
NORTHWESTERN UNIVERSITY

Designing Flexible Coordination Systems to Advance Individual and Collective

Goals in Physical Crowdsourcing

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Technology and Social Behavior

By

Yongsung Kim

EVANSTON, ILLINOIS

December 2020



2

© Copyright by Yongsung Kim 2020

All Rights Reserved



3

ABSTRACT

Designing Flexible Coordination Systems to Advance Individual and Collective Goals in

Physical Crowdsourcing

Yongsung Kim

Volunteer-based physical crowdsourcing systems connect individuals to make unique contri-

butions to solve local and communal problems and enable new services. A key challenge in

enabling such systems is attracting enough willing volunteers who can make useful contribu-

tions to achieve desired system goals. While most volunteer-based systems provide volunteers

flexibility to attract more volunteers to make convenient contributions, it can be challenging to

reach desired system goals with uncoordinated contributions. In contrast, other systems may

direct volunteers to specific tasks to meet the desired system goals, but may fail to attract enough

volunteers because they do not provide much-needed flexibility.

To overcome such challenges, this thesis introduces the idea of flexible coordination that

combines the benefits of both approaches in providing flexibility and coordinating useful contri-

butions. A flexible coordination system surfaces opportunities for volunteers to contribute that

are within volunteers’ routines and that are useful for achieving system goals. Unlike existing

approaches that direct volunteers to go out of their routines or change their routines to meet the
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desired system goals, a flexible coordination system allows volunteers to carry out their routines

to maintain flexibility. In order to still collect useful contributions while maintaining flexibility,

a flexible coordination system proactively suggests opportunities that are within volunteers’

routines but that are also useful in advancing the desired system goals. Using the idea of flexible

coordination, this thesis introduces on-the-go crowdsourcing systems that allow volunteers to

just go about their days, focusing on their routines, and make convenient contributions that

seamlessly fit into their routines but that are still useful for achieving desired system goals.

To enable the idea of flexible coordination and the design of on-the-go crowdsourcing

systems, this thesis introduces three technical frameworks: (1) Opportunistic Hit-or-Wait, a

decision-theoretic framework that surfaces opportunities for volunteers to make valuable, con-

venient, and coordinated contributions on-the-fly to improve the quality of service; (2) 4X, a

technical framework for multi-stage data collection processes that determine effective data col-

lection strategies by reasoning about volunteers’ dynamic changing state of interests and current

knowledge about the world; and (3) Opportunistic Supply Management, a decision-theoretic

framework that identifies and surfaces opportunities across the entire community in a way that

can optimize the desired balance between the experience of volunteers and the goals of the

system. Taken together, these frameworks demonstrate we can design volunteer-based systems

that provide flexibility to volunteers and coordinate useful contributions to achieve globally

effective outcomes by following volunteers’ routines and surfacing opportunities at opportune

moments when needs of volunteers align with that of a system.
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CHAPTER 1

Introduction

The growth of mobile devices in recent years has helped to bring about both commercial and

volunteer-based physical crowdsourcing systems [9, 126, 124] that motivate large numbers of

people to provide new and improved physical tasking services. In commercial systems, workers

provide rides (Uber, Lyft), deliver groceries or meals (Instacart, Postmates, DoorDash), complete

errands (TaskRabbit), and walk dogs (Wag). In volunteer-based systems, interested volunteers

collect data at a large scale to help scientists conduct scientific inquiries (e.g. studying bird

migration patterns) [120], citizen journalists gather information to help news organizations to

cover smaller local events [3, 130], and citizens report infrastructural issues or city problems

(e.g. broken street lights) to help local government agency track and fix the problems [78]. By

attracting and coordinating crowds, these systems enable new services and solve problems that

would not have been possible before.

This dissertation focuses on a core challenge that volunteer-based systems must address:

attracting enough volunteers who can make useful contributions to achieve desired system goals.

Without recruiting enough volunteers, the volunteer-based systems can’t provide artifacts or

services to attract people to use the systems. Prior research shows that many volunteer-based

systems fail due to the lack of participation [8]. Even when the systems have enough participation,

the systems can’t achieve their desired goals if contributions are not useful in meeting the system

needs [140]. For example, tasks that are appealing to volunteers may not be the ones that the



18

system needs most help, and the system often suffers from poor quality of services as the result

of the mismatch between individual needs and the system needs.

Most volunteer-based physical crowdsourcing systems seek to attract volunteers by providing

flexibility to volunteers in deciding when and which task they contribute to [53, 46, 9]. This

flexibility allows volunteers to meet their own needs, for example contributing to tasks that suit

their schedules and routines, that are convenient for them, or that are of interests to them. But the

flexibility provided to volunteers and the opportunistic nature of their contributions collected can

make it hard to meet the desired system goals. For example, a volunteer-based lost-and-found

service may ask community members to look for a lost item anywhere they’d like along their

route, but this ease and convenience makes it difficult for the service to ensure good search

coverage.

In contrast, other systems may direct volunteers to specific tasks to meet the desired system

goals [98]. However, such a coordinated approach may fail to attract enough people because it

does not provide much-needed flexibility to volunteers as the systems coordinate contributions

under the assumption that volunteers are committed to participation. For example, prior work

in physical crowdsourcing focuses on optimizing effective task assignments to minimize devia-

tions from volunteer routines while maximizing system efficiency, which largely assumes that

individuals will accept tasks when asked [98, 23, 68]. But these prior techniques break down in

real-world settings where any given volunteer may or may not go near task locations, and may or

may not accept the tasks.

To address the core challenge in attracting enough volunteers who can make useful contri-

butions to achieve desired system goals, this thesis introduces the idea of flexible coordination
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that combines the benefits of both approaches to provide flexibility and coordinate useful contri-

butions. A flexible coordination system surfaces opportunities for volunteers to contribute that

are within volunteers’ routines and that are useful for achieving system goals. Unlike existing

approaches that direct volunteers to go out of their routines or change their routines to meet the

desired system goals, a flexible coordination system allows volunteers to carry out their routines

and activities as they wish to maintain flexibility. In order to still collect useful contributions

while maintaining flexibility, a flexible coordination system proactively suggests opportunities

that are within volunteers’ routines but that are also useful in advancing the desired system goals.

By doing this, a flexible coordination system provides the necessary flexibility to volunteers

while still achieving the desired system goals with well-coordinated opportunistic contributions.

Using the idea of flexible coordination, this thesis introduces on-the-go crowdsourcing that

allows people to just go about their days, focusing on their routines, and make convenient

contributions to physical crowdsourcing tasks that seamlessly fit into their routines but that are

still useful for achieving the desired system goals. For example, a community-based lost-and-

found service may only ask community members to look for lost items along their existing route,

but still try to ensure good search coverage by controlling when and where to ask for their help. A

community-based package delivery may only ask community members to deliver packages along

their existing routes, but still try to meet both the needs of volunteers in not being over-disrupted

or over-burdened and the needs of systems in delivering items in a timely manner.

Existing physical crowdsourcing systems are limited in that they either passively wait for

volunteers to complete tasks opportunistically—which can lead to many missed opportunities

that lead to poor quality of services (e.g. poor search coverage in lost-and-found setting)—or

directly assign tasks that best address system needs (e.g. searching for a lost item in a region
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where no one searched)—which require strong incentives to volunteers who may have to go

out of their way to complete tasks. In contrast, on-the-go crowdsourcing systems send task

notifications in situations where volunteers are likely able to contribute along their existing

routines to tasks that are valued by the system. For example, an on-the-go lost-and-found system

may follow along a user’s route, predict their future trajectories, and proactively send a task

notification only in a region where their contribution is most valued by the system in ensuring

good search coverage to find a lost item.

To realize the idea of flexible coordination and the design of on-the-go crowdsourcing

systems, we need to address two core challenges. First, existing solutions for task optimization

and task assignment optimize over a fixed set of opportunities, but we do not know a priori which

set of opportunities may become available. Existing approaches can optimize over a fixed set

of opportunities only because they largely assume that systems can prescribe or pre-determine

what each individual must do by directing or changing people’s routines. In contrast, we have to

recognize that there is no fixed set of opportunities because opportunities may dynamically arise

depending on how a person’s routine is carried out, and how that in turn changes people’s future

trajectories, interests and availability in helping.

Second, the quality of opportunities is relative to an individual’s and other’s routines, and

how our knowledge of the world may change; therefore, evaluating the quality of an opportunity

in isolation is ineffective. For example, opportunities are good relative to other opportunities that

may arise within an individual’s routine. In the lost-and-found example, a system may only look

at where a user is right now and evaluate the value of their search in the current region. However,

evaluating the quality of an opportunity in isolation is ineffective because it does not consider

a user’s entire routine, and other opportunities that may arise within the routine (e.g. people’s
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future trajectories and possible opportunities arise in future locations). This can prevent us from

recognizing other opportunities that may arise and that those potentially available opportunities

may be better than the current opportunity.

Likewise, opportunities are good relative to other opportunities that may arise across multiple

people’s routines; therefore, evaluating the quality of an opportunity within a single person’s

routine may be ineffective. The success of achieving desired collective goals is dependent

on many people’s engagement; for example, delivering all packages in a timely manner to

community members requires a group of people’s participation. Therefore, evaluating the quality

of an opportunity within a single person’s routine (e.g. evaluating when and whether the user

is willing and able to deliver a package) is ineffective because the quality of an opportunity to

achieve desired collective goals should be evaluated based on the uncertain engagement and

availability of all potential volunteers. For example, in a community-based package delivery

service, a system may need to understand, across the population of potential volunteers, how

many people may become available will pass by the package center, who will be willing to help

when being asked, and whether or not all items will be delivered in a timely manner.

To address these challenges, our technical approach builds an understanding of how people’s

routines may unfold, reasons about opportunities that may become available within their routines,

and sets conditions under which to surface an opportunity to contribute by comparing across

possible opportunities that may arise within or across people’s routines. Instead of optimizing

over a fixed set of opportunities, which we do not know a priori, our technical approach opti-

mizes over immediate and possible situations people might be in without ever prescribing or

pre-determining what each person must do. Instead of evaluating the quality of opportunities
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in isolation, our technical approach evaluates the quality of opportunities by taking into consid-

eration the uncertainty in people’s routines, reasoning across possible opportunities that may

arise within or across people’s routines, and considering the expected value of opportunities in

achieving individual needs and collective goals.

In doing this, our technical approach takes inspiration from Horvitz’s work on flexible

computation [55, 61] to reason about computational strategies under scarce resources that

can achieve optimal outcomes under uncertainty. As flexible computation treats computation

power as a scarce resource, by analogy, our technical approach treats volunteer attention and

contributions as scarce resources, which differ from computation power in that individuals may

have varying availability and willingness to help depending on their situations, may or may

not decide to help when they are asked to help, may want to be minimally disrupted, and have

dual needs in quality of services as a requester and user experience as a volunteer. To preserve

the opportunistic nature in participation and meet the desired goals, our technical approach

reasons about uncertainty in availability and participation and desired goals, and surfaces task

needs at opportune moments when volunteers can conveniently contribute to meet the goals.

Instead of assuming future situations are fixed, our technical approach generates strategies that

are custom-tailored to varying situations where potentially available resources are uncertain, and

that can still provide optimal solutions to reach the desired outcomes with available resources.

1.1. Thesis and Contributions

My thesis statement is:

By building an understanding of how people’s routines may unfold, reasoning

about opportunities that may become available within their routines, and setting
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conditions under which to surface an opportunity to contribute within people’s

routines, we can design flexible coordination systems that provide flexibility

to volunteers and coordinate useful contributions to achieve globally effective

outcomes.

The core contribution of this thesis is the idea of flexible coordination and three technical

frameworks that address the general challenges in enabling the idea of flexible coordination and

the design of on-the-go crowdsourcing systems. The sections below highlight the contribution of

each technical framework.

1.1.1. Opportunistic Hit-or-Wait Framework

Flexible coordination allows us to advance the design of physical crowdsourcing systems

by enabling volunteers to contribute within their existing routines in a way whereby their

contributions are convenient and also useful for achieving desired system goals. To do this,

systems need to proactively send task notifications in situations where volunteers are likely able

to contribute along their existing routines to tasks that are valued by the system. However, as

people go about their days, we do not know a priori which opportunities may arise within their

routines because of the uncertainty in their future trajectories. Therefore, we cannot use existing

task assignment or optimization techniques that optimize over a fixed set of opportunities by

prescribing or pre-determining what each individual must do that might be outside of their

routines or that might require them to change their routines. Instead, we need to build up an

understanding of a user’s routine, reason about which opportunities may arise within a user’s

routine, and evaluate the quality of opportunities that may arise when surfacing an opportunity

to a user.
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To determine good opportunities when people can make useful contributions towards the

system goals while following one’s changing mobility patterns, we need to address a core

technical challenge in managing trade-offs between taking a current opportunity and waiting

for a better opportunity in the future. While the current opportunities are known at any given

moment, the uncertainty in a user’s future trajectories makes future opportunities uncertain. As

a result, we may wait for the best match of a user to a task, only to find that the user never

comes near such tasks in their realized routes. We may also be overly eager to capture current

opportunities, sending a user the first task they come across, only to realize that adopting this

strategy may require us to give up on better matches that become available later.

In order to identify good opportunities within a user’s routine, our core idea is to evaluate

the quality of an opportunity not in isolation but by understanding how a user’s routine may

unfold, what opportunities may thus arise, and how waiting for those opportunities may compare

to taking a current opportunity. To realize this idea, we introduce opportunistic Hit-or-Wait, a

general decision-theoretic mechanism that intelligently controls decisions over when to notify a

person of a task among many tasks that they can contribute to along their existing routes, in ways

that reason both about system needs across tasks and about a user’s changing patterns of mobility.

To stay within a user’s routine while still eliciting useful contributions, Hit-or-Wait follows a

user’s locations, predicts their future trajectories, and models system decisions about whether to

send a task that is near a volunteer now or to wait for a better opportunity in the future. Rather

than surface an opportunity based on the quality of the current opportunity without considering

what situations the person may later come across (e.g. solely based on how many people have

looked for a lost item in the current region), Hit-or-Wait continually reasons about the tradeoffs

between current and future situations the user may come across (e.g. where else might the
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person come across and how well searched those other areas may be), and make decisions about

whether to surfacing a current opportunity or waiting for a future opportunity. This allows us to

incorporate what we know about how the person’s routine may unfold and use that information

to make on-going tradeoffs on when and which opportunity to present. In other words, we avoid

being over eager and avoid missing opportunities by explicitly reasoning about how a current

opportunity compares to possible future opportunities.

1.1.2. 4X Framework

While taking into consideration the unfolding of future trajectories allows us to better understand

which opportunities may arise within a user’s routine, there are other factors, such as our changing

knowledge of the world, that can also affect which opportunities may arise within a user’s routine

and how we should evaluate the quality of opportunities.

Consider mobile and physical crowdsourcing systems that engage volunteers to report data

about the dynamically changing state of the world to help understand it and to enable new services

(e.g. eBird [120], See Click Fix [1]). In such systems, volunteers’ willingness to go to places and

contribute data not only depends on their current locations but also depends on which information

is available to them. For example, people may be willing to contribute data opportunistically if

they are already at a location and can conveniently contribute data. However, people’s willingness

to go to a target location that is outside of their routine to contribute additional data may depend

on what information is currently available and whether the information is of their interests. For

example, notifying people interested in events such as free food or guest lectures may inspire

some people to go; while there, they may be willing to contribute additional information about

what food is available and what the lecture is about.
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However, existing approaches are limited in how they strike the balance between the needs of

data contributors (e.g. data collection tasks to be not disruptive and personally relevant) and the

data collection goals (e.g. data coverage). On one hand, allowing people to actively contribute

data along their existing routines when it is convenient for them to do so can better meet the

needs of data contributors, but the opportunistic nature of the contributions makes it difficult to

meet specific data needs (e.g. high data coverage) since data is only collected opportunistically

along one’s existing routine. On the other hand, directing people to fulfill a specific task that

is not necessarily in their immediate vicinity can meet specific system goals such as increasing

data coverage wherever it is needed, but it requires people to deviate from their existing routines

and may require high incentives, such as monetary rewards that might be cost-prohibitive, to

offset the disruption.

To overcome such shortcomings, we introduce a new hybrid approach that collects data

opportunistically and uses the collected data to selectively notify people based on our understand-

ing of the world and their interests. A core idea is to progressively build up our understanding

of the world, and use that understanding to notify more people about opportunities that are

still within their interests and convenience. With this approach we can simultaneously scaf-

fold people’s interests while building up our knowledge of the world further. Unlike existing

approaches that direct people out of their routine to meet specific data collection goals, which

can cause disruption to people, our approach offsets the “cost” of deviation with the “value” of

the personally-relevant information. Unlike existing approaches that only elicit opportunistic

contributions, which may fail to meet desired system goals, our approach directs people out of

their way with personally-relevant information and captures opportunities en-route or at target
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locations. This allows systems to become more directed or remain opportunistic depending on

our refined understanding of the world.

To realize this idea, we introduce 4X, a technical framework for multi-stage data collection

processes that determine effective data collection strategies by reasoning about dynamically

changing state of the world, people’s locations, and their willingness to deviate from their

routine based on the current knowledge of the world. To do this, 4X models people’s interests

in information about the world; understands how the current state of the world matches their

interests—which in turn affects which opportunities may become available; makes decisions

about which data collection opportunity to surface in a way that does not over-extend their

interests but that is still useful for gathering more data. For example, 4X first collects low-effort,

low-fidelity opportunistic contributions when no data is available and when a user is passing

by a location where they can conveniently contribute. 4X then draws other users to places

outside of their routines where the data and their interests align, and while they are en route,

4X elicits further contributions at a place where it needs more contributions to ensure high

data coverage. Instead of using a single data collection strategy regardless of situations on the

ground, 4X reasons about how and when to enact certain data collection strategies based on the

changing state of our knowledge of the world, people’s interests and locations in a way that can

simultaneously achieve both needs of data collectors and system goals.

1.1.3. Opportunistic Supply Management Framework

While Hit-or-Wait and 4X evaluate the quality of opportunities within a single individual’s

routine, opportunities can be good relative to other opportunities that may arise across multiple

people’s routines. For example, in a community-based peer-to-peer delivery service, delivering
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all packages in a timely manner to community members requires a group of people’s participation;

therefore, rather than evaluating the quality of an opportunity with a single person’s routine

(e.g. evaluating when and whether the user is willing and able to deliver a package), we need to

evaluate the quality of an opportunity based on the uncertain engagement and availability of all

potential volunteers. This may require the system to reason about how many users and when to

engage them with opportunities to deliver items in a way that is still within people’s routines and

that considers changing availabilities and willingness of people.

A core challenge in finding good opportunities across the entire community is to reason

about the uncertainty in engagement across the community. Existing technical solutions largely

assume that people are available and will participate when coordinating contributions across

the community to meet desired system goals. This takes away the flexibility for people to

conveniently contribute through their routines that we are trying to preserve with flexible

coordination. However, by maintaining the flexibility, we cannot be sure who will be available

to contribute and whether they will actually contribute, thereby making it hard to know if a

policy—a set of conditions that determine when and whom to notify of tasks—would be effective

without knowing how it might, across a community of volunteers, lead to good outcomes that

are aligned with the goals of the community. For example, an effective system must manage the

tradeoffs imposed by being too aggressive in recruitment—which can be overly disruptive and

result in a low task pickup rate—and being too restrictive in recruitment— which can involve

too few volunteers, overburden the ones that are involved, and leave a disproportionately large

number of task demands unfulfilled.

To overcome this challenge, we introduce Opportunistic Supply Management, a general

decision-theoretic framework for modeling and optimizing the choice of task notification policies
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that find opportunities across the community to meet the needs of volunteers and system efficiency.

Supply management follows community members’ routines and integrates models that describe

how task notification policies affect the available supply of volunteers and their likelihood

to accept tasks, and how that in turn affects system efficiency and the needs of volunteers.

Using these models, Supply Management simulates the possible outcomes that may result from

adopting a task notification policy and chooses an optimal policy for a given situation (or set

of situations) that best achieves intended system goals and desired volunteer experiences in

expectation. With this approach, Supply Management can reason about how the world will unfold,

take into consideration people’s availability and willingness to help, and devise custom-tailored

strategies that adapt to changing situations without ever imposing on what each individual must

do. Unlike existing task assignment solutions that only consider how each individual can best

contribute to the system, supply management considers how to leverage volunteer efforts across

the community to best meet system goals in ways that still ensure good volunteer experiences by

not overburdening or disrupting potential volunteers.

1.2. Thesis Overview

• Chapter 2 introduces Opportunistic Hit-or-Wait, a decision-theoretic framework that

surfaces opportunities for volunteers to make valuable, convenient, and coordinated

contributions on-the-fly to improve the quality of service.

• Chapter 3 introduces 4X, a technical framework for a multi-stage data collection pro-

cesses that determine effective data collection strategies by reasoning about people’s

dynamic changing state of interests and current knowledge about the world.
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• Chapter 4 Opportunistic Supply Management, a decision-theoretic framework that

identifies and surfaces opportunities across the entire community in a way that can

optimize the desired balance between the experience of volunteers and the goals of the

system.

• Chapter 5 discusses implications and principles for flexible coordination, as well as the

generalizability and limitations of flexible coordination.

• Chapter 6 reviews the contributions of the thesis and proposes a vision for the future of

flexible coordination.

1.3. Reader’s Note

Throughout this dissertation, we will reference existing approaches that provide flexibility

for people to contribute as they wish as opportunistic approaches, and approaches that coordinate

contributions without providing flexibility as directed approaches.
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CHAPTER 2

Opportunistic Hit-or-Wait Framework

We consider how the idea of flexible coordination may enable on-the-go crowdsourcing

systems that allow volunteers to make convenient contributions within their routines but that are

still useful in achieving desired system goals. In this chapter, we discuss the core challenge in

evaluating the quality of opportunities that may arise within a person’s routine to surface good

opportunities to the user.

2.1. Introduction

The growth of mobile devices in recent years has helped to bring about mobile [49, 34, 4]

and physical [9] crowdsourcing systems that help connect people to solve local, communal

problems. In these mobile and physical crowdsourcing systems, people make small contributions

toward a larger collective problem, such as tracking animal species or air quality for citizen

science projects or providing rides or delivering packages in commercial applications. In

these systems, opportunistically relying on people to do convenient parts of the problem often

leads to incomplete solutions [51, 126]. For example, volunteer-based time banking systems

may complete only a fraction of the tasks requested, even days after the requests [51]. Yet,

directing people to do inconvenient tasks decreases their willingness to complete them and

therefore requires higher incentives. For example, tasks can require significant travel that

strongly decreases people’s willingness to complete tasks [126].
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To overcome such shortcomings, we use the idea of flexible coordination to enable on-the-go

crowdsourcing as an alternative model for enabling people to make convenient contributions

that are within their existing routines but are nevertheless effective in achieving desired system

goals [114, 32, 77]. For example, a community-based lost-and-found service may only ask

community members to look for lost items along their existing route, but still try to ensure

good search coverage by controlling when and where to ask for a user’s help. By following

people’s routines and notifying people of tasks when they are likely able to help, we can increase

people’s willingness to participate and reduce the need to incentivize people. Unlike existing

commercial services where workers are mostly available on-demand, on-the-go crowdsourcing

systems attempt to follow people’s changing state in their routines and surface opportunities

as they become available and when they can best contribute towards the desired system goals.

Adopting the idea of flexible coordination, On-the-go crowdsourcing thus attempts to make

effective use of every potential volunteer toward a collective goal, while using only people’s

existing mobility and notifying them of tasks on the way that they can best help with. As such, it

aims to achieve much of the benefits of explicit coordination but without requiring volunteers

to go out of their way, to actively seek out tasks, or to reason about which task they should

contribute to.

To determine good opportunities when people can make useful contributions towards the

system goals while following one’s changing mobility patterns, we need to address a core

challenge of evaluating the quality of opportunities in comparison to other opportunities that may

arise within a user’s routine. In practice, among the many tasks a user may encounter during their

routine, deciding which one to notify them about directly affects which tasks are completed and

what outcomes are prioritized. Given the uncertainty in participation and potential volunteer’s
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future trajectories, it is not at all obvious when to engage a volunteer with which opportunity

to best leverage their efforts. One may pre-determine which opportunity to surface to a user

based on a set of criteria. For example, in a lost-and-found setting, one may determine which

task to surface to a user that is within their routine based on how well a region is being searched.

However, by pre-determining when to surface an opportunity, we may wait for the best match of

a volunteer to a task (e.g., where the region is less-searched and thus the user’s search effort is

highly valued), only to find that the person never comes near such tasks in their realized routes.

We can also be overly opportunistic, sending a person the first task they come across, only to

realize that adopting this strategy while aiming to avoid over-disruption may require us to give

up on better opportunities that become available later. This illustrates a general challenge for

flexible coordination whereby effective coordination relies on not only evaluating opportunities

in isolation, but careful consideration of the trade-offs between presenting current opportunities

and waiting for possible future opportunities whose availability is dependent on how a person’s

routine may unfold, and not under the control of the system.

To resolve this challenge, we introduce Opportunistic Hit-or-Wait, a general decision-

theoretic framework that intelligently controls decisions over when to notify a person of a

task among many tasks that they can contribute to along their existing routes, in ways that reason

both about system needs across tasks and about a volunteer’s changing patterns of mobility. To

stay within people’s routines while still eliciting useful contributions, Hit-or-Wait follows a user’s

current locations and predicts their future trajectories, and reasons about which opportunities

that may unfold within a user’s routine when making decisions about whether to send a task

that is near a user now or to wait for a better opportunity in the future. Rather than surface an

opportunity based on the quality of the current opportunity without considering what situations a
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user may later come across (e.g. solely based on how many people have looked for a lost item in

the current location), Hit-or-Wait continually reasons about the tradeoffs between current and

future situations a user may come across (e.g. where else might the person come across and how

well searched those other areas may be), and make decisions about whether to surface the current

opportunity or wait for a future opportunity.

We evaluate Hit-or-Wait both in simulations and in a field deployment in the context of

community-based lost-and-found, where we use Hit-or-Wait to indirectly coordinate people to

look for a lost item on their way by recruiting individuals to collectively search for the item across

small subregions (i.e. tasks) they may encounter. In simulations, we found that Hit-or-Wait

significantly outperforms our baseline task notification strategy and approaches the performance

of the myopic optimal solution which has full knowledge about future trajectories. In a field study

with 25 participants, we found that Hit-or-Wait coordinated small, opportunistic contributions

to achieve globally effective solutions by minimizing disruptions and maximizing the value of

individual contributions. In other words, Hit-or-Wait was able to follow and stay within a user’s

routine while still eliciting contributions that are useful in achieving globally effective outcomes

in the real-world. Interviews with field study participants further suggest that highlighting an

individual’s contribution to the global goal may help people value their contributions more.

2.2. Background

A general challenge facing all crowdsourcing systems is the dual need to recruit contributors

and to make effective use of contributions to best address task needs. In online crowdsourcing,

system designers can reason about such needs separately; once a person is recruited to an effort,

they land on a website where the most valued, compatible task (i.e. user can contribute) can
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be delivered. This separation of concerns allows one to design mechanisms for motivating

and recruiting users (e.g., [11, 13, 132, 133]) independently of mechanisms for coordinating

contributions (e.g., [12, 102, 139, 25]), regardless of whether tasks are assigned to workers by a

system (as is typical) or dynamically determined by workers (as in [139, 25]).

In contrast, in mobile and physical crowdsourcing systems the tasks that a person can readily

contribute to depend largely on the person’s physical location relative to the location of tasks [63].

In other words, the tasks that are most in need of completion or that best match a worker’s

abilities cannot be readily presented unless the person can be motivated to arrive at the task’s

location. As a consequence, efforts to motivate and coordinate physical crowds cannot consider

these two problems in isolation, and instead require the design of system-level mechanisms like

Hit-or-Wait that are capable of reasoning jointly about the needs of the system and the changing

availability of contributors.

