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ABSTRACT 

Mechanoacoustic Sensing at Suprasternal Notch 

Kun Hyuck Lee 

Advanced wireless soft electronics integrate a wireless power transfer circuit and a small 

battery. It is skin-compliant, and lightweight accommodating the complex motion of the body. 

These unique features of the device provide a continuous physiological measurement without 

discomfort and spatial constraints.  Using the device, we can observe and track the progression 

of the recoveries, development of diseases, and state of the sleep. Here, we demonstrate the 

design consideration and strategies for developing advance wireless soft electronics through 

wireless mechanoacoustic sensors. The sensor conforms to the skin surface of the suprasternal 

notch for the continuous measurement of mechanical and acoustic signals. We also show the 

impact of advanced soft electronics through its applications in a sleep study, stroke rehabilitation, 

and COVID-19 tracking.  
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1. Introduction 

The current biomedical device, with its rigid mechanical property, and bulky form factor 

with wires, limits its location of the operation to clinical settings (Fig. 1). This limitation inflicts 

episodical monitoring of patient's health and practice of care that misses many critical time points 

in the progression of the disease. However, many of the chronic diseases could have been 

avoided or delayed by preventative care.  

This study demonstrates the method of translating the flexible skin-surface electronics or 

epidermal electronics technology into the biomedical sensor suited for clinical settings. With its 

flexible mechanics and wireless system, the sensor allows continuous monitoring without any 

spatial constraints, provides a rich set of information that has not been observable by the current 

medical device technology. 

I. Skin Mechanics 

The epidermal electronics directly interacts with the skin surface to measure the 

physiological signal noninvasively. Therefore first, we need to understand the skin mechanics to 

set our design reference clear. 

Fig. 1 | Pictures of patients in different hospital settings sharing many similarities. Patients are lying on 
the hospital bed, tethered to wires and hooked up to bulky instruments. Picture on the left is the look of ICU in 
1975 [image from HSC Archives] and picture on the right is the look of ICU in today [image from Intensive Care 
Hotline]. 
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Skin is one of the largest organs in the body in a surface area1, providing the body with 

overall protection from many environmental factors. It consists of multiple layers; epidermis, 

dermal-epidermal junction, dermis, and hypodermis. Each of the layers has unique structures 

formed by different cell structures resulting in a specific mechanical property (Fig. 2). Together, it 

becomes a composite material that has the viscoelastic property necessary for skins to bind 

sophisticated motion, along with high resilience that protects the internal tissues from a wide 

range of external mechanical input. 

The viscoelastic nature of the skin shows a nonlinear response to different mechanical 

loads (Fig. 3). Also, its specific mechanical property varies depending on the location of the skin 

and its hydration level. There is not an absolute value for the skin’s mechanical property. 

Therefore, we focused on the skin property of the mounting locations (neck and chest), and 

specifically in the linear elastic phase. It has young’s modulus of 130kPa and can deform 10% 

elastically. 

Fig. 2 | Skin’s composite-like cell structure. It consists collagen fibers and other filaments functioning as 
fillers, and fibroblast functioning as matrix. In sum, they provide the viscoelastic nature of skin mechanics 
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Fig. 3 | Stress-strain curve of skin. In phase I, fillers are anisotropically oriented and skin behaves as low 
modulus material. In phase 2, as the applied tensile load increases, the fillers start to align in the tensile 
load direction, and material’s resistance to the deformation increases. In phase 3, with even more tensile 
load, skin behaves as linear elastic material. 
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II. Prior Arts 

Mechano-Acoustic Sensing 

 The human body has a multitude of biological systems that perform voluntary and 

nonvoluntary dynamic motions of the organs. These motions generate both mechanical and 

acoustic or mechanoacoustic (MA) signals that attenuate at the skin-air interface2–6 in wide range 

of magnitudes and frequency. They include nonvoluntary periodic subtle vibrations, such as 

cardiac activity (~10 Hz), respiration (~0.1 Hz), and strong irregular incidental activities, such as 

vocal fold vibrations (~100 Hz),  gait and locomotion (~1 Hz), and body orientation (~0 Hz). This 

rich set of mechanoacoustic signals addresses many critical physiological information that are 

useful for diagnosis and rehabilitation.  

 However, many of the current monitoring systems impose spatial constraints on the 

monitoring event, resulting only non-continuous, episodical measurements7. For example, 

Polysomnography (PSG) and current vital signs monitor require table-top stationary electronic 

boxes that power the sensor directly from the wall-outlet and wires that channel the signal from 

the body to the box. Digital stethoscopes and inertial measurement units (IMU) are the sensors 

that specifically measure the MA signals but only capable of collecting a subset of these signals7–

10. However the stethoscope is only capable of measuring signals in mid to high frequency band 

(20 to 1900 Hz)7 and episodically. IMU  is effective mainly to low frequency MA signals (0 – 100 

Hz) owing to its loose coupling to the body10,11. Even with the confined bandwidth of their 

measuring capacity, these sensors can capture signatures of cardiac mechanics such as 

seismocardiograms or ballistocardiograms12–15, respiratory rate and sounds16–22, sounds of 

swallowing23–26, vocals27,28, changes in body position and motion29–31 and others32. Therefore, they 

are clinically accepted and currently used in practice, particularly when implemented in devices 

that monitor multiple physiological signals2,4,33. 
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Some of their applications are in monitoring the daily activity level and measuring athletic 

performance. However, the rigid, and planar form factors of these devices favor chest and wrist 

as their mounting location, thus require their forms to be straps, patches, or bands27,34–38. Other 

mounting location may be able to accommodate the devices’ form factor but by sacrificing the 

comfort and reliable coupling to the body. For instance, IMUs adhere to the skin using wax and 

capture a few physiological information including movement and respiration for tracking sleep 

patterns37. Small microphone straps to the neck and captures speech and throat sounds for 

detecting swallowing events and different respiration characteristics39. With these coupling 

mechanisms, it is not feasible to have them on our body continuously for long period without 

causing skin irritation and discomfort and inducing poor signal quality. 

Soft, lightweight skin-compatible mechanics can complement the limitations that the 

current technology has, and continuously monitor a full spectrum of MA signals without a large 

mechanical load on the skin. The device with such mechanics also has ability to measure the MA 

signals with high fidelity on most part of the body that provides the signal of interest.  

With the recent advances in the soft electronics2,40–44, we made a mechanoacoustic sensor 

that is skin compliant, lightweight and utilizing accelerometers that has high sampling rate and 

high resolution. The sensor utilizes elastomeric membrane functioning as the encapsulation, 

mounting interface and supporting structure for the functional components, including 

accelerometer, Bluetooth chip and wireless charging sub-system. A network of flexible circuit with 

serpentine shaped conductive traces maximizes the accelerometer’s sensitivity to MA signals by 

mechanically separating it from other supporting components2. Combining these features, we 

have clinical-grade sensor that measures MA signal with high fidelity across wide range of 

frequencies, from 0 Hz body orientation to 1600 Hz audible signals without introducing any foreign 

objects or ambient noise inside of the packaging and the electronics. 



16 
 

 

This mechanoacoustic sensor uses the suprasternal notch (SN) as the mounting location. 

Taking advantage of this unique anatomical mounting location that offers a rich set of MA signal, 

having a single sensor mounted on a single location, we can simultaneously obtain the key 

parameters for many critical biological signals, including but not limited to respiratory, circulatory, 

digestive systems and ambulatory events. We validated the sensor data and its accuracy by 

comparing them to the data from clinically accepted conventional sensors, such as 

electrocardiogram, nasal cannula pressure transducer, chest band strain gauge and others. We 

also demonstrate its application in sleep study and many of unconventional studies that does not 

have a well-established gold-standard measurement, such as tracking COVID-19 disease 

progression, swallow, and speech therapy. Even further, by utilizing multiple accelerometers, we 

make the sensor that can reliably separate the motion artifacts and isolate the relatively subtle 

physiological information. 
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2. Mechanical Design of Flexible Wireless Electronics 

The materials from this chapter is from: 'Lee, K., Ni, X., Lee, J.Y. et al. Mechano-acoustic 

sensing of physiological processes and body motions via a soft wireless device placed at the 

suprasternal notch. Nat Biomed Eng 4, 148–158 [2020], [Nature Research]’ 

I. Mechanics of skin-device interface 

 With the sensor that matches the skin's mechanical properties and has a small and 

thin form factor, we can minimize its mechanical load on the skin and enhance its wearability. 

If the skin surface has periodic curvature with rough as the wavelength and hrough as the 

amplitude, when the sensor makes conformal contact with the skin, the contacting interface puts 

energy to bend the sensor and skin, in addition to the energy required for the sensor to adhere to 

the skin. As a result, the conformal contact changes the characteristics of the curvature, 

including hdeformed.  

We express the hdeformed at the equilibrium state of the conformal contact energy, Uconformal, 

as 4546: 

 
ℎ𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑 =

𝐸𝑠𝑘𝑖𝑛ℎ𝑟𝑜𝑢𝑔ℎ
16𝜋3𝐸𝐼𝑑𝑒𝑣𝑖𝑐𝑒

𝜆𝑟𝑜𝑢𝑔ℎ
3 + 𝐸𝑠𝑘𝑖𝑛

 
(1) 

Fig. 4 | Theoretical model of the curved skin. The model assumes that the skin surface has periodic 

curvature with rough as the wavelength and hrough as the amplitude. When the skin makes conformal 
contact with a thin membrane, the interface does work on the skin and the membrane to match their 
interfacing topology, in addition to the energy require for the adhesion. As result, the conformal contact of 
the membrane puts contact stress on the skin and deform the surface geometry of the skin. 
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By substituting this expression to the analytical equation that relates normal stress on the 

top surface of the skin to the topology of the skin surface47: 

 
𝜎𝑧 =

𝜋𝐸𝑠𝑘𝑖𝑛(ℎ𝑟𝑜𝑢𝑔ℎ − ℎ𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑)

2𝜆𝑟𝑜𝑢𝑔ℎ
cos⁡(

2𝜋𝑥

𝜆𝑟𝑜𝑢𝑔ℎ
) (2) 

we obtain the following analytical expression describing the contact stress on the skin46: 

 
𝜎𝑐𝑜𝑛𝑡𝑎𝑐𝑡 =

8𝜋4𝐸𝑠𝑘𝑖𝑛ℎ𝑟𝑜𝑢𝑔ℎ

16𝜋3𝜆𝑟𝑜𝑢𝑔ℎ +
𝐸𝑠𝑘𝑖𝑛𝜆𝑟𝑜𝑢𝑔ℎ

4

𝐸𝐼𝑑𝑒𝑣𝑖𝑐𝑒

cos⁡(
2𝜋𝑥

𝜆𝑟𝑜𝑢𝑔ℎ
) 

(3) 

It is important to highlight the contact stress’s proportional relationship with the bending 

stiffness of the device. 

II. Engineering mechanics of the device.  

The thin, soft form factors of the systems introduced here allow skin-interfaced 

measurements of biosignals continuously and wirelessly at nearly any location across the body, 

including sensitive regions such as the SN.  High data fidelity and comfortable, non-irritating 

interfaces are key features. Figs. 5a and b outline the overall device layout, with images that 

demonstrate its ability to deform naturally with movements of the neck when mounted on the SN. 

The design incorporates deformable, non-coplanar serpentine interconnects, a strain isolation 

layer at the base, a soft encapsulation overlayer and a hollow air-pockfdsaet configuration.  

Together, these features provide low modulus, elastic mechanics despite the incorporation of 

conventional rigid electronic components and flexible printed circuit board technologies with 

layouts that are compatible with high volume manufacturing. 



19 
 

 

Fig. 5 | Images, schematic illustrations, functional flow charts and mechanical modeling results for 
a wireless, skin-interfaced mechano-acoustic (MA) measurement technology designed for 
mounting on the suprasternal notch (SN).  a, Images that demonstrate soft device mechanics during 
movements of the neck while interfaced to the SN. b, Exploded schematic illustration of the active 
components, interconnect schemes and enclosure architectures. c, Block diagram of the system operation. 
d, Finite element modeling of the mechanics during uniaxial tensile and twisting deformations. e, Images 
of a device in undeformed (top), stretched (middle) and twisted (bottom) configurations. 

Fig. 5b presents, more specifically, the overall structure of the system. The device consists 

of a flexible printed circuit board (fPCB) based on a 25 m thick middle polyimide (PI) support 
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layer with patterned traces of 12 m thick rolled, annealed copper (Cu) on the top and bottom 

surfaces (AP7164R, DuPont), each encapsulated with an insulating layer of PI (25 m, FR1510, 

DuPont)48. The main electronic sub-systems include (1) a three-axis digital accelerometer 

(BMI160, Bosch) for measuring motions with a sampling frequency and resolution of 1600 Hz and 

16 bits, respectively, a broad bandwidth response (0-1600 Hz) and a sufficient dynamic range (+/- 

2 g) (g is the gravitational acceleration, 9.8 m/s2), (2) a microcontroller (nRF52832, Nordic 

Semiconductor) for acquiring data from the accelerometer and communicating the results 

wirelessly via Bluetooth Low Energy (BLE) protocols and (3) a wireless inductive charging circuit 

to support a rechargeable 45 mAh lithium-polymer battery (Fig. 5c). 

Because these sub-systems rely exclusively on rigid, planar off-the-shelf components, 

they must be carefully integrated in a manner that simultaneously offers soft, skin-compatible 

mechanics as well as effective mechanical coupling of the accelerometer to the body. The 

schemes used here exploit advanced versions of design concepts in stretchable electronics44, 

adapted for use with the fPCB generally, and to its interconnects between the sub-systems 

specifically. As shown in Fig. 5b, serpentine-shaped interconnects mechanically and electrically 

join two rectangular regions of the fPCB (islands; 1 cm x 1 cm).  One island supports the 

microcontroller and charging circuit. Here, the fPCB folds onto itself to minimize the area 

consumed by the rigid components (Fig. 5b). The other island includes the charging coil and 

connections to the battery. The coil includes two Cu traces (120 m widths) in a rectangular spiral 

design (8 turns, 100 m pitch) on both top and bottom sides of fPCB. This minimizes the overall 

size of the device while allowing larger electromagnetic flux to go through the coil as compared 

to a single layer coil with the same dimension. The top and bottom coils share the same polarity 
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and dimensions (9.55 mm by 10.7 mm). Electroplating (Contac S4) creates a conductive path 

across the two sides of fPCB through holes located at the ends of the coils.  

Small pieces of rigid printed circuit board material (Garolite G-10/FR4; 381m thick, 22 

GPa modulus, McMaster Carr 1331T37) support each of the two main islands to increase their 

bending stiffness by three orders of magnitude (49 m thick, 4.8 GPa modulus). This design 

effectively eliminates bending in these regions, thereby enhancing the robustness of the solder 

bonding joints between the components and the fPCB. These islands comprise 30% of the overall 

Fig. 6 | Optimized mechanical designs for the electrical interconnects. (a) Schematic illustration of a 
double layer serpentine interconnect with an arc angle of 270⁰ (b) Relationship between the arc angle and 
the elastic stretchability of the interconnects with and without pre-compression. 
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area of the system, leaving ~70% for freely deformable regions including the serpentine-

interconnect structures.  

The accelerometer rests on a cantilever that extends from the component island by a thin, 

narrow region of the fPCB to allow effective coupling to the skin with minimal mechanical 

constraints from other parts of the system (dotted outline in Fig. 5b).  To prevent entanglement, 

the interconnects consist of two layers of serpentine wires embedded in silicone gel (Silbione 

4717 Gel A/B, Elkem, 0.4mm thick) with a low Young’s modulus (6 kPa) to minimize constraints 

on deformation of the serpentine wires (Fig. 6a).  

