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ABSTRACT 

 

Sensing and Delivery of Biomolecules with Spherical Nucleic Acid Nanoparticle Conjugates 

 

Over the past fifty years, techniques for synthesizing and manipulating matter on the 1-100 nanometer 

scale have led to the development of nanoparticle-based approaches to both disease diagnosis and treatment. 

The modification of nanoparticles with biological macromolecules such as proteins and nucleic acids has 

led to the development of highly sensitive detectors of disease biomarkers and has facilitated the delivery 

of therapeutic molecules into target tissues and cells. Challenges and opportunities in the development of 

biomolecule-functionalized nanoparticles include: (1) how to balance the sensitivity of a biomarker 

diagnostic assay against the cost and complexity of the equipment required to perform the assay; (2) 

developing design rules for the construction of nucleic-acid-based biosensors of small molecules; and (3) 

cytosolic delivery of extracellular enzymes by avoiding endosomal entrapment. Present in this thesis is an 

exploration of biomolecule-functionalized nanoparticles for addressing these challenges. Chapter one 

surveys the origins and applications of a wide variety of bio-functionalized nanoparticles. In particular, I 

focus on spherical nucleic acids (SNAs), nanoparticles densely functionalized with a highly oriented 

oligonucleotide shell, which possess structural and biological properties distinct from linear nucleic acids 

that have enabled the development of biosensors and new therapeutics. Chapter two details the use of 

antibody-functionalized gold nanoparticles to develop a dual readout assay for device-free and highly 

sensitive detection of an anthrax biomarker. Chapter three explores the properties and design rules of 

aptamer NanoFlares, a class of SNA functionalized with DNA aptamers and hybridized with small 

fluorophore-modified oligonucleotides, in the context of work aimed at developing an assay for small 

molecule biomarkers of human stress. Chapter four investigates the possibilities and challenges of adapting 

SNAs for the delivery of gene-editing enzymes, with the goal of using gene editing to better understand the 
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endosomal escape of SNAs. Finally, chapter five discusses the challenges encountered during these projects 

and provides perspective on how researchers could build on this work going forward. 
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1.1 Summary 

In both diagnostic assays and therapeutics, nanoparticles display properties distinct from those of their 

molecular-scale counterparts, and can serve as multifunctional platforms for the attachment and 

combination of molecular functional groups.1 These properties enable nanoparticles to detect biomarkers 

of disease sensitively and with multiple readout modalities, as well as to enter cells and serve as delivery 

vehicles for therapeutic biomolecules. I present in this thesis an extensive exploration of biomolecule-

functionalized nanoparticles for the diagnosis and treatment of disease. I will first discuss the use of 

antibody-functionalized gold nanoparticles to develop a highly sensitive and specific dual readout assay for 

an anthrax biomarker. I will then investigate the properties and design rules of aptamer NanoFlares, gold 

nanoparticles functionalized with DNA aptamers and hybridized with small fluorophore-modified 

oligonucleotides, in the context of work towards an assay for human stress hormones. Finally, I will explore 

the possibilities and challenges of oligonucleotide-functionalized liposomes (liposomal spherical nucleic 

acids) for the delivery of gene-editing enzymes. 

1.2 Nanoparticles in Diagnostics 

One of the key insights of nanotechnology is that the properties of a nanoparticle can be dramatically 

different than the properties of a larger mass of the same material. Gold nanoparticles (AuNPs), for instance, 

display resonant waves of oscillating electrons at the boundary between the nanoparticle’s surface and the 

medium in which it is dispersed.2 When confined to the surface area of 5-100 nm AuNPs, this surface 

plasmon resonance (SPR) causes AuNPs to absorb light with extraordinary efficiency, with the wavelengths 

of peak absorption dictated by the size and shape of the particle.3 Similarly, nanoparticles of semiconductors 

such as cadmium sulfide (CdS) have energy levels in the conductance and valence orbital bands that are 

quantized rather than continuous, with the size of the energy gap between the two bands dictated largely by 

the size of the nanoparticle.4 These quantum dots display robust fluorescence emission in a narrow range 

of wavelengths corresponding to the size of the band gap, meaning that particles with the same material 
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composition but of different sizes will emit different wavelengths of light upon irradiation with ultraviolet 

light. 

The unique intrinsic properties of some nanoparticles have been harnessed for diagnostic assays and 

measurements. For instance, the local SPR on the surface of 10-30 nanometer AuNPs gives dispersed 

solutions of these particles a deep red color.5 However, aggregation of gold nanoparticles in solution causes 

a coupling of the particles’ electron oscillations, a redshift in the SPR absorption peak, and a change of 

solution color to blue.5 This aggregation-induced color change has been used as a visual readout in 

diagnostics for proteins, nucleic acids and small molecules.6 Similarly, the narrow emission band and high 

photostability of quantum dots has led to their development in multiplex diagnostics, with different analytes 

detected with quantum dots of different colors.7 Iron oxide nanoparticles, which unlike bulk iron oxide are 

superparamagnetic, have been developed as contrast agents for magnetic resonance imaging.8 

Through both covalent chemical conjugation and noncovalent adsorption, nanoparticles can serve as a 

platform or substrate for the attachment of bio-recognition elements that bind to disease biomarkers of 

interest.9 Indeed, most nanoparticles employed in diagnostic assays are functionalized with biomarker-

binding biomolecules, including antibodies10 and other epitope-binding proteins,11 DNA and RNA 

oligonucleotides,12 as well as nucleic acid13 and peptide14 aptamers. Researchers have used biomolecule-

functionalized nanoparticles to detect, among other things, biomarkers of cancers and infectious diseases.15, 

16, 17, 18, 19 Many of these assays employ the intrinsic properties of the nanoparticles (e.g. visible color for 

AuNPs and fluorescence for quantum dots) for detection, but others functionalize the nanoparticles with 

signal generating moieties in addition to the bio-recognition elements. Nanoparticles have also been 

functionalized with diverse signal-generating moieties, including enzymes like horseradish peroxidase,20 

which can catalyze the conversion of a chemical substrate to a colorful species; catalytic metals such as 

platinum, which can perform some of the same chemical reactions as enzymes;21 nanoparticles 

encapsulating europium (III) ions, which are highly fluorescent;22 and organic fluorophores,23 which can be 

quenched by proximity to AuNPs’ surface plasmon resonance and activated by displacement away from 
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the nanoparticle. Finally, nanoparticles in diagnostic assays are frequently modified with passivating agents 

that minimize non-specific binding of biomolecules or cells to the nanoparticle surface and increase the 

particles’ colloidal stability. Passivating agents can be biomolecules, such as bovine serum albumin;24 or 

they can be synthetic polymers and oligomers, such as thiol-modified polyethylene glycol (PEG).25 

1.3 Nanoparticles in Therapeutics 

The unique properties of nanoparticles, as well as their ability to serve as an attachment platform for 

multiple functional groups, has inspired research and development of nanoparticle-based therapeutics. As 

with diagnostics, many nanoparticles have intrinsic properties that enable therapeutic applications. For 

instance, the energy from the light that an AuNP absorbs so efficiently is released from the particles as 

infrared, which can heat the solution liquid surrounding the AuNP to temperatures that kill cells.26, 27 

Researchers have investigated harnessing this phenomenon to perform photothermal therapy, or localized 

heat-based killing by shining tissue-penetrating red light onto tumors suffused with AuNPs.28 

Superparamagnetic iron oxide nanoparticles similarly heat their surrounding solution when subjected to an 

oscillating magnetic field, and have been used to treat tumors with magnetically-mediated thermal 

ablation.29  

As in diagnostics, the modification of nanoparticles with multiple functional groups is key to their 

utility as therapeutics. Importantly, for many therapeutic applications the functional groups are 

encapsulated inside polymeric or biomolecular nanoparticles, in addition to being attached to the surface of 

the nanoparticles. One widely used delivery format is the liposome, a nanoparticle made of at least one 

phospholipid bilayer, which can carry small molecule and biomolecule drugs in its core.30  

Nanoparticle functional groups can serve as passivating, targeting, and therapeutic agents. Passivating 

agents, like chemically conjugated PEG molecules, reduce nonspecific binding or adsorption of 

biomolecules and cells to the nanoparticles. Such passivation can improve the pharmacokinetic properties 

of the nanoparticles in the bloodstream, increasing circulation time and thereby increasing the fraction of 

nanoparticles that reach the target tissue.31 By both reducing immunogenicity and decreasing the fraction 
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of therapeutic delivered to off-target tissues, passivation can also minimize the toxicity and increase the 

therapeutic index of a drug. For example, the first FDA-approve nanomedicine was Doxil®, a PEGylated 

liposome filled with the chemotherapeutic doxorubicin that delivers a higher dose of drug to tumors with 

lower side effects than free doxorubicin.79 

Targeting agents increase the efficiency with which nanoparticle therapeutics deliver their drug cargo 

to the disease tissue, and reduce the rate of delivery to off-target tissues. Importantly, targeting of 

nanoparticle therapeutics can be achieved both through the composition of the nanoparticle core, and 

through the attachment of functional groups to the nanoparticle surface. Nanoparticle size plays a role in 

tissue targeting: particles smaller than 10 nm are rapidly filtered and cleared by the kidneys,76 and particles 

significantly larger than 100 nm are rapidly enveloped and cleared from the bloodstream by phagocytic 

immune cells in the liver, lungs and spleen.33 Nanoparticles in the 10-100 nm size range tend to have longer 

circulation half-lives, before ending up primarily in the liver, spleen, and lungs.34 In rodent models, particles 

of this size also tend to accumulate in tissues where capillary walls are leaky, like tumors.35 The surface 

charge of a nanoparticle also affects its targeting; nanoparticles with cationic surface charges tend to have 

increased intracellular delivery (as well as cytotoxicity) compared to particles with neutral or anionic 

surface charges.34 Furthermore, both surface charge and nanoparticle core composition can play a role in 

the intracellular fate of nanoparticle therapeutics: particles with cationic surfaces or cationic core 

components, such as liposomes doped with the cationic phospholipids dioleoylphosphatidylethanolamine 

(DOPE) and 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP), increase endosomal escape and 

delivery of nanoparticle cargo into the cytosol.36 Finally, more specific targeting of particular tissues and 

cell types can be achieved by attachment of biomolecular recognition elements to the nanoparticles, which 

bind to ligand molecules on the surface of the target cells. Antibodies,37 nucleic acid aptamers,38 

carbohydrates,37 and even some small molecules39 like folic acid can all serve as recognition elements that 

increase the efficiency of nanoparticle delivery to specific tissues. 
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Therapeutic nanoparticles deliver both small molecule and macromolecule drugs. Frequently, toxic 

chemotherapeutic agents are encapsulated inside the nanoparticle, as with Doxil®.40 Nucleic acids are 

among the most promising and extensively researched cargo for nanoparticle therapeutics, because they 

can treat disease through mechanisms inaccessible to small molecule drugs, and because without 

encapsulation or functionalization on nanoparticles, unmodified nucleic acid is unstable in serum and 

provokes a Toll-like receptor (TLR)-mediated innate immune response.41,42 Nucleic acid-carrying 

nanoparticles can suppress target gene expression by siRNA-mediated mRNA cleavage and gene 

silencing,43 stimulate the immune system through interaction with TLRs,44 and deliver DNA45 or mRNA46 

gene therapies to express a therapeutic protein inside target cells. As one example, mRNA for the 

FUS1/TUSC2 tumor suppressor gene has been delivered in DOTAP/cholesterol liposomes for the treatment 

non-small cell lung cancer; this treatment is now in phase II clinical trials for the treatment of non-small 

cell lung cancer.47,48 Finally, therapeutic proteins can be delivered as cargo inside nanoparticles;49 however, 

inefficient endosomal escape has limited the translation of nanoparticles for intracellular protein delivery.50  

1.4 Spherical Nucleic Acids 

In 1996, a team led by Chad Mirkin attached a polyvalent shell of thiol-modified oligonucleotides to 

gold nanoparticles via a gold-thiolate bond, generating the first spherical nucleic acids (SNAs).51 Both the 

core and the oligonucleotide composition can be varied (Figure 1). In addition to AuNPs, SNAs have been 

synthesized with cores made from, such diverse materials as iron oxide nanoparticles,52 metal-organic 

 

Figure 1. Structure of SNAs. Gold (left), liposome (center, cutaway), and protein (right) 
cores are radially functionalized with DNA oligonucleotides 
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framework nanoparticles,53 quantum dots,54 silica nanoparticles,55 pH-responsive block copolymer 

nanoparticles,56 liposomes,57 proteins,58 and micelles.59 There are even coreless spherical nucleic acids 

formed by crosslinking oligonucleotides on an AuNP and then dissolving the gold.60 These empty SNAs 

helped confirm that it is the dense and highly oriented oligonucleotide shell that cause gives SNAs the 

unique properties that distinguish them from linear or circular nucleic acids. Oligonucleotides in an SNA 

bind to complementary nucleic acids with dissociation constants roughly two orders of magnitude higher 

than equivalent linear nucleic acids, and nucleic acid duplexes in an SNA not only have higher melting 

temperatures than linear nucleic acid duplexes; but also have much sharper, narrower, and more cooperative 

melting transitions as measured by the full width at half maximum of the melting curve’s first derivative 

(~2ºC for SNAs versus >10º C for the same linear nucleic acid).61 This tighter and more cooperative binding 

has the additional effect of destabilizing duplex mismatches, increasing the selectivity of oligonucleotide 

hybridization in SNAs relative to linear nucleic acids.62 These properties stem primarily from the high 

concentration of cations permeating the highly anionic oligonucleotide monolayer; theoretical and 

experimental results suggest a loose network of cations each interact with and stabilize multiple 

oligonucleotides, such that perturbation of this shared ion cloud (for instance, due to dehybridization of a 

DNA duplex) destabilizes the surrounding dielectric environment (and with it, any surrounding nucleic acid 

duplexes). 63,64 

In 2006, it was discovered that SNAs enter mammalian cells rapidly and in large quantities (10^5-10^6 

in an hour in cell lines).65 As with SNAs’ tight and cooperative hybridization to complementary DNA, this 

remarkable property is not shared by linear nucleic acids, and is a function the SNAs’ 3-dimensional 

architecture.  Subsequent research has uncovered that SNAs are actively taken up by mammalian cells 

expressing Scavenger Receptor A,66 which tightly bind the dense and highly oriented oligonucleotide shell 

and endocytose the nanoparticles in a caveolae- and lipid raft-dependent process.67 SNAs have now been 

tested on a multitude of mammalian cell lines and enter almost all of them, with the exception of red blood 

cells.66 
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Research in Mirkin lab has uncovered that, in addition to rapid uptake by mammalian cells, SNAs have 

several other remarkable biological properties that distinguish them from their linear counterparts. While 

linear nucleic acids are rapidly degraded by nucleases in serum and inside cells, SNAs resist nuclease 

degradation in these environments.68 This nuclease resistance is hypothesized to result from the dense cloud 

of ions around SNAs, which inhibits the nuclease enzymes. And while most linear nucleic acids trigger a 

nonspecific TLR-mediated innate immune response in cells,69 SNAs are non-immunogenic, provoking a 

25-fold lower immune reactions than the same sequence of linear nucleic acid in macrophages.70  

1.5 SNAs in Diagnostics 

The unique properties of SNAs have been exploited to develop many assays for detecting analytes of 

interest. The first SNAs to be developed had AuNP cores, and the plasmonic properties of the AuNPs were 

used to construct colorimetric detectors of nucleic acids. These were solutions of two non-complementary 

SNAs which aggregated and changed color from red to blue in the presence of a specific polynucleotide 

sequence that could hybridize to and form a bridge between both SNA sequences.71 Because of the 

cooperativity of SNA hybridization, this assay was highly specific, able to distinguish between sequences 

with single base mismatches. Subsequent SNA assays exploiting the same aggregation-triggered shift in 

AuNP solution color were developed to distinguish between different types of DNA-binding molecules.72  

After colorimetric, aggregation-based assays, scanometric assays were the next SNA-based diagnostics 

to be developed.73 In scanometric assays, a glass slide is functionalized with an oligonucleotide 

complementary to the target polynucleotide of interest, which hybridizes and captures the target from the 

sample solution. Then, the slide is incubated with AuNP-SNAs complementary to a different region of the 

target polynucleotide, forming a three-component sandwich with immobilized SNAs on the slide. After 

washing, the slide is incubated with a plasmonic metal (silver or gold) salt reduction solution, and the 

AuNPs catalyze the selective deposition of plasmonic metal onto the SNAs. These enlarged metal particles 

scatter light with extraordinary efficiency, and can be detected by imaging the slide in a laser scanner. The 

first SNA-based scanometric detection assays were capable of detecting oligonucleotide sequences with 
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two orders of magnitude greater sensitivity than an analogous fluorophore-based assay.73 By functionalizing 

SNAs with antibodies, forming a sandwich with a target antigen and antibody-modified magnetic particles, 

and then hybridizing the captured SNAs on an oligonucleotide-functionalized chip, the scanometric assay 

was adapted to detect proteins at attomolar concentrations.74 The scanometric assay has since demonstrated 

ultrasensitive detection of prostate serum antigen,75 an important protein biomarker of prostate cancer. 

Moreover, by functionalizing an array of capture oligonucleotides onto a glass slide, the scanometric assay 

has been used to detect circulating microRNA (miRNA) patterns associated with prostate cancer in patient 

samples, and has been able to identify high-risk aggressive cancers based on patients’ circulating miRNA 

profile.76 Importantly, there is a trade-off between sensitivity and complexity in these SNA-based diagnostic 

assays. While the colorimetric SNA assays take place in a one-pot reaction and have a simple, visible 

readout, they are much less sensitive than the scanometric assays, which require multiple incubation steps 

and specialized equipment to complete. An approach to reconciling this tradeoff will be discussed in chapter 

2. 

After SNAs were discovered to rapidly enter mammalian cells, a third class of SNA-based diagnostic 

was developed: the NanoFlare.77 NanoFlares are SNAs with AuNP cores functionalized with thiolated DNA 

oligonucleotides that are complementary to a target nucleic acid sequence of interest. A shorter, 

fluorophore-labeled DNA oligonucleotide called a flare strand is hybridized to the thiolated strands, with 

the fluorophore positioned close to the gold core. In the absence of the target sequence, the AuNP’s surface 

plasmon resonance quenches the fluorescence of the flare. When the target sequence is present, it binds and 

hybridizes to the complementary thiolated DNA attached to the gold,  displacing the flare strand. No longer 

quenched by close proximity to the gold, the flare’s fluorophore fluoresces to generate a signal which 

enables the detection and quantification of the target sequence. NanoFlares are able to detect specific 

mRNA sequences in living cells without requiring a cationic transfection reagent. Importantly, their ability 

to do so implies that some fraction of SNAs are able to escape the endosome and enter the cytosol following 

cell uptake.  
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NanoFlares have subsequently been modified and improved in multiple ways. Multiplex NanoFlares, 

in which a single SNA can detect two different mRNA sequences, have enabled cell-by-cell internal 

controls in flare experiments and thereby improved quantitation of cancer-associated mRNA in living 

cells.78 By measuring aberrantly high mRNA levels of metastasis-associated genes like vimentin, 

NanoFlares have been used to detect and isolate tiny numbers of tumor cells from human whole blood and 

mouse xenograft models.79 Sticky-Flares, in which the fluorophore-labeled oligonucleotide rather than the 

AuNP-bound oligonucleotide hybridizes to the mRNA, enable the simultaneous quantification and tracking 

of mRNA expression and localization in live cells.80 Finally, aptamer NanoFlares have been developed to 

detect the small molecule ATP both extracellularly and intracellularly.81 Importantly, because this is the 

only published example of an aptamer NanoFlare detecting a small molecule, it is unclear how generalizable 

this diagnostic architecture is, and it is unknown how aptamer NanoFlare behavior and design rules may 

differ from either linear NanoFlares or other aptamer-based biosensing architectures. These questions will 

be explored further in chapter 3. 

1.6 SNAs in Therapeutics 

The combination of high cell uptake, low immunogenicity, nuclease resistance and tight 

oligonucleotide binding makes SNAs promising candidates for a plethora of therapeutic applications, 

including knockdown of gene expression, immune modulation, and protein delivery. Because SNAs are 

densely functionalized with oligonucleotides, the first therapeutic avenue to be explored was 

oligonucleotide-mediated gene regulation. The first paper on cellular SNA uptake demonstrated that the 

DNA oligonucleotides in the SNA shell, could reduce the expression of targeted genes with complementary 

mRNA sequences.65 

After the early antisense SNA experiments, gene knockdown efficacy was increased by replacing the 

single-stranded antisense DNA oligonucleotides with double-stranded silencing RNA (siRNA).82 Upon 

entry into the cytosol, the siRNA sequences are cleaved off the particle by Dcr-2 and loaded into eukaryotic 

Argonaute nucleases, which then chop up any mRNA containing a complementary sequence to the siRNA.83 
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The first siRNA-SNA conjugates consisted of a gold nanoparticle attached via gold-thiol bond to a double 

stranded RNA duplexes with one thiolated strand, and backfilled with thiolated oligo-ethylene glycol.82 

Like other SNAs, these constructs are nontoxic, non-immunogenic, resist nuclease degradation compared 

to linear RNA duplexes with the same sequence, and rapidly enter mammalian cells. These siRNA-SNA 

conjugates knock down targeted gene expression in vitro without the need for transfection reagents. In a 

mouse model of the deadly brain cancer glioblastoma multiforme, siRNA-SNAs were able to cross the 

compromised blood-brain barrier and knock down Bcl2L12 oncogene expression, reducing tumor burden.84 

siRNA-SNAs have also been shown to knock down expression of the insulin-resistance mediating gene 

GM3 in human skin samples, and to improve wound healing in a mouse model of diabetes.85 siRNA-SNAs 

have also been constructed with a liposomal core.57 In these constructs, the gold nanoparticle and thiolated 

RNA are replaced with a 30 nm liposome and tocopherol- or cholesterol-modified RNA duplexes, and the 

hydrophobic tocopherol or cholesterol moiety intercalates into the liposome to form the SNA structure. 

Liposomal siRNA-SNAs are a biodegradable SNA-based plaform for siRNA delivery, and also knock down 

gene expression in vitro. Importantly, as with NanoFlares, the efficacy of gene regulating SNAs is further 

evidence that SNAs are capable of endosomal escape, because these SNAs’ mechanism of action depends 

on interacting with cytosolic mRNA. However, the efficiency of endosomal escape is small enough that it 

is difficult to accurately measure.86 

In addition to gene regulation, SNAs have been developed as delivery vehicles for small molecule 

therapeutics. The chemotherapeutic drug cisplatin binds and intercalates between DNA bases.87 Incubating 

SNAs with with cisplatin enabled loading of the chemotherapeutic into the SNAs’ oligonucleotide shell, 

followed by delivery of the drug upon cellular uptake of SNAs. SNA-mediated delivery increased the 

cytotoxicity of cisplatin in several cell lines.88 Similarly, the chemotherapeutic paclitaxel has been 

conjugated to SNAs and delivered into cells; this SNA-mediated delivery increased the solubility of 

paclitaxel by 50-fold.89 
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Some of the most promising therapeutic avenues for SNAs involve modulation of the immune system. 

Although most SNAs provoke a minimal immune response, Mirkin lab has developed SNAs with specific 

sequences that can stimulate or suppress an innate immune response.90 Immunostimulatory SNAs (IS-

SNAs) consist of a spherical nanoparticle core functionalized with a DNA sequence known to bind and 

stimulate Tol-Like Receptor 9 (TLR9) in the endosome. IS-SNAs can have a gold core and thiol-modified 

oligonucleotides, or a liposome core with tocopherol-, cholesterol- or phospholipid-modified DNA with a 

phosphodiester or phosphorothioate backbone.91 IS-SNAs efficiently enter the endosome and provoke an 

inflammatory cytokine immune response hundreds of times higher than linear nucleic acids with the same 

sequence, both in vitro and in vivo.90 Moreover, IS-SNAs can be further functionalized by conjugating 

antigenic peptides to DNA oligonucleotides and hybridizing the peptide/DNA conjugates to the strands of 

the SNA. These rationally designed antigenic IS-SNAs stimulate a humoral (antibody-mediated) immune 

response to the antigen. Antigenic IS-SNAs can stimulate the immune system to specifically attack tumor 

cells expressing the antigen, thereby reducing tumor volume and increasing survival time in mouse 

models.90, 92 

Just as some nucleic acid sequences stimulate TLR9 signaling, others suppress it. Immunoregulatory 

SNAs (IR-SNAs) consist of a nanoparticle functionalized with a DNA sequence known to suppress TLR9 

signaling. IR-SNAs suppress macrophage innate immune responses in vitro, and decrease liver fibrosis in 

a mouse model of the inflammatory liver disease nonalcoholic steatohepatitis.93 Immunomodulatory SNAs 

thus show promise as both treatments for cancer and inflammatory disease. 

While most applications of spherical nucleic acids have thus far focused on the delivery of DNA or 

RNA into cells, recent work has explored the delivery of peptides and protein. As discussed above, antigenic 

peptides have been conjugated to oligonucleotides and hybridized to IS-SNAs as cancer vaccines. Peptide 

antigens have also been encapsulated in liposomal IS-SNAs and directly conjugated to cholesterol-

modified, liposome-intercalating immunostimulatory oligonucleotides on the SNA surface, though these 

architectures were less effective than the hybridized antigen at provoking an immune response to antigen-
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expressing tumors in mouse models.92 The first full-length proteins attached to SNAs were antibodies, 

functionalized with ~2 N-hydroxysuccinimide-tetraethylene glycol-azide (NHS-PEG4-N3) moieties that 

covalently bound lysine primary amines.94 Alkyne-modified DNA strands were conjugated to the azide-

modified antibodies via click chemistry, and then the DNA-modified antibodies were hybridized to gold 

SNAs and used to selectively target and knock gene expression down in certain cancer cell types. The early 

immunomodulatory SNA work followed this model, functionalizing the model protein antigen ovalbumin 

with a small number of DNA strands and hybridizing the protein to the surface of an SNA. Another SNA-

mediated protein delivery approach is to place the protein at the core of the SNA. This has been achieved 

by functionalizing most of the lysines on a protein with NHS-PEG4-N3 and then clicking DNA on, 

generating a protein-core SNA (proSNA) with a protein core.58 These proSNAs have been shown to deliver 

functional enzymes, in particular ß-galactosidase, into cells in vitro.95 These studies all demonstrate that 

SNAs could be an effective platform for delivering proteins into mammalian cells, and provide evidence 

that some fraction of SNAs are able to escape the endosome. However, the mechanism enabling SNA 

endosomal escape remains unknown, and the difficulty of quantifying endosomal escape have meant that 

it remains murky how SNA parameters might be tuned to increase endosomal escape. Moreover, while 

SNA-protein conjugates have been developed and demonstrated to enter cells, no study thus far has proven 

that protein delivered by SNA can enter the cytosol, because measurements of protein delivery to date do 

not differentiate between endosomal protein and cytosolic protein. These questions will be explored further 

in chapter 4. 
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CHAPTER 2: Dual Readout Assay for Device-Free and Sensitive Anthrax Biomarker 

Detection.  

____________________ 

Portions of this chapter are adapted from Larkin et al., Anal. Chem., 2020 

Collaborators include Chad Mirkin, Hang Xing, Vis Garimella, Gokay Yamankurt, & Alexander Scott 
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2.1 Introduction 

Technologies for the detection of disease biomarkers are key to improving both healthcare and 

biosecurity around the world.96 For example, anthrax is a severe bacterial infection caused by handling 

animal products or other materials contaminated with Bacillus anthracis spores. Pathogenic  exposure to B. 

anthracis results in up to 89% mortality without proper treatment, and an estimated 2,000 anthrax cases are 

reported annually.97 Anthrax pathogenesis depends on an exotoxin consisting of three protein components: 

protective antigen (PA), lethal factor (LF), and edema factor (EF). The 83 kDa PA protein (PA83) is cleaved 

by protease to yield a 63 kDa fragment (PA63), which self-assembles into heptamer and octamer rings.98 The 

PA heptamer subsequently binds with LF and EF, is endocytosed, and forms a pore that translocates LF and 

EF from the endosome to the cytosol.99 Because of PA83's role as an exotoxin protein expressed early during 

anthrax infections, and because PA83 levels track levels of bacteremia in anthrax animal models,100 PA83 has 

been used for years as a biomarker for the early detection of anthrax.101, 102, 103, 104, 105, 106 Methods to identify 

and develop bioassays specific for PA and other such disease biomarkers are of significant value. 

Immunoassays that use antibodies as target recognition  elements are the most widely used methods for 

biomarker detection because of their speed, ease of use, and capacity to detect a wide range of biomarkers 

and biomolecules.107 Conventional immunoassays conjugate antibodies to fluorophores or enzymes to 

convert target binding to detectable fluorescent or colorimetric signals.108, 109 However, these enzymatic 

fluorogenic and chromogenic methods have well-known drawbacks, including low stability, pH and 

temperature sensitivity, and limited sensitivity.110, 111  

Over the past twenty years, nanomaterials with tailorable physical properties have been employed in 

biomarker assays that compare favorably with the molecular fluorophore or enzyme methods on 

sensitivity.112, 113, 114, 115 A variety of nanoparticle-based readouts, including colorimetric,116, 117, 118, 62, 71, 119 

fluorescent, 78, 79, 81, 104, 120, 121, 122 light scattering, 75, 76, 123 electrochemical,124, 125 and Raman scattering,126, 127 

show promise for the development of high sensitivity detection systems. However, a general tradeoff is 

observed between high assay sensitivity and high sample throughput.  
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For example, anisotropic platinum nanoparticles (PtNPs) and Pt-coated gold nanoparticles (AuNPs) 

have been deployed in assays as robust, enzyme-free replacements for horseradish peroxidase, where Pt 

catalyzes the decomposition of H2O2 and oxidation of a chromogenic substrate to produce a colorimetric 

signal.119, 128, 129, 130 Such assays require only a few hours of processing time, can analyze many parallel (96-

384) samples, and enable device-free visual detection of the target that, in principle, can function in point-

of-care or field tests; but their limit of detection is typically confined to the nanomolar to picomolar range. 

26, 130  

By contrast, scanometric AuNP-based assays have achieved ultrasensitive detection of protein and 

nucleic acid targets by sandwiching the target between two recognition elements, one immobilized on a 

glass slide and one attached to the AuNP. 74, 75, 76, 123, 131 By reducing Ag+ or AuCl4
- ions from solution onto 

the AuNPs, the light scattering signal in a laser scanning instrument can be amplified to achieve detection 

of femtomolar to attomolar concentrations of target molecules. However, such assays typically require 

longer processing time and a specialized scanning instrument; and while the glass slides can accommodate 

multiplexed analysis of the biomarkers in each sample, the number of samples that can be analyzed in 

parallel is limited. 

The tradeoffs between assay field 

deployability, sample throughput, and assay 

sensitivity can be reconciled with dual-readout 

nanoparticle assays, which generate two different 

types of signal from the same constructs. By 

combining orthogonal detection methods with 

different sensitivities, dual readout assays have 

been shown to lower the limits of detection and 

quantitation,132 expand the dynamic range,21 and enable both high-throughput and ultrasensitive target 

detection.131, 133 

 

Figure 2. Dual-readout AuNP-based immuno-
assay to detect anthrax protective antigen. 
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We present a dual-readout, colorimetric and scanometric sandwich immunoassay by depositing either 

Pt or Au onto antibody-AuNP conjugates (Figure 2). The higher-throughput Pt-based colorimetric readout 

was used to screen for monoclonal antibody sandwich pairs that bind to anthrax protective antigen (PA83), 

detecting nanomolar concentrations of PA83 in both PBS and human serum. The Au-based scanometric 

readout showed a 1000-fold increase in assay sensitivity with the same nanoparticles, enabling detection of 

sub-picomolar PA83 concentrations. 

2.2 Design of Assay 

The dual-readout sandwich immunoassay begins with the immobilization of one set of antibodies (Ab1) 

via lysine conjugation onto an N-hydroxy-succinimidyl-ester (NHS)-modified surface (either in a 96-well 

plate for colorimetric detection, or on a glass slide for scanometric detection). In parallel, a facile synthesis 

of Ab-AuNP conjugates is performed by mixing and incubating a second set of antibodies (Ab2) with 

AuNPs in a buffered solution. Strong Ab2 adsorption to AuNPs proceeds through electrostatic, 

hydrophobic, and cysteine-gold interactions,9 after which the AuNP-Ab2 conjugates are blocked by 

incubation in a bovine serum albumin (BSA) solution and cleaned via centrifugation (Figure 3),  generating 

monodisperse nanoparticles that can bind selectively to the antibody’s antigen (Figure 4). The Ab1-

modified surface is incubated with samples to capture the target molecule and washed with BSA solution 

to block nonspecific binding. The solution of Ab2-AuNP conjugates is then incubated on the surface, 

generating an Ab1-PA83-Ab2-AuNP sandwich structure. Colorimetric detection with signal amplification is 

 

Figure 3. AuNP-Ab synthesis workflow. Abs adsorb to citrate capped AuNPs, which are then 
backfilled with BSA. Centrifugation removes unbound antibodies. 
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achieved through incubation with a reducing agent (ascorbic acid) in a platinum salt solution to selectively 

reduce Pt onto the nanoparticles. This process forms a Pt shell on the AuNPs which catalyzes the splitting 

of hydrogen peroxide and subsequent oxidation of the chromogenic dye 3,3',5,5'-tetramethylbenzidine 

(TMB) to yield a blue color which can be quantified on a 

plate reader.130 To achieve scanometric detection, the 

Ab1-PA83-Ab2-AuNP sandwich is generated on an NHS-

activated glass slide and incubated in a solution of Au3+ 

salt with a reducing agent (hydroxylamine) to selectively 

reduce gold onto the nanoparticles. After washing, light 

scattering from the gold on the slide is quantified in a 

Scano-miR instrument.  

2.3 Screen for Anti-PA83 Monoclonal Antibody 

Sandwich 

To evaluate the scalability of the assay’s colorimetric 

readout method, we screened monoclonal antibodies 

(mAbs) of anthrax protective antigen to discover pairs that could function in a sandwich assay. While many 

 

Figure 4. Characterization of Ab-AuNP conjugates after 1 week refrigeration at 4ºC. (a) UV-vis 
absorption and (b) DLS results show that AuNPs-Abs are stable (no blue-shift in the AuNP absorption 
peak) and selectively bind to PA83.  

 

Figure 5. Pairwise anti-PA83 antibody 
screen for binding and detection of PA83 
in a sandwich assay. Ab1992 and Ab8240 
form a sandwich and detect PA83. Each 
column contains a different Ab immobilized in 
the well, while each row is incubated with a 
different mAb-AuNP nanoparticle. Ab1992 
and Ab8240 form a sandwich pair and detect 
PA83 in both orientations (blue and red). 
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anti-PA83 monoclonal antibodies are commercially 

available and a few anti-PA83 monoclonal antibody 

sandwich pairs have been reported,134 no sandwich 

pairs of monoclonal antibodies for PA83 are 

commercially available, potentially limiting the 

long-term reproducibility of any given PA83 

immunoassay.135, 136  

We addressed this by investigating 7 different 

anti-PA83 antibodies from Abcam: Ab8240, Ab1988, Ab1990, Ab1992, Ab13808 and Ab38725 (Figure 5). 

The seven PA83-binding antibodies were immobilized in 8-well rows to form an 8x8 well array on an NHS-

modified 96-well plate and washed with a BSA blocking solution. All wells were incubated with 500 nM 

PA83, washed with blocking solution, and then incubated pairwise with different mAb-AuNP conjugates to 

generate all possible mAb1-PA83-mAb2-AuNP sandwiches. After washing again with blocking solution, a 

Pt salt solution was reduced onto the 

immobilized particles. After gently 

rinsing the wells with DI water, they 

were incubated with TMB and 50 mM 

H2O2. One mAb pair, Ab8240 and 

Ab1992, was visually identified as a 

potential hit, as it gave a colorimetric 

and UV-Vis absorbance signal 20-fold 

higher than BSA control and 8-fold 

higher than any other antibody pair 

(Figure 5 and 6). Although the initial 

screen indicated that immobilized 

 
Figure 6. Heatmap of pairwise screen of seven 
commercial anti-PA83 antibodies for binding 
and detection of PA83 in a sandwich assay.  

 

Figure 7. Sandwich assay performs device-free PA83 
detection in either antibody orientation. (a) Detection of 
PA83 in PBS with immobilized Ab1992 and Ab8240-AuNP. (b) 
Detection of PA83 in PBS with immobilized Ab8240 and 
Ab1992-AuNP.  
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Ab8240 and Ab1992-AuNP generated greater colorimetric signal than immobilized Ab1992 and Ab8240-

AuNP, further experiments showed that both antibody pair orientations in the sandwich gave similar 

detection sensitivity (Figure 7). To validate the obtained antibody pairs, we tested them in a standard 

 

Figure 8. Screened antibody pair functions in an ELISA. (a) Scheme of ELISA sandwich detection 
strategy for PA83, incorporating an immobilized antibody and a horseradish peroxidase-conjugated 
antibody. (b) ELISA detection curve of PA83 in 1X PBS, with different PA83-binding antibody pairs, 15 min 
after incubation with 50 mM H2O2 in TMB.  

 

Figure 9. Optimization of sandwich assay for H2O2 concentration. (a) Sandwich assay response 
to 1, 10, and 100 nM PA83 in 1X PBS, using TMB blended with 20, 50, or 100 mM H2O2. (b) Triplicate 
sandwich assay response to 0 and 1 nM PA83, using TMB blended with 20, 50, or 100 mM H2O2.   
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ELISA. #Ab1992 and #Ab8240 readily detected   PA83 in an ELISA, while other antibody pairs either 

displayed no response above background or only responded to higher PA83 concentrations (Figure 8).  

2.4 Colorimetric PA83 Detection in Phosphate-Buffered Saline 

Having discovered an antibody pair with 

high selectivity for PA83, we explored its ability 

to colorimetrically detect PA83 in PBS. Reaction 

conditions including H2O2 concentration (20-100 

mM), Pt reduction time (10-120 min), and PA83 

and mAb-AuNP incubation times (15-60 min) 

were varied to maximize colorimetric response to 

PA83 and minimize background signal (Figures 

9-11). 1 h PA83 and  mAb-AuNP incubation steps, 

a 120 min Pt reduction step, and 100 mM H2O2 

 

Figure 10. Optimizing time of sandwich assay incubation steps. (a) PA83 detection curves with 15 
min, 30 min, or 1 h incubation steps and a 10 min platinum reduction. (b) PA83 detection curves with 
15 min, 30 min, or 1 h incubation steps and a 90 min platinum reduction. 

 

Figure 11. Optimization of sandwich assay for 
platinum reduction time. Sandwich assay response 
to 0 or 10 nM PA83 in PBS, after running the 
platinum reduction for a range of reaction times. 
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concentrations in the TMB/H2O2 solution produced the largest response to the lowest [PA83] relative to 

background signal. The colorimetric readout provides the ability to detect PA83 over the 1 to 500 nM 

dynamic range (Figure 12), with visual detection of 

1 nM PA83 after a 20 min incubation and colorimetric 

detection of 1 nM PA83 within 2 min of adding TMB 

in a plate reader. 

2.5 PA83 Detection in Human Serum 

One of the primary advantages of sandwich 

assays is their ability to specifically detect analytes 

in a complex solution, like bodily fluids. Therefore, 

the ability of the antibody pair to detect PA83 in 

human serum was tested over the 0.5 to 100 nM 

range in 1:1 PBS:human serum samples (Figure 13). 

To determine the utility of the antibody sandwich, direct detection with a single mAb was attempted, by 

 
Figure 12. Visual and colorimetric detection of PA83. (a) Triplicate visual detection of PA83 after 1 h Pt 
reduction and 20 min of TMB/H2O2 reaction. Control condition: 1 µM BSA. (b) Kinetics of PA83 detection 
with TMB/ H2O2. (c) Colorimetric PA83 detection calibration curve. Concentration-dependent calibration 
curve for Pt-based colorimetric detection of PA83 in 1X PBS with the absorbance at 655 nm measured on 
Synergy H4 Plate Reader.   

c 

  
Figure 13. Detection of PA83 in serum. (a) 
Detection of PA83 spiked into 1:1 PBS:human 
serum with a single Ab (blue) and with the 
sandwich mAb pair (red). (b) Blind detection of 
nanomolar PA83 in human serum. (*p < 0.01, 
Student’s t-test). 
 



 33 
incubating PA83-spiked serum samples directly in unblocked NHS-ester modified wells, before adding the 

mAb-AuNP conjugate. After a 20 min incubation in colorimetric detection solution, the mAb sandwich 

displayed a dose response from 10 to 100 nM PA83, while the single mAb failed to detect any PA83 

concentration, thereby demonstrating the importance of the sandwich assay for detecting protective antigen 

in complex, physiologically relevant solutions. In a blinded experiment, colorimetric PA83 detection in 1:1 

PBS:serum could be further improved to 5 nM PA83 by allowing the final incubation in colorimetric 

detection solution to run overnight. Because the serum is diluted 1:1 in PBS, these experiments demonstrate 

detection down to 10-20 nM PA83 (830-1660 ng/mL) in whole serum. This is within the physiological range 

of PA83 concentrations observed in the serum of rabbits (1-100,000 ng/mL) and guinea pigs (1-5,000 ng/mL) 

during the progression of inhalational anthrax.136 However, the PA83 concentrations detected by this 

colorimetric assay correspond to more advanced stages of anthrax rather than the early, potentially treatable 

stage, at least in these two animal models; so more sensitive methods of signal amplification and detection 

are desirable to make an assay that could potentially enable early diagnosis and successful treatment of 

anthrax. 

2.6 Scanometric Detection of PA83 

Although the colorimetric mAb-AuNP 

sandwich was successfully used to screen for 

and discover an antibody sandwich pair that 

could detect pathogenically relevant 

concentrations of PA83, sensitivity to even 

lower concentrations could potentially 

enable earlier diagnosis and successful 

treatment. This is particularly important for 

anthrax, as the expression of protective 

antigen facilitates the endocytosis of the 

 
Figure 14. Scanometric detection of PA83 via gold 
reduction onto mAb-AuNP sandwich. (a) Quantification 
of scanometric PA83 detection using 633 nm light 
scattering. (b) Detection of sub-picomolar concentrations 
of PA83.  
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lethal factor and edema factor toxins 

required for disease progression.98, 99 

We therefore sought to determine 

whether measuring the scanometric 

readout of the sandwich 

immunoassay increased detection 

sensitivity (Figure 14). mAb 1992 

was functionalized on an NHS-ester activated glass slide and incubated first with PA83 and then with mAb-

AuNP 8240, with blocking steps in between. A gold reduction solution was added to the slide to amplify 

the gold signal. Scattering of 633 nm laser light across the slide was collected in a Scano-miR instrument 

(Figure 15) and quantified with GenePix software. The scanometric assay detected PA83 at concentrations 

ranging from 600 fM to 60 nM in PBS with 1% BSA and 0.02% Tween, with a limit of detection of 550 

fM. This is over 1000 times more sensitive than the Pt-based colorimetric assay of PA83 in the same solution. 

These results underscore the observation that gold reduction and scanometric readout is a general strategy 

for increasing the sensitivity of antibody sandwich assays. This could be particularly useful for biomarkers 

of infection such as PA83, for which early identification of the pathogen can be critical for successfully 

treating the disease. 97 

2.7 Materials and Methods 

2.7.1 Reagents. Citrate capped gold nanoparticles (13 nm and 40 nm) were purchased from Ted Pella or 

synthesized as previously described.137 The seven screened Anti-PA83 antibodies (Ab8240, Ab1988, 

Ab1990, Ab1991, Ab1992, Ab13808, and Ab38725) were purchased from AbCam. N-hydroxy succinimide 

(NHS)-activated 96-well plates (divided into 8-well strips), NHS-activated glass slides for scanometric 

detection, aliquots of mAb 1992, and EZ-Link Plus activated peroxidase kits for horseradish peroxidase-

antibody conjugation were purchased from Thermo Fisher. All other materials, buffers and reagents, 

including platinum and gold salts, were purchased from Sigma Aldrich.   

 

Figure 15. Representative light scattering image of an 8-well 
glass slide showing scanometric detection of PA83.  
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2.7.2 Buffered solutions. Blocking solution, used for all blocking and washing steps during mAb-AuNP 

synthesis and PA83 detection assays, contained 1X phosphate-buffered saline (PBS), 1% bovine serum 

albumin (BSA), and 0.02% Tween 20. Platinum deposition solution, used during colorimetric detection, 

contained 10 mM citrate buffer (pH 3), 20 mM L-ascorbic acid, and 2 mM potassium hexachloroplatinate 

(K2PtCl6). Colorimetric detection solution contained 50 mM H2O2 in 3,3’,5,5’-tetra-methylbenzidine 

(TMB); and was prepared fresh before each colorimetric detection experiment. Gold reduction solution 

contained 10 mM chloroauric acid (HAuCl4) with 10 mM hydroxylamine (NH2OH), and was prepared fresh 

before each gold reduction reaction. 

2.7.3 Synthesis of Antibody-Coated Gold Nanoparticles. Antibodies were noncovalently adsorbed onto the 

surface of AuNPs, similar to previously described methods.9 In a 15 or 50 mL plastic conical tube, a solution 

of 10 nM of citrate-capped AuNPs in water (40 nm diameter for dynamic light scattering (DLS) particle 

size measurements; 13 nm diameter for all other experiments) was adjusted to pH 7 using 0.2 M NaOH, 

and Tween 20 was added to a final concentration of 0.02%. Unmodified antibodies were added to a final 

concentration of 15 µg/mL, and the solution was mixed gently by inverting the tube 4-6 times. The tube 

was incubated overnight at room temperature in the dark. The mAb-AuNP mixture was then diluted 1:1 

with blocking solution, gently mixed by inverting the tube 4-6 times, sealed by capping the tube and 

wrapping the cap in parafilm, and incubated for 3 h in the dark at room temperature. The crude mAb-AuNPs 

were cleaned via two rounds of pelleting (4,000 RCF for 30 min at room temperature in 1.5 mL low-

retention plastic tubes), supernatant removal, and resuspension in blocking solution. This protocol generates 

antibody-mAb nanoparticles that maintain function for at least 3 months at 4 ºC. 

2.7.4 Characterization of AuNP-mAbs. Nanoparticle concentration was measured by UV-Vis spectroscopy 

on a Cary5000 spectrophotometer (gold absorption peak at 520 nm, extinction coefficient 2.7*10-8 

L/mol/cm). To characterize protein adsorption to the gold surface, particles were twice centrifuged at 4000 

RCF for 30 min and resuspended in 1X PBS with 0.02% Tween (no BSA), then absorption at 280 nm was 

measured via UV-Vis. To measure the size of mAb-coated AuNPs, mAb-AuNPs were twice centrifuged at 
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4000 RCF and resuspended in 1X PBS (no BSA or Tween), diluted to 0.5-1 nM AuNP, and measured in a 

Malvern Zetasizer DLS instrument. 

