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ABSTRACT

Spectral Theory and Index Theorems for Stationary Spacetimes

Anthony Ryan McCormick

We present both semiclassical asymptotics for the wave equation on a stationary Kaluza-

Klein spacetime and an index theorem describing the difference of the positive-frequency

spectral projectors for two stationary regions in a globally hyperbolic spacetime. The

first result involves analyzing the restrictions of the wave trace to isotypic subspaces for

the action of the structure group, and the asymptotic distribution of the frequencies as

the representation corresponding to the isotypic subspace goes to infinity in the weight

lattice. For the second result, it was previously known how to calculate the difference of

these spectral projectors in the case where they are defined by spacetime regions on which

the metric appears ultrastatic. Here we extend these techniques to handle the case where

the defining regions merely appear stationary. As such a new formula for the relevant

Feynman propagators is derived as one can no longer obtain spectral descriptions of the

Feynman propagators of the square of the Dirac operator as is done in the case of local

ultrastatic regions.
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Preface

A part of this thesis is based off of the article [24] by the author and portions of sec-

tions 1.3,3.1 and 1.2 are taken from this article. Chapter 1 consists of background on

stationary globally hyperbolic spacetimes, together with a description of the dynamics of

null geodesics in this setting. Chapter 2 then introduces the necessary background on

normally hyperbolic and Dirac-type operators and introduces the relevant spaces and op-

erators on which we will be doing spectral theory. Chapter 3 consists of the main original

results of this thesis where sections 3.1 and 3.2 develop semiclassical asymptotics for the

wave trace on stationary Kaluza-Klein spacetimes and 3.3 extends the index theory of [4]

from spacetimes with two local ultrastatic regions to spacetimes with two local stationary

regions.
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CHAPTER 1

Geometry of Stationary Spacetimes

Definition 1.0.1. A Lorentzian manifold is a smooth manifold M together with a

smooth section g of Sym2 T ∗M such that for each x ∈ M , gx is non-degenerate with

signature (−1,+1, ...,+1).

We give several examples of Lorentzian manifolds that we will return to throughout this

chapter to illustrate concepts.

Example 1.0.2. The first example of a Lorentzian manifold one typically studies is flat

Minkowski space: M = Rn+1 with metric

g = −(dx0)2 + (dx1)2 + · · ·+ (dxn)2.

More generally, one has the class of ultrastatic spacetimes which are manifolds of the

form M = Rt × Σn with metric

g = −dt2 + h

where h is a fixed t-independent Riemannian metric on Σ.

Example 1.0.3. For α > 0 we have the de Sitter spacetime

Sn+1
1 (α) := {x ∈ Rn+2 : −x20 + x21 + · · ·+ x2n+1 = α2}

endowed with the pullback of the Minkowski metric on Rn+2 to Sn+1
1 (α).
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Example 1.0.4. Similar to the previous example, we have spacetimes

Hn+1
1 (α) := {x ∈ Rn+2 : −x20 − x21 + x22 + · · ·+ x2n+1 = −α2}

endowed with the pullback of the standard signature (−1,−1,+1, ...,+1) metric on Rn+2

to Hn+1
1 (α). The universal cover H̃n+1

1 (α) is called the anti de Sitter spacetime.

One can use the curvature computations of 1.2 that the Minkowski, de Sitter and anti de

Sitter spacetimes are the Lorentzian analogues of the complete model spaces of constant

curvature from Riemannian geometry.

Example 1.0.5. The Schwarzschild spacetime is

M = Rt × ((2m)2−n,∞)r × Sn−1

g = −(1− 2mr2−n)dt2 + (1− 2mr2−n)−1dr2 + r2hSn−1

where m > 0 is some positive constant and hSn−1 is the round metric on the unit sphere

Sn−1. This is used to model exterior regions of black holes, or even just regions of space

of moderate distance away from a large object like a star.

Example 1.0.6. Slightly more general than the ultrastatic spacetimes are the static

spacetimes. These are

M = Rt × Σn

g = −N2dt2 + h
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With h a fixed Riemannian metric on Σ and N : Σ → (0,∞) a t-independent positive

smooth function. If N is allowed to be t-dependent then the spacetime is simply called

conformally static.

1.1. Standard Forms of Stationary Spacetimes

Definition 1.1.1. For (M, g) a Lorentzian manifold and v ∈ TM we say that v is:

(1) lightlike (or null) if and only if v ̸= 0 and g(v, v) = 0,

(2) timelike if and only if g(v, v) < 0,

(3) spacelike if and only if g(v, v) > 0 or v = 0, and

(4) causal if and only if v is either lightlike or timelike.

We use completely analogous terminology for covectors.

Definition 1.1.2. Let T0M denote the set of null vectors in TM . This is a smooth fiber

subbundle T0M ⊆ TM whose fibers each have exactly two connected components, both

of which are diffeomorphic to (0,∞) × Sn. We call (M, g) time orientable if and only

if T0M can be written as a disjoint union

T0M = T+M ⊔ T−M

of smooth subbundles such that for every x ∈ M , the fibers (T±M)x are precisely the

two connected components of (T0M)x. A choice of such a decomposition is called a time

orientation with T+M viewed as the forward time direction and T−M as the backwards

time direction.
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All of the examples of spacetimes from the start of 1 are time-orientable, as can be seen

by explicitly writing down a global causal vector field in each case. A standard example

of a non-time-orientable spacetime [18] is the quotient of de Sitter spacetime Sn+1
1 (α) by

the action x 7→ −x on Rn+1. Most Lorentzian manifolds admit time-orientable metrics,

as the following lemma states.

Lemma 1.1.3. [27] Every connected non-compact Lorentzian manifold is time-orientable.

Definition 1.1.4. A spacetime is a connected, oriented and time-oriented Lorentzian

manifold of dimension at least 3.

Definition 1.1.5. A curve γ : I → M with I ⊆ R an open interval, M a Lorentzian

manifold, is called lightlike (respectively timelike, spacelike or causal) if and only if

γ̇(s) is lightlike (respectively timelike, spacelike or causal) for every s ∈ I. If M is time-

oriented then we say γ is future-directed (respectively past-directed) if and only if

γ̇(s) is in the closed convex hull of (T+M)γ(s) (respectively of (T−M)γ(s)) for every s ∈ I.

Using this, given A ⊆M we denote by I±(A) the set of all points in M reachable from A

by future (respectively past) directed timelike curves. Similarly J±(A) denotes the set of

all points in M reachable from A by future (respectively past) directed causal curves.

The next condition on a spacetime is one we will almost always assume. It is stronger than

the intuitive assumption that no closed timelike curves exist, but we make it nonetheless

since it implies well-posedness for the Cauchy problem of any linear wave equation (with

smooth coefficients).
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Definition 1.1.6. A Lorentzian manifold M is called globally hyperbolic if and only

if there exists a smooth spacelike hypersurface Σ ⊆ M such that every smooth curve

γ : I →M which is both inextendible and causal intersects Σ exactly once.

Example 1.1.7. The Schwarzschild and Kerr spacetimes are both globally hyperbolic.

The constant-t hypersurfaces are Cauchy in both cases []. de Sitter spacetimes are also

globally hyperbolic with Cauchy constant-t hypersurfaces, although the anti de Sitter

spacetimes are not globally hyperbolic [6].

Below we list a nice consequence of global hyperbolicity. The Lorentzian distance function

τ is defined on a spacetime (M, g) by setting τ(p, q) to be the supremum of all arc-lengths

of piecewise smooth future-directed causal curves from p to q, if one such curve exists, and

0 otherwise. Notice that we take a supremum instead of an infimum since the Lorentzian

arclength really measures proper time elapsed along a curve and, as such, it is sometimes

called the time separation function instead.

Theorem 1.1.8. [6] Let (M, g) be connected globally hyperbolic with time separation

function τ(p, q). Then τ(p, q) <∞ for all p, q ∈M .

We are now prepared to introduce standard forms for the metrics we will be considering

throughout this thesis. These will also allow us to produce a large class of globally

hyperbolic metrics.

Theorem 1.1.9. [7] Let (Mn+1, g) be a globally hyperbolic Lorentzian manifold and

Σ ⊆M a Cauchy hypersurface. Then (M, g) is isometric to RT × Σ with a metric of the
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form

(1.1) −α2dT 2 + kT

for some smooth positive function α : M → R>0 and some smooth family (in T ) of

Riemannian metrics kT on Σ.

It should be noted that such decompositions are highly non-unique and, given some fixed

decomposition as above, not every Cauchy hypersurface in M will be of the form {τ}×Σ

for some τ . We will see several examples of this.

Definition 1.1.10. A Lorentzian manifold (M, g) is called stationary if and only if it

admits a complete timelike Killing vector field Z.

As we are about to see, there are three standard forms for the metric of a globally

hyperbolic stationary spacetime, and we will have need to use all three of them. The

first arises from choosing a Cauchy hypersurface Σ ⊆M and using the flow of Z to obtain

a diffeomorphism between M and a product Rt × Σ with t being the flow parameter.

Lemma 1.1.11. [22] Let (M, g) be a globally hyperbolic spacetime which is also station-

ary with respect to a complete timelike Killing vector field Z. Let Σ ⊆ M be a Cauchy

hypersurface. Then the flow of Z induced a diffeomorphism M ∼= Rt×Σ which places the

metric g in the following standard form

(1.2) g = −(N2 − |η|2h)dt⊗ dt+ η ⊗ dt+ dt⊗ η + h
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where h is a Riemannian metric on Σ, η a 1-form on Σ and N a smooth positive function

on Σ such that N2 > |η|2h pointwise. Furthermore all of N, η, h are t-independent, Z

becomes identified with ∂t and each {t} × Σ is a Cauchy hypersurface.

We should comment here that the coefficient of dt2 in the above form is often simply

written as N2 in the literature. Our choice to use N2 − |η|2h follows the conventions

of [34]. One reason for adopting this convention is that we will later be making use of the

inverse metric g−1 on T ∗M more frequently than the metric g and with this convention

the inverse metric g−1 takes on the simpler form

g−1 = −N−2∂t ⊗ ∂t +N−2β⃗ ⊗ ∂t +N−2∂t ⊗ β⃗ + h̃−1

where β⃗ is the vector field on Σ which is h-dual to the one-form η and h̃ is the metric on

Σ given by

h̃ = h+ (N2 − |η|2h)−1η ⊗ η

The inverse metric to h̃ is easily computed as

h̃−1 = h−1 −N−2β⃗ ⊗ β⃗

The point of this being that the choice of convention for the dt2-component of g deter-

mines whether one has the simpler expression for g or for g−1.

Instead of using the flow of Z to identify M with a product, we could quotient M by the

flow and identify it with the total space of a Riemannian submersion. This gives us our

second standard form for globally hyperbolic stationary metrics.
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Lemma 1.1.12. Let (M, g) be a globally hyperbolic spacetime which is also stationary

with respect to a complete timelike Killing vector field Z, and let Σ ⊆ M be a Cauchy

hypersurface. We will make use of N, η, h from 1.1.11. For any x ∈ M we let π(x) ∈ Σ

denote the unique point in Σ through which the integral curve of Z through x passes. Then

π : (M, g) → (Σ, h̃)

is a Riemannian submersion and if

θ := dt− (N2 − |η|2h)−1η

then

g = −(N2 − |η|2h)θ ⊗ θ + π∗h̃

The 1-form θ above defines a connection 1-form for the principal R-bundle π : M → Σ

with R-action given by the flow of Z. Indeed, by construction

θ =
1

g(∂t, ∂t)
g(∂t,−)

so θ(Z) = 1, θ is invariant under the flow of Z, and the set of horizontal vectors

{X ∈ TM : θ(X) = 0}

determined by θ is precisely the g-orthogonal complement to the vertical bundle kerπ∗.

Let’s give a simple application of this standard form 1.1.12. A less-trivial application will

be given in the next section.
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Theorem 1.1.13. [1] Let (M, g) be globally hyperbolic stationary with metric in the stan-

dard form 1.1.12. Then (M, g) is geodesically complete if and only if (Σ, h̃) is geodesically

complete.

While it is fairly simple to go between the product 1.1.11 and Riemannian submersion

1.1.12 standard forms of a globally hyperbolic stationary spacetime (M, g), it is not so

easy to start with a product or Riemannian submersion standard form, and obtain from

it the standard form 1.1.9

g = −α2dT 2 + kT

which we know exists due to (M, g) being globally hyperbolic.

Lemma 1.1.14. Let (M, g) be globally hyperbolic stationary with metric of the standard

form 1.1.11 and let ΨT : Σ → Σ denote the flow of β⃗. Assume that this flow is complete.

Then the map

F : RT × Σ → Rt × Σ =M

(T, x) 7→ (T,Ψ−T (x))

satisfies

(F ∗g)(T,x) = −N(Ψ−T (x))
2dT 2 + (Ψ∗

−Th)x

and so if we set kT := Ψ∗
−Th and α(T, x) := N(Ψ−T (x)) then our metric is placed in the

standard form 1.1.9 by F .

Remark 1.1.15. If one instead uses geodesic normal flow out of Σ then one can place

the metric in the standard form 1.1.9 with α ≡ 1.
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We end this section with a converse describing when metrics of the form 1.1.11 are globally

hyperbolic.

Theorem 1.1.16. [31] Let M = Rt × Σ with metric

g = −(N2 − |η|2h)dt⊗ dt+ η ⊗ dt+ dt⊗ η + h

for η a smooth t-dependent family of 1-forms on Σ, N : Rt × Σ → R>0 a smooth func-

tion such that N2 > |η|2h pointwise everywhere and h a smooth t-dependent family of

Riemannian metrics on Σ. Fix a reference Riemannian metric k on Σ such that

ht,x(−,−) = k(αt,x(−),−) for every (t, x) ∈ R × Σ

and let λ :M → R>0 denote the continuous function whose value at (t, x) is the minimum

eigenvalue of αt,x. Suppose there exists a sequence of smooth functions fℓ : Σ → R>0 such

that

• k(η, η) + (λ(N2 − |η|2h) + |η|2k)1/2 ≤ λfℓ pointwise on [−ℓ, ℓ]× Σ, and

• the metrics f−2
ℓ k on Σ are all complete.

Then (M, g) is globally hyperbolic and each {t} × Σ is a Cauchy hypersurface.

The above theorem greatly simplifies in the case that N, η, h are all t-independent, espe-

cially when we allow some compactness assumptions.

Definition 1.1.17. A globally hyperbolic spacetime is called spatially compact if and

only if it admits a compact Cauchy hypersurface (and therefore all of its Cauchy hyper-

surfaces are compact).
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Corollary 1.1.18. If Σ is compact then any metric of the standard form 1.1.11 is globally

hyperbolic. More generally, instead of assuming Σ is compact we can simply assume that

N is uniformly bounded above and away from 0, h is complete, and that η has compact

support.

Proof. We include here for the reader’s convenience a specialization of the proof of

1.1.16 from [31] to the case where our metric is of the form 1.1.11 with Σ compact since

we will use this later in the thesis.

Let γ : I → M = R × Σ be an arbitrary inextendible causal curve, parametrized with

respect to t so that γ(t) = (t, γ0(t)) for some γ0 : I → Σ. Write I = (a, b) for b ∈ (−∞,∞]

and a ∈ [−∞, b). Since γ is causal it follows from the form 1.1.11 of our metric that

−N(γ0(t))
2 + |η|2h(γ0(t)) + 2η(γ′0(t)) + h(γ′0(t), γ

′
0(t)) ≤ 0

for all t ∈ (a, b). Thus by Cauchy-Schwarz we have:

|γ′0|2h − 2|η|h|γ′0|h −N2 + |η|2h ≤ 0

and thus (
|γ′0|2h − |η|2h

)2 ≤ N2

Suppose for contradiction that b <∞ (the −∞ < a case is completely analogous). Setting

C := sup
[−|b|−1,b+1]×Σ

(N + |η|h)
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and noting that C <∞ by our assumptions we then have

|γ′0|h ≤ C on [−|b| − 1, b]

hence the curve γ must be extendible beyond time b, a contradiction. □

With the above theorem, we obtain a massive collection of examples of globally hyperbolic

stationary spacetimes. We’ll see in section 2.2 that one has analogues of Riemannian

spectral theory for wave and Dirac-type equations on such spacetimes, however we should

first verify that these spacetimes are actually of interest in the sense that one has solutions

to Einstein’s equations among such metrics.

1.2. Geodesics and Curvature of Stationary Spacetimes

Throughout this section, we fix a globally hyperbolic stationary spacetime (Mn+1, g) in

the standard form M = Rt × Σ,

g = −(N2 − |η|2h)dt2 + dt⊗ η + η ⊗ dt+ h

= −(N2 − |η|2h)θ ⊗ θ + h̃

g−1 = −N−2∂t ⊗ ∂t +N−2∂t ⊗ β⃗ +N−2β⃗ ⊗ ∂t + h̃−1

with

h̃ = h+ (N2 − |η|2h)−1η ⊗ η = (h−1 −N−2β⃗ ⊗ β⃗)−1

θ = dt− (N2 − |η|2h)−1η
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We follow the usual convention that Greek indices run from 0 to n, Roman indices run

from 1 to n, and x0 = t with xj local coordinates along Σ.

The geodesic equations in Lorentzian geometry have the same form as those from Rie-

mannian geometry: ∇γ̇ γ̇ = 0 and so g(γ̇, γ̇) is constant along a geodesic γ. Thus geodesics

which are lightlike, spacelike or null at some point will remain lightlike, spacelike or null

respectively. One can obtain fairly explicit forms for the geodesic equations on globally

hyperbolic stationary spacetimes by explicitly computing the Christoffel symbols in terms

of the components of g in the standard form 1.1.11.

Lemma 1.2.1. Let g have standard form 1.1.11 and denote by hΓ the Christoffel symbols

of the Riemannian metric h. Then the Christoffel symbols of g are given by:

Γaij =
1

2
N−2βa(∂jηi + ∂iηj)−N−2βaηk

hΓkij +
hΓaij

Γa00 =
1

2
(hab −N−2βaβb)∂b(N

2 − |η|2h)

Γa0j =
1

2
(hab −N−2βaβb)(∂jηb − ∂bηj)−

1

2
N−2βa∂j(N

2 − |η|2h)

Γ0
j0 =

1

2
N−2∂j(N

2 − |η|2h) +
1

2
N−2βa(∂jηa − ∂aηj)

Γ0
ij = −1

2
N−2(∂jηi + ∂iηj) +N−2ηk

hΓkij

Γ0
00 =

1

2
N−2βi∂i(N

2 − |η|2h)

Proof. One simply uses Γγµν =
1
2
gγθ(∂µgνθ + ∂νgµθ − ∂θgµν), the explicit descriptions

of g, g−1 from the start of this section. □
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We now list two commonly-used consequences of this when computing with Dirac-type

equations on these spacetimes.

Corollary 1.2.2. On a standard stationary spacetime of the form 1.1.11 one has

Γ0
j0 − βiΓ0

ji = ∂j logN and

Γµ0µ = 0

(with the second equation simply being a restatement of the fact that Killing fields are

divergence-free).

Later when working with Dirac-type equations it will be useful to note that Γγ0µ vanishing

for all γ, µ is equivalent to N2 − |η|2h being constant and dη = 0. These assumptions also

allow for a simplification of the geodesic equations.

Suppose that we were given a geodesic in our standard stationary spacetime 1.1.11

z : [0, 1] →M with z(0) = (x0, x⃗), z(1) = (y0, y⃗).

Since ∂t is a Killing vector field in our stationary manifolds, the 0′th component of the

velocity ż0(s) is constant in s. Thus our initial and final conditions on z(s) tell us that z

has the form

(1.3) z(s) =
(
(y0 − x0)s+ x0, γ(s)

)



22

with γ : [0, 1] → Σ a curve satisfying γ(0) = x⃗ and γ(1) = y⃗. Making use of the geodesic

equations
d2zµ

ds2
+ Γµνθ

dzν

ds

dzθ

ds
= 0

we arrive at the following lemma.

Lemma 1.2.3. Let z : [0, 1] → M be a geodesic with z(0) = (x0, x⃗) and z(1) = (y0, y⃗).

Then

z(s) =
(
(y0 − x0)s+ x0, γ(s)

)
for a curve γ : [0, 1] → Σ satisfying γ(0) = x⃗, γ(1) = y⃗ and

d2γa

ds2
+

(
1

2
N−2βa(∂jηi + ∂iηj)−N−2βaηk

hΓkij +
hΓaij

)
dγi

ds

dγj

ds

=
(
N−2βa∂j(N

2 − |η|2h)− (hab −N−2βaβb)(∂jηb − ∂bηj)
)
(y0 − x0)

dγj

ds

+
1

2
(y0 − x0)2(hab −N−2βaβb)∂b(N

2 − |η|2h)

From this we see that in the case relevant to Dirac-type equations we have a massive

simplification:

d2γa

ds2
+

(
1

2
N−2βa(∂jηi + ∂iηj)−N−2βaηk

hΓkij +
hΓaij

)
dγi

ds

dγj

ds
= 0.

Before returning to the geodesic equations, we state the results of [1] and [11] on the

curvature tensors of such metrics. To do this it is convenient to switch to the standard form

1.1.12 obtained by interpreting M as the total space of a Riemannian submersion. The

following two tensors, Riemannian submersion analogues of the fundamental forms [28].
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Definition 1.2.4. For (M, g) in the standard form 1.1.12 we define two 2-tensors A, T

via their values on horizontal vectors X, Y and the vertical vector ∂t:

TX :≡ 0

T∂t∂t := ∇∂t∂t − θ(∇∂t∂t)

T∂tX := θ(∇∂tX)∂t

A∂t :≡ 0

AX∂t := ∇X∂t − θ(∇X∂t)∂t

AXY := θ(∇XY )∂t

From our computation of the Christoffel symbols of g we immediately have that A is

completely expressible in terms of dθ via:

AXY = −1

2
(dθ)(X, Y )∂t and AX∂t = −1

2
(N2 − |η|2h)X⌞dθ

meanwhile T is completely expressible in terms of d(N2 − |η|2h) via:

T∂t∂t =
1

2
∇(N2 − |η|2h) and T∂tX =

1

2
(N2 − |η|2h)−1

(
LX(N2 − |η|2h)

)
∂t

For the next result, we note that our conventions for curvature tensors are that R(X, Y ) is

given by [∇X ,∇Y ]−∇[X,Y ], which is the negative of the conventions used in [11] and [28].

Lemma 1.2.5. For (M, g) in the standard form 1.1.12 and X, Y, V,W horizontal vector

fields we have

g(Rg(X, ∂t)Y, ∂t) = −(N2 − |η|2h)θ(∇∂tX)θ(∇∂t(Y ))− g(AX∂t, AY ∂t)

− g((∇XT )∂t∂t, Y )− g((∇∂tA)XY, ∂t)
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g(Rg(X, Y )V, ∂t) = −(N2 − |η|2h) [θ(∇Y V )θ(∇∂tX) + θ(∇VX)θ(∇∂tY )− θ(∇XY )θ(∇∂tV )]

− g((∇VA)XY, ∂t)

g(Rg(X, Y )V,W ) = g(Rh̃(X, Y )V,W )

+ (N2 − |η|2h)
[
θ(∇VX)θ(∇YW ) + θ(∇Y V )θ(∇XW )

− 2θ(∇XY )θ(∇VW )
]

From the previous two lemmas the covariant derivatives of T,A and then the Ricci tensor

of g are computed by [11]. It should be noted that I follow the conventions of [29] for

the definition of the sectional and Ricci tensors whereas [11] follows the negative of these

conventions. Combined with their opposite sign on the full curvature tensor, we obtain

the same result as [11] for the Ricci tensor as the sign differences cancel.

Corollary 1.2.6. For g in the standard form 1.1.12 and for X, Y horizontal we have:

Ricg(∂t, ∂t) =
1

2
□g(N

2 − |η|2h)−
1

4
(N2 − |η|2h)−1|d(N2 − |η|2h)|2h̃ +

1

2
(N2 − |η|2h)2|dθ|2h̃

Ricg(X, ∂t) =
1

2
(N2 − |η|2h)

[
(d∗dθ)(X) +

3

2
(N2 − |η|2h)−1(dθ)(∇(N2 − |η|2h), X)

]
Ricg(X, Y ) = Rich̃(X, Y )− (N2 − |η|2h)−1/2Hessg((N

2 − |η|2h)1/2)(X, Y )

+
1

2
(N2 − |η|2h)h̃−1(X⌞dθ, Y ⌞dθ)

We should remark here on the appearance of both metrics h and h̃ on Σ in the above.

When taking norms of vectors, multivectors, etc. using g, it follows from 1.1.11 that

if these vectors are tangent to Σ then the g-norm of the vector is equal to its h-norm.

However, from our expression for g−1 we see that the g-norm of a differential form on Σ



25

is instead equal to its h̃ norm. One has to take great care, however, since β⃗ is defined as

the h-dual of the 1-form η, not the g-dual, and so β⃗⌞η = |η|2h not |η|2
h̃
.

Corollary 1.2.7. For (M, g) in the standard for 1.1.12 the scalar curvature is given by

Scalg = Scalh̃+
3

2
(N2 − |η|2h)|dθ|2h̃

Proof. Since the vertical and horizontal subspaces are orthogonal with respect to

g, we complete (N2 − |η|2h)−1/2∂t to a local orthonormal frame by locally choosing an

orthonormal frame e1, ..., en for the horizontal subbundle. □

These equations all greatly simplify in the case relevant to Dirac-type operators we will

see later: d(N2 − |η|2h) = 0 = dη.

Corollary 1.2.8. Suppose (M, g) is in standard form 1.1.12 and we additionally have

dη = 0 and N2 − |η|2h constant. Then we also have dθ = 0, Ricg(∂t,−) = 0 and

for X, Y horizontal we have Ricg(X, Y ) = Rich̃(X, Y ). Thus the Einstein tensor G =

Ricg−1
2
Scalg ·g of (M, g) is given by

Rich̃−
1

2
Scalh̃ ·h̃+

1

2
(N2 − |η|2h)θ ⊗ θ

We now state the main theorem of [1], [11]. Later we will almost exclusively consider

spatially compact spacetimes and so, by the below theorem, we cannot expect them to

solve the vacuum Einstein equations. Nevertheless, we are studying matter fields in these

spacetimes so perhaps one should not expect them to solve these equations.
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Theorem 1.2.9. [1] [11] Let (M, g) be a 4-dimensional stationary globally hyperbolic

spacetime in the standard form 1.1.12 and assume that (N2 − |η|2h)h̃ is a complete Rie-

mannian metric on Σ. If g solves the vacuum Einstein equations then dθ = 0, N2 − |η|2h

is constant and h̃ is flat.