The different models of mobile and physical crowdsourcing lead to particular challenges and

tradeoffs for recruiting and coordinating workers. In the opportunistic, or pull-based approach,

it is up to the workers to choose which tasks to contribute to. Even though a system can display,

upon request, nearby tasks a worker can best contribute to, this approach can lead to many missed

opportunities as it is only effective if workers actively look for tasks as they move about so as to

happen upon high-valued tasks nearby [51].

In the directed, or push-based approach, workers are assigned tasks that best address system

needs given worker locations and characteristics with the assumption that users’ future routes

can be determined by the system (e.g., in commercial services like Uber and PostMates) or the

routes are known a priori [65, 134, 21]. This admits the use of standard optimization techniques

to maximize the efficiency of the system through effective task assignments [18], but requires
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strong incentives to recruit on-demand workers who may have to go out of their way to complete

tasks [126, 124].

In our on-the-go approach, workers are sent proactive task notifications in situations where

they are likely able to contribute to tasks that are valued by the system. Given many tasks with

differing values and priorities that need to be completed, effectively connecting users to tasks

requires mechanisms to manage a delicate balance between recruiting users in situations where

they are able to help and making efficient use of their efforts. While existing task assignment

mechanisms are effective for directed approaches [23, 68, 69], they are not effective in the

on-the-go setting where the user determines their own future routes and thus may never reach the

tasks they are assigned. Even if these mechanisms took into account the uncertainty in future

routes [18], pre-assigning tasks to users is still ineffective as it unnecessarily pre-determines who

should do what tasks, which in the on-the-go setting will depend on the tasks that users actually

encounter in their routes. Instead of assigning tasks, Hit-or-Wait offers a more flexible approach

that reasons about whether to surface a task need at the current location or to wait to surface a

different task need at a later time. To do this, Hit-or-Wait uses decision-theory over predictive

models of people’s routes and models of system needs to determine, on-the-fly, when to engage

users for opportunistic contributions that are convenient to them, valued by the system, and that

ultimately lead to globally effective solutions.

While prior work in opportunistic planning [59, 67, 60] had considered the problem of

choosing which task to present given uncertainty over a user’s route, this choice was static and

assumed that a system had to make a decision at a fixed moment in time [60]. When unsure

of which tasks a user may encounter, such a system may resort to asking a user directly for

information about their route, which reduces uncertainty but adds extra effort on the part of the
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user. In order to reason flexibly about changing conditions without user intervention, Hit-or-Wait

moves away from optimizing among a set of tasks towards optimizing over immediate situations

and possible future situations. This allows Hit-or-Wait to coordinate contributions dynamically,

by controlling when and whether to engage a volunteer as they move from place to place.

In considering a dynamic sequence of decisions over whether to hit or wait, our approach

bears resemblance to the use of decision-theoretic methods in online crowdsourcing that optimally

control what tasks to allocate and when to stop allocating tasks [28]. Whereas efficiency is the

primary reason for using decision-theory in earlier work, in our setting, the use of decision theory

is further motivated by its ability to empower a seamless and lightweight form of interaction that

requires no attention of potential volunteers until a task request is made. Following arguments

made by Kim et al. [77], we hypothesize that increasing the ability for people to conveniently

contribute to local, communal problems may help to engage and sustain contributions over time,

providing important benefits beyond any efficiency gain in a single scenario. As previous work

has shown that highlighting the uniqueness and benefits of user contributions can elicit more

contributions [8, 108], we study how volunteers perceive the value of their contributions and

explore ways to better communicate how Hit-or-Wait decisions make effective use of volunteers’

efforts.

2.3. Coordinate On-the-go Crowds with Hit-or-Wait

In this section, we briefly review the core challenges of coordinating on-the-go contribu-

tions within a user’s routine; introduce opportunistic Hit-or-Wait, an individual-level flexible

coordination mechanism for coordinating on-the-go contributions in a way that achieves desired
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global outcomes; and describe our technical architecture that supports integrating Hit-or-Wait

into on-the-go crowdsourcing systems.

As a reminder, there are several core challenges when attempting to coordinate on-the-go

contributions: First, there is greater uncertainty around worker participation because on-the-

go crowds consist of mobile community members and not dedicated workers. Second, task

notifications need to be sensitive to the opportunistic nature of participation and cannot be

overly burdensome or disruptive to potential volunteers. Third, the system needs to be able to

predict future routes based on current movement patterns, and make decisions while reasoning

about the uncertainty of the predicted routes. Finally, the overall uncertainty that surrounds

participation and future routes makes successful pre-defined task assignment implausible, and

requires solutions to make decisions about when to engage potential volunteers in an online

manner.

To address these challenges, we present opportunistic Hit-or-Wait as a general decision-

theoretic mechanism for coordinating on-the-go contributions. Hit-or-Wait aims to dynamically

coordinate contributions in a way that achieves effective global outcomes by considering both

current and future situations that may unfold within a user’s routine, and to notify potential

volunteers of tasks that they can conveniently contribute to and that most need their help.

2.3.1. Opportunistic Hit-or-Wait

We consider an on-the-go crowdsourcing setting with a set of tasks T = {T1, T2, T3, . . .} that are

distributed across a physical space. Tasks may be of varying values that denote their priority,

importance, or fit for a volunteer; task values are assumed known or can be estimated by the

system. For any potential volunteer who may be able to contribute, we consider the problem of
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deciding, on-the-fly, which task to notify the volunteer of among the possibly many tasks the

volunteer passes by. To make these decisions, the system can make use of an available movement

model, which predicts a potential volunteer’s future trajectories given historical data and the

volunteer’s current contexts. In order to not overly burden potential volunteers, we assume that

each potential volunteer may be notified of at most one task within a given time horizon. The

goal is to notify volunteers of tasks that they reach that are most valued, but with the caveat

that given uncertainty in future routes it is possible to notify too early and miss a higher valued

task that is reached later, or to pass on a valued task now, when in fact there are no better future

opportunities on the horizon (or none at all).

To approach this problem, we model a sequence of Hit-or-Wait decisions with a Markov

Decision Process (MDP) over a finite time horizon. A MDP consists of a set of states s ∈ S,

available actions a in each state s, a transition function P(s′|s) representing the likelihood of

reaching state s′ from state s, and a reward function R(s,a) that defines the value of taking action

a at state s. In Hit-or-Wait, states in the MDP represent possible situations the volunteer may

reach. Each state s encodes the location of the volunteer, the task that is at that location (if

any), and additionally, other contextual information about the volunteer’s particular situational

context (e.g., just left work). A volunteer transitions from state to state probabilistically, based

on the movement model which provides the transition function P(s′|s). Upon reaching a state

that contains a task, the system has two possible actions: hit or wait. Hitting in state s with a task

T notifies the volunteer of the task, and results in a reward that denotes the expected value of the

volunteer completing the task. Waiting results in no reward and triggers a transition to the next

state, while hitting triggers a transition to a terminal state to model only notifying a volunteer of

at most one task.
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In order to determine whether to notify the volunteer of a task in a given situation, we

compute using the MDP an optimal policy π such that πt(s) denotes the decision to hit or to wait

when the volunteer is at state s at time t. Computing this policy compares the expected value of

hitting now with the expected value from making a decision later if we wait. Formally, we can

represent the value of the optimal policy as:

V t(s) = max(R(s,hit),∑
s′

P(s′|s)V t−1(s′))

Which states that the expected value of the best decision V t(s) is the maximum of the expected

value of hitting now and the expected value of the best future decisions. Using this recurrence

relation, we can solve for the optimal Hit-or-Wait decisions using dynamic programming.

Example Scenario: Lost and Found. To better illustrate how Hit-or-Wait can be used in an

on-the-go crowdsourcing setting, we describe the algorithm in the context of a community-based

lost-and-found scenario. Given a person who lost an item somewhere in a large region, the

goal is to coordinate volunteers’ existing on-the-go mobility to effectively search for the item.

volunteers contribute to small tasks that each request a search in a smaller subregion where the

item may have been lost. The system must decide for each potential volunteer, whether to notify

them to search in a subregion they are in, or to wait for another opportunity. The goal is to

maximize the value of notifying by notifying a user in a less-searched region and wait if they are

in a well-searched region.

To model and solve this problem, we can construct a Hit-or-Wait MDP for the lost-and-found

scenario as follows: states represent subregions in the large region where the person might have

lost an item that contain the search tasks, and the reward models the likelihood that the item is

in each subregion. For instance, we may model the reward for searching in a subregion as the
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Figure 2.1. An illustrative example for demonstrating how Hit-or-Wait makes hit
or wait decisions. The user is currently in the subregion A and is equally likely
to go to the subregion B and the subregion C, or P(B|A) = P(C|A) = 1/2. We
assume that the item is equally likely to be each subregion. The value of notifying
the user in each subregion is the likelihood that the item is there following n
searches, P(item|n). Using the Bayes rule, we can compute P(item|0) = 1/3,
P(item|1) = 1/5, P(item|2) = 1/9.

likelihood that the item is there following n (unsuccessful) searches, or P(item|n). Assuming

the likelihood of finding the item is conditionally independent given the item is in the subre-

gion, we can compute P(item|n) using Bayes’ rule: P(item|n) = P(item)P(n|item)

P(item)P(n|item)+P(item)P(n|item)
=

P(item)P(1|item)n

P(item)P(1|item)n+P(item)
, where P(item) denotes the prior probability that the item is in the sub-

region, and P(n|item) denotes the likelihood of n unsuccessful searches given that the item is

there. Given that an item is more likely to be there after fewer searches, as a potential volunteer

walks around the neighborhood where the item may have been lost, Hit-or-Wait will tend to

notify them to search in a less-searched subregion than in other subregions they might encounter.

Unlike an approach that may pre-determine when to notify a potential volunteer of a task solely

based on the reward—which may miss opportunities if a user does not come across the region in
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their actual realized route, Hit-or-Wait constantly reasons about trade-offs between the value of

notifying a user of current task and the value of waiting and making decisions in the future.

We refer to Figure 2.1 as a simple example to illustrate how Hit-or-Wait makes effective hit

or wait decisions. In this example, the user is currently in the subregion A, and based on the

user’s historical route data, the user has the equal likelihood of reaching the subregion B and the

subregion C, P(B|A) = P(C|A) = 1/2. We assume that the item is equally likely to be in one of

the three subregions, P(item) = 1/3. We also assume that the likelihood of finding the item after

the first search given that the item is in the subregion as P(1|item) = 1/2. The value of notifying

the user in each subregion is the likelihood that the item is there following n searches, P(item|n).

Using the Bayes rule, we can compute P(item|0) = 1/3, P(item|1) = 1/5, P(item|2) = 1/9.

In order to determine whether to notify the user of a task in the subregion A or wait for better

opportunities in the subregion B or C, we compute V t(s) = max(R(s,hit),∑s′ P(s′|s)V t−1(s′)).

We can compute the first term R(A, hit), the value of notifying the user in the subregion A, which

is P(item|1) = 1/5. Then, we can compute the second term P(B|A) ∗V (B)+P(C|A) ∗V (C),

which is the expected value of best future decisions in the subregion B and C. Because we already

know P(B|A) = P(C|A) = 1/2, we only need to compute V(B) and V(C), which is the value of

the best decision in the subregion B and in the subregion C, respectively. In the subregion B and

C, the best decision is to hit because waiting will lead to missed opportunities as the user will

leave the search region entirely. Given that the best decision is to hit in the subregion B and C,

the value of notifying the user in the subregion B is R(B,hit) = P(item|0) = 1/3, and the value

of notifying the user in subregion C is R(C,hit) = P(item|2) = 1/9. Therefore, the expected

value of best future decisions in the subregion B and C is 1/2∗1/3+1/2∗1/9 = 2/9. Because
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Figure 2.2. On-the-go crowdsourcing architecture.

the expected value of making decisions later (i.e. 2/9) is greater than the value of hitting in the

subregion A right now (i.e. 1/5), we make a wait decision in the subregion A.

2.3.2. On-the-go Crowdsourcing Architecture

Building on-the-go crowdsourcing applications powered by Hit-or-Wait requires an architecture

that can track location data, sense user’s context, and make decisions of when and which tasks

to notify based on user location and context. The architecture is described below and shown in

Figure 2.2.
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2.3.2.1. Architecture. The Location Manager and Context Manager collect user’s location

data and other contextual information and communicate them to the back-end.

The Pretracker helps deliver precise, fine-grained notifications by managing device’s location

accuracy depending on user’s current location. For example, if a user is far from a task region, it

decreases the location accuracy and increases it once the user is nearby a task region. Since it

dynamically manages location accuracy, it can both save device battery and deliver fine-grained

notifications at or near a task location.

The Route Manager processes incoming user location data in the back-end. It maps latitude

and longitude pairs to states, stores new trips, or updates the existing ones in the database.

The Model Generator computes models that are required for strategic modules. For example,

it produces the movement model for state transitions using previous route histories.

The Decision Manager takes as input user profiles (including routes, contexts), models, and

tasks, and generates as output decisions based on a strategic module (e.g. Hit-or-Wait).

The Notification Manager delivers notifications to the the front-end based on the decisions

made by the Decision Manager when a user meets the notification criteria, which includes but is

not limited to conditions over the user location and the frequency of notifications (e.g., to model

disruption and to avoid over-notifying users of tasks).

2.3.2.2. Flows. Figure 2.2 demonstrates how the various components interact with each other.

The Route Manager receives raw GPS coordinates from the user device (1), preprocesses and

stores the data, sends them to the Decision Manager (2). The Decision Manager first checks

whether or not there exists decisions computed for the given location (3a), if there exists decisions,

it sends the decisions to the Notification Manager (5). Otherwise, the Decision Manager requests

models from Model Generator (3b). Together with the user location, the generated models, user
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profile, and task needs, the Decision Manager chooses a strategic module to compute decisions

(4), and finally sends the decisions to the Notification Manager. The Notification Manager

considers notification criteria such as the distance to a task location, user profiles, and delivers a

task notification if all the criteria are met (6).

2.4. Study 1: Simulation

We conducted a simulation study in a community-based lost-and-found setting to understand

(a) the performance of Hit-or-Wait mechanism for indirectly coordinating contributions towards

global goals, and (b) the effect of movement model accuracy on the performance of Hit-or-Wait.

2.4.1. Dataset and Modeling

To train a movement model and simulate the routes of on-the-go volunteers, we scraped running

routes from publicly available RunKeeper data in Chicago and its northern suburban area. The

dataset contains 5,983 running routes from 2,419 users. It contains a total of 590,860 latitude

and longitude pairs for an average of 98.76 points per user.

We model each subregion where an item may have been lost by representing individual

road segments as states. We gather road segment data from OpenStreetMap, which treats each

segment as a connection between street intersections, represented as sequence of latitude and

longitude pairs that construct the segment. We preprocessed our data following the steps from

[81] but adopted the following heuristic for converting GPS traces into a sequence of adjacent

road segments. For each latitude and longitude pair in a runner’s GPS trace, we sought a road

segment within 40 meters in the OpenStreetMap dataset. If we couldn’t find the nearest road
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segments, we marked the road as Unnamed Road. We eliminated repeated road segments to

finish constructing the sequence of segments.

We used the processed data to generate a population-based movement model where the

transition probability from one road segment to the next is trained using the frequencies observed

in the data. We consider a first-order Markov model where predictions of next locations are

conditioned only on current locations. We used population-based model instead of individual-

based model because there were not enough individual route histories to train an accurate

individual-based model. For routes on which no training data exists, we used a simple model

trained across our dataset that assigns a probability distribution over going straight, turning left

or right.

2.4.2. Simulation I: The Efficiency of Hit-or-Wait

2.4.2.1. Study Procedure. We compare the performance of Hit-or-Wait with other flexible

coordination solutions: a simple node counting algorithm and with a myopically optimal solution

given full knowledge of people’s routes. The node counting algorithm notifies a person of a task

in a subregion if and only if the search count in that subregion is the lowest among all subregions.

This algorithm follows a user’s routine and makes efficient use of presented opportunities if they

are most valuable to the system, but the lack of knowledge of a user’s entire routine and other

opportunities that may unfold within the routine makes this algorithm prone to miss opportunities

(e.g. waiting for opportunities may fail to recruit volunteers who do not approach areas with low

search count). The myopically optimal solution is omniscient of a volunteer’s routes and notifies

a volunteer in the subregion they come across that has the lowest search count. This algorithm is

an ideal solution for flexible coordination and serves as an upper bound on the performance of
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Hit-or-Wait given its perfect knowledge of a user’s routine to surface best opportunities within

the routine.1

To set up lost-and-found scenarios, we chose a road segment in our dataset with the highest

foot traffic and included 41 nearby road segments to form the area for our study. Within this

area, we randomly selected 10 road segments to represent the search subregions where the item

may have been lost. We set the reward for searching in each subregion to the likelihood that the

item is there after n people have (unsuccessfully) searched in that subregion (i.e., P(item|n)).

For each trial of our simulation, we randomly sampled 100 routes from 428 running routes from

269 unique runners.

2.4.2.2. Measures and Analysis. We measure the performance of our algorithm against other

algorithms by considering the overall search quality and the number of missed opportunities.

Overall search quality provides a measure of how likely a search effort (i.e., the number of

searches in each subregion) is to result in finding a lost item. For simplicity, we assume that the

item is equally likely to be in each state,2 and that searches are independent conditional on the

item being in the search region. We set the likelihood of finding the item after the first search

given that the item is in the subregion as 0.67. We let V (s,n) denote the likelihood of having

found an item after n searches when the item is in state s, and compute the quality of search as:

QoS = ∑sV (s,n)/|S|.

1To make the baseline comparison informative and compelling, we refrained from (a) comparing to approaches
that notify users of tasks at non-nearby locations, which differs from our setting; and (b) comparing to directed
approaches that pre-assign users tasks that may never be on their actual routes, as their performance would be
similar to or worse than our chosen baseline.
2For the simplicity of the measure we treat the likelihood that an item is in a state as a constant, when in practice
search counts contribute information about where the lost item is.
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Figure 2.3. Simulation results comparing the overall quality of search for node
counting, Hit-or-Wait, and myopic optimal. The results show that Hit-or-Wait
outperformed the node counting algorithm and approached the performance of
the myopic optimal solution.

For the number of missed opportunities, we measure occurrences where a person, given their

actual route, could have been notified to search along their route but were not notified (regardless

of the value of contribution).

2.4.2.3. Results of Simulation I. Figure 2.3 shows that Hit-or-Wait outperformed the node

counting algorithm and approached the performance of the myopic optimal solution. It shows

that Hit-or-Wait achieved 92.43% of the value of the myopic optimal solution, whereas node

counting only achieved 74.5% of the value of the myopic optimal. Compared to node counting,

Hit-or-Wait makes use of more of potential volunteers’ efforts by drastically lowering the

percentage of missed opportunities compared to node counting algorithm; see Figure 2.4. On

average, Hit-or-Wait algorithm missed 46.07% of opportunities (SD: 14.49) while node counting
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Figure 2.4. Percentage of missed opportunities for node counting, Hit-or-Wait,
and myopic optimal solution. Hit-or-Wait algorithm missed 46.07% of oppor-
tunities (SD: 14.49) while node counting missed 78.68% of opportunities (SD:
10.53).

missed 78.68% of opportunities (SD: 10.53) by waiting for people to enter the least searched

regions. While node counting notified users of the highest valued tasks exclusively, many users

never reached such tasks; this led to a high percentage of missed opportunities that ultimately

resulted in a lower overall quality of search than Hit-or-Wait. The myopic optimal solution

has full knowledge of people’s future routes, and thus misses no opportunities. This suggests

that, by using an understanding of how a user’s routine may unfold, Hit-or-Wait considers other

opportunities that may arise within the routine to make more informed decisions about when to

engage a user with which opportunities to achieve globally effective outcomes.
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2.4.3. Simulation II: The Effect of Model Accuracy on Hit-or-Wait

2.4.3.1. Study Procedure. To understand the effect of movement model accuracy on the per-

formance of Hit-or-Wait, we compare the performance of Hit-or-Wait using more and less

accurate movement models across two types of situations: uniform neighboring values and

varied neighboring values. In situations of uniform neighboring values, tasks in neighboring

states are uniform in value; in such situations, we hypothesize that movement model accuracy

has less impact on the performance of Hit-or-Wait because the value of future decisions is largely

invariant. In situations of varied neighboring values, neighboring tasks differ in value; incorrect

predictions of future routes are thus more likely to affect the quality of Hit-or-Wait decisions.

To set up an illustrative scenario, we chose a search region that consisted of three road

segments that are in the area we had chosen in Simulation I for which the movement model is

strongly discriminative. This allows us to observe different decisions when using Hit-or-Wait

with our trained model and a less accurate model that transitions to neighboring states uniformly

at random. We considered all 44 running routes that passed by this region, and considered each

route as an instance of a potential search. We set the current road segment with value 0.6, and set

the mean value of the neighboring road segments to 0.5. For uniform neighboring values, this

should result in hit decisions at the current road segment regardless of the movement model. For

varied neighboring values, we uniformly sampled a value in a range of 0.8 to 1 and set it as the

value of the neighboring road segment more likely to be reached (and 1 minus that value for the

other neighbor to preserve the mean of 0.5). This should allow a more accurate movement model

to make wait decisions when it has strong predictions of reaching more valued states, whereas a

less accurate movement model may still decide to hit.
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Figure 2.5. Effect of model accuracy on Hit-or-Wait performance in situations of
uniform neighboring values and varied neighboring values.

2.4.3.2. Measures and Analysis. To study how movement model accuracy affects the perfor-

mance of Hit-or-Wait with the trained model and a uniformly at random model, we measure the

percentage of value captured with respect to the myopic optimal solution in situations of uniform

neighboring values and varied neighboring values. We chose this measure instead of overall

search quality because we are only looking at specific moments where we vary the task values,

which means that there are no accumulated searches across the regions to compute overall search

quality.

2.4.3.3. Results of Simulation II. Figure 2.5 shows the performance of Hit-or-Wait algorithm

with a uniformly at random movement model and our trained model in the situations of uniform

neighboring values and varied neighboring values. As we hypothesized, Hit-or-Wait using the

uniformly at random movement model still achieves good performance in situations of uniform

neighboring values, but not in the case of varied neighboring values. In the varied neighboring



52

values case, Hit-or-Wait with our trained model captured 95.08% of the values of what myopic

optimal was able to achieve, while Hit-or-Wait with the uniformly at random movement model

only captured 67.66% of the values of myopic optimal. In this particular example, Hit-or-Wait

made the same decisions as OPT in the case of uniformly neighboring values, as (a) incorrect

predictions did not lead to any missed opportunities (e.g., the user ends up in a region without

a task); and (b) the value gained for hitting in subsequent states is identical regardless of next

states.

2.5. Study 2: Field Deployment

Following our simulation study, we conducted a 10-day long field deployment of Hit-or-Wait

in the lost-and-found domain to understand (a) the performance of Hit-or-Wait in comparison

to a myopic optimal solution—our upper bound—in the real world, and (b) users’ perceived

disruptions. In addition to the simulations, this study allows us to explore the balance between

hitting and waiting, the consequences of wait decisions, and when and why wait decisions may

fail.

2.5.1. Trouve: Lost-and-Found Application

We developed a prototype, Trouve, a lost-and-found mobile application where users can request

searches for lost items and it notifies people who pass by possible lost item regions to request

that they look for the items. A user who lost an item can post a request by providing a lost item

description and a possible region where they might have lost the item. When a potential volunteer

passes by a subregion in the potential search region, they receive a notification (Figure 2.6a)

asking if they can help look for the lost item there and then. Once they click the notification, the
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(a) (b) (c)
Figure 2.6. Trouve, a prototype lost-and-found app for the study. (a) A user
receives a notification indicating a lost item is nearby; (b) the user sees the details
of the lost item; (c) after 30 seconds of clicking I am helping now, the user is
prompted with a survey question about perceived disruptiveness of the 30-second
search.

relevant information is shown to the user (Figure 2.6b). If the user decides to help, they can click

“I am helping now!” to indicate their search attempt. After 30 seconds, a survey question about

the perceived disruption of the 30-second search is shown to the user (Figure 2.6c).

2.5.2. Study Procedure

We recruited 25 people who had an iPhone 5S or above with iOS 10+ via flyers and local

university mailing lists. 13 participants were male and 12 were female; the average age was

21.7 (SD: 2.79). Participants consented to enrollment and then received the study instructions

that asked participants to look for lost items for approximately 30 seconds when notified while

traveling along their existing routes, and noted that searching was not mandatory for their
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participation. One of the authors acted as the requester, using Trouve to post lost items for

participants to find.

We generated a movement model using the same procedure as in our simulation study, but

with the training data coming from 51 routes from 11 recruited participants who used our location

tracking app for a week prior to the study. Throughout the study we collected additional 1,490

routes and continually updated our model each time new route data was collected.

We chose two search regions near the university campus: one near the south side and another

near the north side of the campus. Each search region included 5 road segments as its subregions;

around 70-100 meters for each road segment. We sought to have a mixture of both high traffic

and low traffic pedestrian streets within each search region, so we interviewed students who

frequently traverse the regions and used the pre-study location data to help guide our choice of

roads.

For each lost item request for a search region, one road segment was randomly selected as

the lost item location. Based on common requests on the university’s lost & found group, a lost

item region was described as “somewhere on street name #1 and street name # 2.” Requested lost

items included a wallet, a coin purse, and trinkets. The interval between task notifications (per

user) was 4 hours to help minimize the overall disruption caused to the participants. Following

each unsuccessful search in a subregion, we updated the search count and reduced the reward for
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subsequent searches in that subregion.3 The search requests expired either when someone found

the item or if no one found the item after 3 days.

Since the primary focus of the study was coordinating searches across road segments within

a search region and not handing off found items or delivering them to a lost-and-found center, we

asked the participants to simply take a picture of the found item and send it via SMS or email to

the researchers. This way, we were able to verify whether or not the participants actually found

the item. In the discussion, we will discuss more complex scenarios of Hit-or-Wait in which the

volunteers have to travel with and then hand off the found items. The participants received a $25

gift card as compensation.

2.5.3. Measures and Analysis

To understand the performance of Hit-or-Wait in the real-world, we considered two new measures:

the perceived cost of disruption and the value of waiting. To measure the perceived cost of

disruption, we used both ecological momentary assessments (EMA) and post-study survey, where

the participants were asked to rate their perceived disruption on a 5-point Likert scale (ranging

from “1: not disruptive at all,” to “5: very disruptive”). The EMA was delivered to the participant

via their smartphone (see Figure 2.6c) 30 seconds after they clicked “I am helping now!” We

used both EMA and post-study survey to complement each other’s strengths and weaknesses.

On one hand, while EMA allows us to collect user responses while their memory is fresh, the

3Due to an error in Hit-or-Wait implementation, we encoded the value of searching after n searches as (1−
P(1|item))n+1 in Study 2. While this value is decreasing in the number of searches as we would want, a more
accurate estimate of the value of search should be based on P(item|n) as shown earlier. Compared to using P(item|n)
as the reward function, our implementation overvalues states with more (unsuccessful) searches. This can lead
Hit-or-Wait to make more hit decisions in well-searched regions when in actuality waiting for a less searched region
would have been more valuable. As a result, the performance of Hit-or-Wait in our deployment may have been lower
than if we had implemented the more accurate reward function. The error did not otherwise affect our measures,
analyses, or findings.
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responses were collected only when the participants decided to help, and therefore we miss

responses when they found the tasks disruptive and did not help. This measure more effectively

captures reflection on the disruption of the 30-second search task itself. On the other hand, the

post-study survey allows us to capture participants’ reflection on the amount of disruption they

experienced throughout the study both including times when they decided to help and when they

declined. One downside of this measure is that the participants’ memory may not be as accurate

after 10 days of study and their reporting may exhibit recall or recency bias.