2.7.5 Making Antibody-Coated Wells. 50 µL of 2 mg/mL antibody solution was diluted with an equal 

volume of 1X PBS (pH 7.5) to make 100 µL of 1 mg/mL antibody. 10 µL of 1 mg/mL antibody solution 

was carefully and evenly added to the center of each well in a strip of 8 NHS ester modified wells. The strip 

was incubated overnight in a sealed chamber with a water reservoir (roughly 50% humidity). Then 100 µL 

of blocking solution was pipetted into to each well and gently mixed. After 2 min of incubation, the liquid 

was removed from the strip. These washing steps were repeated twice more. The strips were stored in a 

humid chamber before use to avoid them drying out. For screening, eight antibody-coated 8-well strips 

were made, one for each antibody and a BSA control. For further PA83 detection assays, mAb 1992 was 

functionalized on the NHS-activated surface.   

2.7.6 Screening for Antibody Sandwich Pairs. 3 mL of 500 nM PA83 solution in 1X PBS and 1 mL of 1 µM 

BSA solution in 1X PBS were prepared. To each of the eight 8-well strips, 50 µL of the 500 nM PA83 

solution was added. The strips were incubated in the humid chamber for 1 h, and then washed three times 

with blocking solution. Next, 50 µL of 10 nM of antibody functionalized nanoparticles was added to each 

well, such that every combination of immobilized antibody and mAb-AuNP was tested, along with the BSA 

negative controls. The strips were incubated in the humid chamber for 1 h and then washed with blocking 

solution three times. During incubation, a 4 mL batch of platinum deposition solution, which uses ascorbic 

acid to reduce Pt(IV) ions onto gold nanoparticles,130 was prepared from stock solutions. 50 µL platinum 

deposition solution was added to each well. After incubating the strips for 1.5 h in the humid chamber, all 

wells were gently washed five times with DI water. 10 mL of colorimetric detection solution was prepared, 

and 100 µL was added to each well. Strips were incubated in a dark humid chamber for 20 min, avoiding 

light to minimize background signal. PA83 detection was assessed qualitatively by eye, imaged on an Alpha-

Innotech FluorChem Q imager, and quantitatively measured via absorbance at 655 nm in a Bio-Tek H4 

plate reader. 
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2.7.7 Colorimetric PA83 Detection Curves and Kinetics. Three 8-well strips were coated with mAb 1992, 

and 5 mL AuNPs coated with mAb 8240 were prepared as described above. A dilution series of PA83 in 1X 

PBS was prepared, comprising 1 mL each of 500, 100, 20, 5, 1, 0.5, and 0.1 nM PA83, as well as a 1 µM 

BSA control. 50 µL of each PA83 concentration and the BSA control were added in triplicate to the coated 

8-well strips. Incubation, washing, addition of mAb-AuNPs, and platinum reduction was performed as 

described above.  Then a colorimetric detection solution was added to all the wells. The strips were 

immediately placed in a Bio-Tek H4 plate reader, and the absorbance at 655 nm was measured every minute 

for 25 min. The strips were then photographed with an Alpha Innotech FluorChem Q imager, under white 

light. 

2.7.8 Serum PA83 Detection Curve. Triplicate mAb 1992-functionalized 8-well strips, and a 5 mL batch of 

8240-functionalized AuNPs were prepared as described above. Human serum solution was prepared by 

diluting human serum 1:1 in 1X PBS. A dilution series of PA83 concentrations (500, 100, 20, 5, 2, 1, and 

0.5 nM) was prepared by serially diluting 8 µM stock PA83 into human serum solution. Incubation of PA83 

dilutions and the control 1 µM BSA in human serum, and subsequent colorimetric detection were performed 

as described above. The absorbance at 655 nm was quantified by plate reader after 20 min of incubation 

with colorimetric detection solution. 

2.7.9 Scanometric PA83 Detection. 200 µL of 1 mg/mL mAb 1992 solution was prepared by diluting 

antibody stock 1:1 in 1X PBS. NHS-activated glass slides were divided into 10 wells by attachment of a 

rubber gasket. Two replicate 5 µL spots of mAb 1992 solution were pipetted into each well, and the slide 

was incubated overnight in the humid chamber. The slide wells were then washed three times with blocking 

solution. To determine the scanometric detection range of PA83, a dilution series of PA83 concentrations (60 

nM, 6 nM, 600 pM, 60 pM, 6 pM, and 600 fM) were prepared in 1X PBS, and incubated in two replicate 

wells for 1 h in the humid chamber. The wells were washed 3 times with blocking solution, and then 

incubated for 1 h with 10 nM of 8240-modified AuNPs. Wells were washed 3 more times with blocking 

solution, and then two gold reductions were performed to amplify the signal.75 
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To perform gold reductions, the slide was removed from the rubber gaskets. Solutions of 10 mM HAuCl4 

and 10 mM hydroxylamine (NH2OH) were prepared in separate 10 mL syringes. The syringes were 

connected by a T-junction to a single output tube, to enable rapid mixing of the solutions. 4 mL of a 1:1 

HAuCl4/NH2OH mixture was spread evenly over the surface the slide for 30 s, then the slide was immersed 

in a DI water bath to wash gold reduction solution away, gently rinsed with running DI water, and blown 

dry with N2. The gold reduction, washing, and drying steps were repeated once more. The slide was then 

imaged with a Tecan LS Reloaded scanner. Light scattering signal intensities from the two replicate spots 

for each PA83 concentration were quantified by GenePix Pro 6 software. The limit of detection was 

determined using 3.5 sigma above the negative control and fitting the data points to a Hill equation.  

2.7.10 Monoclonal antibody orientation in PA83 sandwich. Three 8-well strips were coated with mAb 1992, 

and three were coated with mAb 8240. 5 mL each of gold nanoparticles (AuNPs) coated with either mAb 

8240 or mAb 1992 were prepared as described above. Seven concentrations of PA83 (500, 100, 20, 5, 1, 0.5, 

and 0.1 nM) were prepared in 1X PBS as described in the main text. 50 µL of each PA83 concentration and 

the BSA control were added in triplicate to the coated 8-well strips. Incubations, washes, addition of AuNP-

mAbs (AuNP-mAb 1992 to the 8240-coated wells, and AuNP-mAb 8240 to the 1992 coated wells), 

platinum reduction, and qualitative colorimetric detection with the Alpha-Innotech FluorChem Q imager 

was performed as described in the screening assay in the main methods section. 

2.7.11 Optimization of H2O2 concentration in TMB/H2O2 solution. Three 8-well strips were coated with 

mAb 1992, and 5 mL AuNPs coated with mAb 8240 were prepared as described in the main text. Three 

concentrations of PA83, 100, 10, and 1 nM, were prepared in 1X PBS. 50 µL of each PA83 concentration and 

the BSA control were added in triplicate to the coated 8-well strips. Incubations, washes, addition of AuNP-

mAbs, and platinum reduction was performed as described in the screening assay in the main text. Three 

colorimetric detection solutions were prepared, by mixing 20, 50, or 100 mM H2O2 in TMB. The strips 

were then placed in a Bio-Tek H4 plate reader, and the absorbance at 655 nm was measured after 20 min of 

incubation. 
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2.7.12 Optimization of Pt reduction time. Five 8-well strips were coated with mAb 1992, and 5 mL AuNPs 

coated with mAb 8240 were prepared as described in the main text. 10 nM PA83 was prepared in 1X PBS 

as described in the main text. 50 µL of 10 nM PA83 was added to 18 wells, and 50 µL blocking solution was 

added to 18 control wells. 50 µL Pt reduction solution was added to each well. For both the 10 nM PA83 and 

the 0 nM control condition, 3 wells each were incubated with the Pt reduction solution for 0, 10, 30, 60, 90, 

and 120 min before rinsing 5 times with water. 100 µL colorimetric detection solution with 50 mM H2O2 in 

TMB was added to each well and the absorbance at 655 nm was measured in a Bio-Tek H4 plate reader 

after 20 min. 

2.7.13 Optimization of incubation times. Six 8-well strips were coated with mAb 1992, and 5 mL AuNPs 

coated with mAb 8240 were prepared as described in the main text. Solutions of 100, 10, and 1 nM PA83 

were prepared in 1X PBS as described above. 12 wells were filled with 50 µL of 100, 10, 1 nM PA83 or a 

blocking solution control. For each PA83 concentration, four wells were incubated with PA83 for 15 min, 

four were incubated for 30 min, and four were incubated for 60 min before washing 3X with blocking 

solution. 20 µL of 10 nM AuNP-mAb was added to each well, and incubated for the same amount of time 

as the PA83 solution (i.e. 15, 30, or 60 min depending on the well). Then, for each set of four replicate wells, 

two were incubated with Pt reduction solution for 10 min, and two for 90 min, before washing 5X with 

water. Colorimetric detection solution was added and absorbance after 20 min was measured as described 

above.  

2.7.14 ELISA. 8-well strips functionalized with mAb 1992, 8240, 13808, and 38725 were prepared as 

described in the main text. 100 µL of 1 mg/mL mAb 1992, 8240, and 1990 were run through NAP-5 

columns equilibrated in 1X PBS to remove the sodium azide preservative (required for the use of the HRP 

conjugation kit). Then horseradish peroxidase was conjugated to mAb 1992, 8240, and 1990 using an EZ-

Link Plus activated peroxidase kit. A PA83 dilution series (100, 20, 5, 1, 0.5, and a 1 µM BSA control) was 

prepared, and incubated/washed in each 8-well strip as described above. A 1:100 dilution of each HRP-

mAb was incubated in the wells for 1 h in the following arrangement: 1992-8240-HRP, 8240-1992-HRP, 
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13808-1990-HRP and 38725-8240-HRP sandwich pairs. The wells were then washed with blocking 

solution 3 times, and 100 µL colorimetric detection solution was added. After 20 min incubating in the 

dark, the wells were imaged in FluorChem Q imager and the absorbance at 655 nm was quantified on the 

plate reader. Fold change in absorbance was calculated and plotted by dividing the absorbance at each PA83 

concentration by the absorbance of the negative control. 

2.7.15 Blind Serum PA83 Detection. Two mAb-functionalized 8-well strips and a 5 mL batch of AuNP-

mAbs were prepared as described above. Three replicate 50 µl aliquots of 10, 5, 1, and 0 nM PA83 in 1:1 

serum:PBS were prepared and divided into three 50 µL aliquots in labeled 1.5 mL Eppendorf tubes. These 

aliquots were given to a third party, who randomly transferred their contents to fresh Eppendorf tubes which 

were numbered 1-12, recording in their notebook what concentration of PA83 was transferred to each 

numbered tube. The numbered tubes were returned to the experimenter without revealing their contents. 

The wells on the two mAb-functionalized strips were labeled 1-12, and 50 µL from the numbered aliquots 

were added to each corresponding well. The PA83 incubation, AuNP-mAb incubation, and Pt reduction 

were performed as described in the main text. Colorimetric detection solution was added and incubated 

overnight in a dark chamber, after which absorbance at 655 nm was measured in the plate reader. Finally, 

the key recording each numbered aliquot’s PA83 concentration was retrieved from the third party. 
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3.1 Introduction 

Although some stress is required for optimal human function, too much stress is detrimental to 

performance and leads to the dysregulation of multiple physiological systems, damaging human health by 

impairing cardiovascular, immune, metabolic, and neuroendocrine function.138, 139 Moreover, the same 

stressors can increase some individuals’ performance, while overloading and damaging others’ 

performance and health.140 These realities have generated research interest into ways to measure 

individuals’ stress levels, their allostatic load,141 in order to better manage and improve performance, 

psychological and physiological wellbeing.  

One approach to this challenge is to develop methods to quantify the concentration of biomarkers that 

are indicative of allostatic load in human samples such as sweat, saliva, urine and blood. Molecular 

biomarkers of neuroendocrine, cardiovascular, immune and metabolic health include cortisol, 

dehydroepiandrosterone-sulphate (DHEA-S), insulin, glycosylated hemoglobin, creatinine, albumin, 

pancreatic amylase, C-reactive protein, fibrinogen, serum triglycerides, serum cholesterol, high-density 

lipoprotein.142 DHEA-S and cortisol, in particular, are widely studied as biomarkers of human stress. Both 

DHEA-S and cortisol are adrenal glucocorticoid steroid hormones, secreted as part of the hypothalamic-

pituitary-adrenal axis of the fight-or-flight response.143 However, while high cortisol concentrations induce 

physiological stress and suppress immune and digestive function,144 high DHEA-S concentrations are 

correlated with lower levels of stress and improved neurophysiological health and performance.145 

The standard methods for detecting and measuring DHEA-S and cortisol concentrations are liquid 

chromatography-tandem mass spectrometry (LC-MS/MS), and immunoassays like competitive ELISA.146 

While LC-MS/MS measures different glucocorticoid hormone levels with high accuracy, it requires an 

expensive specialty instrument and a high degree of technical expertise to run.147 Immunoassays are simpler 

and less expensive to run than LC-MS/MS, but still require multiple time-consuming and potentially error-

prone liquid handling steps, and suffer from cross-reactivity of the antibodies for structurally similar 
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glucocorticoid hormones, which reduces assay sensitivity and specificity.148 A simple and specific one-pot 

assay for different glucocorticoid stress biomarkers would be valuable. 

Oligonucleotide aptamers may provide a path to developing such an assay. These are single-stranded 

DNA or RNA oligonucleotides that adopt a 3-dimensional structure that binds to a target molecule of 

interest.149 Some RNA aptamers evolved naturally as riboswitches that bind and respond structurally to 

intracellular metabolites, thereby regulating gene expression.150 However, most interest in aptamers focuses 

on the ability to rapidly evolve and select for aptamers that bind novel targets through the process of 

systematic evolution of ligands by exponential enrichment (SELEX).151 By incubating a starting pool of 

1012-1015 diverse oligonucleotides with magnetic nanoparticle-bound or otherwise immobilized target 

molecules, then performing successive rounds of washing, PCR amplification, target binding, and 

separation from the pool, researchers have been able to select for aptamers that bind to a vast range of 

molecular targets, from proteins152 to small molecules153 to monoatomic ions.154 These aptamers have 

subsequently been used to build biosensors for the electrochemical,155 fluorescent,156 and colorimetric157 

detection of their target molecules. Sometimes called ‘molecular antibodies,’ aptamers have several 

theoretical advantages over their immunoglobulin counterparts: they are molecularly defined and can be 

chemically synthesized, potentially increasing reproducibility; they are much more stable and have longer 

shelf lives than antibodies, potentially increasing their utility for ‘field’ diagnostics;158 and finally, with the 

right set of negative selection steps during SELEX, aptamers can be rapidly evolved to discriminate 

between structurally similar target molecules with low cross-reactivity.159 In one relevant example, 

researchers reported evolving a library of aptamers that bind specifically to one steroid hormone (including 

DHEA-S and cortisol) with nanomolar affinities and without binding to other steroid hormones.160 

Over the past two decades, Mirkin lab has developed numerous nanoparticle-based assays of disease 

biomarkers, including nucleic acids,71 proteins,74 and small molecules.72 One of the most well-developed is 

the NanoFlare,77 a gold nanoparticle (AuNP) SNA functionalized with thiolated DNA oligonucleotides that 

are hybridized to fluorophore-modified oligonucleotide ‘flare’ strands. Proximity to the AuNP quenches 
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the fluorophores on the flare strand; however, in the presence of a target polynucleotide sequence that is 

complementary to the thiolated oligonucleotide, the target hybridizes to the SNA and displaces the flare 

strand. The displaced flare diffuses away from the AuNP and is no longer quenched, generating a 

fluorescent signal. NanoFlares represent a tailorable platform for the simple and rapid detection of 

numerous biomarkers. Because SNAs readily enter cells, NanoFlares can detect nucleic acid targets both 

extracellularly and intracellularly.79 Multiplex NanoFlares which can simultaneously detect two different 

target sequences using two different thiolated oligonucleotides and two flare strands with different 

fluorophores conjugated to them have already been demonstrated, opening the possibility of one-pot 

analysis of multiple biomarkers using NanoFlares.78  

Aptamer NanoFlares are an intriguing and underexplored class of NanoFlares (Figure 16).81 Aptamer 

NanoFlares are AuNPs functionalized with a thiolated DNA aptamer that binds to a target molecule of 

interest an contains a hairpin stem. The flare strand is hybridized onto the hairpin stem, displacing the 

 

Figure 16. Aptamer NanoFlares for small molecule detection. (A) Synthesis of Aptamer 
NanoFlares from citrate-capped gold nanoparticles, thiolated DNA Aptamers, and complementary 
fluorophore modified Flare strands. (B) Small molecule recognition with aptamer NanoFlares by 
stabilizing the folded aptamer and/or destabilizing the aptamer-flare duplex. 
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aptamer’s self-complementary duplex and partially disrupting the aptamer’s structure. Then, in the presence 

of the target molecule, the folded conformation of the aptamer is stabilized, re-forming the self-

complementary duplex and displacing the flare strand, which diffuses away from the AuNP and generates 

a fluorescent signal. The first demonstrated aptamer NanoFlare bound to and detected ATP in vitro, could 

distinguish ATP from other nucleoside triphosphates in a one-pot reaction, and could enter cells and detect 

when ATP production was halted.81 However, few if any subsequent aptamer NanoFlare designs have been 

reported, meaning that the generalizability of this biosensor architecture is unknown. Moreover, the first 

aptamer NanoFlare paper demonstrated biosensing function without delving deeply into the mechanisms 

and design considerations undergirding that function. Whether and how the behavior and the design rules 

for minimizing the detection limit of aptamer Nanoflares differ from either nucleic acid-sensing NanoFlares 

or nanoparticle-free aptamer biosensors remains unknown. 

To address these questions, this chapter presents our efforts to model, measure, and screen for aptamer 

NanoFlares to detect DHEA-S and cortisol biomarkers of stress. 

3.2 Initial Aptamer NanoFlare design 

To begin building and testing aptamer NanoFlares for detection of biomarkers of stress, we selected as 

a first model the aptamer DIS11th_3, which had been designed by running SELEX with 7 rounds of positive 

selection for DHEA-S binding, then 3 rounds of 

counterselection against several non-DHEA-S steroids, 

and then one final round of positive DHEA-S binding 

selection.160 This aptamer has a predicted secondary 

structure with three hairpins, and the DHEA-S is predicted 

to bind at the juncture of the three hairpins. To adapt the 

aptamer for functionalization on an SNA, a 7-adenosine 

(7A) spacer and then a thiol modification were added to the 

3’ end of the aptamer. The initial flare strand was designed 

 

Figure 17. Architecture of initial 
DHEA-S aptamer NanoFlare design. 
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to hybridize to the 8 base pairs on the 3’ end of the aptamer, theoretically bringing the flare’s 5’ Cy5 

modification into close proximity to the AuNP core of the 

SNA and quenching its fluorescence (Figure 17). 

Using this design, aptamer NanoFlares were 

synthesized, and their ability to detect DHEA-S was tested. 

The initial aptamer NanoFlare design did not display an 

increase in fluorescence in the presence of 1 mM DHEA-S 

(Figure 18).  

3.3 DIS11th_3T truncated aptamer NanoFlare design. 

The increasing background signal with increasing 

temperature in this aptamer NanoFlare design suggests that 

the flare strand does not hybridize stably, possibly due to the 

competing internal duplex that is formed when the aptamer 

is folded. We hypothesized that a shorter, less stable aptamer 

hairpin might function better, because it would be more 

accessible to hybridization with the flare strand. We 

therefore designed a truncated version of the DIS11th_3, 

named DIS11th_3T, which shortened the hairpin stem by 

4 base pairs (Figure 19). In this design, the flare strand 

now is longer than the aptamer’s self-complementary 

duplex, and extends into the DHEA-S binding site. After 

synthesizing aptamer NanoFlares with this design, a 

preliminary DHEA-S detection experiment indicated 

that DIS11th_3T could detect high (1 mM) 

concentrations of DHEA-S (Figure 20). 

 

Figure 18. Initial DHEA-S aptamer 
NanoFlare design does not detect 
DHEA-S. Fluorescent response of 
aptamer NanoFlare is shown in the 
presence (red) and absence (blue) of 1 
mM DHEA-S. 
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Figure 19. Truncated aptamer 
NanoFlare design. 
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Figure 20. Truncated aptamer NanoFlare 
design may detect DHEA-S. Fluorescent 
response of aptamer NanoFlare is shown in 
the presence (red) and absence (blue) of 1 
mM DHEA-S. 
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3.4 Structural response of DIS11th_3 and DIS11th_3T to DHEA-S. 

We sought to test the hypothesis that the truncated aptamer’s structure was destabilized relative to the 

original DIS11th_3. In collaboration with Peter Mirau’s lab, we generated NMR spectra for the two 

aptamers in the presence and absence of DHEA-S (Figure 21). The imino protons in unpaired guanine and 

thymine nucleobases rapidly exchange with solvent, such that they do not generate measurable NMR peaks. 

However, in G-C and A-T base pairs, these imino protons are protected from solvent, and can appear as 

peaks on the NMR spectra. The original DIS11th_3 aptamer has largely the same spectrum in the presence 

and absence DHEA-S, indicating that the presence of target molecule does not change the structure of the 

aptamer. However, for the truncated DIS11th_3T aptamer, the presence of DHEA-S causes at least 3 new 

peaks, at 11 ppm, 12 ppm and 14.5 ppm, to appear on the NMR spectrum. This indicates that DHEA-S 

induces a conformational change in DIS11th_3T, which is promising from the standpoint of designing a 

biosensor that responds structurally to the presence of target molecule. 

3.5 Backfilling aptamer NanoFlares to reduce nonspecific quenching 

In order to efficiently probe parameters governing aptamer Nanoflare performance, it was important to 

establish the minimum background and maximum fluorescence signal the particles can produce. In 

 

Figure 21. NMR of aptamer structural response to DHEA-S. (A) Imino proton NMR spectra for 
the original DIS11th_3 aptamer in the presence and absence of a 1.25-fold excess of DHEA-S. (B) 
NMR spectra of DIS11th_3T in the presence and absence of 1.25X DHEA-S. 
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particular, we hypothesized that inefficient binding/hybridization of the flare strand to the aptamer SNA 

might increase background fluorescence and reduce the dynamic range and signal to noise ratio of the 

biosensor. To determine how efficiently the particles quench flare fluorescence, and whether that quenching 

is due to hybridization with the aptamer stem, we measured the fluorescence from DHEA-s flare strands 

alone, flares in the presence of gold nanoparticles, and flares in the presence of either the DIS11th_3T 

aptamer SNA or MN19,161 a non-complementary cocaine aptamer SNA (Figure 22; sequences in Table 

A1). 

The nanoparticles efficiently quenched the flare strand, generating a >10-fold decrease in fluorescence 

relative to free flare.  However, the quenching appeared to be nonspecific: free AuNPs with no aptamer 

strands attached and non-complementary aptamer SNAs both efficiently quenched the flare strand, 

indicating that hybridization with the aptamer stem is not required for the flare strand to be quenched. Free 

DNA strands are known to interact nonspecifically with AuNPs,162 so we suspected that most of the flare 

strands were adsorbing onto the surface of the gold nanoparticles in the spaces between the aptamer strands. 

 

Figure 22.  Fluorescence and quenching mechanism for flare strands. Both DHEA-S and cocaine 
flares were incubated in PBS at 37ºC in the presence of bare gold nanoparticle, matching aptamer SNA 
(i.e. DHEA flare with DHEA aptamer), or with a mismatched aptamer SNA (i.e. cocaine flare with DHEA 
aptamer). 
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We hypothesized that disrupting the flare strand’s ability to access the gold nanoparticle’s surface 

would reduce non-specific quenching of the flare. We tested the effect of backfilling the aptamer-SNA 

particles with thiolated PEG oligomers (average MW = 800 Da), and measured the change in fluorescence 

(Figure 23). 

Functionalizing the surface of the bare gold nanoparticles with PEG almost completely eliminated 

quenching of either flare strand. This suggests that the nonspecific quenching was due to adsorption of the 

flare strand with the gold nanoparticle’s surface. 

We next sought to determine whether the backfilled aptamer-SNAs would still hybridize and quench 

their flare strands in a sequence-dependent manner (Figure 24). We also sought to measure whether how 

much of a change in fluorescence could be induced by de-hybridizing the flare strands off the particle. We 

therefore incubated DHEA aptamer SNAs with either DHEA flare strands or cocaine flare strands, and 

measured fluorescence in the presence and absence of urea. 

 

 

Figure 23. Backfilling Aptamer SNAs with PEG greatly reduces non-specific quenching. 
Both DIS11th_3T and MN19 flare strands were incubated by themselves, with bare AuNPs, or 
with gold nanoparticles incubated with an excess of thiolated PEG oligomers (1,000:1 
PEG:AuNP).  
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While PEGylated AuNPs did not efficiently quench the DHEA flare strand, the PEGylated DIS11th_3 

aptamer SNA did. This indicated that the flare strand interacts with the DIS11th_3 aptamer SNA via a 

distinct mechanism from the bare gold nanoparticle interaction. Further, the fluorescence of the backfilled 

DIS11th_3 NanoFlare increased more than 8-fold upon addition of urea to the solution, suggesting that 

denaturation and de-hybridization destroyed the flare strand-aptamer SNA interaction. Finally, the cocaine 

flare strand was not efficiently quenched by the backfilled DIS1th_3 aptamer SNA, suggesting that the 

interaction of the flare strand with backfilled nanoparticles was sequence-dependent.  

3.6 Measuring flare hybridization efficiency 

We wanted to determine how well backfilled aptamer Nanoflares could detect small molecules of 

interest. Surprisingly, we observed no increase in fluorescence when DIS11th_3 aptamer NanoFlares were 

added to solutions with 1 mM DHEA-S. We suspected that non-hybridized flare strands in solution may be 

 

Figure 24. Backfilled Aptamer Nanoflares demonstrate reversible, sequence-dependent 
quenching. DIS11th_3 flare strand (blue bar) was incubated with bare gold nanoparticle, backfilled gold 
nanoparticle, backfilled DIS11th_3 aptamer SNA, and backfilled DIS11th_3 aptamer SNA in the presence 
of urea. MN19 cocaine flare (red bar) was also incubated with backfilled DIS11th_3 aptamer SNA. 
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causing high background fluorescence levels, thus impairing detection. We therefore synthesized aptamer 

Nanoflares with different numbers of flare strands per particle, hypothesizing that some optimal number of 

flare strands would provide the lowest background fluorescence levels. However, none of the particles we 

synthesized detected DHEA-S (Figure 25). 

Hypothesizing that inefficient flare quenching may reduce aptamer Nanoflare performance, we sought 

to measure how efficiently the DIS11th_3 SNAs quench increasing numbers of DHEA-S flare strands. We 

measured the fluorescence of Aptamer Nanoflares with different ratio of aptamer strands to flare strands, 

 

Figure 25. Flare Loading versus DHEA-S detection. DIS11th_3 aptamer NanoFlares are synthesized 
with different numbers of flare strands per particle. Then fluorescence is measured with (red) and 
without (blue) 1 mM DHEA-S. 
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Figure 26. Flare loading versus flare quenching. Aptamer Nanoflares were synthesized with varying 
loadings of flare strand, expressed as a ratio of aptamer strands to flare strand. The aptamer Nanoflare 
fluorescence (blue) is compared to the fluorescence of PEGylated gold nanoparticles mixed with the 
same number of flare strands, and the ratio of the two is labeled. 
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compared to PEGylated AuNPs with the same 

number of flare strands (Figure 26). We found 

that NanoFlares with 7 aptamer strands per 

flare strand showed the most efficient 

quenching, causing a 2-fold decrease in 

fluorescence. As 2-fold quenching is much less 

efficient than has been observed for other 

NanoFlare systems, we re-synthesized the 

aptamer, flare, and scrambled flare sequences and repeated the experiment with fresh reagents. We again 

observed at most a 2-fold quenching effect, with most efficient quenching observed at a ratio of 10 aptamer 

strands per flare strand.  

We hypothesized that the flare strands may be quenched inefficiently because they melt off the SNA at 

low temperatures. We therefore ran a melting experiment on the aptamer Nanoflares in the plate reader, 

measuring the fluorescence of the constructs as we raised the temperature from 25ºC to 65ºC (Figure 27). 

Surprisingly, we observed that aptamer Nanoflare fluorescence decreased with increasing temperature, in 

contrast to what would be expected for 

a fluorophore-labeled oligonucleotide 

hybridized onto a gold nanoparticle. 

The fluorescence of free flare strands 

alone in solution also decreased in 

fluorescence with increasing 

temperature.  

This led us to hypothesize that the 

DIS11th_3 flare strand-aptamer duplex 

had an even lower melting temperature 

 

Figure 28. Flare strand annealing. 1 nM DIS11th_3 aptamer 
NanoFlares (‘DHEA Aptaflare’, blue) are slowly cooled in a 
fluorimeter from 37ºC to 9ºC. Control samples including flare 
only (red), flare + PEGylated gold nanoparticle (black), and 
DIS11th_3 SNA (DHEA SNA) + scrambled flare (green) are 
shown. 
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Figure 27. DIS11th_3 aptamer NanoFlare Melt (Plate 
Reader). The fluorescence of Aptamer NanoFlares 
(blue) and flare strands by themselves (red) is 
measured as temperature rises from 25ºC to 65ºC. 
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than 25ºC. We therefore used a fluorimeter to measure annealing of the flare strand to the particle as the 

temperature was slowly (1ºC/minute) lowered from 37ºC to 9ºC (Figure 28). Under these conditions, 

fluorescence of the aptamer Nanoflare constructs decreased 2-fold between 30ºC and 15ºC. We suspected 

that the flare strands had a relatively low melting temperature because they were only 8 base pairs long. 

We concluded that the stability of the flare-aptamer duplex needed to be increased in order to increase the 

potential signal the aptamer NanoFlares were capable of generating. 

3.7 Increasing flare strand length 

We hypothesized that a longer flare that more strongly hybridized to the aptamer stem would be 

quenched more efficiently, leading to lower baseline fluorescence in the aptamer NanoFlare biosensor. We 

therefore designed and synthesized a 12 base flare strand (Figure 29), which is 4 bases longer and has a 

predicted melting temperature 20ºC higher than the original 8 bp DIS11th_3T flare (40ºC versus 20ºC). We 

also synthesized fresh aptamer SNAs, achieving a loading density of 40 aptamers/AuNP as measured by 

Oligreen. 

We then compared the quenching efficiency of the 12 bp and 8 bp flare strands in a fluorimeter melt 

experiment (Figure 30). While the 12 bp flares achieved 3-fold quenching of flare strand below 30ºC, the 

8 bp flare strands displayed little quenching and a higher background even at 10ºC. This experiment 

demonstrated that NanoFlares made with the 12 bp flare strand quenched baseline fluorescence more 

efficiently and at higher temperatures than previous constructs made with the 8 bp flares. The aptamer 

NanoFlares appeared to detect DHEA-S. 

 

Figure 29. Original, shorter 8 bp DIS11th_3 flare sequence (red), and longer 12 bp DIS11th_3 flare 
sequence (blue). Melting temperatures predicted  the IDT Oligo Analyzer tool are shown. 
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Figure 30. Fluorimeter melt of 8 bp flare strand (red) versus 12 bp flare strand (blue) on backfilled 
aptamer SNAs. 

 

Figure 31. DHEA-S detection over a range of concentrations. Aptamer Nanoflare fluorescence was 
measured in a fluorimeter in the presence of a range of DHEA-S concentrations. Physiological 
concentrations of DHEA-S in blood and saliva are also shown. 
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3.8 DHEA-S detection and batch-to-batch variability 

We next tested whether aptamer NanoFlares with the 12bp flare strands could detect DHEA-S. The 

fluorescence of aptamer NanoFlares was measured in the presence of a dilution series of DHEA-S 

concentrations, ranging from 3.75 mM to 30 µM DHEA-S (Figure 31). Fluorescence increased for all 

concentrations of DHEA-S, increasing roughly linearly in proportion to the logarithm of DHEA-S 

concentration. In this experiment the aptamer NanoFlares appeared to detect DHEA-S. 

However, subsequent experiments have not consistently replicated this DHEA-S detection curve. For 

example, we synthesized several batches of aptamer NanoFlares with a variety of loading densities, ranging 

from 88 aptamers/particle to 56 aptamers/particle, in order to test the effect of aptamer loading density on 

DHEA-S detection (Figure 32). The resulting detection curves showed a wide variation in fluorescence 

response between particle batches that did not correlate with loading density: while particles with the 

highest loading density (88 aptamers/particle) showed the greatest relative increase in fluorescence, the 

second greatest fluorescent response came from particles with the lowest loading density (56 

aptamers/particle). The two particles with intermediate aptamer loading densities showed the lowest 

fluorescent response. The source of this batch-to-batch variability is still unclear. 

 

Figure 32. Detection of DHEA-S by multiple batches of aptamer Nanoflares. Plate reader data of 
the fluorescence response to a range of DHEA-S concentrations by aptamer NanoFlare batches with 
different loading densities. Experimental data is in triplicate. 
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3.9 Conformational selection model of aptamer NanoFlares 

In order to move beyond a specific aptamer NanoFlare system and seek to improve the design and 

performance of aptamer NanoFlares in a generalizable way, we sought to build, validate and refine 

mathematical models of aptamer NanoFlares. In collaboration with Peter Mirau, we first designed a 3-state 

conformational model of the aptamer NanoFlare system (Figure 33). 

Five equations define the aptamer Nanoflare 3-

state model (Figure 34). Three equations state that 

the overall concentration of aptamer strand, 

DHEA-S small molecule, and flare strand, are 

constant during each experiment. These overall 

concentrations are known and set by the initial 

conditions of each experiment, while the 

concentrations of free flare strand, aptamer, DHEA-S, flare-aptamer duplex and DHEA-S-aptamer complex 

are unknown. The most important parameters in the model are the two dissociation constants (KD’s). The 

dissociation constant of the aptamer-DHEA-S interaction (KD
Apt) influences how much the presence of 

small molecule stabilizes the aptamer. The dissociation constant of the aptamer-flare strand hybridization 

 

Figure 33. 3-state conformational selection model of the aptamer Nanoflare system. The 
unfolded aptamer and hybridized flare strand (on the left) exist in equilibrium with the folded aptamer 
and dissociated flare (in the center), and in which the addition of DHEA-S stabilizes the folded state of 
the aptamer (on the right). 
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Figure 34. Equations of the conformational 
selection aptamer NanoFlare model. Equations 1 
and 2 define the dissociation constants of the 
aptamer-flare and aptamer-DHEA-S interaction. 
Equations 3, 4 and 5 define the fixed concentration 
of aptamer (A), flare strand (F), and DHEA-S (D) in 
each experiment.  
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interaction (KD

Hyb) influences how efficiently the flare strand hybridizes, and therefore the background 

fluorescence of aptamer NanoFlares. Determining these dissociation constants will result in a set of 5 

equations with 5 unknowns, which can be solved to generate predictions about aptamer NanoFlare behavior. 

Using Jupyter Notebooks, we built a Python-based version of this equilibrium, conformational selection 

model (Code C1). 

3.10 Determining aptamer-flare and aptamer-DHEA-S dissociation constants. 

We performed isothermal titration calorimetry to measure KD
Apt (Figure 35), measuring the heat 

released as DHEA-S was titrated into a solution of free aptamer in 1X PBS. A curve was then fitted to the 

∆H vs DHEA-S concentration. We ran this experiment with two different concentrations of DHEA-S and 

aptamer to make sure the measurement was consistent, and obtained an average KD
Apt of 27 µM ± 2 µM. 

We hypothesized the value of KD
Hyb could be inferred by comparing the predicted behavior of the model 

for a range of KD
Hyb values to the experimentally observed behavior of the particles. Toward this end, we 

compared the experimentally observed flare quenching efficiency from the fluorescence melt in Figure 30 

to the model’s predicted quenching efficiency for a range of KD
Hyb values (Figure 36). For 1 nM Aptamer 

SNA (40 nM aptamer) and 4 nM flare strand in 1X PBS, fluorescence at 30ºC was 66% lower than 

 

Figure 35. Measuring KDApt with isothermal titration calorimetry. The ∆H released from the titration 
of DHEA-S is plotted as a function of the molar ratio of DHEA-S to Aptamer. Two different titration 
curves, plotting either titration of 1.8 mM DHEA-S into 0.09 mM aptamer (A) or titration of .3 mM DHEA-
S into .02 mM aptamer (B). The calculated KDApt from each titration curve is shown and the average 
KDApt of the two measurements (bottom) is shown. 
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fluorescence at 50ºC. The model requires a KD
Hyb of 11 nM in order to reproduce 66% quenching of flare 

strands at these concentrations of aptamer and flare strand.  

3.11 Predictions of equilibrium conformational selection model 

Having determined the dissociation constants required to solve the conformational selection 

mathematical model, we sought to use it as a guide for future optimizations of aptamer NanoFlare designs 

and assays. Three main model parameters could affect assay performance: the concentration of aptamer 

Nanoflare, the strength of flare-aptamer binding (KD
Hyb), and the strength of the aptamer-DHEA-S 

interaction (KD
Apt). We plotted model predictions about the relative fluorescence response to DHEA-S for 

a range of aptamer NanoFlare concentrations (Figure 37). The model predicted that higher concentrations 

of aptamer Nanoflare would lead to larger relative fluorescence increases in the presence of similar 

concentrations of DHEA-S. For instance, 1 nM particle was predicted to only generate a maximum 3.5-fold 

increase, 10 nM particle was predicted to generate up to a 20-fold fluorescence increase in the presence of 

10 mM DHEA-S. This made sense, because mass action meant that higher concentrations of aptamer and 

flare would translate to a higher proportion of flare hybridized onto the aptamer SNA and quenched. 

Therefore, a larger proportion of flare strands could be displaced by high concentrations of DHEA-S. 

 

Figure 36. Model-based inference of KDHyb. Model prediction of fraction of free flare strand (equal to 1 
minus the quenching efficiency) versus different values of KDHyb. 
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However, higher concentrations of DHEA-S did not translate to a lower predicted detection limit; 

approximately the same concentration of DHEA-S was required to generate a predicted 1.5-fold 

fluorescence increase in 1 nM aptamer Nanoflare as was needed at 10 nM or 100 nM aptamer NanoFlare.  

Next, we examined how varying the value of KD
Hyb affected the model’s behavior (Figure 38). Perhaps 

unsurprisingly, lower KD
Hyb values were predicted to produce larger relative fluorescence changes in the 

presence of DHEA-S. For instance, while an 11 nM KD
Hyb was predicted to generate at most a 3.5-fold 

fluorescence increase, a 1 nM KD
Hyb was predicted to generate up to a 25-fold fluorescence increase. This 

 

Figure 37. Predicted DHEA-S detection as a function of aptamer NanoFlare concentration. 
Aptamer Nanoflare concentrations are expressed as gold nanoparticle concentrations with 30 aptamers 
per particle, and 5 flare strands per particle. 
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Figure 38: Predicted DHEA-S detection as a function of KDHyb. 
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was because tighter binding flares more efficiently hybridize and quench aptamer SNAs. Importantly, 

however , the model assumed no noise in the fluorescence measurement, so the largest predicted fold 

changes in fluorescence may come from unrealistically low predictions about background noise and 

baseline fluorescence. As with varying the construct’s concentration, the higher relative fluorescence with 

lower KD
Hyb did not translate to a decrease in the predicted detection limit of the assay—the amplitude of 

the sigmoid fluorescent response to DHEA-S increased, but the sigmoid did not shift to lower 

concentrations of DHEA-S. 

We then plotted predicted DHEA-S detection performance as a function of the strength of aptamer-

DHEA-S binding, KD
Apt (Figure 39). This was the only parameter that was clearly predicted to affect the 

detection limit of the aptamer NanoFlares: the stronger the aptamer-small molecule interaction (and 

therefore the lower the KD
Apt), the more the detection response curve shifted to lower concentrations of 

DHEA-S. The sigmoid fluorescent response also became sharper at lower KD
Apt values, because most of the 

DHEA-S in solution would bind to the aptamer and displace flare strands. These results suggested that 

significantly reducing the detection limit of aptamer Nanoflares would requires optimization of the aptamer 

structure to bind more tightly to the target molecule. However, KD
Apt has no effect on the amplitude of the 

fluorescent response to large concentrations of DHEA-S.  

 

Figure 39: Predicted DHEA-S detection as a function of KDApt. Predicted detection curve with 
experimentally determined KDApt (27 µM) in black. 
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3.12 Induced fit kinetic model of aptamer NanoFlares 

The conformational selection model assumed that the flare and aptamer dynamically associate and 

dissociate, that DHEA-S stabilizes the folded, flare-inaccessible conformation of the aptamer, and that the 

equilibrium between flare-aptamer duplex and aptamer-DHEA-S complex is governed by the dissociation 

constants of the two interactions (KD
Hyb and KD

Apt) and the concentrations of the three molecules. However, 

we hypothesized that the assumption that flare strands rapidly and dynamically hybridize and dissociate 

from the SNA was not accurate, particularly given that SNAs are known to hybridize more stably to 

complementary DNA than equivalent linear oligonucleotides.61 We investigated an alternative, induced fit 

model of aptamer Nanoflare dynamics (Figure 40). In an induced fit regime, the flare strand hybridizes 

stably with the aptamer and its dissociation rate (kR
Hyb) is low. To displace the flare strand, the target 

molecule binds to the flare-aptamer duplex and induces it to change shape, into an intermediate structure in 

which the flare dissociation rate (kR
Hyb*) is higher, and de-hybridization becomes more favorable. 

One observable difference between the conformational selection and induced fit models is that in an 

induced fit system, the flare strand rarely dissociates in the absence of the aptamer’s target molecule. To 

test hybridized flare strands’ tendency to dynamically dissociate from the aptamer, DIS11th_3T aptamer 

NanoFlares with 12 bp flare strands were incubated in PBS at room temperature for 15 minutes and pelleted 

via centrifugation, and then the supernatant was pipetted off and measured for fluorescence. This was 

 

Figure 40. Induced fit model of aptamer Nanoflares.  
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repeated five times, and then the pellet was resuspended in 2 M urea, incubated and pelleted once more 

(Figure 41). If the DIS11th_3T aptamer NanoFlare system were governed by conformational selection 

dynamics, then some fraction of the flare strands would be expected to dissociate with each cycle of 

pelleting and resuspending in fresh buffer, leading to fluorescence in the supernatant. However, if an 

induced fit model better described aptamer NanoFlare behavior, little to no flare would be measured in the 

supernatant, even after repeated rounds of pelleting, removing the supernatant, and washing with fresh 

buffer. Fluorescence would appear in the supernatant only after, for instance, denaturing the aptamer-flare 

duplex with concentrated urea. This is precisely what is observed in the pelleting experiment. 

The pelleting results suggested that the aptamer NanoFlares had a very low aptamer-flare dissociation 

rate: the amount of flare dissociating in each round of washing and 30 minutes of incubation was at most 

1/120th of the total flare hybridized on the particle. This result was interesting for three primary reasons: 

first, pelleting could be a useful strategy when optimizing aptamer nanoflare response to low concentrations 

of target molecule, because it appears to greatly reduce background fluorescence relative in the fluorimeter. 

Second, in an induced fit system the stability of the flare-aptamer duplex could affect how well the target 

 
Figure 41. Pelleting experiment to qualitatively measure the aptamer-flare dissociation rate.  
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molecule is able to change the conformation of the aptamer to displace the flare; so optimization for the 

stablest possible flare strand many not be ideal. 

In order to further explore the induced-fit regime of aptamer NanoFlare dynamics, it was necessary to 

build a kinetic computational model of the system. This model would incorporate the additional species 

(aptamer-flare-DHEA-S intermediate, or ADF) and rate constants (kF
Apt and kR

Apt for the DHEA-S binding 

and dissociation from ADF, kF
Hyb and kR

Hyb for flare binding and dissociation from ADF) required for 

induced fit. Using the PySB software package, we developed aptamer Nanoflare kinetic models of both 

conformational selection and induced fit dynamics (Code C2). 

While we had previously determined the equilibrium dissociation constants for the aptamer-flare and 

aptamer-DHEA-S interactions, the rate 

constants for both interactions are unknown. 

To explore the effects of different rate 

constants on the conformational selection 

model, we plotted the response of 100 nM of 

simulated aptamer-flare duplex to 1 mM 

DHEA-S while varying kF
Hyb and kR

Hyb and 

holding kR
Hyb / kF

Hyb = KD
Hyb constant at the 

experimentally determined value of ~10 nM 

(Figure 42). While modifying the rate 

constants had no effect on the theoretical final 

concentration of unbound flare strand, it had a 

large effect on how quickly that final concentration is achieved; and particularly for kR
Hyb values lower than 

0.00001 s-1, the model predicted aptamer NanoFlares would take hours to days to reach equilibrium. 

 
Figure 42. Conformational selection model’s 
predicted response to 1000 µM DHEA-S, as a 
function of kFHyb and kRHyb. From darkest blue to 
lightest blue, kRHyb values are 0.1, 0.01, 0.001, 0.0001, 
and 0.00001 s-1. kFHyb values are adjusted to keep kFHyb 
and kRHyb / kFHyb = KDHyb = 10 nM. 
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We next explored how the new induced fit mathematical model behaved while varying its parameters. 

We plotted the response of 100 nM simulated aptamer-flare duplex to 100 µM DHEA-S while holding the 

aptamer-flare and aptamer-DHEA-S binding rates constant, and instead varying the dissociation rate of the 

flare strand (kR
Hyb*) and DHEA-S (kR

Apt*) from the ADF intermediate complex (Figure 43). The higher the 

flare dissociation rate from the ADF complex, the larger the fluorescent response was to DHEA-S. This 

means for optimal sensor performance, the ADF intermediate should ideally destabilize the aptamer-flare 

interaction as much as possible. Second, the lower the rate of DHEA-S dissociation from the ADF complex, 

the larger the fluorescent response was to DHEA-S. This means for optimal sensor performance, the ADF 

intermediate should feature as stable an aptamer-DHEA-S interaction as possible. 

These results suggested important design rules/trade-offs for aptamer Nanoflare optimization. Given 

that the dissociation rate of flares from the ADF intermediate is likely connected to the stability of the 

aptamer-flare duplex, making a flare strand bind too tightly to the aptamer could actually decrease 

Nanoflare sensitivity to DHEA-S. Moreover, given that DHEA-S dissociation rate from the ADF 

 
Figure 43. Induced fit model’s response to 100 µM DHEA-S, as a function of (A) kRHyb*, or (B) kRApt*. 
For (A), kFHyb stays constant at 0.1 M-1s-1, while kRHyb*, from darkest to lightest orange, equals 0.001, 
0.01, 0.015, 0.03, and 0.05 s-1. For (B), kFApt stays constant at 0.001 M-1s-1, while kRHyb*, from darkest to 
lightest blue, equals 10, 1, 0.1, and 0.01 s-1. 
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intermediate is inversely related to Nanoflare response to target, it could be important to design flare strands 

to bind to aptamers in regions that minimize disruption of the aptamer’s target molecule binding pocket. 

