
NORTHWESTERN UNIVERSITY

Reorganizing Defect Thermodynamics and Chemistry for Intuitive Exploratory

Phase Stability Analysis

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Materials Science & Engineering

By

Shashwat Anand

EVANSTON, ILLINOIS

March 2021



2

Copyright ©2021 by Shashwat Anand

All rights reserved



3

Abstract

Exploratory phase stability analysis in Materials Science has two primary goals: (a) Char-

acterizing the evolution of the materials single phase field in composition space to identify

solubility and electronic dopability limits and (b) Accelerated prediction of new phases of

technological importance. In this thesis we reorganize defect theory — the thermody-

namics and chemistry aspects — towards advancing both these goals significantly.

Although (a) can, in principle, be approached using computational as well as experimen-

tal techniques, both avenues can become quite prohibitive for phases in complex, multi-

component composition space. Considering that a defect of interest (often the dominant

defect) can often be chemically intuited based on the structure of a phase or similar

compounds, it is often desirable to have strategies for solubility design requiring much

less effort by relying entirely on thermodynamic intuition. The current thermodynamic

rules of thumb (e.g. ‘A-rich conditions are suitable for solubility of A-interstitial defects’)

regarding defect solubility are limited only to interstitial and vacancy defects. We de-

velop a thermodynamic visualization framework in composition space which applies to

all defect-types (substitutional defects and paired defect complexes). This generalized

framework, in-principle, only requires the defect type as the input to identify (i) chemical

conditions leading to maximum solubility and (ii) the special cases in which two distinct

chemical conditions will lead to equal solubility. These solubility guidelines explain why

the varying reports of solubility limits in the thermoelectric Mg2Si-Mg2Sn pseudobinary

is thermodynamically impossible and correctly identify equilibrium yielding maximum

solubility in Sn-doped ZnSb and Te-doped Mg3Sb2. The predictive nature of these ther-

modynamic guidelines can also help in warning against atypical pseudobinary systems

in which the solubility limit can be quite dependent on chemical conditions. The thermo-

electric LAST-type systems (like PbTe-AgSbTe2) are identified, potentially, as one example

of such systems.
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The study of point defect thermodynamics in previous literature has thus far relied sub-

stantially on treating the reference chemical potential contributions to the defect energy

by plotting them in chemical potential space. Thermodynamic analysis in chemical po-

tential space can be quite abstract and is a relatively advanced concept not used regularly

by the materials community. Considering the fact that defects impact all transport and

thermochemical properties, the audience for defect thermodynamics is possibly much

larger than the fraction of researchers well versed with analyzing stability in chemical

potential space. By solving the defect solubility problem in composition space we by-

pass the need to work in chemical potential space entirely and provide a visualization

scheme suitable for a very broad audience. Due to its simplicity, we expect our thermo-

dynamic analysis to serve as an intermediate analysis step — for computationalists and

experimentalists alike — before attempting (a).

Beside this general thermodynamic aspect of defects, we also focus on rationalizing

the differences between the two very distinct physical chemistry and defect physics ap-

proaches for treating defects in semiconductors and insulators. While historically these

approaches have been used for studying defects in ionic and electronic conductors sep-

arately, mixed conductors with applications as battery materials are now attracting the

attention of researchers from both communities. Both approaches have their pros and

cons. The pros for the physical chemistry approach is that (1) its data representation

— characterized by plotting defect concentration against changing chemical potential in

the so-called Brouwer diagrams — is more direct in communicating chemical control

of defects and (2) it characterizes the defect formation with a single reaction equilibrium

constant. The cons of this approach are that (1) it does not discuss the Fermi-level depen-

dence of defect concentrations explicitly and (2) it often lacks a clear distinction between

the behavior of paired and isolated components of complex defects, such as Schottky

and Frenkel defects. An advantage of the defect physics approach is that it accounts

for a Fermi-level dependence of defect energetics – connecting it to key properties such
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as electronic dopability and formation of deep defect states. The cons to this approach

are that (i) the Fermi-level dependency is never studied with experimental techniques for

verification of computational results and (ii) the Fermi-level dependency requires plotting

the multi-dimensional data in separate panels, making visualization cumbersome. Using

MgO, PbTe and Mg3Sb2 as example systems we address the cons in both the approaches

and develop a composite language for defects in semiconductors and insulators.

The pursuit of (b) in modern exploratory phase stability analysis is often carried out

using high-throughput first-principles computational approaches. The choices of struc-

ture and composition in approaches for discovery of semiconducting compounds are often

based on chemical intuition from long-standing stability rules. While these rules reduce

the computational cost significantly, they apply by default only to fixed stoichiometries

and combination of elements, thereby favoring exploration in specific multi-component

chemistries over others. Choosing the example of Heusler compounds, we show that

these rules for stability of semiconductors nedd to apply to fixed stoichiometries or elec-

tron counts (as expected by the 18-electron rule for the XY Z stoichiometry for example).

We therefore develop the generalized valence balanced rule for stability of semiconductor

Heuslers which now allows for a flexibility in the ground state composition by account-

ing for defects in the structure as well. We use this valence balanced rule be explain

the semiconducting electronic structure of the thermodynamically stable ground state

stoichiometries in Nb0.8CoSb (nominally 19-electron at NbCoSb), Ti0.75NiSb (nominally

19-electron at TiNiSb), and 24-electron VFe2Al. By virtue of this rule, we predict over

150 new defective compounds — which includes over 100 low thermal conductivity qua-

ternary double (e.g. Ti2FeNiSb2), triple and quadruple half-Heusler compounds — in

multi-component chemistries which would have been inaccessible using the conventional

18-electron rule.
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Nomenclature

∆HCH Convex-hull distance. Energy distance with respect to the convex-hull

∆Hdef Defect formation energy

∆HeCH Extended convex-hull distance Energy distance with respect to common tan-
gent planes of the convex-hull.

∆Hf Formation energy of the compound

∆HStability Stability metric for high-throughput Thermodynamic analysis. Energy
distance of a phase with respect to a convex-hull (possibly even ametastable convex-
hull) which is formed by excluding the structure of interest.
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the ‘defect line’ (solid black line). The left and right columns correspond to

A-rich and B-rich equilibrium, respectively. The chemical potentials of A

and B corresponding to these equilibrium conditions (large, empty circles)

are determined from intercepts of the common tangent lines (blue and red

lines in the left and right columns respectively). ∆Hdef is determined using

intercept (for example Ei) between the defect line and the common tangent

line on the A and B-component axis. The sign of these quantities are are

given by the direction of the arrows next to them (see grey box). The expres-

sion to calculate ∆Hdef is given in each panel. The general expression for

calculating ∆Hdef for all defect types in is given in the grey box at the bottom

where ∆Ni = 0 or 1 and ∆Nv = 0 or -1 depending on whether the number of

atoms of a particular species is added (1), removed (-1) or unchanged (0) in

the defect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Visualizing Formation Enthalpy (∆Hf ) of defective structures in a ternary

convex-hull. Convex-hull of the Nb-Co-Sb system calculated using [1] DFT.

The ∆Hf of Nb0.8CoSb phase and the defects in it along the 1-dimensional

composition slice CoSb-Nb are shown using blue circles in the figure on the

right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
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3.3 Visualizing defect energetics of a ternary compound in a convex-hull.

Graphical solution for defect energy (∆Hdef ) of (a-b) C interstitial and (c-

d) CB anti-site defects in the ternary compound ApBqCr. The compound

and the defective structures are represented by large orange and small red

circles respectively. Panels a and c show the ternary convex-hulls in which

the compound ApBqCr is in equilibrium with elements A, B and C. Panels

b and d show the ∆Hf -composition convex-hull along the 1-D composition

slice containing both the defect and the compound. The ∆Hdef are shown

for (a-b) C-rich (ApBqCr-C two-phase region) and (c-d) B-poor (ApBqCr-A-C

three-phase region) conditions. Similar to the case of binary compounds

(see Figure 3.1) ∆Hdef is determined using intercept between the common

tangent line and the defect line. The expression to calculate ∆Hdef is given

in each panel. The general expression for calculating ∆Hdef for all defect

types in is given in the grey box at the bottom where ∆Ni = 0 or 1 and ∆Nv

= 0 or -1 depending on whether the number of atoms of a particular species

is added (1), removed (-1) or unchanged (0) in the defect. . . . . . . . . . . . 66

3.4 Graphical solution of ∆Hdef on convex-hulls are exact. Comparision of

defect energies for 20 half-Heusler systems calculated graphically to those

determined using conventional defect energy expression . . . . . . . . . . . . 67

3.5 Sketch differentiating the convex-Hull distance (ECH ) from the extended

convex-hull distance (EeCH ) in a model binary convex-hull. . . . . . . . . 68
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4.1 Brouwer diagram example. Typical Brouwer Diagram of a model oxide

compound MO in which the vacancies V ′′M and V ..
o are the dominant point

defect types. The y-axis gives log [], where [] represents concentration of

the defect, and the x-axis gives log of the Oxygen partial pressure pO2 (par-

tial pressure). The Brouwer diagram can be broadly classified into three

regions, separated by vertical dashed lines, with changing oxygen partial

pressures. The slope of each defect and charge carrier concentrations in

these regions are labelled next to them. In the extreme conditions (oxidizing

and reducing), one of the point defects dominates (V ′′M and V ..
o respectively)

causing a larger concentration of one of the carriers. In the intermediate

conditions, neither of the vacancies clearly dominate and the charge carrier

concentrations equal each other. The Brouwer approximations equating the

dominant contributions to the charge neutrality condition in each region are

mentioned above. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
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4.2 Relating electronic properties and electronic structure to defect ther-

modynamics. ((a) and (b)) Thermodynamics of the dominant intrinsic va-

cancy defects in the model insulator system MO determining its electronic

dopability. The defect formation energeies (∆Hdef ) of the acceptor (V −2M ) and

donor (V +2
O ) defects depend on the Fermi-level (Ef ) with a slope equal to

their valence. The thermodynamic limit to the Ef (dopability) under given

temperature, pressure and chemical conditions is determined by the points

where ∆Hdef = 0 (a). This limit is shifted with changing chemical conditions

(b). (c) The electronic density of states for the example of oxygen vacancy

deep defect (defect level lies far from either band-edges) in MO. The defect

level containing 2 states appears in a very narrow energy window indicating

the localized nature of the states. At Ef above the defect level, electronic

charge equal to 2e localizes around the defect and the defect transitions

from charge +2 to 0. The transition is observed as a change in slope of the

∆Hdef versus Ef plot for the defect. . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Schematic showing the procedure to obtain the defect diagram using

experimental data. In order to estimate the defect energetics accurately

within a thermodynamic framework, the samples need to be annealed (and

quenched subsequently) at the temperature of interest. The number of de-

fects and number of carriers are presumed to be frozen from this annealing

temperature. The Ef dependence of ∆HDef is calculated for the annealing

temperature. Determining the equilibrium Ef for each sample at the an-

nealing temperature will also require the Seebeck effective mass from this

temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 The Fermi-level (Ef ) dependence of ∆Hdef − TSnon−confdef (T = 973 K) for

the V−2Pb in PbTe determined from experimental data. A solid line with a

slope of -2 is shown for reference. . . . . . . . . . . . . . . . . . . . . . . . . . 86
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4.5 Brouwer diagram for Mg3Sb2 with Fermi-level dependence of point de-

fect energetics accounted for. Concentration of important intrinsic charged

defects and charge carriers inMg3Sb2 calculated as a function of Mg-chemical

potential. The defect energies (which implicitly also have a fermi-level depen-

dence) and density of states masses are taken from Ref. [2]. The dominant

defect types Mg+2
i and V −2Mg are both shallow defects. Despite the Fermi-level

dependence, the plot resembles the one shown in Figure 4.1 with three dis-

tinct regions of Mg chemical potential dependencies separated by vertical

lines which are drawn as guides to the eye. . . . . . . . . . . . . . . . . . . . 89

4.6 Presenting electronic dopability information on a Brouwer diagram.

Concentration of important intrinsic charged defects and charge carriers

in Mg3Sb2 calculated as a function of Mg-chemical potential. The defect en-

ergies (which implicitly also have a fermi-level dependence) and density of

states masses are taken from Ref. [2]. The n and p-type dopabilities (red

and blue lines) and are determined by the carrier concentrations from the

Ef at which ∆Hdef of the V −2Mg and Mg+2
i defects becomes 0 eV. The VBM and

CBM markers are determined by the carrier concentrations at the valence

and conduction band edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
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4.7 Electrostatic and strain contributions to binding energy in the Schot-

tky defect pair of PbTe. (a) Defect energy (in eV/defect) of a Schottky defect

in PbTe as a function of the distance between the vacancy pair in a 128 atom

supercell. To estimate the electrostatic contributions to binding between the

vacancy pair, we calculate the relaxed (blue circles) and unrelaxed (purple

squares) separately. The electrostatic contribution from the unrelaxed cal-

culations can be modelled with a 1/r dependence (solid blue line). (b) The

energy gained from relaxing all degrees of freedom in the supercell as a func-

tion of the distance between the vacancy pair. This energy contribution is

calculated by subtracting the relaxed energies from the unrelaxed energies

shown in (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.8 Electrostatic and strain contributions to binding energy in the Schot-

tky defect pair of MgO. (a) Defect energy (in eV/defect) of a Schottky defect

in MgO as a function of the distance between the vacancy pair in a 128 atom

supercell. To estimate the electrostatic contributions to binding between the

vacancy pair, we calculate the relaxed (blue circles) and unrelaxed (purple

squares) separately. For the sake of verifying convergence in this low di-

electric constant material we also calculate the unrelaxed energies in a 432

atom supercell (pink). The electrostatic contribution from the unrelaxed

calculations can be modelled with a 1/r dependence (solid blue line). (b)

The energy gained from relaxing all degrees of freedom in the supercell as

a function of the distance between the vacancy pair. This energy contribu-

tion is calculated by subtracting the relaxed energies from the unrelaxed

energies shown in (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
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5.1 Sketch summarizing the problem statement for this chapter. Can we

use available phase diagram information (experimental or computational)

and combine it with our chemical intuition regarding the dominant defect

to qualitatively predict the shape of the single phase region (and thereby the

various limits to defect solubility)? As we deal with more complex materials,

the answer to this question will come in handy. . . . . . . . . . . . . . . . . . 99

5.2 Building a visualization tool for predicting maximal solubility limit

with simple pen-and-paper drawings. (a) Ternary convex-hull of the model

system A-B-C containing a single stable compound ApBqCr. The formation

energy (∆Hf ) of the compound ApBqCr and the B-interstitial defect (Bi) in it

are shown by orange and blue filled circles respectively. The three common

tangent planes representing compositions in which the ApBqCr phase will

yield two impurity phases are numbered 1, 2 and 3. (b) Left: Ternary phase

diagram of the model system A-B-C. Can also be visualized as the top view

of (a). Right: side-view of (a) along the one-dimensional composition slice

indicated in the left panel. (c) Sketch showing the directions along which

the composition of the compound ApBqCr will change due to various point

defects (or defect directions) or shown with orange arrows. The direction of

the impurity phases with respect to ApBqCr (or impurity phase directions)

are shown with purple arrows. The dominant defect direction and the im-

purity phase direction information is sufficient to qualitatively predict the

region of maximal solubility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
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5.3 Rationalizing Cei solubility in CoSb3 prepared in varied chemical con-

ditions. (a) Ternary Co-Sb-Ce phase diagram zoomed in close to the ternary

CoSb3 phase (orange line) taken from Ref. [3]. The compositional regions

which yield two impurity phases in CoSb3 samples are numbered 1, 2 and

3. The relatively smaller regions which yield just one impurity phase lie in

between these numbered regions. The impurity phases for the larger regions

are labelled. (b) Sketch showing the dominant defect (Cei) direction and the

impurity phase directions for CoSb3. . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Rationalizing chemical conditions of maximal TeSb solubility in Mg3Sb2.

(a) T = 0 K Mg-Sb-Te ternary phase diagram. The compositional regions

which yield two impurity phases in Mg3Sb2 are numbered 1 and 2. (b) T =

900 KMg-Sb-Te ternary phase diagram zoomed-in close to the Mg3Sb2 phase

[2]. The compositional region which yields no impurity phase in Mg3Sb2

phase is shown in grey. The unnumbered compositional regions yield one

impurity phase (c) Schematic showing the dominant defect (TeSb) direction

and the impurity phase directions for Mg3Sb2. . . . . . . . . . . . . . . . . . 106

5.5 Rationalizing Nii solubility in TiNiSn prepared in varied chemical con-

ditions. (a) Ternary Ti-Ni-Sn phase diagram zoomed in close to the ternary

TiNiSn phase (green line) taken from Ref [4]. The compositional regions

which yield two impurity phases in half-Heusler TiNiSn samples are num-

bered 1, 2, 3 and 4. The compositions which yield just one impurity phase

lie in between these numbered regions. The impurity phases are labelled in

each case. (b) Sketch showing the dominant defect (Nii) direction and the

impurity phase directions for TiNiSn. . . . . . . . . . . . . . . . . . . . . . . . 108
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5.6 Prediction of unusual pseudobinary solid-solution phase diagram. Sketch

for a possible Temperature-Composition phase diagram (right) for the model

pseudobinary system AD−BCD2. The x-axis represents the composition be-

tween the AD and BCD2 phases (instead of the exact compositions AD and

BCD2) under B-rich and C-rich conditions. The figure on the left locates

this pseudobinary on the AD-BD-CD pseudoternary composition slice. The

substitutional defect directions for each end-member of the pseudobinary

end-members are shown by orange arrows. The defect direction vectors are

drawn of varying lengths to indicate differences in their energetics. The

dominant defect between each pair of substitutional defect is shown by a

longer vector. The impurity phase directions for the end-members are shown

by purple arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1 Status of thermodynamic stability predictions prior to this work. Num-

ber of half-Heusler compounds reported (blue circles, ICSD [5] and Ref. [6])

and predicted stable (red triangles, Ref. [6, 7] and OQMD [8, 9] ) using the

defect-free XY Z stoichiometry prior to this work as a function of nominal

valence electron count (VEC) or (alternatively) net valence (NV). . . . . . . . 120

6.2 Using defect-free structures withXY Z composition predicts stability of

19-electron half-Heuslers poorly. 19-electron XY Z systems investigated

in the present work for stability in the half-Heusler structure using only a

defect-free XY Z structure (any off-stoichiometry is ignored). Half-Heuslers

predicted stable are represented by the plus (+) symbol. Previously reported

nominal VEC = 19 half-Heuslers are represented by a circle. Compounds

where the half-Heusler phase is predicted unstable are indicated by a minus

(-) symbol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
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6.3 X-ray diffraction pattern of NbCoSb composition contains a significant

fraction of impurity phase. Synchrotron diffraction pattern of the NbCoSb

sample in a small angular range including the profile fit. The calculated

Bragg diffractions show the quality of the fit with the two phases NbCoSb

and Nb3Sb. Experiments were performed by collaborators at Justus-Liebig-

University Giessen and University of Houston. . . . . . . . . . . . . . . . . . 123

6.4 Cluster expansion results for the Nb1−xCoSb system. Formation enthalpy(∆

EF ) of 173 different orderings (gray circles) of Nb-atom and vacancies in

the Nb-sublattice of half-Heusler NbCoSb determined using DFT. The dot-

ted line indicates the convex hull for these configurations of the NbCoSb

(half-Heusler structure(half-Heusler))-CoSb (zinc Blende structure (c-ZnS))

binary system. The Nb0.8CoSb structure emerges as a stable ground state

phase lying on the NbCoSb ternary convex hull (solid black line). The for-

mation energies of this convex hull are determined from the three-phase

region of Nb7Co6, Nb3Sb, and Nb0.8CoSb at x = 0 (black square), the ordered

Nb0.8CoSb ground state phase, and the hexagonal ground state phase of

CoSb (red square). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.5 Valence balanced defective composition predict stability accurately.

19-electron XYZ systems investigated in the present work for stability of the

half-Heusler phase using the valence balanced (NV = 0) defective composi-

tions. Systems with the half-Heusler phase predicted stable are represented

by the plus (+) symbol. Among these, symbols of compounds previously re-

ported as nominal VEC = 19 half-Heuslers are encircled. Compounds where

the half-Heusler phase is predicted unstable are indicated by a minus (-)

symbol and those which lie within chemical accuracy of DFT (|Estability | ≤

10 meV/ atom) are given by tilda (∼) symbol. . . . . . . . . . . . . . . . . . . 128
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6.6 The defective valence balanced composition is always more stable than

the 19-electron half-Heusler structure at theXY Z composition. Estability

of the 108 half-Heusler structures studied here at theX-site-deficient valence-

balanced (NV = 0) composition versus at the defect-free VEC = 19 composi-

tion. Negative values signify cases where half-Heusler structure is predicted

stable. Cation deficiency increases the stability of nearly all half-Heusler

structures. Stabilizing energies are larger for systems with larger band-gaps

(Eg ≥ 0.55 eV, filled circles) at the VEC = 18 composition. All stable nominal

VEC = 19 half-Heuslers exhibit Eg ≥ 0.55 eV. . . . . . . . . . . . . . . . . . . 130

6.7 Instability of the 19-electron half-Heusler structure at the XY Z com-

position can be overcome by a correspondingly large electronic en-

ergy gap. Estability (in eV/formula unit) of the half-Heusler structures at

VEC = 19 composition versus its band-gap (Eg) at the off-stoichiometric va-

lence balanced composition. The compounds predicted stable (Estability ≤ -10

meV/atom) in the off-stoichiometric valence balanced (NV = 0) structure are

given by filled circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.8 Chemical trends in stability of half-Heusler compounds. Calculated

Estability values (cross symbols) for all of the 19-electron half-Heuslers at the

XY Z compositions investigated in this work. The Estability values are classi-

fied by the Z-site anion. Average Estability values for each case is shown as

a big blue circle. The thick black lines are drawn as a guide to the eye to

show the general trend in Estability values on going down a particular group

in the periodic table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
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6.9 Trends in half-Heusler stability with with electronegativity of the Z-

site atom. Calculated values of average Estability (averaged for based on

Z-site anion separately) for all the 19-electron half-Heuslers at the XY Z

compositions investigated in this work plotted as a function of the Z-site

atom electronegativity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.10Experimental verification of prediction of the Ti0.75+xPtSb compound

based on valence balanced rule. XRD patterns of Ti0.75+xPtSb (x = 0, 0.1)

annealed at 1073 K. Experiments were performed by collaborators at Zhe-

jiang University. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.1 Strategy to identify synthesis conditions for preparation of high per-

forming nominally 19-electron half-Heusler thermoelectric samples.

Schematic demonstrating the strategy adopted in the present work for rec-

ommending appropriate annealing temperature-composition synthesis con-

ditions for the design of optimally doped nominally 19-electron half-Heusler

thermoelectrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2 Temperature-dependent evolution of single phase (light blue) half-Heusler

in (a) V0.8+xCoSb, (b) Nb0.8+xCoSb and (c) Ti0.75+xNiSb. The solvus bound-

aries of the half-Heusler phase are given by the solid black lines. Compo-

sitions with single phase and multi-phase samples (from XRD) are repre-

sented by blue and unfilled black circles respectively. The dashed vertical

line drawn at the T = 0 K valence-balanced (NV = 0) composition separates

the n-type and p-type region for the nominal composition of the sample. The

top axis provides the nominal chemical carrier concentration (n) for each

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
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7.3 Explaining X-solubility in vacancies of the XyY Z ground state of nomi-

nally 19-electron half-Heuslers with DFT calculated ∆Hdef . Fraction of

vacancies (f ) in the ground state structure (x = 0) filled at Tanneal = 1073 K

(filled circles) or Tanneal = 873 K (unfilled circle) versus the ratio ∆Hdef/kBTanneal.

∆Hdef is the calculated defect energy for filling X-vacancies. The value of f

is obtained from systems studied in the present work (see Figure 7.2) and

Ref. [10] (Ti0.75+xPtSb). The dashed line is a guide to the eye describing

correlation between experimentally observed X-solubility and ∆Hdef (un-

der X-rich conditions). Temperature-dependent solubility can be estimated

from ∆Hdef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.4 Defect energy of vacancy-filling defect scales with increasing electronic

energy gap. Defect energy (∆Hdef ) for fillingX-vacancies in the ground state

XyY Z structures versus band-gap (Eg) at the valence-balanced NV = 0 com-

position. Group-IV (y = 0.75) and Group-V (y = 0.8) cation based nominally

NV = 1 (or VEC = 19) systems are shown by square and pentagon symbols

respectively. The dashed line is a guide to the eye describing correlation

between ∆Hdef and Eg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
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8.1 Visual illustration of the concept of double half-Heuslers. (a) Color

scheme in the periodic table representing elements occupying various sites

(X (violet), Y (red) and Z (green)) of the cubic half-Heusler structure (in panel

b). Quaternary half-Heusler compositions selected in the present work are

based on elements given in bold font. (b) The double half-Heusler struc-

ture (disordered) with the general formula X2Y
′Y ′′Z2 has equal occupancy

on the Y -site (in half orange/ half magenta) such that the overall compo-

sition is valence balanced (net valence NV = 0). (c) Example pseudoternary

TiFexCoyNi1−x−ySb based on aliovalent substitution on the atomic Y -site.

Double half-Heusler Ti2FeNiSb2 (purple square) and the alloy compositions

joining it to TiCoSb (blue square) are valence balanced (NV = 0). Adjacent

compositions based on Fe (orange) and Ni (cyan) substitutions represent p

and n-type compositions respectively. Nominally NV 6= 0 compositions (red/

white squares) are examples of ternary defective half-Heuslers which are

unstable without defects (TiFe1.5Sb[11] and Ti0.75+δNiSb[12]). These NV 6= 0

compositions will be referred to as the ternary components of the double

half-Heusler composition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.2 The quaternary half-Heusler composition space is almost completely

unexplored. Bar chart depicting the current status of exploration in possi-

ble ternary half-Heusler systems as opposed to quaternary systems. Com-

positions were obtained by imposing the valence balanced rule on the ele-

mental combinations provided in figure 8.1 a. The dark blue color gives a

conservative estimate of the fraction of explored compositions. The quater-

nary phase space is almost completely unexplored. . . . . . . . . . . . . . . 156
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8.3 Predicted quaternary half-Heuslers and their stability (Estability). 351

quaternary half-Heusler compositions (divided between 5 sub-types) inves-

tigated in the present work for stability in the half-Heusler structure. Half-

Heuslers predicted stable are represented by a plus (+) symbol. For com-

pounds where the half-Heusler phase is predicted unstable, the space is left

blank. The greyscale bar on the side gives the magnitude of predicted sta-

bility (Estability, data provided in Ref. [13]) of the quaternary half-Heuslers.

Predicted compounds for which only one of the ternary NV 6= 0 component

have a half-Heusler phase reported experimentally are denoted by thin cir-

cles. Predicted compounds for which both the ternary NV 6= 0 components

have a half-Heusler phase reported experimentally are denoted by thick cir-

cles. Previously reported quaternary half-Heuslers are denoted by boxes. . . 158

8.4 Lattice thermal conductivity comparison of double half-Heusler and

corresponding ternary half-Heusler. (a) Calculated (line) and measured

(scatter points) lattice thermal conductivity (κL) of TiCoSb (cyan) and Ti2FeNiSb2

(magenta) as a function of temperature. Experimental values of TiCoSb

are taken from Sekimoto et al. [14]. Calculated phonon frequency depen-

dence of (b) cumulative κL, (c) group velocities (vg), and (d) phonon-phonon

scattering rates in the two compounds at T = 300 K. (e) Calculated κL ver-

sus Gruniesen parameter (γ) for selected half-Heusler (triangle) and double

half-Heusler (square) compounds based on commonly used elements. The

regions are shaded based on a γ−2 dependence of κL. . . . . . . . . . . . . . 161

8.5 Experimental verification of double half-Heusler compound Ti2FeNiSb2.

Room temperature powder XRD pattern (cyan) of Ti2FeNiSb2 annealed at

1073 K. Theoretical XRD pattern for special quasi-random structure (SQS)

of Ti2FeNiSb2 is given in black. Experiments were performed by Dr. Max

Wood from the Snyder group at Northwestern. . . . . . . . . . . . . . . . . . 163
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8.6 Schematic distinguishing key differences between the temperature-

dependent phase diagram of the half-Heusler and the double half-Heusler

phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9.1 Schematic demonstrating difference between electronic structure of

indirect semimetals and semiconductors. . . . . . . . . . . . . . . . . . . . 170

9.2 Modelling valence and conduction band transport of VFe2Al separately

using single parabolic band modelling. Variation of thermopower (|S|) in

VFe2Al with different type and concentration of doping[15, 16, 17, 18, 19,

20, 21, 22] at room temperature. (a,b) plot of log|S|-log|σ| which gives the

weighted mobility (µw) with n-type (a) and p-type (b) dopants. For both cases,

the solid curves represent the prediction corresponding to constant values

of µw. (c,d) Themopower versus carrier concentration (n) plot to determine

the effective mass (m∗s) of n-type (c) and p-type (d) VFe2Al samples (scatter

points). The solid curves show the prediction for a constant m∗ which fit

reasonably well across the entire range of n. . . . . . . . . . . . . . . . . . . . 171

9.3 Estimating band-gap of VFe2Al from high temperature resistivity data.

Arrhenius plot for resistivity measurements of three undoped VFe2Al sam-

ples (filled circles) from previous reports[15, 18, 22]. At high temperatures,

slope of the solid lines correspond to a small band-gap of Eg=0.03 eV. . . . . 172
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9.4 Band-gap estimates from temperature-dependent Seebeck and resistiv-

ity data for VFe2Al are consistent with each other. Temperature de-

pendence of Seebeck coefficient for VFe2Al sample (scatter points) doped

with 10% Mo [20]. Solid lines represent predictions from two-band acoustic

phonon scatteringmodels withEg = 0.15 eV, 0.02 eV and -0.10 eV (semimetal-

lic). The weighted mobility (µw) values used in these models for majority and

minority carriers were 440 cm2V−1s−1 and 480 cm2V−1s−1, respectively. Ob-

served temperature dependence of Seebeck coefficients for VFe2Al can be

best understood from a small gap semiconductor description of the com-

pound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

9.5 Seebeck coefficient is extremely sensitive to size of the electronic gap

making it very useful for Eg estimation. Seebeck versus carrier concen-

tration (n) plot of n- and p-type VFe2Al samples (scatter points) for the entire

range of carrier concentration reported in the literature[15, 16, 17, 18, 19,

20, 21, 22]. The solid curves represent two-band acoustic phonon scattering

model predictions for band-gapEg=0.15 eV, 0.02 eV and -0.10 eV (semimetal-

lic). In these models, weighted mobility values of 700 cm2V−1s−1 and 300

cm2V−1s−1 were chosen for conduction band and valence band transport

respectively. Observed Seebeck values for VFe2Al can be best understood

from a small gap semiconductor description of the compound. . . . . . . . . 175

9.6 Atom resolved electronic band structure and density of states for VFe2Al.177
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9.7 Crystal Orbital Hamiltonian Population (COHP) heat map for the first Γ

point conduction band in the VFe2Al electronic structure. The off-site

COHP terms which represent interation between orbitals on two different

sites can be found outside the 4 large boxes (in thick black lines) drawn

across the diagonal of the heat map. Negative and positive COHP values

indicate bonding and anti-bonding interactions respectively. COHP value

of zero indicates the absence of any interaction. Clearly, the Fe1-Fe2 eg

interaction is the only relevant one for this state. . . . . . . . . . . . . . . . . 179

9.8 Crystal Orbital Hamiltonian Population (COHP) heat map for the sev-

enth Γ point valence band in the VFe2Al electronic structure. The off-

site COHP terms which represent interation between orbitals on two dif-

ferent sites can be found outside the 4 large boxes (in thick black lines)

drawn across the diagonal of the heat map. Negative and positive COHP

values indicate bonding and anti-bonding interactions respectively. COHP

value of zero indicates the absence of any interaction. Since multiple in-

teractions (between Fe-Al, Fe1-Fe2 and V-Al) appear to contribute in the

formation of this state, selecting the most relevant interaction additionally

requires analysing the orbital-projected partial density of states to identify

the orbitals contributing the most. . . . . . . . . . . . . . . . . . . . . . . . . 180

9.9 Partial density of states of orbitals involved in interactions with a large

COHP value can be negligibly small. Orbital projected partial density of

states heat map for the seventh Γ-point valence band. . . . . . . . . . . . . . 181
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9.10Molecular orbital diagram construction requires both COHP and pDOS

calculations. Orbital projected partial Density of States (pDOS) and k-

resolved Crystal Orbital Hamiltonian Population (COHP) of Γ-point states

of VFe2Al. The x-axis indicates the band index of the Γ-point state. The

indices of the valence (VB) and conduction bands (CB) are counted with re-

spect to the Fermi-level (Ef ). Degenerate bands are indexed together. The

pDOS are determined by adding contributions from s (blue bar), t2g-type

(dxy, dyz, dzx red bars) and eg-type (dx2−y2, dz2, red bars) orbitals separately

regardless of the atom type. pDOS value of 1 mean complete contribution

from a particular set. The COHP values were determined by averaging across

all inter-atomic interactions between orbitals of the same type (for example

averaging between Fe dz2 - V dz2 and Fe dx2−y2 - V dx2−y2 COHP to obtain

Fe-V eg COHP). Negative and positive COHP values indicate bonding and

anti-bonding interactions respectively. COHP value of zero indicates the ab-

sence of any interaction. In general, interaction strength increases as t2g <

eg < s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

9.11Molecular orbital diagram of VFe2Al. Schematic illustration of the molec-

ular orbital diagram in VFe2Al. The bonding (example eg) and anti-bonding

(example eg∗) interactions are concluded from partial density of states and

k-resolved Crystal Orbital Hamilton Population (COHP) analysis of states at

the Γ point in the electronic structure (see example in Figure 9.9 and Fig-

ure 9.8). States close to the Fermi-level (Ef ) predominantly show eg and t2g

charater from V and Fe atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
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Chapter 1

Introduction

1.1 Thermodynamics of off-stoichiometry in solids

1.1.1 Finite Temperature

At non-zero temperatures, thermal energy (kT ) creates defects in the lattice of a compound

and changes its composition. The off-stoichiometry observed with increasing tempera-

ture can be visualized in a temperature-composition phase diagram. Figure 1.1a sketches

the composition-temperature phase diagram of a model binary (A−B) system for which

the phases A, B, and AB, (depicted by shaded regions) all exhibit single phase width

and are stable in the entire temperature range. In general, the maximum amount of off-

stoichiometry in the stable single phase regions increases with temperature due to larger

amounts of thermal energies available to form defects in the lattice. The white regions

bordered by single phases represent two-phase equilibrium.