Returning to our geodesic equations, we will need a Hamiltonian/symplectic description

of the dynamics of geodesics in (M, g). Recall that the relativistic description of the phase

space of a system is simply the space of solutions to the equations of motion, and the

identification with a cotangent bundle arises from the equations typically being second

order ODE and so solutions correspond to initial data. For this reason we introduce the

following.

Definition 1.2.10. Let

Na := { all future-directed, inextendible null geodesics in (M, g)}

The subscript “a” stands for “affinely parametrized” and it is a common convention

(see [34] for example) to include it. For us, geodesics are defined as solutions to ∇γ̇ γ̇ = 0

hence they are already “affinely parametrized”.

Since M is globally hyperbolic and the elements of Na are in particular inextendible causal

curves they necessarily intersect each Cauchy hypersurface exactly once. An invariant

way of dealing with the fact that such curves γ need not have γ(0) in our chosen Cauchy

hypersurface is to define

N := Na/R



27

where b ∈ R acts on Na by γ(s) 7→ γ(s + b). Notice additionally that the R>0-action on

Na where a ∈ R>0 acts by γ(s) 7→ γ(as) descends to an R>0-action on the quotient N .

The above set N is naturally a symplectic manifold and one can view the next lemma as

saying that there are R>0-equivariant Cauchy data symplectomorphisms between N and

a cotangent bundle. Instead, we will simply take the next lemma as the definition of the

smooth manifold and symplectic structures on N . For this, we will need the following

remark.

Remark 1.2.11. Recall that T ∗
0M is the sub-cone-bundle of T ∗M \ 0 consisting of all

null covectors and, since our spacetimes are assumed to be time oriented, we have a

decomposition

T ∗
0M = T ∗

+M ⊔ T ∗
−M

into the cone subbundles T ∗
±M ⊆ T ∗M \0 of future/past directed null covectors. If we fix

a Cauchy hypersurface Σ ⊆M then, as mentioned in [34], there are natural isomorphisms

of bundles over Σ:

T ∗Σ \ 0 ∼= T ∗
+M |Σ and T ∗Σ \ 0 ∼= T ∗

−M |Σ

given by T ∗Σ \ 0 ∋ ζ 7→ ζ ±
√
g(ζ, ζ)ν̂ where ν̂ is the future-directed unit conormal to Σ.

These are homogeneous symplectomorphisms when T ∗
±M |Σ, a submanifold of T ∗M \ 0, is

given the pullback of the symplectic form on T ∗M \ 0.

Lemma 1.2.12. Let (M, g) be a globally hyperbolic spacetime with Σ ⊆ M a Cauchy

hypersurface. Each equivalence class in N has a unique representative γ : R → M

satisfying γ(0) ∈ Σ. Identifying elements of N with these representatives gives us an
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R>0-equivariant bijection

N
∼=−→ T ∗

+M |Σ

γ 7→ (γ(0), γ̇(0))

where γ̇(0) is identified with a covector by g.

Proof. This follows immediately from the definition of a future-directed inextendible

null geodesic and the existence and uniqueness of solutions to ODE. □

Occasionally we will need the explicit form of the inverse of the above bijection and so we

introduce the following.

Definition 1.2.13. Let Gs denote the Hamiltonian flow on T ∗M \ 0 of the Hamiltonian

ζ 7→ 1
2
g−1(ζ, ζ). The restriction of Gs to T ∗

0M is called the null bicharacteristic flow.

The inverse of our bijection N ∼= T ∗
+M |Σ can now be expressed as mapping ζ ∈ T ∗

+M |Σ

to the projection of the curve s 7→ Gs(ζ) down to M .

1.3. Kaluza-Klein Spacetimes

In [38], the classical limit of a massive quantum particle in an external classical Yang-Mills

field was determined to satisfy the equations of motion

mẍµ = Tr(qF µν
A )ẋν , ẋ2 = −1
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where q ∈ u(k) is a conserved quantity describing the internal degrees of freedom of the

system (a generalization of charge). This is an analogue of the Lorentz force law, gen-

eralized to connections with structure groups G other than U(1). Some references for

the study of these equations on curved non-relativistic space are [33], [37]. Of relevance

to us is that these are precisely the geodesic equations on the total space of a principal

G-bundle over spacetime when it is equipped with a special metric built from the metric

on the base spacetime and the connection A.

Throughout this section we fix a spacetime (M, g), G ⊆ SO(k) a compact Lie group and

π :M → G a principal G-bundle.

Definition 1.3.1. Recalling that (X, Y ) 7→ −Tr(XY ) is a positive definite Ad-invariant

inner product on the Lie algebra g ⊆ so(k) of G, given any connection 1-form ω on P we

obtain an induced Kaluza-Klein metric:

gω := π∗g − Tr(ω(−)ω(−))

on the total space P . This is again a Lorentzian metric of signature (−1,+1, ...,+1). We

endow (P, gω) with the time orientation induced by that of (M, g). Given ξ ∈ g we denote

by ξ̂ the vertical vector field on P induced by ξ.

Since the spacetimes we are considering in this thesis tend to be topologically products

R × Σ, so too will be the case for our principal bundles. An interesting example of such

a bundle arises by taking M to be the Schwarzschild spacetime with n = 3 so that

M = Rt × ((2m)2−n,∞)r × S2
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and to take the pullback of the Hopf fibration S3 → S2 as our principal bundle. G = U(1)

in this case.

Lemma 1.3.2. Suppose (M, g) is a stationary spacetime with complete timelike Killing

vector field Z, π : P →M a principal G-bundle with connection ω and Zω the horizontal

lift of Z to P with respect to ω. Assuming the curvature Fω of ω satisfies Z⌞Fω = 0, it

follows that Zω is complete timelike Killing for gω and furthermore:

[Zω, ξ̂] = 0 for all ξ ∈ g.

Proof. The flow of Zω on P is the horizontal lift of the flow of Z on M (see [8]

section 10.1, for example), thus the completeness of Zω follows immediately from the

completeness of Z. Since Z is Killing for g it follows that π∗g is invariant under the flow

of Zω and Z⌞Fω implies

LZω Tr(ω(−)ω(−)T ) = 0

thus Zω is indeed Killing for gω. Finally, Zω is invariant under pushforward along the

G-action (see [8] section 2.2, for example) and therefore [Zω, ξ̂] = 0 for all ξ ∈ g as

well. □

Combining the above lemma with the corollary 1.1.18 we obtain the result that, if M is

stationary globally hyperbolic and Z⌞Fω = 0, then so is P .

Lemma 1.3.3. Suppose (M, g) is stationary spatially compact globally hyperbolic with

complete timelike Killing vector field Z and π : P → M a principal G-bundle with con-

nection ω such that Z⌞Fω = 0. Then (P, gω) is stationary globally hyperbolic with complete
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timelike Killing vector field Zω. If M has standard form 1.1.11 then each π−1({t} × Σ)

is a Cauchy hypersurface for (P, gω).

Proof. Place (M, g) in the standard form 1.1.11, so M = Rt × Σ, and write Pt :=

π−1({t} × Σ). Flowing along Zω induces a diffeomorphism

Rt × P0 → P

intertwining the right G-actions. We abuse notation and continue to use the notation ω

for the pullback of the connection ω along this flow map and note that ω(Zω) = 0 implies

that the pullback of ω has been placed in temporal gauge with respect to Rt × P0 and

0 = Z⌞Fω = ∂tω. Thus our metric gω pulls back to the metric

−
(
(N ◦ π)2 − |π∗η|2π∗h

)
dt2 + dt⊗ (π∗η) + (π∗η)⊗ dt+ π∗h− Tr(ω(−)ω(−))

Since Σ, G are assumed to be compact, so is P0 and therefore the assumptions of 1.1.18

are satisfied. Hence g is isometric to the above globally hyperbolic metric and is therefore

globally hyperbolic with Cauchy hypersurfaces π−1({t}×Σ) corresponding to the Cauchy

hypersurfaces {t} × P0 of the above metric obtained from 1.1.18. □

As we mentioned at the start of this section, Wong’s equations for massive particles

in a background Yang-Mills field can be expressed in terms of the geodesic equations

on a Kaluza-Klein spacetime. Despite describing massive particles, the relevant type of

geodesics in (P, gω) will be the null geodesics, as the below lemma explains.

Lemma 1.3.4. Let γ be a geodesic in a Kaluza-Klein spacetime (P, gω). Then the value

of ω(γ̇(s)) is constant. Furthermore its projection π ◦ γ to M has g((π ◦ γ)′, (π ◦ γ)′)
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constant and if γ is causal then π ◦ γ is timelike unless γ is both null and horizontal, in

which case π ◦ γ is null.

Proof. That ω(γ̇) is constant can be found as theorem 10.1.5 in [8]. Since γ is a

geodesic it follows that

gω(γ̇, γ̇) = g((π ◦ γ)′, (π ◦ γ)′)− Tr(ω(γ̇)ω(γ̇))

is also constant hence g((π ◦ γ)′, (π ◦ γ)′) is constant. Finally, since −Tr(ω(γ̇)ω(γ̇)) ≥ 0

(and is zero if and only if ω(γ̇) = 0) we see that

gω(γ̇, γ̇) ≤ 0 implies g((π ◦ γ)′, (π ◦ γ)′) ≤ 0

thus causal curves in (P, gω) project to causal curves in (M, g), with the projection being

null if and only if ω(γ̇) = 0 and γ is null. □

Instead of writing-out the full computation of the Christoffel symbols of gω in terms of

g and ω we simply defer to theorem 10.1.6 in [8] for the proof of the below corollary,

although we have stated it using our notational conventions.

Corollary 1.3.5. Let γ be a null geodesic in (P, gω) with projection x := π ◦ γ, a curve

in M , and q ∈ x∗Ad(P ) the section induced by the constant ω(γ̇) along γ. Let A denote
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the connection on Ad(P ) induced by ω. Then the curve x in M satisfies

∇ẋẋ = −ẋ⌞Tr(qFA)

(x∗∇A)q = 0

g(ẋ, ẋ) = constant

If M = Rt × Rn is flat Minkowski space together with the trivial principal G-bundle P =

M ×G then these are precisely Wong’s equations.

Given a null geodesic γ in (P, gω), we would like to think of the constant ω(γ̇) as the

“charge”. Unfortunately, unlike the abelian case of the Lorentz force law, different lifts

of solutions to Wong’s equations in M to geodesics in (P, gω) will have different charges.

Indeed, if the two lifts of our curve in M are related by the right action of g ∈ G on P

then the charges of the two lifts will be related by Adg. Identifying the charge q with

−Tr(q(−)) ∈ g∗ we arrive at the following gauge invariant definition of charge.

Definition 1.3.6. Let γ be a null geodesic in (P, gω) and ξ0 := −Tr(ω(γ̇)(−)) ∈ g∗. The

charge of γ is defined to be the coadjoint orbit:

O := {Ad∗
g ξ0 : g ∈ G} ⊆ g∗.

Just as in the flat case, Wong’s equations on a curved spacetime will arise as classical

limits of the quantum system. One consequence of this will be charge quantization.

For now, let’s proceed to the Hamiltonian description of the dynamics of these null

geodesics. Similar to our earlier discussion of geodesics in M , the following results and
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definitions can been seen as relativistic versions of the results on the phase space for

Wong’s equations from [33], [37].

Definition 1.3.7. We again denote by Gs the Hamiltonian flow of the Hamiltonian

ξ 7→ 1
2
g−1
ω (ξ, ξ), now on T ∗P \ 0. Its restriction to T ∗

0P will again be called the null

bicharacteristic flow.

Lemma 1.3.8. Let ΦZ
s and Φξ

s respectively denote the flows on T ∗P \ 0 given by the

derivatives of the flows of Zω and ξ̂ (ξ ∈ g) on P . Then ΦZ
s and Φξ

s commute with Gs for

every ξ ∈ g.

Proof. Since ΦZ
s and Φξ

s are derivatives of flows on P they are a 1-parameter family

of canonical transformations on T ∗P \ 0 and therefore, by the Hamiltonian version of

Noether’s theorem, it suffices to show that the Hamiltonian ξ 7→ 1
2
g−1
ω (ξ, ξ) is invariant

under the flows ΦZ
s ,Φ

ξ
s in order to prove that they commute withGs. But this is immediate

from both Zω and ξ̂ being Killing vector fields for the metric gω. □

Recall now the definitions of Na,N from section 1.2. We will continue to use this notation,

only our manifold (M, g) will now be replaced by (P, gω).

Lemma 1.3.9. g ∈ G has a right action on N induced by its right action on Na given by

γ(s) 7→ γ(s)g (via the right action on P ). The bijection in 1.2.12 intertwines this right

action with the right action on T ∗
+P |P0 given by dualizing (using gω) the action of pushing

forward by right multiplication by g on P .

Proof. This is immediate from the explicit form of our isomorphism N ∼= T ∗
+P |P0

and the fact that G acts by isometries and therefore leaves T ∗
+P |P0 invariant. □
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Lemma 1.3.10. The flows ΦZ
s and Φξ

s on N induced by 1.2.12 are Hamiltonian flows

with respective Hamiltonians:

HZ(γ) = Zω⌞(γ(0), γ̇(0)) and Hξ(γ) = ξ̂⌞(γ(0), γ̇(0))

where again we have chosen representative geodesics γ with γ(0) ∈ P0. Furthermore, the

Φξ
s’s arise (through the exponential map) from the natural right-action of G on N hence

this G-action is Hamiltonian.

As the above right G-action is Hamiltonian, we can consider its moment-map:

µ : N → g∗

⟨µ(γ), ξ⟩ = Hξ(γ).

Lemma 1.3.11. Under the isomorphism g ∼= g∗ induced by our Ad-invariant inner prod-

uct on g, the moment map is given by

γ 7→ ω(γ̇).

Proof. We know that ω(ξ̂) = ξ by the definition of a connection on a principal

bundle and so the result follows from

ξ̂⌞(γ(0), γ̇(0)) = Tr(ω(ξ̂)ω(γ̇)T )

since we’re using gω to identify γ̇(0) with a covector. □
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As a final remark before we discuss the reduced phase space, we notice that if we express

our Hamiltonian HZ as a function on T ∗P0 \ 0 via the isomorphism T ∗P0 \ 0 ∼= T ∗
+P |P0 it

is given by

HZ(ζ) = ζ(Zω) +
√
gω(ζ, ζ)ν̂(Z

ω)

We can calculate this more explicitly using the standard form for the metric gω with

respect to P ∼= Rt × P0 via the flow of Zω. Indeed, here the future-directed unit normal

to P0 is simply the future-directed unit normal

n̂ = N−1(∂t − β⃗)

to Σ, lifted horizontally to P . Thus, as ν̂ is the future-directed unit conormal, we have

ν̂(Zω) = −gω(n̂, Zω) = N

Since

|ζ(Zω)| ≤
√
gω(ζ, ζ)(N

2 − |η|2h)1/2

and

N − (N2 − |η|2h)1/2 =
√
N2 − (N2 − |η|2h)1/2 > 0 pointwise everywhere

we see that P0 being compact implies HZ is uniformly bounded away from zero. If one

calculates the fiberwise Hessian of HZ to be uniformly positive definite then occasionally

one can guarantee the existence of periodic orbits, hence why we are about to spend so

much time analyzing them.
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1.3.1. The Reduced Phase Space

Fix a charge, i.e. a coadjoint orbit O ⊆ g∗. We now wish to form the symplectically

reduced phase space of solutions with charge O. The construction of this in Riemannian

signature, and its relationship to Wong’s equations can be found in [15] and it generalizes

with almost no modifications to our setting.

Recall that our coadjoint orbit O is naturally a symplectic manifold. The symplectic form

ωO can be defined as follows. Fix ξ0 ∈ O and let Gξ0 denote the stabilizer of ξ0 under the

coadjoint action. Then

G→ O

g 7→ Ad∗
g ξ0

induces an isomorphism

G/Gξ0
∼= O

which identifies

Tξ0O ∼= g/gξ0

where gξ0 is the Lie algebra of Gξ0 . The other tangent spaces of O are also identified with

g/gξ0 by pushforward along the G-action. We then have:

ωO(X, Y ) = ⟨ξ0, [X, Y ]⟩.
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We notice that this is well-defined on g/gξ0 since

gξ0 = {X ∈ g : ⟨ξ0, [X, Y ]⟩ = 0 for all Y ∈ g}.

Let O denote O but equipped with −ωO as its symplectic form instead of O.

Lemma 1.3.12. The extended moment map

µO : N ×O → g∗

µO(γ, ξ) := µ(γ)− ξ

is a submersion and G acts freely on µ−1
O (0).

Proof. The fact that G acts freely on µ−1
O (0) simply follows from G acting freely

on N ∼= T ∗
+P |P0 since P, P0 are principal G-bundles. To see that µO is a submersion, we

notice that under the isomorphism N ∼= T ∗
+P |P0 we have

µO : T ∗
+P |P0 ×O → g∗

(ζ, ξ) 7→ Tr(ω(ζ)Tω(−))− ξ

and if we use our Ad-invariant inner product to identify g ∼= g∗ then this maps

(ζ, ξ) 7→ ω(ζ)− ξ.

Forgetting ξ we can already see that ζ 7→ ω(ζ) is a submersion (and therefore µO is a

submersion). Indeed, it suffices to prove that for every ξ ∈ g there exists ζ ∈ T ∗
+P |P0 such
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that ω(ζ) = ξ. However, ξ̂ is tangent to P0 with gω(ξ̂, ξ̂) = Tr(ξξT ) so ζ :=
√
Tr(ξξT )n̂+ ξ̂

is future-directed, has ω(ζ) = ξ and gω(ζ, ζ) = 0 as desired. □

From the above proof we record as a remark the fact that µ−1
O (0) is precisely the space of

pairs (γ, ξ) where γ ∈ N and ξ ∈ O satisfy

Tr(ω(γ̇)T (−)) = ξ.

This µ−1
O (0) is precisely the space of solutions with charge O, prior to quotienting by

gauge transformations.

Definition 1.3.13. The reduced phase space is

NO := µ−1
O (0)/G

with symplectic form obtained from the one on N ×O.

Lemma 1.3.14. The Hamiltonian HZ, extended to N × O to be independent of O, is

invariant under the G-action and therefore descends to a Hamiltonian H̃Z on NO with

flow Φ̃Z
s .

Proof. From the definition of HZ we see that what we have to show is that gω(Zω, γ̇ ·

g) = gω(Z
ω, γ̇) for all g ∈ G and γ ∈ N . However:

gω(Z
ω, γ̇ · g) = gω(Z

ω · g−1, γ̇) = gω(Z
ω, γ̇)

since Zω = ∂t is invariant under the G action. □



40

The point of the previous construction is its manifestly gauge-invariant nature. Below we

give an alternative characterization that might be more familiar to some readers, although

we will not use it in our proof.

Fix ξ0 ∈ O and recall from our proof that µO is a submersion that µ is also a submersion,

hence ξ0 is automatically a regular value. Furthermore, while the full G-action on N

doesn’t preserve the submanifold µ−1(ξ0), it is preserved by the action of the stabilizer

Gξ0 of ξ0. The action of Gξ0 on µ−1(ξ0) is free since the action of G on N is free.

Definition 1.3.15. The reduced phase space (version II) is the quotient

µ−1(ξ0)/Gξ0

with the symplectic form induced from that on N .

Lemma 1.3.16. [17] The map

µ−1(ξ0) → NO

γ 7→ [(γ, ξ0)]

induces a symplectomorphism µ−1(ξ0)/Gξ0
∼= NO intertwining the reductions of the Hamil-

tonian flow of HZ to µ−1(ξ0)/Gξ0 and NO. Here [(γ, ξ0)] denotes the equivalence class of

(γ, ξ0) in the quotient.

Finally, let’s note that since M is assumed to be spatially compact we expect the quantum

system to have discrete spectrum and hence bound states. The leading order singularities
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in our distributional trace of the propagator will be therefore expressed as a sum over

classical bound states: periodic orbits of null geodesics under Φ̃Z
s . There are two aspects

of these periodic orbits we will need to consider:

(1) the (linearized) Poincaré first return map of a periodic orbit, and

(2) the phase change due to a periodic orbit similar to the Aharonov-Bohm effect.

The first of these points relates to the classical dynamics of periodic orbits, while the

second of these is only relevant for the quantum effects we will discuss later.

Following [34], we fix an energy E ∈ R and restrict ourselves to the contact manifold

given by the level surface

H̃−1
Z (E) ⊆ NO.

This is invariant under the Φ̃Z
s -flow and so we can define the set of periods:

PE := {T ∈ R \ {0} : ∃z ∈ H̃−1
Z (E) such that Φ̃Z

T (z) = z}

and, for T ∈ PE, the set of periodic points:

PE,T := {z ∈ H̃−1
Z (E) : Φ̃Z

T (z) = z.}

We say that T > 0 is the minimum period of z if and only if it is the smallest positive

time for which Φ̃Z
T (z) = z. The below result is a general fact concerning Hamiltonian

dynamics and is a simple consequence of the implicit function theorem.
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Lemma 1.3.17. ( [25] Prop 8.5.3)

Given a periodic point z0 ∈ PE,T where T is its minimum period there exists, in a suffi-

ciently small neighborhood of z0, a codimension 1 symplectic submanifold

z0 ∈ S ⊆ H̃−1
Z (E)

which is transverse to the flow Φ̃Z
s . Furthermore, in a sufficiently small neighborhood of

z0 in S, the first return time

T (z) := min{t > 0 : Φ̃Z
t (z) ∈ S}

is well-defined, smooth and satisfies T (z0) = T .

Definition 1.3.18. With z0, S, T as above, we define the linearized Poincaré first

return map to be

Pz0,S :=
∂

∂z

∣∣∣
z=z0

Φ̃Z
T (z)(z) : Tz0S → Tz0S.

This is a linear symplectic map. For any other choice of local symplectic transversal S ′

there is a linear symplectic isomorphism

L : Tz0S
′ ∼=−→ Tz0S

such that

Pz0,S′ = L−1 ◦ Pz0,S ◦ L.

There is actually an alternate, perhaps simpler, description of these maps Pz0,S. This al-

ternate description is analogous to the more standard definition of the linearized Poincaré
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first return map for geodesic flow on Riemannian or Lorentzian manifolds, which is usually

defined with the aid of Jacobi fields.

Definition 1.3.19. Given z0 ∈ PE,T with T the minimum period of z0, we define the

Floquet operator of z0 to be:

Vz0(T ) :=
d

dz

∣∣∣
z=z0

Φ̃Z
T (z) : Tz0NO → Tz0NO.

Lemma 1.3.20. The subspace

Wz0 := Span{Z̃(z0), ∇H̃(z0)}

is symplectic, as is the quotient Tz0NO/Wz0, and Wz0 is preserved by the Floquet operator.

The induced quotient map

Vz0(T ) : Tz0NO/Wz0 → Tz0NO/Wz0

is conjugate via a linear symplectomorphism to the linearized Poincaré first return map.

Let’s discuss for some time the significance of these operators to us. For this, we will need

the following assumption.

Definition 1.3.21. We say that E satisfies the clean intersection hypothesis if and

only if E is a regular value for H̃Z and the flow map

R × H̃−1
Z (E) → H̃−1

Z (E)× H̃−1
Z (E)

(t, γ) 7→ (γ, Φ̃Z
t (γ))
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admits a clean fibered product over H̃−1(E)× H̃−1(E) with the diagonal map H̃−1(E) →

H̃−1(E)× H̃−1(E).

Let’s discuss this hypothesis for a moment. The fibered product is given, as a set, by:

YE := {(T, γ) ∈ R × H̃−1
Z (E) : Φ̃Z

T (γ) = γ}.

Notice that this contains {0}× H̃−1
Z (E) as a subset and the clean intersection hypothesis

implies that YE is a disjoint union of smooth submanifolds of R × H̃−1
Z (E).

Lemma 1.3.22. Under the clean intersection hypothesis, {0}×H̃−1
Z (E) is a clopen subset

of YE and every connected component Y ⊆ YE has

dim(Y ) ≤ dim H̃−1
Z (E) = 2n+ dimO − 1.

Proof. Let Y ⊆ YE be any connected component. By the clean intersection hy-

pothesis, for any (T, γ) ∈ Y we must have

T(T,γ)Y =

{
(τ, ζ) ∈ TTR × TγH̃

−1
Z (E) : τ

d

dt

∣∣∣
t=T

Φ̃Z
t (γ) +DΦ̃Z

T (ζ) = ζ

}

Since ζ 7→ ζ−DΦ̃Z
T (ζ) is linear the only way for the above constraint to be trivial (and not

reduce the dimension) is if d
dt
|t=T Φ̃Z

t (γ) = 0 and if DΦ̃Z
T = id. Indeed, if d

dt
|t=T Φ̃Z

t (γ) ̸= 0

and we didn’t want the equation to constrain ζ then we would need to constrain τ to

τ = 0. But now since Φ̃Z
T (γ) = γ it follows that d

dt
|t=T Φ̃Z

t (γ) = 0 implies d
dt
|t=0Φ̃

Z
t (γ) = 0

and so the gradient of the Hamiltonian ∇H̃Z vanishes at γ and so γ is an equilibrium

point. However, we assumed that γ ∈ H̃−1
Z (E) and that E was a regular value for H̃Z ,
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which contradicts ∇H̃Z vanishing at γ.

Now, let Y be the smallest clopen subset containing {0} × H̃−1
Z (E). We have already

shown that dim(Y ′) ≤ dim H̃−1
Z (E) for any connected component Y ′ and so we must have

dim(Y ) = dim H̃−1
Z (E) since Y is a disjoint union of connected components. In particular,

since the inclusion

{0} × H̃−1
Z (E) ↪→ Y

is an immersion it is automatically a submersion as well and hence a local diffeomorphism.

Local diffeomorphisms are local homeomorphisms and are hence open maps. Thus the

image {0} × H̃−1
Z (E) is open in Y , hence open in YE since Y is open in YE. Since

{0} × H̃−1
Z (E) is also closed in YE it follows that it is clopen hence

{0} × H̃−1
Z (E) = Y

as desired. □

We should remark that there is no reason to expect H̃−1
Z (E) to be connected even if M

is connected since we have allowed disconnected structure groups such as G = O(d).

