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ABSTRACT 

Polymer nanocomposites have attracted great interest in recent years because of their 

potential as tailored materials with enhanced properties. Recent experiments have shown that 

polymer nanocomposites are able to achieve significant improvement in dielectrical, thermal, 

mechanical and other physical properties compared with their parent polymer systems. More 

importantly, these outstanding properties can be achieved at low filler loadings such that the 

polymer system does not sacrifice the advantages of easy processability.  

Despite the excellent performance of advanced materials including polymer 

nanocomposites, the time frame of development to application of those materials in industry is 

long, typically over 10 years. Therefore, a top priority of researchers and engineers is to reduce 

the time required to bring advanced materials from laborites to the market. The Material Genome 

Initiative (MGI), proposed by the White House, is one of the major efforts aimed at addressing 

this challenge. In order to better understand the behavior of these materials and further design 

materials with targeted properties, researchers have relied on the materials science paradigm of 

processing-structure-property (PSP) linkage. Data-driven approaches founded on PSP linkage 

have much attention recently and have become a hot topic in many areas of materials research. 

Data-driven approaches combine materials science, computer science and statistics with the goal 

of expediating material discovery by utilizing past research data to draw new fundamental 

understanding. To facilitate the development of data archiving, sharing and development of data-

driven approaches, efforts have been made to create online databases for fast queries and reference. 

A data resource, NanoMine, has been developed to accelerate material design for polymer 

nanocomposites. NanoMine allows fast data queries, visualization, and sharing, as well as a 
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number of tools for analysis including microstructure descriptor identification and reconstruction 

tools. There are three critical requirements needed to expand the functionality of NanoMine for 

usage by the broader nanocomoposite community. First, more analysis and module tools that better 

model the behavior of the material must be built. Second, case studies highlighting the capabilities 

of NanoMine must be developed using curated data to quantify PSP relationships and elucidate 

material mechanisms and physics. Finally, it is essential to put continuous efforts toward robust 

data curation, which expands the size of database and enables development systematic studies. 

In relation to the three needs above, this dissertation first presents a combined finite 

element analysis (FEA) and optimization approach to accelerate the identification of interphase 

properties given experimental data of bulk nanocomposite properties.  This approach is tested on 

both simulations of dielectric and viscoelastic properties in nanocomposites. Our work provides 

insight into identifying interphase properties for polymer nanocomposites using adaptive 

optimization and demonstrates the potential of data-driven approaches for achieving a deeper 

understanding of interphase properties that have proven difficult to directly characterize 

experimentally. Secondly, we present a novel deep learning approach that probes the structure-

property relationships in polymer nanocomposites. Analysis of archived experimental data 

motivates the development of a computational model that allows for demonstration of this 

approach and gives flexibility to sufficiently explore a wide range of structures. Lastly, to facilitate 

the data curation process from literature sources, by applying recent machine learning and natural 

language processing methods, an end-to-end framework to extract material processing and 

synthesis information from full-length journal articles is developed. The proposed models and 
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methods are shown herein to be a powerful tool to supplement labor-intensive manual curation 

and improve the efficiency of data input for the database. 
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Chapter 1. Motivation and research tasks 

1.1. Background and motivation  

Because of enhanced  properties and the potential of being next generation materials, 

polymer nanocomposites have become a hot research topic in recent years [1-3]. Polymer 

nanocomposites have shown significant improvement in thermal, optical, mechanical, dielectrical 

and other physical properties compared with neat polymer systems,  by adding exceptionally low 

filler to the neat polymer system [4-8]. Because of the existence of large extent of interphase - a 

polymer region with significantly modified dynamics – that results from both strong chemical and 

geometric interactions between the particle surface and the polymer segments near the particle 

(Figure 1, top right), in conjunction with the high surface-to-volume ratio of the nanoinclusions, 

the composites is able to show significant property enhancements even at low filler loading 

percentage. For example, a nanocomposite material containing 5 wt% of perfectly dispersed 

spherical nanoparticles with 40nm diameter contains a total interfacial surface area of about 

2 33.5 /m cm  [9]. The significant extension of the interphase domain (Figure 1, top middle) is 

because of the interaction, cooperative nature of the macromolecular network, which leads the 

interphase area extends well beyond the matrix chains directly attached to the filler surface [10].  

Because of their easy processability and outstanding properties, polymer nanocomposites 

have become more popular in industry. Figure 1 highlights some applications of polymer 

nanocomposite materials in daily life.  
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Figure 1. Industry application of polymer nanocomposites and the polymer nanocomposite interphase 

Although advanced materials, including polymer nanocomposites, display tremendous 

advantages over traditional materials, the time frame from development of a new nanocomposite 

material to deployment of those materials into industrial applications is lengthy, typically over 10 

years. Therefore, researchers and engineers seek to prioritize the reduction in time required to bring 

advanced materials from laborites to the market. The Material Genome Initiative (MGI), proposed 

by the White House, is one of the efforts aimed at addressing these challenges. The core of the 

MGI framework is to develop novel, integrated, material-innovation infrastructure leveraging 

computational, experimental, and data informatics methods to enable rapid engineering design, 

yielding a remarkable opportunity to replace traditional time-consuming design approaches mainly 

relying on trail and error [11]. Advances in computational modeling and simulations, including 

Finite Element Analysis (FEA) and Molecular Dynamics (MD) simulations, enable fast prediction 

of material behavior, as well as design validation. With advances in computational power, 
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researchers increasingly emphasize computational investigations. However, validation of key 

results using experimental data is essential to ensure that computational models are robust.  

In order to better understand the behavior of nanocomposite materials and design new 

materials with tailored properties, researchers have relied on the materials science paradigm 

exploring processing-structure-property (PSP) relationships. Data-driven approaches founded on 

PSP linkage have attracted more attention recently and become a hot topic in many areas of 

material research in order to accelerate materials design. Data-driven approaches combine 

materials science, computer science, and statistics with the goal of enhancing materials discovery 

by drawing new connections using past research data [12, 13]. To facilitate data archiving, sharing 

and development of data-driven approaches, efforts have been made to create online databases for 

fast queries and reference. Representative works include CALPHAD database for alloy phase 

diagrams [14], Materials Project for inorganic compounds [15], and OQMD for complex alloys 

and compounds [16, 17]. For polymer nanocomposites, with the complexity of different types of 

data across various sources, it is hard to find a universe standard or schema that contains all the 

possible data coming from different perspectives. Several examples of online polymer data 

resources include the PolyInfo database from NIMS of Japan [18], the CRC POLYMERSnetBASE 

by Taylor and Francis Group [19], and the Polymer Property Predictor and Database (PPPDB) by 

University of Chicago. However, the complexity of polymer nanocomposites far surpasses even 

that of polymers due to factors such as the enormous variety of nanoparticle candidates and surface 

chemistries, the increase in processing complexity and options relative to pure polymer 

counterparts, and the interphase resulting from polymer-substrate interactions. 
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Despite the previous efforts toward developing deeper understanding of polymer 

nanocomposites, there are still some challenges remaining that hinder property prediction and 

material design, which will be discussed in Section 1.2.  

1.2. Challenges and research tasks   

1.2.1 Challenges in characterization of interphase properties  

The interphase plays an essential role in the determination of nanocomposite properties 

due to the large surface area between polymer chains and the embedded nanoparticles.  In order to 

understand the behavior of the interphase and make accurate predictions of nanocomposite 

properties, both experimental and computational efforts have been made [20-23]. Although direct 

measurements of the interphase in nanocomposites are challenging due to experimental limitations, 

some recent studies have focused on measuring the local, nanoscale elastic and viscoelastic 

properties of polymer regions near substrate surfaces using ‘model nanocomposite’ systems 

consisting of polymer films deposited on various substrates, shedding insight into local polymer 

property variations of confined polymers [24-29]. In particular, an atomic force microscopy 

(AFM)-based method measuring the local mechanical properties of polymers near to a substrate 

with nanometer resolution shows a gradient of mechanical properties extending tens to hundreds 

of nanometers from confining surfaces [30, 31].  

To predict properties of nanocomposites, continuum mechanics methods can be employed 

with explicit interphase properties in the polymer regions surrounding nanoparticles [32-35]. In 

those continuum models, under some circumstances, the interphase properties can be described by 
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shifting factors based on the pure matrix properties, reflecting the modified dynamics of interphase 

regions. Given experimental data for bulk nanocomposite properties, the interphase properties can 

be determined from a trial-and-error based iterative tuning procedure by matching simulated 

results from FEA with experimental data, using some basic assumptions about the length scale, 

magnitude, and profile of the modified interphase properties [36-39]. However, there are several 

disadvantages for a trial-and-error based manual fitting method. First, this process can be tedious 

and time-consuming given the computational cost of FEA and the complexity of experimental data.  

For example, a single FEA model for one sample with ~10k elements requires 30 minutes to run 

on a typical server. Given the fact that the optimal shifting factors at each iteration are guessed 

based on the previous results and there are many iterations required to obtain optimal results, this 

manual tuning process provides tremendous challenges for efficient investigations of the 

correlations between the interphase properties and the material constituent characteristics. 

Automating the iterative process, however, offers a more efficient route toward determining the 

interphase properties needed to match simulations with observed experimental results, thereby 

helping draw deeper understanding of the PSP relationships.  

1.2.2 Challenges in structure-property relationship prediction  

To predict the properties of nanocomposites with given dispersion states, or morphologies, 

the traditional approach depends on numerical simulations such as continuum mechanics methods 

and multi-scale simulations. A variety of micromechanical models such as Mori-Tanaka, Halpin-

Tsai and the self-consistent scheme have been developed to predict the thermomechanical behavior 

of nanocomposites [32-35]. These analytical models are insufficient to fully capture the true 
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morphology of the fillers in real nanocomposites, although some models include structural 

parameters. Therefore, multi-scale simulations are often necessary. Finite element (FE) 

simulations are able to more accurately capture the structural information and accommodate non-

homogenous material systems with explicit configurations for all material phases, making FE 

simulation a strong candidate to analyze the behavior of nanocomposites. 

Although simulation methods are often relatively quick and inexpensive compared with 

experimental testing and are often less hindered by some practical experimental limitations, the 

computational cost still can be expensive, especially for atomic-scale simulations such as 

molecular dynamics, which are often limited to small regions, which hinders the exploration of the 

bulk properties of multiscale materials (e.g., nanocomposites with non-uniform dispersion states). 

Therefore, it is necessary to build metamodels or surrogate models representing the input and 

output relations in simulations. In order to build such surrogate models for predicting structure-

property relationships, a sufficiently representative pool of data is required. Traditional approaches 

building such linkage usually depend on designing hand-crafted features from microstructures by 

domain experts that sufficiently capture true morphology characteristics. Because of using hand-

crafted features, the accuracy of this approach depends heavily on the quality and resolution of 

designed features and selecting the most important features from a large pool of candidates is 

nontrivial. Moreover, the designed features are usually nontransferable from one material system 

to another. For example, the features selected to characterize polymer nanocomposites may not be 

useful to represent many classes of metamaterials. Therefore, to explore structure-property 

relationships in polymer nanocomposites, targeted data generation and an end-to-end, interpretable 

machine learning model with minimal human intervention is required.  
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1.2.3 Challenges in data acquisition from published literature  

Although data-driven material platforms such as NanoMine provide a path for rapid 

material design and development, data curation remains a challenge, as it mainly relies on manual 

data extraction from scientific literature sources by experts with domain knowledge. The manual 

curation procedure is considered to be expensive, labor-intensive and error-prone. For example, 

based on our experience during the infancy of NanoMine, a curator often requires several hours to 

extract all of the processing-structure-property information from one paper and input the data into 

the database. Moreover, with an enormous number of previously published studies on polymer 

nanocomposites and continuing publication of new results, it is becoming increasingly difficult to 

maintain and update manually curated databases.  

There are many well-established text-mining tools implemented in the biomedical and 

chemical domains [40-45]. Most of these tools can extract specific entity types from specific 

document domains, whereas some of them can be utilized for a broader focus on extraction of 

chemical information, experimental processing, properties and even relationships between entities. 

One such tool is called ChemDataExtractor [44], which is a comprehensive toolkit for the 

automated extraction of chemical information from the scientific literature. This toolkit offers a 

complete natural language processing (NLP) pipeline for the automated extraction of chemical 

information from published sources. Making use of a wide range of state-of-the-art methods, 

including part-of-speech (POS) taggers, word clustering, and name entity recognizers that combine 

conditional random field and dictionaries, this toolkit is able to automate the extraction of 

chemical entities, properties, characterization techniques, and processing procedures. Additionally, 

ChemicalTagger [45]  has been developed to parse experimental processing sections of the 
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documents to determine the chemical roles (e.g., reactant, solvent) and experimental processing 

procedures (e.g., heating, mixing methods, etc.) by using rule-based text parsing. 

However, the field of polymer nanocomposites is lacking a tailored NLP tool that is able 

to extract relevant material information from the literature. Additionally, given the fact that most 

of the NLP tools are domain specific, the tools developed in other fields usually have poor 

performance if directly applied to nanocomposite publications. Therefore, it is critical to build 

NLP tools that can automatically extract material information from the literature, thereby vastly 

enhancing the speed and reliability of the data curation process to expand the large, robust 

databases needed for data-driven material platforms.  

1.3. Research tasks 

NanoMine serves as a data-driven platform for polymer nanocomposites that includes a 

database, search and visualization tools, microstructure reconstruction tools, and physics-based 

simulation tools [46, 47]. As shown in Figure 2, there are three major g of NanoMine: the first is 

to develop data-analysis and simulation tools that better capture the physics of nanocomposite 

behavior and enable deeper understanding of the mechanisms behind observed material behaviors; 

the second is to build data-driven machine learning and design models to draw new insights into 

PSP relationships using data stored in NanoMine; the last is to curate sufficient data containing 

material processing, structure and property information for the aforementioned analysis.  The 

research tasks described in this thesis correspond to each of these three objectives, as described 

below. The first task focuses on improving the accuracy and robustness of computational models 

by developing an automated ‘inverse method’ to identify the interphase properties in polymer 
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nanocomposite using adaptive optimization. The method allows for computational 

characterization of interphase properties that can be validated through comparison to 

corresponding experimental results, enabling correlation between interphase properties and 

material constituents subjected to various processing conditions to fabricate nanocomposites. The 

second task utilizes data and tools in Nanomine to build data-driven models to identify structure-

property relationships for polymer nanocomposites. The last task is to implement automated data 

curation protocols using NLP techniques to robustly extract data from publications into NanoMine. 

Details about each task are elaborated as follows: 

Task 1: An inverse approach to identifying interphase properties in polymer 

nanocomposites: In this investigation, a combined FEA and optimization approach to accelerate 

the characterization of interphase properties given experimental data of bulk nanocomposite 

properties is presented. The objective of this task is to find the optimal interphase properties that 

minimize the difference between simulations and corresponding experimental results using an 

automated procedure. 

Task 2: Mining structure-property relationships using NanoMine: Structure-property 

relationships in polymer nanocomposites are investigated using both qualitative analysis and 

quantitative methods. This study presents an analysis of experimental data from NanoMine, which 

motivates extension to complementary analysis of computation data, giving flexibility to explore 

a wider range of structures that are challenging to investigate experimentally. The objective is to 

demonstrate the power of NanoMine in finding the underlying physical mechanisms of 

nanocomposite behavior and to guide the design of new nanocomposite materials with tailored 

properties.  
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Task 3: Extracting material synthesis information from the scientific literature using 

NLP: In order to accelerate robust data extraction, reduce possible errors, and provide more insight 

into nanocomposite material design, an advancement toward fully automated data curation using 

machine learning is presented. By applying recent statistical learning and natural language 

processing methods, this task is aimed to develop an end-to-end framework to extract synthesis 

and processing information for polymer nanocomposites from full-length journal articles. 

1.4. Dissertation outline 

The outline of this dissertation is given in Figure 2. Chapter 1 contains an introduction to 

polymer nanocomposites and challenges in the design of new nanocomposites with tailored 

properties, which motivates the research tasks in this dissertation. Chapter 2 provides technical 

background for the investigations presented in subsequent chapters. Corresponding to the three 

critical requirements for NanoMine expansion and broad implementation by the polymer 

nanocomposite research and design community, three research tasks are proposed in Chapters 3-

5. Chapter 3 presents the development of an inverse method to identify interphase properties from 

experimental data of bulk nanocomposite properties using adaptive optimization. Chapter 4 

describes a case study of the capabilities of the NanoMine data resource:  mining structure-property 

relationships in polymer nanocomposites. Chapter 5 introduces a semi-automated framework 

applying natural language processing (NLP) to enhance the curation of polymer nanocomposite 

data from scientific literature. Chapters 3-5 additionally include perspectives into further extending 

the functionality of NanoMine for advanced material design. Chapter 6 summaries the 
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contributions of the work presented in this dissertation and points to potential future directions to 

build upon the findings.  

