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ABSTRACT

Modeling and Motion Planning for In-hand Sliding Manipulation

Jian Shi

This thesis studies the in-hand manipulation problem of repositioning finger contacts

on an object by controlled sliding. In this thesis we investigate two versions of the problem.

First for a multifingered hand with circle patch contacts, we present a framework for

planning the motion of the hand to create an inertial load on the grasped object to

achieve a desired in-grasp sliding motion. The model of the sliding dynamics is based on

a soft-finger limit surface contact model at each fingertip. A motion planner is derived

to automatically solve for the finger motions for a given initial and desired configuration

of the object relative to the fingers. Iterative planning and execution is shown to reduce

errors that occur due to modeling and trajectory tracking errors. The framework is

applied to the problem of regrasping a laminar object held in a pinch grasp. We propose

a limit surface model of the contact pressure distribution at each finger to predict sliding

directions. Experimental validations are shown, including iterative error reduction and

repeatability of the experiment.

Secondly we study quasistatic in-hand sliding manipulation with spring-sliding com-

pliant grasps. We focus on point-contact multi-fingered grasps and the goal is to achieve

object regrasping by taking advantage of external contacts with the environment. Spring
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compliance ensures fingers remain in contact and maps contact forces to finger compres-

sions. By controlling finger anchor motions the contact forces can be moved to the edges

of friction cones and cause sliding to realize regrasping. External contacts provide forces

that maintain object force balance during the motions. We model the contact and object

mechanics for multi-fingered grasps in spatial cases and analyze robust conditions in terms

of finger contact wrench uncertainties. Based on the modeling a general motion planning

framework is proposed. We use a two-fingered system to illustrate the analysis and detail

the planning algorithm to find feasible regrasp motions maximizing robustness.
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CHAPTER 1

Introduction

Most human, animal, and even robot manipulation tasks involve controlling motion

of the object relative to the manipulator, particularly in nonprehensile (graspless) manip-

ulation modes such as pushing, rolling, pivoting, tipping, tapping, and kicking. Even in

pick-carry-place manipulation, where the carry portion of the task keeps the object sta-

tionary relative to the hand, the pick and place phases typically involve the object sliding

or rolling on the fingers as the hand achieves a firm grasp or lets the object go. Other

examples of controlled relative motion in grasping manipulation include finger gaiting,

where the fingers quasistatically “walk” over the object to achieve a regrasp, all the while

maintaining a stable grasp; rolling the object on the fingertips; and letting the object slide

relative to the fingertips. Together these may be referred to as in-hand manipulation.

In-hand manipulation can increase the dexterity of a hand/gripper. For example,

when picking up a pen, you can adjust your grasp by pushing your pen against your

fingers. More aggressively, if you relax your grip and move your hand, the pen can slip

between the fingers. These motions can refine the grasp after the pen was initially picked

up.

In this thesis, we study repositioning of finger contacts relative to the object by con-

trolled sliding. By defining a grasp configuration as a set of all finger contact positions

relative to the object, the main problem of this thesis is to find a hand motion that can

regrasp an object to a desired new grasp configuration. The following aspects of the

hand-object system should be considered in mechanical modeling:
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• Finger contact types. Point, line or patch contacts.

• External force sources. Besides forces from finger contacts, other forces applied

to the object may come from contacts with environment, gravity, inertia forces,

etc.

• Compliance. In this thesis compliance refers to yielding behaviors in robot fingers

that ensure bounded fingertip contact forces, such as spring, damping, and mass

compliances. Following this definition, sliding can be treated as another source of

compliance that bound finger tangential contact forces relative to normal forces.

Based on the taxonomy, we investigate in-hand sliding manipulation in two ways:

1) Regrasping using dynamic loads on the object : The hand uses object inertia to

cause sliding to the desired new grasp by accelerating the hand beyond the point the

finger friction forces can resist relative motion of the object. A framework is presented for

planning the motion of an n-fingered robot hand to create an inertial load on a grasped

object to achieve a desired in-grasp sliding motion. The model of the sliding dynamics

is based on a soft-finger limit surface contact model at each fingertip. A motion planner

is derived to automatically solve for the finger motions for a given initial and desired

configuration of the object relative to the fingers. The framework is applied to the problem

of regrasping a laminar object held in a pinch grasp. Iterative planning and execution are

shown to reduce the errors that occur due to the modeling and trajectory tracking errors

[57, 58].