In our trace formula, the leading order singularities of the distributional trace will have

symbols given by integrals over components of the above clean intersection. The linearized

Poincaré map gives us a dynamical description of the volume density on these components.

To describe how, let’s first recall the invariant volume density on the energy hypersurface

H̃−1
Z (E).
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Definition 1.3.23. Let Ω denote the volume form on NO induced by the symplectic form

and equip NO with the Riemannian metric h0 induced from the one on N ∼= T ∗
+P |P0

∼=

T ∗P0 \ 0 and the Ad-invariant inner product on g. Using this metric we can define the

gradient ∇HZ and the 2(n+ ℓ)− 1-form on NO:

|∇H̃Z |−2
h0
∇H̃Z⌞Ω.

Denote:

νE := the pullback of the above form to H̃−1
Z (E).

The νE is invariant under the Hamiltonian flow Φ̃Z
t and its absolute value |νE| defines an

invariant measure on the energy hypersurface H̃−1
Z (E).

Lemma 1.3.24. Under the clean intersection hypothesis, the fibered product YE comes

equipped with a natural volume density. Consider then the case YE is a union of {0} ×

H̃−1
Z (E) and finitely many disjoint isolated orbits:

Y1 := {(T1, Φ̃Z
t (γ1)) : t ∈ [0, T1]}, ..., Yq := {(Tq, Φ̃Z

t (γq)) : t ∈ [0, Tq]}

with Tj ̸= 0 for all j. Then the Poincaré first return map of each γj is invertible and if

Ωγ is the symplectic volume form on T ∗
γNO then the induced volume density on T ∗

γYj is

given by:

(1.4) | det(I − Pγ)|−1/2|νE|

with Pγ the Poincaré first return map for one, hence any, choice of symplectic local

transversal S.
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Proof. Indeed this follows immediately from the expression for the tangent space of

Y derived in the proof of 1.3.22, noticing that the constraint

τ
d

dt

∣∣∣
t=T

Φ̃Z
t (γ) +DΦ̃Z

T (ζ) = ζ

in the case of isolated periodic orbits is such that ζ 7→ ζ −DΦ̃Z
T (ζ) has a 1-dimensional

kernel in TγH̃−1
Z (E) = (∇H̃Z(γ))

⊥ spanned the vector field Z̃ corresponding to the reduced

flow Φ̃Z
t . Thus by 1.3.20 the Poincaré first return map is invertible and the induced volume

form on TYj is determined by the invariant volume form νE on H̃−1
Z (E) and the Poincaré

first return map acting on

TNO/ Span{Z̃,∇H̃Z} ∼= TH̃−1
Z (E)/ Span{Z̃}

yielding the formula 1.4. □

Next, let’s discuss the phase associated to a periodic orbit. For this we need the following

basic result from representation theory.

Definition 1.3.25. The coadjoint orbit O ⊆ g∗ is called integral if and only if the

cohomology class [ωO] of its symplectic form ωO is in the image ofH2(O;Z) → H2(O;R) ∼=

H2
dR(O;R).

Lemma 1.3.26. A coadjoint orbit O = G · ξ0 is integral if and only if there exists a

character

χξ0 : Gξ0 → U(1)
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such that

(dχξ0)I = 2πi⟨ξ0,−⟩ : gξ0 → iR

where I ∈ G is the identity matrix.

So, when our coadjoint orbit is integral we have a U(1)-bundle defined by the character:

G×χξ0
U(1) → O

where G×χξ0
U(1) is the quotient of G× U(1) by the relation

(g, z) ∼ (gh, χξ0(h
−1)z) for all h ∈ Gξ0 .

The right G-action on G yields a right G-action on the total space G ×χξ0
U(1) since

the stabilizer Gξ0 is a normal subgroup. Through this, we identify every tangent space

of the total space with the tangent space at the equivalence class [I, 1] ∈ G ×ξ0 U(1) of

(I, 1) ∈ G× U(1).

Lemma 1.3.27. We have a natural isomorphism

T[I,1](G×χξ0
U(1)) ∼=

{(
Y + cξ#0 ,

i

2π
c

)
: Y ∈ g⊥ξ0 , c ∈ R

}
.

Furthermore, there is a principal U(1)-connection α on G ×ξ0 U(1) such that dα = ωO

and, under our above isomorphism, it is given by:

α

(
Y + cξ#0 ,

i

2π
c

)
= c = ⟨ξ0, Y + cξ#0 ⟩.
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This G-equivariant bundle with connection over O gives us a natural U(1)-bundle with

connection over the reduced phase space NO, which we describe now.

Definition 1.3.28. The U(1)-Bundle With Connection: Construction I

Recalling that µO : N ×O → g∗ we can consider the G-equivariant U(1)-bundle:

(
N × (G×χξ0

U(1))
) ∣∣

µ−1
O (0)

→ µ−1
O (0).

If α0 denotes the Liouville 1-form on N and i : µ−1
O (0) ↪→ N the inclusion then we have

a G-invariant 1-form on the total space of this bundle given by:

i∗(α0 − α).

We then set:

ZO :=
(
N × (G×χξ0

U(1))
) ∣∣

µ−1
O (0)

/
G→ µ−1

O (0)/G = NO

with connection 1-form

αO := the reduction of i∗(α0 − α) mod G.

Definition 1.3.29. The U(1)-Bundle with Connection: Construction II

Here we instead extend our right Gξ0-action on µ−1(ξ0) so µ−1(ξ0)×U(1) via the character

χξ0 . We then set

ZO :=
(
µ−1(ξ0)× U(1)

) /
Gξ0 → µ−1(ξ0)/Gξ0 = NO
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with connection 1-form

αO := the reduction of i∗α0 + dθ mod Gξ0

where now i : µ−1(ξ0) ↪→ N is the inclusion.

Finally we arrive at the holonomies that describe the quantum phase translation that

occurs upon traveling along a classical periodic orbit.

Definition 1.3.30. Let γ : [0, T ] → NO be a periodic orbit of the Φ̃Z
s -flow (i.e. γ(s) =

Φ̃Z
s (z0) for some z0 and γ(0) = γ(T )) and assume that T is the minimum period of γ. We

denote:

HolO(γ) := the holonomy of αO about the loop γ.

A key point is that while our construction of the U(1)-bundle with connection relied

on a choice of character as well as a choice of ξ0 ∈ O, the element HolO(γ) ∈ U(1) is

independent of these choices.

The following proposition is from [17] section 4. Their result applies here since it applies

in the general context of symplectic reduction along an integral coadjoint orbit.

Proposition 1.3.31. The map HolO : YE → U(1) is locally constant. Furthermore, if

we consider the symplectomorphism NO ∼= µ−1(ξ0)/Gξ0 and suppose we had γ ∈ µ−1(ξ0)

with HZ(γ) = E and T ∈ R, g ∈ Gξ0 such that ΦZ
T (γ) = γ · g then if [γ] ∈ NO denotes the

image in the quotient we have:

HolO(T, [γ]) = χξ0(g)e
iTE.
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CHAPTER 2

Wave and Dirac-Type Equations on Stationary Spacetimes

The equations of interest to us will have as solutions sections of complex vector bundles

over a globally hyperbolic spacetimeM . We collect both general facts concerning normally

hyperbolic and Dirac-type operators on such bundles, as well as some discussion of specials

forms on standard stationary and standard static spacetimes.

Definition 2.0.1. Let E →M be a complex vector bundle and P : Γ(M,E) → Γ(M,E)

a linear differential operator. Recall that the principal symbol of P is given by writing

P locally (in terms of local coordinates on M and a local frame for E) as

P =
∑
|α|≤m

aα∂
α

with the aα’s being locally defined linear endomorphisms of E, aα not identically zero for

some multiindex α with |α| = m, and then setting

σP (ξx) := im
∑
|α|=m

aα(x)ξ
α for ξx ∈ T ∗

xM.

In this way σP is a section of the pullback bundle of End(E) to T ∗M . In fact, for a

differential operator of order m such as above, σP ∈ Γ(M, Symm TM ⊗ End(E)).

Definition 2.0.2. Let E → M be a complex vector bundle on a spacetime (M, g). A

second-order linear differential operator P : Γ(M,E) → Γ(M,E) is called normally
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hyperbolic if and only if its principal symbol is given by σP (ξx) = g−1
x (ξx, ξx) idEx for all

ξx ∈ T ∗
xM .

Normally hyperbolic operators are simply generalizations of the wave operator □g acting

on functions. Instead of giving explicit examples, we simply state the next lemma since

it demonstrates what every example will look like.

Lemma 2.0.3. [2] Let E → M be a complex vector bundle on a spacetime (M, g) and

P a normally hyperbolic operator on E. Then there exists a unique connection A on E

and smooth endomorphism Υ : E → E such that

P = −Trg(∇A ◦ ∇A) + Υ

where for any section u of E we have

Trg(∇A ◦ ∇A)u := |g|−1/2∇A
µ

(
|g|1/2gµν∇A

ν u
)
.

Conversely, every operator of this form is normally hyperbolic.

Example 2.0.4. We should note that if E = Λ∗T ∗
CM is the bundle of complex-valued

differential forms then the Hodge-wave-operator dd∗ + d∗d with respect to g can be seen

to be normally hyperbolic either by explicitly computing its symbol, or by applying the

Weitzenböck identity and the above lemma.
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Lemma 2.0.5. Let E →M be a complex vector bundle over a spacetime and P a differ-

ential operator on E. Then the transpose P T of P is an operator on E∗ given by

ˆ
M

(P Tu)(ϕ)dVg :=

ˆ
M

u(Pϕ)dVg

for all u ∈ Γ(M,E∗) and all ϕ ∈ Γc(M,E). P T is also a differential operator.

For us, sesquilinear forms will always be conjugate-linear in the first variable and linear

in the second.

Lemma 2.0.6. Let E → M be a complex vector bundle over a spacetime and P a dif-

ferential operator on E. Fix a non-degenerate sesquilinear form ⟨−,−⟩ on E. We call P

formally self-adjoint with respect to ⟨−,−⟩ if and only if

ˆ
M

⟨Pϕ1, ϕ2⟩dVg =
ˆ
M

⟨ϕ1, Pϕ2⟩dVg

for all sections ϕ1, ϕ2 ∈ Γ(M,E) with at least one of them compactly supported. The

⟨−,−⟩-formal-adjoint of P is the operator P ∗ on E given by conjugating P T by the C-

antilinear isomorphism E ∼= E∗ induced by ⟨−,−⟩ and P is clearly formally self-adjoint

with respect to ⟨−,−⟩ if and only if P = P ∗.

Example 2.0.7. We return again to differential forms E = Λ∗T ∗
CM for this example.

The metric g induces a natural Hermitian fiber metric g−p on each ΛpT ∗
CM via

g−p(α, β) :=
1

p!
gµ1ν1 · · · gµpνpαµ1···µpβν1···νp
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The factor of 1/p! is to guarantee that if e0, ..., en is a local orthonormal coframe with

g−1(e0, e0) = −1 then the p-forms eµ1∧· · ·∧eµp with µ1 < · · · < µp form a g−p-orthonormal

local coframe. From this we can also see that the metric g−p has a mixed signature with(
n
p−1

)
negative eigenvalues. This is why we only required a non-degenerate sesquilinear

form, and not for our form to be of either Lorentzian or Riemannian signature.

Declaring the subbundles ΛpT ∗
CM and ΛqT ∗

CM orthogonal for p ̸= q we obtain a non-

degenerate sesquilinear form on all of Λ∗T ∗
CM from the g−p’s and dd∗ + d∗d is formally

self-adjoint with respect to it.

Lemma 2.0.8. Let E → M be a complex vector bundle over a spacetime, P a normally

hyperbolic operator on E and ⟨−,−⟩ a non-degenerate sesquilinear form on E. Then P ∗

is normally hyperbolic and if A,Υ are the connection and endomorphism of E induced

by P then P = P ∗ with respect to ⟨−,−⟩ if and only if A is ⟨−,−⟩-compatible and Υ is

pointwise ⟨−,−⟩-self-adjoint.

Proof. Assuming A is ⟨−,−⟩-compatible and Υ is pointwise ⟨−,−⟩-self-adjoint it is

straight-forward to show that P is formally self-adjoint so we only show the converse. Let

f :M → R be an arbitrary smooth function and notice that P being formally self-adjoint

with respect to ⟨−,−⟩ implies that for all smooth sections ϕ1, ϕ2 with at least one of them

compactly supported we have

ˆ
M

⟨P (fϕ1)− fPϕ1, ϕ2⟩dVg =
ˆ
M

⟨ϕ1, fPϕ2 − P (fϕ2)⟩dVg
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hence if Mf is the 0’th order operator given by multiplication by f it follows that [P,Mf ]

is formally skew-adjoint. However we can compute

[P,Mf ]ϕ = −2∇A
∇fϕ+ (□gf)ϕ

where □g is the wave operator on functions on the Lorentzian manifold (M, g). Thus for

all ϕ1, ϕ2 we have

ˆ
M

[
⟨ϕ1,∇A

∇fϕ2⟩+ ⟨∇A
∇fϕ1, ϕ2⟩ − (□gf)⟨ϕ1, ϕ2⟩

]
dVg = 0.

Now, □gf is equal to the divergence of the gradient of f hence L∇fdVg = (□gf)dVg and

so by Stokes’ theorem we can rewrite our integral identity as

ˆ
M

[
⟨∇A

∇fϕ1, ϕ2⟩+ ⟨ϕ1,∇A
∇fϕ2⟩ − L∇f⟨ϕ1, ϕ2⟩

]
dVg = 0

and since this holds for all ϕ1, ϕ2 sections with at least one of them compactly supported,

and for all smooth real-valued f it follows that A is ⟨−,−, ⟩-compatible. But then

P = −Trg(∇A ◦ ∇A) + Υ and − Trg(∇A ◦ ∇A) is formally self-adjoint

thus Υ must be pointwise ⟨−,−⟩-self-adjoint. □

Of special interest to us are normally hyperbolic operators over standard stationary space-

times.

Lemma 2.0.9. Let E → M = Rt × Σ be a complex vector bundle over a standard sta-

tionary spacetime 1.1.11 and A a connection on E. Then E is isomorphic to the pullback
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of a bundle E0 over Σ along the projection Rt × Σ → Σ and there is an automorphism

of E identifying A with a t-dependent family of connections A0 on E0. In particular,

∂t⌞FA0 = ∂tA0 and ∇A0
∂t

= ∂t. A connection A0 of this form is said to be in temporal

gauge.

Proof. That E can be trivialized in the t-direction is a standard fact from topology

so we assume from the beginning that E = Rt × E0 as a bundle over Rt × Σ. When

then have an operator ∂t acting on sections of E such that the difference ∇A
∂t
− ∂t is an

endomorphism of E which we denote by B. Solving the first order ODE

g−1∂tg = −B, g|t=0 = id for a gauge transformation g ∈ Γ(M,Aut(E))

it follows that the gauge-transformed connection ∇g·A is of the form

∇g·A = dt⊗ ∂t + dxi ⊗∇A0
i

for A0 a t-dependent family of connections on E0 → Σ. The desired expressions for ∂t⌞Fg·A

and ∇g·A
∂t

then follow. □

We will often make the simplifying assumption that our connections are in temporal

gauge. Finally, in order for the frequency spectrum of solutions to Pϕ = 0, P normally

hyperbolic, to be defined we need to assume that kerP is invariant under some time-

translation operator.

Lemma 2.0.10. Let E → M be a complex vector bundle over a standard stationary

spacetime M = Rt × Σ and P a normally hyperbolic operator on E. Let A,Υ denote

the connection and endomorphism corresponding to P . Then [P,∇A
∂t
] = 0 if and only if
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∂t⌞FA = 0 and ∇A,End
∂t

Υ = 0 where ∇A,End is the connection on End(E) induced by A. In

Coulomb gauge, the condition ∇A,End
∂t

Υ = 0 simply becomes ∂tΥ = 0.

Proof. Here we simply calculate for an arbitrary section ϕ of E:

0 = [P,∇A
0 ]ϕ = −gµνFA

µ0∇A
ν ϕ− |g|−1/2∇A

µ

(
|g|1/2gµνFA

ν0ϕ
)
−
(
∇A,End

0 Υ
)
ϕ

= −2gµνFA
µ0∇A

ν ϕ− |g|−1/2
(
∇A,End
µ

(
|g|1/2gµνFA

ν0

))
ϕ−

(
∇A,End

0 Υ
)
ϕ

Looking at the first order term, it follows that we must have FA
µ0 = 0 for all µ, i.e.

∂t⌞FA = 0. Once we know this vanishes identically the 0’th order term simply becomes

(∇A,End
0 Υ)ϕ and therefore we must have ∇A,End

0 Υ = 0 since ϕ is arbitrary. □

A similar analysis to the above must now be performed for Dirac-type operators.

Definition 2.0.11. Let E → M be a complex vector bundle over a spacetime (M, g).

A Dirac-type operator on E is a linear first order differential operator /D on E with

principal symbol satisfying

σ /D(ξ)σ /D(η) + σ /D(η)σ /D(ξ) = 2g−1(ξ, η) idE

for all covectors ξ, η. Given a Dirac-type operator /D on E we introduce the following

notation for v ∈ TM :

/v := gµνv
µσ /D(dx

ν) ∈ End(E).

Notice that we also have /v /w + /w/v = 2g(v, w) idE for all vectors v, w.

In contrast to normally hyperbolic operators which have a unique corresponding connec-

tion and endomorphism, Dirac-type operators satisfy the following.
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Lemma 2.0.12. Let /D be a Dirac-type operator on a complex vector bundle E over a

spacetime (M, g). Given any connection B on E there exists a unique endomorphism ΘB

of E such that

/D = −i /∇B
+ΘB := −igµν /∂µ∇B

ν +ΘB.

Furthermore, /D
2 is a normally hyperbolic operator on E and if A,Υ are the connection

and endomorphism corresponding to /D
2 then

gµν /∂µ
(
Γγνα/∂γ − (∇A,End

ν
/∂α)

)
− i(/∂αΘA +ΘA/∂α) = 0 for all α

In fact, any connection A satisfying the above identity is necessarily the connection cor-

responding to the normally hyperbolic operator /D
2.

Proof. Given a connection ΘB, one obtains ΘB by simply noticing that /D and −i /∇B

have the same principal symbol by construction. As they are both first order differential

operators, their difference is therefore an endomorphism of E.

For A,Υ the connection and endomorphism corresponding to the normally hyperbolic

operator /D
2 we fix an arbitrary section ψ of E and compute:

/D
2
ψ = −gµν /∂µ∇A

ν (g
αβ /∂α∇A

βψ)− igµν(/∂µΘA +ΘA/∂µ)∇A
ν ψ

+ (Θ2
A − igµν /∂µ∇A,End

ν ΘA)ψ

= −Trg(∇A ◦ ∇A)ψ − gµνΓβµν∇A
βψ − gµν(∂νg

αβ)/∂µ/∂α∇A
βψ

− gµνgαβ /∂µ(∇A,End
ν

/∂α)∇A
βψ − igµν(/∂µΘA +ΘA/∂µ)∇A

ν ψ
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+

(
Θ2
A +

1

2
gµνgαβ /∂µ/∂αF

A
νβ − igµν /∂µ∇A,End

ν ΘA

)
ψ

= −Trg(∇A ◦ ∇A)ψ +
1

2
gµνgαβ(∂αgµν)∇A

βψ − 1

2

(
gµν∂νg

γβ − gγν∂νg
µβ
)
/∂µ/∂γ∇A

βψ

− gµνgαβ /∂µ(∇A,End
ν

/∂α)∇A
βψ − igµν(/∂µΘA +ΘA/∂µ)∇A

ν ψ

+

(
Θ2
A +

1

2
gµνgαβ /∂µ/∂αF

A
νβ − igµν /∂µ∇A,End

ν ΘA

)
ψ

however we can also compute:

gµνgαβΓγνα/∂µ/∂γ =
1

2
gµνgαβgγτ (∂αgτν)/∂µ/∂γ +

1

2

(
gγτ∂τg

µβ − gµν∂νg
γβ
)
/∂µ/∂γ

=
1

2
gµνgαβ∂αgµν −

1

2

(
gµν∂νg

γβ − gγν∂νg
µβ
)
/∂µ/∂γ

so we arrive at

/D
2
ψ = −Trg(∇A ◦ ∇A)ψ + gµνgαβ /∂µ

(
Γγνα/∂γ − (∇A,End

ν
/∂α)

)
∇A
βψ

− igαβ(/∂αΘA +ΘA/∂α)∇A
βψ

+

(
Θ2
A +

1

2
gµνgαβ /∂µ/∂αF

A
νβ − igµν /∂µ∇A,End

ν ΘA

)
ψ

as desired. □

From the above result we can see that if we want our connection A corresponding to /D
2

to be compatible with the Clifford multiplication then we obtain fairly strict constraints

on the potential term ΘA.

Corollary 2.0.13. Let E →M be a complex vector bundle and /D a Dirac-type operator

on E. A connection B on E is said to be compatible with Clifford multiplication if and
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only if for all sections ψ of E and vector fields v, w we have

∇B
v (/wψ) =���∇vwψ + /w∇B

v ψ

Such a connection B coincides with the connection A determined by /D
2 if and only if

/vΘB = −ΘB/v for all vector fields v.

Proof. This follows from our earlier computation of /D
2 in terms of B and the fact

that Clifford compatibility is manifestly equivalent to

∇B,End
µ

/∂ν = Γγµν /∂γ

□

Nevertheless, we can proceed with the analysis of /D analogously to our previous work

with P .

Lemma 2.0.14. Let /D be a Dirac-type operator on a complex vector bundle E over a

spacetime M . Similar to the case of a normally hyperbolic operator, /D has a transpose /D
T

acting on E∗ and for any non-degenerate sesquilinear form ⟨−,−⟩ on E a corresponding

formally adjoint operator /D
∗ on E. The formal adjoint /D

∗ of /D is again a Dirac-type

operator.

Proof. This follows from the adjoints of the Clifford multiplication endomorphisms

σ /D(ξ)
∗ with respect to ⟨−,−⟩ still satisfying the Clifford relation. □

In the below lemma we begin the trend of stating our results separately in terms of the

connection A corresponding to the normally hyperbolic operator /D
2, and any connection
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B compatible with the sesquilinear form and Clifford multiplication. We do this since,

while certain results require working with the normally hyperbolic operator /D
2 it will

often be more convenient to instead make a choice of connection compatible with Clifford

multiplication.

Lemma 2.0.15. Let /D be a Dirac-type operator on a complex vector bundle E over a

spacetime M and let ⟨−,−⟩ be a non-degenerate sesquilinear form on E. Then /D is called

formally self-adjoint with respect to ⟨−,−⟩ if and only if for all smooth sections ψ1, ψ2

of E with at least one of the compactly supported we have

ˆ
M

⟨ /Dψ1, ψ2⟩dVg =
ˆ
M

⟨ψ1, /Dψ2⟩dVg

Then /D is formally self-adjoint with respect to ⟨−,−⟩ if and only if for A the connection

on E corresponding to the normally hyperbolic operator /D
2 we have

ΘA = Θ∗
A + i|g|−1/2gµν

(
Γγµν /∂γ −∇A,End

ν
/∂µ
)

If we instead use a connection B with is both compatible with respect to ⟨−,−⟩ and Clifford

multiplication then it instead follows that /D is ⟨−,−⟩-formally self adjoint if and only if

both Clifford multiplication and ΘB are ⟨−,−⟩-self-adjoint.

Proof. First of all, recall that for any section ψ and smooth real-valued function f

we have

/D(fψ) = f /Dψ − igµν /∂µ(∂µf)ψ = f /Dψ − i�
�∇fψ

So if we assume that /D is formally self-adjoint with respect to ⟨−,−⟩ then for all real-

valued smooth function f and all sections ψ1, ψ2 with at least one of the compactly
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supported we have

ˆ
M

⟨−i��∇fψ1, ψ2⟩dVg =
ˆ
M

⟨ψ1, f /Dψ2 − /D(fψ2)⟩dVg =
ˆ
M

⟨ψ1, i�
�∇fψ2⟩dVg

so that �
�∇f is pointwise ⟨−,−⟩-self-adjoint and hence for any vector v ∈ TM we have /v

is pointwise ⟨−,−⟩-self-adjoint. Furthermore, /D being formally self-adjoint implies that

the normally hyperbolic operator /D
2 is formally ⟨−,−⟩-self-adjoint hence from our earlier

lemma it follows that A is ⟨−,−⟩-compatible. For any ⟨−,−⟩-compatible connection B

we can write /D = −i /∇B
+ΘB and compute that

/D
∗
ψ = −i|g|−1/2∇B

ν

(
|g|1/2gµν /∂µψ

)
+Θ∗

Bψ

= −i /∇B
ψ +Θ∗

Bψ + i|g|−1/2gµν
(
Γγµν /∂γ −∇B,End

ν
/∂µ
)
ψ

In the case B = A is our connection corresponding to /D
2 we obtain our desired result.

Similarly, if B is instead any connection compatible with both ⟨−,−⟩ and Clifford multi-

plication then ΘB = Θ∗
B follows from Γγµν /∂γ = ∇B,End

ν
/∂µ. □

Before proceeding we note the following existence result for connections B compatible

with Clifford multiplication.

Theorem 2.0.16. [21] [9] Let E →M be a complex vector bundle over a spacetime with

Dirac-type operator /D which is formally self adjoint with respect to some non-degenerate

sesquilinear form ⟨−,−⟩. Then there exists a connection B compatible with both the

Clifford multiplication and ⟨−,−⟩.
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Finally we are prepared to discuss the time translation operator on ker /D. As in the

normally hyperbolic case, we must assume that /D commutes with ∇A
∂t

. In principle one

could work with ∇B
∂t

for some connection B compatible with Clifford multiplication in-

stead, however one can no longer necessarily conclude FB
µ0 = 0 from simply assuming

[ /D,∇A
0 ] = 0, hence doing so adds additional complications.

Furthermore, the below lemma demonstrates that assuming the existence of a connection

B compatible with Clifford multiplication for which [ /D,∇B
0 ] = 0 imposes very strict

requirements on the underlying stationary metric g.