 
Figure 2. NanoMine consists database, data analysis tools and simulation tools for data-driven material deign (bottom). 

The outline of this paper (top).  

Chapter 2. Technical background 

This chapter provides technical background underlying the concepts discussed in this 

dissertation. In section 2.1, a review of structure-property modeling approaches, including both 

numerical approaches and data-driven approaches, are reviewed. Section 2.2 presents the current 

status of techniques used to determine the interphase properties in polymer nanocomposites, 

including both direct measurements from experiments and simulation methods. Section 2.3 

provides a basic introduction to deep learning, which is applied to build structure-property linkage 

for task 2 and NLP models for task 3 in Chapters 4 and 5, respectively. Some popular basic 
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architectures including convolutional neural networks for image processing tasks and recurrent 

neural networks for language modeling tasks are introduced.  

2.1. Structure-property modeling  

To accurately determine structure-property relationships in materials, numerical models, 

including analytical methods, continuum level simulations, and atomistic level simulations have 

been developed. In recent years, data-driven approaches combining machine learning models with 

materials data have also become popular.  Each of these methods are presented in this section. 

2.1.1 Numerical approach  

Numerical approaches typically model polymer nanocomposites as multi-phase materials 

with three distinct phases: polymer, particle and interphase [9, 27, 32, 33, 48, 49]. Both analytical 

methods and simulation models such as FEA simulations and atomistic level models are developed 

to predict various properties of composite materials, including thermomechanical and dielectric 

behavior.  

Analytical methods: micromechanical models, such as Halpin-Tsai, Mori-Tanaka and the 

self-consistent scheme have been applied to predict the thermomechanical properties of 

composites [50]. A variety of analytical models have been developed to analyze the dielectric 

behaviors including the Bruggeman model [51], Lichtenecker model [52] and Todd-Shi model 

[36]. While numerical approaches have great advantages in terms of time efficiency relative to 

simulation-based methods, most analytical models do not fully account for structural information, 

reducing prediction accuracy.  



31 

 

FEA simulations: FEA simulations can accurately represent complex, non-homogeneous 

material systems with explicit configuration of all relevant material phases. This makes FEA a 

good option for analyzing the behavior of nanocomposites, incorporating both important nanofiller 

dispersion and interphase properties. Finite element models for analyzing the thermomechanical 

and dielectric behavior of polymer nanocomposites have been utilized to investigate the impact of 

interphase on bulk nanocomposite properties [27, 29, 33, 37, 49, 53-56].  

Atomistic level simulations: Atomic-scale simulations, such as molecular dynamics (MD) 

and density function theory (DFT) computations, have been implemented to model the mechanical 

and dielectrical behavior of nanocomposites [57, 58]. In polymer nanocomposite field, MD/DFT 

provides fundamental understanding at the nano-scale of intrinsic interphase properties and to 

bridge scales from atomistic level to continuum level [59, 60].  

2.1.2 Data-driven approach  

Although numerical simulations provide a method to predict structure-property 

relationships without the need to perform tedious experimental investigations, the computational 

cost of simulations can be expensive, especially for large volumes of complex, heterogenous 

material systems. This poses a significant challenge for exploring the vast design space for 

materials such as polymer nanocomposites. Data-driven methods are emerging to solve such 

problems by constructing ‘models of the models’ via data mining and machine learning techniques. 

In recent years, data-driven methods have gained increasing interest for predicting structure-

property relationships in various types of materials, including nanocomposites [17, 60-62]. Most 

data-driven approaches rely on design of hand-crafted features that capture the characteristic of 
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microstructures, followed by implementation of machine learning models to correlate the extracted 

features with target property values. Approaches using geometric descriptors and correlation 

functions are detailed below: 

Geometric descriptor approach: In order to illuminate structure-property relations in 

multi-phase materials, one of the traditional methods entails building correlations between user-

selected features found to have the most impact on material behavior. Those features are usually 

chosen to serve as a low-dimensional geometric representation of the material and can include 

parameters such as composition, morphology, dimensions of discrete particles, etc. In this process, 

the minimum number of significant features that accurately reflect the modeled material are 

selected for subsequent machine learning of structure-property relationships, with accuracy of the 

technique largely determined by how well the chosen parameters capture the microstructure of the 

modeled material. The selected features generally depend on the specific material system. For 

polymer nanocomposites, geometric descriptors such as volume fraction, aspect ratio of 

nanoparticles, and nearest neighbor distance between nanoparticles are often critical parameters 

for controlling the material response [63-65]. On the other hand, for metallic materials, features 

such as density and size of voids, grain size, and average length of grain boundaries are often used 

[66]. A regression model such as linear regression or random forest regression is applied to find 

the influence of each geometric feature on resultant properties. This method has high 

interpretability since the impact of physical features of the system on material behavior can be 

easily calculated.  However, this strategy is limited by a lack of generality and accuracy for 

different classes of microstructures.  
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Correlation function approach: Polymer nanocomposite microstructure can also be 

characterized using statistical functions. The N-point correlation function can be used to quantify 

the dispersion state and contains richer information than the geometric descriptor approach, as no 

averaging is implemented [67-70]. In practice, the two-point correlation function is typically 

calculated, followed by subsequent dimension reduction using principal component analysis (PCA) 

to reduce computational cost, as two-point features lie in a high-dimensional space [66, 71]. For 

example, a microstructure with a size of 256*256 pixels has a two-point correlation of dimension 

256*256. Due to the dimension reduction afforded by PCA, the correlation function approach can 

also be considered to be a method using hand-selected features. The top n principle components 

are applied to the regression model to predict the target property.  

2.2. Nanocomposite interphase modeling  

The interphase in polymer nanocomposites is an explicit volume of polymer near an 

interface with modified properties relative to those of the bulk polymer and consists of two regions: 

the extrinsic interphase (order ~1-10nm), whose properties is determined by the extrinsically 

placed molecules on the filler surface and chemical interactions at the interface, and the intrinsic 

interphase (order ~100nm), whose properties come from changes in mobility or structure of the 

polymer from interactions with the nanofiller surface [72]. The interphase often plays a critical 

role in determination of bulk properties of nanocomposites due to percolation of interphase regions 

through the microstructure. Efforts have been made both experimentally and theatrically to 

understand the underlying mechanisms underlying interphase behavior in order to better predict 

nanocomposite properties.  
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Experimental Approach: Although direct measurement of the interphase is challenging 

because of limitations in experimental techniques at the nanoscale, some recent studies have 

focused on measuring the local elastic and viscoelastic properties of polymer regions near 

interfaces using idealized ‘model nanocomposite’ systems of polymer films on flat substrates with 

well-defined geometries that can shed insight into real nanocomposite systems with more complex 

morphologies, indicating  that the local polymer properties are significantly altered in the vicinity 

of polymer surface [24-26, 28-30]. In particular, an atomic force microscopy (AFM)-based 

indentation method directly probing the local mechanical properties with nanometer resolution 

shows a gradient of mechanical properties extending approximately tens or hundreds of 

nanometers from confining surfaces before reaching bulk values farther from interfaces [30, 31].  

Furthermore, electrostatic force microcopy (EFM) can be used to measure the local 

dielectric permittivity of the polymer interphase near surfaces. In this testing mode, local 

interphase areas are probed using a conductive tip with an AC voltage. The tip is kept at a relatively 

large distance from the sample in order to eliminate the effect of short-range atomic forces and 

only the long-range electrostatic force is measured. The local permittivity of the material can be 

derived by analyzing the shift in resonant frequency [73].  

Numerical Approach: Different models have been developed to directly simulate 

interphase properties or to help interpret empirical data from experiments.  Coarse-grained 

molecular dynamics (CGMD) is applied to simulate the AFM indentations and to investigate the 

elastic modulus near interfaces [59]. On the other hand, although direct measurement of interphase 

properties is achievable via AFM or EFM, the data from mechanical indentations are usually 

affected by the interaction of the elastic stress field from the tip interacting with the substrate 
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during indentation. FEA modeling complements these experiments by simulating the indentations 

in order to help deconvolute the influence of the substrate stiffness, tip radius, and other factors on 

the measured data so that interphase properties can be extracted [74]. A 3D FEA indentation model 

can be used to interpret experimental indentation data in order to recover the true gradient profile 

of the interphase modulus.  

2.3. Deep learning  

In recent decades, machine learning has played an increasing role in many aspects of 

modern society: from web-search engines to news-feed ranking on social networks to 

recommendations on e-commerce platforms. Machine learning has even impacted other industries 

such as medical science, chemistry and materials science [75, 76].  

Conventional machine learning usually requires feature engineering and domain expertise 

to extract critical features of a system into vector form in order to represent raw data for subsequent 

analysis. This greatly restricts the ability of conventional machine learning strategies to process 

the data in their raw form. To solve this problem, deep learning methods have been proposed with 

multiple levels of internal representation using non-linear functions that directly transform the raw 

data into a higher and more abstract level. Deep learning has greatly improved the previous 

benchmarks in image recognition and speech recognition. Moreover, deep learning has beaten 

other machine learning models in materials science applications, such as microstructure 

reconstruction, property prediction, and material design.  

A basic architecture of multi-layer neural networks used in deep learning is shown in 

Figure 3. A deep learning model may consist of many hidden layers that are able to capture 
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complex non-linear relationships between input and output. The function of the hidden layer is to 

transform the input in a non-linear manner such that the output layer works as a linear regression 

or classification model. To calculate the values for each layer, we first compute the value z – the 

total weighted sum of the values from the previous layer. Then, a non-linear activation function 

f(∙) is applied to z and generate outputs for each layer. Typical activation functions include the 

rectified linear unit (ReLU), tanh, and sigmoid. A deep learning model may consist of millions of 

trainable parameters, which are updated using a backpropagation algorithm. The backpropagation 

procedure is an application of a chain rule to compute the gradient of the objective function with 

respect to weights at each layer.  

There are different types of deep neural networks: feedforward networks, convolutional 

neural networks (ConvNet), recurrent neural networks, and generative adversarial networks. The 

architecture of feedforward networks is similar to Figure 3. In this thesis, convolutional networks 

and recurrent neural networks are applied. Further details of these two architectures are described 

in the following subsection.  
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Figure 3. Basic architecture of an artificial neural network 

2.3.1 Convolutional neural networks 

Convolutional neural networks (ConVNets) are built to process data in the form of arrays, 

such as signals, audio data, and images [77, 78]. The architecture of a basic ConVNet is shown 

schematically in Figure 4.  

 
Figure 4. Basic architecture of a convolutional neural network 
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The basic building units of ConVNets are convolution and pooling layers. The convolution 

operation is done by calculating the weighted sum between the convolution filter (also called filter) 

and the portion of the image which overlap with the position of the filter. A filter much smaller 

than the image (3*3*3 pixels, for example) slides across the entire image using a specified step 

size during processing, as shown in Figure 5.  The role of the convolution layer is to detect local 

correlations from the previous layer. 

 
Figure 5. The movement of the filter through the image. 

The pooling process is designed to further reduce the dimensionality of feature maps and 

merge semantically similar features into one. Common pooling processes include max pooling or 

average pooling, which are able to reduce the dimensionality by computing the maximum or 

average value, respectively, of a local patch of units in one feature map. By stacking convolution 

and pooling layers, a deep ConVNet can be built that is able to extract higher order abstract and 

complicated features in a stepwise manner.  

ConVNets have been widely applied to process array-like data such as signals, language, 

and images. Among all of their applications, ConVNets have great success in image processing 
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tasks such as the detection, segmentation and recognition of objects and regions. In recent years, 

the ConVNets entail deeper processing, with most architectures having 10 to 20 layers with 

millions of trainable weights and billions of connections between different units [79, 80]. Because 

of the advances in hardware, software, and algorithms, the training time has been dramatically 

reduced from several weeks to several hours.  

2.3.2 Recurrent neural networks  

Recurrent neural networks (RNNs) work better for data with sequential inputs such as 

speech and language. RNNs have successful application in machine translation, language 

generation, and image captioning. Unlike ConvNets, RNNs process the input data one element at 

a time, keeping a ‘state vector’ of that specific element in the hidden units such that the model 

explicitly captures the sequential information about the data [81-83]. A typical RNN architecture 

is shown in Figure 6.  

 
Figure 6. Basic architecture of a Recurrent neural networks (RNNs) 
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In a RNN, each neuron not only takes input from the current sequence 𝑥𝑡 but also from 

other neurons at previous steps. In this way, the output 𝑜𝑡 depends on the inputs from all previous 

steps, and the sequential information from the input is captured by the model. The RNNs can be 

seen as a very deep feedforward neural network where all the layers share the same set of weights 

(U, V, W). One of the difficulties in training RNNs is the gradient vanishes or explodes, especially 

when the sequence is long. This is because the backpropagated gradient either grows or shrinks at 

each step, and if there are many steps (i.e. the sequence is long), the gradient will vanish or explode. 

To solve this problem, long short-term memory (LSTM) networks with special memory cells are 

designed [83]. The special memory cell is able to learn and determine when to clear the long-time 

dependencies. LSTM has been shown to be more useful than conventional RNN especially for the 

case of long sequences.  
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Chapter 3. Identifying interphase properties in polymer nanocomposites 

using adaptive optimization1 

3.1. Introduction 

As mentioned in chapters 1 & 2, Polymer nanocomposites have attracted great interest in 

recent years because of their potential as tailored materials with enhanced properties [1-3]. One of 

the reasons for the enhancement in properties is the large interphase region that results from both 

the strong chemical and geometric interactions between the particle surface and the polymer 

segments near the particle and the high surface-to-volume ratio of the nanoinclusions. For example, 

if a composite sample contains 5 wt% of 40nm particles  perfectly dispersed, the resulting total 

interfacial surface area is about 2 33.5 /m cm  [9]. As illustrated in Figure 7, due to the interacting 

cooperative nature of the macromolecular network, the interphase area extends beyond the layer 

of matrix chains directly bound to the filler surface resulting in the significant extension of the 

interphase domain into the matrix [10]. In order to understand the behavior of the interphase and 

make accurate predictions of nanocomposite properties, efforts have been made to measure the 

interphase thickness and its mechanical or dielectric response [20-23]. Although direct 

measurements of the interphase are limited because of challenges in experimental visualization at 

the nanoscale, recent studies focus on measuring the local elastic and viscoelastic properties in 

different polymer microdomains by correlating thin film and nanocomposite data, providing 

 
1 This chapter is from published paper on Composites Science and Technology 162 (2018): 146-155 
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adequate evidence that the local polymer properties are significantly altered in the vicinity of 

polymer surface [24-29]. In particular, an atomic force microscopy (AFM) -based method that 

directly measures the mechanical properties of polymers adjacent to a substrate with nanometer 

resolution shows a gradient of mechanical properties extending approximately 100nm from 

confining surfaces [27, 84].  

 

 
Figure 7. Interphase configuration. (a) Schematic of the interphase regime in a nanocomposite sample. (b) Schematic 

showing the extended interphase structure. Yellow chains directly anchored to or chemically interacting with nanofiller. Blue 
chains impacted by filler indirectly through interaction with yellow chains. Cooperatively interacting chains propagate interphase 
zone to persist to the order of 100nm from the particle surface. Note: figures not to scale 

To predict properties of nanocomposites, continuum mechanics methods are often 

employed in which three phases must be considered: polymer, particle and interphase. 

Micromechanical models [50], such as Halpin-Tsai, Mori-Tanaka  and the self-consistent scheme 

have been applied to predict the thermomechanical behavior of nanocomposites  [32-35]. A variety 

of analytical models have been developed to analyze the dielectric behaviors including the 

Bruggeman model [51], Lichtenecker model [52] and Todd-Shi model[36]. Given experimental 
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limitations to measure interphase properties directly, one approach to determine the interphase 

properties is inversely through tuning the parameters in finite element analysis or micro-scale 

model constitutive equations using the bulk composite properties from experiments [36-39]. 

Importantly, in order to capture the dispersion state or the morphology information of the fillers, 

multiscale simulations are often necessary. For example, multiscale approaches have been applied 

to study the viscoelastic properties in polymer nanocomposites [27, 60, 85].   