We used commercial software ABAQUS (ABAQUS Analysis User’s Manual 2010, V6.10) 

to design the device and optimize its mechanical performance. The objectives are to ensure that 

(1) the Cu layer in the interconnects remains elastic, i.e., no plastic deformation, and (2) minimize 

the normal and shear stresses on the human skin to achieve a low somatosensory perception 

when the device undergoes different types of external loads (stretching, bending, and twisting).  

The epoxy, silicone elastomer (Ecoflex), and silicone gel were modeled by hexahedron 

elements (C3D8R) while the thin Cu layer and PI films were modeled by composite shell elements 

(S4R). The number of elements in the model was ~2×107, and the minimal element size was 1/8 

of the width of the narrowest interconnects (100 µm). The mesh convergence of the simulation 

was guaranteed for all cases. The elastic modulus (E) and Poisson’s ratio (ν) are ECu=119 GPa, 

νCu =0.34, EPI =2.5 GPa, νPI =0.34, EGel =5 kPa, νGel =0.49, EEcoflex =60 kPa, νEcoflex =0.49, EEpoxy =22 

GPa and νEpoxy =0.32.  

Finite element analysis (FEA) results highlight significant mechanical advantages of these 

non-coplanar interconnects compared to conventional planar serpentine layouts (Fig. 6).  At the 

optimized arc angle θ = 270o and with pre-buckling, the elastic stretchability, ε = (Ly-L*)/L*, where 
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L* is initial length (Fig. 5di) and Ly is the length where the Cu layer reaches the limit of plastic 

yielding, improves to 43% from 14% stretchability with arc angle θ = 210o  and without pre-buckling 

(Figs. 5dii and 6b).  

 

A pre-buckled, out-of-plane, arc-shaped geometry allows the serpentine interconnects to 

assume traction-free architectures that absorb tensile deformations in two distinct modes (Figs. 7 

and 5dii) in a manner largely decoupled from the device’s bottom substrate.  

 

Fig. 7 | The strain distribution in the Cu layer of the interconnect after stretching to 11 mm. The 
interconnects straighten back to their nominal (non-buckled) length from the pre-buckled state at 11% strain 
of the overall device 
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Fig. 8 | The strain distribution in the Cu layer for the device after deformations. (a)  50% compression 

and (b) 160 bending angle. For both loading cases, the computed strain in the Cu layer of interconnects 
is lower than the 0.3% yielding strain 

Additional FEA results indicate that the maximum effective strain in the Cu layer is 

significantly less than the yield strain (0.3%) under various mechanical loads (Figs. 5diii and 8).  

 

III. Design of the Encapsulating Enclosure.  

 

Fig. 9 | Cross-sectional schematic illustration of the architecture of the system. A thin membrane 
(300 μm) of a low modulus formulation of silicone (Ecoflex) forms an air pocket, or hollow enclosure. The 
hollow enclosure construction minimizes mechanical constraints of the serpentine interconnects during the 
device deformations 

A thin (~0.3 mm) elastomeric membrane of silicone (modulus, 60 kPa; toughness, 500 

MPa) forms a hollow enclosure that protects the system from the environment. This design 

provides a waterproof encapsulation structure that also allows free movement of the buckled 

serpentine interconnects (Fig. 9). The device shows no degradation in performance after 

complete immersion in phosphate buffered saline solution at 70C for ten days.  
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Fig. 10 | FEA results of the devices with different FPCBs thicknesses under different modes of 
mechanical loading. Illustration of device under different modes of load: (a) stretching, (b) bending, and 
(c) twisting on the devices with different FPCBs thicknesses (FPCB1: 12 μm PI/ 25 μm Cu/ 12 μm PI; 
FPCB2: 8.69 μm PI/ 20 μm Cu/ 8.69 μm PI; FPCB2: 5.79 μm PI/ 12.5 μm Cu/ 5.79 μm PI). (d) Tensile force 
as a function of the applied strain for the solid and hollow package with a 61 kPa and 18 kPa equivalent 
tensile modulus for the devices with FPCB1 respectively. (e) Moment as a function of the bending angle for 

the solid and hollow package configurations with a 11 Nmm
2
 and 6.8 Nmm

2
 equivalent bending stiffness 

for the devices with FPCB1 respectively. (f) Moment as a function of the twisting angle for the solid and 

hollow package configurations with a 38 Nmm
2
 and 15 Nmm

2
 equivalent twisting stiffness for the devices 

with FPCB1 respectively. The results for stretching, bending, and twisting deformation show that the 
thickness of the layers has a small influence (less than 10% difference) in the equivalent tensile modulus, 
bending, and twisting stiffness for these three FPCBs. 
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By comparison to a conventional, solid core encapsulation strategy, the hollow air-pocket 

layout reduces the equivalent tensile modulus and bending/twisting stiffnesses by ~ 3.4, ~ 1.6, 

and ~ 2.5 times, respectively (Figs. 10d, e and f).  In fact, the equivalent tensile modulus is only 

~18 kPa, nearly seven times lower than that of human skin (120 kPa) 49. The bending and twisting 

stiffnesses (~17.2 Nmm2 and ~59.4 Nmm2, respectively) are ~2.5 and ~3.9 times lower than those 

of the skin with comparable thickness. 

These results highlight the range of robust, low- modulus, elastic responses (Fig. 10) 

necessary to accommodate realistic physiological motions with little constraint on the underlying 

skin (Fig. 5e). Fig. 10 also shows that the fPCB thickness has little effect on the overall device 

modulus and stiffness.  

 

Fig. 11 | The stress distributions on the skin with a strain isolation layer. The color indicates stress 
on the skin induced by stretching the device by 30% when different strain isolation layer thicknesses (h = 
0, 200, and 400 µm) are used. 
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A layer of a soft silicone gel (Silbione 4717 Gel A/B, Elkem) at the base of the system, but 

within the encapsulating structure, provides a degree of mechanical isolation from the underlying 

skin, where stresses would otherwise accumulate at the locations of the islands during motions 

and/or deformations of the body and skin. Simulations indicate that the shear and normal 

interfacial stresses remain below the threshold for sensation (~20 kPa) for deformations of the 

skin to tensile strains of up to 30% when the thickness of the gel is 400 m (Fig. 11).   

 

Fig. 12 | The stresses on the skin from the 10% stretched device without a strain isolation layer. The 
device without the strain isolation layer induces stress on the skin even at low tensile strain. 

Without the strain isolation layer, the stresses reach 20 kPa at strains of only 10% (Fig. 

12). The  strain isolation layer does not, however, extend to the region of the device that supports 

the accelerometer, thereby ensuring its intimate mechanical coupling to the skin.   

IV. Effect of design in signal fidelity. 

In addition to the mechanical characterization of the complete device, the effect of the 

packaging material and device structure on the signal fidelity is as important aspect for design to 

consider. In fact, many of the design consideration and the device architectures also provides 

benefit to the signal quality. For instance, the strain isolation layer reduces the effective stiffness 

of the device at the skin interface, allowing the sensor to have a conformal contact with the skin. 

The conformal contact reduces the air-gap and delamination points in the interface and enhance 

the signal transmission (Appendix 1). 



28 
 

 

 

  

 

Fig. 13 summarizes an analytic model for the device on the skin. For one-dimensional 

vibration of a viscoelastic rod, the displacement takes the form u=f(x)eiωt, where t is time, ω is the 

angular frequency, and f(x) depends on the x coordinate. The relation between strain 𝜀  and 

displacement u, constitutive model (Kelvin-Voigt model), and dynamic equation of motion are: 

 
𝜀 =

𝜕𝑢

𝜕𝑥
 (4) 

 
𝜎 = 𝐸𝜀 + 𝜂

𝜕𝜀

𝜕𝑡
 (5) 

Fig. 13 | Schematic illustration of the vibration model of a one-dimensional rod with damping. The 
parameters of the model are described next. E, ρ and η are the Young’s modulus, mass density and 
damping coefficient, respectively. L and M are the length of the substrate and mass of the device per unit 
area. The amplitude and angular frequency of the applied excitation is given by u0 and Ω respectively. x 
and t are the spatial coordinates and time 



29 
 

= (𝐸 + 𝑖𝜔𝜂)
𝜕𝑢

𝜕𝑥
 

 𝜕𝜎

𝜕𝑥
= 𝜌

𝜕2𝑢

𝜕𝑡2
 (6) 

respectively, where 𝜎 is the stress, and E, ρ and η are the Young’s modulus, mass density, and 

viscoelastic damping coefficient, respectively. 

Substitution of Eq. (5) into Eq. (6) gives: 

 𝜕2𝑢

𝜕𝑥2
=
1

𝑐2
𝜕2𝑢

𝜕𝑡2
 (7) 

where: 

 

𝑐 = √
𝐸 + 𝑖𝜔𝜂

𝜌
 (8) 

For the problem shown in Fig. 13, the displacement and stress boundary conditions at

0x = and x L=  are given by: 

 

{

𝑢(0, 𝑡) = 𝑢0𝑒
𝑖𝛺𝑡

𝜎(𝐿, 𝑡) = −𝑀
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
|
𝑥=𝐿

 (9) 

where 0u and   are the magnitude and the angular frequency of the excitation load (from the 

vibration platform) applied to the rod at 0x = . 𝑀 is the mass per unit area, which represents the 

mass of the device over the area of its bottom layer. 

The Fourier transform: 

 
𝑢̂(𝑥, 𝜔) = ∫ 𝑢(𝑥, 𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

+∞

−∞

 

𝑢(𝑥, 𝑡) =
1

2𝜋
∫ 𝑢̂(𝑥, 𝜔)𝑒𝑖𝜔𝑡𝑑𝜔
+∞

−∞

 

(10) 

applied to Eq. (7) gives 
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 𝑑2𝑢̂

𝑑𝑥2
+ 𝑘2𝑢̂ = 0 (11) 

where k
c


= . The boundary conditions in Eq. (9) become  

 
{
𝑢̂(0, 𝜔) = 2𝜋𝑢0𝛿(𝜔 − 𝛺)

𝜎̂(𝐿, 𝜔) = −𝑀(−𝑖𝜔)2𝑢̂(𝐿, 𝜔) = 𝑀𝜔2𝑢̂(𝐿, 𝜔)
 (12) 

where ( )x  is the Dirac Delta function.  

The solution of Eq. (11) is 

 𝑢̂(𝑥, 𝜔) = 𝐶1𝑒
𝑖𝑘𝑥 + 𝐶2𝑒

−𝑖𝑘𝑥 

𝜎̂(𝑥, 𝜔) = 𝑖𝑘(𝐸 + 𝑖𝜔𝜂)(𝐶1𝑒
𝑖𝑘𝑥 − 𝐶2𝑒

−𝑖𝑘𝑥) 
(13) 

where the coefficients 1C  and 2C  are determined by the boundary conditions (12) to (13) as 

 

{
 
 

 
 𝐶1 =

[𝑖𝑘(𝐸 + 𝑖𝜔𝜂) + 𝑀𝜔2]𝑒−𝑖𝑘𝐿𝜋𝑢0𝛿(𝜔 − 𝛺)

𝑖𝑘(𝐸 + 𝑖𝜔𝜂) 𝑐𝑜𝑠(𝐿𝑘) − 𝑖𝑀𝜔2 𝑠𝑖𝑛(𝐿𝑘)

𝐶2 =
[𝑖𝑘(𝐸 + 𝑖𝜔𝜂) − 𝑀𝜔2]𝑒𝑖𝑘𝐿𝜋𝑢0𝛿(𝜔 − 𝛺)

𝑖𝑘(𝐸 + 𝑖𝜔𝜂) 𝑐𝑜𝑠(𝐿𝑘) − 𝑖𝑀𝜔2 𝑠𝑖𝑛(𝐿𝑘)

 (14) 

Substituting Eq. (14) into Eq. (13) yields 

 

𝑢̂(𝑥, 𝜔) =

{
 
 

 
 [𝑖𝑘(𝐸 + 𝑖𝜔𝜂) + 𝑀𝜔2]𝑒−𝑖𝑘𝐿𝑒𝑖𝑘𝑥

𝑖𝑘(𝐸 + 𝑖𝜔𝜂) 𝑐𝑜𝑠(𝐿𝑘) − 𝑖𝑀𝜔2 𝑠𝑖𝑛(𝐿𝑘)

+
[𝑖𝑘(𝐸 + 𝑖𝜔𝜂) − 𝑀𝜔2]𝑒𝑖𝑘𝐿𝑒−𝑖𝑘𝑥

𝑖𝑘(𝐸 + 𝑖𝜔𝜂) 𝑐𝑜𝑠(𝐿𝑘) − 𝑖𝑀𝜔2 𝑠𝑖𝑛(𝐿𝑘)}
 
 

 
 

𝜋𝑢0𝛿(𝜔 − 𝛺) (15) 

The Fourier Transform of the acceleration ( ) ( )2 2, ,a x t u x t t=   is  

 𝑎̂(𝑥, 𝜔) = (−𝑖𝜔)2𝑢̂(𝑥, 𝜔) (16) 

Its inverse transform gives the acceleration 
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𝑎(𝑥, 𝑡) =
1

2𝜋
∫

{
 
 

 
 

−𝜋𝑢0𝜔
2𝛿(𝜔 − 𝛺)

[
 
 
 
 

[𝑖𝑘(𝐸 + 𝑖𝜔𝜂) + 𝑀𝜔2]𝑒−𝑖𝑘𝐿𝑒𝑖𝑘𝑥

𝑖𝑘(𝐸 + 𝑖𝜔𝜂) 𝑐𝑜𝑠(𝐿𝑘) − 𝑖𝑀𝜔2 𝑠𝑖𝑛(𝐿𝑘)

+
[𝑖𝑘(𝐸 + 𝑖𝜔𝜂) +𝑀𝜔2]𝑒𝑖𝑘𝐿𝑒−𝑖𝑘𝑥

𝑖𝑘(𝐸 + 𝑖𝜔𝜂) 𝑐𝑜𝑠(𝐿𝑘) − 𝑖𝑀𝜔2 𝑠𝑖𝑛(𝐿𝑘)]
 
 
 
 

}
 
 

 
 

𝑒𝑖𝜔𝑡𝑑𝜔
+∞

−∞

 (17) 

which can be further expressed as 

 

𝑎(𝑥, 𝑡) = −𝑢0𝛺
2𝑒𝑖𝛺𝑡 {

√(𝐸 + 𝑖𝜔𝜂)𝜌 𝑐𝑜𝑠 [
(𝑥 − 𝐿)
𝑐

𝛺] +𝑀𝛺 𝑠𝑖𝑛 [
(𝑥 − 𝐿)
𝑐

𝛺]

√(𝐸 + 𝑖𝜔𝜂)𝜌 𝑐𝑜𝑠 (
𝐿
𝑐
𝛺) −𝑀𝛺 𝑠𝑖𝑛 (

𝐿
𝑐
𝛺)

} (18) 

The acceleration at the x=L is 

 

𝑎(𝐿, 𝑡) =
−𝑢0𝛺

2𝑒𝑖𝛺𝑡 (
𝐿
𝑐
𝛺)

(
𝐿
𝑐
𝛺) 𝑐𝑜𝑠 (

𝐿
𝑐
𝛺) − (

𝐿𝑀𝛺2

𝐸 + 𝑖𝜔𝜂
) 𝑠𝑖𝑛 (

𝐿
𝑐
𝛺)

 (19) 

For the displacement at the other end 0x =  to take the form 

( )   ( )i

0 00, Re costu t u e u t= =  , the above acceleration at the end x=L is simplified to 

 

𝑎(𝐿, 𝑡) = 𝑅𝑒 {
−𝑢0𝛺

2𝑒𝑖𝛺𝑡 (
𝐿
𝑐
𝛺)

(
𝐿
𝑐
𝛺) 𝑐𝑜𝑠 (

𝐿
𝑐
𝛺) − (

𝐿𝑀𝛺2

𝐸 + 𝑖𝜔𝜂
) 𝑠𝑖𝑛 (

𝐿
𝑐
𝛺)
} (20) 
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For frequencies between 1 and 50 Hz (Fig. 14), the difference in the acceleration of skin 

with and without the device is less than 3%, due to the small mass (4.56 g) of the device. 