Lemma 2.0.17. Let E →M = Rt×Σ be a complex vector bundle over a standard station-

ary spacetime 1.1.11, /D a Dirac-type operator on E and A the connection corresponding

to /D
2. Then [ /D,∇A

∂t
] = 0 if and only if ∂t⌞FA = 0, ∇A,End

0 ΘA = 0 and ∇A,End
0

/∂µ = 0 for

all µ. If we instead work with some connection B compatible with Clifford multiplication

then the condition [ /D,∇B
0 ] = 0 becomes equivalent to gµν /∂µF

B
ν0 = i∇B,End

0 ΘB, N2 − |η|2h

being constant, and dη = 0 where N, η, h are from the standard form 1.1.11 of g.

Proof. Fixing an arbitrary connection B and a section ψ we can compute (using

that ∂0gµν = 0):

[ /D,∇B
∂t ]ψ = −igµν /∂µ∇B

ν ∇B
0 ψ + i∇B

0 (g
µν /∂µ∇B

ν ψ)− (∇B,End
0 ΘB)ψ

= −igµν /∂µ(∇B
ν ∇B

0 −∇B
0 ∇B

ν )ψ + igµν(∇B,End
0

/∂µ)∇B
ν ψ − (∇B,End

0 ΘB)ψ

= igµν(∇B,End
0

/∂µ)∇B
ν ψ − ((∇B,End

0 ΘB) + igµν /∂µF
B
ν0)ψ
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In the case where B = A is the connection corresponding to /D
2 we also have [ /D2

,∇A
∂t
] = 0

and so it follows that FA
µ0 = 0 for all µ. Thus our desired result follows. In the case where

we assume that B is compatible with Clifford multiplication then the vanishing of the

first order terms of [ /D,∇A
∂t
] yields

0 = ∇B,End
0

/∂µ = Γγ0µ/∂γ

however Γγ0µ = 0 for all γ, µ if and only if

∂µgν0 − ∂νgµ0 = 0 for all µ, ν

and so, looking separately at the cases where at least one of µ, ν are zero, and both are

non-zero, we arrive at:

d(N2 − |η|2h) = 0 and dη = 0.

□

It should be noted that none of the naturally occurring stationary globally hyperbolic

metrics from 1 satisfy the above condition save for the ultrastatic ones. Non-ultrastatic

examples of such metrics are, in the case Σ is compact, simply twists of the ultrastatic

metric

−dt2 + h on Rt × Σ

by a closed 1-form η.

We close-out the introduction to this chapter by discussion one final aspect of Dirac-type

operators: chirality.
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Definition 2.0.18. Let E be a complex vector bundle over a spacetime M of dimension

dim(M) = n+ 1 and suppose E is equipped with a Dirac-type operator /D. For any local

oriented orthonormal frame e0, ..., en for TM with g(e0, e0) = −1 we define

ωC := i1+
(n+1)n

2 /e0 · · · /en

As a local section of End(E) this is independent of our choice of local oriented orthonormal

frame and hence ωC defines a global endomorphism of E.

Lemma 2.0.19. We have ω2
C = I and if E is equipped with a non-degenerate sesquilinear

form ⟨−,−⟩ for which Clifford multiplication by elements in TM is self-adjoint, it follows

that for any ψ1, ψ2 sections of E we have

⟨ωCψ1, ψ2⟩ = (−1)n⟨ψ1, ωCψ2⟩

In particular if we denote by E± the ±1-eigensubbundles of E corresponding to ωC then

for n + 1 even and any ψ ∈ E± we have that ⟨ψ,−⟩ vanishes identically on E± and

therefore, by non-degeneracy, ψ 7→ ⟨ψ,−⟩ is a complex antilinear isomorphism E±
∼=−→

E∗
∓. Furthermore, still for n + 1 even only, Clifford multiplication by any vector maps

E± → E∓.

Proof. When squaring ωC one can use that /eµ/eν = −/eν/eµ for µ ̸= ν to get

ω2
C = −/e20 · · · /e

2
n

and the result then follows from /e2j = 1 and /e20 = −1. The fact that ⟨ωCψ1, ψ2⟩ is equal

to (−1)n⟨ψ1, ωCψ2⟩ follows from the same argument. The remaining results follow from
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applying the above and the definitions of E±. Namely if ψ1, ψ2 are both in the same

eigenbundle E± and n + 1 is even then ⟨ψ1, ψ2⟩ = −⟨ψ1, ψ2⟩ by the above identity and

hence this is zero. □

Lemma 2.0.20. Let E → M be a complex vector bundle together with a Dirac-type

operator /D and suppose B was a connection on E compatible with Clifford multiplication

and satisfying ΘBωC + ωCΘB = 0. Then /DωC + ωC /D = 0. Thus /D interchanges E±.

Proof. We notice that

∑
µ

/eµ∇
A,End
eµ (/e0 · · · /en) =

∑
µ,ν

/eµ/e0 · · · /eν−1�
���∇eµeν/eν+1 · · · /en

Denoting ∇eµeν =: Γ̃γµνeγ it follows from the eµ being orthonormal that Γ̃θµν = −Γ̃νµθ. This

together with /eµ/eν = −/eν/e − µ when µ ̸= ν allows us to conclude. □

2.1. Energy Estimates and Cauchy Data Isomorphisms

Here we summarize the standard known theory for normally hyperbolic and Dirac-type

operators on globally hyperbolic spacetimes. As such, throughout we assume:

(1) M is a globally hyperbolic spacetime with complex vector bundle E →M , non-

degenerate sesquilinear form ⟨−,−⟩ and compatible connection A.

(2) P = −Trg(∇A ◦ ∇A) + Υ for some ⟨−,−⟩-self-adjoint endomorphism Υ.

(3) For simplicity we also assume M is spatially compact. If this is not the case,

simply add the assumption that all functions have supports which are compact

when intersected with any Cauchy hypersurface and the results of this section

will remain true.
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There are then two important fundamental solutions for P which we will use to give

integral kernels for the solutions to the Cauchy problem.

Theorem 2.1.1. [2] There are fundamental solutions Eadv, Eret ∈ D′(M ×M,E ⊠ E∗)

for P , respectively called the advanced and retarded propagators with the following

properties:

(1) Eadv/ret : C∞
c (M,E) → C∞(M,E), i.e. they map compactly supported smooth

sections to smooth sections.

(2) Given ϕ ∈ C∞
c (M,E), Eadvϕ is the unique solution to P (Eadvϕ) = ϕ satisfying

supp(Eadvϕ) ⊆ J−(suppϕ).

Similarly Eretϕ is the unique solution to P (Eretϕ) = ϕ satisfying

supp(Eretϕ) ⊆ J+(suppϕ).

(3) Under our assumptions on P being ⟨−,−⟩-formally self-adjoint, it follows that

Eadv/ret is the adjoint of Eret/adv and so

Eadv/ret : E ′(M,E) → D′(M,E).

(4) The following complex is exact:

0 → C∞
c (M,E)

P−→ C∞
c (M,E)

Eadv−Eret−−−−−−→ C∞(M,E)
P−→ C∞(M,E)

We introduce the notation Ecaus := Eadv−Eret and call E the causal propagator.
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If we already knew that the Cauchy problem for P was well posed on all Cauchy hyper-

surfaces Σ ⊆ M , one could give a pretty intuitive definition of Eadv/ret. Namely, given

ϕ ∈ C∞
c (M,E), Eadvϕ is obtained by solving the Cauchy problem Pu = ϕ for u where u

has vanishing Cauchy data in the causal future of supp(ϕ). Conversely, Eretϕ arises from

solving the Cauchy problem with vanishing Cauchy data in the causal past of supp(ϕ).

Thus one can think of Eretϕ as the wave in the vacuum propagating forward in time from

the source ϕ, and indeed it is Eret that has physical significance in electrodynamics.

Since we will frequently be computing with integrals over Σ, let’s briefly note that our

explicit standard forms for g from 1.1 imply

dVΣ = dVh = N−1(N2 − |η|2h)1/2dVh̃ and dVg = NdtdVh

since indeed g(n̂,−) = −Ndt. In order to present the solution to the Cauchy problem we

first need the following lemma.

Lemma 2.1.2. Let ϕ1, ϕ2 be smooth sections of E over M , Σ ⊆M a Cauchy hypersurface

and n̂ the future directed unit normal to Σ. If one of ϕ1, ϕ2 has compact support in J+(Σ)

then

ˆ
M

[⟨Pϕ1, ϕ2⟩ − ⟨ϕ1, Pϕ2⟩] dVg = −
ˆ
Σ

[
⟨∇A

n̂ϕ1, ϕ2⟩ − ⟨ϕ1,∇A
n̂ϕ2⟩

]
dVΣ(2.1)

Similarly if one of ϕ1, ϕ2 has compact support in J−(Σ) then we instead have

ˆ
M

[⟨Pϕ1, ϕ2⟩ − ⟨ϕ1, Pϕ2⟩] dVg =
ˆ
Σ

[
⟨∇A

n̂ϕ1, ϕ2⟩ − ⟨ϕ1,∇A
n̂ϕ2⟩

]
dVΣ
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Proof. This is a consequence of

⟨Pϕ1, ϕ2⟩ − ⟨ϕ1, Pϕ2⟩ = − divg
((
⟨∇A

µϕ1, ϕ2⟩ − ⟨ϕ1,∇A
µϕ2⟩

)
gµν∂ν

)
together with the divergence theorem. The difference in negative signs in front of the

integrals arises when noting that n̂ is the unit inwards normal to ∂J+(Σ) while it is the

unit outwards normal to ∂J−(Σ). Also one should take care to remember that n̂ is timelike

so g(n̂, n̂) = −1. □

Theorem 2.1.3. Let Σ ⊆M be a Cauchy hypersurface and u, v ∈ C∞(Σ, E). Then there

exists a unique ϕ ∈ C∞(M,E) satisfying

Pϕ = 0

ϕ|Σ = u

∇A
n̂ϕ|Σ = v

and ϕ is given as follows. Define distributional sections of E on M via

δ′Σ,u(ψ) := −
ˆ
Σ

⟨∇A
n̂ψ, u⟩dVΣ and

δΣ,v(ψ) :=

ˆ
Σ

⟨ψ, v⟩dVΣ.

Then

ϕ = Ecaus(δ
′
Σ,u + δΣ,v)
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Proof. The distribution ϕ = Ecaus(δ
′
Σ,u + δΣ,u) is defined on a compactly supported

test section f by:

(Ecaus(δ
′
Σ,u + δΣ,v), f) := −(δ′Σ,u + δΣ,v)(Ecausf) =

ˆ
Σ

[
⟨∇A

n̂Ecausf, u⟩ − ⟨Ecausf, v⟩
]
dVΣ

and for any such f , if we denote ϕ± := Eret/adv(δ
′
Σ,u + δΣ,v) then we can compute:

(δ′Σ,u + δΣ,v)(f) = (δ′Σ,u + δΣ,v)(EadvPf)

= (Eret(δ
′
Σ,u + δΣ,v))(Pf)

=

ˆ
J+(Σ)

⟨Pf, ϕ+⟩dVg

=

ˆ
J+(Σ)

⟨Pf, ϕ⟩dVg since supp(ϕ−) ⊆ J−(Σ)

=

ˆ
J+(Σ)

[⟨Pf, ϕ⟩ − ⟨f, Pϕ⟩] dVg since Pϕ = 0

=

ˆ
Σ

[
⟨f,∇A

n̂ϕ⟩ − ⟨∇A
n̂f, ϕ⟩

]
dVg

= (δ′Σ,ϕ|Σ + δΣ,∇A
n̂
ϕ|Σ)(f)

and since this holds for all test sections f we obtain
ϕ|Σ = u

∇A
n̂ϕ|Σ = v

as desired. □

As a corollary, we obtain the following isomorphism analogous to our symplectomorphism

1.2.12 identifying N with T ∗
+M |Σ.
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Corollary 2.1.4. Denoting

kerC∞(P ) := {ϕ ∈ C∞(M,E) : Pϕ = 0}

it follows that for any Cauchy hypersurface Σ ⊆M we have the Cauchy data isomorphism

CDΣ : kerC∞(P )
∼=−→ C∞(Σ, E)⊕ C∞(Σ, E)

ϕ 7→
(
ϕ|Σ, (∇A

n̂ϕ)|Σ
)

which endows kerC∞(P ) with the skew-hermitian form

σ(ϕ1, ϕ2) :=

ˆ
Σ

[
⟨∇A

n̂ϕ1, ϕ2⟩ − ⟨ϕ1∇A
n̂ϕ2⟩

]
dVΣ

whose real part is a non-degenerate linear symplectic form. Furthermore, σ satisfies

σ(Ecausf1, Ecausf2) =

ˆ
M

⟨f1, Ecausf2⟩dVg = −
ˆ
M

⟨Ecausf1, f2⟩dVg

At this point we will assume our metric g has be placed in the standard form 1.1.9 that

exists for all globally hyperbolic spacetimes. We recall that this means

M = Rt × Σ

g = −α2dt2 + kt

for α :M → R>0 some smooth function and kt a smooth family of t-dependent Riemann-

ian metrics on Σ. Recall that each {t} × Σ is a Cauchy hypersurface and that if g was

instead in the standard form 1.1.11 for stationary spacetimes, in can be placed in the
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above standard form 1.1.9 via the action of a t-dependent diffeomorphism of Σ.

We also make the further assumption:

⟨−,−⟩ is a positive definite hermitian fiber metric.

We’ll see that while our previous results on the advanced and retarded fundamental solu-

tions to P can be applied to /D
2 when working in the Dirac-type operator case, the above

assumption prohibits us from using the following results in that context.

Definition 2.1.5. Under all of the above assumptions, we fix t1 < t2 and s ∈ R. We

define the finite energy spaces:

FEs([t1, t2]× Σ, E) := C0([t1, t2],W
s,2(Σ, E)) ∩ C1([t1, t2],W

s−1,2(Σ, E))

FEs([t1, t2]× Σ, E, P ) := {ϕ ∈ FEs([t1, t2]× Σ, E) : Pϕ ∈ L2([t1, t2],W
s−1,2(Σ, E))}

FEs(kerP ) := {ϕ ∈ FEs([t1, t2]× Σ, E, P ) : Pϕ = 0}

Note that we used the assumption that ⟨−,−⟩ was positive definite together with the

connection A corresponding to P to define the Sobolev spaces W s,2(Σ, E) of sections.

The reason for using the standard form 1.1.9 for the metric here is that the wave operator

−Tr(∇A ◦ ∇A) takes on a form in which there are no terms consisting of derivatives in

both spatial and time directions. More precisely we have

−Trg(∇A ◦ ∇A)ϕ = α−1|kt|−1/2∇A
0

(
α−1|kt|1/2∇A

0 ϕ
)
− α−1|kt|−1/2∇A

i

(
α−1|kt|1/2kijt ∇A

j ϕ
)
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thus all terms involving time derivatives have no space derivatives. Furthermore the

future-directed unit normal to each {t} × Σ is particularly simple when g is written in

this standard form: n̂ = α−1∂t. Using this together with Gronwall’s inequality and many

applications of Cauchy-Schwarz one can obtain the following energy estimates.

Theorem 2.1.6. [5] For any t1 < t2 and s ∈ R there exists a constant C > 0 depending

on t1, t2, s and on the metric g in the region [t1, t2]×Σ such that for all ϕ ∈ FEs([t1, t2]×

Σ, E, P ) we have the energy estimate

∥ϕ(t2)∥W s,2(Σ) + ∥(∇A
ν̂ ϕ)(t2)∥W s−1,2(Σ) ≤

(
∥ϕ(t1)∥W s,2(Σ) + ∥(∇A

n̂ϕ)(t1)∥W s−1,2(Σ)

)
eC(t2−t1)

+

ˆ t2

t1

eC(t2−t)∥(Pϕ)(t)∥W s−1,2(Σ)dt

We will need two corollaries of the above from [5].

Corollary 2.1.7. Via the energy estimates, elements of FEs(kerP ) extend uniquely to

continuous functions R → W s,2(Σ, E) which are C1 as maps into W s−1,2(Σ, E), hence

why we didn’t include t1, t2 in the notation for FEs(kerP ). When s = 1, FE1(kerP ) is

independent (up to bounded isomorphism with bounded inverse) of the choice of foliation

by Cauchy hypersurfaces.

Recall that when converting a metric in standard stationary form 1.1.11 to the above

standard form 1.1.9, the resulting isometry acts as a diffeomorphism on each {t} × Σ

individually but preserves the foliation as a whole.
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Corollary 2.1.8. For each s ∈ R our Cauchy data isomorphism CDΣ extends uniquely

to a Cauchy data isomorphism

CDΣ : FEs(kerP )
∼=−→ W s,2(Σ, E)⊕W s−1,2(Σ, E)

Our next step is to perform the same analysis for Dirac-type operators. While this will

begin quite analogously to the above case of normally hyperbolic operators, we’ll see that

there are some fundamental differences in the assumptions we will make when studying

finite energy solutions. For now, we make completely analogous assumptions to those

from the start of this section:

(1) M is a globally hyperbolic spacetime with complex vector bundle E → M and

non-degenerate sesquilinear form ⟨−,−⟩.

(2) /D is a ⟨−,−⟩-formally-self-adjoint Dirac-type operator on E.

(3) For simplicity we continue to assume M is spatially compact. Again, the contents

in the rest of this section remain true if one adds in assumptions of compact

spacelike support everywhere instead.

Just as in the normally hyperbolic case, there are two fundamental solutions for /D relevant

to solving the Cauchy problem.

Theorem 2.1.9. [26] [21] Let Eadv/ret be the advanced and retarded fundamental solu-

tions for the normally hyperbolic operator /D
2 and Ecaus its causal propagator. Then

Gadv/ret := /DEadv/ret ∈ D′(M ×M,E ⊠ E∗)
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are fundamental solutions for /D and if we set

Gcaus := /DEcaus

then they satisfy the following properties:

(1) Gadv/ret : C
∞
c (M,E) → C∞(M,E),

(2) Given ψ ∈ C∞
c (M,E), Gadvψ is the unique solution to /DGadvψ = ψ satisfying

supp(Gadvψ) ⊆ J−(suppψ).

Similarly Gretψ is the unique solution to /DGretψ = ψ satisfying

supp(Gretψ) ⊆ J+(suppψ).

(3) Under our assumptions that /D is formally self-adjoint, it follows that Gadv/ret is

the adjoint of Gret/adv and so

Gadv/ret : E ′(M,E) → D′(M,E).

(4) The following complex is exact:

0 → C∞
c (M,E)

/D−→ C∞
c (M,E)

Gcaus−−−→ C∞(M,E)
/D−→ C∞(M,E).

The next result is slightly different than in the globally hyperbolic case (aside from the

order of the operator being different) since we will later want to use ⟨/̂n(−),−⟩ not ⟨−,−⟩

when integrating over Σ in our Cauchy data isomorphism.
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Lemma 2.1.10. Let Σ ⊆ M be a Cauchy hypersurface with unit forward normal n̂ and

ψ1, ψ2 ∈ C∞(M,E) with at least one of ψ1, ψ2 having compact support in J+(Σ). Then

ˆ
M

[
⟨ /Dψ1, ψ2⟩ − ⟨ψ1, /Dψ2⟩

]
dVg = i

ˆ
Σ

⟨/̂nψ1, ψ2⟩dVΣ

If instead we had at least one of ψ1, ψ2 having compact support in J−(Σ) then we instead

obtain ˆ
M

[
⟨ /Dψ1, ψ2⟩ − ⟨ψ1, /Dψ2⟩

]
dVg = −i

ˆ
Σ

⟨/̂nψ1, ψ2⟩dVΣ

Proof. As before, this follows from an application of the divergence theorem using

that

divg
(
igµν⟨/∂µψ1, ψ2⟩∂ν

)
= ⟨ /Dψ1, ψ2⟩ − ⟨ψ1, /Dψ2⟩

Again, the signs in front of the integrals come from n̂ being inward-pointing for J+(Σ)

and outwards-pointing for J−(Σ), and from g(n̂, n̂) = −1. □

Theorem 2.1.11. Let Σ ⊆ M be a Cauchy hypersurface and s ∈ C∞(Σ, E). Then there

exists a unique ψ ∈ C∞(M,E) such that
/Dψ = 0

ψ|Σ = s

and ψ is given by ψ = Gcaus(/δΣ,s) where /δΣ,s ∈ E ′(M,E) is the distributional section given

by

/δΣ,s(f) := i

ˆ
Σ

⟨/̂nf, s⟩dVΣ
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Proof. By construction we clearly have /Dψ = 0 so let’s check what its restriction to

Σ is. We write ψ± := Gret/adv(/δΣ,s) and for f a smooth compactly supported test section

we compute

/δΣ,s(f) = /δΣ,s(Gadv /Df)

=

ˆ
M

⟨ /Df, ψ+⟩dVg

=

ˆ
J+(Σ)

⟨ /Df, ψ+⟩dVg

=

ˆ
J+(Σ)

⟨ /Df, ψ⟩dVg since supp(ψ−) ⊆ J−(Σ)

=

ˆ
J+(Σ)

[
⟨ /Df, ψ⟩ − ⟨f, /Dψ⟩

]
dVg since /Dψ = 0

= i

ˆ
Σ

⟨/̂nf, ψ⟩dVΣ

= /δΣ,ψ|Σ

as desired. □

Corollary 2.1.12. Again, we denote by kerC∞( /D) the collection of smooth sections ψ ∈

C∞(M,E) such that /Dψ = 0. For each Cauchy hypersurface Σ ⊆M the restriction map

defines a Cauchy data isomorphism

CDΣ : kerC∞( /D)
∼=−→ C∞(Σ, E)

ψ 7→ ψ|Σ
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At this point we again fix a foliation by Cauchy hypersurfaces. However, unlike the

normally hyperbolic case our operator /D is first order and so there are no mixed space-

time derivatives to worry about. Thus our below results will apply to any smooth foliation

M = Rt × Σ

by Cauchy hypersurfaces, regardless of the form of the metric. However, as we saw ear-

lier with the example of C-valued differential forms, if we want /D to be ⟨−,−⟩-formally

self-adjoint we cannot require ⟨−,−⟩ to be positive definite as we did in the normally

hyperbolic case. Nevertheless, the energy estimates do still hold if one drops the assump-

tion that /D or P is formally self adjoint and simply equips E with an auxiliary positive

definite hermitian fiber metric [5], [3]. We simply chose to assume this metric could be

taken to be ⟨−,−⟩ in the normally hyperbolic case since this is what occurs in practice.

So from this point we:

(1) fix any smooth foliation M = Rt × Σ by Cauchy hypersurfaces with ∇t past-

directed timelike, and

(2) fix an auxiliary positive definite Hermitian fiber metric for E which we use to de-

fine our Sobolev spaces (and we make no assumption concerning self-adjointness

with respect to this auxiliary fiber metric).

Definition 2.1.13. Given t1 < t2 and s ∈ R we define the finite energy spaces:

FEsD([t1, t2]× Σ, E) := C0([t1, t2],W
s,2(Σ, E))

FEsD([t1, t2]× Σ, E, /D) := {ψ ∈ FEsD([t1, t2]× Σ, E) : /Dψ ∈ L2([t1, t2],W
s−1,2(Σ, E)}
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FEsD(ker /D) := {ψ ∈ FEsD([t1, t2]× Σ, E) : /Dψ = 0}

Similar energy estimates, now from chapter 4 of [36], allow one to extend our Cauchy

data isomorphism CDΣ (for the Dirac equation) to the finite energy spaces.

Theorem 2.1.14. [3] For every s ∈ R, elements of FEsD(ker /D) extend uniquely to

continuous functions R → W s,2(Σ, E) and for s = 0, FE0
D(ker /D) is independent (up to

bounded isomorphism with bounded inverse) of the choice of foliation by Cauchy hyper-

surfaces. Furthermore, CDΣ extends uniquely to a Cauchy data isomorphism

CDΣ : FEsD(ker /D)
∼=−→ W s,2(Σ, E)

for each s ∈ R and every Cauchy hypersurface Σ.

2.2. The Stress Tensor, Dirac Charge and Time Translation

In this section we specialize the results of the previous section to the stationary case and

begin our analysis of the frequencies of solutions to normally hyperbolic and Dirac-type

equations on stationary spacetimes. Therefore we assume the following throughout:

(1) (M, g) is a globally hyperbolic spatially compact spacetime together with complex

vector bundle E → M , non-degenerate sesquilinear form ⟨−,−⟩ and compatible

connection A.

(2) (M, g) is stationary and in the standard form 1.1.11 with complete timelike Killing

vector field Z := ∂t.
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(3) The bundle E, connection A and sesquilinear form ⟨−,−⟩ have all been placed

in temporal gauge and Z⌞FA = 0. Thus E is the pullback of a bundle over Σ,

⟨−,−⟩ is t-independent and A has no dt-component (and thus ∂tA = ∂t⌞FA = 0).

Examples of the above setup are obtained by simply choosing any bundle with fixed fiber

metric and compatible connection over Σ and then pulling them back to M along the

projection Rt × Σ → Σ.

In the first part of this section, we fix a normally hyperbolic operator P on E with A as

its corresponding connection. Thus

P = −Trg(∇A ◦ ∇A) + Υ

and include the following additional assumption concerning P :

(4) ∇A,End
∂t

Υ = ∂tΥ = 0 and P is ⟨−,−⟩-formally-self-adjoint.

From the beginning of 2 we know that these assumptions all together imply that P

commutes with ∇A
Z = ∇A

∂t
and we arrive at one of the main goals of this thesis:

we wish to understand the spectral theory of DZ := −i∇A
Z on kerC∞(P ).

Unfortunately DZ is not typically self-adjoint with respect to any of the inner products

obtained from the spaces FEs(kerP ) and so, as done in [34] for the scalar case, we seek

an inner product based on the stress-energy tensor.
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Definition 2.2.1. As the equation Pϕ = 0 arises as the Euler-Lagrange equations for

compactly supported variations of

ˆ
M

[
⟨∇Aϕ,∇Aϕ⟩+ ⟨Υϕ, ϕ⟩

]
dVg

we have an associated stress-energy tensor

Tµν = T (ϕ)µν := ℜ⟨∇A
µϕ,∇A

ν ϕ⟩ −
1

2

(
⟨∇Aϕ,∇Aϕ⟩+ ⟨Υϕ, ϕ⟩

)
gµν

This is a C-valued symmetric 2-tensor on M .