Solubility of different elements (at T = To, for example, see Figure 1.1a) within each phase

can be simply understood using the Gibbs free energies of formation (∆Gf ) of all stable

phases (see Figure 1.1b). ∆Gf can be drawn as composition-dependent curves for each

phase, where ∆Gf at a particular composition is determined with respect to the free
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Figure 1.1: Going from Experimental Phase diagrams to a T = 0 K understanding of stability.
(a) Temperature-Composition phase diagram for a model binary system A − B with three solid
phases A, B and AB, and their adjoining two-phase regions. (b) Example free energy (∆Gf ) models
of the phases A (blue curve), B (red curve), AB (orange curve) at the temperature T = T0 in panel
(a). Thick black lines drawn at the common tangents between the stable phases represent the
lowest energy surface and determine compositional limits of the phase boundaries. (c) At 0 K,
the Gibbs curves in (b) collapse and ∆Gf for each compound becomes a point (∆Hf ). Common
tangents drawn between stable phases form the 0 K low energy surface, or convex-hull.

energy of elemental phases A (G0
A) and B (G0

B). For example, the free energy of formation

for the compound AB2, for example, at the composition x = 2/3 is given by

∆GAB2
f = GAB2 − 1/3×G0

A − 2/3×G0
B (1.1)

where GAB2 is the free energy of the AB2 compound in eV/ atom. It is important to note

that when calculated on a per-atom basis (as in Figure 1.1 b) G0
A and G0

B are actually the

elemental chemical potentials (µ0A and µ0B) at constant pressure. Hence, the formation

energy are all relative to the elemental chemical potentials and ∆Gf at the percentage

composition x = 0 and x = 1 is zero (see Figure 1.1b).

The stability of a phase or combination of phases as seen in the phase diagram (see T = T0

in Figure 1.1a) is determined by the common tangent construction; a topic familiar from

introductory texts on phase diagrams. In this technique, common tangents connecting

the ∆Gf curves of all the phases involved are drawn and the lowest free energy surface

(see thick lines in Figure 1.1b) is chosen in order to describe phase stability. This lowest

energy surface, consisting of linear and non-linear (see thick black lines in Figure 1.1b)
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portions is known as the convex-hull of the A − B system. The linear portions drawn

from connecting common tangents between curves indicate compositions which undergo

phase separation in order to lower the system’s energy to that of the common tangent line.

The non-linear portion of the convex-hull is created by a single low energy ∆Gf curve and

indicates a single phase region. ∆Gf curves for metastable phases which cannot be seen

in the phase diagram can also be represented by curves lying above the convex-hull.

In addition to demonstrating compositional stability, convex-hull constructions also con-

tain complete information on how the chemical potentials of A and B atoms vary across

the entire composition range. To obtain the chemical potentials of the elements A and

B at a particular composition, one can simply draw a tangent to the convex-hull at that

composition and extend it in either direction to find the intercepts on the A (x = 0) and

B-component (x = 1) y-axis. The intercept length along the y-axis (given in eV/atom)

indicates change in chemical potentials with respect to that of the elemental species µ0A

(for A) and µ0B (for B), respectively. So the chemical potentials for the A-AB equilibrium

in Figure 1.1b, for example, is µ0A + ∆µA and µ0B + ∆µB (see dashed grey line). The con-

stant values of the chemical potential across the two phase composition range signifies

the energy gain/loss associated with exchanging a single atom between phases in equi-

librium (A and AB for example). We discuss plotting chemical potential diagrams using

the convex-hull construction in the section 1.1.3 below.

1.1.2 T = 0 K

The curvature in the finite temperature ∆Gf arises from the entropic contribution (−T∆S)

to the free energy, which typically varies non-linearly with composition. So at T = 0K,

where ∆Gf = ∆Hf , the curvature associated with the entropic contribution vanishes

for all phases, and the stable phases are represented by single points (see large circles

in Figure 1.1c) lying on the convex-hull. These points indicate ∆Hf of the defect-free
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stoichiometric structure of the compound. The composition dependence of ∆Hf at T = 0K

for the stable phases is be depicted by including the energies of its defective structures

in the convex-hull diagram. The composition of these defective structures deviate from

the nominal stoichiometry of the compound in case of point defects such as vacancies,

interstitials and anti-site defect. So structures with larger concentrations of point defects

in the compound AB, for example, will lie further away from it in composition. The ∆Hf

of these defective structures (see small orange points for AB phase in Figure 1.1c) lie

above the convex-hull signifying that they are metastable at T = 0K.

1.1.3 Chemical potential diagram construction from the convex-hull

The chemical potentials pertaining to various phase equilibria are needed for calculating

point defect formation energies[2, 23, 24]. The range of such chemical potentials available

for calculations can be directly visualized from a convex-hull construction (Figure 1.2).

In the A-B model system, the energies at the y-intercepts of a "common-tangent" line

on the A and B energy axes are ∆µA and ∆µB, respectively. As an example, for AB in

equilibrium with A (Figure 1.2a), the y-intercepts of the line between the two compounds

gives ∆µA = 0 and ∆µB < 0, as expected in equilibrium with elemental A. Similarly,

AB in equilibrium with B (Figure 1.2c) gives ∆µB = 0 and ∆µA < 0. A compound AB

that is not in established equilibrium with either A or B (Figure 1.2b) will have both

∆µA < 0,∆µB < 0.

Visualizing chemical potentials in the frequently used chemical potential space requires

only the information from the convex-hull y-intercepts. In a typical binary chemical po-

tential diagram, the x- and y-axes represent ∆µ for each element (see right column of

Figure 1.2). For the A − B system with stable phases AB, A, and B, the two possible

phase equilibria for AB are with elemental A (∆µA = 0) or B (∆µB = 0). Applying the

common-tangent approach to the convex-hull, as described above, allows one to plot
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Figure 1.2: Going from the convex-hull to chemical potential space representation of ther-
modynamic stability. (a-c) A convex-hull construction for the hypothetical A−B binary system
(left column) with stable phases A, B, and AB and metastable phase AB3. (a) When phase AB
in in equilibrium with A (∆µA = 0), the change in elemental chemical potentials, ∆µA and ∆µB,
are directly read from the y intercepts of the line connecting AB and B and plotted in chemical
potential space (right column). (b) Shifting equilibrium from AB and A diverts ∆µA and ∆µB from
their extrema until reaching equilibrium between AB and B (c), where ∆µB = 0. The line connect-
ing every chemical potential between the two equilibria captures the entire range of accessible
chemical potentials for AB. (d) When phase AB3 become stable, the line representing its chemical
potentials falls below that of phase AB in chemical potential space. Phase equilibrium between
AB and B is no longer possible, and is replaced by equilibrium between AB and AB3, reducing
the range of ∆µB accessible.



44

∆µA and ∆µB for any composition constrained by available phase equilibria. In chemical

potential space, a line drawn through the results encompasses all accessible chemical

potentials for the AB phase. A similar plot can be made for metastable AB3. However, the

magnitudes of ∆µB and ∆µA will be lower than those for compound AB across the en-

tire composition range, indicating less favorable energetics for formation (Figure 1.2(a-c)).

Only phases with the lowest-lying lines in chemical potential space are stable. Addition-

ally, the slope of a line drawn in chemical potential space represents stoichiometry. In

the example provided, the slope for phases AB and AB3 are -1 and -1/4, respectively.

As additional phases "break" the convex-hull and become stable, they can reduce the

range of accessible chemical potentials for other phases in the system. Following the

example of Figure 1.2, when a phase AB3 becomes stable (Figure 1.2 d), the B-rich equi-

librium for phase AB is no longer between AB and B - but rather between AB and AB3.

Correspondingly, the line representing AB3 in chemical potential space (right column of

Figure 1.2 d) drops below that of AB, signifying that the AB phase is no longer stable

at certain compositions. As a result, the lowest magnitude of ∆µB in AB must be some

finite value greater than 0.

1.1.4 Defect Energy

Consider, for example, the following defect reaction involving formation of an A-vacancy

from the bulk of a model binary compound AB

AB −→ A1−δB + δ A (1.2)

the composition of the AB phase changes slightly (δ) and the atom removed from AB gets

placed in the elemental phase A. The molar enthalpy for such a defect reaction (∆HD) is
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given by

∆HD = H(A1−δB) + δ H(A)−H(AB) (1.3)

where H(A), H(AB) and H(A1−δB) are the molar enthalpies of A, AB and the defective

structure. It is important to note that in addition to the enthalpy associated with the

host structure [H(AB)] and defect structure [H(A1−δB)], the defect formation enthalpy

∆HD also depends on the enthalpy of the phase where the atom ends up [H(A)]. So ∆HD

in AB could in principle be evaluated for any combination of phases (AB-A, AB-AB3, etc.).

However, ∆HD is well-defined only if the phases are in thermodynamic equilibrium; i.e.

the phases involved constantly exchange atoms with each other without spontaneously

forming reaction product phases. The phase AB can be in equilibrium with a relatively

A-poor phase (i.e. AB3, B) and a relatively A-rich phase (i.e. A3B, A) in the A−B binary

system. So depending on which equilibrium AB is participating in, H(A) in equation 1.3

can be substituted by the enthalpy of another phase in the binary system. Consequently,

∆HD can take different values based on the choice of chemical equilibrium conditions.

The multiple values of ∆HD is in stark contrast to intrinsic defects in elemental solids

or even Schottkey and Frenkel defects in ionic solids (see Methods section). Even the

simple binary compounds can participate inmore than two equilibria if a multicomponent

composition space (ternary (for example Na doping in PbTe), quaternary, pentenary etc.)

is considered, making the problem significantly more complicated.

Since the defect formation enthalpy is defined on a per-defect basis in the dilute limit

where lim δ −→ 0, we re-write the equation 1.3 for a single vacancy defect (∆Hdef ) by

replacing H(A) with the chemical potential of the atom A (µA) and write it as

∆Hdef = Edefect − Epristine + µA (1.4)
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where the first term Edefect - Epristine is the difference in energy between the defective

and pristine (defect-free) structures. More generally, ∆Hdef for all types of point defects

(interstitials, vacancies and antisites) can be written as:

∆Hdef = Edefect − Epristine −
∑

∆Niµi (1.5)

where ∆Ni is the number of atoms of species i added to or removed from the defective

structure (+1 for interstitials, -1 for vacancies and for antisites +1 and -1 for the atomic

species added and the atom species missing respectively) and µi is the chemical potential

of the species i.

1.2 Thermoelectric Properties

Thermoelectric devices can directly convert waste heat into useful electricity, attracting

considerable attention as a means to harvest the energy that is currently lost by dissipa-

tion. [25, 26] While the performance of a thermoelectric device — like any thermodynamic

system — will be limited by its Carnot efficiency (∆T/T ), this factor needs to be multi-

plied by an additional irreversibility factor determined by electrical and thermal materials

properties. Since these properties are temperature dependent, the irreversibility factor

can be expressed in terms of a well defined materials property zT , known as the ther-

moelectric figure of merit, only for a differential efficiency in the limit ∆T → 0. In terms

of Seebeck coeffient S, electrical conductivity σ, lattice thermal conductivity κlat and the

electrical contribution κel to the total thermal conductivity (κ), zT can be expressed as

zT =
S2 σ

κlat + κel
T (1.6)

Typical high performing thermoelectrics are degenerately doped semiconductors with the
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optimized material often requiring charge carrier concentrations (n) in excess of 1019

cm−3. In principle, all materials properties in the expression for zT depend on n. The

dependency of S, σ, L (Lorentz number) and Kel are discussed in detail Ref. [25, 27,

28, 29]. The κlat dependency on carrier concentrations, although not very well studied,

arises from electron-scattering [30] and phonon renormalization effects [31] and become

substantial at higher doping levels.

Following from equation 1.6, the strategies exercised to increase zT chemically either

target improving the electrical contribution — given by the electrical power factor in the

numerator S2 σ — or reducing the KL. The main avenues to a achieve small KL include

various scattering mechanisms for phonons [32, 33, 34] and more recently lattice soften-

ing strategies [35, 31]. Scattering of phonons due to changes in composition of a single

phase material is understood using point-defect scattering models discussed at length in

the Ref. [36, 37].

Electrical transport of a single-phase material with a single parabolic band (SPB) con-

tributing to transport is often characterized by the weighted mobility µw [38] which can

be expressed as

µw = µo

(
m∗s
me

)3/2

(1.7)

where µo is the mobility parameter andm∗s is the Seebeck effective mass. While the mobil-

ity parameter µo — which is directly proportional to σ — characterizes only the electrical

conductivity, the weighted mobility µw (depending to the scattering mechanism for car-

riers considered) can be used to predict the magnitude of σ for a given value of S. The

S-σ relation for materials with different µw values are calculated using acoustic-phonon-

scattering SPB models in Figure 1.3. Larger µw values in the model offset the curves to

higher S and σ values (see Figure 1.3). For the sake of comparison constant power factor

lines have also been shown next to the curve. Although µw does not automatically mean
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Figure 1.3: Weighted Mobility for characterizing the electrical performace of thermoelec-
tric materials.Calculated Thermopower (|S|)-Conductivity (σ) relations (curves) using the single
parabolic band (SPB) model with acoustic phonon scattering at two different values of weighted
mobility (µw). Multiple lines with constant power-factor values are plotted for a qualitative refer-
ence of device requirement for thermoelectric material.

a larger electrical power factor, it does mean a larger optimized power factor value. This

optimized power factor value can be determined from the point at which the constant

power factor line forms a tangent with the S-σ curve. The plot connecting the optimized

power-factor to µw in acoustic-phonon-scattering models is shown in the Figure 1.4. The

optimized power factors within the single parabolic band model — with acoustic phonon

scattering — occurs at ∼ 167 µV/ K. The Seebeck value only depends on the position of

the Fermi-level with respect to the band-edge[29] and a value of ∼ 167 µV/ K corresponds
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to a Fermi-level position slightly inside the position (degenerately doped semiconductor).

Another metric quite similar to the weighted mobility, known as the electronic quality

factor, has been discussed recently in Ref. [39].

Figure 1.4: Predicting maximum power factor with weighted mobility. Optimized power factor
value calculated using the single parabolic band (SPB) model under the acoustic phonon scatter-
ing assumption; plotted as a function of the weighted mobility value.
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Chapter 2

Methodology

2.1 Density Functional Theory

Density functional theory (DFT) is based on two fundamental theorems by Hohenberg and

Kohn. The first theorem states that ‘the external potential V(r) is (to within a constant)

a unique functional of ρ(r); since, in turn V(r) fixes Ĥ (the Hamiltonian operator) we see

that the full many particle ground state is a unique functional of ρ(r)’. [40] Put differently,

this means that the electron density uniquely determines the Hamilton operator and thus

all properties of the system. The second theorem states that ‘the functional that gives the

ground state energy of the system, gives the lowest energy if and only if the input ρ(r) is the

true ground state density, ρ0.’ , reducing the 3N-dimensional problem to N dimensional.

Kohn and Sham showed that a major part of the kinetic energy can be calculated to good

accuracy (a problem with other methods using the direct density functional such as the

Thomas-Fermi method [41]) by a set of non-interacting single-electron functions. These

single electron ‘orbitals’ can replace the Schrodinger equation in systems of interacting

nuclei and electrons that describes to find the ground state energy. [42] In the general
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form of the Kohn-Sham equations

[
− ~2

2me
∇2 + V (r) + e2

ˆ
n(r′)

|r′ − r|
dr′ + Vxc(r)

]
ψi(r) = εiψi(r) (2.1)

where the first term is the kinetic energy term, the potential V is the interaction between

the electron and the atomic nuclei in the system, the third potential describes Coulombic

interactions between the electron and electron density of all electrons in the system, and

the fourth term Vxc is the exchange-correlation potential.

The density functional theory (DFT) calculations [43] in this study were performed using

Vienna ab-initio simulation package (VASP). [44, 45] We have used PerdewBurke Ernz-

erhof (PBE) formulation of the exchange correlation energy functional derived under a

gradient-generalized approximation (GGA). [46] Generally, the plane-wave basis sets were

truncated at a constant energy cutoff of > 1.3 × ENMAX were used, as were Γ-centered

k-point meshes with a density of ∼ 8000 k-points per reciprocal atom (KPPRA). All struc-

tures were relaxed with respect to cell vectors and their internal degrees of freedom until

forces on all atoms were less than 0.1 eV/nm. The lowest energy structures for defective

structures in multiple systems were determined by comparing DFT energies of multiple

structures at the valence balanced composition generated by the enumlib code [47, 48]

was used to predict High-throughput predictions for thermodynamic stability were done

using the Open Quantum Materials Database [9, 8].

The GGA+U calculations for VFe2Al in Chapter 9 were performed using U = 0.5 eV and

U = 1.35 eV for d-states of V and Fe atoms respectively. These values were determined

by proportionally scaling down the U values obtained by Do et al. [49] for VFe2Al using

constrained DFT calculations (UFe = 4 eV, UV = 1.5 eV). The k-resolved Crystal Orbital

Hamilton Populations (COHPs) calculations were performed using the version 3.2.0 of

the LOBSTER software.[50, 51, 52] The atom-projected electronic structure in Chapter

9 and ?? was plotted using PYMATGEN.[53] A separate code was written for plotting the
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orbital-projected electronic structure plotting in Chapter ??.

2.2 Prediction of thermodynamic stability. Convex Hull Con-

struction

The thermodynamic stability of a phase is determined by constructing the so-called con-

vex hull of formation energies of all phases in the respective composition space. By

definition, every phase that lies on the convex hull is thermodynamically stable, i.e., it

has a formation energy lower than any other phase or linear combination of phases at

its composition. By extension, all other phases that do not lie on the convex hull are

metastable or unstable, i.e., there exists a phase or mixture of phases lower in energy at

that composition.

Figure 1.2 depicts a the convex hull construction for a model binary system A-B. The

formation enthalpies (∆Hf ) of the compounds are calculated relative to the elemental

chemical potentials of the components A (µA) and B (µB), which are simply the DFT-

calculated total energies of the elements in their lowest energy bulk structures.

∆Hf = Ecompound −
2∑
i=1

ciµi (2.2)

where Ecompound is the DFT total energy of the compound of interest. Negative values of

DeltaHf (Figure 1.2) for all the three structures considered (A3B, AB and AB3) indicate

their stability with respect to the elements A and B. The convex hull connects phases

that are lower in energy than any other phase or linear combination of phases at that

overall composition. So, only the phase at AB is truly thermodynamically stable. Phases

A3B and AB3 are unstable with respect to A − AB and AB − B mixture of phases (by

visual inspection, we see that the energy of A3B (AB3) is higher than the phase mixture

of A − AB (AB − B) at the corresponding composition). For the phase stability analysis
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in Section 3, we consider all known and hypothetical phases in each composition space

from the Open Quantum Materials Database (OQMD).[8, 9]

Further, the convex hull construction can be used to estimate the extent of thermody-

namic stability (or instability) of a given phase. For this, we construct an additional

convex hull in the composition space after excluding the phase of interest and determine

the lowest-energy mixture of phases at that composition. So for the phase AB (see Figure

2.1) for example, the convex hull excluding it is given by the dashed black lines in Figure

2.1. The lowest-energy decomposition products at the composition AB is A3B−AB3. The

difference between the ∆Hf of the phase (AB) and the lowest-energy mixture of phases

from the second convex hull construction (see Figure 2.1) quantifies the extent to which

the phase is stable (or unstable). In other words, the extent of stability (Estability) of a

phase is calculated using:

∆Estability = ∆Hf −
3∑
i=1

ci∆µi (2.3)

where ci is the composition and µi is the chemical potential of the constituent element

i, determined by the 2- or 3-phase equilibria from the second convex hull construction

excluding the phase of interest. Thus, a negative Estability for a phase implies its overall

thermodynamic stability while a positive Estability indicates that other lower-energy mix-

ture of phases exist at that composition.

We would like to emphasize on the subtle difference between Estability and the quantity

called as the ‘distance to convex-hull’ ECH which is calculated only with respect to the

convex-hull of lowest ∆Hf phases (solid line in Figure 2.1). So, by definition, unlike

Estability, ECH ≥ 0. When ECH > 0, Estability = ECH and when ECH = 0, Estability 6= ECH (see

Figure 2.1).
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2.3 Cluster Expansion

The cluster expansion (CE) [54, 55, 56, 57, 58, 59, 60] method is a generalized Ising

model in which the total energy of an arbitrary atomic configuration Si can be uniquely

determined using a linear combination of basis Functions defined by the product of oc-

cupation variables for the lattice sites:

E(Si) = J0 +
∑
i

JiSi +
1

2!

∑
i 6=j

JijSiSj +
1

3!

∑
i 6=j 6=k

JijkSiSjSk + ..., (2.4)

in which the coefficients Jf are effective cluster interaction (ECIs) associated with a a

cluster of lattice sites (f ). For a binary alloy AxB1−x, the occupation of site i in this model

is labeled by a spin variable Si = 1 or -1, where the sign depends on the type of atom.

The ECI are obtained by fitting the form of Eq. to the energies determined from DFT for

a set of ordered structures, each of which is characterized by the spin variables Si. For

a converged CE, ECIs tend to decrease rapidly with the number of lattice sites in the

expansion; hence Eq. is generally truncated to include only a few smaller-sized clusters.

The evaluation of the predictive power of a CE is evaluated using the cross-validation (CV)

score, defined as:

(CV )2 =
1

n

n∑
i=1

(F directi − FCEi )2 (2.5)

where Fi direct is directly calculated using DFT and FCEi is predicted from a CE with ECIs

obtained from a least-squares fit to energies of the (n-1) other structures. A converged set

of effective cluster interactions (ECIs) thus obtained enable the prediction of the energies

of structures across a wide range of composition. All CEs reported in this work were

performed using the Alloy Theoretic Automated Toolkit (ATAT) [61, 62, 63].
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2.4 Two-band Model for VFe2Al electrical transport

Utilizing experimental datasets from the literature, we parameterize an analytical band

transport model to understand the electrical properties of VFe2Al. Evidence of bipolar

transport near room temperature and at carrier concentrations less than ∼ 1021cm−3,

suggests the necessity of a two-bandmodel capturingmajority andminority carrier trans-

port. Here, we assume carrier lifetime to be limited by acoustic phonon scattering. We

first build separate effective mass models for T = 300K transport of the conduction and

valence bands, using only samples in the single-band transport regime (entered by nom-

inally doping the compound in excess of ∼1021 cm−3 carriers). Therefore, only samples

in the regime of linearly increasing |S| response to temperature were chosen

To build the transport models, data was collected from a variety of n-type (Co[15],Si

[16, 17, 19], Ge[18], Sn[19], Mo[20], Pt[21], W[21]) and p-type (Ti[20], Zr[21], Re[22])

dopants used in previous thermoelectric studies. The weighted mobility— a carrier mo-

bility parameter weighted by the density of states effective mass — is determined from

thermopower (|S|)-conductivity (σ) relation. The weighted mobility is directly related to

the thermoelectric power factor at a given doping level (η = Ef/kBT ) and temperature.

Moreover, the influence of dopants on carrier mobility through effects such as alloy scat-

tering is easy to assess via the weighted mobility. We also determine the Seebeck effective

mass, ms
∗, which relates to the density-of-states at the Fermi level, from the |S| versus

carrier concentration (n) relation. These |S|-σ-n relations are detailed below through their

mutual dependence on doping level η[29]. The Fermi integrals are denoted as: Fj, where
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j represents the order.

σ =
8πe(2mekBT )3/2

3h3
µW F0

S =
kB
e

(
2F1

F0
− η)

n = 4π(
2ms

∗kBT

h2
)3/2F1/2

(2.6)

Once the fitted band parameters µW and mS
∗ have been determined for the valence and

conduction band, we then build a two-band model in order to fit the band offset (Eg) that

best describes the full data (i.e. including samples in the bipolar regime). The two band

Seebeck and conductivity equations are shown below combining the electron and hole

properties. Here, the relationship ηp = −(Eg/(kBT )+ηn) has been fixed when determining

σp, Sp, and hole carrier concentration p.

σ = σp + σn S =
Spσp + Snσn
σp + σn

(2.7)

2.5 Double half-Heusler lattice thermal conductivity (κL) cal-

culations

Lattice thermal conductivity (κL) calculations were performed within the framework of

anharmonic lattice dynamics and Boltzmann transport equation, assuming that three-

phonon interactions and isotope scattering dominate the total phonon scattering rates.

To overcome the formidable computational cost in evaluating third-order interatomic force

constants (IFCs), we employed the recently developed compressive sensing lattice dynam-

ics (CSLD) method [64, 65] to efficiently extract both harmonic and anharmonic IFCs,

the accuracy of which is further verified by comparing to the third-order IFCs obtained

by finite displacement method.[66, 67] Afterwards, ShengBTE package[67] was employed
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to numerically solve the BTE under relaxation time approximation (RTA). The conver-

gence of the calculated κL was carefully examined with respect to the diameter cutoff of

the third-order anharmonic IFCs and the grid of sampled phonon wavevector. We find

that the diameter cutoffs of 5.0 Å and 4.5 Å for respectively half-Heusler and Double

half-Heusler were sufficient to yield κL with good convergence.
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Figure 2.1: (a) Differentiating Estability from ECH in a model binary convex hull. Formation
enthalpy (∆Hf ) of the structures with the compositions A3B, AB, AB3 with respect to lowest en-
ergy elemental phases A (µA) and B (µB). The convex hull of the A−B binary phase space is given
by the solid line. Estability of AB is calculated by constructing a convex hull of all other phases
(dashed line), and using the constant elemental chemical potentials (µA + ∆µA and µB + ∆µB)
associated with the metastable equilibrium A3B-AB3. The convex-hull distance is the energy dis-
tance with respect to the lowest energy convex-hull (which contains only the thermodynamically
stable phases). When ECH > 0, Estability = ECH and when ECH = 0, Estability 6= ECH .
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Chapter 3

Visualizing Defect Energetics

3.1 Overview

The key to chemically controlling transport properties through defect engineering lies

in understanding the stability of (a) the defect and (b) the compound itself relative to

competing phases at other compositions in the system. The stability of a compound

is already widely understood in the community using intuitive diagrams of formation

enthalpy (∆Hf ) vs. composition, in which the stable phases form the ‘convex-hull’. In

this work, we re-write the expression of defect formation enthalpy (∆Hdef ) in terms of the

∆Hf of the compound and its defective structure. We show that ∆Hdef for a point defect

can be simply visualized as intercepts in a two-dimensional convex-hull plot regardless of

the number of components in the system and choice of chemical conditions. By plotting

∆Hf of the compound and its defects all together, this visualization scheme directly links

defect energetics to the compositional phase stability of the compound.
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3.2 Context and Motivation

Introductory textbooks in materials science often tabulate values of defect formation en-

thalpy (∆Hdef ) of intrinsic defects in crystalline solids. These tables typically compare

∆Hdef for intrinsic defects in elemental metals, such as Ti, Co, Ni, W, etc. Other common

examples involve comparisons of intrinsic Schottky and Frenkel defects in ionic com-

pounds such as NaCl, KCl, AgCl, CaF2, etc. In each of these cases, the defect does not

alter the overall composition of the structure, and stability of the defect is determined

with respect to the pristine host structure. Hence, ∆Hdef for all such defect types takes

a single value at given temperature and pressure allowing for a simple comparison and

understanding of defects.

In contrast, the defect energetics of most other important point defects in crystalline

compounds such as interstitials, vacancies and anti-sites is significantly more compli-

cated. For compounds with two or more elements, even these simple defects will alter

the overall composition. Hence, the stability of the defect must be assessed with respect

to stable phases lying at other compositions in the system, instead of just the pristine

host structure of the compound. For example, when NaCl is saturated with a Cl atmo-

sphere, the stability of a Na-vacancy defect is determined with respect to NaCl and Cl2

gas. When NaCl is saturated with elemental Na on the other hand, stability of the same

defect is determined NaCl and metallic Na. As a result, unlike a Schottky defect in NaCl,

the stability of the Na-vacancy defect can vary depending on the chemical equilibrium

conditions. Hence, ∆Hdef of simple point defects in crystalline compounds can take at

least two values of defect energies which are ‘chemically controllable’.

The dependence of defect energetics on phase equilibrium allows for chemical control of

any properties that are affected by point defects. In semiconductor compounds, for exam-

ple, intrinsic charged defects set a thermodynamic limit on the number of charge carriers,

or dopability, in the system. [68, 69] Changing chemical equilibrium conditions to tune
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∆Hdef of intrinsic defects can offset this limit to allow more carriers in the semiconductor,

thereby opening a wider range of electronic properties. For instance, in state-of-the-art

n-type thermoelectrics PbTe and Mg3Sb2, electron dopability is barely possible unless

the compounds are synthesized under cation-rich chemical conditions. [70, 2] Point

defects also impact electrical, [71, 72] thermal, [13, 73] and ionic [74, 75, 76, 77, 78]

transport significantly, making them important in studies for a variety of applications

such as batteries, [79, 80, 81, 82] photovoltaics, [83, 84] thermoelectrics, [4, 85, 86, 87]

thermochemical water splitting, [88, 89] solid oxide fuel cells, [90, 91] and transparent

conducting oxides. [92] In view of the fact that practically all materials research focuses

on properties impacted by simple defects in some way, understanding defect energetics

within a thermodynamic framework which is widely used by the community will be very

beneficial.

Formation enthalpies (∆Hf ) are the most commonly used thermochemical quantity for

composition dependent stability analysis. Given the ∆Hf for all possible phases in a sys-

tem, plotting them in composition space is sufficient to distinguish the stable phases from

the unstable ones. These plots, also known as convex-hulls, are commonly used to intro-

duce the subject of thermodynamic stability through the common tangent construction.

As a result, convex-hulls are widely used by the scientific community for reading stability

prediction of compounds presented in high-throughput databases such as OQMD, [9, 8]

Materials Project, [93] and the AFLOW library, [94] and for performing stability analysis

using CALPHAD assessments. [95, 96]

In this work, we demonstrate that one can graphically solve for ∆Hdef of simple point

defects within the convex-hull construction itself. The ∆Hdef of a defect involving the

atom A (A-vacancy and A-interstitial), for example, can be simply visualized as inter-

cepts on the elemental A axis of the convex-hull diagram. Since these elemental axes in

the convex-hull diagrams represent the atomic chemical potential scale, one can visu-

alize ∆Hdef regardless of the chemical conditions considered. Hence, our visualization
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scheme takes into account the stability of both the defect and the compound in ∆Hdef

calculations. Furthermore, we also show that the graphical solution of ∆Hdef for any

complex multicomponent (ternaries, quaternaries etc.) compound can be visualized in

simple two-dimensional plots without any loss of information. Since our approach sim-

plifies application level defect thermodynamics using basic materials thermodynamics

knowledge, we expect it to be a useful pedagogical tool for a wide community.