In addition to overall search quality measure from Study 1, we added a measure that captures

the value of waiting. We considered the wait decisions Hit-or-Wait made and compared the value

of the eventual outcome (e.g., based on whether and where a person eventually searched) to the

value if we just sent them the task then and there. To measure the real-world performance, we

made this comparison by using the actual number of searches performed in the subregion thus

far to compute the likelihood that the item is still in that subregion (i.e., P(item|n)), instead of

using the expected value of waiting as computed by Hit-or-Wait. As the system might make

multiple wait decisions until it makes a hit decision, we considered only the first wait decisions

for comparison.

2.5.4. Study Results

2.5.4.1. Searching with Low Disruption. Over the course of 10 days, the participants received

248 notifications and conducted 60 searches along their routes (24.19% acceptance rate). We

found that the 30-second on-the-go searches were not disruptive to the users when they decided to

help. Figure 2.7 shows that both the EMA (N=60 from 23 out of 25 participants) and post-study

survey responses (N=24) about the perceived cost of disruption were low; the average rating
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EMA Post-study survey

Figure 2.7. Responses from EMA and post-study survey about perceived disrup-
tion for 30-second searches on a 5-point Likert scale (1: not disruptive at all, 5:
very disruptive).

from EMA is 1.39 (SD: 0.58) and the average rating from post-study survey is 1.58 (SD: 0.72),

values that fall between “not disruptive at all” and “slightly disruptive.”4 Our interview findings

also mirror the survey responses, as P2 said: “So everyday I walk passed [street name] and

[street name], and usually I am on my phone when I am walking and I see the alert. I usually just

keep walking and look around my path and look for the item...It’s not bad at all and really easy.”

Among the searches, 4 different participants found 4 items out of the 9 search requests that

were made. While finding items was not the primary focus of our study, this finding demonstrates

how effective coordination can make use of smaller contributions from many users to find lost

items in large regions.

2.5.4.2. Maximizing User Contributions. The results show that Hit-or-Wait was effective in

maximizing the user contributions by notifying the tasks where they were most needed. For 57

4One of the participants did not fill out the post-study survey and never responded to the emails.
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Figure 2.8. Overall quality of search between Hit-or-Wait and myopic optimal
solution. Hit-or-Wait was able to make near optimal decisions in actual use, and
make efficient use of people’s search efforts.

searches that took place in the study, the average quality of search was 0.43 for Hit-or-Wait (SD:

0.21) and 0.51 for myopic optimal (SD: 0.24), indicating that Hit-or-Wait captured 84.31% of

the value of what myopic optimal is able to achieve (Figure 2.8).5 Closer analysis shows that

Hit-or-Wait made hit decisions in subregions with a higher search count than myopic optimal

only 9.68% of the time (24 out of 248), and in 77.42% of the times (192 out of 248) it made

decisions identical to the myopic optimal. These results, together with the self-reported perceived

disruption, suggest that even without a full knowledge of people’s entire routine, individual-level

flexible coordination mechanisms such as Hit-or-Wait can make near optimal decisions to elicit

useful contributions from people while still staying within their routines.

We found that Hit-or-Wait also made effective wait decisions. Figure 2.9 illustrates the value

of waiting and shows that deciding to wait led to future decisions with a 67.6% increase in

value compared to immediately notifying users. A paired t-test shows that there is a significant

5We excluded 3 searches from this analysis since they were missing the GPS location data needed to compute the
measure.
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Figure 2.9. Comparison between the value gained if hit at the wait decision state
vs. value gained from waiting and notifying at the later state.

difference in the value of waiting versus not waiting (t = 3.98, df = 120, p < 0.0001). In

other words, by understanding a user’s routine and opportunities that may unfold within the

routine, flexible coordination mechanisms such as Hit-or-Wait do not have to resort to whichever

opportunities that arise within a user’s routine, but instead it can compare across the value of the

present and possible future opportunities to make better decisions about when to engage people

with an opportunity.

2.5.4.3. When and Why Missed Opportunities Happen. Waiting for a better opportunity

poses a risk of completely missing the opportunity to notify. Our results show that the variance

for value gained from a wait decision is quite large (M: 0.0776, SD: 0.0893), and it is mainly

due to the fact that there is zero value gained when missed opportunities occur. Our results show

that 45.16% (56 out of 124) of the wait decisions resulted in missed opportunities.
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Figure 2.10. Examples of missed opportunities after wait decisions: (a) taking
shortcuts and did not go to adjacent states; (b) staying at the wait state (e.g.,
taking classes); (c) missing GPS location data.

From 52 instances, outside of situations where uncertainty in future routes naturally led to

users going outside of the task region, we identified three other reasons that resulted in missed

opportunities (Figure 2.10). First, contrary to our model, people sometimes took unexpected

routes or did not move to adjacent states (Figure 2.10a). For example, some people took shortcuts

or trespassed in ways that were unexpected by our model and this led to missed opportunities

where the system may have notified them in other subregions. In the future we could have models

with more fine-grained state spaces, where the state is more granular than a road segment.

Second, people sometimes stopped moving and stayed at the location where the system made

a wait decision (Figure 2.10b). These instances occurred when the participants were on their

way to classes or home, and they only passed one of the subregions since their trip was cut short.

Our system did not have the notion of terminal state, but in the future it could predict whether or

not the current state will be the terminal state so that we can prevent such missed opportunities.



61

Third, inaccuracy or inconsistency in location tracking also caused some missed opportunities

(Figure 2.10c). There are many reasons such technical failures can happen (e.g., turning off

Wi-Fi and thus lowering the location tracking accuracy; switching between LTE and Wi-Fi while

walking around the campus; turning on low-power or airplane mode). For the rest of 4 instances

it did not notify due to technical failure.

2.6. Follow-up Interviews

In the follow-up interviews after the field deployment, we sought to understand how volun-

teers perceive the value of their contributions toward the larger goal of finding the item in a large

search region. We also explored ways to represent and visualize the value of contributions and

use it as a tool to better communicate seemingly opaque Hit-or-Wait decisions.

2.6.1. Interview Setup

We invited participants for an optional 30-min interview after the field deployment and inter-

viewed 7 participants who helped at least once during the study. Each interview lasted around 30

minutes. We chose 4 different scenarios to highlight a high-level idea of how Hit-or-Wait works:

1) A Hit decision is made because a user is at a road with no searches; 2) a user is at a road with

some searches but the user is likely to go to another road with no searches, so it makes a Wait

decision at the current road and makes a Hit decision if the user reaches the subregion with no

searches; 3) a user is at a road with a few searches and the user is likely to go to a road with a

fewer searches, so it makes a Wait decision at the current road, and a Hit decision if the user

reaches the road with the fewer searches; 4) a user is at a road with a few searches and the user is

likely to go to a road with more searches, so it makes a Hit decision at the current road.
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(a)

(b)

more likely route

less likely route

Figure 2.11. Wait (top) and Hit (bottom) example visualizations.

During the interviews, we first asked users to recall their searches and tell us about the

perceived value of them. We chose different contribution scenarios from a user’s actual contribu-

tions (when the user’s searches did not cover all four scenarios, we showed other users’ searches

instead) and showed the visualizations for those searches (some examples of the visualizations

are shown in Figure 2.11). We then asked the participants to walk us through how they thought

the system worked based on the visualizations. After showing the participants all of the visual-

izations, we again asked them about the perceived value of their searches, and we elicited their

suggestions about how the system could more clearly communicate its goals and highlight the

value of their contributions. The interview participants received a $5 gift card as compensation.
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2.6.2. Interview Findings

Some participants perceived the value of their contributions solely on the basis of whether they

found the item, and as a result they did not regard their contributions as valuable if they were

unable to find the item. For example, P6 described how she thought that her contribution was not

valuable: “Well, clearly wasn’t that valuable, because I never found anything.”

Some participants also assumed that the system did not take into consideration other people’s

searches, and perceived their contributions either as redundant or too miniscule to be valuable.

One participant (P6) explained how she thought that the system was notifying everyone who

passed by and as a result many people would have searched in a same region: “there was nothing

to stop someone else from doing the exact same search that I did even if I already searched that

area, right?” On the contrary, another participant assumed that she was the only one searching

in a large search region and did not feel her search was ever going to be useful (P2).

However, when the participants understood the high-level idea of the mechanism of Hit-

or-Wait—predicting likely routes and considering other people’s searches—either through the

visualizations or verbal description from the interviewer, they stated that their contributions were

more valuable. P7 said: “Oh, definitely valuable because it carefully calculates who has already

[searched], so I don’t feel like I am just another person who’s like useless.” Another participant

P2 said: “I guess it is a lot more valuable. Because I guess I’ve never thought the computer was

taking in how other people are doing it.”

The participants also mentioned that highlighting an individual’s contribution as part of the

global goal may help them value their contributions more. As P7 stated: “Maybe also having

information like if someone does find the item, then I would know I was just being helpful...So I

was helping part of that even if I wasn’t the exact person to find it.” The participant also said that
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emphasizing the uniqueness of her contributions could have helped her feel the contributions to

be more valuable: “It’s nice to know that I am the first person to search like there...If I saw this

while I was searching, that would’ve made sense and I may have felt like it’s valuable.”

To summarize, our interview results show that it’s important to communicate the global goal

of the system and highlight the parts of the goal that the users are contributing to so as to help

them to be cognizant of the value of their contributions.

2.7. Discussion and Future Work

In this chapter, we introduced Hit-or-Wait, a general decision-theoretic mechanism for

flexible coordination that coordinates opportunistic contributions within a user’s routine to

achieve effective global outcomes. We demonstrated the effectiveness of Hit-or-Wait through

simulations and a field deployment, which highlighted Hit-or-Wait’s ability to follow and stay

within a user’s routine and elicit useful contributions by deciding on-the-fly whether to notify

or wait for better opportunities. In the rest of the section, we discuss the applicability of Hit-

or-Wait to more complex scenarios and other domains; tractability and scalability; limitations

of myopic Hit-or-Wait; and lastly, the general need for system-level coordination in on-the-go

crowdsourcing systems.

2.7.1. Complex Scenarios and Applicability to Other Domains

As the goal of this chapter is to explore ways to implicitly coordinate user contributions towards

global outcomes, we excluded subsequent scenarios where volunteers have to hand off found

items or factors that could affect the willingness and convenience besides user’s current location

in the field deployment. To make applications like Trouve a full-fledged system with Hit-or-Wait,
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we could take into consideration the cost of diversion [60, 114] from a user’s existing route or

predicted destination [82, 142] to a hand-off location when computing the value of notifying

the user. We could also include parameters that capture busyness, schedules, existence of

companions, and other situational factors that are known to affect task acceptance rate [63, 77].

While we studied Hit-or-Wait in the context of a community-based lost-and-found, the

general mechanism can be applied to other domains such as community sensing or for other

community-based peer-to-peer services. For instance, in community sensing, Hit-or-Wait can be

used to support the global goal of ensuring data coverage and fidelity, even when using low-effort

contributions [131, 128]. Depending on where and how much data has been collected at different

locations, Hit-or-Wait can decide when to ask for additional pieces of information, for example

by making the decision to wait should the user be likely to reach other locations where data

coverage is low. In community-based peer-to-peer services such as timebanking, Hit-or-Wait can

be used to achieve the community goal of effectively providing help for each other by accounting

for different skills, abilities, and preferences [32, 66]. Hit-or-Wait can encode the value of

contributions based on required skills, priority, as well as volunteer preferences. For example,

depending on a task’s urgency, Hit-or-Wait can effectively coordinate opportunistic contributions

to prioritize high-valued, urgent tasks that a user may encounter on their route.

2.7.2. Tractability and Scalability

Our MDP model for Hit-or-Wait scales well for reasonable state spaces; there are no immediate

tractability concerns at the community- or neighborhood-scale that on-the-go crowdsourcing

systems are intended to be deployed in. In cases where the state space becomes large, either
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in larger-scale systems or by including other contextual information, we can scale further by

employing standard techniques such as using coarser or factored state representations [48].

2.7.3. Limitations of Myopic Hit-or-Wait

One of the limitations of the current Hit-or-Wait implementation is that it makes decisions on an

individual basis without regard to the possible future routes and decisions of other volunteers

who may arrive. By taking into consideration others’ future routes and decisions, futuristic

Hit-or-Wait can potentially coordinate contributions more effectively, especially in cases where

the contributions are contingent on differentiating factors among volunteers. For instance, if

only certain people have access to locations (e.g., returning a book to university library), then

by predicting who will come across which locations we can more effectively coordinate these

scarce resources where they are most needed. Realizing the benefits of futuristic Hit-or-Wait will

require overcoming the computational challenges imposed by (a) reasoning about the potential

routes and decisions of future volunteers; and (b) considering the interdependencies of how

current decisions can affect future decisions. Resolving these challenges to provide globally

optimal solutions through opportunistic coordination will require applying and advancing existing

decision-theoretic methods.

2.7.4. Towards Community-level Coordination

Hit-or-Wait’s ability to minimize disruptions and eliminate coordination costs [95] increases

the ability for people to conveniently and effectively contribute to local, communal problems.

In this way, Hit-or-Wait can potentially help encourage and sustain more contributions over

time. We hope that such new ways of contributing to local, communal problems can provide
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social benefits, and create new ways of interacting with, supporting, and becoming a part of a

community.

Future work on developing community-level mechanisms for flexible coordination may

look beyond making effective use of individual contributions to considering how to engage the

community of volunteers as a whole. For example, a supply management framework may be

able to balance the demands from requesters with disruption to potential volunteers, considering

both system goals such as the quality of service but also the needs of volunteers such as not

overburdening volunteers, so as to maintain a healthy pool of future volunteers [77]; see Chapter

4. In a different vein, as some of our participants from the interviews indicated that they may

be willing to deviate from their routes, there may also be opportunities to coordinate mixed

models of contributing that engage both on-the-go volunteers and more dedicated volunteers to

collectively respond to local, communal needs.
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CHAPTER 3

4X Framework

While Hit-or-Wait builds up an understanding of a user’s future trajectories to better reason

about opportunities that may arise within a user’s routine and evaluate the quality of opportu-

nities, there are other factors, such as our knowledge of the world, that can also affect which

opportunities may arise within a user’s routine and ways in which we should evaluate the quality

of opportunities. In this chapter, we discuss the core challenge in taking into consideration

our knowledge of the world and people’s changing interests when evaluating the quality of

opportunities within a user’s routine in the context of participatory sensing platforms.

3.1. Introduction

Participatory sensing has developed into an effective method for actively engaging large

numbers of people to report data about the dynamically changing physical world to help us

understand it and to enable new services [127, 86, 104]. For example, birding hobbyists record

their observations to help scientists track migration patterns [120]. Citizens in the U.S. make

3-1-1 calls to help city planners understand where city resources are needed [78, 1]. Users of

mobile services such as Google Maps and Foursquare actively contribute data about places to

help others make plans around accessibility, dietary needs, and family needs.

Despite successful applications, meeting both the needs of users who contribute data and the

system’s goals for data collection remains a critical challenge for participatory sensing. On one

hand, addressing the needs of data contributors–such as the desire for physical data collection
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tasks to be minimally disruptive [131], personally relevant [120, 5], and generally of value to

them [78, 107]–is necessary for engaging enough contributors to actively make contributions.

On the other hand, achieving data collection goals–such as obtaining high-fidelity data with

detailed information about objects or events of interest at fine enough temporal and spatial

scales—is necessary for understanding certain phenomena of interest and ensuring the usefulness

of services that depend on such data [30, 5].

All participatory sensing systems must achieve some kind of balance between the needs of

users and the system’s data collection goals if they are to remain viable, but existing approaches

are limited in how they strike this balance. Opportunistic approaches, where people are asked

to actively contribute data along their existing routines when it is convenient for them to do

so [143, 120], can better meet the needs of data contributors, but the opportunistic nature of

the contributions makes it difficult to meet specific data needs. Contributors may not frequent

certain locations, which makes it difficult to ensure high data coverage across locations and

to keep dynamic data fresh. Even for locations that people frequently visit or pass by, the

effort to contribute high-fidelity data can still be prohibitively high (e.g., filling out a full survey

while walking around) [78, 1]. Low-effort opportunistic approaches can attract more contributors

(e.g., [128, 131]), but using a low-effort approach has typically resulted in settling for low-fidelity

data.

Directed approaches, where people are asked to fulfill a specific task that is not necessarily

in their immediate vicinity, can be used to target specific system goals such as increasing data

fidelity and coverage wherever it is needed. However, with a directed approach, meeting the needs

of data contributors is difficult as it requires them to deviate from their existing routines [114, 76].

This disruption is offset either with monetary incentives [68, 3, 130], which may be infeasible
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or cost-prohibitive in many domains, or through dedicated volunteers [129, 27], who may be

difficult to recruit at scale in many domains.

To overcome such shortcomings, we introduce a new hybrid approach that collects data

opportunistically and uses the collected data to selectively notify people based on our under-

standing of the world and their interests so that we can reach out to more people to collect

more data about the world. This approach uses the idea of flexible coordination to progressively

build up our understanding of the world in such a way that it notifies people only when they

can conveniently contribute within their routines, and directs people to places only when it

contributes directly to their goals or interests. Unlike existing approaches that direct people out

of their routine to meet specific data collection goals, which can cause disruption to people, our

new hybrid approach offsets the “cost” of deviation with the “value” of the personally-relevant

information. Unlike existing approaches that only elicit opportunistic contributions, which may

fail to meet desired system goals, our approach provides personally-relevant information to meet

people’s goals while finding opportunities for data collection en-route or at-location. This allows

systems to become more directed or remain opportunistic depending on our current, refined,

richer understanding of the world.

To realize this idea, we introduce 4X, a framework for multi-stage data collection processes

that determine effective data collection opportunities by reasoning about changing states of

the world, people’s locations, and their willingness in deviating off of their routine based on

our knowledge of the world. To do this, 4X models people’s interests in information about the

world; understands how the current state of the world matches their interests—which in turn

affects which opportunities may become available; makes decisions about which data collection

opportunity to surface in a way that does not overextend their interests but that is still useful
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for gathering more data to have a richer understanding of the world. For example, 4X may

first collect low-effort, low-fidelity opportunistic contributions when no data is available and

when a user is passing by a location where they can conveniently contribute. 4X then may

draw other users to places outside of their routines where the data and their interests align, and

while they are en route, 4X may elicit further contributions at a place where it needs more

contributions to ensure high data coverage. Instead of using a single data collection strategy

regardless of situations on the ground, 4X reasons about how and when to enact certain data

collection strategies based on the changing state of the world and a user’s current location and

interests in a way that simultaneously achieves both needs of data collectors and system goals.

To demonstrate and evaluate the effectiveness of the 4X framework, we implemented it in

LES (Low-Effort Sensing), a low-effort sensing application on iPhone and Apple Watch that we

designed to collect dynamically changing information about places and events around college

campuses, such as coffee shops, libraries, and free food events. Through two user studies of

LES (N = 95, N = 18), we demonstrate the advantages of 4X over opportunistic and directed

approaches (Study 1), and the extent to which collected data can be used to promote additional

data contributions from interested users who go out of their way (Study 2). Results from Study

1 show that 4X used collected data to create 34% more data collection opportunities without

increasing reported disruption over an opportunistic approach; results further show that 4X is

significantly less disruptive than a directed approach that notifies users of tasks at a distance

regardless of whether there is data of interest to the user. Results from Study 2 show that 4X

yielded 49% more data by directing users to locations of interest where they made additional

contributions en route to and at target locations. These study results demonstrate the effectiveness

of dynamic data collection processes that use multiple data collection strategies to better achieve



72

desired outcomes as opportunities arise based on people’s changing state of interest and situations

on the ground.

3.2. Background

We are interested in advancing participatory sensing approaches that engage people to

actively contribute data about physical locations that they are in or are willing to go to [127,

85, 86, 17, 42, 70, 104]. This is in contrast to prior work on machine-sensor based participatory

sensing approaches that passively collect data from mobile device sensors or other custom

sensors attached to people or objects (e.g., [35, 6, 2, 41, 5, 134, 16]).1 While these prior systems

can sense some attributes about the physical world, machine sensors are limited in what they can

measure without active human participation.

More recent work involves humans-in-the-loop by using machine sensors to collect data and

using remote crowd workers to analyze the data to derive useful information. This approach

allows for sensing a wider range of phenomena, but is still limited by what machine sensors

can observe. For example, Project Sidewalk asks online crowd workers to label Google Street

View images with respect to accessibility issues present, like missing sidewalk ramps [115].

Though contributors to this project can help to interpret the collected data, this approach cannot

easily capture dynamically changing information since the collected data is often stale by the

time of analysis (e.g., as happens with seating availability at a coffee shop). Recent work on

Zensors [87] is able to provide dynamic information about a location by sending a live camera

feed to crowd workers and machine vision algorithms in real-time. However, this approach is

1This passive machine sensing approach is sometimes referred to as “opportunistic sensing” in the literature [17,
85, 86, 42, 104]. However, this should not to be confused with our use of the term, “opportunistic data collection
approach,” that describes an active, participatory sensing approach in which people actively contribute data along
their existing routines when it is convenient for them.
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still limited by machine vision algorithms that can only identify a narrow range of phenomena,

and crowd workers who have limited access to context and who cannot move across the physical

space where the phenomenon is occurring.

Given the limitations inherent in using machine sensors, we focus in this chapter on better

ways to actively engage people in participatory sensing. In what follows, we highlight the

limitations of existing active participatory sensing approaches that restrict their data collection

process to a single data collection mechanism, and argue for the need for hybrid, multi-stage

approaches such as 4X to overcome the limitations of existing opportunistic and directed

approaches.

3.2.1. Existing Approaches to Participatory Sensing: Opportunistic and Directed

To engage people in active data collection, opportunistic data collection approaches support

users who provide data when it is convenient for them to do so, as part of their existing

routines or through activities they are interested in. Example initiatives engage citizens and

hobbyists to report infrastructural issues such as potholes, graffiti and broken street lights in the

community [78, 1], to track the presence of various bird species [120], and to answer questions

about locations people are at, such as the amount of time to get through airport security [101].

While these examples do not require users to travel out of their routine, engaging volunteers to

provide useful data still requires designing for the interests and goals of data contributors [143].

System designers must balance the need for collecting high-fidelity data that is valid—which may

require more stringent data collection protocols and thus more effort and interest on the part of

contributors—with the competing goal of recruiting many participants to advance coverage [30].

While successful initiatives such as eBird [120] have garnered large-scale use and resulted in data
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collected from many contributors, recruiting enough willing contributors to projects is generally

still a challenge [131].

To promote convenient contributions from a wider base of casual users, low-effort oppor-

tunistic data collection approaches introduce lightweight interaction techniques that seek to

minimize the effort required to contribute. One approach presents tasks during smartphone un-

locks to, for example, collect coarse-grained census data [131] and answers to microtasks [128].

Other approaches infer environmental data through immersive interactions embedded into a

user’s habit-building practice (e.g., while going for a run) [93], or ask users to complete small

tasks (e.g., look for a lost item; pick up and deliver a package) along their route while they

are on-the-go [77, 76]. While these approaches may be useful for recruiting more contributors

and increasing data throughput, they are generally limited to collecting low-fidelity data when

high-fidelity data might be desired. Moreover, these approaches cannot direct users to help fill

gaps in data coverage since data is only collected opportunistically along one’s existing routine.

In contrast to opportunistic approaches, directed data collection approaches actively direct

users out of their routine towards tasks and areas where data is needed to target specific gaps in

coverage or fidelity. Due to the deviation required from a user’s routine, directed approaches

require high incentives which some prior works address by providing monetary rewards in return

for a data contribution [68, 3, 130]. While paying participants allows for rich forms of data

collection, the costs may be prohibitive for scaling many services, particularly those that require

active monitoring or tracking dynamically changing information (e.g., campus events; the state

of city infrastructure).

In the absence of monetary rewards, other directed approaches use gamification to align data

goals with game mechanics; they direct users to collect useful data and travel as a byproduct of
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gameplay. For instance, PhotoCity recruited users to take photos of target areas from specific

angles in order to make 3D models of buildings [129]. A contemporary example is Niantic’s

Ingress Prime, which pits players against rival factions to create an immersive game environment

in which dedicated gamers travel out of their existing routes to take in-game actions that produce

crowdsourced data, such as walking routes, as a byproduct. While effective for some use cases,

designing appealing game mechanics that address a wide range of desired data collection goals

remains challenging.

3.2.2. A Conceptual Framework for A Hybrid Approach to Participatory Sensing

Prior systems either opportunistically or directly ask users to complete tasks based on their

convenience [131, 128], domain interests [120], or system’s data collection needs [3], and in

doing so, unnecessarily restrict their data collection process to a single data collection mechanism.

Our work on 4X, in contrast, leverages the benefits of both opportunistic and directed approaches,

allowing for the collection process to adapt based on the state of available data and user interest.

This enables the collection of high-fidelity and high-coverage data while being minimally

disruptive to users and providing them data of interest. Specifically, our approach considers ways

to strategically gather initial pieces of dynamically changing, location-specific data that is used

to attract users out of their way to locations of interest and inspire further data contributions,

while other works focus on only using pre-existing data to recommend locations [29]. Unlike

existing opportunistic data collection approaches that stop at using collected data as feedback

to users when they contribute data (e.g., to see how their responses align with the rest of the

community [131]; to know which nearby birds they have tracked so far [120]; to see summaries of

collected ESM data to increase compliance [62]), 4X actively uses data collected by some users
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to provide relevant information of interest to other users, so as to promote further contributions.

For instance, 4X may notify users about an event of interest (e.g., free food; or the sighting of a

bird species) or relevant conditions of interest (e.g., an available table by the power outlets at the

coffee shop) to draw them to locations where data gaps exist but the currently collected data still

aligns with their interests. In this way, 4X implements a directed data collection approach that

offsets the “cost” of deviation with the “value” of the information provided to the users. This

allows systems to present opportunities that are likely to be in people’s interests and that may fit

within their routines and goals, while still finding opportunities for data collection to advance

desired system goals.

Multiple prior works have explored technical frameworks for building context-aware and

participatory sensing systems. Sensr [74], AWARE [37], Ohmage [123], and PartS [94] provide

end-to-end frameworks for building general purpose participatory sensing platforms for collect-

ing, managing, and analyzing prompted self-reports and sensor data streams, and for enabling

researchers to run user studies with the platforms. In contrast to these technical frameworks for

implementing data collection strategies, our contribution is a novel conceptual framework for

designing a multi-stage data collection process that becomes more directed as data of interest is

collected. 4X is a necessary complement to these existing technical frameworks because building

a multi-stage data collection protocol requires making non-trivial design decisions about how

and when to enact certain data collection mechanisms depending on where people are, what data

is available, and what people care about that other works have not considered or evaluated.
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!ere is free pizza nearby!
Would you like to go?

(b) collected data is used to 
draw users to target locations 
of interest outside of their 
daily routine (1), where they 
are asked for additional 
contributions if they go (2).

eXpand

!(1)

!
(1)

!(2)

!
(2)

Are there any open spots 
on the bike rack here?

(c) users are asked to 
contribute at locations they 
pass en route to the target 
location.

eXploit

!

(a) users opportunistically 
contribute new landmark 
locations and contribute at 
tracked locations they pass 
when notified along their 
daily routine.

!ere is free food here! 
What kind of food it is?

eXplore

!

!

User Responds: 
“No more pizza le" here.”

(d) once a location has a 
sufficient amount of data, 
users are directed to other 
locations in need of data.

eXterminate

Figure 3.1. The 4X framework scaffolds data in four stages. People first con-
tribute opportunistically, marking new landmarks for tracking and responding
when queried for information as they pass existing landmarks (eXplore). Col-
lected data then draws people to target locations outside of their path, where they
can be queried for additional contributions (eXpand). People may also be queried
en route to the target location for contributions (eXploit). As data at a location
fills (indicated by the size and the darkness of circles), users are directed to other
regions and locations in need of contributions (eXterminate).

