
Dopa2_missingACElist 
``` 

```python 
#Method for returning all the data from a list of ACE names generated by 
getACEseqList method 
def getDataWithACElist(ACEseqList, dataframe): 
    dataWithACEs = dataframe.loc[dataframe['ID'].isin(ACEseqList)] 
    return dataWithACEs 
``` 

```python 
#Return all the data from the missing/alternatively named ACEs on the array 
Dopa2_missingACEdata = getDataWithACElist(ACEseqList = Dopa2_missingACElist,  
                                         dataframe = allExptData) 
``` 

```python 
#Method for re-labeling ACEs that bind to more than one aptamer, to make it 
easier to analyze all ACEs that bind 
#to a particular aptamer 
def annotateMissingACEs(ACElistFrame, dataACEframe): 



 191 
    arrayDataLength = dataACEframe.shape[0] 
     
    dataACEframe_RI = dataACEframe.reset_index() 
     
    tic = time.clock() 
 
    for x in dataACEframe.index: 
        seqACE = dataACEframe['ID'][x] 
     
        relevantRow = ACElistFrame[ACElistFrame['ACEseq'] == seqACE] 
     
        relevantAptName = relevantRow.iloc[0]['AptName'] 
        relevantAptSeq = relevantRow.iloc[0]['AptSeq'] 
        relevantACEnum = float(relevantRow.iloc[0]['ACEnum']) 
        relevantACEname = relevantAptName + '_' + 
str(relevantRow.iloc[0]['ACEnum']) 
     
        dataACEframe.at[x, 'ProbeName'] = relevantACEname 
        dataACEframe.at[x, 'AptamerName'] = relevantAptName 
        dataACEframe.at[x, 'AptamerSequence'] = relevantAptSeq 
        dataACEframe.at[x, 'VariantNumber'] = relevantACEnum 
         
 
    toc = time.clock() 
    timespan = toc-tic 
     
    print timespan 
    return dataACEframe 
``` 

```python 
#Now in the data frame, annotate all the alternatively named ACEs. 
Dopa2_missingACEdataLabeled = annotateMissingACEs(ACElistFrame = Dopa2_ACEs,  
                                                      dataACEframe = 
Dopa2_missingACEdata) 
 
``` 

```python 
Dopa2_missingACEdataLabeled.head() 
``` 

```python 
#Now I want to append the data that was originally labeled with the aptamer 
name, 
#To the data that has just been reannotated with the chosen aptamer name 
Dopa2_combinedData = Dopa2_all.append(Dopa2_missingACEdataLabeled) 



 192 
``` 

```python 
#Check dimensions of arrays to make sure they combined properly 
Dopa2_all.info() 
#Dopa2_combinedData.info() 
#Dopa130_all.info() 
#Dopa130_combinedData.info() 
#Another check: see what the unique variant numbers are. Should be 0.0 - 154.0 
#Dopa130_combinedData.sort_values(by=['VariantNumber']).VariantNumber.unique(
) 
``` 

```python 
#Convert this to a method: 
#Method for adding ACE length and start position information to the data array 
def addACElenAndStartPos(dataArray, ACEarray): 
    counter = 0 
     
    arrayLen = len(dataArray.ID) 
 
    dataArray['ACElen'] = pd.Series(0 for i in range(arrayLen)) 
    dataArray['ACEstartPos'] = pd.Series(0 for i in range(arrayLen)) 
 
 
    for i in dataArray.index.values[:]: 
        #print i 
        thisACEseq = dataArray.at[i, 'ID'] 
         
        #print str(thisACEseq) 
         
        thisACEinfo = ACEarray[ACEarray['ACEseq'] == thisACEseq] 
     
        #print thisACEinfo 
     
        thisACEindex = thisACEinfo.index.values[0] 
 
        #print thisACEindex 
     
        if(type(thisACEseq) == str): 
            thisACElen = len(str(thisACEseq)) #Note that this might cooerce 
some 'nan' values to str 
            #print str(thisACElen) 
            thisACEstartPos = thisACEinfo.ACEstartPos.values[0] 
            #print str(thisACEstartPos) 
            #print 'For index ' + str(i) + ', thisACEstartPos is a float.  
     



 193 
            if(type(thisACEstartPos) == int): 
                dataArray.at[i, 'ACElen'] = thisACElen 
                dataArray.at[i, 'ACEstartPos'] = thisACEstartPos 
            else: 
                counter = counter+1 
        else:  
            'For index ' + str(i) + ', thisACEseq is not a str. It is a ' + 
str(type(thisACEseq)) + ' with value ' + str(thisACEseq) 
             
    print str(counter) + ' rows were not properly processed to add ACElen and 
ACEstartPos values' 
     
    return dataArray 
``` 

```python 
#Now, it might be good to sort by Expt condition, then by block, then by 
variantNumber 
Dopa2_sorted = Dopa2_combinedData.sort_values(by=['ExptStepIndex', 
'BlockIndex', 'VariantNumber']) 
Dopa2_sorted = Dopa2_sorted.reset_index(drop=True) 
Dopa2_sorted.iloc[1000:1020, 5:25] 
 
``` 

```python 
#Now add ACE length and start position to the data frames 
Dopa2_sorted = addACElenAndStartPos(Dopa2_sorted, Dopa2_ACEs) 
``` 

```python 
#Good, that worked. Now just need to export that data set to a csv file for 
safe keeping and easy retrieval. 
!mkdir '20191008_Isaac_ArrayData/20191014_Dopa2_dataAndHeatMaps/' 
folderPath = '/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/20191014_Dopa2_dataAndHeatMaps/' 
Dopa2_sorted.to_csv(path_or_buf = folderPath + '20191014_Dopa2_rawData.csv') 
``` 

```python 
#Method that cleans the data set, and prints out useful info as it does so. 
#This method would do something like, for any given Agilent microarray dataset, 
count the number of data points 
#that have nonuniform features, nonuniform background, and have outlier 
features/background values relative to  
#replicates. Then the function should return an array with all those problematic 
data points removed, and print 
#how many data points were removed and the new dimensions of the array. 



 194 
def cleanAgilentArray(arrayToClean): 
    arrayShape = arrayToClean.shape 
    numSpots = arrayShape[0] 
    print str(numSpots) + ' feature spots in raw array.' 
     
    #print 'Checking array for spots with nonuniform feature values:' 
    nonUnifFeatArray = arrayToClean[arrayToClean['gIsFeatNonUnifOL'] == 1] 
    nonUnifFeatShape = nonUnifFeatArray.shape 
    numNonUnifFeat = nonUnifFeatShape[0] 
    print str(numNonUnifFeat) + ' spots with nonuniform features.' 
     
    #print 'Checking array for spots with nonuniform backgrounds:' 
    nonUnifBGArray = arrayToClean[arrayToClean['gIsBGNonUnifOL'] == 1] 
    nonUnifBGShape = nonUnifBGArray.shape 
    numNonUnifBG = nonUnifBGShape[0] 
    print str(numNonUnifBG) + ' spots with nonuniform backgrounds.' 
     
    print 'Checking array for spots with outlier feature values:' 
    OLfeatureArray = arrayToClean[arrayToClean['gIsFeatPopnOL'] == 1] 
    OLfeatureArrayShape = OLfeatureArray.shape 
    numOLfeatures = OLfeatureArrayShape[0] 
    print str(numOLfeatures) + ' spots with values that are outliers relative 
to other replicates in the same well.' 
     
    print 'Checking array for spots with outlier background values:' 
    OLBGArray = arrayToClean[arrayToClean['gIsBGPopnOL'] == 1] 
    OLBGArrayShape = OLBGArray.shape 
    numOLBGs = OLBGArrayShape[0] 
    print str(numOLBGs) + ' spots with values that are outliers relative to 
other replicates in the same well.' 
 
    #print 'Now clean array by removing nonuniform and outlier spots:' 
    cleanArray = arrayToClean[arrayToClean['gIsFeatNonUnifOL'] == 0] 
    cleanArray = cleanArray[cleanArray['gIsBGNonUnifOL'] == 0] 
    cleanArray = cleanArray[cleanArray['gIsFeatPopnOL'] == 0] 
    cleanArray = cleanArray[cleanArray['gIsBGPopnOL'] == 0] 
     
    cleanArrayShape = cleanArray.shape 
    numCleanSpots = cleanArrayShape[0] 
    numBadSpots = numSpots - numCleanSpots 
    print '' 
    print 'Cleaned array has ' + str(numCleanSpots) + ' spots, with ' + 
str(numBadSpots) + ' bad spots removed.' 
    print '' 
     
    return cleanArray 
``` 


 195

```python 
#Let's remove all the bad data points 
cleanDopa2 = cleanAgilentArray(Dopa2_sorted) 
``` 

```python 
#Reset the indices for the cleaned arrays 
cleanDopa2_RI = cleanDopa2.reset_index(drop = True) 
``` 

```python 
#Make an array of the names of the statistics columns to add 
statColsToAdd = ['mean_gProcessedSignal', 
                'med_gProcessedSignal', 
                'std_gProcessedSignal', 
                'max_gProcessedSignal', 
                'min_gProcessedSignal', 
                'numReplicates', 
                'mean_rProcessedSignal', 
                'med_rProcessedSignal', 
                'std_rProcessedSignal', 
                'max_rProcessedSignal', 
                'min_rProcessedSignal'] 
``` 