2) Regrasping using external contacts with spring-sliding compliance: In the previous

approach, an object is regrasped using dynamic loads and sliding is restricted to parallel

surfaces. To enable sliding on general surfaces, we incorporate spring compliance of the

fingers. Spring compliance maps contact forces to finger compressions and maintains the

contact between the fingers and the object. This analysis focus on point-finger contacts

and quasistatic mechanics. Each finger is modeled as a frictional point contact connected
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by a three-dimensional linear spring to an anchor point whose motions is controlled in

three linear directions. By controlling finger anchor motions the contact forces can be

controlled due to the springs and sliding regrasps occur when the contact forces are at the

edges of their friction cones. External contacts provide forces that maintain object force

balance during the motions. We model the contact and object mechanics for multi-fingered

grasps in spatial cases and analyze robust conditions in terms of finger contact wrench

uncertainties. We propose a general motion planning framework based on the modeling.

We use a two-fingered system to illustrate the analysis and detail the planning algorithm

to find feasible regrasp motions maximizing robustness. The approach is validated in both

simulation and experiment with a planar regrasping example.

1.1. Thesis Outline

The rest of this thesis is arranged as follows: Chapter 2 describes related works. Chap-

ter 3 introduces and describes the development of the experimental environment, the ERIN

system. Chapter 4 describes regrasping using dynamic loads. The content of this chapter

has appeared in [57, 58]. Chapter 5 presents modeling and motion planning of in-hand

manipulation with spring-sliding compliance. Chapter 6 gives the conclusion and a dis-

cussion on limitations and future directions for this work.
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CHAPTER 2

Related Work

2.1. In-hand Manipulation

There has been extensive work on kinematic in-hand manipulation where an object

is moved relative to a finger without breaking contact or sliding on the surface. This is

sometimes referred to as “precision manipulation.” Salisbury et al. [33, 52, 51, 42] for-

mulated kinematics of multi-fingered hands for several di↵erent types of frictional finger

contacts. Dexterous manipulation relies on controlling fingertip contact forces applied

to the object. Li, Hsu, and Sastry [37] and Yoshikawa and Nagai [69] use rigid, rolling

finger contacts to calculate grasp stability, manipulability, and to develop controllers for

tracking a position trajectory while maintaining a desired grasp force. Subsequent work

on rolling manipulation includes [36, 53, 4, 22]. More recent work by Rojas and Dol-

lar [49] has expanded this to estimate the precision manipulation capabilities of arbitrary

manipulator/object configurations for use in autonomous manipulation planning. Sun-

daralingam and Hermans [60] uses kinematic trajectory optimization to find quasistatic

finger motions to reposition an object relative to the palm.

Due to manipulator joint limits and workspace constraints, the set of reachable states

using precision manipulation is generally small and the motions are slow. In-hand sliding

can be used to quickly reposition an object in the hand without requiring large movements

of the fingers. Brock [6] and Cole and Sastry [12] explored methods to reposition objects

using controlled slip. Trinkle and Hunter [61] extended the dexterous manipulation plan-

ning problem to consider rolling and slipping contact modes. The hybrid planning problem
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was further developed by Yashima et al. [68, 67]. The space of reachable object states

can be further expanded by breaking contact with a single finger, moving it, and regrasp-

ing the object while the remaining fingers keep the object in force closure. This in-hand

regrasp technique is called finger gaiting [16, 25, 10, 47, 70, 23, 56, 50, 11, 41].

Dynamic forces can also be used for in-hand manipulation. Furukawa et al. [17]

demonstrated regrasping by tossing a foam cylinder up and catching it. Arisumi et al.

have explored the idea of casting manipulation where a manipulator is thrown and its

“free flight” trajectory can be controlled in midair using tension forces in a tether [1].

Chavan-Dafle et al. [9] tested hand-coded regrasps that take advantage of external forces

such as gravity, dynamic forces, and contact with the environment to regrasp objects using

a simple manipulator. Chavan-Dafle and Rodriguez [7] explored in-hand manipulation of

an object by external contacts with the environment. With designed finger actions, mo-

tions of the object were simulated and validated experimentally with di↵erent shapes of

contacts. More recently in [8], they studied the mechanics of alternating sticking contact

and proposed a sampling-based planning framework to concatenate feasible and stable

pushes to achieve the desired regrasp. Feedback is used in [35] to adapt the grasp by

increasing sti↵ness and repositioning fingers to improve the grasp quality. Viña et al.

[62, 63] showed that by using adaptive control with vision and tactile feedback, monodi-

rectional pivoting of an object pinched by a pair of fingers can be achieved by changing

the gripping forces. Kumar et al. [34] programmed a pneumatically-actuated hand to

learn in-hand manipulation skills using model-based reinforcement learning. Sintov and

Shapiro [59] developed an algorithm to swing up a rod by generating gripper motions, in

which the contact point was modeled as a pivot joint that can apply frictional torques.

The method was validated in simulation. Hou et al. [26] studied dynamic planar pivoting

of a pinched object driven by the hand swing motion and contact normal force control.
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2.2. Friction Modeling

Friction provides tangential contact forces and it plays an important role in contact-

rich manipulation. There is an extensive literature on how to model friction [5, 2, 46].