3.3 Results and Discussion

3.3.1 Graphical representation of point defect energies in convex-hulls

To visualize the defect formation energy, ∆Hdef , within the convex hull construction (see

Figure 3.1), we re-write equation 1.5 in terms of the formation energies ∆Hf of the de-

fective and pristine structures and simplify the expression (see Appendix A). In this new

form of the expression, all ∆Hf terms necessary to determine ∆Hdef can be read directly

from the convex-hull diagram (Figure 3.1). Full derivations for each defect type in the

general cases of a model binary compound ApBq and a ternary compound ApBqCr are

given in the Appendix A.

Figure 3.1 shows example sketches of various simple point defect types (interstitials,

vacancies and antisites) in the compound AB. The ∆Hf of the defective structures are

drawn such that they lie above the convex-hull, signifying metastability at T = 0 K. Note

that, depending on how each defect type changes the stoichiometry of the compound, ∆Hf

of the defective structures are either shown (Figure 3.1) at the percentage compositions

x < 0.5 (A-interstitials) or x > 0.5 (A-vacancies, BA anti-sites). Structures with larger

defect concentrations lie further away from the x = 0.5 composition. We draw two columns

for each panel in Figure 3.1 indicating the chemical potentials (see unfilled circles) in A-

rich and B-rich equilibrium conditions.



63

A+AB equilibrium (A-rich AB)

0

x in A
1-x

B
x

A B

In
te

rs
ti

ti
a

ls
 

V
a

c
a

n
c

ie
s

A
n

ti
-s

it
e

0

x in A
1-x

B
x

A B

0

x in A
1-x

B
x

A B

E
iB

∆H
def

 = E
iB 

- E
vA

A-interstial in AB

∆H
def

 = E
iA

E
iA

A-v
ac

an
cy

 in
 A

B

∆H
def

 = -E
vA

0

∆
H

f (
e
V

/a
to

m
)

∆
H

f (
e
V

/a
to

m
)

x in A
1-x

B
x

A B

AB+B equilibrium (B-rich AB)

0

∆
H

f (
e
V

/a
to

m
)

∆
H

f (
e
V

/a
to

m
)

x in A
1-x

B
x

A B

0

x in A
1-x

B
x

A B

∆H
def

 = E
iA

∆H
def

 = E
iB 

- E
vA

A-interstial in AB

A-v
ac

an
cy

 in
 A

B

∆H
def

 = -E
vA

B A
 a

nti-
sit

e 
in A

B

E
iB

AB

ABAB

AAB

=  positive quantity, =  negative quantity

a

b

c

E
iA

∆
H

f (
e
V

/a
to

m
)

∆
H

f (
e
V

/a
to

m
)

E
vA

E
vA

E
vA

E
vA

AB

ABAB

∆H
def

 = ∆N
i  
E

i 
+ ∆N

v 
E

v 
,

A-v
ac

an
cy

 in
 A

B

A-v
ac

an
cy

 in
 A

B

A-v
ac

an
cy

 in
 A

B

A-v
ac

an
cy

 in
 A

B

A-v
ac

an
cy

 in
 A

B

A-v
ac

an
cy

 in
 A

B

A-v
ac

an
cy

 in
 A

B

A-v
ac

an
cy

 in
 A

B

A-v
ac

an
cy

 in
 A

B

A-v
ac

an
cy

 in
 A

B

A-v
ac

an
cy

 in
 A

B

A-v
ac

an
cy

 in
 A

B

A-v
ac

an
cy

 in
 A

B

A-v
ac

an
cy

 in
 A

B

A-v
ac

an
cy

 in
 A

B

A-v
ac

an
cy

 in
 A

B

B A
 a

nti-
sit

e 
in A

B

def
ec

t l
in
e

def
ec

t l
in
e

Figure 3.1: Visualizing defect energetics on a convex-hull. (a-c) Graphical solutions for defect
energy ∆Hdef of (a) A interstitial, (b) A vacancy, and (c) BA antisite defects in the binary compound
AB. Formation energy (∆Hf ) of the defect-free AB structure is given by the orange circle. ∆Hf

of defective AB structures are shown as filled hexagons for interstitials (a), empty hexagons for
vacancy defects (b), or a combination for anti-sites (c). Defective structures with the same value of
∆Hdef are shown by translucent symbols and fall on the ‘defect line’ (solid black line). The left and
right columns correspond to A-rich and B-rich equilibrium, respectively. The chemical potentials
of A and B corresponding to these equilibrium conditions (large, empty circles) are determined
from intercepts of the common tangent lines (blue and red lines in the left and right columns
respectively). ∆Hdef is determined using intercept (for example Ei) between the defect line and
the common tangent line on the A and B-component axis. The sign of these quantities are are
given by the direction of the arrows next to them (see grey box). The expression to calculate ∆Hdef

is given in each panel. The general expression for calculating ∆Hdef for all defect types in is given
in the grey box at the bottom where ∆Ni = 0 or 1 and ∆Nv = 0 or -1 depending on whether the
number of atoms of a particular species is added (1), removed (-1) or unchanged (0) in the defect.
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To obtain ∆Hdef graphically for the example of A-interstitials in Figure 3.1a, we simply

join the ∆Hf of the pristine compound and the defective structure with a line. We will

call this line as the “defect line" (see thick black line in Figure 3.1 a). We extend the

defect line to find the energy where it meets the A-component axis (filled black circle at

x = 0). We determine ∆Hdef by simply subtracting the chosen chemical potential of A

from this energy. Based on the geometry of the convex-Hull, we see that ∆Hdef for A-rich

equilibrium is smaller than in the case of A-poor equilibrium, as one might expect. In the

case of A-vacancies, we extend the defect line in the same way to find the energy where

it meets the A-component axis. To determine the ∆Hdef we again subtract the chosen

chemical potential of A, but this time we change the sign by multiplying by a factor of -1.

Based on the examples of the vacancy and interstitial defects, we learn a couple of rules:

(i) for defects involving the atomic species i, we extend the defect line towards the i-

component axis to find the energy of intersection

(ii) after subtracting the chosen chemical potential of the species i, we either multiply by

a factor of +1 or -1 depending on whether the atom was added to or removed from the

structure to form the defect.

For the example of BA anti-site defects, which is associated with both A and B atoms, we

extend the defect line on either sides to intersect with the A and B-component axis. We

determine the energy of intersection and subtract the corresponding choice of chemical

potential. For the term on the A side, we treat it as a vacancy and multiply by a factor of

-1. For the term on the B side, we treat it as an interstitial and multiply by a factor of 1.

To obtain the ∆Hdef we then add the two terms.

For the sake of our demonstration, we have drawn more defects at larger concentrations

using translucent symbols in Figure 3.1. Since all these points fall on the same defect line

they have the same value ∆Hdef , i.e same defect energy per-defect. In first-principles cal-

culations, on the scale of most convex-hull diagrams, the ∆Hf of the defective structures
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and the compound often seem to fall on a line (see Figure 3.2). [97, 1] However, ∆Hdef is

defined in the dilute limit of defect concentration, and it is often shown that evaluation of

accurate ∆Hdef for point defects requires checking for convergence with respect to defect

concentrations. [23, 98] So ∆Hdef is obtained using defects closest in composition to the

compound as shown by the opaque defect symbols in Figure 3.1.

a b

Figure 3.2: Visualizing Formation Enthalpy (∆Hf ) of defective structures in a ternary
convex-hull. Convex-hull of the Nb-Co-Sb system calculated using [1] DFT. The ∆Hf of Nb0.8CoSb
phase and the defects in it along the 1-dimensional composition slice CoSb-Nb are shown using
blue circles in the figure on the right.

Our graphical solution scheme to determine ∆Hdef can be easily extended to multi-

component systems (ternary, quaternary, etc.) for interstitials (see Figure 3.3 a,b) and

vacancies using a pseudobinary construction. Plotting ∆Hf along the 1-dimensional

composition line for these defects will naturally include the pure defect element enabling

easy visualization of ∆Hdef in the same way as described above. Although, visualiza-

tion of ∆Hdef for anti-site defects is not as straight-forward, it can still be done using

a similar ∆Hf plot along a 1-D composition line joining the defect-free and the defec-

tive structures (see Figure 3.3 c,d). We note that even for the more complicated case of

ternary compounds, the visualization scheme for all defect types are represented in sim-
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Figure 3.3: Visualizing defect energetics of a ternary compound in a convex-hull. Graph-
ical solution for defect energy (∆Hdef ) of (a-b) C interstitial and (c-d) CB anti-site defects in the
ternary compound ApBqCr. The compound and the defective structures are represented by large
orange and small red circles respectively. Panels a and c show the ternary convex-hulls in which
the compound ApBqCr is in equilibrium with elements A, B and C. Panels b and d show the
∆Hf -composition convex-hull along the 1-D composition slice containing both the defect and the
compound. The ∆Hdef are shown for (a-b) C-rich (ApBqCr-C two-phase region) and (c-d) B-poor
(ApBqCr-A-C three-phase region) conditions. Similar to the case of binary compounds (see Figure
3.1) ∆Hdef is determined using intercept between the common tangent line and the defect line.
The expression to calculate ∆Hdef is given in each panel. The general expression for calculating
∆Hdef for all defect types in is given in the grey box at the bottom where ∆Ni = 0 or 1 and ∆Nv =
0 or -1 depending on whether the number of atoms of a particular species is added (1), removed
(-1) or unchanged (0) in the defect.
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ple two-dimensional plots (see Figure 3.3 b,d). This feature is extendable to more complex

multicomponent phase spaces as well.

Figure 3.4: Graphical solution of ∆Hdef on convex-hulls are exact. Comparision of defect en-
ergies for 20 half-Heusler systems calculated graphically to those determined using conventional
defect energy expression

We compare ∆Hdef calculated using our visualization scheme to those determined using

equation 1.5 (see Figure 3.4) in our previous work [12] for interstitials in ternary half-

Heusler systems (Nb0.8CoSb, Ta0.8CoSb etc.). The equality in ∆Hdef calculated using the

two methods serves as numerical proof to our derivations in the present work.

3.3.2 Defining the “extended” convex-hull distance (EeCH)

Within the context of the convex-hull construction, the defective structure of a stable

compound is similar to a metastable compound in that both lie a finite energy distance
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above the convex-hull. In the case of metastable compounds, this convex-hull distance

(ECH ) is useful for comparing the stability of structures at two different compositions.

The Figure 3.5 shows a sketch of the model system A−B with one stable compound AB

and two metastable structures A2B and AB2 along with their ECH values. Between A2B

and AB2, A2B has a smaller ECH value and thereby is closer to thermodynamic stability.
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Figure 3.5: Sketch differentiating the convex-Hull distance (ECH ) from the extended convex-
hull distance (EeCH ) in a model binary convex-hull.

While comparison of stability at different compositions is useful for metastable com-

pounds, thermodynamic analysis of defects involves comparing stability of the same de-

fect in different equilibria of the system. For such analysis, it is relevant to consider the

energy distance of the structure with respect to the common tangent of the equilibria in

question. We call this energy distance to the common tangent the extended convex-hull
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distance EeCH . The Figure 3.5 shows the EeCH for A2B and AB2 in the A−rich conditions.

The key differences between EeCH and ECH is that while ECH is not chemical potential

dependent, but EeCH is. More importantly, ECH is the smallest value EeCH can take (i.e.

EeCH ≥ ECH ). For A2B, EeCH = ECH under A-rich conditions and for AB2, EeCH = ECH

under B-rich conditions.

The power of using EeCH for thermodynamic analysis of point defects lies in the fact that

∆Hdef is directly proportional to the EeCH of the defect. Mathematically, ∆Hdef ∝ EeCH is

proven for various point defects in the Appendix A. Graphically, this proportionality can

be seen quite straight-forwardly from Figure 3.1 and Figure 3.3 which shows that ∆Hdef

is simply a projection of EeCH on a compositional axis.

The visualization scheme presented in the current work is applicable for calculation of

∆Hdef regardless of choice of chemical potential. The issue of multiple chemical potential

values for calculating defect energetics of crystalline compounds is currently addressed

using phase stability plots in chemical potential space. [99, 70] The construction of these

plots using amodel binary convex-hull is described in the introduction section (see Figure

(1.2)). While these plots can in principle be used to derive ∆Hdef corresponding to various

equilibria, chemical potential space in general tends to be quite abstract for visualization

considering that stoichiometry of each phase involved is depicted by the slope of the

lines. As a result, plotting in the chemical potential space is often used in relatively

advanced thermodynamic analysis and are often left out of introductory materials science

textbooks. Owing to its simplicity, the convex-hull based approach discussed here could

be a suitable pedagogical tool for teaching defect thermodynamics to a broader audience.

3.4 Conclusion

In conclusion, we show that one can graphically solve for the defect formation energies

(∆Hdef ) of any multi-component compound within a two-dimensional convex-hull plot,
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including the effect of all possible chemical potentials. Using this visualization scheme,

we integrate the thermodynamic analysis of phases and point defects within the same

intuitive picture built in composition space. Considering that convex-hull diagrams are

an introductory concept to a materials science audience and used widely today in pre-

dicting stability from high-throughput databases, our work can serve as a powerful tool

to bring the understanding of defect thermodynamics to a larger audience.
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Chapter 4

A Unified Understanding of Defects for

Semiconductors and Insulators

4.1 Context and Motivation

Point defects can impact all transport and thermochemical properties of crystalline solids

significantly. As a result, the study of point defects is important for a variety of device

applications such as batteries,[79, 80, 81, 82] photovoltaics,[83, 84] thermoelectrics,[4,

85, 86, 87] thermochemical water splitting, [88, 100, 101] solid oxide fuel cells, [90, 91]

and transparent conducting oxides [92]. Despite practically all applications requiring

an in-depth understanding of point defects, the materials community studies defects in

semiconductors and ceramic insulators using very distinct approaches.

In the field of solid state ionics for instance, defect concentrations in oxide compounds

are studied by varying oxygen partial pressures in so-called Brouwer diagrams. This

dependency of defect concentrations on chemical conditions is understood using princi-

ples of physical chemistry which define equilibrium reaction constants for all dominant

defect reactions in the system. Example of a commonly studied defect reaction in oxide

compounds is the reduction half-reaction which can be written in Kröger-Vink notation
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as

OXo → 1/2 O2 + V ..
o + 2e′ (4.1)

For this reaction describing the formation of an isolated oxygen vacancy defect, the con-

centration of the defects and charge carriers are related to the equilibrium constant KR

for the reaction through the expression

KR = pO
1/2
2 [V ..

o ]n2 (4.2)

Other typical examples of dominant intrinsic defect reactions include formation of elec-

tronic (Ke), Schottky (KS) and Frenkel (KF ) defects. Once all the relevant equilibrium

constants are considered, the charge neutrality condition is imposed to model the partial

pressure dependence of all defects.

In this approach for understanding defects, it is particularly noteworthy that the equilib-

rium reaction constants such as KR, in principle, take a single value for each compound

and is independent of the chemical conditions the compound was prepared in. Hence,

the reduction reaction in a multi-component compound can be characterized using a

single value for KR regardless of its complexity. By virtue of this simplification, the KR

value across different compounds can be compared very easily, thereby allowing for a

simple understanding of their reduction processes. Another strength of this approach is

that the defect concentrations are plotted with respect to changing chemical conditions

(such as the oxygen partial pressure) that are controllable directly in experiments.

This approach for studying defects in insulators has been used quite successfully in the

field of Solid Oxide Fuel Cells (SOFC) since the study of defect concentrations is impor-

tant for characterizing ionic conductivity in materials. In addition to simple modelling of

defect concentrations, the study of thermodynamic quantities associated with the defect
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reaction such as solid state reduction entropy in this physical chemistry based approach

is relevant for the field of Thermo-Chemical Water Splitting of materials.

Despite its success in modelling defect concentrations in mixed conductors, the Brouwer

diagram approach has very little connection to changes in the electronic structure caused

by formation of ionic defects. Point defects can affect charge carrier transport signifi-

cantly through changes in electronic structure, thereby impacting most electronic mate-

rial applications. For example, intrinsic point defects in semiconductors set a thermo-

dynamic limit on the number of charge carriers, or dopability, thereby explaining asym-

metry in electronic doping of most systems [69]. Defects also introduce mid-gap states

which can affect carrier lifetimes, [83] Seebeck coefficient, [4] and coloration of materials

[92]. These questions are answered typically using the theoretical construct of charged

defects for which defect concentrations are Fermi-level-dependent.

Although this approach — rooted in the physics of defect energetics — is very useful for

the study of electronic properties, it is studied almost exclusively using computational

methods with no experimental techniques to verify theoretical predictions. This is quite

unlike the physical chemistry based approach which uses experimental thermogravimet-

ric methods to understand defect chemistry. [91] Furthermore, the data representation in

the physics-based approach involves plotting defect energetics as a function of Fermi-level

for different sets of chemical potentials. As a result, presenting this multi-dimensional

data requires plotting on more than one panel and can become cumbersome in cases

where multiple defects are calculated.

In this work, we build a unified understanding of defects in semiconductors and insu-

lators which borrows from the strengths of both the approaches. We believe that our

holistic approach to defects will help in establishing a common language of defects un-

derstandable by both the defect physics as well as the solid state ionics community. Such

a language will be of great interest for research on mixed conductor materials since they

can be approached by researchers in either communities. A very recent example of such
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multi-disciplinary interest in point defects research is that of battery materials which

has seen interest from both the physical chemistry community [102, 103] as well as the

defect physics community [104, 105, 106].

4.2 Results and Discussion

4.2.1 Mathematical Formulation for Building Brouwer Diagrams

Brouwer diagrams are usually discussed in the context of oxide materials and typically

show the concentration of various defects depending on the oxygen partial pressure. For

all off-stoichiometric compositions on which an impurity phase does not form (i.e, within

the single phase region of the compound), defect concentrations can be modelled by con-

sidering all the important defects in the material simultaneously. Here, the formation of

each defect is understood by expressing them in terms of defect formation reactions, and

the concentration of the defects involved are related by the equilibrium constant (K) of

the reaction.

Consider the oxide compound MO where the valence of the two elements involved is 2+

and 2- and vacancies are the dominant defect type. Construction of a typical Brouwer

diagram (see Figure 4.1) for this oxide compound would first require considering the type

of dominant complex defect (Frenkel or Schottky defect for example). For the sake of our

demonstration (see Figure 4.1) we will work out the example for MO in which the Schottky

defect is dominant. For this case, in addition to the reduction half-reaction above (see

equation 4.1) which describes the formation of the oxygen vacancy, we will consider the

isolated vacancy defect formation reaction

Φ→ V ′′M + V ..
O (4.3)
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where the V ′′M and V ..
O are charged vacancy defects which are isolated from each other

and do not interact with each other. The equilibrium reaction constant Kisolated
S for this

reaction is related to defect concentrations through

Kisolated
S = [V ′′M ][V ..

O ] (4.4)

Additionally the hole and electron concentration is described using the reaction for electron-

hole pair creation

Φ→ e′′ + h.. (4.5)

The equilibrium reaction constant Ki for this reaction is expressed as

Ki = np (4.6)

where n and p are the electron and hole carrier concentrations respectively. Furthermore,

since all the defects considered are charged, we impose the charge neutrality condition

on the system as follows

2[V ′′M ] + n = 2[V ..
o ] + p (4.7)

Based on the charge neutrality equation semiconductor and insulator compounds, can

be classified broadly, into two categories depending on whether the stoichiometric com-

position is dominated by electronic carriers (n and p) or ionic defects (V ′′M and V ..
o ). The

former case — in which the ionic defect concentrations [V ′′M ] and [V ..
o ] are negligible —

occurs when the band-gap of the insulator is much smaller than the defect formation

energies of the ionic defects and is characterized by Ki >> KS. The Brouwer diagram

for this case is shown in Figure 4.1. The three distinct regions in this figure can be un-

derstood by considering the different limiting chemical conditions (O-rich, O-poor, etc)
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Figure 4.1: Brouwer diagram example. Typical Brouwer Diagram of a model oxide compound
MO in which the vacancies V ′′M and V ..o are the dominant point defect types. The y-axis gives log
[], where [] represents concentration of the defect, and the x-axis gives log of the Oxygen partial
pressure pO2 (partial pressure). The Brouwer diagram can be broadly classified into three regions,
separated by vertical dashed lines, with changing oxygen partial pressures. The slope of each
defect and charge carrier concentrations in these regions are labelled next to them. In the extreme
conditions (oxidizing and reducing), one of the point defects dominates (V ′′M and V ..o respectively)
causing a larger concentration of one of the carriers. In the intermediate conditions, neither of the
vacancies clearly dominate and the charge carrier concentrations equal each other. The Brouwer
approximations equating the dominant contributions to the charge neutrality condition in each
region are mentioned above.

individually. Under reducing conditions with low oxygen partial pressures, Equation 4.7

can be approximated as

n ' 2[V ..
o ] (4.8)

in which the relatively smaller values of p and [V ′′M ] in comparison to n and [V ..
O ] are
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neglected. This approximation of the charge neutrality condition which depends on the

chemical condition is called the Brouwer approximation.

After invoking the relevant Brouwer approximation for reducing conditions, one can solve

Equations 4.3, 4.6, 4.1 and 4.8 to determine the partial pressure dependence of [V ..
O ], [VM ],

n and p

[V ..
o ] ∝ pO−1/62 , [V ′′M ] ∝ pO1/6

2 , n ∝ pO−1/62 , p ∝ pO1/6
2 (4.9)

For intermediate conditions of partial pressure, the Brouwer approximation for the charge

neutrality Equation 4.7 becomes

n ' p (4.10)

and the partial pressure dependence of the various defects becomes

[V ..
o ] ∝ pO−1/22 , [V ′′M ] ∝ pO1/2

2 , n = p = const (4.11)

Under oxidizing conditions with high oxygen partial pressures the O-vacancy concentra-

tion and electron carrier concentrations are negligible and the the Brouwer approxima-

tion is expressed as

2[V ′′M ] ' p (4.12)

such that the oxygen partial pressure dependence of the various defects becomes

[V ..
o ] ∝ pO−1/62 , [V ′′M ] ∝ pO1/6

2 , n ∝ pO−1/62 , p ∝ pO1/6
2 (4.13)

The Brouwer diagram for MO in the Ki » KS case has been constructed in Figure 4.1

using the partial pressure dependencies derived above. The oxidizing, reducing and in-
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termediate conditions are separated in Figure 4.1 by vertical lines. We would like to note

that for the qualitative models shown in Figure 4.1 the transition between the three re-

gions is abrupt (discontinuous changes in slopes of the curves). In a real example, these

transitions are expected to be more gradual.

4.2.2 Physics based approach to defects in semiconductors

The dependency of defect concentrations on chemical conditions is well-known and in-

vestigated in experimental reports on a regular basis. However, physics based defect

theory additionally recognizes that defect formation energies (∆Hdef ), and thereby defect

concentrations, in semiconductors can also have a Fermi-level dependence. Since Fermi-

level (Ef ) can change significantly with doping in semicondutors, especially in larger gap

compounds with fewer electronic density of states to sample near Ef , ∆Hdef can also

vary significantly. We can understand the Fermi level dependence of charged defects us-

ing the simple example of the charged cation vacancy defect V −1Na in NaCl. The process of

Na-vacancy formation in excess Na conditions can be represented by the reaction

NaCl −→ Na1−δCl + δ Na (4.14)

where the composition of the NaCl phase changes slightly (δ) and the Na atom removed

from NaCl gets placed in the elemental phase Na. In addition to the creation of an ionic

point defect, the V −1Na acceptor defect will also remove one carrier from the electron reser-

voir and place in Na metal (product phase). Energetically, this process is equivalent to

removing an electron from the Fermi-level of NaCl and placing it at < Eproductc >, which

represents the characteristic (average) energy of the electron in the product phase (Na

metal) [69]. While this < Eproductc > remains fixed, the equilibrium Fermi level in an in-

sulator can take a range of values. Hence, the energy cost associated with creating V −1Na

will depend on the equilibrium Ef value itself.
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Quite similar to the concept of a work function, where the energy required to remove an

electron depends on the Ef value with respect to the vacuum level, the V −1Na defect energy

will also depend on the Fermi-level Ef of NaCl relative to < Eproductc >. So, just like the

value of the work function of NaCl increases with a lowering Fermi-level, so does the

V −1Na acceptor defect energy. As a result, under fixed temperature, pressure and chemical

conditions (i.e. fixed Na chemical potential) the defect energy for V −1Na in NaCl increases

linearly with with lowering Ef . The slope of the line is equal to the charge state of the

defect (in this case -1) because the energy required to create the defect is associated with

the number of electrons removed from Ef during its formation. So, for a two-electron

acceptor such as V −2Mg in MgO, the Ef dependence of ∆Hdef will have a slope of -2. In the

case of donor defects, as one might expect, the defect energy increases with higher Fermi

level. So for the donor defect V +1
Cl in NaCl, ∆Hdef will have a slope of +1 when plotted

against Fermi level.

Including chemical potential dependence discussed previously, the dependency on Ef be-

comes the second parameter through which the defect concentrations can be controlled.

The dependency of ∆Hdef on chemical conditions for V −1Na comes from the fact that the

reservoir in which the Na atom ends up after removal from the host structure could have

different chemical potentials. The Fermi level dependence comes from the fact that the

energy of reservoir from which the the electron is removed or added during defect creation

in NaCl can take a range of values. By putting together the chemical potential and Ef

dependencies of ∆Hdef , it can be expressed as

∆Hdef = Edefect − Epristine −
∑

∆Niµi + qEF (4.15)

where ∆Ni is the number of atoms of species i added to or removed from the defective

structure (+1 and -1 for the atomic species added and removed respectively), µi is the

atomic chemical potential of the species i, q is the charge state of the defect and EF is
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the Fermi level.

The sketch of a typical defect energy diagram plotting ∆Hdef versus Ef for vacancy defects

in a model oxide compound MO is shown in Figure 4.2a. As in the case of V −1Na in NaCl

and V −2Mg in MgO, the likely charge states of the defects drawn are related to the valence of

the atoms involved (+2 and -2 for M and O respectively). Hence, the charge states of the

vacancy defects V −2M and V +2
O are -2 and +2 respectively. Accordingly the slope of ∆Hdef

are also -2 and +2 respectively. It is important to note that the ∆Hdef lines drawn in

Figure 4.2a hold under fixed temperature, pressure, and chemical conditions. Changes

in chemical conditions will shift the ∆Hdef lines (see Figure 4.2 b) by changes in relevant

atomic chemical potentials according to equation 4.15.

Using the information provided in Figure 4.2a regarding charged defects as well as the

electronic density-of-states, one can determine the equilibrium position of the Fermi-level

(Eeqf ) by solving for charge neutrality conditions by listing all the charged components as

in the equation 4.7. Typically, for intrinsic semiconductors, Eeqf (see Figure 4.2a and b)

tends to lie close to the Ef where the ∆Hdef of the dominant intrinsic defects (namely V −2M

and V +2
O ) cross each other in energy. In addition to the Eeqf , ∆Hdef in Figure 4.2a also

provides a thermodynamic limit to extrinsic electronic dopability of the semiconductor

under given conditions of T , P and chemical conditions. The n-type dopability of MO

according to Figure 4.2a is given by the Fermi level where ∆Hdef of the acceptor defect

V −2M crosses 0 eV. When the Ef reaches this position due to extrinsic doping, ionic V −2M

defects form almost spontaneously to compensate for any additional donor defects in the

system. Because the compensation is almost entirely through ionic defect formation with

no electrons being added to the system, the Ef cannot be moved any further towards the

conduction bands. Similarly, the extent of p-type dopability is given by the Fermi level

where ∆Hdef of the donor intrinsic defect V +2
O crosses 0 eV. Since the ∆Hdef of these

intrinsic defects depend on the chemical conditions, the equilibrium Ef and the extent

of electronic dopability are both also chemical-condition-dependent (see Figure 4.2b).
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Figure 4.2: Relating electronic properties and electronic structure to defect thermodynam-
ics. ((a) and (b)) Thermodynamics of the dominant intrinsic vacancy defects in the model insulator
system MO determining its electronic dopability. The defect formation energeies (∆Hdef ) of the ac-
ceptor (V −2M ) and donor (V +2

O ) defects depend on the Fermi-level (Ef ) with a slope equal to their
valence. The thermodynamic limit to the Ef (dopability) under given temperature, pressure and
chemical conditions is determined by the points where ∆Hdef = 0 (a). This limit is shifted with
changing chemical conditions (b). (c) The electronic density of states for the example of oxygen
vacancy deep defect (defect level lies far from either band-edges) in MO. The defect level containing
2 states appears in a very narrow energy window indicating the localized nature of the states. At
Ef above the defect level, electronic charge equal to 2e localizes around the defect and the defect
transitions from charge +2 to 0. The transition is observed as a change in slope of the ∆Hdef

versus Ef plot for the defect.

Another important aspect of this theory is that defect energetics can be related to changes

in the electronic structure associated with the formation of point defects (see Figure 4.2c

and d). Oxygen vacancy in the large-gap oxides for example, are well-known to typically
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introduce mid-gap deep defect states [107] such as the one shown in Figure 4.2c. The

defect states exist in a very small range of Fermi-level, indicating a near-dispersionless

band localized in real space around the defect site. Since the equilibrium Fermi-level is

not determined by the V +2
O defect alone, it can in principle lie on either sides of the defect

state. To understand the thermodynamics of deep defects better, we will consider the

case of Ef lying above and below the defect states separately.

When the Ef lies below the defect level in Figure 4.2c, the electronic charge created during

defect formation will not occupy the defect state. For this case, the defect has a +2 charge

state since (see Figure 4.2d) the two electrons associated with the O-vacancy formation

will spatially delocalize from the defect site and join the electron reservoir like a charged

defect. As a result, the ∆Hdef versus Ef line for this case will have a slope of +2 (see Figure

4.2d). When the Ef lies above the defect level, the two electrons associated with the defect

formation effectively occupy the two states resulting from the defect formation. Hence,

for this case there will be no additional energy cost for defect formation irrespective of the

position of the Fermi-level and the ∆Hdef versus Ef line will have a slope of 0 (see Figure

4.2d).

From a defect chemistry standpoint a key difference between the two cases is that when

Ef lies above the defect level, a localization of charge (due to the defect state filling up)

should occur around the defect site. This charge localization can distort the ionic po-

sitions around the defect so significantly that the position of the defect level in Figure

4.2c itself could change.[107] In such a case, the defect level of the charged (V +2
O ) and

the charge neutral defect (V 0
O) will not coincide. Furthermore, the position of the ther-

modynamic charge transition level in Figure 4.2d should also not necessarily coincide

with with either of two defect levels (V 0
O and V +2

O ). Figures 4.2c and 4.2d are drawn for

pedagogical purposes under the assumption that charge localization has no effect on the

position of the defect level and therefore the charge transition level ∆Hdef .
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4.2.3 Experimental Demonstration of Fermi-level Dependence of [VPb] in

PbTe

The Ef dependence of ∆Hdef in semiconductors as a theoretical concept is quite well-

known and has been discussed at length in many previous works. However, to the best

of our knowledge, there are no previous works which investigate the Ef -dependent ther-

modynamics of charged defects experimentally. The experimental evidence for the Ef

dependence of ∆Hdef can be observed in semiconductors with partial electronic doping

efficiencies of extrinsic dopants. In well-known examples of oxide compounds like Ceria

(CeO2−x), the excess charge introduced through extrinsic doping using elements such as

Gd3+ is expected to be compensated completely by formation of V ..
O defects. The completely

opposite limit for charge compensation in the extrinsic defect reactions is through the for-

mation of free charge carriers in well-known semicondutors such as P-doped Si. While

these compensation behaviors are well appreciated among researchers studying ionic

and electronic materials respectively, semiconductors are not thermodynamically con-

strained to either of these limits. Hence it is possible that extrinsic doping could lead to

a measurable change in both the charge carrier concentration and off-stoichiometry due

to formation of charge compensating ionic defects. This behaviour of partial charge com-

pensation on extrinsic doping can be observed in n-type Mg2Si (compensating V−2Mg),[108]

n-type InSb (compensating V−3In ),[86] n-type Mg3Sb2 (compensating V−2Mg),[2] n-type PbTe

(compensating V−2Pb )[70] and n-type SnTe (compensating V−2Sn) [109]. Formally, this be-

haviour in I-doped PbTe can be expressed through the reaction

TeXTe + x PbXPb + I → I .T e + x V
′′
Pb + (1− 2 x) e′ + x Pb+ Te

where 0 < x < 1 signifies a partial ionic compensation behaviour through the formation

of Pb-vacancies.
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To demonstrate the Ef dependence of ∆Hdef from experimental data, we choose I-doped

PbTe from Ref. [70] because the samples were knowingly prepared under Te-rich and

Pb-rich conditions in this work. In our model, the Pb-vacancy defect concentrations

([V −2Pb ]) were estimated using experimentally measured Hall carrier concentration data

as discussed in Ref. [70]. The [V −2Pb ] data used here were all estimated from samples

prepared under Te-rich conditions with varying I-doping levels and annealed at T = 973

K in Ref. [70]. Using data from samples prepared under the same saturating chemical

conditions fixes the Pb chemical potentials. Hence any variation in V −2Pb concentration

between samples are due to changes in Ef due to I-doping. The V −2Pb concentrations

increase monotonically with increasing I-doping.