FEA simulations can accommodate complicated non-homogeneous material systems with 

explicit configuration of all relevant material phases. This makes FEA a good option for to analyze 

behavior of nanocomposites and include both important nanofiller dispersion as well as interphase 

properties. We have developed finite element models for analyzing the thermal and mechanical 

[37, 48, 53, 86] and dielectric behavior [38, 87] of polymer nanocomposites and investigated the 

impact of the interphase on the corresponding properties. We have shown that in some cases, the 

interphase properties can be described by shifting factors based on the pure matrix properties, 

which can be well represented by the Prony Series as a parametric expression of multiple relaxation 

times and strengths. Given experimental data for both the pure matrix and bulk nanocomposites 

properties (either dielectric or thermomechanical) the necessary interphase properties can be 

determined from a trial-and-error based iterative tuning procedure by matching simulated results 

from FEA with experimental data. However, there are several disadvantages for this trial-and-error 

based manual fitting. First, this process can be very time-consuming given the complexity of 

experimental data and computational cost of the FEA (a single FEA model for one sample with 

~10k elements requires 30 minutes to run on typical server). Since many manual iterations are 

often required, where the optimal shifting factors are guessed based on the previous outputs, this 
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tedious manual tuning process prohibits efficient investigation of the correlation between shifting 

factors and material constituent characteristics.  

In this work, we present a combined FEA and optimization approach to accelerate the 

search of optimal interphase properties given experimental data of bulk property for the composite. 

Our objective is to find the optimal interphase properties that minimize the difference between 

simulations and experiments, and to do so with an automated procedure. We adopt an adaptive 

global optimization approach that incorporates Gaussian Processing (GP) modeling [88] and 

sequential sampling strategy [89] to efficiently find the global optimal solution. Our proposed 

method can accurately find the optimal shifting factors given experimental data in tens of iterations, 

which significantly eases the computation costs from simulations. We demonstrate our method by 

finding both dielectric and mechanical properties of the interphase based on composite property 

data. This method is an efficient and reliable tool to determine interphase properties and can 

facilitate future work of uncovering the relationship between interphase properties and material 

constituents. 

3.2. Methodology 

Our goal is an optimization of interphase properties for a single sample, for which we have 

a) constituent properties, b) composite properties, c) microstructure information. We seek to 

determine the interphase properties that will yield the composite properties (b) from (a) and (c). 

We assume the interphase properties can be represented by shift factors with respect to matrix 

properties (defined in more detail below). Thus, we seek to find the shift factors that will optimally 

match the composite data via an automated procedure applying adaptive optimization. Based on 
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experience and literature data we begin with reasonable bounds for the shift factor values, and the 

space defined by the n-dimensional factors (n=5 for dielectric case [87], n=2 for mechanical 

case[60]) varying in these bounds defines the search space for the adaptive optimizer. The key 

components of the adaptive optimization method are summarized in Figure 8: (1) The empirical 

bounds of shift factors are used to set the range to sample initial training sets of shift factors from 

design of experiments (DOE) using Optimal Latin hypercube (OLHC).  For each set of shifting 

factors, the FEA model is run and outputs the simulated result. Then the objective function is 

formulated as the difference between the experimental data and the simulation using mean square 

error (MSE); (2) A surrogate model, in our case, a Gaussian Process (GP) model, uses the training 

data to learn the relationship between the objective (Difference F) and features (shifting factors), 

with uncertainties.; (3) adaptive optimization (selector) provides the most promising candidate 

points for the new simulation and augments the initial shift factor set from DOE. In our study, new 

candidate points are selected based on the feedback from the surrogate model at a previous step by 

calculating the Expected Improvement (EI). Step (2) and (3) is usually identified as an adaptive 

optimizer, which augments the initial training shift factor set and drives the subsequent iterative 

improvement of the surrogate model and prediction accuracy.  
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Figure 8 Our automated adaptive optimization strategy for searching the interphase properties: (1) FEA is run on each 

point in the initial shift factor set from DOE and then processed to formulated our objective function by calculating the difference 
between simulated results and experiments using MSE. (2) A GP model is applied to construct the surrogates for predicting the 
value of objective function (Difference F) within the design space. The purple points are initial sampling points from DOE and the 
yellow points are sequentially generated by EI in (3). (3) EI chooses the best candidate points for additional simulation. The new 
candidate points augment the initial training shift factor set from DOE to further improve the surrogate model and prediction 
accuracy.  

 

3.2.1 Interphase FE model 

Our method is developed and tested on two cases for polymer nanocomposite response 

data: viscoelastic simulations and dielectric simulations. For both cases, we have developed finite 

element models to simulate the composite properties given the microstructure from Scanning 

Electron Microscope (SEM) or Transmission electron microscopy (TEM) images [38, 48]. The 

schematic of the FEA model for dielectric studies and viscoelastic simulations is similar except 

different software is used to run the simulations (COMSOL for dielectric and ABAQUS for 

viscoelastic simulations). The FEA configuration is shown in Figure 9. The microstructure 
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dispersion information is directly obtained from TEM micrograph images Figure 9a). Then a 

binary image showing filler and matrix phases is generated by application of a previously 

developed Niblack analysis algorithm [90]. The binary image is then characterized to identify the 

geometric descriptors and reconstruct the equivalent 3D microstructure and assign each point to a 

material constituent in the FEA model (filler, interphase, matrix) (Figure 9c). The geometric 

information of the filler and matrix can be directly obtained from the original image, while the 

interphase regime between the filler and particle is assumed to be represented by an extended layer 

around each particle. Thickness of the interphase is reasonably assumed to be 50nm in our study 

based on previous studies on filler-filler spacing and experiment measurements [9, 27].  The FEA 

model is then run in the respective software to obtain the frequency-dependent viscoelastic or 

dielectric response.  

 
Figure 9 Configuration of FEA model in COMSOL (dielectric simulation) and ABAQUS (viscoelastic simulation). a) 

Sample TEM image, b) binary image of matrix and filler phases, c) reconstructed microstructure, d) frequency dependent dielectric 
properties or viscoelastic response predicted from simulation.  

These interphase FEA models have been used with a manual inverse approach to determine 

interphase properties [48, 60, 87]. In these studies, the shift factors to relate interphase properties 

to matrix properties are defined differently for each property case. In viscoelastic simulations, a 

broadening factor B and frequency-shifting factor S  are applied to describe the interphase 

behavior based on the matrix property. B accounts for the broadening effect of the loss peak while 
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S  accounts for the horizontal shift of relaxation times in the frequency domain (Fig 4a). To 

describe the dielectric interphase, due to the multiple relaxations observed in the pure matrix, the 

alpha and beta relaxations are modeled separately and a five-dimensional shifting factor set is 

applied in the interphase model. The threshold value of the relaxation time is determined based on 

experimental data (τ0 = 0.01 in our case) so that the corresponding threshold frequency separates 

the relaxation peak into low (𝛼 relxation) and high frequency regions (𝛽 relxation). For each 

relaxation (alpha or beta relaxation), two shifting factors (Ma  and Sa for alpha relaxation; M E  

and SE for beta relaxation) are applied to account for the change of intensity (Ma and M E ) and 

the shift of relaxation times ( Sa  and SE ) for respective relaxations. An additional constant, C, 

describes the intensity shift of 'H .  

 
Figure 10. Relation of material properties between the interphase and pure matrix represented by shifitng factors 

in frequency space for (a) viscoelastic interphase properties with 𝑆 = 2, 𝐵 = 2 (b) dielectric interphase properties with 𝑠𝛼 =
2, 𝑀𝛼 = 1.5, 𝑆𝛽 = 2, 𝑀𝛽 = 1.5, 𝐶 = 0.5 
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3.2.2 Optimization Objective  

The objective of this work is the development of a rigorous automated method to predict 

the optimal interphase shifting factor set which enables a simulation result to best fit with the 

experimental data, thus determining the interphase properties is an inverse problem. There are a 

number of choices of mathematical measures that quantify the discrepancy between simulation 

and experimental results. These measures can be divided into three categories: magnitude-phase-

comprehensive metrics, single-value metrics, and analysis of variance metrics. We tested the 

performance of different metrics on characterizing the difference between simulation and 

experimental results and found that the mean square error (MSE), which is one of single-value 

metrics, is the best descriptor for our problem. The MSE of the predictor in our study can be 

expressed as,  

 2
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where ic  and ie  represent each simulated data point in frequency and experimental data 

point in frequency respectively.  

In order to search for the optimal shifting factors, a proper target function needs to be 

defined. Ideally, the optimal shift factors should lead to well-matched data curves between FEA 

and experimental results. Equivalently, the minimal discrepancy between simulated and 

experimental data across the entire frequency band is desired. Additionally, for our case, it is 

required to minimize the difference from both real and imaginary property data simultaneously, 
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which leads to a multi-objective optimization problem. To addresses this problem, we first 

characterize the difference from the real and imaginary parts separately using Equation (1) for 

every shift factors set across the OLHC space (initially generated from DOE) and obtain the vector 

of real part difference 1f  and imaginary part difference 2f  for each data point in the OLHC space. 

To develop the multi-objective approach, for every every shift factors set across the OLHC 

space we normalize the objective function as follows: 

 _ min
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i
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  (2) 

Here, if represents the vector of difference calculated from MSE for real (i=1) or 

imaginary part (i=2), min
if and i

maxf represent the minimum and maximum difference value for the 

entire design space respectively. So from this equation, we are able to generate two normalized 

difference vectors for the real ( 1_normf ) and imaginary properties ( 2_normf ) separately. Then, we 

formulate this multi-objective function as the summation of weighted difference of the real and 

imaginary components: 

 1_ 2_
1 2w w= � + �norm normF f f   (3) 

Here, w1,and w2 are the weight of real and imaginary components. 1_normf and 2_normf  are 

normalized error vector from real and imaginary components, respectively. F  is the final vector 

form of the objective describing the difference between the simulated data and the experimental 

results. Using F  as the objective function and shifting factors as features, the next step is to build 

up surrogate models and make predictions. 
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3.2.3 Adaptive optimizer   

Considering the relatively high cost of simulation models, direct optimization that requires 

a large number of iterations is usually infeasible. An adaptive optimizer [91] has been developed 

to address such challenges: it combines surrogate modeling [88] and infill criterion [92] to refine 

the prediction adaptively while minimizing the sampling cost. Such adaptive strategy has been 

applied to sequentially optimize and design new materials with target properties [93, 94] . 

In our work, an adaptive optimizer is applied to construct the surrogate model on the current 

observations and suggest the next optimal sampling points. In this manner, the initial surrogate 

model is constructed based on a relatively small number of initial DOE points, and an infill 

criterion sampling strategy is then applied to determine additional sampling points to augment the 

training data.  

The surrogate model ( )y x  built on all available data set 𝐝𝑐𝑢𝑟𝑟𝑒𝑛𝑡  is represented by 

( )currenty x d  . In our case, the input x is either a five-dimensional shifting factor data set for 

dielectric study or a two-dimensional shifting factor set for viscoelastic case. The available data 

set 𝐝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is all the shifting factors available at the current step. The surrogate model of the 

objective function is built on all available shifting factors. The sequential sampling strategy 

determines the next sampling point based on the current model and certain infill criteria that helps 

to minimize sampling cost as well as to find the global optimum when dealing with highly non-

linear response surfaces. After the new design points 𝑑𝑛𝑒𝑤 are determined, the surrogate model is 

updated based on the new dataset (𝐝𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑑𝑛𝑒𝑤) . The surrogate model and the optimal solution 

of the shifting factors keep evolving until a stopping requirement is satisfied.  
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The surrogate model is able to predict the difference between simulation and experimental 

data with different shifting factors as well as quantify the associated uncertainties of the prediction. 

The choice of surrogate model is case dependent, and in this work, the Gaussian Process (GP) [95] 

is chosen because of its capability to capture nonlinear response surfaces, as well as the flexibility 

for assessing prediction uncertainties, which is important information needed in the successive 

sampling procedure. A GP ( )y x  is completely defined by its mean function ( )m x  and covariance 

function ( , ')k x x  :  

 
( ) [ ( )],
( , ') [( ( ) ( ))( ( ') ( '))],

m y
k y m y m

=
= − −

x x
x x x x x x

E
E

  (4) 

where x  and 'x  represents different sampling points in the design space, ( )•E  is the 

expectation. The GP can be written as: 

 ( ) ~ ( ( ), ( , '))y m kx x x xGP   (5)

   

For our study, the GP model can be written as: 

 ~ ( ( | ), ( | , ' | ))k k k kF m kx d x d x dGP   (6) 

where kF  is the difference for k-th iteration as derived in equation (3), and 𝐝k is the 

available data in k-th iteration.  For simplicity the mean function is chosen to be equal to zero and 

the covariance function is in the squared exponential form, also known as Kriging [88]: 

2 2( , ') exp{ | ( ') | }k wV= − � −x x x x , where V  is a constant and w  is the roughness parameter of 
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GP, whose dimension is the same as x . With these notations, the uncertainty of prediction 2 ( )s x  

is also tractable, and the detailed mathematical expression can be found in [89]. 

In general, by applying the GP model, a fitted surrogate model that may have several local 

optima with input/output (shifting factor set/difference) relationship can be obtained. To find the 

optimal shifting factors, the simplest way is to search for the minimum difference based on the 

surrogate model. However, this may lead to a local minimum because the procedure does not 

acknowledge the associated uncertainty of the model. Simply choosing the minimum points places 

too much emphasis on the predictor (optimal mean prediction) while ignoring points that have 

high uncertainties (measured by the standard error of the predictor). Therefore, as we search the 

design space, we must balance this competition. The Expected Improvement (EI) [91, 96] is an 

important infill criterion for GP-based global optimization problem. EI is defined as the expected 

improvement at a design point x  , conditioned on the current model y : 

 min( ) [( ( )) | ],EI y y y= −x xE  (7) 

where miny  denotes the current minimum of the model. By expressing the right-hand side 

of the equation in integral form and applying integration by parts, EI of a GP model can be obtained:
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where ( )) �  and ( )I �  are the standard Gaussian cumulative distribution function and 

probability density. It can be proved that the expected improvement EI is large where the solution 
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has high uncertainty (large 2 ( )s x ) and small mean prediction y(x) [91] . The new sample point is 

selected as the maximizer of EI: 

 arg max ( )
x

EI�newd x   (9) 

As illustrated in Figure 8, the new sample points, with their simulated properties from FEA, 

augment the initial training set to improve the accuracy of the surrogate model and the according 

prediction as expressed in Equation (10).   

 1

+1 1 1 1
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~ ( ( | ), ( | , ' | ))

k k new

k k k kF m k
+
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=d d d
x d x d x dGP

  (10) 

Finally, as the objective is to minimize the difference between the simulation and 

experiments, the optimal solution predicted at each step is determined as the minimizer of objective 

function based on the current surrogate model. 

 
x

argmin( )kF=kx_opt  (11) 

 

3.3. Results and Discussion 

In this section, a representative dielectric data set (for a nanocomposite composed of 2 wt% 

bimodal anthracene-PGMA grafted silica in epoxy [38, 97] ) is first selected to develop and test 

our methods. Detailed intermediate results are given to illustrate the methodology. Later, this 

algorithm is further tested on viscoelastic studies with the experiment samples collected from 

nanocomposite samples composed of 2 wt% Chloro-modified nanosilica in Polystryrene (PS) 
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nanocomposites [63]. We have TEM images and reconstructed microstructures for both 

the viscoelastic and dielectric samples as shown in Figure 11. Note that the microstructures are 

statistically equivalent to the actual samples and are created using an algorithm developed earlier 

[98]. 

Figure 11. TEM images and the reconstructed microstructure used in FEA. (a) 2 wt% bimodal anthracene-PGMA 

grafted silica in epoxy TEM image, (b) reconstructed 2D microstructure of (a), (c) 2 wt% Chloro-modified nanosilica in 

PS TEM image, (d) reconstructed 3D microstructure of (c). 

 
In our previous work [87], we determined manually fitted shift factors for a number of 

dielectric nanocomposites and using this prior study, we can select reasonable ranges within which 

the shift factors may vary (Table 1).  
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Table 1.dielectric  shifting factor design space 

 

For this dielectric study,  20 sets of shifting factors are generated as the initial data set 

within the empirical ranges through design of experiments (DOE) created by applying the optimal 

Latin hyper cube (OLHC) sampling technique [99]. The sample points are selected to cover the 

entire input variable space bounded by the given ranges (the blue points in Figure 13b-d illustrate 

the initial DOE for this example). Given the microstructure obtained from the TEM image for the 

chosen sample (Figure 11a,b), FEA simulations are performed over the 20 OLHC samples for shift 

factors to obtain the composite dielectrical response. The FEA model generates two outputs on 

each simulated sample: frequency-dependent storage and loss dielectric (or viscoelastic) curves. 