```python 
#Now add all the columns that will be required for calculating statistics 
#Make this a method, actually 
def addLabeledColumns(array, colsToAdd): 
    arrayLen = len(array.iloc[:][array.columns[0]]) 
     
    numColumns = len(colsToAdd) 
     
    for i in range(numColumns): 
        array[colsToAdd[i]] = pd.Series(float('nan') for i in range(arrayLen)) 
     
    return array 
``` 

```python 
cleanDopa2 = addLabeledColumns(cleanDopa2_RI, statColsToAdd) 
 
cleanDopa2.tail() 
``` 

```python 



 196 
#Make a function out of generating a single row of descriptive statistics 
#Takes as input a frame to which the stat row will be appended, and the array 
with all the replicates 
#to be statistically analyzed 
def genStatRow(receivingFrame, arraySubSet): 
     
    arraySubSetFirstIndex = arraySubSet.index[0] 
 
    subSetFirstRow = arraySubSet[arraySubSet.index == arraySubSetFirstIndex] 
 
    receivingFrame = receivingFrame.append(subSetFirstRow) 
     
    lastRowIndex = receivingFrame.index[len(receivingFrame.index) - 1] 
 
    mean_gProcessedSignal = arraySubSet['gProcessedSignal'].mean() 
    receivingFrame.at[lastRowIndex, 'mean_gProcessedSignal'] = 
mean_gProcessedSignal 
 
    median_gProcessedSignal = arraySubSet['gProcessedSignal'].median() 
    receivingFrame.at[lastRowIndex, 'med_gProcessedSignal'] = 
median_gProcessedSignal 
 
    std_gProcessedSignal = arraySubSet['gProcessedSignal'].std() 
    receivingFrame.at[lastRowIndex, 'std_gProcessedSignal'] = 
std_gProcessedSignal 
     
    max_gProcessedSignal = arraySubSet['gProcessedSignal'].max() 
    receivingFrame.at[lastRowIndex, 'max_gProcessedSignal'] = 
max_gProcessedSignal 
     
    min_gProcessedSignal = arraySubSet['gProcessedSignal'].min() 
    receivingFrame.at[lastRowIndex, 'min_gProcessedSignal'] = 
min_gProcessedSignal 
 
    numReps = len(arraySubSet['gProcessedSignal']) 
    receivingFrame.at[lastRowIndex, 'numReplicates'] = numReps 
 
    mean_rProcessedSignal = arraySubSet['rProcessedSignal'].mean() 
    receivingFrame.at[lastRowIndex, 'mean_rProcessedSignal'] = 
mean_rProcessedSignal 
 
    median_rProcessedSignal = arraySubSet['rProcessedSignal'].median() 
    receivingFrame.at[lastRowIndex, 'med_rProcessedSignal'] = 
median_rProcessedSignal 
 
    std_rProcessedSignal = arraySubSet['rProcessedSignal'].std() 
    receivingFrame.at[lastRowIndex, 'std_rProcessedSignal'] = 
std_rProcessedSignal 



 197 
     
    max_rProcessedSignal = arraySubSet['rProcessedSignal'].max() 
    receivingFrame.at[lastRowIndex, 'max_rProcessedSignal'] = 
max_rProcessedSignal 
     
    min_rProcessedSignal = arraySubSet['rProcessedSignal'].min() 
    receivingFrame.at[lastRowIndex, 'min_rProcessedSignal'] = 
min_rProcessedSignal 
     
    return receivingFrame 
``` 

```python 
#Now make a method for generating all the stats for all the ACE variants a 
single block/subarray 
def genStatBlock(receivingFrame, blockArray): 
     
    numACEvariants = len(blockArray.VariantNumber.unique()) 
     
    for i in range(0, numACEvariants): 
        arraySubSet = blockArray[blockArray['VariantNumber'] == float(i)] 
     
        receivingFrame = genStatRow(receivingFrame = receivingFrame, 
arraySubSet = arraySubSet) 
     
    return receivingFrame 
``` 

```python 
#Now make a method for generating statistics for all the ACE variants in an 
entire slide 
def genSlideStats(receivingFrame, slideArray): 
    numSubArrays = len(slideArray.BlockIndex.unique()) 
     
    for i in range(numSubArrays+1): 
        subArray = slideArray[slideArray['BlockIndex'] == i] 
         
 
        receivingFrame = genStatBlock(receivingFrame = receivingFrame, 
blockArray = subArray) 
     
    return receivingFrame 
``` 

```python 
#Now write a method to generate all the stats from a processed data array 
def genExptStats(ExptDataArray): 
     



 198 
    tic = time.clock() 
     
    numExptSteps = len(ExptDataArray.ExptStepIndex.unique()) 
     
    recFrame = ExptDataArray[ExptDataArray.index == -1] 
     
    for i in range(numExptSteps+1): 
        slideArray = ExptDataArray[ExptDataArray['ExptStepIndex'] == i] 
 
        recFrame = genSlideStats(receivingFrame = recFrame, slideArray = 
slideArray) 
     
    toc = time.clock() 
     
    print toc-tic 
     
    return recFrame 
``` 


```python 
#Now generate the stats 
Dopa2_cleanedStats = genExptStats(cleanDopa2) 
``` 

```python 
#Great! Now save both as csv files. 
folderPath = '/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/20191014_Dopa2_dataAndHeatMaps/' 
Dopa2_cleanedStats.to_csv(path_or_buf = folderPath + 
'20191014_Dopa2_cleanedStats.csv') 
 
 
``` 


```python 
Dopa2_cleanedStats = pd.read_csv(folderPath + 
'20191014_Dopa2_cleanedStats.csv', delimiter = ',') 
Dopa2_cleanedStats.tail() 
 
``` 

```python 
#divide the data frame by experiment step 
 
Dopa2stats_1Hyb1 = Dopa2_cleanedStats[Dopa2_cleanedStats['ExptStepIndex'] == 
1] 



 199 
Dopa2stats_2Hyb2 = Dopa2_cleanedStats[Dopa2_cleanedStats['ExptStepIndex'] == 
2] 
Dopa2stats_3DandC1hrInc = 
Dopa2_cleanedStats[Dopa2_cleanedStats['ExptStepIndex'] == 3] 
Dopa2stats_4otherTargets1hrInc = 
Dopa2_cleanedStats[Dopa2_cleanedStats['ExptStepIndex'] == 4] 
 
 
 
Dopa2stats_1Hyb1.tail() 
#Dopa2stats_1Hyb.tail() 
#Dopa130stats_4IncON.tail() 
``` 


```python 
#Now, before we move further, let's take a detour into quality control, with 
the bright spots! 
#Can I retrieve the GE_brightSpotValues? 
brightSpotFrame = allExptData[allExptData['ProbeName'] == 'GE_BrightCorner'] 
#Okay, now get the Bright Spot data fully processed 
brightSpotFrame_clean = cleanAgilentArray(brightSpotFrame) 
#Now sort the Bright Spot Data 
brightSpotFrame_cleanSorted = 
brightSpotFrame_clean.sort_values(by=['ExptStepIndex', 'BlockIndex']) 
#Now add stat columns 
brightSpotsClean_preStats = addLabeledColumns(brightSpotFrame_cleanSorted, 
statColsToAdd) 
 
 
#Now generate the stats. Need a custom For loop for this; can't iterate over 
the brightspots' VariantNumber 
brightSpotStatsFrame = 
brightSpotsClean_preStats[brightSpotsClean_preStats['ExptStepIndex'] == -1] 
 
ExptStepIndices = brightSpotsClean_preStats.ExptStepIndex.unique() 
 
BlockIndices = brightSpotsClean_preStats.BlockIndex.unique() 
 
for x in ExptStepIndices: 
    for i in BlockIndices: 
        condition1 = brightSpotsClean_preStats['ExptStepIndex'] == x 
        condition2 = brightSpotsClean_preStats['BlockIndex'] == i 
 
        slideArray = brightSpotsClean_preStats[condition1] 
 
        blockArray = slideArray[condition2] 
         



 200 
        brightSpotStatsFrame = genStatRow(brightSpotStatsFrame, blockArray) 
        #print receivingFrame 
 
 
 
#Now save the stats 
folderPath = '/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/' 
brightSpotStatsFrame.to_csv(path_or_buf = folderPath + 
'20191009_brightSpotsPosCtrls_cleanedStats.csv') 
#Now retrieve the saved stats 
brightSpotStatsFrame = pd.read_csv(folderPath + 
'20191009_brightSpotsPosCtrls_cleanedStats.csv') 
         
brightSpotStatsFrame.tail() 
``` 

```python 
#Now split up by experimental step 
brightSpotStats_1Hyb1 = 
brightSpotStatsFrame[brightSpotStatsFrame['ExptStepIndex'] == 1] 
brightSpotStats_2Hyb2 = 
brightSpotStatsFrame[brightSpotStatsFrame['ExptStepIndex'] == 2] 
brightSpotStats_3DandC1hrInc = 
brightSpotStatsFrame[brightSpotStatsFrame['ExptStepIndex'] == 3] 
brightSpotStats_4otherTargets1hrInc = 
brightSpotStatsFrame[brightSpotStatsFrame['ExptStepIndex'] == 4] 
 
``` 

```python 
#Now, get ready to plot some information about the bright spots--their average, 
standard deviation, min and max 
def plotStats(xAxis, 
              yMeans, 
              ySTDs, 
              yMedians, 
              yMaxes, 
              yMins, 
              title, 
              xLab, 
              yLab, 
              date, 
              figName, 
               
              show = True, 
              color = 'b', 
              yMin = None, 



 201 
              yMax = None, 
              legendLoc = 'upper left'): 
    # Set the font properties (for use in legend and the axes)    
    font_path = '/library/fonts/Arial Bold.ttf' 
    font_prop = font_manager.FontProperties(fname=font_path, size=14)    
    font = {'family' : 'Arial', 
            'weight' : 'bold', 
            'size'   : 12} 
    plt.rc('font', **font)    
 