3.13 Measuring aptamer-flare-DHEA-S binding kinetics with bio-layer interferometry 

Since the kinetic models for describing aptamer-Nanoflares require the binding and dissociation rates 

of the aptamer-flare and aptamer-DHEA-S interactions as parameters, measuring these rate constants is 

necessary to test and refine the accuracy of the models. We therefore sought to determine the aptamer-flare 

association rate (kF
Hyb) and dissociation rate (kR

Hyb) using bio-layer interferometry, or BLI (Figure 44). In 

the BLI experiments, biotinylated flare oligonucleotides were immobilized on the tip of single-use 

streptavidin-coated fiber optic probes. After equilibration in PBS buffer, each probe was incubated in a 

solution of aptamer, and the aptamer-flare binding was measured by the shift in the wavelength of light 

reflected from the tip of the 

BLI probe. Transferring the 

probe back to an aptamer-free 

buffer solution then allowed 

measurement of the aptamer-

flare dissociation rate. 

Measuring the association and 

dissociation curves across a 

range of aptamer 

concentrations enables the 

determination of the aptamer-flare association rate (kF
Hyb) and dissociation rate (kR

Hyb). Moreover, it is 

possible to test the effect of DHEA-S on aptamer-flare dynamics by comparing aptamer-flare binding and 

dissociation rates in the presence and absence of DHEA-S. 

 

Figure 44. Measuring aptamer-flare hybridization with bio-layer 
interferometry (BLI). Representative BLI association and dissociation 
curves across a range of aptamer (Apt) concentrations, in the presence 
(blue) and absence (orange) of DHEA-S (D). For the blue curves, [D] = 
300 µM. 
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  One potential limitation of BLI is that modifying the flare oligonucleotide with biotin and 

immobilizing it on a streptavidin-coated surface may perturb its ability to bind to the aptamer. We therefore 

synthesized and screened three biotinylated flare variants (Figure 45):  a 3’biotin flare, in which a biotin 

phosphoramidite was added directly to the 

3’ end of the flare sequence; a 3’biotin-

Sp182 flare, which added two flexible 

spacer-18 (hexa(ethylene glycol)) 

phosphoramidites between the flare 

sequence and the 3’ biotin; and a 5’biotin-

Sp182 flare, in which the biotin and spacer-

18 phosphoramidites were conjugated to 

the 5’ end of the flare. The aptamer 

binding capacity of these flare variants 

was tested by fitting BLI binding and dissociation curves of each variant in the presence of 5 µM, 1.35 µM, 

and 450 nM aptamer (Figure 45B). The 3’biotin flare had the weakest binding (highest value) at KD
Hyb = 

481 nM. This was almost 50-fold weaker than the KD previously estimated from melting curves (11 nM). 

We hypothesized that steric hindrance due to the flare’s proximity to the streptavidin inhibited aptamer 

binding. This hypothesis was supported by the fact that the 3’biotin-Sp182 flare had a higher kF
Hyb and lower 

kR
Hyb than the 3’biotin flare, resulting in a 9-fold lower KD

Hyb of 54 nM. This is only 5-fold weaker than the 

previously estimated KD
Hyb. We trieated this value as a lower bound for aptamer-flare binding strength. 

Somewhat surprisingly, the 5’biotin-Sp182 flare displayed considerably weaker binding (KD
Hyb = 177 nM) 

than its 3’biotin-Sp182 counterpart. This weaker binding may have been due to differences in the stability 

or accessibility of different parts of the aptamer’s hairpin duplex, which made it easier for complementary 

oligonucleotides with an unbound 5’ end (like the 3’biotin-Sp182 flare) to invade and displace the hairpin. 

 

Figure 45: Screening biotinylated flare probes for BLI 
experiments. (A) Sequences of the biotinylated flare 
probes that were synthesized and tested. Sp18 = spacer 18 
hexa(ethylene glycol) phosphoramidite. (B) Aptamer-flare 
binding parameters measured with different biotinylated 
flare probes. Parameters calculated from fitting BLI curves 
of 5, 1.35, and .45 µM aptamer. 
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Due to the strong binding for the 3’biotin-Sp182 flare variant, we used this architecture for subsequent BLI 

measurements. 

3.14 Effect of flare sequence and target molecule concentration on aptamer-flare binding kinetics. 

The effect of flare length and structure on aptamer binding kinetics was investigated (Figure 46). Four 

truncated and biotinylated variants 

of the DIS11th_3T 12bp flare 

(12bpF) were synthesized: two 10 

base pair variants, missing two 

nucleotides from either the 3’ end 

(10bpF v1) or 5’ end (10bpF v2) of 

12bpF; and two 8 base pair variants, 

missing four nucleotides from either 

the 3’ end (8bpF v1) or the 5’ end 

(8bpF v2) of 12bpF. For each flare, 

BLI curves were generated for 

binding to the aptamer at a range of 

concentrations: 10, 5, 2.5, and 1.25 

µM aptamer (12bpF, 10bpFv1); 20, 10, 5, and 2.5 µM aptamer (10bpFv2, 8bpFv1); or 40 and 20 µM 

aptamer (8bpFv2). Higher aptamer concentrations were used for the flares with weaker binding, in order to 

generate measurable binding curves. As expected, the 12bpF flare has the lowest overall dissociation 

constant (KD
Hyb). This is primarily due to its much lower dissociation rate, as the 10bpF v1 association rate 

is similar to that of 12bpF. Both association rates are higher than that of 10bpF v2, suggesting that the two 

bases at the 5’ end of the flare strand are important for rapid binding to the aptamer. As these bases bind to 

the end of the aptamer’s self-complementary hairpin, they may be required to rapidly invade and displace 

it. Flares with truncated 5’ ends (10bpF v2 and 8bpF v2) display slower binding and more rapid dissociation 

 

Figure 46: Effect of flare length on aptamer-flare binding 
kinetics. (A) Sequences of the biotinylated flare probes that were 
synthesized and tested. Sp18 = spacer 18 hexa(ethylene glycol) 
phosphoramidite. (B) Aptamer-flare binding parameters 
measured with different biotinylated flare probes.  
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than flares of the same length with truncated 3’ ends (10bpF v1 and 8bpF v1); in fact, binding is almost 

unmeasurably small for 8bpF v2. This is probably partly due to the role of the 5’ nucleotides in aptamer 

hairpin displacement. Additionally, because most of the 10bpF v2 and 8bpF v2 sequences span a smaller 

hairpin in the aptamer, they are predicted to fold into hairpins which may disfavor hybridization to a 

complementary strand. These experiments suggest that flares should be designed to bind at the terminus of 

aptamer secondary structure, and that flare sequences that span hairpins should be avoided if possible. 

We next sought to determine 

how flare length and location affect 

the response of aptamer-flare 

binding to the presence of DHEA-S 

(Figure 47). Aptamer binding to 

and dissociation from 12bpF, 10bpF 

v1 and 10bpF v2 was measured with 

0, 30, 100, 300, and 1000 µM 

DHEA-S in the buffer. For all the 

flares, the more DHEA-S there was 

in the buffer, the lower the measured 

aptamer-flare association rate was. 

This indicated that DHEA-S competed with all the flares for binding to free aptamer. However, the 

dissociation rate for 12bpF responded to DHEA-S differently than either 10bpF v1 and 10bpF v2. For the 

tighter-binding 12bpF, adding DHEA-S slightly increases the dissociation rate, consistent with an induced-

fit model of aptamer NanoFlare dynamics. Notably, the 12bpF dissociation rate decreased at the highest 

DHEA-S concentration; one possible explanation for this behavior is that at high concentrations the 

relatively hydrophobic DHEA-S may have formed transient micelles, which changed the way it interacted 

with the aptamer-flare duplex. Surprisingly, and unlike for 12bpF, the aptamer-flare dissociation rate for 

 

Figure 47: Effect of  DHEA-S concentration on 12bp and 10bp 
flare-aptamer binding kinetics. (A) Observed kF

Hyb as a function 
of DHEA-S concentration. (B) Observed kR

Hyb as a function of 
DHEA-S concentration (red scale bar applies to 12bpF; blue scale 
bar applies to 10bpF v1 and 10bpF v2).  
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both 10bpF v1 and v2 decreased when DHEA-S is added—in other words, the presence of DHEA-S 

appeared to stabilize, rather than destabilize, the aptamer-flare duplex. This counterintuitive effect 

replicated in multiple experiments performed on different days.  

We sought to determine whether the 

surprising stabilizing effect of DHEA-S on 

10bpF-aptamer binding was an aptamer-

specific phenomenon, and to more 

generally measure the effect of aptamer 

structure on flare binding kinetics, by 

comparing aptamer-flare binding kinetics 

and DHEA-S response to a control 

sequence that contained the flare binding 

site but lacked the rest of the aptamer’s 

structure (Figure 48). A control sequence 

(ctrl) was synthesized, which contained the 

12bp region of the aptamer complementary 

to the flare strand, but replaced the rest of 

the sequence with adenosine nucleotides; this sequence should be able to bind to flare strands, but not to 

fold into the aptamer’s secondary or tertiary structure. The association and dissociation rates of 10bpF v1 

flare binding to both the aptamer and the control were measured in 0, 100, and 1000 µM DHEA-S. In the 

absence of DHEA-S, 10bpF v1 both bound and dissociated more quickly from the control sequence, 

suggesting that aptamer structure both inhibited flares from binding to free aptamers, and somehow 

stabilized already hybridized aptamer-flare duplexes. The effects of DHEA-S on aptamer-10bpF v1 binding 

and dissociation replicated: DHEA-S again appeared to compete for unbound aptamer (reducing observed 

kF
Hyb) and stabilize aptamer-flare duplexes (reducing observed kR

Hyb). There was no observable trend in the 

 

Figure 48: Effect of aptamer structure on flare binding 
kinetics and DHEA-S response. (A) Sequences of the 
DHEA-S binding aptamer (Apt), and a control sequence 
(Ctrl) which contains the flare-binding region of the 
aptamer but replaces all other bases with adenine. kF

Hyb 
(B) and kR

Hyb (C) were measured as a function of DHEA-S 
concentration, for 10bpF v1 binding to the Apt (blue) and 
Ctrl (green) sequences. 
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effect of DHEA-S on Ctrl-10bpF v1 association; and DHEA-S to had little to no effect on the dissociation 

rate of Ctrl-10bpF v1 duplexes. This suggested that the duplex-stabilizing effect of DHEA-S on aptamer-

10bpF interactions was specific to and dependent on the structure of the aptamer. 

3.15 Suitability of SNAs for bio-layer 

interferometry experiments 

We tried using BLI to measure the 

kinetics of aptamer SNA binding to the flare 

strand, in order to see how they differ from 

free aptamer in solution. (Figure 49). BLI 

curves of four concentrations of aptamer 

SNAs binding to 12bpF flare were measured 

and fitted. This experiment was performed 

on SNAs with loading densities of 10, 31, 

and 55 aptamers per particle. The aptamer 

SNA-flare binding was specific: no binding 

is observed when aptamer SNAs were incubated with bare BLI probes in the absence of immobilized flare 

strands (data not shown). The aptamer-flare association rate for SNAs was roughly an order of magnitude 

lower than for free aptamers, though slightly higher for the SNA with the lowest loading density; this may 

reflect the relatively lower diffusion rate of the nanoparticles. Consistently, the dissociation rate of the 

SNA-flare interaction was so small the BLI instrument could not measure it. In fact, for some binding 

curves, the binding signal actually increased slightly during the dissociation step, when there are no SNAs 

free in the solution. Unmeasurably small dissociation rates were also observed in individual BLI curves of 

SNA binding to 10bpF v1, 10bpF v2, 8bpF v1, and 8bpF v2 (not shown). Moreover, addition of 1 M urea 

in the dissociation buffer failed to induce SNA-12bpF dissociation, though it increases the flare dissociation 

rate from free aptamer (not shown). We hypothesized that the source of this anomalously low dissociation 

 

Figure 49: Aptamer SNA-flare binding kinetics. (A) BLI 
curves of aptamer SNA binding to 12bpF flare. A = aptamer. 
(B) Kinetic parameters of aptamer-flare binding, for different 
SNA loading densities. Parameters derived from fitting BLI 
curves of 4 different SNA concentrations.  
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rate was polyvalent aptamer-flare interactions: 

since each SNA presented multiple aptamers 

on its surface, a single SNA could bind to 

multiple immobilized flare strands; and 

dissociation therefore required the 

simultaneous dehybridization of multiple 

independent aptamer-flare duplexes, a very 

rare event. These experiments suggest that 

kinetic measurement techniques that rely on 

flare immobilization to a surface may not be 

able to yield meaningful dissociation data for 

aptamer Nanoflares; kinetic measurements of 

fluorescence may be a more tractable way to 

measure these parameters in the future.  

3.16 Cortisol aptamer-flare binding 

kinetics 

We investigated whether the kinetic 

behavior of one aptamer-flare pair could 

predict the behavior of a different aptamer-

flare pair with a similar design architecture, by 

designing aptamer-flare pairs for the cortisol-

binding aptamer Cor10F (Figure 50).  Chavez 

and Mirau labs had previously shown that 

Cor10F had a cortisol dissociation constant of 

750 nM; and mFold structural prediction 

 

Figure 51: Response of (A) aptamer-flare association 
rate (kF

Hyb) and  (B) aptamer-flare dissociation rate 
(kR

Hyb) to the presence of target molecule, for DHEA-S 
and cortisol binding aptamers. DHEA-S binding aptamer 
DIS11th_3t in red, cortisol binding aptamer Cor10F in blue. 
Target molecule added is DHEA-S for DIS11th_3T and 
cortisol for Cor10F. 

 

Figure 50: Design of cortisol-binding aptamer-flare 
pair. (A) Name, target, and sequence of the DHEA-S 
binding aptamer we have investigated (DIS11th_3T), and 
of a cortisol-binding aptamer (Cor10F). Flare-binding 
aptamer sequence in red. (B) mFold structure predictions 
of DIS11th_3T and Cor10F. 
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suggests that Cor10F has a 3-stem secondary structure similar to that of DIS11th_3T (Figure 50B). Cor10F 

was synthesized, along with 10 bp, 3’ biotinylated flare sequences designed to hybridize to the aptamer’s 

3’ end, similar to the DIS11th_3T flares we had already investigated. Then, the kinetics of aptamer-flare 

binding and dissociation were measured in the presence and absence of the aptamer’s target molecule, using 

BLI (Figure 51). The Cor10F aptamer-flare pair displayed lower association (kHyb
F) and dissociation (kHyb

R) 

rates than the DIS11th_3t aptamer-flare pair, possibly due to the longer Cor10F terminal hairpin and lack 

of flare secondary structure, respectively. While increasing concentrations of DHEA-S led to lower 

observed kHyb
F and kHyb

R for the 10 bp flares of DIS11th_3T, no similar trend was observed for Cor10F in 

the presence of increasing concentrations of cortisol. These results suggested, narrowly, that this particular 

Cor10F aptamer-flare pair did not respond structurally to the presence of its target molecule; and generally 

reinforced the idea that in the absence of modeling and design rules that better represent aptamer-flare-

target dynamics, more comprehensive exploration of aptamer-flare design space was required. 

3.17 Microarray screens of aptamer-flare pairs 

In order to more comprehensively explore aptamer-flare design space, we designed and performed 

microarray screens for stable aptamer-flare duplexes that respond to DHEA-S (Figure 52). Chavez lab first 

compiled a list of known DHEA-S binding aptamers, as well as aptamers that bind to other target molecules 

 

Figure 52. Microarray screen for stable and DHEA-S responsive aptamer-flare pairs. An array of 
8-12 bp flare variants is incubated and washed for 30 minutes with Cy3- and Cy5-labeled aptamers and 
scanned to identify stable aptamer-flare pairs. In the first round of experiments, the array was incubated 
with DHEA-S for 20 minutes, washed and scanned, and then incubated again with DHEA-S for 12 hours 
before a final washing and scanning, with the goal of identifying aptamer-flare pairs that dissociate in 
the presence of the target molecule. 
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of interest like cortisol, dopamine, and TNT (Table A2). Then, for each aptamer, a library of every possible 

8 bp, 9 bp, 10 bp, 11 bp and 12 bp complementary flare sequence was generated. 7 replicate spots of each 

flare sequence were arranged in a random position of a 60,000 feature array, and then 8 identical copies of 

that array were synthesized in 8 positions (wells) on Agilent slides. Cy3-modified DNA or Cy5-modified 

RNA aptamers were then hybridized onto the arrays, and the arrays were scanned to measure aptamer-flare 

hybridization efficiency. In a first set of experiments, three subarrays were then incubated with 30 µM 

DHEA-S, three subarrays were incubated with 300 µM DHEA-S, and two control wells were incubated 

with PBS buffer. In a second round of microarray experiments, subarrays were incubated for 300 µM 

DHEA-S and cortisol in both PBS and SELEX buffer 1 hour at 25ºC with. And in a third round of 

experiments, subarrays were incubated with 300 µM of various other target molecules for 1 hour at 25ºC, 

including TNT, riboflavin, dopamine and theophylline. 

A computational analysis pipeline was developed for processing the microarray data using Jupyter 

Notebooks and Python (Code C3). The fluorescence intensity values of every array feature from each step 

of a microarray experiment (roughly 2 million data points) was consolidated into a Pandas DataFrame and 

labeled with relevant information for analysis, such as the flare sequence, the name and sequence of the 

aptamer the flare binds to, the flare length and binding position along the 5’-3’ sequence of the aptamer, 

the sub-array within which the feature is located, and experimental step and conditions of the sub-array the 

feature occupies. Then, the data set was cleaned to remove all array features flagged by the Agilent software 

as having high background, nonuniform signal across the feature spot, or whose fluorescence intensity was 

an outlier relative to the other replicate spots with the same sequence in that sub-array. Then the mean, 

median, and standard deviation of the fluorescence intensities of the remaining replicate spots were 

calculated in each sub-array for each experimental step. The mean fluorescence intensity thus calculated 

was used as the basis for subsequent analysis. 
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Having cleaned, labeled, and processed the raw array fluorescence data, we first sought to determine 

the effect of flare length and flare binding position on aptamer-flare hybridization efficiency (Figure 53). 

This analysis initially focused on the DIS11th_3 aptamer, because the aptamer we have been using to 

develop and test aptamer Nanoflares for the past year is a truncated version of DIS11th_3. The dataset was 

filtered to include only data from the initial hybridization step of the experiment. Then, the data for all the 

DIS11th_3 flare strands across all the sub-arrays were grouped by either flare length, or by the position of 

the 5’ end of the flare-binding region of the aptamer along the aptamer sequence, and the average and 

standard deviation of each of these groupings was plotted. Average aptamer-flare hybridization increased 

as flare length increased, as would be expected (Figure 53A). However, the large standard deviations 

indicated that for any given flare length, there was a lot of variation in hybridization efficiency. Plotting 

hybridization efficiency as a function of flare binding position revealed the source of some of this variation 

(Figure 53B): flare binding position strongly affected hybridization efficiency. In the case of the 12bp 

flares for DIS11th_3, flares binding at the 5’ and 3’ ends of the aptamer hybridized efficiently, as did those 

that start binding in a region 11-14 bases inside the aptamer sequence, while a region 20-25 bases along the 

 

Figure 53. Effect of flare length and binding position on hybridization efficiency to DIS11th_3 
aptamer. (A) Flare hybridization efficiency (as measured by mean fluorescence on the array) as a 
function of flare length. (B) Flare hybridization efficiency as a function of the start position of the flare 
binding region on the 5’—3’ aptamer sequence, for 12bp flares. 
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aptamer sequence barely hybridized at all. We hypothesized that the middle region that hybridized well 

represented an area with more open or accessible secondary structure, while the region that did not hybridize 

well was part of a stable hairpin. 

We next sought to determine if there were any consistent patterns or design rules for well-hybridizing 

flares across all the aptamers we tested. Toward this end, heat maps of aptamer-flare hybridization 

efficiency as a function of flare length and binding position were generated with MatPlotLib for every 

aptamer tested (two representative heatmaps for aptamers Dopa2 and 10_51 are show in Figure 54). 

The flare binding profile of 10_51 is consistent with what was observed DIS11th_3: the 3’ and 

particularly the 5’ end of the aptamer show strong flare binding. By contrast, the Dopa2 aptamer shows 

little flare hybridization at its 3’ or 5’ ends, but strong hybridization at particular internal sites. The heatmaps 

plotted hybridization intensity as a function of the length of the flare strand, and of the location along the 

aptamer sequence where the 3’ end of the flare strand starts to bind. Both the Dopa2 and the 10_51 heatmap 

showed diagonal features (underlined by the dotted red, blue, green and yellow lines in Figure 4) which 

suggested that the 5’ end of flare strands initiate binding at particular bases on the aptamer (such as the 3’ 

end of the aptamer in the case of 10_51). We hypothesized that labile secondary and tertiary aptamer 

 

Figure 54: Initial aptamer-flare hybridization heatmaps for the Dopa2 dopamine-binding RNA 
aptamer, and the 10_51 DHEA-S binding DNA aptamer. Colored lines represent regions of sequence 
within which flares can stably bind. Solid lines represent core regions required for flares of any length to 
bind. 
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structure susceptible to strand invasion by the 5’ end of the flare strand is the source of these diagonal 

features on the heatmaps. 

To further understand the structural basis of efficient aptamer-flare binding, we compared mFold 

secondary structure predictions for the aptamers to the heatmap regions that show strong flare binding 

(Dopa2 and 10_51 shown as examples in Figure 55). Consistent with our hypothesis that strong flare 

binding correlates with labile secondary structure, flares tended to bind to Dopa2 where multiple unpaired 

bases were predicted, such as in loops or at terminal overhangs. For 10_51, the most stable aptamer-flare 

pairs were formed at a predicted unpaired overhang on the 5’ end of the aptamer. Importantly, not every 

predicted loop region hybridized to flares on the microarray, and the 5’ and 3’ aptamer ends didn’t always 

generate stable flare pairs either; but it was generally the case across multiple aptamers that stably 

hybridizing flares cluster in these regions of sequence. Further work and more detailed modeling may reveal 

which loops and termini are more or less suitable for flare binding. 

 

Figure 55: Structural analysis of flare-binding aptamer regions for the (A) Dopa2 and (B) 10_51 
aptamers with mFold. Colored lines represent regions of sequence within which flares can stably bind, 
corresponding to Figure 4. Solid lines represent core regions required for flares of any length to bind. 



 77 
In addition to analyzing the structural determinants of aptamer-flare binding, we also explored the 

ability of a thermodynamic model of to predict hybridization efficiency. In collaboration with Chavez lab 

at AFRL, UNAFold software was used to generate predictions of the ∆G of aptamer-flare hybridization 

(∆GHyb) in 1X PBS at 25ºC, for every flare on the microarray. The relationship between experimental 

hybridization and both flare length and ∆GHyb was then plotted (Figure 56). Consistent with previous 

microarray experiments, flare length alone is a poor predictor of hybridization efficiency: while there is a 

weak overall trend of higher hybridization fluorescence with longer flares, a large proportion of flares of 

every length completely fail to hybridize to 

the complementary aptamer. Even the 

shortest 8 bp flares contained a significant 

population that hybridized to the aptamer. 

By contrast, UNAFold’s calculated ∆GHyb 

values showed more predictive ability than 

flare length, especially at the margins: no 

flare with a predicted ∆GHyb > -10 kcal/mol 

hybridized to the aptamer, while every flare 

with a predicted ∆GHyb < -16 kcal/mol 

hybridized to at least some extent with the 

aptamer. These guidelines will be useful for 

designing future flare constructs, enabling the exclusion of flare designs that won’t work, and also 

potentially guiding designers toward shorter flare strands that can stably bind an aptamer while disrupting 

a smaller portion of its secondary and tertiary structure. 

3.18 Towards discovery of target-responsive aptamer-flare pairs 

We analyzed the response of all the tested aptamer-flare pairs to incubation with DHEA-S (Code C4). 

Relative loss of hybridization for each flare sequence in each sub-array was calculated by dividing the 

 

Figure 56: Relationship between hybridization 
efficiency, flare length, and predicted ∆G of flare 
hybridization (∆GHyb), for the aptamer DCA6th_23. (A) 
Flare hybridization versus flare length. (B) Flare 
hybridization versus -∆GHyb, as calculated by UNAFold. 
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fluorescence after incubation with DHEA-S by the 

fluorescence measured in the previous experimental 

step. Then, for the three sub-arrays treated with 300 µM 

DHEA-S, the change in fluorescence of each flare 

sequence was averaged; and the same was done for the 

three sub-arrays treated with 30 µM DHEA-S.  To 

correct for loss of fluorescence due to spontaneous 

aptamer dehybridization during washing and incubation 

steps, and due to bleaching of the Cy3 fluorescence, the 

change in hybridization was calculated for one of the 

two the sub-arrays treated only with PBS (the other 

showed anomalously high fluorescence at all array 

features during one of the experimental steps, and was 

excluded from analysis). Then, the averaged relative 

changes in hybridization fluorescence for the wells 

treated with DHEA-S were normalized to the change in fluorescence observed for each flare sequence in 

the PBS-only well. In this way, a ‘Hybridization Signal’ value of 1 means that the aptamer-flare pair lost 

exactly as much fluorescence as the PBS control; a value >1 means the pair lost less fluorescence than the 

control; and a signal <1 means the pair lost more fluorescence than the control, which is what would indicate 

a response to DHEA-S. To minimize artifacts due to low hybridization efficiency, we excluded from 

analysis all the data from all flare sequences with initial hybridization signals less than 5 standard deviations 

higher than the background fluorescence signal of nonbinding features on the array.  

Despite these measures, we were unable to identify aptamer-flare pairs that consistently, across 

replicate subarrays, dehybridized relative to controls in the presence of the aptamer’s target molecule. 

Particularly confounding was the observation that measured hybridization fluorescence actually increased 

 

Figure 56: Variation in fluorescence of the 
microarray’s positive controls between 
subarrays and experimental steps. 

 = mean, = median, | = standard deviation, 
 = maximum,  = minimum. 
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after incubation for some aptamer-flare pairs, which seemed likely to be the result of an error in the 

instrument’s measurement. Each subarray contained 12 replicate Bright Spot positive controls, which were 

array features covalently modified with Cy3 fluorophores. To better understand the sources of noise in our 

experimental system, we calculated and plotted statistics on these array positive controls within each 

subarray, and for each step in the experiment: (1) hybridization scan 1, (2) hybridization scan 2, (3) 

incubation 1 scan, and (4) incubation 2 scan (Figure 56). The measured fluorescence intensity of the array 

positive controls varies both between subarrays and between experimental steps, in some cases (like step 4 

in subarray 3) by a great deal. 

These measurements are highly useful for designing array experiments and analysis going forward. For 

one thing, it is clear that absolute fluorescence/hybridization values cannot be compared between subarrays; 

normalization relative to a previous experimental step is required. Moreover, this normalized change in 

fluorescence must be further corrected for variation in the intensity of the scanner’s measurement—this 

might be achieved through normalizing to the array’s bright spot controls, or (if measured fluorescence 

intensity varies across a single subarray) it may require the design of a larger number of fluorescent control 

features into future arrays. These results are encouraging, because they indicate that the difficulty thus far 

in identifying aptamer-flare pairs could be corrected by implementing these changes to the experimental 

design and analysis.  

3.19 Materials and Methods 

3.19.1 Materials. Unless otherwise noted, all reagents were purchased from commercial sources and 

used as received. Oligonucleotides are synthesized using phosphoramidites and associated reagents Glen 

Research, Co. (Sterling, VA, USA); or ordered from Integrated DNA Technologies. 13 nm Citrate capped 

gold nanoparticles were synthesized as previously described.137 Microarray slides were purchased from 

Agilent. All other reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA).  

3.19.2 Aptamer NanoFlare Synthesis. Thiolated aptamer sequences were reduced by incubation with 

10 mM DTT in 100 mM Tris buffer for 30 minutes. DTT was removed from the aptamer solution by size 
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exclusion on a GE NAP5 column. Flare strand is then added to the thiol-aptamer solution, which is then 

heated to 65ºC and slowly cooled to room temperature to anneal flare and aptamer. AuNPs were mixed 

with 0.2% Tween 20 detergent, and 5 M NaCl was added to a final concentration of 150 mM NaCl. AuNP 

solution is vortexed, and then thiolated aptamer is added to the AuNPs in a 400:1 aptamer:AuNP solution. 

The solution is vortexed for 20 seconds, sonicated, and incubated in a covered shaking container overnight. 

Then more NaCl was added to the solution from 5 M stock solution, bringing the final NaCl concentration 

to 0.35 M. 1000-fold excess of thiolated PEG oligomer was then added to the solution, which was then 

incubated for 6 hours. Excess oligonucleotides were removed by repeatedly pelleting the particles in a 

centrifuge (10-20,000 RCF), and then resuspending in fresh 1X PBS. DNA loading density was quantified 

by Oligreen assay. 

3.19.3. Nuclear Magnetic Resonance of Aptamers. Lyophilized DIS11th_3 and DIS11th_3T were 

resuspended to a concentration of 0.1 M in 20 mM deuterated Tris, 50 mM NaCl, and 10 mM MgCl2 at pH 

7 in 90:10 H2O:D2O. For the aptamer with DHEA-S measurements, 1 mg/mL DHEA-S dissolved in MeOH 

was dried in a microcentrifuge tube centrivap, then resuspended in the aptamer solution to a 1.25:1 DHEA-

S:aptamer ratio. Spectra were acquired on a 600 MHz Bruker spectrometer using the Watergate pulse 

sequence for water suppression. 

3.19.4 Fluorescence measurements. Fluorescence of aptamer NanoFlares was measured in a Bio-Tek 

H4 plate reader, or in a Horiba Fluorolog-QM fluorimeter. Fluorimeter samples were prepared in 1 mL 

quartz sample cuvettes 

3.19.5 Isothermal titration calorimetry. ITC experiments were performed on a Malvern MicroCal 

PEAQ-Automated instrument. Cell and syringe buffers were equilibrated by NAP column. Enthalpic curve 

fitting was performed using MicroCal ITC-Origin analysis software. 

3.19.6 Bio-layer interferometry. BLI experiments were performed on a BLItz Bio-Layer Interferometer; 

binding curves were fitted and analyzed with BLItz Pro software. Before use, streptavidin-modified probe 

tips were hydrated in PBS for 10 minutes. Flare-modified probe tips were prepared by vortex-incubating 
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300 µL of 10 µM biotinylated flare sequences suspended in 1X PBS with streptavidin modified probe tips 

for 2 min, then vortex-incubating the tip in 1X PBS for 2 more minutes.  300 µL samples of 10, 5, 2.5, 1.25 

and 0.625 µM aptamer in PBS were incubated with the flare modified probe tip for 2 minutes to measure 

association rate, and then the tip was vortex-incubated with buffer alone for 2, 5, or 10 minutes to measure 

dissociation rate. For samples testing DHEA-S response, the DHEA-S was added to both the 

aptamer/association solution, and to the buffer-only/dissociation solution. 

3.19.7 Microarray screens. Each Agilent microarray slide was blocked against nonspecific binding by 

submerging in SuperBlock buffer in a gentle rotary shaker for 30 minutes. After blocking, a 2 µM mixture 

of Cy3-DNA and Cy5-RNA aptamers in 1XPBS + 0.05% Tween 20 was incubated in the wells for 30 

minutes at 25ºC  to form flare-aptamer duplexes. The arrays were then washed and scanned in the Cy3 and 

Cy5 channels with an Agilent SureScan Dx Microarray Scanner to measure flare hybridization. Incubation 

for 30 more minutes in fresh buffer at 25ºC followed by washing and scanning was performed to identify 

aptamer-flare pairs that hybridized stably to each other. The wells were then incubated for 20 minutes at 

25ºC with the target molecule(s) in 1X PBS + 10 mM MgCl2 + 5 mM KCl + 0.05% Tween 20 (hereafter 

PBSb), or in 20 mM HEPES + 1 M NaCl + 10 mM MgCl2 + 5 mL KCl + 0.05% Tween 20 (hereafter 

SELEXb), which is the buffer many SELEX aptamer evolution experiments are conducted in. After 

collecting all the scans, Agilent analysis software was used to align the array images with maps of the array 

spot names and identities.  To test for rapid aptamer-flare response to target molecule, the wells were then 

incubated for 20 minutes at 25ºC with DHEA-S in PBS + 0.05% Tween 20 before washing and scanning. 

For this experiment, three wells were incubated with 30 µM DHEA-S, three wells were incubated with 300 

µM DHEA-S, and two control wells were incubated with PBS + Tween. To test for aptamer-flare pairs that 

respond more slowly to the presence of target molecule, the wells were incubated overnight (~12 hours) 

with the same concentrations of DHEA-S as before, and the slide was washed and scanned one last time. 

After collecting all the scans, Agilent analysis software was used to align the array images with maps of 

the array spot names and identities. 
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4.1 Introduction 

CRISPRs are Clustered Regularly Interspersed Short Palindromic Repeats of DNA in the genomes of 

many bacteria and archaea.163 In type II CRISPR systems, the operon containing these repeats produces two 

RNA molecules, the CRISPR RNA (crRNA) and the trans-activating crRNA (tracrRNA),  which hybridize 

to form a constant hairpin tertiary structure with a 5' variable (or guide) region ~20 bases long.164 In 2012, 

Doudna lab demonstrated that these two RNAs can be fused by a short hairpin to produce a single short 

guide RNA (sgRNA) without any loss of function.165 This RNA structure binds to a large nuclease called 

CRISPR-Associated protein 9 (Cas9), forming a 200 kilodalton 

Cas9/sgRNA ribonucleoprotein complex (RNP) (Figure 57). 

The Cas9/sgRNA ribonucleoprotein (RNP) binds to and 

interrogates double stranded DNA for a short sequence motif, 

called Protospacer Adjacent Motif (PAM), which the Cas9 

recognizes.166 In the most extensively studied CRISPR/Cas9 

system, derived from Streptococcus pyogenes, the SpCas9 

nuclease recognizes an NGG PAM, where N is any nucleotide.166 The Cas9/sgRNA complex cleaves DNA 

duplexes that are adjacent to a PAM and complementary to the sgRNA’s 17-20 bp guide region.167 Changing 

the guide region of the sgRNA programs the SpCas9 nuclease to cleave any ~20 bp DNA duplex that is 

followed by an NGG motif.165 In 2013, Zhang lab demonstrated this programmable CRISPR endonuclease 

can edit loci in the genomes of mammalian cells.168 

CRISPR is not the first tool developed for targeted genome editing of mammalian cells, but it has 

several advantages over its predecessors. Zinc finger nucleases (ZFNs) and transcription activator-like 

effector nucleases (TALENs) can also be designed to cleave specific DNA sequences.169, 170 However, 

designing a zinc finger nuclease to target a new DNA sequence requires several months of protein 

engineering and costs thousands of dollars, because the protein sequence of ZFN does not dictate DNA 

sequence binding specificity in a predictable, programmable way.171 TALENs are programmable: each 

 

Figure 57. Cas9/sgRNA ribo-
nucleoprotein complex. Cas9 
(blue) binds sgRNA (red). 
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subunit binds one DNA base, and its sequence specificity is dictated by two amino acids.172 However, a 

new TALEN gene must be synthesized for each new targeted sequence, and the repeated sequences from 

each subunit make such synthesis complex.173 By contrast, reprogramming the Cas9 nuclease only requires 

changing the 20 bp at the 5' end of the sgRNA, a process simple enough that two sgRNAs can be 

simultaneously introduced into a gene editing plasmid with a single commercially purchased DNA 

oligonucleotide.174  

SpCas9 was the first CRISPR nuclease to be successfully applied to genome editing in mammalian 

cells, but it is not the only one. Since 2013, myriad gene editing tools have been developed from the CRISPR 

nucleases of different species. Staphylococcus aureus Cas9 (SaCas9) is similar to spCas9, but has a different 

PAM and is 20% smaller, which allows the saCas9 gene to be more easily packaged into adeno-associated 

viral gene therapy vectors.175 CRISPR protein from Prevotella and Francisella (Cpf1) nucleases from the 

class II CRISPR system differ significantly from SaCas9 or SpCas9: the native CRISPR-Cpf1 system uses 

a single crRNA which is half the size of the fused sgRNA of SaCas9 or SpCas9, recognizes an AT-rich 

PAM that enables it to target regions of genomes where the GC-rich PAMs of saCas9 or spCas9 are rare, 

and is more specific than Cas9, generating very few off-target cleavage events in edited cells or embryos.176, 

177 CRISPR systems have been further engineered through rational design and directed evolution to increase 

genome cleavage specificity, and to function with a broader range of PAM sequences.178, 179 

Since 2012, CRISPR has been deployed in an explosion of precision genome editing applications in 

both basic biological research and therapeutics. Cleaving gene sequences with CRISPR frequently induces 

insertion/deletion (indel) mutations, which can shift the reading frame of a gene and disable its function. 168 

One reason CRISPR is so powerful is that delivering multiple sgRNAs enables Cas9 to easily target and 

knock out multiple sites or genes simultaneously. Cas9 has been used to specifically and simultaneously 

knock out up to 62 genes in a single cell.180 Alternatively, Cas9 delivered with a library of sgRNAs targeting 

every gene in a cell (called a Genome-scale Cas9 Knock Out library, or GeCKO) can be transduced into 
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cells to screen for genes responsible for relevant phenotypes, like synthetic lethal genes or genes which 

promote metastasis when knocked out in cancer cells.181, 182  

In addition to destroying gene function via indel mutations, Cas9/sgRNA RNPs can also introduce 

highly specific gain-of-function edits or gene insertions. RNPs can be co-delivered with donor template 

DNA containing homology arms identical to the DNA sequence near the site targeted by the sgRNA. Cells 

can use the donor template DNA to repair the double strand break via homology directed repair.183 

Combining CRISPR with homology directed repair of a donor template therefore enables the one-step 

insertion of precise genetic edits.184 In models like mice where such editing was previously difficult and 

time-intensive, CRISPR now enables easy tagging of genes with epitope tags or conditional knockout 

machinery, and the introduction at precise loci of large genetic constructs, such as an inducible Cas9 gene.185 

By fusing nuclease-null Cas9 (dCas9) genes to adenine or cytosine deaminase domains, it is even possible 

to directly interconvert specific DNA bases, introducing precise genomic edits without requiring a DNA 

template in a process now known as base editing.186, 187, 188 By fusing dCas9 to a reverse transcriptase domain, 

it is even possible to use an extended version of the guide RNA as a template to introduce sequence-defined 

genetic insertions, deletions, and other conversions directly into a cell’s genome without requiring donor 

template DNA or homologous recombination.189 

CRISPR systems have also been modified to perform a number of functions besides genetic editing. 

Catalytically inactivated dCas9 has been fused to transcriptional activation and repression domains, thereby 

enabling programmable control of gene expression.190, 191 The dCas9 transcriptional activator in particular 

enables novel screens analogous to siRNA or CRISPR knockout libraries, but where genes are over-

expressed.192 dCas9 fused to fluorescent proteins allows microscopic tracking of specific sites in the genome 

and the study of sequence-specific nuclear organization.193 Finally, active Cas9 can be targeted to cleave a 

variety of nonfunctional genomic regions in a zygote, and the frequency and sequence of the mutations in 

each cell of the mature organism can be used to track lineages of cell differentiation during embryonic 

development.194  
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One of the most exciting applications for CRISPR and programmable nucleases is the prospect of 

correcting disease with a precise genetic knockout or edit. Previous gene therapies either randomly inserted 

or temporarily expressed genes to replace loss of function mutations.195 CRISPR enables the correction of 

disease alleles at their native site in the genome, such as a loss of function in Fah causing tyrosinemia.196 

CRISPR also enables treatments that knock out genes. For instance, HIV requires the cell surface receptor 

CCR5 to infect T cells, and using CRISPR ex vivo to knock out CCR5 in hematopoietic cells renders 

humanized mice resistant to HIV infection.197  

With the explosion in research and application of CRISPR and RNA-guided nucleases, the rate limiting 

challenge in gene editing has shifted from experimental design to delivery, particularly in vivo.198 While in 

vitro methods including ribonucleoprotein transfection and lentiviral transduction can achieve relatively 

rapid, efficient, and error-free delivery, in vivo strategies remain limited by low delivery efficiencies.  

Several different methods will deliver Cas9/sgRNA nucleases into cells in vitro. Genes for Cas9 and 

sgRNA can be delivered by plasmid transfection or viral transduction. Transfection of plasmids expressing 

Cas9 and the sgRNA was the first successful CRISPR delivery strategy, and remains one of the simplest;168 

but the need for cellular Cas9 and sgRNA expression leads to longer experiments, and extended expression 

increases the rate of off-target DNA cleavage.199 Viral transduction is useful for screening a library of 

sgRNA because the viral vector integrates into the genome and provides an sgRNA barcode of cells with 

the phenotype of interest.181 However, making viral particles is time-intensive, and extended expression 

causes similar off-target effects to plasmid transfection. Co-delivery of Cas9 mRNA and sgRNA, either via 

microinjection or transfection, achieves high cleavage efficiencies with low off-target effects; however, to 

achieve high cleavage efficiency requires chemical modification of the sgRNA.200, 201, 202 Direct delivery of 

Cas9/sgRNA ribonucleoprotein (RNP) complexes is a promising strategy. RNP complexes have been 

delivered via electroporation and transfection using cationic lipids.203, 204 They act rapidly and transiently in 

the cell, leading to high efficiency gene editing with few off-target effects. 
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Several approaches have been pursued for in vivo delivery of CRISPR gene editing components. 

Hydrodynamic injection, in which a large volume of solution containing Cas9+sgRNA genes and donor 

template DNA is rapidly injected into the bloodstream so that hydrodynamic forces permeabilize the 

membranes of endothelial cells to DNA, was used to treat murine liver hepatocytes with hereditary 

tyrosinemia.196 Paired adeno-associated viral (AAV) vectors, one containing the Cas9 gene and the other 

the sgRNA gene and donor template, have been used to deliver CRISPR machinery to correct a urea cycle 

disorder in liver hepatocytes of baby mice.205 Cas9 mRNA has been delivered in lipid nanoparticles, in 

conjunction with an AAV vector containing the sgRNA gene and donor template DNA, to treat liver 

hepatocytes with tyrosinemia in adult mice.206 Finally, cationic lipid transfection reagents have been mixed 

with Cas9/sgRNA RNP complexes and spread on the inner ear of a murine model, with GFP knockout 

observed in outer hair cells.204 

While the progress made on in vivo delivery of CRISPR/Cas9 is promising, there are clear drawbacks 

and challenges to the strategies that have been pursued so far. Chief among them is delivery efficiency: 

only a small fraction of cells actually undergo gene editing, even in the target organ. Hydrodynamic 

injection, for instance, only corrected one in every 250 hepatocytes.196 The dual-AAV delivery strategy and 

the AAV/lipid nanoparticle performed somewhat better, modifying 10% and 6% of hepatocytes 

respectively.206, 207 Delivery of Cas9/sRNA complexes with cationic lipid edited only 20% of outer hair 

cells, right on the surface of the inner ear.205 For comparison, editing efficiencies of mouse zygotes in vitro 

can approach 90%.207 Other challenges are specific to the different techniques. Hydrodynamic injection is 

hazardous, as the excess of liquid impairs cardiac function.208 AAV vectors are efficiently taken up by cells, 

but they also generate a humoral, acquired immune response that makes repeated delivery difficult.209 

Nonviral delivery methods are promising because they are non-immunogenic and thus repeated treatments 

are more feasible; however, high doses of cationic lipids are cytotoxic and provoke inflammatory 

responses.210 
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An alternative CRISPR/Cas9 delivery strategy, which overcomes some of these challenges, is needed. 

Based on previous research, a mechanism for delivering Cas9/sgRNA RNP complexes could enable rapid 

and efficient editing without off-target effects. A nontoxic, non-immunogenic, non-viral nanoparticle would 

enable repeated gene editing treatments without provoking an acquired immune response. To maximize 

efficacy, these particles should be stable in serum and rapidly taken up by mammalian cells, and should 

have a track record of delivering macromolecules into the cytosol.  

Spherical nucleic acids (SNAs), nanoparticles modified with a shell of radially oriented 

oligonucleotides, have many of the desired properties of an improved CRISPR delivery vehicle. (ref) The 

highly oriented oligonucleotide shell gives these nanoparticles (which can have cores made of gold, 

liposomes, proteins, or other materials) rapid endocytosis into mammalian cells, low immunogenicity, and 

resistance to nucleases.211 SNAs have been used as a delivery platform for DNA and RNA cellular 

diagnostics and therapeutics, including hybridization-based intracellular biosensors of mRNA (NanoFlares) 

and gene regulation via transfection-agent-free delivery of siRNA.77, 82 Both these applications 

demonstrated that SNAs are able to escape the endosome, because the mRNA targets upon which both 

NanoFlares and siRNA-SNAs act are in the cytosol.86 

However, an understanding of the mechanisms and parameters that govern the escape of SNAs from 

the endosome are missing. This is a particularly important knowledge gap, as increased efficiency of 

endosomal escape could greatly increase the efficacy of SNA therapeutics. It is possible that delivery of 

 

Figure 58. Potential SNA-mediated CRISPR delivery methods. Cas9/sgRNA RNPs could be 
hybridized to the surface of SNAs (left), encapsulated in a liposomal SNA (center), or chemically 
modified with oligonucleotides to form a protein-core SNA. 
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Cas9/sgRNA into cells could serve as a sensitive measure of endosomal escape, since the rate of cytosolic 

delivery could be correlated with the rate of genomic editing in the cell population. Chapter 4 explores the 

efficacy of spherical nucleic acids as a strategy to efficiently deliver SpCas9/sgRNA CRISPR RNPs into 

cells, and of RNP delivery as a means to study the cell uptake and endosomal escape of SNAs.  

4.2 Potential SNA-mediated CRISPR delivery methods 

There are three mechanisms by which protein might be combined with SNAs and delivered into the 

cytosol: attachment to an SNA’s surface, direct chemical modification with DNA to form a protein-SNA, 

or encapsulation in the core of a liposomal SNA (Figure 58). Protein directly modified with DNA to form 

a protein-SNA (proSNA) has been verified to deliver active enzymes into cells.95 However, it is not known 

whether those enzymes escaped into the cytosol. Moreover, the enzyme previously delivered, ß-

galactosidase, acts on a small molecule substrate. Cas9 

undergoes extensive conformational changes to bind both its 

sgRNA and a double stranded DNA molecule, and may not 

tolerate being extensively functionalized with DNA while 

maintaining endonuclease activity. SNAs have been constructed 

in which a protein or peptide is modified with a single DNA 

strand that then hybridizes to the SNA’s surface; these constructs 

have also been shown to enter cells.90, 94 However, this approach exposes the protein to the serum, either in 

vivo or in the media for in vitro experiments, possibly increasing the particle’s immunogenicity and 

reducing its stability. Attaching too many proteins to an SNA’s surface may also reduce cellular uptake. 