3.3. 4X Framework

We propose a hybrid, multi-stage data collection approach for participatory sensing called

4X (eXplore, eXpand, eXploit, eXterminate) that collects low-effort, low-fidelity data oppor-

tunistically, and then uses these data to direct users to locations of interest to make additional

contributions that build data fidelity and coverage; see Figure 3.1. Each stage of 4X aims to

create more opportunities for data collection than opportunistic approaches without causing

significant disruption to the user as directed approaches might, allowing for the building of

fidelity and coverage. In this section, we describe the stages of the 4X framework and highlight

key design decisions associated with implementing each stage. 2

2We use the term “stages” to refer to the various data collection mechanisms that 4X uses as data becomes available
and is collected, but do not mean to imply that only a single stage can occur at a time. For example, given data
collected thus far, one user may contribute additional data opportunistically (via eXplore) while another is drawn
from their routine to the location to contribute data (via eXpand). So while it may be useful to think about the data
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3.3.1. eXplore: Collecting Opportunistic Contributions

The eXplore stage (Figure 3.1a) allows users to contribute opportunistically, both as a primary

responder to indicate the presence of an event or location (e.g., there’s someone giving away free

food here) and as a secondary responder to contribute additional data when notified at-location

during their daily routine (e.g., there is someone giving away free food here–can you tell us what

kind of food it is?). Primary responder contributions act as landmarks, allowing for more data

and interest to build up around specific locations and events. Subsequent contributions from

secondary responders scaffold the data collection to increase data fidelity.

During the eXplore stage, contributions are collected opportunistically from those who can

contribute conveniently along their existing routine. To limit disruption to users’ existing routines,

participatory sensing applications that instantiate the eXplore stage should make it easy for users

to make low-effort contributions. This can be supported by low-effort interaction techniques for

primary and secondary responders that allow contributions to be made in seconds (e.g., [128,

131]). Collected low-fidelity contributions from individual users can then be scaffolded and

combined to build data fidelity across multiple contributions and users. Together, these techniques

allow individual users to contribute conveniently while still building the needed data fidelity to

meet system goals, so that the eXplore stage (and 4X more generally) can collect convenient

contributions from larger groups of casual users rather than relying on small groups of dedicated

volunteers.

collection process as proceeding in stages, the 4X framework does not preclude the possibility of multiple stages
occurring at the same time.
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3.3.2. eXpand: Directing Users to Places of Interest

The eXpand stage (Figure 3.1b) uses collected data to present opportunities at nearby locations

that are likely to be in people’s interests and that may fit within their routine and goals. When

the collected data aligns with a user’s interest, eXpand sends an at-distance notification (e.g.,

there is free food in a nearby building, would you like to go there?) in order to build data fidelity

at the target location of interest. Subsequently collected data can then be used to draw in other

interested users. In this way, instead of only relying on opportunistic contributions from eXplore

to build data fidelity, eXpand seeks additional, directed contributions from those who do not

immediately pass by target locations.

Unlike directed approaches that indiscriminately notify users to make contributions outside

of their routine, 4X selectively notifies users about nearby locations only when data of interest is

available to motivate them to deviate from their routine. Providing users with data that they find

valuable helps to offset the cost of deviating from their routine, which limits perceived disruption

since users value the information and may wish to go out of their way to the location of interest.

Through selective notifications, eXpand creates new contribution opportunities as a byproduct of

surfacing existing data of interest back to the user while limiting the perceived disruption since

users are receiving information of interest.

Implementing the eXpand stage of 4X into a participatory sensing application requires (1)

building a user model that captures individual users’ interest in the collected data, and their

willingness to go out of their way; (2) setting a notification selection criteria that determines

whom and when to notify a user based on their interests (i.e., their user model); and (3) setting a

question selection criteria to determine what additional information to solicit from users when
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they do decide to visit locations upon being notified. We discuss each of these components

below:

(1) The user model determines how likely a user is to go out of their way when presented

with information about locations and events of interest to them. A user model may

consider (a) the kind of location (e.g., free food events; coffee shops) and the types of

data about a location (e.g., food type; seating availability) that a user is interested in;

(b) the amount or specificity of available information for each kind of location needed

to draw in a user (e.g., private seating versus private seating by the outlets at a coffee

shop); and (c) any contextual factors that may affect a user’s likelihood to deviate from

their routine, such as their schedule or how far they would be willing to go out of their

way to visit a location of interest. To create a user model, a 4X system designer may

ask users to directly express what information they find valuable and what they would

want to be notified about, or train a model using machine learning to predict how likely

a user is to go out of their way based on observations of their past decisions to act (or

not) on data of interest presented to them.

(2) The notification selection criteria is used to decide whether to notify a user about a

location or event of potential interest. Based on the collected data and the user model,

this criteria considers the likelihood of users to go out of their way and determines how

much available information is sufficient to notify a user, and at what distance. While it

is generally advisable to notify users with information that is interesting or valuable to

them, the notification selection criteria can be conservative and specify only sending

information that is extremely valuable to the user (e.g., free food that a user really likes),

or be aggressive and specify sending all information of potential interest. Likewise,
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the criteria may specify sending information of interest to users only when they are

a short walk from the location, or sending information when a much larger deviation

is needed. These decisions broadly affect how many data collection opportunities are

made available, and how valuable or disruptive users may find the notifications sent via

eXpand.

(3) The question selection criteria is used to decide what piece of information to solicit

from a user when they do decide to go to a target location of interest that is suggested by

eXpand. The question selection criteria can be used to prioritize gathering information

that is valuable to users generally (e.g., more users want to know if there is seating

near power outlets than near windows), which provides direct value to those interested

and opens up future data collection opportunities from those who visit the location.

The criteria can also be used to prioritize data collection goals that are valued by the

system or that better meet the needs of a particular subset of the users (e.g., collecting

information about accessibility features).

3.3.3. eXploit: Creating Contribution Opportunities En Route

The eXploit stage increases data coverage by collecting data at places that a user now passes

en route to a nearby eXpand target location and around the target location itself that a user

would previously not have gone to (see Figure 3.1c). Like eXpand, opportunities for additional

contribution in eXploit are presented as a byproduct of the user choosing to go to a target location.

As these contributions are collected opportunistically like eXplore, the design decisions discussed

there to make contributions convenient and low-effort similarly apply here.
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While en route to a location, eXploit can request contributions from a user about tracked

locations they pass to increase data coverage in regions between the user’s original location and

their target location. Since the effort to make a contribution is low and since users are already

going to a location of interest based on information that the system provided to them, we expect

that asking for these additional contributions will not be perceived as disruptive by the users.

After a user has reached the target location, eXploit can also ask users to make contributions

in the region around the target location to further build data coverage. For example, birders

contributing to the eBird [120] citizen science initiative may be willing to contribute information

about other birds in the area after being notified about a bird they are interested in seeing at a

nearby location. In this situation, it is advisable to have the contribution opportunities align

with things that users are interested in contributing to, since some (small) deviation may still be

involved.

In summary, we hypothesize that through the eXpand and eXploit stages, 4X increases

the number of contribution opportunities and the actual number of contributions relative to

the eXplore stage alone, without increasing disruption since eXpand only occurs when data of

interest is available and the interactions for data contribution during the eXploit stage remain

low-effort. Together, these two stages can increase both data fidelity and coverage, as users

contribute data at, en route to, and around specific locations of interest.

3.3.4. eXterminate: Shifting Focus to New Regions and Locations

Finally, the eXterminate stage is used to determine if tracking for a location should restart or

cease based on the current state of the collected data (see Figure 3.1d). We consider two different

conditions for eXterminate: data staleness and data fidelity thresholds.
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When eXterminate detects that data at a certain location has become stale and may no longer

be valid, data scaffolds are cleared and data collection at the location begins anew. In cases

where users want to know about dynamically changing data at different locations, eXterminating

when the data is stale helps 4X to ensure that users are provided with up-to-date information

that may motivate them to deviate from their routine. To determine that data has become stale, a

participatory sensing system may request information from users to help determine whether data

has become invalid. For example, a system tracking free food events may ask “Is there still food

available?” to determine whether to continue tracking.

If instead eXterminate identifies that the collected data has reached a data fidelity threshold

for a location (i.e., most or all of the desired information has already been collected), tracking

at the location stops in order to promote data collection efforts at other locations. This helps a

4X system to work towards addressing other pressing data needs rather than over-emphasizing

data collection efforts at places where they are no longer needed. To implement such a threshold,

applications may consider including a flag in the data scaffold which indicates to eXterminate

that enough data at a location for a certain time period has been collected. A simple example of

this is checking to see if all questions in the data scaffold have already been answered by users.

3.4. LES: Campus Data Collection with 4X

Having detailed the 4X framework, we now present LES (Low-Effort Sensing), a location-

based participatory sensing system built for the iPhone and the Apple Watch that instantiates

the 4X framework to collect dynamic information about local places and events around college

campuses from mobile crowds. In this section, our goal is to illustrate how the conceptual 4X

framework might be implemented into a practical application. We describe (1) what LES is; (2)
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(a) !eries for additional data contributions 
contain any needed context to answer the question, 
and the possible categorical responses for the query.

(b) Notifications about nearby places of interest are 
sent to users when the available data aligns with 
their interests collected information preferences.

Do you see private seating (individual tables/
chairs) available at Starbucks?

There is private seating (tables) near outlets 
available at Starbucks. Would you like to go there?

tables

couches/chairs

tables and couches/chairs

no

I don’t know

Yes! This info is useful. I’m going to go 
there.

Yes. This info is useful but I’m already 
going there.

No. This info is useful, but I cannot go there 
now.

No. This info isn’t useful to me.

No. Other reason.

tables

couches/chairs
Yes! This info is useful.
I’m going to go there.

There is private seating 
(tables) near outlets at 
Starbucks. Would you 
like to go there?

Do you see private 
seating (individual 
tables/chairs) available 
at Starbucks?

(a) !eries for additional data contributions contain any 
needed context to answer the question, and the possible 
categorical responses for the query.

(b) Notifications about nearby places of interest are sent 
to users when the available data aligns with their data 
interests (as reported in the pre-installation survey).

Figure 3.2. LES interfaces for contributing data and for receiving data of interest.
Users respond to simple queries about locations they are in or are about to pass
(a), and receives valuable information about nearby places of interest that they
care about (b). All responses can be made through contextual notifications on the
device’s lock screen without needing to open the installed application.

how LES instantiates each stage of the 4X framework; and (3) the technical implementation of

LES.

3.4.1. What is LES?

LES is an application for sharing dynamic information about places and events on college

campuses. With LES, students can contribute information about coffee shops, libraries, gyms,

and free food events such as seating or equipment availability and what kind of free food is

being given out. Users are notified and asked to contribute data about tracked locations as they

are about to pass the location using a low-effort interaction that can be performed from the

lock screen of their phone. They can also receive information of interest to them about nearby
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locations (e.g., open seating by the power outlets at their favorite coffee shop) when it is available.

Unlike prior work on TASKer [68, 69] that studied collecting information about campus events

by paying students to make contributions, LES is designed to collect convenient, low-effort

contributions on users’ existing routes, and to use people’s interest in events and situations (e.g.,

free ice cream on a hot day; open seats at a coffee shop) to promote contributions at places

outside of their current route.

3.4.2. Instantiating 4X in LES

In this section, we detail how we instantiate each stage of the 4X framework in LES for collecting

data about locations and events on college campuses.

3.4.2.1. eXplore in LES. To instantiate the eXplore stage of 4X, LES notifies users to make

opportunistic contributions when they are about to walk past locations tracked by the application.

To limit disruption when making these contributions, LES implements contextual notifications

that appear on the device’s lock screen and can be responded to without needing to unlock the

device or open the application when the user is about to pass by a tracked location; see Figure 3.2.

Each notification contains the relevant contextual information derived through earlier responses

by other LES users, a query for additional information about the location in the notification

body, and the categorical responses to answer the query when the notification is opened; see

Figure 3.2a. In addition to the relevant categorical responses for the query, we include the “I

don’t know” response as a way for users to say that they received the notification, but were

unable to answer it; this response was included based on early user testing where users said

they wanted a way to still respond to the notification if they could not answer, instead of simply
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ignoring it. Such contribution techniques have been proven to be low-effort in prior works such

as Slide to X [128] and Twitch [131].

To create higher-fidelity data from low-effort contributions, LES uses information scaffolds

that deconstruct the desired, richer information into low-fidelity components with corresponding

questions that can be easily responded to with low-effort contributions. LES includes data

scaffolds for a variety of locations on and around college campuses, including libraries, gyms,

coffee shops, and free food events. These locations and their associated questions were informed

by needfinding surveys of target users where respondents indicated what places around the

campus they would like to know information about, and what information they would like to

know. Rather than only capturing coarse information about the tracked locations (e.g., that private

seating at a coffee shop is available), we chose to have our information scaffolds capture more

detailed information (e.g., that private seating near the windows at a coffee shop is available) that

could be useful for meeting the different information needs of users during the eXpand stage.

As an example, LES would use the following scaffold and question breakdown for collecting

data about coffee shops with the question ordering being 1, 1a, 1b, etc.

There is private seating [tables/couches/chairs] near [outlets, windows] and/or shared

seating [communal tables] near [outlets, windows] at Starbucks.

(1) Do you see private seating (individual tables/chairs) available at Starbucks? [Tables,

Couches/Chairs, Tables and Couches/Chairs, No]

(a) Are any of these near outlets? [Yes, No]

(b) Are any of these near the windows? [Yes, No]

(2) Do you see shared seating (communal tables) available at Starbucks? [Yes, No]

(a) Are any of these near outlets? [Yes, No]
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(b) Are any of these near the windows? [Yes, No]

If any LES user responded “No” to either questions 1 or 2, then the following sub-questions

would not be asked to other users. When a user is presented with a notification, all information

is included in the notification to help direct them to what specific information is needed by the

system. For example if there were private tables available, but not near outlets, a user passing the

tracked Starbucks would be asked, “There is private seating (tables) available at Starbucks. Can

you tell us if there are any near the windows?”

3.4.2.2. eXpand in LES. Once LES has collected some data opportunistically, it begins the

eXpand stage by selectively notifying users when their interests align with the collected data.

LES does this in two phases: it first sends an initial notification to users letting them know of

information about a nearby location of interest and asks if they would like to go to the location

(e.g., “There is private seating (tables) near outlets available at Starbucks. Would you like to

go there?”; see Figure 3.2b), and then sends a second notification to users who do decide to

go to the target location to request additional data there (e.g., “There is private seating (tables)

available at Starbucks. Can you tell us if there are any near the windows?”).

As discussed in the previous section, implementing the eXpand stage of 4X requires forming

a user model, setting a notification selection criteria, and setting a question selection criteria.

We discuss how we implemented these components in LES and the associated design decisions

below:

(1) User model: LES implements a simple model of user interest that focuses on what data

users find valuable (e.g., a user wants to know about private seating at a coffee shop).

To develop this model, we first conducted needfinding to determine the kinds of campus

locations and types of data about these locations that students are generally interested
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in. We then asked each LES user to fill out a pre-installation survey that asked them,

for each type of data available for each kind of location, if they would like to receive

notifications when such data is available (see each of the study sections for more details

on the pre-installation survey).

(2) Notification selection criteria: Once LES has collected some data from opportunistic

contributions, it selectively notifies users if the collected data matches their user model

(i.e., if the data matches what the user indicated what they wanted to be notified for in

the pre-installation survey). Although 4X can notify users at various distances during

eXpand based on level of their interest, we chose to notify nearby users who are within a

set distance radius of the target location (e.g., 300 meters; see Technical Implementation

for more details).

(3) Question selection criteria: LES prioritizes collecting the types of data that users are

more interested in knowing about; such information is more valuable to users, and also

more likely to lead to additional data contribution opportunities from the larger group of

users who may wish to go to the location should the collected information be of interest

to them. To do this, LES rearranges the information scaffolds presented earlier to first

ask questions that collect the data that most users of the system would be interested in

knowing, based on the pre-installation surveys used to build the earlier user models. For

instance, if we found that more users expressed a preference in knowing about shared

seating rather than private seating, LES would ask question 2 and its sub-questions

before asking question 1.

3.4.2.3. eXploit in LES. To implement the eXploit stage of 4X in LES, we consider how LES

may notify and request additional contributions from users en route to a nearby eXpand target
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location. To collect additional data en route, LES notifies users to make contributions using

the same interaction technique as used for eXplore when they pass tracked en route locations.

To provide users with opportunities to make contributions en route, LES includes additional

locations like bike racks and parking lots that users may frequently encounter while on their way

to an eXpand target location.

While eXploit can also be used for requesting contributions around a location of interest that

a user is going to, we chose not to implement this use case in LES because (a) the locations

of interest were mostly spread out across the university campus; and (b) in our domain, users

interested in one location did not often have an interest in visiting nearby locations.

3.4.2.4. eXterminate in LES. To instantiate the use of eXterminate to handle situations when

data has become stale, LES uses timed refresh cycles and verification questions to signal when

data scaffolds are no longer valid and should be cleared. Timed refresh cycles act as the base

reset condition for data scaffolds to ensure that the presented data is still correct and up-to-date,

and trigger based on how long the current data has been in the scaffold. If any data has been in the

scaffold for longer than a specified threshold time, the scaffold is fully cleared. Then depending

on the type of location, tracking of the location will either restart at places that continue to

generate new data (e.g., coffee shops; libraries) or cease for events that are no longer happening

(e.g., free food events). When no further questions can be asked from a data scaffold, LES uses a

verification question to see if the current data is still correct. If a user responds that the data is no

longer correct (e.g., no more free food left), LES clears the data scaffold and either restarts or

stops tracking similarly to the timed refresh cycle.

While eXterminate may also use thresholds for data fidelity to shift data collection focus to

other locations, we chose not to implement this feature in LES since there was not a need to
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promote or distribute data collection at all locations evenly. In other words, we let LES collect

data at places where people naturally passed and where people were interested in knowing about

the data.

3.4.3. Technical Implementation

LES consists of a client application written in Swift for iOS and Watch OS, and a back-end built

using Node.js and MongoDB. The iOS front-end handles real-time outdoor and indoor location

tracking using geolocation and Estimote Bluetooth iBeacons respectively, and the generation

of contextual notifications using Apple’s UserNotifications framework. When near a tracked

region, the front-end presents users with a notification containing the current information about

the location, the query for the next piece of information, and the possible answers to the query

(see Figure 3.2a); similarly, the front-end will notify users about nearby places of interest within

the distance threshold specified by the notification selection criteria (see Figure 3.2b). Responses

to notifications are sent to the back-end that handles all tasks related to building data scaffolds,

generating notification contents and queries, and syncing information with all users’ applications

in real-time.

As implemented, LES sets a notification radius of 300 meters (approximately 1.5 blocks in

the deployed city) for eXpand, so that the radius will be large enough to require users to make

some deviation from their routine, but not so far that the users would never go out of their way.

In order to avoid spamming users with multiple notifications when they pass through areas with

multiple tracked locations in close proximity, we additionally set a 10 minute notification interval

between notifications so that once notified about a data collection opportunity via eXplore or

eXpand, the user will not receive another notification within the threshold.
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3.5. Study 1: Comparing 4X to Opportunistic and Directed Approaches

We present in the following sections two user studies of LES that demonstrate the advantages

of the hybrid, multi-stage 4X framework over purely opportunistic and directed data collection

approaches (Study 1), and the extent to which collected data can be used by 4X to promote

additional data contributions from interested users who go out of their way (Study 2). In both

studies, we are interested in understanding how the process of providing people with specific

information that is of interest to them as it is dynamically acquired can better meet data collection

goals while avoiding unnecessary disruption to users.

In Study 1, we compare 4X to an Opportunistic data collection approach and a Directed data

collection approach to study how 4X might better meet the needs of users (e.g., convenience

and low disruption) than a Directed approach, and provide more opportunities to meet the needs

of the system (e.g., data collection goals) than an Opportunistic approach. Specifically, our

Opportunistic approach aims to meet user needs by only asking for contributions when users

can conveniently contribute along their existing routine. We expect that this will lead to some

collected data, but also miss opportunities to collect more data when people would have been

willing to visit locations outside of their routine. Meanwhile, our Directed approach aims to

meet system data collection goals by asking users to contribute data at any tracked location they

might be nearby, which they may or may not pass as part of their existing routine. This approach

can potentially lead to more contributions from a larger set of users, but at the cost of greater

disruption due to more notifications and deviation from users’ routines. We expect that 4X will

provide users with more data contribution opportunities than the Opportunistic approach by

also notifying them about nearby tracked locations, but will be less disruptive than the Directed

approach, since requests to travel to locations outside of their routines are only made when
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collected data suggests that they may be interested in knowing. To summarize, we hypothesize

that:

H1: 4X creates more opportunities for data collection over an Opportunistic data collection

approach without increasing disruption.

H2: 4X is less disruptive than a Directed data collection approach and sends significantly

fewer notifications.

3.5.1. Method and Analysis

3.5.1.1. Participants. We recruited 95 undergraduate and graduate students of a mid-sized U.S.

university through mailing lists, social media, and word of mouth. Participant ages ranged from

18 to 28 (M = 20.30, SD = 1.93), with 72 female and 23 male participants. The study took place

over 14 days, during which participants completed a pre-study survey, used LES as a part of their

daily lives, and completed a post-study survey. We compensated participants $20 for their time

spent on surveys and installing LES, but did not incentivize their behavior during the study (i.e.,

no monetary incentive was provided for task completion).

3.5.1.2. Procedure. The 95 study participants were randomly assigned to one of three study

conditions: Opportunistic (32), Directed (32), and 4X (31).3 We chose a between-subjects

design instead of a within-subjects design to: (1) avoid any carryover effects on our measures

when users switched between conditions since each condition only had subtle, hard-to-notice

3We removed 1 participant from the 4X condition because they received far more notifications than should have
been allowed due to a temporary technical malfunction. This left us with log data from 94 participants (30 for 4X;
32 each for Opportunistic and Directed). 9 of these users did not fill out the post-study survey (2 for 4X; 3 for
Opportunistic; and 4 for Directed), leaving us with survey responses from 86 participants (29 each for Opportunistic
and 4X, and 28 for Directed).
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At-Distance 
Noti f ications

Do you see any private 
seating (tables) by the 
windows?

Do you see 
any open 
bike racks?
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over to the coffee shop and 
answer a question for us?

There is private seating 
(tables) at the coffee shop. 
Would you like to go there?

 Opportunistic
 Directed
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 Preferred Info.

Figure 3.3. Illustration of the notification policies for the Opportunistic, Directed,
and 4X conditions in Study 1. In all conditions, users receive at-location notifi-
cations that ask them to contribute additional information when they are about
to pass by a tracked task location. Users in the Directed and 4X conditions also
receive at-distance notifications up to 300 meters away from the task location.
The Directed condition sent these notifications regardless of whether preferred
information is available (information is included when available), whereas the 4X
condition only sent these notifications if preferred information is available. A star
on a person indicates that preferred information of interest is available for that
user at the time of notification. Finally, 4X also asks users to make contributions
en route when they decide to go to the target location.

differences in the notification policy; (2) control and mitigate weekly variability in routines; and

to (3) avoid study fatigue associated with a necessarily longer within-subjects study.

Figure 3.3 summarizes the notification policies of each condition, detailing when users would

receive notifications to contribute additional information based on the condition they are in. In

all three conditions, users receive at-location notifications as they pass by landmark locations

(eXplore). Users in the 4X condition additionally receive at-distance notifications that ask them

to go to landmark locations when there is data of interest about the location available (eXpand);

they are also asked to contribute data about other locations en route should they decide to go

(eXploit). Users in the Directed condition receive at-distance notifications similar to 4X if data

of interest is available, but would also receive a generic contribution notification (e.g., “We need
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some information about the Starbucks nearby. Would you be willing to head over and answer a

question for us?”) anytime they were near a landmark location with no data of interest available.

In both the 4X and Directed conditions, all at-distance notifications are sent when users are

within 300 meters of a landmark location. In all conditions, outside of the notification interval set

by LES to avoid notification spamming, notifications are sent based on the notification policies

of the 4X framework and the data collection approaches used in the Opportunistic and Directed

control conditions.

We pre-populated each instance of LES with seven landmark locations around campus and the

surrounding area (three coffee shops, two workspaces, and two gyms). We selected categories and

locations with dynamically changing status that students were interested in knowing about (e.g.,

when tables or gym equipment become available) based on previous needfinding of university

students. In addition, one of the authors hosted free food events around campus every other day

at various times over the course of the study, which served as additional landmark locations.

Data scaffolds for each of these locations start out empty, and can go up to five levels deep as

users contribute reports to build up data fidelity. Scaffolds were cleared of information either

after four hours, or when users reported that the data is no longer correct (eXterminate).4 Beyond

these landmark locations, we added six locations of bike racks and parking lots where users in

the 4X condition were asked if free spaces were available when they passed by en route.5

To present information of interest to users, we collected through a pre-study survey each

users’ high-level preferences over the kind of information they were interested in being notified

about. For example, a participant who is generally interested in private tables near windows at

4Four hours was used as the refresh time since we could not account for scheduling and mobility patterns of users in
this study, and we wanted enough time for data to build in fidelity so that it could be used in the eXpand stage.
5Per day, a user may be asked to contribute information at multiple locations, but never more than once per location
(within a data refresh cycle) and at only one location en route to avoid over-notifying users.
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a coffee shop but not in communal tables can specify that they are interested in private tables,

and in sitting by the window. Whenever preferred information is available, it is included in

any notifications that users in the 4X and Directed conditions receive. For example, a user

interested in coffee shop seating may receive a notification at-distance that reads: “There is

private seating (tables) near outlets at Starbucks. Would you like to go there?” Users in the

Opportunistic condition were not notified of information they may care about, but can access

such information via a “For You” page within LES; this page was also available for 4X and

Directed condition users. In cases where no preferred information is available, the Directed

condition simply asked users if they would be willing to head to a nearby landmark location to

contribute some information; see Figure 3.3.

We used user responses to at-distance notifications as an ecological momentary assessment

(EMA) [119] to assess (a) whether they found the information presented to them useful; and

(b) whether they were going out of their way based on the information presented or if they just

happen to be already going to a landmark location; see Figure 3.2b. Users can also specify

reasons for not going, such as having a scheduled event.

Beyond EMAs, users completed a post-study questionnaire following the 14 day usage

period, which asked them to reflect on the disruption and value of LES during their usage, recall

times when they were asked for contributions and elaborate on why they did or did not respond,

and recall times when they were notified to go to locations outside of their routine and reflect

on why they may or may not have gone. We coded these open-ended survey responses along

the dimensions of (1) ease of contribution; (2) the value users received in getting notified about

data of interest; and (3) the disruptiveness of the notifications received. Codes were aggregated

into counts for each condition to present overall trends related to these dimensions. We were
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interested in these particular dimensions as they directly map back to the key design goals of 4X,

namely (1) broadening participation with low-effort contributions; (2) increasing data fidelity and

coverage by drawing users from their routines with data of interest; and (3) limiting disruption

when asking for users to deviate or make additional contributions.

3.5.1.3. Measures and Analysis. We measured how disruptive users found each condition by

asking how frequently they felt disrupted by LES notifications over the two-week study period

on a 5-point Likert Scale (1: Never, 5: Always) in the post-study survey. To show that 4X creates

additional data collection opportunities, we compared the number of notifications sent to users in

the 4X condition at-location and at-distance.

We used the EMAs and post-study surveys to better understand why users decided to

contribute or not, both at-location and at-distance, across the three conditions. To track specific

cases where users in the 4X and Directed conditions went out of their way and contributed

additional data, we used the EMA responses and log data to determine, respectively, (a) people’s

decisions to go out of their way; and (b) whether they went to locations they were notified about

and made additional data contributions. We count all user responses at-location as actual data

contributions, with the exception of when they select the “I don’t know” option.

3.5.2. Results

Results show that LES effectively scaffolded low-effort contributions to build higher-fidelity data.

During the 14 day deployment, the 94 users in Study 1 made a total of 705 data contributions.