Lemma 2.2.2. Let ϕ be a smooth solution to Pϕ = 0 on M . Then

divg(T (ϕ)) = −1

2
⟨(∇A,EndΥ)ϕ, ϕ⟩

Proof. Writing

ℜ⟨∇A
µϕ,∇A

ν ϕ⟩ =
1

2

(
⟨∇A

µϕ,∇A
ν ϕ⟩+ ⟨∇A

ν ϕ,∇A
µϕ⟩

)
we simply compute divg(T )ν = |g|−1/2∂µ(|g|1/2gµωTων) using that A is ⟨−,−⟩-compatible.

□

Since Υ is assumed to be time-independent and Z is assumed to be Killing we obtain

from this the following conserved quantity.

Lemma 2.2.3. If ϕ is a smooth solution to Pϕ = 0 then

Q(ϕ) :=

ˆ
{t}×Σ

T (ϕ)(Z, n̂)dVΣ
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is independent of our choice of t. The quantity obtained by applying the polarization

identity to Q is then a sesquilinear form on kerC∞(P ) and it is given by

⟨ϕ1, ϕ2⟩Q =
1

2

ˆ
Σ

⟨∇A
Zϕ1,∇A

Zϕ2⟩dVΣ +
1

2

ˆ
Σ

[
h̃ij⟨∇A

i ϕ1,∇A
j ϕ2⟩+ ⟨Υϕ1, ϕ2⟩

]
NdVΣ

Proof. By the divergence theorem it suffices to calculate the divergence of T (ϕ)(Z,−).

However since Z is Killing the symmetric part of ∇Z vanishes and so

divg(Z⌞T (ϕ)) = (divg T )(Z) + T (∇Z) = 0 + T (Sym(∇Z)) = 0

as desired. □

We now arrive at the key lemma allowing us to analyze the spectrum of DZ .

Lemma 2.2.4. Since DZ = −i∇A
Z commutes with P we can let eisDZ denote the operator

on kerC∞(P ) given by composing ϕ ∈ kerC∞(P ) with the flow of Z (so ϕ(t, x) gets mapped

to ϕ(t + s, x)). Then DZ and eisDZ are respectively symmetric and unitary on kerC∞(P )

with respect to ⟨−,−⟩Q. Furthermore we have

⟨ϕ1, ϕ2⟩Q =
i

2
σ(ϕ1, DZϕ2)

Proof. The fact that eisDZ is unitary in the sense that

⟨eisDZϕ1, ϕ2⟩Q = ⟨ϕ1, e
−isDZϕ2⟩Q

for all ϕ1, ϕ2 ∈ kerC∞(P ) is precisely the statement of our previous lemma since the flow

of Z is an isometry and A, ⟨−,−⟩ are t-independent. Differentiating this relation in s at
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s = 0 then yields

⟨DZϕ1, ϕ2⟩Q = ⟨ϕ1, DZϕ2⟩

for all ϕ1, ϕ2 as desired. For the relation between ⟨−,−⟩Q and our skew-hermitian form σ

we notice that for ϕ ∈ kerC∞ , we have the following identities of differential forms where

∗Σ, ∗ are respectively the Hodge-∗ operators on Σ and M and we use that ∇A
Z commutes

with ∇A
n̂ due to Z⌞FA = 0 and n̂ being t-independent.

[
⟨∇A

n̂ϕ,∇A
Zϕ⟩ − ⟨ϕ,∇A

n̂∇A
Zϕ⟩

]
∗Σ 1 = ∗

(
⟨∇A

(−)ϕ,∇A
Zϕ⟩ − ⟨ϕ,∇A

Z∇A
(−)ϕ⟩

)
= 2T (ϕ)(Z, n̂) ∗Σ 1− 2d(Z⌞∗(ℜ⟨∇A

(−)ϕ, ϕ⟩))

Integrating over Σ and applying Stokes yields our desired result. □

Unfortunately we arrive at the main problem with ⟨−,−⟩Q: it need not be non-degenerate,

nor need it be positive definite, even when our fiber metric ⟨−,−⟩ is. The below propo-

sition is our saving grace.

Proposition 2.2.5. Any ϕ ∈ kerC∞(P ) for which ⟨ϕ,−⟩Q ≡ 0 on kerC∞(P ) satisfies

DZϕ = 0 and the set of all such ϕ lies in the kernel of a second-order elliptic operator on

Σ. In particular, since Σ is compact, the set of such degenerate ϕ’s is finite dimensional.

Proof. Let ϕ ∈ kerC∞(P ) be such that ⟨ϕ,−⟩Q ≡ 0 on kerC∞(P ). By well-posedness

of the Cauchy problem and since n̂ = N−1(Z − β⃗), the set of sections over Σ of the form

(∇A
Z ϕ̃)|Σ with ϕ̃ ∈ kerC∞(P ) for which ϕ̃|Σ ≡ 0 is all of C∞(Σ, E). Thus using non-

degeneracy of ⟨−,−⟩ and ⟨ϕ, ϕ̃⟩Q = 0 for all such sections we obtain

0 = ∇A
Zϕ = iDZϕ
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Thus for all ϕ̃ ∈ kerC∞ we have

0 = ⟨ϕ, ϕ̃⟩Q =
1

2

ˆ
Σ

[
h̃ij⟨∇A

i ϕ,∇A
j ϕ̃⟩+ ⟨Υϕ, ϕ̃⟩

]
NdVΣ

Thus

(∇A
j )

∗,h̃
(
Nh̃ij∇A

i ϕ
)
+NΥϕ = 0

i.e. ϕ is in the kernel of an elliptic operator on Σ, as desired. □

Without assuming that the fiber metric ⟨−,−⟩ is positive definite, there is not much more

that can be done at this point. Before assuming this, we state the below proposition which

expresses the equation Pϕ = 0 in terms of a quadratic operator pencil as was done in [34].

In order to proceed further without assuming ⟨−,−⟩ is positive definite, one may have

to develop a theory analogous to [32] where the resolvent of an operator is replaced with

the resolvent of an operator pencil as below.

Proposition 2.2.6. Define

DZ := −i∇A
0 ,

ef := (N2 − |η|2h)−1/4N (3−n)/2

X̂ :=
1

2

(
∇A
β⃗
−
(
∇A
β⃗

)∗,N−2h̃
)

and

∆A
h̃
:= |N−2h̃|−1/2∇A

i

(
|N−2h̃|1/2N2h̃ij∇A

j (−)
)

Then for all ϕ ∈ C∞(M,E) we have

Pϕ = N−2ef
(
−D2

Z − 2iX̂DZ −∆A
h̃
+ e2f (∆N−2h̃e

−f ) +N2Υ
)
e−fϕ.
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Proof. We begin by recalling the relation

N−1|g|1/2 = |h|1/2 = N−1(N2 − |η|2h)1/2|h̃|1/2

between the determinants that follows from the explicit expressions for g, g−1 from the

start of 1.2. Using FA
0µ = 0 we then compute

|h|1/2Trg(∇A ◦ ∇A)u = ∇A
µ

(
|h|1/2gµν∇A

ν u
)

= −∇A
0

(
|h|1/2N−2∇A

0 u
)
+∇A

0

(
|h|1/2N−2βj∇A

j u
)

+∇A
j

(
|h|1/2N−2βj∇A

0 u
)
+∇A

i

(
|h|1/2N−2h̃ij∇A

j u
)

= −|h|1/2N−2
(
∇A

0

)2
u+ |N−2h̃|1/2Nn−3(N2 − |η|2h)1/2∇A

β⃗
∇A

0 u

+∇A
j

(
N−2Nn−1(N2 − |η|2h)1/2|N−2h̃|1/2βj∇A

0 u
)

+∇A
i

(
N−2Nn−1(N2 − |η|2h)1/2|N−2h̃|1/2N2h̃ij∇A

j u
)

= −|h|1/2N−2(∇A
0 )

2u+ |h|1/2N−2(2∇A
β⃗
+ divN−2h̃(β⃗))∇

A
0 u

+ Lβ⃗(N
n−3(N2 − |η|2h)1/2)|N−2h̃|1/2∇A

0 u

+N−2|h|1/2TrN−2h̃(∇
A ◦ ∇A)u

+ |N−2h̃|1/2N2h̃−1(d(Nn−3(N2 − |η|2h)1/2),∇Au)

Using the notation ∆A
h̃
= TrN−2h̃(∇A ◦ ∇A) (despite the fact that we allow A to have a

dt-component) and our above definition of f we can simplify this to get

N2Trg(∇A ◦ ∇A)u = −(∇A
0 )

2u+ (∇A
β⃗
− (∇A

β⃗
)∗,N

−2h̃)∇A
0 u+ e2f (Lβ⃗e

−2f )∇A
0 u



86

+∆A
h̃
u+ e2fN2h̃−1(de−2f ,∇Au)

= −ef (∇A
0 )

2(e−fu) + ef
(
∇A
β⃗
− (∇A

β⃗
)∗,N

−2h̃
)
∇A

0 (e
−fu)

+ ef (∆A
h̃
− e2ff(∆N−2h̃e

−f ))(e−fu)

Recalling now that DZ = −i∇A
0 and denoting

X̂ :=
1

2

(
∇A
β⃗
− (∇A

β⃗
)∗,N

−2h̃
)

we arrive at

Trg(∇A ◦ ∇A)u = N−2ef
(
D2
Z + 2iX̂DZ +∆A

h̃
− e2f (∆N−2h̃e

−f )
)
e−fu

□

As mentioned before, in order to proceed we make the following assumption:

the sesquilinear fiber metric ⟨−,−⟩ is assumed to be positive definite hermitian.

Definition 2.2.7. We denote by kerP the space FE1(kerP ) ⊇ kerC∞(P ) equipped with

the topology of FE1(kerP ) and the (continuous) sesquilinear form ⟨−,−⟩Q.

Lemma 2.2.8. Let DZ act on kerP with domain

dom(DZ) := FE2(kerP ) ⊆ kerP

Then DZ is a closed densely defined operator on kerP and is symmetric with respect to

the Hermitian form ⟨−,−⟩Q.
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Proof. Once we show DZ is closed and densely defined on kerP with domain

FE2(kerP ) it follows from our previous computations and density that it is ⟨−,−⟩Q-

symmetric. However, we can employ the modified Cauchy data isomorphism

CDΣ : FE2(kerP ) → W 2,2(Σ, E)⊕W 1,2(Σ, E)

where the normal derivative ∇A
n̂ϕ is replaced by ∇A

∂t
ϕ in order to express DZ as a 2 × 2

block matrix via the operator pencil 2.2.6 description of kerP :

DZ = iMef

 0 −1

−∆A
N−2h̃

+W −2X̂

Me−f

where W is the potential term

W = e2f (∆N−2h̃e
−f ) +N2Υ

Thus DZ is conjugate to a closed operator by the bounded invertible multiplication op-

erators Mef ,Me−f , as desired. □

Since we are now assuming that our fiber metric is positive definite, it follows that if

Υ is non-negative definite then so is ⟨−,−⟩Q and, since we assume M is connected, if

Υ non-negative definite on all of M and is positive definite at even just one point then

⟨−,−⟩Q will be a positive definite Hermitian inner product on kerP . However, we have

good reason to allow for negative potential terms Υ. The scalar wave equation obtained

from applying a conformal change to g in the Hilbert-Einstein action is:

−□gϕ+
n− 1

4n
Scalg ϕ = 0
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Specifically, considering the conformal metrics g̃ := e2fg where ϕ := e(n−2)f/2 one can

compute the Hilbert-Einstein action:

ˆ
M

Scalg̃ dVg̃ =

ˆ
M

ϕ

(
−□gϕ+

n− 1

4n
Scalg ϕ

)
dVg

and so we can obtain interesting wave equations with negative potential terms from met-

rics with scalar curvature that is negative (even if it is only negative in some regions).

The general case where ⟨−,−⟩Q need not be positive definite, or even non-degenerate,

will be handled as in [34] with the general theory of Pontryagin and Krein spaces [23],

[12]. These are “Hilbert spaces” for which the inner product is permitted to have finite

dimensional negative-definite and/or degenerate subspaces. The proof of the next lemma

is verbatim to the scalar case done in [34].

Lemma 2.2.9. kerQ is finite dimensional, consists of smooth sections and satisfies

kerQ ⊆ kerDZ. Because of this, kerP/ kerQ is a Krein space when equipped with the

induced Hermitian form from ⟨−,−⟩Q and the induced closed densely defined operator

from DZ is Krein-self-adjoint.

At this point it will be useful to introduce the bundle E. As a real vector bundle, we

simply set E := E, although we define multiplication by i ∈ C on E to be multiplication

by −i on E. For notational purposes, if ϕ ∈ E (or if ϕ is a section of E) then we denote the

corresponding element/section of E by ϕ. The map ϕ 7→ ϕ is a C-antilinear isomorphism

E → E.
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Furthermore, we can introduce a Hermitian form on E via the one on E. Namely, we set

⟨ϕ1, ϕ2⟩ := ⟨ϕ2, ϕ1⟩ = ⟨ϕ1, ϕ2⟩

The connection A on E induces a connection on E with covariant derivative given simply

by

∇A
Xϕ := ∇A

Xϕ for all X

and this connection is compatible with the Hermitian fiber metric on E. Together with

our original connection, we now have a ⟨−,−⟩-compatible connection on E⊕E that com-

mutes with ϕ 7→ ϕ.

Our operator P also extends to E and E ⊕ E in a way that commutes with ϕ 7→ ϕ by

defining Υϕ := Υϕ. As such, our previous discussion all applies verbatim to our new

operator P on E ⊕ E and we get a space

kerC P := FE1(kerP ) on E ⊕ E.

Definition 2.2.10. We extend DZ to E⊕E via DZ := −i∇A
Z . Note that DZϕ = −DZϕ.

We now present a detailed study of the spectrum of DZ on kerP . Towards this end, for

λ ∈ C we denote

Wλ := {ϕ ∈ kerC P : ∃m ∈ Z≥1 such that (DZ − λ)mϕ = 0}

Implicit in the above definition is that ϕ must also live in the domain of (DZ − λ)m.

Furthermore, the value of m ∈ Z≥1 is allowed to depend on ϕ. We say that Wλ has
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no non-trivial Jordan blocks to mean that DZϕ = λϕ for all ϕ ∈ Wλ. Since kerC P

consists of sections of the bundle E ⊕ E which has complex conjugates, we have

(2.2) Wλ = W−λ for all λ ∈ C.

Furthermore it’s easy to see that for λ ̸= λ′ we have Wλ ∩ Wλ′ = {0}. From these

observations we can see that Wλ has no non-trivial Jordan blocks if and only if W−λ has

no non-trivial Jordan blocks.

Lemma 2.2.11. For λ = 0, ℜσ restricts to a non-degenerate linear symplectic form on

W0. For λ ̸= 0, ℜσ restricts to a non-degenerate linear symplectic form on Wλ ⊕W−λ

and for any ϕ1 ∈ Wλ, any λ′ ̸= −λ, and any ϕ2 ∈ Wλ′ we have ℜσ(ϕ1, ϕ2) = 0.

Proof. First, let λ ̸= 0, ϕ1 ∈ Wλ and λ′ ̸= −λ. Choose m ≥ 1 such that (DZ −

λ)mϕ1 = 0. The restriction of (DZ +λ)
m to Wλ′ acts as multiplication by (λ′+λ)m which

is non-zero and hence invertible. So every element of Wλ′ can be written as (DZ + λ)mϕ2

for some ϕ2 ∈ Wλ′ and so

ℜσ
(
ϕ1, (DZ + λ)mϕ2

)
= ℜσ ((DZ − λ)mϕ1, ϕ2) = 0

hence σ(ϕ1,−) is identically vanishing on Wλ′ . From the general theory of Krein and

Pontryagin spaces [34], [12], [23] we know that the Direct sum of all Wλ’s is dense in

kerC(P ) and since ℜσ is non-degenerate it follows that when λ ̸= 0 its restriction to

Wλ ⊕ W−λ is non-degenerate symplectic and when λ = 0 it simply restricts to a non-

degenerate symplectic form on W0. □

The proof of the following lemma is again verbatim to [34].
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Lemma 2.2.12. We have kerQ ⊆ W0 and for every λ ∈ C, Wλ is finite-dimensional and

consists of smooth sections.

We can now decompose kerC P into two parts: one in which the spectrum of DZ is well

behaved and a finite dimensional part in which we may have a non-trivial Jordan canonical

form for DZ .

Definition 2.2.13. Let W denote the closed span in kerC P of all Wλ’s such that λ ∈ R

and Wλ has no non-trivial Jordan blocks.

Lemma 2.2.14. [34] For all λ ∈ R \ {0}, the eigenvalues of Q on Wλ are all non-zero

and there exists a decomposition into DZ-invariant subspaces

Wλ = Wλ,1 ⊕ · · · ⊕Wλ,kλ

such that Q is sign-definite on each Wλ,j and σ is symplectic (i.e. non-degenerate) on

each Wλ,j ⊕ Wλ,j. We can choose this decomposition for each λ ∈ R \ {0} such that

Wλ,j = W−λ,j and kλ = k−λ.

Theorem 2.2.15. [34] The set of λ ∈ C such that λ is either in C \ R or λ ∈ R but

Wλ has a non-trivial Jordan block is finite. Letting λ1, ..., λN be this finite list of λ’s we

denote

V :=
N⊕
k=1

(Wλk ⊕Wλk).

Then

kerC P = W ⊕ V , W⊥Q = kerQ⊕ V , and V⊥Q = W.
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As such the spectrum of DZ on kerC P is discrete, consists of finitely many generalized

eigenvalues λ1, ..., λN and an infinite set of real eigenvalues accumulating only at ±∞.

Furthermore the spectrum is invariant under λ↔ −λ

We now consider the case of Dirac-type operators. Our original three assumptions from

the start of 2.2 are still assumed to hold, but now we fix a Dirac-type operator

/D = −i /∇A
+ΘA

on E and make the assumption:

(4) /D is ⟨−,−⟩-formally-self-adjoint, A is the connection corresponding to /D
2 and

[ /D,∇A
∂t
] = 0.

Notice how we assume both [ /D,∇A
∂t
] = 0 and ∂t⌞FA = 0 here, whereas in the normally

hyperbolic case it sufficed to assume that the potential was t-independent along with

∂t⌞FA = 0. This is due to the results of our calculations in the introduction to 2.

As mentioned earlier, we cannot typically assume that ⟨−,−⟩ is positive definite in the

case of a Dirac-type operator since it is not positive definite for the special cases of

interest (differential forms, Spinc-bundles etc.). As is done in [21], [3], [4] we will make

the assumption that

(5) ⟨n̂(−),−⟩ is a positive-definite Hermitian fiber metric.

This is satisfied for twists of spinor bundles on M , assuming M admits a Spin or Spinc

structure, but is not satisfied for the bundle of C-valued differential forms.
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One major advantage of this assumption is that it avoids many of the unfortunate diffi-

culties of the normally hyperbolic case due to this fiber metric automatically yielding a

conserved quantity.

Definition 2.2.16. For ψ ∈ kerC∞( /D) we denote by

j(ψ) := ⟨/∂µψ, ψ⟩dxµ

the globally-defined 1-form called the Dirac charge. In the introduction to 2 we already

saw that d∗j(ψ) = 0 and so for ψ1, ψ2 ∈ kerC∞( /D) we have that

⟨ψ1, ψ2⟩J :=

ˆ
{t}×Σ

⟨n̂ψ1, ψ2⟩dVΣ

is independent of t and is positive-definite Hermitian on kerC∞( /D).

We can now simply state the below theorem whose proof, unlike the normally hyperbolic

case, does not have any of the technical difficulties involving Jordan blocks.

Theorem 2.2.17. [21] We denote ker /D := FE0
D(ker /D) equipped with the structure of

a Hilbert space with inner product ⟨−,−⟩J . If DZ := −i∇A
Z is given the domain

dom(DZ) := FE1
D(ker /D) ⊆ ker /D

then DZ is a closed densely defined self adjoint operator with respect to ⟨−,−⟩J . Its

spectrum Spec(DZ) is discrete, contained in R, consists of eigenvalues and accumulates

at only ±∞.
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CHAPTER 3

Main Results

3.1. Representation Theory of ker□ω

Here we return to the case of Kaluza-Klein spacetimes, applying the results of the previous

chapter to the case of the total space P of a principal G ⊆ SO(k)-bundle over a standard

stationary spacetime M . Concretely, M = Rt × Σ is in standard form 1.1.11, P is the

pullback of a principal G-bundle π : P0 → Σ over Σ and ω is the pullback of a connection

on P0. Then

P = Rt × P0

with Kaluza-Klein metric

gω = π∗g − Tr(ω(−)ω(−)) = −(N2 − |η|2h)dt2 + dt⊗ η + η ⊗ dt+ h− Tr(ω(−)ω(−))

where in the last equality we have omitted the pullbacks along π : P0 → Σ. We will be

interested in normally hyperbolic operators on the trivial complex line bundle over P .

Namely we let

□ω := −□gω + V acting on C∞(P,C)

where our potential V is the pullback of a smooth real-valued function on Σ. Recalling

that Zω = ∂t is the horizontal lift of the complete timelike Killing vector field on M (and
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we have placed everything in temporal gauge already) we have operators

DZ := −iLZω and Dξ := −iLξ̂ for ξ ∈ g

Lemma 3.1.1. We have [□ω, DZ ] = 0 = [□ω, Dξ] for all ξ ∈ g.

Proof. We have [□ω, DZ ] = 0 since □ω satisfies all of the assumptions from our

previous chapter 2. For Dξ we note that ξ̂ is Killing for the Kaluza-Klein metric since the

right G-action on P is by isometries and furthermore since V is the pullback of a function

on Σ it is constant on the fibers of P hence LξV = 0 for all ξ ∈ g. □

As such, we have our space ker□ω from before together with the stress-energy quadratic

form

Qω(ϕ) =

ˆ
P0

T (ϕ)(Zω, n̂)dVP0

with respect to which DZ is symmetric.

Lemma 3.1.2. Qω is invariant under the action of G.

Proof. We write ϕ · g for the function x 7→ ϕ(xg−1) and also continue to use the

notation ζ · g for the induced right action of G on covectors ζ. Since G acts by isometries

we have |d(ϕ · g)|2gω = |dϕ|2gω · g and therefore

T (ϕ · g)(Zω, n̂) = T (ϕ)(g−1 · Zω, g−1 · n̂) · g.

But Zω = ∂t and n̂ = N−1(∂t − β) are both invariant under the G-action so

T (ϕ · g)(Zω, n̂) = T (ϕ)(Zω, n̂) · g.
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Finally, the volume form dVP0 is invariant under the G-action since it is an action by

isometries hence we can perform the change of variables x 7→ xg−1 in the integral to get

ˆ
P0

T (ϕ · g)(Zω, n̂)dVP0 =

ˆ
P0

T (ϕ)(Zω, n̂) · gdVP0 =

ˆ
P0

T (ϕ)(Zω, n̂)dVP0

as desired. □

At this point we are prepared to study how the spectral theory of DZ on ker□ω in-

teracts with the G-action. Recall from 2.2 that kerQω is finite-dimensional, consists of

smooth functions, is contained in kerDZ and if Q̃ω is the Hermitian form on the quotient

ker□ω/ kerQω induced by Qω then

(
ker□ω/ kerQω, Q̃ω

)
is a Pontryagin space.

Since the subspace of smooth solutions in ker□ω is invariant under the G-action (it is

a smooth action by assumption) it also follows that the domain of DZ contains a dense

G-invariant subspace.

Lemma 3.1.3. [34], [23], [12] Let Q̃ω denote the induced quadratic form on the quotient

ker□ω/ kerQω. Then there exists a maximal negative definite subspace

Ṽ − ⊆ (ker□ω/ kerQω, Q̃ω)

which is invariant under DZ and e−itDZ . Furthermore, it is finite-dimensional with di-

mension an invariant of the Krein space and DZ themselves. Finally, Ṽ − is invariant

under the action of G.
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Proof. The only part of this not proven in the above-cited papers is theG-invariance.

Indeed, suppose for contradiction that there was some g ∈ G and v ∈ Ṽ − with g · v /∈ Ṽ −.

Consider the subspace W̃− := g · Ṽ −. Then, as g · v /∈ Ṽ − we have that the subspace

W̃− + Ṽ − properly contains Ṽ −. Furthermore, it is invariant under both DZ and e−itDZ

since DZ commutes with the G-action. Finally, Q̃ω is negative-definite on W̃− since it is

negative-definite on Ṽ − and invariant under the G-action, hence Q̃ω is negative definite

on W̃− + Ṽ −, contradicting maximality. □

Since Q̃ω is non-degenerate and invariant under both the G-action and e−isDZ we obtain

the following immediate corollary.

Corollary 3.1.4. The subspace

Ṽ + := (Ṽ −)⊥Q̃ω

is a Hilbert space with inner product Q̃ω, and is equipped with a unitary representation of

R ×G given by the restriction of e−isDZ and the G-action from above.

We can now begin the process of showing that Qω is positive definite on isotypic subspaces

for irreducible representations with sufficiently large dominant integral weights.

Lemma 3.1.5. Let V − be the preimage of Ṽ − in ker□ω under the quotient map ker□ω →

ker□ω/ kerQω. Then V − is finite dimensional and contains kerQω.

Proof. Indeed the quotient map restricts to a map V − → Ṽ − with kernel kerQω.

Choosing a splitting of this linear surjection gives us an isomorphism of vector spaces

V − ∼= Ṽ − ⊕ kerQω and since Ṽ − ⊕ kerQω so is V −. □
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Definition 3.1.6. Fix O ⊆ g∗ an integral coadjoint orbit. For each m ∈ Z≥1 we let

κm denote the irreducible representation corresponding to the integral coadjoint orbit

mO ⊆ g∗.

Proposition 3.1.7. There exists an m0 ∈ Z≥1 depending only on O, DZ and the Krein

space (ker□ω/ kerQω, Q̃ω) such that for any m ≥ m0 and any ϕ ∈ ker□ω which generates

a cyclic G-representation Vϕ ⊆ ker□ω isomorphic to κm we have

Vϕ ∩ V − = {0}.

Thus for each m ≥ m0 we have a closed subspace

Hm := SpanC{ϕ ∈ ker□ω : Vϕ ∼= κm}

on which Qω restricts to a positive definite Hilbert space inner product. Furthermore,

our representation of R ×G arising as the product of the G-action and e−isDZ leaves Hm

invariant and is unitary.