Liposomal encapsulation of protein does not require extensive modification of the encapsulated protein,212 

and protects the protein from the external environment, potentially enabling full use of SNAs’ low 

immunogenicity. Moreover, an encapsulation strategy enables diverse stability and escape properties to be 

probed by varying the LSNA’s liposome composition and the DNA attachment chemistry. 

 

 

Figure 57. Cas9/sgRNA ribo-
nucleoprotein complex. Cas9 
(blue) binds sgRNA (red). 
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4.3 Exploring Cas9/sgRNA attachment to the surface of SNAs  

Previous work has attached protein (specifically, immunoglobulins) to the surface of an SNA by 

chemically modifying the protein with a DNA oligonucleotide strand, and hybridizing the DNA 

oligonucleotide to the SNA. We hypothesized that SpCas9 would not need to be directly modified, because 

it binds to an oligonucleotide (its sgRNA) with picomolar affinity, and because additional RNA sequence 

has been added to the 3’ end of the sgRNA without affecting Cas9/sgRNA function. Therefore an 

attachment strategy was pursued in which a 12 base 3’ linker sequence was added to the sgRNA, and this 

linker sequence was then hybridized to the DNA strands on the SNA.  

If SNA surface-attached Cas9/sgRNA complexes do enter cells, the Cas9/sgRNA complex may need a 

way to dissociate from the nanoparticle in order to enter the nucleus and cleave DNA. Two sets of sgRNA-

SNA linker systems were therefore designed: one in which a ubiquitously expressed mRNA (gamma-actin) 

could hybridize to the SNA and displace the sgRNA, and one in which the linker sequence was scrambled 

so no mRNA would be likely to hybridize and displace the sgRNA. Three SNA and three sgRNA sequences 

were designed to pursue this strategy (Table B1). The first SNA sequence, called the Hyb_SNA_F-Actin 

(or Act  SNA), was terminated by 12 bases which are complementary to gamma-actin mRNA, and are based 

on a Nanoflare positive control from Prigodich et al.78 The second SNA sequence, called 

Hyb_SNA_Scrambled_Actin (or Scr SNA), was terminated by a scrambled version of the last 12 bases in 

the Act SNA sequence (scrambling performed by the online siRNA Wizard widget).  The three sgRNAs 

were named Hyb_sgRNA_Act_eGFP (or GFP-Act), 

Hyb_sgRNA_Scr_eGFP (or GFP-Scr), and 

Hyb_sgRNA_Scr_AAVS1_1 (or NT-Scr). The GFP-Act 

sgRNA targets GFP and has a 12 base 3’ linker identical to 

a region of gamma-actin mRNA. The GFP-Scr sgRNA 

targets GFP and has a linker which is complementary to the 

scrambled sequence on the Scr SNA. Finally, the NT-Scr 

 

Figure 59. In vitro DNA cleavage with 
Cas9 and designed sgRNAs. 
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sgRNA targets the human AAVS1 gene and has the same scrambled linker as GFP-Scr. Synthesis of the 

SNAs proceeded as described in the literature. DNA loading was measured using a Quant-iT Oligreen 

assay, showing that Scr SNA had ~200 strands per particle, and Act SNA had ~140 strands per particle. 

Particle size was measured using a Malvern Dynamic Light Scattering (DLS) instrument, indicating a 

diameter of 18 nm for Act SNA, and 19 nm for Scr SNA, compared to 11 nm for unmodified gold 

nanoparticle.  

The sgRNAs were synthesized using the in vitro transcription protocol from Rouge et al.213 After in 

vitro transcription, sgRNA synthesis was verified using PAGE, and concentration measured via UV-Vis. 

Each sgRNA was mixed with SpCas9 and tested for activity with an in vitro cleavage assay (Figure 59). 

Cas9/sgRNA complexes with the GFP-Act and GFP-Scr sgRNAs cleaved the EGFP gene, while the NT-

 

Figure 60. Characterizing Cas9/sgRNA attachment to SNAs. (A) DLS number average of SNA 
diameter before and after adding sgRNA. (B) Agarose gel of SNAs after sgRNA hybridization. (C) 
DLS number average and polydispersity index (PDI) of SNA diameter after adding sgRNA and Cas9. 
(D) Agarose gel of SNAs after incubating with sgRNA and Cas9 for 12 hours. 
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Scr sgRNA did not. This confirmed that the GFP-targeting sgRNAs were still active after the 3’ linkers had 

been added. 

We next tested whether the Cas9/sgRNA ribonucleoprotein would bind to the SNAs in a hybridization-

dependent manner (Figure 60). These experiments were performed first on Act SNA. An incubation of 10 

nM SNA with no sgRNA, with 1 µM of either GFP-Act or NT-Scr sgRNA for 12 hours in PBS at 37ºC, 

then added either nothing or 100 nM SpCas9, and incubated for 2 hours. Particle size was measured by 

dynamic light scattering (DLS) and by running the particles in a 2% Agarose gel at 100V for 2 hours. While 

it was expected that GFP-Act to bind the SNA and NT-Scr not to, no increase in particle size and no gel 

shift on agarose was observed when either sgRNA was added alone. A substantial increase in the 

polydispersity of the particles (indicating aggregation) was observed when SpCas9 was added to the SNAs, 

whether or not sgRNA was present. Mixing SpCas9 with the SNAs led to smearing of SNA bands on the 

agarose gel regardless of the presence of sgRNA, which indicates nonspecific binding of SpCas9 to the 

SNA. The nanoparticle solution also visibly precipitated in the hours after SpCas9 was added. 

SpCas9 most likely binds SNAs nonspecifically because it is highly positively charged. In order to 

dynamically interact with sgRNA and a DNA duplex, SpCas9 has a clamshell shape, and its interior channel 

is lined with lysine and arginine residues. The surface of a spherical nucleic acid meanwhile is covered with 

negative charge from the oligonucleotides’ phosphodiester backbones. SpCas9’s clamshell structure may 

enable it to bind very tightly to such a negative surface, shield much of the SNA’s charge, and reduce the 

particle’s colloidal stability, leading to the observed precipitation. Whatever the explanation, SpCas9’s 

nonspecific binding of SNAs makes the characterization of any Cas9/sgRNA particles which could actually 

hybridize to the SNA difficult. Combined with SpCas9’s tendency to precipitate the nanoparticles and the 

potential immunological drawbacks of exposing unmodified SpCas9 to serum for in vivo delivery, this led 

us to pursue other approaches to SNA-mediated Cas9/sgRNA delivery.  

4.4 Exploring direct modification of Cas9 to form CRISPR proSNAs 
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We next sought to determine the ability of Cas9 to function as the core of a protein SNA, while 

maintaining its enzymatic activity. The most well-validated strategy to attach DNA directly onto protein 

requires irreversible modification of the primary amines (lysine residues and N-terminus) with an N-

hydroxy succinimide ester-oligoethylene glycol-azide (NHS-OEG-azide) moiety that enables alkyne-

modified DNA to covalently attach via copper-free click chemistry.95 We also modified some lysine 

residues with an NHS ester-fluorophore conjugate, to make detection and quantification of SpCas9 easier 

in later experiments. SpCas9, as a DNA and RNA binding protein, has many lysine residues which are 

important for stabilizing its interaction with highly anionic nucleic acids.166 Modification with NHS-OEG-

azide converts lysines from cationic to uncharged groups, and may disrupt these interactions and SpCas9’s 

enzymatic function, or even destabilize its folding. 

To get a preliminary sense of how much lysine modification Cas9 can tolerate, we performed a 

fluorophore modification experiment. For fluorophore modification, Alexa 647 was chosen because it is 

highly soluble, and because very few other molecules measurably absorb at 647 nm, so it is relatively easy 

to detect and quantify in a mixture. 1 mL of 5 µM SpCas9 in PBS was mixed with a 50 µM final 

concentration of NHS ester-conjugated Alexa 647 and the reaction was incubated overnight at 4ºC. Excess 

fluorophore was washed away by buffer exchanging 5 times in an Amicon 50k filter column. The 

absorbances at 280 nm and 647 nm and divided by extinction coefficients produced the final concentrations 

of both SpCas9 and Alexa, and therefore the number of Alexa modifications per protein. Modification 

 

Figure 61. Cas9 activity test after Alexa-647 Modification. Numerical ratios represent a dilution 
series of Cas9, to see activity at different Cas9 concentrations. Negative control band uses NT Scr 
sgRNA. 
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reactions generally conjugated ~2 Alexa fluorophores per protein, with a low of 0.7 and a high of 5 (data 

not shown).  

After modification, the in vitro Cas9 cleavage assay was performed as described above on a dilution 

series of Cas9, to try to detect any loss of DNA cleavage activity due to modification (Figure 61). We ran 

50 µL linearized pcDNA3-EGFP digest tests with 1 picomole, 0.1 picomole, and 0.01 picomole unmodified 

Cas9+GFP sgRNA, or the same amount of Alexa-Cas9+GFP sgRNA. The gel results show either no 

decrease or a slight decrease in cleavage activity, depending on the experiment. This indicates that SpCas9 

largely tolerates a small number of lysine modifications, but it may not tolerate a larger number. 

To test whether SpCas9 can tolerate many lysine modifications, one nanomole of ~1 µM SpCas9 was 

incubated with a large excess (~480 nanomoles) of NHS-OEG-azide, as described in Brodin et al.95 A 

subsequent in vitro cleavage assay showed that the heavily modified SpCas9’s activity had been completely 

abolished (Figure 62). A second azide modification was performed on pre-mixed Cas9/sgRNA complexes 

that had incubated together for an hour, in order to determine if SpCas9 binding to the sgRNA in any way 

protected essential lysine residues from modification. The Cas9/sgRNA complex’s activity was also 

abolished. These experiments show that while SpCas9 tolerates a small number of irreversible lysine 

modifications that enable active 

Cas9 to be labeled and tracked 

with NHS-fluorophores, it 

cannot remain active when a 

large number of its lysine 

residues are modified; making 

direct Cas9 modification a less 

promising approach for 

delivering active CRISPR 

RNPs into cells’ cytosol.  

 

Figure 62. Cas9 activity test after NHS-azide modification. Three 
bands to the left are unmodified Cas9; three middle bands use Cas9 
mixed with NHS-azide; three bands to the right use pre-assembled 
Cas9/sgRNA RNPs mixed with NHS-azide 
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4.5 Cas9/sgRNA encapsulation in liposomal CRISPR SNAs 

The third approach we explored SNA-mediated CRISPR delivery was RNP encapsulation in liposomes. 

We planned to synthesize liposomal CRISPR SNAs with a range of phospholipid compositions, in order to 

explore different potential mechanisms of endosomal escape.  For liposomal SNAs in particular, there are 

two primary mechanisms by which macromolecules could be delivered into the cytosol: lysis of the 

endosomal membrane, or fusion with the endosomal membrane. Endosomal membrane lysis is 

hypothesized to be facilitated by the “proton sponge effect,” in which polycations act as buffers in the late 

endosome and lysosome, increasing the flow of protons and counterbalancing chloride ions into the 

vesicles, causing lysis due to osmotic pressure.214, 215 Liposomes containing dioleoyldiaminopropane 

(DODAP), a cationic lipid with a pKa of 5.8, could facilitate endosomal lysis by this mechanism. Fusion 

of liposomes with the endosomal membrane is primarily facilitated by mixing a bilayer-forming lipid like 

 

Figure 63. Synthesis of Liposomal CRISPR-SNAs. Concentrated Cas9 RNPs are encapsulated in 
liposomes, most unencapsulated RNPs are removed via SEC, liposomes were extruded to reduce 
polydispersity, DBCO-DNA is added to functionalize liposomes with DNA, liposomes are incubated with 
proteinase K to digest remaining unencapsulated Cas9, and finally digested Cas9 is removed via SEC. 
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DOPC with lipids that do not stably form bilayers or liposomes on their own, such as 

dioleoylphosphatidylethanolamine (DOPE).216 However, the two membrane bilayers must touch in order 

for fusion to occur. However, for the initial experiments, we synthesized liposomes primarily containing 

the non-fusogenic phospholipid dioleoylphosphatidylcholine (DOPC).  

To construct and test liposomal CRISPR SNAs, we designed new sgRNA and SNA sequences (Table 

A2). We pursued a covalent oligonucleotide attachment strategy to the liposomes, by doping the liposomes 

with 1% dipalmitoylphosphaditylcholine-azide (DPPE-azide) and then incubating with a 

dibenzocyclooctyne (DBCO)- and Cy3-modified DNA oligonucleotide (DBCO-Cy3-DNA). To increase 

the scale of sgRNA synthesis and increase sgRNA chemical stability, we synthesized split crRNA and 

tracrRNA sequences with phosphorothioate and 2’O-methyl modifications that make the RNA resistant to 

 

Figure 64. Quantification of DNA and RNP loading in liposomal CRISPR SNAs. (A) DLS of 
CRISPR SNAs after DNA functionalization and cleaning. (B) Standard curve of Cy3-DNA fluorescence, 
with SNA sample (diluted by half). (C) ICP-OES quantification of phosphorus (and therefore 
phospholipid) concentration in CRISPR SNA sample, including standard curve (blue), SNA sample 
(red), and SNA sample after correcting for the concentration of DNA obtained in B. SNA concentration 
is calculated using equation 1. (D) Standard curve of Alexa647-RNP fluorescence, with SNA sample 
(blue) plotted with a linear fit. 
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nucleases without abolishing Cas9 activity.202 In addition to a GFP-targeting crRNA, we synthesized 

crRNAs with guide sequences targeting the human EMX1 and FANCF genes, which have previously been 

validated as model target loci to quantify CRISPR gene editing efficiency.205 To make RNPs, crRNA and 

tracrRNA were hybridized together before mixing with the Cas9. We developed a synthesis strategy for 

making and cleaning liposomal CRISPR SNAs (Figure 63), which involved rehydrating a lyophilized lipid 

film with concentrated RNP solution, running this rehydrated solution through several freeze/thaw cycles 

to generate single unilamellar vesicles (SUVs), running this solution through size exclusion columns to 

remove most un-encapsulated RNPs, extruding the liposomes through a  0.1 µm filter, functionalizing with 

DBCO-modified DNA, and finally incubating with proteinase K and size-excluding again to remove any 

remaining unencapsulated RNPs.  

We developed a set of experiments to quantify the concentration of liposomes, surface-functionalized 

oligonucleotides, and RNPs on the synthesized liposomal CRISPR SNAs. (Figure 64). We measured 

liposome concentration by measuring phospholipid concentration using inductively coupled plasma optical 

emission spectrometry (ICP-OES), correcting for phosphorus from the functionalized oligonucleotides, and 

then dividing the phospholipid concentration by the approximate number of phospholipids per liposome, 

using the equation in Figure 65. The concentration of oligonucleotides was measured in a plate reader by 

treating SNA samples with 0.1% Tween 20 detergent (to disrupt the liposomes and disperse the 

oligonucleotides), and comparing Cy3 fluorescence in SNA samples to a standard curve generated from 

 

Figure 65. Equation for calculating liposome concentration. D is the diameter (Z average) of the 
liposomes (or Z average of the SNAs, minus 5 nm for the DNA shell). Alpha (α) is the footprint of the 
lipid head group, which for DOPC = 0.72 nm^2. 
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free DBCO- and Cy3-labeled oligonucleotides. The concentration of liposomes was determined with ICP-

OES as above, with phosphorus concentration corrected based on the concentration of oligonucleotides and 

the number of phosphorus atoms per oligonucleotide. The concentration of RNPS was determined by 

measuring Alexa 647 fluorescence from the liposome samples, and then plotting it on the linear regression 

of the Alexa-RNP standard curve in a plate reader. In a representative synthesis, we generated 115 nm 

CRISPR SNAs with ~450 DNA strands per particle, and encapsulated ~3 RNPs per liposome.  

We tested whether CRISPR RNPs could remain active through the liposomal CRISPR SNA synthesis 

(Figure 66). We incubated 200 nanograms linearized plasmids with the 1 pmol and 0.1 pmol Alexa RNP 

immediately after making them, after freeze/thaw cycling, after size exclusion, and after extrusion. The 

RNPs maintain activity at all stages of CRISPR SNA synthesis.  

 

Figure 66. RNPs remain active throughout SNA synthesis procedure. (A) Schematic of the in vitro 
Cas9 activity test. (B) Activity tests of fresh Cas9 RNPs (B1), Cas9 RNPs that have been modified with 
Alexa dye (B2), then concentrated with Amicon 10K filters (B3), then subjected to 7 cycles of 
freeze/thaw/sonication (B4), then run through Sepharose 6b SEC columns (B5), then extruded 3X 
through 0.2 µM and 0.1 µM PES membranes (B6). 
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We next sought to determine if RNPs were actually encapsulated in the clean liposomal CRISPR SNAs 

(Figure 67). Clean CRISPR SNAs, and empty SNAs mixed with RNPs, were incubated with proteinase K. 

Then, both samples were run through a size exclusion column and imaged for DBCO-Cy3-DNA and Alexa 

647-modified RNP fluorescence. The unencapsulated RNPs were clearly degraded, as their Alexa-647 

fluorescence elutes separately from the Cy3 signal of the liposomal SNAs. By contrast, the fluorescence of 

 

Figure 67. CRISPR-SNAs protect active RNPs from protease, indicating encapsulation. (A) Size 
exclusion fractions collected from a Superdex 200 column after incubating proteinase K with a mixture 
of empty SNAs and Alexa-RNPs (top) or CRISPR SNAs with encapsulated Alexa-RNPs (bottom). Cy3 
(DNA) fluorescence is shown in red, Alexa647 (Cas9) fluorescence in blue, and co-localization of Cy3 
and Cas9 fluorescence in pink. (B) In vitro Cas9 activity tests were run with no Cas9 (1); fresh Cas9 
without proteinase K (2) and with proteinase K (3); Alexa-modified Cas9 without proteinase K (4) and 
with proteinase K (5); CRISPR liposomes without proteinase K (6), with proteinase K (7); and with 
proteinase K added after disrupting liposomes with Tween 20 (8); and finally, CRISPR SNAs without 
proteinase K (9), with proteinase K (10), and with proteinase K added after disrupting liposomes with 
Tween 20 (11). 
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the RNPs in the CRISPR SNAs co-elute with the Cy3 signal of the liposomal SNAs, suggesting that the 

RNPs remain protected and encapsulated in the liposomes after the protease digestion. Further, when the 

CRISPR SNA samples are mixed with Tween 20 detergent to disrupt the liposomes, Cas9 cleavage activity 

is measurable in the in vitro cleavage assay after proteinase K digestion of the  CRISPR SNAs, while the 

cleavage activity of Cas9/sgRNA RNPs mixed with empty SNAs was abolished after proteinase K 

digestion. 

4.6 Liposomal CRISPR SNAs in cells 

We next tested whether CRISPR SNAs could deliver Cas9/sgRNA RNPs into mammalian cells (Figure 

68). We incubated C166-GFP cells with CRISPR SNAs, empty SNAs, RNPs encapsulated in bare 

liposomes, and RNPs complexed with RNAiMAX transfection reagent, for 16 hours in Opti-MEM reduced 

 

Figure 68. CRISPR-SNAs are actively taken up into mammalian cells. After incubating 5 picomole-
equivalents of Alexa RNP of each sample with C166-GFP cells for 16 hours, Alexa 647 fluorescence 
measured on the allophycocyanin (APC) excitation and emission filter. Histogram of Alexa-RNP 
fluorescence for untreated cells (red, overlaps with Empty LSNA), empty Cy3-modified LSNA (bright 
green), RNPs encapsulated in liposomes (orange), Alexa-RNPs transfected with RNAiMax, and finally 
CRISPR SNAs (dark green). 
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serum media. Uptake of RNPs labeled with Alexa Fluor 647 was then measured via flow cytometry. Cells 

treated with CRISPR-SNAs had higher median fluorescence and a higher proportion of highly fluorescent 

(fluorescence >1000 AU) cells than those treated with RNP/RNAiMAX mixtures or RNPs encapsulated in 

bare liposomes, while untreated cells showed almost no fluorescence. This data indicates that gene-editing 

enzymes encapsulated in liposomal SNAs are actively taken up into mammalian cells.  

We next tested whether liposomal SNA-mediated delivery of Cas9/sgRNA could induce gene editing 

in mammalian cells (Figure 69). CRISPR SNAs with liposomes containing a range of fusogenic DOPE 

phospholipid (5, 10, and 15%) were synthesized, and 140 nM Cas9/sgRNA in CRISPR SNAs was incubated 

with HeLa cells in OptiMEM. As a positive control, Cas9/sgRNA complexes were also mixed with 

Lipofectamine 2000 transfection reagent, and incubated with cells under the same conditions. After 48 

hours, we extracted DNA from the cells, amplified the EMX1 or the FANCF locus by PCR (Table A3), 

 

Figure 69. Efficiency of CRISPR-induced mutation at the EMX1 locus in HeLa cells. (A) 
Experiment testing CRISPR SNAs with 0% DOPE and 10 % DOPE liposomes, compared to a positive 
control of CRISPR RNPs transfected with Lipofectamine 2000. (B) Experiment testing the editing 
activity of CRISPR SNAs with 15% DOPE liposomes. 

 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Pos Ctrl Neg Ctrl 100% DOPC
CRISPR SNA

10% DOPE
CRISPR SNA

M
ut

at
io

n 
R

at
e 

(%
)

0

0.1
0.2
0.3
0.4
0.5
0.6

M
ut

at
io

n 
R

at
e 

(%
)

CRISPR Targeting of EMX1 locus in HeLa 
Cells, 15% DOPE in liposomes

(A) Positive Ctrl
(B) Negative Ctrl
(C) CRISPR SNAs

A

B

0% DOPE
CRISPR SNA



 102 
and sequenced on an Illumina MiSeq. A Matlab script from Kevin Zhao in David Liu’s lab was used to 

calculate the mutation rate from the percent of full FASTQ reads from the Illumina run which contain an 

insertion or deletion mutation within 5 bases of the predicted Cas9 cleavage site (Code D1). Although gene 

editing was detectable in the transfected positive controls across multiple experiments, gene editing with 

the CRISPR SNA constructs was not, even when doped with 10% and 15% fusogenic DOPE. So far, SNAs 

have not been able to successfully deliver gene editing enzymes into mammalian cells.  

4.7 Materials and Methods 

4.7.1 Materials. Unless otherwise noted, all reagents were purchased from commercial sources and used as 

received. For oligonucleotide, crRNA and tracrRNA synthesis, all phosphoramidites and reagents were 

purchased from Glen Research, Co. (Sterling, VA, USA). All lipids were purchased from Avanti Polar 

Lipids (Alabaster, AL, USA) either in dry powder form or chloroform and used without further purification. 

EnGen® Cas9 NLS (Cas9) and proteinase K were purchased from New England Biolabs (Ipswich, MA, 

USA). Alexa Fluor 647 NHS ester dye (Alexa 647) was purchased from Lumiprobe Corp. (Cockneysville, 

MD, USA). Plasmids were purchased from AddGene (Cambridge, MA, USA. GelRed dye was purchased 

from Biotium Inc. (Fremont, CA, USA). All other reagents were purchased from Sigma-Aldrich (St. Louis, 

MO, USA). C166-GFP cells were purchased from ATCC (Manassas, VA, USA), and Opti-MEM was 

purchased from Life Technologies (Carlsbad, CA). 

4.7.2 Cas9 labeling and quantification. In order to track and quantify Cas9, 2 nanomoles of Cas9 were 

incubated with 10 nanomoles of Alexa 647 NHS Ester, in 1X HBS overnight at 4ºC, generating Alexa-

Cas9. To remove unreacted dye, Alexa-Cas9 was run through a NAP5 column equilibrated in 1X HBS, and 

eluted in 1 mL 1X HBS. 2 nanomoles unmodified Cas9 was exchanged into 1X HBS using a NAP5 column, 

and combined with the Alexa Cas9. The concentration of Cas9 and Alexa dye were calculated using the 

absorbance at 280 nm and 650 nm, respectively; and the molar ratio of Alexa dye to Cas9 was calculated. 

The Alexa-Cas9 is then diluted to 1 µM. A 20 µL aliquot is reserved for activity and concentration assays. 
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4.7.3 Cas9 ribonucleoprotein synthesis and concentration. 10 nanomoles crRNA and tracrRNA were 

generated by incubating 10 µM crRNA with 10 µM tracrRNA in 1X HBS at 95ºC for 5 minutes, and 

allowed to cool to room temperature for 10 minutes. 10 nanomoles of crRNA/tracrRNA complex is then 

mixed with 4 nanomoles of 1 µM Alexa-Cas9 and allowed to sit at room temperature for 10 minutes, to 

form the Cas9 ribonucleoprotein (RNP). RNPs were then concentrated in Amicon 10K spin filters. 5 minute 

stretches, then resuspending, until the retained liquid volume reaches 500 µL or less. Cas9 concentration 

was again quantified using the absorbance of the Alexa 647 dye. 20 µL were set aside for activity and 

concentration measurements. 

4.7.4 Synthesis and purification of CRISPR SNAs. To synthesize liposomes encapsulating Cas9 RNPs, a 

dehydrated phospholipid film was generated by lyophilizing a mixture of 3 mg DOPC and 0.15 mg DPPE-

Azide in chloroform. The lipid film was then rehydrated with 400 µL of Alexa 647-labeled 

ribonucleoprotein complexes (Alexa-RNPs) in 1X HBS, at a concentration of 5-8 µM. This solution was 

then subjected to 7 freeze/thaw cycles using liquid nitrogen and a room-temperature bath sonicator to 

generate single unilamellar vesicles (SUVs). The SUVs were run through a column packed with Sepharose 

6B and equilibrated in 1X HBS to separate them from unencapsulated RNPs. To reduce polydispersity, the 

SUVs were extruded twice through 200 nm and then 100 nm membrane filters. To remove the remaining 

unencapsulated RNPs, SUVs were incubated for 1 hour at room temperature with proteinase K (10 U, in 

500 µL 1X NEB Buffer 2 + 1X HBS). SUVs were separated from digested RNPs using a column packed 

with Superdex 200 and equilibrated in 1X HBS. To generate SNAs, the SUVs were then incubated 

overnight with oligonucleotides functionalized on the 5’ end with DBCO and internally with Cy3 (~1 DNA 

per 20 phospholipids). SNAs were then separated from free oligonucleotides using a column packed with 

Superdex 200 and equilibrated in 1X HBS. 

4.7.5 Quantification of Cas9 and DNA loading. To measure SUV concentrations, inductively coupled 

plasma optical emission spectrometry (ICP-OES) and a phosphorus standard were used to calculate 

phospholipid concentration. Liposome diameter was measured via dynamic light scattering (DLS), and the 
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number of phospholipids per liposome were calculated. SUV concentration was calculated by dividing 

phospholipid concentration by the number of phospholipids per SUV. The concentration of 

oligonucleotides was measured in a Bio-Tek H4 plate reader by treating SNA samples with 0.1% Tween 

20 detergent (to disrupt the liposomes and disperse the oligonucleotides), and comparing Cy3 fluorescence 

in SNA samples to a standard curve generated from free DBCO- and Cy3-labeled oligonucleotides. The 

concentration of liposomes was determined with ICP-OES as above, with phosphorus concentration 

corrected based on the concentration of oligonucleotides and the number of phosphorus atoms per 

oligonucleotide. To calculate the concentration of RNPs, a standard curve of Alexa-647 fluorescence was 

generated from an Alexa-RNP aliquot in the plate reader. The concentration of RNPs was determined by 

measuring Alexa-647 fluorescence from the liposome samples, and then plotting it on the linear regression 

of the Alexa-RNP standard curve in a plate reader. 

4.7.6 In vitro Cas9 DNA cleavage assay. RNPs targeting the EGFP gene were synthesized and used to make 

CRISPR SNAs. Purified pcDNA3-EGFP plasmid was linearized by digesting with restriction enzyme 

SmaI. Active RNPs incubated with the linearized plasmid cleave it into a 2 kb and a 4 kb fragment, which 

can be seen on a 1% agarose electrophoresis gel run in TBE buffer for 30 minutes. 200 nanograms linearized 

plasmids with the 1 pmol and 0.1 pmol Alexa RNP immediately after making them, after freeze/thaw 

cycling, after size exclusion, and after extrusion.  

4.7.7 Protease stability studies. To verify that RNPs are encapsulated inside SNAs, clean CRISPR SNAs 

were incubated with proteinase K in NEB’s restriction enzyme buffer 2 for 1 hour at room temperature. As 

a control, Alexa-RNPs were mixed with empty SNAs and incubated with proteinase K. The incubated 

samples were then eluted in 200 µL fractions through a Superdex 200 size exclusion column equilibrated 

in 1x HBS. These fractions were then imaged in a fluorescent gel scanner for Cy3 and Alexa Fluor 647 

fluorescence. To verify that the encapsulated RNPs are still active liposomes in CRISPR SNAs were 

disrupted with 0.1% Tween 20 detergent either before or after incubating them with proteinase K as above. 
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Then proteinase K was inactivated with 1 mM 1 mM phenylmethylsulfonyl fluoride (PMSF), and the in 

vitro cleavage assay was run as above.  

4.7.8 Cell uptake studies. C166-GFP cells were incubated with CRISPR SNAs, empty SNAs, RNPs 

encapsulated in bare liposomes, and RNPs complexed with RNAiMAX transfection reagent, for 16 hours 

in Opti-MEM reduced serum media. Uptake of RNPs labeled with Alexa Fluor 647 was then measured via 

flow cytometry.  

4.7.9 Quantification of Gene Editing. CRISPR SNAs were synthesized using several different liposome 

compositions, including 98% DOPC + 2% DPPE-Azide, 88% DOPC + 10% DOPE + 2% DPPE-Azide, 

and 83% DOPC + 15% DOPE + 2% DPPE-Azide. Cas9/sgRNA RNPs encapsulated in the SNAs contained 

an equimolar mixture of crRNAs targeting these loci. HeLa cells were incubated with 140 nM Cas9/sgRNA 

complexes in CRISPR SNAs (quantified by Alexa 647 fluorescence) for 12 hours at 37ºC in OptiMEM 

culture media. As a positive control, Cas9/sgRNA complexes were also mixed with Lipofectamine 2000 

transfection reagent, and incubated with cells under the same conditions. OptiMEM was removed and 

replaced with DMEM + 10%FBS, and cells were allowed to grow for 48 hours. Then, genomic DNA from 

each well was extracted with a Qiagen kit, the sequence for the EMX1 locus was amplified and barcoded 

by PCR using the Nextera Illumina library preparation kit, and sequenced on an Illumina MiSeq. The 

mutation rate was calculated from the percent of full reads from the Illumina run which contain an insertion 

or deletion mutation within 5 bases of the predicted Cas9 cleavage site, using the script Code D1.  
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5.1 Dual Readout Sandwich Immunoassay 

The dual-readout sandwich immunoassay presented in chapter 2 enables both device-free visual and 

colorimetric analysis of samples, as well as highly sensitive scanometric target detection. Previous work on 

dual-readout Pt-coated AuNP detection strategies used AuNP local surface plasmon resonance (LSPR) to 

detect them colorimetrically, and therefore required the careful deposition of only a few layers of Pt atoms 

onto the AuNPs to avoid disrupting their LSPR.21 In this approach, the Pt-based colorimetric readout is 

more sensitive than the Au-based colorimetric detection. By contrast, our assay demonstrates much greater 

sensitivity through the gold-based readout than the Pt-based one, highlighting the value of the gold 

amplification step and scanometric detection method. The sub-picomolar scanometric readout’s detection 

sensitivity is comparable to other ultrasensitive nanoparticle-based PA83 assays employing europium 

nanoparticle-based fluorescence and silver nanoparticle-enhanced fluorescence.103, 104  

One way to improve this assay in the future would be to reduce the time required to get a colorimetric 

readout. This could be achieved by shortening the platinum deposition step. The platinum metal precursor 

solution used in this work is based on prior research into the synthesis of colloidally stable Au@Pt 

nanostructures.129 However, in our assay, the colloidal stability of the immobilized AuNPs after Pt 

deposition is unimportant; what matters is that Pt is deposited specifically on the AuNPs, and not on surfaces 

that lack AuNPs. It may be that a Pt deposition solution with a higher concentration of metal precursor 

could achieve the same level of AuNP-specific Pt deposition (and therefore colorimetric signal 

amplification) in a shorter period of time. 

Another approach to minimize time-to-readout could be to conjugate antibodies directly to peroxidase-

mimicking nanoparticles217 which are capable of both catalytic H2O2 splitting and nucleating gold particle 

growth from reduced ions. Gold nanoclusters (AuNCs), for instance, can catalyze the splitting of O2 and 

subsequent oxidation of TMB when illuminated with visible light.218 Alternatively, anisotropic platinum 

nanoparticles (PtNPs) can split H2O2 and oxidize TMB without requiring a reduction step, and have been 

functionalized with immunoglobulins to create model immunoassays.119 If PtNPs could serve as nuclei for 
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gold reduction, then mAb-PtNP nanoparticles could provide even more rapid device-free colorimetric 

antigen detection, while still enabling highly sensitive scanometric detection with the same particles. 

The colorimetric detection readout developed in this work has similar sensitivity to colorimetric 

immunoassays employing the enzyme horseradish peroxidase (e.g. ELISA).219 Another H2O2-decomposing 

enzyme, catalase, has been combined with gold nanoparticles to achieve ultrasensitive visual detection of 

protein biomarkers.220 However, in contrast to most enzymes, Pt remains catalytically active across a wide 

range of temperature and pH,119 broadening the range of applications and potentially enhancing the field 

deployability of similar colorimetric assays. Although less sensitive than the scanometric readout, in 

principle, the colorimetric readout could be employed in pairwise device-free screens to discover pairs of 

recognition elements, whether antibodies, aptamers, or hyper-stable designer protein binders;221 while the 

scanometric detection method can be used to significantly increase the sensitivity of any discovered 

sandwich pairs. These paired recognition elements, like the anti-PA83 mAb pair discovered using the 

colorimetric readout, could serve as practical tools for the sensitive, specific, and reproducible detection of 

anthrax and other disease biomarkers.  

5.2 Aptamer NanoFlares 

So far for the aptamer NanoFlare project, our main conclusion is that it is it is difficult to know a priori 

how a given aptamer-flare pair will respond to target molecule, because target-dependent aptamer-flare 

dehybridization depends in complicated ways on the 3-dimensional structure of the aptamer, the aptamer-

flare duplex, and the hypothesized aptamer-flare-target intermediate structure. To address this challenge, 

the flare microarray experiments and the analytical pipeline we’ve built enable comprehensive exploration 

of the aptamer-flare design space, and have shown that aptamer structural loops and 5’ and 3’ termini favor 

stable aptamer-flare hybridization, as does a calculated ∆G of hybridization stronger than -10 kcal/mol. 

Even if mathematical models of aptamer NanoFlares cannot rationally predict the ‘best’ aptamer-flare pair, 

the microarray experiments and analytical pipeline may make it possible to identify this ‘needle in a 

haystack’ anyway. 
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The next step in this project is to successfully identify target-responsive aptamer-flare pairs from the 

microarray screens. Toward this end, the microarrays should be redesigned to normalize and correct for 

several sources of experimental noise that have so far prevented us from identifying target-responsive 

aptamer-flare pairs from the array data. Specifically, internal hybridization positive controls should be 

added across the array, that bind a 20 bp fluorophore-modified control oligonucleotide that serves as an 

internal reference for any changes in absolute fluorescence measured across the array. Another element that 

has been missing from previous experiments is a detection positive control, a set of aptamer-flare pairs that 

are known to respond to a target molecule, and can be used to check that the analysis pipeline can actually 

detect ‘hits.’ To address this, new microarray designs incorporate all the flares for a known ATP-responsive 

aptamer that has previously been shown to detectably de-hybridize from a subset of complementary 

oligonucleotides via an induced fit mechanism in similar microarray experiments.222 The ATP aptamer 

positive control will be used to validate and improve the analytical workflow, and then this workflow can 

be used to screen aptamer-flare pairs responsive to DHEA-S, cortisol, or any other target molecule of 

interest.  

Answering the other questions raised by this project, like what effect attachment to a nanoparticle has 

on aptamer folding, flare hybridization, and target binding, requires the identification of at least one 

aptamer-flare pair that consistently detects the target molecule. In addition to continuing the screening 

experiments to discover such a pair, one place to look for such aptamer-flare ‘hits’ is the literature. For 

instance, the Stojanovic group have already reported several aptamer-complementary oligonucleotide pairs 

that de-hybridize in the presence of different steroid hormones.160 If at least one of these biosensors could 

be replicated and validated in a nanoparticle-free, black-hole-quencher-based aptamer fluorescence assay, 

it could serve as the baseline from which to compare the flare hybridization and target detection behavior 

of aptamer NanoFlare nanoparticles with different DNA loading densities. 

One problem that has stymied such experiments so far is the strange batch-to-batch variability we have 

observed in DHEA-S detection behavior for our aptamer NanoFlares. One potential source of variability 
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that hasn’t been ruled out yet is the poly-A spacer on the thiolated aptamer sequences. Poly-A DNA 

oligonucleotides adsorb strongly to the surface of citrate-capped gold nanoparticles; this adsorption of the 

ostensible spacer sequence in our SNA designs may interfere with aptamer folding, flare hybridization or 

target molecule binding. In future experiments, the aptamer NanoFlare constructs we have investigated 

could be synthesized with a poly-T spacer sequence instead,223 and target detection performance and 

consistency could be compared to constructs with the poly-A spacer.  

A potential limitation of the aptamer NanoFlare architecture we have studied here is that the target 

molecule must compete with a flare strand that is actively disrupting the aptamer structure in order to bind 

to the aptamer and stabilize its folded conformation. It is possible that this competition introduces a trade-

off between low background fluorescence and target molecule-induced flare dissociation: designing a 

highly stable aptamer-flare duplex may make it less thermodynamically favorable for the flare to be 

displaced and replaced with the target molecule. Conversely, designing a highly labile aptamer-flare duplex 

that is easily disrupted by the target molecule may result in a higher intrinsic aptamer-flare dissociation 

constant and rate, and therefore a higher concentration of unbound flare in solution even when the target 

molecule is absent. There is some evidence that this type of target-flare competition reduces the 

performance of aptamers: in the original ATP aptamer Nanoflare paper, the effective dissociation constant 

of the aptamer-ATP interaction was 100-fold weaker when the aptamer was hybridized to the flare strand 

than when there was no flare strand to compete with.81 This poses a serious challenge to the utility of 

aptamer NanoFlares as steroid stress biomarkers of DHEA-S or cortisol, since the physiological 

concentrations of these molecules in saliva (1-10 nM for cortisol;224, 225 0.6-70 nM for DHEA-S226, 227) are 

already lower than the dissociation constants of most aptamers for their targets.  

One way to address this challenge could be to replace the aptamer NanoFlare design with Mirkin lab’s 

recently reported forced-intercalation (FIT) aptamer design.228 FIT aptamers don’t require a flare strand; 

instead, one of the aptamer’s nucleotides is replaced with fluorescent dye, such as thiazole orange, that 

selectively fluoresces when sandwiched between and conformationally constrained by the stacked 
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nucleoside bases of a DNA double helix.229 If the dye is placed in a location on the aptamer that is not 

hybridized unless stabilized by binding the target molecule, then it will serve as a fluorescent biosensor of 

the target. There are many aptamers that alter their structural conformation upon binding their targets; for 

instance, Mirau lab’s NMR data in Figure 21 shows that the truncated DIS11th_3 aptamer undergoes some 

sort of conformational change upon binding DHEA-S. It’s possible that, in the absence of a competing flare 

strand, such ‘induced fold’ FIT aptamers could more sensitively detect their target molecule. SNA 

architecture could still play an important role in these constructs: for aptamers that fold stably even in the 

absence of target molecule, perhaps dense packing on the surface of a nanoparticle could destabilize native 

structure enough to insert a FIT dye with low background fluorescence, while still enabling target molecules 

to stabilize the aptamer’s folded conformation and turn FIT fluorescence back on. 

5.3 CRISPR SNAs  

The fundamental challenge facing any project aimed at nonviral, cytosolic delivery of proteins in vivo 

remains endosomal escape (for in vitro delivery into cell lines, cationic transfection reagents remain useful 

tools and positive controls). The liposomal CRISPR-SNAs we synthesized had active ribonucleoprotein 

enzymes inside them, and were endocytosed by cells, but no gene editing was observed. One of the 

challenges with this result is that because endosomal escape by SNAs is so rare and difficult to quantify, 

it’s not clear by what mechanism the liposomal CRISPR SNAs are failing. It’s possible that, despite doping 

with DOPE, none of the liposomes ever fuse with the endosomal membrane or escape, intact, into the 

cytosol. It’s possible that some liposomes escape into the cytosol intact, but that the Cas9 RNPs never 

escape from inside them, which they must do to travel to the nucleus and start gene editing. Or it’s possible 

that some liposomes are fusing with the endosomal membrane, and some RNPs are escaping into the 

cytosol, but the escaped RNP concentration is too low (or the activity of the RNPs is too degraded somehow 

by the encapsulation process) to detectably mutate genomic DNA. In order to address any of these 

hypotheses, a sensitive and quantitative method for measuring the endosomal escape of all the 

nanoparticles’ different components is required. We had hypothesized at the beginning of this project that 
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genomic editing could serve as such a method to sensitively measure endosomal escape; but so far that 

supposition has not been borne out. 

Split GFP-based sensors230 could be an alternative method to sensitively measure endosomal escape. 

Fluorescent proteins with one of the beta strands in the beta barrel removed, split GFP variants only 

fluoresce when complemented by the addition of the missing beta strand into solution. Split GFPs now 

come in several colors, including a photoactivatable variant that can be used in super-resolution 

microscopy.231 Split GFPs have already been used to quantify endosomal escape during the engineering and 

optimization of cell-penetrating peptides.232 By expressing the incomplete beta barrel in the cytosol of 

model cell lines, it’s possible that SNAs carrying the complementing beta strand could enter cells and, even 

when very rare, report endosomal escape events with fluorescence. Just as Shuya Wang et al. investigated 

the effect of antigen peptide attachment location and mechanism on the efficacy of immune-stimulating 

SNA cancer vaccines,92 split GFP beta strands could be encapsulated within, attached via intercalation to, 

or hybridized onto the oligonucleotide shell of liposomal SNAs with varying phospholipid compositions; 

and the liposome composition and peptide orientation that causes the most cellular fluorescence could be 

pursued as a cytosolic peptide/protein delivery vehicle. Once the concept is demonstrated, cytosolic 

delivery of larger proteins (perhaps even Cas9) could be tracked and quantified by fusing the 

complementary beta strand to the N or C terminus of the protein to be delivered. 

One of the main factors limiting the rate at which different iterations of liposomal CRISPR SNAs could 

be designed, built and tested was the inefficiency of Cas9 RNP encapsulation inside the liposomes. Because 

the RNPs were not modified with a phospholipid-bilayer-binding moiety, the enzymes had to be 

encapsulated by chance. Even at the highest stable RNP concentrations we achieved (roughly 8 µM), only 

about 2 RNPs would likely be encapsulated by chance inside the volume of a 100 nm liposome. If 

encapsulation in liposomal SNAs is ever to become a successful and standard method for delivering proteins 

into cells, the encapsulation efficiency must increase. This could be achieved by modifying the liposome 

composition and/or fusing a tag to the protein that increases the electrostatic attraction between protein and 
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phospholipid bilayer; or by chemically conjugating an intercalating moiety to the protein via a labile, bio-

reducible bond. 

This project also made clear that the standard chemical conjugation method for generating functional 

protein-core SNAs does not work for CRISPR enzymes. We hypothesize that more generally, irreversible 

NHS-ester mediated attachment of oligonucleotides to lysine residues is only a viable strategy for creating 

enzyme SNAs with functional cores if the enzymes in question don’t have many structurally important 

lysines, and don’t require large conformational changes that could be blocked by an oligonucleotide shell 

in order to perform catalysis. Cas9 violates both these criteria, so any future attempts to deliver Cas9 RNPs 

in proSNA format should investigate how to modify the protein’s surface amino acids with traceless, 

bioreducible linkers. The traceless linker Skakuj et al. have recently applied to SNA-mediated antigen 

peptide delivery for cancer immunotherapy could merit investigation.233  
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APPENDIX A: Supplementary Tables for Chapter 3 

Table A1. Oligonucleotide sequences for PEG backfilling experiments.  

Name Sequence 

DIS11th_3T DHEA-S 

Aptamer 

5'-GGA CGT GGA TTT TCC GCA TAC GAA 

GTT GTC C AAA AAA A-SH-3' 

8bp DIS11th_3T flare 5'-Cy5-GGA CAA CT-3' 

MN19 cocaine aptamer 

5'-GACAA GGAAA ATCCT TCAAC GAAGT 

GGGTC AAA AAA A-SH-3' 

8bp MN19 flare 5'-Cy5-GAC CCA CT-3' 
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Table A2. Aptamers tested in the microarray experiments. 

Name Target Sequence 

10_51 DHEA-S Cy3-CTCTCGGGACGACGCCAGAAGTTTACGAGGATATGGTAACATAGTCGTCCC 

15-1 DHEA-S Cy3-GAATGGATATGGGCAATGCGGGGTGGAGAATGGTTGCCGCACTTCGGC 

15-3 None Cy3-GAATGGATGAGGGTTGGAAGGGAGGGGCCCGGGGTGGGCCATCGTTCG 

CSS.1 

DHEA-S/ 

Cortisol Cy3-CTCACGACGCCCGCATGTTCCATGGATAGTCTTGACTAGTCGT 

DCA6th_23 DHEA-S Cy3-GGCTCTCGGGACGACaaGGATTTTCCtagaACGAAGTtgGTCGTCCC 

DIS11th_3 DHEA-S Cy3-GGCTCTCGGGACGtGGATTTTCCgcatACGAAGTtGTCCC 

FMN Riboflavin Cy5-GGCGUGUAGGAUAUGCUUCGGCAGAAGGACACGCC 

THY Theophylline Cy5-GGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACC 

TNT TNT 

Cy5-

GUCUAGACUGCAGAGUUAGUGGCCGGUGUCUGUAUGAGUCGAGUUUUGCAUUUCUGCAG

GUCGAC 

Dopa2 Dopamine 

Cy5-

GGGAAUUCCGCGUGUGCGCCGCGGAAGAGGGAAUAUAGAGGCCAGCACAUAGUGAGGCC

CUCCUCCC 
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APPENDIX B: Supplementary Tables for Chapter 4 

Table A1: Sequences for CRISPR SNA hybridization studies. 