Since the samples were annealed and quenched subsequently, [70] the high temperature

(T = 973 K) thermodynamic state is assumed to be frozen for the Hall-measurements

performed at room temperature. Therefore, the measured carrier concentrations and

thereby the estimated defect concentrations are assumed to be frozen from the T = 973 K

state. These defect concentrations (ndef ) for the defect def is connected to ∆Hdef through

the general expression

ndef = sdef exp

(
−

∆Hdef − T∆Snon−confdef

kT

)
(4.16)

where ∆Snon−confdef is the non-configurational entropy associated with the formation of de-

fects, sdef is the concentration of the symmetrically distinct Wyckoff sites on which the

defect would form, k is the Boltzman’s constant and T is the annealing temperature. The

expression in equation 4.16 can in principle be used to solve for ∆Hdef if the T∆Snon−confdef

is negligible. However, at the high temperature of T = 973 K this term could play a sig-

nificant role in determining off-stoichiometry in the compound. For this reason, we will

present the calculated ∆Hdef − TSnon−confdef versus Ef in our analysis (see Figure 4.4) in-

stead of ∆Hdef . These enthalpic and entropic contributions can presumably be separated
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Figure 4.3: Schematic showing the procedure to obtain the defect diagram using exper-
imental data. In order to estimate the defect energetics accurately within a thermodynamic
framework, the samples need to be annealed (and quenched subsequently) at the temperature
of interest. The number of defects and number of carriers are presumed to be frozen from this
annealing temperature. The Ef dependence of ∆HDef is calculated for the annealing temperature.
Determining the equilibrium Ef for each sample at the annealing temperature will also require
the Seebeck effective mass from this temperature.

if data for more than one annealing temperature is available. Examples of common types

of non-configurational entropy are vibrational, electronic and magnetic entropy. We note

that the ∆Snon−confdef can depend significantly on the extent of off-stoichiometry in the

compound.

In addition to carrier and defect concentrations data, the model also requires band-gap
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Figure 4.4: The Fermi-level (Ef ) dependence of ∆Hdef − TSnon−confdef (T = 973 K) for the V−2Pb in
PbTe determined from experimental data. A solid line with a slope of -2 is shown for reference.

and density-of-states masses for the conduction and valence bands as inputs in order

to determine the Fermi-level. Since the carrier and defect concentrations are attributed

to T = 973K in the model, we also use the band-gap (Eg = 0.4eV [110]) and density-

of-states mass values (mn∗ = 0.46 me,[111] mp∗ = 2.3 me obtained by extrapolating the

high temperature p-type Seebeck masses data from Ref. [112]) corresponding to this

temperature.

Results from the model (see Figure 4.4) show that the thermochemistry of the Pb-vacancy

formation process in PbTe is significantly EF -dependent. In fact, the slope of the ∆Hdef −

TSnon−confdef versus Ef data might be greater than -2 presumably due to greater contri-

butions from Snon−confdef at higher Ef due to larger deviations from the site-balanced stoi-
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chiometry. While the results of Figure 4.4 suggest that changes in defect energetics with

Ef should not be ignored, the model used here could serve as possible way for experi-

mental validation of calculated ∆Hdef of charged defects in future works.

4.2.4 Understanding the Brouwer Diagram with Fermi-level dependence

After demonstrating the Ef dependence of ∆Hdef we take a closer look at its implication

for the construction of Brouwer diagrams. We remind the reader here that the Brouwer

diagram for the model system MO constructed in Figure 4.1 assumed no explicit de-

pendence on Ef . Now, we consider the same model system MO as above in which the

Schottky defect is the dominant defect. For the sake of simplicity we will assume the two

vacancy defects involved (V −2M and V +2
O ) are shallow defects i.e. their charge transition

levels do not lie in the gap.

Before moving ahead we simplify Equation 4.15 a little bit further. We note that since

Edefect and Epristine are intrinsic to the material and are unaffected by changes in the

chemical and/or electron reservoirs, the two terms can be replaced with a constant Ci

∆Hdef = Ci −
∑

∆Niµi + qiEF (4.17)

Next, we investigate whether the equilibrium reaction constantsKisolated, Ki andKO given

in Equations 4.4, 4.6, and 4.2 have any Ef dependency, since the mathematical formu-

lation of Brouwer diagrams assumes that they are constants of a semiconductor (unless

there are impurity phases). In the case of the isolated vacancy reaction constant, we can

rewrite Kisolated as

Kisolated
S = sV ′′

M
sV ..

O
exp

(
−(∆HV ′′

M
+ ∆HV ..

O
)

kT

)
(4.18)
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Considering the charge states -2 and +2 for the cation and anion defects respectively, the

numerator in the exponent can be rewritten as

∆HV ′′
M

+ ∆HV ..
O

= CV ′′
M

+ CV ..
o

+ µM + µo − 2 EF + 2 EF

As expected, the chemical potentials add up to give a constant value related to the forma-

tion enthalpy of the compound MO (2 × ∆HMO), which is a constant value independent

of chemical conditions. Moreover, we find that the Fermi level dependency also vanishes.

Hence, the expression for ∆HV ′′
M

+ ∆HV ..
O
and thereby KS will simplify to a constant value

regardless of atomic chemical potential and Fermi-level.

∆HV ′′
M

+ ∆HV ..
O

= CV ′′
M

+ CV ..
o

+ 2 ∆HMO (4.19)

One can similarly work out that the equilibrium reaction constants Ki and KR should re-

main independent of Ef . These results suggest that any semiconductor system in which

the dominant acceptor and donor defects are (i) shallow defects and (ii) form a stoichio-

metric and charge balanced pair, must yield a dependency on oxygen partial pressure

(and more generally, the chemical potential for any compound) of defect concentrations

similar to that observed in a typical Brouwer diagram (see Figure 4.1).

We note here that this conclusion is directly transferable to non-oxide semiconductors as

well, only in that case, the oxygen partial pressure in the x-axis of the Brouwer diagram

will be replaced by the chemical potential of the element of interest. To confirm the

results regarding the effect of Ef dependence of charged defects on Brouwer diagrams,

we consider the example of Mg3Sb2 in which the dominant donor and acceptor defects

are Mg+2
i and V −2Mg respectively. [2]. We note that both of these defects are shown to be

shallow defects and form a stoichiometric, charge balanced pair.

In Figure 4.5 we plot the Mg chemical potential dependence of the ionic defect and carrier
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Figure 4.5: Brouwer diagram for Mg3Sb2 with Fermi-level dependence of point defect ener-
getics accounted for. Concentration of important intrinsic charged defects and charge carriers
in Mg3Sb2 calculated as a function of Mg-chemical potential. The defect energies (which implicitly
also have a fermi-level dependence) and density of states masses are taken from Ref. [2]. The
dominant defect types Mg+2

i and V −2Mg are both shallow defects. Despite the Fermi-level depen-
dence, the plot resembles the one shown in Figure 4.1 with three distinct regions of Mg chemical
potential dependencies separated by vertical lines which are drawn as guides to the eye.

concentrations in Mg3Sb2. Indeed we find that similar to the typical Brouwer diagram of

the model system MO (see Figure 4.1), the chemical potential dependencies of log[] are

not linear in the range of the Mg-chemical potential shown. Instead, just like in Figure

4.1, the x-axis range could be divided broadly into three regions of low, intermediate and

high Mg-chemical potential where the dependency of log [] on chemical potential seems

linear. These results suggest that even the log[] versus Mg-chemical potential plot for



90

Mg3Sb2 can be modeled using equilibrium reaction constants Kf (for Frenkel reaction),

Ki and KR (Mgi formation reaction). In this model, Kf would be related to the sum

∆HV ′′
Mg

+ ∆HMg..i
, Ki would be related to the band-gap of Mg3Sb2 and KR would be related

to ∆HMg..i
and the Mg-chemical potential.

Mg
i
+2

e
p

Sb
Mg

+2

V
Mg

-2

n-type dopability
p-type dopability

VBM

CBM

T = 773 K

Figure 4.6: Presenting electronic dopability information on a Brouwer diagram. Concentra-
tion of important intrinsic charged defects and charge carriers in Mg3Sb2 calculated as a function
of Mg-chemical potential. The defect energies (which implicitly also have a fermi-level depen-
dence) and density of states masses are taken from Ref. [2]. The n and p-type dopabilities (red
and blue lines) and are determined by the carrier concentrations from the Ef at which ∆Hdef

of the V −2Mg and Mg+2
i defects becomes 0 eV. The VBM and CBM markers are determined by the

carrier concentrations at the valence and conduction band edges.

Although the Brouwer diagram representation such as the one shown in Figure 4.5 are of-

ten not used in computational works discussing the Ef dependence of ∆Hdef , they could

be quite helpful in conveying the main results in a direct and condensed fashion (see
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Figure 4.6). The Ef dependence of ∆Hdef is often calculated to understand how the elec-

tronic dopability depends on changing chemical conditions. Mg3Sb2 for example exhibits

a measurable n-type dopability only in Mg-rich conditions for which the ∆HV ′′
Mg

values of

the compensating acceptor defect is higher. Traditionally, the shifts in electronic dopa-

bility with changing chemical conditions are shown by plotting multiple ∆Hdef versus Ef

diagrams corresponding to different chemical conditions. The most relevant information

to take-away from these panels plotted for differing chemical potentials is (i) the equilib-

rium Ef , (ii) the ∆Hdef values of various defects at the equilibrium Ef and (iii) the Ef at

which ∆Hdef of the dominant compensating defect crosses 0 eV relative to the valence

and conduction band edges (see Figure 4.2 a and b). The ∆Hdef versus Ef description

requires communicating to the reader in terms of Fermi-level, which is not a commonly

measured property and not as physically intuitive as carrier or defect concentrations.

Furthermore, plotting ∆Hdef for an entire range of Ef values understates the importance

of the actual defect energies which can be found at the equilibrium Fermi-level only for a

given set of chemical potentials. A data visualization scheme in which (i), (ii) and (iii) are

plotted together in a single panel as a function of changing chemical conditions could be

more direct (see Figure 4.6).

We note that (i) and (ii) for Mg3Sb2 are already plotted as a function of Mg chemical

potential in 4.5. In Figure 4.6 the n and p-type dopability of Mg3Sb2 are given by the

carrier concentrations at the Ef where the ∆Hdef of the dominant compensating defect

crosses 0 eV. Similarly the valence and conduction band edges are represented by the

carrier concentrations at those Fermi-level values. The position of the band-edges on the

y-axis depends on the density of states mass of the conduction and valence bands. The

defect concentrations are calculated from defect energy values at the equilibrium Ef .

The representation in Figure 4.6 reduces the dimensionality of the data without losing

any relevant information on electronic dopability, important electronic structure features

(band gap, density of states and position of the band-edges with respect to dopability
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limits), defect and carrier concentration. In the case of the binary compound Mg3Sb2 for

example, the 3-dimensional data ∆Hdefect (versus Mg chemical potential and Ef ) is con-

densed to a easy-to-read 2-dimensional plot (only versus Mg chemical potential). One

can easily extend this visualization scheme for more compositionally complex multi-

component systems, by plotting along chemical potential points of interest (generally

corresponding to multi-phase equilibria).

4.2.5 Isolated and Paired defect formation

The isolated vacancy defect reaction plays a crucial role in the mathematical formulation

of the Brouwer diagram. Depending on the material in question however, one might have

to additionally consider the reaction involving the formation of Schottky pairs

Φ→ (V ′′MV
..
O)X (4.20)

where (V ′′MV ..
O ) is a paired Schottky defect complex. The reaction constant for this paired

defect reaction is given by the expression

KPaired
S = [(V ′′MV

..
O)] (4.21)

The biggest difference between a Schottky pair and isolated vacancies is that the Schottky

pair defect does not have any oxygen partial pressure dependency because it is a stoi-

chiometric defect (which does not change the overall composition of the compound). As

a result, concentration of the paired Schottky defect in the model system MO in Figure

4.1 should show as a flat line for all values of oxygen partial pressures. This thermo-

dynamic behaviour is in stark contrast to the unpaired non-stoichiometric point defects

(vacancies, interstitials and anti-site defects) which are not stoichiometric defects and

their concentrations can vary with chemical potential.
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Figure 4.7: Electrostatic and strain contributions to binding energy in the Schottky defect
pair of PbTe. (a) Defect energy (in eV/defect) of a Schottky defect in PbTe as a function of the
distance between the vacancy pair in a 128 atom supercell. To estimate the electrostatic contri-
butions to binding between the vacancy pair, we calculate the relaxed (blue circles) and unrelaxed
(purple squares) separately. The electrostatic contribution from the unrelaxed calculations can be
modelled with a 1/r dependence (solid blue line). (b) The energy gained from relaxing all degrees
of freedom in the supercell as a function of the distance between the vacancy pair. This energy
contribution is calculated by subtracting the relaxed energies from the unrelaxed energies shown
in (a).
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Figure 4.8: Electrostatic and strain contributions to binding energy in the Schottky defect
pair of MgO. (a) Defect energy (in eV/defect) of a Schottky defect in MgO as a function of the
distance between the vacancy pair in a 128 atom supercell. To estimate the electrostatic contri-
butions to binding between the vacancy pair, we calculate the relaxed (blue circles) and unrelaxed
(purple squares) separately. For the sake of verifying convergence in this low dielectric constant
material we also calculate the unrelaxed energies in a 432 atom supercell (pink). The electrostatic
contribution from the unrelaxed calculations can be modelled with a 1/r dependence (solid blue
line). (b) The energy gained from relaxing all degrees of freedom in the supercell as a function of
the distance between the vacancy pair. This energy contribution is calculated by subtracting the
relaxed energies from the unrelaxed energies shown in (a).
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The equilibrium reaction constantKPaired
S will presumably take a larger value thanKisolated

S

— which is related to the sum of the isolated vacancies ∆H
V ′′
M

def +∆H
V ..
O

def — due to a binding

energy for pairing to occur between the vacancy defects. To estimate the likelihood of

pairing to occur between dominant vacancy pairs, we calculate the ∆Hdef between them

as a function of distance. Since the binding energy of a defect pair is expected to arise

almost entirely by electrostatic attraction between the oppositely charged cation and an-

ion vacancies, screening of the interaction can play an important role in determining the

binding energy. Hence, we choose MgO and PbTe for our analysis because they crystallize

in the same rock-salt structure but have very different values of dielectric constants (<

10 and ∼ 400, respectively).

To distinguish the electrostatic contributions from contributions arising from strain field

interactions we perform our ∆HDef calculations in two steps (see Figure 4.7 a and Figure

4.8). In the first step, we calculate ∆HDef by simply creating a vacancy but not allowing

for any relaxation in the structure. Due to electrostatic interactions, the ∆HDef in this

step is expected to decrease as the vacancies start coming closer (see Figure 4.7 a and

Figure 4.8). Subsequently, we allow for a complete relaxation of ionic positions and cell

vectors. In this step, a further decrease in energy due to relaxation of atoms around the

vacancy is expected. However, as the vacancies come closer together the energy gained

due to ionic relaxation decreases presumably due to larger interactions between the strain

fields associated with the two vacancies (see Figure 4.7 a). In both materials, the nearest

neighbour configuration is the most favorable for pairing between the cation and anion

vacancies.

As expected, the binding energy in the paired vacancy defect essentially arises from an

electrostatic attraction which is negated to a certain extent at smaller distances by strain

energy contributions. The electrostatic energy gain in both materials follows a -1/r trend

for the most part presumably due to Coulombic attraction between the defects. The

electrostatic contribution to the binding energy in MgO is ∼ 4 times that of PbTe which
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can be attributed to its smaller dielectric constant.

To estimate the relative defect concentrations of the paired Schottky defect with the un-

paired vacancy defects, we simply compare their ∆Hdef on a per-atom basis under sto-

ichiometric conditions. The ∆HSchottkyPair ∼ 0.75 eV for paired defect in PbTe which is

smaller than the ∆Hdef ∼ 1 eV for the isolated defects under stoichiometric conditions

(i.e. for the fermi-level at which the ∆H
V ′′
M

def = ∆H
V ..
O

def ) Ref. [113] for vacancy defects individ-

ually. Similarly ∆Hdef ∼ 1.95 eV for a Schottky defect in MgO which is smaller than ∆Hdef

∼ 2.8 eV.[69] Hence, the concentration of the paired defect are expected to exceed isolated

vacancy concentrations by a much larger factor for MgO compared to PbTe. Similar to

Schottky defects, one can also expect stoichiometric Frenkel pairs to also have a similar

binding behavior. However, in the case of a Frenkel pair there is an additional possibility

of the intersitial defect moving into the vacancy site of the pair upon ionic relaxation if

the interstial-vacancy pair is placed too close. This behaviour of the Frenkel pairs has

been demonstrated for Mg3Sb2 recently. [114, 115]
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Chapter 5

Predicting Solubility in Complex Materials with

Pen-and-Paper Drawings.

5.1 Context and Motivation

Determining the maximal solubility in solids is of great interest for many materials ap-

plications ranging from metals design, to thermoelectrics [3] and battery materials [116,

117]. Experimental reports often conclude that the solubility limit is reached upon obser-

vation of impurity phases. However, this limit to solubility is not necessarily the maximal

limit because solubility, besides temperature and pressure, will also depend on chem-

ical conditions. In simple terms, this means that the observed limit to solubility also

depends on the type of impurity phase observed with it. As a result, a complex multi-

component compound which could have multiple candidates as impurity phases will also

have multiple limits to solubility. In such a case, identifying the maximal solubility limit

from experiments can become tricky; requiring preparation and analysis of many com-

positions using a ‘phase boundary mapping’ approach [118, 119, 3, 120, 4, 2, 121, 122,

70, 123, 124, 125, 126, 127] before arriving at a reproducible conclusion.

The two main lessons from phase boundary mapping exercises of various supposedly
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well-known thermoelectric materials is that previous works on these compounds had

either (a) ignored the possibility for multiple limits to solubility, thereby missing out on

compositions with higher performance or (b) were unable to explain the origin of multiple

discrepancies in reported values of solubility. An example of the first case is that of Ce-

doped CoSb3, [3] in which samples containing the CeCoSb3 impurity phase was shown

to have a much higher Ce-solubilities than previous attempts [128]. The second case is

exemplified by the Mg2Si-Mg2Sn pseudobinary system for which there have been widely

varied reports of solid-solubility limits between the two end-members. Phase boundary

mapping of this system in the Mg-Si-Sn ternary later revealed that any equilibria con-

taining both Mg2Si and Mg2Sn should have the same Sn and Si solubilities respectively

in these end-member compounds. [127]

In the present work, we build an intuitive visual framework in composition space rooted

in defect thermodynamics which can qualitatively identify trends in the various solubility

limits with type of impurity phase (or alternatively chemical conditions). Using just the

chemical intuition of dominant defects and previously available phase diagrams, our vi-

sualization scheme can identify the impurity phases yielded when the maximal solubility

limit is reached and the special chemical conditions in which the limits to solubility will

be equal (see Figure 5.1). Typically, defect thermodynamics in complex materials is un-

derstood either mathematically or by plotting in the relatively abstract chemical potential

space. [121] Our visualization scheme provides the solution to the problem directly in

composition space itself; which can help in chalking out solubility design strategies in

simple pen-and-paper drawings before embarking on the complicated exercise of phase

boundary mapping exercises.

We explain the framework using a few examples from past five years of phase bound-

ary mapping research. In the process, we show how better choices for composition and

chemical conditions could have been made prior to beginning experiments for increas-

ing solubility. After this, we demonstrate the predictive power of our solubility guidelines
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introduced in the present work. We use our visualization scheme to identify complex qua-

ternary thermoelectric systems with unusual solubility behavior that have been ignored

until now due to seemingly innocuous assumptions.

A B AB

C

AC2

AB

+ =
Qualitative prediction for shape 

of the single phase region
Dominant defect information 

from chemical Intuition 
Available phase diagram

(calculated or experimental)

Figure 5.1: Sketch summarizing the problem statement for this chapter. Can we use available
phase diagram information (experimental or computational) and combine it with our chemical
intuition regarding the dominant defect to qualitatively predict the shape of the single phase region
(and thereby the various limits to defect solubility)? As we deal with more complex materials, the
answer to this question will come in handy.

5.2 Results and Discussion

5.2.1 Thermodynamic Solubility Guidelines for Multi-component Systems

To develop thermodynamics-based solubility guidelines we revisit the convex-hull frame-

work for ∆Hdef visualization developed in Section 3. We begin by considering the example

of the Bi defect in the ternary compound ApBqCr (see Figure 5.2 a and b). The three di-

mensional representation of the convex-Hull is shown in Figure 5.2 a. The compound

ApBqCr is the only stable compound in the three component system, forming tie lines

with the elemental phases in the convex-hull. The common tangent planes for the 3

three phase equilibria in which ApBqCr participates are numbered. The B-interstitial

defect in the compound lies above the convex-hull at an off-stoichiometric composition
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along B. The top view of the convex-hull is shown in Figure 5.2 b. The Bi defect structure

lies on tie line connecting ApBqCr and B. Generally, the defect formation energy (∆Hdef )

from Section 3.3.2

∆Hdef = cEeCH (5.1)

where EeCH is the extended convex-hull distance of the defect and c is a constant related

to the compositions of the defect and the parent compound. From the properties of

EeCH we know that EeCH ≥ ECH . From this inequality we learn that ∆Hdef will take its

smallest value when EeCH = ECH . As shown in Figure 3.5, for any metastable structure,

EeCH = ECH when chemical potentials of the equilibrium region containing the structure

is considered. Since all point defects change the composition of the parent compound

along different directions (see Figure 5.2 c), the smallest ∆Hdef value for each defect will

also lie in different equilibria. So, in the case of the Bi defect for example, ∆Hdef will

be smallest in the ApBqCr-B equilibrium because it contains the composition of the Bi

defect (see Figure 5.2 c).

We further investigate the EeCH of Bi for the equilibria 1 and 2 (see Figure 5.2 a and

b). In these cases the EeCH value in these cases will be determined with respect to

the common tangent planes 1 and 2 respectively, as shown in the Figure 5.2 a. The

3-dimensional visualization of the convex-hull (see Figure 5.2 a) shows that both these

planes will intersect in the composition line connecting the phases ApBqCr and B which

contains the Bi defect composition. As a result, the EeCH for both equilbria 1 and 2 will

also be determined by the ApBqCr-B tie line in the convex-hull and thereby must be equal.

From the Bi defect thought experiment we learn two guidelines regarding chemical con-

ditions for maximum solubility and special cases where defects have equal solubility. To

generalize these guidelines succinctly we define the the concept of defect direction and

impurity phase direction. On a multi-component phase diagram, the defect direction is
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Figure 5.2: Building a visualization tool for predicting maximal solubility limit with sim-
ple pen-and-paper drawings. (a) Ternary convex-hull of the model system A-B-C containing
a single stable compound ApBqCr. The formation energy (∆Hf ) of the compound ApBqCr and
the B-interstitial defect (Bi) in it are shown by orange and blue filled circles respectively. The
three common tangent planes representing compositions in which the ApBqCr phase will yield
two impurity phases are numbered 1, 2 and 3. (b) Left: Ternary phase diagram of the model
system A-B-C. Can also be visualized as the top view of (a). Right: side-view of (a) along the
one-dimensional composition slice indicated in the left panel. (c) Sketch showing the directions
along which the composition of the compound ApBqCr will change due to various point defects
(or defect directions) or shown with orange arrows. The direction of the impurity phases with
respect to ApBqCr (or impurity phase directions) are shown with purple arrows. The dominant
defect direction and the impurity phase direction information is sufficient to qualitatively predict
the region of maximal solubility.
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the compositional direction along which the defect shifts the stoichiometry of the parent

phase. Hence defect directions can essentially be thought of as vectors which originate at

the composition of the parent compound (see Figure 5.2 c). The impurity phase direction

is simply given by the compositional direction joining the parent compound and impurity

phases. Similar to the defect direction, the impurity phase directions also originate at

the composition of the parent compound. Defect directions of all possible point defects

in ApBqCr and the impurity phase directions of this compound are shown in the Figure

5.2 c. For the model compound ApBqCr, there are 12 defect directions (complex defects

have not been considered) and 3 impurity phase directions. In principle however, for a

n-component compound (n > 2) in an n-component phase space, the number of defect

directions will scale as n(n+1) and there should be no limit on the number of impurity

phase directions.

The two solubility guidelines emerging from the thermodynamic analysis above can be

stated as follows:

(i) Solubility of a defect is maximum in the thermodynamic equilibrium containing the

defect direction. Solubility of the defect will be lowest in the equilibrium containing the

direction opposite to the defect direction. The number of phases participating in these

equilibria will not change this conclusion.

(ii) In cases where the defect direction overlaps with or lies opposite to the impurity phase

direction, solubility of the defect will be equal in all multi-phase equilibria containing the

parent compound and the impurity phase in question. Following from (i), this solubility

value which is equal in multiple equilibria will also be an extreme value (maximum or

minimum). The structure of the impurity phase will not change this conclusion.

We will first apply these guidelines to make predictions regarding the solubility of various

defects in the model system ApBqCr. By applying guideline (i) we learn that the equilib-

rium 1 should have maximum solubility of CA, VA and BA. Equilibrium 2 should have a
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maximum solubility of AC , VC and BC . Equilibrium 3 should have maximum solubility

of AB, VB and CB. In the case of the defects Ai, Bi and Ci, where the defect direction

overlaps with the impurity phase direction, the guideline (ii) (which subsumes guideline

(i)) is also invoked. The solubility of these defects is equal and maximum in equilibria 2

and 3, equilibria 1 and 2 and equilibria 1 and 3 respectively.

Next we will investigate the chemical conditions for minimum solubility of each of these

point defects. For this, the guidelines (i) and (ii) require considering the equilibrium

containing the direction opposite to the defect direction. Since each defect in the set

of 12 point defects for ApBqCr have a directionally opposite conjugates (VC and Ci, AC

and CA etc.) which are 180o apart, the conjugates will exchange directions. By applying

guideline (i) we learn that the equilibrium 1 will have a minimum solubility for AC , Ai

and AB. Equilibrium 2 will have a minimum solubility for the defects CB, Ci and CA.

Equilibrium 3 will have minimum solubility for the defects BA, Bi and BC . In the case

of the defects VA, VB and VC , where the defect directions are opposite to the impurity

phase direction, the guideline (ii) (which subsumes guideline (i)) is also invoked. The

solubility of these defects is equal and minimum in equilibria 2 and 3, equilibria 1 and

2 and equilibria 1 and 3 respectively.

We will now verify the solubility guidelines by applying them to the real life thermoelec-

tric semiconductor examples of Ce-doped CoSb3, Ni-interstitials in TiNiSn and Te-doped

Mg3Sb2.

5.2.2 Applying the Guidelines to previous examples

Ce-doped CoSb3

Since adding the filler n-type dopant (common examples are Yb, K, Ce) in CoSb3 makes

it a three component system, understanding solubility trends of the extrinsic dopant

requires a ternary phase diagram analysis. Figure 5.3 a shows the zoomed-in version of
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the Ce-Co-Sb ternary phase diagram at T = 973 K taken fromRef. [3]. The compositions of

Ce-doped CoSb3 which will yield no impurity phases are shown by a thin solid orange line

which begins at the undoped CoSb3 point. Although the the amount of Ce in this line can

vary up to 1 %, moving the compositions away from the 1-3 stoichiometry of the undoped

compound, we will call it the CoSb3 phase. Compositions made outside the orange line

will yield impurity phases. On the Co-Sb binary, excess Co compositions in CoSb3 will

yield the CoSb2 impurity phase and liquid Sb impurity phase should separate out with

excess Sb. At ternary compositions containing Ce, two other impurity phases, namely

CeCoSb3 and CeSb2, can separate out in addition to CoSb2 and liquid Sb. Depending

on the composition, the ternary samples can yield either one or two impurity phases.

Regions yielding two impurity phases are numbered 1 (liquid Sb and CeSb2 impurity),

2 (CeSb2 and CeCoSb3 impurity) and 3 (CeCoSb3 and CoSb2). The relatively smaller

boundaries separating these regions from each other represent compositions which will

contain only a single impurity phase.

In mixtures with impurity phases, the composition of the CoSb3 phase itself (point on the

orange line) will depend on the number of impurity phases. In the larger regions contain-

ing two impurity phases (1, 2 and 3 in Figure 5.3 a), the CoSb3 phase is constrained by

the Gibb’s phase rule to take only a single value in composition space. The composition

of Ce-doped CoSb3 in the region 1 (liquid Sb and CeSb2 impurity) is given by the blue

point on the orange line. In the regions 2 and 3, CoSb3 has a higher Ce content but these

points are indistinguishable from each other as they essentially overlap in composition

space (orange point on the solid orange line).

To understand the relative position of the CoSb3 phase compositions in the regions 1, 2

and 3 using the solubility guidelines we first draw the defect direction as well as the com-

peting phase directions (see arrows in 5.3 b). Thermodynamically, the filler Ce-dopant in

the Skutterudite structure is the same as an interstitial defect in that only the number of

Ce atoms in the structure will change in either case. Hence, the dominant filler defect will
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Figure 5.3: Rationalizing Cei solubility in CoSb3 prepared in varied chemical conditions. (a)
Ternary Co-Sb-Ce phase diagram zoomed in close to the ternary CoSb3 phase (orange line) taken
from Ref. [3]. The compositional regions which yield two impurity phases in CoSb3 samples are
numbered 1, 2 and 3. The relatively smaller regions which yield just one impurity phase lie in
between these numbered regions. The impurity phases for the larger regions are labelled. (b)
Sketch showing the dominant defect (Cei) direction and the impurity phase directions for CoSb3.

have the same defect direction as the Ce-interstitial. Since the defect direction overlaps

with the CeCoSb3 impurity phase direction we use the guideline (ii) (which subsumes the

guideline (i)) first to understand the Ce-solubility trends. As expected, Ce-solubility is

highest and equal in regions 2 and 3. More generally in agreement with guideline (i), the

solubility is highest in the equilibrium containing the CeCoSb3 impurity phase. Follow-

ing from guideline (ii), we further note that, because the impurity phase direction CeSb2

is neither overlapping nor opposite to the defect direction, the Ce-solubility in regions 1

and 2 (which involve CoSb3 and CeSb2 phases) will be unequal.

Te-doping in Mg3Sb2

Similar to the case of Ce-doped CoSb3, Te-dopedMg3Sb2 is also a three-component system

and understanding Te-solubility will require a ternary phase diagram analysis. Unlike the
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Skutterudite example however, the Mg3Sb2 example is more complex on two counts. First,

the dominant extrinsic defect is a substitutional defect (TeSb) instead of an interstitial

defect and its energetics is affected by the chemical potential of both Te as well as Sb.

Hence, it is not straightforward whether the maximum Te-solubility will occur in Te-

rich (region 2 in Figure 5.4) or Sb-poor conditions (region 1 in Figure 5.4). Second,

concentrations of the intrinsic compensating charged defect V −2Mg are comparable to that

of the extrinsic defect.
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Figure 5.4: Rationalizing chemical conditions of maximal TeSb solubility in Mg3Sb2. (a) T = 0
K Mg-Sb-Te ternary phase diagram. The compositional regions which yield two impurity phases in
Mg3Sb2 are numbered 1 and 2. (b) T = 900 K Mg-Sb-Te ternary phase diagram zoomed-in close to
the Mg3Sb2 phase [2]. The compositional region which yields no impurity phase in Mg3Sb2 phase
is shown in grey. The unnumbered compositional regions yield one impurity phase (c) Schematic
showing the dominant defect (TeSb) direction and the impurity phase directions for Mg3Sb2.