Proof. Let ϕ ker□ω generate a cyclic G-representation Vϕ isomorphic to κm. Sup-

pose that Vϕ ∩ V − ̸= {0} and so there existed a non-zero ψ ∈ Vϕ ∩ V −. Since V − is a

G-invariant subspace we have Vψ ⊆ V − where Vψ is the cyclic G-representation generated

by ψ. Furthermore, 0 ̸= Vψ ⊆ Vϕ and since Vϕ is irreducible it follows that Vψ = Vϕ. So

it follows that:

if Vϕ ∼= κm and Vϕ ∩ V − ̸= {0} then Vϕ ⊆ V −.

Since V − is finite dimensional this can happen for at most finitely many irreducible cyclic

invariant subspaces and hence for at most finitely many m. In fact, since the dimension
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of V − is an invariant of DZ and the Krein space ker□ω/ kerQω it follows that for m0

large enough (with dependence as in the statement of the proposition) and all m ≥ m0

we have:

if ϕ ∈ ker□ω with Vϕ ∼= κm then Vϕ ∩ V − = {0}.

In particular, for m ≥ m0 and Hm defined as in the statement of the proposition, Qω is

positive definite on Hm.

To show that our R×G action leaves Hm invariant and is unitary it suffices to show that

it leaves SpanC{ϕ ∈ ker□ω : Vϕ ∼= κm} invariant and is unitary here, since it will then

extend to Hm by uniform continuity. Since Qω is invariant under the full R × G-action,

unitarity is immediate. All that remains is to check invariance. However, since κm is

irreducible it follows that for any ϕ with Vϕ ∼= κm and any g ∈ G we have 0 ̸= Vϕ·g ⊆ Vϕ

hence Vϕ·g = Vϕ thus we have invariance, as desired. □

It is worth noting that, as remarked in the previous chapter and in [34], if V ≥ 0 and there

exists some x ∈ Σ0 for which V (x) > 0 then Qω is positive definite. This is especially

true for the massive Klein-Gordon equation where V is a positive constant. In [35] the

special case of our results where G = U(1) and (P, ω) was a trivial bundle was considered.

In this case it was shown that when projected down to M our parameter m ∈ Z≥1 above

actually corresponds to mass. We will demonstrate an analogue of this later in this section.

Another important remark is that not every ϕ ∈ Hm has Vϕ ∼= κm. This is most easily

seen in the Euclidean-signature case where M is a single point. Then P = G and our



100

Hilbert space is L2(G) which, by the Peter-Weyl theorem, contains every irreducible rep-

resentation of G as a cyclic subspace. However, as was shown in [14], since G is compact

Hausdorff and second-countable, the entire representation L2(G) is itself a cyclic repre-

sentation.

Combining our previous facts, for m ≥ m0 we can decompose:

Hm =
L2⊕
ℓ∈Z

Hm,ℓ

with Hm,ℓ the λm,ℓ-eigenspace for DZ on Hm, organized so that λm,ℓ ≤ λm,ℓ+1 for all ℓ ∈ Z.

If λm,ℓ = λm,ℓ+1 then Hm,ℓ = Hm,ℓ+1 and otherwise these spaces are orthogonal (this is the

sense in which the above is indeed an L2-direct sum). We can then further decompose:

Hm,ℓ =

µ(m,ℓ)⊕
j=1

κm

and it is worth noticing that µ(m, ℓ) is indeed always finite since Hm,ℓ itself is finite di-

mensional (being an eigenspace for DZ).

Since we will be studying asymptotics as m → ∞, there’s no harm in replacing κ with

κm0 so that we may assume m0 = 1. As such, we want to study the time evolution of

quantum states in the subspace

H :=
L2⊕
m≥1

Hm ⊆ ker□ω.
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However, we still haven’t fully specified a direction in which to take our large quantum

numbers limit. Indeed, for fixed m the eigenvalues λm,ℓ very well might accumulate at

±∞ as ℓ tends to ±∞. Thus for each E ∈ R we could consider eigenvalues satisfying

λm,ℓ ∼ mE

and different choices of E might very well yield different m→ ∞ asymptotics. Classically

this is reflected in the fact that symplectic reduction along O generally leads to phase

spaces which are not conical. As such, our problem is broken into two steps:

(1) For m fixed, “count” eigenvalues satisfying λm,ℓ ∼ mE.

(2) Understand the asymptotics of the above count as m→ ∞.

The first step is fairly straight-forward. It is highly unlikely for us to have any eigenvalues

satisfying λm,ℓ = mE exactly and so we instead sum over all ℓ ∈ Z, weighting eigenvalues

near mE the most. By stationary phase, this is described for large frequencies by the

distribution:

φ 7→ Tr

(ˆ ∞

−∞
φ(t)e−it(DZ−mE)|Hmdt

)
=

∑
ℓ∈Z

φ̂(λm,ℓ −mE) =: µ(E,m,φ).

We use the letter µ to denote this distribution since it can be viewed as a multiplicity for

the representation on H of R × G associated to the coadjoint orbit {E} × O ⊆ R ⊕ g∗.

The point is that (modulo factors of 2π), φ̂ approaches δ0 as φ → 1 and so in this limit

the right hand side approaches the literal multiplicity of mE as an eigenvalue on Hm.

However, this is only a moral since the above limit does not converge. Instead we first

notice that µ(E,m,−) defines a linear functional on the collection of all φ ∈ S(R) with
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compactly supported Fourier transform. Our goal now is to apply an analogue of a result

from [21] which generalizes the Weyl law of [34] to vector bundles in order to prove that

µ(E,m,−) is actually tempered and hence µ(E,m,φ) is defined for any φ ∈ S(R).

We begin by recalling the well-known fact that for any unitary representation V of G

there is an isomorphism

C∞(P, V )G ∼= Γ(M,P ×G V )

between V -valued G-equivariant smooth functions on P and smooth sections of the as-

sociated vector bundle P ×G V over M . Furthermore, the Hermitian inner product on V

defines a Hermitian fiber metric on P ×G V . We will need a less well-known, but related

construction.

Definition 3.1.8. We fix an m ≥ m0 so that Qω is positive definite on Hm ⊆ ker□ω and

denote by κm : G→ U(Vm) our irreducible representation corresponding to mO. We also

let dm := dimC Vm and fix an orthonormal basis e⃗1, ..., e⃗dm for Vm, writing ⟨−,−⟩m for our

Hermitian inner product on Vm.

Lemma 3.1.9. Let ψ⃗ ∈ C∞(P, Vm)
G and v⃗ ∈ Vm both be non-zero. Define a function

ϕ : P → C

ϕ(p) := ⟨ψ⃗(p), v⃗⟩m.

Then Vϕ ∼= Vm as G-representations. Furthermore, if □ω is extended to act on Vm-valued

smooth functions it follows that □ωψ⃗ = 0 if and only if □ωϕ = 0.
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Proof. Since v⃗ ∈ Vm is non-zero and Vm is irreducible, it is a cyclic vector and so for

each j = 1, ..., dm there are finitely many group elements gij ∈ G such that
∑

i g
i
j v⃗ = e⃗j.

Thus ∑
i

ϕ(p(gij)
−1) =

∑
i

⟨ψ⃗(p), gij v⃗⟩m = ⟨ψ(p), e⃗j⟩m.

So the functions ⟨ψ⃗(−), e⃗j⟩m are in Vϕ for all j = 1, ..., dm. Furthermore every function

p 7→ ψ(pg−1) = ⟨ψ⃗(p), gv⃗⟩m is in the span of the functions ⟨ψ⃗(−), e⃗j⟩m hence

Vϕ = SpanC

{
⟨ψ⃗(−), e⃗1⟩m, ..., ⟨ψ⃗(−), e⃗dm⟩m

}
.

The set of functions ⟨ψ⃗(−), e⃗j⟩m are linearly independent since if aj ∈ C are such that

⟨ψ⃗(p), aj e⃗j⟩m = 0 for all p ∈ P then since ψ⃗ ̸= 0 there exists a p ∈ P with 0 ̸= ψ⃗(p) ∈ Vm.

Since Vm is irreducible there exists elements gk ∈ G such that
∑

k gψ⃗(p) = aj e⃗j and so

0 =
∑
k

⟨ψ⃗(pg−1
k ), aj e⃗k⟩ =

∑
j

|aj|2

hence aj = 0 for all j as desired. Therefore the map

e⃗j ↔ ⟨ψ⃗(−), e⃗j⟩m

induces an isomorphism of G-representations Vm ∼= Vϕ.

If □ωψ⃗ = 0 then by definition (v⃗ and ⟨−,−⟩m are constant) □ωϕ = 0. Conversely,

G-invariance of □ω implies that if □ωϕ = 0 then □ωf = 0 for all f ∈ Vϕ and hence

□ω⟨ψ⃗(−), e⃗j⟩m = 0 for all j. Therefore □ωψ⃗ = 0 as desired. □
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Usually one doesn’t look at the full wave operator □ω applied to ψ⃗ ∈ C∞(P, V )G but

only at the “horizontal” wave operator. To relate these two wave operators, we fix a root

system for g compatible with our Ad-invariant inner product and let:

ρ := the sum of all positive roots

and

Λ0 := the dominant integral weight for κm0 .

Lemma 3.1.10. The wave operator □ω on C∞(P ) splits as a sum of vertical and hori-

zontal parts:

□ω = □H −∆G

where □H is the horizontal wave operator (plus the potential) and ∆G is the Laplacian on

the fibers. These operators commute and if ϕ ∈ Hm has Vϕ ∼= Vm then ∆G acts on Vm as

multiplication by a constant. Hence ∆G acts by multiplication by a constant on all of Hm

and this constant is given by:

∆G|Hm = ⟨mΛ0, mΛ0 + ρ⟩.

Proof. The existence of the splitting and the fact that [□H ,∆G] = 0 follows from

[17] section 6. Since ∆ω and ∆H both commute with the G-action it follows that ∆G

does as well hence ∆G does indeed preserve Vϕ. In fact, by the explicit form of ∆G we see

that its action on Vϕ is precisely the action of the quadratic Casimir and hence is given

by multiplication by ⟨mΛ0, mΛ0 + ρ⟩. □
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In fact, we see that ∆G preserves our space

H =
L2⊕

m≥m0

Hm

and on this space Hm is precisely the ⟨mΛ0, mΛ0 + ρ⟩-eigenspace of ∆G.

Definition 3.1.11. We denote by □m the operator

□m := □H − ⟨mΛ0, mΛ0 + ρ⟩.

Lemma 3.1.12. Denote by

Grm(P ) := {V ⊆ ker□ω ∩ C∞(P ) : V is G-invariant and V ∼= Vm}

the collection of all invariant subspaces of ker□ω which are isomorphic to Vm as G-

representations. Then for each V ∈ Grm(P ) we have V ⊆ Hm. Furthermore if Φ : Vm →

V is any isomorphism of G-representations then

ψ⃗(p) :=
dm∑
j=1

Φ(e⃗j)(p)e⃗j

is a G-equivariant Vm-valued function with

(3.1) □mψ⃗ = □Hψ⃗ − ⟨mΛ0, mΛ0 + ρ⟩ψ⃗ = 0.

Finally, the definition of ψ⃗ is independent of our choice of orthonormal basis e⃗j.

Proof. Since each Φ(e⃗j) generates a cyclic representation isomorphic to Vm it au-

tomatically follows that V ⊆ Hm and ψ⃗ satisfies 3.1. So all that remains to be checked
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is ψ⃗’s equivariance and basis-independence. However since Φ is an isomorphism of G-

representations we can compute:

ψ⃗(pg−1) =
dm∑
j=1

Φ(e⃗j)(pg
−1)e⃗j =

dm∑
j=1

Φ(ge⃗j)(p)e⃗j.

But if we write ge⃗j = gij e⃗i then we arrive at:

ψ⃗(pg−1) =
dm∑
j=1

gijΦ(e⃗i)(p)e⃗j =
dm∑
i=1

Φ(e⃗i) ge⃗i

proving equivariance. Similarly, if f⃗j ∈ Vm is another orthonormal basis then there exists

a unitary matrix A satisfying e⃗j = Aij f⃗i hence

ψ⃗(p) =
dm∑
j=1

AijA
k
jΦ(e⃗i)(p)e⃗k =

dm∑
i=1

Φ(e⃗i)(p)e⃗i

as desired. □

Since Vm is irreducible, Schur’s lemma tells us that any two isomorphisms Vm ∼= V of

G-representations differ by a multiplicative non-zero constant complex number. As such,

we obtain the following corollary.

Corollary 3.1.13. There is a natural isomorphism

Grm(P ) → {ψ⃗ ∈ C∞(P, Vm)
G : □mψ⃗ = 0}/C×

V 7→
dm∑
j=1

Φ(e⃗j)(−)e⃗j mod C×
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where in the above expression e⃗j is any choice of orthonormal basis for Vm and Φ is any

choice of isomorphism of G-representations Vm ∼= V .

Proof. This is simply a combination of 3.1.9 and 3.1.12, taking care to remark that

the two constructions from these two lemmas are inverse to one-another (taking v⃗ = e⃗1

in 3.1.9). □

Our final step is to compare elements of C∞(P, Vm)
G with sections of the associated vector

bundle.

Definition 3.1.14. We define a map Ψ : C∞(P, Vm)
G → Γ(M,P ×G Vm) as follows.

Given ψ⃗ ∈ C∞(P, Vm)
G and x ∈ M we choose an arbitrary p ∈ P in the fiber over x and

define

Ψ(ψ⃗)(x) := the equivalence class of (p, ψ⃗(p)) in the fiber (P ×G Vm)x.

We recall from [8] Chapter 3, for example, that Ψ is an isomorphism. Furthermore there

is an induced covariant derivative ∇m on P ×G Vm which corresponds under Ψ to the

horizontal exterior derivative on P with respect to ω, and there is a Hermitian fiber metric

⟨−,−⟩m on P ×G V corresponding to the constant Hermitian inner product ⟨−,−⟩m on

Vm.

Now, let’s let V ∈ Grm(P ) and choose an isomorphism Φ : Vm → V which is unitary

where V is given the Qm-inner product. Writing

ψ⃗(p) :=
dm∑
j=1

Φ(e⃗j)(p)e⃗j
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it follows that the expression

Qω(ψ⃗) :=
dm∑
j=1

Qω(Φ(e⃗j))

is independent of our choice of orthonormal basis e⃗j or unitary isomorphism Φ. We also

have the following explicit formula from [34] where we briefly break notational convention

and use Greek µ, ν, ... for indices of coordinates tangent to Σ0 ⊆ M and Roman a, b, ...

indices for coordinates tangent to the fibers of P0:

Q(Φ(e⃗j)) =

ˆ
P0

N−1
(
|∂tΦ(e⃗j)|2 + (N2hµν − βµβν)(∂µΦ(e⃗j))(∂νΦ(e⃗j))

+ Tr
(
ω(dΦ(e⃗j))ω(dΦ(e⃗j))

T
)
+ |Φ(e⃗j)|2V

)
dVP0

By equivariance it follows that if ξ1, ..., ξd is an orthonormal basis for g then

ω(dΦ(e⃗j)) =
∑
a

(Lξ̂aΦ(e⃗j))ξ̂a =
∑
a

Φ(ξa · e⃗j)ξ̂a

and so

Tr
(
ω(dΦ(e⃗j))ω(dΦ(e⃗j))

T
)
=

∑
a

|Φ(ξa · e⃗j)|2 = ⟨mΛ0, mΛ0 + ρ⟩|Φ(e⃗j)|2.

Thus we obtain

Q(Φ(e⃗j)) =

ˆ
P0

N−1
(
|∂tΦ(e⃗j)|2 + (N2hµν − βµβν)(∂µΦ(e⃗j))(∂νΦ(e⃗j))

+ |Φ(e⃗j)|2 (V + ⟨mΛ0, mΛ0 + ρ⟩)
)
dVP0
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Furthermore, from this explicit expression we see that the sum

dm∑
j=1

N−1
(
|∂tΦ(e⃗j)|2 + (N2hµν − βµβν)(∂µΦ(e⃗j))(∂νΦ(e⃗j))(3.2)

+ |Φ(e⃗j)|2(V + ⟨mΛ0, mΛ0 + ρ⟩)
)

is invariant under the G action.

Definition 3.1.15. Given a section s ∈ Γ(M,P ×G Vm) we define the bundle stress-

energy tensor Tm(s) to be the symmetric 2-tensor on M given by:

Tm(s)ij := ⟨∇m
i s,∇m

j s⟩ −
1

2

(
|∇ms|2 + |s|2 (V + ⟨mΛ0, mΛ0 + ρ⟩)

)
gij

where we recall that ∇m is the covariant derivative on P ×GVm induced by the connection

ω.

Since ⟨mΛ0, mΛ0 + ρ⟩ is a constant and the connection ∇m is compatible with the fiber

metric it follows exactly as in the scalar case that if we abuse notation and also use □m

to denote

□m = (∇m)∗∇m + V + ⟨mΛ0, mΛ0 + ρ⟩

acting on sections of P ×G Vm then

divM(Tm(s)) = −⟨□ms,∇ms⟩ − 1

2
|s|2dV

divM(Tm(s)(Z)) = (divM Tm(s))(Z) = 0 if □ms = 0
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where we note that despite the raised and lowered m’s appearing, we are not summing

over them: they merely denote the representation of G we are considering.

Applying 2 to each of these bundles P ×G Vm and each of these normally hyperbolic

operators □m we obtain our finite energy spaces ker□m together with their stress-energy

quadratic forms Qm and closed densely defined operators Dm,Z := −i∇m
Z (recalling again

that ∇m unfortunately denotes the connection induced on P ×G Vm by ω, and not the

m’th covariant derivative). Combining all of our results in this section and especially

using 3.2 we arrive at the following result.

Proposition 3.1.16. Let V ∈ Grm(P ) and Φ : Vm → V a unitary isomorphism so that

we can define

ψ⃗(p) :=
dm∑
j=1

Φ(e⃗j)(p)e⃗j.

Then Ψ(ψ⃗) ∈ ker□m and

Qm(Ψ(ψ⃗)) :=

ˆ
Σ0

Tm(Ψ(ψ⃗))(Z, n̂)dVΣ0 = Vol(G)Qω(ψ⃗)

where Vol(G) is taken with respect to the volume form induced by our Ad-invariant inner

product on g. Furthermore, since m ≥ m0 by assumption it follows that Qm is positive

definite on the finite energy space ker□m.

The following theorem then follows from a simple modification of the arguments from [34]

to the vector bundle case via the formalism in 2. The modifications to the relevant FIO

compositions from [34] are done in [21].
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Theorem 3.1.17. [21] The operator Dm,Z is self-adjoint on (ker□m, Qm) with σ(Dm,Z) ⊆

R discrete and accumulating at ±∞ with polynomial growth.

We can now conclude this section with a description of the spectral theory of DZ on a

fixed isotypic subspace Hm ⊆ ker□ω, back on the total space of our principal bundle.

Corollary 3.1.18. The spectrum of DZ on Hm is real, discrete and accumulates at ±∞

with polynomial growth. Furthermore, the multiplicity of λ ∈ σ(DZ) is equal to dm =

dim(Vm) times the multiplicity of λ ∈ σ(Dm,Z). Furthermore the distribution µ(E,m,−)

given by

µ(E,m,φ) :=
∑
ℓ∈Z

φ̂(λm,ℓ −mE)

is a tempered distribution on R. Here we recall that · · · ≤ λm,ℓ ≤ λm,ℓ+1 ≤ · · · are the

eigenvalues of DZ on Hm.

3.2. The Trace Formula on Kaluza-Klein Spacetimes

This section answers the following question:

What are the m→ ∞ asymptotics of the frequency spectrum of DZ −mE, E ∈ R fixed,

on Hm?

This is a relativistic analogue of the question studied in [17], and is a generalization to

non-trivial principal bundles with arbitrary compact structure groups of the results in [35].

As mentioned earlier in section 3.1, we make precise the notion of the distribution of the

frequency spectrum about the value mE ∈ R by the tempered distribution µ(E,m,−) on

R. Recall:

µ(E,m,φ) :=
∑
ℓ∈Z

φ̂(λm,ℓ −mE)
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Its m→ ∞ asymptotics will be studied by assembling these distributions for a fixed test

function φ ∈ S(R) into a periodic generating function

Υ(φ)(θ) :=
∞∑
m=1

µ(E,m,φ)eimθ ∈ D′(S1) = D′(R/2πZ)

While we have already shown µ(E,m,−) is tempered, Υ(φ) will only actually be shown

to be a distribution later in this section.

To state our main results we need to make a dynamical assumption akin to the “clean

intersection hypotheses” that appear in [35], [16] and [17]. This was already discussed

briefly in 1.3 but we review some of the basic definitions here.

• N is the symplectic manifold of affinely parametrized inextendible future-directed

null geodesics on P modulo the action of translation in the affine parameter,

• NO is the symplectic reduction of N along the coadjoint orbit O as in [17],

• H̃Z : NO → R and Φ̃Z
t are respectively the Hamiltonian and Hamiltonian flow

corresponding to the reduction of the flow on N induced by the flow of Z = ∂t

on P .

The clean intersection hypothesis then states that E > 0 is a regular value for H̃Z

and the fibered product YE of the flow map

R × H̃−1
Z (E) → H̃−1

Z (E)

with the diagonal map H̃−1
Z (E) → H̃−1

Z (E) × H̃−1
Z (E) is a clean fibered product (it is

a smooth manifold with tangent spaces given by the not-necessarily-transverse fibered
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products of the respective tangent spaces of the factors). We now state our main theorems.

These are completely analogous to the main theorems in [17] and are direct relativistic

generalizations of these.

Theorem 3.2.1. The wave front set of Υ(φ) ∈ D′(S1) is contained in:

Dφ,E :=
{
(ω, r) ∈ S1 × R>0 : ∃(T, γ)) ∈ YE with T ∈ supp φ̂

such that ω = HolO([0, T ] ∋ t 7→ Φ̃Z
t (γ))

}
where this holonomy is taken with respect to a natural U(1)-bundle with connection over

NO defined in 1.3.28.

Theorem 3.2.2. Let n+1 = dim(M). Under the clean intersection hypothesis, Dφ,E is a

union of the positive parts of finitely many fibers of T ∗S1, and Υ(φ) ∈ In+ℓ−1+ 1
4 (S1;Dφ,E)

where 2ℓ := dimO. Furthermore, we obtain an asymptotic expansion as m→ ∞:

µ(E,m,φ) ∼
∞∑
k=0

mn+ℓ−1−kak(φ,m)

with each ak(φ,m) a distribution in φ, bounded in m for k, φ fixed, and

a0(φ,m) = Cn,dφ̂(0)Vol
(
H̃−1
Z (E)

)
where by Vol we mean to take the invariant measure on the energy hypersurface.

The above theorem comes from the analysis of the big singularity in Υ(φ) at θ = 0. The

theorem below handles analyzes a special case of the singularities at θ ̸= 0.
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Theorem 3.2.3. Suppose that, in addition to the clean intersection hypothesis, we as-

sumed that 0 /∈ supp(φ̂) and there existed only finitely many non-degenerate periodic orbits

(T1, γ1), · · · , (Tq, γq) ∈ YE with each Tj ̸= 0. Then we actually obtain a better asymptotic

expansion as m→ ∞:

µ(E,m,φ) ∼
∞∑
k=0

m−kbk(φ,m)

and b0(φ,m) is of the form:

b0(φ,m) = Cn,d

q∑
j=0

HolO(Tj, γj)
m
T#
j

2π
φ̂(Tj)

eiπmj/4

| det(I − Pj)|1/2
.

Where T#
j is the minimum positive value of T such that Φ̃Z

T (γj) = γj, Pj is the linearized

Poincaré first return map of γj, and mj is the Conley-Zehnder index.

Before proving these theorems, we apply the results of 3.1 to obtain a corollary concerning

the frequency distribution of DZ for vector bundles. To simplify notation, we denote

Vm := P ×G Vm

and recall that □m is the induced normally hyperbolic operator on sections of this bundle

and Dm,Z is the induced time-translation operator on ker□m.

Corollary 3.2.4. For m sufficiently large, define the tempered distribution µ(E,Vm,−)

by

µ(E,Vm, φ) :=
∑

λ∈Spec(Dm,Z)

φ̂(λ−mE)



115

Then under the clean intersection hypothesis we have an asymptotic expansion

µ(E,Vm, φ) ∼
1

dm

∞∑
k=0

mn+ℓ−1−kck(φ,m).

In general, one can compute the values of ℓ and dm in terms of the dominant integral

element Λ0. Indeed, if R+ is the set of positive roots then

ℓ =
1

2
dimO = the number of positive roots not orthogonal to Λ0

and as a consequence of the Weyl character formula we have

dm =

∏
α∈R+⟨α, mΛ0 +

1
2
ρ⟩∏

α∈R+⟨α, 12ρ⟩
.

In particular we see that dm is a polynomial of degree ℓ and so our leading order asymp-

totics for µ(E,Vm, φ) as m → ∞ are mn−1. This is in agreement with [35] where ℓ = 0

and dm = 1 for all m. When G = SU(2) and O corresponds to the vector representation

then ℓ = 1 and dm = m+ 1.

We now begin the proofs of these theorems. As alluded to in the statements, the m →

∞ asymptotics of µ(E,m,φ) depend significantly on whether or not 0 ∈ supp φ̂. For

now we illustrate the method from Section 7 of [16] where φ is fixed and arbitrary.

This method takes advantage of the periodicity and “positive frequency” property of our

distributions to express them in terms of linear combinations of the basic homogeneous

periodic distributions
∞∑
m=1

mkz−meimθ
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with z ∈ S1 and k ∈ Z≥0 determining the location of the singularity and the homogeneity

respectively. A key advantage of these techniques from [16] is that it circumvents the

need for general Tauberian theorems.

From now on we replace O with m0O so that we may assume m0 = 1.

Definition 3.2.5. We define the generating function of the multiplicities µ(E,m,φ)

to be the periodic distribution in the real variable θ:

Υ(φ)(θ) :=
∞∑
m=1

µ(E,m,φ)eimθ

defined for any function f(θ) which is the Fourier transform of a compactly supported

function on R.

Distributions of the form
∑∞

m=1 ame
imθ with am real are called Hardy distributions.

These are precisely the distributions on the sphere S1 whose negative Fourier coefficients

all vanish and so they have nice descriptions in terms of boundary values of holomorphic

functions on the unit disk via the Paley-Weiner theorem. The asymptotics of the Fourier

coefficients of such distributions, especially when am is a homogeneous function of m, have

been studied in books such as [10] Sections 12 and 13, and applied to spectral asymptotics

in [16], [17], [35] for example.