    #Define the figure 
    fig, ax = plt.subplots(figsize=(7, 5), dpi=120) 
    meansIm = ax.errorbar(xAxis, 
                     yMeans, 
                     ySTDs, 
                     linestyle='None', 
                     color = color, 
                     marker='D') 
     
    mediansIM = ax.scatter(xAxis, 
                     yMedians, 
                     color = 'c', 
                     marker='D') 
     
    maxesIm = ax.scatter(xAxis, 
                     yMaxes, 
                     color = 'r', 
                     marker='D') 
     
    minsIm = ax.scatter(xAxis, 
                     yMins, 
                     color = 'g', 
                     marker='D') 
    
    #Make a legend to describe the statistical elements 
    ColorsStylesList = [color, 'c', 'r', 'g'] 
    legend_list = ['Mean+StdDev', 'Median', 'Maximum', 'Minimum'] 
 
    legend_elements = [{} for i in range(len(legend_list))] 
    for i in range(len(legend_elements)): 
        legend_elements[i] = Line2D([0], [0], color=ColorsStylesList[i], lw=0, 
label=legend_list[i], marker = 'D') 
     
    ax.legend(legend_elements, legend_list, loc = legendLoc, 
prop={'family':'Arial', 'size':12, 'weight':'bold'}) 
 
 



 202 
    
    ax.set_title(title, fontname = 'Arial', fontsize = 16, fontweight = 'bold') 
 
    ylab = yLab 
    xlab = xLab 
 
    ax.set_xlabel(xlab, fontproperties = font_prop) 
    ax.set_ylabel(ylab, fontproperties = font_prop) 
 
    if(yMin != None): 
        ax.set_ylim(yMin, yMax) 
 
    fig.tight_layout() 
 
    #save figure 
    if(show): 
        plt.savefig(folderPath + date +'_' + figName) 
        plt.show() 
     
``` 

```python 
#Try plotting bright spots stats for first experiment's first experiment step 
fPath = '/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/20191009_brightSpotStatsFigures/' 
 
plotStats(xAxis = brightSpotStats_1Hyb1['BlockIndex'], 
                  yMeans = brightSpotStats_1Hyb1['mean_gProcessedSignal'], 
                  ySTDs = brightSpotStats_1Hyb1['std_gProcessedSignal'], 
                  yMedians = brightSpotStats_1Hyb1['med_gProcessedSignal'], 
                  yMaxes = brightSpotStats_1Hyb1['max_gProcessedSignal'], 
                  yMins = brightSpotStats_1Hyb1['min_gProcessedSignal'], 
                  title = "Cy3 Bright Spot Fluorescence vs Subarray Index, 1Hyb1 
Step", 
                  xLab = 'Sub-Array Index', 
                  yLab = 'Cy3 Fluorescence signal (AU)', 
                  date = '20191009', 
                  figName = 'brightSpotStats_1Hyb1_byBlockIndex', 
                  color = 'k', 
                  yMin = 0, 
                  yMax = None, 
                  folderPath = fPath) 
 
plotStats(xAxis = brightSpotStats_2Hyb2['BlockIndex'], 
                  yMeans = brightSpotStats_2Hyb2['mean_gProcessedSignal'], 
                  ySTDs = brightSpotStats_2Hyb2['std_gProcessedSignal'], 
                  yMedians = brightSpotStats_2Hyb2['med_gProcessedSignal'], 



 203 
                  yMaxes = brightSpotStats_2Hyb2['max_gProcessedSignal'], 
                  yMins = brightSpotStats_2Hyb2['min_gProcessedSignal'], 
                  title = "Cy3 Bright Spot Fluorescence vs Subarray Index, 2Hyb2 
Step", 
                  xLab = 'Sub-Array Index', 
                  yLab = 'Cy3 Fluorescence signal (AU)', 
                  date = '20191009', 
                  figName = 'brightSpotStats_2Hyb2_byBlockIndex', 
                  color = 'k', 
                  yMin = 0, 
                  yMax = None, 
                  folderPath = fPath) 
 
plotStats(xAxis = brightSpotStats_3DandC1hrInc['BlockIndex'], 
                  yMeans = 
brightSpotStats_3DandC1hrInc['mean_gProcessedSignal'], 
                  ySTDs = 
brightSpotStats_3DandC1hrInc['std_gProcessedSignal'], 
                  yMedians = 
brightSpotStats_3DandC1hrInc['med_gProcessedSignal'], 
                  yMaxes = 
brightSpotStats_3DandC1hrInc['max_gProcessedSignal'], 
                  yMins = 
brightSpotStats_3DandC1hrInc['min_gProcessedSignal'], 
                  title = "Cy3 Bright Spot Fluorescence vs Subarray Index, 
3DandC1hrInc Step", 
                  xLab = 'Sub-Array Index', 
                  yLab = 'Cy3 Fluorescence signal (AU)', 
                  date = '20191009', 
                  figName = 'brightSpotStats_3DandC1hrInc_byBlockIndex', 
                  color = 'k', 
                  yMin = 0, 
                  yMax = None, 
                  folderPath = fPath) 
 
plotStats(xAxis = brightSpotStats_4otherTargets1hrInc['BlockIndex'], 
                  yMeans = 
brightSpotStats_4otherTargets1hrInc['mean_gProcessedSignal'], 
                  ySTDs = 
brightSpotStats_4otherTargets1hrInc['std_gProcessedSignal'], 
                  yMedians = 
brightSpotStats_4otherTargets1hrInc['med_gProcessedSignal'], 
                  yMaxes = 
brightSpotStats_4otherTargets1hrInc['max_gProcessedSignal'], 
                  yMins = 
brightSpotStats_4otherTargets1hrInc['min_gProcessedSignal'], 
                  title = "Cy3 Bright Spot Fluorescence vs Subarray Index, 
4otherTargets1hrInc Step", 
                  xLab = 'Sub-Array Index', 



 204 
                  yLab = 'Cy3 Fluorescence signal (AU)', 
                  date = '20191009', 
                  figName = 
'brightSpotStats_4otherTargets1hrInc_byBlockIndex', 
                  color = 'k', 
                  yMin = 0, 
                  yMax = None, 
                  folderPath = fPath, 
                  legendLoc = 'upper center') 
``` 
```python 
#Note: the bright spots don't fluoresce in the Cy5 channel 
``` 

```python 
#Cool. So tomorrow, plot by experiment step 
brightSpotStats_Block_1_1 = 
brightSpotStatsFrame[brightSpotStatsFrame['BlockIndex'] == 1] 
brightSpotStats_Block_1_2 = 
brightSpotStatsFrame[brightSpotStatsFrame['BlockIndex'] == 2] 
brightSpotStats_Block_1_3 = 
brightSpotStatsFrame[brightSpotStatsFrame['BlockIndex'] == 3] 
brightSpotStats_Block_1_4 = 
brightSpotStatsFrame[brightSpotStatsFrame['BlockIndex'] == 4] 
brightSpotStats_Block_2_1 = 
brightSpotStatsFrame[brightSpotStatsFrame['BlockIndex'] == 5] 
brightSpotStats_Block_2_2 = 
brightSpotStatsFrame[brightSpotStatsFrame['BlockIndex'] == 6] 
brightSpotStats_Block_2_3 = 
brightSpotStatsFrame[brightSpotStatsFrame['BlockIndex'] == 7] 
brightSpotStats_Block_2_4 = 
brightSpotStatsFrame[brightSpotStatsFrame['BlockIndex'] == 8] 
``` 


```python 
#Try plotting bright spots stats for first experiment's first experiment step 
plotStats(xAxis = brightSpotStats_Block_1_1['ExptStepIndex'], 
                  yMeans = brightSpotStats_Block_1_1['mean_gProcessedSignal'], 
                  ySTDs = brightSpotStats_Block_1_1['std_gProcessedSignal'], 
                  yMedians = 
brightSpotStats_Block_1_1['med_gProcessedSignal'], 
                  yMaxes = brightSpotStats_Block_1_1['max_gProcessedSignal'], 
                  yMins = brightSpotStats_Block_1_1['min_gProcessedSignal'], 
                  title = "Cy3 Bright Spot Fluorescence vs Expt Step, Subarray 
1_1", 
                  xLab = 'Sub-Array Index', 
                  yLab = 'Cy3 Fluorescence signal (AU)', 
                  date = '20191009', 