These results are then processed by calculating the difference between the simulated curves and 

the target experimental data using Equation (1). For the chosen dielectric data set, the real and 

imaginary differences, 1f  and 2f ,  characterized for the initial 20 shifting factor sets are plotted 

in Figure 12. 

Shifting 
factor Sβ Mβ Sα Mα c 

Range 0.4-
1 

1.5-
3 

0-
0.2 

0.7-
2 

0.3-
2.5 
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Figure 12. Differences between 20 DOE designed simulations and experiment data as applied to 2 wt% bimodal 

anthracene-PGMA grafted silica in epoxy sample. (a) Real part difference characterized by MSE;(b) Imaginary part difference 
characterized by MSE 

It can be seen that the difference calculated from two parts have significantly different 

orders of magnitudes, which makes direct comparison difficult. Therefore, it is necessary to 

normalize the magnitudes using Equation (2) and formulate a multi-objective optimization 

problem applying Equation (3) such that minimizing the difference from both real and imaginary 

data simultaneously can be achieved. Below, an adaptive optimizer is applied to navigate the high 

dimensional design space and make accurate predictions. 

In our study, our objective is to minimize the difference, for which the ideally optimal 

value of 0 indicates a perfect match between the simulated and experimental results. Practically, 

we find a threshold value C, indicating an acceptable fit between the experimental data and 

simulated results. By applying an adaptive optimizer, at each iteration, a new sampling point is 

given based on the feedback from the optimization to augment the training set and the iteration 

will cease after the output difference is less than the threshold: 

 +1min( ) ,F Cdk  (12) 
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where +1Fk  is the surrogate model at k+1 step determined using Equation (10). The 

threshold C may vary from case to case while the C is set to 0.01 in our study. Additionally, to 

avoid infinite loop of the adaptive optimizer arising from bad data or parameter limits, the loop is 

set to terminate after this is no sign of decreasing difference after 20 iterations. 

 
Figure 13 Evolution of the surrogate model with successive iterations and training data distribution for 2 wt% bimodal 

anthracene-PGMA grafted silica in epoxy dielectric sample; (a) Surrogate model error and Maximum EI (Equation (8)) as a 
function of iterations, where the surrogate model error is the evaluated on a validation set with sample size 30; (b) Training sample 
distribution on iteration 2 (blue points are initially sampled from DOE while the red  is sequentially added by Maximum EI); (c) 
Training sample distribution on iteration 17; (d) Training sample distribution on iteration 23 

In order to evaluate the prediction accuracy of the surrogate model at each iteration, a 

separate validation set with sample size 30 is generated by random sampling another 30 shifting 

factor sets within the design space and running simulations accordingly. Then the difference 



59 

 

between the simulations and the experiment for the validation set can be evaluated using Equation  

(3).The surrogate model error at each step is then evaluated by calculating the mean square error 

between the predicted difference from the surrogate model with that from the validation set. Figure 

13 shows the evolution of the surrogate model accuracy as iteration progresses in the adaptive 

optimization process. In order to visualize the sample distribution during the optimization process, 

we choose two factors ( SD and SE ) and plot the distribution on iteration 2, 17, and 23 respectively 

(Figure 13 b,c,d). On iteration 1, only the initial 20 training points from OLHC (blue points in the 

Figure 13b) are used to make predictions. Then later, at each step, a new sampling point (red in 

Figure 13b) is added based on the maximum EI criterion. The newly added points are concentrated 

on the boundaries and the space with coarse initial sampling showing that the adaptive optimizer 

is able to automatically explore the entire design space with high uncertainties rather than search 

only in a local space which could result in a local minimum.  It is noted that the error for each step 

keeps decreasing (though not monotonically, likely due to the model uncertainties) indicating an 

increase in model accuracy as new sampling points are added. Additionally, the dropping EI in the 

model also suggests the decreasing uncertainty of the surrogate models and the increasing model 

accuracy with the identified shift factors.  

Figure 14 shows how our predicted optimal solution ( kx_opt from Equation (11)) behaves 

as a function of iterations. The prediction accuracy at each step is evaluated by calculating the 

discrepancy between the simulated data using the predicted shifting factor from the adaptive 

optimizer and the given experimental properties using Equation (3). Figure 14a shows that the 

prediction accuracy of kx_opt  at each step increases as a function of iterations. We also show the 
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comparison between the simulated result and the experimental data on iteration 1, 12, and 20, 

showing that the improvement of fitting quality. Iteration 1 predicts the well at some frequency 

ranges, but the difference is still much greater than our threshold C=0.01(shown as dashed line in 

Figure 14a). As the iteration proceeds, the decreasing difference value indicates better fitting 

(iteration 12) and it takes 20 iterations before the difference is less than the threshold. Ideally, the 

iteration stops at iteration 20 based on our stopping criteria but we plot more iterations in order to 

show the convergence of our adaptive optimization procedure.  

 
Figure 14 Evolving of optimal solution as a function of successive iterations; (a) The discrepancy between the optimal 

prediction and the experimental data as a function of iterations; (b) Comparison between experimental data and the simulated 
result on iteration 1; (c) Comparison on iteration 12; (d) Comparison on iteration 20; 

Next, we want to compare different optimization strategies to illustrate that the adaptive 

GP model can reduce the computation cost and improve searching efficiency. Using the manual 
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fitting result as a reference, in addition to the adaptive GP model illustrated earlier, we also 

demonstrate the result of a one- stage GP and a random search model. The results from one-stage 

GP is generated by building the surrogate model based on all the sampling points in the data set 

and directly predict the minimal value of the objective function and the associated optimal solution 

at one time without sequential sampling. The result from the random search is generated by merely 

choosing the sample with minimal difference among all the randomly generated samples without 

doing any optimization. Figure 16 shows comparisons between these different algorithms by 

plotting the fitted curves and the experimental data in the same figure. All the searching algorithms 

are compared under the same prerequisite: the simulation cost is the same (i.e. the number of 

performed simulations is the same, in this comparison, the number of performed simulation is set 

as 40). To compare the performance of  each method, we also calculate the discrepancy between 

the simulated data using the predicted shifting factor and the given experimental properties using 

Equation (3) as shown in Table 2. By comparing the fitting quality, we find that the performance 

of the adaptive GP is at least comparable or even better compared with the manual fitting quality. 

Table 2 Comparisons of different searching methods by calculating the difference 

Method Discrepancy between the simulation and 
experiment 

Adaptive GP 0.0089 

Manual 0.0097 

One-stage GP 0.1683 

Random 0.1854 

 

However, it is noted that the manual fitting requires guessing the optimal solution based 

on current fitting while the adaptive GP is able to automatically explore the design space and 
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determine the optimal solution iteratively. Additionally, the comparison between the adaptive GP 

and the one-stage GP illustrates the advantages of the sequential sampling approach. The surrogate 

model is more accurate when determining the next sampling points ‘intelligently’ through 

calculating the EI based on the current surrogate model than sampling all the points at one time. 

All optimization-evolved searching algorithms tested are better than the random search. This result 

indicates that the prediction accuracy of the adaptive GP model is the highest comparing with other 

searching strategies (random searching and one-state GP) if the computation cost is required to be 

the same. In other words, more simulations need to be performed for other models to generate 

comparable result as adaptive GP. These comparisons indicate that our adaptive GP model is able 

to accelerate the search process while maintaining a similar accuracy compared with the manual 

fitting procedure.  

 
Figure 15  Performance comparison of different searching strategies (Adaptive GP, one-stage GP, Random, Manual) 

By applying the adaptive GP model as described above, the optimal shifting factors can be 

determined. Since the shifting factors are descriptors for the interphase properties and completely 

define those properties, the interphase properties are thus determined. Figure 16shows the optimal 

interphase properties together with the matrix and composite properties. We can observe that the 
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interphase properties are significantly different from the neat polymer matrix. This change in 

properties of the interphase is expected due to changes in the mobility of polymer chains near the 

particles which cause changes in the local physical properties such as dielectric spectra of the 

polymer. This interphase regime shows a higher dielectric permittivity and loss than both the 

matrix and composite data. This interphase property agrees with the experimental data where the 

addition of functional groups on fillers enhances the relative permittivity. Additionally, it is noted 

that the magnitude of the optimal fitted properties is dependent upon the size of the interphase 

regime chosen. While here we use a fixed size for the interphase zone based on prior studies on 

filler-filler spacing and interphase in nanodielectrics [9], the automated optimization procedure 

developed here can allow a thorough exploration of such variables and their impacts.  

 
Figure 16. Comparison between simulated dielectric spectra using the shifting factors given from adaptive GP and 

experimental data for 2 wt% bimodal anthracene-PGMA grafted silica in epoxy 

 

Figure 17 shows the comparison between experimental data collected from the chosen 

sample and the simulated viscoelastic response based on the predicted interphase properties from 

adaptive GP. With the predicted interphase shifting factors from adaptive GP, simulated response 
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is able to fit well with the experimental data. Similar to dielectric study above, the interphase 

properties are readily obtained directly from the optimal shifting factors. Compared with the 

dielectric study, it takes only three iterations for our adaptive GP model to obtain the optimal result 

while 20 iterations are required for the dielectric case. The two-dimensional space of the 

viscoelastic study allows the initial OLHC points to be nearly sufficient to build accurate surrogate 

models, while for the higher dimensional dielectric study, initial OLHC points is too sparse to 

construct accurate response surface and further iterations were required. 

 

Figure 17. Comparison between simulated viscoelastic response and experimental data for 2wt% Chloro-modified 
nanosilica in PS 

 

3.4. Conclusions 

We have demonstrated a consistent and efficient approach for identifying the interphase 

properties in polymer nanocomposites by solving the inverse problem using adaptive optimization, 

improving prior work which was limited in accuracy and efficiency by the laborious manual 

iteration process. A multi-objective optimization problem is formulated through characterizing the 

difference from simulations and experimental data with the aim of minimizing the difference from 

real and imaginary parts simultaneously for frequency-dependent properties. The training data 
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consists of shifting factor sets as optimization variables and difference as objectives. The Gaussian 

Process (GP) surrogate model is used to build up the relationship between the features and 

objectives because of its flexibility for assessing uncertainties and capability to capture nonlinear 

response surfaces. By choosing candidate points based on the concept of maximum expected 

improvement (EI) over the search space, we have shown that the surrogate model evolves and the 

uncertainties in the model decrease by sequentially adding points at each iteration using the EI 

criterion.  

Using the proposed approach and given experimental data of properties and microstructure, 

the interphase properties on dielectric and viscoelastic studies can be determined automatically. 

Results demonstrate that only tens of iterations are required for the method to identify the optimal 

shifting factors and interphase properties to achieve a good fit with the target experimental data. 

Comparisons are made among different searching algorithms to show the ability of our method to 

reduce the computational cost and improve the searching efficiency.  

This method can be used as a generalized automated approach to determine the interphase 

properties in polymer nanocomposites. The framework is also flexible to be applied to other 

computational models to identify the interphase properties that are required. Additionally, the 

method is very efficient compared with the manual-fitting process and should facilitate the further 

investigation of a data-driven analysis where many hundreds of samples would be required. The 

future work may start from setting up a material interphase library through combining this method 

with Nanomine, which is a data-driven web-based platform for analysis and design of polymer 

nanocomposite systems under the material genome concept [63]. With sufficient data in the 

interphase library, relationship between the material constituents, microstructures, and the 
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interphase properties can be created through data mining.  Such relationships have the potential to 

improve the understanding of material principles behind interphase properties and guide the design 

of new materials with desired functionality and performance.  
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Chapter 4. Mining structure-property relationship in polymer 

nanocomposites using multi-task convolutional neural network  

4.1. Introduction  

Data-driven methods have attracted more attention and become a hot-topic in material 

research after the proposing of material genome initiative. Combining material science with 

computer science and statistics, data-driven methods are aimed to expediate the material research 

and applications using past research data. In order to facilitate polymer nanocomposite data 

archiving, sharing and analysis, a data-driven web-based platform, NanoMine, has been developed 

for analysis and design of polymer nanocomposites.  NanoMine consists both experimental and 

computational data on nanocomposite processing, structure and properties. In this paper, we 

present a novel deep learning approach that build the structure-property relation utilizing the data 

from NanoMine. Although a comprehensive study using experimental data is not feasible because 

of the limited data volume and variety in experimental conditions and material constituents, 

computational data allows demonstration of the approach and gives flexibility to sufficiently 

explore a wider range of structures. Taking advantages of microstructure reconstruction method 

and finite element simulations, we first explore qualitative relationships between microstructure 

descriptors (i.e. volume fraction and dispersion parameter) and mechanical properties. Then we 

present a novel deep learning approach that combines convolutional neural network with multi-

task learning for building quantitative correlations between microstructures and property values. 

The performance of the model is compared with other state-of-the-art strategies including two-
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point statistics and structure descriptor-based approaches. Lastly, the interpretation of the deep 

learning model is investigated to show that the model is able to capture physical understandings 

while learning.   

Polymer nanocomposites includes organic matrix and nanoparticles with at least one 

dimension below 100nm [100]. By including a small amount of fillers to the matrix, experiments 

have shown that polymer nanocomposites are able to achieve a significant improvement in 

dielectrical, mechanical and optical properties compared with their parent matrix system [4-8]. 

The enhancement in properties comes from the large interphase region resulting from the strong 

chemical and geometrical interactions between the particle surface and polymer area nearby [9, 

10].  

To predict the properties of nanocomposites given structures, people have developed 

different types of numerical methods including continuum mechanics methods and multi-scale 

simulations [27, 63, 87]. A variety of micromechanical models such as Mori-Tanaka, Halpin-Tsai 

and the self-consistent scheme have been developed to predict the thermomechanical behavior of 

nanocomposites [50]. However, those analytical models are not sufficient to fully capture the 

dispersion state or the morphology information of the fillers although some of the models include 

structural parameters. Therefore, multi-scale simulations are often necessary. Finite element (FE) 

simulations are able to fully capture the structural information and accommodate non-homogenous 

material systems with explicit configurations of all material phases, which makes FE simulation a 

good candidate to analyze the behavior of nanocomposite. FE models have been developed to 

simulate the thermal and mechanical properties of polymer nanocomposites and investigate the 

impact of interphase [37, 49]. It has also been shown that the interphase properties in the FE models 
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can be represented by shifting factors based on the pure matrix properties for some of the material 

systems. The necessary shift for a given experimental sample can be determined automatically 

through Bayesian optimization [54].  

In order to better understand the behavior of these materials and further design materials 

with target properties, researchers have proposed the paradigm of process-structure-property (PSP) 

linkage [101]. Data-driven approaches founded on PSP linkage have attracted more attention 

recently and become a hot topic in many areas of material research [61, 63, 102]. Data-driven 

approaches combine material science, computer science and statistics with the goal to expediate 

material discovery by utilizing past research data. To facilitate the development of data archiving, 

sharing and development of data-driven approaches, efforts have been made to create online 

databases for fast queries and reference. For example, Brinson group developed a polymer 

nanocomposite data resource called Nanomine, which allows fast data queries, visualization, 

sharing and analysis [63, 103]. Utilizing past research data and databases, data-driven approaches 

have been developed to model the P-S-P relationship. Hassinger et al. have developed quantitative 

relations between the nanocomposite processing parameters and the structural descriptors using a 

database of nanocomposites [63]. A new data-driven framework is proposed for designing and 

modeling of new material systems and structures, which includes design of experiments, 

computational models and machine learning methods. A common characteristic involved in almost 

all the data-driven approaches is that a relatively large pool of data is required so to apply machine 

learning methods can be applied to extract features from the data and build correlations.  

Deep learning, one of the sub-field of machine learning, has dramatically improved the 

state-of-art in computer vision, natural language processing and many other fields including 
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material science [76]. Deep learning approaches provide an end-to-end framework addressing 

automated feature extraction for a large set of potential features. Using these approaches, it is not 

necessary to design explicit features, which is usually require in traditional machine learning 

approaches. Deep learning has been applied in material science specifically for the case where 

structural images are involved. Yang et al. applied deep convolutional network to model structure-

property linkages for high-contrast elastic 3-D composite microstructures [102]. In [102, 104], 

deep neural networks are applied to reconstruct microstructure images and implemented to design 

material microstructure with desired properties.   