Later in this section we will write Υ(φ) as a composition of Fourier integral operators and

through this we will show that it is actually in D′(R/2πZ). For now we illustrate how the
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asymptotics of the Fourier coefficients of a general Lagrangian distribution Υ on S1 can

be related to its principal symbol.

Definition 3.2.6. Let Υ ∈ D′(R/2πZ). An element s0 ∈ singsupp(Υ) is called classical

of degree k if and only if when interpreting Υ as a 2πZ-periodic distribution on R we

have:

(1) s0 is an isolated singularity, and

(2) for any ρ ∈ C∞
c (R) with ρ ≡ 1 on a neighborhood of s0 and singsupp(Υ) ∩

supp(ρ) = {s0} we have asymptotic expansions:

ρ̂Υ(ξ) ∼ e−is0ξ
∞∑
ℓ=0

c+ℓ ξ
k−ℓ as ξ → +∞ and

ρ̂Υ(ξ) ∼ e−is0ξ
∞∑
ℓ=0

c−ℓ ξ
k−ℓ as ξ → −∞.

Lemma 3.2.7. Let s0 ∈ R be a classical singularity of Υ of degree k, and let ρ ∈ C∞
c (R)

have ρ ≡ 1 on a neighborhood of s0 and singsupp(Υ(φ)) ∩ supp(ρ) = {s0}. Then

ρΥ(φ) ∈ Ik+1/4(R,Λ)

where Λ = {(s0, ξ) ∈ T ∗R \ 0 : ξ ̸= 0}. If c−ℓ = 0 for all ℓ (in which case the singularity

is called positive) then instead Λ = {(s0, ξ) ∈ T ∗R \ 0 : ξ > 0}.

Proof. We can write the distribution ρΥ as

⟨ρΥ, ψ⟩ =
ˆ

R
ei(s−s0)ξ(eis0ξρ̂Υ(ξ))ψ(s)dsdξ
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and so it suffices to check whether the function eis0ξρ̂Υ(ξ) lives in the correct symbol

class. Since ρΥ ∈ E ′(R) its Fourier transform is a smooth function and our asymptotics

precisely tell us that it lives in the symbol class

Sk(Rs × Rξ) (it is independent of s).

Since dim(Rs) = 1 = dim(Rξ) this is the correct order for a symbol to define an FIO of

order

k − (1− 2 · 1)/4 = k + 1/4.

As for the Lagrangian, one simply notices first that the ξ-critical points of the phase are

precisely the set of (s, ξ) with s = s0, meanwhile the support of eis0ξρ̂Υ(ξ) is everywhere in

the non-positive singularity case and is a positive ray in the case of a positive singularity.

□

Lemma 3.2.8. Suppose Υ had only finitely many singularities z1, ..., zq ∈ S1 and that for

s1, ..., sq ∈ [0, 2π] with e−is1 = z1, ..., e
−isq = zq the singularities s1, ..., sq were all classical

with respective degrees k1, ..., kq. For some ρj ∈ C∞
c (R) smooth cutoffs with ρj ≡ 1 on a

neighborhood of sj and singsupp(Υ)∩ supp(ρj) = {sj}, and for c±,jℓ the coefficients of our

asymptotic expansions for ρ̂jΥ:

ρ̂jΥ(ξ) ∼
∞∑
ℓ=0

c±,jℓ ξkj−ℓ as ξ → ±∞

we have:
1

2π

ˆ 2π

0

e−imsΥ(θ)ds ∼
∞∑
ℓ=0

q∑
j=1

c+,jℓ ω−m
j mkj−ℓ as m→ ∞.
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Proof. Choose our cutoffs ρj to be non-negative with disjoint supports and such

that there exists η ∈ C∞
c (R) with 0 ≤ η ≤ 1 such that

ρ1 + · · ·+ ρq + η ≡ 1 on [0, 2π] and singsupp(Υ) ∩ supp(η) = ∅.

Then, taking Fourier transforms we have

1

2π

ˆ 2π

0

e−imsΥ(s)ds =
1

2π

q∑
j=1

ˆ 2π

0

e−imsρj(s)Υ(s)ds+
1

2π

ˆ 2π

0

e−imsη(s)Υ(s)ds.

Since ηΥ ∈ C∞
c (R) we have that the last term is going to 0 rapidly as m → ∞. For the

remaining terms we have

1

2π

ˆ 2π

0

e−imsρj(s)Υ(s)ds = ρ̂jΥ(m) ∼ e−isjm
∞∑
ℓ=0

c+,jℓ mkj−ℓ as m→ ∞.

Summing these asymptotics together then yields our desired result. □

So we see that in order to obtain the leading order asymptotics of µ(E,m,φ) as m→ ∞

it suffices to demonstrate that the singularities of Υ(φ) are classical and to compute both

its order as an FIO, and the leading terms c+,j0 in the asymptotic expansions of its Fourier

transform. Let’s now check how to obtain c+,j0 from the principal symbol.

Lemma 3.2.9. Let s0 be a classical singularity of degree k of Υ, let ρ ∈ C∞
c (R) be a cutoff

as in the previous lemma and let a(s, ξ) be any principal symbol for ρΥ. i.e.

a(s, ξ)− eis0ξρ̂Υ(ξ) ∈ Sk−1(Rs × Rξ).
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Then

c±0 = lim
ξ→±∞

a(s, ξ)ξ−k.

Proof. Indeed, if a(s, ξ) is any principal symbol for ρΥ then, by definition

|a(s, ξ)− eis0ξρ̂Υ(ξ)| ≲ (1 + |ξ|)k−1

and so dividing by ξk and taking limits yields our desired result. □

So, our goal has now been reduced to writing Υ(φ) as a composition of well-understood

FIOs and computing the order and principal symbol of the composition in terms of its

constituents. Let’s begin by introducing the relevant operators from [17] and [34]. Recall

the distributions Eadv/ret and Ecaus from 2. Here they are corresponding to the normally

hyperbolic operator □ω. Definitions of the Hörmander spaces Is of Lagrangian distribu-

tions we use below can be found in [20].

Lemma 3.2.10. [34]

We have Ecaus ∈ I−3/2(P × P ;C ′
1) with the canonical relation C1 given by

C1 = {(ζ1; ζ2) ∈ T ∗
0P × T ∗

0P : ∃s ∈ R such that ζ2 = G−s(ζ1)}.

Parametrizing the left copy of T ∗
0P in C1 by T ∗

0P |P0 × R ∼= N × Rs′ via the geodesic flow

and then the ζ2 = G−s(ζ1) by the parameter s, the principal symbol of Ecaus is given by

the half-density

|dC1|1/2 := −1

2
|ΩN |1/2 ⊗ |ds′|1/2 ⊗ |ds|1/2

where ΩN is the Liouville volume form on N induced by the symplectic form.
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Before we get to composing FIO’s, let’s recall how this works [20]. Suppose we had smooth

manifolds X, Y, Z of respective dimensions nX , nY , nZ respectively and C1 ⊆ (T ∗Z \ 0)×

(T ∗Y \0), C2 ⊆ (T ∗Y \0)× (T ∗X \0)\0 canonical relations. We write C ′
j for the result of

multiplying the left fiber variables by −1 so that the result is a Lagrangian submanifold.

Given

A1 ∈ Id1(Z × Y ;C ′
1) and A2 ∈ Id2(Y ×X;C ′

2)

we interpret A1 and A2 as operators

A1 : C
∞
c (Y ) → D′(Z) and A2 : C

∞
c (X) → D′(Y ).

One can then often form the composition

A1 ◦ A2 ∈ Id1+d2+
e
2 (Z ×X; (C1 ◦ C2)

′)

where e and (C1 ◦ C2)
′ are defined as follows. Since C1 and C2 are Lagrangian they have

dimensions:

dim(C1) = nX + nY and dim(C2) = nY + nZ .

The product C1 × C2 lives in T ∗Z × (T ∗Y )×2 × T ∗X and has dimension

dim(C1 × C2) = nX + 2nY + nZ .

Meanwhile we also have a diagonal submanifold

D := (T ∗Z \ 0)× diag(T ∗Y \ 0)× (T ∗X \ 0)
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of dimension dim(D) = 2nZ + 2nY + 2nX . Since the total space T ∗Z × (T ∗Y )×2 × T ∗X

has dimension 2nZ + 4nY + 2nX it follows that if D and C1 ×C2 intersected transversely

then the intersection would have dimension

dim(D ∩ (C1 × C2)) = nZ + nX

and if πX , πZ are respectively the projection maps from T ∗Z × (T ∗Y )×2 × T ∗X to T ∗X

and T ∗Z then the restriction

πZ × πX |D∩(C1×C2) : D ∩ (C1 × C2) → C1 ◦ C2 := (πZ × πX)(D ∩ (C1 × C2))

is a local diffeomorphism and C1◦C2 is a Lagrangian submanifold of (T ∗Z \0)×(T ∗X \0).

In this case, as long as everything is properly supported, we can take e = 0 and we have

A1 ◦ A2 ∈ Id1+d2(Z ×X; (C1 ◦ C2)
′).

We call this a transverse composition of FIO’s. Furthermore, in this case if a1, a2 are

the principal symbols of A1, A2 then:

the principal symbol of A1 ◦ A2 is given by the restriction of a1 × a2 to (C1 ◦ C2)
′.

However, one can still form the composition A1 ◦A2 if the intersection of D and C1 ×C2

in T ∗Z × (T ∗Y )×2 × T ∗X is merely clean. In this case the intersection is still a smooth

manifold, its tangent spaces are given by the intersections of the tangent spaces of D and
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C1 × C2, C1 ◦ C2 is still defined in the same way, but now the projection map

πZ × πX |D∩(C1×C2) : D ∩ (C1 × C2) → C1 ◦ C2

is merely required to be a submersion. Since we’re assuming everything is properly sup-

ported it follows that the fibers are compact manifolds. We define:

e := the dimension of the fibers of πZ × πX |D∩(C1×C2).

This is called the excess. Then from Proposition 25.1.5’ in [20] we have

A1 ◦ A2 ∈ Id1+d2+
e
2 (Z ×X; (C1 ◦ C2)

′)

where if a1, a2 are the principal symbols of A1, A2 respectively then the principal symbol

of A1 ◦ A2 at a point z ∈ (C1 ◦ C2)
′ is given by

ˆ
Fz

a1 × a2 where Fz is the fiber over z.

We will call this a clean composition of FIOs. It should be noted that the above results

can be occasionally tweaked to apply when some of the hypotheses (such as Cj being

a canonical relation) aren’t exactly satisfied as long as one is careful to ensure that the

wavefront sets line up correctly in order for the desired products to be defined.

Finally we should say that in our below computations we omit the Maslov index factors

until the very end.
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We are now ready to apply the above FIO calculus in order to better understand our

generating function Υ(φ). Let’s recall our notation from earlier:

• d is the dimension of G,

• n+ 1 is the dimension of M with n the dimension of Σ,

• n+ 1 + d is the dimension of P ,

• T ∗
0P is a cone subbundle of T ∗P \ 0 and has dimension 2(n+ 1 + d)− 1.

• The restriction T ∗
0P |P0 is symplectomorphic to T ∗P0 \ 0 (but not in a R>0-

equivariant way) and both have dimension 2(n+ d).

• dimO =: 2ℓ so NO has dimension 2(n+ ℓ).

The below result is also from [34] and again we state it for the reader’s convenience.

Lemma 3.2.11. [34]

Let Et(x, y) := e−it(DZ)xEcaus(x, y). Then

Et(x, y) ∈ I−7/4(P × P × R;C ′
2)

where C2 is the canonical relation:

C2 := {(ζ1; ζ2; t, τ) ∈ (T ∗
0P )

×2 × (T ∗R \ 0)

: τ + ⟨Zω, ζ1⟩ = 0, ∃s such that ζ2 = (G−s ◦ ΦZ
t )(ζ1)}.

Parametrizing C2
∼= C × Rt as the flowout of C under the Z-flow the principal symbol of

Et(x, y) is given by:

∓ i

2
(2π)3/4|dC1 |1/2 ⊗ |dt|1/2 on C±
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where C± is the subset of C1 where both covectors are in T ∗
±P .

In the next lemma we begin combining results from [34] and [17].

Lemma 3.2.12. The right G-action gives us an action map C∞(P ) → C∞(P ×G) which

is an FIO

F ∈ I−d/4(P × P ×G; Γ′
0)

with Γ′
0 the moment Lagrangian, whose canonical relation is:

Γ0 := {(ζ; ζ · g; g, η) ∈ (T ∗P \ 0)×2 × (T ∗G \ 0) : µ(ζ) = η}.

The composition Et ◦ F , denoted by Et(x, yg), arises from a transverse intersection of

canonical relations and is therefore an FIO:

Et(x, yg) ∈ I−(d+7)/4(P × P ×G× R; Γ′)

with canonical relation

Γ := {(ζ1; ζ2; g, η; t, τ) ∈ (T ∗
0P )

×2 × (T ∗G \ 0)× (T ∗R \ 0)

: τ + ⟨Zω, ζ1⟩ = 0, µ(ζ2g
−1) = η, ∃s such that ζ2 = (G−s ◦ ΦZ

t )(ζ1)g}

Parametrizing Γ by C2 ×G× R ∼= C1 × Rt1 ×G× Rt2 the principal symbol of Et(x, yg) is

given by:

∓ i

2
(2π)(d+3)/4|dC1|1/2 ⊗ |dt1|1/2 ⊗ |dg|1/2 ⊗ |dt2|1/2 on C±

where |dg| is the volume measure on G induced by our Ad-invariant inner product on the

tangent spaces.
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Proof. The expression for the moment Lagrangian and the fact that Γ0 ∈ I−d/4(P ×

P ×G; Γ′
0) is proven in [17]. By construction we have

Γ = C2 ◦ Γ0

and the composition is clean so the orders of the FIOs simply add up. □

In [34], the distributional trace of e−itDZ was expressed in terms of Et and so Et(x, yg)

will play a similar role for our equivariant trace.

Lemma 3.2.13. Write n̂x, n̂y for the Lie derivatives along the unit normal n̂ in the

variables x and y respectively. Then

F := n̂xEt(x, yg)− n̂yEt(x, yg) ∈ I−(d+3)/4(P × P ×G× R; Γ)

with Γ given in 3.2.12. Under the same parametrization of Γ as in 3.2.12, the principal

symbol of F is given by

±1

2
(2π)(d+3)/4⟨n̂,−⟩|dC1|1/2 ⊗ |dt1|1/2 ⊗ |dg|1/2 ⊗ |dt2|1/2 on C±

where ⟨n̂,−⟩ is the function on Γ given by pairing the first cotangent vector with n̂.

Proof. Differentiation is a differential operator, hence pseudodifferential operator,

and so its Lagrangian is just the diagonal. Therefore differentiating an FIO does not

affect the Lagrangian and merely increases the order by 1. □
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For the next couple of lemmas we hold off on computing the principal symbols since it

will be easier to directly compute the principal symbol of the wave trace after all of these

compositions.

Lemma 3.2.14. Let diag : P → P × P denote the diagonal map so that pulling back

along diag is an FIO

diag∗ ∈ I(n+1+d)/4(P × P × P ;C ′
3)

with Lagrangian C ′
3 where

C3 = {(p, ζ2 − ζ1; p, ζ1; p, ζ2) ∈ (T ∗P \ 0)×3}.

Then the composition diag∗F arises from a transverse intersection and is therefore an

FIO

diag∗F ∈ I(n−2)/4(P ×G× R; Γ1)

where

Γ1 := {(ζ2 − ζ1; g, η; t, τ) ∈ T ∗P × (T ∗G \ 0)× (T ∗R \ 0)

: τ + ⟨Zω, ζ1⟩ = 0, µ(ζ2g
−1) = η, ∃s such that ζ2 = (G−s ◦ ΦZ

t )(ζ1)g

and ζ1, ζ2 ∈ T ∗
0P live over the same point in P}

Proof. The expression for Γ1 above is precisely the definition of C3 ◦Γ so let’s check

that this is indeed a transverse composition. Notice that in the definition of Γ1, one ζ1

and t are chosen, s and g are uniquely determined by the requirement that (G−s◦ΦZ
t )(ζ1)g

must live over the same point in P as ζ1. Furthermore, the constraint that there must
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exist s, g so that (G−s ◦ ΦZ
t )(ζ1)g lives over the same point in P adds n independent

constraints on ζ1 since they must also live over the same point in Σ. This is unless t = 0.

So, given 0 ̸= t, ζ1 satisfying our n independent constraints: s, g and therefore ζ2 and η

are completely determined. τ is directly determined by ζ1. Hence we see that there are

exactly

dim(T ∗
0P ) + 1− n = 2(n+ 1 + d)− 1 + 1− n = (n+ 1 + d) + d+ 1

independent directions in both the composition C3 ◦ Γ and in the fiber over the point

corresponding to 0 ̸= t, ζ1.

In the case t = 0 we necessarily have s = 0 and g = 1 ∈ G, however the t = 0 local

is a proper submanifold of Γ1 and the tangent space to Γ1 at t = 0 has d + 1 tangent

directions arising from how s, g vary as we move off the t = 0 local. Within the t = 0

local we then have ζ2 = ζ1 and τ, η are determined by ζ1 = ζ2. While, in this case, we do

have dim(T ∗
0P ) = 2(n+1+ d)− 1 choices for ζ1, it is the quantity ζ2 − ζ1 that appears in

Γ1 and so the fiber coordinates of the first component of Γ1 always vanish. Thus in both

Γ1 and in the fiber over the point corresponding to (0, ζ1) we have

dim(P ) + d+ 1 = (n+ 1 + d) + d+ 1

tangent directions. Hence indeed we have a transverse intersection and the order of

diag∗F is the sum of the orders of diag∗ and F . □
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Lemma 3.2.15. Let ι : P0 ↪→ P denote the inclusion. Pulling back along ι is an FIO

ι∗ ∈ I1/4(P0 × P ;C ′
4)

with Lagrangian C ′
4 defined by

C4 = {(x, ζ1; x, ζ2) ∈ T ∗P0 × T ∗P |P0 : ζ2|TP0 = ζ1}.

As in [34], the canonical relation of diag∗F is disjoint from the conormal bundle N∗P0

and C4◦Γ1 arises from a tranverse intersection so the composition ι∗ diag∗F can be formed

as if it were a transverse composition of FIOs and

ι∗ diag∗F ∈ I(n−1)/4(P0 ×G× R; Γ2)

where

Γ2 := {((ζ2 − ζ1)|TP0 ; g, η; t, τ) ∈ T ∗P0 × (T ∗G \ 0)× (T ∗R \ 0)

: ζ1, ζ2 ∈ T ∗
0P |P0 lie over the same point in P0, τ + ⟨Zω, ζ1⟩ = 0,

µ(ζ2g
−1) = η, ∃s such that ζ2 = (G−s ◦ ΦZ

t )(ζ1)g}.

Proof. The proof that the composition i∗ diag∗F can be formed is exactly the same

as in Lemma 8.3 and the discussion preceding it in [34], and our Γ2 is precisely defined to

be C4 ◦ Γ1. Transversality again follows from noticing that the intersection is clean and

then dimension-counting, however we should remark that in order to get exactly n+2d+1

degrees of freedom one uses the fact that the restriction of covectors in T ∗
0P |P0 to TP0
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yields the isomorphism T ∗
0P |P0

∼= T ∗P \0 and hence the only way the fiber variable of the

first component is zero is if ζ1 = ζ2. □

So, we’ve arrived at the following object:

ι∗ diag∗F = (n̂xEt(x, yg)− n̂yEt(x, yg)) |x=y∈P0 ∈ I(n−1)/4(P0 ×G× R; Γ2).

The importance of this object arises from the following slight generalization of Theorem

4.1 from [34].

Proposition 3.2.16. Let Π∗ : C∞(P0 × G × R) → C∞(G × R) be the operator given by

integration over P0. Then since the base has dimension d+1 and the fibers have dimension

n+ d we have

Π∗ ∈ I
d+1
2

−n+d
4 (G× R × P0 ×G× R;C ′

5)

where

C5 = {(g, η; t, τ ; x, 0; g, η; t, τ)

∈ (T ∗G \ 0)× (T ∗R \ 0)× T ∗P0 × (T ∗G \ 0)× (T ∗R \ 0) : x ∈ P0}.

Furthermore, since m0 = 1 and Qω is positive definite on H =
⊕L2

m≥1Hm, if we set

V := H⊥Qω then ker□ω = V ⊕H

then we have

K(g, t) := Π∗ι
∗ diag∗F =

ˆ
P0

(n̂xEt(x, yg)− n̂yEt(x, yg))
∣∣
x=y

dVP0(x)(3.3)
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= TrV(e
−itDZ ◦ F ) +

∞∑
m=1

∑
ℓ∈Z

µ(m, ℓ) Tr(κm(g))e
−itλm,ℓ .(3.4)

Proof. The basic facts concerning push-forward distributions such as Π∗ can be

found in section 7.1 of [35] and we omit the proofs here as they are well known.

Let’s now derive the above explicit expression 3.4 for K(g, t). Indeed, by the computation

in Theorem 4.1 of [34], K(g, t) is the equivariant trace of the operator e−itDZ ◦F on ker□ω.

Recalling that µ(m, ℓ) is simply the multiplicity of κm in the λm,ℓ-eigenspace and that F

acts by κm on this eigenspace by definition of Hm we obtain our above expression 3.4 for

K(g, t), as desired. □

We will now build a distribution on P0 × G × R × S1 which we will then compose with

ι∗ diag∗F to produce Υ(φ). A key motivating fact in the below definition is the orthog-

onality of the functions g 7→ Tr(κm(g)) for different m’s. This is a well-known fact from

abstract harmonic analysis (see Section 5.3 of [13], for example), however one should take

care not to confuse the two distinct notions of “character” of a representation.

Lemma 3.2.17. [16,17]

The operator LO : C∞(G) → D′(S1) with Schwartz kernel given by the distribution

L(eiθ, g) :=
∞∑
m=1

Tr(κm(g))e
imθ

is in

LO ∈ I(1−d)/4(S1 ×G; ΛO)
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with Lagrangian

ΛO = {(z, r; g, rξ) ∈ (T ∗S1 \ 0)× (T ∗G \ 0) | ξ ∈ O, g ∈ Gξ, z = χξ(g)}

where χξ : Gξ → U(1) is the character associated to ξ ∈ O.

Our final to-do before we have, at least morally, obtained a description of Υ(φ) as a

composition of FIOs is to localize about the ray λm,ℓ ∼ mE via φ. Towards this end, we

define an operator

Tφ,E : C∞
c (S1 × R) → D′(S1)

by declaring its Schwartz kernel to be given by the oscillatory integral

Tφ,E(θ
′; θ, t) := (2π)−2φ̂(t)

ˆ ∞

−∞
ds eis(θ

′−θ−tE).

Lemma 3.2.18. [17]

Tφ,E ∈ I−1/4(S1 × S1 × R; ΛE) where

ΛE := {(zeitE, r; z, r; t, rE) ∈ (T ∗S1 \ 0)× (T ∗S1 \ 0)× (T ∗R \ 0) | r ∈ R, z ∈ S1}.

Lemma 3.2.19. We can form the composition

Tφ,E ◦ (LO ⊗ idR) ∈ I−d/4(S1 ×G× R; Θ′
φ,E)

where

Θ′
φ,E = {(χξ(g)eitE, r; g, rξ; t, Er) ∈ T ∗S1 × T ∗G× T ∗R : ξ ∈ O, g ∈ Gξ}.
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Furthermore:

(Tφ,E ◦ LO ⊗ idR)K = Υ(φ).

Proof. The fact that this composition Tφ,E ◦ (LO ⊗ idR) can be formed, has the

above order, and the above canonical relation Θ′
φ,E is proven in [17]. So, we just need

to demonstrate that we do indeed obtain Υ(φ) when applying it to K. Recalling the

formula 3.4 for K(g, t) we note that by [34] the trace over V still decomposes as a sum

over (possibly generalized) eigenvalues of DZ counted with multiplicity, only now not all

are real and some may be zero modes. Furthermore, the G-dependence in the trace over

V is still in the form of the Tr(κ(g)) for κ the representation generated by that specific

(generalized) eigenvector. Indeed, while the Hilbert space inner products from the Cauchy

data isomorphism are not DZ-invariant they are still G-invariant and so V is completely

decomposable since it is a unitary G-representation. Since characters are orthogonal with

respect to the Haar measure on G, we obtain:

(Lm0O ⊗ idR)K =
∞∑
m=1

∑
ℓ∈Z

e−itλm,ℓeimθ

as a distribution on S1 × R. Finally, applying Tφ,E we immediately obtain:

(Tφ,E ◦ (Lm0O ⊗ idR))K =
∞∑
m=1

∑
ℓ∈Z

φ̂(λm,ℓ −mE)eimθ

as desired. □

Our next step is to understand the composition (Tφ,E ◦ (LO ⊗ idR))K as an actual La-

grangian distribution. As it turns out, it is more clear if one first computes (Tφ,E ◦ (LO ⊗

idR)) ◦ Π∗.
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Lemma 3.2.20. The composition

(Tφ,E ◦ (LO ⊗ idR)) ◦ Π∗ ∈ I
1
2
−n

4 (S1 × P0 ×G× R;C ′
6)

is a transverse composition of FIOs with Lagrangian determined by

C6 = {(χη(g)eitE, r; x, 0; g, rη; t, rE) ∈ (T ∗S1 \ 0)× T ∗P0 × (T ∗G \ 0)× (T ∗R \ 0)

: η ∈ O, g ∈ Gη}.