Of these, 224 contributions (31.77%) were subsequent contributions after the initial that were

used to build data fidelity. While the initial contributions informed users when seating became

available at libraries and when free food was available, subsequent contributions allowed users
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Figure 3.4. Percentage of users’ contributions that built up data fidelity by scaf-
folding together multiple contributions beyond the first. 31.77% of all contri-
butions made by users increased data fidelity beyond the first contribution (e.g.,
private tables available at a coffee shop), leading to higher-fidelity data from the
scaffolded low-fidelity contributions (e.g., private tables near outlets available at
a coffee shop).

to know that there was private seating near windows and that there was free pepperoni pizza.

Figure 3.4 shows the frequency at which user contributions built up data fidelity by integrating

multiple contributions beyond the first.

Across all conditions, users were notified a total of 2586 times with an average number

of notifications per user per day of 1.18 for Opportunistic, 1.42 for 4X, and 3.26 for Directed.

Table 3.1 breaks down the number of notifications sent in each condition, both at-location and

at-distance. Users responded with information (i.e., made a valid contribution) 51.27% of the

time when they were notified at-location to contribute additional data (53.32% for Opportunistic;

49.78% for 4X; and 50.25% for Directed). In post-study surveys, users cited ease of interaction

as their primary reason for contributing at-location. Across all conditions, 47 out of 86 users

(54.65%) mentioned ease as the main reason for contributing while at-location. For example,

P17 (4X) wrote: “I responded because I was skateboarding by [coffee shop], and it wasn’t too



98

Table 3.1. Breakdown of contributions and notifications sent by condition in
Study 1.

Opportunistic 4X Directed

Valid Contribution Origin
At-Location 281 220 187
At-Distance (Willing to Deviate) – 1 5
At-Distance (Already Going) – 1 10
Total Valid Contributions 281 222 202

Notifications Sent
At-Location 527 446 402
At-Distance – 152 1059
Total Notifications Sent 527 598 1461

hard to slow down, glance through the windows, and respond on my phone.” Some users also

mentioned contributing because they felt that their contribution would be helpful to others using

LES, like P22 (Opportunistic): “It was simple enough to respond, and I went into [coffee shop]

to look for myself anyway. I figured it would be good to share this information with other people

since I would want to know myself.”

3.5.2.1. H1: 4X Creates Additional Contribution Opportunities Without Adding Disrup-

tion Over the Opportunistic Approach. Our results show that 4X created more data collection

opportunities without adding disruption over the Opportunistic approach. 4X created 34.09%

more data collection opportunities by presenting users with information they wished to be noti-

fied about; beyond the 446 notifications sent at-location (1.06 notifications per user per day on

average), 4X sent an additional 152 notifications at-distance (0.36 per user per day on average);

see Table 3.1. Despite sending more total notifications than the Opportunistic condition (598 vs.

527), users did not find 4X to be more disruptive; the average reported disruption was 2.08 (SD

= 0.63) for 4X and 2.10 (SD = 0.61) for the Opportunistic condition. A Mann-Whitney U Test
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showed that the distributions of the reported disruption were not significantly different (n1 = 29,

n2 = 28, U = 412.000, p = 0.925).

A plausible explanation for why users did not find 4X to be more disruptive than the

Opportunistic condition despite the additional notifications is that the 4X users generally found

LES to be more valuable to them than the Opportunistic users because they received notifications

with information of interest to them. 12 out of 29 users (41.38%) in the 4X condition mentioned

how they liked being presented with data of value to them, and some, like P21, indicated how it

would help them decide where to go: “I liked how easy it was to be helpful and the idea that I

can check to see if there are free places for me to do work before I actually went to those places.”

In contrast, users in the Opportunistic condition did not receive notifications with information of

interest to them, which some users wished they did. For example, P26 said: “I would have liked

if the notifications I received were instead to inform me of something that I wanted rather than

asking me for inputs. Especially if there was free food somewhere, I would have liked to receive

a notification about it.”

Despite creating additional contribution opportunities and presenting data of interest to users,

in Study 1 only four users in the 4X condition deviated from their routes, which yielded only

one additional data contribution. We identified three partial confounds that may have led to this

outcome, which we will address later through Study 2. First, Study 1 was conducted during

a period of the school year where many users had exams and other scheduling constraints,

which limited the ability of users to go out of their way. In 35.53% of responses to at-distance

notifications, 4X users indicated that scheduling constraints prevented them from visiting the

location even though they found the information presented useful. Second, users experienced

frigid and stormy weather conditions throughout the study period, which likely lessened their
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desire to go out of their way to any location. Third, from the post-study survey results, we

found that in some cases the pre-study survey did not sufficiently capture users’ notification

preferences and thus sent them information that was not valuable to them. For example, while

the pre-study survey allowed users to specify that they are generally interested in coffee shops,

they could not specify that they only cared for a particular coffee shop and preferred not to be

notified about others. Examples such as this contributed to the 18.42% of notifications sent to

4X users who indicated that the information presented was not useful to them. In Study 2, we

will show how removing these confounds and improving our notification preference survey led

to a significant number of additional contributions from 4X users who go out of their way upon

receiving at-distance notifications containing data of interest to them.

3.5.2.2. H2: 4X is Less Disruptive than the Directed Approach. Having demonstrated some

of the potential advantages of using 4X over the Opportunistic approach, we turn to compare 4X

to the Directed approach. We found a significant difference in reported disruption; the average

reported disruption was lower for 4X (M = 2.08; SD = 0.63) than for the Directed condition (M

= 2.54; SD = 0.86). A Mann-Whitney U Test showed that the distributions of reported disruption

were significantly different (n1 = n2 = 29, U = 280.500, p = 0.023).

A primary cause for the increased disruption in the Directed condition is the number of

additional notifications sent. The Directed condition sent users nearly 7 times more at-distance

notifications than 4X did (1059 vs. 152) and 2.5 times more notifications overall (1461 vs. 598);

see Table 3.1. On average, the users in the Directed condition received a total of 3.26 notifications

per user per day versus 1.42 for the 4X condition. 16 out of 29 users in the Directed condition

(55.17%) mentioned that they did not like the quantity of at-distance notifications they received

without any data of personal interest. P5 noted: “Realistically, I’m not going to go out of my way
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to answer a question. I know this is out of self-interest and it deters from everyone’s experience,

but being honest.” This suggests that while directed approaches can reach more users, in practice

they might not lead to the kind of system that is desirable or sustainable due to the increased

disruption and lack of value for attracting users to make additional data contributions without

providing additional incentives.

3.5.2.3. Summary of Study 1 Results. In summary, results of study 1 demonstrate that we

can use the idea of flexible coordination to enable a hybrid approach that captures more data

collection opportunities that may arise as situations on the ground change, and finds good

opportunities within people’s changing state of interest in a way that meets data collectors’ needs

(e.g. without causing much disruption).

3.6. Study 2: 4X Yields Additional Contributions

Study 1 demonstrated some of the potential advantages of 4X over Opportunistic and

Directed approaches, namely that 4X can create additional data contribution opportunities

without increasing disruption. However, due to potential confounds with respect to scheduling

constraints, weather, and unexpressed preferences, only a few users went out of their way in

response to notifications sent at-distance and contributed additional information. We designed

Study 2 to address these confounds, and additionally measure the extent to which collected data

can be used to promote additional data contributions from interested users who go out of their

way. Specifically, Study 2 provides evidence for the following hypotheses:

H3: 4X collects additional data from users who respond to at-distance notifications and go

out of their way to visit places of interest, while still being minimally disruptive.
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H4: Users are more likely to go out of their way when presented with information that is

more valuable to them.

3.6.1. Method and Analysis

3.6.1.1. Participants. We recruited 18 undergraduate and graduate students of a mid-sized U.S.

university through mailing lists, flyers, social media, and word of mouth. Participant ages ranged

from 19 to 31 (M = 23.93, SD = 3.69), with 8 female and 9 male participants (one preferred

not to specify). The study took place over 14 days, during which participants completed a

pre-study survey, used LES as a part of their daily lives, and completed a post-study survey. We

compensated participants $30 for their time spent on surveys and installing LES, but did not

incentivize their behavior during the study (i.e., no monetary incentive was provided for task

completion).

3.6.1.2. Procedure. All 18 users were assigned to a single condition in which they use the

4X version of LES (identical to Study 1) for 14 days.6 We ran Study 2 during the university’s

summer session, when scheduling constraints are less restrictive and the weather is favorable

compared to Study 1. In the absence of scheduling and weather confounds, we expect to see

more users going out of their way to locations of interest and contributing additional data at

target locations and en route.

To better capture users’ notification preferences, we designed an improved notification

preference survey that provides users with finer-grained control over what notifications they

would like to receive (or not); see Figure 3.5a. Unlike the survey from Study 1, which only

allows users to specify individual properties about locations that may be of interest to them

6All 18 users used LES; 16 completed the post-survey.



103

Coffee Shops

Notification Preferences

LES knows that... Would you like to be notified about Coffee

Shops, given this much information?

a nearby coffee shop has private seating

(individual tables) available.

 Yes No

a nearby coffee shop has private seating

(individual tables) near outlets available.

 Yes No

a nearby coffee shop has private seating

(individual tables) near windows available.

 Yes No

Likelihood to Go out of Your Way

LES notifies you that... How often would you go out of your way to a

Coffee Shop, given this much information?

a nearby coffee shop has private seating

(individual tables) available.

   Always Sometimes Rarely Never

a nearby coffee shop has private seating

(individual tables) near outlets available.

   Always Sometimes Rarely Never

a nearby coffee shop has private seating    Always Sometimes Rarely Never

LES | Creating Your Preferences Logout

(a) Notification Preferences (b) Interest Preferences

6%

Coffee Shops

Likelihood to Go out of Your Way

LES notifies you that... How often would you go out of your way to a

Coffee Shop, given this much information?

a nearby coffee shop has private seating

(individual tables) available.

   Always Sometimes Rarely Never

a nearby coffee shop has private seating

(individual tables) near outlets available.

   Always Sometimes Rarely Never

a nearby coffee shop has private seating

(individual tables) near windows available.

   Always Sometimes Rarely Never

Next Section

Coffee Shops Workspaces Gyms Free Food Events

       

Made with  by Delta Lab 

Questions? Comments? Bugs? Email kapilgarg2017@u.northwestern.edu

LES | Creating Your Preferences Logout

Figure 3.5. Notification and interest preferences for Study 2. In this example, the
participant wishes to be notified about private seating at coffee shops only when
they are near windows (a), and reports a stronger interest in seating near windows
than near outlets (b).

(e.g., private tables, windows), this improved survey allows users to specify, for any state of

information LES has in its data scaffold, whether they would like to be notified or not. For

example, Figure 3.5a demonstrates how this allows a user to specify that they only want to know

about private tables when LES knows that these tables are near windows, which wouldn’t have

been possible in Study 1. Additionally, users can now select specific locations they would like

to be notified about (e.g., notify me about Starbucks, but not Peet’s Coffee). With an improved

understanding of users’ notification preferences, we expect to send fewer notifications at-distance

with information that users do not find useful.

To study the extent to which people’s interest in the data may influence their decisions to go

out of their way and make additional data contributions, we designed an information preference

survey that asks users to state how likely they think they are to visit target locations (i.e., Always,

Sometimes, Rarely, or Never) when information of interest is presented to them, assuming no

scheduling conflicts; see Figure 3.5b. By collecting both notification preferences and information

preferences, we are able to measure the likelihood of users actually going out of their way when

notified with information based on their notification preferences, given their reported degree of

interest in acting on the data based on their information preferences.
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Similar to Study 1, we used user responses to at-distance notifications as an ecological

momentary assessment (EMA) [119] to assess whether they found the information presented to

them useful and whether they were going out of their way based on the information presented

or if they happen to be already going. Beyond EMAs, users completed a post-study survey

following the 14-day usage period, which asked them to: (1) reflect on what they found valuable

or not valuable about the information presented to them; and (2) why they decided to go out of

their way and contribute additional data (or not). We followed the same procedure as Study 1 to

code and analyze these qualitative responses.

3.6.1.3. Measures and Analysis. Similar to Study 1, we measured the number of times users

went out of their way and made additional data contributions by examining logged location

data to see if users actually went out of their way and made contributions. We then analyzed

post-study survey responses to gain a deeper understanding of why they decided to go out of

their way and make additional contributions. To evaluate whether people were more likely to

go out of their way when presented with information of interest, we used users’ information

preferences to compute, for each level of interest (i.e., Always, Sometimes, Rarely, or Never),

the proportion of times users went to the location when notified.

Similar to Study 1, we collected user reports of perceived disruption. To evaluate the

extent to which 4X avoids over-notifying users by only sending notifications at-distance with

information of interest, we also compared the number of notifications that 4X sent to the number

of notifications that would have been sent had we notified all users within 300 meters of a

target location–as the Directed condition did in Study 1–by simulating the Directed condition

notification policy with location data collected during the study.
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Figure 3.6. Total number of contributions in Study 2 by 4X stage. 4X yields
49.09% more data from directing users to locations of interest via eXpand and
eXploit over data collected opportunistically via eXplore.

3.6.2. Results

3.6.2.1. H3: 4X Gathers Additional Contributions from At-Distance Notifications with

Minimal Disruption. 4X yielded 49.09% more data by directing users to target locations of

interest, resulting in data contributions made at that target locations and en route to them.

Figure 3.6 shows that users in Study 2 made a total of 82 data contributions, 55 of which are from

at-location contributions from eXplore and 27 of which (32.91%) are additional contributions that

resulted from users responding to at-distance notifications and making additional contributions

at target locations via eXpand (14 times) and en route via eXploit (13 times). These additional

contributions helped to increase data fidelity at target locations by adding 25.46% more data

above the 55 eXplore contributions, and additionally expanded data coverage at locations en

route.

Similar to Study 1, users found 4X to be minimally disruptive; the average reported disruption

is 1.88–a number between Never Disruptive and Rarely Disruptive–on a 5-point Likert scale

(SD = 0.72). Analyzing the number of notifications sent at-distance, we found that 4X only

sent 140 notifications (0.56 per user per day) versus the 1051 at-distance notifications (4.17 per
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user per day) that would have been sent by a Directed approach. In other words, by sending

targeted notifications that are well-matched to people’s notification preferences, 4X avoided

unnecessarily notifying users at-distance who would not be interested in deviating, while still

yielding additional data contributions from interested users beyond what can be collected via an

Opportunistic approach.

Users generally contributed additional data whenever they went to the target location in

response to the data they received (14 out of 17 times for eXpand; 13 out of 14 times for eXploit).

Users noted that making additional contributions at the target locations they went to with LES

was easy to do and required little effort: “I picked up cold snacks, and then it asked me what

type of cold snack. It was pretty natural to ask a question about something I specifically came

for. It was very low-effort to respond, since I already had the knowledge.” (P16). Similarly, users

also felt that it was easy to make contributions en route when LES asked about bike racks and

parking lots: “I went to [the gym] and then was asked about the bike racks. I responded because

it was easy for me to respond as it was on my way, and I already had my phone in my hand.”

(P2). These responses show the benefit of using low-effort interaction techniques in 4X systems

to collect additional contributions en route to and at target locations that users are drawn to.

Users further highlighted reciprocity as a reason for contributing at eXpand and eXploit

locations. For instance, P10 noted: “I feel like when I get something from others, I would like to

give back.” Beyond providing data back to other data collectors, some users wanted to better

know how their contributions were being used by others: “I wish I knew how my contributions

affected others – there were many times I passed [a coffee shop] and was prompted, and I wish I

knew how useful my reports were for others, I think it would have motivated me more to maybe

step in and check instead of just peer through the windows and guess if I knew someone was
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Figure 3.7. Users were more likely to go out of their way to locations when
presented with information that is more valuable to them.

relying on the information.” (P8). Along with providing users with data of interest to motivate

additional contributions, 4X systems may also consider informing users about how other data

collectors value their contributions as another way to motivate continued use of the system.

3.6.2.2. H4: Users are More Drawn to Locations of Interest When the Information is

Valuable to Them. As we expected, users were more likely to go out of their way when they

found the information presented to them to be valuable. In 16 of the 17 cases in which users went

out of their way in response to an eXpand notification, users reported that they would “Always”

or “Sometimes” go out of their way. Moreover, Figure 3.7 shows that when users are presented

with the information they find most valuable (i.e., Always), they go out of their way 45.45% of

the times versus less than 10% of the time when information is less valuable (i.e., Rarely and

Never).

While this result shows that more valuable data has more drawing power, it is worth noting

that there are many more cases in which users receive information that is moderately valuable

(104 vs. 22), through which six people still went out of their way. From a design perspective,

this suggests that while we should generally aim to collect and present information that users
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value most, presenting users with moderately valuable data may still be useful and can also lead

to additional contributions.

Users reported going to nearby locations of interest that LES notified them about because

they generally found the information to be useful. Compared to Study 1, in which 18.42% of

eXpand notifications were found to not be useful, only 2.86% of eXpand notifications in Study 2

were found to not be useful. This result suggests that our revised notification preference survey

may have better captured users’ preferences and thus provided LES with a better user model

to use when notifying users about nearby locations. From post-study responses, 9 out of 14

users who went out of their way specifically highlighted that they did so because they found the

information they received to be valuable. For example, P16 wrote: “I was interested in ice cream,

as it had been pretty hot and muggy one of the afternoons. I received the notification while at my

desk in [building] to visit [another building], and this was interesting enough to stop my work

for 15 minutes.” In other words, providing users with data that they generally find useful can be

a viable way to draw them to nearby locations of interest outside of their regular routine.

User responses to post-survey questions highlight notification timing as an important factor

that influenced their decision to go out of their way and their perceived value of eXpand

notifications from LES. P10 noted: “It depends on timing. In the morning the cafe notification is

valuable. In the afternoon after 5 or 6 pm gym availability is more important.” For free food,

timing was most often dependent on when the user had last eaten and if they were occupied with

work: “One time I got a notification that there was food. Critically, this notification arrived in

the afternoon when I am typically hungry because I do not ever pack enough food for lunch. I

was happy to jump up from my desk and find the food because I am also usually less productive

in the afternoon.” (P5). These reports suggest that eXpand in 4X may be even more effective in
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gathering additional contributions and reducing disruption by accounting for such contextual

factors when deciding to notify users.

When users did not go out of their way, they primarily cited scheduling conflicts and existing

plans as reasons for not going. In the post-survey, 14 out of 16 users noted scheduled meetings

to be a reason why they could not go to the location they were notified about. Eight users noted

that they were sometimes in a rush (e.g., to catch a train) and thus did not have time to respond.

Three users mentioned that they did not want to respond to a notification because they were not

interested in the data being collected, suggesting that users’ personal interest in the data may

influence their willingness to contribute.

Even if users did not go out of their way, some still found value in being provided information

about locations of interest through LES as it helped them better plan when they might go to certain

locations that they cared about. For example, P14 mentioned how they found the notifications

for the gym useful even though they could not go because of work commitments: “With [the

gym], I was glad when I would see open spots, but I was usually at work and could not workout

at that time. But at least I would know that the gym is generally empty for when I wanted to go to

the gym.” (P14). This suggests that even when users cannot immediately act upon the data they

receive, 4X systems can still provide value to the user as the information could help in planning

future trips to locations.

3.6.2.3. Summary of Study 2 Results. In summary, results of study 2 demonstrate how 4X

can use multiple data collection strategies based on when and which data collection opportunities

become available to better meet the desired data collection goals without disrupting data con-

tributors by staying within their interest. Our results also highlight the importance of modeling
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people’s degree of interest in information, incorporating people’s willingness in deviation given

collected data when enacting different data collection strategies.

3.7. Discussion and Future Work

We propose 4X, a framework for multi-stage data collection processes that determine effective

data collection opportunities by reasoning about changing states of the world, people’s locations,

and their willingness in deviating from their routine based on our knowledge of the world. We

demonstrated the effectiveness of 4X that uses multiple data collection strategies that are tailored

towards people’s dynamically changing interests and situations on the ground to better achieve

desired data collection goals while still presenting opportunities that are likely to be in people’s

interests and that may fit within their routine and goals. In the rest of the section, we revisit the

core ideas behind 4X, discuss how they may generally inform the design of participatory sensing

systems, and present directions for future work.

3.7.1. Keeping Users’ Data Interest at the Foreground

The most important aspect of any 4X system is keeping users’ interests and goals in mind

since 4X uses collected data as an incentive for enabling directed sensing to gain additional

contributions. Our study results showed that this approach created additional data contribution

opportunities (Study 1) and led to increased data contributions both at locations of interest via

eXpand and en route via eXploit (Study 2). Unlike the directed approach which makes requests

indiscriminately, having user models allowed 4X to selectively notify users only when data of

interest is available, which reduced over-notification and limits disruption. In other words, 4X
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was able to increase data fidelity and coverage in ways that aligned with, and advanced, the

interests and goals of users.

Having accurate user models in 4X is essential for selectively notifying users to provide

information of interest while avoiding unnecessary disruption during the eXpand stage. In LES,

we first conducted needfinding to determine the kinds of data that users are generally interested

in about locations and events around campus. We then used a direct elicitation strategy (i.e., a

questionnaire) to learn what specific information and events each user was interested in knowing

about. While this approach was generally effective for increasing data collection opportunities

without increasing disruption, results from our study suggest that including contextual factors

such as users’ schedules or how their data interests vary throughout the day may better capture

when users are likely to go to a nearby location given some information of interest (as opposed

to being interested, but not going). Having a more accurate user model that incorporates such

contextual factors would allow a 4X system to reduce disruption from notifications that a user is

unlikely to act upon, and may even increase contributions in cases where the model identifies

situations where a user is willing to deviate further from their routine in response to information

about locations and events that are particularly valuable to them. To build such richer user models,

future 4X systems may complement direct elicitation by training machine learning models that

predict a user’s likelihood of going out of their way to a target location based on (1) contextual

factors such as the user’s schedule and their current activities [39, 63, 7, 32]; (2) their current

and future routes [82, 91, 105] and associated cost of diversion to a target location [59, 60]; and

(3) the value of the certain, known information about a target location to a user at different times

during the day (e.g., line length at a coffee shop in the morning versus late in the afternoon).
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While better user models can potentially reduce disruption and increase contributions for

some sensing initiatives, the larger issue is that the collected data may not be motivating

enough for users to deviate from their routine. For instance, volunteers helping to monitor city

infrastructural issues such as potholes and broken streetlights would have no interest in visiting

such locations. One approach to collecting such data using 4X is to leverage the eXploit stage

to collect mundane data as a byproduct of a more interesting sensing initiative. As shown in

Study 2, LES was able to gather information about bike rack and parking space availability that

was unrelated to users’ direct interest. This can allow a 4X system that, for example, primarily

collects and shares information about events of interest in a city to also collect information about

city infrastructural issues that users might encounter en route.

While we do not expect 4X to be useful in all cases, in some cases there may be clever ways

to transform the collected data so that it becomes incentivizing and useful to data contributors.

For example, recent work on Habitsourcing [93] creates immersive interactions and narratives

that reference objects in the physical environment to support a user’s habit-building practice (e.g.,

going for a run) while collecting sensing data as a byproduct of their habit building practices.

Future Habitsourcing systems may use collected information about locations and events (however

mundane) to shape immersive story narratives [110] and interactions that incentivize users to

deviate from their routes as part of their habit-building practice, and while doing so, contribute

additional data where it is desired. In future work, we are broadly interested in exploring methods

such as this for transforming collected data in ways that support interactions and experiences

that are valuable to the user, even if the collected data in its raw form is not.
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3.7.2. Using Dynamic Data Collection Processes

4X is a dynamic process for collecting data that uses different data collection mechanisms

depending on what data is available to the system and what available information users are

interested in. Because 4X leverages the benefits of both opportunistic and directed approaches, it

enables the collection of high-fidelity and high-coverage data while being minimally disruptive

to users and providing them with data of interest. We show through Study 2 that users made

25% more contributions from eXpand to increase data fidelity and 24% more contributions from

eXploit to increase data coverage. By not fixating on a single approach (i.e., opportunistic or

directed), 4X is able to flexibly work with the data and interest available to achieve a big gain in

data contributions while still meeting user needs that would not have been possible with either

approach alone.

Dynamic data collection processes such as 4X can be used to scaffold data and motivation

concurrently so that larger and larger groups of users can be drawn out of their way to contribute

to participatory sensing efforts. We describe below a general strategy for achieving this–which

4X supports–that we call incentive chaining. Initially, a small subset of all users, who require the

least amount of information to be motivated, are the ones most likely to be drawn out of their

routines and make contributions at the target location they were drawn to. Their contributions

would then increase data fidelity and motivate other users, who may have needed slightly higher

incentives, to now be drawn to the target location and so on. For example, users may pass by an

area and opportunistically report an event such as a pop-up concert. This information may then

draw in relatively nearby users who are generally interested in any kind of music, where they

specify that the concert is for rock music. Then, users who are interested in rock music may be

drawn to the location from further away and make additional contributions that may draw in fans
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of the specific bands playing at the concert from even further away. Thus, incentive chaining and

similar strategies that are enabled by dynamic data collection processes such as 4X can expand

the set of users who could initially contribute to encompass a much broader set of users as data

and motivations scaffold, but only doing so when users can be effectively motivated (e.g., there

is now enough data for the user to be drawn in). In large-scale deployments, we expect that

a small amount of additional contributions made by a few initial users drawn to locations of

interest could lead to a snowball effect of significantly more opportunities created. Studying

these incentive chaining effects at scale are a good avenue for future empirical evaluations of

4X-like dynamic data collection processes.

To allow for incentive chaining-like effects to occur, all sensing initiatives need ways to

collect the initial pieces of data so that the data collection protocol can dynamically transition

from stage to stage. However, some sensing initiatives may find it challenging to obtain these

initial opportunistic contributions if, for example, users’ normal routines do not coincide with

tracked locations. While we used LES to collect all pieces of data for our sensing domain, other

initiatives may consider using gamification mechanics [129] or even machine sensors [115, 87]

to complement apps such as LES so that particular pieces of data contributed across applications

can together support a broader sensing initiative. In other words, the stages of 4X can be enacted

across sensing applications, whereby some applications (and their associated mechanisms) make

contributions opportunistically, which then empowers other applications to use eXpand and

eXploit to further build data fidelity and data coverage. In this way, dynamic data collection

processes can easily be extended to integrate multiple forms of participatory sensing while still

reaping the benefits of transitioning between data collection stages when users’ interests and the

collected data align.
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3.7.3. Enabling Community-Based Data Collection

4X systems can be thought of as community-based data collection processes where data con-

tributions from certain community members are of value to other community members, who

then become motivated to make further contributions that benefit others in the community and

so on. In Study 2, we found that collected data from some users successfully influenced oth-

ers to deviate from their routine and make additional contributions. In this way, 4X creates

cross-community interactions between data collectors since some contributions are being used to

inspire contributions from others in the data collection community.

Seeing 4X as a community-wide data collection approach allows us to consider new oppor-

tunities for how we may design the data collection process at the community-level rather than

only at the individual-level. For instance, in LES we rearranged information scaffolds based

on the overall collected user preferences so that data of greatest interest to the community at

each location would be collected first. Similarly, we can consider rearranging the information

scaffolds based on the needs of smaller sub-communities at different times during the day. For

example, those interested in coffee shops may want to know about how long the line at certain

shops are during their morning commute, but be more interested in seating availability later in

the day. In other words, by explicitly recognizing the needs of different sub-communities within

the sensing initiative and tailoring the data collection to their changing needs, 4X is able to find

and create more situations where users would be willing to deviate from their routines since the

collected data would better align with the sub-community’s data needs and interests at different

times during the day.