 205 
                  figName = 'brightSpotStats_Subarray_1_1_byExptStep', 
                  color = 'k', 
                  yMin = 0, 
                  yMax = None, 
                  folderPath = fPath, 
                  legendLoc = 'lower left') 
 
plotStats(xAxis = brightSpotStats_Block_1_2['ExptStepIndex'], 
                  yMeans = brightSpotStats_Block_1_2['mean_gProcessedSignal'], 
                  ySTDs = brightSpotStats_Block_1_2['std_gProcessedSignal'], 
                  yMedians = 
brightSpotStats_Block_1_2['med_gProcessedSignal'], 
                  yMaxes = brightSpotStats_Block_1_2['max_gProcessedSignal'], 
                  yMins = brightSpotStats_Block_1_2['min_gProcessedSignal'], 
                  title = "Cy3 Bright Spot Fluorescence vs Expt Step, Subarray 
1_2", 
                  xLab = 'Sub-Array Index', 
                  yLab = 'Cy3 Fluorescence signal (AU)', 
                  date = '20191009', 
                  figName = 'brightSpotStats_Subarray_1_2_byExptStep', 
                  color = 'k', 
                  yMin = 0, 
                  yMax = None, 
                  folderPath = fPath) 
 
plotStats(xAxis = brightSpotStats_Block_1_3['ExptStepIndex'], 
                  yMeans = brightSpotStats_Block_1_3['mean_gProcessedSignal'], 
                  ySTDs = brightSpotStats_Block_1_3['std_gProcessedSignal'], 
                  yMedians = 
brightSpotStats_Block_1_3['med_gProcessedSignal'], 
                  yMaxes = brightSpotStats_Block_1_3['max_gProcessedSignal'], 
                  yMins = brightSpotStats_Block_1_3['min_gProcessedSignal'], 
                  title = "Cy3 Bright Spot Fluorescence vs Expt Step, Subarray 
1_3", 
                  xLab = 'Sub-Array Index', 
                  yLab = 'Cy3 Fluorescence signal (AU)', 
                  date = '20191009', 
                  figName = 'brightSpotStats_Subarray_1_3_byExptStep', 
                  color = 'k', 
                  yMin = 0, 
                  yMax = None, 
                  folderPath = fPath, 
                  legendLoc = 'lower left') 
 
plotStats(xAxis = brightSpotStats_Block_1_4['ExptStepIndex'], 
                  yMeans = brightSpotStats_Block_1_4['mean_gProcessedSignal'], 
                  ySTDs = brightSpotStats_Block_1_4['std_gProcessedSignal'], 



 206 
                  yMedians = 
brightSpotStats_Block_1_4['med_gProcessedSignal'], 
                  yMaxes = brightSpotStats_Block_1_4['max_gProcessedSignal'], 
                  yMins = brightSpotStats_Block_1_4['min_gProcessedSignal'], 
                  title = "Cy3 Bright Spot Fluorescence vs Expt Step, Subarray 
1_4", 
                  xLab = 'Sub-Array Index', 
                  yLab = 'Cy3 Fluorescence signal (AU)', 
                  date = '20191009', 
                  figName = 'brightSpotStats_Subarray_1_4_byExptStep', 
                  color = 'k', 
                  yMin = 0, 
                  yMax = None, 
                  folderPath = fPath) 
 
plotStats(xAxis = brightSpotStats_Block_2_1['ExptStepIndex'], 
                  yMeans = brightSpotStats_Block_2_1['mean_gProcessedSignal'], 
                  ySTDs = brightSpotStats_Block_2_1['std_gProcessedSignal'], 
                  yMedians = 
brightSpotStats_Block_2_1['med_gProcessedSignal'], 
                  yMaxes = brightSpotStats_Block_2_1['max_gProcessedSignal'], 
                  yMins = brightSpotStats_Block_2_1['min_gProcessedSignal'], 
                  title = "Cy3 Bright Spot Fluorescence vs Expt Step, Subarray 
2_1", 
                  xLab = 'Sub-Array Index', 
                  yLab = 'Cy3 Fluorescence signal (AU)', 
                  date = '20191009', 
                  figName = 'brightSpotStats_Subarray_2_1_byExptStep', 
                  color = 'k', 
                  yMin = 0, 
                  yMax = None, 
                  folderPath = fPath, 
                  legendLoc = 'lower left') 
 
plotStats(xAxis = brightSpotStats_Block_2_2['ExptStepIndex'], 
                  yMeans = brightSpotStats_Block_2_2['mean_gProcessedSignal'], 
                  ySTDs = brightSpotStats_Block_2_2['std_gProcessedSignal'], 
                  yMedians = 
brightSpotStats_Block_2_2['med_gProcessedSignal'], 
                  yMaxes = brightSpotStats_Block_2_2['max_gProcessedSignal'], 
                  yMins = brightSpotStats_Block_2_2['min_gProcessedSignal'], 
                  title = "Cy3 Bright Spot Fluorescence vs Expt Step, Subarray 
2_2", 
                  xLab = 'Sub-Array Index', 
                  yLab = 'Cy3 Fluorescence signal (AU)', 
                  date = '20191009', 
                  figName = 'brightSpotStats_Subarray_2_2_byExptStep', 
                  color = 'k', 



 207 
                  yMin = 0, 
                  yMax = None, 
                  folderPath = fPath) 
 
plotStats(xAxis = brightSpotStats_Block_2_3['ExptStepIndex'], 
                  yMeans = brightSpotStats_Block_2_3['mean_gProcessedSignal'], 
                  ySTDs = brightSpotStats_Block_2_3['std_gProcessedSignal'], 
                  yMedians = 
brightSpotStats_Block_2_3['med_gProcessedSignal'], 
                  yMaxes = brightSpotStats_Block_2_3['max_gProcessedSignal'], 
                  yMins = brightSpotStats_Block_2_3['min_gProcessedSignal'], 
                  title = "Cy3 Bright Spot Fluorescence vs Expt Step, Subarray 
2_3", 
                  xLab = 'Sub-Array Index', 
                  yLab = 'Cy3 Fluorescence signal (AU)', 
                  date = '20191009', 
                  figName = 'brightSpotStats_Subarray_2_3_byExptStep', 
                  color = 'k', 
                  yMin = 0, 
                  yMax = None, 
                  folderPath = fPath) 
 
plotStats(xAxis = brightSpotStats_Block_2_4['ExptStepIndex'], 
                  yMeans = brightSpotStats_Block_2_4['mean_gProcessedSignal'], 
                  ySTDs = brightSpotStats_Block_2_4['std_gProcessedSignal'], 
                  yMedians = 
brightSpotStats_Block_2_4['med_gProcessedSignal'], 
                  yMaxes = brightSpotStats_Block_2_4['max_gProcessedSignal'], 
                  yMins = brightSpotStats_Block_2_4['min_gProcessedSignal'], 
                  title = "Cy3 Bright Spot Fluorescence vs Expt Step, Subarray 
2_4", 
                  xLab = 'Sub-Array Index', 
                  yLab = 'Cy3 Fluorescence signal (AU)', 
                  date = '20191009', 
                  figName = 'brightSpotStats_Subarray_2_4_byExptStep', 
                  color = 'k', 
                  yMin = 0, 
                  yMax = None, 
                  folderPath = fPath) 
``` 

```python 
#This is a function that returns a data frame with the average and standard 
deviation within an array, 
#grouped by a selected category, and returning a single, particular column 
def returnAvgAndStd(array, groupByThisCat, returnThisColumn): 
    catUniques = array[groupByThisCat].unique() 
    #print catUniques 



 208 
    #print groupByThisCat 
    catLen = len(catUniques) 
    #print catLen 
     
    avgDataName = 'Avg' + returnThisColumn 
    stdDataName = 'Std' + returnThisColumn 
     
    catAvg = [float(i) for i in np.zeros(catLen)] 
    catStd = [float(i) for i in np.zeros(catLen)] 
     
    d = {groupByThisCat: catUniques, avgDataName: catAvg, stdDataName: catStd} 
    processedDF = pd.DataFrame(data=d).reset_index() 
    processedDF = processedDF[['index', groupByThisCat, avgDataName, 
stdDataName]] 
     
    #processedData = pd.DataFrame(data = [catUniques, catAvg, catStd]) 
     
     
    for i in range(catLen): 
        processedDF.at[i, avgDataName] = array[array[groupByThisCat] == 
catUniques[i]][returnThisColumn].mean() 
         
        #If for any reason there's only one number here, don't get std this way 
        #if(len(array[array[groupByThisCat] == 
catUniques[i]][returnThisColumn]) > 1): 
        processedDF.at[i, stdDataName] = array[array[groupByThisCat] == 
catUniques[i]][returnThisColumn].std() 
        #else: 
             
    #processedData = [catUniques, catAvg, catStd] 
    return processedDF 
``` 


```python 
#All right, see if I can generate heatmaps for Dopa2 and for the Dopa130 negative 
control 
#Function for making a data frame that can/will be converted into a heat map 
def genFrameForHeatmap(array, returnThisCol): 
    ACElens = array['ACElen'].unique() 
    shortestACElen = ACElens[0] 
     
    outputFrame = returnAvgAndStd(array[array['ACElen'] == shortestACElen], 
                                                         'ACEstartPos', 
                                                         returnThisCol) 
    outputFrame['ACElen'] = pd.Series(8 for i in range(0, 
len(outputFrame['ACEstartPos']))) 
     



 209 
    aptSeq = array['AptamerSequence'].values[0] 
    outputFrame['AptamerSequence'] = pd.Series(aptSeq for i in range(0, 
len(outputFrame['ACEstartPos']))) 
     
    aptName = array['AptamerName'].values[0] 
    outputFrame['AptamerName'] = pd.Series(aptName for i in range(0, 
len(outputFrame['ACEstartPos']))) 
     
    for i in ACElens[1:]: 
        dummyFrame = returnAvgAndStd(array[array['ACElen'] == i], 
                                                 'ACEstartPos', 
                                                 returnThisCol) 
        dummyFrame['ACElen'] = pd.Series(i for x in range(0, 
len(dummyFrame['ACEstartPos']))) 
        dummyFrame['AptamerSequence'] = pd.Series(aptSeq for i in range(0, 
len(dummyFrame['ACEstartPos']))) 
        dummyFrame['AptamerName'] = pd.Series(aptName for i in range(0, 
len(outputFrame['ACEstartPos']))) 
     
        outputFrame = outputFrame.append(dummyFrame) 
    return outputFrame 
``` 


```python 
#Let's try generating a heatmap for each individual sub 
Dopa2_AvgHybHeatMap_1Hyb1_1_1 = genFrameForHeatmap( 
    array = Dopa2stats_1Hyb1[Dopa2stats_1Hyb1['BlockIndex'] == 1], 
    returnThisCol = 'gProcessedSignal') 
 
``` 