Name Sequence 

Hyb_SNA_

F-Actin 5'-HS-(C3H6)-AAA AAA TCC TAC TAT CGC TCG CT-3' 

Hyb_SNA_

Scrambled_

Actin 5’-HS-(C3H6)-AAA AAA CCA TTG CGA CCC CGC CT-3’ 

Hyb_sgRNA

_Act_AAVS

1_1 IVT 

Template 

5'-

TGGCTAATACGACTCACTATAGGGAGAGTCACCAATCCTGTCCCTAGGTTTTAGAG

CTATGAAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCA

CCGAGT CGGTGCTT-ACGGCTCCGGCA-3' 

Hyb_sgRNA

_Act_AAVS

1_1 sgRNA 

5'-GUCACCAAUCCUGUCCCUAG-

GUUUUAGAGCUAUGAAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUU

GAAAAAGUGGCACCGAGUCGGUGCUUGAGAUGCUA-ACGGCUCCGGCA-3' 

Hyb_sgRNA

_Scr_eGFP 

IVT 

Template 

5'-

TGGCTAATACGACTCACTATAGGGAGAGAGCTGGACGGCGACGTAAAGTTTTAGA

GCTATGAAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGC

ACCGAGTCGGTGCTT-GAGATGCTAACG-'3 

Hyb_sgRNA

_Scr_eGFP 

sgRNA 

5'-GAGCUGGACGGCGACGUAAA-

GUUUUAGAGCUAUGAAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUU

GAAAAAGUGGCACCGAGUCGGUGCUUGAGAUGCUA-GAGATGCTAACG-3' 

Hyb_sgRNA

_Act_eGFP 

IVT 

Template 

5'-

TGGCTAATACGACTCACTATAGGGAGAGAGCTGGACGGCGACGTAAAGTTTTAGA

GCTATGAAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGC

ACCGAGTCGGTGCTT-ACGGCTCCGGCA-3' 
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Hyb_sgRNA

_Act_eGFP

_1 sgRNA 

5'-GAGCUGGACGGCGACGUAAA-

GUUUUAGAGCUAUGAAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUU

GAAAAAGUGGCACCGAGUCGGUGCUUGAGAUGCUA-ACGGCUCCGGCA-3' 
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Table A2: Sequences for liposomal CRISPR SNA studies. Red = 2’O-methyl RNA base, * = 

phosphorothioate backbone between RNA bases. 
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Table A3: Primers for CRISPR SNA gene editing studies. 

Name Sequence 

EMX1_HTS_F 
5'-ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT ACA 

TCG CAG CTC AGC CTG AGT GTT GA-3' 

EMX1_HTS_R 
5'-TGG AGT TCA GAC GTG TGC TCT TCC GAT CTC TCG TGG 

GTT TGT GGT TGC-3' 

FANCF_HTS_F 
5'-ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT TGG 

TCA CAT TGC AGA GAG GCG TAT CA-3' 

FANCF_HTS_R 5'-TGG AGT TCA GAC GTG TGC TCT TCC GAT CTG GGG TCC 
CAG GTG CTG AC-3' 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 141 
APPENDIX C: Supplementary Code for Chapter 3 

Code C1. Conformational Selection Equilibrium Model Markdown File  
```python 
#import required packages/functions: numpy, fsolve, matplotlib.pyplot 
import numpy as np 
from scipy.optimize import fsolve 
import matplotlib.pyplot as plt 
get_ipython().magic(u'matplotlib inline') #Enables jupyter to plot matplotlib 
things in-line 
``` 
```python 
#Set the values for total Aptamer + Flare strand concentration, and a range of 
DHEA-S concentrations 
#Okay. Let's try a range of parameter changes.  
#Let's try for 0.1 nM NP, 1 nM NP, 10 nM NP, and 100 nM NP. 
#Let's also try for Kd_Hyb = 0.1 nM, 1 nM, 10 nM, and 100 nM 
#Let's also try for Kd_Apt = 0.01 nM, 0.1 nM, 1 nM, 10 nM, 100 nM, 1 µM, 10 µM, 
and 100 µM 
 
#First, 10 nM Aptamer NanoFlare 
A_totalConc = 300   #Total Aptamer concentration, in nM 
F_totalConc = 37.5   #Total Flare strand, in nM 
numDataPoints = 100 #This variable dictates how many data points to consider 
and plot 
 
D_concArray = np.zeros(shape=(numDataPoints,1)) 
D_concArray[0] = 1 #Smallest concentration we'll try is 1 nM. 
 
D_increment = (1e9)**(1/float(numDataPoints)) #This will set a geometrically 
even increment between data points on a log axis plot. 
 
DHEASconc = 1 #This concentration (in nM) value will incrementally increase as 
the FOR loop iterates 
 
for i in range(1,numDataPoints-1): 
    DHEASconc = DHEASconc * D_increment 
    D_concArray[i] = DHEASconc 
 
for i in range(0, numDataPoints-1): 
    if D_concArray[i] == 0: 
        D_concArray[i] = np.NaN 
``` 
```python 
#Set the Kd_Apt and Kd_Hyb values. 
Kd_Apt = 27000  #Experimentally determined value of Kd_Apt, in nM 
Kd_Hyb = 11    #Experimentally estimated value of Kd_Hyb, in nM 
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#Set the initial concentration of free flare strand. This may not be necessary 
if I get rid of DeltaF_Rel.  
F_0 = .1 
``` 
```python 
#Now define arrays of values for A, D, F, AD, AF, Kd_Det, and DeltaF_Rel 
A_array = np.zeros(shape=(numDataPoints,1)) 
F_array = np.zeros(shape=(numDataPoints,1)) 
D_array = np.zeros(shape=(numDataPoints,1)) 
AF_array = np.zeros(shape=(numDataPoints,1)) 
AD_array = np.zeros(shape=(numDataPoints,1)) 
Kd_DetArray = np.zeros(shape=(numDataPoints,1)) 
DeltaF_RelArray = np.zeros(shape=(numDataPoints,1)) 
DeltaF_Tricky_RelArray = np.zeros(shape=(numDataPoints,1)) 
``` 
```python 
#Now set up a FOR loop to generate values in all these arrays based on changing 
DHEA-S concentrations 
 
for i in range(0,numDataPoints-1): 
    #Define all the equations here, in X*Y+C^2-D format. All equations should 
= 0. 
    def equations(p): #defines a dummy variable, tells which variables are 
working 
        A, D, F, AD, AF = p 
        return (abs(A) + abs(AD) + abs(AF) - A_totalConc,  
                abs(D) + abs(AD) - D_concArray[i],  
                abs(F) + abs(AF) - F_totalConc,  
                abs(D)*abs(A)/abs(AD) - Kd_Apt,  
                abs(F)*abs(A)/abs(AF) - Kd_Hyb) 
    #Use fsolve to computaionally solve the equations for a given set of input 
parameters. 
    #Note: Something's wrong with DeltaF_Rel; only spits out the value 1. 
Unclear if it's even necessary. 
    A, D, F, AD, AF = fsolve(equations, 
                                (A_totalConc,  
                                D_concArray[i],  
                                F_totalConc,  
                                A_totalConc,  
                                F_totalConc,  
                                )) 
    A_array[i] = A 
    F_array[i] = F 
    D_array[i] = D 
    AF_array[i] = AF 
    AD_array[i] = AD 
    Kd_DetArray[i] = (abs(AF)+abs(A))*abs(D)/abs(AD) 
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for i in range(0,numDataPoints-1): 
    DeltaF_RelArray[i] = F_array[i] / F_array[0] 
``` 
```python 
#Now, 'absolutize' all the arrays. Sometimes fsolve converges to -1 * the 
correct variable. 
cleanA = np.absolute(A_array) 
cleanF = np.absolute(F_array) 
cleanD = np.absolute(D_array) 
cleanAF = np.absolute(AF_array) 
cleanAD = np.absolute(AD_array) 
cleanKd_Det = np.absolute(Kd_DetArray) 
cleanDeltaF_Rel = np.absolute(DeltaF_RelArray) 
``` 
```python 
#Sometimes fsolve spits out obviously wrong answers, which show up as outliers. 
#Make a function cleanModels that removes array values that deviate too 
drastically from their immediate neighbors. 
#Works for a vertical 1D array 
def cleanModels(array): 
    arraySize = array.shape[0] 
    cleanArray = np.zeros(shape=(arraySize,1)) 
    delta = np.zeros(shape=(arraySize,1)) #make an array for recording the 
change in value from one element to the next 
#    for i in range(0,array.shape[0]-1): 
#        delta[i] = abs(array[i] - array[i+1]) 
 
#Get rid of the very last data point, which can be an outlier 
    array[arraySize-1] = np.NaN 
 
#If I could be a little cleverer about defining delta I bet all of this would 
go away 
#Define delta based on the median of the nearest five data points 
#This generates an array of Delta values (the difference between one point and 
the five points around it) 
#Perhaps the best way to spot and eliminate outliers is to compare the median 
Delta to the average delta 
#The trouble with this approach is that it has difficulty removing many outliers 
in a row 
    for i in range(0,4): 
        delta[i] = abs(array[i] - np.median(array[i:i+5])) 
    for i in range(5, array.shape[0]-2): 
        delta[i] = abs(array[i] - np.median(array[i-2:i+2])) 
    for i in range(array.shape[0]-2, array.shape[0]-1): 
        delta[i] = abs(array[i] - np.median(array[i-5:i]))          
     
    #Make medianDelta into an array, segment into chunks of 10 data points 
    medianDelta = np.zeros(shape=(array.shape[0],1)) 
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    for i in range(0, array.shape[0]-11): 
        medianDelta[i] = np.median(delta[i:i+10]) 
 
    for i in range(1,array.shape[0]): 
        if delta[i] > 10*(medianDelta[i]): 
            cleanArray[i] = np.NaN 
        else: 
            cleanArray[i] = array[i] 
             
    for i in range(1,array.shape[0]): 
        if array[i] > 10*np.average(array): 
            cleanArray[i] = np.NaN 
        else: 
            cleanArray[i] = array[i] 
    return cleanArray 
``` 
```python 
#Now, clean up all the arrays of values! 
cleanA = cleanModels(cleanA) 
cleanF = cleanModels(cleanF) 
cleanD = cleanModels(cleanD) 
cleanAF = cleanModels(cleanAF) 
cleanAD = cleanModels(cleanAD) 
cleanKd_Det = cleanModels(cleanKd_Det) 
cleanDeltaF_Rel = cleanModels(cleanDeltaF_Rel) 
 
#Now, try to delete the first values of all the arrays to get rid of that 
annoying first value that shows up as zero 
D_concArray[0] = np.NaN 
#Hey, it worked! 
``` 
```python 
#Now, plot the cleaned up data as a function of [DHEA-S]! 
plt.figure(1) 
plt.semilogx(D_concArray, cleanDeltaF_Rel, 'ro') 
plt.xlabel('[DHEA-S], nM') 
plt.ylabel("Relative Delta [F]") 
plt.show() 
 
plt.figure(2) 
plt.semilogx(D_concArray, cleanF, 'bo') 
plt.xlabel('[DHEA-S], nM') 
plt.ylabel('[Free Flare], nM') 
plt.show() 
 
plt.figure(3) 
plt.semilogx(D_concArray, cleanA, 'go') 
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plt.xlabel('[DHEA-S], nM') 
plt.ylabel('[Free Aptamer], nM') 
plt.show() 
 
plt.figure(4) 
plt.semilogx(D_concArray, cleanAF, 'ro') 
plt.xlabel('[DHEA-S], nM') 
plt.ylabel('[Aptamer-Flare complex], nM') 
plt.show() 
 
plt.figure(5) 
plt.semilogx(D_concArray, cleanAD, 'bo') 
plt.xlabel('[DHEA-S], nM') 
plt.ylabel('[Aptamer-DHEAS complex], nM') 
plt.show() 
 
plt.figure(6) 
plt.semilogx(D_concArray, cleanKd_Det, 'bo') 
plt.xlabel('[DHEA-S], nM') 
plt.ylabel('[Kd_Det], nM') 
plt.show() 
``` 
```python 
#Export the relative fluorescence change data to a csv 
 
import csv 
 
csvfile = "filename.csv" 
with open(csvfile, "w") as output: 
    writer = csv.writer(output, lineterminator='\n') 
    for val in cleanDeltaF_Rel: 
        writer.writerow(val) 
``` 
```python 
#Okay. Now, I've got a sense of how cranky the equations solver function is. 
What I would like to do now is test out 
#whether I can get the F_relative fluorescence to work based 
#on the equation I derived 
``` 
```python 
#Now define arrays of values for A, D, F, AD, AF, Kd_Det, and DeltaF_Rel 
A_array = np.zeros(shape=(numDataPoints,1)) 
F_array = np.zeros(shape=(numDataPoints,1)) 
D_array = np.zeros(shape=(numDataPoints,1)) 
AF_array = np.zeros(shape=(numDataPoints,1)) 
AD_array = np.zeros(shape=(numDataPoints,1)) 
Kd_DetArray = np.zeros(shape=(numDataPoints,1)) 
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DeltaF_RelArray = np.zeros(shape=(numDataPoints,1)) 
DeltaF_derived_RelArray = np.zeros(shape=(numDataPoints,1)) 
``` 
 
 
```python 
#Now set up a FOR loop to generate values in all these arrays based on changing 
DHEA-S concentrations 
for i in range(0,numDataPoints-1): 
    #Define all the equations here, in X*Y+C^2-D format. All equations should 
= 0. 
    def equations(p): #I think this defines a dummy variable, tells which 
variables are working 
        A, D, F, AD, AF = p 
        return (abs(A) + abs(AD) + abs(AF) - A_totalConc,  
                abs(D) + abs(AD) - D_concArray[i],  
                abs(F) + abs(AF) - F_totalConc,  
                abs(D)*abs(A)/abs(AD) - Kd_Apt,  
                abs(F)*abs(A)/abs(AF) - Kd_Hyb) 
 
 
    #Use fsolve to computationally solve the equations for a given set of input 
parameters. 
    #Note: Something's wrong with DeltaF_Rel; only spits out the value 1. 
Unclear if it's even necessary. 
    A, D, F, AD, AF = fsolve(equations, 
                                (A_totalConc,  
                                D_concArray[i],  
                                F_totalConc,  
                                A_totalConc,  
                                F_totalConc,  
                                )) 
    A_array[i] = A 
    F_array[i] = F 
    D_array[i] = D 
    AF_array[i] = AF 
    AD_array[i] = AD 
    Kd_DetArray[i] = (abs(AF)+abs(A))*abs(D)/abs(AD) 
    DeltaF_RelArray[i] = F_array[i] / F_array[1] 
    DeltaF_derived_RelArray[i] = 1 + (abs(A)*abs(D)/(Kd_Apt*abs(AD))) 
``` 
 
 
```python 
#Now, just do the cleaning and stuff for DeltaF_RelArray and 
DeltaF_derived_RelArray 
 
cleanDeltaF_Rel = np.absolute(DeltaF_RelArray) 
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cleanDeltaF_derived_RelArray = np.absolute(DeltaF_derived_RelArray) 
 
cleanDeltaF_Rel = cleanModels(cleanDeltaF_Rel) 
cleanDeltaF_derived_RelArray = cleanModels(cleanDeltaF_derived_RelArray) 
``` 
```python 
#Now, plot the cleaned up data as a function of [DHEA-S]! 
plt.figure(1) 
plt.semilogx(D_concArray, cleanDeltaF_Rel, 'ro') 
plt.xlabel('[DHEA-S], nM') 
plt.ylabel("Relative Delta [F]") 
plt.show() 
 
#Now, plot the cleaned up data as a function of [DHEA-S]! 
plt.figure(1) 
plt.semilogx(D_concArray, cleanDeltaF_derived_RelArray, 'bo') 
plt.xlabel('[DHEA-S], nM') 
plt.ylabel("Derived Relative Delta [F]") 
plt.show() 
 
#Okay. So the derived Relative Delta F Doesn't actually give a 
#meaningful number. It's literally just 1 + 1. 
``` 
```python 
#Now, time to plot data recapitulating Mirau lab's  
#aptamer quenching experiments. 
#In this case, the species that decreased over time is [A], 
#While the species that increases over time is [AD] 
#(with increasing concentrations of flare strand) 
 
F_totalConc = 200.0   #Total Flare Strand concentration, in nM 
 
A_concArray = np.zeros(shape=(10,1)) #Total Aptamer-BHQ conc, in nM 
 
A_concArray[0] = 10.0 
A_concArray[1] = 14.0 
A_concArray[2] = 30.0 
A_concArray[3] = 40.0 
A_concArray[4] = 80.0 
A_concArray[5] = 200.0 
A_concArray[6] = 400.0 
A_concArray[7] = 700.0 
A_concArray[8] = 1200.0 
A_concArray[9] = 2000.0 
 
#In this case, the concentration of D is always 0. 
D_totalConc = 0 
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#numDataPoints = 100 #This variable dictates how many data points to consider 
and plot 
#D_concArray = np.zeros(shape=(numDataPoints,1)) 
#D_concArray[0] = 100 #Smallest concentration we'll try is 1 nM. 
 
#D_increment = (1e5)**(1/float(numDataPoints)) #This will set a geometrically 
even increment between data points on a log axis plot. 
 
#DHEASconc = 100 #This concentration (in µM) value will incrementally increase 
as the FOR loop iterates 
 
#for i in range(1,numDataPoints-1): 
#    DHEASconc = DHEASconc * D_increment 
#    D_concArray[i] = DHEASconc 
``` 
```python 
#Now define arrays of values for A, D, F, AD, AF, Kd_Det, and DeltaF_Rel 
A_array = np.zeros(shape=(10,1)) 
F_array = np.zeros(shape=(10,1)) 
AF_array = np.zeros(shape=(10,1)) 
DeltaF_RelArray = np.zeros(shape=(10,1)) 
 
#Set the Kd_Hyb value. 
Kd_Hyb = 100    #Experimentally estimated value of Kd_Hyb, in nM 
 
``` 
```python 
#Now set up a FOR loop to generate values in all these arrays based on changing 
DHEA-S concentrations 
 
for i in range(0,9): 
    #Define all the equations here, in X*Y+C^2-D format. All equations should 
= 0. 
    def equations(p): #I think this defines a dummy variable, tells which 
variables are working 
        A, F, AF = p 
        return (abs(A) + abs(AF) - A_concArray[i],   
                abs(F) + abs(AF) - F_totalConc,  
                abs(F)*abs(A)/abs(AF) - Kd_Hyb) 
    #Use fsolve to computationally solve the equations for a given set of input 
parameters. 
 
    A, F, AF = fsolve(equations,(50, F_totalConc, 50)) 
    A_array[i] = A 
    F_array[i] = F 
    AF_array[i] = AF 
    DeltaF_RelArray[i] = F_array[i] / F_array[0] 
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#Now, 'absolutize' all the arrays. Sometimes fsolve converges to -1 * the 
correct variable. 
cleanA = np.absolute(A_array) 
cleanF = np.absolute(F_array) 
cleanAF = np.absolute(AF_array) 
cleanDeltaF_Rel = np.absolute(DeltaF_RelArray) 
 
``` 
```python 
#Now, plot the cleaned up data as a function of [DHEA-S]! 
plt.figure(1) 
plt.semilogx(A_concArray, cleanDeltaF_Rel, 'ro') 
plt.xlabel('[Aptamer-BHQ], nM') 
plt.ylabel("Relative Delta [F]") 
plt.show() 
 
#Now, plot the cleaned up data as a function of [DHEA-S]! 
plt.figure(1) 
plt.semilogx(A_concArray, cleanF, 'bo') 
plt.xlabel('[Aptamer-BHQ], nM') 
plt.ylabel("[F], nM") 
plt.show() 
 
#Now, plot the cleaned up data as a function of [DHEA-S]! 
plt.figure(1) 
plt.semilogx(A_concArray, cleanAF, 'go') 
plt.xlabel('[Aptamer-BHQ], nM') 
plt.ylabel("[AF], nM") 
plt.show() 
``` 
 
```python 
#Export the relative fluorescence change data to a csv 
 
import csv 
 
csvfile = "20180203_FlareBindingModelPredictions_KdHyb_100nM.csv" 
 
with open(csvfile, "w") as output: 
    writer = csv.writer(output, lineterminator='\n') 
    for val in cleanDeltaF_Rel: 
        writer.writerow(val)    
``` 
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Code C2. Induced fit and conformational selection kinetic models markdown file. 
```python 
#Import all the relevant packages 
 
#PySB, which runs the model 
from pysb import * 
 
#ODE Solvers 
from pysb.integrate import odesolve 
from pysb.simulator import ScipyOdeSimulator 
#import cython 
#^at some point, learn to run the ODEs off cython, which is faster than python 
 
#Plotting packages 
import numpy as np 
import pylab as pl 
from pylab import plot, linspace 
import pygraphviz 
 
#For exporting network and simulation results to CSV/Excel/py/dot/PDF files 
from pysb.export import export 
import pandas as pd 
``` 
 
 
```python 
!pip freeze > requirements.txt 
``` 
 
 
```python 
#now, build the two models: conformational selection and induced fit. 
#Instead of storing the model code in different .py files, make functions that 
will generate/return the models 
#This way, the model parameters can be changed more easily 
#First, Conformational Selection model 
 
#This time, define k_HybF and k_HybR using the experimentally determined 
parameters 
 
#BLI experimentally determined k_HybF: 18,000 1/(M*s) * 1 M / 1,000,000 µM = 
.018 
#BLI experimentally determined k_HybR: 0.00555 1/s 
 
def genAFCSmodel(k_HybF=0.018, 
                 k_HybR=0.00555, 
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                 k_AptF=0.1, 
                 k_AptR=3, 
                 AF_0=1, 
                 D_0=1000, 
                 A_unb_0=0.01, 
                 F_unhyb_0=0.01, 
                 AD_0=0):   
    #define the Model object that the function will return 
    a = Model() 
     
    #Define the molecules in the model, and their associated parameters/binding 
sites 
    Monomer('A', ['sf', 'sd']) 
    Monomer('F', ['sf']) 
    Monomer('D', ['sd']) 
     
    #Define the reaction rate parameters required for the model 
    Parameter('kHybF', k_HybF)  
    Parameter('kHybR', k_HybR) 
    Parameter('kAptF', k_AptF) 
    Parameter('kAptR', k_AptR) 
     
    #Define the initial concentration parameters required for the model 
    Parameter('AF_init', AF_0) 
    Parameter('D_init', D_0) 
    Parameter('A_unb_init', A_unb_0) 
    Parameter('F_unhyb_init', F_unhyb_0) 
    Parameter('AD_init', AD_0) 
     
    #Define the initial molecular species and concentrations at the start of 
the model simulation 
    Initial(A(sf=1, sd=None) % F(sf=1), AF_init) 
    Initial(D(sd=None), D_init) 
    Initial(A(sf=None, sd=None), A_unb_init) 
    Initial(F(sf=None), F_unhyb_init) 
    Initial(A(sf=None, sd=1) % D(sd=1), AD_init) 
     
    #Define the reactions the molecules in the model can undergo, with their 
associated rates 
    #Reaction 1: A + F <> AF 
    Rule('A_binds_F', A(sf=None, sd=None) + F(sf=None) | A(sf=1, sd=None) % 
F(sf=1), kHybF, kHybR) 
    #Reaction 2: A + D <> AD 
    Rule('A_binds_D', A(sf=None, sd=None) + D(sd=None) | A(sf=None, sd=1) % 
D(sd=1), kAptF, kAptR) 
     
    #Define all the molecular species you want to be able to call, return, and 
plot after simulating 
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    Observable('AF', A(sf=1, sd=None) % F(sf=1)) 
    Observable('F_unhyb', F(sf=None)) 
    Observable('D_unb', D(sd=None)) 
    Observable('A_unb', A(sf=None, sd=None)) 
    Observable('AD', A(sf=None, sd=1) % D(sd=1)) 
     
    #Return the model 
    return a 
``` 
 
 
```python 
#And now, the induced fit model 
 
#Now create a method to generate an IF model with specified parameters 
#Set default values here 
def genAFIFmodel(k_HybF=0.018, 
                 k_HybR=0.00555, 
                 k_AptF=0.1, 
                 k_AptR=3, 
                 k_AptIF_F=0.001, 
                 k_AptIF_R=10, 
                 k_HybIF_F=0.01, 
                 k_HybIF_R=0.01, 
                 AF_0=1, 
                 D_0=1000,   #100 µM DHEA-S 
                 A_unb_0=0.01, 
                 F_unhyb_0=0.01, 
                 AD_0=0, 
                 ADF_0=0):   
    #Define the Model object that the function will return 
    a = Model() 
     
    #Define the molecules in the model, and their associated parameters/binding 
sites 
    Monomer('A', ['sf', 'sd']) 
    Monomer('F', ['sf']) 
    Monomer('D', ['sd']) 
     
    #Define the reaction rate parameters required for the model 
    Parameter('kHybF', k_HybF)  
    Parameter('kHybR', k_HybR) 
    Parameter('kAptF', k_AptF) 
    Parameter('kAptR', k_AptR) 
    Parameter('kAptIF_F', k_AptIF_F) 
    Parameter('kAptIF_R', k_AptIF_R) 
    Parameter('kHybIF_F', k_HybIF_F) 
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    Parameter('kHybIF_R', k_HybIF_R) 
    Parameter('AF_init', AF_0) 
     
    #Define the initial concentration parameters required for the model 
    Parameter('D_init', D_0) 
    Parameter('A_unb_init', A_unb_0) 
    Parameter('F_unhyb_init', F_unhyb_0) 
    Parameter('AD_init', AD_0) 
    Parameter('ADF_init', ADF_0) 
     
    #Define the initial molecular species and concentrations at the start of 
the model simulation 
    Initial(A(sf=1, sd=None) % F(sf=1), AF_init) 
    Initial(D(sd=None), D_init) 
    Initial(A(sf=None, sd=None), A_unb_init) 
    Initial(F(sf=None), F_unhyb_init) 
    Initial(A(sf=None, sd=2) % D(sd=2), AD_init) 
    Initial(A(sf=1, sd=2) % D(sd=2) % F(sf=1), ADF_init) 
     
    #Define the reactions the molecules in the model can undergo, with their 
associated rates 
    #Reaction 1: A + F | AF 
    Rule('A_binds_F', A(sf=None, sd=None) + F(sf=None) | A(sf=1, sd=None) % 
F(sf=1), kHybF, kHybR) 
    #Reaction 2: A + D | AD 
    Rule('A_binds_D', A(sf=None, sd=None) + D(sd=None) | A(sf=None, sd=2) % 
D(sd=2), kAptF, kAptR) 
    #Reaction 3: AF + D | ADF 
    Rule('AF_binds_D', A(sf=1, sd=None) % F(sf=1) + D(sd=None) | A(sf=1, sd=2) 
% D(sd=2) % F(sf=1), kAptIF_F, kAptIF_R) 
    #Reaction 4: AD + F | ADF (The reverse of ADF | AD + F) 
    Rule('AD_binds_F', A(sf=None, sd=2) % D(sd=2) + F(sf=None) | A(sf=1, sd=2) 
% D(sd=2) % F(sf=1), kHybIF_F, kHybIF_R) 
 
     
    #Define all the molecular species you want to be able to call, return, and 
plot after simulating 
    Observable('AF', A(sf=1, sd=None) % F(sf=1)) 
    Observable('F_unhyb', F(sf=None)) 
    Observable('D_unb', D(sd=None)) 
    Observable('A_unb', A(sf=None, sd=None)) 
    Observable('AD', A(sf=None, sd=2) % D(sd=2)) 
    Observable('ADF', A(sf=1, sd=2) % D(sd=2) % F(sf=1)) 
     
    #Return the model 
    return a 
``` 
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```python 
#Now, explain the reaction rate parameters 
#We don't know any of the reaction rate constants. 
#However, we have experimentally estimated that  
#Kd_Hyb = kHybR / kHybF = 10 nM, and  
#Kd_Apt = kHybR / kHybF = 30 µM 
 
#The rate constants for the binding/dissociation reactions of the ADF 
intermediate are unknown. 
 
#However, we can bet that, for an unstable intermediate, the forward (binding) 
reaction 
#Will be equal to or lower than for the binding reaction of two species without 
the third. 
 
#That is, kAptF ≥ kAptF*, for A + D --kAptF--> AD  and  AF + D --kAptF*--> ADF 
#Likewise, kHybF ≥ kHybF*, for A + F --kHybF--> AF  and  AD + F --kHybF*--> ADF 
 
#Similarly, we can bet that, for an unstable intermediate, the reverse 
(dissociation) reaction 
#Will be equal to or higher than for the dissociation reaction of two species 
without the third. 
 
#That is, kAptR ≤ kAptR*, for A + D <--kAptR-- AD  and  AF + D <--kAptR*-- ADF 
#Likewise, kHybR ≤ kHybR*, for A + F <--kHybR-- AF  and  AD + F <--kHybR*-- ADF 
 
#So, a reasonable way to constrain the initial parameter space is to say  
#kHybR / kHybF = 10 nM 
#kHybR / kHybF = 30 µM 
#kAptF ≥ kAptF* 
#kHybF ≥ kHybF* 
#kAptR ≤ kAptR* 
#kHybR ≤ kHybR* 
 
#To start, let's say kHybF = 0.1, kHybR = 0.001, kAptF = 0.1, and kAptR = 3 
#And kAptF* = 0.001, kAptR* = 10, kHybF* = 0.01, kHybR* = 0.01  
 
#And for initial concentrations, assume 100 nM of aptamer-flare duplex. 
#Also have 1 nM free aptamer and 1 nM free flare, just so beginning free flare 
concentrations ≠ 0. 
 
``` 
```python 
#All right, I've generated all the models. Now I want to write the method to 
auto-generate the simulation lists 
#Inputs for genSimDF: a Model list mList, a TimeSpan t, and a list of observables 
to retrieve 
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def genSimDF(mList, t, variedParameter, observables): 
    m_df = pd.DataFrame() 
    mList_yOut = list() 
    m_df['Time (s)'] = t 
     
    for n in range(0, len(mList)): 
        simRes = ScipyOdeSimulator(mList[n], tspan = t, 
compiler='python').run() 
        mList_yOut.append(simRes.all) 
        for i in range(0, len(observables)): 
             
            m_df['[' + observables[i] + '], ' + variedParameter + ' = ' + 
str(mList[n].parameters[variedParameter].value)] = 
mList_yOut[n][observables[i]]  
     
    paramsList = ['']*t.size 
    rulesList = ['']*t.size 
    m_params = mList[0].parameters[:] 
    m_rules = mList[0].rules[:] 
    for n in range(0,len(m_params)): 
        paramsList[n] = m_params[n] 
 
    for n in range(0, len(m_rules)): 
        rulesList[n] = m_rules[n] 
     
    m_df['Parameters'] = paramsList 
    m_df['Rules'] = rulesList 
    return m_df 
 
``` 
```python 
#Cool, so I've got DFs of all the simulations I might want. 
#Now I want to generate fold-change-in-fluorescence dataframes. 
def convertToFoldChange(df100D, dfNoD): 
    numCols = df100D.shape[1] - 2 
    FCdf = df100D.copy() 
     
    for i in range(1, numCols): 
        FCdf.iloc[:,i] = df100D.iloc[:,i] / dfNoD.iloc[:,i] 
     
    return FCdf 
``` 
```python 
#Now generate plotting functions 
#Something weird is happening; need to plot all the species to figure out what's 
going on 
def plotModelSims(modelDF, variedParam, paramList, yLabel, timespan): 
    numCols = modelDF.shape[1] - 2 
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    colorDecimal = 1.0 / numCols 
    pl.ion() 
    for n in range(1,numCols): 
        pl.plot(modelDF['Time (s)'][0:timespan],  
                modelDF.iloc[0:timespan,n],  
                label = (variedParam + ' = ' + str(paramList[n-1])),  
                color=[colorDecimal*n,0.3,0.3]) 
    pl.legend() 
    #Title the plot either 'Induced Fit' or 'Conformational Selection' 
    if(modelDF.iloc[9,numCols] == ''): 
        pl.title('Conformational Selection') 
    else: 
        pl.title('Induced Fit') 
 
    pl.xlabel('Time (s)') 
    pl.ylabel(yLabel) 
    pl.figure() 
``` 
```python 
#Now, let's run plotting scripts to show the effects of varying all the different 
parameters 
#First, generate lists of parameter values 
#Span 5 orders of magnitude, by factors of 10 
#use np.logspace(exponent1, exponent2, numPoints, base) 
 
logBase10of3 = np.log(3)/np.log(10) 
logBase10of5 = np.log(5)/np.log(10) 
 
k_HybFlist = np.logspace(-4, 0, num=5, base=10)  #0.0001 - 1 
k_HybRlist = np.logspace(-6, -2, num=5, base=10) #0.000001 - 0.01 
k_AptFlist = np.logspace(-6, -1, num=6, base=10) #0.000001 - 0.1 
k_AptRlist = np.logspace(logBase10of3 - 5, logBase10of3, num=6, base=10) 
#0.00003 - 3 
k_AptIF_Flist = np.logspace(logBase10of5-7, logBase10of5-3, num=5, base=10)  
#0.0000005 - 0.005 
k_AptIF_Rlist = np.logspace(-5, -1, num=5, base=10)                          #0.00001 
- 0.1 
k_HybIF_Flist = np.logspace(logBase10of5-5, logBase10of5-1, num=5, base=10)  
#0.00005 - 0.5 
k_HybIF_Rlist = np.logspace(logBase10of5-6, logBase10of5-2, num=5, base=10)  
#0.000005 - 0.05 
 
AF_0list = np.logspace(-3, 1, num=5, base=10)      #0.001 - 10 
D_0list = np.logspace(-2, 4, num=7, base=10)      #0.01 - 10000 
A_unb_0list = np.logspace(logBase10of5-4, logBase10of5, num=5, base=10)   
#0.0001 - 1 
F_unhyb_0list = np.logspace(-4, 0, num=5, base=10) #0.0001 - 1 
AD_0list = np.logspace(-4, 0, num=5, base=10)      #0.0001 - 1 
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ADF_0list = np.logspace(-6, -2, num=5, base=10)        #0.000001 - 0.01 
``` 
```python 
#Now show how these methods are deployed in practice. 
#generate a list of numbers, varying parameter(s) of interest 
#Possible reaction parameters to vary: 
    #Both models: k_HybF, k_HybR, k_AptF, k_AptR 
    #IF model only: k_HybIF_F, k_HybIF_R, k_AptIF_F, k_AptIF_R 
#Possible initial concentrations to vary: 
    #Both models: D_0, F_unhyb_0, A_unb_0, AF_0, AD_0 
    #IF model only: ADF_0 
     
D_0list = np.logspace(-2, 4, num=7, base=10)      #0.01 - 10000 
k_AptRlist = np.logspace(logBase10of3 - 5, logBase10of3, num=6, base=10) 
#0.00003 - 3 
#Next, generate a list of models, with each one varying by the parameters in 
the list just generated 
#Show how to vary [D], and how to vary another parameter, while outputting fold 
change in fluorescence 
CS_test_Dlist = [genAFCSmodel(D_0 = D_0list[n]) for n in range(0,len(D_0list))] 
CS_test_kAptRlist_noD = [genAFCSmodel(k_AptR = k_AptRlist[n], D_0 = 0) for n in 
range(0,len(k_AptRlist))] 
CS_test_kAptRlist_100D = [genAFCSmodel(k_AptR = k_AptRlist[n], D_0 = 100) for 
n in range(0,len(k_AptRlist))] 
#Next, set some timespan parameters, and set a list of molecular species to 
observe (observables) during simulations 
timeSpan = pl.linspace(0, 4000, num = 400) 
allSpeciesIF = ['F_unhyb', 'AF', 'AD', 'ADF', 'A_unb'] #All the species 
observable in IF simulations 
allSpeciesCS = ['F_unhyb', 'AF', 'AD', 'A_unb']        #All the species 
observable in CS simulations 
FFonly = ['F_unhyb']   #Only observing [Free Flare] 
 
#Now, generate a Pandas DataFrame containing Time (s), and the concentrations 
of all selected observables  
#over the simulated time frame.  
#The first column in the DataFrame is Time(s), and the last two columns list 
the starting parameters 
#of the simulation, and the reactions/rules of the model being simulated 
#Note that if varying the initial concentrations of molecular species, here are 
the variedParameter options: 
    #Both models: D_init, F_unhyb_init, A_unb_init, AF_init, AD_init 
    #IF model only: ADF_init 
CS_test_D_df_FFonly = genSimDF(mList=CS_test_Dlist, t=timeSpan, 
variedParameter='D_init', observables=FFonly) 
CS_test_kAptR_noD_df_FFonly = genSimDF(mList=CS_test_kAptRlist_noD, 
t=timeSpan, variedParameter='kAptR', observables=FFonly) 
CS_test_kAptR_100D_df_FFonly = genSimDF(mList=CS_test_kAptRlist_100D, 
t=timeSpan, variedParameter='kAptR', observables=FFonly) 
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#Now, demonstrate how to convert to fold change in fluorescence for any 
parameter except D_0 
CS_test_kAptR_100D_df_FoldChangeFF = 
convertToFoldChange(CS_test_kAptR_100D_df_FFonly, CS_test_kAptR_noD_df_FFonly) 
 
#Now demonstrate how to convert to fold change in fluorescence for varying D_0 
numCols = CS_test_D_df_FFonly.shape[1] - 2 
CS_test_D_df_FoldChangeFF = CS_test_D_df_FFonly.copy() 
for i in range(1, numCols): 
    CS_test_D_df_FoldChangeFF.iloc[:,i] = CS_test_D_df_FFonly.iloc[:,i] / 
CS_test_D_df_FFonly.iloc[:,1] 
 
 
#Now, demonstrate how to plot these models 
plotModelSims(CS_test_D_df_FFonly, 'D_0', D_0list, yLabel = '[Free Flare], uM', 
timespan=4000) 
plotModelSims(CS_test_D_df_FoldChangeFF, 'D_0', D_0list, yLabel = 'Fold Change 
in [Free Flare]', timespan=4000) 
plotModelSims(CS_test_kAptR_noD_df_FFonly, 'No D, kAptR', D_0list, yLabel = 
'[Free Flare], uM', timespan=4000) 
plotModelSims(CS_test_kAptR_100D_df_FFonly, '1000 uM D, kAptR', D_0list, yLabel 
= '[Free Flare], uM', timespan=4000) 
plotModelSims(CS_test_kAptR_100D_df_FoldChangeFF, '1000 uM D, kAptR', D_0list, 
yLabel = 'Fold Change in [Free Flare]', timespan=4000) 
 
 
#Now, demonstrate how to export the results of these models to an excel 
spreadsheet. 
writer = pd.ExcelWriter('test_CSmodelSimAndExport.xlsx') 
 
CS_test_D_df_FFonly.to_excel(writer,'Vary D_0, F only') 
CS_test_D_df_FoldChangeFF.to_excel(writer,'Vary D_0, Fold Change F') 
CS_test_kAptR_noD_df_FFonly.to_excel(writer,'Vary kAptR, 0 uM D, F only') 
CS_test_kAptR_100D_df_FFonly.to_excel(writer,'Vary kAptR, 1000 uM D, F only') 
CS_test_kAptR_100D_df_FoldChangeFF.to_excel(writer,'V kAptR, 1000 uM D, 
FoldChnge F') 
 
writer.save() 
``` 
```python 
#And show how to check them for accuracy and how to export their structure to 
a PDF file 
#First, export the generated models to flat .py files ('pysb_flat') 
    #flat .py files just reproduce the model, don't contain options for 
simulating the models. 
    #By contrast, exporting to .py returns a more sophisticated model that 
doesn't play well with render_reactions 
    #But enables rapid and flexible simulation. 
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#.py files didn't work. maybe try .sbml files? 
CS = genAFCSmodel() 
IF = genAFIFmodel() 
 
CS_pyFlat = export(CS, 'pysb_flat') 
with open('CSmodelFlat.py', 'w') as f: 
    f.write(CS_pyFlat) 
 
IF_pyFlat = export(IF, 'pysb_flat') 
with open('IFmodelFlat.py', 'w') as f: 
    f.write(IF_pyFlat) 
 
#Now, use PySB's render_reactions function to export these .py files to a .dot 
file 
!python -m pysb.tools.render_reactions CSmodelFlat.py > 
jupyterPlots/CSmodel.dot 
!python -m pysb.tools.render_reactions IFmodelFlat.py > 
jupyterPlots/IFmodel.dot 
 
#And now export those .dot files of the reaction networks to PDFs 
!dot jupyterPlots/CSmodel.dot -T pdf -O 
!dot jupyterPlots/IFmodel.dot -T pdf -O 
 
#Excellent, this worked well 
 
``` 
```python 
#Now, how do I generalize the previous code into a method I can call to make 
things easier? 
#Excellent. Now I can export the dataframe to a csv file. 
#NOTE that at the end of writing all these simulations to individual csv files, 
I will also export them all to 
#a single excel file, like so: 
#writer = pd.ExcelWriter('output.xlsx') 
#>>> df1.to_excel(writer,'Sheet1') 
#>>> df2.to_excel(writer,'Sheet2') 
#>>> writer.save() 
 
#Now, to abstract all the work I've done before, these are the functions I'd 
like to write: 
#1. genSimDF: Given an data frame of models varying by 1 parameter, generate a 
dataframe of simulations with parameters and rules as metadata 
#2. plotSims: Given an array of simulations, plot them all, labeled by the 
changing parameter, and varying in  
    #shaded color intensity 
#3. ExportSimDFtoCSV--this one I can probably just use to_csv for 
#4. ExportSimDFstoExcel--this one I can probably also just use to_excel for 
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#5. Also want a way to show fraction of free flare (FracFF), and Fold Change in 
Free Flare (FoldChangeFF) 
 
``` 
```python 
#0. Varying the concentration of DHEA-S 
CS_Dlist = [genAFCSmodel(D_0 = D_0list[n]) for n in range(0,7)] 
IF_Dlist = [genAFIFmodel(D_0 = D_0list[n]) for n in range(0,7)] 
``` 
 
```python 
#Now, when varying other parameters, generate model lists for 100 µM DHEA-S and 
for 0 µM DHEA-S 
#Now, what models do we want to make? 
#1. Models varying kHybF 
CS_kHybFnoD_list = [genAFCSmodel(k_HybF = k_HybFlist[n], D_0 = 0) for n in 
range(0,len(k_HybFlist))] 
CS_kHybF100D_list = [genAFCSmodel(k_HybF = k_HybFlist[n], D_0 = 100) for n in 
range(0,len(k_HybFlist))] 
 
IF_kHybFnoD_list = [genAFIFmodel(k_HybF = k_HybFlist[n], D_0 = 0) for n in 
range(0,len(k_HybFlist))] 
IF_kHybF100D_list = [genAFIFmodel(k_HybF = k_HybFlist[n], D_0 = 100) for n in 
range(0,len(k_HybFlist))] 
``` 
 
```python 
#2. Model varying kHybR 
CS_kHybRnoD_list = [genAFCSmodel(k_HybR = k_HybRlist[n], D_0 = 0) for n in 
range(0,len(k_HybRlist))] 
CS_kHybR100D_list = [genAFCSmodel(k_HybR = k_HybRlist[n], D_0 = 100) for n in 
range(0,len(k_HybRlist))] 
 
IF_kHybRnoD_list = [genAFIFmodel(k_HybR = k_HybRlist[n], D_0 = 0) for n in 
range(0,len(k_HybRlist))] 
IF_kHybR100D_list = [genAFIFmodel(k_HybR = k_HybRlist[n], D_0 = 100) for n in 
range(0,len(k_HybRlist))] 
#IF_kHybR100D_list[4].parameters 
 
``` 
 
```python 
#3. Model varying kAptF 
CS_kAptFnoD_list = [genAFCSmodel(k_AptF = k_AptFlist[n], D_0 = 0) for n in 
range(0,len(k_AptFlist))] 
CS_kAptF100D_list = [genAFCSmodel(k_AptF = k_AptFlist[n], D_0 = 100) for n in 
range(0,len(k_AptFlist))] 
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IF_kAptFnoD_list = [genAFIFmodel(k_AptF = k_AptFlist[n], D_0 = 0) for n in 
range(0,len(k_AptFlist))] 
IF_kAptF100D_list = [genAFIFmodel(k_AptF = k_AptFlist[n], D_0 = 100) for n in 
range(0,len(k_AptFlist))] 
#IF_kAptF100D_list[4].parameters 
 
``` 
 
```python 
#4. Model varying kAptR 
CS_kAptRnoD_list = [genAFCSmodel(k_AptR = k_AptRlist[n], D_0 = 0) for n in 
range(0,len(k_AptRlist))] 
CS_kAptR100D_list = [genAFCSmodel(k_AptR = k_AptRlist[n], D_0 = 100) for n in 
range(0,len(k_AptRlist))] 
 
IF_kAptRnoD_list = [genAFIFmodel(k_AptR = k_AptRlist[n], D_0 = 0) for n in 
range(0,len(k_AptRlist))] 
IF_kAptR100D_list = [genAFIFmodel(k_AptR = k_AptRlist[n], D_0 = 100) for n in 
range(0,len(k_AptRlist))] 
#IF_kAptR100D_list[4].parameters 
 
``` 
 
```python 
#5. Model varying kAptR+F while keeping KdApt constant 
CS_kApt_KdAptConst_noD_list = [genAFCSmodel(k_AptR = k_AptRlist[n], 
                                            k_AptF = k_AptFlist[n],  
                                            D_0 = 0) for n in 
range(0,len(k_AptRlist))] 
CS_kApt_KdAptConst_100D_list = [genAFCSmodel(k_AptR = k_AptRlist[n],  
                                             k_AptF = k_AptFlist[n],  
                                             D_0 = 100) for n in 
range(0,len(k_AptRlist))] 
 
IF_kApt_KdAptConst_noD_list = [genAFIFmodel(k_AptR = k_AptRlist[n],  
                                            k_AptF = k_AptFlist[n],  
                                            D_0 = 0) for n in 
range(0,len(k_AptRlist))] 
IF_kApt_KdAptConst_100D_list = [genAFIFmodel(k_AptR = k_AptRlist[n],  
                                             k_AptF = k_AptFlist[n],  
                                             D_0 = 100) for n in 
range(0,len(k_AptRlist))] 
#IF_kApt_KdAptConst_100D_list[4].parameters 
 
``` 
 
```python 
#6. Model varying kHybR while keeping KdHyb constant 
CS_kHyb_KdHybConst_noD_list = [genAFCSmodel(k_HybR = k_HybRlist[n], 
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                                            k_HybF = k_HybFlist[n],  
                                            D_0 = 0) for n in 
range(0,len(k_HybRlist))] 
CS_kHyb_KdHybConst_100D_list = [genAFCSmodel(k_HybR = k_HybRlist[n],  
                                             k_HybF = k_HybFlist[n],  
                                             D_0 = 100) for n in 
range(0,len(k_HybRlist))] 
 
IF_kHyb_KdHybConst_noD_list = [genAFIFmodel(k_HybR = k_HybRlist[n],  
                                            k_HybF = k_HybFlist[n],  
                                            D_0 = 0) for n in 
range(0,len(k_HybRlist))] 
IF_kHyb_KdHybConst_100D_list = [genAFIFmodel(k_HybR = k_HybRlist[n],  
                                             k_HybF = k_HybFlist[n],  
                                             D_0 = 100) for n in 
range(0,len(k_HybRlist))] 
#IF_kHyb_KdHybConst_100D_list[4].parameters 
 
``` 
 