Figs. 13-15 illustrates the effect of the packaging materials and device structure on the 

signal fidelity.  

 

 

Fig. 14 | The acceleration of the elastomer as a function of the applied frequency for the hollow 

package and without a device. The parameters used in the simulation are E = 60 kPa, ρ = 1070 kg/m
3
, L 

= 2 mm, Mhollow=0.01 g/mm
2 
which represents the weight of the device over the area of its bottom layer, u0 

= 0.1 mm, and the damping ratio (ξ= ηω) was 0.03. 
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Fig. 15 compares z-axis acceleration recordings across a frequency range of 0 to 800 Hz, 

measured by a complete wireless system and by a wired, isolated accelerometer. The ratio 

between the two measurements is close to unity across the measurement range, demonstrating 
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Fig. 15 | Experimental comparison between the frequency responses of a normal device and a 12% 
stretched device. The ratio between the frequency response of a 12% stretched device AStretched and that 

of a normal device ANormal stays close to 1 across the frequency range (0-800 Hz) except for a maximum of 

~20% drop around 400 Hz. The stretched device becomes more sensitive at high frequencies (>500 Hz). 
The stretched device also delaminates at a higher frequency (>295 Hz) and causes transient instability. 

Fig. 16 | Experimental comparison between the frequency responses of a hollow packaged device 
and a mechanically independent accelerometer. The ratio between the frequency response of a hollow 
packaged device Apackaged and that of an unpackaged accelerometer Aunpackaged stays close to 1 in the 

frequency range of interest (0-800 Hz), except for a maximum of ~13% drop in the relative response around 
91 Hz due likely to a resonance; the encapsulated device is more sensitive than the unpackaged one at 
high frequencies (>600 Hz). The driving sources for the frequency sweep tests are a vibration stage (3B, 
Scientific) (1-100 Hz) and a speaker (100-800 Hz). 
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that the effects of the packaging materials are negligible. As shown in Figs. 13-14, results from a 

simple simulation model confirms these findings.  

Similar measurements show that the responses of the device are not significantly affected 

by stretching to tensile strains of 12% (Fig. 16). 

V. Assembly of the Devices.  

A 3-axis milling machine (Roland MDX 540) created aluminum molds in geometries 

defined by three-dimensional computer-aided design (CAD) drawings created using ProE Creo 

3.0.  Casting a silicone thermoset polymer into the gap formed by matching pairs of molds defined 

the capping membrane (Ecoflex, 00-30, Smooth-on) with well controlled thickness (300 m). 

Curing occurred in an oven at 70 ⁰ C for 15 minutes. Bonding this membrane to a planar silicone 

substrate film around the perimeter defined an air cavity that enclosed the electronics.  

Silicone gel (Silbione RT Gel 4717 A/B, Bluestar Silicone, E = 5 kPa) served as a strain 

isolation layer at the base of the device.  A manual screen-printing process delivered this material 

onto the substrate film in a pattern to match geometries of the islands. Heating on a hot plate at 

100 ⁰ C for 5 minutes cured the gel. Delivering the electronics in aligned fashion onto this gel, 

capping the entire structure with the membrane that is molded into a preformed shape and 

bonding the preformed membrane on top of the planar silicone substrate around its perimeter 

completed the fabrication.  



35 
 
VI. Data and analysis approaches for measurements from the suprasternal notch.  

 

Fig. 17 | Representative mechano-acoustic (MA) data in the form of accelerations measured along 
three orthogonal axes from a device mounted on the suprasternal notch (SN) of a healthy normal 
subject. a, Power spectral analysis of data (z-axis acceleration) collected from a device vertically resting 
on an elastomer and interfaced to the SN of a subject sitting quietly. The power spectrum of the 
measurement from the SN shows high power below 100 Hz associated with various involuntary 
physiological events. b, 3-axes time series data simultaneously recorded over a 60 second interval as a 
subject engages in various activities that include sitting at rest, talking, drinking water, changing body 
orientation, walking and jumping. c, Sample time series data, spectrograms, and spectral information 
corresponding to cardiac activity, talking, swallowing, and walking. The frequency analysis uses a Hanning 
window with a width of 0.1 s moving in time steps of 0.02 s. 

Natural physiological processes generate diverse MA signals at the surface of the skin, 

from subtle vibrations on the order of ∼ 1 × 10−4⁡𝑔/√Hz (Fig. 17a) to large-scale motions with 

amplitudes of ∼ 2⁡𝑔, across a band of frequencies (0 to 800 Hz) that can be captured with the 

accelerometers used here. The SN represents a unique anatomical location for recording such 
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signals, as a direct soft tissue MA interface to vital organs related to cardiovascular, respiratory, 

and digestive systems and their interconnections between the head and torso. Fig. 17a shows 

the typical sensitivity of the device (z-axis, axes defined in Fig. 5b) characterized when placed on 

a vertical slab of elastomer (4 mm thick, 60 kPa) and when interfaced to the SN (Fig. 5a) of a 

subject while sitting quietly. The sensor on the slab shows nearly uniform noise power density 

across the entire frequency range. 

 

Fig. 18 | Histogram of the time lag results from cross correlations between the pulses from the 
suprasternal notch (SN) and from the chest. The SN has the time lag of ~13 ms. This indicates that the 
vibratory signatures related to the pulsatile flow of blood are from the carotid artery as opposed to 
chest/body vibrations due directly to the heartbeat. 

At the SN, proximity to the carotid artery results in vibratory signatures related to the 

pulsatile flow of blood.  The periodic nature of these signals allows determination of heart rate 

and variability. The cross-correlation of pulses measured from the chest near the pulmonic area 

and the SN defines a time lag between these two signals (Fig. 18). The lag of ~13 ms is consistent 
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with recordings of vibratory signatures from the carotid artery itself, as opposed to chest/body 

vibrations. The amplitudes yield information on the intensity of cardiac activity and, indirectly, 

stroke volume. Passage of air through the trachea and movements of the chest wall produce MA 

data related to swallowing, talking, breathing, coughing, sighing, snoring and other responses. 

Furthermore, the device simultaneously responds to chest wall and full-body movements, 

including orientation referenced to the gravity vector. 

All such signals rise well above the noise floor of the measurement system. To 

demonstrate the collective capabilities, Fig. 17b presents representative three-axis acceleration 

data recorded from the SN of a healthy normal subject engaged in a sequential series of activities. 

The signals associated with each of these and other activities exhibit distinct features in time and 

frequency, thereby conveying a rich set of information related to body processes. The following 

analysis focuses, for simplicity, on accelerations measured along the direction normal to the 

surface of the skin (z-axis). 

The first 10 seconds of the data feature signals that arise from respiration. Here, expansion 

and contraction of the chest wall induce periodic rotations of the device around the y-axis at the 

neck, along with some translational motions.  The main effect is to change the magnitude of the 

projection of gravity along the z- and x-axes.  Mounted on the SN, the device includes grounded 

points (e.g. trachea) that do not move with the chest wall. Thus, the angular range of rotations 

(~1.3°) from respiration is larger than that associated with chest wall movement alone (~0.5°). As 

the subject begins to hold one’s breath at the ~10 s mark, these periodic changes cease. Talking 

and swallowing generate high-frequency signals associated with acoustic vibrations and rapid 

motions, as shown in the data from 16-34 s. When the subject leans in different directions through 

the time period from 34-45 s, quasistatic 3-dimensional accelerations provide instantaneous 
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measurements relative to the gravity vector indicative of body orientation. Walking (45-53 s) and 

jumping (53-60 s) induce large amplitude accelerations with significant projections along all axes. 

Fig. 17c shows quantitative details of the high-frequency features (>10 Hz) of individual 

physiological events. Cardiac activities – both systole and diastole11– give rise to paired pulses 

with peak amplitudes of ∼0.05 g, and power concentrated in a frequency band of 20-50 Hz. The 

speech signals feature high-quality harmonic structures with fundamental frequencies in the range 

of 85 to 255 Hz for typical adults50,51. Swallow events initiate with slow motion (~0.1 s) of the vocal 

folds and with larynx mechanics during the pharyngeal phase and end with a high-frequency ring-

down associated with flow of water or food during the esophageal stage8.  Large impact forces 

that span a broad frequency ranges up to ∼100 Hz characterize walking motions. 
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Fig. 20 | Demonstration of the effect of mounting location. The measurements are from five different 
locations (+/- 1 cm vertical and horizontal displacements from the center of the SN) of a male subject with 
lower body mass. The results indicate that the device is not sensitive to the mounting locations, especially 
for the prominent frequency range for each distinctive event. There are slight differences in the magnitude 

Fig. 19 | Short-time windowed (0.2 s) spectrum of z-axis acceleration measured from the SN of five 
subjects across different ages and genders. Data from male (M) and female (F) subjects from 27 to 81 
years old, each while sitting quietly in a resting state. The analysis windows are manually chosen from time 
periods where no bio-signals are clearly present. The spectrums indicate a noise behavior of the device 
close to that on the Ecoflex (Fig. 17a), which exhibit no clear difference between different age groups. 
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of the signal relative to the position which agrees with the anatomical locations of the associated signal 
sources. 

The characteristic frequencies and temporal structures of these features do not depend 

critically on the subject (gender, body type, ethnicity and age) (Fig. 19) or the mounting location 

in the vicinity of the SN (Fig. 20), although their relative amplitudes can vary slightly. For instance, 

the magnitudes of talking/swallowing signals increase as the mounting location approaches the 

larynx and upper esophageal sphincter. The magnitudes of walking signals are invariant with 

position as might be expected.  Biological features across different subjects, including the 

fundamental frequencies of speech52,  the thickness of the skin, and other aspects lead to 

differences in the signal, in ways that are expected and do not affect approaches in signal analysis 

and interpretation. 

 

Fig. 21 | Flow diagram of signal processing and corresponding results from representative 
mechano-acoustic (MA) data acquired from healthy normal subjects. a, Block diagram of post-
processing analytics for energy expenditure (EE), heart rate (HR), respiration rate (RR), swallow count (SC) 
and talking time (TT); blue arrow indicates a use of three-axis accelerometer data and black arrow feeds 
only z-axis data. EE: The window-averaged 1-10 Hz band-limited root-mean-square (BLRMS) sum of data 
from all three axes (𝐀𝐄𝐄) indicates the intensity of activities. HR: Detection of heartbeat peaks relies on 

identification of local maxima (𝐍𝐇𝐑) in 20-50 Hz band-passed waveforms (𝐙𝐇𝐑). RR: Zero-crossing nodes 

(𝐍𝟎) of the decoupled, 0.1-1 Hz band-passed chest-wall motion (𝐙′′)⁡from three-axis measurements serve 

as the basis for RR estimation. TT: The talking signals feature pronounced harmonics (𝐏(𝐟𝟎
𝟏) and 𝐏(𝐟𝟎

𝟐)) of 
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fundamental frequencies (𝐟𝟎

𝟏) in the spectrogram analysis (𝐏(𝐟)). SC: The broadband swallow-like events 

(𝐍𝐌𝐚𝐭𝐜𝐡) correspond to occurrences of peaks (𝐍𝐒) in both low-passed and high-passed signals (𝐒𝟏, 0.1-5 

Hz; 𝐒𝟐, >100 Hz). The algorithm outputs swallow events 𝐍𝐒𝐂 that do not overlap with talking or activity 
periods. b-f, Application of the signal processing flow to the representative MA data (Fig. 17) for EE (b), 
HR (c), RR (d), TT (e), and SC (f) analysis. 

In practice, MA measurements consist of data streams that superpose physiological 

information from a multitude of sources. A processing flow that exploits the characteristic time-

frequency features demonstrated in Fig. 17 enables separation of key events, each of relevance 

in medical and/or fitness monitoring, i.e. energy expenditure (EE), heart rate (HR), respiration rate 

(RR), swallow counts (SC), and talking time (TT) (Fig. 21a).  

Application of these strategies on the data in Fig. 17 demonstrates the scheme (Figs. 21b-

f).  Fig. 21b summarizes the EE over 2 s, 50% overlapping moving averaging window as a sum 

of all-axis low-frequency (1-10 Hz) band-limited root-mean square (BLRMS) data53. The result 

allows classification of activity levels from low (sitting ~10−2𝑔) to medium (walking~10−1⁡𝑔) to 

high (jumping ~100⁡𝑔) on a logarithmic scale.  

Analysis of HR begins with the application of a bandpass filter (𝑓𝑙𝑜𝑤 = 20⁡Hz, 𝑓ℎ𝑖𝑔ℎ = 50⁡Hz) 

to the z-axis acceleration data to suppress noise outside the frequency range of interest. Cardiac 

pulses correspond to local maxima greater than 0.005 g in the time series of these band-passed 

signals, ignoring intervals shorter than 0.33 s (~180 beats per minute, or BPM) and longer than 

1.2 s (~50 BPM). Applying a 5 s, 50% overlapping moving window average to peak-to-peak 

intervals yields a running estimate of HR (Fig. 21c). The peak-detection algorithm, however, 

cannot operate reliably with motion artifacts that involve large impacts and associated temporal 

and spectral features that coincide with those due to comparatively subtle cardiac mechanics. 

Measurements of RR are particularly sensitive to ambulatory signals due to overlaps of 

these two types of signals in the frequency domain (0.1 – 1 Hz). Traditional methods rely on three-

axis accelerometers mounted on the chest or the abdomen and allow determination of RR only 
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during periods that exclude effects of locomotion16,17,54. Simple/weighted sum methods (e.g. 

Principal Component Analysis) can make use of the multi-axis information18. In the approach 

reported here, a noise subtraction algorithm exploits time-synchronized three-axis acceleration 

measurements to extract respiration signals at all activity levels. The detection mechanism relies 

critically on the SN mounting location and orientation (Figs 5. a, b), where the z-axis and x-axis 

measurements are both sensitive to chest-wall motion, while the y-axis acceleration is mainly 

associated with core-body motions.  

The wavelet cross spectrum of two time series, 𝑥𝑛 and 𝑦𝑛, where 𝑛 = 1,2,… , 𝑁 is: 

 𝐶𝑥𝑦(𝑏, 𝑛) = 𝐶𝑥
∗(𝑏, 𝑛)𝐶𝑦(𝑏, 𝑛) (21) 

where 𝐶𝑥(𝑏, 𝑛)  and 𝐶𝑦(𝑏, 𝑛)  denotes the CWT of 𝑥  and 𝑦  at scales 𝑏  and positions 𝑛 . The 

superscript denotes the complex conjugate. The coherence projection for the common mode 

signal embedded in 𝑦𝑛 becomes, 

 
𝐶𝑦′(𝑏, 𝑛) =

𝐶𝑥𝑦
∗ (𝑏, 𝑛)

𝐶𝑥𝑥(𝑏, 𝑛)
⋅ 𝐶𝑥(𝑏, 𝑛) 

(22) 

We kept wavelet transform coefficients with wavelet coherence 𝑅𝑥𝑦
2 (𝑏, 𝑛) > 0.8, where 

 
𝑅𝑥𝑦
2 (𝑏, 𝑛) =

|𝐶𝑥
∗(𝑏, 𝑛)𝐶𝑦(𝑏, 𝑛)|

2

|𝐶𝑥(𝑏, 𝑛)|
2|𝐶𝑦(𝑏, 𝑛)|

2 
(23) 

For the specific application in suppressing motion artifacts occurring in the frequency 

range of respiration cycles, the computation uses Morlet wavelets. We chose a sampling period 

Δ𝑡 = 20⁡s to cover all time scale of interest. The smallest scale for the Morlet wavelets is 𝑠0 = 2Δ𝑡. 