The Figure 5.4 a shows theMg-Sb-Te ternary phase diagram and the inset shows a version

zoomed-in close to the Mg2Sb2 single phase region calculated in Ref. [2]. The composi-

tions which will yield no impurity phases are shown with the grey region (see Figure 5.4

b). Unlike the case of Ce-doped CoSb3, the single phase region has a noteworthy width

due to large changes in the concentration of the V −2Mg defect. Although there is a large

amount of TeSb and V −2Mg defects moving the composition of the single phase region away

from the binary 3-2 stoichiometry of the undoped compound, we will reference the en-

tire grey region in Figure 5.4 as just the Mg3Sb2 phase. Compositional regions of the

phase diagram (see Figure 5.4 a) which will yield two impurity phases are numbered 1
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(Mg and MgTe) and 2 (MgTe and Sb). These regions are separated by relatively smaller

region which yield only MgTe as a single impurity phase (see Figure 5.4 b). The Mg and

Sb impurity phases will phase separate under Mg-excess and Sb-excess compositions

respectively.

To understand the Te-solubility in Mg3Sb2 in view of the thermodynamic guidelines, we

explicitly draw the defect direction and impurity phase directions. Based on guideline

(i), we notice straightaway that region 1 contains the TeSb defect direction and should

therefore show the highest Te-solubility. Indeed, the maximum solubility of Te in Mg3Sb2

is observed in the region 1. The guideline (ii) is not applicable here since the TeSb defect

direction does not overlap with any impurity phase direction.

Ni-interstitials in TiNiSn

Since TiNiSn is a three component system, understanding Ni-solubility in TiNiSn requires

a ternary phase diagram analysis. The zoomed-in version of the Ti-Ni-Sn phase diagram

at T = 1273 K taken from Ref. [4] is shown in Figure 5.5 a. The single phase region

of TiNiSn is shown by the solid green line. Although the the amount of Ni in this line

can vary, moving the composition away from the 1-1-1 stoichiometry of the undoped

compound significantly, we will call it the TiNiSn phase. All compositions lying outside

the solid green line will yield either one or two impurity phases. Regions containing two

impurity phases are numbered 1 (Ti5NiSn3 and Ti6Sn5), 2 (Ti6Sn5 and liquid Sn impurity),

3 (liquid Sn and TiNi2Sn impurity) and 4 (TiNi2Sn and Ti5NiSn3). Compositional regions

lying between these portions of the diagram will contain only one impurity phase. In

regions 1, 2, 3 and 4 which contain two impurity phases, the TiNiSn phase is constrained

by the Gibb’s phase rule to have a single composition which is represented by the blue

and green circles at the end of the green line. So, in addition to yielding the Ti5NiSn3 and

Ti6Sn5 impurity phases, the composition of the TiNiSn phase for any sample prepared in
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region 1 will be given by the blue point.

Figure 5.5: Rationalizing Nii solubility in TiNiSn prepared in varied chemical conditions. (a)
Ternary Ti-Ni-Sn phase diagram zoomed in close to the ternary TiNiSn phase (green line) taken
from Ref [4]. The compositional regions which yield two impurity phases in half-Heusler TiNiSn
samples are numbered 1, 2, 3 and 4. The compositions which yield just one impurity phase lie
in between these numbered regions. The impurity phases are labelled in each case. (b) Sketch
showing the dominant defect (Nii) direction and the impurity phase directions for TiNiSn.

Technically the TiNiSn phase should have four distinct compositions corresponding to

the regions 1, 2, 3 and 4 in the Figure 5.5 a. However, even on the scale of this zoomed-

in phase diagram, it is hard to distinguish the two points at the end of the single phase

region. To understand this dependence of Ni-solubility on chemical conditions we apply

the solubility guidelines. We notice that the defect direction overlaps with the full-Heusler

TiNi2Sn impurity phase (Figure 5.5 b). As a result, the Ni solubility is highest in all

equilibria containing TiNiSn and the impurity phase TiNi2Sn, which are both regions 3

and 4. Hence solubility is equal and maximum in regions 3 and 4. The direction opposite

to the Nii defect direction is contained by the region 2, which following from guideline (i)

should have the smallest Ni solubility. Although the Ni solubility in regions 1 and 2 is

hard to distinguish in Figure 5.5 a, EPMA-WDS data provided in Ref. [4] indeed confirms

a smaller Ni content for the case of region 2 (Ti33.5Ni33.2Sn33.3) when compared to region 1
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(Ti33.4Ni33.4Sn33.2). Nevertheless, the extremely close Ni percentage composition for region

1 and 2 still needs an explanation. To this end, we will note that the direction opposite to

the Nii defect direction is quite close to the impurity phase direction of Ti6Sn5. Following

from guideline (ii) then, Ni solubilities in regions 1 and 2 should be similar.

The TiNiSn-TiNi2Sn system is a typical pseudobinary system where mixing occurs at the

vacant sublattice of the TiNiSn half-Heusler structure. As a result, the Ni-solubility in the

TiNiSn half-Heusler can often be understood just like other simpler pseudobinaries be-

tween elements or binary compounds such as W-Cr or PbS-PbTe, respectively. In this un-

derstanding, the solubility of PbS in PbTe will remain the same regardless of whether the

conditions are Pb-rich or Pb-poor. This is because, just as in the case of TiNiSn-TiNi2Sn,

the dominant defect direction (STe) overlaps with the impurity phase (PbS) direction. As

a result, drawing the solvus curves in the typical pseudobinary system such as PbTe-PbS

using a single line on a one-dimensional composition slice is actually even representative

of Pb-rich and Te-rich chemical conditions. This equal solubility is a thermodynamic re-

quirement and has recently been shown to even hold in cases such as Mg2Si-Mg2Sn (Ref.

[127]) for which the previous works had multiple discrepancies in the reported solvus.

TiNiSn-TiNi2Sn is a slightly different system in that it is a pseudobinary between ternary

compositions. But just like the simpler PbTe-PbS system, TiNiSn-TiNi2Sn is also con-

strained by guideline (ii) for equal Ni-solubility in regions 3 and 4, which are both Ni-rich

conditions (see Figure 5.5)). However, the similarity of Ni-solubility on the Ni-poor side

(see region 1 (Ti-rich) and region 2 (Sn-rich) in Figure 5.5), for which there is no equiva-

lent in the simpler PbTe-PbS system, is merely a coincidence of the fact that the impurity

phase Ti6Sb5 lies so close to the 1-1 TiSn stoichiometry. To this extent, ternary compound

based pseudobinaries can be more complex than those based in binary compounds. In

the following section, we discuss pseudobinaries in the more complex quaternary compo-

sition space in which our thermodynamic guidelines predict even the solvus curve sepa-

rating the two-phase region and the solid-solution to be chemical-condition-dependent.
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5.2.3 Predicting Unusual Pseudobinary Phase Diagrams

Phase diagrams of pseudobinary solid-solution systems are perhaps the most commonly

studied for materials design. In the case of thermoelectrics, psudobinary phase diagrams

of chalcogenide systems such as PbTe-PbS, [129] PbTe-SrTe [130] and PbTe-AgSbTe2 [131]

are often studied to predict accurate synthesis conditions for designing two-phase nano-

structured materials. The solubility of the two phases into each other in a typical pseu-

dobinary is usually drawn along a 1-dimensional compositional line joining the end-

members. As discussed above using the guideline (ii) for the cases of TiNiSn-TiNi2Sn

and Mg2Si-Mg2Sn, the assumption in drawing a single solvus curves for pseudobinaries

along a 1-dimensional composition line is that they should be independent of chemical

conditions associated with elements other than Nii or SnSi defect. This result however,

does not necessarily hold for all pseudo binary examples.

Consider the model pseudobinary system AD − BCD2 (see Figure 5.6) which is a proto-

type composition for systems in the Chalcogenide (PbTe-AgSbTe2), Skutterudite (CoSb3-

Co2Sn3Te3) [121] and Heusler (TiCoSb-Ti2FeNiSb2) [13] families of compounds. Among

these, the chalcogenide based pseudobinaries [132, 133, 134, 135, 73, 136, 137, 138,

139] in particular have attracted a lot of attention for their thermoelectric properties in

the past two decades owing to early reports of zT > 2 in PbTe-AgSbTe2 [132]. Beside being

set in a more complex quaternary composition space, this system is also different from

the examples discussed above in that one of its end-members is a mixed cation system.

The conclusions we make in this section however, should also in principle apply for the

simpler pseudobinary examples such as Si-ZnS as well.

To understand how the solvus boundaries might depend on chemical conditions using

our thermodynamic guidelines, we draw the defect directions and the impurity phase

directions for the end members AD and BCD2 on a pseudoternary composition slice AD-

BD-CD (see Figure 5.6). We consider the substitutional defects BA and CA in AD and AB
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Figure 5.6: Prediction of unusual pseudobinary solid-solution phase diagram. Sketch for
a possible Temperature-Composition phase diagram (right) for the model pseudobinary system
AD−BCD2. The x-axis represents the composition between the AD and BCD2 phases (instead of
the exact compositions AD and BCD2) under B-rich and C-rich conditions. The figure on the left
locates this pseudobinary on theAD-BD-CD pseudoternary composition slice. The substitutional
defect directions for each end-member of the pseudobinary end-members are shown by orange
arrows. The defect direction vectors are drawn of varying lengths to indicate differences in their
energetics. The dominant defect between each pair of substitutional defect is shown by a longer
vector. The impurity phase directions for the end-members are shown by purple arrows.

and AC in BCD2. The length of the defect direction vectors are unequal, indicating that

the tendency to form one kind of substitutional defect is much larger than the other. A

good example of such defect behaviour is observed in the PbTe-AgSbTe2 case where Pb

substitutes almost exclusively on the Sb-site [140]. The key difference between the system

drawn in Figure 5.6 and the typical pseudobinary examples such as TiNiSn-TiNi2Sn and

Mg2Si-Mg2Sn is that the substitutional defect directions do not overlap with the impurity

phase directions. Hence, following from guideline (ii) the solubility of the substitutional

defects in B-rich and C-rich conditions will be unequal. This expected difference in

solubility between chemical conditions should clearly show in a temperature-composition

phase diagram (see Figure 5.6). Although, we choose a complex quaternary system, our

conclusions based on thermodynamic theory should in principle also apply to similar

systems (possibly Si-ZnS) in ternary composition space.
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5.2.4 Solubility of defect complexes

Although we do not discuss here any examples of complex defects, the solubility guide-

lines (i) and (ii) can be extended to them without any loss of information. Obviously, defect

directions in the case of these complex defects will be different from the compositional

directions of the point defects (examples in Figure 5.2)

5.2.5 What if I do not know the phase diagram beforehand?

Both guidelines (i) and and (ii) suggest that the defect solubility should be highest along

the defect direction. So in principle, if the goal of the study is to achieve maximum

solubility, even the knowledge of the phase diagram (see Figure 5.1) is not required. Syn-

thesizing the samples simply along the compositional the direction recommended by the

thermodynamic guidelines should by sufficient to achieve maximum solubility from the.

We will note however that this might not be very straightforward exercise experimentally

since the intended nominal composition of the samples can often be quite different from

the actual composition which gets made. An example of such compositional differences

have been clearly described in a phase diagram by Ohno et al in Ref. [120]. These dif-

ferences in composition occur possibly due to large inequalities in the vapour pressure

of the elements used in synthesis. Although such a shift in the intended composition of

the samples are expected to be systematic to a large extent, its magnitude can be large

enough to impact solubility significantly by changing chemical conditions. As a result, to

check if the samples were prepared along the intended compositions chosen by applying

the thermodynamic guidelines, we also recommend checking the impurity phases formed

in the process. If the multi-phase equilibria involving the impurity phase contains the

defect direction expected from the above guidelines, the unintended shift in composition

should have no bearing on the resulting solubility.
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5.2.6 Effects of Fermi-level dependency of defect energetic dependence of

∆Hdef in semiconductors

All the three examples, namely CoSb3, Mg3Sb2 and TiNiSn, discussed above are semi-

conductor materials. The fact that solubility guidelines predict defect solubility trends

correctly in all three cases speaks for its value in semiconductor design strategies. How-

ever, the thermodynamic theory used to develop the solubility guidelines is exact only

for metallic systems and it is possible that their conclusions do not hold in the case of

all insulator examples. As discussed in Chapter 4, solubility of charged defects in semi-

conductors is determined by evaluating its ∆Hdef value at the equilibrium position of the

Fermi-level (Eeqf ). In cases where (a) the position of Eeqf was determined entirely by a single

charged defect or (b) the dominant defect was charge neutral with the position of Eeqf hav-

ing no bearing on its solubility, the guidelines developed in Section 5.2.1 would still hold.

However, the position of Eeqf can sometimes be quite sensitive to the energetics of more

than one (two in most cases) charged defects. This other defect(s), is the compensating

defect with a charge opposite in sign to the defect whose solubility we are interested in.

Since the thermodynamic guidelines developed in section 5.2.1 only accounts for cases

with a single defect they can not make a direct conclusions regarding the position of Eeqf .

Nevertheless, these more complicated cases of solubility, can still be treated by going one

step further. For this, we remember that the overall (occurring simultaneously regard-

less of Ef values) changes in charged defect energetics with varying chemical conditions

(chemical potential changes) will qualitatively still be consistent with the guideline (i).

So, we can use the thermodynamic guideline (i) for both the charged defects (defect of

interest and compensating defect) individually for predicting the extent to which the Eeqf

shifts. These Eeqf shifts can subsequently used to estimate if the solubility for the defect

of interest increases or decreases.

After considering energetics of both defects, we expect the conclusions from solubility
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guideline (i) to still be quite robust except possibly when the compensating defect is much

more sensitive to chemical conditions than the defect of interest itself. The example of

Te-solubility in Mg3Sb2 (Eg = 0.6 ev) shown in Figure 5.4 accounts for both Te+1
Sb and V −2Mg

defects and their Ef dependencies. As discussed above, the example of Te-solubility in

Mg3Sb2 is in agreement with the guideline (i) despite the Mg-chemical potential (relevant

to the compensating V −2Mg defect) changing between its extreme values. The conclusion

of guideline (ii), discussing the chemical conditions in which solubility of the defect is

equal, can be sensitive to the magnitude of the band-gap if we are interested in charged

defects. In larger band-gap systems, the Fermi-level can be quite sensitive to the number

of carriers which in turn depend on the chemical conditions. As a result, if the defect

of interest is charged the solubilities could become unequal. We would like to point

out however, that in larger gap systems with smaller dielectric constants the binding

energy to form charge neutral defect complexes is also higher. As a result, most reports

discussing point defects in larger gap systems automatically assume that the dominant

defects form charge neutral complexes Ref. [116, 117]. Conclusions of guideline (ii) will

remain unchanged if the dominant defect is charge neutral.
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Chapter 6

A Valence Balanced Rule for Discovery of Defective

half-Heulsers

6.1 Overview

The stability of the semiconductor transition metal based half-Heusler compounds, with

the general formula XY Z, is often understood using the well-known 18-electron rule.

This rule for stability has been used extensively in previous computational works for

understanding stability of experimentally reported 18-electron compounds and predict

new ones almost exhaustively. However, there are also reports of non-18-electron com-

pounds as well, the thermodynamic stability of which — in addition to seemingly disobey-

ing the widely accepted 18-electron rule — cannot be reproduced using computational

approaches. This inability to computationally corroborate the thermodynamic stabil-

ity of these compounds diminishes the predictive power required for an efficient high-

throughput search.

Using first-principles DFT we systematically investigate the thermodynamic stability and

off-stoichiometry in 108 nominal 19-electron half-Heusler (hH) compounds. We demon-

strate unambiguously that considering a cation deficiency towards the off-stoichiometric



116

valence balanced, VEC=18 composition is necessary for explaining the stability of all

previously reported nominal VEC=19 compounds. This is understandable in terms of

an energy benefit from a Zintl valence balance that offsets the energy penalty of forming

defects in nearly all cases. Thus, we propose a valence balanced rule to understand the

ground state stability of half-Heuslers regardless of stoichiometry and nominal electron

count (8, 18, 19, 27 etc.). Using this generalized rule we (a) predict 16 previously un-

reported nominal 19-electron XYZ half-Heuslers and (b) rationalize the reports of giant

off-stoichiometries in compounds such as Ti1−xNiSb, which has been known for over 50

years. Of the 16 new compounds predicted here, Ti1−xPtSb was synthesized and the

half-Heusler phase confirmed through X-ray studies.

6.2 Introduction to Chemistry of Heusler Thermoelectrics

Heusler compounds, with the general formula XY Y ′Z, are an extensively studied class

of functional materials based in an intermetallic chemistry which spans a significant

fraction of the periodic table. [141] Each element in this cubic structure forms an inter-

penetrating FCC lattice. When Y an Y ′ are same element in these compounds — as in

the example of VFe2Al — the resulting structure is known as the full-Heusler structure.

A vacant Y ′ site in the structure instead would lead the so-called half-Heusler structure

type, which is another compound in Heusler family.

Typical stable half-Heusler compounds are semiconducting and have attracted attention

as potentially high-performing thermoelectrics [142, 143]. These materials exhibit ex-

traordinary electrical properties [144] and thermal properties which can be engineered

substantially through control of defects [4, 13, 85]. The thermoelectric figure of merit (zT )

of both n-[145, 146] and p-type [147, 148, 149] half-Heusler materials are comparable

to that of state-of-the-art thermoelectrics. Additionally, these materials have superior

mechanical properties [150, 151] in comparison to well-known chalcogenide-based ther-
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moelectrics, making them more advantageous for device applications.

6.2.1 Zintl Chemistry perspective of half-Heuslers. A Valence Balanced

Rule

Valence electron counting (VEC) in half-Heusler compounds is widely used for a straight-

forward understanding of their electrical and magnetic properties. [141] All transition

metal based semiconducting half-Heulsers, such as TiNiSn, stabilize at a VEC = 18 con-

figuration (VEC = 0 (Ti4+s0d0) + 10 (Ni0d10) + 8 (Sn4− s2p6) = 18). The semiconducting

properties of VEC = 18 half-Heuslers allows for an understanding analogous to that of

ionic compounds within the Zintl chemistry framework.[152] Within this framework, one

can rationalize the VEC = 18 half-Heuslers as a subset of all valence balanced (net valence

(NV) = 0) semiconductors regardless of their VEC value.

The half-Heusler XY Z structure (space group F-43m) consists of three atomic sites lo-

cated at the Wyckoff positions X = 4a (0, 0, 0), Y = 4c (14 ,
1
4 ,

1
4 ) and Z = 4b (12 ,

1
2 ,

1
2 ).

Typically X-site atoms are early transition metal elements, Y -site atoms are late tran-

sition metal elements and the Z-site is occupied by p-block metals (Sb, Sn, Bi for ex-

ample). The electronegativities of the X-site atom lies in the range 1.2-1.7, whereas

that of the Y and Z-site atoms are quite similar and lie in much higher ranges 1.8-2.4

and 1.7-2.2 respectively.[141] Hence, among the three elements, the X-site atoms form

an electropositive sub-lattice of the structure. Due to the significant electronegativity

differences between X and the other sub-lattices, the conduction band states have a pre-

dominantly X-type character making it the cationic sub-lattice which donates its valence

electrons and becomes s0d0. The more electronegative Y - and Z-site atoms on the other

hand, form an sp3 covalently-bonded tetrahedrally-coordinated anionic substructure due

to their similar electronegativities. In addition to the electronegativity differences, the

band-gap in typical VEC = 18 half-Heuslers arises from a strong coupling between the
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d-states from the nearest neighbor X- and Y -site atoms which are both tetrahedrally

coordinated sub-lattices.[152, 6]

The electron count of 18 in half-Heuslers corresponds to empty and filled valence shells

(Xs0d0 + Y d10s0p0 + Zs2p6) of the cation and anions respectively – where the filled d10 states

of the Z-atoms are not considered valence electrons and ignored for the counting. Hence

the historic ‘18-electron rule’ is simply a special condition of the valence balanced con-

figuration (e.g. Net valence (NV) = 4 (Ti4+s0d0) + 0 (Ni0d10) - 4 (Sn4− s2p6) = 0) in structures

with XY Z composition where the electron count refers to one filled s2p6-bonding con-

figuration (attributed to anion Z) and one filled d10-bonding configuration (attributed to

late transition metal Y ). For the same structure this special condition of 18 electrons will

equal to 8 electrons if the compound has Y -atom which is a p-block element (for example:-

LiSiAl [153], Mg2Si etc). Similarly, in the case the X-site atom is replaced by a rare-earth

element, such as the half-Heusler semiconductor DyNiSb, the valence balanced config-

uration is attained at 27-electron (e.g. Net Valence (NV) = 3 (Dy3+s0f9) + 0 (Ni0d10) - 3

(Sb3− s2p6) = 0). Depending on the choice of the rare-earth element like Gd (25-electron),

Tb (26-electron), Ce (19-electron) and Nd (21-electron) the number of valence electrons

will be different. In all these cases, valence balancing (Net Valence (NV) = 0) ensures

a completely filled bonding states and completely empty anti-bonding states. Deviating

from this closed shell configuration leads to a weakening of bonding interactions, thereby

destabilizing the material. Thus, we conclude that having a valence-balanced configura-

tion, regardless of its electron count, is a necessary condition for stabilizing the ground

state of stoichiometric half-Heusler semiconductors.

As can be expected from their structural similarities with half-Heuslers, well-known Zintl

compounds are also commonly known to stabilize with valence balancing. For instance,

binary skutterudite compounds such as CoSb3 consist of a covalently bonded polyanionic

unit (Sb4)4− and a cationic sub-lattice Co3+ in the d6 configuration. The structure of

CoSb3 can be understood as NV = 12 (4 Co+3 d6) - 12 (3 Sb4−
4 s2p6) = 0 valence balanced
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compound. Similarly, more complex Zintl compounds such as Ca14AlSb11 is found in a

semiconducting valence balanced (NV = 28 (14 Ca2+) - 9 (AlSb9−
4 )- 7 (Sb7−

3 ) - 12 (4 Sb3−)

= 0) configuration. It is important to note that while the electron count per formula unit

between these compounds differ from each other, the valence balanced NV = 0 feature is

common. This powerful valence balanced rule has been used in design of complex multi-

component Zintls for thermoelectric and magnetic applications.[154, 155, 156, 157]

6.3 Context and Motivation

While 18-valence electron half-Heuslers are typically semi-conducting due to complete

filling of bonding orbitals, non-18-electron systems are expected to exhibit a metallic

behavior. Reports of half-Heuslers predominantly consist of compounds with a VEC = 18

(e.g. TiNiSn, TiCoSb etc). On the other hand, reports of non-18-electron half-Heuslers

(VEC =17 (e.g. ScPtSn, TiCoSn), VEC = 19 (e.g. TiNiSb, VCoSb)) are more rare (see

Figure 6.1). The large number of VEC = 18 compounds is attributed to the strong bonding

interaction associated with the filled bonding and unfilled anti-bonding states that occurs

when the Zintl valences are balanced. [152]

Transition metal based VEC = 18 half-Heuslers have already been investigated exten-

sively with 63 compounds (see Figure 6.1) synthesized previously (from the Inorganic

Crystal Structure Database [5], Ref. [6] and Ref. [7]). Additionally, if stability predictions

from high-throughput computational approaches [6, 7] are counted, the number of VEC

= 18 half-Heuslers adds to a total of 82 (see Figure 6.1). The number of experimen-

tally reported non-18-electron half-Heuslers (VEC = 17 (e.g. ScPtSn, TiCoSn), VEC = 19

(e.g. TiNiSb, VCoSb)) in ICSD however, are typically an order of magnitude smaller in

number (see Figure 6.1). Unlike the case of VEC = 18 compounds in which computa-

tional approaches are able to predict novel stable compositions in addition to verifying

the ones already reported, high-throughput computations for VEC = 19 half-Heuslers
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Net Valence (NV)
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Figure 6.1: Status of thermodynamic stability predictions prior to this work. Number of
half-Heusler compounds reported (blue circles, ICSD [5] and Ref. [6]) and predicted stable (red
triangles, Ref. [6, 7] and OQMD [8, 9] ) using the defect-free XY Z stoichiometry prior to this work
as a function of nominal valence electron count (VEC) or (alternatively) net valence (NV).

using the XY Z stoichiometry underpredicts the number of 19-electron compounds (see

Figure 6.1). The poor predictive power of first-principles thermodynamics in 19-electron

half-Heuslers suggests that the origin of its stability is not well understood. Due to their

much smaller numbers, non-18-electron compounds are often thought to be stable de-

spite the weak bonding interactions associated with their partially occupied bonding or

anti-bonding states, making them outliers or exceptions to the ‘18-electron rule’.

The electrical properties of the few known VEC = 19 half-Heuslers have long been dis-

cussed in the light of their metallic electronic structure. However, contrary to expecta-
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tions, these compounds are also emerging as potential thermoelectric materials. [158,

159, 160, 161, 87] Recently, the NbCoSb system exhibit a zT ∼ 0.9 at 1100 K, [87]

which is comparable to state of the art VEC = 18 half-Heusler thermoelectrics such as

(Ti,Zr,Hf)NiSn compounds [162, 145]. The good thermoelectric properties of these ma-

terials suggest that we should consider them as heavily doped n-type semiconductors

instead of simply classifying them as metals.

Owing to their interesting thermoelectric properties, it is important to explore the phase

space of VEC = 19 half-Heuslers further. Since half-Heuslers occur in a very large num-

ber of chemically reasonable combinations of elements, checking for the thermodynamic

stability of each compound experimentally is laborious. Laboratory discovery can be sig-

nificantly expedited by first narrowing down the likely compositions using first-principles

based thermodynamic predictions. [6]

6.4 Results and Discussion

6.4.1 Phase stability prediction ignoring any off-stoichiometry in XY Z

In this study, we study 108 compounds from VEC = 19 family belonging to the IV-X-V,

IV-XI-IV, V-IX-V, V-X-IV sub-groups (see Figure 6.2) using first-principles density func-

tional theory calculations. The seven VEC = 19 half-Heuslers reported in ICSD [5] (namely

VCoSb, TiNiSb, NbCoSb, NbRhSb, NbIrSb, TaCoSb and ZrNiBi, see circles in Figure 6.2)

also constitute a subset of these half-Heusler structures. To understand the influence de-

fects could have on the stability of these compounds, we first we check for thermodynamic

stability of these structures by ignoring any kind of off-stoichiometry. We find that only

one (TiNiSb) of the experimentally reported seven is predicted to be stable (see Figure 6.2).

Unlike the VEC = 18 half-Heusler systems, prediction of VEC = 19 half-Heuslers using

the defect-free structure under-predicts the number of stable compounds (see Figure 6.1)
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with respect to the few known compounds. Clearly, stability of VEC = 19 half-Heuslers is

not understood well enough to reliably distinguish stable compounds from the unstable

ones, and stability predictions based on the XY Z stoichimetry alone cannot be trusted.

6.4.2 Nb-deficiency in NbCoSb structure

To understand the stability of 19-electron half-Heuslers, we first take a closer look at

the VEC =19 example of NbCoSb to resolve the discrepancies between DFT prediction

and experimental findings (see Figure 6.2). The synchrotron diffraction data collected for

the NbCoSb composition (Figures 6.3) [1] show a multiphase material with the ma-

jority phase of “NbCoSb” (90.1(3) wt%) and a minor impurity phase of Nb3Sb (9.9(1)

wt%), suggesting that the half-Heusler single phase region might lie at a slightly dif-

ferent composition. Refining isothermal displacement parameters of all atoms as well as

the Nb-occupancy, a site occupancy factor of 84.3(2) % is obtained for Nb indicating a

Stability of 19-electron half-Heuslers ignoring any off-stoichimetry 

Figure 6.2: Using defect-free structures with XY Z composition predicts stability of 19-
electron half-Heuslers poorly. 19-electronXY Z systems investigated in the present work for sta-
bility in the half-Heusler structure using only a defect-free XY Z structure (any off-stoichiometry
is ignored). Half-Heuslers predicted stable are represented by the plus (+) symbol. Previously
reported nominal VEC = 19 half-Heuslers are represented by a circle. Compounds where the
half-Heusler phase is predicted unstable are indicated by a minus (-) symbol.
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Figure 6.3: X-ray diffraction pattern of NbCoSb composition contains a significant fraction
of impurity phase. Synchrotron diffraction pattern of the NbCoSb sample in a small angular
range including the profile fit. The calculated Bragg diffractions show the quality of the fit with
the two phases NbCoSb and Nb3Sb. Experiments were performed by collaborators at Justus-
Liebig-University Giessen and University of Houston.

Nb-deficient phase with a composition of Nb0.84CoSb. The obtained phase fractions (in

wt %) from the Rietveld refinement of the two phases correspond to a molar composition

of Nb0.84CoSb + 0.067 Nb3Sb. [1]

We note that ignoring any off-stoichiometry, DFT predicts that the 19-electron NbCoSb

structure is predicted to be unstable (see Figure 6.2). In order to understand the large

concentration of vacancies observed in the Nb-sublattice (hereafter, a vacancy will be re-

ferred to as ȯ) of the half-Heusler phase, we investigate off-stoichiometry in the system by

performing a pseudo-binary cluster expansion (CE) for Nb1−xȯxCoSb system (see Figure

6.4). Both the cubic end-members of this example, namely NbCoSb and CoSb, lie above

the Nb-Co-Sb ternary convex-hull (see the solid line in Figure 6.4). The formation energies

of structures lying at intermediate compositions are calculated with respect to the total

energy of the end-members and is provided in eV/mixing-atom. Clearly, the formation
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enthalpy for the half-Heusler structure decreases on approaching the valence electron

count (VEC) = 18 composition (Nb0.8CoSb) from either sides. These results, suggesting

approximately 20% vacancies on the Nb sub-lattice are in agreement with the Rietveld re-

finement of the X-ray data. After considering off-stoichiometry in the DFT calculations,

we find that the NbCoSb composition must phase separate into the Nb-deficient half-

Heusler phase Nb0.8CoSb and the impurity phases Nb3Sb and Nb7Co6 (trace amounts).

Unless Nb-vacancies are considered, these impurity phases — which are also observed in

/

Figure 6.4: Cluster expansion results for the Nb1−xCoSb system. Formation enthalpy(∆ EF ) of
173 different orderings (gray circles) of Nb-atom and vacancies in the Nb-sublattice of half-Heusler
NbCoSb determined using DFT. The dotted line indicates the convex hull for these configurations
of the NbCoSb (half-Heusler structure(half-Heusler))-CoSb (zinc Blende structure (c-ZnS)) binary
system. The Nb0.8CoSb structure emerges as a stable ground state phase lying on the NbCoSb
ternary convex hull (solid black line). The formation energies of this convex hull are determined
from the three-phase region of Nb7Co6, Nb3Sb, and Nb0.8CoSb at x = 0 (black square), the ordered
Nb0.8CoSb ground state phase, and the hexagonal ground state phase of CoSb (red square).
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the X-ray data — would have been predicted incorrectly (Nb5Sb4, CoSb (hexagonal phase)

and NbCo3 phases). Among the lowest energy configurations of Nb/ȯ ordered phases only

the half-Heusler Nb0.8CoSb breaks the Nb-Co-Sb ternary convex hull (Figure 6.4) and

emerges as a stable ground state phase, thereby resolving the apparent discrepancy in

DFT results with experimental findings. The complete Nb-Co-Sb ternary phase diagram

calculation which includes the stable Nb0.8CoSb phase is presented in Figure 3.2.