In this paper, we investigate the structure-property linkage for polymer nanocomposites 

using a database of simulated data. It might be more appealing to build such linkage using 

experimental data from databases such as NanoMine, we found it extremely difficult to find 

systematic trend because of the scarcity of the data volume and the variety of material systems, 

processing conditions and even measurement methods coming from various papers and 

laboratories. On the other hand, simulated data gives flexibility to explore a wider range of 

structures and the data can be accumulated in a relatively short period. Therefore, in this paper, 

simulated data are applied to demonstrate the power of NanoMine database and similar study can 

be done in the future if a much larger set of experimental data is available.  Although previous 

studies have demonstrated data-driven approaches to build structure-property linkages, a 

systematic study showing the impact of different factors (composition, dispersion, reconstruction 

method etc.) to different properties is still lacking. Additionally, most of the previous studies relied 

on traditional machine learning method using hand-crafted features. And the quality of the 

prediction model is mainly dependent on the quality of designed features from the material 
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expertise. And it is nontrivial to conduct feature selection from a big pool of microstructural 

features.  In this study, by leveraging artificial generated microstructures and FE simulations, a 

sufficiently large database with different microstructures and associated properties can be obtained. 

The property of interest for this research is three mechanical properties of the bulk composites: 

tan 𝛿  peak, glassy modulus and rubbery modulus. We aimed to investigate the effect of 

microstructure to multiple target properties in a more systematic and comprehensive way.  The 

first part of the paper focuses on investigating the effect of microstructure reconstruction method, 

filler composition and dispersion, and interphase on the bulk properties. After that, we design and 

explore the application of a deep multi-task convolutional network to quantitatively predict 

multiple property values given a microstructure image. This is the first time a deep multi-task 

learning model is applied to build structure-property linkage for prediction of mechanical 

properties of polymer nanocomposite. The results from proposed method is further compared with 

other methods including traditional approaches using physical descriptors and two-point statistics.  

4.2. FE Simulation and Analysis  

4.2.1 Experimental data limitations  

The properties of interests for this study are tan 𝛿  peak, glassy modulus and rubbery 

modulus. This section focuses on qualitative understanding of structure-property relationship by 

plotting structure parameters with the property values. Based on physical understanding, the glassy 

and rubbery modulus should increase after more fillers adding to the system. On the other hand, 

the tan 𝛿 peak should decrease at a higher loading because if replacement of damping material 
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(polymer matrix) with perfectly elastic particles (no damping). It is assumed that these 

relationships can be identified using a database with sufficient amount of data. Figure 18 shows 

the tan 𝛿 peak as a function of volume fraction for all the samples currently stored in NanoMine 

with volume fraction less than 10%. The plot shows no trend which contradicts our assumption. 

Given the condition that samples from NanoMine consist a wide range of material with different 

type of matrixes and fillers and also different processing, environment and even measurement 

methods, the data volume here is too small to restrict some of the parameters and study the effect 

of others and conduct a systematic study. Therefore, computation data is needed to give more 

flexibility to explore all different combinations and build a comprehensive linkage.  

 
Figure 18. Plot shows 𝑡𝑎𝑛 𝛿 peak as a function of volume fraction using the data from NanoMine. 
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4.2.2 Computation method 

In order to demonstrate the application of data driven approach in correlating the structure-

property relationship in polymer nanocomposites, we generated a set of simulated data using a 

combined of finite element (FE) method and microstructure reconstruction method.  

The objective of this paper is to demonstrate data driven approaches in investigating the 

structure-property relationship. Due to the lack of good quality experimental data set for this 

purpose, we assume that the FE model could be accurate enough and well representative to 

simulate the associated property values. In the FE model, the interphase properties were assumed 

to be by shifting the polymer master curve two decades lower in the frequency domain assuming 

a stronger interaction between the nanoparticle and the polymer matrix. The FE configuration is 

shown in Figure 19. Polycarbonate (PC) is considered as the material property for the FEA and 

the frequency domain response of that material is measured by dynamic mechanical analysis 

(DMA). The silica nanoparticle in the model is assigned to be linear, elastic with young’s modulus 

of 73MPa and Poisson’s ratio of 0.3. For this study, we choose tan 𝛿 peak, glassy modulus and 

rubbery modulus as properties of interest and correlate those with the structural inputs. The output 

from FEA is also frequency domain machinal response of the nanocomposite, based on which 

tan 𝛿 peak, glassy modulus and rubbery modulus can be extracted.  
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Figure 19. FEA configuration. Given a microstructure, an interphase layer is assigned assuming a fixed thickness and 

uniformed stronger interaction between the nanoparticle and the polymer matrix. 

 

In this study, the structural inputs (referred as a representative volume element or RVE) 

for the FEA are generated using different microstructure characterization and reconstruction (MCR) 

methods, which are common applied in predictive material modeling [61, 104, 105]. Three 

different types of MCR methods are applied to generate RVEs for the FE model (i.e. uniform 

dispersion, descriptor-based method, and spectral density function (SDF)) and their impact on the 

structure-property relationship is later investigated.  Microstructures with uniform dispersion are 

generated using the random sequential adsorption (RSA) algorithm such that the centroid of all 

existing particles have to exceed a minimum value and does not overlap with each other. Similar 

method as in this paper [37] is applied to generate the centers of spherical particles with same 

radius in the unit cell. Descriptor-based reconstruction is to generate statistically equivalent 

random digital microstructures by matching the prespecified structural descriptors (i.e. nearest 

neighbor distance, volume fraction etc.) through optimization [63]. By predefined a set of four 

descriptors, volume fraction (𝑉𝐹), number of clusters (𝑛), average nearest cluster distance (𝑟̅𝑑), 
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aspect ratio (𝑒𝑙) , microstructure with different volume fraction and dispersion states can be 

obtained. The obtained microstructures have episode clusters which could overlap with each other 

compared with microstructures with uniform dispersion.  Spectral density function (SDF) has been 

demonstrated to be sufficient to characterize complex heterogeneous microstructures and 

reconstruction can be done through phase recovery techniques [106]. We noticed that for our 

particle infilled nanocomposite system, the SDF of all microstructures approximately follows an 

exponential distribution with two parameters – shape variable 𝛼 and scale variable 𝜃. Our previous 

study has also shown that for our material system, the shape parameter 𝛼 varies in a small range 

and has very little influence on SDF profile and the consequent microstructure [107]. However, 

the range of scale parameter have a wide range and could greatly impact the decay of SDF and the 

dispersion state of microstructure [106]. Therefore, for this study, a set of microstructures are 

generated by controlling the volume fraction (𝑉𝐹) and scale variable 𝜃 while the shape parameter 

𝛼 is fixed.  

4.2.3 Impact of microstructure reconstruction method 

Three representative microstructure reconstruction/generation methods are evaluated in 

terms of their impact to the property. For every reconstruction method, a hundred microstructures 

with different volume fraction (1% - 20%) and dispersion states are generated using Optimal Latin 

Hypercube sampling (OLHC) [99].  Microstructures obtained from different method are shown in 

Figure 20 . Here, we merely compare the impact of reconstruction method and there is no 

interphase layer added for the computation. The impact of interphase will be discussed latter. 

Microstructures with uniform dispersion have spherical particles, which are uniformly distributed 
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to the matrix and do not overlap with each other. Physical descriptor reconstructed microstructures 

have elliptical clusters with different aspect ratio and those clusters could overlap and form a 

bigger cluster. Microstructures reconstructed using SDF have irregular shape clusters. All the three 

microstructure types are realistic for different types of composite materials as shown in Figure 21. 

The simulated properties versus volume fraction are shown in Figure 22. The results show that for 

all the microstructures, the tan 𝛿 peak decreases monotonically as a function of volume fraction 

while the glassy and rubbery modulus increases monotonically. This observation matches the 

physical understanding and result in a previous work [86]. tan 𝛿 peak is a measure of material 

damping and the reduction of the magnitude coming from the replacement of polymeric (damping) 

material with perfectly elastic participle (no damping).  It is also noted that as the microstructure 

becomes more complex (from uniform dispersion to SDF), the r-squared values decrease, 

indicating a less monotonical trend for all the three property values.  
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Figure 20. Microstructures generated using different methods: first row, uniform dispersion; second row, physical 

descriptor; third row, spectral density function;  

(a)               (b)   

Figure 21．Experimental images showing different types of microstructures. (a) SEM images of octyl-modified silica in 
PMMA. (b) TEM images of Ag/C core/shell  fillers in the epoxy [108]. 
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Figure 22. Comparison of simulations using different type of microstructures. For each type of microstructure, three 

individual property value ( 𝑡𝑎𝑛 𝛿 peak, glassy modulus and rubbery modulus) is plot against volume fraction.  

 

4.2.4 Impact of interphase  

Previous studies have shown that the interphase region plays an import role in the bulk 

composite properties [37, 49, 54, 63]. The interphase properties can be represented by shift factors 

related to that of the matrix. In this study, we assume a fixed thickness of interphase whose 

properties are determined by shifting the master curve of the matrix two decades lower in the 

frequency domain as shown in Figure 23. Although in this study, for simplicity, the interphase 

properties is assumed to be uniform, gradient interphase properties can be considered in the future 
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as well based on a  new gradient interphase representation method in the FE model coming from 

observations from the local measurement of interphase [49].  

 
Figure 23. Relationship between matrix and interphase properties. The interphase properties are determined by shifting 

the master curve of the matrix two decades lower in the frequency domain.  

FE simulations are run using the same set of microstructures using SDF approach as in 

4.2.3 with interphase region. The results are shown in Figure 24. The property enhancement from 

the interphase layer exhibits an unbalanced reinforcement for the rubbery and glassy modulus, 

where the reinforcement of the rubbery modulus is more significant than that of the glassy modulus. 

While the variance remains similar, the glassy modulus exhibits almost the same range of increase 

with volume fraction as the no-interphase results while the rubbery modulus exhibits a much larger 

increase in magnitude compared to the no-interphase case. More significantly, the results for the 

tan 𝛿  peak magnitude are dramatically different: tan 𝛿  is nearly random with no discernable 

decrease with volume fraction, in contrast to the monotonic decrease for the simulations with no 

interphase. The results for the simulations with interphase for tan 𝛿  are quite similar to the dataset 
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from NanoMine for a wide range of experimental data (Figure 18). This result can help explain 

the findings in Figure 18 from NanoMine: since the data from experimental samples are wide 

ranging and in many cases the samples will contain an interphase of altered properties near the 

filler, the lack of trend in tan 𝛿   can be expected over that broad data set. 

To better understand the results for the tan 𝛿  trends, the volume fraction and dispersion 

parameter are restricted individually in different trials. The dispersion state of microstructures is 

controlled by the factor theta, which varies from [0.1,1]. Figure 25 shows the tan 𝛿 peak as a 

function of volume fraction for data under similar dispersion, where the SDF parameter theta is 

restricted to different ranges ([0.1,0.3],[0.2,0.4],[0.6,0.8]) respectively. With constraint on the 

dispersion, the tan 𝛿 peak exhibits a decreasing trend as a function of volume fraction at lower θ 

ranges ([0.1,0.3] and [0.2,0.4]), similar to the trend in the no-interphase calculations in 4.2.3. On 

the other hand, at a higher θ ranges, tan 𝛿 peak shows an opposite trend: increasing as a function 

of volume fraction. This can be explained by the fact that the behavior of the nanocomposite is 

gradually changing from being dominated by the matrix to dominated by the interphase.  

Interphase volume fraction can increase both with dispersion of the fillers in the matrix and a larger 

filler loading. However, in the case of poor dispersions, interphase layers will overlap, leading to 

minimal change in interphase fraction with increasing filler loading.  Therefore, at lower dispersion 

levels, the tan 𝛿  peak value decreases with filler loading because the bulk property of the 

composite is controlled by matrix and filler and the replacement of polymeric (damping) material 

with perfectly elastic participle (no damping) decreases overall dissipation. At higher dispersion 

levels, the tan 𝛿 peak value increases because the property of the composite is dominated by the 

interphase as the interphase volume fraction exceeds a percolation threshold [37]. This result 
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implies that for composites with interphase, both the loading and dispersion play a critical role in 

the determination of tan 𝛿 peak values. 

We are also able to investigate the converse situation where the volume fraction is restricted 

to different small ranges ([1%,5%],[5%,10%],[10%,15%]) respectively  and the effect of 

dispersion is varied. Figure 26 shows the tan 𝛿 peak as a function of dispersion for data under 

similar volume fraction. Figure 26a shows that at a lower volume fraction range ([0.01,0.05]), the 

tan 𝛿 peak decreases as the dispersion increases. This suggests that at this lower loading, despite 

microstructures with different dispersions, the volume fraction of interphase does not exceed the 

interphase percolation threshold and the relaxation behavior of the composite is still being 

dominated by the matrix, with the peak located at the PC matrix frequency location (see Figure 

23). As a result, as the dispersion improves, larger interphase volume reduces the tan d magnitude 

at the matrix peak frequency location (broadening the peak by shifting some magnitude toward the 

interphase peak frequency location) and results in lower tan 𝛿 peak values. On the other hand, at 

higher volume fraction range (in Figure 26c, [0.10,0.15]), the tan 𝛿  peak increases as the 

dispersion improves. This result can be explained by that fact that the property of the composite is 

dominated by the interphase as the interphase volume fraction exceeds the percolation thresholds 

at this higher loading and therefore more interphase leads to increasing the composite tan d peak 

which for the percolated cases is located near the interphase tan d peak frequency location. Figure 

26b shows the tan 𝛿 peak first decreases and then increases as a function of dispersion, which 

provides evidence of the transition of composite property from being dominated by the matrix to 

being dominate by the interphase.   
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Based on two controlled experiments, overall, adding interphase to the system greatly 

impacts the tan δ peak value and the value is dependent on both the loading condition (volume 

fraction) and the dispersion state (theta). These results also further clarify the no-trend result in the 

experimental data from NanoMine: these data sets contain microstructures with very different 

dispersions conditions, which must be accounted for to understand the damping response of the 

composite.  

 
Figure 24. Results for simulations with interphase. The property shows 𝑡𝑎𝑛 𝛿 peak, glassy modulus and rubbery modulus 

as a function of volume fraction.  

(a) (b)  

(c)  



83 

 
Figure 25. 𝑇𝑎𝑛 𝛿 peak as a function of volume fraction for controlled data sets with similar dispersion levels by 

restricting 𝜃 to (a) [0.1,0.3]; (b)  [0.2,0.4]; ((c) [0.6,0.8] 

(a) (b)  

(c)  

Figure 26. 𝑇𝑎𝑛 𝛿 peak as a function of dispersion  𝜃 for controlled data sets with similar volume fractions by restricting 
𝑉𝐹 to (a) [0.01,0.05]; (b) [0.05,0.10]; (c) [0.10,0.15] 

 

4.2.5 Deep learning model development 

In earlier sections, we have qualitatively shown that the mechanical properties of the 

composites vary according to microstructures with different loading and dispersion. The next task 

in this paper is to quantitatively predict the properties of interests (tan 𝛿 peak, glassy modulus and 

rubbery modulus) given a microstructure. The objective is to predict continuous values given a 2D 

image, which can be considered as a regression problem using features from a 2D matrix. There 

are two common strategies that can be applied to build this regression model: one is to use hand-
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crafted features (usually geometrical descriptors) that could sufficiently capture the characteristics 

of a given microstructure; the other is to use feature-engineering free method such as deep learning. 

The quality of the prediction using hand-crafted features is heavily dependent on the quality of 

designed feature from material experts and these features are usually not transferable from one 

material system to the other. On the other hand, compared with traditional machine learning 

approach using hand-crafted features, deep learning method is considered as a feature engineering 

free method that is able to automatically learn critical features during the training process, and 

have shown significant improvement in learning ability, generalization and transferability.  