The CWT discretizes scales with 16 voices per octave. The number of octaves is set to be the 

nearest integer less than or equal to log2𝑁 − 1 , which in this case is 10. We perform the 
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continuous wavelet transforms as well as a smoothing operation over 16 scales using the built-in 

MATLABTM function “cwt” and “smoothCFS”. 

In practice, the wavelet transform projection yields common mode 𝑧′ values between z- 

and x-axis measurements. The differential mode 𝑧′′  between 𝑧′  and y-axis measurements 

decouple motions from respiration, according to 

 
⁡𝐶𝑧′ =

𝐶𝑥𝑧
𝐶𝑧𝑧

⋅ 𝐶𝑧, 
(24.1) 

 
𝐶𝑧′′ = (1 −

𝐶𝑦𝑧′

𝐶𝑧′𝑧′
) ⋅ 𝐶𝑧′ .⁡ 

(24.2) 

Fig. 22a demonstrates an application of the algorithm to simulated signals. Two time-

series data, 𝑥 and 𝑧 are generated. Both data carry a large amplitude chirp signal in common to 

mimic the time non-stationary motion artifact, as well as a random gaussian noise of same 

distribution.   A differential sinusoidal signal is added to 𝑧 to simulate the respiration signal. The 

algorithm detects the common mode chirp signal between 𝑥 and 𝑧 and recovers the differential 

sinusoidal signal with gaussian noise in 𝑧.  
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Fig. 22 | Applying CWT subtraction methods to simulation and experimental signal. (a) A numerical 
simulation test for performance of wavelet cross spectrum analysis. The algorithm detects the common 
mode (a large amplitude chirp) between X and Z and recovers the differential sinusoidal signal embedded 
in Z. (b) A sample wavelet cross spectrum analysis for chest-wall motion decoupling using three-axis 
acceleration measurements. The 0.1-1 Hz band-passed x- and y-axis data is offset by 0.2 g for visualization 
purposes. (c) Zero-crossing nodes detected from the extracted signal. A dynamic threshold equal to a tenth 
of the standard deviation of 1 min data eliminates the effects of small-amplitude ripples that appear on top 
of the general respiration pattern. 

Fig. 22b presents the subtraction results from sample experimental measurement, using 

the three-axis acceleration data acquired from a healthy-normal subject during walking. The 
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algorithm suppresses the fast motion artifacts and recovers the slower respiration patterns. Fig. 

22c shows a sample detection for zero-crossing nodes using sample extracted respiration signal. 

A dynamic threshold, set as a tenth of the standard deviation of data collected for 1 min, eliminates 

the effects of small-amplitude ripples that appear on top of the general respiration pattern.   

Fig. 21d compares the band-passed (𝑓𝑙𝑜𝑤 = 0.1⁡Hz, 𝑓ℎ𝑖𝑔ℎ = 1⁡Hz) z-axis measurement with 

𝑧′′. As opposed to traditional time-frequency analysis approaches for RR55,56, a search for zero-

crossing nodes of 𝑧′′determines the average time-span of inspiration-expiration cycles 𝑇̅ in one 

minute, as the basis for estimating RR as⁡60/𝑇̅ breaths-per-minute (BPM) (Fig. 21d). The direct 

counting method accounts for the time non-stationary nature of respiration during physical 

activities. An adaptive threshold of 10%  of the standard deviation of the data helps reduce 

miscounting associated with small-amplitude and fast ripple features on top of the overall 1-min 

respiration pattern (Fig. 21d).  

Signals that arise from speech involve the prominent presence of a second harmonic of 

the fundamental frequency 𝑓0
1 in the expected frequency range and magnitude (Fig. 21e). The 

talking time detected in this manner appears as shaded regions in Fig. 21e. Given that 𝑃(𝑓0
1) is a 

local maximum of power spectral density 𝑃(𝑓) in the range of the human voice (𝑓0
1 < 160⁡Hz for 

male subjects, 150⁡Hz < 𝑓0
1 < 400⁡Hz for female subjects) (Fig. 21e), the algorithm searches for 

a local maximum 𝑃(𝑓0
2) in the frequency range 

3

2
𝑓0
1 < 𝑓0

2 <
7

2
𝑓0
1 and identifies speech if the search 

matches the anticipated harmonics behavior within a tolerance distance |𝑓0
2 − 2𝑓0

1| ≤ 10⁡Hz . 

Instances with 𝑓0
2 < 120⁡Hz and 𝑃(𝑓0

2) < 5 × 10−3⁡𝑔/√𝐻𝑧 are not considered. 
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Fig. 23 | Device sensitivity test to 100 Hz ambient TV sound. (a) The device is responsive to ambient 
sound that is louder than 87 dBZ, which was measured by the microphone. (b) Even though the device 
picks up the ambient sound starting at 87 dBZ, its effect in the accelerometer amplitude is not significant 
until it reaches 98 dBZ. Even when the ambient sound reaches the power of 98 dBZ, the accelerometer 

amplitude (2x10
-2 

g/√Hz) is smaller than that of the general speech signal (10
-1 

g/√Hz). 

Using this device to determine TT has distinct advantages over methods relying on 

microphones due to its insensitivity to airborne acoustics.  Tests in controlled, acoustically isolated 

rooms show that external sounds at 100 Hz and 90 dB(Z), appear as signals with amplitudes of 

only 2x10-2 g/√Hz (Fig. 23) while speech at a similar frequency and at 65 dB(Z) on microphone 

(near the audible threshold) appears on the device with maximum amplitude of 10-1 g/√Hz (Fig. 

24).  
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Fig. 24 | Device sensitivity test to vocal sound. (a) The device is sensitive to vocal sound that is softer 
than 65 dBZ, which was measured by the microphone. (b) Even when the vocal sound is ~65 dBZ, the 

device picks up the vocal fold vibration with the adequate amplitude (10
-1 

g/√Hz) for the signal processing 
algorithm. 

The effects of ambient sounds can, therefore, be neglected entirely in almost all practical 

scenarios.  

Swallowing events feature both low-frequency mechanical motions (0.1-5 Hz) and high-

frequency acoustic components (100-800 Hz). Based on this observation, the algorithm for SC 

detects swallow events as high-frequency and low-frequency peaks that occur, coincidentally, 

within a 2 s time window (Fig. 21f). For the purpose of this algorithm, swallow events are only 

considered if they are separated by more than 0.2⁡s from talking events and by more than 0.5⁡s 

from active periods (𝐸𝐸 > 0.05⁡𝑔). 
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Human subject evaluations in practical scenarios.   

Fig. 25 | Results from mechano-acoustic (MA) data recorded at the suprasternal notch (SN) in field 
studies with comparisons to reference measurements. a, HR measurements during a 5-minute interval 
during exercise to increase the HR using MA signals and a Polar® hand-grip monitor. The cardiac amplitude, 
measured as the peak acceleration amplitude, exhibits a correlation with the HR measurement. b, RR 
measurements during a 2-minute interval using MA data and manual counting. The subject counts peak-
to-peak intervals but the algorithm counts zero-to-zero intervals, thereby leading to a difference that 
appears as a time lag. c, A sample 1-min dining-scheme experiment comparing the reference labeling of 
events (cross) with the MA device detection (dot). For reference labels, label 1 and 2 mark the start and 
end of talking, while label 3 marks the occurrence of swallowing. d, The Bland Altman analysis for HR, RR, 
TT and SC. The solid and dashed lines represent mean difference and standard deviation x 1.96, 
respectively. Different colours represent the five different healthy normal subjects. 

Field studies in physical exercise and in dining demonstrate these data acquisition and 

processing schemes. The SN served as the mounting location in all cases. The first involves 

cycling and resting on a stationary bike, with HR between 50 to 180 BPM.  For the HR monitoring 

session, the subject rode a cycling machine with a HR sensor (Polar®) interfaced to electrodes 

on the handle, yielding reference HR values every 5 s. The session began when the HR reached 

over 90 BPM.  The subject cycled to increase the HR by 10 BPM each min until reaching 170 

BPM as shown in the Fig. 25a. 
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In a separate set of experiments, subjects manually count the number of breathing cycles 

per five minutes during normal sitting, walking and running activities as a reference for RR. For 

dining, each subject talks and swallows for five minutes according to a prescribed protocol.  

For the swallowing experiment, the duration of each session was 5 min. The subject talked 

and swallowed water for a prescribed number of times per minute throughout the session. The 

talking duration was 10-s per session, and the swallowing occurred every 10 s from the end of a 

previous talking session to the start of a subsequent one.  

 Here, periodicity (with a time scale of ~10 s, significantly longer than the time scale of 

event detection of ~ 0.1 s) in the activities facilitates tracking of numbers of events. In each minute 

of the 𝑛th test  (𝑛 = 0,… , 5), the subject talks for 𝑛 × 10⁡s, then swallows at (𝑛 + 𝑘) × 10⁡s, 𝑘 =

1,… , 6 − 𝑛. During data acquisition, each subject marks the start and end of the talking period as 

well as swallowing instances using logging buttons on an app that runs on the smartphone used 

for data acquisition (Fig. 5d). The data set includes five subjects for each scenario. For the cycling 

test, each subject cycle for 5 min. Applying a 5 s, zero overlapping moving window generates a 

total of 301 samples for comparison. RR experiments yield 56 samples across different activity 

levels, wherein each sample is an average RR over one 5-min test. A total of 26 dining tests 

generate average values for TT and SC over each 5-min test.  

Figs. 25a-c shows the example results of MA measurements versus reference data. In the 

exercising scheme, the MA HR follows the reference HR from 100 to 160 BPM over a time period 

of 5 min under cycling activity, as in Fig. 25a. In addition to HR, the MA device captures the 

amplitude of the cardiac activity, which exhibits an approximate linear correlation to HR. In Fig. 

25b, the MA RR follows the manually counted RR for this 2-min segment during walking. The 

mean RR values in both cases, marked by the dashed lines, closely match. Fig. 25c is a 1-min 
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demonstration of the dining scheme. The MA talking and swallowing events agree with the label 

reference.   

Figs. 25d shows Bland-Altman plots for HR, RR, TT, and SC. The solid and dashed lines 

mark the mean and 1.96 times the standard deviation of the difference between MA 

measurements and reference values, respectively. HR has a mean difference of 2.8 BPM and a 

standard deviation ARMS of 6.5 BPM. This limit of agreement is comparable to that observed with 

some of the best commercial devices for HR monitoring during physical activity (𝐴𝑅𝑀𝑆= 4-29 BPM). 

RR has a mean difference of 0.3 BPM and a standard deviation of 2.5 BPM. As with HR, this 

difference is comparable to that of conventional monitors of RR (𝐴𝑅𝑀𝑆⁡= 2-3 BPM).  

A categorized statistical analysis indicates that the standard deviation error increases 

slightly with intensity of the activity (Fig. 26). TT has a mean difference of -2.0 s/min and a 

standard deviation of 2.2 s/min. SC has a mean difference of -0.7 counts/5 min and a standard 

deviation of 2.8 counts/5 min.  

Fig. 26 | Bland-Altman analysis for RR under different activities. For sitting, the mean difference 
between MA and reference measurements is 0.21 BPM and the standard deviation ARMS = 1.63 BPM 

(N=18); for walking, the mean difference is 0.52 BPM, and ARMS = 2.43 BPM (N=19); for running, the mean 

difference is 0.01 BPM and ARMS = 3.34 BPM (N=19). N indicates the sample size for each scenario. 
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3. Applications 

I. Sleep Study 

The materials from this section is from: 'Lee, K., Ni, X., Lee, J.Y. et al. Mechano-acoustic 

sensing of physiological processes and body motions via a soft wireless device placed at the 

suprasternal notch. Nat Biomed Eng 4, 148–158 [2020], [Nature Research]’ 

Fig. 27 | Application of mechano-acoustic (MA) sensing from the suprasternal notch (SN) in clinical 
sleep studies. a, Image of the MA device on the SN (red box) along with a gold-standard polysomnography 
(PSG) sensor ensemble, including devices for recording Electrocardiograms (ECG), 
Electroencephalograms (EEG), and Electrooculograms (EOG) and for Pressure Transducer Airflow (PTAF) 
measurements, along with an Abdomen Strain Gauge, Thorax Strain Gauge and Thermistor.  b, Avatar 
representation of a subject with the associated device frame and canonical frame. c, Body orientation 
calibration test. The arrows indicate the position of the nose. d, Comparisons of heart rate determined with 
the MA sensor and with the ECG recordings during sleep. e, Comparisons of the respiration rate determined 
with the MA sensor and with the nasal Pressure Transducer Airflow (PTAF) recordings during sleep. f, 
Comparisons of the body orientation determined with the MA sensor and by visual inspection by a sleep 
technician. g, Inference of sleep stages based on multi-band z-axis signal power of MA measurements in 
comparison to clinically determined sleep stages 
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Use of MA devices to quantify patterns of sleep represents a potential application in 

advanced clinical diagnostics. Fig. 27a shows a subject equipped with an MA device on the SN 

and with a complete suite of conventional polysomnography (PSG) sensors for gold-standard 

reference measurements. For the sleep study, in addition to the MA device, the subject wore a 

suite of PSG sensors, including a three channel system for electroencephalography (EEG) on the 

forehead, two channel leads for electrocardiography (EKG) on the chest, a pair of leads for 

electromyography (EMG) on the chin, a pair of channels for electrooculography (EOG) on the 

side of upper left eye and lower right eye, a pressure transducer air flow (PTAF) with thermistor 

in the nostrils, two strain gauge bands around the chest and abdomen. 

 A sleep lab technician performs visual observations alongside throughout the study to 

record changes in body orientation. In addition to HR and RR detection, MA device also monitors 

quasi-static body orientation continuously. 

We analyze body orientation in SO(3) by finding the rotation matrix transforming the 

nominal gravity vector in the canonical frame 𝒈 = [0,0, 𝑔0] to the gravity vector measured in the 

device frame 𝒈′ = [𝑎𝑥 , 𝑎𝑦, 𝑎𝑧], where the magnitude of gravity is estimated as 𝑔0 = √𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2. 

We use Rodrigues’ rotation formula for computation efficiency657, 

 𝒗𝑟𝑜𝑡 = 𝒗 cos 𝜃 + (𝒌 × 𝒗)sin𝜃

+ 𝒌(𝒌 ⋅ 𝒗)(1 − cos 𝜃) 

(25) 

where 𝒌 is the unit vector representing the rotation axis around which vector 𝒗 rotate an angle 𝜃 

following right-hand rule. Eq. 25 can be represented in matrix notation, 𝒗𝑟𝑜𝑡 = 𝑹𝒗, where 𝑹 is the 

rotation matrix, 



53 
 

 𝑹 = 𝑰 + (sin𝜃)𝑲 + (1 − cosθ)𝑲2 (26) 

In the above equation, 𝑰 is the 3 × 3 identity matrix, 𝑲 is the skew-symmetric cross-product 

matrix of 𝒌 = [𝑘1, 𝑘2, 𝑘3], 

 

𝑲 = [

0 −𝑘3 𝑘2
𝑘3 0 −𝑘1
−𝑘2 𝑘1 0

] 
(27) 

Given the two gravity vectors 𝒈 and 𝒈′, we compute rotation axis and angle using cross 

product and dot product of normalized vectors 𝒈̂ and 𝒈′̂, 

 
𝒌 =

𝒈̂ × 𝒈′̂

|𝒈̂ × 𝒈′̂|
, 𝑠𝑖𝑛𝜃 = |𝒈̂ × 𝒈′ |̂, cos 𝜃 = 𝒈̂ ⋅ 𝒈′ .̂ 

(28) 

If we let 𝑲′ be the skew symmetric matrix of 𝒈̂ × 𝒈′̂, i.e. 𝑲′=|𝒈̂ × 𝒈′̂|𝑲. Substituting all 

expressions to Eq. 26, we obtain rotation matrix, 

 
𝑹 = 𝑰 + 𝑲′ +

(1 − 𝒈̂ ⋅ 𝒈′̂)𝑲′2

|𝒈̂ × 𝒈′̂|
2  

⁡(29) 

We convert the rotation matrix to the corresponding Euler angles in the device frame using 

MATLABTM function “rotm2eul”. The rotation angle around the longitudinal axis of body indicates 

the body orientation of major interest in the sleep study. 