Building 4X systems that continually consider the needs of different sub-communities during

data collection requires crafting and tuning more sophisticated notification selection criteria and
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question selection criteria that can dynamically adjust to the needs of the community based on

the information that is available and the people available who may be interested and willing

to go out of their way. Manually tuning these selection criteria can become challenging and

ineffective when community members have diverse data needs, and when decisions about who

to ping now affect opportunities to meet others’ needs later. Instead, we are interested in future

work that create Adaptive 4X systems that can automatically reason and adapt their notification

policies based on the value of soliciting certain contributions for the community and of the

value of the collected data to people in the community. To best collect data valued by the

community without being overly disruptive to any individual, such systems may use decision

theory to make decisions about whether to request a data contribution now, or to wait for better

opportunities when users may be closer to other locations of interest to them where additional

data contributions would be particularly valuable [76]. To best leverage data collectors’ efforts

and support users’ needs across the community, such systems may adaptively notify more or

less users at different times so as to best use the community’s data collection efforts to meet

the changing data needs of the community (e.g., notify more people who may contribute about

coffee shops in the morning). We expect these systems to make decisions that better align with

the varying interests of users, which allows for user needs to be better supported while also

advancing data collection goals.
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CHAPTER 4

Opportunistic Supply Management Framework

While Hit-or-Wait and 4X evaluate the quality of opportunities with a single individual’s

routine, good opportunities can be relative to other opportunities that may arise across multiple

people’s routines. In this chapter, we will discuss the core challenge in designing community-

level mechanisms that evaluate the quality of opportunities across multiple people’s routines.

4.1. Introduction

The growth of mobile devices in recent years has helped to bring about physical crowd-

sourcing systems [9, 126, 124] that help connect people to solve local, communal problems.

These systems need community-level mechanisms that can effectively manage the recruitment

of volunteers in a way that meets the needs of volunteers and system goals to ensure long-term

viability. While commercial physical crowdsourcing systems (e.g. Uber, Lyft, TaskRabbit, and

Instacart) can use market mechanisms and financial incentives to engage workers whenever

help is needed, existing approaches in volunteer-based systems are limited in how they strike

the balance between the needs of volunteers and system goals. Most volunteer-based systems

provide flexibility to volunteers by letting volunteers decide when and which tasks they con-

tribute to [53, 46, 9]. This flexibility allows volunteers to meet their own needs, for example

contributing to tasks that suit their schedules and routines, that are convenient for them, or that are

of their interests. But the flexibility provided to volunteers and the opportunistic nature of their

contributions collected can make it hard to meet the desired system goals [43, 140]. For example,
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Figure 4.1. Each volunteer-based system has to manage the balance between
system efficiency and the needs of volunteers, and each system may have their
own desired balance. The opportunistic supply management framework allows the
system to optimize the desired balance between system efficiency and the needs
of volunteers by reasoning about different community-scale task notification
policies that opportunistically decide who to send tasks across the community. As
volunteers may or may not become available or accept tasks, supply management
simulates over the possible unfoldings of adopting a task notification policy and
chooses an optimal policy that can best achieve the desired goals.

a community-based peer-to-peer delivery system may passively wait for volunteers to show up

and complete tasks on their own terms but the system may fail to complete tasks in a timely

manner. In contrast, systems may direct volunteers to specific tasks to meet the system goals (e.g.

by asking to fulfill an urgent task that is out of a volunteer’s existing route), but this approach fails

to provide much needed flexibility to volunteers because the systems coordinate contributions

with the assumption that volunteers are committed to participate [98, 114]. This approach is less

likely to attract volunteers than those systems that consider the needs of volunteers [27]; as a

result, volunteers may not even complete the assigned or directed tasks.

As an alternative approach to these existing approaches, we consider in this dissertation a

flexible coordination approach by which individuals do not need to commit to do specific tasks but

the contributions can still be coordinated to collectively achieve desired system goals. To enable a

flexible coordination approach that can effectively manage the recruitment of volunteers in a way
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that meets the needs of volunteers and system goals, we must address the core challenge in setting

task notification policies that decide when, where, and to whom to notify of tasks. Existing

technical solutions largely assume people’s availability and participation when coordinating

contributions across the community to meet desired system goals. However, by maintaining

flexibility, we cannot be sure who will be available to contribute and whether they will actually

contribute, thereby making it hard to know if a policy would be effective without knowing how

it might, across a community of volunteers, lead to good outcomes that are aligned with the

goals of the community. For example, an effective system must manage the tradeoffs imposed

by being too aggressive in recruitment—which can be overly disruptive and result in a low task

pickup rate—and being too restrictive in recruitment—which can involve too few volunteers,

overburden the ones that are involved, and leave a disproportionately large number of task

demands unfulfilled. Prior work in on-the-go crowdsourcing, in which volunteers are recruited to

tasks they can contribute to conveniently in their existing routines, demonstrated that managing

this tradeoff is not at all obvious [77]. Results showed that small changes in notification radius

can lead to order of magnitude increases in the number of people reached, but at the same time

affected other factors such as interest in ways that lead to order of magnitude decreases in the

likelihood of task pickup. These early results suggest a general need for methods capable of

reasoning about such trade-offs to generate policies which notify just enough people to meet

demand with a well motivated and minimally disrupted crowd.

To overcome this challenge, we propose opportunistic supply management framework, a

general architecture for a model-based, principled way of optimizing task notification policies

for engaging contributors to achieve desired global outcomes. Supply management follows

community members’ routines and integrates models that describe how task notification policies
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affect the available supply of volunteers and their likelihood to accept tasks, and how that in turn

affects system efficiency and the needs of volunteers. Using these models, Supply Management

simulates the possible outcomes that may result from adopting a task notification policy and

chooses an optimal policy for a given situation (or set of situations) that best achieves intended

system goals and desired volunteer experiences in expectation. With this approach, Supply

Management can reason about opportunities that may unfold across people’s routines, take into

consideration people’s availability and willingness to help, and devise custom-tailored strategies

that adapt to changing situations without ever imposing on what each individual must do. Unlike

existing task recommendation mechanisms that only consider how each individual can best

contribute to the system, supply management considers how to leverage volunteer efforts across

the community to best meet system goals in ways that still ensure good volunteer experiences by

not overburdening or disrupting potential volunteers.

We evaluate the effectiveness of opportunistic supply management in setting task notification

policies and analyze the decisions it makes through a simulation study and a 4-week field

deployment study (N = 26) in a peer-to-peer delivery setting. Our results demonstrate how

opportunistic supply management can (1) help system designers arrive at policies that identify

“goldilock zones” that effectively balance system and volunteer needs; (2) prioritize and promote

specific goals, for example to avoid overdisrupting volunteers while attempting to complete

tasks; and (3) make dynamic adjustments when a policy becomes ineffective, should tasks be

completed more or less quickly than was predicted.

The rest of the chapter is organized as follows. We first review related work to motivate the

need for community-scale mechanisms for managing the supply of opportunistic contributions.

We then introduce the opportunistic supply management framework, and discuss how it can be
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used to model, simulate, and optimize the choice of task notification policies to achieve desired

tradeoffs. We present the methods and results of two studies, and conclude with a discussion

of future directions in developing enabling technologies for community-wide coordination that

consider simultaneously the needs of community members and the goals of the system.

4.2. Related Work

As social or crowd computing systems seek to meet the needs of volunteers together with

high-quality services, there’s a need for community-level mechanisms that can balance system

efficiency and volunteer needs under changing situations and conditions (e.g. volunteer availabil-

ity or demands). The traditional solution for commercial services is markets; by using prices to

align incentives, the systems can then recruit workers to meet system needs in ways that align

with their self-interest. For example, on-demand services like Uber or Lyft use dynamic pricing

mechanisms [20, 19, 79] to accommodate demand changes and manage supplies in a way that

meets system goals. Some volunteer-based systems have also adapted market mechanisms by

using scrips [40, 72, 73] and virtual currencies to motivate participation and ensure system

efficiency. While useful in some cases, these mechanisms do not explicitly reason about the needs

and wants of contributors that extend beyond monetary rewards when attempting to achieve

desired system goals. In contrast, our work contributes a community-based mechanism that

can reason explicitly about the experience of community members when attempting to achieve

system goals as situations and conditions change. We envision that this approach will support

the creation of new configurations of volunteer- and community-based systems and provide new

tools for effectively managing such communities.
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A core feature of our supply management framework is that it provides a community-level

flexible coordination mechanism for opportunistic coordination among volunteers who may

or may not become available, or always provide help when asked. This is in contrast to prior

work where volunteer availability and participation are known a priori (e.g. volunteers are

committed to participate or assumed they will be), and thus systems can use approaches that

directly coordinate contributions to achieve desired outcomes. For example, some systems

coordinate what each individual must do by either planning ahead of time [22] or providing

just-in-time, step-by-step instructions [83, 45]. Specific to physical crowdsourcing, prior work

focus on optimizing effective task assignments to minimize deviations from volunteer routines

while maximizing system efficiency [98, 23, 69, 114], which largely assume that individuals

will accept tasks when asked. But, these prior techniques break down in real-world settings

like on-the-go crowdsourcing where any given volunteer may or may not go near task locations,

and may or may not accept the tasks. This may result in assigned tasks being unfulfilled or

disrupting people who are not willing or able to help. Instead of assuming the availability of

any particular volunteer, opportunistic supply management models policies that describe the

conditions under which to recruit volunteers, and reasons about the effectiveness of such policies

in coordinating contributions opportunistically [59, 60] given the many scenarios that might

occur during execution time (e.g., who is actually available, whether tasks are accepted or not).

There is a large body of literature within CSCW that studies how task suggestions and

recommendations can promote effective contributions from volunteers (e.g., [97, 125, 77, 32]),

but much of this literature focuses on how each individual can best contribute to the system and

not on how coordinating contributions across a community can best meet system goals in ways
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that ensure the needs of volunteers. Specific to on-the-go crowdsourcing, recent work on Hit-or-

Wait [76] introduced a decision-theoretic approach for deciding when to route a (best) task for a

user to contribute to along their route in an online manner. While effective for determining a task

for an individual to contribute to, this approach fails to consider how to best leverage volunteer

efforts across the community. As a point of contrast, supply management can decide which

subset of community members to recruit in a way that optimizes the balance between desired

system efficiency and volunteer needs (e.g. avoid overburdening volunteers with high-effort tasks

or with significant detours in existing physical crowdsourcing systems [45, 117, 121]). Rather

than only consider overburden and disruption on an individual basis (e.g. in social Q&A [135]),

community-level mechanisms such as supply management can also consider overburden and

disruption across community members, which in turn allows systems to have a larger decision

space to decide how to engage volunteers to best achieve the desired system and volunteer needs.

To enable community-level flexible coordination mechanisms in volunteer-based settings

where there’s uncertainty in availability and participation and where situations are changing,

our technical approach takes inspiration from Horvitz’s work on flexible computation [55, 61],

which suggests principles and ideas on ways to reason about strategies that can achieve optimal

outcomes under uncertainty. Flexible computation provides ways to select an optimal strategy or

sequence of strategies for using scarce computational resources that generate useful bounded-

resource solutions that are tailored towards varying situations. As flexible computation treats

computation power as a scarce resource, by analogy, our approach treats volunteer attention

and contributions as scarce resources, which differ from computation power in that individuals

may have varying availability and willingness depending on their situations, may or may not

decide to help when they are asked to help, may want to be minimally disrupted, and have
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dual needs in quality of services as a requester and user experience as a volunteer. To preserve

opportunistic nature in participation and meet the desired goals, our technical approach also

reasons about uncertainty in availability and participation and desired goals, and surfaces task

needs to volunteers across the community at opportune moments when the volunteers can

conveniently contribute to meet the goals. Instead of assuming future situations are fixed, our

technical approach generates strategies that are custom-tailored to varying situations where

potentially available resources are uncertain, and that can still provide optimal solutions to reach

the desired outcomes with available resources.

In modeling volunteers and simulating policies to analyze their effectiveness, our technical

approach bears resemblance to the use of decision-theoretic methods in online crowdsourcing to

optimally control and design the allocation of tasks to workers in workflows [28, 92, 138]. While

similar in some respects, a core difference is that prior approaches largely assume that workers

can be recruited to contribute to tasks as needed. In our setting, people are notified of tasks as

opportunities arise, and even then, people may or may not accept tasks presented to them. This

difference requires us to consider and incorporate richer models of the changing conditions of the

participants and their effects on system outcomes. Moreover, these models are used not only to

optimize system efficiency, but also for factoring in volunteer experience into our optimization,

which has largely been ignored in prior works. In this way, we leverage and extend existing

modeling and optimization techniques from AI, not for promoting efficiency as usual but also

for addressing core issues of import to social computing and CSCW [80], where the priorities

are around building and maintaining communities [84] and supporting long term community

development, particularly through peer production [10] and via volunteer-based systems.



125

4.3. Opportunistic Supply Management: A Framework for Community-Level Flexible

Coordination Mechanisms

We begin this section by presenting community-based, peer-to-peer delivery as an illustrative

example through which we highlight general challenges in setting task notification policies

to effectively meet system goals and volunteer needs. We then introduce the opportunistic

supply management, a framework for community-level flexible coordination mechanisms that

optimizes community-wide task notification policies to achieve desired volunteer needs and

system efficiencies. Finally, we demonstrate how we might use this framework to manage the

supply of volunteers in a community-based peer-to-peer delivery application.

4.3.1. Community-Based Peer-to-Peer Delivery

As an illustrative example, we consider a community-based peer-to-peer package delivery service

that seeks to leverage volunteers’ existing routes to effectively deliver packages from pick up

locations to drop-off locations. In this domain, people request deliveries and a system notifies

people who pass by the item pick-up location and might be able to help. To engage potential

volunteers, the system sets a task notification policies that determines the conditions under

which to notify volunteers to tasks to balance system goals (e.g., the rate at which tasks are

completed) and volunteer needs (e.g. avoiding over-disruption and over-burden). For instance,

a task notification policy may set conditions to notify only nearby volunteers within a certain

radius, or only people who have not already helped earlier today. Enacting a policy, the system

makes potential volunteers aware of tasks that need to be completed when they are in conditions

matching the policy. Potential volunteers can decide whether or not to help, and tasks get

completed opportunistically as volunteers become aware of tasks and decide to help. While only
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some of these volunteers may accept tasks, others notified may also experience disruption in

being asked to help when they are unwilling or unable.

As a system designer, we are interested in devising task notification policies that govern who

to recruit across the entire community to optimize the desired balance between system efficiency

and volunteer needs. While there may be certain tradeoffs that must be made between the two,

we are interested in identifying policies that find goldilocks zones, where we might be able to,

for example, complete tasks reasonably quickly with minimal disruption. Depending on the

wishes of the community, we might also want to identify policies that can effectively prioritize

system efficiency or volunteer needs more than the other as desired, while still considering both.

4.3.2. Core Obstacles in Setting Notification Policies to Balance System Efficiency and

volunteer Needs

We use the peer-to-peer delivery example to illustrate three general challenges in setting task

notification policies to balance system efficiency and volunteer needs. First, while at a high-level

we would generally choose more aggressive policies when we value task completion and more

conservative policies when we value low disruption, the best policy is dependent not only on

our goals but also on the situation on the ground. For instance, even when task completion is

prioritized over disruption, setting a conservative policy may be more effective still if it leads

to completing tasks quickly enough but without disrupting many people. In other words, an

effective approach for choosing a policy must consider both our goals and the situation on the

ground; there is not a single best policy for all situations, nor across all outcomes we might hold.

Second, the best policy for a given situation may not correspond to our general intuitions,

which can make manually choosing policies ineffective. For instance, one may think when the
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demand is low, it is always better to use a more conservative policy because it doesn’t disrupt

many people and can still complete some tasks. But in actuality, a more aggressive policy can

outperform a more conservative one in some scenarios. For example, when the task pickup rate

is high even when we reach out to a larger pool of potential volunteers (e.g., ping people who

are farther away to help pickup and deliver packages), choosing an aggressive policy can often

complete tasks quicker by tapping into a larger supply of volunteers, but without having to disrupt

many people because once all demand is met, it stops notifying people anyway and thus keeps

disruption low overall across the community. In other words, choosing an effective policy thus

requires not only considering our goals and situations, but also the specific conditions around

people’s availability and willingness to help and how they may affect outcomes in non-intuitive

ways.

Third, uncertainty in people’s availability and participation may lead to significantly different

outcomes that are valued differently. On any given day, the same policy may lead to significantly

more notifications (e.g., if more people happen to go near the package center) and significantly

fewer task pickups (e.g., if many people happen to be preoccupied that day). Choosing a policy

by only considering the average-case scenario may be ineffective when certain outcomes, such

as significant over-disruption, can incur a disproportionate cost on a community. In other words,

simply considering the average case scenario is insufficient for making policy determinations

because the inherent uncertainty in the domain implies that many possible scenarios are likely to

unfold that may be valued very differently based on the community’s goals. Choosing an effective

policy requires taking such uncertainty into account, so that we can take into consideration the

set of possible outcomes that may unfold instead of fixating on a single, likely outcome.
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Figure 4.2. An architectural diagram of the opportunistic supply management
framework for modeling and optimizing the choice of task notification policies.
The framework consists of (1) models of notification policies, volunteers (i.e.
supply and pickup), and values; (2) the simulator, which uses the models to
simulate and evaluate the effectiveness of policies; and (3) the decision manager,
that determines the optimal policy.

4.3.3. Opportunistic Supply Management Framework

To overcome the three core challenges in setting task notification policies, we introduce the

opportunistic supply management framework, which provides a general decision-theoretic

architecture for modeling and optimizing the choice of task notification policies; see Figure 4.2.

Supply management simulates over and compares possible outcomes that can be reached by

enacting a task notification policy, and chooses an optimal policy for a given situation (or set

of situations) that best achieves intended goals for the system and for the community. Unlike

existing technical approaches that assume that people will adhere to the chosen strategy and

thus reach the desired goals, supply management models uncertainty in people’s availability and

willingness to help under different strategies. In other words, by incorporating uncertainties into

the reasoning, supply management does not assume that people will follow through with the

strategy, but instead works with the uncertainties to devise a policy that best addresses the desired
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goals. Supply management’s model-based, simulation-based approach allows the system to

reason about how the world will unfold, accounting for uncertainties, and devise custom-tailored

strategies for varying situations that can best meet the desired goals. This allows the system

to address the three core challenges in choosing policies in ways that (1) adapt to changing

situations; (2) takes into consideration people’s availability and willingness to help; and (3)

accurately reasons about eventual outcomes across possible unfoldings.

Our supply management framework consists of three core components: (1) models of

notification policies, volunteers, and goals; (2) the simulator, which uses the models to simulate

and evaluate the effectiveness of policies; and (3) the decision manager, that determines the

optimal policy. We introduce each in turn.

The supply management framework contains the following models:

• The notification policy model determines when, where, who, and how to notify a user

about a task. A notification policy model may consider (a) at what distance to notify a

user; (b) how often to notify a user; and (c) other contextual factors, such as a user’s

schedule [63, 7, 32], their current and future routes [82, 91, 105], and associated cost

of diversion to the pickup location [59, 60], weather, and others that may affect users’

likelihood of accepting a task. A notification policy can be represented as simple as

a radius-based policy that notifies a user when they are within a certain radius from

a task pickup location, or as a more complex policy, such as a decision tree based on

contextual factors (e.g., notifies if the user is close by and has not been notified in a

while and the deviation is less than 200 meters).

• The supply model predicts how many potential users a system is able to reach given

a notification policy. Given a set timeframe, it considers how likely people are to
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meet the conditions of the notification policy and thus be notified of the task (e.g.

how likely people are to be within a certain radius of a pickup location for delivery).

Given that supply can fluctuate across the course of a day based on people’s routines,

system designers may wish to model such fluctuations explicitly should they affect the

timeliness of task completion and the degree of disruption a notification policy may

cause. To better estimate supply, system designers may also explicitly model human

mobility patterns (e.g. [47, 96, 15]).

• The pickup model predicts how likely a user is to accept a task when notified under the

conditions of the notification policy. For example, we may expect that the pickup rate

would be higher when people are nearby the pickup location, and when completing the

task would be convenient for them (e.g., if they are likely going towards the drop-off

location already).

• The value function is used to encode goals system designers and stakeholders care

about, such as system efficiency and volunteer needs, and evaluate the outcomes with

respect to the measures over encoded goals. For instance, system designers may encode

the rate at which tasks are completed as a proxy measure for system efficiency. They

may also encode the number of notifications being sent to volunteers as a proxy measure

of disruption to volunteers, or how many times a volunteer helped in the past as a proxy

measure of overburden. Depending on the kind of communities or services system

designers and stakeholders may want to promote, they may value competing goals

differently, for example by using parameters as weights across measures. To better

capture what goals stakeholders may care about and how to value competing goals,
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Figure 4.3. An example workflow of the opportunistic supply management frame-
work for a given policy. The supply management framework simulates over
possible unfoldings of how many people may show up and who will accept or
decline tasks. Given the possible outcomes and the intended goals, the supply
management framework evaluates the value of enacting the policy and compares
across policies to choose the optimal one.

system designers can survey and elicit desired goals from different stakeholders [141]

or use a participatory design method to engage end-users [88], respectively.

Given a policy from the policy model, the simulator uses the supply model and pickup model

(e.g. trained on historical data of volunteers’ past routes and previous task pickups or rejections)

to simulate and evaluate the desirability of outcomes across possible scenarios that might unfold

using the value function; see Figure 4.3. Each scenario results from drawing a sample from the

supply and pickup models, which unfolds how many volunteers may be notified of tasks, and

how many of these volunteers will accept and reject tasks.

The decision manager determines the optimal policy by using the value function to evaluate

the results of the simulator for different policies. By evaluating the value function over outcomes

across simulated scenarios, the decision manager is able to determine the effectiveness of a policy

across many possible unfoldings, and not just with respect to a single, most likely scenario based

on average number of people show up and average number of notifications being sent. This

provides a more accurate measure of the effectiveness of policies given the inherent uncertainty.
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Using the supply management framework, we can (1) find goldilocks zones that optimize

the desired balance for intended system goals and volunteer needs; (2) encode and promote

specific goals; and (3) make dynamic adjustment when previous decisions become ineffective.

For (1) and (2), based on the value function that reflects the relative importance of various goals a

certain community may have, the decision manager can find the best policy for a given situation

(e.g., amount of demand) based on what it is that the community prioritizes. For example, if

the community prioritizes system goals much more than volunteer needs, the decision manager

may optimize the choice of policy as demand increases by effectively shifting from conservative

policies to more aggressive ones.

For (3), we can use the decision manager to dynamically adjust the decisions we make over

the course of the day when its choice of policy becomes ineffective. This can happen when—due

to uncertainty in availability and willingness to help, or inaccuracies in our models— fewer

people show up than expected, or tasks are completed more quickly than expected. In such cases,

dynamic adjustment allows the system to incorporate new information about situations on the

ground and recompute what would be the optimal policy for the rest of the day. We hypothesize

that having such flexibility to devise custom-tailored solutions over the course of the day allows

the system to better meet the intended goals, and can help to nudge policies in the right direction

when models are inaccurate.

4.3.4. Applying Supply Management to Peer-to-Peer Delivery

We illustrate in this section how we might use the supply management framework to manage the

supply of volunteers for peer-to-peer delivery. To model policies, we may for example consider

a policy model that consists of a class of radius-based notification policy that notifies potential
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volunteers when they come within a certain radius around the pick up location. The radius

affects both the likelihood of pickup and the number of people notified. A task notification policy

with a small radius reaches fewer people, but since they are closer to the pickup location, the

people reached may be more likely to pick up and then deliver packages along their route. A task

notification radius with a larger radius will reach (and disrupt) more potential volunteers, but

many of these volunteers may be less able or willing to go out of their way to pick up a package.

To capture such differences empirically, we can build supply and pickup models that predict

people’s likelihood to be available to help. To evaluate outcomes, we can encode measures of

task completion and disruption (e.g., how quickly tasks are picked up; how many people are

notified and potentially disrupted) into the value function.

To find goldilocks zones that optimize the balance for intended system goals and volunteer

needs, the supply management framework simulates different radius-based notification policies

and determines the one that best balances system goals and volunteer needs using the value

function. To prioritize and promote specific outcomes, such as not overly disrupting volunteers

who are unlikely able to help, the value function may encode a cost for disruption (e.g. number

of notifications being sent) so as to penalize outcomes that achieve high task completion rates but

do so at the cost of notifying and disrupting many volunteers who could not help. As tasks may

complete more or less quickly should more or less people be available and decide to help than

was predicted, we can also make dynamic adjustments over the course of the day to recompute

policies given what tasks were completed and situations that may arise over the rest of the

day. For example, while running a policy determined by supply management, should actual

outcomes be different than predicted by mid-day (e.g., less than predicted number of packages
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were picked up), supply management may choose a more aggressive policy for the rest of the

day by recomputing the policy based on the models given conditions at the middle of the day.

4.4. Simulation Study

We conducted a simulation study in a community-based delivery setting to understand (1)

how supply management finds the goldilocks zone that can optimize the balance of intended

system goals and volunteer needs; (2) how prioritizing different goals affects the decisions

supply management makes and how it finds the goldilocks zones in different contexts to promote

those goals; and (3) how dynamic adjustment can lead to better decisions even when models are

inaccurate. A simulation study is particularly useful for understanding the performance of supply

management and the rationale behind its decisions because it allows us to experimentally vary

the choice of value functions and the model accuracy.

4.4.1. Modeling

As we discussed in the previous section, the supply management requires models of notifica-

tion policies, volunteers, and goals. We discuss how we implemented these components for

simulations.

4.4.1.1. Notification Policy. We implement a simple, radius-based notification policy that

notifies potential volunteers when they come within a certain radius around the pick up location.

We consider two policies: at-location policy and at-distance policy. The at-location policy

notifies people when they enter the pickup location. Since this policy notifies people when they

are already at the pickup location, people will be more likely to help. However, this policy may

not be able to reach many people and as a result it may not have the supply needed to get enough
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tasks completed or completed in a timely manner. The at-distance policy notifies people when

they come within 100 meters (which equates to approximately one street block in the location

where the study took place) of a pickup location. Since this policy notifies people who are less

than a block away, this policy can reach people who are still likely to help, but at the same time

it also starts notifying more people who are less likely to help because they are farther from the

pickup location. As this policy captures more people who are close enough but not necessarily

going to the pickup location, this may result in getting more tasks done in shorter time than when

applying the at-location policy.

4.4.1.2. Supply and Pickup Model. We build a supply model at a population: (1) considering

the likelihood that any given person might show up during one of three time windows (morning:

[7am-9:59am], lunch: [10am-12:59pm], and afternoon: [1pm-3:59pm]) within a notification

radius; (2) based on the number of users, sampling from this distribution to get a distribution of

the number of people that may be reached by the notification radius. Similarly, we generate a

pickup model based on the likelihood of people within a certain radius accepting a task when

notified. We trained a population-based model with more coarse-grained, 3-hour time windows

(morning, lunch, and afternoon) instead of using an individual-based or more fine-grained time

windows (e.g. hourly window) for two reasons. First, even though an individual-based model

can better capture individual differences in routines and behaviors, it will require us to collect

large training datasets to train an accurate model. Second, we wanted to capture major commute

cycles or routines and the fine-grained models may be less accurate without large datasets due to

the variability of people’s routines within fine-grained time windows (e.g. some people may go

to work around 8am while others around 9am).
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Figure 4.4. Value functions for disruption and task completion. (a) presents the
disruption value function that computes the disruption value as a function of the
number of notifications being sent. We set the disruption value function so that
the disruption value decreases drastically when more than 15-20% of users are
notified. (b) presents the task completion value function that computes the task
completion value as a function of the hour of the day at which the task is being
completed. We set the task completion value function so that the task completion
value decreases across four time-blocks at the same decreasing rate.

4.4.1.3. Value Function. Figure 4.4 shows the value function for disruption (left) and task

completion (right) respectively. The disruption value function models how over-notifications

may cause disruption. We set the function to a ∗ e−bx, where a = 100 and b = 0.15. Due to

potential user fatigue in 4-week long field deployment, we sought to set the disruption value

function as conservative as possible in our studies by decreasing the value drastically after a

certain threshold. We set the threshold as 15-20% of participants being notified because our

initial dataset showed that, on average, 15.8% (SD: 4.9%) of participants were notified with the

most conservative policy. We manually tuned the exponential decay function in a way that the

value drops drastically after the threshold.