6.4.3 Why Nb-vacancies? Extending the Valence Balanced rule to accom-

modate defects

One can understand the compositional stability of the ground state 18-electron Nb0.8CoSb

half-Heusler using its valence balanced configuration.[1] While the 18-electron electron

count in this system can be achieved at infinitely many compositions by creating vacan-

cies at the Y - and/or Z-site of the stoichiometric structure, its stable X-site deficient

composition can be uniquely identified by its valence balanced configuration (NV = 4 (0.8

Nb5+ s0d0) - 1 (Co1− d10) -3 (Sb3− s2p6) = 0). For example, when compared to the stoichio-

metric structure (NV = 5 (Nb5+ s0d0) - 1 (Co1− d10) - 3 (Sb−3 s2p6) = 1), the Y-site deficient

18-electron composition NbCo8/9Sb (NV = 5 (Nb5+ s0d0) - 8
9 (89 Co1− d10) - 3 (Sb3− s2p6) =

1.12) deviates away from the valence balanced configuration. Similarly, the Z-site defi-

cient 18-electron composition NbCoSb0.8 also deviates away from the valence balanced

configuration (NV = 5 (Nb5+ s0d0) - 1 (Co−1 d10) - 2.4 (0.8 Sb3− s2p6) = 1.6). While the

18-electron count imposes a constraint only on the (i) combination of atoms chosen and

(ii) type of defect in stoichiometric VEC = 19 NbCoSb, the valence balanced configuration

(NV = 0) imposes additional constraints on the site of the defect to uniquely determine

its composition. While this valence balanced rule can be applied consistently across all

stoichiometric half-Heuslers with VEC = 8 and 18, it can be generalized even further to

include defects in half-Heuslers if all nominally 19-electron compounds show a similar

trend in compositional stability. In the following sections we establish the generality of
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this valence balanced rule by (a) explaining all previous reports of stable nominal VEC =

19 half-Heuslers and (b) using it to reliably predict nominal VEC = 19 TiPtSb, which was

not possible under the framework of the previously known 18-electron rule for stoichio-

metric 1-1-1 half-Heuslers.

6.4.4 Predicted stability of XY Z composition after considering cation va-

cancies

For all the 108 VEC = 19 half-Heusler compositions considered here, once cation vacan-

cies are considered, the stoichiometric half-Heusler composition XY Z is predicted to be

unstable in all cases (Figure 6.6). Even the TiNiSb and HfNiSb VEC = 19 compositions,

which were predicted stable when any kind of off-stoichiometry is ignored, (see Figure

6.2) are now predicted to be unstable. The extent of instability (Estability, for unstable

compounds Estability = ECH > 0) of the VEC = 19 composition varied largely across fami-

lies, ranging from 30 meV/atom for ZrNiSb to 558 meV/atom for HfAgGe. Even among

the compounds reported previously, the instabilities are rather large (ranging up to 195

meV/atom for TaCoSb) and cannot be simply attributed to DFT error or the entropy asso-

ciated with the temperatures at which the materials were synthesized. This is in contrast

to the case of typical stoichiometric VEC = 18 half-Heuslers such as TiNiSn where Open

Quantum Materials Database (OQMD)[8, 9] correctly predicts the thermodynamic phase

stability of 60 of the 63 previously known compounds.

6.4.5 Confirming the valence balanced rule from previously reported nom-

inally VEC = 19 half-Heuslers

For each of the previously reported nominal VEC = 19 half-Heuslers, the valence balanced

(NV = 0, VEC = 18) structures (example Ti0.75NiSb, Ta0.8CoSb) is predicted stable (Figure

6.5), thereby resolving the multiple discrepancies pointed out in Figure 6.2 between DFT
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and experimental[163, 164, 165, 159] reports via the valence balanced rule. In contrast

to a methodology which considers only defect-free structures, the valence balanced rule

can be used to reliably distinguish stable nominally VEC = 19 compounds from the un-

stable ones. This reliability in predictive power is crucial for the accelerated discovery

of new compounds. The prediction and confirmation of previously unreported VEC = 19

half-Heuslers is discussed in the sections below.

In addition to the large instabilities, we find that the XY Z compositions lie in multi-

phase regions suggesting a driving force for phase separation at the VEC = 19 compo-

sition. Based on this result one would expect to observe impurity phases in previously

reported compounds. Indeed, studies reporting synthesis of the nominally VEC = 19

half-Heuslers (NbCoSb [158], NbIrSb [165], VCoSb [159], TiNiSb [164]) often contain re-

ports of impurity phases. NbCoSb is often synthesized with Nb5Sb4 [87] or Nb3Sb [1]

impurities. Half-Heusler NbIrSb samples were prepared with persistent impurity phases

despite several efforts (grinding, higher reaction temperature) to make the material single

phase. [165] Large amounts of ferromagnetic impurity phases have been reported for the

VCoSb composition.[163] The amount and type of impurity phases however, were often

not analyzed and in a few cases [159] small amounts of impurity phases might also have

been missed.

Our-prediction of a cation deficient off-stoichiometry in these compounds also agrees

well with experiments. The single phase region of nominally 19-electron half-Heusler

Nb1−xCoSb was found to lie in the off-stoichiometric range x = 0.16-0.2. [1, 87] Multi-

phase Ti30Ni36Sb34 samples annealed at 873 K indicate up to 20% cation vacancies in

the half-Heusler phase. [166] We suggest here that the impurity phases in the XY Z

composition of nominally 19-electron half-Heuslers occur due to the formation of (18+δ)-

electron based half-Heusler phase.
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Stability of nominally 19-electron half-Heuslers considering cation vacancies 

Figure 6.5: Valence balanced defective composition predict stability accurately. 19-electron
XYZ systems investigated in the present work for stability of the half-Heusler phase using the
valence balanced (NV = 0) defective compositions. Systems with the half-Heusler phase predicted
stable are represented by the plus (+) symbol. Among these, symbols of compounds previously
reported as nominal VEC = 19 half-Heuslers are encircled. Compounds where the half-Heusler
phase is predicted unstable are indicated by a minus (-) symbol and those which lie within chem-
ical accuracy of DFT (|Estability | ≤ 10 meV/ atom) are given by tilda (∼) symbol.

6.4.6 Previously unknown compounds predicted stable using the valence

balanced rule

Out of the 108 compounds studied here, we find a total of 23 nominally VEC = 19 half-

Heuslers stable in their valence balanced (NV = 0, VEC = 18) cation poor structures

(Figure 6.5), 16 of which are previously unreported. We predict new half-Heusler phases

in 10 Sb-based, 2 As-based and 4 Sn-based ternary systems (Figure 6.5). We also find

4 cases which are too close to call as their Estability falls within the range [-10 meV/atom,

10 meV/atom] and could be attributed to a DFT error. Nominally VEC = 19 half-Heuslers

have only been reported for Sb and Bi-based compounds. We propose Sn and As-based

compounds as new additions to the nominally VEC = 19 half-Heusler family. These com-

pounds are significantly stable (Estability < -20 meV/atom) and comparable to the already

reported example of half-Heusler Zr0.75NiBi (Estability = -11 meV/atom). Some compounds
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such as Nb0.8NiSn (Figure 6.5) contain only relatively inexpensive and abundant ele-

ments and could be explored as inexpensive alternatives for thermoelectric applications.

The nominally VEC = 19 compounds are a large family consisting of ∼300 combination

of elemental groups for the X, Y and Z-site atoms [141] (namely the sub-groups III-XI-V,

III-X-IV, IV-IX-III, IV-X-V, IV-XI-IV, V-IX-V, V-X-IV, V-XI-III, VI-VIII-V, VI-IX-IV, VI-X-III). The

fact that stability of these compounds is almost never limited by the large defect concen-

trations (see Figure 6.5) suggests that valence balanced rule is robust and can be used in

further discoveries with reasonable confidence. Similar to the previously unreported Sn-

and As-based compounds predicted here one might expect to find more nominally VEC =

19 compounds from the large phase space of possible ternary systems, opening up a new

dimension for potential materials research and discovery. While other nominally VEC =

19 compounds can be explored, the current prediction of 23 compounds is already more

than one-third of the 61 predicted exhaustively for VEC = 18 half-Heuslers. Just like

stoichiometric VEC = 18 half-Heuslers, the pseudo 18-electron nature of new nominally

VEC = 19 compounds could be suitable for thermoelectric applications.

6.4.7 Semiconducting electronic structure driven stability

Most of the cation-deficient, valence-balanced (NV = 0, VEC = 18) structures studied here

are found to be semiconducting (Eg ≥ 0). Generally, the compounds with larger band-gaps

(Eg ≥ 0.55 eV) are stabilized to a greater extent relative to the small band-gap (Eg ≤ 0.55

eV) cases (Figure 6.6). The stabilizing effect of the band-gap may be associated with the

electronic energy gained after losing 1 electron/formula-unit from the ‘conduction band’

of the stoichiometric VEC = 19 half-Heusler as the structure becomes cation-deficient.

This gain in electronic energy may overcome the Estability at the VEC = 19 composition,

giving rise to thermodynamic stability in the 23 compounds predicted here. It seems

that, for a particular value of Estability at the VEC = 19 composition a correspondingly
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Figure 6.6: The defective valence balanced composition is always more stable than the 19-
electron half-Heusler structure at the XY Z composition. Estability of the 108 half-Heusler
structures studied here at the X-site-deficient valence-balanced (NV = 0) composition versus at
the defect-free VEC = 19 composition. Negative values signify cases where half-Heusler structure
is predicted stable. Cation deficiency increases the stability of nearly all half-Heusler structures.
Stabilizing energies are larger for systems with larger band-gaps (Eg ≥ 0.55 eV, filled circles) at
the VEC = 18 composition. All stable nominal VEC = 19 half-Heuslers exhibit Eg ≥ 0.55 eV.

large band-gap at the valence balanced composition is required to stabilize the nominal

VEC = 19 half-Heusler phase (see dotted line in Figure 6.7). Most compounds predicted

stable however, exhibit both (i) a small Estability for the defect-free structure and (ii) a large

stabilizing band-gap (see solid line in Figure 6.7). It is interesting to note that all the

compounds predicted stable lie in the larger band-gap range with Eg ≥ 0.55 eV (see Figure
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6.6).
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Figure 6.7: Instability of the 19-electron half-Heusler structure at the XY Z composition
can be overcome by a correspondingly large electronic energy gap. Estability (in eV/formula
unit) of the half-Heusler structures at VEC = 19 composition versus its band-gap (Eg) at the
off-stoichiometric valence balanced composition. The compounds predicted stable (Estability ≤ -10
meV/atom) in the off-stoichiometric valence balanced (NV = 0) structure are given by filled circles.

For off-stoichiometries of the magnitude discussed here (20-25 % vacancies), one would

expect an energy penalty for formation of vacancies to be quite significant. This energy

penalty should compete with stabilizing effect of Eg, possibly even overcoming it in a few

cases. Contrary to this expectation, we find that off-stoichiometric half-Heusler struc-

tures are nearly always (107 out of 108 cases) more stable with respect to the defect-free

structure (see Figure 6.6) even for systems with small Eg (∼ 0 ev) (see Figure 6.7). This
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suggests that the structure readily accommodates the large vacancy concentrations to

attain the valence balanced configuration. The spontaneous formation of large concen-

tration of vacancies might seem counterintuitive. However, complete vacancies on the

cationic X-site leads to the stable zinc blende structure with the same sp-bonding as in

the half-Heuslers. This suggest half-Heuslers have some chemical similarities to inter-

calation compounds where the X cation add flexibly to tune the electron count towards

the thermodynamically stable valence-balanced composition.

6.4.8 Chemical Trends in stability of the nominally VEC = 19 half-Heusler

family

Since calculations were performed for over 100 compounds in the present work spanning

across different anion chemistries (see Figure 6.5), we investigate the trends in stability

with electronegativity and size of the anion. We note that Sb- and Sn-based compounds

are predicted to have most number of stable nominally 19-electron half-Heusler com-

pounds (see Figure 6.5). To understand this trend, we explicitly plot the Estability val-

ues of the XY Z composition for all the systems belonging to different anion chemistries

(see Figure 6.8). For a straightforward comparison of the 6 anions, we also average the

Estability value in each case. The positive value of all the 108 systems indicate — as dis-

cussed above — that the 19-electron XY Z compositions are unstable. As concluded from

Figure 6.7, a small Estability value at the XY Z composition is necessary for the defective

cation-deficient structure to become stable. In line with this expectation, we find that

the average Estability values (in ascending order: Sb, Sn, As, Bi, Ge, Pb) are inversely cor-

related to the number of compounds predicted stable for each anion (see Figure 6.5). On

going down a group of anionic elements, we find that the Estability values first decrease

and then increase (for both groups).

We attribute this non-monotonic behaviour of Estability to the competing effects of size
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and electronegativity on going down the group. On going down a group, the size of the

anion increases, but its electronegativity decreases. Structural parameters which are

correlated to size of the anion, such as the sum of ionic radii and average atomic masses,

have been identified in previous works [167, 6] as important metrics to distinguish half-

Heusler structure types from other phases (primarily orthorhombic, space group Pnma)

which crystallize at the XY Z composition. These studies for 18-electron compounds

have shown, in line with our results (see Figure 6.5 and Figure 6.8), that the Ge- and
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Figure 6.8: Chemical trends in stability of half-Heusler compounds. Calculated Estability val-
ues (cross symbols) for all of the 19-electron half-Heuslers at the XY Z compositions investigated
in this work. The Estability values are classified by the Z-site anion. Average Estability values for
each case is shown as a big blue circle. The thick black lines are drawn as a guide to the eye to
show the general trend in Estability values on going down a particular group in the periodic table.
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Figure 6.9: Trends in half-Heusler stability with with electronegativity of the Z-site atom.
Calculated values of average Estability (averaged for based on Z-site anion separately) for all the
19-electron half-Heuslers at the XY Z compositions investigated in this work plotted as a function
of the Z-site atom electronegativity.

As-based compounds rarely form the half-Heusler phase due to their smaller size or

mass. The larger anions Bi and Pb, on the other hand, are not as stable as their Sb and

Sn, presumably because of their electronegativities. From the Zintl understanding of

half-Heusler semiconductors, we know that the Z-site element constitutes a part of the

electronegative anionic framework. Hence, a Z-site element with a smaller electronega-

tivity must be conflicting with stability of the half-Heusler semiconductor within the Zintl
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Picture. We plot average Estability as a function of the anionic electronegativity in Figure

6.9. As expected, Estability for Pb-, Bi-, Sn-, Sb-based compounds decreases almost lin-

early with increasing electronegativity thereby explaining the relatively smaller number of

Bi- and Pb-based compounds. The Estability versus electronegativity trend in Ge and As is

off-set due to their much smaller sizes. Although the chemical trends of thermodynamic

stability are discussed for only a few nominally VEC = 19 half-Heusler compounds, the

analysis is applicable for half-Heusler families with other electron-counts, too.
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6.4.9 Experimental Verification

To verify our predictions of new 19-electron compounds, the previously unknown nom-

inally VEC = 19 compound Ti1−xPtSb (Tanneal = 1073 K) was synthesized at x = 0 and

0.1. The powder XRD pattern of Ti0.75PtSb indicates that the main phase of the sam-

ples are the half-Heusler phase (see Figure 6.10) and some impurity peaks of the PtSb2

phase. The impurity peaks almost vanish for the Ti0.85PtSb sample, indicating it is nearly

phase pure. The discovery of a cation-deficient half-Heusler Ti0.75+xPtSb in the nominally

19-electron system provides a strong experimental validation of our prediction strategy

based on the valence balanced rule.

6.5 Conclusion

In conclusion, we demonstrate that the stability of half-Heuslers at multiple nominal

electron counts, 8, 18 and 19, are best understood using a valence balanced rule. We

establish that while the nominal electron counts for these half-Heusler systems might

be different, their ground state structures always have a common net valence (NV) of 0

when described within a Zintl framework. This rule allows the nominally 19-electron

half-Heuslers to flexibly tune its stoichiometry by accommodating large concentrations

of cation vacancies to attain the ground state valence-balanced configuration. This un-

derstanding of compositional stability in the emerging thermoelectric nominal VEC = 19

half-Heuslers, previously not available from the ‘18-electron rule’ for stoichiometric half-

Heuslers, was used to predict 16 new compounds. The newly predicted off-stoichiometric

half-Heusler phase Ti0.75+xPtSb was synthesized and confirmed using x-ray studies. The

valence balanced rule adds multiple dimensions to the phase space for discovery of pos-

sible half-Heuslers by including different intrinsic and extrinsic defects in the structure

to attain a valence-balanced configuration.
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Figure 6.10: Experimental verification of prediction of the Ti0.75+xPtSb compound based on
valence balanced rule. XRD patterns of Ti0.75+xPtSb (x = 0, 0.1) annealed at 1073 K. Experiments
were performed by collaborators at Zhejiang University.
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Chapter 7

Temperature-dependent n-type self-doping in

nominally 19-electron half-Heusler thermoelectrics

7.1 Overview

The origin of stability of the relatively rare 19-electron half-Heusler compounds — known

in the literature for over two decades — had been unclear for a long time. As a result,

previous experimental studies have often interpreted these metal-like compounds as out-

liers to the 18-electron rule with the same well-known XY Z stoichiometry. However, the

recent discovery of a semiconducting ground state XyY Z (y = 0.8 or 0.75) in these com-

pounds warrants a closer look at their apparently metallic properties that often make

them good thermoelectric (TE) materials. By systematically investigating the tempera-

ture dependence of off-stoichiometry (x) in V0.8+xCoSb, Nb0.8+xCoSb, and Ti0.75+xNiSb we

find that x invariably increases with increasing temperature, leading to an n-type self-

doping behavior. In addition, there is also a large phase width (range of x) associated

with each phase that is temperature-dependent. Thus, unlike in typical 18-electron half-

Heuslers (eg: TiNiSn), the temperature dependence of vacancy and carrier concentration

(n) in nominally 19-electron half-Heuslers links its transport properties to synthesis con-
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ditions. The temperature dependence of x and n are understood using density functional

theory (DFT) based defect energies (∆Hdef ) and phase diagrams. ∆Hdef (in cation-rich

conditions) are calculated for 21 systems which can be used in predicting cation solu-

bility in this family of compounds. Using this simple strategy, suitable composition and

temperature synthesis conditions are devised for obtaining an optimized n to engineer TE

properties in phase-pure V0.8+xCoSb, and the previously unexplored Ta0.8+xCoSb. The

small ∆Hdef values for well-known compounds such as V0.8+xCoSb reveals why these

compounds can lie close to the VCoSb composition, explaining why the defective nature

of these compounds have remained hidden from the community for so long.

7.2 Context and Motivation

The thermoelectric properties of defective nominally 19-electron half-Heusler systems

with the general formula XyY Z (y = 0.75 and 0.8) are very sensitive to chemical compo-

sition. [87] Unlike the well-known XY Z half-Heuslers, the charge-carrier concentration

(n) of which is usually tuned through extrinsic doping, X-site vacancies in XyY Z can

be easily filled to dope them degenerately n-type. [1, 87] In addition to n, the large tun-

able vacancy concentration can lend itself favorably to thermal conductivity reduction

via phonon scattering and lattice softening mechanisms. [73] The nominally 19-electron

Nb0.8+xCoSb (x = 0.02) was found to exhibit a zT ∼ 0.9 at 1100 K, [87] which is comparable

to the well known multi-component half-Heusler thermoelectrics such as (Ti,Zr,Hf)NiSn

compounds with a zT = 1.2-1.5. [145, 162, 146]

Apart from impacting the intrinsic properties of the half-Heusler phase directly, choosing

chemical compositions that yield metallic impurity phases could also have a detrimental

effect on the overall thermoelectric performance of the sample. In the case of nominally

19-electron half-Heusler systems, synthesis of the standard XY Z compositions in most

systems (NbCoSb [158], NbIrSb [165], VCoSb [163, 159], TiNiSb [164]) often contains
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reports of impurity phases. The optimized high zT Nb0.82CoSb composition is free of the

metallic impurity phases, such as Nb5Sb4 [87] or Nb3Sb [1] which are often reported at

the NbCoSb composition.[1, 87, 158] In addition to the impacting thermoelectric per-

formance negatively, the metallic impurities can also make it hard to distinguish the

intrinsic properties of the pure phase half-Heusler from the properties of the impurity

phase.

Although knowledge of compositional phase stability is central to engineering desirable

thermometric properties, a clear understanding of the phase-pure stoichiometry in nom-

inally NV = 1 (or VEC = 19) half-Heuslers is still lacking. While the Nb0.8+xCoSb — in

agreement with the DFT predicted ground state [10, 1, 87] — has been reported as a

phase-pure half-Heusler at the x = 0 composition, experimental observations in other

systems differ significantly from T = 0 K DFT predictions. For example, the reported

composition for half-Heusler Ti0.75+xNiSb has x = 0.05 instead of the valence-balanced x

= 0. [166] Similarly, Ti0.75+xPtSb is found to be nearly phase pure at the x = 0.10 composi-

tion. [10] V0.8+xCoSb is an extreme example, which is reported to be a nearly phase-pure

half-Heusler at the NV = 1 VCoSb composition (i.e., x = 0.2).

In view of the fact that thermoelectric properties of nominally 19-electron half-Heuslers

are very closely linked their compositional phase stability, (see Figure 7.1) we build a

defect-energetics-based predictive framework for solubility in all the newly discovered

systems (see Figure 6.5). For this, we take the same approach as we did in Chapter

6. We first understand the X-atom solubility in experimentally reported compounds

(V0.8+xCoSb, Nb0.8+xCoSb, and Ti0.75+xNiSb) using DFT calculated defect energies (∆Hdef ).

Using this analysis the ∆Hdef calculations for previously unreported compounds can be

used to estimate a temperature-dependent solubility on the X-site.
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n for 

optimized zT

recomended 

synthesis conditions

Figure 7.1: Strategy to identify synthesis conditions for preparation of high performing
nominally 19-electron half-Heusler thermoelectric samples. Schematic demonstrating the
strategy adopted in the present work for recommending appropriate annealing temperature-
composition synthesis conditions for the design of optimally doped nominally 19-electron half-
Heusler thermoelectrics.

7.3 Results and discussion

Using the experimental reports of high temperature phase stability in half-Heusler V0.8+xCoSb,

Nb0.8+xCoSb and Ti0.75+xNiSb from Ref. [12] and their predicted T = 0 K defective stoi-

chiometries (Chapter 6) we construct a composition-temperature phase diagram for each

compound (see Figure 7.2). An exponential functional form is chosen to sketch the tem-

perature dependence of the phase boundaries (see Methods section). The curvature of
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Figure 7.2: Temperature-dependent evolution of single phase (light blue) half-Heusler in
(a) V0.8+xCoSb, (b) Nb0.8+xCoSb and (c) Ti0.75+xNiSb. The solvus boundaries of the half-Heusler
phase are given by the solid black lines. Compositions with single phase and multi-phase samples
(from XRD) are represented by blue and unfilled black circles respectively. The dashed vertical
line drawn at the T = 0 K valence-balanced (NV = 0) composition separates the n-type and p-type
region for the nominal composition of the sample. The top axis provides the nominal chemical
carrier concentration (n) for each system.
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the phase boundaries (see Figure 7.2) depends on the fraction of vacancies (f = x / (1-y))

filled in the XyY Z structure. In the expression for f , y = 0.8 and 0.75 for group-V (V and

Nb) and group-IV (Ti) cation based systems respectively. As the temperature-dependent

shift in stoichiometry of the phase is limited by the number of vacancies available for

filling (1-y, per formula unit) the phase boundaries straighten up as f approaches 1.

The data points representing samples with phase pure half-Heusler XRD patterns (see

blue symbols in 7.2), either lie in the single phase region (light blue in Figure 2) or close to

it (Nb0.8CoSb) within the instruments limit to detect impurity phases (∼ 2 atomic %). The

Nb0.8CoSb composition is drawn in the multi-phase regions despite its phase-pure XRD

pattern (see Ref. [12, 87]). The presence of small amounts of undetected metallic CoSb

impurity phases in Nb0.8CoSb are concluded based on its large Hall carrier concentration

(nH ) (see Table 1). Such a large nH cannot be expected from the half-Heusler phase

alone, as at this NV = 0 composition Nb0.8CoSb should have properties of an intrinsic

semiconductor with small n. The temperature dependence of Seebeck coefficient (S) in

Nb0.8CoSb samples are in fact consistent with a smaller n because S peaks at 800 K, [87]

typical of bipolar transport in intrinsic semiconductors. The large value of the measured

nH is therefore presumably due to a metallic impurity phase.

The half-Heusler single phase in all three examples shifts quite significantly towards

larger X-compositions with increasing temperature (see Figure 7.2). Both the cation-

rich and cation-poor phase boundaries, shift towards the XY Z compositions (see Figure

7.2). This is particularly clear from the V0.8CoSb example for which experimental phase

stability data is available at multiple temperatures. The temperature-dependent shift of

the single phase region suggests that the low-temperature compositions lie closer to x =

0 and not the equiatomic XY Z composition. This is consistent with prediction of a T = 0

K composition at x = 0 in these systems. [10]

The temperature-dependent stoichiometry in these compounds can be understood in

terms of the solubility of additional X-atoms in its semiconducting ground state XyY Z (y
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= 0.75 or 0.8) structure. As X-atoms donate free carriers to the half-Heusler structure

doping them n-type, differences in phase composition between two annealing tempera-

tures is reflected in their room temperature nH measurements. nH of the phase pure

V0.8+xCoSb sample annealed at Tanneal = 1073 K (x = 0.15) is greater than phase pure

sample annealed at Tanneal = 873 K (x = 0.1) by a factor of ∼ 2.5 (see Table 7.1). Hence,

temperature emerges as a sensitive degree-of-freedom to control electrical transport prop-

erties in nominally 19-electron half-Heuslers.

Table 7.1: Room temperature Hall carrier concentration (nH ) of phase pure (from XRD) V0.8+xCoSb
and Nb0.8+xCoSb samples for different annealing temperatures (Tanneal).

Composition Annealing Temperature (Tanneal) Carrier Concentration
(1021 cm−3)

V0.95CoSb 1073 K 21
V0.9CoSb 873 K 8.6
Nb0.83CoSb 873 K 2.48
Nb0.8CoSb 873 K 0.82

To exploit annealing temperature as a design parameter in thermoelectric V0.8+xCoSb, we

use our phase diagram analysis (see Figure 7.2 a). Using the isoelectronic Nb0.8+xCoSb

as a model system [87] we apply the following design requirements: (a) phase pure half-

Heusler material, and (b) an optimized n ∼ 1 × 1021 cm−3 for high zT at the operational

temperature T = 773 K. We find that nH ∼ 8.6 × 10 21 cm−3 for x = 0.1, Tanneal = 823

K (see Table 7.1) is already lower than previous reports on carrier concentration in the

V0.8+xCoSb system [159] by over a factor of 2. nH can be decreased further via extrin-

sic doping options (such as Sn on Sb site), which have been explored successfully for

the Nb0.8+xCoSb compound. [161] Thus, we recommend V0.9CoSb (Tanneal = 823 K) as

a better starting point for extrinsic doping instead of the commonly investigated 1-1-1

composition.

In addition to its impact on thermoelectric properties, X-site composition could also

affect the exciting magnetic properties of these systems. The equiatomic composition

VCoSb has been predicted to be a half-metallic ferromagnet with potential applications
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in spintronic devices.[168] The large magnetic moment in VCoSb is expected to arise

from the ‘metallic’ electron in the conduction band of the nominally NV = 1 XY Z struc-

ture. Despite the metal-like nH (∼ 2 × 1022 cm-3) of the VCoSb composition,[159] it is

reported experimentally as a weak itinerant ferromagnet. [169, 170] We show for the first

time that typically NV < 1 in pure phase half-Heusler V0.8+xCoSb, even up to very high

temperatures. Our results suggest that investigating magnetic properties of half-Heusler

V0.8+xCoSb at the phase-pure compositions (instead of the equiatomic composition) could

resolve the discrepancies between theory and experiments.

Due to differences inX-atom solubility between the systems (see Figure 7.2), n can be very

system dependent. The nH of single phase V0.8+xCoSb (x = 0.1, Tanneal = 873 K) is greater

than that of phase-pure Nb0.8+xCoSb (see Table 7.1) prepared at the same temperature

by over a factor of ∼ 3. To understand the contrasting solubilities of nominally NV =

1 (or VEC = 19) half-Heuslers, we calculate the defect formation enthalpies (∆Hdef ) for

adding an X-atom in the vacancy position of the ground state XyY Z structure. Since

the temperature-dependent shift in the single phase compositions are bound by the X-

rich phase boundary in all the examples (see Figure 7.2), we calculate the ∆Hdef for the

X-rich chemical conditions.

We compare the calculated ∆Hdef with the experimentally observed solubility at the X-

rich phase boundary composition of various nominally 19-electron half-Heusler systems

(see Figure 7.3). In addition to the three systems studied here (see Figure 7.2), we also

consider the stoichiometry of Ti0.75+xPtSb at Tanneal = 1073 K which is investigated in

Ref. [10]. The solubility is expressed as the fraction of vacancies (f = x/(1 − y), see

Figure 7.3) filled in the XyY Z structure. The phase boundary compositions are chosen

to lie between the observed phase pure composition and the two-phase composition (see

Figure 7.2). The error bar in the value of f (see Figure 7.3) is due to the difference between

these two compositions. In the case of Ti0.75+xPtSb (see Ref. [10]), Ti0.84PtSb is chosen as

the Ti-rich half-Heusler composition as the XRD pattern of Ti0.85PtSb shows very small
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Figure 7.3: Explaining X-solubility in vacancies of the XyY Z ground state of nominally
19-electron half-Heuslers with DFT calculated ∆Hdef . Fraction of vacancies (f ) in the ground
state structure (x = 0) filled at Tanneal = 1073 K (filled circles) or Tanneal = 873 K (unfilled circle)
versus the ratio ∆Hdef/kBTanneal. ∆Hdef is the calculated defect energy for filling X-vacancies.
The value of f is obtained from systems studied in the present work (see Figure 7.2) and Ref. [10]
(Ti0.75+xPtSb). The dashed line is a guide to the eye describing correlation between experimentally
observed X-solubility and ∆Hdef (under X-rich conditions). Temperature-dependent solubility
can be estimated from ∆Hdef .

impurity phase peaks which cannot be identified as the Ti-poor impurity phase PtSb2.

The error bars in the value of f (see Figure 7.3) for Ti0.75+xPtSb are due to the limit of

the instrument for detecting secondary phases. In general, the experimentally observed

vacancy filling fraction (f = x/(1 − y)) increases for smaller ∆Hdef . The observed f in

Nb0.8+xCoSb, Ti0.75+xNiSb and Ti0.75+xPtSb are strongly correlated to the ∆Hdef regardless

of annealing temperature (see Figure 7.3). While V0.8+xCoSb might seem like an outlier
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to the trend with the other systems (see Figure 7.3), ∆Hdef qualitatively captures its

difference in solubility with the isoelectronic Nb0.8+xCoSb. Hence, we sort the calculated

∆Hdef by elemental groups of the X-atom (see Figure 7.4).

∆
H
d
e
f

Figure 7.4: Defect energy of vacancy-filling defect scales with increasing electronic energy
gap. Defect energy (∆Hdef ) for filling X-vacancies in the ground state XyY Z structures versus
band-gap (Eg) at the valence-balanced NV = 0 composition. Group-IV (y = 0.75) and Group-V (y
= 0.8) cation based nominally NV = 1 (or VEC = 19) systems are shown by square and pentagon
symbols respectively. The dashed line is a guide to the eye describing correlation between ∆Hdef

and Eg.

The ∆Hdef are calculated for the 21 nominally 19-electron systems (see Figure 7.4) which

are either previously reported or predicted to be thermodynamically stable in the half-

Heusler phase [10]. The ∆Hdef for compounds with larger cations (specially group-V

based compounds) is greater than those with smaller cations (∆HTa
def > ∆HNb

def > ∆HV
def ),
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presumably due to a larger penalty for adding atoms to the ground state XyY Z structure.

Furthermore, we find that ∆Hdef scales roughly with the band-gap (Eg) at the 18-electron

NV = 0 XyY Z composition, suggesting a smaller solubility for large Eg systems in general

(see Figure 7.4). The trend in ∆Hdef with Eg occurs due to the electronic energy gain

which stabilizes the XyY Z structure with respect to the XY Z composition. [10]

The calculated ∆Hdef can be used to estimate the temperature-dependent deviations (see

Figure 7.3 and 7.4) from the T = 0 K XyY Z structure for future experimental studies.

A qualitative way of using the calculated ∆Hdef (see Figure 7.4) is to understand that

compounds with a smaller ∆Hdef would show larger deviations from the semiconduct-

ing NV = 0 composition. Thus the large ∆Hdef system Ta0.8+xIrSb can be expected to

show very small deviations from this composition even at high temperatures. On the

other hand, Ti0.75+xNiSb and V0.8+xCoSb — both phase diagrams already known experi-

mentally (see Figure 7.2) — show the smallest ∆Hdef among group-IV or group-V cation

based systems respectively; suggesting that they should exhibit the largest temperature

dependence in stoichiometry. Since the time these results were published back in 2018,

[12] researchers have investigated X-solubility in more systems. The trend we predicted

for X-atom solubility based on ∆HTa
def > ∆HNb

def > ∆HV
def was recently confirmed in Ref.