Fig. 27b shows an avatar representation of the subject in a left recumbent position, along 

with the corresponding device and global frames of reference. Rotation matrix to the Euler angles 

conversion around the body-fixed (intrinsic) axis in z-y-x sequence (MATLABTM function 

“rotm2eul”) makes intuitive sense of the rotation operation. The rotation angle 𝜃  around the 

longitudinal x-axis characterizes the major body orientation of interest during sleep, where we 
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define zero degree as supine and the positive sense as turning right (left-hand rule). Fig. 27c 

presents a calibration test on rotation angles, in which a subject roll into a series of body 

orientations. In addition to the supine, prone, left recumbent, and right recumbent positions, the 

MA signal at the SN reveals additional information associated with the relative rotation of the head 

against the torso (Figs. 5a and 27c). Figs. 27d-f compare MA devices vs HR derived from 

electrocardiography (EKG) (1-min window, 50% overlap), RR derived from pressure transducer 

air flow (PTAF) (2-min window, 75% overlap) and sleep technician inspection measurements of 

body orientation (0.1-s window, 0% overlap) respectively throughout a ~7-h sleep study on a 

healthy male (Age 26, Asian/Korean) subject.  

 

 

Fig. 28 | Bland-Altman analysis for HR and RR during the 7 h sleep study. HR has a mean difference 
of 2.4 BPM and a standard deviation ARMS of 3.9 BPM (N = 853). RR has a mean difference of -2.0 BPM 

and a standard deviation of 2.6 BPM (N = 853). N indicates the sample size for each scenario. 

Bland-Altman analysis for HR and RR gives a standard deviation error of 3.9 BPM and 2.6 

BPM, respectively (Fig. 28).  

As a routine part of clinical care, segments of sleep are classified into four different stages, 

excluding the wake stage. The duration and frequency of each stage determines the sleep quality. 
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The four stages are Rapid Eye Movement (REM), and non-REM Stages N1, N2, and N3. REM 

sleep comprises irregular and high RR and HR, along with the large amplitude electrooculogram 

(EOG) signals recorded using the PSG suite58. Non-REM sleep stages are defined by 

characteristic features on electroencephalogram (EEG), and although the MA device does not 

record EEG or EOG data, the results in Fig. 27g suggest some capabilities in quantifying sleep 

stages by applying machine learning algorithms on MA data obtained during stages determined 

manually by a clinical expert.  

Sleep scoring involves modeling time series sequences with discrete states. Realistically, 

MA signal features would not tell sleep stages deterministically. We introduce Hidden Markov 

Model with Gaussian mixture emissions (GMMHMM) to capture the stochastic emission from 

states to observations. A Hidden Markov Model (HMM) 𝚽 = (𝑨,𝑩, 𝜋) encodes a joint probability 

distribution of generative states sequences 𝜴 = {1, 2, 3, … ,𝑁} characterized by a set of output 

observation symbols 𝑶 = {𝑜1, 𝑜2, … , 𝑜𝑀} with an underlying probabilistic dependence. We let 𝑠𝑡 

denote the state at time 𝑡. In the mathematical representation, 𝑨 = {𝑝𝑖𝑗} is a transition probability 

matrix, where 𝑝𝑖𝑗 is the transition probability from state 𝑖 to 𝑗. 𝑩 = {𝑞𝑖𝑘}  is the output probability 

distribution, where 𝑞𝑖𝑘 is the probability of emitting observation symbol 𝑜𝑘 in state 𝑖. 𝜋 = 𝑃(𝑠0 = 𝑖) 

is the initial state distribution. Sleep stage identification is a learning problem, i.e. given a 

sequence of observations 𝑿 = (𝑋1, 𝑋2, …𝑋𝑇), to find the best characteristic model parameter 𝚽′ 

so that the joint probability ∏𝑃(𝑋|Φ)  is optimized through expectation-maximization (EM) 

algorithm. For the specific application, we use sklearn.hmm.GMMHMM module to train the HMM 

parameters and infer the hidden states. We randomly initialize the HMM parameter values. The 

prior distribution over initial states is uniform. The EM algorithm runs for 10 iterations or until 

convergence.  
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Fig. 29 | Feature extraction and classification of sleep stages. (a) The filter-bank for energy feature 
generation (b) The time series of multi-band energy extracted from z-axis acceleration measurements. (c) 
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The inference of sleep stages based on the multi-band signal power in comparison with clinically 
determined sleep stages. (d) The confusion matrix for the success rate of the classification. 

In the sleep study, the input features to the GMMHMM model take the form of multi-

frequency band signal power, characterized by the band-limited root mean square (BLRMS) in 

120-s time epoch, as our input features to the GMMHMM model. The band choices feature the 

0.1-0.8 Hz respiration signals, as well as the 20-50 Hz cardiac signals. We choose in total seven 

bands for a balance between the characterization of system complexity and the feature 

representation for generality. Fig. 29a shows the full feature extraction filter-bank. Fig. S29b 

shows the time-series of each band power for the sample 7-hour sleep data presented in the main 

text, Fig. 27.  

For the HMM model, we set the number of states to be 𝑁 = 5. Multi-band z-axis signal 

power on a logarithmic scale serves as the observable clustering features to classify the five sleep 

stages labeled as 0 to 4 from Wake to Rapid Eye Movement (REM). The multi-band choices are 

0.1-0.8 Hz for respiration, sub-bands in the range 0.8-20 Hz for body motions, and 20-80 Hz for 

cardiac activity. Gaussian mixture emissions determine the probability of multi-band power 

observations given the state. The inferred hidden states capture the overall trend of clinician 

determined sleep scoring. 

The HMM model developed upon small dataset is a simple clustering method providing 

no information about the labeling. We permute the inferred states for all combinations of labeling 

and assign each class to a stage according to a minimum marathon distance optimization. Fig. 

29c presents the final classification result in comparison with the clinically determined sleep 

stages. Fig. 29c summarizes the success rate in a confusion matrix. 

The algorithm exploits multi-band z-axis signal power on logarithmic scales as the 

observable clustering features, with a multi-band choice featuring the 0.1-0.8 Hz for respiration 
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signals, sub-bands in the range 0.8-20 Hz for motions, as well as 20-80 Hz for cardiac signals. 

As shown in Fig. 27g, the optimized inferred hidden states capture the overall trend of gold-

standard sleep scoring. The success rate for a simple binary wake/asleep classification is 82%. 

Fig. 29 includes a complete confusion matrix for multi-classes. Advanced analytics, a subject of 

on-going work, may enable further classification. 

 

Fig. 30 | Insights into sleep patterns determined by mechano-acoustic (MA) sensing from the 
suprasternal notch (SN). a, Cumulative distribution function (CDF) of HR and RR in supine, prone, left, 
and right body orientations. The inset indicates mean (line) and standard deviations (bars) of the 
measurements between subjects. b, Sample data that illustrate the transition from snoring to quiet periods, 
plotted along with body orientation. c, Comparisons of different types of snoring mechanisms and their 
characteristics in acceleration and frequency. 

The wireless operation and the ability to track sleep with a single device facilitates use in 

home settings and in a way that does not alter natural patterns of sleep, as significant advantages 

over PSG systems. Insights obtained in this way can guide behaviors to optimize sleep quality.  

For example, Fig. 30a shows the cumulative distributive function (CDF) of HR and RR statistics, 

extracted from data collected from eight healthy normal subjects over five nights of sleep in the 
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home, classified into four body orientations (supine: −45 < 𝜙 < 45, left:⁡ − 135 < 𝜙 < −45, 

right:⁡45 < 𝜙 < 135, prone:⁡𝜙 > 135⁡or⁡𝜙 < −135). The solid lines are mean CDF values for 

all subjects.  The shaded regions mark the standard deviation variance between subjects (Fig. 

30a). The inset compares the mean and standard deviation of HR and RR respectively generated 

from the averaged CDF for different body orientations. The results indicate that the HR is highest, 

on average, in Left-recumbent/Prone-approximate positions. The RR is higher in recumbent 

positions but lower in prone positions, with supine as a reference. According to  previous studies59–

61, such changes may relate to reductions in venous flow, with resulting  blood pressure reductions 

and/or increases in reflexive sympathetic nervous activity. 

As expected, the device is sensitive to snoring signals as well. Fig. 30b shows time series 

and time-frequency analysis of a representative ~50 s period of snoring followed by a transition 

to a ~50 s period of quiet sleep from a healthy female subject. The time series superimposes the 

band-stopped (𝑓𝑙𝑜𝑤 = 1⁡Hz, 𝑓ℎ𝑖𝑔ℎ = 60⁡Hz) z-axis acceleration measurement with the band-passed 

(𝑓𝑙𝑜𝑤 = 0.1⁡Hz, 𝑓ℎ𝑖𝑔ℎ = 1⁡Hz) respiration signal, to show that snoring occurs during exhalation. The 

snoring-to-quiet transition in the sample of Fig. 30b correlates with a slight left-ward head versus 

torso rotation of ~10. The time-frequency analysis shows a clear presence of harmonics with 

fundamental frequency of ~50 Hz, which falls in the range of the natural frequencies of the soft 

palate and tongue structures62,63. The TT algorithm can be adapted to search for snoring time (ST) 

by shifting the fundamental frequency search range to the lower frequencies (20⁡Hz < 𝑓0
1 < 80⁡Hz).  

The auto-detected ST appears as shaded regions of the spectrogram plot. A tendency for snoring 

occurs during inspiration due to the Bernoulli effect64.  As the throat starts to narrow, the velocity 

of flow may increase which drops the pressure in the airway behind the tongue and soft palate, 

thereby drawing the tissues together. The timing relative to the inspiration period may indicate the 

anatomical origin of snoring: tongue, or soft palate. Fig. 30c compares the snoring signal 
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generated by these two different mechanisms. From 0 to 16 s, the subject artificially obstructs the 

airway by pushing the tongue to the back of the throat, then the subject artificially generates the 

snoring sound by vibrating the soft palate. The results clearly demonstrate that tongue snoring 

has inconsistent timing relative to the respiration cycle as compared to soft palate snoring. 

Moreover, the spectrogram illustrates that snoring generated by the tongue appears at a higher 

frequency range than that of the soft palate, as might be expected based on the mechanics of 

these processes.  

II. Stroke Rehabilitation 

Stroke affects more than 795,000 people per year in the United States. It is a leading 

cause of long-term disability, which includes a reduction in mobility and communication skills. 

More than half of survivors over age 65 struggles with these post-stroke diseases. Movement 

deficits are a hallmark of stroke, resulting from weakness or paralysis on one side of the body. 

Typical outcomes of stroke are difficulty walking and reduced walking speed, difficulty using the 

affected upper arm, the rigidity of the limbs, impaired balance, and impaired speech, language, 

and cognition. However, post-stroke patients can improve from these deficits. Early clinical 

treatments, including physical rehabilitation and medication, aim to build on these improvements 

and return stroke patients to a certain level of function before hospital discharge. The stroke 

severity and ability to function in the community determine the duration of hospitalization. 

However, determining whether a patient has recovered sufficiently for discharge depends on 

subjective and qualitative measures. 

Currently, the evaluation of stroke patient recovery relies on infrequent clinical 

assessments, performance-based rehabilitation measures, and patient self-reports. 

Performance-based rehabilitation measures limit sensitivity, reliability, and validity in identifying 

changes or clinical efficacy of treatment or recovery progression. The patient-reported recovery 



61 
 
is rather biased. Thus, there is a strong need for objective, reliable, and continuous monitoring of 

stroke patients to assist clinicians and therapists in making informed decisions about stroke 

treatment and recovery. 

In this study, the mechanoacoustic sensor continuously monitors stroke inpatients and 

allows clinicians and therapists to offer more customized interventions during inpatient procedures. 

Specifically, a wireless sensing system enables quantitative measures of body function and 

activity and tracks biometric data and communication. Clinicians and therapists would have 

access to a patient history of sensor-based biometric and activity data, allowing them to measure 

recovery and assign treatment after stroke more fully. 

Aphasia 

The sensor is more sensitive to the mechanical and acoustic signals of the body than the 

ambient mechanical and acoustic noise (Figs. 23 and 24). Notably, high energy and distinct 

signals like vocalization predominate in most of the signals and noise that co-occur.  Relying on 

these unique characteristics of the sensor and the vocalization signal, we deploy the sensors to 

an aphasia rehabilitation focus group. The patients exercise vocalization and restore their 

linguistic ability through the practices of assisted communication with each other.  

Conventionally, the clinician attends the focus group to assist the patients and record their 

conversation. After the session, the clinician listens to the conversation again, and qualitatively 

score the degree of the impairment for each patient. This assessment process is prone to human 
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error and time-consuming, especially when the recordings involve multiple people communicating 

with each other and convoluting the recorded message.  

In this aphasia study, two participants wore the sensor on the suprasternal notch and 

carried on the conversation. Each sensor only picked up the vocalization of the patient wearing 

the sensor by measuring the vocal fold vibration and blocking out the ambient sounds in the room 

(Fig. 31). At the end of the session, the talk time algorithm quantified the duration and frequency 

of the conversation from the MA signal recordings by selecting the vocalization features, as 

demonstrated in the earlier section. 

As a result, the sensor accurately recorded the mechano-acoustic laryngeal data and 

calculated total talk time for the two subjects during the book club and conversation group. The 

full recording time was 311 minutes, and the subject 1 sensor measured 51 minutes of talk time, 

and the subject 2 sensor measured 33 minutes of talk time. These measurements were longer 

than the manual measurements using the microphone recordings and stopwatch. The 

discrepancy may be due to the human error in manual counting and the algorithm that considers 

the pause between the short interval between words and the talk time. Figs 32 and 33 show 5-

Fig. 31 | Quantifying talk time with a cohort of 3 stroke survivors with aphasia and a speech-
language pathologist. Demonstrating the sensor’s ambient noise insensitivity by plotting signals from the 
conversation between two patients. Each signal only shows the vocalization of the individual wearing the 
sensor, but not the sound from others.  
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minute segments of their talk time for Subjects 1 and 2, respectively. Subject 1 shows an irregular 

speaking pattern, with periods of lengthy utterances, while Subject 2 shows more interjections or 

brief comments throughout the time. We also surveyed the user experience. The participants did 

not feel any irritation at the sensor placement site. They noted that they could not feel the sensor 

while talking, swallowing, or moving their heads or necks. 

 

Fig. 32 | 5-minute segments of MA signals. The 100 Hz, highpass Butterworth filter, keeps the MA signal 
associated with the vocalization. The red curve is the envelope of the MA vocalization signal that groups 
the utterance of words and bases the calculation of the talk time.  

This pilot study demonstrates the feasibility of a flexible, wearable, wireless MA sensor to 

accurately measure the talk-time of an individual speaker with aphasia in a setting with an ambient 

conversation. The sensor is comfortable and unobtrusive, and it accurately captures the total talk-

time for persons with aphasia throughout the day. Future research will examine the sensor's use 

in the home and community to assess functionality, usability, and durability. Data from this sensor 

can inform future treatments, as clinicians will have objective data from multiple communication 

environments.  
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Dysphagia 

Recalibrating respiratory-swallow phase patterning through Respiratory-Swallow-Training 

(RST) results in significant airway protection and swallowing biomechanical benefits. However, 

identifying patterns of the chest and abdominal wall movements outside of research settings is 

cumbersome and expensive, as the current RST system, called respiratory inductance 

plethysmography, requires specialized non-portable sensors and peripheral apparatus (Fig. 32), 

which consists of a nasal cannula pressure transducer, chest and abdominal strain gauge band, 

table-top signal amplifier, and a laptop with wires connecting the sensors and amplifiers (Fig.33). 