Convolutional neural network (CNN) is a deep learning approach and has been widely 

applied for computer vision related task, such as image classification and object recognition. In 

those tasks, CNN outperforms conventional method to a large extent due to its capability of 

extracting high-level abstractions of inputs through a series combination of non-linear 

transformations. A common CNN may include three different type of layers: convolution layer, 

pooling layer and fully connected layer. The objective of convolution layer is to extract critical 

feature maps from the input images through applying filters with different number and size. The 

values in those filters are learnt from available data. Pooling layer is often applied after convolution 

layers in the aim to reduce the dimension of the feature maps. Different down sampling strategies 

can be taken including max-pooling, average pooling and L2-norm pooling. By combining a series 

of convolution and pooling layers, a series of feature maps can be obtained and then fed to the 

fully connected layers for prediction of a class or a single value depending on the purpose of the 

task. The convolution and pooling layers are regarded as the feature extractor while the fully 

connected layers act as a non-linear regression model using the features from the first part. The 
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nonlinearity in the network is introduced through applying activation functions, such as ReLU, 

sigmoid, tanh.  

Additionally, multiple outputs (tan 𝛿  peak, glassy modulus and rubbery modulus)  are 

required for our problem. In order to predict multiple values given a microstructure images, two 

strategies can be taken: one is to train separate machine learning models for specific tasks (i.e. for 

our purpose, three separate machine learning models are required to predict three different property 

values); the other is to develop a single machine learning model that solves multiple learning tasks 

at the same time, which is also called multi-task learning (MTL). Figure 27 shows two common 

ways to perform multi-task learning in deep neural networks: hard or soft parameter sharing [109]. 

The most common strategy is MTL is the hard parameter sharing, where several hidden layers are 

shared across all tasks while task-specific layers are applied after to predict the value for different 

objectives. It has been shown that hard parameter sharing could be able to reduce overfitting by 

including shared parameters. This is because the model has to find a hidden representations or 

features that captures all the tasks, which improves model generalization and reduces the chances 

of overfitting. For soft parameter sharing, each task has its own parameters. But the parameters for 

different tasks is constrained to encourage the parameters to be similar. Different constrains are 

usually applied such as L2 distance for regularization and the trace form. MTL has also been 

demonstrated to be extremely helpful if tasks share some similarities and the data volume is 

relatively small. MTL appears to be a good candidate for our purpose as the three learning tasks 

share significant commonalities, which are to predict mechanical responses given a set of 

microstructure images. Additionally, because of the expensive cost of FE simulations, it is time-
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consuming to generate a very large volume of data. By utilizing MTL, it is aimed to implicitly 

augment the data, reduce the chances of overfitting and improve the model generalization.  

 
Figure 27 Architectures of two types of MTL models. (a) hard parameter sharing by applying hidden layers that shared 

across different tasks; (b) soft parameter sharing by having constrained individual parameters for different tasks to encourage 
similar parameters.  

 

Taking advantages of the MTL and CNN, in order to properly capture and extract high-

level microstructure features and build the linkage of structure to multiple property values 

simultaneously, a multitask CNN model is proposed. The overall architecture of the model is 

shown in Figure 28 and the detailed configurations and parameters of each layer is shown in Table 

3. The input for this model is a 256*256 two phase binary image with zeros and ones, where zero 

represents the matrix and one represents the filler. Even though the FE model includes interphase 

layers in the calculation, the input for the deep learning model only consists two phases, filler and 

matrix. The image is pre-processed by replacing zero with -0.5 and 1 with 0.5, which has been 

found useful to improve the performance of convolution layers [102, 110].   The model consists a 

number of shared convolution and pooling layers and three sets of tasks specific layers including 
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convolution and fully connected layers. The shared layers, including convolution and pooling 

layers with different sizes, aim to extract the critical features from the images for determination of 

mechanical properties. Taking the features from shared layers, the task specific layers are designed 

to further extract task specific features and train different regressors for different outputs. The 

underlying reason for designing this architecture is that the extracted high-level features from 

convolutional layers should be shared across three highly related tasks while the weights for the 

later task specific layers are updated separately such that three different regressors are trained to 

predict different property values. The loss function for the model is formulated as the sum of mean 

absolute percentage error (MAPE) across three tasks: 

                           loss =  ∑ 1
𝑁

∑ |
𝑦𝑗

𝑖−𝑦𝑗
𝑖

𝑦𝑗
𝑖 |𝑁

𝑖=1𝑗∈{𝑇,𝐺,𝑅} × 100%                                             (13) 

where j represents the type of task, for our case it only has three values: tan 𝛿 peak (T), 

glassy modulus (G) and rubbery modulus (R). 𝑦𝑗
𝑖 represents the i-th predicted value for task j and 

𝑦𝑗
𝑖 represents the true value and 𝑁 is the total size of training data. The training of this model is 

achieved by minimizing the loss function through back propagation and optimization. Additionally, 

in order to prevent over-fitting, common methods in deep learning including batch normalization 

and dropout is applied. 
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Figure 28 Architecture of the proposed multi-task deep CNN model. The MTL is achieved through hard parameter 

sharing. The input image is first feed to a series of shared convolution and pooling layers to extract the high level shared structural 
features for different tasks.  Following that, three sets of task specific layers, including one more convolution and pooling layers 
and two fully connected (FC) layers are applied to predict different output.  

 

Table 3. Model configuration of the proposed multi-task deep CNN model. For each conv block, 3 × 3 convolution and 
ReLU activation with back normalization (l2 norm rate = 0.0005) is applied. The pooling size is 2 × 2. After all the convolution 
and pooling process, the weights are flattened and feed to two fully connected (FC) layers.  

 

Layer Type Dimension 

Input Shared  256 × 256 × 1  

Conv and Pooling 1 Shared 128 × 128 × 16 

Conv and Pooling 2 Shared 64 × 64 × 32 

Conv and Pooling 3 Shared  32 × 32 × 64 
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Conv and Pooling 4 Shared 16 × 16 × 128 

Conv and Pooling 5/6/7 Task Specific  8 × 8 × 128 

FC 1/3/5 Task Specific  1 × 1 × 512 

FC 2/4/6 Task Specific  1 × 1 × 256 

Output 1/2/3 Task Specific  1 × 1 × 1 

 

 

4.2.6 Datasets  

In order to demonstrate the performance of proposed method, a data set with total size of 

11000 is generated using generated microstructures and FEA model. Even though it might be more 

appealing if the structure property connection is studied using experimental data, a comprehensive 

prediction requires a large amount of training data that is not readily available for this study and 

not even available in the NanoMine databases. On the other hand, simulated data gives flexibility 

to explore a wider range of structures and the data can be accumulated in a relatively short period. 

Therefore, in this study, we take advantages of the simulated data and similar study can be done if 

sufficient experimental data is available.  

Each microstructure, with dimension 256*256 pixels, is generated from SDF and 

considered as an RVE for the FEA. As illustrated in previous section, the volume fraction and the 

dispersion are controlled by the volume fraction (𝑉𝐹)  and scale variable 𝜃  respectively. By 

sampling 11000 combinations of 𝑉𝐹  and 𝜃 , 11000 RVEs with different volume fraction and 
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dispersion are obtained. FEA is run for each RVE using Abaqus. Polycarbonate is chosen as the 

matrix material, whose master curve is measured through DMA. The filler is silica nanoparticle 

with a linear elastic young’s modulus of 73MPa and Poisson’s ratio of 0.3. The interphase layer 

has a thickness of ten pixels, whose properties are determined by shifting the master curve of the 

matrix two decades lower in the frequency domain. The FEA outputs the frequency response of 

mechanical properties of the nanocomposite, from which three properties of interest tan 𝛿 peak, 

glassy modulus and rubbery modulus can be extracted. Figure 29 shows the property values as a 

function of volume fraction for those 11000 data. Compared with the previous results shown in 

Figure 24 using only 100 microstructures, the trend for tan 𝛿 peak and glassy modulus is similar 

while the glassy modulus shows more variance. This is because 100 microstructures may not be 

sufficient to capture the whole space of different dispersions on glassy modulus.   

 

Figure 29. Simulation data for the deep learning model. The property shows 𝑡𝑎𝑛 𝛿 peak, glassy modulus and rubbery 
modulus as a function of volume fraction.  
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The 11000 simulated data is further divided into a training, validation and testing set with 

a ratio of 7:1.5:1.5: 7700 data are used to fit the deep learning model and 1650 is used to tune the 

hyperparameters in the model and the rest of data is reserved as testing data to evaluate the 

accuracy of the model.  The accuracy of the model is evaluated using mean absolute percentage 

error (MAPE) which is given by: 

𝑒 =  1
𝑁

∑ |𝑦𝑖−𝑦𝑖

𝑦𝑖 |𝑁
𝑖=1 × 100%                                                          (14) 

where 𝑦𝑖 is the predicted value from the deep learning model and 𝑦𝑖 is the true value from 

the FE model.   

The FE model is run using Abaqus, a widely applied commercial software for FE 

simulations. The simulations are run on a work station with 192GB RAM and 16 core Intel(R) 

Xeon(R) CPU E5-2630 v3 @ 2.40GHz. To build the deep learning model, Python 2.7 and Keras 

with Tensorflow backend is adopted. The model is trained on a work station with a NVIDIA 

Quadro P5000 GPU with 16GB GPU RAM and 20 core Intel(R) Xeon(R) CPU E5-2630 v4 @ 

2.20GHz with 192GB RAM.  

4.2.7 Model performance 

The performance of the model is benchmarked on two other common strategies for 

predicting structure-property linkage.  Figure 30 shows different strategies to predict the properties 

given a microstructure image. Other than the deep learning based approach, one of the traditional 

methods is to build correlations using hand crafted features such as volume fraction, nearest 

neighbor distance, aspect ratio etc. [61, 111]. Those features are usually designed by domain 
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experts with the aim to capture the composition, dispersion as well as the geometric information 

of the microstructure. The structural features are then ready to be applied to fit a machine learning 

model to predict the property values. Another strategy to build the structure-property linkage is to 

compute two-point correlation functions from a microstructure and applied as features for the 

regression-based models [65, 70, 105]. Additionally, dimension reduction technique such as PCA 

is often employed on the two-point statistics because of the extremely high dimensionality. In 

order to evaluate the robustness and stability of the model, for every method, the model is trained 

and evaluated for ten times on different training testing splits. Additionally, to compare the 

performance of different methods, different models are given the same set of training, validation 

and testing set.  The result is shown in Table 4. 

 
Figure 30. Different types of methods to predict structure-property relationship. (a) Geometric descriptor-based 

approach (i.e. application of hand-crafted geometric features such as volume fraction, aspect ratio etc. to a regression model)); 
(b) Two-point statistic methods (using two-point statistics as features for the regression model); (c) Deep learning-based approach 
(feature engineering free). 
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Table 4 Result comparison for different methods. The value shows the mean of MAPE together with the standard 

deviation across ten trials. 

Method Glass modulus  Rubbery modulus  𝑡𝑎𝑛 𝛿 peak 

Two-point 
Statistics + PCA 

1.36% ± 0.03% 5.75% ± 0.14% 8.98% ± 0.19% 

Geometrical 
Descriptors 

1.24% ± 0.08% 4.74% ± 0.08% 4.46% ± 0.10% 

MTL-CNN 0.68% ± 0.06% 3.12% ± 0.06% 3.58% ± 0.14% 
 

The result shows that across all the tasks, the MTL-CNN model outperforms other methods. 

Additionally, the value of the standard deviation on all trials is also small indicating the robustness 

of the model. The method using geometrical descriptors even outperforms the two-point statistics 

especially for the predicting of rubbery modulus and  tan 𝛿 peak, which suggests that those hand-

crafted descriptors designed by material express are really good at capture the characteristics of 

the microstructure and informative to the bulk properties of the composites. Compared with 

method using geometrical descriptors, deep learning model improves the accuracy for prediction 

of glass modulus by as much as 45.2%, rubbery modulus by 34.2%, and tan 𝛿 peak by 19.7%. In 

addition, to demonstrate the data volume is sufficient, the model is trained using different portion 

of data and the accuracy of the model is evaluated. Figure 31 shows the accuracy of the model (in 

MAPE) as a function of different training data portion. Based on the plot, for three property 

predictions, there is significant accuracy improvement when the training data increases from 0.2 

to 0.6 then later the curve gradually flat out, which indicates the data size is sufficient to describe 

the variations across the whole space.  
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Figure 31. Plot shows the accuracy of the prediction for three property values as a function of different training data 
size (in percentage).  

 

4.2.8 Model interpretation  

As given in Table 4, deep learning model outperforms other traditional machine learning 

model for all the three tasks. However, deep learning model is relatively hard to interpret compared 

with traditional method using hand crafted features. In another word, for traditional machine 

learning method, it is easy to extract what is the impact of every feature to the target while deep 

learning model works as a black box with complex architectures with millions of parameters. 

Although it is not possible to interpret every parameter in the deep learning model, it is worth the 

effort to understand what the model learns and whether it captures some physical knowledge 

behind. Therefore, in this section, by modifying the inputs to the deep learning model, we try to 

interpret what the model learns from physical point of view.  
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 In section 2, it has been shown that the glassy modulus increases monotonically as a 

function of volume fraction. In another word, for a specific microstructure, more fillers will lead 

to a larger glassy modulus value. This also suggests that the filler phase have larger impact on the 

glassy modulus compared with that of the matrix. We would like to validate whether the proposed 

model captures this physical knowledge. To do so, the original microstructure input is modified 

by randomly removing a number of pixels from filler or matrix respectively and the modified 

response could be compared. The removing process is achieved by setting the value of that pixel 

to 0, which eliminates the activation of the model from that pixel and therefore the contribution to 

the target value. Figure 32 shows an original image and the modified images after removal different 

number of pixels from filler or matrix. To compare the impact of filler phase with the matrix phase, 

two sets of modified images are generated, one is to randomly remove pixels from filler and the 

other is to randomly remove pixels from matrix. Then later, the modified responses from those 

two sets are compared with the original response. The change of modified response is evaluated 

according to the residue equation below: 

𝑟 =  |𝑦̅−𝑦|
𝑦

 ×  100%             (15) 

where 𝑦̅ is the predicted value from the deep learning model and 𝑦 is the true value from 

FE model.  
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Figure 32. Visualization of the original microstructure and the modified microstructure with different number of pixels 

removed from the original image. Blue represents the matrix region while green represents the filler region. The pixels with red 
color are removed by setting value to zero.  

Figure 33 shows the contribution of matrix and filler in the trained deep learning model by 

plotting different removed pixel number with the residua. The plot is based on a single testing 

sample and the experiments is conducted ten times for accuracy and stability. The plot shows that 

as the increase of removal pixels for either from matrix or filler phases, the residual value increases 

monotonically, indicating that the deep learning model has lower accuracy if more pixels are 

eliminated. More importantly, the residual value from the filler is much higher compared with the 

residual value from the matrix, which suggests that the contribution from the filler is higher than 

matrix in determination of glassy modulus. This finding, corresponding to the knowledge 

illustrated earlier, were not explicitly introduced to the deep learning model during the training 

process. The proposed deep learning model is able to learn and capture this physical knowledge 

during the training process. Additionally, in order to show that this finding holds for other samples, 
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the same experiments is done for ten random chosen testing samples and the average residual is 

calculated across those samples. Figure 34 shows the residual for ten different samples. The plot 

shows that on average, the effect from the filler is higher than the matrix in determination of glassy 

modulus. Therefore, the trained deep learning model is able to implicitly learn and capture these 

physical knowledges for accurate predictions.  

 

 

Figure 33. The plot shows the residual as a function of removed pixels for different material phases on a single testing 
sample. The experiments are conducted ten times for robustness and accuracy. The colored area shows the distribution of values 
for ten trials and the solid line shows the average.  



98 

 

 
Figure 34. Average residual plots for ten different testing samples. The colored area shows the distribution of average 

residual for different samples while the solid line shows the mean value.  

4.3. Conclusion   

In this paper, a multi-task convolutional network is proposed to predict mechanical 

properties of polymer nanocomposites using microstructure images. A computational data set with 

size 11000 is generated using finite element simulations. The performance of the model is 

benchmarked against two other state-of-the-art approaches using two-point statistics and structural 

geometrical descriptors. The result shows that the proposed deep learning model improves the 

accuracy for prediction of glass modulus by as much as 45.2%, rubbery modulus by 34.2%, and 

tan 𝛿 peak by 19.7%. Additionally, by modifying the inputs to the deep learning model, we have 

shown that the deep learning model is able to capture physical understandings through learning, 
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which are not explicitly introduced to the model before-head. The proposed deep learning 

approach is a feature engineering free, high accuracy and generalization and interpretable model 

to study the structure-property linkage in polymer nanocomposites.  