```python 
#7. Model varying kHybF* 
IF_kHybIF_F_noD_list = [genAFIFmodel(k_HybIF_F = k_HybIF_Flist[n], D_0 = 0) for 
n in range(0,len(k_HybIF_Flist))] 
IF_kHybIF_F_100D_list = [genAFIFmodel(k_HybIF_F = k_HybIF_Flist[n], D_0 = 100) 
for n in range(0,len(k_HybIF_Flist))] 
#IF_kHybIF_F_100D_list[0].parameters 
 
``` 
 
```python 
#8. Model varying kHybR* 
IF_kHybIF_R_noD_list = [genAFIFmodel(k_HybIF_R = k_HybIF_Rlist[n], D_0 = 0) for 
n in range(0,len(k_HybIF_Rlist))] 
IF_kHybIF_R_100D_list = [genAFIFmodel(k_HybIF_R = k_HybIF_Rlist[n], D_0 = 100) 
for n in range(0,len(k_HybIF_Rlist))] 
#IF_kHybIF_R_100D_list[4].parameters 
 
``` 
 
```python 
#9. Model varying kAptF* 
IF_kAptIF_F_noD_list = [genAFIFmodel(k_AptIF_F = k_AptIF_Flist[n], D_0 = 0) for 
n in range(0,len(k_AptIF_Flist))] 
IF_kAptIF_F_100D_list = [genAFIFmodel(k_AptIF_F = k_AptIF_Flist[n], D_0 = 100) 
for n in range(0,len(k_AptIF_Flist))] 
#IF_kAptIF_F_100D_list[4].parameters 
 
``` 
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```python 
#10. Model varying kAptR* 
IF_kAptIF_R_noD_list = [genAFIFmodel(k_AptIF_R = k_AptIF_Rlist[n], D_0 = 0) for 
n in range(0,len(k_AptIF_Rlist))] 
IF_kAptIF_R_100D_list = [genAFIFmodel(k_AptIF_R = k_AptIF_Rlist[n], D_0 = 100) 
for n in range(0,len(k_AptIF_Rlist))] 
 
 
``` 
 
```python 
#Now, generate data frames from the model lists I created above 
#For DHEA-S concentration ranges, make all species DFs and a DF with just Free 
Flare (FF) 
#Actually, just do that for all of them; why not? 
tspan = pl.linspace(0, 4000, num = 400) 
allSpeciesIF = ['F_unhyb', 'AF', 'AD', 'ADF', 'A_unb'] 
allSpeciesCS = ['F_unhyb', 'AF', 'AD', 'A_unb'] 
FFonly = ['F_unhyb'] 
``` 
 
```python 
#0. Models varying [DHEA-S] 
CS_D_df_allSpecies = genSimDF(mList=CS_Dlist, t=tspan, 
variedParameter='D_init', observables=allSpeciesCS) 
CS_D_df_FFonly = genSimDF(mList=CS_Dlist, t=tspan, variedParameter='D_init', 
observables=FFonly) 
 
IF_D_df_allSpecies = genSimDF(mList=IF_Dlist, t=tspan, 
variedParameter='D_init', observables=allSpeciesIF) 
IF_D_df_FFonly = genSimDF(mList=IF_Dlist, t=tspan, variedParameter='D_init', 
observables=FFonly) 
#IF_D_df_allSpecies 
``` 
 
```python 
#1. Models varying kHybF 
CS_kHybFnoD_df_allSpecies = genSimDF(mList=CS_kHybFnoD_list, t=tspan, 
variedParameter='kHybF', observables=allSpeciesCS) 
CS_kHybF100D_df_allSpecies = genSimDF(mList=CS_kHybF100D_list, t=tspan, 
variedParameter='kHybF', observables=allSpeciesCS) 
 
CS_kHybFnoD_df_FFonly = genSimDF(mList=CS_kHybFnoD_list, t=tspan, 
variedParameter='kHybF', observables=FFonly) 
CS_kHybF100D_df_FFonly = genSimDF(mList=CS_kHybF100D_list, t=tspan, 
variedParameter='kHybF', observables=FFonly) 
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IF_kHybFnoD_df_allSpecies = genSimDF(mList=IF_kHybFnoD_list, t=tspan, 
variedParameter='kHybF', observables=allSpeciesCS) 
IF_kHybF100D_df_allSpecies = genSimDF(mList=IF_kHybF100D_list, t=tspan, 
variedParameter='kHybF', observables=allSpeciesCS) 
 
IF_kHybFnoD_df_FFonly = genSimDF(mList=IF_kHybFnoD_list, t=tspan, 
variedParameter='kHybF', observables=FFonly) 
IF_kHybF100D_df_FFonly = genSimDF(mList=IF_kHybF100D_list, t=tspan, 
variedParameter='kHybF', observables=FFonly) 
 
``` 
 
```python 
#2. Models varying kHybR 
CS_kHybRnoD_df_allSpecies = genSimDF(mList=CS_kHybRnoD_list, t=tspan, 
variedParameter='kHybR', observables=allSpeciesCS) 
CS_kHybR100D_df_allSpecies = genSimDF(mList=CS_kHybR100D_list, t=tspan, 
variedParameter='kHybR', observables=allSpeciesCS) 
 
CS_kHybRnoD_df_FFonly = genSimDF(mList=CS_kHybRnoD_list, t=tspan, 
variedParameter='kHybR', observables=FFonly) 
CS_kHybR100D_df_FFonly = genSimDF(mList=CS_kHybR100D_list, t=tspan, 
variedParameter='kHybR', observables=FFonly) 
 
IF_kHybRnoD_df_allSpecies = genSimDF(mList=IF_kHybRnoD_list, t=tspan, 
variedParameter='kHybR', observables=allSpeciesCS) 
IF_kHybR100D_df_allSpecies = genSimDF(mList=IF_kHybR100D_list, t=tspan, 
variedParameter='kHybR', observables=allSpeciesCS) 
 
IF_kHybRnoD_df_FFonly = genSimDF(mList=IF_kHybRnoD_list, t=tspan, 
variedParameter='kHybR', observables=FFonly) 
IF_kHybR100D_df_FFonly = genSimDF(mList=IF_kHybR100D_list, t=tspan, 
variedParameter='kHybR', observables=FFonly) 
 
``` 
 
```python 
#3. Models varying kAptF 
CS_kAptFnoD_df_allSpecies = genSimDF(mList=CS_kAptFnoD_list, t=tspan, 
variedParameter='kAptF', observables=allSpeciesCS) 
CS_kAptF100D_df_allSpecies = genSimDF(mList=CS_kAptF100D_list, t=tspan, 
variedParameter='kAptF', observables=allSpeciesCS) 
 
CS_kAptFnoD_df_FFonly = genSimDF(mList=CS_kAptFnoD_list, t=tspan, 
variedParameter='kAptF', observables=FFonly) 
CS_kAptF100D_df_FFonly = genSimDF(mList=CS_kAptF100D_list, t=tspan, 
variedParameter='kAptF', observables=FFonly) 
 
IF_kAptFnoD_df_allSpecies = genSimDF(mList=IF_kAptFnoD_list, t=tspan, 
variedParameter='kAptF', observables=allSpeciesCS) 
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IF_kAptF100D_df_allSpecies = genSimDF(mList=IF_kAptF100D_list, t=tspan, 
variedParameter='kAptF', observables=allSpeciesCS) 
 
IF_kAptFnoD_df_FFonly = genSimDF(mList=IF_kAptFnoD_list, t=tspan, 
variedParameter='kAptF', observables=FFonly) 
IF_kAptF100D_df_FFonly = genSimDF(mList=IF_kAptF100D_list, t=tspan, 
variedParameter='kAptF', observables=FFonly) 
 
``` 
 
```python 
#4. Models varying kAptR 
CS_kAptRnoD_df_allSpecies = genSimDF(mList=CS_kAptRnoD_list, t=tspan, 
variedParameter='kAptR', observables=allSpeciesCS) 
CS_kAptR100D_df_allSpecies = genSimDF(mList=CS_kAptR100D_list, t=tspan, 
variedParameter='kAptR', observables=allSpeciesCS) 
 
CS_kAptRnoD_df_FFonly = genSimDF(mList=CS_kAptRnoD_list, t=tspan, 
variedParameter='kAptR', observables=FFonly) 
CS_kAptR100D_df_FFonly = genSimDF(mList=CS_kAptR100D_list, t=tspan, 
variedParameter='kAptR', observables=FFonly) 
 
IF_kAptRnoD_df_allSpecies = genSimDF(mList=IF_kAptRnoD_list, t=tspan, 
variedParameter='kAptR', observables=allSpeciesCS) 
IF_kAptR100D_df_allSpecies = genSimDF(mList=IF_kAptR100D_list, t=tspan, 
variedParameter='kAptR', observables=allSpeciesCS) 
 
IF_kAptRnoD_df_FFonly = genSimDF(mList=IF_kAptRnoD_list, t=tspan, 
variedParameter='kAptR', observables=FFonly) 
IF_kAptR100D_df_FFonly = genSimDF(mList=IF_kAptR100D_list, t=tspan, 
variedParameter='kAptR', observables=FFonly) 
 
``` 
 
```python 
#5. Models varying kHybR while keeping KdHyb constant 
CS_kHyb_KdHybConst_noD_df_allSpecies = 
genSimDF(mList=CS_kHyb_KdHybConst_noD_list, t=tspan, variedParameter='kHybR', 
observables=allSpeciesCS) 
CS_kHyb_KdHybConst_100D_df_allSpecies = 
genSimDF(mList=CS_kHyb_KdHybConst_100D_list, t=tspan, variedParameter='kHybR', 
observables=allSpeciesCS) 
 
CS_kHyb_KdHybConst_noD_df_FFonly = genSimDF(mList=CS_kHyb_KdHybConst_noD_list, 
t=tspan, variedParameter='kHybR', observables=FFonly) 
CS_kHyb_KdHybConst_100D_df_FFonly = 
genSimDF(mList=CS_kHyb_KdHybConst_100D_list, t=tspan, variedParameter='kHybR', 
observables=FFonly) 
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IF_kHyb_KdHybConst_noD_df_allSpecies = 
genSimDF(mList=IF_kHyb_KdHybConst_noD_list, t=tspan, variedParameter='kHybR', 
observables=allSpeciesCS) 
IF_kHyb_KdHybConst_100D_df_allSpecies = 
genSimDF(mList=IF_kHyb_KdHybConst_100D_list, t=tspan, variedParameter='kHybR', 
observables=allSpeciesCS) 
 
IF_kHyb_KdHybConst_noD_df_FFonly = genSimDF(mList=IF_kHyb_KdHybConst_noD_list, 
t=tspan, variedParameter='kHybR', observables=FFonly) 
IF_kHyb_KdHybConst_100D_df_FFonly = 
genSimDF(mList=IF_kHyb_KdHybConst_100D_list, t=tspan, variedParameter='kHybR', 
observables=FFonly) 
``` 
 
```python 
#6. Models varying kAptR while keeping KdApt constant 
CS_kApt_KdAptConst_noD_df_allSpecies = 
genSimDF(mList=CS_kApt_KdAptConst_noD_list, t=tspan, variedParameter='kAptR', 
observables=allSpeciesCS) 
CS_kApt_KdAptConst_100D_df_allSpecies = 
genSimDF(mList=CS_kApt_KdAptConst_100D_list, t=tspan, variedParameter='kAptR', 
observables=allSpeciesCS) 
 
CS_kApt_KdAptConst_noD_df_FFonly = genSimDF(mList=CS_kApt_KdAptConst_noD_list, 
t=tspan, variedParameter='kAptR', observables=FFonly) 
CS_kApt_KdAptConst_100D_df_FFonly = 
genSimDF(mList=CS_kApt_KdAptConst_100D_list, t=tspan, variedParameter='kAptR', 
observables=FFonly) 
 
IF_kApt_KdAptConst_noD_df_allSpecies = 
genSimDF(mList=IF_kApt_KdAptConst_noD_list, t=tspan, variedParameter='kAptR', 
observables=allSpeciesCS) 
IF_kApt_KdAptConst_100D_df_allSpecies = 
genSimDF(mList=IF_kApt_KdAptConst_100D_list, t=tspan, variedParameter='kAptR', 
observables=allSpeciesCS) 
 
IF_kApt_KdAptConst_noD_df_FFonly = genSimDF(mList=IF_kApt_KdAptConst_noD_list, 
t=tspan, variedParameter='kAptR', observables=FFonly) 
IF_kApt_KdAptConst_100D_df_FFonly = 
genSimDF(mList=IF_kApt_KdAptConst_100D_list, t=tspan, variedParameter='kAptR', 
observables=FFonly) 
``` 
 
```python 
#7. Model varying kHybF* 
IF_kHybIF_F_noD_df_allSpecies = genSimDF(mList=IF_kHybIF_F_noD_list, t=tspan, 
variedParameter='kHybIF_F', observables=allSpeciesCS) 
IF_kHybIF_F_100D_df_allSpecies = genSimDF(mList=IF_kHybIF_F_100D_list, 
t=tspan, variedParameter='kHybIF_F', observables=allSpeciesCS) 
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IF_kHybIF_F_noD_df_FFonly = genSimDF(mList=IF_kHybIF_F_noD_list, t=tspan, 
variedParameter='kHybIF_F', observables=FFonly) 
IF_kHybIF_F_100D_df_FFonly = genSimDF(mList=IF_kHybIF_F_100D_list, t=tspan, 
variedParameter='kHybIF_F', observables=FFonly) 
``` 
 
```python 
#8. Model varying kHybR* 
IF_kHybIF_R_noD_df_allSpecies = genSimDF(mList=IF_kHybIF_R_noD_list, t=tspan, 
variedParameter='kHybIF_R', observables=allSpeciesCS) 
IF_kHybIF_R_100D_df_allSpecies = genSimDF(mList=IF_kHybIF_R_100D_list, 
t=tspan, variedParameter='kHybIF_R', observables=allSpeciesCS) 
 
IF_kHybIF_R_noD_df_FFonly = genSimDF(mList=IF_kHybIF_R_noD_list, t=tspan, 
variedParameter='kHybIF_R', observables=FFonly) 
IF_kHybIF_R_100D_df_FFonly = genSimDF(mList=IF_kHybIF_R_100D_list, t=tspan, 
variedParameter='kHybIF_R', observables=FFonly) 
``` 
 
```python 
#9. Model varying kAptF* 
IF_kAptIF_F_noD_df_allSpecies = genSimDF(mList=IF_kAptIF_F_noD_list, t=tspan, 
variedParameter='kAptIF_F', observables=allSpeciesCS) 
IF_kAptIF_F_100D_df_allSpecies = genSimDF(mList=IF_kAptIF_F_100D_list, 
t=tspan, variedParameter='kAptIF_F', observables=allSpeciesCS) 
 
IF_kAptIF_F_noD_df_FFonly = genSimDF(mList=IF_kAptIF_F_noD_list, t=tspan, 
variedParameter='kAptIF_F', observables=FFonly) 
IF_kAptIF_F_100D_df_FFonly = genSimDF(mList=IF_kAptIF_F_100D_list, t=tspan, 
variedParameter='kAptIF_F', observables=FFonly) 
``` 
 
```python 
#10. Model varying kAptR* 
IF_kAptIF_R_noD_df_allSpecies = genSimDF(mList=IF_kAptIF_R_noD_list, t=tspan, 
variedParameter='kAptIF_R', observables=allSpeciesCS) 
IF_kAptIF_R_100D_df_allSpecies = genSimDF(mList=IF_kAptIF_R_100D_list, 
t=tspan, variedParameter='kAptIF_R', observables=allSpeciesCS) 
 
IF_kAptIF_R_noD_df_FFonly = genSimDF(mList=IF_kAptIF_R_noD_list, t=tspan, 
variedParameter='kAptIF_R', observables=FFonly) 
IF_kAptIF_R_100D_df_FFonly = genSimDF(mList=IF_kAptIF_R_100D_list, t=tspan, 
variedParameter='kAptIF_R', observables=FFonly) 
``` 
 
```python 
#Also make custon dataframes for the Dlist simulations to calculate fold change 
in fluorescence 
numCols = CS_D_df_FFonly.shape[1] - 2 
CS_D_df_FoldChange = CS_D_df_FFonly.copy() 



 168 
IF_D_df_FoldChange = IF_D_df_FFonly.copy() 
for i in range(1, numCols): 
    CS_D_df_FoldChange.iloc[:,i] = CS_D_df_FFonly.iloc[:,i] / 
CS_D_df_FFonly.iloc[:,1] 
    IF_D_df_FoldChange.iloc[:,i] = IF_D_df_FFonly.iloc[:,i] / 
IF_D_df_FFonly.iloc[:,1] 
 
``` 
 
```python 
#CS_D_df_FoldChange 
#CS_D_df_FFonly 
``` 
 
```python 
#Now, generate all the foldChange dataframes 
CS_kHybF_df_FoldChange = convertToFoldChange(CS_kHybF100D_df_FFonly, 
CS_kHybFnoD_df_FFonly) 
CS_kHybR_df_FoldChange = convertToFoldChange(CS_kHybR100D_df_FFonly, 
CS_kHybRnoD_df_FFonly) 
 
IF_kHybF_df_FoldChange = convertToFoldChange(IF_kHybF100D_df_FFonly, 
IF_kHybFnoD_df_FFonly) 
IF_kHybR_df_FoldChange = convertToFoldChange(IF_kHybR100D_df_FFonly, 
IF_kHybRnoD_df_FFonly) 
 
CS_kAptF_df_FoldChange = convertToFoldChange(CS_kAptF100D_df_FFonly, 
CS_kAptFnoD_df_FFonly) 
CS_kAptR_df_FoldChange = convertToFoldChange(CS_kAptR100D_df_FFonly, 
CS_kAptRnoD_df_FFonly) 
 
IF_kAptF_df_FoldChange = convertToFoldChange(IF_kAptF100D_df_FFonly, 
IF_kAptFnoD_df_FFonly) 
IF_kAptR_df_FoldChange = convertToFoldChange(IF_kAptR100D_df_FFonly, 
IF_kAptRnoD_df_FFonly) 
 
CS_kHyb_KdHybConst_df_FoldChange = 
convertToFoldChange(CS_kHyb_KdHybConst_100D_df_FFonly, 
CS_kHyb_KdHybConst_noD_df_FFonly) 
CS_kApt_KdAptConst_df_FoldChange = 
convertToFoldChange(CS_kApt_KdAptConst_100D_df_FFonly, 
CS_kApt_KdAptConst_noD_df_FFonly) 
IF_kHyb_KdHybConst_df_FoldChange = 
convertToFoldChange(IF_kHyb_KdHybConst_100D_df_FFonly, 
IF_kHyb_KdHybConst_noD_df_FFonly) 
IF_kApt_KdAptConst_df_FoldChange = 
convertToFoldChange(IF_kApt_KdAptConst_100D_df_FFonly, 
IF_kApt_KdAptConst_noD_df_FFonly) 
 



 169 
IF_kHybIF_F_df_FoldChange = convertToFoldChange(IF_kHybIF_F_100D_df_FFonly, 
IF_kHybIF_F_noD_df_FFonly) 
IF_kHybIF_R_df_FoldChange = convertToFoldChange(IF_kHybIF_R_100D_df_FFonly, 
IF_kHybIF_R_noD_df_FFonly) 
 
IF_kAptIF_F_df_FoldChange = convertToFoldChange(IF_kAptIF_F_100D_df_FFonly, 
IF_kAptIF_F_noD_df_FFonly) 
IF_kAptIF_R_df_FoldChange = convertToFoldChange(IF_kAptIF_R_100D_df_FFonly, 
IF_kAptIF_R_noD_df_FFonly) 
``` 
 
```python 
#Plot all the varied parameters 
plotModelSims(CS_D_df_FoldChange, 'D_0', D_0list, yLabel = 'Fold Change in 
[Free Flare]', timespan=4000) 
plotModelSims(IF_D_df_FoldChange, 'D_0', D_0list, yLabel = 'Fold Change in 
[Free Flare]', timespan=4000) 
plotModelSims(CS_kHybF_df_FoldChange, 'kHybF', k_HybFlist, yLabel = 'Fold 
Change in [Free Flare]', timespan=4000) 
plotModelSims(IF_kHybF_df_FoldChange, 'kHybF', k_HybFlist, yLabel = 'Fold 
Change in [Free Flare]', timespan=4000) 
plotModelSims(CS_kHybR_df_FoldChange, 'kHybR', k_HybRlist, yLabel = 'Fold 
Change in [Free Flare]', timespan=4000) 
plotModelSims(IF_kHybR_df_FoldChange, 'kHybR', k_HybRlist, yLabel = 'Fold 
Change in [Free Flare]', timespan=4000) 
 
plotModelSims(CS_kAptF_df_FoldChange, 'kAptF', k_AptFlist, yLabel = 'Fold 
Change in [Free Flare]', timespan=4000) 
plotModelSims(CS_kAptR_df_FoldChange, 'kAptR', k_AptRlist, yLabel = 'Fold 
Change in [Free Flare]', timespan=4000) 
plotModelSims(IF_kAptF_df_FoldChange, 'kAptF', k_AptFlist, yLabel = 'Fold 
Change in [Free Flare]', timespan=4000) 
plotModelSims(IF_kAptR_df_FoldChange, 'kAptR', k_AptRlist, yLabel = 'Fold 
Change in [Free Flare]', timespan=4000) 
 
plotModelSims(CS_kHyb_KdHybConst_df_FoldChange, 'KdHyb=10nM, kHybR', 
k_HybRlist, yLabel = 'Fold Change in [Free Flare]', timespan=4000) 
plotModelSims(IF_kHyb_KdHybConst_df_FoldChange, 'KdHyb=10nM, kHybR', 
k_HybRlist, yLabel = 'Fold Change in [Free Flare]', timespan=4000) 
plotModelSims(CS_kApt_KdAptConst_df_FoldChange, 'KdApt=30uM, kAptR', 
k_AptRlist, yLabel = 'Fold Change in [Free Flare]', timespan=4000) 
plotModelSims(IF_kApt_KdAptConst_df_FoldChange, 'KdApt=30uM, kAptR', 
k_AptRlist, yLabel = 'Fold Change in [Free Flare]', timespan=4000) 
 
plotModelSims(IF_kHybIF_F_df_FoldChange, 'kHybF*', k_HybIF_Flist, yLabel = 
'Fold Change in [Free Flare]', timespan=4000) 
plotModelSims(IF_kHybIF_R_df_FoldChange, 'kHybR*', k_HybIF_Rlist, yLabel = 
'Fold Change in [Free Flare]', timespan=4000) 
plotModelSims(IF_kAptIF_F_df_FoldChange, 'kAptF*', k_AptIF_Flist, yLabel = 
'Fold Change in [Free Flare]', timespan=4000) 
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plotModelSims(IF_kAptIF_R_df_FoldChange, 'kAptR*', k_AptIF_Rlist, yLabel = 
'Fold Change in [Free Flare]', timespan=4000) 
 
``` 
 
```python 
#Now let's export all this simulation data to excel sheets, and then send it to 
Peter and Jorge 
``` 
 
```python 
#First, the Conformational Selection, All Molecular Species spreadsheet 
writer = pd.ExcelWriter('20190205_CS_ModelOutputs_AllConcentrations.xlsx') 
CS_D_df_allSpecies.to_excel(writer,'Vary D_0') 
CS_kHybFnoD_df_allSpecies.to_excel(writer,'Vary kHybF (no D)') 
CS_kHybF100D_df_allSpecies.to_excel(writer,'Vary kHybF (100uM D)') 
CS_kHybRnoD_df_allSpecies.to_excel(writer,'Vary kHybR (no D)') 
CS_kHybR100D_df_allSpecies.to_excel(writer,'Vary kHybR (100uM D)') 
CS_kAptFnoD_df_allSpecies.to_excel(writer,'Vary kAptF (no D)') 
CS_kAptF100D_df_allSpecies.to_excel(writer,'Vary kAptF (100uM D)') 
CS_kAptRnoD_df_allSpecies.to_excel(writer,'Vary kAptR (no D)') 
CS_kAptR100D_df_allSpecies.to_excel(writer,'Vary kAptR (100uM D)') 
CS_kHyb_KdHybConst_noD_df_allSpecies.to_excel(writer,'KdHyb=10nM, kHyb (no 
D)') 
CS_kHyb_KdHybConst_100D_df_allSpecies.to_excel(writer,'KdHyb=10nM, kHyb (100uM 
D)') 
CS_kApt_KdAptConst_noD_df_allSpecies.to_excel(writer,'KdApt=10nM, kApt (no 
D)') 
CS_kApt_KdAptConst_100D_df_allSpecies.to_excel(writer,'KdApt=10nM, kApt (100uM 
D)') 
writer.save() 
``` 
 
```python 
#Next, the Induced Fit, All Molecular Species spreadsheet 
#First, the Conformational Selection, All Molecular Species spreadsheet 
writer = pd.ExcelWriter('20190205_IF_ModelOutputs_AllConcentrations.xlsx') 
IF_D_df_allSpecies.to_excel(writer,'Vary D_0') 
IF_kHybFnoD_df_allSpecies.to_excel(writer,'Vary kHybF (no D)') 
IF_kHybF100D_df_allSpecies.to_excel(writer,'Vary kHybF (100uM D)') 
IF_kHybRnoD_df_allSpecies.to_excel(writer,'Vary kHybR (no D)') 
IF_kHybR100D_df_allSpecies.to_excel(writer,'Vary kHybR (100uM D)') 
IF_kAptFnoD_df_allSpecies.to_excel(writer,'Vary kAptF (no D)') 
IF_kAptF100D_df_allSpecies.to_excel(writer,'Vary kAptF (100uM D)') 
IF_kAptRnoD_df_allSpecies.to_excel(writer,'Vary kAptR (no D)') 
IF_kAptR100D_df_allSpecies.to_excel(writer,'Vary kAptR (100uM D)') 
IF_kHyb_KdHybConst_noD_df_allSpecies.to_excel(writer,'KdHyb=10nM, kHyb (no 
D)') 
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IF_kHyb_KdHybConst_100D_df_allSpecies.to_excel(writer,'KdHyb=10nM, kHyb (100uM 
D)') 
IF_kApt_KdAptConst_noD_df_allSpecies.to_excel(writer,'KdApt=10nM, kApt (no 
D)') 
IF_kApt_KdAptConst_100D_df_allSpecies.to_excel(writer,'KdApt=10nM, kApt (100uM 
D)') 
 
IF_kHybIF_F_noD_df_allSpecies.to_excel(writer,'kHybIF_F (no D)') 
IF_kHybIF_R_100D_df_allSpecies.to_excel(writer,'kHybIF_R (100uM D)') 
IF_kAptIF_F_noD_df_allSpecies.to_excel(writer,'kAptIF_F (no D)') 
IF_kAptIF_R_100D_df_allSpecies.to_excel(writer,'kAptIF_R (100uM D)') 
writer.save() 
``` 
 
```python 
#Now, the Conformational Selection, Only [Free Flare] spreadsheet 
writer = pd.ExcelWriter('IF_ModelOutputs_FFonly.xlsx') 
CS_D_df_FFonly.to_excel(writer,'Vary D_0') 
CS_kHybFnoD_df_FFonly.to_excel(writer,'Vary kHybF (no D)') 
CS_kHybF100D_df_FFonly.to_excel(writer,'Vary kHybF (100uM D)') 
CS_kHybRnoD_df_FFonly.to_excel(writer,'Vary kHybR (no D)') 
CS_kHybR100D_df_FFonly.to_excel(writer,'Vary kHybR (100uM D)') 
CS_kAptFnoD_df_FFonly.to_excel(writer,'Vary kAptF (no D)') 
CS_kAptF100D_df_FFonly.to_excel(writer,'Vary kAptF (100uM D)') 
CS_kAptRnoD_df_FFonly.to_excel(writer,'Vary kAptR (no D)') 
CS_kAptR100D_df_FFonly.to_excel(writer,'Vary kAptR (100uM D)') 
CS_kHyb_KdHybConst_noD_df_FFonly.to_excel(writer,'KdHyb=10nM, kHyb (no D)') 
CS_kHyb_KdHybConst_100D_df_FFonly.to_excel(writer,'KdHyb=10nM, kHyb (100uM 
D)') 
CS_kApt_KdAptConst_noD_df_FFonly.to_excel(writer,'KdApt=10nM, kApt (no D)') 
CS_kApt_KdAptConst_100D_df_FFonly.to_excel(writer,'KdApt=10nM, kApt (100uM 
D)') 
 
writer.save() 
``` 
 
```python 
#Now, the Induced Fit, Only [Free Flare] spreadsheet 
writer = pd.ExcelWriter('20190205_IF_ModelOutputs_FFonly.xlsx') 
IF_D_df_FFonly.to_excel(writer,'Vary D_0') 
IF_kHybFnoD_df_FFonly.to_excel(writer,'Vary kHybF (no D)') 
IF_kHybF100D_df_FFonly.to_excel(writer,'Vary kHybF (100uM D)') 
IF_kHybRnoD_df_FFonly.to_excel(writer,'Vary kHybR (no D)') 
IF_kHybR100D_df_FFonly.to_excel(writer,'Vary kHybR (100uM D)') 
IF_kAptFnoD_df_FFonly.to_excel(writer,'Vary kAptF (no D)') 
IF_kAptF100D_df_FFonly.to_excel(writer,'Vary kAptF (100uM D)') 
IF_kAptRnoD_df_FFonly.to_excel(writer,'Vary kAptR (no D)') 
IF_kAptR100D_df_FFonly.to_excel(writer,'Vary kAptR (100uM D)') 
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IF_kHyb_KdHybConst_noD_df_FFonly.to_excel(writer,'KdHyb=10nM, kHyb (no D)') 
IF_kHyb_KdHybConst_100D_df_FFonly.to_excel(writer,'KdHyb=10nM, kHyb (100uM 
D)') 
IF_kApt_KdAptConst_noD_df_FFonly.to_excel(writer,'KdApt=10nM, kApt (no D)') 
IF_kApt_KdAptConst_100D_df_FFonly.to_excel(writer,'KdApt=10nM, kApt (100uM 
D)') 
 
IF_kHybIF_F_noD_df_FFonly.to_excel(writer,'kHybIF_F (no D)') 
IF_kHybIF_R_100D_df_FFonly.to_excel(writer,'kHybIF_R (100uM D)') 
IF_kAptIF_F_noD_df_FFonly.to_excel(writer,'kAptIF_F (no D)') 
IF_kAptIF_R_100D_df_FFonly.to_excel(writer,'kAptIF_R (100uM D)') 
writer.save() 
``` 
 
```python 
#Now, the Conformational Selection, Fold Change in [Free Flare] spreadsheet 
writer = pd.ExcelWriter('20190205_CS_ModelOutputs_FoldChangeFF.xlsx') 
CS_D_df_FoldChange.to_excel(writer,'Vary D_0') 
CS_kHybF_df_FoldChange.to_excel(writer,'Vary kHybF') 
CS_kHybR_df_FoldChange.to_excel(writer,'Vary kHybR') 
CS_kAptF_df_FoldChange.to_excel(writer,'Vary kAptF') 
CS_kAptR_df_FoldChange.to_excel(writer,'Vary kAptR') 
CS_kHyb_KdHybConst_df_FoldChange.to_excel(writer,'KdHyb=10nM, Vary kHyb') 
CS_kApt_KdAptConst_df_FoldChange.to_excel(writer,'KdApt=10nM, Vary kApt') 
writer.save() 
``` 
 
```python 
#Now, the Conformational Selection, Fold Change in [Free Flare] spreadsheet 
writer = pd.ExcelWriter('20190205_IF_ModelOutputs_FoldChangeFF.xlsx') 
IF_D_df_FoldChange.to_excel(writer,'Vary D_0') 
IF_kHybF_df_FoldChange.to_excel(writer,'Vary kHybF') 
IF_kHybR_df_FoldChange.to_excel(writer,'Vary kHybR') 
IF_kAptF_df_FoldChange.to_excel(writer,'Vary kAptF') 
IF_kAptR_df_FoldChange.to_excel(writer,'Vary kAptR') 
IF_kHyb_KdHybConst_df_FoldChange.to_excel(writer,'KdHyb=10nM, Vary kHyb') 
IF_kApt_KdAptConst_df_FoldChange.to_excel(writer,'KdApt=10nM, Vary kApt') 
IF_kHybIF_F_df_FoldChange.to_excel(writer,'Vary kHybIF_F') 
IF_kHybIF_R_df_FoldChange.to_excel(writer,'Vary kHybIF_R') 
IF_kAptIF_F_df_FoldChange.to_excel(writer,'Vary kAptIF_F') 
IF_kAptIF_R_df_FoldChange.to_excel(writer,'Vary kAptIF_R') 
writer.save() 
``` 
 
```python 
#Now, the Conformational Selection, Fold Change in [Free Flare] spreadsheet 
writer = pd.ExcelWriter('20190205_IF+CS_ModelOutputs_FoldChangeFF.xlsx') 
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IF_D_df_FoldChange.to_excel(writer,'IF, Vary D_0') 
CS_D_df_FoldChange.to_excel(writer,'CS, Vary D_0') 
IF_kHybF_df_FoldChange.to_excel(writer,'IF, Vary kHybF') 
CS_kHybF_df_FoldChange.to_excel(writer,'CS, Vary kHybF') 
IF_kHybR_df_FoldChange.to_excel(writer,'IF, Vary kHybR') 
CS_kHybR_df_FoldChange.to_excel(writer,'CS, Vary kHybR') 
IF_kAptF_df_FoldChange.to_excel(writer,'IF, Vary kAptF') 
CS_kAptF_df_FoldChange.to_excel(writer,'CS, Vary kAptF') 
IF_kAptR_df_FoldChange.to_excel(writer,'IF, Vary kAptR') 
CS_kAptR_df_FoldChange.to_excel(writer,'CS, Vary kAptR') 
IF_kHyb_KdHybConst_df_FoldChange.to_excel(writer,'IF, KdHyb=10nM, Vary kHyb') 
CS_kHyb_KdHybConst_df_FoldChange.to_excel(writer,'CS, KdHyb=10nM, Vary kHyb') 
IF_kApt_KdAptConst_df_FoldChange.to_excel(writer,'IF, KdApt=10nM, Vary kApt') 
CS_kApt_KdAptConst_df_FoldChange.to_excel(writer,'CS, KdApt=10nM, Vary kApt') 
 
IF_kHybIF_F_df_FoldChange.to_excel(writer,'IF, Vary kHybIF_F') 
IF_kHybIF_R_df_FoldChange.to_excel(writer,'IF, Vary kHybIF_R') 
IF_kAptIF_F_df_FoldChange.to_excel(writer,'IF, Vary kAptIF_F') 
IF_kAptIF_R_df_FoldChange.to_excel(writer,'IF, Vary kAptIF_R') 
writer.save() 
``` 
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Code A3. Microarray data processing markdown file. 
```python 
#Refactored version of the 20170709 notebook to make it easier to follow. 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import time 
``` 
```python 
#Oh, wait. I'm forgetting to find all the improperly named ACEs. 
#Now I want a way to generate the reverse complement of all the aptamer 
sequences. Do that. 
def revComp(seq): 
    seqLength = len(seq) 
    #print seqLength 
    revSeq = seq[::-1] 
    #print 'revSeq = ' + revSeq 
    #print 'len(revSeq) = ' + str(len(revSeq)) 
    revCompSeq = '' 
    for i in range(0, seqLength): 
        currentBase = revSeq[i] 
        if(currentBase == 'A' or currentBase == 'a'): 
            revCompSeq = revCompSeq + 'T' 
        if(currentBase == 'T' or currentBase == 't'): 
            revCompSeq = revCompSeq + 'A' 
        if(currentBase == 'G' or currentBase == 'g'): 
            revCompSeq = revCompSeq + 'C' 
        if(currentBase == 'C' or currentBase == 'c'): 
            revCompSeq = revCompSeq + 'G' 
    return revCompSeq 
 
def revComp_RNA(seq): 
    seqLength = len(seq) 
    #print seqLength 
    revSeq = seq[::-1] 
    #print 'revSeq = ' + revSeq 
    #print 'len(revSeq) = ' + str(len(revSeq)) 
    revCompSeq = '' 
    for i in range(0, seqLength): 
        currentBase = revSeq[i] 
        if(currentBase == 'A' or currentBase == 'a'): 
            revCompSeq = revCompSeq + 'U' 
        if(currentBase == 'U' or currentBase == 'U'): 
            revCompSeq = revCompSeq + 'A' 
        if(currentBase == 'G' or currentBase == 'g'): 
            revCompSeq = revCompSeq + 'C' 
        if(currentBase == 'C' or currentBase == 'c'): 
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            revCompSeq = revCompSeq + 'G' 
    return revCompSeq 
 
#Let's just make a quick function to make it quicker and easier to return the 
sequence of an aptamer 
#From the aptamer array 
def returnAptSeq(aptName, aptArray): 
    aptSeq = aptArray[aptArray['uniqueAptNames'] == 
aptName].iloc[0]['uniqueAptSequences'] 
    return aptSeq 
 
#Great, now make a quick method to automatically generate the number of ACEs, 
given an aptamer length, a minimum 
#ACE length, and a maximum ACE length 
def numACEs(aptLen, minACElen, maxACElen): 
    ACEcounter = 0 
    for i in range(minACElen, maxACElen+1): 
        ACEcounter = ACEcounter + aptLen - i + 1 
    return ACEcounter 
 
#Now automate the process of generating all the ACES for a given aptamer and 
span of ACE lengths 
def genACEs(aptName, aptSeq, minACElen = 8, maxACElen = 12): 
 
    aptLen = len(aptSeq) 
    aptRevComp = revComp(aptSeq) 
    arraySize = numACEs(aptLen, minACElen, maxACElen) 
     
    ACEarray = {'AptName': pd.Series('' for i in range(arraySize)), 
                'AptSeq': pd.Series('' for i in range(arraySize)), 
                'ACEnum': pd.Series(0 for i in range(arraySize)), 
                'ACEname': pd.Series('' for i in range(arraySize)), 
                'ACEseq': pd.Series('' for i in range(arraySize)), 
                'ACElength': pd.Series('' for i in range(arraySize)), 
                'ACEstartPos': pd.Series('' for i in range(arraySize)) 
#Starting position along the 5'-3' aptamer sequence (5' apt = 0) 
             } 
    ACEframe = pd.DataFrame(data = ACEarray) 
     
    counter = 0 
    for n in range(minACElen, maxACElen+1): 
        seqStart = aptLen-n 
        for i in range(0, seqStart+1): 
            start = seqStart-i 
 
            ACEframe.at[counter, 'AptName'] = aptName 
            ACEframe.at[counter, 'AptSeq'] = aptSeq 
            ACEframe.at[counter, 'ACEnum'] = counter 
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            ACEframe.at[counter, 'ACEname'] = aptName + '_' + str(counter) 
             
            ACEframe.at[counter, 'ACEseq'] = aptRevComp[start:start+n] 
             
            ACEframe.at[counter, 'ACElength'] = len(aptRevComp[start:start+n]) 
            ACEframe.at[counter, 'ACEstartPos'] = int(i) 
             
            counter = counter+1 
 
    return ACEframe 
``` 
 
```python 
MN4seq = 'GGCGACAAGGAAAATCCTTCAACGAAGTGGGTCGCC' 
MN6seq = 'GACAAGGAAAATCCTTCAACGAAGTGGGTC' 
``` 
 
```python 
#Make a data frame with all the aptamer names and their sequences 
filepath = '/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20190703_ArrayAnalysis/JorgeAptSequencesAndFlareList/20190708_Fla
resAptamersSequences_Sorted.csv' 
flaresAptamersSeqs = pd.read_csv(filepath, delimiter = ',') 
 
#Now make an array containing all the aptamer names 
aptSeqs = [flaresAptamersSeqs.AptamerName.unique(), 
flaresAptamersSeqs.AptamerSequence.unique()] 
numApts = len(flaresAptamersSeqs.AptamerName.unique()) 
 
#Is there an easier way to do this? 
flaresAptamersSeqs['uniqueAptNames'] = pd.Series('' for i in range(numApts)) 
flaresAptamersSeqs['uniqueAptSequences'] = pd.Series('' for i in 
range(numApts)) 
 
for i in range(numApts): 
    flaresAptamersSeqs.at[i, 'uniqueAptNames'] = aptSeqs[0][i] 
    flaresAptamersSeqs.at[i, 'uniqueAptSequences'] = aptSeqs[1][i] 
     
uniqueApts = flaresAptamersSeqs[['uniqueAptNames', 
'uniqueAptSequences']][0:61] 
#uniqueApts.tail() 
``` 
```python 
uniqueApts.at[61, 'uniqueAptNames'] = 'MN4' 
uniqueApts.at[61, 'uniqueAptSequences'] = MN4seq 
uniqueApts.at[62, 'uniqueAptNames'] = 'MN6' 
uniqueApts.at[62, 'uniqueAptSequences'] = MN6seq 
``` 



 177 
```python 
MN4_ACEs = genACEs(aptName = 'MN4', 
                  aptSeq = returnAptSeq(aptName = 'MN4', aptArray = 
uniqueApts)) 
 
MN4_ACEs = MN4_ACEs.drop(['ACElength', 'ACEstartPos'], axis=1) 
 
MN4_ACEs.columns = ['Name', 'VariantNumber', 'ID', 'AptamerName', 
'AptamerSequence'] 
 
MN6_ACEs = genACEs(aptName = 'MN6', 
                  aptSeq = returnAptSeq(aptName = 'MN6', aptArray = 
uniqueApts)) 
 
MN6_ACEs = MN6_ACEs.drop(['ACElength', 'ACEstartPos'], axis=1) 
 
MN6_ACEs.columns = ['Name', 'VariantNumber', 'ID', 'AptamerName', 
'AptamerSequence'] 
 
MN6_ACEs.tail() 
``` 
```python 
#Read in the list of flare names, features, etc 
myACEarrayPath = 
"/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20190703_ArrayAnalysis/JorgeAptSequencesAndFlareList/20190708_Fla
resAptamersSequences_Sorted.csv" 
myACEarray = pd.read_csv(myACEarrayPath, delimiter = ',') 
 
myACEarray.tail() 
``` 
```python 
#NOW, APPEND THE MN4_ACEs and MN6_ACEs data to myACEarray 
myACEarray = myACEarray.append(MN4_ACEs) 
myACEarray = myACEarray.append(MN6_ACEs) 
myACEarray.tail() 
``` 
```python 
#Now also read in data from a single raw array 
TestMicroarrayDataPath = 
"/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20190703_ArrayAnalysis/20190520_1253_Hyb/SG17044572_258594510002_
S001_GE2 locbkrd 3x_1_1_PBS.txt" 
TestMicroarrayData = pd.read_csv(TestMicroarrayDataPath, delimiter = '\t', 
header = 9) 
 
``` 
 
```python 
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#Now, need a way to filter the feature number, row, column, and probeName 
arrayDataLayout = TestMicroarrayData.filter(['FeatureNum', 'Row', 'Col', 
'ControlType', 'ProbeName'], axis = 1) 
``` 
 
```python 
#Want to bind the probeName in arrayDataLayout to the matching column values in 
myACEarray 
ACEarrayLength = myACEarray.shape[0] 
myACEarray['ACEnumber'] = pd.Series(range(0,ACEarrayLength)) 
myACEarray = myACEarray.reset_index(drop = True) 
myACEarray.tail() 
``` 
```python 
#myACEarray 
``` 
 
```python 
#Now, get ready to bind 
arrayDataLayout['ID'] = pd.Series('') 
arrayDataLayout['AptamerName'] = pd.Series('') 
arrayDataLayout['VariantNumber'] = pd.Series(0) 
arrayDataLayout['AptamerSequence'] = pd.Series('') 
arrayDataLayout['ACEnumber'] = pd.Series(0) 
``` 
 
```python 
#Iterate through the whole layout array to bind the correct aptamer name and 
sequence etc to the right features. 
#Will take about 10 minutes for 62,000 features. 
arrayDataLength = arrayDataLayout.shape[0] 
startingIndex = arrayDataLayout.index.tolist()[0] 
tic = time.clock() 
 
for x in range(0, arrayDataLength): 
    probeName = arrayDataLayout['ProbeName'][startingIndex + x] 
    ACEarraySubset = myACEarray.loc[myACEarray['Name'] == probeName] 
    nameIsPresent = ACEarraySubset.index.tolist() != [] 
    if nameIsPresent: 
        ACEsubsetIndex = ACEarraySubset.index.tolist()[0] 
        #print myACEarray.loc[ACEsubsetIndex, 'ID'] 
        arrayDataLayout.loc[startingIndex + x, 'ID'] = 
myACEarray.loc[ACEsubsetIndex, 'ID'] 
        arrayDataLayout.loc[startingIndex + x, 'AptamerName'] = 
myACEarray.loc[ACEsubsetIndex, 'AptamerName'] 
        arrayDataLayout.loc[startingIndex + x, 'VariantNumber'] = 
myACEarray.loc[ACEsubsetIndex, 'VariantNumber'] 
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        arrayDataLayout.loc[startingIndex + x, 'AptamerSequence'] = 
myACEarray.loc[ACEsubsetIndex, 'AptamerSequence'] 
        arrayDataLayout.loc[startingIndex + x, 'ACEnumber'] = 
myACEarray.loc[ACEsubsetIndex, 'ACEnumber'] 
 
toc = time.clock() 
timespan = toc-tic 
print timespan 
``` 
 
```python 
#Just export all the layout data for MN6 and MN4 
MN6_Layout = arrayDataLayout[arrayDataLayout['AptamerName'] == 'MN6'] 
MN4_Layout = arrayDataLayout[arrayDataLayout['AptamerName'] == 'MN4'] 
MN6_Layout.to_csv("/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL
_C-
ABN_Project/20190703_ArrayAnalysis/JorgeAptSequencesAndFlareList/MN6_Layout.c
sv") 
MN4_Layout.to_csv("/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL
_C-
ABN_Project/20190703_ArrayAnalysis/JorgeAptSequencesAndFlareList/MN4_Layout.c
sv") 
``` 
```python 
#I got the sequence hybridization deltaGs and self-complementary deltaGs for 
all the flare/ACE sequences from Slava 
#and Jorge. They used a commercial UNAfold software package (the melt.pl method) 
to calculate them. 
#Now, import that csv 
deltaGsArrayPath = 
"/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20190703_ArrayAnalysis/JorgeAptSequencesAndFlareList/20190710_Fla
res_DeltaGs.csv" 
deltaGsArray = pd.read_csv(deltaGsArrayPath, delimiter = ',') 
``` 
 
```python 
#Now, the goal is to add a 'DeltaG' and 'Self dG' column to the larger array 
arrayDataLayout['DeltaG'] = pd.Series() 
arrayDataLayout['Self dG'] = pd.Series() 
``` 
 
```python 
#Now add DeltaG and Self dG values to the entire layout array 
ArrayLayoutLength = arrayDataLayout.shape[0] 
startingIndex = arrayDataLayout.index.tolist()[0] 
 
tic = time.clock() 
 



 180 
for x in range(0, ArrayLayoutLength): 
     
    probeName = arrayDataLayout['ProbeName'][startingIndex + x] 
    dGarraySubset = deltaGsArray.loc[deltaGsArray['Flares_ID'] == probeName] 
#Returns an empty array if probeName isn't present in myACEarray 
    nameIsPresent = dGarraySubset.index.tolist() != [] #Boolean that checks if 
that probe name is present in myACEarray 
    if nameIsPresent: 
        ACEsubsetIndex = dGarraySubset.index.tolist()[0] 
        arrayDataLayout.loc[startingIndex + x, 'DeltaG'] = 
deltaGsArray.loc[ACEsubsetIndex, 'DeltaG'] 
        arrayDataLayout.loc[startingIndex + x, 'Self dG'] = 
deltaGsArray.loc[ACEsubsetIndex, 'Self dG'] 
 
toc = time.clock() 
timespan = toc-tic 
print timespan 
``` 
 
```python 
#Good. Now, need to build a method to automate the process of extracting a 
well's raw data, 
#specifying the experiment conditions for that well's data, 
#and appending all the relevant layout and experimental condition info. 
def genLabeledMicroarrayData(dataFilePath, 
                             layoutFilePath, 
                             ExptStepIndex,  
                             ExptStep,  
                             Block,  
                             BlockIndex, 
                             BlockCondition, 
                             BlockDHEASconc_uM, 
                             DHEASaddedThisStep): 
     
    #Generate data frames from the selected microarray data file and array 
layout file 
    arrayData = pd.read_csv(dataFilePath, delimiter = '\t', header = 9) 
    print arrayData.iloc[0,13] 
    arrayLayout = pd.read_csv(layoutFilePath, index_col=0) 
     
    #Generate array to populate with experimental conditions 
    ExptConditionArray = arrayLayout.filter('FeatureNum') 
     
    #Get length of the layout array 
    arrayLength = len(arrayLayout['FeatureNum']) 
     
    ##Populate the Experimental Condition Array with the appropriate columns 
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    ExptConditionArray['ExptStepIndex'] = pd.Series(ExptStepIndex for i in 
range(arrayLength)) 
    ExptConditionArray['ExptStep'] = pd.Series(ExptStep for i in 
range(arrayLength)) 
    ExptConditionArray['Block'] = pd.Series(Block for i in range(arrayLength)) 
    ExptConditionArray['BlockIndex'] = pd.Series(BlockIndex for i in 
range(arrayLength)) 
    ExptConditionArray['BlockCondition'] = pd.Series(BlockCondition for i in 
range(arrayLength)) 
    ExptConditionArray['BlockDHEASconc_uM'] = pd.Series(BlockDHEASconc_uM for 
i in range(arrayLength)) 
    ExptConditionArray['DHEASaddedThisStep'] = pd.Series(DHEASaddedThisStep 
for i in range(arrayLength)) 
     
    #Join the ExptConditionArray to the layout array 
    joinedLayoutArray = ExptConditionArray.join(arrayLayout, lsuffix = '', 
rsuffix = '_redundant') 
     
    #Now join the joinedLayoutArray to the data array, appending 'redundant' to 
any columns with redundant names 
    joinedDataArray = 
joinedLayoutArray.set_index('FeatureNum').join(arrayData.set_index('FeatureNu
m'), 
                                                                     lsuffix = 
'', rsuffix = '_redundant') 
    #Now list all the redundant column names 
    colsToDrop = [col for col in joinedDataArray.columns if 'redundant' in col] 
    #Now use that list to remove all the redundant columns 
    joinedDataArray = joinedDataArray.drop(colsToDrop, axis=1) 
     
    print joinedDataArray.iloc[0, 4] 
     
    #Finally, return the joinedDataArray 
    return joinedDataArray 
``` 
 