 In this study, we compare respiratory signals recorded during swallow trials using the MA 

sensor to the respiratory inductance plethysmography recordings, current gold-standard for the 

RST. A total of 214 swallows were analyzed. There was a high percentage of agreement (89%) 

and a strong, positive correlation (r = 0.92, p < .05) between the number of swallows detected by 

the MA sensor and the gold standard respiratory inductance plethysmography sensors and the 

Fig. 33 | Current gold-standard system for Respiratory-Swallow-Training. It consists of a nasal cannula 
pressure transducer, chest and abdominal strain gauge band, table-top signal amplifier, and a laptop. Wires 
and tubes create a connection among the sensors and peripheral instruments. 
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nasal cannula pressure transducer (Fig.33). The MA sensor and the respiratory inductance 

plethysmography systems for respiratory-swallow phase patterning agreed well (percentage of 

agreement: 100%, weighted = 1.00). A Wilcoxon signed-rank test showed no statistically significant 

differences between estimated lung volumes at swallow initiation (p = .101). Our findings suggest 

that the MA sensor detects swallows and respiratory-swallow phase patterning with high accuracy. 

These results also indicate that lung volume at swallow initiation can be estimated using the 

sensor.  

III. Scratch Study 

In dermatology, there need to be more objective measures of disease severity. While 

itching is an important symptom in many skin diseases, it is the hallmark of atopic dermatitis. Thus, 

Fig. 34 | Demonstration of swallow and respiration detection from the MA sensor and comparisons 
to the ground truth sensor: nasal cannula pressure transducer and chest band. a) The nasal cannula 
data in orange shows a clear sign of swallowing incident with the apparent impulse in the signal from the 
flat baseline. These impulse signatures match well with the sharp impulse signatures from the high-passed 
MA data. The high passed MA signal also has potential in differentiating the constituency of the swallowed 
food based on the waveform of the impulse signal. b) Mechanocaoustic sensor follows the cadence of the 
chest band respiration signal as well, indicating its potential in measuring the respiration cycle.  
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scratching behavior provides a potentially quantifiable measure of itching intensity and frequency. 

However, patients' self-reported itch severity via standardized surveys and visual scales has 

shown a weak correlation to visually observed scratching behavior. Many experts suggest that 

these subjective measures of itch are particularly prone to anchoring bias and subject to 

experimental error. There is a need for more accurate, reproducible, and scalable tools to quantify 

the intensity and duration of pruritus. 

The accepted gold-standard for measuring scratching is direct visual inspection captured 

by a video camera. However, visual inspection is time-intensive, requires manual coding, and not 

suitable for broader clinical deployment. Actigraphy with embedded accelerometers in a 

wristwatch format has been studied as a possible wearable scratch sensor. While there is a 

significant correlation with visual inspection regarding scratching behavior, there are several 

limitations of actigraphy. The actigraphy cannot differentiate true scratching from other common 

voluntary and involuntary arm movements (e.g., waving, brushing teeth). Of the wide range of 

scratching motion, subtle movements of scratching localized to only the fingers are difficult to 

capture by a wristwatch-based accelerometer. With its relatively coarse time and sensing 

resolution, fine measurement of the scratching duration and intensity is challenging. The rigid, 

bulky form factors of wristwatch based actigraphy remain a significant limitation in the use of the 

pediatric population.  

There have been many other efforts in quantifying scratching. For example, one group 

has developed a wearable wrist-based microphone that demonstrates higher agreement with 

direct observation of scratching behavior by using an acoustic signal. It can differentiate 

scratching movements from other voluntary arm movements. However, this system remains bulky, 

rigid, and uncomfortable to wear. Furthermore, the acoustic sensor is ambient-noise prone. 

Especially when it continues to collect data in a noisy ambient daytime setting, the signal quality 
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of the system will hinder. Another study uses more advanced algorithms that involve signal 

processing to derive scratch behavior from a consumer smartwatch (Samsung Galaxy Gear Live). 

However, this system still struggles to differentiate scratching from involuntary arm movements, 

and, like the actigraphy, it remains locked in a rigid, bulky wrist-based form factor.  

Such a form factor affects the acceleration measurement due to its high mass density. 

They are incapable of capturing necessary physiological measures given the loose coupling to 

the skin. While advanced signal processing can provide some improvement, scratching behavior 

is highly variable amongst individuals suggesting the need for a raw signal with a higher signal-

to-noise ratio (SNR) for further signal processing. 

The MA sensor can capture both low-frequency signals and high-frequency signals due 

to its high time and sensing resolution. Intimate skin coupling enables the capture of 

mechanoacoustic signals with high SNR. Also, the sensing modality, by nature, makes the sensor 

insensitive to the ambient noise. For instance, our sensor can measure the mechanical movement 

and the raw acoustic signal produced by scratching, even in the noisy surrounding. These unique 

features differentiate the MA sensor from all other prior reported scratch sensors. Thus, we 

hypothesize that the collective utility of capturing both an acoustic and mechanical movement will 

enable more sensitive and specific measurement of scratching. 

Furthermore, this multi-modal sensing will better quantify both scratching time and 

scratching intensity. MA sensor can also operate continuously throughout sleep. Therefore, it 

would hold additional value for patients suffering from atopic dermatitis.  
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 We mount the MA sensor between the 2nd and the 3rd metacarpophalangeal joints 

specifically to capture movement that reflects finger scratching (extension and flexion of the 1st 

and 2nd digit), wrist scratching (extension, flexion, ulnar lateral movement, and radial lateral 

movement), and elbow scratching (extension, flexion, medial, and lateral movement) (Fig. 35). In 

Fig. 36, we show the ability to capture the mechanical and acoustic signals obtained from 

scratching.   

The amplitudes of x, y, and z accelerations can be correlated to scratching intensity. The 

high-frequency acoustic signatures of the movement can differentiate a true scratching motion 

from other voluntary movements as the acoustic range of the scratching signal is highly distinctive 

from the low-frequency hand waving signal. The preliminary results here on a healthy normal 

subject demonstrate our ability to distinguish scratching signals from various scratching behaviors 

of varying intensities and arm movements (e.g., fingers only, wrist movement, elbow movement) 

(Fig. 36).  

Fig. 35 | The mounting location of the MA sensor. The z-axis acceleration is in the normal direction to 
the dorsal side of the hand. The x-axiz is in the proxial direction. The accelerometer part of the sensor is 
specifically placed between the 2nd and the 3rd metacarpophalangeal joints. 
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Based on these preliminary results, and understanding the opportunity space in 

quantifying scratch, MA sensor shows excellent potential in adding its value from the application. 

With a broader sensing range of the accelerometer, the sensor would have more significant 

potential in its use for detecting a wide range of scratching motion. Further analysis of the 

frequency signatures and development of the machine learning algorithm would amplify its 

robustness and practicality in differentiating various types of scratching action.  

IV. Monitoring COVID-19 related symptoms with mechanoacoustic sensor  

Given the challenges faced during the recent COVID-19 pandemic, the development of 

the MA sensor that permits remote monitoring of physiological signals in a patient’s naturalistic 

environment is more critical than ever. Upon further testing, the MA sensor offers an alternative 

for monitoring physiological signals in a clinical setting or a patient’s home. 

On March 11, the World Health Organization (WHO) declared SARS-CoV-2 (COVID-19) 

a pandemic. COVID-19 is a severe acute respiratory syndrome that is highly contagious. Its most 

common symptoms are fever and cough65. In fact, recent COVID-19 HCP screening guidance 

includes respiratory symptoms (cough, shortness of breath, or sore throat) and fever66. Although 

Fig. 36 | MA signal of various types of scratching motion. Depending on the intensity and the body 
parts used for scratching, the captured signal displays a noticeable difference in amplitude and frequency. 
MA scratch signal with relatively smaller amplitudes relates to gentle scratch. MA scratch signal with 
relatively larger amplitudes relates to hard scratch. Using just finger, the amplitude is smallest relative to all 
the other scratching motion with other body parts. Using entier forearm to scratch (elbow), MA signal  
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the severity may vary, the symptoms gradually appear, and therefore, personalized assessment 

is possible. Using a mechanoacoustic sensor, we first acquire the personalized baseline of the 

symptoms or the body's initial state and observe their changes over time. 

Of the symptoms in the guideline, there are well established and standardized methods of 

monitoring the body temperature to identify fever, but not for the cough and other respiratory 

behavior. Thus, there have been many efforts in quantifying coughs using the microphones, 

accelerometers, pneumographic belts, and spirometer. For example, the microphone of the 

earphone, or even the cellphone's microphone collects the audio of coughing sound67,68. In 

general, the audio signal is subject to other ambient acoustic noise, and the position of the 

microphone is inconsistent from the source of the sound. As result, this system will require costly 

computation and have unreliable diagnosis of the symptoms. Another study used a spirometer to 

measure the condition of a respiratory system, such as lung capacity and respiration speed. 

However, the measurement can only do voluntarily by having the user actively blowing air into 

the sensing unit. Such an operation protocol is not suitable for continuous measurement. 

Continuous measurement is especially important in this study since the recovery rate differs vastly 

throughout a different population. Such irregular measurements may miss essential time points 

of the disease progression. Another study demonstrates a patch form of the accelerometer sensor 

to detect the cough, but its rigid form factor will induce poor mechanical coupling with the skin and 

introduce motion artifacts. Its stiff mechanics of the device and its direct contact with the skin will 

create a mechanical mismatch at the device-skin interface, resulting in a large mechanical load 

on the skin and inducing skin irritation. 

With the wireless flexible MA sensor mounted on the suprasternal notch, we can continuously 

measure the coughing signal with consistent distance from the source of the signal without 

inducing skin irritation. In addition, with its large measurement capacity, we can measure the heart 
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rate, respiration rate, and other physiological information, as demonstrated above, along with the 

coughing signal. Therefore, the sensor provides a comprehensive understanding of the effect of 

the virus. In addition to the MA signal, it also utilizes the temperature sensor embedded in the 

accelerometer unit and simultaneously measures the subject’s body temperature. With these 

sensing capabilities, the system collects an abundance of information that includes all the signals 

related to the symptoms listed in the guideline. 

Unlike other clinical studies, COVID patients must operate the MA sensor without direct 

assistance from the clinicians. Therefore, the updated system presented here emphasizes the 

simplification and automation of the operation steps and data pipeline (Fig. 37). We eliminated 

the user-end effort and reduced the user error by making the system fully automated. The device 

operates without toggling any buttons. The user, as a default, charges the sensor on the wireless 

charging platform. When the user places the device on their suprasternal notch, it continuously 

records the data to its onboard memory for 36 hours. When the data collection is complete, and 

the device charges again, the user-interface automatically downloads the data from the device 

via Bluetooth. Therefore, the system only requires the user to mount the device on and off from 

the charging platform and the suprasternal notch.  
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Fig. 37 | Simplified system operation flow and data pipeline. The end-user only needs to mount the 
device on the skin or set it on the charging platform. The sensor will record the MA signal to its internal 
memory. The saved data will stream to the user interface when the device is charging. The user interface 
then will upload the data directly to the HIPAA compliant cloud where the data automatically get processed. 

Once the user-interface finishes the downloading process, it uploads the data to the 

HIPAA compliant server (AWS S3 bucket) via Wi-Fi. Once the data uploading process completes, 

AWS Lambda function channels the data to the data-processing pipeline that is in an AWS EC2 

incident. Fig. 38 demonstrates the process of the cough-count algorithm. The algorithm first 

transforms the Z-axis time-series signal into a spectrogram (0.1 seconds 90 % overlapping 

moving window). It identifies the vocalization signal by finding the notable characteristics of 

harmonics of the spectrogram, specifically the fundamental frequency and second harmonics. 

The vocalization signal and cough signal share many similarities in the time domain, including 
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large-amplitude and wideband. Therefore, the algorithm separates the vocalization signal from 

the coughing signal by zeroing its associated time-series signal. Finally, the high pass filter 

isolates only the cough signal, and the peak-detection algorithm picks out the individual coughing 

signal. 

  



74 
 

 

The pipeline outputs cough counts, body temperature, and other signals demonstrated above 

in the form of both graphical charts and spreadsheets. Our internally developed HIPAA compliant 

web-app creates a dashboard with these graphical charts and remotely provides the trend of the 

Fig. 38 | The cough-count algorithm steps in order (from top to bottom). It uses the Z-axis acceleration 
signal to determine the characterize the cough signal. It first transforms the signal into a spectrogram and 
then blocks out the time window that shows pronounced characteristics of harmonics related to the 
vocalization. Finally, a high pass filter and peak detection algorithm determine the cough signal. 
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patients’ physical state to the clinicians, enabling the clinicians to monitor the patient in real-time 

without direct contact. Also, from the processed data, we can build further algorithms to 

comprehend the data and classify to the different level of the COVID-19.  

 

Fig. 39 | Respiration rate measurement of a COVID patient from a MA sensor on the suprasternal 
notch. The measurement started from when the subject was an active COVID and continues after the 
subject is discharged. The trend illustrates the decrease in breathing rate as the patient recovers from 
COVID. 



76 
 

Figs. 39 -42 show processed data from a COVID patient. The patient wore the senor 

starting from the beginning of COVID infection and continued to wear it post-discharge to monitor 

the disease progression and recoveries for two weeks. Fig. 39 provides the trend of the respiration 

rate. The data suggest that the patient breathing pattern becomes slower throughout recovery. 

Another interesting observation we can make from Fig. 40 is the decrease in the intermittent 

tachycardia, where the heart rate is higher than 100 bpm69.  The catecholaminergic, including 

emotions, physical activity, and stresses, often trigger tachycardia events.  Over the two weeks 

of the recovery period, the number of tachycardia has decreased. Another observation is the 

activity counts, as shown in Fig. 41. The patient becomes more active as the recovery progresses. 

These observations are useful features to classify the different stages of the disease and the 

severity of the COVID-19 symptoms. 

Fig. 40 | Heart rate measurement of a COVID patient from a MA sensor on the suprasternal notch. 
The measurement started from when the subject was an active COVID and continues after the subject is 
discharged. The trend illustrates the decrease in the number of tachycardia as the patient recovers from 
COVID. 
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Fig. 41 | Activity measurement of a COVID patient from a MA sensor on the suprasternal notch. The 
measurement started from when the subject was an active COVID and continues after the subject is 
discharged. The trend illustrates the increase in the number of body movements as the patient recovers 
from COVID. 
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 Fig. 42 provides a statistical overview of the cough frequency over three days. It includes 

the cough counts per 10 seconds time window, cumulative cough counts, the trends of heart rate, 

temperature, and activity intensity, all derived from the mechanoacoustic signal. It is also 

interesting to see the heart rate trend following the circadian rhythm. The heart rate decreases 

overnight and increases throughout the day. 

This application highlights the strength of the MA sensor in every facet. The sensor remotely 

monitors continuous physiological states of COVID patients in a natural setting without any direct 

physical interaction with the patient.  

Fig. 42 | A statistical overview of COVID-19 related symptoms and the trend throughout 3-days. 
Cough counts represent the total number of coughs in the 10-second time window. Mechanoacoustic signal 
also provides information about heart rate and physical activity. Heart rates display the circadian rhythm of 
the patient. The sensor measures temperature using the thermocouple embedded in the accelerometer 
unit. 
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V. Multinodal Mechano-Acoustic Sensor  

These MA sensors can also communicate with each other and operate in a time-

synchronous manner. The time alignment across the sensors allows additional observability of 

our physiological system. The MA signals measured simultaneously from the SN and other parts 

of the body enable the mapping of cardiac activities, calculation of pulse arrival time, cancelation 

of the noise and artifacts, and amplification of the signal of our interest. 