Because of the feature engineering free characteristic, this method can be applied as a 

generalized model to build structure-property linkage for other material systems and properties, 

e.g. meta materials. Although this work is primarily relied on computational data, similar study 

can be accomplished in the future if more experimental data are available. Future study can also 

work on training deep learning model using multi-phase images including interphase layers with 

gradient properties. Then the trained model can be applied to extract other material insights 

including the impact of gradient interphase layers and help to better understand the role of 

interphase in polymer nanocomposites.  
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Chapter 5. Nanocomposite synthesis information extraction from 

scientific literature using Natural Language Processing (NLP) 

5.1. Introduction 2 

Material Genome Initiative (MGI) has dramatically drive the developments of open-source 

web-based material data platforms, which expediates the material development and design. For 

example, in the metals community, several mature materials databases are widely used, such as 

the CALPHAD database for alloy phase diagrams which is over three decades old [14]. Other 

efforts, such as the Materials Project [15], leverages high performance computing (HPC) to 

accelerate materials discovery, particularly in the field of next generation batteries using simulated 

datasets of inorganic compounds [13]. OQMD has enabled researchers to quickly obtain density 

functional theory (DFT) calculated thermodynamic properties and apply tools to visualize phase 

diagrams and crystal structures for many complex alloys and compounds [16, 17]. In the polymer 

nanocomposite filed, although the development of data-driven platform is not as well-developed 

as in the metal field, there exists several examples of online databases that contains sufficient data 

sets and easy-accessible web interface. These include the CRC POLYMERSnetBASE by Taylor 

and Francis Group [19], the Polymer Property Predictor and Database (PPPDB) by University of 

Chicago and the PolyInfo database from NIMS of Japan [18]. All these data resources distribute 

curated polymer data from publications and polymer handbooks, with detailed annotations of 

 
2 This section is from published paper on APL Materials 6.11 (2018): 111108. 
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chemical properties and characteristics. However, there are limitations for those data resources: 

for PolyInfo, the lack of API access prevents the application of user-defined search and exploring 

of data; the CRC POLYMERSnetBASE requires paid access; and PPPDB covers only a few 

properties (notably the chi parameter and glass transition temperature) and is focused on polymer 

blends. Specially, as an exclusive data resource for the nanocomposite research community, we 

developed NanoMine as a prototype framework of an online, open resource system for 

nanocomposite materials data sharing, analysis and material design [46]. It includes a 

nanocomposite database with online access and REST API, a suite of web-based tools for 

statistical analysis of microstructure images and material properties, as well as physics-based 

modeling and simulation of nanocomposite properties. Currently, the NanoMine database contains 

182 papers, over 1000 unique samples, covering over 100 types of polymers/particles with over 

20000 data points and is continuously expanding.   

For most of the material data resources, including NanoMine, the data curation process is 

still relied on a human extraction procedure, which requires a curator with domain knowledge to 

read through the paper and extract all the information based on pre-defined schema. This manual 

curation process is expensive, error-prone and labor-intensive. Based on our experience, for data 

curation in NanoMine, it requires a full-day work to extract all the sample information from one 

paper and input those into the database. Plus, with the continued growth of new publications, it is 

becoming increasingly difficult to maintain and update manually curated databases.  

Natural language processing (NLP)，which enables automatic extraction of data from 

literatures using statistics and computation techniques, provides a possible alternative for manual 
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curations. NLP is a subfield of machine learning and computer science focusing on using 

computational techniques to learn, understand and produce human languages. The applications of 

NLP include machine translation, information extraction, social media mining and so on [112-

114]. Traditional NLP approaches primary rely on rule-based method by hand-crafting a set of 

rules. And the quality of the NLP models is heavily dependent on the quality of designed rules. 

However, due to the high variability and ambiguity of human language, writing rules of human 

languages is non-trivial and difficult. Starting from the late 1980s, NLP gradually transformed to 

apply machine learning algorithms to understand the grammar [115, 116].  

In chemistry and biomedical domain, there are many well-established NLP tools. 

ChemDataExtractor [44], is one of the tools that can extract chemical information from the 

scientific literature. Combining different NLP techniques, the system provides a complete pipeline 

for the automated extraction of chemical entities and their associated properties, experimental 

measurements etc. Kim el al. [41, 42] developed a framework to automatically compile material 

synthesis information from literatures using different NLP techniques for metal oxide systems. 

While there are many well-established NLP tools in other domains, there is no such tool available 

in polymer nanocomposite filed probably because of the complexity and high dimensionality of 

nanocomposite data space, accounting for all detailed information in chemistry, processing 

structure and property spaces.  

However, in the polymer nanocomposite domain, such NLP model has not been developed 

because of the complexity of nanocomposite processing, characterization and measurements. By 

applying recent machine learning and natural language processing methods, an end-to-end 
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framework to extract material processing and synthesis information from full-length journal 

publications is proposed, developed and evaluated.  

5.2. Methodology 

5.2.1 Nanocomposite Schema3 

To appropriately capture the full suite of possible data for nanocomposites, there are six 

major sections in the NanoMine schema. In each category, many hierarchically related fields have 

been defined to store sufficient detail on nanocomposite data to enable subsequent data analytics 

and design tools.  The structure and fields have been designed using a test set of published papers 

on nanocomposites and have been further refined with additional curation of data into the data 

resource. The top-level categories in NanoMine and the description of the subfields organized 

underneath them are as follows:  

- Data provenance: Metadata of the source of the literature guided by Dublin core 

standards[104]. The essential metadata includes the DOI of the cited source, author, title, 

keyword, time and source of publication, etc. This section of the schema supports both 

published and unpublished datasets. For published datasets, we have developed a robust 

automatic DOI information retrieving tool [117]that fills out the data source information 

for users and enhances the data quality by eliminating entry errors. NanoMine currently 

stores data from 12 publishers and the tool supports all of them. 

 
3 This section is from published paper on APL Materials 6.11 (2018): 111108. 
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- Materials Composition: Characteristics of the constituent materials, including the 

polymer matrix, the filler particle, and surface treatments for polymer and/or particle 

constituents. Bulk matrix and filler properties can be entered, along with compositions 

(volume/weight fraction) and pre-treatment (for example, grafting and other surface 

treatment methods).  

- Processing: Extracted sequential description of chemical synthesis and experimental 

procedures. Currently, three major sub-categories are included: Solution Processing, Melt 

Mixing, and in-situ polymerization. Detailed information at each processing step, such as 

temperature, pressure, and time, can be entered.  

- Characterization: specification of material characterization equipment and methods and 

conditions used. This information includes details on common microscopic imaging 

(SEM, TEM), thermal and electrical measurement, mechanical property measurements, 

as well as nano-scale spectroscopy.  

- Properties: measured data of materials performance and response. Properties include 

mechanical, viscoelastic, electrical, thermal and volumetric properties. Format of data can 

be scalar or higher dimensional, such as in 2D plots or 3D maps.  

- Microstructure: contains nanophase spatial dispersion and topological information from 

micro and nano-scale imaging. Multiple images can be archived to document 

microstructure in nanocomposites. Unlike traditional journal articles, where typically one 

“representative” image is recorded, we provide the ability to archive sets of images, 

which will increase robustness of statistical descriptors of microstructure [64, 98] and the 

correlations [118] that can be gleaned between structure and processing or properties. 
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Geometric descriptors can also be entered into this section to describe the statistical 

distribution of microstructure.  

 

The full representation of the current schema in the XML tree can be found on GitHub 

[119] and on the NanoMine website [120]. We utilize the NIST Materials Data Curation System 

(MDCS) platform [121] as the backbone of the NanoMine database. Experimental nanocomposite 

samples have been effectively populated into the NanoMine database using this schema.  Figure 

35 shows an example of a populated XML document of a graphite-PMMA nanocomposite sample. 

The hierarchical structure indicates some basic relationships across the parameters. For example, 

the “Particle Size” can be defined specifically as a child-element under “Filler”, with value and 

unit as its subsequent child elements. We will see later that mapping this schema to an ontology 

will provide an even more flexible framework to handle both simple and complex relationships far 

beyond the parent-child concept.  
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Figure 35. Populated XML tree for a given sample in NanoMine. As highlighted in two red boxes, “Particle Size”, with 
two sub-elements “value” and “unit”, is a child element of “Filler”, which is in the “Materials Composition” upper level category. 

The non-relational format of the schema enables efficient editing and versioning. The 

schema is a living system and will continue to evolve with curation. For example, solid state 

processing is a processing method that is not currently included and will be added to an upcoming 

version of the schema as data from papers utilizing it are curated. Editing the schema can be 

conveniently performed by retaining the original hierarchical relation and appending any new 

elements as child or parent to corresponding fields. For example, a new processing condition type 

(eg, solid state processing) can be inserted along with associated new physical quantities (eg, 

residence time) into the existing schema, retaining existing representation of all other previous 

terms to ensure backward compatibility. 
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Figure 36. Parallel coordinate plot of Nanomine samples for selected parameters (polymer, filler, loading, Tg and 
characterization method) 

 

Figure 36 illustrates a parallel coordinate plot showing an overview of Nanomine samples 

for some selected dimensions/parameters. The color of each line indicates the number of distinct 

properties recorded for each sample. From the plot, it can be seen that NanoMine has a wide range 

of interconnected data on each nanocomposite sample by using our designed NanoMine Schema. 

The rich information set will enable robust discovery and development of search and visualization 

tools.   

5.2.2 NLP framework 

Although a fully automated data injection is not feasible at the current stage given the 

complexity of languages and writings, a semi-automated curation procedure assisted by NLP is 

developed to ease the manual labor and improve the accuracy. Based on our experience on manual 
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curation, it is found the extraction of material processing information most time-consuming 

because that information is usually embedded in pure text and requires an experienced curator with 

domain knowledge to given a thorough reading in order extract the data. On the other hand, the 

property or microstructure information are relatively easy to obtain as those are usually presented 

in the form of a table or plot. Therefore, as the first step toward automated curation via NLP, a 

toolkit to extract material processing information from literatures is valuable and could assist the 

manual curation process.  

To do so, a pipeline of machine learning models is proposed working at different sections 

and levels of papers (e.g. abstract, paragraphs, sentences) to gradually extract the relevant 

processing information from full-length papers. The proposed NLP framework in shown in Figure 

37.  The paper collection can be done through using Application Programming Interface (API) 

from different publishers, which enables retrieving articles in either PDF or plain text format. In 

this way, a corpus of journal publications can be obtained. However, not all the collected papers 

contain the nanocomposite data we desired so the NLP model 1 is built to filter out the irrelevant 

papers. Secondly, NLP model 2 serves as a paragraph classifier selecting the relevant paragraphs 

containing the material processing information from the whole paper. Thirdly, the processing goes 

down one more level and focuses on understanding the meaning of each sentences. Inspired by the 

definition of schema, individual sentences are further classified into four different categories (e.g., 

material characteristics, experimental action, irrelevant information etc.) based on their semantic 

meanings. Lastly, taking advantages of outputs from grammar parser and combining with different 

heuristic rules, the exact experimental procedure and relevant conditions can be extracted. 
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Due to the lack of API accessibility for paper downloading, in the following section, details 

about NLP model 3 and NLP model 4 as well as the results are presented while the building of the 

first two NLP models requires future efforts in order to complete the whole framework.   

  
Figure 37. Workflow of applying NLP to extract material synthesis information from literature. The first NLP model is 

built to filter out the irrelevant papers; NLP model 2 is constructed working as a paragraph classifier selecting the material 
processing paragraphs. Then the processing goes down one more level and focuses on understanding the meaning of each sentences 
by classifying each sentence into different categories. Lastly, taking advantages of outputs from grammar parser and combining 
with different heuristic rules, the exact experimental procedure and relevant conditions can be extracted. 

 

5.2.3 Word embedding  

The workflow to solve most of the NLP tasks is similar to solve machine learning problems, 

which typically includes feature extraction, model selection and evaluation as shown in Figure 38.  

NLP is also a machine learning problem other than the data is words and letters instead of numbers. 

Given the fact that the machine learning models such as logistic regression or decision trees usually 

takes the input in numerical forms, the first step of NLP is to map the words and phrases into real 
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numbers, which is also called word embedding. There are two types of methods for feature 

extraction from text: count-based methods, such as bag-of-words and term frequency-inverse 

document frequency (TFIDF) [114, 122], and continuous vector representations, such as word2vec 

and Glove [123, 124]. For count based methods, the bag-of-words model is a simplified 

representation using the frequency of occurrence of each word [122]. For example, given two 

simple text documents: (1) John likes cat. Mary likes cat too. (2) John also likes dog. If we count 

the occurrence of each word, we would get (1) [John: 1, Mary: 1, likes: 2, cat: 2, too: 1]; (2) [John:1, 

also:1, likes:1, dog:1]. Then we could form a word library by union all the unique words from both 

documents: library = [John, Mary, likes, cat, too, also, dog]. Lastly, for every word in the library, 

if we use the term frequency, we will obtain the bag-of-words representation of each document (1) 

[1,1,2,2,1,0,0] (2) [1,0,1,0,0,1,1], which can be considered as features and applied for machine 

learning models. However, this simplified representation may not be the best representations. 

Common words such as “I”, “you”, “the”, “a” are always words with highest terms, however, these 

words do not carry useful information. Therefore, TFIDF is proposed to solve this problem by 

normalizing the term frequencies by inversing the document frequency [125].   
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Figure 38. A common workflow of NLP. The method starts from extracting features from raw text, followed by applying 

machine learning on top of the extracted features.  

Even though count-based word representations are simple and robust if trained on a large 

amount of data, this representations loss essential information in languages: the notion of semantic 

meaning of words, the similarity of words and the connections. Additionally, in most of the NLP 

tasks, the amount of in-domain data is limited. Instead, researchers developed more advanced 

techniques using continuous vector representations. One of the popular vector representations is 

word2vec, which is a continuous representation that is learnt by a two-layer neural networks. This 

vector representations can be learnt in two ways: either to use context to predict target word (also 

called continuous bag of words or CBOW) or to use word to predict context (also called skip-gram) 

[123]. Compared with other methods, word2vec has greatly improved the quality of the learned 

word representations, which is able to capture the semantic meaning of each word and learn 

implicitly the similarity between different words. Although the continuous vector representations 

are better compared with count-based methods, the continuous vector representation need to be 

obtained by training on a relatively large corpus, which is not available for our study because of 

lacking API access to obtain sufficient amount of training papers. Instead, we take advantages of 
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a transfer learning strategy where we directly apply pre-trained embeddings coming from other 

applications. There exist several different pre-trained models published by different institutions 

that are trained on millions of words from Wikipedia, twitter, or newspapers. For example, 

Pennington et al. [124] from Stanford published GloVe word vectors [124]. Google also published 

pretrained embeddings using word2vec . However, those pretrained embeddings cannot be directly 

applied to material research as the corpus are different. Material research contains a lot of domain 

specific words and terminologies that may not be covered in daily documents. A very recent 

research bridges this gap by training word embedding using material research articles. Kim et al. 

[41, 42] trained word embedding on 640000 full-text metallic material synthesis articles and 

obtained vector representations. Although the material system is different, our scenario is still very 

similar to theirs (both investigating experimental procedures for material synthesis) and those word 

vectors from metallic material synthesis is transferable to our application.  

In order to examine the quality of the pre-trained vectors, we try to identify ‘similar’ words 

by calculating the cosine similarity and ranking according to that score. Table 5 shows the most 

similar words according the cosine similarity score when the target word is “silica”. These words 

have similar semantic meanings or functionalities compared with the target word, which 

demonstrates that the pre-trained word vectors can implicitly model the connections between 

different words.  

Table 5. Top 5 most similar word with ‘silica’ according to cosine similarity score. 

word score 

Silica 0.596 
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brucite 0.513 

boehmite 0.509 

silicic 0.503 

titania 0.502 

 

5.2.4  Sentence Classifier using attention networks  

 After encoding each word into vectors, those features are ready to be applied to a machine 

learning model for classification. Inspired by NanoMine schema [46, 126], each sentence from the 

processing paragraph is classified into one of the four categories: material constituents, material 

properties, experimental action and not relevant. More details about each category is shown in 

Table 6.  

Table 6. sentence label, interpretation and examples. 

label interpretation examples 

material 
constituents  
 
  

Filler/polymer 
chemical name and 
manufacturer 

Aniline and ammonium 
peroxydisulfate (APS) are purchased 
from E Merck (India). 
Tritherm® B 981-N-42, a (PAI) 
resin, was chosen as the matrix 
material. 

material  
properties  

Filler/polymer 
properties such as 
density, glass 
transition 
temperature.  