Proof. This is immediate since this composition does not affect the T ∗P0-variables

and in the (T ∗G \ 0)× (T ∗R \ 0)-variables the Lagrangian for Π∗ is just the diagonal. □

Theorem 3.2.21. The clean intersection hypothesis implies that the composition of Tφ,E◦

(LO ⊗ idR) ◦ Π∗ and ι∗ diag∗F is a clean composition of FIOs with excess

e = 2(n+ ℓ)− 2 and therefore order
(
1

2
− n

4

)
+
n− 1

4
+
e

2
= n+ ℓ− 1 +

1

4

Thus

Υ(φ) ∈ In+ℓ−1+ 1
4 (S1;C′

E)

where

C′
E = {(χη(g)eitE, r) ∈ T ∗S1 \ 0 : η ∈ O, g ∈ Gη, ∃ζ ∈ T ∗

0P |P0 such that

∃s with ζ = (G−s ◦ ΦZ
t )(ζ)g, ⟨Zω, ζ⟩ = −rE, µ(ζg−1) = rη}

Proof. The main goal here is to compute the fiber of C ′
6 ×diag Γ

′
2 over a point

(ω, r) ∈ C′
E. By homogeneity of the fiber we can assume r = 1 and so the fiber is given
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by:

F(ω,1) := {(x, 0; g, η; t, E) ∈ T ∗P0 × (T ∗G \ 0)× (T ∗R \ 0) : x ∈ P0, ∃ζ ∈ (T ∗
0P )x

such that ∃s with ζ = (G−s ◦ ΦZ
t )(ζ)g, ⟨Zω, ζ⟩ = −E, µ(ζg−1) = η,

χη(g)e
itE = ω, and η ∈ O, g ∈ Gη}

Since we chose E > 0 our constraint ⟨Zω, ζ⟩ = −E implies ζ ∈ T ∗
+P |P0 ⊆ T ∗

0P |P0 and

therefore ζ corresponds to a unique null geodesic γ ∈ N with γ(0) = x, HZ(γ) = E,

µ(γg−1) = η and γ = ΦZ
t (γ)g. Therefore (γg−1, η) ∈ µ−1

O (0) and the image of this in the

quotient is a periodic orbit in NO with period t and energy H̃Z = E.

Now, let’s write π : R × µ−1
O (0) → R ×NO for the projection map and recall that YE ⊆

R × NO is the set of periodic orbits for the reduced flow together with their periods. If

we denote

X := {(t, γ, η, g) : (t, γ, η) ∈ π−1(YE) and g ∈ Gη}

then dimX = dim π−1(YE) + dimG − dimO = 2d + 2n − 1 since YE has dimension

2(n + ℓ) − 1 where 2ℓ = dimO. Note: the clean intersection hypothesis implies that

YE is a disjoint union of smooth manifolds with the clopen subset {0} × H̃−1
Z (E) having

dimension = 2(n+ℓ)−1 and the other components having dimension at most 2(n+ℓ)−1.

Furthermore the map

X → F(ω,1)

(t, γ, η, g) 7→ (γ(0)g, g, η, t)
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is a submersion. This, together with the fact that the holonomy map Hol : YE → U(1)

is locally constant, implies that we have a clean composition of FIOs. Since the only

part of the derivative γ′(0) of γ captured in the image of our submersion X → F(ω,1)

is η = µ(γ) it follows that the kernel of the above submersion at each point contains a

2d− 2ℓ-dimension subspace of tangent vectors orthogonal to the tangent space TηO. The

only other degeneracy comes the 1-dimensional space of vectors tangent to the curve γ

itself and so we arrive at:

dimF(ω,1) = 2(n+ d)− 1− 2(d− ℓ)− 1 = 2(n+ ℓ)− 2

as desired. □

All that remains now is the calculation of the principal symbol of Υ(φ). It’s worth

noticing, however, that from the expression for Tφ,E we see that the actually wave front

set WF′(Υ(φ)) will often be a proper subset of C′
E depending on supp φ̂. This is due to

the varying dimensions of the components of YE and the support of the principal symbol

of Υ(φ) being constrained by supp φ̂. We compute this principal symbol now.

Proof. The result concerning the wave front set will follow immediately from the

calculation of the principal symbol since the constraint T ∈ supp φ̂ comes from the sup-

port of the principal symbol.

We can compute a principal symbol for Tφ,E ◦ (LO ⊗ idR) by composing their explicitly

given Schwartz kernels. The Schwartz kernel for the composition is then a distribution
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on S1 ×G× R with Schwartz kernel

(θ′, g, t) 7→
∞∑
m=1

(2π)−2φ̂(t)eim(θ′−tE) Tr(κm(g)).

Recalling that the principal symbol of F is given by

±1

2
(2π)(d+3)/4⟨n̂,−⟩|dC1|1/2 ⊗ |dt1|1/2 ⊗ |dg|1/2 ⊗ |dt2|1/2

we have that the principal symbol of Υ(φ) at a point (ω, 1) ∈ C′
E is given by the integral

over the fiber

F(ω,1)
∼= quotient of holonomy ω clopen subset of YE by the action of the flow Φ̃Z

of the product of the symbol of F and the symbol of

Tφ,E ◦ (LO ⊗ idR) ◦ Π∗ ◦ ι∗ ◦ diag∗

restricted to the fiber. The symbol over a more general point (ω, r) ∈ C′
E is then obtained

by homogeneity in r. Since 0 ∈ supp φ̂ and principal symbols are defined modulo symbols

of lower order it suffices to compute this integral over the quotient of the clopen subset

{0} × H̃−1
Z (E) ⊆ YE.

In this fibered product of symbols, the pairing of the g in the symbol for Tφ,E ◦ (LO⊗ idR)

and the g in the symbol for F amounts to replacing variables in the fibers of T ∗
0P |P0

∼= N

with fiber variables in NO (here the “fibers” are diffeomorphic to O). Since our fibered

product is just over the quotient of {0}× H̃Z by the flow, the pairing of the t-variables in
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the symbol for Tφ,E ◦ (LO⊗R) and the symbol for F simply amounts to setting t = 0 in

both symbols and multiplying by φ̂(0). The effect of restricting to P0 along the diagonal

P0 ↪→ P × P on the fibered product of symbols (aside from replacing the volume half-

density on Γ with the one on H̃−1
Z (E)) is to divide by the function ⟨n̂,−⟩ and multiply by

a dimensional constant, hence removing the function ⟨n̂,−⟩ from our symbol expression.

Therefore, denoting by Cn,d a dimensional constant and writing ω = eiθ
′ , we obtain the

symbol over the point (ω, 1) as:

Cn,dω
m

ˆ
H̃−1

Z (E)

φ̂(0)|dω ∧ dr|1/2 1

|∇H̃Z |2
∇H̃Z⌞dVNO

= Cn,dω
mφ̂(0)Vol

(
H̃−1
Z (E)

)
|dω ∧ dr|1/2.

We can now recover the principal symbol over (ω, r) by scaling. Since the fibers are

diffeomorphic to H̃−1
Z (E)/R where the R-action is by the Hamiltonian flow of H̃Z they

have dimension 2(n+ ℓ)− 2 and so the principal symbol over (ω, r) is given by:

Cn,dω
mφ̂(0)Vol

(
H̃−1
Z (E)

)
|r|(n+ℓ)−1|dω ∧ dr|1/2

where we note that n+ ℓ− 1 is half the dimension of our fiber. □

Theorem 3.2.22. Under the assumptions of 1.3.24 where the time ̸= 0 part of the set

YE consists of finitely many isolated periodic orbits (T1, γ1), ...., (Tq, γq), and assuming

0 /∈ supp φ̂ we actually have Υ(φ) ∈ I1/4 with principal symbol at each (HolO(Tj, γj), r),

j = 1, ..., q, given by:

Cn,dHolO(Tj, γj)
m
T#
j

2π
φ̂(Tj)| det(I − Pj)|−1/2eiπmj/4|dω ∧ dr|1/2
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where T#
j is the primitive period of γj, Pj is the linearized Poincaré first return map of

γj with respect to any local symplectic transversal and we have included the Maslov factor

eiπmj/4 where mj is the Conley-Zehnder index of γj as in [34].

Proof. The proof is exactly the same as the previous one only instead of integrating

over {0} × H̃−1
Z (E) with respect to its invariant measure we integrate over the respective

periodic orbit γj with respect to the density from 1.3.24. □

These last three theorems respectively conclude the proofs of Theorems 3.2.1,3.2.2 and

3.2.3.

3.3. Index Theorems For Stationary Regions

Here we consider a slightly different class of spacetimes than those we have been studying

so far. (M, g) is still assumed to be a globally hyperbolic spatially compact spacetime

although now we assume the existence of two regions

(tj1, tj2)× Σj ⊆M, j = 1, 2

with each {t} × Σj, t ∈ (tj1, tj2), j = 1, 2 a Cauchy hypersurface and the metric g in the

standard form 1.1.11 in each of these two regions:

g|(tj1,tj2)×Σj
= −(N2

j − |ηj|2h)dt2 + ηj ⊗ dt+ dt⊗ ηj + hj

It should be noted that despite writing t for the time coordinate in each of these stationary

regions, we do not assume that the two foliations match-up in the region in-between. We



140

also assume:

(t21, t22)× Σ2 ⊆ J+((t11, t12)× Σ1)

Given this setup, we take E →M a complex vector bundle with non-degenerate sesquilin-

ear fiber metric ⟨−,−⟩, compatible connection A, and ⟨−,−⟩-formally-self-adjoint Dirac-

type operator /D such that A is the connection corresponding to the normally hyperbolic

operator /D
2. On each (tj1, tj2)× Σj we have a locally defined operator on sections of E:

Dj := −i∇A
∂t over (tj1, tj2)× Σj

Lemma 3.3.1. Let n̂j denote the unit forward normal to Σj and β⃗j the vector field on Σ

hj-dual to ηj. Write /D = −i /∇A
+ΘA as usual. Over (tj1, tj2)× Σj we then have

/D = −N−1
j
/̂nj

[
Dj − iNjh

kℓ /̂nj /∂k∇A
ℓ + i∇A

β⃗j
+Nj /̂njΘA

]
Proof. This calculation follows from /∇A

= gkℓ/∂k∇A
ℓ together with our known for-

mulas for g−1 on the stationary regions from 1.1:

g−1 = −N−2
j ∂t ⊗ ∂t +N−2

j β⃗j ⊗ ∂t +N−2
j ∂t ⊗ β⃗j + h̃−1

j

where

h̃−1
j = h−1

j −N−2
j β⃗j ⊗ β⃗j

and also the fact that n̂j = N−1
j (∂t − β⃗j). □

Motivated by the above we introduce the Clifford action on Σj.
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Definition 3.3.2. For j = 1, 2 and v ∈ TΣj we denote by γj(v) the endomorphism of E

given by

γj(v) := −i/̂nj/v

Since n̂j is normal to Σj it follows that the endomorphisms γj(v), γj(w) for v, w ∈ TΣ

satisfy the Clifford relations:

γj(v)γj(w) + γj(w)γj(v) = −2h(v, w) idE

It’s worth noting that the Clifford relations satisfied by v⃗, w⃗ for v, w ∈ TM do not have

a negative sign on the right-hand-side. We also set:

/∇A
Σj

:= hkℓγj(∂k)∇A
ℓ

so that /∇A
Σj

is a Riemannian Dirac-type operator on E|Σj
and

/D = −N−1
j
/̂nj

[
Dj +Nj /∇

A
Σj

+ i∇A
β⃗j
+Nj /̂njΘA

]
By making our usual assumptions necessary to perform spectral theory over each region

(tj1, tj2)× Σj we can apply the results of 2.1 to obtain the following.

Lemma 3.3.3. Assume that over each (tj1, tj2)×Σj we have [ /D,Dj] = 0 and ⟨/̂nj(−),−⟩

is a positive-definite Hermitian fiber metric. Then via the Cauchy data isomorphisms,

ker /D = FE0
D(ker /D) is isomorphic to the same finite-energy kernel of /D over each of the

induced standard stationary spacetimes R × Σj obtained by extending g|(tj1,tj2)×Σj
, A and
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⟨−,−⟩ to be constant in t. Through these isomorphisms, Dj induces a ⟨/̂nj(−),−⟩-self-

adjoint operator on ker /D for j = 1, 2 with discrete spectrum consisting of eigenvalues

accumulating at ±∞ only.

As such we make the assumption that [ /D,Dj] = 0 for j = 1, 2 going forward. Furthermore,

we assume that E, ⟨−,−⟩ and A are in temporal gauge over both regions (tj1, tj2) × Σj.

The energy estimates of 2.1 then imply the following.

Lemma 3.3.4. For each ψ ∈ ker /D, the section over (tj1, tj2)×Σj obtained by restricting

ψ and then applying Dj extends uniquely to a new element of ker /D and its extension is

equal to the element Djψ obtained via the Cauchy-data isomorphism as in the previous

lemma.

Finally we have the following very explicit description of the operator Dj.

Lemma 3.3.5. Via the standard form 3.3 for /D it follows that under the Cauchy data

isomorphism ker /D ∼= L2(Σj, E) the operator Dj is given by the ⟨/̂nj(−),−⟩-self-adjoint

elliptic differential operator

Ĥj := −Nj /∇
A
Σj

− i∇A
β⃗j
−Nj /̂njΘA

While the above operator is indeed elliptic, the presence of the additional first order term

−i∇A
β⃗j

and the Nj-factor prevent it from simply being a Riemannian signature Dirac-type

operator. From this we obtain particularly nice expressions for the advanced and retarded

fundamental solutions in these regions.
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Theorem 3.3.6. Let ψ ∈ C∞
c ((tj1, tj2) × Σj, E) and let Gj

adv/ret denote the advanced

and retarded fundamental solutions for /D on the standard stationary spacetime Rt × Σj

obtained by extending g, A and ⟨−,−⟩ over (tj1, tj2)×Σj to be constant in t. Interpreting

ψ as a function R → L2(Σj, E) we obtain

(Gret,jψ)(t) = i

ˆ
R

1[0,∞)(t− s)ei(t−s)Ĥj(Nj /̂njψ(s))ds

(Gadv,jψ)(t) = −i
ˆ

R
1(−∞,0](t− s)ei(t−s)Ĥj(Nj /̂njψ(s))ds

where exp(i(t− s)Ĥj) is defined via the functional calculus.

Proof. From our above calculation we have /D = −N−1
j /̂nj

(
Dj − Ĥj

)
in these re-

gions and since we are assuming that E, ⟨−,−⟩, A have been placed in temporal gauge we

have Dj = −i∂t. But then ∂t1[0,∞)(t) = δ0(t) and similarly for 1(−∞,0](t). Thus our above

expressions are indeed fundamental solutions for /D. Since they have the correct causal

supports it follows from uniqueness of the advanced and retarded fundamental solutions

that the above identities hold. □

The fundamental solution which arises in the index theorem is not the advanced or re-

tarded fundamental solution, but a Feynman propagator. We now briefly explain what

this is.

Recall that T ∗
0M denotes the sub-cone-bundle of all non-zero null covectors, that

Gs : T
∗
0M → T ∗

0M
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denotes the geodesic flow, and

C := {(ξ2; ξ1) ∈ T ∗
0M × T ∗

0M : ∃s ∈ R such that ξ2 = Gs(ξ1)}

Just as in the previous section 3.2 in the principal bundle case, it is well-known that we

have a splitting into clopen subsets

C \ diag(T ∗
0M) = C+ ⊔ C−

where

C+ = {(x2, ξ2;x1, ξ1) ∈ C : x2 ∈ J±(x1) if ξ2 ∈ T ∗
±M}

C− = {(x2, ξ2;x1, ξ1) ∈ C : x2 ∈ J±(x1) if ξ2 ∈ T ∗
∓M}

Let’s think of these intuitively. C+ is saying that x2 is in the causal future of x1 whenever

the momentum ξ2 of x2 is future-directed. C− is saying the opposite.

Since we’re assuming that dim(M) ≥ 3 and that M is connected, the bundle T ∗
0M has

exactly two connected components and they are T ∗
±M . As such, there are four ways to

split C \ diag(T ∗
0M) into a union of two clopen subsets C1 ⊔ C2 such that C1, C2 are

inverse relations of one-another. We list the “positive” part of these relations here:

C+
ret := {(x2, ξ2;x1, ξ1) ∈ C : x2 ∈ J+(x1)}

C+
adv := {(x2, ξ2;x1, ξ1) ∈ C : x2 ∈ J−(x1)}

C+
Feyn := {(x2, ξ2;x1, ξ1) ∈ C : ∃s ∈ R>0 such that (x2, ξ2) = Gs(x1, ξ1)}
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A fundamental solution G for /D for which

WF′(G) ⊆ diag(T ∗
0M) ∪ C+

Feyn

is called a Feynman propagator for /D [30]. We will need to introduce some spectral

projectors in order to construct a Feynman propagator for /D.

Definition 3.3.7. Via the functional calculus on L2(Σj, E) we define spectral projectors

p0(Ĥj), p>(Ĥj), p<(Ĥj), p≥(Ĥj), p≤(Ĥj)

onto the kernel, positive, negative, non-negative and non-positive parts of the spectrum

of Ĥj respectively. When we want to interpret these as acting on ker /D via the Cauchy

data isomorphism we will replace Ĥj with Dj in our notation.

Theorem 3.3.8. On the standard stationary spacetime Rt×Σj with induced g, A, ⟨−,−⟩, /D

in temporal gauge we define

(GFeyn,jψ)(t) := i

ˆ
R

[
1[0,∞)(t− s)p≥(Ĥj)− 1(−∞,0](t− s)p<(Ĥj)

]
ei(t−s)Ĥj(Nj /̂njψ(s))ds

Then GFeyn,j is a Feynman propagator for /D on Rt × Σj.

Proof. The same computation as for Gadv/ret,j shows that GFeyn,j is a fundamental

solution for /D. Write Mj := R × Σj with our extended stationary metric, which we

abuse notation to denote by g. Since the principal symbol of /D
2 is the metric g it

follows from propagation of singularities that WF′(GFeyn,j) is contained in T ∗
0Mj×T ∗

0Mj,

contains diag(T ∗
0Mj), and the complement WF′(GFeyn,j) \ diag(T ∗

0Mj) is invariant under
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the restriction of the geodesic flow to the complement of the diagonal in T ∗
0Mj × T ∗

0Mj.

Consider then an arbitrary point

(x2, ξ2;x1, ξ1) ∈ WF′(GFeyn,j) such that x1 ∈ J+(x2)

Then the t-coordinate of x1 is greater than that of x2 hence the kernel for GFeyn,j near

the point (x2, x1) is given by the kernel of ip≥(Ĥj)e
itĤj ◦Nj /̂nj and since we are projecting

onto the non-negative part of the spectrum of Ĥj we see that this operator extends to

be holomorphic in ℑ(t) < 0 and thus by the same argument as in [4] we must have both

ξ2, ξ1 past-directed. If we instead assumed that x2 ∈ J+(x1) the same argument, but

now applied to the negative spectral subspace, allows us to conclude that ξ2, ξ1 are both

future-directed.

Suppose then for contradiction that there existed some (x2, ξ2;x1, ξ1) in the primed wave

front set whose R × R-orbit under the geodesic flow separately in each variable does not

intersect diag(T ∗
0Mj). Then by propagation of singularities this entire R × R-orbit must

be in the wave front set since we never hit the diagonal hence by flowing x1 along the

geodesic flow sufficiently far both forwards and backwards we can reach both the causal

future and causal past of x2. Thus by our previous paragraph both covectors ξ1, ξ2 must

be both future and past-directed, a contradiction. Thus there must always exist an s ∈ R

such that (x2, ξ2) = Gs(x1, ξ1) and by the previous paragraph we must therefore have

s > 0, as desired. □

The exact same proof as in [4] for normally hyperbolic operators applies to Dirac-type

operators and allows us to conclude the following.
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Proposition 3.3.9. [4] The restrictions of the integrals kernels for the above Gadv/ret,j

and GFeyn,j to (tj1, tj2) × Σj respectively extend uniquely to the advanced and retarded

fundamental solutions Gadv/ret and to Feynman propagators for GFeyn,j for /D on all of

M .

At this point the rest of the proofs from [4] can be used almost verbatim. The only

subtlety is that one must take care to avoid using Feynman propagators for /D
2 as is

frequently done in [4] since in the locally stationary, as opposed to locally ultrastatic,

case our operators Ĥj fail to anticommute with N−1
j
/̂nj and so we only obtain formulae

for the /D-propagators and not the /D
2-propagators.

Theorem 3.3.10. Let (M, g) be a globally hyperbolic spatially compact spacetime together

with two stationary regions

(tj1, tj2)× Σj ⊆M, j = 1, 2

and a complex vector bundle E →M with non-degenerate sesquilinear form ⟨−,−⟩, com-

patible connection A and ⟨−,−⟩-self-adjoint Dirac-type operator /D such that A is the con-

nection corresponding to /D
2. Furthermore, assume that ⟨−,−⟩ and E are t-independent

and A is in temporal gauge over each (tj1, tj2)× Σj. Let Dj := −i∇A
∂t

over (tj1, tj2)× Σj

and assume that [ /D,Dj] = 0. Finally we assume that ⟨/̂nj(−),−⟩ is positive definite. Then

p≥(D2)− p≥(D1) is trace-class on ker /D ∼= L2(Σ2, E)
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and for any Cauchy hypersurface Σ ⊆M we have

Tr(p≥(D2)− p≥(D1)) = i

ˆ
Σ

tr
(
/̂nΣ(GFeyn,2 −GFeyn,1)

)
dVΣ

Proof. From our spectral descriptions of the kernels of GFeyn,j and Gadv/ret we ob-

tain:

−i
[
GFeyn,j −

1

2
Gret −

1

2
Gadv

]
=

[
1[0,∞)(t)p≥(Dj)− 1(−∞,0](t)p<(Dj)

− 1

2
1[0,∞)(t) +

1

2
1(−∞,0](t)

]
eitĤjNj /̂nj

=
[
1[0,∞)(t)p≥(Dj)− 1(−∞,0](t)p<(Dj)

− 1

2
1[0,∞)(t)(p≥(Dj) + p<(Dj))

+
1

2
1(−∞,0](t)(p≥(Dj) + p<(Dj))

]
eitĤjNj /̂nj

= (p≥(Dj)− p<(Dj)) e
itĤjNj /̂nj

and since restricting this kernel to Σj × Σj amounts to setting t = 0 it follows that

−i
(
GFeyn,j −

1

2
Gret −

1

2
Gadv

) ∣∣∣
Σj×Σj

=

(
p≥(Dj)−

1

2
id

)
Nj /̂nj

Recalling our Cauchy data isomorphisms from the end of 2.1 we now denote

U21 := CDΣ2 ◦CD−1
Σ1

for our Cauchy evolution operator. Given ψ, ψ̃ ∈ C∞(Σ1, E) we can extend ψ, ψ̃ to

solutions /Dψ = 0 = /Dψ̃ of the Cauchy problem and apply divergence theorem to the
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integral of

0 = ⟨ /Dψ, ψ̃⟩ − ⟨ψ, /Dψ̃⟩ over J+(Σ1) ∩ J−(Σ2)

to obtain ˆ
Σ2

⟨/̂n2U21ψ,U21ψ̃⟩dVΣ =

ˆ
Σ1

⟨/̂n1ψ, ψ̃⟩dVΣ1

Since this holds for all such ψ, ψ̃ and since dVg = NjdtdVΣj
we see that at the level of

kernels on M , U21 conjugates N1 /̂n1 to N2 /̂n2 and so

−i
(
GFeyn,1 −

1

2
Gret −

1

2
Gadv

) ∣∣∣
Σ2×Σ2

is given by the U21-conjugate of p≥(D1) − 1
2
id composed with N2 /̂n2. Thus we have the

following identity of integral kernels:

p≥(D2)− p≥(D1) = −
((

p≥(D2)−
1

2
id

)
N2 /̂n2 − U21

(
p≥(D1)−

1

2
id

)
N1 /̂n1U

∗
21

)
N−1

2 /̂n2

Integrating the fiberwise trace over diag(Σ2) ⊆ Σ2 × Σ2 and using Mercer’s theorem we

see that

Tr(p≥(D2)− p≥(D1)) =

ˆ
Σ2

i tr
(
(GFeyn,2 −GFeyn,1)N

−1
2
/̂n2

)
N2dVΣ2

and we obtain our desired result over Σ2 via cyclicity of the trace. To see that we can

integrate over any Cauchy hypersurface, note that GFeyn,2 − GFeyn,1 is C1 (and actually

smooth over the diagonal) as it is a difference of two Feynman propagators. As it is also

a bisolution to /Dψ = 0 it follows from 2.2 that the 1-form

J(v) := i tr (/v(GFeyn,2 −GFeyn,1)|diag)



150

is coclosed and so integrating over any Cauchy hypersurface Σ yields the same result by

divergence theorem. □

In the proof of the above result, we used the fact from [30] in the normally hyperbolic

case (from [19] in the Dirac case) that Feynman propagators have unique local singularity

structures on the diagonal. More precisely we fix once and for all decompositions

GFeyn,j = Gloc
Feyn,j +Greg

Feyn,j

with Greg
Feyn,j ∈ C1(M ×M,E⊠E∗) and remark that from [30], [19] the restriction of this

decomposition to the diagonal is unique. Denoting

Jj(v) := i tr
(
/vG

reg
Feyn,j|diag

)
we see that J(v) = J2(v)− J1(v) and all three J, J1, J2 are C1 1-forms on M .

We now conclude this section with an application of the above results to the case where

n+ 1 = dim(M) is even and so we have a chirality operator ωC acting on E, giving us a

splitting

E = E+ ⊕ E− into ± 1-eigensubbundles

In order to do this, we must make the unfortunate assumption that A is compatible with

Clifford multiplication and hence, via the introduction to 2, we have

d(N2 − |η|2h) = 0 = dη in particular.
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Then /D anticommutes with ωC and both Dj = −i∇A
0 commute with ωC. We therefore

denote

/D± : C∞(M,E±) → C∞(M,E∓)

so that

/D =

 0 /D+

/D− 0


Similarly by composing with the projections onto E± we obtain the ±-parts of our Feyn-

man propagators

G±
Feyn,j : C

∞
c (M,E±) → C∞(M,E∓)

Similarly we write J±
j for the above 1-forms Jj with GFeyn,j replaced by G±

Feyn,j. But

now that dθ = 0 with θ = dt − (N2 − |η|2h)−1η from section 1.2 it follows that ker θ,

the orthogonal complement of ∂t, is an involutive distribution in TM . Thus the local

arguments of [4] apply when we replace Σj with the integral submanifolds of ker θ. Hence

d∗J−
1 =

tr(V −
(n+1)/2)− tr(V +

(n+1)/2)

(4π)(n+1)/2
(
n+1
2

)
!

where V ±
k are the Hadamard coefficients (see [2]) for the normally hyperbolic operator

/D∓ /D± on E± and, in the case E± = S±⊗F is the twist of a spinor bundle with the Dirac

operator induced by a connection B on F this is given by

(d∗J−
1 )dVg = the degree n+ 1 part of − Â(∇g) ∧ ch(∇B)

with the usual c1-correction in case S± is a Spinc-bundle.
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