For the task completion value function, we model a decrease in value for later pickups across

four time-blocks: morning, lunch, afternoon, and thereafter (100, 70, 40, and 10, respectively).

We set a terminal value to 10 if a task that is not completed by the end of the day (e.g. 4pm
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in our studies), assuming the task will be completed sometime in the future. For simplicity,

we assume all the delivery requests are posted at the beginning of the day (before 7am). We

envisioned the kind of services that are useful for non-urgent deliveries, which is still good to be

delivered on the same day and maybe earlier for the sake of requester experience but it’s not a

huge deal if it does not get delivered. Therefore, we weighted earlier deliveries higher than later

deliveries to reflect the requester experience by decreasing the task completion value at the same

rate across the time blocks. However, for other urgent-deliveries such as food deliveries, rather

than decrease the task completion value at the same rate, we may decrease the task completion

value more drastically after a certain threshold (e.g. 2-3 hours) to better capture the severity of

the delay on the requester experience.

To relatively weight the value of disruption (v(D)), and the value of task completions (v(C)),

we model the value function as w1∗ v(D)+w2∗ v(C). By choosing these weights we can set the

relative importance of disruption and task completion.

4.4.2. Generating Synthetic Datasets

We consider a realistic scenario in which we have 25 participants in our system. Based on prior

work [77] and our own preliminary studies, we set the task pickup rate at 75% for at-location

and 25% for at-distance, and set the supply rate as 15% for at-location and 60% for at-distance.

We assume people will show up uniformly at random across the day.

4.4.3. Study Procedure

As noted previously, we use our simulations to study how supply management (I) finds goldilocks

zones that optimize the balance for intended system goals and volunteer needs; (II) prioritizes
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and promotes specific outcomes; and (III) makes dynamic adjustment when previous decisions

become ineffective. For all three simulation studies, we simulate policies using the provided

models for 20,000 trials. We consider a range of demands from 1 to 10 tasks, and compute

policies for each level of demand to evaluate the performance and understand decisions supply

management makes as the demand changes. For the value function, we set equal weights for

disruption and task completion, except for simulation (II) where we consider three conditions:

a) volunteer focused (w1 = 1, w2 = 0.5), b) balanced (w1 = 0.75, w2 = 0.75), and c) system

focused (w1 = 0.5, w2 = 1).

For simulation (III), we consider the opportunity to make a dynamic adjustment after the

first time block. We evaluate the effectiveness of dynamic adjustment for varying degrees of

inaccuracy in the supply model by setting the actual supply distribution of the at-distance policy

in the first time block to 0%, 10%, 20%, 30%, 40% off from the distribution of the trained supply

model. For simplicity, we assume that actual pickup distribution for at-distance, actual pickup

and supply distributions for at-location are identical to their corresponding trained models.

4.4.4. Measures and Analysis

We measure the performance of the supply management framework and other fixed policies by

considering the expected value of enacting a policy or policies. The expected value provides a

measure of how good each policy is with respect to the goals we care about, across the distribution

of possible outcomes that can arise given the uncertainty in people’s mobility and decisions. To

compute the expected value of a given policy, we draw a sample from the supply and pickup

models for each trial, compute the value of simulated outcomes by using the value function, and

compute an average value across all trials (20,000 trials in our studies).
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Figure 4.5. Supply management chooses the best policy that achieves the desired
goals in balancing system efficiency and the needs of volunteers, while other fixed
policies, the at-location policy (blue line) and the at-distance policy (orange line),
would make trade-offs depending on the changing demand. Supply management
(highlighted purple line) always chooses the policy with the highest expected
value based on the changing demand. For example, supply management chooses
the at-location policy when the number of task demand is less than 5, and chooses
the at-distance policy when the number of task demand is more than 5.

4.4.5. Simulation Results

4.4.5.1. Simulation I Results: Finding Goldilocks Zones. Our results show that supply man-

agement can find goldilocks zones that can best meet the desired goals that are tailored to varying

demands. Figure 4.5 shows that the opportunistic supply management chooses the best policy

to balance system goals and volunteer needs for every value of demand, while fixed policies’

performance varies with the changing demand. For example, when the demand was less than 4,

at-location policy outperforms at-distance policy because it can get things done without having to

disrupt too many people. However, as the demand increases, at-distance outperforms at-location
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Figure 4.6. Supply management makes decisions that can maximize different out-
comes that different types of community may care about. Shown are dimensions
of disruption as volunteer needs (blue bar) and task completion as system goals
(orange bar) being prioritized for three different types of community, namely (1)
volunteer-focused, (2) balanced, and (3) system-focused. While setting a value
function that is system-goal focused leads to higher task completion value when
compared to a value function that is balanced or volunteer-focused, the value
function that is system-goal focused also leads to highest disruption (i.e. lowest
value).

policy because higher disruption is compensated by its ability to complete more tasks to meet the

desired system goals. This shows that supply management can find an optimal policy as demand

changes to maximize the outcomes that the system cares about.

4.4.5.2. Simulation II Results: Promoting Different Goals. Supply management makes de-

cisions that can maximize different outcomes that different types of communities may care about.

Our results show that setting a value function that is system-goal focused leads to higher task

completion value when compared to a value function that is balanced or volunteer focused (see

Figure 4.6). However, we also see that the system-focused has the highest disruption (e.g. lowest
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Figure 4.7. Supply management makes different decisions depending on varying
demands and the goal orientation of the community, namely volunteer-focused,
balanced, and system-goal focused. In this simulation, supply management
chooses the at-location policy (blue) for the volunteer-focused community regard-
less of demands because it cares so much about disruption. In contrast, supply
management chooses the at-location policy until demand is 2, and starts choos-
ing the at-distance policy (orange) to get things done faster for the system-goal
focused community.

value), compared to a value function that is more balanced or volunteer-focused. This means that

supply management can allow stakeholders and system designers of a community to encode the

outcomes that they care about (e.g. [141, 88]), and supply management can make decisions that

can best meet those goals.

Figure 4.7 illustrates how the supply management framework makes optimal decisions with

respect to both the situation at hand (e.g., how much demand needs to be filled) and with respect

to the goal orientation of the community (e.g., volunteer focused, balanced, or system focused).

In this case, for the volunteer-focused community, because it cares so much about disruption,

it chooses at-location regardless of demands. In contrast, for the system-focused community,
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it chooses at-location until demand is 2, and starts using at-distance to get more things done

faster. For the balanced community, supply management chooses at-location until demand is 4,

and chooses at-distance afterward. By making effective decisions based on situations and goal

orientation, the supply management framework is able to identify policies that are simultaneously

aligned with the goals of a community, and properly tailored for the situation on hand.

4.4.5.3. Simulation Results III: Dynamic Adjustment. Our results show that dynamic adjust-

ment outperforms non-adjustment by gaining 9.19% more values when models are accurate.

These gains come from two types of scenarios. First, in scenarios where the actual number

of supplies and pickups differ from the average case as predicted by the model (i.e. the rare

probability events), it is better for supply management to adjust to a less aggressive policy

(at-location) when significantly more tasks are completed than expected and a more aggressive

policy (at-distance) when significantly less tasks are completed than expected. Second, when

actual situations are as expected in the average case, having the ability to make adjustments can

still lead to achieving better outcomes because supply management now has more flexibility

to use a combination of policies to better meet the goals. These findings illustrate that how

incorporating new information about situations on the ground and providing flexibility to devise

custom-tailored solutions allows the supply management framework to produce even better

results.

Our results also show that dynamic adjustment continues to outperform non-adjustment when

models are inaccurate; see Figure 4.8. As more noise is added to the model, we see that dynamic

adjustment (with inaccurate models) continues to outperform non-adjustment (with the correct

model). By re-optimizing based on conditions in the middle of the day, dynamic adjustment

(even with a less accurate model) can still shift policies in a more effective direction in ways
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Figure 4.8. For varying degree of noises in the model, the percent value gained
via dynamic adjustment with regard to the value gained with non-adjustment with
perfect model.

that using a fixed policy throughout the day (even when it is optimized by supply management)

cannot.

4.5. Study 2: Field Deployment

While our simulation study demonstrated the advantages of supply management over fixed

policies and supply management’s ability in promoting different goals by making different

decisions, we could not observe whether supply management’s chosen policy would be the

best policy in the real-world and whether real-world outcomes and users’ perceptions reflect

the encoded goals. To complement our simulation study, we conducted a 4-week long field

deployment of supply management to understand (a) how supply management performs (i.e.

choosing the best policy) in an actual deployment; and (b) whether real-world outcomes and
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(a) (b)

(a) (b)

Figure 4.9. Apporte: a peer-to-peer delivery mobile application. (a) an example
screenshot of a task notification that a potential volunteer receives when they
pass by a pick-up location. (b) an example screenshot of an app when a potential
volunteer clicks a notification. The potential volunteer can see the details of
a request and can click “Accept” if they decide to help and click “Decline”
otherwise. The volunteer can also text the requester if they need to coordinate
with the requester.

users’ perceptions are consistent with the encoded goals that supply management seeks to

promote.

4.5.1. Apporte: Peer-to-peer Delivery Application

We developed a prototype, Apporte, a peer-to-peer delivery mobile application where users

can request item deliveries and have the system notify people who pass by the item pick-up

location. A user can post a request by providing an item description, a pick-up location, and

a drop-off location. A potential volunteer who passes by the pick-up location will receive a

notification asking if they can help deliver the item (Figure 4.9a). Once the potential volunteer
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clicks the notification, they can see the details of the request and texts the requester if they need

to coordinate. If the potential volunteer decided to help, they can click “Accept”, otherwise click

“Decline” (Figure 4.9b).

4.5.2. Participants

We recruited 26 undergraduate, graduate students, and staff members of a mid-sized U.S.

university through mailing lists, social media, flyers, and word of mouth. Participant ages ranged

from 19 to 37 (M = 24.75, SD = 4.04), with 15 female and 7 male, 1 genderqueer, 1 nonbinary.1

The study took place over 4 weeks, during which participants completed a pre-study survey, used

our application as a part of their daily lives, and completed a post-study survey. We compensated

participants with a $65 gift card for their time spent on surveys and installing our prototype, but

did not incentivize their behavior during the study (i.e., no monetary incentive was provided for

task completion).

4.5.3. Modeling and Data Collection

4.5.3.1. Modeling. We use the same models for notification policies, supply, and pickup model

as we did in the simulation. To implement the notification policies in the deployment, we used a

bluetooth low energy beacon with the broadcasting signal power of -20dBm (which translates

into approximately 3.5 meters in distance) and 200ms as the advertising interval for at-location,

and we used a geo-fence with 100 meters as the radius for at-distance. To build population-based

supply and pickup models, we used the first two weeks (10 weekdays) of the study as a training

phase during which we collect data on people’s mobility and task pickup decisions within the

126 installed the app, one person dropped out of the study because her iPhone did not have consistent internet access,
and one person did not continue using the app after the installation. 24 completed the post-study survey.
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area where the study deployment takes place over the subsequent two weeks (see details in the

next section). Based on empirically observed frequencies, we used beta distributions to model

the likelihood of a user entering a notification radius across three time-blocks (morning, lunch,

and afternoon), and the likelihood that a user accepts a task when pinged within that radius. This

allows us to model noise in our estimates, whereby the simulator can first draw a probability

of task pickup or supply from the beta distribution, and then simulate unfoldings based on that

probability.

In our deployment, we wanted to create a setup in which volunteer experience is prioritized

over system goals. This allows us to see whether the chosen policy can support system goals

while ensuring low disruption to our participants (in noticeable ways). This setup also mitigates

the risk of fatigue and notification blindness during the study itself, which can affect our findings

should participants drop out. To do this, we set a lower weight of 0.15 for task completion

and kept the weight for disruption at 1. Together with the trained supply and pickup models,

this value function led supply management to choose at-location as the optimal policy for the

deployment.

4.5.3.2. Data Collection Setup for Training Data. During the 2-week training phase, we

exposed each participant to both policies (i.e. within-subjects design) on different days and

weeks to help account for large individual variation in task pickup rates and large daily and

weekly variation in both task pickup rate and mobility patterns. For instance, on day 1 of week 1,

we collected pickup and supply data for at-location, and on day 2 of week 1 collected that of at-

distance; switching between the two until the end of week 2. By doing this, we aimed to minimize

individual, weekly, and daily variation in both pickup and supply data. During weekdays, task

requests are made at 6:55am everyday and task request notifications are sent between 7am and
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3:59pm. Task requests are not made during weekends. To prevent over-notifying participants,

we also set a notification interval to 3 hours.

In the at-location condition, it is straightforward to collect supply data: the number of people

that showed up within the range of the at location setting is the supply for at-location and

the number of people crossing the geo-fence is the supply for at-distance. In the at-distance

condition, we cannot directly observe (what would have been) the at-location supply because

some participants may have gone to the pickup location because they were notified (at distance)

and not because they were already going there. To eliminate this potential confound, we followed

up with the participants who accepted at-distance notifications at the end of each day and asked

them whether they had already planned to go to the pickup location or were just going there for

the pickup. We count them as available supply for at-location if and only if they responded that

they were already planning to go to the pickup location.

4.5.4. Study Procedure

In the latter 2 weeks of the deployment, all 26 participants used the supply management version

of our prototype. Participants consented to enrollment and received instructions that asked them

to pick up an item from a local coffee shop that was chosen as our pick-up location (Figure

4.10a) and to drop off at a specified drop-off location.

We used a pre-study survey to assess where the participants spent most of their time on

campus in order to set a drop-off location that would be on the way for most of the participants.

Based on the survey data, we chose an intersection in front of our school’s engineering building

as a drop-off location because most of our participants pass by that location as part of their

everyday routine. To reduce the cost of coordinating with requesters to hand over items—which
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Figure 4.10. Pick-up location (a) and Drop-off location (b).

may affect volunteers’ willingness to help but is not the main focus of this study—we made a

collection box (Fig 4.10b) so that the participants could easily drop off items without having to

directly coordinate with requesters.

Task requests were made at 6:55am every day and task request notifications were sent

between 7am and 3:59pm. Since we did not want the package size to affect willingness to help,

we only requested packages that were small enough to be carried in one hand. We requested 4

tasks, which was the median number of task pickups during the 2-week training phase, every day

for 10 days. To prevent over-notifying participants, we set the interval between task notifications

(per user) to 3 hours.

4.5.5. Measures and Analysis

To evaluate the supply management’s choice of policy in the real world, we compared the

expected value of supply management’s chosen policy with the other policy, as a baseline, with

respect to a supply model built using the actual, realized supply. This allows us to know, given

how many people actually showed up, whether the policy selected by supply management is

indeed optimal for the deployment. We followed the same procedure of the simulation study to
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Figure 4.11. Expected values of each policy computed with actual, realized
supplies. Supply management chose the at-location policy during the deployment
and the results show that the average value of using the at-location policy is higher
than using the at-distance policy in practice. Error bars indicate standard error of
the mean.

compute the expected value of enacting a policy, but to provide a fair comparison between the

chosen policy vs. the other policy, we used actual supplies but still used the trained pickup model

since we are able to only observe actual pickup rates for the chosen policy. To help us understand

users’ perceptions of disruption, we measured how disruptive users found the application during

the deployment period (the last two weeks) on a 5-point Likert scale (1: Not at all disruptive, 5:

Very disruptive) by using a post-study survey.

4.5.6. Results of Field Deployment

4.5.6.1. The chosen policy is more effective than the other policy in practice. Results show

that supply management’s chosen policy outperformed the other policy when compared using

a supply model trained based on actual, realized supplies. The expected value of using the
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chosen policy (i.e. at-location) is 94.62, and the expected value of using another policy (i.e.

at-distance) is 90.06; see Figure 4.11. This indicates that supply management chose the best

policy for our deployment study, not only in simulation with respect to its trained model (where

it always produces the best outcome), but also in practice with respect to how many people

actually showed up during the deployment.

While this result shows that supply management chose the at-location policy as the best

policy in the current deployment setup, it is worth noting that supply management may choose

different policies in other setups since choosing other policies may be an optimal decision.

For example, supply management may choose a more aggressive policy (i.e. at-distance) if

the number of task demands is very high because the cost of task incompletion will outweigh

the cost of disruption; similar to what we showed in the simulation results (Figure 5). Supply

management may also choose the at-distance policy to get things done faster if task completion

is highly prioritized over disruption, even with the same number of task demands; as shown in

Figure 7. To sum up, there’s no single policy that is optimal across all possible situations, but

supply management allows the system to find the policy that is best suited for the situation at

hand and the goal orientation of the community without having to manually choose a policy in

practice.

4.5.6.2. The real-world outcomes were in accordance with the encoded goals. In accord

with encoded goals, results show that users were minimally disrupted while the system was

still getting some tasks done. On average, only 12.5% (3 out of 24) of participants received

notifications on any given day, and this still led to completing 60% of all tasks (2.4 out of 4).2

Post-study survey responses indicate that the perceived cost of disruption over the deployment

2As a point of reference, it is worth pointing out that during the training data collection phase the at-distance policy
notified 13.8 participants on average (SD: 2.71) while the at-location policy only notified 3.8 participants (SD: 1.17).
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period was low; the average rating was 1.5 (SD: 0.59) on a 5-point Likert scale (1: Not disruptive

at all, 5: Very disruptive). In other words, by setting a value function that prioritized low

disruption over task completion, supply management produced actual, realized outcomes that

did just that by steering the system in ways that supported users and their contributing in the way

that was intended.

In open-ended post-survey responses, our participants reiterated that they did not find the

application disruptive during the deployment period because they either did not receive any

notifications or rarely received notifications. One participant said they did not receive any

notifications despite being in the region: “Not very disruptive, I didn’t get any notifications the

last 2 weeks.” Another participant mentioned how they expected to receive more notifications

based on their experience over the first 2 weeks but did not get as much: “Not disruptive at all –

I remember I was surprised that I didn’t get more notifications when I was in the area.” One

participant elaborated on how their perceived disruption changed from the data collection period

to the deployment period: “The app was much more location-specific. That is, I only received

requests when I was exactly in front of [the pickup location] or just under the [train station]

platform. Earlier in the study I would receive requests when I was still in my apartment, which

was a little more disruptive. In the last two weeks of the study this was less disruptive.”

In summary, these results indicate that the encoded goals that the system tried to prioritize—

keep disruption low but still getting some tasks done—are reflected in the real-world outcomes

such as the number of notifications sent and users’ perceived cost of disruption.
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4.6. Discussion

In this chapter, we introduced opportunistic supply management, a general decision-theoretic

framework that provides an architecture for modeling and optimizing task notification policies

for engaging on-the-go volunteers. We demonstrated the effectiveness of opportunistic supply

management through a simulation study and a field deployment, which highlighted the use of

opportunistic supply management to (1) find goldilocks zones that balance system efficiency

and volunteer needs, (2) promote specific goal orientations of a community, and (3) dynamically

adjust policies when actual outcomes are better or worse than predicted. The implication of our

results is that supply management provides a community-level flexible coordination mechanism

that enables effective coordination among volunteers without imposing what each individual

must do, in a way that fully considers people’s potential experiences in helping (and being asked

to help) and the outcomes of the system.

In the rest of this section, we discuss (1) the framework’s applicability to other domains; and

(2) limitations and future work.

4.6.1. Applicability to Other Domains

While we studied supply management in the context of community-based on-the-go crowd-

sourcing system, the general framework can be applied to other settings (1) to balance between

the needs of volunteers and the system goals in volunteer-based social and crowd computing

systems; (2) to promote worker experience in commercial, on-demand services; or (3) to manage

help-seeking and help-giving in workplaces and learning communities.

4.6.1.1. Balancing Between Volunteer Needs and System Goals in Other Volunteer-based

Systems. In volunteer-based systems, we envision how community-level flexible coordination
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mechanisms like supply management can be used to effectively engage volunteers across the

entire community to meet the system goals while still accounting for the needs of volunteers.

For example, in existing collective action platforms where systems identify a set of potential

volunteers given a cause or a social problem [118], using frameworks like supply management

allows the systems to model number of volunteers and the likelihood of volunteers reacting to a

cause given a recruiting strategy [118], the likelihood of having a successful campaign given the

required critical mass [22], as well as volunteer needs such as forming new social connections

with other participants [118]. Depending on organizers and platform designers’ needs, supply

management can choose a recruiting strategy that can best balance both the success of campaigns

with the needs of volunteers. Also, in social micro-volunteering systems that rely on volunteers’

existing social network and crowdsourcing micro tasks [14], we could further reason about the

desired balance between the system efficiency—that is contingent on a volunteer’s posting to

their social networks—with the volunteer’s own needs in preserving their social capital with

less-frequent posting.

In the absence of clear financial incentives, we also envision ways to explicitly model

motivational factors and use these models to reason about people’s likelihood of participation.

For example, user models may incorporate factors such as personal interests or relevance in

tasks [27, 5, 120], convenience threshold in participation [131, 50], or interpersonal bonds [109],

or self-worth in completing tasks [10]. We could also better quantify users’ intrinsic and extrinsic

motivations for varying tasks by using a motivation scale (e.g. [106]) in building the user

models. Our value functions may encode the needs of volunteers over the varying degree of

intrinsic and extrinsic motivation, such as personal interests (e.g. topic similarities between

their own interests and tasks) or potential social benefits (e.g. increasing tie strength [44]
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or interaction frequencies [26, 36]), and encode system values over quantity and coverage

of contributions [50, 43]. Notification policies may further specify how to present tasking

opportunities to a volunteer to better tailor to their motivational needs. For example, the system

may highlight potential social benefits a volunteer may gain through the task, or highlight the

cause or uniqueness of their contributions [8] depending on their extrinsic or intrinsic motivations.

4.6.1.2. Promoting Worker Experience in Commercial, On-demand Services. We envision

how system designers may use the supply management framework to meet the needs of crowd

workers, such as increasing wages and developing skills, while also meeting the needs of a

platform and of requesters. One core obstacle for crowd workers to earn higher wages is

requesters who exploit crowd labor by not accepting valid tasks or offering a low price per task.

To overcome this obstacle, existing worker support tool helps crowd workers find better tasks

by looking at requester’s credentials (e.g. hourly pay, fair score, and reward score in Amazon

Mechanical Turk [116]). While worker support tools are useful in filtering out bad requests,

we envision approaches that can reduce bad task requests in the first place by using supply

management as a simulation tool to highlight the consequences of exploitation and requesters’

credentials on potential task outcomes, and to suggest possible actions that can be taken on

a requester’s side (e.g. lower the required experience or increase the price) to attract more or

qualified crowds to improve task outcomes. This may result in a virtuous cycle where requesters

care more about their credentials and thus receive high quality task outcomes, and crowd workers

earn higher wages with fewer requesters trying to exploit their labor.

In addition to increasing wages to improve crowd worker experience, researchers also

sought to train crowd workers (e.g. training for subjective judgment tasks like identifying

accessibility issues [52]) and help them develop relevant skills. While there exist methods for skill
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development such as providing peer or expert feedback [24, 33] and offering mentorship [122],

we envision ways to help crowd workers develop skills through “learn by doing” [31]. For

example, we may model the rate at which workers learn a task type, and reason about the effect

of task completion on the worker’s skill development, as well as the effect of the worker’s current

skill level on the quality of tasks.

We also envision how mechanisms like supply management can provide more flexibility

to workers in commercial, on-demand services to provide better worker experience while still

providing good quality of services. While current on-demand or gig economy services provides

some flexibility to workers as they can decide when and where they want to be “online” and

complete tasks, the workers have to accept the tasks most of the time that an algorithm assigns

to them [89]—which reduces the “online flexibility” that may affect worker experience [137].

Unlike existing task assignment algorithms for such services that mostly assume people will

accept the tasks (e.g., [90, 136]), using frameworks like supply management can provide more

“online flexibility” to workers as supply management incorporates uncertainty in availability

and participation while still making sure that it meets the desired quality of services. This can

allow on-demand services to improve worker experience as the systems offer more flexibility to

workers in how and when they work, while still providing a good quality of services.

4.6.1.3. Managing Opportunistic Help-seeking and Help-giving in Workplaces and Learn-

ing Communities. In workplaces and learning communities, we envision that community-level

mechanisms such as supply management can be used to effectively engage individual volunteers

and manage efforts and attention among a pool of potential volunteers as their availability, ability,

and willingness to contribute change over time. In such settings, we may explicitly model

people’s expertise [97, 135, 125], interruptibility [39, 64] and availability [57], locations, and
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schedules, and use these models to inform people’s likelihood of being available to provide

effective help. Our value function may encode system values over the timeliness of help and

the quality of help provided, as well as over volunteer’s experiences in providing or receiving

help, along with costs for disruption or overburden. Using these models, supply management

can effectively promote help-seeking and help-giving in ways that are considerate of community

and system goals.

4.6.2. Limitations and Future Work

Our field deployment focused on understanding whether supply management’s chosen policy

was indeed the best policy (among a set of policies) in practice, and whether the real-world

outcomes and users’ perceptions reflected the intended goals that the system sought to promote.

As a result, we chose to design a study that compared the supply management’s chosen policy

against the other policy, and that could provide quantitative and qualitative evidence of real-world

outcomes with the chosen policy. While we think this design was appropriate for addressing our

immediate research questions, it does have some limitations. In the rest of the section we discuss

limitations in (1) lack of baseline approaches; (2) building and updating richer models; (3) study

setup; and (4) measuring other impacts of notifications on volunteers’ lives.

In our field deployment, we did not compare supply management to other baseline approaches

such as manually choosing policies to uncover how much better supply management performs

against other approaches in practice. In the future, we would like to conduct a longitudinal,

between-subjects study in which users in one condition would use a prototype with supply

management, while those in another condition would use a prototype with fixed policies. This
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longitudinal study would help us better understand the relative strengths or potential weaknesses

of the supply management in practice.

While our studies used only simple, radius-based task notification policies, we may represent

a policy as a decision tree that specifies conditions over the predicted cost of diversion [59, 60],

contextual factors such as the user’s current activities and schedules [63, 32, 7, 82, 91], and

a footfall of a task location, and the user’s prior responses to notifications [77]. As future

work considers richer policy models, we may wish to employ more advanced optimization and

approximation techniques (e.g., [100]) that can discover an effective policy without exhaustively

comparing all policies.

Our field deployment used population-based models and did not update our models due to

the short duration of field deployment. For example, we used the disruption value function that

models how over-notifications may cause disruption to the community as a whole, and it did

not take into account individual differences in the level of tolerable disruption. In the future,

we may better capture the needs of volunteers at an individual-level with a value function that

computes and aggregates the expected value per individual to account for different levels of

tolerable disruption. The supply management framework can easily accommodate individual-

based models and there are no technical challenges in doing this. While in our studies we allowed

system designers to specify how they want to model the desired goals in the value function, but

we may also train the value function based on explicit user feedback on their experience and

satisfaction, which can be collected via methods like ecological momentary assessment [119]. To

overcome the potential challenge in balancing between eliciting new information and disrupting

users with notifications that sample their experience, we may use sampling methods that reason

about the cost of interrupting people with the benefits of information gain in modeling [71, 112].
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Our field deployment setup is limited in that it took place in a medium-size American

university with undergraduate, graduate students, and staff members as study participants,

and it treated all tasks as identical. In the future, we may partner with existing communities

(e.g. community-based timebanking services [9]) in which community members are already

helping each other with deliveries or other physical tasks in their community. To deploy supply

management to an actual community, we should take into consideration task properties, such as

task urgency, a task location, a task requester, as well as an estimated task time. Future work

may investigate how and why the supply management makes certain decisions depending on

intrinsic properties of tasks, and how a system may communicate their reasoning to volunteers to

assist volunteers’ decision making processes in whether or not to participate. Deploying systems

in actual communities will help us gain insights into other real-world challenges and surface

different stakeholder needs that we would otherwise not have been able to capture in a more

controlled setting.