```python 
Dopa2_AvgHybHeatMap_1Hyb1_1_1.tail() 
``` 


```python 
#Function for generating/extracting the heatmap data frame to an array before 
plotting it 
def genHeatMapArray(heatMapFrame, returnThisColumn = 'rProcessedSignal'): 
    ACElens = heatMapFrame.ACElen.unique() 
     
    heatMapArray = [] 
     
    for x in ACElens: 
        heatMapFrame_xbp = heatMapFrame[ 
        heatMapFrame['ACElen'] == x][returnThisColumn].values 



 210 
        heatMapFrame_xbp = np.append( 
            heatMapFrame_xbp, np.repeat(np.nan, x-1)).tolist() 
         
        heatMapArray.append(heatMapFrame_xbp) 
     
    return heatMapArray 
``` 

```python 
#Function for actually plotting the heatmap 
def heatMap(FrameForHeatMap, columnToPlot, title, colorBarLabel, fontSize, 
colorMax, colorMin, figName, date, cbar_kw={}, 
              folderPath = 
'/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/'): 
     
    #Array data 
    heatMapArray = genHeatMapArray(FrameForHeatMap, returnThisColumn = 'Avg' + 
columnToPlot) 
    #print heatMapArray 
    #Two axes for the heatmap: ACE/flare length and ACE/flare position on 
aptamer 
    ACElensFloats = set(FrameForHeatMap['ACElen'].values) #Make this the Y axis 
    ACElens = [int(i) for i in ACElensFloats] 
 
    AptSeq = FrameForHeatMap['AptamerSequence'].values[0] 
    AptSeq_allCaps = AptSeq.upper() 
    AptSeqList = list(AptSeq_allCaps[i] for i in range(len(AptSeq))) #Make this 
the X axis 
 
    # Set the font dictionaries (for plot title and axis titles) 
    title_font = {'fontname':'Arial', 'size':str(fontSize), 'color':'black', 
'weight':'bold', 
                  'verticalalignment':'bottom'} # Bottom vertical alignment for 
more space 
    axis_font = {'fontname':'Arial', 'size':str(fontSize), 'color':'black', 
'weight':'bold'} 
 
     
    # Set the font properties (for use in legend and the axes)    
    font_path = '/library/fonts/Arial Bold.ttf' 
    font_prop = font_manager.FontProperties(fname=font_path, 
size=str(fontSize)) 
     
    font = {'family' : 'Arial', 
            'weight' : 'bold', 
            'size'   : fontSize} 
 
    plt.rc('font', **font)    



 211 
     
    #Define the figure 
    fig, ax = plt.subplots(figsize=(12, 3), dpi=120) 
    im = ax.imshow(heatMapArray) 
     
     
    # We want to show all ticks... 
    ax.set_xticks(np.arange(len(AptSeqList))) 
    ax.set_yticks(np.arange(len(ACElens))) 
 
    # ... and label them with the respective list entries 
    ax.set_xticklabels(AptSeqList) 
    ax.set_yticklabels(ACElens) 
 
    # Rotate the tick labels and set their alignment. 
    plt.setp(ax.get_xticklabels(), rotation=0, ha="right", 
         rotation_mode="anchor") 
         
    ax.set_title(title, fontname = 'Arial', fontsize = fontSize+2, fontweight 
= 'bold') 
 
    aptName = FrameForHeatMap['AptamerName'].values[0] 
     
    ylab = 'Flare Length, bp' 
    xlab = 'Start of Flare Binding Position on ' + aptName + ' Aptamer' 
 
    ax.set_xlabel(xlab, fontproperties = font_prop) 
    ax.set_ylabel(ylab, fontproperties = font_prop) 
 
    #Add color bar 
    #SET THE RANGE OF THE COLORBAR 
    norm = colors.Normalize(vmin=colorMin, vmax=colorMax) 
    im.set_norm(norm) 
    cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw) 
    cbar.ax.set_ylabel(colorBarLabel, rotation=-90, va="bottom", 
fontproperties = font_prop) 
     
    fig.tight_layout() 
    #save figure 
    plt.savefig(folderPath + date +'_' + figName) 
 
    plt.show() 
``` 


```python 
#Plot an average of all the heatmaps from 1Hyb1 



 212 
Dopa2_AvgHybHeatMap_1Hyb1allBlocksCy3 = genFrameForHeatmap( 
    array = Dopa2stats_1Hyb1, 
    returnThisCol = 'gProcessedSignal') 
 
Dopa2_AvgHybHeatMap_1Hyb1allBlocksCy3_max = 
Dopa2_AvgHybHeatMap_1Hyb1allBlocksCy3.AvggProcessedSignal.max() 
 
 
heatMap(FrameForHeatMap = Dopa2_AvgHybHeatMap_1Hyb1allBlocksCy3,  
            columnToPlot = 'gProcessedSignal', 
            title = 'DHEA-S Aptamer Flare Binding Profile', 
            colorBarLabel = 'Cy5 Hyb Signal, AU', 
            fontSize = 12, 
            colorMin = 0, 
            colorMax = Dopa2_AvgHybHeatMap_1Hyb1allBlocksCy3_max, 
            figName = 'DIS11th_3_1Hyb1_heatMap', 
            date = '20191014', 
            cbar_kw = {}, 
            folderPath = folderPath) 
``` 

```python 
#Now make a method for generating all those individual heatmaps 
def genHeatMapsBySubArray(slideStatsFrame, 
                          titlePrefix, 
                          colorBarLabel, 
                          fontSize, 
                          colorMin, 
                          colorMax, 
                          figNamePrefix, 
                          date, 
                          cbar_kw = {}, 
                          columnToPlot = 'gProcessedSignal', 
                          folderPath = 
'/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/'): 
    subArrayIndexes = slideStatsFrame.BlockIndex.unique() 
    subArrayLabels = slideStatsFrame.Block.unique() 
 
    for i in subArrayIndexes: 
        slideStatsFrame_i = genFrameForHeatmap( 
            array = slideStatsFrame[slideStatsFrame['BlockIndex'] == i], 
            returnThisCol = columnToPlot) 
     
        heatMap(FrameForHeatMap = slideStatsFrame_i,  
            columnToPlot = columnToPlot, 
            title = titlePrefix + ', Block ' + subArrayLabels[i-1], 



 213 
            colorBarLabel = colorBarLabel, 
            fontSize = fontSize, 
            colorMin = colorMin, 
            colorMax = colorMax, 
            figName = figNamePrefix + '_Block_' + subArrayLabels[i-1], 
            date = date, 
            cbar_kw = {}, 
            folderPath = folderPath) 
``` 


```python 
#Okay, interesting. Get the exact same hybridization pattern for all the 
subarrays, but the absolute 
#fluorescence values vary pretty significantly between the arrays. If we 
normalize the fluorescence values  
#to the bright spot values, does that change/improve consistency of the values 
between arrays? 
#Data frames to work from on normalization: 
#Dopa2_cleanedStats 
#Dopa130_cleanedStats 
#brightSpotStatsFrame 
``` 

```python 
normColsToAdd = ['mean_gProcessedSignal_normToBSmean', 
                'med_gProcessedSignal_normToBSmean', 
                'std_gProcessedSignal_normToBSmean', 
                'max_gProcessedSignal_normToBSmean', 
                'min_gProcessedSignal_normToBSmean', 
                'mean_rProcessedSignal_normToBSmean', 
                'med_rProcessedSignal_normToBSmean', 
                'std_rProcessedSignal_normToBSmean', 
                'max_rProcessedSignal_normToBSmean', 
                'min_rProcessedSignal_normToBSmean', 
                'mean_gProcessedSignal_normToBSmedian', 
                'med_gProcessedSignal_normToBSmedian', 
                'std_gProcessedSignal_normToBSmedian', 
                'max_gProcessedSignal_normToBSmedian', 
                'min_gProcessedSignal_normToBSmedian', 
                'mean_rProcessedSignal_normToBSmedian', 
                'med_rProcessedSignal_normToBSmedian', 
                'std_rProcessedSignal_normToBSmedian', 
                'max_rProcessedSignal_normToBSmedian', 
                'min_rProcessedSignal_normToBSmedian'] 
``` 


 214
```python 
#Add the columns to the stat frames 
Dopa2_cleanedStats_withNormToBS = addLabeledColumns(Dopa2_cleanedStats, 
normColsToAdd) 
Dopa2_cleanedStats_withNormToBS.tail() 
``` 


```python 
exptStepIndex = Dopa2_cleanedStats_withNormToBS.ExptStepIndex[0] 
blockIndex = Dopa2_cleanedStats_withNormToBS.BlockIndex[0] 
brightSpotFilter = (brightSpotStatsFrame['ExptStepIndex'] == exptStepIndex) & 
(brightSpotStatsFrame['BlockIndex'] == exptStepIndex) 
relevantBSdata = brightSpotStatsFrame[brightSpotFilter] 
relevantBSdata 
relevantBSmean = relevantBSdata.mean_gProcessedSignal[0] 
relevantBSmedian = relevantBSdata.med_gProcessedSignal[0] 
print relevantBSmean 
print relevantBSmedian 
 