The COC was Topas® 8007S04 
(Ticona GmbH, Germany) with a 
density of 1.02g/cm3 and a melting 
temperature of 190–250◦C. 
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The process to classify each sentence into the above four categories is a text classification 

problem. Traditional approach on text classification relies on combing count-based embedding 

methods with linear model or kernel methods such as logistic regression or support vector 

machines (SVM). Then the NLP gradually transforms to deep learning, such as using 

convolutional neural networks and recurrent neural networks. Yang et al. [127] presented a novel 

hierarchical attention networks (HAN) for text classification that better represents the structure of 

the documents. The HAN is designed according to two insights from document structure. The first 

one is that the documents have a hierarchical structure (words form sentences, sentences form a 

document). The HAN is constructed to first generate sentence representations from words and then 

to aggregate sentence representations to form a document representation. The second insight is 

that not all the words and sentences are equally informative.  

Inspired by the HAN, Figure 39 shows the proposed attention network for sentence 

classification [127, 128]. Taking the pre-trained embeddings, the word representation is feed to a 

bidirectional gated recurrent unit (GRU) to obtain the encoding of each words. Then an attention 

mechanism is applied to pay more attention on the words that carries significant meanings.  Finally, 

experimental  
action  

the experimental 
procedures to 
synthesis the 
nanocomposites 

Then, the appropriate amount of 
hardener is poured into the beaker, 
mixed vigorously with hand for few 
minutes and poured into the mold. 

not relevant All the other 
sentences that does 
not contain useful 
information  

The surface-initiated RAFT 
polymerization process has been 
previously documented and is briefly 
discussed here. 
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the averaged vectors according to all weighted values are feed to the final softmax layer for 

prediction.  

 
Figure 39. Attention network for sentence classification 

5.3. Result 

The sentence classification model is trained on a dataset with 2000 sentences that is 

manually labeled by material experts. Each sentence is assigned with a unique label based on its 

semantic meanings. The performance of the model is benchmarked on other approaches using 

linear classification model such as logistic regression (LR) and support vector machine (SVM). 

The evaluation metric is F1-score. The results are given in Table 7. Result comparison for methods 

using different machine learning models and embeddings. The result shows the F1-score.. The 

results compare the performance of classifier using different machine leaning models and 

embedding methods. The results show that the linear model works better together with count-based 
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embeddings such as bag of words (BOW) or TFIDF, while the deep learning model shows better 

performance using learnt continuous representation such as word2vec. Overall, the performance 

of the deep learning model is the best among other benchmark methods, however, the performance 

of the deep learning does not exceed a large extent compared with traditional method. This is 

probably because for this study, the size of the training data is small. An improved performance 

of the deep learning model should be expected if more training data are available.  

Table 7. Result comparison for methods using different machine learning models and embeddings. The result shows the 
F1-score. 

Model F1-score 

LR + BOW 0.81 

LR + TFIDF 0.79 

LR + word2vec 0.80 

SVM + BOW 0.82 

SVM + word2vec 0.83 

SVM + TF-IDF 0.85 

Attention NN  0.84 

Attention NN + word2vec 0.88 
 

Next, we would like to demonstrate the interpretation of the model by plotting the weights 

from the attention layer and show that the model is able to catch the critical words and assign them 

more weights. The visualization is shown in Figure 40. This sentence is from the testing set that 

has not been exposed to the model during training. The figure shows the words together with the 

importance score learnt by the model. From the result, the model catches the critical words such 

as ‘were’,’mixed’ and assign them much larger weight values compared with other more common 

words such as ‘at’,’the’ etc. The ability to recognize important words in a sentence is very like to 
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how human interpret the meaning of sentence, which is the reason why the model is called an 

‘attention’ model. 

 

 
Figure 40. Visualization the weights of the attention layer. A darker color represents a larger weight and more 

importance of the word. 

 
 

After the sentence classifier, different parsers are built to extract the detailed experimental 

procedures and parameters. The method is primary based on combing syntax analysis with rule- 

based grammars. The workflow for the parser is given in Figure 41. 

 

 

 
Figure 41. Workflow of the parser to extract detailed material processing procedure and parameters 
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Taking an example sentence, 'The polycarbonate suspension was stirred for 0.5 h at 55 °C 

under the protection of N2, after cooled to room temperature’, we demonstrate how the parser 

works step by step.  

Tokenization: Tokenization is the process split the sentences into individual words and 

tokens. After the tokenization, the output is [u'The', u'polycarbonate', u'suspension', u'was', 

u'stirred', u'for', u'0.5', u'h', u'at', u'55', u'\xb0C', u'under', u'the', u'protection', u'of', u'N2', u',', 

u'after', u'cooled', u'to', u'room', u'temperature', u'.’] 

Part-of-speech (POS) tagger: POS tagging is the process to grammatically tag each 

words or to generate word-category disambiguation; simplified tagging in the identification of 

words as nouns, verbs, adjectives, adverbs, etc. The output from the POS tagger is [(u'The', u'DET'), 

(u'polycarbonate', 'NOUN'), (u'suspension', u'NOUN'), (u'was', u'VERB'), (u'stirred', u'VERB'), 

(u'for', u'ADP'), (u'0.5', u'NUM'), (u'h', u'NOUN'), (u'at', u'ADP'), (u'55', u'NUM'), (u'\xb0C', 

u'NOUN'), (u'under', u'ADP'), (u'the', u'DET'), (u'protection', u'NOUN'), (u'of', u'ADP'), (u'N2', 

'NOUN'), (u',', u'.'), (u'after', u'ADP'), (u'cooled', u'VERB'), (u'to', u'PRT'), (u'room', u'NOUN'), 

(u'temperature', u'NOUN'), (u'.', u'.')]. 

Phrase chunking:  this is the process to identify phrases by combining tokens. In our case, 

we focus on identifying noun phrases. The chunking mainly relies on rule-based grammar. An 

example grammar rule to capture noun phrases can be: [<DET>?<ADJ>*<NOUN>*],which 

means the noun phrase has a pattern combining articles, adjectives and noun. By carefully 

designing these grammar rules, noun phrases such as 'The polycarbonate suspension’, ’room 

temperature’ is captured.  
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Chemical entity recognizer: To capture the chemical entities, two approaches are applied. 

A chemical corpus: CHEDNER (10000 PubMed abstracts with manual annotated chemical entities 

is taken and worked as the first step to pick up the chemical entities [129]. For other chemical 

entities such as polymer names, rule-based grammar is designed. Utilizing the proposed method, 

chemical entities can be extracted. After the processing of chemical entity recognizer, 'The 

polycarbonate suspension’ and ‘N2’ can be identified as chemical entities.  

Experimental action recognizer: Similar to the idea to pick up chemical entities, rule-

based grammar is designed to pick up the exact processing steps such as mix, stir, sonicate etc. 

The grammar rule for identifying experimental actions is 

“.*extrud.*|.*sonica.*|.*stir.*|.*mill.*|.*centrifu.*|.*dissolv.*|.*mix.*|.*deaer.*|.*cool.*|.*heat.

*”, which is the combinations of root words of different experimental actions. After this step, 

‘stirred’ and ‘cooled ’ are identified as experimental actions.  

Quantity recognizer: the objective of quantity recognizer is to pick out the quantity 

parameters such as time, weight and temperature. To do this. Rule-based grammar is designed. 

The grammar to extract the time phrase is “[0-9]+.*h|[0-9]+.*min”, which suggests a pattern 

including numerical character at the beginning followed by time units such as hour or minutes.  

After the processing of the parser, words and phrases with detailed experimental actions 

and chemical entities can be tagged using different colors as shown in Figure 42. This tagging 

provides support and makes it easier for manual curators to input data to the database. 
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'The polycarbonate suspension was stirred for 0.5 h at 55 °C under the protection 

of N2, after cooled to room temperature.’ 

Figure 42. Example output from the parser with different colors marking different types of information such as 
experimental actions, chemical entities etc.   

5.4. Conclusion 

By applying recent machine learning and natural language processing methods, an end-to-

end framework to extract material processing and synthesis information from full-length journal 

publications is proposed, developed and evaluated. The framework consists a series of NLP models 

that process information from different paper sections. A paragraph classifier is first built to select 

the relevant paragraphs which contains the processing information from the whole paper. 

Sentences from the processing paragraphs are then further classified into four different categories 

using a hierarchical attention neural network based on their semantic meanings. The network is 

trained against a set of over 100 human annotated literatures, labelled by material scientists while 

reading through the paper. Lastly, different heuristic rules are applied according to the sentence 

categories to extract the exact material processing actors and parameters.  

Although at the current stage, the training corpus is still small, however, taking advantages 

of manual labelled sentences from 100 papers, the proposed models and methods is still proved to 

be a good candidate to assist manual-based curation and improve the efficiency of data ingestion 

for the database. 
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Chapter 6.  Conclusion and future works 

6.1. Summary of contributions 

NanoMine, a polymer nanocomposite resource consisting of a curated database, search and 

visualization tools, data analysis tools, and simulation tools was built by an interdisciplinary 

research team in order to accelerate materials design.  To further expand the functionality of 

NanoMine for adoption by the larger nanocomposite research and design community, efforts have 

been undertaken to enhance three aspects of the data resource. The first thrust is to build more 

analysis and module tools that better model material behavior and exapand the toolbox for material 

design. The second perspective is to carry out materials science case studies using NanoMine data 

aligned with the materials science paradigm of elucidating processing-structure-property 

relationships in order to better understand the physics underlying material behavior. Last but not 

the least, it is essential to put continuous efforts on enhancing data curation, which expands the 

size of database and enables development of more systematic studies using data science techniques. 

Corresponding to these three thrusts for advancing the capabilities of NanoMine, this dissertation 

highlighted three research tasks: 1) building more robust and accurate computation models, 2) 

mining structure-property relationships using NanoMine, and 3) designing an NLP framework to 

assist manual data curation. To the best knowledge of the author, the work of inverse determination 

of interphase properties using adaptive optimization in Chapter 3 was the first work that combines 

FEA models with optimization methods to automatically search the optimal interphase properties 

for polymer nanocomposites. In addition, the proposed deep learning model for structure-property 

modeling presented in Chapter 4 was the first work that builds quantitative relationships via 
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feature-engineering free, interpretable, and multi-tasked deep learning model in the context of 

polymer nanocomposite materials. Additionally, the proposed NLP toolkit for material synthesis 

extraction described in Chapter 5 was the first implementation of NLP in the field of polymer 

nanocomposites. More detailed contribution about each task is given below: 

Task 1. An inverse approach identifying interphase properties in polymer 

nanocomposites: 

This work demonstrated a consistent and efficient approach for identifying the interphase 

properties in polymer nanocomposites by solving the inverse problem using adaptive optimization, 

improving the prior work which was limited in accuracy and efficiency by the laborious manual 

iteration process. Using the proposed automated approach and given experimental bulk property 

and microstructure data, the interphase properties in dielectric and viscoelastic studies were 

determined automatically. The results demonstrate that only tens of iterations are required for the 

method to identify the optimal shifting factors and interphase properties to achieve a good fit with 

the experimental data, shedding insight into the profile of interphase properties near a confining 

interface. Comparisons among different existing searching algorithms showed the ability of our 

method to reduce the computational cost and improve searching efficiency.  

This method can be used as a generalized automated approach to determine the interphase 

properties in polymer nanocomposites. The framework is also flexible and can be applied to other 

computational models to inversely determine the required interphase properties. Additionally, the 

method is very efficient compared with the manual-fitting process, which will facilitate further 

investigation by data-driven analysis where many hundreds of samples may be required.  
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Task 2. mining structure-property relationship using NanoMine: 

This work first demonstrated the application of NanoMine on finding trends and facts that 

is already known to material scientists, which further motivated the subsequent systematic 

investigation of structure-property relationships using computational data. The first part of the 

analysis focused on qualitative relationships between microstructure descriptors and mechanical 

properties, resulting in new findings about the interplay of interphase, volume fraction, and 

dispersion. A multi-tasking convolutional network was proposed to predict mechanical properties 

of polymer nanocomposites using representative microstructure images. The performance of the 

model was benchmarked against two other state-of-the-art approaches using two-point statistics 

and structural geometrical descriptors. The results indicated that the proposed deep learning model 

improves the accuracy for prediction of polymer modulus by as much as 45.2% and 34.2% in the 

glassy and rubbery regimes, respectively, and for tan 𝛿 peak prediction by 19.7%. Additionally, 

by modifying the inputs to the deep learning model, it was shown that the deep learning model is 

able to capture physically meaningful understanding through learning, without explicit 

introduction to the model beforehand. The proposed deep learning approach is a feature-

engineering-free, high accuracy, generalizable, and interpretable model to study structure-property 

relationships in polymer nanocomposites.  

This work demonstrated the ability of NanoMine in testing hypotheses and providing 

insights for understanding material mechanisms. This analysis framework can be extended to test 

other hypotheses put forward by materials scientists and to help elucidate unknown mechanisms 

behind material behavior. Additionally, due to the feature-engineering-free, interpretable, and 
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robust characteristics of the proposed deep learning model, it can be transferred to other material 

system classes, e.g., metamaterials.  

Task 3. Extracting material synthesis information from scientific literatures using 

NLP: 

In this work, by applying advanced natural language processing and machine learning 

models, a framework consisting various machine learning models was proposed to extract material 

processing and synthesis information from scientific literatures. A series of NLP models were 

trained and applied to process information from different paper sections. Firstly, a paragraph 

classifier was trained to select material processing paragraphs from the full-length paper. Secondly, 

each sentence from processing paragraphs was further classified into different categories using a 

deep learning model based on their semantic meaning. Lastly, rule-based parsers were built to 

extract the exact experimental actions and parameters. The method was trained and evaluated on 

a set of over 100 human annotated papers and shown good performance. Although it is 

acknowledged that the current training corpus is relatively small, the proposed framework and 

models were still proved to be a powerful tool to assist manual-based curation and improve the 

efficiency and accuracy of data ingestion for the database.  

6.2. Future work 

Interphase property prediction based on material characteristics and processing 

information  
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In this dissertation, an inverse method to identify interphase properties has been developed 

through combining FEA with Bayesian optimization.  However, this work is limited in that it 

requires experimental measurements of bulk properties.  A major future goal is to build a fully 

predictive model that correlates interphase properties with material characteristics and processing 

conditions. One pathway toward this goal entails collecting experimental data from NanoMine that 

consists of various materials with different combinations of fillers, polymers, and processing 

conditions. This inverse method can be applied as a tool to extract the interphase properties 

inversely, which will provide a interphase data library with different material and processing. The 

surface energy terms can be applied to quantify the combination of different material and 

processing. Then heuristic and data analytics can be applied to develop predictive tools that work 

across different material systems. 

Investigating structure-property relationships using FEA model with gradient 

interphase 

In Chapter 4, we proposed a multi-task, deep-learning model to predict structure-property 

relationships. The current construction using an FEA model with uniform interphase and the deep 

learning model is only trained using two-phase images, ignoring the interphase. Because of the 

feature-engineering-free characteristic, this method can be applied as a generalized model to build 

structure-property linkage for other material systems and properties, e.g. metamaterials. Although 

the presented work primarily relied on computational data, similar studies can be accomplished in 

the future if more experimental data are available. Future studies can also expand on this work by 

training the deep learning model using multi-phase images including interphase layers with 

gradient properties. For multi-phase images with gradient interphase properties, I believe that deep 
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learning model is even more powerful compared with traditional methods using hand crafted 

features. This is because for traditional methods, microstructures are only characterized by 

geometric and dispersion information of fillers, which will result into huge information loss if the 

gradient interphase profile is not considered. On the other hand, deep learning model is able to 

fully capture the microstructure information including the gradient profile if the gradient 

information is labelled using different numerical values. More importantly, the trained model can 

be applied to extract other material insights including the impact of gradient interphase layers and 

help to better understand the role of interphase in polymer nanocomposites.  

Extension of the NLP toolkit to extract other information from literature sources  

In order to improve the performance of the sentence classification model, future efforts 

should start by collecting more training data for the model. Additionally, the grammar rules applied 

to extract the experimental procedures and parameters can be further extended to capture more 

information contained within the continually evolving NanoMine schema.  

In order to obtain more papers directly from different publishers, it is critical to collaborate 

with different publishers for API access such that paper collection can be done in an efficient and 

automated manner. In addition, this toolkit can be extended to extract other information, such as 

meta data, microstructure information, and even material properties, by building different NLP 

models applied to different sections of the publications.  
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