 
```python 
#Now, the question is, it just wasting time to construct a method that automates 
the extraction process? 
#I don't think so.  
#This function (extractLabeledSlideData) can take as inputs a list to be filled 
with data frames, 
#a folder path and the experimental conditions, and then run 
genLabeledMicroarrayData 
 
def extractLabeledSlideData(folder, 
                            ExptStepIndex,  
                            ExptStep, 
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                            TargetAddedThisStep, 
                            pathToFolders = 
"/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20190703_ArrayAnalysis/",  
                            constantPartOfFileName = 
"SG17044572_258594510002_S001_GE2 locbkrd 3x_", 
                            wellNameList = ['1_1_PBS', '1_2_300D', '1_3_300D', 
'1_4_300D', '2_1_PBS', '2_2_30D', '2_3_30D', '2_4_30D'], 
                            suffix = '.txt',  
                            layoutPath = 
"/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20190703_ArrayAnalysis/20190718_arrayDataLayout.csv", 
                            BlockList = ['1_1', '1_2', '1_3', '1_4', '2_1', 
'2_2', '2_3', '2_4'],  
                            BlockIndexList = [1, 2, 3, 4, 5, 6, 7, 8], 
                            BlockConditionList = ['PBS Only', '300 uM DHEAS', 
'300 uM DHEAS', '300 uM DHEAS', 
                   'PBS Only', '30 uM DHEAS', '30 uM DHEAS', '30 uM DHEAS'],  
                            BlockTargetConcList = [0, 300, 300, 300, 0, 30, 30, 
30]): 
     
    arrayList = [[],[],[],[],[],[],[],[]] 
     
    for i in range(0, len(arrayList)): 
        arrayPath = pathToFolders + folder + constantPartOfFileName + 
wellNameList[i] + suffix 
        arrayList[i] = genLabeledMicroarrayData(dataFilePath = arrayPath, 
                                                layoutFilePath = layoutPath, 
                                                ExptStepIndex = ExptStepIndex,  
                                                ExptStep = ExptStep,  
                                                DHEASaddedThisStep = 
TargetAddedThisStep, 
                                                Block = BlockList[i],  
                                                BlockIndex = 
BlockIndexList[i], 
                                                BlockCondition = 
BlockConditionList[i], 
                                                BlockDHEASconc_uM = 
BlockTargetConcList[i]) 
     
    return arrayList 
     
``` 
 
```python 
#Now make it into a function that compiles/appends together array data from 
different wells/experiments 
def compileArraysData(arraysList, removeRedundantIndex = False): 
    compiledArrays = arraysList[0] 
    for i in range(1,len(arraysList)): 
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        compiledArrays = compiledArrays.append(arraysList[i]) 
    compiledArrays = compiledArrays.reset_index() 
    if(removeRedundantIndex): 
        compiledArrays = compiledArrays.drop(['index'], axis = 1) 
    return compiledArrays 
``` 
 
```python 
#Now, can quickly extract and label all the data from all the wells and all the 
steps 
step1_hybArrays = extractLabeledSlideData(folder = '20190520_1253_Hyb/', 
                                          ExptStepIndex = 1,  
                                          ExptStep = 'Hyb', 
                                          TargetAddedThisStep = False) 
 
step2_washArrays = extractLabeledSlideData(folder = 
'20190520_1417_HybAndPBSwash/', 
                                           ExptStepIndex = 2,  
                                           ExptStep = 'PBS Wash', 
                                           TargetAddedThisStep = False) 
 
step3_10minDHEASarrays = extractLabeledSlideData(folder = 
'20190520_1516_DHEAS10minInc/', 
                                                 ExptStepIndex = 3,  
                                                 ExptStep = '10 min DHEAS 
Incubation', 
                                                 TargetAddedThisStep = True) 
 
step4_overnightDHEASarrays = extractLabeledSlideData(folder = 
'20190521_0949_DHEAS_OvernightInc/', 
                                                 ExptStepIndex = 4,  
                                                 ExptStep = 'Overnight DHEAS 
Incubation', 
                                                 TargetAddedThisStep = True) 
 
``` 
 
```python 
#Compile all the data from the different experiment steps into their own data 
frames 
fullHybSlide = compileArraysData(step1_hybArrays) 
fullWashSlide = compileArraysData(step2_washArrays) 
full10minIncSlide = compileArraysData(step3_10minDHEASarrays) 
fullOvernightIncSlide = compileArraysData(step4_overnightDHEASarrays) 
``` 
```python 
#Now make an array of those data frames... 
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fullExptArray = [fullHybSlide, fullWashSlide, full10minIncSlide, 
fullOvernightIncSlide] 
``` 
 
```python 
#...And compile them all together to generate the final, fully synthesized data 
set 
tic = time.clock() 
allExptData = compileArraysData(fullExptArray, removeRedundantIndex = True) 
toc = time.clock() 
print toc - tic 
``` 
 
```python 
#Now, let's write that compiled data set to a .csv file so it can be easily 
retrieved 
tic = time.clock() 
 
filePath = '/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20190703_ArrayAnalysis/' 
allExptData.to_csv(path_or_buf = filePath + '20190730_allExptData.csv') 
 
toc = time.clock() 
print toc - tic 
``` 
 
```python 
#Excellent, I've refactored the data processing and consolidation steps into 
something much easier to read 
#and replicate. Now actually move on to analysis! 
``` 
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Code C4. Representative microarray data analysis markdown file. 
```python 
#Import relevant software packages 
import pandas as pd 
import numpy as np 
import matplotlib 
import matplotlib.pyplot as plt 
import matplotlib.font_manager as font_manager 
from matplotlib.lines import Line2D 
from matplotlib.pyplot import figure 
from matplotlib import colors 
import time 
``` 
 
```python 
#Now, import the full 20191009 all expt data .csv file 
exptArrayPath = '/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/20191009_allExptData.csv' 
 
allExptData = pd.read_csv(exptArrayPath, delimiter = ',') 
 
``` 
 
```python 
allExptData.head() 
allExptData.tail() 
allExptData.iloc[0:5, 3:25] 
``` 
 
```python 
#Pull out the relevant data for Dopa2 and for a negative control aptamer I 
didn't use--let's say Dopa130_169 
Dopa2_all = allExptData[allExptData['ProbeName'].str.contains('Dopa2')] 
 
``` 
 
```python 
Dopa2_all.info() 
 
#Note: not a lot of features with the Dopa130 name! Because a lot BE9th aptamers 
with similar sequences. 
#Will need to find the alternatively named flare sequences and add them to the 
data frame 
``` 
 
```python 
Dopa2_all.AptamerSequence.values[0] 
``` 
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```python 
#Make a data frame with all the aptamer names and their sequences 
 
#NOTE: When Monica finishes what she's doing, can use her frame here 
filepath = '/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/JorgeAptSequencesAndFlareList/20191009_F
laresAptamersSequences_Updated.csv' 
flaresAptamersSeqs = pd.read_csv(filepath, delimiter = ',') 
 
#Now make an array containing all the aptamer names 
aptSeqs = [flaresAptamersSeqs.AptamerName.unique(), 
flaresAptamersSeqs.AptamerSequence.unique()] 
numApts = len(flaresAptamersSeqs.AptamerName.unique()) 
 
#Is there an easier way to do this? 
flaresAptamersSeqs['uniqueAptNames'] = pd.Series('' for i in range(numApts)) 
flaresAptamersSeqs['uniqueAptSequences'] = pd.Series('' for i in 
range(numApts)) 
 
for i in range(numApts): 
    flaresAptamersSeqs.at[i, 'uniqueAptNames'] = aptSeqs[0][i] 
    flaresAptamersSeqs.at[i, 'uniqueAptSequences'] = aptSeqs[1][i] 
     
uniqueApts = flaresAptamersSeqs[['uniqueAptNames', 'uniqueAptSequences']] 
uniqueApts.iloc[50:80, 0:] 
 
uniqueApts.at[69, 'uniqueAptNames'] = 'Dopa2' 
uniqueApts.at[69, 'uniqueAptSequences'] = 'GGACGTGGATTTTCCGCATACGAAGTTGTCC' 
 
``` 
 
```python 
#Now I want a way to generate the reverse complement of all the aptamer 
sequences. Do that. 
def revComp(seq): 
    seqLength = len(seq) 
    #print seqLength 
    revSeq = seq[::-1] 
    #print 'revSeq = ' + revSeq 
    #print 'len(revSeq) = ' + str(len(revSeq)) 
    revCompSeq = '' 
    for i in range(0, seqLength): 
        currentBase = revSeq[i] 
        if(currentBase == 'A' or currentBase == 'a'): 
            revCompSeq = revCompSeq + 'T' 
        if(currentBase == 'T' or currentBase == 't'): 
            revCompSeq = revCompSeq + 'A' 
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        if(currentBase == 'G' or currentBase == 'g'): 
            revCompSeq = revCompSeq + 'C' 
        if(currentBase == 'C' or currentBase == 'c'): 
            revCompSeq = revCompSeq + 'G' 
    return revCompSeq 
 
#Also make a way to generate the reverse complement of an RNA aptamer, in DNA 
def revComp_RNAtoDNA(seq): 
    seqLength = len(seq) 
    #print seqLength 
    revSeq = seq[::-1] 
    #print 'revSeq = ' + revSeq 
    #print 'len(revSeq) = ' + str(len(revSeq)) 
    revCompSeq = '' 
    for i in range(0, seqLength): 
        currentBase = revSeq[i] 
        if(currentBase == 'A' or currentBase == 'a'): 
            revCompSeq = revCompSeq + 'T' 
        if(currentBase == 'U' or currentBase == 'u'): 
            revCompSeq = revCompSeq + 'A' 
        if(currentBase == 'G' or currentBase == 'g'): 
            revCompSeq = revCompSeq + 'C' 
        if(currentBase == 'C' or currentBase == 'c'): 
            revCompSeq = revCompSeq + 'G' 
    return revCompSeq 
 
#Let's just make a quick function to make it quicker and easier to return the 
sequence of an aptamer 
#From the aptamer array 
def returnAptSeq(aptName, aptArray = uniqueApts): 
    aptSeq = aptArray[aptArray['uniqueAptNames'] == 
aptName].iloc[0]['uniqueAptSequences'] 
    return aptSeq 
 
#Great, now make a quick method to automatically generate the number of ACEs, 
given an aptamer length, a minimum 
#ACE length, and a maximum ACE length 
def numACEs(aptLen, minACElen, maxACElen): 
    ACEcounter = 0 
    for i in range(minACElen, maxACElen+1): 
        ACEcounter = ACEcounter + aptLen - i + 1 
    return ACEcounter 
 
#Now automate the process of generating all the ACES for a given aptamer and 
span of ACE lengths 
def genACEs(aptName, aptSeq, minACElen = 8, maxACElen = 12): 
 
    aptLen = len(aptSeq) 
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    aptRevComp = revComp(aptSeq) 
    arraySize = numACEs(aptLen, minACElen, maxACElen) 
     
    ACEarray = {'AptName': pd.Series('' for i in range(arraySize)), 
                'AptSeq': pd.Series('' for i in range(arraySize)), 
                'ACEnum': pd.Series(0 for i in range(arraySize)), 
                'ACEname': pd.Series('' for i in range(arraySize)), 
                'ACEseq': pd.Series('' for i in range(arraySize)), 
                'ACElength': pd.Series('' for i in range(arraySize)), 
                'ACEstartPos': pd.Series('' for i in range(arraySize)) 
#Starting position along the 5'-3' aptamer sequence (5' apt = 0) 
             } 
    ACEframe = pd.DataFrame(data = ACEarray) 
     
    counter = 0 
    for n in range(minACElen, maxACElen+1): 
        seqStart = aptLen-n 
        for i in range(0, seqStart+1): 
            start = seqStart-i 
 
            ACEframe.at[counter, 'AptName'] = aptName 
            ACEframe.at[counter, 'AptSeq'] = aptSeq 
            ACEframe.at[counter, 'ACEnum'] = counter 
            ACEframe.at[counter, 'ACEname'] = aptName + '_' + str(counter) 
             
            ACEframe.at[counter, 'ACEseq'] = aptRevComp[start:start+n] 
             
            ACEframe.at[counter, 'ACElength'] = len(aptRevComp[start:start+n]) 
            ACEframe.at[counter, 'ACEstartPos'] = int(i) 
             
            counter = counter+1 
 
    return ACEframe 
``` 
 
```python 
#See if the above methods work to generate ACE arrays for Dopa2 and Dopa130 
Dopa2_ACEs = genACEs(aptName = 'Dopa2', 
                         aptSeq = returnAptSeq(aptName = 'Dopa2', aptArray = 
uniqueApts)) 
 
``` 
 
```python 
#Check that it worked: 
Dopa2_ACEs['AptSeq'][0] 
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``` 
 
```python 
#Here's a method for returning all the ACEs for an aptamer that are missing/named 
differently on the array 
#Note: be careful not to run this method with ACE frames for different aptamers. 
def genMissingACEframe(generatedACEframe, dataACEframe): 
    #Want to verify that generatedACEframe and dataACEframe are for the same 
aptamer 
    genACEaptName = generatedACEframe.AptName[0] 
    dataACEaptName = dataACEframe.AptamerName.unique()[0] #Note that the 
dataACEframes have a different aptName vs aptamerName 
    print 'Just to check, the generated ACE frame is for the aptamer ' + 
genACEaptName + '.' 
    print 'Just to check, the data ACE frame is for the aptamer ' + 
dataACEaptName + '.' 
    num_genACEs = len(generatedACEframe['ACEnum']) 
     
    dataACEframe_varNums = dataACEframe.VariantNumber.unique() 
 
    dataACEframe_varNumsInts = [] 
    #Now figure out how to fill in the gaps 
    for i in range(0, len(dataACEframe_varNums)): 
        dataACEframe_varNumsInts.append(int(dataACEframe_varNums[i])) 
     
    missingVarList = [] 
    for i in range(0, num_genACEs): 
        if(i not in dataACEframe_varNumsInts): 
            missingVarList.append(i) 
     
    numMissingACEs = len(missingVarList) 
     
    print 'Generated ACE frame has ' + str(num_genACEs) + ' ACEs.' 
    print 'Data ACE frame has ' + str(num_genACEs - numMissingACEs) + ' ACEs.' 
    print 'Data ACE frame is missing ' + str(numMissingACEs) + ' ACEs compared 
to generated ACE frame;' 
    print 'Return data frame containing all the ACEs in generated ACE frame 
missing from data ACE frame.' 
    missingACEframe = 
generatedACEframe.loc[generatedACEframe['ACEnum'].isin(missingVarList)] 
 
    return missingACEframe 
``` 
 
```python 
 
Dopa2_missingACEframe = genMissingACEframe(generatedACEframe = Dopa2_ACEs,  
                                         dataACEframe = Dopa2_all) 
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Dopa2_missingACEframe.head() 
``` 
 
 
```python 
#Method to get a list of ACE sequences from a data frame containing an 'ACEseq' 
column 
def getACEseqList(ACEframe): 
    num_ACEs = len(ACEframe.ACEseq) 
     
    ACEseqList = [] 
     
    #Reindex in case the data frame has missing ACEs or is a subset of a 
different data frame 
    ACEframe_RI = ACEframe.reset_index() 
     
    for i in range(0, num_ACEs): 
        ACEseqList.append(ACEframe_RI.ACEseq[i]) 
     
    return ACEseqList 
``` 
 
```python 
#Use method to generate a list of the missing/alternatively named ACEs 
Dopa2_missingACElist = Dopa2_missingACEframe.ACEseq.values 
Dopa2_missingACElist 
``` 
 
```python 
#Method for returning all the data from a list of ACE names generated by 
getACEseqList method 
def getDataWithACElist(ACEseqList, dataframe): 
    dataWithACEs = dataframe.loc[dataframe['ID'].isin(ACEseqList)] 
    return dataWithACEs 
``` 
 
```python 
#Return all the data from the missing/alternatively named ACEs on the array 
Dopa2_missingACEdata = getDataWithACElist(ACEseqList = Dopa2_missingACElist,  
                                         dataframe = allExptData) 
``` 
 
```python 
#Method for re-labeling ACEs that bind to more than one aptamer, to make it 
easier to analyze all ACEs that bind 
#to a particular aptamer 
def annotateMissingACEs(ACElistFrame, dataACEframe): 
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    arrayDataLength = dataACEframe.shape[0] 
     
    dataACEframe_RI = dataACEframe.reset_index() 
     
    tic = time.clock() 
 
    for x in dataACEframe.index: 
        seqACE = dataACEframe['ID'][x] 
     
        relevantRow = ACElistFrame[ACElistFrame['ACEseq'] == seqACE] 
     
        relevantAptName = relevantRow.iloc[0]['AptName'] 
        relevantAptSeq = relevantRow.iloc[0]['AptSeq'] 
        relevantACEnum = float(relevantRow.iloc[0]['ACEnum']) 
        relevantACEname = relevantAptName + '_' + 
str(relevantRow.iloc[0]['ACEnum']) 
     
        dataACEframe.at[x, 'ProbeName'] = relevantACEname 
        dataACEframe.at[x, 'AptamerName'] = relevantAptName 
        dataACEframe.at[x, 'AptamerSequence'] = relevantAptSeq 
        dataACEframe.at[x, 'VariantNumber'] = relevantACEnum 
         
 
    toc = time.clock() 
    timespan = toc-tic 
     
    print timespan 
    return dataACEframe 
``` 
 
```python 
#Now in the data frame, annotate all the alternatively named ACEs. 
Dopa2_missingACEdataLabeled = annotateMissingACEs(ACElistFrame = Dopa2_ACEs,  
                                                      dataACEframe = 
Dopa2_missingACEdata) 
 
``` 
 
```python 
Dopa2_missingACEdataLabeled.head() 
``` 
 
```python 
#Now I want to append the data that was originally labeled with the aptamer 
name, 
#To the data that has just been reannotated with the chosen aptamer name 
Dopa2_combinedData = Dopa2_all.append(Dopa2_missingACEdataLabeled) 
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``` 
 
```python 
#Check dimensions of arrays to make sure they combined properly 
Dopa2_all.info() 
#Dopa2_combinedData.info() 
#Dopa130_all.info() 
#Dopa130_combinedData.info() 
#Another check: see what the unique variant numbers are. Should be 0.0 - 154.0 
#Dopa130_combinedData.sort_values(by=['VariantNumber']).VariantNumber.unique(
) 
``` 
 
```python 
#Convert this to a method: 
#Method for adding ACE length and start position information to the data array 
def addACElenAndStartPos(dataArray, ACEarray): 
    counter = 0 
     
    arrayLen = len(dataArray.ID) 
 
    dataArray['ACElen'] = pd.Series(0 for i in range(arrayLen)) 
    dataArray['ACEstartPos'] = pd.Series(0 for i in range(arrayLen)) 
 
 
    for i in dataArray.index.values[:]: 
        #print i 
        thisACEseq = dataArray.at[i, 'ID'] 
         
        #print str(thisACEseq) 
         
        thisACEinfo = ACEarray[ACEarray['ACEseq'] == thisACEseq] 
     
        #print thisACEinfo 
     
        thisACEindex = thisACEinfo.index.values[0] 
 
        #print thisACEindex 
     
        if(type(thisACEseq) == str): 
            thisACElen = len(str(thisACEseq)) #Note that this might cooerce 
some 'nan' values to str 
            #print str(thisACElen) 
            thisACEstartPos = thisACEinfo.ACEstartPos.values[0] 
            #print str(thisACEstartPos) 
            #print 'For index ' + str(i) + ', thisACEstartPos is a float.  
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            if(type(thisACEstartPos) == int): 
                dataArray.at[i, 'ACElen'] = thisACElen 
                dataArray.at[i, 'ACEstartPos'] = thisACEstartPos 
            else: 
                counter = counter+1 
        else:  
            'For index ' + str(i) + ', thisACEseq is not a str. It is a ' + 
str(type(thisACEseq)) + ' with value ' + str(thisACEseq) 
             
    print str(counter) + ' rows were not properly processed to add ACElen and 
ACEstartPos values' 
     
    return dataArray 
``` 
 
```python 
#Now, it might be good to sort by Expt condition, then by block, then by 
variantNumber 
Dopa2_sorted = Dopa2_combinedData.sort_values(by=['ExptStepIndex', 
'BlockIndex', 'VariantNumber']) 
Dopa2_sorted = Dopa2_sorted.reset_index(drop=True) 
Dopa2_sorted.iloc[1000:1020, 5:25] 
 
``` 
 
```python 
#Now add ACE length and start position to the data frames 
Dopa2_sorted = addACElenAndStartPos(Dopa2_sorted, Dopa2_ACEs) 
``` 
 
```python 
#Good, that worked. Now just need to export that data set to a csv file for 
safe keeping and easy retrieval. 
!mkdir '20191008_Isaac_ArrayData/20191014_Dopa2_dataAndHeatMaps/' 
folderPath = '/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/20191014_Dopa2_dataAndHeatMaps/' 
Dopa2_sorted.to_csv(path_or_buf = folderPath + '20191014_Dopa2_rawData.csv') 
``` 
 
```python 
#Method that cleans the data set, and prints out useful info as it does so. 
#This method would do something like, for any given Agilent microarray dataset, 
count the number of data points 
#that have nonuniform features, nonuniform background, and have outlier 
features/background values relative to  
#replicates. Then the function should return an array with all those problematic 
data points removed, and print 
#how many data points were removed and the new dimensions of the array. 
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def cleanAgilentArray(arrayToClean): 
    arrayShape = arrayToClean.shape 
    numSpots = arrayShape[0] 
    print str(numSpots) + ' feature spots in raw array.' 
     
    #print 'Checking array for spots with nonuniform feature values:' 
    nonUnifFeatArray = arrayToClean[arrayToClean['gIsFeatNonUnifOL'] == 1] 
    nonUnifFeatShape = nonUnifFeatArray.shape 
    numNonUnifFeat = nonUnifFeatShape[0] 
    print str(numNonUnifFeat) + ' spots with nonuniform features.' 
     
    #print 'Checking array for spots with nonuniform backgrounds:' 
    nonUnifBGArray = arrayToClean[arrayToClean['gIsBGNonUnifOL'] == 1] 
    nonUnifBGShape = nonUnifBGArray.shape 
    numNonUnifBG = nonUnifBGShape[0] 
    print str(numNonUnifBG) + ' spots with nonuniform backgrounds.' 
     
    print 'Checking array for spots with outlier feature values:' 
    OLfeatureArray = arrayToClean[arrayToClean['gIsFeatPopnOL'] == 1] 
    OLfeatureArrayShape = OLfeatureArray.shape 
    numOLfeatures = OLfeatureArrayShape[0] 
    print str(numOLfeatures) + ' spots with values that are outliers relative 
to other replicates in the same well.' 
     
    print 'Checking array for spots with outlier background values:' 
    OLBGArray = arrayToClean[arrayToClean['gIsBGPopnOL'] == 1] 
    OLBGArrayShape = OLBGArray.shape 
    numOLBGs = OLBGArrayShape[0] 
    print str(numOLBGs) + ' spots with values that are outliers relative to 
other replicates in the same well.' 
 
    #print 'Now clean array by removing nonuniform and outlier spots:' 
    cleanArray = arrayToClean[arrayToClean['gIsFeatNonUnifOL'] == 0] 
    cleanArray = cleanArray[cleanArray['gIsBGNonUnifOL'] == 0] 
    cleanArray = cleanArray[cleanArray['gIsFeatPopnOL'] == 0] 
    cleanArray = cleanArray[cleanArray['gIsBGPopnOL'] == 0] 
     
    cleanArrayShape = cleanArray.shape 
    numCleanSpots = cleanArrayShape[0] 
    numBadSpots = numSpots - numCleanSpots 
    print '' 
    print 'Cleaned array has ' + str(numCleanSpots) + ' spots, with ' + 
str(numBadSpots) + ' bad spots removed.' 
    print '' 
     
    return cleanArray 
``` 
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```python 
#Let's remove all the bad data points 
cleanDopa2 = cleanAgilentArray(Dopa2_sorted) 
``` 
 
```python 
#Reset the indices for the cleaned arrays 
cleanDopa2_RI = cleanDopa2.reset_index(drop = True) 
``` 
 
```python 
#Make an array of the names of the statistics columns to add 
statColsToAdd = ['mean_gProcessedSignal', 
                'med_gProcessedSignal', 
                'std_gProcessedSignal', 
                'max_gProcessedSignal', 
                'min_gProcessedSignal', 
                'numReplicates', 
                'mean_rProcessedSignal', 
                'med_rProcessedSignal', 
                'std_rProcessedSignal', 
                'max_rProcessedSignal', 
                'min_rProcessedSignal'] 
``` 
 
```python 
#Now add all the columns that will be required for calculating statistics 
#Make this a method, actually 
def addLabeledColumns(array, colsToAdd): 
    arrayLen = len(array.iloc[:][array.columns[0]]) 
     
    numColumns = len(colsToAdd) 
     
    for i in range(numColumns): 
        array[colsToAdd[i]] = pd.Series(float('nan') for i in range(arrayLen)) 
     
    return array 
``` 
 
```python 
cleanDopa2 = addLabeledColumns(cleanDopa2_RI, statColsToAdd) 
 
cleanDopa2.tail() 
``` 
 
```python 
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#Make a function out of generating a single row of descriptive statistics 
#Takes as input a frame to which the stat row will be appended, and the array 
with all the replicates 
#to be statistically analyzed 
def genStatRow(receivingFrame, arraySubSet): 
     
    arraySubSetFirstIndex = arraySubSet.index[0] 
 
    subSetFirstRow = arraySubSet[arraySubSet.index == arraySubSetFirstIndex] 
 
    receivingFrame = receivingFrame.append(subSetFirstRow) 
     
    lastRowIndex = receivingFrame.index[len(receivingFrame.index) - 1] 
 
    mean_gProcessedSignal = arraySubSet['gProcessedSignal'].mean() 
    receivingFrame.at[lastRowIndex, 'mean_gProcessedSignal'] = 
mean_gProcessedSignal 
 
    median_gProcessedSignal = arraySubSet['gProcessedSignal'].median() 
    receivingFrame.at[lastRowIndex, 'med_gProcessedSignal'] = 
median_gProcessedSignal 
 
    std_gProcessedSignal = arraySubSet['gProcessedSignal'].std() 
    receivingFrame.at[lastRowIndex, 'std_gProcessedSignal'] = 
std_gProcessedSignal 
     
    max_gProcessedSignal = arraySubSet['gProcessedSignal'].max() 
    receivingFrame.at[lastRowIndex, 'max_gProcessedSignal'] = 
max_gProcessedSignal 
     
    min_gProcessedSignal = arraySubSet['gProcessedSignal'].min() 
    receivingFrame.at[lastRowIndex, 'min_gProcessedSignal'] = 
min_gProcessedSignal 
 
    numReps = len(arraySubSet['gProcessedSignal']) 
    receivingFrame.at[lastRowIndex, 'numReplicates'] = numReps 
 
    mean_rProcessedSignal = arraySubSet['rProcessedSignal'].mean() 
    receivingFrame.at[lastRowIndex, 'mean_rProcessedSignal'] = 
mean_rProcessedSignal 
 
    median_rProcessedSignal = arraySubSet['rProcessedSignal'].median() 
    receivingFrame.at[lastRowIndex, 'med_rProcessedSignal'] = 
median_rProcessedSignal 
 
    std_rProcessedSignal = arraySubSet['rProcessedSignal'].std() 
    receivingFrame.at[lastRowIndex, 'std_rProcessedSignal'] = 
std_rProcessedSignal 
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    max_rProcessedSignal = arraySubSet['rProcessedSignal'].max() 
    receivingFrame.at[lastRowIndex, 'max_rProcessedSignal'] = 
max_rProcessedSignal 
     
    min_rProcessedSignal = arraySubSet['rProcessedSignal'].min() 
    receivingFrame.at[lastRowIndex, 'min_rProcessedSignal'] = 
min_rProcessedSignal 
     
    return receivingFrame 
``` 
 
```python 
#Now make a method for generating all the stats for all the ACE variants a 
single block/subarray 
def genStatBlock(receivingFrame, blockArray): 
     
    numACEvariants = len(blockArray.VariantNumber.unique()) 
     
    for i in range(0, numACEvariants): 
        arraySubSet = blockArray[blockArray['VariantNumber'] == float(i)] 
     
        receivingFrame = genStatRow(receivingFrame = receivingFrame, 
arraySubSet = arraySubSet) 
     
    return receivingFrame 
``` 
 
```python 
#Now make a method for generating statistics for all the ACE variants in an 
entire slide 
def genSlideStats(receivingFrame, slideArray): 
    numSubArrays = len(slideArray.BlockIndex.unique()) 
     
    for i in range(numSubArrays+1): 
        subArray = slideArray[slideArray['BlockIndex'] == i] 
         
 
        receivingFrame = genStatBlock(receivingFrame = receivingFrame, 
blockArray = subArray) 
     
    return receivingFrame 
``` 
 
```python 
#Now write a method to generate all the stats from a processed data array 
def genExptStats(ExptDataArray): 
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    tic = time.clock() 
     
    numExptSteps = len(ExptDataArray.ExptStepIndex.unique()) 
     
    recFrame = ExptDataArray[ExptDataArray.index == -1] 
     
    for i in range(numExptSteps+1): 
        slideArray = ExptDataArray[ExptDataArray['ExptStepIndex'] == i] 
 
        recFrame = genSlideStats(receivingFrame = recFrame, slideArray = 
slideArray) 
     
    toc = time.clock() 
     
    print toc-tic 
     
    return recFrame 
``` 
 
 
```python 
#Now generate the stats 
Dopa2_cleanedStats = genExptStats(cleanDopa2) 
``` 
 
```python 
#Great! Now save both as csv files. 
folderPath = '/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/20191014_Dopa2_dataAndHeatMaps/' 
Dopa2_cleanedStats.to_csv(path_or_buf = folderPath + 
'20191014_Dopa2_cleanedStats.csv') 
 
 
``` 
 
 
```python 
Dopa2_cleanedStats = pd.read_csv(folderPath + 
'20191014_Dopa2_cleanedStats.csv', delimiter = ',') 
Dopa2_cleanedStats.tail() 
 
``` 
 
```python 
#divide the data frame by experiment step 
 
Dopa2stats_1Hyb1 = Dopa2_cleanedStats[Dopa2_cleanedStats['ExptStepIndex'] == 
1] 
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Dopa2stats_2Hyb2 = Dopa2_cleanedStats[Dopa2_cleanedStats['ExptStepIndex'] == 
2] 
Dopa2stats_3DandC1hrInc = 
Dopa2_cleanedStats[Dopa2_cleanedStats['ExptStepIndex'] == 3] 
Dopa2stats_4otherTargets1hrInc = 
Dopa2_cleanedStats[Dopa2_cleanedStats['ExptStepIndex'] == 4] 
 
 
 
Dopa2stats_1Hyb1.tail() 
#Dopa2stats_1Hyb.tail() 
#Dopa130stats_4IncON.tail() 
``` 
 
 
```python 
#Now, before we move further, let's take a detour into quality control, with 
the bright spots! 
#Can I retrieve the GE_brightSpotValues? 
brightSpotFrame = allExptData[allExptData['ProbeName'] == 'GE_BrightCorner'] 
#Okay, now get the Bright Spot data fully processed 
brightSpotFrame_clean = cleanAgilentArray(brightSpotFrame) 
#Now sort the Bright Spot Data 
brightSpotFrame_cleanSorted = 
brightSpotFrame_clean.sort_values(by=['ExptStepIndex', 'BlockIndex']) 
#Now add stat columns 
brightSpotsClean_preStats = addLabeledColumns(brightSpotFrame_cleanSorted, 
statColsToAdd) 
 
 
#Now generate the stats. Need a custom For loop for this; can't iterate over 
the brightspots' VariantNumber 
brightSpotStatsFrame = 
brightSpotsClean_preStats[brightSpotsClean_preStats['ExptStepIndex'] == -1] 
 
ExptStepIndices = brightSpotsClean_preStats.ExptStepIndex.unique() 
 
BlockIndices = brightSpotsClean_preStats.BlockIndex.unique() 
 
for x in ExptStepIndices: 
    for i in BlockIndices: 
        condition1 = brightSpotsClean_preStats['ExptStepIndex'] == x 
        condition2 = brightSpotsClean_preStats['BlockIndex'] == i 
 
        slideArray = brightSpotsClean_preStats[condition1] 
 
        blockArray = slideArray[condition2] 
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        brightSpotStatsFrame = genStatRow(brightSpotStatsFrame, blockArray) 
        #print receivingFrame 
 
 
 
#Now save the stats 
folderPath = '/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/' 
brightSpotStatsFrame.to_csv(path_or_buf = folderPath + 
'20191009_brightSpotsPosCtrls_cleanedStats.csv') 
#Now retrieve the saved stats 
brightSpotStatsFrame = pd.read_csv(folderPath + 
'20191009_brightSpotsPosCtrls_cleanedStats.csv') 
         
brightSpotStatsFrame.tail() 
``` 
 
```python 
#Now split up by experimental step 
brightSpotStats_1Hyb1 = 
brightSpotStatsFrame[brightSpotStatsFrame['ExptStepIndex'] == 1] 
brightSpotStats_2Hyb2 = 
brightSpotStatsFrame[brightSpotStatsFrame['ExptStepIndex'] == 2] 
brightSpotStats_3DandC1hrInc = 
brightSpotStatsFrame[brightSpotStatsFrame['ExptStepIndex'] == 3] 
brightSpotStats_4otherTargets1hrInc = 
brightSpotStatsFrame[brightSpotStatsFrame['ExptStepIndex'] == 4] 
 
``` 
 
```python 
#Now, get ready to plot some information about the bright spots--their average, 
standard deviation, min and max 
def plotStats(xAxis, 
              yMeans, 
              ySTDs, 
              yMedians, 
              yMaxes, 
              yMins, 
              title, 
              xLab, 
              yLab, 
              date, 
              figName, 
               
              show = True, 
              color = 'b', 
              yMin = None, 
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              yMax = None, 
              legendLoc = 'upper left'): 
    # Set the font properties (for use in legend and the axes)    
    font_path = '/library/fonts/Arial Bold.ttf' 
    font_prop = font_manager.FontProperties(fname=font_path, size=14)    
    font = {'family' : 'Arial', 
            'weight' : 'bold', 
            'size'   : 12} 
    plt.rc('font', **font)    
 
    #Define the figure 
    fig, ax = plt.subplots(figsize=(7, 5), dpi=120) 
    meansIm = ax.errorbar(xAxis, 
                     yMeans, 
                     ySTDs, 
                     linestyle='None', 
                     color = color, 
                     marker='D') 
     
    mediansIM = ax.scatter(xAxis, 
                     yMedians, 
                     color = 'c', 
                     marker='D') 
     
    maxesIm = ax.scatter(xAxis, 
                     yMaxes, 
                     color = 'r', 
                     marker='D') 
     
    minsIm = ax.scatter(xAxis, 
                     yMins, 
                     color = 'g', 
                     marker='D') 
    
    #Make a legend to describe the statistical elements 
    ColorsStylesList = [color, 'c', 'r', 'g'] 
    legend_list = ['Mean+StdDev', 'Median', 'Maximum', 'Minimum'] 
 
    legend_elements = [{} for i in range(len(legend_list))] 
    for i in range(len(legend_elements)): 
        legend_elements[i] = Line2D([0], [0], color=ColorsStylesList[i], lw=0, 
label=legend_list[i], marker = 'D') 
     
    ax.legend(legend_elements, legend_list, loc = legendLoc, 
prop={'family':'Arial', 'size':12, 'weight':'bold'}) 
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    ax.set_title(title, fontname = 'Arial', fontsize = 16, fontweight = 'bold') 
 
    ylab = yLab 
    xlab = xLab 
 
    ax.set_xlabel(xlab, fontproperties = font_prop) 
    ax.set_ylabel(ylab, fontproperties = font_prop) 
 
    if(yMin != None): 
        ax.set_ylim(yMin, yMax) 
 
    fig.tight_layout() 
 
    #save figure 
    if(show): 
        plt.savefig(folderPath + date +'_' + figName) 
        plt.show() 
     
``` 
 
```python 
#Try plotting bright spots stats for first experiment's first experiment step 
fPath = '/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/20191009_brightSpotStatsFigures/' 
 
plotStats(xAxis = brightSpotStats_1Hyb1['BlockIndex'], 
                  yMeans = brightSpotStats_1Hyb1['mean_gProcessedSignal'], 
                  ySTDs = brightSpotStats_1Hyb1['std_gProcessedSignal'], 
                  yMedians = brightSpotStats_1Hyb1['med_gProcessedSignal'], 
                  yMaxes = brightSpotStats_1Hyb1['max_gProcessedSignal'], 
                  yMins = brightSpotStats_1Hyb1['min_gProcessedSignal'], 
                  title = "Cy3 Bright Spot Fluorescence vs Subarray Index, 1Hyb1 
Step", 
                  xLab = 'Sub-Array Index', 
                  yLab = 'Cy3 Fluorescence signal (AU)', 
                  date = '20191009', 
                  figName = 'brightSpotStats_1Hyb1_byBlockIndex', 
                  color = 'k', 
                  yMin = 0, 
                  yMax = None, 
                  folderPath = fPath) 
 
plotStats(xAxis = brightSpotStats_2Hyb2['BlockIndex'], 
                  yMeans = brightSpotStats_2Hyb2['mean_gProcessedSignal'], 
                  ySTDs = brightSpotStats_2Hyb2['std_gProcessedSignal'], 
                  yMedians = brightSpotStats_2Hyb2['med_gProcessedSignal'], 
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                  yMaxes = brightSpotStats_2Hyb2['max_gProcessedSignal'], 
                  yMins = brightSpotStats_2Hyb2['min_gProcessedSignal'], 
                  title = "Cy3 Bright Spot Fluorescence vs Subarray Index, 2Hyb2 
Step", 
                  xLab = 'Sub-Array Index', 
                  yLab = 'Cy3 Fluorescence signal (AU)', 
                  date = '20191009', 
                  figName = 'brightSpotStats_2Hyb2_byBlockIndex', 
                  color = 'k', 
                  yMin = 0, 
                  yMax = None, 
                  folderPath = fPath) 
 
plotStats(xAxis = brightSpotStats_3DandC1hrInc['BlockIndex'], 
                  yMeans = 
brightSpotStats_3DandC1hrInc['mean_gProcessedSignal'], 
                  ySTDs = 
brightSpotStats_3DandC1hrInc['std_gProcessedSignal'], 
                  yMedians = 
brightSpotStats_3DandC1hrInc['med_gProcessedSignal'], 
                  yMaxes = 
brightSpotStats_3DandC1hrInc['max_gProcessedSignal'], 
                  yMins = 
brightSpotStats_3DandC1hrInc['min_gProcessedSignal'], 
                  title = "Cy3 Bright Spot Fluorescence vs Subarray Index, 
3DandC1hrInc Step", 
                  xLab = 'Sub-Array Index', 
                  yLab = 'Cy3 Fluorescence signal (AU)', 
                  date = '20191009', 
                  figName = 'brightSpotStats_3DandC1hrInc_byBlockIndex', 
                  color = 'k', 
                  yMin = 0, 
                  yMax = None, 
                  folderPath = fPath) 
 
plotStats(xAxis = brightSpotStats_4otherTargets1hrInc['BlockIndex'], 
                  yMeans = 
brightSpotStats_4otherTargets1hrInc['mean_gProcessedSignal'], 
                  ySTDs = 
brightSpotStats_4otherTargets1hrInc['std_gProcessedSignal'], 
                  yMedians = 
brightSpotStats_4otherTargets1hrInc['med_gProcessedSignal'], 
                  yMaxes = 
brightSpotStats_4otherTargets1hrInc['max_gProcessedSignal'], 
                  yMins = 
brightSpotStats_4otherTargets1hrInc['min_gProcessedSignal'], 
                  title = "Cy3 Bright Spot Fluorescence vs Subarray Index, 
4otherTargets1hrInc Step", 
                  xLab = 'Sub-Array Index', 
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                  yLab = 'Cy3 Fluorescence signal (AU)', 
                  date = '20191009', 
                  figName = 
'brightSpotStats_4otherTargets1hrInc_byBlockIndex', 
                  color = 'k', 
                  yMin = 0, 
                  yMax = None, 
                  folderPath = fPath, 
                  legendLoc = 'upper center') 
``` 
```python 
#Note: the bright spots don't fluoresce in the Cy5 channel 
``` 
 
```python 
#Cool. So tomorrow, plot by experiment step 
brightSpotStats_Block_1_1 = 
brightSpotStatsFrame[brightSpotStatsFrame['BlockIndex'] == 1] 
brightSpotStats_Block_1_2 = 
brightSpotStatsFrame[brightSpotStatsFrame['BlockIndex'] == 2] 
brightSpotStats_Block_1_3 = 
brightSpotStatsFrame[brightSpotStatsFrame['BlockIndex'] == 3] 
brightSpotStats_Block_1_4 = 
brightSpotStatsFrame[brightSpotStatsFrame['BlockIndex'] == 4] 
brightSpotStats_Block_2_1 = 
brightSpotStatsFrame[brightSpotStatsFrame['BlockIndex'] == 5] 
brightSpotStats_Block_2_2 = 
brightSpotStatsFrame[brightSpotStatsFrame['BlockIndex'] == 6] 
brightSpotStats_Block_2_3 = 
brightSpotStatsFrame[brightSpotStatsFrame['BlockIndex'] == 7] 
brightSpotStats_Block_2_4 = 
brightSpotStatsFrame[brightSpotStatsFrame['BlockIndex'] == 8] 
``` 
 