#normalizedStatsFrame = Dopa2_cleanedStats_withNormToBS.copy() 
#normalizedStatsFrame.head() 
``` 

 34250.970000000016
 36013.10000000001


```python 
#Now, iterate through and normalize to either the BS mean or the BS median 
def addNormtoBS_inEachSubarray_stats(statsFrameToNormalize, BSstatsFrame): 
    tic = time.clock() 
     
    normalizedStatsFrame = statsFrameToNormalize.copy() 
     
    for i in statsFrameToNormalize.index: 
        #What I want to do here is to first, get the experiment step index and 
the subarray index 
        exptStepIndex = normalizedStatsFrame.ExptStepIndex[i] 
        blockIndex = normalizedStatsFrame.BlockIndex[i] 
         
        #Next, I want to retrieve the mean and median gProcessedSignal from the 
brightSpotsStatsFrame 
        brightSpotFilter = (BSstatsFrame['ExptStepIndex'] == exptStepIndex) & 
(BSstatsFrame['BlockIndex'] == exptStepIndex) 
        relevantBSdata = BSstatsFrame[brightSpotFilter] 
         



 215 
        relevantBSmean = relevantBSdata.mean_gProcessedSignal.values[0] 
        relevantBSmedian = relevantBSdata.med_gProcessedSignal.values[0] 
         
        #Add the stats normalized to the BSmean 
        #Green Channel 
        normalizedStatsFrame.at[i, 'mean_gProcessedSignal_normToBSmean'] = 
normalizedStatsFrame.mean_gProcessedSignal[i] / relevantBSmean 
        normalizedStatsFrame.at[i, 'med_gProcessedSignal_normToBSmean'] = 
normalizedStatsFrame.med_gProcessedSignal[i] / relevantBSmean 
        normalizedStatsFrame.at[i, 'std_gProcessedSignal_normToBSmean'] = 
normalizedStatsFrame.std_gProcessedSignal[i] / relevantBSmean 
        normalizedStatsFrame.at[i, 'max_gProcessedSignal_normToBSmean'] = 
normalizedStatsFrame.max_gProcessedSignal[i] / relevantBSmean 
        normalizedStatsFrame.at[i, 'min_gProcessedSignal_normToBSmean'] = 
normalizedStatsFrame.min_gProcessedSignal[i] / relevantBSmean 
        #Red Channel (note that I'm normalizing the red channel by green channel 
positive controls; unclear if this will work yet) 
        normalizedStatsFrame.at[i, 'mean_rProcessedSignal_normToBSmean'] = 
normalizedStatsFrame.mean_rProcessedSignal[i] / relevantBSmean 
        normalizedStatsFrame.at[i, 'med_rProcessedSignal_normToBSmean'] = 
normalizedStatsFrame.med_rProcessedSignal[i] / relevantBSmean 
        normalizedStatsFrame.at[i, 'std_rProcessedSignal_normToBSmean'] = 
normalizedStatsFrame.std_rProcessedSignal[i] / relevantBSmean 
        normalizedStatsFrame.at[i, 'max_rProcessedSignal_normToBSmean'] = 
normalizedStatsFrame.max_rProcessedSignal[i] / relevantBSmean 
        normalizedStatsFrame.at[i, 'min_rProcessedSignal_normToBSmean'] = 
normalizedStatsFrame.min_rProcessedSignal[i] / relevantBSmean 
         
        #Add the stats normalized to the BSmedian 
        #Green Channel 
        normalizedStatsFrame.at[i, 'mean_gProcessedSignal_normToBSmedian'] = 
normalizedStatsFrame.mean_gProcessedSignal[i] / relevantBSmedian 
        normalizedStatsFrame.at[i, 'med_gProcessedSignal_normToBSmedian'] = 
normalizedStatsFrame.med_gProcessedSignal[i] / relevantBSmedian 
        normalizedStatsFrame.at[i, 'std_gProcessedSignal_normToBSmedian'] = 
normalizedStatsFrame.std_gProcessedSignal[i] / relevantBSmedian 
        normalizedStatsFrame.at[i, 'max_gProcessedSignal_normToBSmedian'] = 
normalizedStatsFrame.max_gProcessedSignal[i] / relevantBSmedian 
        normalizedStatsFrame.at[i, 'min_gProcessedSignal_normToBSmedian'] = 
normalizedStatsFrame.min_gProcessedSignal[i] / relevantBSmedian 
        #Red Channel (note that I'm normalizing the red channel by green channel 
positive controls; unclear if this will work yet) 
        normalizedStatsFrame.at[i, 'mean_rProcessedSignal_normToBSmedian'] = 
normalizedStatsFrame.mean_rProcessedSignal[i] / relevantBSmedian 
        normalizedStatsFrame.at[i, 'med_rProcessedSignal_normToBSmedian'] = 
normalizedStatsFrame.med_rProcessedSignal[i] / relevantBSmedian 
        normalizedStatsFrame.at[i, 'std_rProcessedSignal_normToBSmedian'] = 
normalizedStatsFrame.std_rProcessedSignal[i] / relevantBSmedian 
        normalizedStatsFrame.at[i, 'max_rProcessedSignal_normToBSmedian'] = 
normalizedStatsFrame.max_rProcessedSignal[i] / relevantBSmedian 



 216 
        normalizedStatsFrame.at[i, 'min_rProcessedSignal_normToBSmedian'] = 
normalizedStatsFrame.min_rProcessedSignal[i] / relevantBSmedian 
     
    toc = time.clock() 
    print toc-tic 
    return normalizedStatsFrame 
 
``` 


```python 
Dopa2_cleanedStats_withNormToBS = 
addNormtoBS_inEachSubarray_stats(statsFrameToNormalize = 
Dopa2_cleanedStats_withNormToBS, 
                                                         BSstatsFrame = 
brightSpotStatsFrame) 
 
``` 

 28.09941

```python 
Dopa2_cleanedStats_withNormToBS.head() 
 
``` 

```python 
#Cool, so the negative control aptamer mainly doesn't show fluorescence, except 
for at a couple of locations 
#Where it looks like, by chance, the flare sequences were able to bind to one 
of the aptamers added on 
``` 


```python 
#allExptData[allExptData['ControlType'] == 1].SystematicName.unique() 
#IMPORTANT QUESTION: WHAT DO ALL THE DIFFERENT CONTROL SPOTS DO? 
#I've used GE_BrightCorner spots (brightSpots), 
#But there's also: 
controlFeatures = ['GE_BrightCorner', 'DarkCorner', 'E1A_r60_a22', 'ERCC-
00053_71', 
       'ERCC-00062_278', 'ETG10_13482', 'ERCC-00012_90', 'ERCC-00077_121', 
       'ERCC-00075_180', 'E1A_r60_a107', 'ETG08_142674', 'E1A_r60_a135', 
       'ERCC-00104_60', 'ERCC-00171_229', 'ETG05_66023', 'ERCC-00097_63', 
       'ERCC-00028_121', 'E1A_r60_3', 'ETG09_35454', 'E1A_r60_1', 
       'ETG04_27747', 'ERCC-00043_129', 'E1A_r60_a97', 'ETG09_205211', 
       'ERCC-00160_243', 'ETG10_195139', 'ETG05_36762', 'ETG09_48764', 
       'E1A_r60_n9', 'E1A_r60_a104', 'E1A_r60_n11', 'ETG07_105829', 



 217 
       'ERCC-00144_60', 'ETG02_36680', 'E1A_r60_a20', 'ETG10_236652', 
       'ETG10_234183', 'DCP_20_9', 'DCP_22_0', 'DCP_22_9', 'DCP_22_6', 
       'DCP_1_0', 'DCP_20_1', 'DCP_22_4', 'DCP_20_7', 'DCP_20_0', 
       'DCP_20_3', 'DCP_1_4', 'DCP_1_11', 'DCP_22_7', 'DCP_1_2', 
       'DCP_22_2', 'DCP_20_5', 'DCP_1_1', 'DCP_1_7'] 
    #What do they all do? 
``` 


```python 
flaresAptamersSeqs[['AptamerName', 'AptamerSequence']] 
aptNamesAndSeqs = pd.DataFrame() 
aptNamesAndSeqs['AptamerSequence'] = 
flaresAptamersSeqs.AptamerSequence.unique() 
aptNamesAndSeqs['AptamerName'] = flaresAptamersSeqs.AptamerName.unique() 
 
#aptNamesAndSeqs 
 
#Maybe the extra Dopa aptamers are better negative controls, since they seem to 
have more divergent sequences 
#than the other aptamers 
#Try out running Dopa130 as the negative control 
``` 


```python 
#Now, next steps: generate raw fluorescence heatmaps for all subarrays for all 
experimental steps, in the green 
#And the red channel, normalized to the bright spot fluorescence and not. 
 