It is essential to consider the distance between the two measurement sites of the body 

relative to the sampling rate or the time resolution of our measurement capability. Currently, the 

sampling rate is at 3200Hz, and the speed for sound in body tissue is 1540 m/s. Therefore, the 

two sensors must be apart at least 0.96m. In the case of characterizing the travel of a mechanical 

signal throughout the body, a source of the signal and its relative path governs the minimum 

characterizable distance.  

In this study, we focus on characterizing the pulse traveling through the blood vessel by 

measuring the pulse arrival time-difference (PAT) between two remote locations. PAT is a crucial 

parameter for calculating the blood pressure without using a pressurized cuff70. The first MA 

sensor measures the pulse near the aorta, second MA sensor near the subclavian artery, and 

third MA sensor on the SN. Other than the SN, the two locations are the conventional 

measurement sites for the stethoscope. This multinodal system records time-synchronized MA 

data across the body and measures the PAT among the three areas. 
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Fig. 43 | Three different measurement sites for deriving PAT. Three remotely time-synchronized MA 
sensors measure the pulsatile mechanical signal at three different locations:  MA sensor near the aorta, 
 MA sensor near the subclavian artery  MA sensor near the SN. 

 The algorithm calculates the time difference from two locations by cross-correlating two 

MA signals with 1.5 second time windows with 50% overlap. Each window provides the time lag 

value where the cross-correlation is at maximum. Aggregating the time lags from each window, 

we find the PAT between two statistically sound locations. 

 

Fig. 44 | Histograms of the pulse arrival time differences between two measurement sites. The 
individual timelag values are representative time differences associated with the maximum cross-correlation 
value of 1.5 second time windows with 50% overlap. a) This histogram shows an aggregate PAT between 
SN and aorta. 0.01 second time difference is the most frequently observed value. b) This histogram shows 
an aggregate PAT between the subclavian artery and aorta. 0.0037 second time difference is the most 
frequently observed value. 
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 In Fig.44, we may infer that PAT is 0.01 seconds between SN and the aorta and 0.0037 

seconds between the subclavian artery and aorta. These PAT values correspond to their relative 

physical distance. 

           From this experiment, we learned that it is promising to derive the PAT using multiple 

sensors. However, a more thorough examination and comparison with the gold-standard data is 

necessary. Also, the time lag caused by the Bluetooth communication across the multiple sensors 

may result in inaccurate measurement; therefore, a more significant number of samples is 

required for higher confidence in the PAT derivation. An alternative solution is to have multiple 

MA sensor in a single system and eliminate the wireless communication latency, which the 

following section is going to demonstrate. 

VI. Dual Accelerometer 

Mechano-acoustic (MA) signal includes small vibrations to large motions at the surface of 

the skin generated by the internal organs (10-3 ms-2) and body movements (>10 ms-2)71. 

Conventional MEMS accelerometers are capable of measuring MA signal, mostly in the low-

frequency range due to its inertial mass density and loose mechanical coupling at the body-device 

interface72,73. Consequently, many studies employ other complementary sensors with different 

sensing modalities in addition to the accelerometer to monitor both low-frequency body 

movements and additional higher frequency physiological information74–76. 

These modules either contain all the sensors in a single rigid plastic circuit board (PCB) 

or a separate rigid PCBs that communicate via wires running down the body. The modules with 

the multiple sensors in a rigid body measure on the location ideal for the complementary sensors. 

For example, the PPG-accelerometer sensing unit uses a wrist or forehead as the mounting 

location to measure the pulse and the body motion74,76. Wrist and head, however, can move 
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independently from the core body, and the acceleration measurement does not strictly represent 

the movements that are clinically significant77. The modules with multiple sensors in a separate 

rigid PCBs have wires that create the mechanical and electrical link between two sensors in 

different locations. These wires may constrain the natural body motion and introduce a source of 

non-physiological artifacts to both sensors, especially when the subject is moving.  

Of these modules, only standard physiological information that the sensors share is the 

low-frequency signal induced by the body motion. The studies use the signal from an 

accelerometer to reference the movement and reject the motion artifacts in the complementary 

sensors data. These artifact rejection algorithms, however, require careful consideration of the 

different metrics. In addition, the module with separate body and mounting location has the motion 

artifacts in the complementary sensor data weakly correlated with the movement signal from the 

accelerometer, making it difficult to distinguish the artifacts and the signal.  

A small, lightweight, flexible wireless MA sensor on the suprasternal notch (SN) collects a 

rich set of physiological information simultaneously and continuously. The sensor on the SN can 

capture the superposed signal that contains information of cardiac activity from the carotid artery, 

respiration cycle from the chest wall movement, swallowing behavior from the laryngeal 

movement, and esophagus, vocalization from the vocal fold vibration, and core body movement 

from the sternum. It has broad implications, especially in tracking the progression of diseases or 

recoveries, due to its ability to continuously monitor a rich set of physiological information without 

the constraints of its location. With the sensor, we can find the correlation among the different 

physiology and draw a wholesome picture of the physical response to various inputs and diseases. 

This single accelerometer sensor, however, has a limitation when it records under an extensive 

motion. The large energy of body motion often overwhelms the subtle MA signals. Each step 

involves both low-frequency MA signal and impulse signal. Therefore, it is hard to confidently 
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obtain other physiological data besides the body movements, even with the high order bandpass 

filter. This limitation dwindles its capability of measuring multiple physiological information 

simultaneously and continuously in natural settings. 

Therefore, the system incorporates a feature that collects data using multiple sensors in 

a time-synchronized manner. An additional MA sensor on the sternum mainly collects the core-

body motion with other subtle physiological information that has even smaller amplitudes relative 

to the data from the sensor on SN. Although the theoretical time resolution of the synchronization 

is in sub-millisecond, as the sensors synchronize via Bluetooth communication, the radio 

transmission efficiency directly affects its time resolution. A robust algorithm that cancels noise or 

enhances the signal requires a characterizable time difference between the data.  

The developments presented here augments the prior art with (1) an additional high 

sensitive accelerometer integrated in a single flexible PCB (fPCB) that enhances the stability of 

time synchronization between two acceleration measurements, (2) the neck serving as the 

general mounting location for the sensor that has flexible and stretchable PCB platform which 

minimizes the mechanical coupling between two accelerometers, (3) algorithms that fully exploits 

the benefit of dual accelerometer including active motion artifact rejection, and signal amplification. 

Engineering mechanics fo the device 

The system implements a thin and soft form factors of the fPCB and device architecture 

from our previous work71 (Figs. 45a and b). The system minimizes its footprint by taking advantage 

of fPCB’s flexible mechanics (Fig. 45c). The fPCB layout has three main islands dedicated to an 

inductive antenna for the wireless charging, power management and charging circuits, and 

microcontroller unit (nRF52840, Nordic Semiconductor) with its necessary peripheral components, 

including the 4Gb memory. The fPCB design has multiple bending zones designed to withhold 
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the static bending deformation when they fold on top of each other. The island with the 

microcontroller unit has two accelerometers on either side of the rigid electronic platform (Fig. 

45b). Two pairs of serpentine structures electronically connect both accelerometers from the rigid 

platform, and mechanically decouples those accelerometers from the rigid mechanics of the 

component island. Accelerometers can undergo 90° torsional, 45% tensile and 180° bending 

deformations, without affecting the integrity of the solder joints between the components and the 

fPCB board (Figs. 45d and e). These serpentine structures also enhance the accelerometers’ 

sensitivity and their SNR, especially when the monitoring signal involves high impulsive motion, 

such as movement with stomping action. 

Furthermore, up to twelve of this system can operate in a time synchronized manner. This 

feature maximizes the system’s measurement capabilities. The system can measure the MA 

signals throughout the body and collect signals from multiple people simultaneously with the 

sensor-network, connected to a single user interface.  Like the COVID-19 study, the system also 

minimizes the number of operation steps to improve its usability. It only requires the user to stick 

it on the suprasternal notch when it is in use and mount it on the wireless charging platform when 

it is not in use. The sensor records data from both accelerometers to the device’s internal memory, 

and when it is charging, the sensor streams the data to a user interface device via Bluetooth. 

Once the user interface has the data, it uploads them to the HIPAA compliant cloud and computes 

various physiological information, including the cough counts, respiration rate, heart rate, activity 

level, and body temperature using the algorithm from our previous studies71. As a result, the total 

number of the required devices is less, while the amount of the data we collect is more.  
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Fig. 45 | Images, schematic illustrations, functional flow charts and mechanical modeling results 
for a wireless, skin-interfaced mechano-acoustic (MA) measurement technology designed for 
mounting on the suprasternal notch (SN).  a, Images of the MA device interfacing the SN. b, Exploded 
schematic illustration of the active components, interconnect schemes and enclosure architectures. c, size 
comparison to a Washington quarter (24.26 mm diameter). d, Images of a device in twisted (left), stretched 
(middle) and folded (right) configurations. e, Finite element modeling of the mechanics during uniaxial 
tensile and twisting deformations. f, Block diagram of the system operation.  
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Algorithms and the signal  

The algorithm takes advantage of the dual accelerometer with precise time 

synchronization. The difference of the data from both accelerometers already minimizes the large 

amplitude signal related to the motion artifacts. This naturally increases the effectivity of digital 

filters that draw out the signals of interest without any leakage of the motion artifacts. This single 

algorithm, therefore, successfully derives subtle MA signals, such as heart rate and respiration 

rate while the subject is in motion. The algorithm starts with a 1-minute window of the differential 

data. It goes through the bandpass filter (0.1-1 Hz for the respiration signal, 10-60 Hz for the 

Fig. 46 | Block diagram of the post-processing algorithm for calculating the rates of quasiperiodic 
signals with a motion artifact rejection. An appropriate bandpass filter (0.1-1 Hz for the respiration signal, 
10-60 Hz for the cardiac signal) filters 1-minute window of a differential signal of two MA data. The algorithm 
finds the five predominant frequencies and ranks them based on their energy. Then, the algorithm only 
considers the frequency that has its energy higher than half of the maximum energy. The output rate of the 
signal or the count-per-second (CPS) is the mean of the significant frequencies. The same procedure is 
applied to the 1-minute window with 59-seconds window overlap. 
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cardiac signal). Fast-Fourier-Transformation (FFT) identifies five most predominant frequencies 

of the filtered differential signal. Then, the algorithm selects the subset of the dominant 

frequencies with energy higher than 50% of the maximum energy. Finally, it calculates the 

periodicity of a specific signal by averaging the selected dominating frequencies. 

Fig. 47a demonstrates the effectiveness of the differential signal from the dual 

accelerometer sensor. Simply by subtracting the two signals, the differential signal minimizes the 

large amplitudes induced by the ambulatory motion. This reduces the efforts for rejecting the 

motion artifacts to detect the physiological information of the interest. From the differential MA 

signal, the algorithm calculates the respiration rate estimate and heart rate estimate. Figs. 47b 

and c highlight the performance of the dual accelerometer system and its differential signal, 

especially when the subject is in ambulatory motions. When the subject is sitting still on a chair, 

the algorithm correctly calculates the respiration rate and the heart rate measurement using either 

the single accelerometer signal, or the differential signal. However, when the subject starts to 

move, the algorithm shows the significant differences in the accuracy of calculating heart rate and 

respiration rate. Using the single accelerometer data, the algorithm guesses the physiological 

information very poorly (R2
 = 0.5). On the contrary, using the differential data correctly measures 

the physiological information even when the subject is walking, running, or jumping (R2 = 0.9). 
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 Its further application for stroke rehabilitation and sports are in progress in clinics. In 

Fig. 47 | 45 minutes of sample data from a dual accelerometer sensor in various ambulatory motions 
and measurements of respiratory rate and heart rate compared with those of single accelerometer 
sensor and gound truth value. a. The subject sits quietly for 8 minutes, walked for 15 minutes with resting 
intervals, ran for 10 minutes with resting intervals, and jumped for 7 minutes with resting intervals. b. Single 
raw accelerometer data provides the respiratory rate reliably while the subject sits still. When the subject 
is in the ambulatory motions, just a single accelerometer data have a hard time calculating the respiratory 
rate close to the ground truth. The differential signal of the two accelerometer data provides an accurate 
respiration rate that matches well with the ground truth signal. c. Single raw accelerometer data provides 
the heart rate reliably while the subject sits still. When the subject is in the ambulatory motions, just a single 
accelerometer data have a hard time calculating the heart rate close to the ground truth. The differential 
signal of the two accelerometer data provides an accurate heart rate that matches well with the ground 
truth signal. 
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stroke rehabilitation, the sensor measures the severity of the motor dysfunctionality of the stroke 

survivors, especially the difference of the motor function relative to the hemiplegia. Also, in parallel, 

the sensor is capable of capturing respiration rate and heart rate and other behaviors such as 

swallowing and vocalization, which are also essential biomarkers to track the recovery of the post-

stroke patients. In sports, it has always been challenging to measure the respiration rate and 

constant heart rate when the athletes are in a wide range of fast and dynamic motion. With the 

dual sensor, even when there are large motion and acceleration, the system can reliably capture 

the important physiological information to track the athletes’ condition concerning their 

performance for the first time. With the extra sensor, the system provides the solution to the 

limitation that the single accelerometer MA sensor had. As a result, it enables the system to 

continuously monitor vital signals and other subtle MA signatures that were hard to capture when 

the subject is moving. 
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4. Application of the Hardware Architecture in Other Sensors 

The flexible device architecture considers its use cases for other sensors with different 

modalities. With the air encapsulation platform, the architecture isolates sensing units from the 

environmental factors such as mechanical undulation, and heat, which is beneficial for the 

temperature sensor and MA sensor. The architecture also has a flexible thin membrane that is 

mechanically separated from the core electronics. Therefore, the flexible bottom layer can 

integrate sensing interfaces such as electrodes for ECG and EEG. In this chapter, I demonstrate 

the use case of the soft device architecture in ECG and Pulse Oximetry measurements.   

I. NICU Vital Monitor 

In the United States, over 480,000 critically-ill infants and children enter intensive care 

units each year. Those with less than one year of age suffer from the highest mortality rates and 

therefore require the most intensive care78,79. These fragile patients include premature infants who 

may weigh as little as 500 g (1.1 lbs), 1/7 that of an average term baby80. Continuous monitoring 

of vital signs is essential, yet existing technologies require the use of multiple sensors interfaced 

to the skin with adhesive tapes and connected by wires to electronic processing systems that are 

often tethered to the wall. This system of hardware creates a multitude of difficulties in both routine 

and specialized procedures in clinical care, ranging from therapeutic skin-to-skin contact with 

parents (i.e. kangaroo mother care, KMC) to feeding, diaper changing and bathing80. Furthermore, 

continuous monitoring of certain vital signs, such as blood pressure, demands additional wired 

hardware, such as peripheral arterial, central venous, or pulmonary arterial catheters81, which can 

induce other types of complications, including thrombus formation and occlusion, infection (e.g. 

sepsis), rupture, pseudoaneurysm, and death. A wireless system capable of non-invasive, 

continuous vital sign monitoring would greatly enhance the effectiveness and safety of neonatal 

and pediatric critical care82. 
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The results reported in the following adopt mechanically robust, manufacturable systems 

that rely on Bluetooth technology to circumvent these limitations, with options in operation and 

power supply that address a broad spectrum of clinical and user preferences, ranging from 

modular primary batteries to integrated secondary batteries to wireless harvesting schemes. 

These platforms additionally support important modalities in monitoring that lie beyond both the 

standard of care and the capabilities of our previously reported systems. These include the ability 

to: (1) capture acoustic signatures of cardiac activity, reflecting valvular function, (2) quantify pulse 

wave dynamics through multiple measurements, as a reliable surrogate for systolic blood 

pressure. 

Device and System Design. 