 
```python 
#Try plotting bright spots stats for first experiment's first experiment step 
plotStats(xAxis = brightSpotStats_Block_1_1['ExptStepIndex'], 
                  yMeans = brightSpotStats_Block_1_1['mean_gProcessedSignal'], 
                  ySTDs = brightSpotStats_Block_1_1['std_gProcessedSignal'], 
                  yMedians = 
brightSpotStats_Block_1_1['med_gProcessedSignal'], 
                  yMaxes = brightSpotStats_Block_1_1['max_gProcessedSignal'], 
                  yMins = brightSpotStats_Block_1_1['min_gProcessedSignal'], 
                  title = "Cy3 Bright Spot Fluorescence vs Expt Step, Subarray 
1_1", 
                  xLab = 'Sub-Array Index', 
                  yLab = 'Cy3 Fluorescence signal (AU)', 
                  date = '20191009', 
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                  figName = 'brightSpotStats_Subarray_1_1_byExptStep', 
                  color = 'k', 
                  yMin = 0, 
                  yMax = None, 
                  folderPath = fPath, 
                  legendLoc = 'lower left') 
 
plotStats(xAxis = brightSpotStats_Block_1_2['ExptStepIndex'], 
                  yMeans = brightSpotStats_Block_1_2['mean_gProcessedSignal'], 
                  ySTDs = brightSpotStats_Block_1_2['std_gProcessedSignal'], 
                  yMedians = 
brightSpotStats_Block_1_2['med_gProcessedSignal'], 
                  yMaxes = brightSpotStats_Block_1_2['max_gProcessedSignal'], 
                  yMins = brightSpotStats_Block_1_2['min_gProcessedSignal'], 
                  title = "Cy3 Bright Spot Fluorescence vs Expt Step, Subarray 
1_2", 
                  xLab = 'Sub-Array Index', 
                  yLab = 'Cy3 Fluorescence signal (AU)', 
                  date = '20191009', 
                  figName = 'brightSpotStats_Subarray_1_2_byExptStep', 
                  color = 'k', 
                  yMin = 0, 
                  yMax = None, 
                  folderPath = fPath) 
 
plotStats(xAxis = brightSpotStats_Block_1_3['ExptStepIndex'], 
                  yMeans = brightSpotStats_Block_1_3['mean_gProcessedSignal'], 
                  ySTDs = brightSpotStats_Block_1_3['std_gProcessedSignal'], 
                  yMedians = 
brightSpotStats_Block_1_3['med_gProcessedSignal'], 
                  yMaxes = brightSpotStats_Block_1_3['max_gProcessedSignal'], 
                  yMins = brightSpotStats_Block_1_3['min_gProcessedSignal'], 
                  title = "Cy3 Bright Spot Fluorescence vs Expt Step, Subarray 
1_3", 
                  xLab = 'Sub-Array Index', 
                  yLab = 'Cy3 Fluorescence signal (AU)', 
                  date = '20191009', 
                  figName = 'brightSpotStats_Subarray_1_3_byExptStep', 
                  color = 'k', 
                  yMin = 0, 
                  yMax = None, 
                  folderPath = fPath, 
                  legendLoc = 'lower left') 
 
plotStats(xAxis = brightSpotStats_Block_1_4['ExptStepIndex'], 
                  yMeans = brightSpotStats_Block_1_4['mean_gProcessedSignal'], 
                  ySTDs = brightSpotStats_Block_1_4['std_gProcessedSignal'], 
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                  yMedians = 
brightSpotStats_Block_1_4['med_gProcessedSignal'], 
                  yMaxes = brightSpotStats_Block_1_4['max_gProcessedSignal'], 
                  yMins = brightSpotStats_Block_1_4['min_gProcessedSignal'], 
                  title = "Cy3 Bright Spot Fluorescence vs Expt Step, Subarray 
1_4", 
                  xLab = 'Sub-Array Index', 
                  yLab = 'Cy3 Fluorescence signal (AU)', 
                  date = '20191009', 
                  figName = 'brightSpotStats_Subarray_1_4_byExptStep', 
                  color = 'k', 
                  yMin = 0, 
                  yMax = None, 
                  folderPath = fPath) 
 
plotStats(xAxis = brightSpotStats_Block_2_1['ExptStepIndex'], 
                  yMeans = brightSpotStats_Block_2_1['mean_gProcessedSignal'], 
                  ySTDs = brightSpotStats_Block_2_1['std_gProcessedSignal'], 
                  yMedians = 
brightSpotStats_Block_2_1['med_gProcessedSignal'], 
                  yMaxes = brightSpotStats_Block_2_1['max_gProcessedSignal'], 
                  yMins = brightSpotStats_Block_2_1['min_gProcessedSignal'], 
                  title = "Cy3 Bright Spot Fluorescence vs Expt Step, Subarray 
2_1", 
                  xLab = 'Sub-Array Index', 
                  yLab = 'Cy3 Fluorescence signal (AU)', 
                  date = '20191009', 
                  figName = 'brightSpotStats_Subarray_2_1_byExptStep', 
                  color = 'k', 
                  yMin = 0, 
                  yMax = None, 
                  folderPath = fPath, 
                  legendLoc = 'lower left') 
 
plotStats(xAxis = brightSpotStats_Block_2_2['ExptStepIndex'], 
                  yMeans = brightSpotStats_Block_2_2['mean_gProcessedSignal'], 
                  ySTDs = brightSpotStats_Block_2_2['std_gProcessedSignal'], 
                  yMedians = 
brightSpotStats_Block_2_2['med_gProcessedSignal'], 
                  yMaxes = brightSpotStats_Block_2_2['max_gProcessedSignal'], 
                  yMins = brightSpotStats_Block_2_2['min_gProcessedSignal'], 
                  title = "Cy3 Bright Spot Fluorescence vs Expt Step, Subarray 
2_2", 
                  xLab = 'Sub-Array Index', 
                  yLab = 'Cy3 Fluorescence signal (AU)', 
                  date = '20191009', 
                  figName = 'brightSpotStats_Subarray_2_2_byExptStep', 
                  color = 'k', 
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                  yMin = 0, 
                  yMax = None, 
                  folderPath = fPath) 
 
plotStats(xAxis = brightSpotStats_Block_2_3['ExptStepIndex'], 
                  yMeans = brightSpotStats_Block_2_3['mean_gProcessedSignal'], 
                  ySTDs = brightSpotStats_Block_2_3['std_gProcessedSignal'], 
                  yMedians = 
brightSpotStats_Block_2_3['med_gProcessedSignal'], 
                  yMaxes = brightSpotStats_Block_2_3['max_gProcessedSignal'], 
                  yMins = brightSpotStats_Block_2_3['min_gProcessedSignal'], 
                  title = "Cy3 Bright Spot Fluorescence vs Expt Step, Subarray 
2_3", 
                  xLab = 'Sub-Array Index', 
                  yLab = 'Cy3 Fluorescence signal (AU)', 
                  date = '20191009', 
                  figName = 'brightSpotStats_Subarray_2_3_byExptStep', 
                  color = 'k', 
                  yMin = 0, 
                  yMax = None, 
                  folderPath = fPath) 
 
plotStats(xAxis = brightSpotStats_Block_2_4['ExptStepIndex'], 
                  yMeans = brightSpotStats_Block_2_4['mean_gProcessedSignal'], 
                  ySTDs = brightSpotStats_Block_2_4['std_gProcessedSignal'], 
                  yMedians = 
brightSpotStats_Block_2_4['med_gProcessedSignal'], 
                  yMaxes = brightSpotStats_Block_2_4['max_gProcessedSignal'], 
                  yMins = brightSpotStats_Block_2_4['min_gProcessedSignal'], 
                  title = "Cy3 Bright Spot Fluorescence vs Expt Step, Subarray 
2_4", 
                  xLab = 'Sub-Array Index', 
                  yLab = 'Cy3 Fluorescence signal (AU)', 
                  date = '20191009', 
                  figName = 'brightSpotStats_Subarray_2_4_byExptStep', 
                  color = 'k', 
                  yMin = 0, 
                  yMax = None, 
                  folderPath = fPath) 
``` 
 
```python 
#This is a function that returns a data frame with the average and standard 
deviation within an array, 
#grouped by a selected category, and returning a single, particular column 
def returnAvgAndStd(array, groupByThisCat, returnThisColumn): 
    catUniques = array[groupByThisCat].unique() 
    #print catUniques 
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    #print groupByThisCat 
    catLen = len(catUniques) 
    #print catLen 
     
    avgDataName = 'Avg' + returnThisColumn 
    stdDataName = 'Std' + returnThisColumn 
     
    catAvg = [float(i) for i in np.zeros(catLen)] 
    catStd = [float(i) for i in np.zeros(catLen)] 
     
    d = {groupByThisCat: catUniques, avgDataName: catAvg, stdDataName: catStd} 
    processedDF = pd.DataFrame(data=d).reset_index() 
    processedDF = processedDF[['index', groupByThisCat, avgDataName, 
stdDataName]] 
     
    #processedData = pd.DataFrame(data = [catUniques, catAvg, catStd]) 
     
     
    for i in range(catLen): 
        processedDF.at[i, avgDataName] = array[array[groupByThisCat] == 
catUniques[i]][returnThisColumn].mean() 
         
        #If for any reason there's only one number here, don't get std this way 
        #if(len(array[array[groupByThisCat] == 
catUniques[i]][returnThisColumn]) > 1): 
        processedDF.at[i, stdDataName] = array[array[groupByThisCat] == 
catUniques[i]][returnThisColumn].std() 
        #else: 
             
    #processedData = [catUniques, catAvg, catStd] 
    return processedDF 
``` 
 
 
```python 
#All right, see if I can generate heatmaps for Dopa2 and for the Dopa130 negative 
control 
#Function for making a data frame that can/will be converted into a heat map 
def genFrameForHeatmap(array, returnThisCol): 
    ACElens = array['ACElen'].unique() 
    shortestACElen = ACElens[0] 
     
    outputFrame = returnAvgAndStd(array[array['ACElen'] == shortestACElen], 
                                                         'ACEstartPos', 
                                                         returnThisCol) 
    outputFrame['ACElen'] = pd.Series(8 for i in range(0, 
len(outputFrame['ACEstartPos']))) 
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    aptSeq = array['AptamerSequence'].values[0] 
    outputFrame['AptamerSequence'] = pd.Series(aptSeq for i in range(0, 
len(outputFrame['ACEstartPos']))) 
     
    aptName = array['AptamerName'].values[0] 
    outputFrame['AptamerName'] = pd.Series(aptName for i in range(0, 
len(outputFrame['ACEstartPos']))) 
     
    for i in ACElens[1:]: 
        dummyFrame = returnAvgAndStd(array[array['ACElen'] == i], 
                                                 'ACEstartPos', 
                                                 returnThisCol) 
        dummyFrame['ACElen'] = pd.Series(i for x in range(0, 
len(dummyFrame['ACEstartPos']))) 
        dummyFrame['AptamerSequence'] = pd.Series(aptSeq for i in range(0, 
len(dummyFrame['ACEstartPos']))) 
        dummyFrame['AptamerName'] = pd.Series(aptName for i in range(0, 
len(outputFrame['ACEstartPos']))) 
     
        outputFrame = outputFrame.append(dummyFrame) 
    return outputFrame 
``` 
 
 
```python 
#Let's try generating a heatmap for each individual sub 
Dopa2_AvgHybHeatMap_1Hyb1_1_1 = genFrameForHeatmap( 
    array = Dopa2stats_1Hyb1[Dopa2stats_1Hyb1['BlockIndex'] == 1], 
    returnThisCol = 'gProcessedSignal') 
 
``` 
 
```python 
Dopa2_AvgHybHeatMap_1Hyb1_1_1.tail() 
``` 
 
 
```python 
#Function for generating/extracting the heatmap data frame to an array before 
plotting it 
def genHeatMapArray(heatMapFrame, returnThisColumn = 'rProcessedSignal'): 
    ACElens = heatMapFrame.ACElen.unique() 
     
    heatMapArray = [] 
     
    for x in ACElens: 
        heatMapFrame_xbp = heatMapFrame[ 
        heatMapFrame['ACElen'] == x][returnThisColumn].values 
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        heatMapFrame_xbp = np.append( 
            heatMapFrame_xbp, np.repeat(np.nan, x-1)).tolist() 
         
        heatMapArray.append(heatMapFrame_xbp) 
     
    return heatMapArray 
``` 
 
```python 
#Function for actually plotting the heatmap 
def heatMap(FrameForHeatMap, columnToPlot, title, colorBarLabel, fontSize, 
colorMax, colorMin, figName, date, cbar_kw={}, 
              folderPath = 
'/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/'): 
     
    #Array data 
    heatMapArray = genHeatMapArray(FrameForHeatMap, returnThisColumn = 'Avg' + 
columnToPlot) 
    #print heatMapArray 
    #Two axes for the heatmap: ACE/flare length and ACE/flare position on 
aptamer 
    ACElensFloats = set(FrameForHeatMap['ACElen'].values) #Make this the Y axis 
    ACElens = [int(i) for i in ACElensFloats] 
 
    AptSeq = FrameForHeatMap['AptamerSequence'].values[0] 
    AptSeq_allCaps = AptSeq.upper() 
    AptSeqList = list(AptSeq_allCaps[i] for i in range(len(AptSeq))) #Make this 
the X axis 
 
    # Set the font dictionaries (for plot title and axis titles) 
    title_font = {'fontname':'Arial', 'size':str(fontSize), 'color':'black', 
'weight':'bold', 
                  'verticalalignment':'bottom'} # Bottom vertical alignment for 
more space 
    axis_font = {'fontname':'Arial', 'size':str(fontSize), 'color':'black', 
'weight':'bold'} 
 
     
    # Set the font properties (for use in legend and the axes)    
    font_path = '/library/fonts/Arial Bold.ttf' 
    font_prop = font_manager.FontProperties(fname=font_path, 
size=str(fontSize)) 
     
    font = {'family' : 'Arial', 
            'weight' : 'bold', 
            'size'   : fontSize} 
 
    plt.rc('font', **font)    



 211 
     
    #Define the figure 
    fig, ax = plt.subplots(figsize=(12, 3), dpi=120) 
    im = ax.imshow(heatMapArray) 
     
     
    # We want to show all ticks... 
    ax.set_xticks(np.arange(len(AptSeqList))) 
    ax.set_yticks(np.arange(len(ACElens))) 
 
    # ... and label them with the respective list entries 
    ax.set_xticklabels(AptSeqList) 
    ax.set_yticklabels(ACElens) 
 
    # Rotate the tick labels and set their alignment. 
    plt.setp(ax.get_xticklabels(), rotation=0, ha="right", 
         rotation_mode="anchor") 
         
    ax.set_title(title, fontname = 'Arial', fontsize = fontSize+2, fontweight 
= 'bold') 
 
    aptName = FrameForHeatMap['AptamerName'].values[0] 
     
    ylab = 'Flare Length, bp' 
    xlab = 'Start of Flare Binding Position on ' + aptName + ' Aptamer' 
 
    ax.set_xlabel(xlab, fontproperties = font_prop) 
    ax.set_ylabel(ylab, fontproperties = font_prop) 
 
    #Add color bar 
    #SET THE RANGE OF THE COLORBAR 
    norm = colors.Normalize(vmin=colorMin, vmax=colorMax) 
    im.set_norm(norm) 
    cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw) 
    cbar.ax.set_ylabel(colorBarLabel, rotation=-90, va="bottom", 
fontproperties = font_prop) 
     
    fig.tight_layout() 
    #save figure 
    plt.savefig(folderPath + date +'_' + figName) 
 
    plt.show() 
``` 
 
 
```python 
#Plot an average of all the heatmaps from 1Hyb1 
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Dopa2_AvgHybHeatMap_1Hyb1allBlocksCy3 = genFrameForHeatmap( 
    array = Dopa2stats_1Hyb1, 
    returnThisCol = 'gProcessedSignal') 
 
Dopa2_AvgHybHeatMap_1Hyb1allBlocksCy3_max = 
Dopa2_AvgHybHeatMap_1Hyb1allBlocksCy3.AvggProcessedSignal.max() 
 
 
heatMap(FrameForHeatMap = Dopa2_AvgHybHeatMap_1Hyb1allBlocksCy3,  
            columnToPlot = 'gProcessedSignal', 
            title = 'DHEA-S Aptamer Flare Binding Profile', 
            colorBarLabel = 'Cy5 Hyb Signal, AU', 
            fontSize = 12, 
            colorMin = 0, 
            colorMax = Dopa2_AvgHybHeatMap_1Hyb1allBlocksCy3_max, 
            figName = 'DIS11th_3_1Hyb1_heatMap', 
            date = '20191014', 
            cbar_kw = {}, 
            folderPath = folderPath) 
``` 
 
```python 
#Now make a method for generating all those individual heatmaps 
def genHeatMapsBySubArray(slideStatsFrame, 
                          titlePrefix, 
                          colorBarLabel, 
                          fontSize, 
                          colorMin, 
                          colorMax, 
                          figNamePrefix, 
                          date, 
                          cbar_kw = {}, 
                          columnToPlot = 'gProcessedSignal', 
                          folderPath = 
'/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/'): 
    subArrayIndexes = slideStatsFrame.BlockIndex.unique() 
    subArrayLabels = slideStatsFrame.Block.unique() 
 
    for i in subArrayIndexes: 
        slideStatsFrame_i = genFrameForHeatmap( 
            array = slideStatsFrame[slideStatsFrame['BlockIndex'] == i], 
            returnThisCol = columnToPlot) 
     
        heatMap(FrameForHeatMap = slideStatsFrame_i,  
            columnToPlot = columnToPlot, 
            title = titlePrefix + ', Block ' + subArrayLabels[i-1], 
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            colorBarLabel = colorBarLabel, 
            fontSize = fontSize, 
            colorMin = colorMin, 
            colorMax = colorMax, 
            figName = figNamePrefix + '_Block_' + subArrayLabels[i-1], 
            date = date, 
            cbar_kw = {}, 
            folderPath = folderPath) 
``` 
 
 
```python 
#Okay, interesting. Get the exact same hybridization pattern for all the 
subarrays, but the absolute 
#fluorescence values vary pretty significantly between the arrays. If we 
normalize the fluorescence values  
#to the bright spot values, does that change/improve consistency of the values 
between arrays? 
#Data frames to work from on normalization: 
#Dopa2_cleanedStats 
#Dopa130_cleanedStats 
#brightSpotStatsFrame 
``` 
 
```python 
normColsToAdd = ['mean_gProcessedSignal_normToBSmean', 
                'med_gProcessedSignal_normToBSmean', 
                'std_gProcessedSignal_normToBSmean', 
                'max_gProcessedSignal_normToBSmean', 
                'min_gProcessedSignal_normToBSmean', 
                'mean_rProcessedSignal_normToBSmean', 
                'med_rProcessedSignal_normToBSmean', 
                'std_rProcessedSignal_normToBSmean', 
                'max_rProcessedSignal_normToBSmean', 
                'min_rProcessedSignal_normToBSmean', 
                'mean_gProcessedSignal_normToBSmedian', 
                'med_gProcessedSignal_normToBSmedian', 
                'std_gProcessedSignal_normToBSmedian', 
                'max_gProcessedSignal_normToBSmedian', 
                'min_gProcessedSignal_normToBSmedian', 
                'mean_rProcessedSignal_normToBSmedian', 
                'med_rProcessedSignal_normToBSmedian', 
                'std_rProcessedSignal_normToBSmedian', 
                'max_rProcessedSignal_normToBSmedian', 
                'min_rProcessedSignal_normToBSmedian'] 
``` 
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```python 
#Add the columns to the stat frames 
Dopa2_cleanedStats_withNormToBS = addLabeledColumns(Dopa2_cleanedStats, 
normColsToAdd) 
Dopa2_cleanedStats_withNormToBS.tail() 
``` 
 
 
```python 
exptStepIndex = Dopa2_cleanedStats_withNormToBS.ExptStepIndex[0] 
blockIndex = Dopa2_cleanedStats_withNormToBS.BlockIndex[0] 
brightSpotFilter = (brightSpotStatsFrame['ExptStepIndex'] == exptStepIndex) & 
(brightSpotStatsFrame['BlockIndex'] == exptStepIndex) 
relevantBSdata = brightSpotStatsFrame[brightSpotFilter] 
relevantBSdata 
relevantBSmean = relevantBSdata.mean_gProcessedSignal[0] 
relevantBSmedian = relevantBSdata.med_gProcessedSignal[0] 
print relevantBSmean 
print relevantBSmedian 
 
#normalizedStatsFrame = Dopa2_cleanedStats_withNormToBS.copy() 
#normalizedStatsFrame.head() 
``` 
 
    34250.970000000016 
    36013.10000000001 
 
 
 
```python 
#Now, iterate through and normalize to either the BS mean or the BS median 
def addNormtoBS_inEachSubarray_stats(statsFrameToNormalize, BSstatsFrame): 
    tic = time.clock() 
     
    normalizedStatsFrame = statsFrameToNormalize.copy() 
     
    for i in statsFrameToNormalize.index: 
        #What I want to do here is to first, get the experiment step index and 
the subarray index 
        exptStepIndex = normalizedStatsFrame.ExptStepIndex[i] 
        blockIndex = normalizedStatsFrame.BlockIndex[i] 
         
        #Next, I want to retrieve the mean and median gProcessedSignal from the 
brightSpotsStatsFrame 
        brightSpotFilter = (BSstatsFrame['ExptStepIndex'] == exptStepIndex) & 
(BSstatsFrame['BlockIndex'] == exptStepIndex) 
        relevantBSdata = BSstatsFrame[brightSpotFilter] 
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        relevantBSmean = relevantBSdata.mean_gProcessedSignal.values[0] 
        relevantBSmedian = relevantBSdata.med_gProcessedSignal.values[0] 
         
        #Add the stats normalized to the BSmean 
        #Green Channel 
        normalizedStatsFrame.at[i, 'mean_gProcessedSignal_normToBSmean'] = 
normalizedStatsFrame.mean_gProcessedSignal[i] / relevantBSmean 
        normalizedStatsFrame.at[i, 'med_gProcessedSignal_normToBSmean'] = 
normalizedStatsFrame.med_gProcessedSignal[i] / relevantBSmean 
        normalizedStatsFrame.at[i, 'std_gProcessedSignal_normToBSmean'] = 
normalizedStatsFrame.std_gProcessedSignal[i] / relevantBSmean 
        normalizedStatsFrame.at[i, 'max_gProcessedSignal_normToBSmean'] = 
normalizedStatsFrame.max_gProcessedSignal[i] / relevantBSmean 
        normalizedStatsFrame.at[i, 'min_gProcessedSignal_normToBSmean'] = 
normalizedStatsFrame.min_gProcessedSignal[i] / relevantBSmean 
        #Red Channel (note that I'm normalizing the red channel by green channel 
positive controls; unclear if this will work yet) 
        normalizedStatsFrame.at[i, 'mean_rProcessedSignal_normToBSmean'] = 
normalizedStatsFrame.mean_rProcessedSignal[i] / relevantBSmean 
        normalizedStatsFrame.at[i, 'med_rProcessedSignal_normToBSmean'] = 
normalizedStatsFrame.med_rProcessedSignal[i] / relevantBSmean 
        normalizedStatsFrame.at[i, 'std_rProcessedSignal_normToBSmean'] = 
normalizedStatsFrame.std_rProcessedSignal[i] / relevantBSmean 
        normalizedStatsFrame.at[i, 'max_rProcessedSignal_normToBSmean'] = 
normalizedStatsFrame.max_rProcessedSignal[i] / relevantBSmean 
        normalizedStatsFrame.at[i, 'min_rProcessedSignal_normToBSmean'] = 
normalizedStatsFrame.min_rProcessedSignal[i] / relevantBSmean 
         
        #Add the stats normalized to the BSmedian 
        #Green Channel 
        normalizedStatsFrame.at[i, 'mean_gProcessedSignal_normToBSmedian'] = 
normalizedStatsFrame.mean_gProcessedSignal[i] / relevantBSmedian 
        normalizedStatsFrame.at[i, 'med_gProcessedSignal_normToBSmedian'] = 
normalizedStatsFrame.med_gProcessedSignal[i] / relevantBSmedian 
        normalizedStatsFrame.at[i, 'std_gProcessedSignal_normToBSmedian'] = 
normalizedStatsFrame.std_gProcessedSignal[i] / relevantBSmedian 
        normalizedStatsFrame.at[i, 'max_gProcessedSignal_normToBSmedian'] = 
normalizedStatsFrame.max_gProcessedSignal[i] / relevantBSmedian 
        normalizedStatsFrame.at[i, 'min_gProcessedSignal_normToBSmedian'] = 
normalizedStatsFrame.min_gProcessedSignal[i] / relevantBSmedian 
        #Red Channel (note that I'm normalizing the red channel by green channel 
positive controls; unclear if this will work yet) 
        normalizedStatsFrame.at[i, 'mean_rProcessedSignal_normToBSmedian'] = 
normalizedStatsFrame.mean_rProcessedSignal[i] / relevantBSmedian 
        normalizedStatsFrame.at[i, 'med_rProcessedSignal_normToBSmedian'] = 
normalizedStatsFrame.med_rProcessedSignal[i] / relevantBSmedian 
        normalizedStatsFrame.at[i, 'std_rProcessedSignal_normToBSmedian'] = 
normalizedStatsFrame.std_rProcessedSignal[i] / relevantBSmedian 
        normalizedStatsFrame.at[i, 'max_rProcessedSignal_normToBSmedian'] = 
normalizedStatsFrame.max_rProcessedSignal[i] / relevantBSmedian 
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        normalizedStatsFrame.at[i, 'min_rProcessedSignal_normToBSmedian'] = 
normalizedStatsFrame.min_rProcessedSignal[i] / relevantBSmedian 
     
    toc = time.clock() 
    print toc-tic 
    return normalizedStatsFrame 
 
``` 
 
 
```python 
Dopa2_cleanedStats_withNormToBS = 
addNormtoBS_inEachSubarray_stats(statsFrameToNormalize = 
Dopa2_cleanedStats_withNormToBS, 
                                                         BSstatsFrame = 
brightSpotStatsFrame) 
 
``` 
 
    28.09941 
 
```python 
Dopa2_cleanedStats_withNormToBS.head() 
 
``` 
 
```python 
#Cool, so the negative control aptamer mainly doesn't show fluorescence, except 
for at a couple of locations 
#Where it looks like, by chance, the flare sequences were able to bind to one 
of the aptamers added on 
``` 
 
 
```python 
#allExptData[allExptData['ControlType'] == 1].SystematicName.unique() 
#IMPORTANT QUESTION: WHAT DO ALL THE DIFFERENT CONTROL SPOTS DO? 
#I've used GE_BrightCorner spots (brightSpots), 
#But there's also: 
controlFeatures = ['GE_BrightCorner', 'DarkCorner', 'E1A_r60_a22', 'ERCC-
00053_71', 
       'ERCC-00062_278', 'ETG10_13482', 'ERCC-00012_90', 'ERCC-00077_121', 
       'ERCC-00075_180', 'E1A_r60_a107', 'ETG08_142674', 'E1A_r60_a135', 
       'ERCC-00104_60', 'ERCC-00171_229', 'ETG05_66023', 'ERCC-00097_63', 
       'ERCC-00028_121', 'E1A_r60_3', 'ETG09_35454', 'E1A_r60_1', 
       'ETG04_27747', 'ERCC-00043_129', 'E1A_r60_a97', 'ETG09_205211', 
       'ERCC-00160_243', 'ETG10_195139', 'ETG05_36762', 'ETG09_48764', 
       'E1A_r60_n9', 'E1A_r60_a104', 'E1A_r60_n11', 'ETG07_105829', 
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       'ERCC-00144_60', 'ETG02_36680', 'E1A_r60_a20', 'ETG10_236652', 
       'ETG10_234183', 'DCP_20_9', 'DCP_22_0', 'DCP_22_9', 'DCP_22_6', 
       'DCP_1_0', 'DCP_20_1', 'DCP_22_4', 'DCP_20_7', 'DCP_20_0', 
       'DCP_20_3', 'DCP_1_4', 'DCP_1_11', 'DCP_22_7', 'DCP_1_2', 
       'DCP_22_2', 'DCP_20_5', 'DCP_1_1', 'DCP_1_7'] 
    #What do they all do? 
``` 
 
 
```python 
flaresAptamersSeqs[['AptamerName', 'AptamerSequence']] 
aptNamesAndSeqs = pd.DataFrame() 
aptNamesAndSeqs['AptamerSequence'] = 
flaresAptamersSeqs.AptamerSequence.unique() 
aptNamesAndSeqs['AptamerName'] = flaresAptamersSeqs.AptamerName.unique() 
 
#aptNamesAndSeqs 
 
#Maybe the extra Dopa aptamers are better negative controls, since they seem to 
have more divergent sequences 
#than the other aptamers 
#Try out running Dopa130 as the negative control 
``` 
 
 
```python 
#Now, next steps: generate raw fluorescence heatmaps for all subarrays for all 
experimental steps, in the green 
#And the red channel, normalized to the bright spot fluorescence and not. 
 
#Then, zoom in on one particular flare strand--the 12bp Dopa2 flare strand. 
#Examine how its fluorescence changes as a function of subarray and experimental 
step. 
#Also examine if/how these trends change when the fluorescence values are 
normalized to the bright spot. 
#Then, calculate fold change in fluorescence relative to the previous 
experimental step for all sequences. 
    #Do this with and without normalizing to bright spot fluorescence. 
#Then, look at how fluorescence changes in the calibration subarray, with and 
without BrightSpot normalization 
#Then, normalize all other changes in fluorescence by the calibration subarray, 
either with or without brightSpot 
    #normalization 
#Then, calculate the k_off rate for flares free in buffer, based on the 
normalized change in fluorescence divided 
    #by 1 hour 
#And calculate the k_off_IF rate for flares in the presence of target molecule 
#And then plot heatmaps that show where k_off_IF is larger than k_off 
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``` 
 
 
```python 
#Generate raw fluorescence heatmaps for all subarrays for all experimental 
steps, in the green 
#And the red channel, normalized to the bright spot fluorescence and not. 
 
``` 
 
 
```python 
#I should abstract all this plotting to a function 
#Take as input a list of frames, a list of title prefixes, a color bar label, 
a list of figure name prefixes, 
#a date, colorbar keywords, columnToPlot, and folderPath to save files 
def genHeatMapsBySubArrayForMultipleExptSteps(frameList, titlePrefixList, 
figNamePrefixList, 
                                              colorBarLabel, fontSize, 
colorMin, colorMax, 
                                              date, columnToPlot, cbar_kw = 
{}, 
                                             folderPath = 
'/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/'): 
    for i in range(len(frameList)): 
        genHeatMapsBySubArray(slideStatsFrame = frameList[i], 
                          titlePrefix = titlePrefixList[i], 
                          colorBarLabel = colorBarLabel, 
                          fontSize = fontSize, 
                          colorMin = colorMin, 
                          colorMax = colorMax, 
                          figNamePrefix = figNamePrefixList[i], 
                          date = date, 
                          cbar_kw = cbar_kw, 
                          columnToPlot = columnToPlot) 
     
``` 
 
 
```python 
#Dopa2 not normed to BS, green channel 
Dopa2stats_frameList = [Dopa2stats_1Hyb1, 
         Dopa2stats_2Hyb2, 
         Dopa2stats_3DandC1hrInc, 
         Dopa2stats_4otherTargets1hrInc] 
 
Dopa2stats_titlePrefixList = ['Dopa2 Hyb, Cy3, Step 1Hyb1', 
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                                  'Dopa2 Hyb, Cy3, Step 2Hyb2',  
                                  'Dopa2 Hyb, Cy3, Step 3DandC1hrInc', 
                                  'Dopa2 Hyb, Cy3, Step 4otherTargets1hrInc'] 
 
Dopa2stats_figNamePrefixList = ['Dopa2_Cy3Hyb_Heatmap_Step_1Hyb1_Block_', 
                                    'Dopa2_Cy3Hyb_Heatmap_Step_2Hyb2_Block_',  
                                    
'Dopa2_Cy3Hyb_Heatmap_Step_3DandC1hrInc_Block_', 
                                    
'Dopa2_Cy3Hyb_Heatmap_Step_4otherTargets1hrInc_Block_'] 
 
#Set colorMin and colorMax relative to the highest fluorescence on the first 
scan 
Dopa2stats_1Hyb1_greenMax = Dopa2stats_1Hyb1.gProcessedSignal.max() 
 
 
colorBarLabel = 'Cy3 Hyb Signal, AU' 
fontSize = 12 
colorMin = 0 
colorMax = Dopa2stats_1Hyb1_greenMax 
date = '20191014' 
columnToPlot = 'gProcessedSignal' 
cbar_kw = {} 
folderPath = '/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/' 
 
genHeatMapsBySubArrayForMultipleExptSteps(frameList = Dopa2stats_frameList, 
                                          titlePrefixList = 
Dopa2stats_titlePrefixList, 
                                          figNamePrefixList = 
Dopa2stats_figNamePrefixList, 
                                          colorBarLabel = colorBarLabel, 
                                          fontSize = fontSize, 
                                          colorMin = colorMin, 
                                          colorMax = colorMax, 
                                          date = date, 
                                          columnToPlot = columnToPlot, 
                                          cbar_kw = cbar_kw, 
                                          folderPath = folderPath) 
 
``` 
 
```python 
#Dopa2 not normed to BS, red channel 
Dopa2stats_frameList = [Dopa2stats_1Hyb1, 
         Dopa2stats_2Hyb2, 
         Dopa2stats_3DandC1hrInc, 
         Dopa2stats_4otherTargets1hrInc] 
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Dopa2stats_titlePrefixList = ['Dopa2 Hyb, Cy5, Step 1Hyb1', 
                                  'Dopa2 Hyb, Cy5, Step 2Hyb2',  
                                  'Dopa2 Hyb, Cy5, Step 3DandC1hrInc', 
                                  'Dopa2 Hyb, Cy5, Step 4otherTargets1hrInc'] 
 
Dopa2stats_figNamePrefixList = ['Dopa2_Cy5Hyb_Heatmap_Step_1Hyb1_Block_', 
                                    'Dopa2_Cy5Hyb_Heatmap_Step_2Hyb2_Block_',  
                                    
'Dopa2_Cy5Hyb_Heatmap_Step_3DandC1hrInc_Block_', 
                                    
'Dopa2_Cy5Hyb_Heatmap_Step_4otherTargets1hrInc_Block_'] 
 
#Set colorMin and colorMax relative to the highest fluorescence on the first 
scan 
Dopa2stats_1Hyb1_redMax = Dopa2stats_1Hyb1.rProcessedSignal.max() 
 
colorBarLabel = 'Cy5 Hyb Signal, AU' 
fontSize = 12 
colorMin = 0 
colorMax = Dopa2stats_1Hyb1_redMax 
date = '20191014' 
columnToPlot = 'rProcessedSignal' 
cbar_kw = {} 
folderPath = '/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/' 
 
genHeatMapsBySubArrayForMultipleExptSteps(frameList = Dopa2stats_frameList, 
                                          titlePrefixList = 
Dopa2stats_titlePrefixList, 
                                          figNamePrefixList = 
Dopa2stats_figNamePrefixList, 
                                          colorBarLabel = colorBarLabel, 
                                          fontSize = fontSize, 
                                          colorMin = colorMin, 
                                          colorMax = colorMax, 
                                          date = date, 
                                          columnToPlot = columnToPlot, 
                                          cbar_kw = cbar_kw, 
                                          folderPath = folderPath) 
 
``` 
 
```python 
#Dopa2 normed to BS, green channel 
Dopa2_cleanedStats_withNormToBS_1Hyb1 = Dopa2_cleanedStats_withNormToBS[ 
    Dopa2_cleanedStats_withNormToBS['ExptStepIndex'] == 1] 
Dopa2_cleanedStats_withNormToBS_2Hyb2 = Dopa2_cleanedStats_withNormToBS[ 
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    Dopa2_cleanedStats_withNormToBS['ExptStepIndex'] == 2] 
Dopa2_cleanedStats_withNormToBS_3DandC1hrInc = 
Dopa2_cleanedStats_withNormToBS[ 
    Dopa2_cleanedStats_withNormToBS['ExptStepIndex'] == 3] 
Dopa2_cleanedStats_withNormToBS_4otherTargets1hrInc = 
Dopa2_cleanedStats_withNormToBS[ 
    Dopa2_cleanedStats_withNormToBS['ExptStepIndex'] == 4] 
 
Dopa2stats_normToBS_frameList = [Dopa2_cleanedStats_withNormToBS_1Hyb1, 
         Dopa2_cleanedStats_withNormToBS_2Hyb2, 
         Dopa2_cleanedStats_withNormToBS_3DandC1hrInc, 
         Dopa2_cleanedStats_withNormToBS_4otherTargets1hrInc] 
 
Dopa2stats_normToBS_titlePrefixList = ['Dopa2 Hyb Norm to BS, Cy3, Step 1Hyb1', 
                                  'Dopa2 Hyb Norm to BS, Cy3, Step 2Hyb2',  
                                  'Dopa2 Hyb Norm to BS, Cy3, Step 
3DandC1hrInc', 
                                  'Dopa2 Hyb Norm to BS, Cy3, Step 
4otherTargets1hrInc'] 
 
Dopa2stats_normToBS_figNamePrefixList = 
['Dopa2_Cy3Hyb_NormToBS_Heatmap_Step_1Hyb1_Block_', 
                                    
'Dopa2_Cy3Hyb_NormToBS_Heatmap_Step_2Hyb2_Block_',  
                                    
'Dopa2_Cy3Hyb_NormToBS_Heatmap_Step_3DandC1hrInc_Block_', 
                                    
'Dopa2_Cy3Hyb_NormToBS_Heatmap_Step_4otherTargets1hrInc_Block_'] 
 
#Set colorMin and colorMax relative to the highest fluorescence on the first 
scan 
Dopa2_cleanedStats_withNormToBS_1Hyb1_greenMax = 
Dopa2_cleanedStats_withNormToBS_1Hyb1.mean_gProcessedSignal_normToBSmean.max(
) 
 
 
colorBarLabel = 'Cy3 Hyb Signal, AU' 
fontSize = 12 
colorMin = 0 
colorMax = Dopa2_cleanedStats_withNormToBS_1Hyb1_greenMax 
date = '20191014' 
columnToPlot = 'mean_gProcessedSignal_normToBSmean' 
cbar_kw = {} 
folderPath = '/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/' 
 
genHeatMapsBySubArrayForMultipleExptSteps(frameList = 
Dopa2stats_normToBS_frameList, 
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                                          titlePrefixList = 
Dopa2stats_normToBS_titlePrefixList, 
                                          figNamePrefixList = 
Dopa2stats_normToBS_figNamePrefixList, 
                                          colorBarLabel = colorBarLabel, 
                                          fontSize = 16, 
                                          colorMin = colorMin, 
                                          colorMax = colorMax, 
                                          date = date, 
                                          columnToPlot = columnToPlot, 
                                          cbar_kw = cbar_kw, 
                                          folderPath = folderPath) 
 
``` 
 
```python 
Dopa2_cleanedStats_withNormToBS_1Hyb1.head() 
``` 
 
```python 
#Now do the normalized Cy5 values  
Dopa2stats_normToBS_titlePrefixList = ['Dopa2 Hyb Norm to BS, Cy5, Step 1Hyb1', 
                                  'Dopa2 Hyb Norm to BS, Cy5, Step 2Hyb2',  
                                  'Dopa2 Hyb Norm to BS, Cy5, Step 
3DandC1hrInc', 
                                  'Dopa2 Hyb Norm to BS, Cy5, Step 
4otherTargets1hrInc'] 
 
Dopa2stats_normToBS_figNamePrefixList = 
['Dopa2_Cy5Hyb_NormToBS_Heatmap_Step_1Hyb1_Block_', 
                                    
'Dopa2_Cy5Hyb_NormToBS_Heatmap_Step_2Hyb2_Block_',  
                                    
'Dopa2_Cy5Hyb_NormToBS_Heatmap_Step_3DandC1hrInc_Block_', 
                                    
'Dopa2_Cy5Hyb_NormToBS_Heatmap_Step_4otherTargets1hrInc_Block_'] 
 
#Set colorMin and colorMax relative to the highest fluorescence on the first 
scan 
Dopa2_cleanedStats_withNormToBS_1Hyb1_redMax = 
Dopa2_cleanedStats_withNormToBS_1Hyb1.mean_rProcessedSignal_normToBSmean.max(
) 
 
 
colorBarLabel = 'Cy5 Hyb Signal, AU' 
fontSize = 12 
colorMin = 0 
colorMax = Dopa2_cleanedStats_withNormToBS_1Hyb1_redMax 
date = '20191014' 
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columnToPlot = 'mean_rProcessedSignal_normToBSmean' 
cbar_kw = {} 
folderPath = '/Users/isaac/Desktop/Lab_Projects/Mirkin_Lab_Projects/AFRL_C-
ABN_Project/20191008_Isaac_ArrayData/' 
 
genHeatMapsBySubArrayForMultipleExptSteps(frameList = 
Dopa2stats_normToBS_frameList, 
                                          titlePrefixList = 
Dopa2stats_normToBS_titlePrefixList, 
                                          figNamePrefixList = 
Dopa2stats_normToBS_figNamePrefixList, 
                                          colorBarLabel = colorBarLabel, 
                                          fontSize = fontSize, 
                                          colorMin = colorMin, 
                                          colorMax = colorMax, 
                                          date = date, 
                                          columnToPlot = columnToPlot, 
                                          cbar_kw = cbar_kw, 
                                          folderPath = folderPath) 
``` 
 
 
```python 
#Hmm, so what I seem to be seeing from this is that the average of bright corner 
values in a subarray 
#Doesn't necessarily normalize fluorescence values consistently 
#In particular, setting the color bar relative to the maximum hybridized 1Hyb1 
value doesn't guarantee 
#that heatmaps from later conditions won't have large numbers of sequences with 
higher normalized fluorescence 
#values relative to their bright spots 
#One question worth pursuing is whether these subarray-specific trends are 
consistent across multiple aptamers 
#And this is a question I can pursue and answer fairly quickly, by copying this 
notebook and running the analysis 
#for many other aptamers 
``` 
 
 
```python 
#Plot an average of all the heatmaps from 1Hyb1 in Cy3 and Cy5 channels 
Dopa2_AvgHybHeatMap_1Hyb1_red = genFrameForHeatmap( 
    array = Dopa2stats_1Hyb1, 
    returnThisCol = 'rProcessedSignal') 
 
colorMax_red = Dopa2_AvgHybHeatMap_1Hyb1_red.AvgrProcessedSignal.max() 
 
Dopa2_AvgHybHeatMap_1Hyb1_green = genFrameForHeatmap( 
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    array = Dopa2stats_1Hyb1, 
    returnThisCol = 'gProcessedSignal') 
 
colorMax_green = Dopa2_AvgHybHeatMap_1Hyb1_green.AvggProcessedSignal.max() 
 
heatMap(FrameForHeatMap = Dopa2_AvgHybHeatMap_1Hyb1_red,  
            columnToPlot = 'rProcessedSignal', 
            title = 'Dopa2 Aptamer Flare Binding Profile', 
            colorBarLabel = 'Cy5 Hyb Signal, AU', 
            fontSize = fontSize, 
            colorMin = colorMin, 
            colorMax = colorMax_red, 
            figName = 'Dopa2_1Hyb1_AllCy5_heatMap', 
            date = '20191014', 
            cbar_kw = {}, 
            folderPath = folderPath) 
 
heatMap(FrameForHeatMap = Dopa2_AvgHybHeatMap_1Hyb1_green,  
            columnToPlot = 'gProcessedSignal', 
            title = 'Dopa2 Aptamer Flare Binding Profile', 
            colorBarLabel = 'Cy3 Hyb Signal, AU', 
            fontSize = fontSize, 
            colorMin = colorMin, 
            colorMax = colorMax_green, 
            figName = 'Dopa2_1Hyb1_AllCy3_heatMap', 
            date = '20191014', 
            cbar_kw = {}, 
            folderPath = folderPath) 
``` 
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APPENDIX D: Supplementary Code for Chapter 4 

Code D1. Matlab script for quantifying CRISPR-mediated insertion/deletion mutations. 
WTnuc='target genomic site sequence'; 
%WTnuc='complimentary sequence to the above target site sequence'; 
%cycle through fastq files for different samples 
files=dir('*.fastq'); 
indelstart=69; 
width=40; 
flank=10; 
SUMMARY={}; 
SUMMARY{1,1}='Filename'; 
SUMMARY{1,2}='Skipped reads'; 
SUMMARY{1,3}='not INDEL'; 
SUMMARY{1,4}='Insertions'; 
SUMMARY{1,5}='Deletions'; 
SUMMARY{1,6}='INDEL rate'; 
foldername=strcat(num2str(width),'_',num2str(indelstart),'summary.csv'); 
  
for d=1:total sample number 
    filename=files(d).name; 
    %read fastq file 
    [header,seqs,qscore] = fastqread(filename); 
    seqsLength = length(seqs);          % number of sequences 
    seqsFile = strcat(strrep(filename,'.fastq',''),'_INDELS');      % trims 
off .fastq 
    %create a directory with the same name as fastq file+_INDELS 
    if exist(seqsFile,'dir'); 
        error('Directory already exists. Please rename or move it before 
moving on.'); 
    end 
    mkdir(seqsFile);                    % make directory 
    wtLength = length(WTnuc);           % length of wildtype sequence 
    sBLength = length(seqs);            % number of sequences 
  
    % initialize counters and cell arrays 
    nSkips=0; 
    notINDEL=0; 
    ins={}; 
    dels={}; 
    NumIns=0; 
    NumDels=0; 
    % iterate through each sequencing read 
    for i = 1:sBLength 
    %search for 10BP sequences that should flank both sides of the "INDEL 
WINDOW" 
        windowstart=strfind(seqs{i},WTnuc(indelstart-flank:indelstart)); 
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        windowend=strfind(seqs{i},WTnuc(indelstart+width:indelstart+width+fla
nk)); 
        %if these flanks are found proceed\ 
        if length(windowstart)==1 && length(windowend)==1 
            %if the sequence length matches the INDEL window length save as 
            %not INDEL 
            if windowend-windowstart==width+flank 
                notINDEL=notINDEL+1; 
            %if the sequence is two or more baseslonger than the INDEL 
            %window length save as an Insertion 
            elseif windowend-windowstart>=width+flank+1 
                NumIns=NumIns+1; 
                ins{NumIns,2}=seqs{i}; 
                ins{NumIns,1}=filename(1:2); 
            %if the sequence is two or more bases shorter than the INDEL 
            %window length save as a Deletion and name the second column 
            %with the fileame 
            elseif windowend-windowstart<=width+flank-1 
                NumDels=NumDels+1; 
                dels{NumDels,2}=seqs{i}; 
                dels{NumDels,1}=filename(1:2); 
            %keep track of skipped sequences that are either one base 
            %shorter or longer than the INDEL window width 
            else 
                nSkips=nSkips+1; 
            end 
        %keep track of skipped sequences that do not posess matching flank 
        %sequences 
        else 
            nSkips=nSkips+1; 
        end 
    end 
    SUMMARY{d+1,1}=seqsFile; 
    SUMMARY{d+1,2}=nSkips; 
    SUMMARY{d+1,3}=notINDEL; 
    SUMMARY{d+1,4}=NumIns;  
    SUMMARY{d+1,5}=NumDels; 
    SUMMARY{d+1,6}=(NumIns+NumDels)/(NumIns+NumDels+notINDEL); 
    fid=fopen(strcat(seqsFile, '/summary.txt'), 'wt'); 
    fprintf(fid, 'Skipped reads %i\n not INDEL %i\n Insertions %i\n Deletions 
%i\n', [nSkips, notINDEL, NumIns, NumDels]); 
    fclose(fid); 
    save(strcat(seqsFile, '/nSkips'), 'nSkips'); 
    save(strcat(seqsFile, '/notINDEL'), 'notINDEL'); 
    save(strcat(seqsFile, '/NumIns'), 'NumIns'); 
    save(strcat(seqsFile, '/NumDels'), 'NumDels'); 
    save(strcat(seqsFile, '/dels'), 'dels'); 
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    dlmcell(strcat(seqsFile, strcat('/dels_', filename(1:2), '.csv')), dels, 
','); 
    save(strcat(seqsFile, '/ins'), 'ins'); 
    dlmcell(strcat(seqsFile, strcat('/ins_', filename(1:2), '.csv')), ins, 
','); 
end 
dlmcell(strcat(foldername), SUMMARY, ',') 
 