#Then, zoom in on one particular flare strand--the 12bp Dopa2 flare strand. 
#Examine how its fluorescence changes as a function of subarray and experimental 
step. 
#Also examine if/how these trends change when the fluorescence values are 
normalized to the bright spot. 
#Then, calculate fold change in fluorescence relative to the previous 
experimental step for all sequences. 
    #Do this with and without normalizing to bright spot fluorescence. 
#Then, look at how fluorescence changes in the calibration subarray, with and 
without BrightSpot normalization 
#Then, normalize all other changes in fluorescence by the calibration subarray, 
either with or without brightSpot 
    #normalization 
#Then, calculate the k_off rate for flares free in buffer, based on the 
normalized change in fluorescence divided 
    #by 1 hour 
#And calculate the k_off_IF rate for flares in the presence of target molecule 
#And then plot heatmaps that show where k_off_IF is larger than k_off 



 218 
``` 


```python 
#Generate raw fluorescence heatmaps for all subarrays for all experimental 
steps, in the green 
#And the red channel, normalized to the bright spot fluorescence and not. 
 
``` 


```python 
#I should abstract all this plotting to a function 
#Take as input a list of frames, a list of title prefixes, a color bar label, 
a list of figure name prefixes, 
#a date, colorbar keywords, columnToPlot, and folderPath to save files 
def genHeatMapsBySubArrayForMultipleExptSteps(frameList, titlePrefixList, 
figNamePrefixList, 
                                              colorBarLabel, fontSize, 
colorMin, colorMax, 
                                              date, columnToPlot, cbar_kw = 
{}, 
                                             folderPath = 
'/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/'): 
    for i in range(len(frameList)): 
        genHeatMapsBySubArray(slideStatsFrame = frameList[i], 
                          titlePrefix = titlePrefixList[i], 
                          colorBarLabel = colorBarLabel, 
                          fontSize = fontSize, 
                          colorMin = colorMin, 
                          colorMax = colorMax, 
                          figNamePrefix = figNamePrefixList[i], 
                          date = date, 
                          cbar_kw = cbar_kw, 
                          columnToPlot = columnToPlot) 
     
``` 


```python 
#Dopa2 not normed to BS, green channel 
Dopa2stats_frameList = [Dopa2stats_1Hyb1, 
         Dopa2stats_2Hyb2, 
         Dopa2stats_3DandC1hrInc, 
         Dopa2stats_4otherTargets1hrInc] 
 
Dopa2stats_titlePrefixList = ['Dopa2 Hyb, Cy3, Step 1Hyb1', 



 219 
                                  'Dopa2 Hyb, Cy3, Step 2Hyb2',  
                                  'Dopa2 Hyb, Cy3, Step 3DandC1hrInc', 
                                  'Dopa2 Hyb, Cy3, Step 4otherTargets1hrInc'] 
 
Dopa2stats_figNamePrefixList = ['Dopa2_Cy3Hyb_Heatmap_Step_1Hyb1_Block_', 
                                    'Dopa2_Cy3Hyb_Heatmap_Step_2Hyb2_Block_',  
                                    
'Dopa2_Cy3Hyb_Heatmap_Step_3DandC1hrInc_Block_', 
                                    
'Dopa2_Cy3Hyb_Heatmap_Step_4otherTargets1hrInc_Block_'] 
 
#Set colorMin and colorMax relative to the highest fluorescence on the first 
scan 
Dopa2stats_1Hyb1_greenMax = Dopa2stats_1Hyb1.gProcessedSignal.max() 
 
 
colorBarLabel = 'Cy3 Hyb Signal, AU' 
fontSize = 12 
colorMin = 0 
colorMax = Dopa2stats_1Hyb1_greenMax 
date = '20191014' 
columnToPlot = 'gProcessedSignal' 
cbar_kw = {} 
folderPath = '/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/' 
 
genHeatMapsBySubArrayForMultipleExptSteps(frameList = Dopa2stats_frameList, 
                                          titlePrefixList = 
Dopa2stats_titlePrefixList, 
                                          figNamePrefixList = 
Dopa2stats_figNamePrefixList, 
                                          colorBarLabel = colorBarLabel, 
                                          fontSize = fontSize, 
                                          colorMin = colorMin, 
                                          colorMax = colorMax, 
                                          date = date, 
                                          columnToPlot = columnToPlot, 
                                          cbar_kw = cbar_kw, 
                                          folderPath = folderPath) 
 
``` 

```python 
#Dopa2 not normed to BS, red channel 
Dopa2stats_frameList = [Dopa2stats_1Hyb1, 
         Dopa2stats_2Hyb2, 
         Dopa2stats_3DandC1hrInc, 
         Dopa2stats_4otherTargets1hrInc] 



 220 
 
Dopa2stats_titlePrefixList = ['Dopa2 Hyb, Cy5, Step 1Hyb1', 
                                  'Dopa2 Hyb, Cy5, Step 2Hyb2',  
                                  'Dopa2 Hyb, Cy5, Step 3DandC1hrInc', 
                                  'Dopa2 Hyb, Cy5, Step 4otherTargets1hrInc'] 
 
Dopa2stats_figNamePrefixList = ['Dopa2_Cy5Hyb_Heatmap_Step_1Hyb1_Block_', 
                                    'Dopa2_Cy5Hyb_Heatmap_Step_2Hyb2_Block_',  
                                    
'Dopa2_Cy5Hyb_Heatmap_Step_3DandC1hrInc_Block_', 
                                    
'Dopa2_Cy5Hyb_Heatmap_Step_4otherTargets1hrInc_Block_'] 
 
#Set colorMin and colorMax relative to the highest fluorescence on the first 
scan 
Dopa2stats_1Hyb1_redMax = Dopa2stats_1Hyb1.rProcessedSignal.max() 
 
colorBarLabel = 'Cy5 Hyb Signal, AU' 
fontSize = 12 
colorMin = 0 
colorMax = Dopa2stats_1Hyb1_redMax 
date = '20191014' 
columnToPlot = 'rProcessedSignal' 
cbar_kw = {} 
folderPath = '/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/' 
 
genHeatMapsBySubArrayForMultipleExptSteps(frameList = Dopa2stats_frameList, 
                                          titlePrefixList = 
Dopa2stats_titlePrefixList, 
                                          figNamePrefixList = 
Dopa2stats_figNamePrefixList, 
                                          colorBarLabel = colorBarLabel, 
                                          fontSize = fontSize, 
                                          colorMin = colorMin, 
                                          colorMax = colorMax, 
                                          date = date, 
                                          columnToPlot = columnToPlot, 
                                          cbar_kw = cbar_kw, 
                                          folderPath = folderPath) 
 
``` 

```python 
#Dopa2 normed to BS, green channel 
Dopa2_cleanedStats_withNormToBS_1Hyb1 = Dopa2_cleanedStats_withNormToBS[ 
    Dopa2_cleanedStats_withNormToBS['ExptStepIndex'] == 1] 
Dopa2_cleanedStats_withNormToBS_2Hyb2 = Dopa2_cleanedStats_withNormToBS[ 



 221 
    Dopa2_cleanedStats_withNormToBS['ExptStepIndex'] == 2] 
Dopa2_cleanedStats_withNormToBS_3DandC1hrInc = 
Dopa2_cleanedStats_withNormToBS[ 
    Dopa2_cleanedStats_withNormToBS['ExptStepIndex'] == 3] 
Dopa2_cleanedStats_withNormToBS_4otherTargets1hrInc = 
Dopa2_cleanedStats_withNormToBS[ 
    Dopa2_cleanedStats_withNormToBS['ExptStepIndex'] == 4] 
 
Dopa2stats_normToBS_frameList = [Dopa2_cleanedStats_withNormToBS_1Hyb1, 
         Dopa2_cleanedStats_withNormToBS_2Hyb2, 
         Dopa2_cleanedStats_withNormToBS_3DandC1hrInc, 
         Dopa2_cleanedStats_withNormToBS_4otherTargets1hrInc] 
 
Dopa2stats_normToBS_titlePrefixList = ['Dopa2 Hyb Norm to BS, Cy3, Step 1Hyb1', 
                                  'Dopa2 Hyb Norm to BS, Cy3, Step 2Hyb2',  
                                  'Dopa2 Hyb Norm to BS, Cy3, Step 
3DandC1hrInc', 
                                  'Dopa2 Hyb Norm to BS, Cy3, Step 
4otherTargets1hrInc'] 
 
Dopa2stats_normToBS_figNamePrefixList = 
['Dopa2_Cy3Hyb_NormToBS_Heatmap_Step_1Hyb1_Block_', 
                                    
'Dopa2_Cy3Hyb_NormToBS_Heatmap_Step_2Hyb2_Block_',  
                                    
'Dopa2_Cy3Hyb_NormToBS_Heatmap_Step_3DandC1hrInc_Block_', 
                                    
'Dopa2_Cy3Hyb_NormToBS_Heatmap_Step_4otherTargets1hrInc_Block_'] 
 
#Set colorMin and colorMax relative to the highest fluorescence on the first 
scan 
Dopa2_cleanedStats_withNormToBS_1Hyb1_greenMax = 
Dopa2_cleanedStats_withNormToBS_1Hyb1.mean_gProcessedSignal_normToBSmean.max(
) 
 
 
colorBarLabel = 'Cy3 Hyb Signal, AU' 
fontSize = 12 
colorMin = 0 
colorMax = Dopa2_cleanedStats_withNormToBS_1Hyb1_greenMax 
date = '20191014' 
columnToPlot = 'mean_gProcessedSignal_normToBSmean' 
cbar_kw = {} 
folderPath = '/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/' 
 
genHeatMapsBySubArrayForMultipleExptSteps(frameList = 
Dopa2stats_normToBS_frameList, 



 222 
                                          titlePrefixList = 
Dopa2stats_normToBS_titlePrefixList, 
                                          figNamePrefixList = 
Dopa2stats_normToBS_figNamePrefixList, 
                                          colorBarLabel = colorBarLabel, 
                                          fontSize = 16, 
                                          colorMin = colorMin, 
                                          colorMax = colorMax, 
                                          date = date, 
                                          columnToPlot = columnToPlot, 
                                          cbar_kw = cbar_kw, 
                                          folderPath = folderPath) 
 
``` 