Fig. 48a presents an exploded view illustration of one of the two mechanically soft, 

wireless devices that form the complete system. This example uses a modular battery unit for 

power supply in a design that allows for gentle mounting on the curved skin of the chest (chest 

unit) via a thin hydrogel coupling layer to record electrocardiograms (ECGs), mechano-acoustic 

signals of vocalization and cardiac/respiratory activity, body orientation and movements, and skin 

temperature, all enabled by a Bluetooth Low Energy (BLE) system-on-a-chip (SoC) and 

associated collection of sensors. The overall layout includes a thin, flexible printed circuit board 

(flex PCB) and mounted components, configured in an open design with serpentine interconnect 

traces. The construction involves folding of distinct, but connected, platforms as a key step in 

assembly and packaging (Fig. 48a and Fig. 49). Quantitative insights from three-dimensional finite 

element analysis (FEA) of the system-level mechanics help to define an optimal distribution of the 

active components to reduce the lateral dimensions of the device by ~250%. A pre-compression 

process in the assembly forms buckled layouts in the serpentines for enhanced mechanical 

properties, with improved flexibility and stretchability. A soft elastomeric enclosure with an inner 
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silicone gel liner (~300 µm thick, ~4 kPa) further improves the mechanics to ensure compatibility 

with the fragile skin and highly curved anatomical features of neonates at the lowest gestational 

ages. A pair of thin, conductive elements formed using a doped silicone material (carbon black in 

polydimethylsiloxane, abbreviated as ‘CB PDMS’; bulk resistivity of 4.2 Ω.cm) serve as soft 

electrical connections to corresponding gold electrodes on the flexible printed circuit board and to 

conductive hydrogel skin interfaces for ECG measurements. The result is a soft and completely 

sealed, waterproof system with applicability across a wide range of settings, focused on but not 

limited to the NICU and PICU (Fig. 49).  
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 Fig. 48 | Designs, mechanical characterization results and pictures of a soft, wireless chest unit for 
physiological monitoring of neonatal and pediatric patients. a, Schematic diagram and exploded view 
illustration of a device with a modular primary battery. The main body consists of buckled serpentine 
interconnects between islands of electrical components contained within a soft, elastomeric enclosure. The 
battery interfaces to the system via reversible magnetic coupling. Thin silicone pads establish electrical 
connections between measurement electrodes and a hydrogel interface to the skin, to yield a completely 
sealed, waterproof device. LMS stands for low modulus silicon.  
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Fig. 48 | b, Illustration of a detachable wireless power harvesting system. c, Illustration of a powering option 
that involves an integrated, wirelessly rechargeable battery. This option uses a different top layer 
encapsulation, without the magnets. d, Photograph of the chest unit with modular battery on a realistic 
model of a neonate.e, Computed stresses (right: normal; left: shear) at the interface between the skin and 
a device during uniaxial stretching to a strain of 20%, with a thickness of 200 µm. f-h, Photograph of a 
representative device during stretching (f), twisting (g), and bending (h). i,j, Photographs of a device with 
integrated battery (i) and with a wireless energy harvester (j), both mounted on a model. 

 

The modular battery unit couples to the device mechanically and electrically through pairs 

of matching sets of embedded magnets (Fig. 48a, inset), thereby: (1) allowing replacement of the 

Fig. 49 | a, Leftmost and middle diagrams show the assembly process of the circuit components on a 2-
layer flexible printed circuit board. Rightmost diagram shows how the sub-systems of the chest board are 
folded. b, The encapsulation process involves spin casting Silbione elastomer on top of a glass slide, 
followed by opening for the electrodes. CB PDMS is used to fill the electrode openings, then combined with 
the folded board that contains a battery. The top Silbione enclosure is prepared through a 2-part molding 
process and closes the encapsulation of the chest unit. Removing the glass slide finalizes this process. CB 
PDMS, carbon black in polydimethylsiloxane. 
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battery without removing the device from the patient to minimize disruptions in clinical care, 

decrease the burden on the care giver, and reduce risks of skin injury83; (2) enabling removal of 

the battery to allow autoclave sterilization of device; and (3) mechanically decoupling the battery 

from the device to improve the bendability and, therefore, the compliance at the skin interface. 

The magnetic scheme also allows for other options for power supply, not only in choices of battery 

sizes, shapes and storage capacities (and therefore operational lifetimes; Fig. 50), but also in 

alternative modalities, including battery-free schemes that rely on wireless power transfer (Fig. 

48b). As an example of this latter possibility, a magnetically coupled harvesting unit can be 

configured to receive power from a transmission antenna placed under the bed and designed to 

operate at a radio frequency of 13.56 MHz with a negligible absorption in biological tissue84. Fig. 

48c illustrates a third option, in which a wirelessly rechargeable battery (Li-polymer, 45 mAh) lies 

within the sealed enclosure of the device to eliminate any external connections.  

The photograph in Fig. 48d features a chest unit deployed on a model of a neonate, with 

a small, encapsulated button cell as a modular battery. The serpentine interconnects 

encapsulated with polyimide (PI), the folded configuration, and the soft enclosure with gel liner 

lead to a uniaxial elastic stretchability that exceeds ~33% at the device level, corresponding to a 

~500% stretchability in the interconnects prior to encapsulation in the outer silicone shell (Fig. 

51b). The gel (~300 µm thick, ~4 kPa modulus) provides strain isolation between the folded 

Fig. 50 | Similarly, negligible change in temperature was observed, when a limb unit was mounted on the 
foot of the same subject for 24 hours in full operation (n = 3). Different form factors of encapsulated modular 
batteries. The green colored circle with the diameter of choking limit outlines the safety limits to prevent 
choking hazard for kids under 3 years old. 



97 
 
islands to reduce the stresses at the skin interface to levels below the thresholds for sensory 

perception (20 kPa) for uniaxial stretching of up to 20%, a value at the high end of the range 

expected in practical use (Fig. 48e and Fig. 51c). The resulting elastic bending radius and 

equivalent bending stiffness are ~20 mm and ~9.6 Nmm2, respectively (Fig. 51b). These 

mechanical characteristics ensure soft, irritation-free skin interfaces, even in cases of extreme 

curvatures encountered with small babies and/or low Gas, as well as those that have conditions 

such as pneumothorax. The images in Fig. 48f-h illustrate a device stretched, twisted, and bent 

to levels that exceed requirements. Mounted units with the embedded battery and battery-free 

designs appear in Fig. 1i and j, respectively.   
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Fig. 52a summarizes the structure of the other component of the complete system, a 

device designed to record reflection-mode photoplethysmograms (PPGs) and skin temperature 

from peripheral locations. This limb unit features a layout that facilitates wrapping around the foot, 

palm or toe. Fig. 52b highlights the overall design, with umbilical interconnects that can bend to 

radii as small as ~3.9 mm twist through angles as large as 180° and elastically stretch to uniaxial 

strains as high as 17% (Figs. 51e and f). The fundamental design features are similar to those of 

the chest unit, but in configurations that anatomically match different limb interfaces: ankle-to-sole 

of the foot for neonates in NICU (Fig. 52c) and wrist-to-hand (Fig. 52d) and foot-to-toe (Fig. 52e) 

for patients in the PICU. The image in Fig. 52f shows both chest and limb units deployed on a 

model of a neonate in a NICU isolette, along with a representative illustration of vital signs 

information displayed on a tablet computer.  

Fig. 52g presents a block diagram that summarizes the overall operational scheme. The 

chest unit includes a wide-bandwidth 3-axial accelerometer (BMI160, Bosch Sensortec), a 

clinical-grade temperature sensor (MAX30205, Maxim Integrated), and an ECG system that 

consists of two gold-plated electrodes. The limb unit includes an integrated pulse oximetry module 

(MAX30101, Maxim Integrated) for measuring dual wavelength PPGs and a temperature sensor 

(MAX30205, Maxim Integrated). The power management circuit for battery operation uses a 

voltage regulator to provide supply voltages required for the various components (3.3V or 1.8V). 

Fig. 51 | a, Schematic illustration of stack and dimension information for serpentine interconnects and sub-
systems of a chest unit. PI, polyimide. Cu, copper. b, Computational result showing the stretchability and 
bendability of a chest unit’s board. L0, nominal length of a serpentine interconnect of the board. L*, pre-
compressed length of the serpentine. ε = (L-L*)/ L* defines the elastic stretchability. c, Computational result 
showing the effect of thickness of the strain isolation layer regarding shear and normal stress when a chest 
board is assumed to be stretched by 20%. d, Schematic illustration of the stack and dimension information 
for serpentine interconnects of a limb unit. e, Strain distribution in the encapsulation layer (left) and copper 
layer (right) of an interconnect during (e) twisting, (f) stretching, (g) and bending at the radius of 3.9 mm. h, 
Overall bending mechanics of a limb unit board illustrated by strain distribution. 
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The modular battery-free platform (Fig. 48b) includes an inductive coil tuned to 13.56 MHz, a full-

wave rectifier, and a two-stage cascaded voltage regulating unit.    
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Fig. 52 | Designs and pictures of limb units for physiological monitoring of neonatal and pediatric 
patients and block diagram of the full system operation. a, Schematic diagram and exploded view 
illustration of the limb unit, designed to measure PPG, SpO2 and temperature. b, Photograph of a device 
while bent and twisted. c-e, Deployment of a device on (c) a model of a neonate at the ankle-to-base of the 
foot, (d) a model of a pediatric patient (2-year-old chronical age) at the wrist-to-hand, and (e) at the foot-to-
toe. f, Photograph of the chest and limb unit a model of a neonate in a NICU isolette, with a tablet computer 
displaying representative data through a graphical user interface. g, Block diagram showing the operational 
scheme of two time-synchronized device, with an analog-front-end for ECG processing, 3-axis 
accelerometer, thermometer IC, and BLE SoC for the chest unit and a pulse oximeter IC, thermometer IC, 
and BLE SoC for the limb unit. Three different options for power supply appear at the bottom of the frame. 
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5. Discussion 

This paper provides a comprehensive overview of the hardware design for the soft, 

wireless biosensor. The device utilizes the soft and resilient elastomeric encapsulation-membrane 

as the multi-functional component. Because of the wireless charging circuits and wireless 

communication, the encapsulation-membrane does not require any openings and functions as a 

barrier for the internal electronics with the complete seal preventing the electronics from the 

foreign substances and making it sterilizable. It also functions as a substrate for the electronics 

and creates a soft interface between the skin and the sensor. With its soft mechanics in addition 

to the strain isolation layer, it mitigates the mechanical mismatch between the skin and the 

electronic components and enhances its long-term wearability.  

The electronic layout incorporates flexible and stretchable interconnects to contain the 

rigid mechanics of the conventional electronic components to small isolated areas. Any soft 

wireless biosystem can adapt this device architecture and stretchable circuit layouts with a minor 

change in the substrate design that suits the specific sensing modality as demonstrated here with 

MA and NICU sensors. The components and the manufacturing steps align with the current 

manufacturing practices and commercial components and enable the mass-production of the 

advanced technology. 

The soft mechanics, and power efficient electronics with a rechargeable battery enable 

the system to continuously monitor for 24 hours without causing skin irritation and power shortage. 

The user-interface that interacts with the device has minimal operation steps and provides intuitive 

and effortless procedures for the end-user. In combination, the system offers an easy access to 

the biological information that were originally cumbersome to obtain, or even unobservable. As 

result, appropriate algorithm is necessary to process both unconventional and conventional 

physiological information that the device simultaneously captures. They include HR, TT, RR, SC, 



104 
 
EE, with additional possibilities in tracking body orientation, steps and gait, coughing events, 

respiratory sounds, and many others.  

The signal processing algorithms for the specific biomarkers play an integral part of the 

whole system. The algorithms look for a unique feature of the time series data for each event in 

both time and frequency domain. Also, they look at the causal relationship and the periodicity to 

assist the classification of events. For now, these classifications are discrete and therefore with 

its hard threshold, it is hard to classify the same type of events with weaker or stronger intensity 

than its average. In the future, taking the probabilistic approach may alleviate this problem of 

generalization. 

This paper primarily focuses on the soft, wireless MA sensor design and data analytics. 

The sensor operates on the SN that offers a set of signals related to multiple physiological 

processes. It demonstrates its capacity through the applications in sleep monitoring, stroke 

rehabilitation, scratch study, and COVID-19 study. These applications especially take full 

advantage of the systems’ unique characteristics, such as continuous monitoring and 

simultaneous sensing of multiple biomarkers along a single measurement unit. The MA sensor 

has significant advantages compared to both conventional stationary monitoring system (e.g., 

polysomnography system, or vital sign monitor) and wrist mounted wearables. It demonstrates its 

capability of measuring majority, if not all, of the signals that the conventional systems can 

measure in unconstrained natural setting outside of the hospital. An additional sensing modality 

that the system can take advantage of is the optical sensor monitoring the blood oxygenation.  

The paper also portrays its limitation in sensing subtle biomarkers while moving. This has 

critical effects in the sensor’s advantages of multiple signal sensing and continuous monitoring in 

the real-life environment. However, the multi-nodal measurement and dual accelerometer 

illustrate their potential to improve the functionality and to expand the types of addressable 
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applications. In both approaches, the additional accelerometer is on the part of body where it is 

more prone to capture the signal associated with the core body movement and less to other MA 

signals. The additional sensor enhances the observability of the system and infer better about the 

subtle physiological activities even when there is dramatic the body movement.   

This paper has exhaustively exploited the use of accelerometer in sensing numerous 

biomarkers. For the future study, like the multiple accelerometer approaches, adding strain gauge 

as a complementary component to the MA sensor would allow the system to accurately capture 

the subtle movements related to the chest wall expansion, which would not be effected by the 

motion artifact by its nature of sensing mechanism. By having the system interact with an active 

component such as a haptic interface, or electrical stimulator, we can also translate the current 

system to an active system and broaden its application from diagnostic tool to therapeutic 

apparatus. These active interfaces would create a closed-loop control system with the human 

body in the part of the control system. We also need to address and keep the confidentiality of 

recording in mind as we rely on the wireless communication protocols. 

We made the sensor functioning as a modular unit that can collect information of our 

interest. With the soft wireless sensor, we are finally at the point of making the continuous 

monitoring to a reality. As demonstrated in this paper, continuous monitoring provides information 

relating to the progression of disease and recovery in detail with higher time resolution than any 

precedent technology. I believe that we are just starting the new phase of the neo-healthcare era 

hope to see that the technology improving quality of our lives. 
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7. Appendix 

I. Effect of conformal contact in signal transmission. 

The conformal contact reduces the air-gap and delamination points in the skin device 

interface and enhances the signal transmission. 

Speed of sound is: 

 

v = √
𝐾

𝜌
 (A.1) 

where v, 𝐾, 𝜌 is speed of sound, bulk modulus, density, acoustic impedance, reflection 

coefficient, transmittance coefficient. 

Acoustic impedance of a material is: 

 Z = ρv (A.2) 

By substituting equation A.1 to A.2, we obtain the expression of impedance in terms of 

material property: 

 

 Z = √𝐾𝜌 (A.3) 

The reflection coefficient of the acoustic wave at the interface between two materials is: 

 
𝑅 = (

Z2 − Z1
𝑍2 + 𝑍1

)
2

 (A.4) 

and thus, the transmission coefficient is: 

 𝑇 = 1 − R (A.5) 

Equation A.4 and A.5 tell us that the materials with close impedance make the acoustic 

signal transmission between the two bodies more effectively. 
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The skin has a wide range of bulk modulus: {53 kPa, 178 kPa, 1280 kPa }, and density of 

1050 kg/m3, whereas air has a bulk modulus of 142 kPa and density of 1.23 kg/m3
. As a result, 

two material has a high mismatch in the impedance. With the conformal contact, the silicone 

elastomer is in direct contact with the skin without any air gap trapped between the devices. The 

elastomer has a bulk modulus of 1000 kPa and a density of 1070 kg/m3. With the conformal 

contact, we can improve the impedance matching between the device and the materials and 

improve the signal fidelity. 

 