[171].

It is desirable to predict relatively inexpensive systems such as Nb0.8+xCoSb, which can

exhibit reproducible high temperature thermoelectric properties without exhibiting hys-

teresis during heating and cooling cycles. For such robust performance one needs to

identify systems with an optimized n and a weak temperature dependence in stoichiom-

etry (as in Nb0.8+xCoSb, see Figure 7.2) across the entire range of operational tempera-

tures. We recommend Ta0.8+xCoSb as a potential candidate for such applications. Based

on the observed trend in X-rich solubility with δHdef (see Figure 7.3), we estimate n ∼ 3

× 1021 cm−3 at x = 0.03 for phase-pure Ta0.8+xCoSb synthesized with a Tanneal = 1300 K.
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7.4 Conclusion

In conclusion, we show that the stable composition of nominally 19-electron half-Heuslers

shifts from XyY Z (y = 0.8 or 0.75) at T = 0 K towards the well-known XY Z stoichiometry,

effectively doping itself n-type. Hence, unlike in typical half-Heuslers with an equiatomic

stoichiometry (eg: TiNiSn), intrinsic electronic and thermal transport properties of these

systems can be engineered through a judicious choice of annealing temperature to con-

trol defects. The phase diagram analysis and defect calculations presented can guide

future experimental efforts in choosing the right composition and temperature synthesis

conditions to engineer desirable thermoelectric properties.
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Chapter 8

Double half-Heulsers

8.1 Overview

Since their discovery around a century ago, the structure and chemistry of the multi-

functional half-Heusler semiconductors have been studied extensively as three compo-

nent systems. The elemental groups constituting these ternary compounds with the

nominal formula XYZ are well established where most stable compositions follow a va-

lence balanced rule (a generalization of the 18 electron rule). From the very same set of

well-known elements and stability guidelines we explore a much larger phase space of

possible quaternary double (X ′X ′′Y2Z2, X2Y
′Y ′′Z2, and X2Y2Z

′Z ′′), triple (X ′2X ′′Y3Z3) and

quadruple (X ′3X ′′Y4Z4) half-Heusler compounds. Using a reliable, first-principles ther-

modynamics methodology on a selection of 365 novel compositions, we predict 131 novel

quaternary compounds to be stable which is already larger in number than those reported

extensively for ternary systems (82). Thermoelectric performance of the state-of-the-art

ternary half-Heusler compounds are limited by their intrinsically high lattice thermal

conductivity (κL). In comparison to ternary half-Heuslers, thermal transport in double

half-Heuslers is dominated by low frequency phonon modes with smaller group velocities

and limited by disorder scattering. The double half-Heusler composition Ti2FeNiSb2 was
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synthesized and confirmed to have a significantly lower lattice thermal conductivity (fac-

tor of 3 at room temperature) than TiCoSb, thereby providing a better starting point for

thermoelectric efficiency optimization. We demonstrate a dependable strategy to assist

the search for low thermal conductivity half-Heuslers and point towards a huge compo-

sition space for implementing it. Our findings can be extended for systematic discovery

of other large families of multi-component intermetallic semiconductors.

8.2 Context and Motivation

Half-Heusler compounds have attracted significant research attention for their thermo-

electric properties [152, 172, 173] in the past decade. Due to its diverse chemical space to

tune properties, multiple instances of high performance thermoelectrics (NbFeSb[147],

TaFeSb[7] and ZrCoBi[148] for p-type and TiNiSn [145, 146] for n-type transport) are

found within this family of compounds. The high performance in half-Heusler com-

pounds is primarily associated with their exceptional electrical transport properties.

[144] However, in comparison to some of the best themoelectric materials based on IV-

VI compounds [174, 175], ternary half-Heusler compounds are at a disadvantage due

to their intrinsically large lattice thermal conductivity (κL). ZrCoBi, for example,[148]

has one of the lowest reported κL = 10 W/m-K among the high performing half-Heusler

compounds (T = 300 K), whereas the state-of-the-art thermeoelectric material PbTe has

intrinsic lattice thermal conductivity of 2 W/m-K[176]. Thus, it is desirable to find a

strategy for discovering new semiconductors with the electronic properties of half-Heusler

compounds but with inherently lower κL.

In addition to the well-known dependence of κL on chemical composition through phonon

scattering [177, 73] and lattice softening mechanisms [148, 73], lattice thermal conduc-

tivity also depends on the primitive unit cell size.[178] For two materials with comparable

bulk properties, such as Debye temperature, average mass per unit cell, specific heat ca-
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Figure 8.1: Visual illustration of the concept of double half-Heuslers. (a) Color scheme in the
periodic table representing elements occupying various sites (X (violet), Y (red) and Z (green)) of
the cubic half-Heusler structure (in panel b). Quaternary half-Heusler compositions selected in
the present work are based on elements given in bold font. (b) The double half-Heusler structure
(disordered) with the general formulaX2Y

′Y ′′Z2 has equal occupancy on the Y -site (in half orange/
half magenta) such that the overall composition is valence balanced (net valence NV = 0). (c)
Example pseudoternary TiFexCoyNi1−x−ySb based on aliovalent substitution on the atomic Y -
site. Double half-Heusler Ti2FeNiSb2 (purple square) and the alloy compositions joining it to
TiCoSb (blue square) are valence balanced (NV = 0). Adjacent compositions based on Fe (orange)
and Ni (cyan) substitutions represent p and n-type compositions respectively. Nominally NV 6=
0 compositions (red/ white squares) are examples of ternary defective half-Heuslers which are
unstable without defects (TiFe1.5Sb[11] and Ti0.75+δNiSb[12]). These NV 6= 0 compositions will be
referred to as the ternary components of the double half-Heusler composition.
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pacity and Gruniesen parameter, the magnitude of lattice thermal conductivities (κL)

depends primarily on the number of atoms in the primitive unit cell (N ). [178] Complex

materials with larger N have smaller κL due to a relatively small fraction of high group

velocity (vg) acoustic modes compared to lower vg optical modes. Well-known examples

of low κL materials with a large N are La2Mo2O9 (N = 624, κL = 0.7 W/ m-K)[179] and

Yb14AlSb11 (N = 104, κL = 0.6 W/ m-K)[180].[178] For ternary half-Heuslers however, N

= 3 indicates the huge potential for low thermal conductivity materials discovery if the

effective N of the could be increased systematically.

A well-known family of compounds with varying cell-sizes comprises those based on

the Pervoskite structure.[181] The high symmetry structures of the ternary Perovskites

(ABO3, example cubic BaTiO3) haveN = 5 while quaternary double Perovskites (A2B
′B′′O6,

example cubic Sr2FeMoO6 (N = 10), monoclinic La2CuSnO6[182] (N = 40)) have N ≥ 10

when ordered. Double Perovskites have a number of advantages over simple Perovskites

in tuning their functionalities for solar cell applications, magnetoresistive properties,

etc.[181, 183, 184, 185] With the additional possibilities of a new element, the number of

double Perovskites is also several times larger than simple Perovskite compounds.[181,

183]

Like Perovskites, half-Heuslers can be made from a variety of elements with each site

occupied by elements in different regions of the periodic table (see Figure 8.1 a). The

possible ternary half-Heusler compositions (nominally XY Z) based on these elements

can be chosen by assigning a valence to each element in the compound and imposing

the valence balanced rule (a generalization of the well-known 18 electron rule for half-

Heuslers),[10] according to which the net valence (NV) of the three components add up to

0 for most stable compounds (e.g. NV of TiCoSb = 4 (Ti+4 s0d0) - 1 (Co−1 d10) - 3 (Sb−3 s2p6)

= 0). While quaternary compositions of the half-Heusler phases are studied routinely,

these are almost always based on isovalent substitution between ternary systems with

no unique valence balanced composition (example Ti0.5Zr0.5NiSn and Ti0.2Zr0.8NiSn) and
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hence do not favor the formation of ordered compounds like the double perovskites.[186]

As a result, these alloy compositions often form disordered solutions which are stabi-

lized by temperature. Aliovalent substitution, however, can give rise to a unique va-

lence balanced composition (for example Fe and Ni substitution on the atomic Y -site

in Ti2FeNiSb2, see Figure 8.1 c) which is also characteristic of the compound forming

18-electron ternary half-Heuslers.[10] Hence, just like ternary half-Heuslers,[6] one can

expect ordered ground states at these unique compositions to form stable compounds.

Inspired by double Perovskites, in which the ‘double’ could refer to doubling of the Per-

ovskite formula unit (A2B
′B′′O6 versus ABO3), we define double half-Heuslers (see Figure

8.1 c) as stable quaternary compounds based on aliovalent substitution (X2Y
′Y ′′Z2 versus

XY Z where Y ′ and Y ′′ are not isovalent). To distinguish these compounds from the other

isovalently alloyed quaternary compositions (example Ti0.5Zr0.5NiSn), we call these alio-

valently substituted compounds (example Ti2FeNiSb2) as double half-Heuslers regardless

of whether they undergo an order-disorder transition at a higher temperature. Although

the disordered phase may have a distinct and possibly stronger scattering mechanism

for phonons, the double half-Heusler composition ensures that for κL, the effective N >

3.

The quaternary compositions of the double half-Heusler systems could present a much

larger phase space for materials discovery in comparison to the ternary compositions.

As we demonstrate here, there are a very large number of predicted stable double half-

Heuslers awaiting experimental discovery. In addition to their applications as ther-

moelectrics, double half-Heuslers could also find use in transparent conducting thin-

films (e.g. TaIrGe [187]), topological semi-metals (e.g. HfIrAs [6]), and spintronics (e.g.

V0.8+δCoSb [168, 12]) for which the ternary half-Heuslers are already being studied.[141]
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8.3 Results and Discussion

8.3.1 Locating double half-Heuslers in a pseudoternary phase space

Consider the example of the pseudoternary TiFexCoyNi1−x−ySb (see Figure 8.1 c), which

allows for the aliovalent substitution of Fe, Co, and Ni atoms on the atomic Y−site (see

Figure 8.1 a). The end-members, namely TiFeSb, TiCoSb, and TiNiSb all have different

net valence (NV = -1, 0 and 1). In such a compositional phase space the valence bal-

anced end-members (like TiCoSb in Figure 8.1 c) are candidates to form half-Heusler

phases and have been studied rigorously (see Figure 8.2) either as experimental reports

[6, 167, 173, 7] or as first-principles thermodynamic predictions [6, 188, 167, 173, 7].

Systems of the non-valence balanced end-members (TiFeSb and TiNiSb in Figure 8.1 c)

on the other hand, were not expected to form in the Heusler phase due to a perceived elec-

tronic configuration unfavorable for strong bonding interactions.[141] However, the two

NV 6= 0 systems shown (Ti-Fe-Sb and Ti-Ni-Sb) were recently reported to form half-Heusler

phases at alternate defective stoichiometries (TiFe1.5Sb and Ti0.75+δNiSb respectively) to

attain a more stable electronic configuration.[11, 10, 12] Since these discoveries nomi-

nally NV 6= 0 compounds have attracted some attention as ternary defective half-Heuslers

(see Figure 8.1 c and Figure 8.2). [1, 87, 10, 12, 85] Possibly due to only one ‘likely’

(NV = 0) half-Heusler candidate among the three end-members of such pseudoternaries,

a large compositional space in the middle has seldom been investigated previously. How-

ever, the ‘double’ half-Heusler composition such as Ti2FeNiSb2 (4 (Ti+4 s0d0) - 1 (0.5 Fe−2

d10) - 0 (0.5 Ni0 d10) - 3 (Sb−3 s2p6) = 0), and the alloy compositions connecting it to TiCoSb

are also valence balanced with semiconducting p- and n-type transport achievable at ad-

jacent compositions (see Figure 8.1 c and transport properties in [13]). In the present

work, we will refer to the nominally NV 6= 0 systems such as TiNiSb and TiFeSb as the

two ternary components of the quaternary double half-Heusler compound, Ti2FeNiSb2.
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Figure 8.2: The quaternary half-Heusler composition space is almost completely unexplored.
Bar chart depicting the current status of exploration in possible ternary half-Heusler systems as
opposed to quaternary systems. Compositions were obtained by imposing the valence balanced
rule on the elemental combinations provided in figure 8.1 a. The dark blue color gives a conser-
vative estimate of the fraction of explored compositions. The quaternary phase space is almost
completely unexplored.

8.3.2 Enormous compositional phase space of quaternary double, triple

and quadruple half-Heuslers.

Similar to Ti2FeNiSb2, possible double half-Heusler compositions based on equal oc-

cupancies on the X− (e.g. ScVCo2Sb2) and Z−site (e.g. Ti2Ni2InSb) are also possi-

ble. Furthermore, there are additional ‘triple’ (e.g. Nb2MgCo3Sb3) and ‘quadruple’ (e.g.

Nb3LiCo4Sb4) half-Heusler compositions, as well, which obey the valence balanced rule

(NV = 0). We applied the valence balanced rule to elemental combinations from Fig-

ure 8.1 a to estimate the number of possible defect free ternary half-Heuslers, defective

ternary half-Heuslers and quaternary half-Heuslers (see Figure 8.2). We use a valence of

+1 for Li, +2 for group-II elements, +3 for group-III elements and rare-earth Lanthanides,

+4 for group-IV elements, Cr and Actinides, -2 for group-VIII elements, -1 for group-IX

elements, 0 for group-X elements, +1 for group-XI elements, +2 for group-XII elements,
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-5 for Al, Ga, In, -4 for Si, Ge, Sn, Pb, -3 for As, Sb, Bi. The number of ternary defective

compositions are counted by the nominally NV 6= 0 combinations based on the elements

in the Figure 8.1 a.

Furthermore, we also estimate the number of compositions explored previously in these

categories (see Figure 8.2). For this, we consider all compositions which either (i) have

been reported in experimental studies to form a stable phase (not necessarily in half-

Heusler half-Heusler structure) or (ii) accessed computationally for thermodynamic sta-

bility (including compositions predicted to phase separate or crystallize in structures

other than half-Heusler). We count all the cases contained in the inorganic crystal struc-

ture database (ICSD) [5] and those examined through rigorous high-throughput compu-

tations [6, 167, 7, 173]. We note that experimental studies reporting phase separating

compositions are hard to find in the literature and are not contained in any databases

such as the ICSD. Hence, our count of explored ternary and quaternary compositions

can be considered as a conservative estimate of the explored composition space given in

8.2.

We find a huge phase space of 7719 possible quaternary half-Heusler compositions (see

Figure 8.2). This number is over 10 times larger than that of the defect-free ternary sys-

tems (715 possible composition) based on the same set of elements. We estimate the frac-

tion of explored compositions (see Experimental Procedure section) for defect-free ternary

systems is ∼ 64% (see Figure 8.2). In stark contrast, only 0.07 % of the possible qua-

ternary half-Heusler compositions have been explored with 4 reports (Ti2FeNiSb2[189],

ScNbNi2Sn2, Zr2Ni2InSb, and Hf2Ni2InSb[190]) of the half-Heusler phase in past exper-

iments. There are no past reports — measurements or calculations — of thermal con-

ductivity on such quaternary compositions in the literature.
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Figure 8.3: Predicted quaternary half-Heuslers and their stability (Estability). 351 quaternary
half-Heusler compositions (divided between 5 sub-types) investigated in the present work for sta-
bility in the half-Heusler structure. Half-Heuslers predicted stable are represented by a plus (+)
symbol. For compounds where the half-Heusler phase is predicted unstable, the space is left
blank. The greyscale bar on the side gives the magnitude of predicted stability (Estability, data
provided in Ref. [13]) of the quaternary half-Heuslers. Predicted compounds for which only one
of the ternary NV 6= 0 component have a half-Heusler phase reported experimentally are de-
noted by thin circles. Predicted compounds for which both the ternary NV 6= 0 components have
a half-Heusler phase reported experimentally are denoted by thick circles. Previously reported
quaternary half-Heuslers are denoted by boxes.
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8.3.3 Stability prediction for selected double, triple and quadruple half-

Heuslers.

We select 369 quaternary half-Heusler (315 double half-Heusler, 36 triple half-Heusler

and 18 quadruple half-Heusler) compositions to perform high-throughput calculation

for examining the thermodynamic stability using convex-hull analysis (see Figure 8.3)

within the Open QuantumMaterials Database (OQMD).[8, 9] In the present work we avoid

Ge, As, Pb and Si based compounds which have relatively fewer reports of ternary half-

Heuslers [6, 167]. The chosen compositions (given in Figure 8.3) are based on a subset

of elements (given in bold font in Figure 8.1 a) well-known to form ternary half-Heusler

compounds.

The 315 double half-Heusler compositions studied here are divided into three classes (126

X ′X ′′Y2Z2, 81X2Y
′Y ′′Z2 and 108X2Y2Z

′Z ′′ compositions) based on the site of substitution

in the XY Z structure (see Figure 8.1 a). Our calculations are in agreement with past ex-

perimental reports of the half-Heusler phase in Ti2FeNiSb2,[189] ScNbNi2Sn2, Zr2Ni2InSb,

and Hf2Ni2InSb [190]. We predict 48X ′X ′′Y2Z2, 36X2Y
′Y ′′Z2 and 27X2Y2Z

′Z ′′ new double

half-Heusler compounds (see plus symbols in Figure 8.3), suggesting that substitution

on either of the three atomic sites are quite favorable. Out of the 36 possible triple half-

Heusler (X ′2X ′′Y3Z3) and quadruple half-Heusler (X ′3X ′′Y4Z4) compositions combined, we

predict 13 and 7 new compounds, respectively of each sub-type (see Figure 8.3). Similar

to ternary half-Heusler compounds, Sb-based compositions have the largest fraction of

predicted stable compounds, followed by Sn- and then Bi-based compounds. This trend

in stability of the semiconducting half-Heusler phases can be associated with the require-

ment of large size[167] and large electronegativity for the Z-site atom. Although we do

not calculate As and Ge-based double half-Heuslers here, based on stability calculations

(see Figure 6.8 and Figure 6.9) and their relatively lesser previous reports (list provided

in Ref. [13]) of ternary half-Heuslers, we expect them to be relatively rarer.
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8.3.4 Guidelines for laboratory discovery

Going through the list of 132 predicted new compounds using experimental synthesis

can be quite daunting. To guide experimental efforts in initial choice of more likely com-

positions for laboratory discovery, we arrange (see color bar in Figure 8.3) the compounds

according to their predicted stability (Estability). Compounds represented with darker plus

symbols in Figure 8.3 are predicted to be more stable relative to decomposition into

competing phases. The Estability, formation energy (∆Hf ) and band-gap of the compounds

predicted to be stable are provided in Ref. [13] in descending order of predicted stability

(Estabilit).

We also use past experimental reports of the half-Heusler phase in ternary systems to

categorize the predicted quaternary half-Heuslers by their likelihood to form compounds.

The predicted quaternary half-Heuslers are based on aliovalent substitution in two nom-

inally NV 6= 0 ternary XYZ structures (for example TiFeSb and TiNiSb for Ti2FeNiSb2, see

Figure 8.1 c). As a result, the stability of quaternary half-Heuslers must be correlated to

the stability of its ternary NV 6= 0 components which are investigated to a relatively larger

extent (see ternary defective bar in Figure 8.2). Based on this rationale, the likelihood of

predicted quaternary half-Heusler phase to stabilize increases depending on whether one

(see thin circles in Figure 8.3, for example Ti2Ni2InSb) or both (see thick circles in Figure

8.3, for example MgTiNi2Sb2) of its ternary NV 6= 0 components have a half-Heusler phase

previously reported for them. We caution that this classification based on past experi-

mental reports may not be complete simply because a large fraction of ternary nominally

NV 6= 0 systems are still unexplored (see Figure 8.2).

8.3.5 Discovery of low κL quaternary half-Heuslers

We compare measured κL of double half-Heusler Ti2FeNiSb2 to that of its corresponding

ternary system TiCoSb with the same average atomic mass. At room temperature, κL of
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Figure 8.4: Lattice thermal conductivity comparison of double half-Heusler and correspond-
ing ternary half-Heusler. (a) Calculated (line) and measured (scatter points) lattice thermal
conductivity (κL) of TiCoSb (cyan) and Ti2FeNiSb2 (magenta) as a function of temperature. Ex-
perimental values of TiCoSb are taken from Sekimoto et al. [14]. Calculated phonon frequency
dependence of (b) cumulative κL, (c) group velocities (vg), and (d) phonon-phonon scattering rates
in the two compounds at T = 300 K. (e) Calculated κL versus Gruniesen parameter (γ) for selected
half-Heusler (triangle) and double half-Heusler (square) compounds based on commonly used
elements. The regions are shaded based on a γ−2 dependence of κL.
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Ti2FeNiSb2 is smaller than TiCoSb by a factor of 3 (see Figure 8.4 a). To examine the

origin of the smaller κL in Ti2FeNiSb2 we calculate the lattice thermal conductivity of its

ordered ground state from first-principles considering only three-phonon processes (see

Figure 8.4 a). The calculated κL is very similar to the measured values, especially at

higher temperatures.

Calculated cumulative κL in TiCoSb and Ti2FeNiSb2 as a function of frequency (see Fig-

ure 8.4 b) suggests that over 90 % of the thermal transport in both compounds occurs

in phonon modes corresponding to the acoustic modes of the ternary structure. The

difference in the κL between the two compounds occurs primarily in the high energy

range (7-20 meV, see shaded grey region in Figure 8.4 b) corresponding to the acoustic

modes of TiCoSb. Both compounds largely show a similar dependence of group velocity

(vg) as well as scattering rates on phonon frequencies (see Figure 8.4). However, the

group velocity (vg) of phonons in Ti2FeNiSb2 is in general much lower than that of the

corresponding longitudinal and transverse acoustic modes of TiCoSb (see Figure 8.4 c).

As can been understood from simple ball-spring models for cell-doubling,[178] the dif-

ference in vg becomes more prominent in the higher frequency range (10-20 meV) of the

acoustic modes in TiCoSb (see Figure 8.4 c). The phonon scattering rates of the double

half-Heusler Ti2FeNiSb2 structure are also slightly larger in the 7-12 meV frequency range

(see Figure 8.4 d). The trend of lower κL for double half-Heuslers compared to ternary

half-Heuslers is reproduced in a survey of 35 compounds (see Figure 8.4 e) calculated

in a similar way. This confirms our expectation that double half-Heusler with the more

complex crystal chemistry would in general have lower lattice thermal conductivities than

traditional ternary half-Heusler.

The weaker temperature dependence in the measured κL of Ti2FeNiSb2 in comparison to

the calculated values (see Figure 8.4 a) can possibly be attributed to the presence of alloy

scattering mechanism associated with disorder in the Fe/Ni sub-lattice. The disorder in

the system was confirmed by the powder XRD pattern of Ti2FeNiSb2 (see Figure 8.5) as
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no superlattice peaks associated with Fe/Ni ordering were observed. The alloy scattering

mechanism is not captured in our κL calculations which were performed on the ordered

Ti2FeNiSb2 structure assuming only Umpklapp scattering which has a relatively stronger

(T−1) temperature dependence when compared to the alloy scattering mechanism.
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Figure 8.5: Experimental verification of double half-Heusler compound Ti2FeNiSb2. Room
temperature powder XRD pattern (cyan) of Ti2FeNiSb2 annealed at 1073 K. Theoretical XRD pat-
tern for special quasi-random structure (SQS) of Ti2FeNiSb2 is given in black. Experiments were
performed by Dr. Max Wood from the Snyder group at Northwestern.

To understand the observed global cubic symmetry of the half-Heusler phase, we es-

timate the energy difference between the ordered and disordered phase by calculating

the energy of the special quasi-random structure of Ti2FeNiSb2. The disordered phase

of Ti2FeNiSb2 is only 23.6 meV/mixing-atom higher in energy than the ordered phase.

This difference in energy can be overcome by thermal energy alone at 275 K, thereby
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explaining the observed disordered Ti2FeNiSb2 phase. Recent reports of short range or-

dering observed in electron diffraction pattern of ternary defective half-Heuslers sug-

gests that short range ordering[85] could also exist in double-Half-Heusler compounds

and its impact on thermal conductivity should also be considered. It is important to

note that double half-Heuslers could be alloyed with the defective half-Heusler phases

(Ti0.75+δNiSb[12, 10] and TiFe1.5Sb[11]) of its ternary components to introduce vacancies

and interstitial defects which can be expected to decrease the thermal conductivity fur-

ther. While the alloy scattering mechanism of phonons are good for thermoelectric appli-

cations by reducing thermal conductivity, the same scattering mechanisms are also likely

to reduce charge carrier mobility and electrical conductivity possibly depending on site of

substitution.[191] The net benefit in thermoelectric performance would be characterized

by the ratio of lattice thermal conductivity to charge carrier mobility.[192]

8.3.6 Subtle differences distinguishing Double half-Heuslers from half-Heusler

compounds

In this work, we call the quaternary half-Heusler compound Ti2FeNiSb2 a double half-

Heusler compound despite the observed on the Y -site at the temperatures of interest.

Although one might choose to see it as an alloy ‘solid solution’ due to the disordering, the

double half-Heusler nomenclature here is deliberate due to subtle differences with re-

spect to commonly studied half-Heusler solid-solutions resulting from isovalent alloying.

The stability in the Ti2FeNiSb2 composition, unlike the isovalently alloyed Ti0.5Zr0.5NiSn

composition, lies in the ordering tendency on the Fe/Ni sub-lattice. This leads to a phase

diagram for the double half-Heusler phase which is fundamentally different from that of

the isovalently alloyed solid solution (see Figure 8.6). While the single phase region of

the latter evolves in the pseudobinary phase diagram evolves from the end-member com-

positions, the double half-Heusler single phase evolves from the middle composition (see

Figure 8.6). Due to these differences, we choose think of high temperature Ti2FeNiSb2
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as a ‘disordered compound’ instead of an alloy between two end-members. Given that

the double half-Heusler composition space is almost entirely unexplored (see Figure 8.2),

we believe that differentiating these compositions from isovalently alloyed half-Heusler

solid-solutions through use of appropriate nomenclature is very important.
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Figure 8.6: Schematic distinguishing key differences between the temperature-dependent
phase diagram of the half-Heusler and the double half-Heusler phases.

8.3.7 Potential for exploration of low cost thermoelectrics in quaternary

half-Heusler phase space

While other quaternary compounds can be investigated for thermodynamic stability,

the current prediction of 131 new compounds is already greater than the 82[6, 167,

173, 7, 5] (lists provided in Ref. [13]) extensively predicted /reported transition metal

based ternary defect-free half-Heusler phases. This result suggests that, despite a hun-

dred years of Heusler history, only a small fraction of half-Heuslers have been investi-

gated previously. Among the new compounds predicted here, 32 are based on relatively

abundant or inexpensive elements (namely Li, Mg, Y, Ti, Zr, Hf, V, Nb, Ta, Fe, Ni, Co,

Al, Ga, In, Sn, Sb and Bi, list provided in Ref. [13]) commonly used for synthesis of

half-Heusler compounds, and serve as an immediate prediction for experimental syn-
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thesis. Given the intrinsically smaller κL of quaternary half-Heusler compounds (see

Figure 8.4 e) due to its complex crystal chemistry, they present a new avenue for ther-

moelectric materials discovery. The present work only deals with quaternary equiva-

lents of transition metal based half-Heusler compounds with 18-valence electrons. The

concepts discussed here are easily applicable to other multi-component Heusler based

structures[193] such as 8-electron Nowotnye-Juza phases (for example LiAlSi)[153, 194],

f-block element based half-Heuslers (for example DyNiBi) [195], 24-electron full-Heuslers

(for example VFe2Al)[141, 196, 197], and Li-based 18-electron Heuslers [198] opening up

the possibility for an even larger phase space of materials with versatile properties.

8.4 Conclusion

We demonstrate that the number of known half-Heusler based semiconductors, despite

its hundred years of history, may only be a fraction of the actual number of stable com-

pounds. The previously unexplored semiconductor compositions can be conceived by

choosing aliovalently substituted combinations which are valence balanced and predicted

systematically using first-principles thermodynamics of stability. From this strategy we

discover quaternary (double, triple and quadruple) half-Heusler compounds with ther-

mal conductivities intrinsically lower than traditional ternary half-Heuslers owing to their

complex crystal chemistry. As a result, we significantly advance the decade long search

for low thermal conductivity half-Heuslers without tampering with its underlying tran-

sition metal chemistry which forms the basis of their exciting properties suitable for

thermoelectrics, spintronics, topological band structures and transparent conducting

thin-films.
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Chapter 9

24-electron Full-Heulser VFe2Al, Semi-metal or

Semiconductor?

9.1 Overview

There is renewed interest in the full-Heusler VFe2Al composition for its exceptional ther-

moelectric power factors in bulk and thin film phase. Despite the technological impor-

tance of its electrical properties, the electronic structure of bulk VFe2Al is poorly under-

stood, with conflicting experimental as well as computational reports of band-gap (Eg)

in over two decades of literature. Hence, there is no general consensus on the Eg of

VFe2Al and the observed properties are sometimes erroneously ascribed to exotic phe-

nomena due to poor understanding of the electronic structure. In this study, using the

VFe2Al example, we show that thermoelectric transport properties — electrical resistivity

and Seebeck coefficients — can be used to determine Eg self-consistently. Our two-band

model, which explains the compilation of data from a variety of n and p-type VFe2Al com-

positions, demonstrates that its electronic properties can be explained as a valence bal-

anced semiconductor with a very small band-gap (Eg = 0.03 +/- 0.01 eV). In this small

Eg semiconductor understanding, the model suggests that nominally undoped VFe2Al

samples appear metallic because of intrinsic defect concnetrations on the order of ∼1020
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defects/cm−3.

Commonly used experimental techniques to investigate Eg can be sensitive to the size

of the band-gap, electronic structure features (direct versus indirect gap) and also the

number of intrinsic charge carriers, which can frequently depend on synthesis condi-

tions. Since Eg obtained from transport property modelling is essentially independent

of all such factors, it can be used as a more robust approach for band-gap estimation.

This conceptual insight highlights the importance of using transport property analysis

directly for understanding electronic structure when conventional methods for measuring

Eg yield results which are conflicting with the observed properties.

The electrical transport analysis reveals that the electronic mobility in the compound

is dependent on the doping site. To understand these trends in the observed electrical

transport and the electronic structure in the context of its local bonding, we construct a

molecular orbital (MO) picture of VFe2Al. For this, we perform a k-resolved Crystal Or-

bital Hamiltonian Population (COHP) analysis in which the most relevant interactions are

selected based on orbital projected partial density of states contributions. The resulting

MO diagram, rooted in this rigorous quantitative analysis, is notably different than the

previous ones presented for a valence balanced interpretation of VFe2Al.

9.2 Context and Motivation

The thermoelectric properties of the full-Heusler alloy composition of VFe2Al have been

studied extensively [21]. The compound is based on non-toxic, inexpensive and earth

abundant elements, making it ideal for mass-produced, consumer products for waste

heat recovery or refrigeration if sufficient thermoelectric efficiency can be achieved. The

thermoelectric power factor of n-type bulk VFe2Al[21, 18] exceeds that of commercially

available n-type Bi2Te3 [199] at room temperature. Recently, remarkable thermoelectric

properties were reported in films having the full-Heusler alloy composition of VFe2Al, but
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with a metastable body centered cubic structure.[200] The high thermoelectric power

factor and low thermal conductivity reported in the films [200] warrant a closer look at

the transport properties of the bulk full-Heusler material, which has already been studied

extensively, for a better understanding of the unique chemistry of this composition.

Many full-Heusler compounds such as VFe2Al appear to be stable with 24 valence electrons[141]

per formula-unit, which suggests a possible molecular orbital explanation for the elec-

tronic structure and stability near a semiconducting composition as commonly found in

Zintl phases [178] and half-Heusler thermoelectrics [152]. Nevertheless, in a majority

of studies bulk VFe2Al has been interpreted as an indirect semimetal (see Figure 9.1)

with a pseudogap,[201, 202, 141, 21] due to early photoemission[203], NMR[204] and

computational[205, 206, 207] studies describing it as a semimetal.