Beyond volunteers’ perceived disruption, a future study may also examine how the choice

of different notification strategies affect volunteer’s routines and lives. For example, we may

compute a detour distance from their planned routes, feelings of overburden, social-connectedness

as a result of completing or rejecting tasks per notification policy. A longitudinal, between-

subjects study will provide insight into volunteers’ experiences and perception in providing help

as a part of their daily lives.

4.7. Conclusion

This chapter introduces the idea of community-level flexible coordination mechanisms that

coordinate opportunistic contributions across the entire community in a way that meets both
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the needs of volunteers and system goals. To enable this idea, we propose opportunistic supply

management: a decision-theoretic framework for modeling, simulating, optimizing community-

wide task notification policies that govern when, where, and to whom to notify of tasks across the

community. From a simulation study and a field deployment, we found that supply management

finds a goldilocks zone that optimizes the desired balance between help and system needs based

on the situation on the ground and the goal orientation of a community, and supply management

also chooses an optimal policy that steers user behaviors and real-world outcomes that are in

accord with the intended goals.

Our work provides volunteer-based social and crowd computing system designers with

insights on designing and implementing community-level flexible coordination mechanisms

such as supply management into their applications. These insights are important for moving

beyond systems that rely on coordinating contributions at an individual level towards systems

that coordinating contributions across the entire community, and that can better meet the needs

of volunteers and quality of services by having larger decision spaces in deciding who to engage

with which tasks. We envision that future volunteer-based social and crowd computing systems

that build on supply management framework may intelligently enact notification policies to

govern how community members may help one another and prioritize different goals that they

care about, so that the efforts of the community members are implicitly coordinated towards the

intended goal of a community that they want to be part of as a member.
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CHAPTER 5

Discussion

In this chapter, we first revisit core principles for designing flexible coordination systems;

overview our technical approach for overcoming general challenges in realizing the idea of

flexible coordination; discuss our technical frameworks for developing flexible coordination

systems; and consider how we can design flexible coordination systems in other domains.

Then, we discuss the benefits of a mixed-method approach in designing and deploying flexible

coordination systems. Finally, we discuss some ethical concerns in designing and deploying

flexible coordination systems.

5.1. Flexible Coordination Revisited

Volunteer-based physical crowdsourcing systems help connect people to solve local and

communal problems that are difficult to achieve with a small group of dedicated volunteers.

These volunteer-based systems need to attract enough willing volunteers who can make useful

contributions to ensure long-term viability. However, current approaches are limited in that they

either (a) provide volunteers flexibility to attract people but struggle to meet desired system goals

with uncoordinated contributions; or (b) they directly coordinate contributions to meet desired

system goals at the cost of taking away volunteer flexibility and autonomy.

To overcome such shortcomings, this thesis introduces the idea of flexible coordination, or

ways to provide volunteers flexibility while still coordinating useful contributions. A flexible

coordination system surfaces opportunities for volunteers to contribute that are within volunteers’
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routines or that support their goals, while that are still useful for achieving system goals. Unlike

existing approaches that give volunteers full control over when and how they want to engage

with opportunities, flexible coordination follows people’s routines and proactively suggests

opportunities when volunteers’ needs align with that of a system. To effectively coordinate

contributions without ever imposing on their routine or requiring that they accept a task that is

suggested to them, flexible coordination preserves flexibility by accounting for uncertainty in

people’s availability and participation but still coordinates contributions that are within people’s

routines to achieve optimal outcomes.

To design effective flexible coordination systems, we need to address two core challenges.

First, we do not have a fixed set of opportunities to optimize over because opportunities may

dynamically arise depending on how people’s routines are carried out. Second, the quality

of opportunities is relative to an individual’s and other’s routines, and how our knowledge of

the world may change; therefore, evaluating the quality of opportunities in isolation can be

ineffective.

We first demonstrated how we may identify good opportunities within a single user’s routine

by building up an understanding of a user’s future trajectories and an understanding of our

knowledge of the world and people’s interests and goals. We also demonstrated how we may

identify good opportunities that may arise across multiple people’s routines by considering

other people’s routines and their uncertain availability and engagement. As the set and quality

of opportunities may dynamically change depending on how people’s routines are carried out,

rather than optimize over a fixed set of opportunities, we optimize and reason across possible

unfoldings of opportunities that may arise.
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5.1.1. Design Principles for Flexible Coordination Systems

Designing flexible coordination systems involves identifying good opportunities that can advance

and balance individual and collective goals without ever imposing what each individual must do.

In what follows, we discuss the core principles that we used for designing flexible coordinations

systems.

Maintain user flexibility and autonomy but also surface good opportunities that can

help advance people’s goals. A core principle for designing a flexible coordination system is

to preserve user flexibility and autonomy while still surfacing opportunities that can best advance

people’s individual and collective goals. This is in contrast to other intelligent systems that act as

an algorithmic overlord that prescribes or imposes what each user must do (e.g. in services like

Uber where a system assigns what each driver must do) [89]. For example, a flexible coordination

system follows people’s changing needs and goals, and surfaces opportunities to people that

would otherwise have been unnoticed by people. While doing so, the system still provides

people flexibility and autonomy to decide whether or not they want to act on the presented

opportunities. By doing this, a flexible coordination system embraces the uncertainty in people’s

actions as a result of providing flexibility to people, but nevertheless still achieves globally

effective outcomes that are in accord with people’s goals without any explicit coordination.

For example, Hit-or-Wait models the uncertainty in people’s future trajectories, which affect

which opportunities may arise within a user’s routine, and finds good opportunities to elicit

contributions that are convenient for them and are useful for achieving desired system goals.

Likewise, supply management reasons about the uncertainty in people’s engagement across the

community, simulates possible unfoldings of scenarios when enacting a policy, and chooses an
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optimal community-wide policy that can best engage people with opportunities even when we

do not know who will become available and be willing to help.

By maintaining flexibility, flexible coordination systems allow people to just go about their

days, focus on their current goals and the task at hand, and contribute to other activities that

suit their routine, that are convenient for them, or that are of interest to them. By suggesting

opportunities to people within their routines, flexible coordination systems allow people to

effectively advance and balance their goals without ever prescribing what they must do.

Simultaneously advance and balance individual and collective goals. A flexible coordi-

nation system needs to simultaneously achieve individual and their community goals. To do

this, our technical frameworks for flexible coordination provide ways to encode and model goals

that people and their communities care about and find ways to advance and balance both goals.

For example, the supply management framework allows system designers and stakeholders to

explicitly model volunteer’s individual needs (e.g. low disruption) and collective goals (e.g.

timely completion of task). Such modeling reflects volunteers’ needs in focusing on their daily

activities and goals, but at the same time, their other needs in wanting to help their community to

effectively achieve collective goals when opportunities arise. Instead of choosing between the

two goals, a flexible coordination system needs to support both goals as situations on the ground

and people’s interests and goals change.

Avoid overburdening people with opportunities (or information). A flexible coordi-

nation system should not overburden people with opportunities or information. A flexible

coordination system treats people’s attention and contributions as limited resources and devises

bounded-resources solutions that can achieve effective outcomes given these limited resources.

Instead of notifying whichever opportunity a person may come across, a flexible coordination
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system needs to continuously reason about opportunities that may arise within people’s routines,

evaluate the quality of opportunities within or across people’s routines, and only notify people of

the best opportunities to contribute to the desired system goals. By doing this, a flexible coordi-

nation system only engages people with opportunities when they can conveniently contribute

within their routines and that are most useful for achieving desired system goals.

Reduce the cost of planning and coordination. A flexible coordination system also needs

to reduce the planning and coordination burden on the people’s side. This has the potential to

increase the number of people volunteering to help others in a community. For example, we

demonstrated how we can increase the task efficiency to provide a high quality of services by

implicitly steering contributions towards where they are most needed by the system. We also

demonstrated how we can also maintain community health to sustain participation by deciding

which volunteers and how to engage them with different tasks so as not to overload or overdisrupt

certain volunteers. Instead of putting the planning and coordination burden on the volunteers, we

allow computers to take over planning and coordination challenges required for completing tasks

towards meeting desired collective goals. However, unlike existing approaches that prescribe or

pre-determine what each individual must do to better coordinate their contributions, a flexible

coordination system needs to be able to coordinate contributions opportunistically even when it

is uncertain how people’s routines may unfold and which opportunities may become available.

5.1.2. Technical Approach for Flexible Coordination Systems

To design effective flexible coordination systems, this thesis introduces an overarching technical

approach that builds an understanding of how people’s routines may unfold, reasons about

opportunities that may become available within their routines, and sets conditions under which
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to surface an opportunity to contribute by comparing across possible opportunities that may arise

within or across people’s routines.

In what follows, we reflect on how our technical approach builds upon and extends solutions

in interruptibility and opportunistic planning, as well as solutions that use decision theory in

other domains.

5.1.2.1. Interruptibility. In order to surface good opportunities to people, our technical ap-

proach builds upon prior work in interruptibility that investigates the disruptiveness of inter-

ruptions and strategies to reduce the costs of disruptions. One important factor that affects the

disruptiveness of notifications is the moment of interruption. For example, prior approaches

monitor (1) attentional states of users such as cognitive load; (2) current activities [57, 39]; and

(3) transitions between activities [54, 38] to find good opportunities to interrupt. Likewise, our

approach also sought to find opportunities so that people’s routines can be minimally disrupted.

Our technical approach for flexible coordination systems extends existing techniques and

approaches in interruptibility in two ways. First, while existing strategies evaluate the inter-

ruptible opportunities in isolation of other opportunities, our work provides ways to evaluate

the opportunities across other opportunities that may arise within people’s routines. While it is

useful in some settings to evaluate the current opportunity in isolation (e.g. deciding whether or

not to interrupt a meeting with an incoming call or defer the call [58]), we may need to evaluate

the current opportunity with other opportunities that may become available as a person carries

out their routine. For example, a virtual assistant may need to reason about when to remind a

user of a task that the user expressed uncertainty about time (e.g. “Remind me to write a short

email to John sometime tomorrow”) [111]. In such settings, rather than evaluate the current

opportunity in isolation based on a set of criteria (e.g. considering whether or not a person is
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near the computer), an intelligent virtual assistant may need to compare the quality of a current

opportunity with other opportunities that may arise to find the better opportunity. For example,

an intelligent virtual assistant may decide not to remind the user of a task even if the user is

near a computer right now (e.g. if the user is preoccupied with other tasks) and wait for better

opportunities in the future situations in which the user may go to a coffee shop and has nothing

to do while waiting in line.

Second, unlike existing solutions that reason only about interruptible opportunities to better

achieve individual goals (e.g. individual productivity), our technical approach reasons about

opportunities to contribute towards collective goals while still helping people to advance their

individual goals. As the success of achieving desired collective goals is dependent on other

volunteers’ uncertain availability and engagement, our technical approach provides ways to build

up an understanding of many people’s routines, reason about how setting different conditions to

engage people across situations may unfold, and what outcomes they may collectively reach. By

reasoning about opportunities across the community, our technical approach allows us to move

beyond optimizing individual productivity to community-wide or organization-wide productivity

where there’s a need to coordinate efforts from community members without compromising

individual goals.

5.1.2.2. Opportunistic Planning. Our technical approach draws inspiration from opportunistic

planning, which considers the problem of choosing ideal opportunities for diversions on trips

to a primary destination [59, 67, 60]. For example, prior work demonstrated how systems

may opportunistically recommend unplanned waypoints (e.g. a rest stop or a refueling stop)

depending on a user’s need during the trip. To do this, existing solutions reason about potentially

valuable opportunities and the costs associated with investing time in a diversion during a trip.
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Analogously, our technical approach reasons about opportunities within or across people’s

routines and the costs associated with surfacing opportunities to users and the potential benefits

of their contributions towards collective goals.

Unlike existing solutions that mostly assume there’s a fixed set of opportunities to optimize

over during a trip, our technical approach recognizes that people’s routines are uncertain and

opportunities may dynamically arise as people carry out their routines. Existing solutions assume

that there’s a fixed set of opportunities to optimize over because (1) a person’s destination is

known a priori; or (2) a system has to make a decision at a fixed moment in time given current

opportunities (e.g. upon a user’s request for recommendations). Rather than optimize among

a fixed set of opportunities, our technical approach optimizes over immediate situations and

possible future situations to resolve the unique challenge in settings where opportunities may

dynamically arise. This allows people to carry out their routines as they wish but flexible coordi-

nation systems can still find good opportunities to dynamically coordinate their contributions

under uncertainty.

5.1.2.3. Decision-Theoretic Approach. Given uncertainties about people’s routines, and op-

portunities that may become available within their routines, how do we determine when and

whom to surface opportunities? From the perspective of decision theory, decisions about when

and whom to surface opportunities should be determined by the expected utility of actions. Our

technical approach chooses an optimal decision that has the greatest expected value by taking

into consideration the costs and benefits of surfacing opportunities and uncertainties in people’s

routines. For example, Hit-or-Wait considers when and which opportunities to surface by com-

paring the expected value of surfacing an opportunity now with the expected value of making a

decision later if we wait. Supply management considers which community-scale policy set to
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govern who to engage with which opportunities by considering the uncertain engagement and

availability of community members and simulating and comparing outcomes over all possible

unfoldings of scenarios.

In modeling people’s routines and guiding decisions about when to engage people with which

opportunities, our technical approach bears resemblance to the use of decision-theoretic methods

in online crowdsourcing to optimally control the allocation of tasks in workflows [28, 92].

Whereas efficiency is the primary reason for using decision-theory in earlier work, in our

setting, the use of decision theory is further motivated by its ability to (1) provide seamless

interactions [56] and (2) factor in volunteer experiences to simultaneously achieve their individual

and collective goals. This enables flexible coordination systems that allow people to just go

about their days, focusing on their routines, and make convenient contributions that seamlessly

fit into their routines but that are still useful for achieving the desired system goals.

5.1.3. Technical Frameworks for Flexible Coordination Systems

Based on our overarching technical approach, we designed and developed technical frameworks

that find opportunities within and across people’s routines to achieve desired system goals while

still respecting individual needs and goals people may have. While we only modeled simple

individual goals in our studies, such as low disruptions and no deviation, we can easily model

richer individual goals and preferences in our technical frameworks. For example, we may

incorporate a richer user model that encodes people’s individual preferences such as cost of

diversion, level of commitment, and tolerable level of disruptions. Encoding rich individual

preferences would allow us to make more custom-tailored strategies to meet their needs and

have a richer decision space to devise solutions. For example, if the system knows someone is
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more committed and would not be bothered by system-initiated dialogs, the system may elicit

more information from the user to reduce the uncertainty of their future routes (e.g. by asking

their next destination). This allows us to make more informed decisions about when and which

opportunities to surface to the user. Likewise, depending on people’s perceived cost of diversion,

the system may become more directed with some users who are more willing to deviate off of

their existing routine (e.g. asking them to go out of their existing routes to search in places where

no one searched) or become more opportunistic if people’s perceived cost of diversion is high.

In other words, incorporating richer user models will allow the system to make custom-tailored

strategies that respect people’s needs and constraints while maximally leveraging their efforts

within their convenience and interests.

In addition, we can also incorporate a richer task model to capture different properties of

tasks in our technical frameworks. While our supply management study only focused on simple,

identical tasks (e.g. same pick-up and drop-off location for delivery tasks), in real-world settings,

some delivery tasks may be more or less urgent (e.g. delivering food for lunch vs. delivering a

package) and may require special expertise or access (e.g. picking up a book from a university

library). Capturing these properties in a task model means that we may need to make some

modifications to existing models, such as value function and a policy model. For example, a

modified value function may need to compute the value of completing tasks by taking into

consideration each task’s urgency and deadlines. As there are more dimensions to consider in the

value function, using heuristics to manually choose the best policy may become more ineffective

and the benefits of our model-based, principled way of choosing policies will become larger.
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5.1.4. Applicability to Other Domains

We demonstrated ways to realize the idea of flexible coordination to empower people and

communities to achieve their goals with the help of intelligent systems that address the need for

coordination and the need for flexibility. In workplaces, communities, and people’s personal

lives, we envision ways to use the idea of flexible coordination to design intelligent systems that

transform how we get things done, help one another, and generally balance multiple goals (e.g.,

individual and collective goals; short-term and long-term goals) that demand our attention across

our busy lives. This section articulates a few concrete directions.

Opportunistic Help-Seeking and Help-Giving in Workplaces. While this thesis devel-

oped ways to effectively advance collective goals through people’s physical routines, in future

work we may develop ways to advance help-seeking and collaboration in workplaces through

people’s work routines. Flexible coordination mechanisms for the workplace might help iden-

tify opportunistic moments for helping others and for collaborating on key tasks, while still

ensuring that people can be productive and work towards their individual goals. We expect

that many of the frameworks we developed in this thesis can translate and be used in the work

setting, but where models of people’s mobility patterns and routines are replaced with models

of people’s work schedules, routines, and needs. Once developed, these models can be used

by individual-level coordination mechanisms to decide when to best recruit a person to seek or

provide help (or to continue attending to their own tasks and goals), and by community-level

coordination mechanisms to decide how to best orchestrate work and collaborations across a

team or organization.

Distributed Sensemaking in the Community of Sensemakers. We may also extend the

idea of flexible coordination to develop sensemaking platforms that help people reduce the cost
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of individual sensemaking and leverage their sensemaking efforts to help the community of

future users. A core challenge in designing intelligent sensemaking support tools is to adapt

to the dynamic and iterative nature of sensemaking processes [113]. Fully automated, pre-

planned approaches that prescribe sensemaking actions to a user may fail because they encounter

new information and mentally learn new concepts and relations in a dynamic manner. Fully

manual, user-driven approaches that provide users the flexibility to explore the information space

dynamically can be too time-consuming to navigate through the sensemaking process.

To overcome such shortcomings, we may use the idea of flexible coordination to develop

a platform that follows the changing state of people’s mental models of information space and

provides guidance to move between stages based on the cost and benefits of current and future

activities. For example, the system may suggest a user moving from an exploration stage to a

comparison stage if the system knows when a user is not encountering new options. To do this,

the system may encode the state of a user’s mental models, model the likelihood of encountering

new options and their effect on the mental models (e.g. using information-theoretic estimators

such as Good-Turing [103]), and compute the expected value of gaining new information vs. the

cost of conducting an additional search.

Personal Virtual Assistants to Balance Short-Term and Long-Term Goals. While this

thesis focused on developing flexible coordination approaches for advancing and balancing

individual and collective goals, future work may develop flexible coordination approaches

for helping an individual advance and balance between their short-term and long-term goals

(e.g., meeting an impending deadline and living a healthy life). Specifically, we may use the

idea of flexible coordination to develop intelligent personal virtual assistants that can reason

about various short-term and long-term tradeoffs in the decisions that a person might make,
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and that can surface such reasoning to users to support their everyday lives. For example, an

intelligent personal assistant may consider the “privacy cost” of accidental information disclosure

in notifications [75] by reasoning about the trade-offs between short-term benefits of immediate

information access and long-term privacy cost (e.g., based on the content of the notification and

the context in which the notification appeared).

5.2. A Mixed-Method Approach for Designing and Deploying Flexible Coordination

Systems

While simulation studies are a common evaluation method in AI, they are less commonly

used in CSCW and the design of social computing systems. In this section, we wish to highlight

three core benefits of running simulations before deploying flexible coordination systems to

actual users: (1) understanding boundaries and limitations, (2) identifying corner cases; and (3)

understanding the implications of a given set of encoded values on outcomes.

First, system designers can better understand the capacity or capability of the service when

being deployed in a community. For example, they may be able to understand how many delivery

requests can be fulfilled or how fast they can be delivered in the best- or worst-case scenario.

This understanding of boundaries may allow system designers to communicate the capabilities

to users in order to set better expectations.

Second, system designers can identify some corner cases or failure cases before deploying

the system to actual users. For example, system designers may find that, due to existing mobility

patterns, the system inadvertently overburdens a certain group of volunteers or may not be able

to provide services to requesters who live in certain areas. By identifying failure cases prior to
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the deployment, system designers may come up with solutions to resolve the issues or raise the

potential issues to community members to devise potential solutions together.

Lastly, system designers can understand whether the system’s decisions, based on the encoded

values, will lead to outcomes that are in accord with the intended goals. For example, system

designers can observe decisions systems may make based on the encoded values, possible

unfoldings of people’s actions based on the system decisions, potential outcomes as a result of

people’s actions, and whether or not these outcomes are in accord with the intended goals. By

better understanding the implications of encoded values on potential outcomes, system designers

can fine-tune the values in the value function in a way that can lead to desired outcomes. However,

running simulations alone is not enough because people’s behaviors still are uncertain. Instead,

simulations should be accompanied by user studies to help system designers uncover unknown

unknowns in user behaviors. For example, in Hit-or-Wait deployment, we found that people

sometimes took unexpected routes or did not move to adjacent states (e.g. taking shortcuts or

trespassing), in ways that were unexpected by our model. And, this caused the system to miss

opportunities to notify people in other areas. This highlights how running user studies can help

system designers uncover uncertain user behaviors that can happen in the open-world.

In summary, to effectively design and deploy flexible coordination systems we need to

leverage both simulations as a pre-deployment tool and user studies as a discovery tool for

unknown unknowns.

5.3. Ethics

When designing flexible coordination systems to help people achieve individual and collective

goals, it is important to take into account ethical considerations and mitigate the risks of
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reinforcing inequality or bringing negative outcomes. Here, we discuss potential ethical concerns:

fairness, potential negative uses, transparency, privacy, and access to power or authority.

5.3.1. Fairness

Flexible coordination systems may raise fairness issues around which groups of people might be

able to benefit from services and who are being asked to contribute, both of which are largely

dependent on people’s mobility patterns. For example, people may not go to areas that they

perceive as less safe, such as low socioeconomic status (SES) areas [126], while they may

frequent other areas that they do not have any safety concerns (e.g. high SES areas). As a result,

requesters in some areas may not be able to take advantage of the benefits of services due to the

lack of potential volunteers while requesters in other areas may get high quality of services.

If people’s inherent mobility patterns reinforce inequality, how might we improve flexible

coordination systems that sought to surface opportunities within people’s routines? One approach

might be to identify people who are more willing to deviate from their routines and take a more

directed approach to complete tasks in areas that are underserved.

5.3.2. Negative Uses

While the intended use case for flexible coordination systems is to allow people to better help

each other in a community, the systems may be used for nefarious purposes. For example, people

may go about their days and conveniently deliver packages to the next locations. However, these

volunteers may be unknowingly contributing to the evil collective efforts, such as transporting

drugs. As another example, while many people have a good intention to help other people find

lost items within a community, few people may use the system to better identify areas that need
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search and retrieve the item without returning it to the owner. While it is outside of the scope

of the current research, in the future, we need ways to mitigate these negative use cases when

deploying actual on-the-go crowdsourcing systems.

5.3.3. Transparency

While in our deployment studies the systems did not explicitly communicate system decisions to

users, future systems that leverage flexible coordination should be transparent about how and

why the systems make certain decisions. Without the necessary transparency in system decisions,

it can be difficult for people to decide whether or not to act on the presented opportunities, and it

can be unclear to people how the opportunities may help achieve collective goals. As a first step

toward this direction, in Hit-or-Wait’s post-study interview, we visualized the reasoning behind

Hit-or-Wait’s decisions by highlighting how the system predicted people’s likely routes and why

the system decided to hit or wait based on previous search efforts across regions and a user’s

likely future routes. Our finding shows that communicating seemingly opaque system decisions

to people made them value their contributions more. This is important because, by highlighting

the uniqueness of people’s contributions towards achieving collective goals, people may be more

likely to continue to participate [8, 108].

5.3.4. Privacy

While flexible coordination provides clear benefits from encoding and modeling people’s routines,

there exist privacy concerns when collecting data for training models. To address some of the

privacy concerns, we may collect data in a more privacy-preserving manner. For example, in

our studies, we trained a population-based model for route prediction where we did not have to



176

know which route data came from which users. While this may lead to less accurate models, our

studies show that, even with less accurate models, our approaches can still steer users’ actions

towards the “right” direction to achieve desired collective goals. In addition, even with the less

accurate model, systems like supply management may dynamically adjust their strategies when

predicted outcomes differ from actual, realized outcomes. In the future, we may also compute

the desired threshold of model accuracy for systems to be able to make good enough decisions to

help people achieve their individual needs and collective goals. By understanding the necessary

model accuracy for systems to achieve desired outcomes, system designers may investigate

ways in which they can reach the desired threshold without compromising user privacy much

(e.g. by combining various features that do not violate people’s privacy but are still somewhat

informative).

5.3.5. Who Controls the Value Function?

While our technical frameworks allow us to encode preferences and goals that volunteers may

have, this can introduce unintended potential biases and raises questions about who should be

in control of the value function for its use and effectiveness. First, we may elicit individual

preferences such as which type of tasks and who volunteers may want to help, but optimizing for

these preferences may introduce biases towards a certain group of people. Some volunteers may

only want to help who they deem most need help; for example, elderly people who cannot go to

grocery stores during the pandemic. However, optimizing for these preferences may disadvantage

other groups of people who are also in need. For example, students who need to work part-time

during the day while attending classes may not be able to go to the package center to pick up

their packages within business hours. While the system may communicate who needs what kind
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of help and why, this also raises privacy concerns and whether or not the requesters want to

reveal potentially sensitive information to receive help from the community. This suggests that

encoding and optimizing the individual preferences alone may not be enough, and we need to

carefully reason about what unintended consequences we may encounter.

Second, while we may elicit and encode individual preferences, it is unclear who should be in

control of the value function to ensure the intended uses [99] and its effectiveness. For example,

when many volunteers have different preferences and needs, it is not at all obvious how to

encode all the preferences into a value function and who makes the final decision about what the

configuration of the value function should look like. This becomes even more challenging when

community members may not be able to reach consensus or system designers may not be able

to fully grasp the “optimal” configuration for the community. Depending on the configuration

of the value function, some groups of users may not be able to reach the goals they want. This

suggests that we need ways to better understand the trade-offs between one configuration and the

others, and how to make a final decision, either collectively or through an authority figure, to

figure out what ends up in the value function and how they are weighed.
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CHAPTER 6

Conclusion

This thesis introduces the idea of flexible coordination that follows people’s routines and

surface opportunities at moments when the interests of volunteers align with that of a system.

Flexible coordination allows us to design volunteer-based physical crowdsourcing systems

that provide flexibility to volunteers and coordinate useful contributions to achieve globally

effective outcomes. This thesis has presented three frameworks that enable the idea of flexible

coordination:

• Opportunistic Hit-or-Wait: a general decision-theoretic mechanism that intelligently

controls decisions over when to notify a person of a task among many tasks that they

can contribute to along their existing routes, in ways that reason both about system

needs across tasks and about a helper’s changing patterns of mobility.

• 4X: a framework for multi-stage data collection processes that determine effective

data collection strategies by reasoning about dynamically changing state of the world,

people’s changing interests and willingness in deviating off of their routine based on

our knowledge of the world.

• Opportunistic Supply Management: a general decision-theoretic framework for mod-

eling and optimizing the choice of task notification policies that meet the needs of

helpers and system efficiency.
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The fundamental idea of this thesis is to design intelligent systems to help people advance and

balance their individual and collective goals without ever imposing what each individual must do.

As a result, users have flexibility and autonomy to decide what they want to do and how they want

to do it, while intelligent systems serve as a helpful assistant to monitor and surface opportunities

to advance people’s goals that would otherwise have been difficult for people to keep track

of. Instead of making all or nothing trade-offs, flexible coordination systems help people

simultaneously achieve both goals by following people’s routines and identifying opportunities

within their routines that are convenient for them and useful for achieving collective goals. This

allows people to focus on their current goals and the task at hand while still contributing to other

goals when opportunities arise. We believe that this seamless interaction and careful coordination

will be a powerful model for designing intelligent systems to help people achieve multiple goals.
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