```python 
Dopa2_cleanedStats_withNormToBS_1Hyb1.head() 
``` 

```python 
#Now do the normalized Cy5 values  
Dopa2stats_normToBS_titlePrefixList = ['Dopa2 Hyb Norm to BS, Cy5, Step 1Hyb1', 
                                  'Dopa2 Hyb Norm to BS, Cy5, Step 2Hyb2',  
                                  'Dopa2 Hyb Norm to BS, Cy5, Step 
3DandC1hrInc', 
                                  'Dopa2 Hyb Norm to BS, Cy5, Step 
4otherTargets1hrInc'] 
 
Dopa2stats_normToBS_figNamePrefixList = 
['Dopa2_Cy5Hyb_NormToBS_Heatmap_Step_1Hyb1_Block_', 
                                    
'Dopa2_Cy5Hyb_NormToBS_Heatmap_Step_2Hyb2_Block_',  
                                    
'Dopa2_Cy5Hyb_NormToBS_Heatmap_Step_3DandC1hrInc_Block_', 
                                    
'Dopa2_Cy5Hyb_NormToBS_Heatmap_Step_4otherTargets1hrInc_Block_'] 
 
#Set colorMin and colorMax relative to the highest fluorescence on the first 
scan 
Dopa2_cleanedStats_withNormToBS_1Hyb1_redMax = 
Dopa2_cleanedStats_withNormToBS_1Hyb1.mean_rProcessedSignal_normToBSmean.max(
) 
 
 
colorBarLabel = 'Cy5 Hyb Signal, AU' 
fontSize = 12 
colorMin = 0 
colorMax = Dopa2_cleanedStats_withNormToBS_1Hyb1_redMax 
date = '20191014' 



 223 
columnToPlot = 'mean_rProcessedSignal_normToBSmean' 
cbar_kw = {} 
folderPath = '/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/' 
 
genHeatMapsBySubArrayForMultipleExptSteps(frameList = 
Dopa2stats_normToBS_frameList, 
                                          titlePrefixList = 
Dopa2stats_normToBS_titlePrefixList, 
                                          figNamePrefixList = 
Dopa2stats_normToBS_figNamePrefixList, 
                                          colorBarLabel = colorBarLabel, 
                                          fontSize = fontSize, 
                                          colorMin = colorMin, 
                                          colorMax = colorMax, 
                                          date = date, 
                                          columnToPlot = columnToPlot, 
                                          cbar_kw = cbar_kw, 
                                          folderPath = folderPath) 
``` 


```python 
#Hmm, so what I seem to be seeing from this is that the average of bright corner 
values in a subarray 
#Doesn't necessarily normalize fluorescence values consistently 
#In particular, setting the color bar relative to the maximum hybridized 1Hyb1 
value doesn't guarantee 
#that heatmaps from later conditions won't have large numbers of sequences with 
higher normalized fluorescence 
#values relative to their bright spots 
#One question worth pursuing is whether these subarray-specific trends are 
consistent across multiple aptamers 
#And this is a question I can pursue and answer fairly quickly, by copying this 
notebook and running the analysis 
#for many other aptamers 
``` 


```python 
#Plot an average of all the heatmaps from 1Hyb1 in Cy3 and Cy5 channels 
Dopa2_AvgHybHeatMap_1Hyb1_red = genFrameForHeatmap( 
    array = Dopa2stats_1Hyb1, 
    returnThisCol = 'rProcessedSignal') 
 
colorMax_red = Dopa2_AvgHybHeatMap_1Hyb1_red.AvgrProcessedSignal.max() 
 
Dopa2_AvgHybHeatMap_1Hyb1_green = genFrameForHeatmap( 



 224 
    array = Dopa2stats_1Hyb1, 
    returnThisCol = 'gProcessedSignal') 
 
colorMax_green = Dopa2_AvgHybHeatMap_1Hyb1_green.AvggProcessedSignal.max() 
 
heatMap(FrameForHeatMap = Dopa2_AvgHybHeatMap_1Hyb1_red,  
            columnToPlot = 'rProcessedSignal', 
            title = 'Dopa2 Aptamer Flare Binding Profile', 
            colorBarLabel = 'Cy5 Hyb Signal, AU', 
            fontSize = fontSize, 
            colorMin = colorMin, 
            colorMax = colorMax_red, 
            figName = 'Dopa2_1Hyb1_AllCy5_heatMap', 
            date = '20191014', 
            cbar_kw = {}, 
            folderPath = folderPath) 
 
heatMap(FrameForHeatMap = Dopa2_AvgHybHeatMap_1Hyb1_green,  
            columnToPlot = 'gProcessedSignal', 
            title = 'Dopa2 Aptamer Flare Binding Profile', 
            colorBarLabel = 'Cy3 Hyb Signal, AU', 
            fontSize = fontSize, 
            colorMin = colorMin, 
            colorMax = colorMax_green, 
            figName = 'Dopa2_1Hyb1_AllCy3_heatMap', 
            date = '20191014', 
            cbar_kw = {}, 
            folderPath = folderPath) 
``` 


 225
APPENDIX D: Supplementary Code for Chapter 4

Code D1. Matlab script for quantifying CRISPR-mediated insertion/deletion mutations.
WTnuc='target genomic site sequence';
%WTnuc='complimentary sequence to the above target site sequence';
%cycle through fastq files for different samples
files=dir('*.fastq');
indelstart=69;
width=40;
flank=10;
SUMMARY={};
SUMMARY{1,1}='Filename';
SUMMARY{1,2}='Skipped reads';
SUMMARY{1,3}='not INDEL';
SUMMARY{1,4}='Insertions';
SUMMARY{1,5}='Deletions';
SUMMARY{1,6}='INDEL rate';
foldername=strcat(num2str(width),'_',num2str(indelstart),'summary.csv');

for d=1:total sample number
 filename=files(d).name;
 %read fastq file
 [header,seqs,qscore] = fastqread(filename);
 seqsLength = length(seqs); % number of sequences
 seqsFile = strcat(strrep(filename,'.fastq',''),'_INDELS'); % trims
off .fastq
 %create a directory with the same name as fastq file+_INDELS
 if exist(seqsFile,'dir');
 error('Directory already exists. Please rename or move it before
moving on.');
 end
 mkdir(seqsFile); % make directory
 wtLength = length(WTnuc); % length of wildtype sequence
 sBLength = length(seqs); % number of sequences

 % initialize counters and cell arrays
 nSkips=0;
 notINDEL=0;
 ins={};
 dels={};
 NumIns=0;
 NumDels=0;
 % iterate through each sequencing read
 for i = 1:sBLength
 %search for 10BP sequences that should flank both sides of the "INDEL
WINDOW"
 windowstart=strfind(seqs{i},WTnuc(indelstart-flank:indelstart));

 226
 windowend=strfind(seqs{i},WTnuc(indelstart+width:indelstart+width+fla
nk));
 %if these flanks are found proceed\
 if length(windowstart)==1 && length(windowend)==1
 %if the sequence length matches the INDEL window length save as
 %not INDEL
 if windowend-windowstart==width+flank
 notINDEL=notINDEL+1;
 %if the sequence is two or more baseslonger than the INDEL
 %window length save as an Insertion
 elseif windowend-windowstart>=width+flank+1
 NumIns=NumIns+1;
 ins{NumIns,2}=seqs{i};
 ins{NumIns,1}=filename(1:2);
 %if the sequence is two or more bases shorter than the INDEL
 %window length save as a Deletion and name the second column
 %with the fileame
 elseif windowend-windowstart<=width+flank-1
 NumDels=NumDels+1;
 dels{NumDels,2}=seqs{i};
 dels{NumDels,1}=filename(1:2);
 %keep track of skipped sequences that are either one base
 %shorter or longer than the INDEL window width
 else
 nSkips=nSkips+1;
 end
 %keep track of skipped sequences that do not posess matching flank
 %sequences
 else
 nSkips=nSkips+1;
 end
 end
 SUMMARY{d+1,1}=seqsFile;
 SUMMARY{d+1,2}=nSkips;
 SUMMARY{d+1,3}=notINDEL;
 SUMMARY{d+1,4}=NumIns;
 SUMMARY{d+1,5}=NumDels;
 SUMMARY{d+1,6}=(NumIns+NumDels)/(NumIns+NumDels+notINDEL);
 fid=fopen(strcat(seqsFile, '/summary.txt'), 'wt');
 fprintf(fid, 'Skipped reads %i\n not INDEL %i\n Insertions %i\n Deletions
%i\n', [nSkips, notINDEL, NumIns, NumDels]);
 fclose(fid);
 save(strcat(seqsFile, '/nSkips'), 'nSkips');
 save(strcat(seqsFile, '/notINDEL'), 'notINDEL');
 save(strcat(seqsFile, '/NumIns'), 'NumIns');
 save(strcat(seqsFile, '/NumDels'), 'NumDels');
 save(strcat(seqsFile, '/dels'), 'dels');

 227
 dlmcell(strcat(seqsFile, strcat('/dels_', filename(1:2), '.csv')), dels,
',');
 save(strcat(seqsFile, '/ins'), 'ins');
 dlmcell(strcat(seqsFile, strcat('/ins_', filename(1:2), '.csv')), ins,
',');
end
dlmcell(strcat(foldername), SUMMARY, ',')