However, some properties of bulk VFe2Al are more consistent with a semiconductor (see

Figure 9.1) rather than a semimetal description [208]. For example, the nominally sto-

ichiometric compound shows a decreasing electrical resistivity with increasing temper-

ature, which is consistent with a semiconductor description[203]. The discrepancy be-

tween observed transport and semimetallic understanding of VFe2Al has occasionally

been rationalized using possible exotic phenomena such as 3d heavy fermion behavior[203,

207]. However, subsequent heat capacity measurements do not appear to corroborate

this behavior[209]. As a result, there is no general consensus on the band-gap and the

observed transport properties in bulk VFe2Al is poorly understood.

Here we review the thermoelectric properties of a variety of n and p-type VFe2Al sam-

ples presented in the literature. We show that the experimental Seebeck coefficient,

electrical resistivity and thermal conductivity as a function of temperature and doping

is consistent with an interpretation of VFe2Al as a small band-gap semiconductor with

Eg ≈ 0.03± 0.01 eV rather than a semimetal. We attribute the past semimetalic interpre-

tation of experimental data to the large concentration of intrinsic defects in the material

which are present even in undoped VFe2Al. This interpretation enables a modeling of the
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Figure 9.1: Schematic demonstrating difference between electronic structure of indirect
semimetals and semiconductors.

thermoelectric performance, including a prediction of maximum zT as well as engineer-

ing strategies for improving the thermoelectric properties that should be applicable to

both bulk and thin film materials.

9.3 Band-gap Estimation

9.3.1 Weighted Mobility and Seebeck Mass

The trends in Seebeck coefficient S and electrical conductivity σ for VFe2Al with tem-

perature and doping are generally that expected from a small band gap semiconductor.

With sufficient doping, the electrical properties are determined by one band, either the

conduction or valence band. The weighted mobility (µw) of charge carriers in the domi-

nant band can be determined from the variation of |S| with σ [210, 28] (see Section 2.4).

Figure 9.2a,b shows that µw for both electrons and holes is in the range from 250-700

cm2V−1s−1, which is comparable to the best thermoelectric materials, Bi2Te3 based alloys

[199].

The Seebeck mass (m∗s), is determined from the dependence of Seebeck on carrier concen-

tration ( Figure 9.2c,d, Section2.4). Since Hall carrier concentration can be affected by
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Figure 9.2: Modelling valence and conduction band transport of VFe2Al separately using
single parabolic band modelling. Variation of thermopower (|S|) in VFe2Al with different type
and concentration of doping[15, 16, 17, 18, 19, 20, 21, 22] at room temperature. (a,b) plot of
log|S|-log|σ| which gives the weighted mobility (µw) with n-type (a) and p-type (b) dopants. For
both cases, the solid curves represent the prediction corresponding to constant values of µw. (c,d)
Themopower versus carrier concentration (n) plot to determine the effective mass (m∗s) of n-type (c)
and p-type (d) VFe2Al samples (scatter points). The solid curves show the prediction for a constant
m∗ which fit reasonably well across the entire range of n.

magnetic impurities and is often not reported, we used the chemical carrier concentration

(n) calculated from the nominal valence electron concentration that includes dopants in

the samples.

The conduction band appears to be heavier with values of m∗s = 13me than the valence
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bands m∗s = 5me, where me is the mass of an electron (see Figure 9.2c,d). Such large

Seebeck mass values are typical of half-Heusler compounds[152, 147], and could indicate

multiple band effects particularly at higher carrier concentrations [211].

9.3.2 Temperature-Dependent Electrical Transport Analysis
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Figure 9.3: Estimating band-gap of VFe2Al from high temperature resistivity data. Arrhenius
plot for resistivity measurements of three undoped VFe2Al samples (filled circles) from previous
reports[15, 18, 22]. At high temperatures, slope of the solid lines correspond to a small band-gap
of Eg=0.03 eV.

The effect on transport properties (electrical resistivity, Seebeck, Hall effect, electronic

portion of thermal conductivity, etc.) due to having both electrons and holes (bipolar

effect) can be used to estimate the band gap (or negative band gap for a semimetal). Al-

though there is substantial variability in the reported samples and techniques to estimate
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band gap, the data, using three methods, are generally consistent with a positive band

gap in the range of 0.02eV to 0.04eV.

A classic method to estimate band gap of a semiconductor is to examine the temperature-

dependent resistivity in the intrinsic regime. An Arrhenius plot of the high tempera-

ture resistivity data from three, previous reports on undoped VFe2Al samples follows ρ ∝

exp
(

Eg
2kBT

)
suggesting Eg = 0.03 eV (see Figure 9.3). Fitting the data at lower tempera-

tures would give larger values for Eg, possibly explaining the value of 0.1 eV reported in

a previous temperature-dependent resistivity analysis.[203]

Another common method to estimate band gaps in thermoelectric materials is to use

the Goldsmid-Sharp method [212] which examines the peak in thermopower |S| as a

function of temperature (Figure 9.4) in a moderately doped semiconductor using Eg ≈

2e|Smax|Tmax. For an accurate estimate, the ratio of the weighted mobility of the conduc-

tion and valence band is needed [212], which have been estimated from the section above.

Once again, we see that a small positive band gap with Eg = 0.03 eV fits much better than

a large gap such as Eg = 0.15 eV or negative Eg = -0.1 eV (semimetal, see Figure 9.4).

9.3.3 Modelling Room Temperature Bipolar Transport

The bipolar effect is also noticeable at room temperature Seebeck data of lightly doped

VFeAl (see Figure 9.5). Using the µW and ms
∗ values attained for electron and hole con-

duction in the previous sections the Seebeck coefficient at any dopant concentration can

be modelled by constructing a two-band model. This two-band model will have 4 param-

eters: ms
∗ for valence band, ms

∗ for conduction band, the ratio of weighted mobility of

the two bands µW and the electronic band gap. The peaks in thermopower (|S|) values

observed on the p-type and n-type side (see Figure 9.5) depends on the band-gap and

the weighted mobility ratio. The band-gap determine the absolute magnitude of the peak

heights and the weighted mobility ratio determines the relative heights of the two peaks.
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Figure 9.4: Band-gap estimates from temperature-dependent Seebeck and resistivity data
for VFe2Al are consistent with each other. Temperature dependence of Seebeck coefficient for
VFe2Al sample (scatter points) doped with 10%Mo [20]. Solid lines represent predictions from two-
band acoustic phonon scattering models with Eg = 0.15 eV, 0.02 eV and -0.10 eV (semimetallic).
The weighted mobility (µw) values used in these models for majority and minority carriers were
440 cm2V−1s−1 and 480 cm2V−1s−1, respectively. Observed temperature dependence of Seebeck
coefficients for VFe2Al can be best understood from a small gap semiconductor description of the
compound.

The room temperature Seebeck data from a variety of compositions reported in the liter-

ature appears to peak around ∼ -140 µ V K−1 for n-type and ∼ +70 µ V K−1 for p-type,

which fits Eg=0.02 eV in the two-band model well (see Figure 9.5). Increasing Eg above

∼0.1 eV gives a very poor fit (see Figure 9.5). For example, a band-gap of 0.15 eV predicts

maximum Seebeck values exceeding 200 µV/K, which is much larger than any observed
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Figure 9.5: Seebeck coefficient is extremely sensitive to size of the electronic gap making
it very useful for Eg estimation. Seebeck versus carrier concentration (n) plot of n- and p-
type VFe2Al samples (scatter points) for the entire range of carrier concentration reported in the
literature[15, 16, 17, 18, 19, 20, 21, 22]. The solid curves represent two-band acoustic phonon
scattering model predictions for band-gap Eg=0.15 eV, 0.02 eV and -0.10 eV (semimetallic). In
these models, weighted mobility values of 700 cm2V−1s−1 and 300 cm2V−1s−1 were chosen for
conduction band and valence band transport respectively. Observed Seebeck values for VFe2Al
can be best understood from a small gap semiconductor description of the compound.

value. Similarly, modelling the material as a semimetal with Eg= -0.1 eV predicts See-

beck values smaller than 50 µV/K over the entire doping range. The two-band model

uses µw values of 700 cm2 V−1 s−1 for electrons and 300 cm2 V−1 s−1 for holes based on

the analysis of heavily doped materials above. The large ratio of µw values (> 2) leads to

the asymmetry in peak Seebeck values observed.

In early experimental reports, VFe2Al has often been described as semimetal based on

the observation of a measurable density of states at the Fermi-level.[203] Undoped VFe2Al
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typically shows a low, metal-like Seebeck coefficient of ≥25 µV/K[21, 202, 15, 19, 17, 20,

18, 16, 213, 22] and carrier concentrations of the order of ∼1020 cm−3.[201] These find-

ings are actually also consistent with the small gap semiconductor understanding if large

intrinsic defect concentrations are considered. Half-Heusler compounds are well-known

to accommodate large amounts of intrinsic defects in the cubic structure,[13, 85, 4, 10,

12, 87, 1] so a defect concentration of ∼1020 cm−3 in VFe2Al is quite plausible especially

considering V and Fe have similar chemistry but different number of valence electrons.

Using a p-type carrier concentration of 1020 cm−3, and the valence band parameters de-

rived above would correspond to a Fermi-level which lies ∼0.02 eV inside the valence

band indicating that nominally stoichiometric VFe2Al is degenerately doped due to pres-

ence of intrinsic defects. Although the small Seebeck coefficient of undoped VFe2Al at

room temperature might appear metal-like, we note that it is caused instead by a bipolar

transport regime (see Figure 9.5) due to a very small band-gap. Some works suggest that

the small Eg, which is consistent with transport properties of the material, could also

result from presence of defects at elevated temperatures.[71]

9.4 Electronic Structure and Molecular Orbital Picture

Depending on the level of theory used in the first-principles calculations, both semimetal-

lic and semiconducting electronic structures have been reported[205, 206, 207, 214, 215,

211, 216, 217, 49, 218] for VFe2Al in the full-Heusler structure. In calculations showing

the semimetallic bandstructure of VFe2Al the hole and electron pockets lie in separate

high symmetry points (namely Γ and X respectively). The valence bands at Γ and the

conduction band at X do not overlap in k-space but have the same energy over a 0.1 eV

energy range so that the electronic structure can be described as a simple semimetal with

negative band gap, Eg ∼ −0.1eV. In the case of semiconductor band structure reports,

the bands look essentially the same with true valence bands at Γ and a conduction band
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Figure 9.6: Atom resolved electronic band structure and density of states for VFe2Al.

at X but with predicted indirect band-gap (Eg) values > 0.2 eV. Occasionally, the Eg val-

ues have been rationalized [214] using experimentally reported ‘pseudogap’ [201, 204] in

the electronic structure. However, in these experimental works a semimetallic electronic

structure was still expected for VFe2Al and the ‘pseudogaps’ were not representative of

the indirect gap between X and Γ pockets.[201, 204]

We calculate the electronic band structure of VFe2Al using GGA+U calculations where the

Hubbard U is selected to give a small band-gap Eg = 0.03 eV (see Figure 9.6) since it is

most consistent with our transport property analysis above. The valence band maximum

(VBM) is triply degenerate at the Γ point with a significant Fe character. The conduction

band minimum (CBM), on the other hand, consists of a single band with V character at

X due to highly dispersive V states. The valence and conduction bands have the same

valley degeneracy of Nv = 3, since the single X-point pocket consists of 6 half-pockets in

the Brillouin zone of this cubic structure.
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The nature of the electronic bands can be rationalized using molecular orbital (MO) di-

agrams, which enables insight into the local bonding [152] and its effect on the valence

and conduction bands in VFe2Al. To construct the MO diagram (see Figure 9.11), we first

determine the orbital character of all states at the Γ point using orbital projected partial

density of states (pDOS) (see Figure 9.10). Subsequently, we perform and a k-resolved

Crystal Orbital Hamiltonian Population (COHP) analysis to investigate the nature[219]

(bonding versus anti-bonding) and strength of interaction between these orbitals. The

k-resolved COHP analysis will be performed on the Γ-point state of the electronic struc-

ture. In our analysis, we consider 4 conduction band states and 12 valence band states

each with an occupancy of 2. The valence bands chosen in our analysis contain all the

24 valence electron of the compound (8 × 2 from Fe, 5 from V and 3 from Al).

Since VFe2Al has 4 atoms in the primitive unit cell the COHP matrices are quite compli-

cated, with over 900 elements. The COHP matrix for each Γ-point state in the electronic

structure were plotted separately to simplify our analysis. The example Γ-point heat maps

for the first conduction band and the seventh valence bands are provided in the Figures

9.7 and 9.8 respectively. We note that, these matrices symmetric and so we are only

interested in unique elements in the lower triangle of the matrix (see Figures 9.7 and

9.8). Furthermore, for the sake of the MO diagram construction which requires analysis

of bonding interactions, we are only interested in off-site COHP terms. To easily locate

these terms we draw boxes across the diagonal of the heat map (see Figures 9.7 and

9.8). The off-site COHP terms can be found outside these boxes.

The COHP analysis of the first Γ-point conduction band (see Figure 9.7) clearly reveals

that the Fe1-Fe2 dz2 and dx2−y2 interaction is the only non-zero interaction. Since the the

first and second conduction bands are degenerate, this indicates that they are formed

by an eg-type interaction. Furthermore, the positive COHP value of this interaction indi-

cates that it is anti-bonding in nature. Unlike the example of the first conduction band,

the COHP analysis of the seventh Γ-point valence band (see Figure 9.7), suggests that
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Figure 9.7: Crystal Orbital Hamiltonian Population (COHP) heat map for the first Γ point
conduction band in the VFe2Al electronic structure. The off-site COHP terms which represent
interation between orbitals on two different sites can be found outside the 4 large boxes (in thick
black lines) drawn across the diagonal of the heat map. Negative and positive COHP values
indicate bonding and anti-bonding interactions respectively. COHP value of zero indicates the
absence of any interaction. Clearly, the Fe1-Fe2 eg interaction is the only relevant one for this
state.

multiple interactions (between Fe-Al, Fe1-Fe2 and V-Al) contribute to the formation of

the state. While all these interactions can in-principle be included in our molecular or-

bital analysis, we investigate the orbital-projected partial density-of-states of this state

(see Figure 9.9) to further simplify the resulting MO picture. We find that this triply de-
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Figure 9.8: Crystal Orbital Hamiltonian Population (COHP) heat map for the seventh Γ point
valence band in the VFe2Al electronic structure. The off-site COHP terms which represent in-
teration between orbitals on two different sites can be found outside the 4 large boxes (in thick
black lines) drawn across the diagonal of the heat map. Negative and positive COHP values indi-
cate bonding and anti-bonding interactions respectively. COHP value of zero indicates the absence
of any interaction. Since multiple interactions (between Fe-Al, Fe1-Fe2 and V-Al) appear to con-
tribute in the formation of this state, selecting the most relevant interaction additionally requires
analysing the orbital-projected partial density of states to identify the orbitals contributing the
most.

generate state is contributed predominantly by Fe t2g type orbitals. Hence we conclude

that the Fe1-Fe2 t2g interaction (which is a bonding interaction with a negative COHP

value) is the most relevant among all the interactions shown in Figure 9.8. We note here
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Figure 9.9: Partial density of states of orbitals involved in interactions with a large COHP
value can be negligibly small. Orbital projected partial density of states heat map for the seventh
Γ-point valence band.

that among all the interactions shown in Figure 9.8, Fe1-Fe2 t2g interaction is not the

strongest in magnitude. Instead the Al-Fe interactions have the largest magnitude of

COHP values and making conclusions regarding the most relevant interactions entirely

on the basis of the COHP magnitudes would have erroneously yielded Al p -Fe d as the

answer. This analysis suggests that studying bonding solely on the basis of COHP values

can be misleading.

We repeat the above analysis based on a pDOS + COHP approach for all Γ-point states

and the results are summarized in Figure 9.10. We find that, with the exception of
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Figure 9.10: Molecular orbital diagram construction requires both COHP and pDOS calcu-
lations. Orbital projected partial Density of States (pDOS) and k-resolved Crystal Orbital Hamil-
tonian Population (COHP) of Γ-point states of VFe2Al. The x-axis indicates the band index of the
Γ-point state. The indices of the valence (VB) and conduction bands (CB) are counted with re-
spect to the Fermi-level (Ef ). Degenerate bands are indexed together. The pDOS are determined
by adding contributions from s (blue bar), t2g-type (dxy, dyz, dzx red bars) and eg-type (dx2−y2 ,
dz2 , red bars) orbitals separately regardless of the atom type. pDOS value of 1 mean complete
contribution from a particular set. The COHP values were determined by averaging across all
inter-atomic interactions between orbitals of the same type (for example averaging between Fe dz2
- V dz2 and Fe dx2−y2 - V dx2−y2 COHP to obtain Fe-V eg COHP). Negative and positive COHP values
indicate bonding and anti-bonding interactions respectively. COHP value of zero indicates the
absence of any interaction. In general, interaction strength increases as t2g < eg < s.
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the lowest valence band Ag, the valence band states and lowest conduction band states

primarily arise from interactions between Fe and V d-states (see Figure 9.10). Since,

both Fe and V are surrounded by a tetrahedral environment, their d-orbitals split into t2g

(dxy,dyz and dzx) and eg (dz2 and dx2−y2 ) orbitals. The three sets of t2g from V and the two

Fe atoms interact to form three filled sets of t2g molecular orbitals in the valence band.

The three sets of eg orbitals interact more strongly than the t2g orbitals pushing two sets

above the Fermi-level and only one set lower in the valence band. The relative interaction

strength of t2g and eg orbitals can be seen from their magnitude of COHP values for the

conduction and valence band states (see Figure 9.10 and 9.11). Generally, the COHP

values for eg interactions are considerably larger than those due to t2g interactions. The

lowest valence band Ag in the molecular orbital diagram has a predominantly bonding

s-orbital type character with almost equal contributions from all atoms in the compound

(see Figure 9.10).[72] The COHP of the Ag largely reveals a very strong bonding interaction

between the s-orbitals, indicating that it originates from interactions between high energy

s-orbitals of the compound (see Figure 9.10 and 9.11).

In general, Al contribution to the valence band states is rather small. While the Ag and

the lowest t2g molecular orbitals (see Figure 9.9) show some Al contributions,[72] the

content of Al s and p-states are less than 25% and ∼5%, respectively. Among the three

elements, Al is the most electropositive (Pauling electronegativity of 1.61) and the small

Al content in the the valence bands indicates that the Al can be treated as a Al3+ cation

within a valence balanced description [10] of this semiconductor compound. With Fe as

the most electronegative element, we assign the Ag states and the filled eg states to Fe

giving each 9 electrons or a valence of Fe−1. V, on the other hand, only has its t2g states

filled totaling 6 electrons or V−1. Thus the 24 electron/formula unit compound can be

understood as valence balanced composition V−1Fe−12 Al+3.

The full-Heusler structure is very similar to that of half-Heusler compounds with just an

additional transition metal atom M’ occupying the vacant sub-lattice in the structure.
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The molecular orbital picture of full-Heusler semiconductor allows for comparison with

electronic structure of semiconductor half-Heusler compounds [220]. Similar to half-

Heusler compounds, states on either side of the Fermi-level (Ef ) in VFe2Al are formed from

transition metal d-states (see Figure 9.11). In particular, the Γ point states of the first

conduction and valence bands show d-orbital character from Fe atoms which constitute

the M’ sub-lattice. Removing the M’ atom from the structure would presumably decrease

the number of states close to the Ef and the d-d interaction between transition metal

atoms, thereby opening up the band-gap. From this understanding one can explain the

larger band-gaps gneerally observed in half-Heusler compounds when compared to full-

Heusler compounds such as VFe2Al and VFe2Ga. The impact of adding atoms in the M’

sub-lattice of the half-Heusler structure has been studied for TiNiSn. Ni solubility in

TiNiSn introduces mid-gap defect states which impact the thermoelectric properties of

the material significantly.[4] The main difference between half-Heusler and full-Heusler
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Figure 9.11: Molecular orbital diagram of VFe2Al. Schematic illustration of the molecular
orbital diagram in VFe2Al. The bonding (example eg) and anti-bonding (example eg∗) interactions
are concluded from partial density of states and k-resolved Crystal Orbital Hamilton Population
(COHP) analysis of states at the Γ point in the electronic structure (see example in Figure 9.9 and
Figure 9.8). States close to the Fermi-level (Ef ) predominantly show eg and t2g charater from V
and Fe atoms.
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semiconductors is the electronegativity of theX-atom. While Al is the most electropositive

atom in VFe2Al behaving as a +3 cation, in half-Heusler NbFeSb the Sb atom is the most

electronegative and acts as a -3 anion within the Zintl description of the compound.[10]

9.4.1 Rationalizing trends in weighted mobility with electronic structure

analysis

The reported electrical properties of different dopants in VFe2Al (see Figure 9.2 a and b)

give somewhat different values for µw, which could be due to differences in microstructure

or changes in the bulk electronic properties. Weighted mobility values are known to

be quite sensitive to grain boundaries and interfaces in materials with low dielectric

constant such as the half-Heusler, and can be greatly altered depending on the synthesis

conditions.[221, 139] Typically, samples with larger grain sizes tend to show larger µw.

We believe that the the variance in µw values of Si samples (400-650 cm2 V−1 s−1) could

be explained by such factors.

Changes to the bulk µw might be rationalized by considering the atomic contributions

to conducting states in the electronic structure. Adding defects to atomic sites that con-

tribute more to the conduction (valence) band are more likely to scatter electrons (holes)

and reduce the n-type (p-type) µw, as demonstrated in thermoelectric PbSe [191]. For

example, the higher µw = 480 cm2V−1s−1 for Ti doping on the V site when compared to

Re-doping on the Fe site (µw = 300 cm2V−1s−1, see Figure 9.2b) is expected because the

valence band maximum is dominated by Fe states rather than V states. We further expect

p-type samples with substitution on the Al site (e.g. Mg doping) to possibly show even

higher µw. To the best of our knowledge, this has not yet been investigated. Similarly, a

high µw for Si and Ge doped VFe2Al is expected because these dopants should substitute

on the Al site, which has little contribution to either conduction or valence band. Indeed

the µw for Si and Ge doped VFe2Al is generally higher than the µw for Mo and Co doping



186

(also n-type) where Mo and Co are expected to substitute on the Fe or V site. Mo and Co

doping could also change the localized spin state of the transition metals which could

lead to spin-disorder scattering of electrons that reduce µw [222].
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Appendix A

Derivation for Graphical solution of ∆Hdef

Consider the model binary compound ApBq with p + q atoms in its primitive cell. For

the sake of simplicity, we assume that ApBq is the only compound in the binary system

A − B. To re-write the expression for ∆Hdef given in 1.5, we assume that the defect is

being created in a supercell which is l times larger in volume than the primitive cell. Then

the formation energies (∆Hpristine
f ) of the pristine (defect-free) structure is given by

∆Hpristine
f =

Epristine − lp µA − lq µB
l(p+ q)

(A.0.1)

where Epristine is the total energy of the pristine structure. Similarly, the formation energy

on the defective structure ∆Hdefect
f is given by

∆Hdefect
f =

Edefect − lp µA − lq µB −
∑

∆Niµi
l(p+ q) +

∑
∆Ni

(A.0.2)

where Edefect is the total energy of the defective structure. For the sake of generality we

will write the chemical potential of the atomic species i as

µi = µoi + ∆µi (A.0.3)
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where µoi is the chemical potential of the elemental phase and ∆µi is the composition-

dependent change in chemical potential. We rearrange the equations A.0.1 and A.0.2 to

write down their total energies Epristine and Edefect in terms of the formation energies (∆Hf )

of the structures. We then substitute these expressions in equation 1.5 and simplify to

get a general expression for ∆Hdef

∆Hdef = (l(p+ q) +
∑

∆Ni)

(
[∆Hdefect

f −∆Hpristine
f ] +

(
∑

∆Ni)∆H
pristine
f

l(p+ q) +
∑

∆Ni

)
−
∑

∆Ni∆µi

(A.0.4)

We will further simplify this expression for interstitials anti-sites and vacancies on a

case-by-case basis

A.0.1 Frenkel and Schottky Defects

Consider the case of complex defects Schottky, Frenkel and anti-site swapping defects

— all examples of stoichiometric defects which do not change the overall composition

of the compound (
∑

∆Ni = 0) — in which case the term
∑

∆Ni∆µi in equation A.0.4 is

independent of choice of chemical conditions a constant (p+ q) ∆Hpristine
f . Following from

equation A.0.4 the expression for ∆Hdef becomes independent of chemical potential and

the defect energy for these complex defects takes a constant value.

A.0.2 Interstitial

Consider the case of A-interstitial defect in ApBq for which ∆NA = 1 and ∆NB = 0. For

the sake of simplicity let us assume that that ApBq is in equilibrium with the the element
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A such that for A−rich conditions ∆µA = 0. So Equation A.0.4 then becomes

∆Hdef = (l(p+ q) + 1)

(
[∆Hdefect

f −∆Hpristine
f ] +

∆Hpristine
f

l(p+ q) + 1

)
(A.0.5)

The factor l(p+ q) + 1 depends on the composition of the pristine and defective structures

and can be written as this factor as

f interstitialA = (l(p+ q) + 1) =
1− xpristineA

xdefectA − xpristineA

(A.0.6)

where xi is the percentage (for component i) composition of a particular structure. We call

this factor fki as the “projection factor", where k describes the type of defect in question.

So ∆Hdef becomes

∆Hdef = f interstitialA

(
[∆Hdefect −∆Hpristine] +

∆Hpristine

f interstitialA

)
(A.0.7)

The second term in the expression, to which the projection factor is multiplied is the

convex-hull distance (ECH ) of the defective structure. The convex-hull distance (see ex-

ample in Figure 1.1 c) is the vertical energy distance of a point from the convex-hull. So

the expression for ∆Hdef can be written succinctly as

∆Hdef = f interstitialA EinterstitialCH (A.0.8)

From the equation A.0.6 and A.0.8 it becomes clear that the factor f interstitialA ‘projects’

the convex-hull distance on to the A-component axis. The example (p = q = 1) of such a

graphical solution for ∆Hdef is shown in 3.1 a. However, the generality of our derivation

dictates that equation A.0.8 holds true even any case with p 6= q.

The graphical solution for ∆Hdef in A-poor conditions can be understood by going back to

equation 1.5. The difference in ∆Hdef between A-rich and A-poor equilibrium conditions
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is simply given by the change in chemical potential ∆µA between the two chemical condi-

tions. Graphically this is taken care of by choosing chemical potentials pertaining to the

A-poor equilibrium (see figure 3.1 a). Note that equation A.0.8 does not hold true only

for A-poor chemical conditions. To define ∆Hdef more generally regardless of chemical po-

tentials, we replace EinterstitialCH with ‘extended convex-hull distance’ (EinterstitialeCH ). We define

EinterstitialeCH as the vertical energy distance of the interstitial defective structure from the

line drawn to determine the chemical potential on the convex-hull plot. So for the A-poor

equilibrium EinterstitialeCH will be the energy distance of the interstitial defective structure

from the common tangent to the AB-B phase equilibria. The subtle difference between

EeCH and ECH is that EeCH is chemical-potential-dependent, whereas ECH is not. We

now re-write equation A.0.8 more generally as

∆Hdef = f interstitialA EinterstitialeCH (A.0.9)

A.0.3 Vacancy

For the case of A−vacancy defect ∆NA = −1 and ∆NB = 0. For A-rich conditions (assum-

ing ∆µA = 0) equation A.0.4 then becomes

∆Hdef = (l(p+ q)− 1)

(
[∆Hdefect

f −∆Hpristine
f ]−

∆Hpristine
f

l(p+ q)− 1

)
(A.0.10)

In this expression the projection factor can be written as

fvacancyA = (l(p+ q)− 1) = −
1− xpristineA

xdefectA − xpristineA

(A.0.11)

Notice the factor of -1 in front of the expression for fvacancyA making it slightly different

from f interstitialA . Graphically, this means that unlike f interstitialA , fvacancyA will flip the sign of
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the quantity projected onto the A-component axis. The simplified expression for ∆Hdef

then becomes

∆Hdef = fvacancyA

(
[∆Hdefect

f −∆Hpristine
f ]−

∆Hpristine
f

fvacancyA

)
(A.0.12)

Similar to the case of interstitial, the second term is the ECH of the vacancy defect struc-

ture (EinterstitialCH ) and ∆Hdef becomes

∆Hdef = fvacancyA EvacancyCH (A.0.13)

For our ∆Hdef derivation to hold regardless of choice of chemical potential we re-write

the expression in terms of EvacancyeCH

∆Hdef = fvacancyA EvacancyeCH (A.0.14)

A.0.4 Anti-site

For the case of AB anti-site defect ∆NA = 1 and ∆NB = −1. Assuming A-rich conditions

we get ∆µA = 0 and ∆µB = p+q
q Hpristine. After substituting in equation A.0.4 and simplifying

the expression

∆Hdef = lp

(
[∆Hdefect

f −∆Hpristine
f ] +

∆Hpristine
f

lq

)
+

lq

(
[∆Hdefect

f −∆Hpristine
f ] +

∆Hpristine
f

lq

)
(A.0.15)
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we proceed to identify the relevant projection factors as follows

f interstitialA = lq =
1− xpristineA

xdefectA − xpristineA

(A.0.16)

fvacancyB = lp = −
1− xpristineB

xdefectB − xpristineB

(A.0.17)

Using these expressions for f interstitialA and fvacancyB we can re-write ∆Hdef as

∆Hdef = fvacancyB

(
[∆Hdefect

f −∆Hpristine
f ] +

∆Hpristine
f

f interstitialA

)
+

f interstitialA

(
[∆Hdefect

f −∆Hpristine
f ] +

∆Hpristine
f

f interstitialA

)
(A.0.18)

rewriting ∆Hdef again in terms of convex-hull distance of defective structure (Eanti−siteCH )

in question we get

∆Hdef = fvacancyB Eanti−siteCH + f interstitialA Eanti−siteCH (A.0.19)

The two terms in this expression can be obtained by projecting the convex-hull distance

of the defective structure (Eanti−siteCH ) on the B and A-component axis respectively. For

our ∆Hdef derivation to hold regardless of choice of chemical potential we re-write the

expression in terms of Eanti−siteeCH

∆Hdef = fvacancyB Eanti−siteeCH + f interstitialA Eanti−siteeCH (A.0.20)

∆Hdef in its most general form regardless of defect type and thermodynamic conditions
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can be written as

∆Hdef = ∆Nadded
i f interstitiali EdefecteCH −∆N removed

j fvacancyj EdefecteCH (A.0.21)

where ∆N is the number of atoms added or removed in the defect for the component i

and j respectively. EdefecteCH is the extended convex-hull distance of the defective structure.

Equation A.0.21 can be used to derive all the equations on the panels of the Figure 3.1

(see bottom of the Figure 3.1).

A.0.5 Interstitial defects in a ternary compound

For the case of interstitial Ci defects in the ternary compound ApBqCr (see figure 3.3)

consider the C-rich chemical conditions (two-phase region ApBqCr-C). In this case ∆NC =

1 and ∆µC = 0. Using the general expression in equation A.0.4, ∆Hdef can be written as

∆Hdef = (l(p+ q + r) + 1)

(
[∆Hf

defect −∆Hf
pristine] +

∆Hf
pristine

l(p+ q + r) + 1

)
(A.0.22)

this expression can further be written as

∆Hdef = f interstitialC EeCH (A.0.23)

where f interstitialC is the projection factor given by f interstitialC = (l(p+ q + r) + 1)

A.0.6 Vacancy defects in a ternary compound

For the case of C−vacancy defects in the ternary compound ApBqCr (see figure 3.3) con-

sider the C-rich chemical conditions (two-phase region ApBqCr-C). In this case ∆NC = −1
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and ∆µC = 0. Using the general expression in equation A.0.4, ∆Hdef can be written as

∆Hdef = (l(p+ q + r)− 1)

(
[∆Hf

defect −∆Hf
pristine] +

∆Hf
pristine

l(p+ q + r)− 1

)
(A.0.24)

this expression can further be simplified as

∆Hdef = f interstitialC EeCH (A.0.25)

A.0.7 Anti-site defects in a ternary compound

For the case of anti-site CB defects in the ternary compound ApBqCr (see figure 3.3) con-

sider the B-poor chemical conditions (three-phase region ApBqCr-A-C). Using the general

expression in equation A.0.4, ∆Hdef can be written as

∆Hdef = l(p+ q + r)

(
[∆Hf

defect −∆Hf
pristine] +

∆Hf
pristine

lq

)
(A.0.26)

this expression can further be written as

∆Hdef = l(p+ q + r) EeCH (A.0.27)

This quantity can be visualized as a projection of the convex-hull distance of the defective

structure as shown in the figure 3.3.
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