In this thesis friction is assumed to follow Coulomb’s law [13, 40] with equal static and

kinetic coe�cients. For a point contact, the friction cone is a useful geometric interpre-

tation of Coulomb’s law [44]. For multiple contact points, the cone of possible reaction

forces is simply the convex hull of the individual cones.

For patch contacts, Howe et al. [29] and Goyal et al. [19, 20, 21] describe the concept

of a limit surface as a two-dimensional surface in a three-dimensional force-moment space

with two tangential linear force directions and one moment about the contact normal.

The limit surface defines the maximum set of external wrenches that can be resisted by

the frictional forces due to the contact. Xydas and Kao [66] derived models of soft-finger

contacts and the resulting limit surfaces. The ellipsoid limit surface model has been used

in the problem of planar pushing [38, 39]. Recent work by Zhou et al. [71] proposed

a fourth-order polynomial limit surface model for planar sliding and identified model

parameters using simulation and experimental data.

2.3. Compliant Grasps

Hanafusa and Asada [24] first modeled the spring compliance with frictionless elastic

fingers and formulated grasp stability. A stable grasp means that for small position

disturbance of the object the grasp is able to restore the object to its desired location.

The grasp stability is determined by finger sti↵ness and local contact geometry. Baker

et al. [3] further developed the stability conditions with the same system. Expanded

to general cases, Howard and Kumar [28] classified categories of equilibrium grasps and

derived determinations of stability respectively. Cutkosky and Kao [14] achieved a grasp

sti↵ness by controlling finger joint sti↵ness, and analyzed the properties of the grasp.
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For a similar problem as addressed in this work, Cutkosky and Kao [32] modeled sliding

manipulation with spring compliance and limit surfaces. The motion of the contact points

were solved by assuming infinitesimal motions while the magnitude of the sliding velocity

is fixed. In our work we assume finite sliding velocity and use the constraint that when

sliding the finger contact force remain on the boundary of the friction cone to solve the

velocity magnitude of the fingertip sliding. More recent work by Odhner and Dollar [45]

showed in-hand rolling with an underactuated compliant hand.

Compliant grasps have applications in assembly. The remote center of compliance

(RCC) device is a mechanical solution to reduce mating forces and the chance of jamming

in certain assembly operations [64, 15, 65]. Peshkin et al. [18] generalized the idea by

outlining a design strategy for passive devices to implement desired spring characteristics.

Schimmels et al. [54, 55] derived conditions for accommodation control to yield error-

corrective assembly with frictional contacts. Ji and Xiao [31] explored methods to plan

compliant assembly based on a contact state graph. Meeussen et al. [43] developed an

approach to convert a contact path into a force-based task specification for executing

the compliant path via hybrid position and force control. Park et al. [48] developed

a procedure and a controller that yield compliant behavior without force feedback nor

passive compliance mechanisms to solve the peg-in-hole assembly problem.
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CHAPTER 3

Experimental Environment Development

This chapter introduces the hardware platform used for all the experiments conducted

in this thesis. We first give a description of the hardware and software architecture of

the system and then show the algorithm of the vision data filtering. In the end a task

of soft-catching a ball is shown to demonstrate dynamic manipulation capability of the

system.

3.1. The ERIN Instrumented Manipulation Environment

As the experiment platform of this thesis, the ERIN Instrumented Manipulation

Environment consists of a 7-DOF WAM arm with high-resolution encoders and a 6-

DOF wrist force-torque sensor (WAM refers to Whole Arm Manipulator and is designed

and manufactured by Barrett Technology® Inc.); an Allegro 16-dof four-fingered robot

hand; four Syntouch biotac tactile sensor fingertips; and a ten-camera 360 Hz Natural-

Point® OptiTrack™ IR-based motion capture system as shown in Fig. 3.1.

This system is designed to implement experiments in dexterous manipulation, dynamic

manipulation, and human-robot interaction. It supports the experimental implementa-

tions of the research topics described in this thesis. The high maneuverability of the robot

arm allows the manipulator to generate dynamic loads on objects in a grasp, and these

loads can be used to initiate in-hand sliding. The high-speed tracking system allows 3D

gross motion tracking of objects in a sliding grasp. The dexterity of the robot hand al-

lows a wide variety of grasp configurations to be achieved, therefore allowing control over

the compliant sliding properties. The goal of the tactile sensors is to allow fine control
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Figure 3.1. The ERIN instrumented manipulation environment, showing
the WAM arm, the Allegro hand, four Syntouch biotac sensor fingertips,
and part of the 10-camera OptiTrack™ motion capture system.

of grasp contact forces. The Syntouch biotac sensors are proved to be hard to achieve

this goal through a serious of experiments. Main limitations are di�culties to reason

signals from impedance sensing electrodes to contact forces and signal drifting e↵ect due

to environment temperature changes. We have also tested Optoforce sensors which have

advantages of much more reliable and accurate contact force sensing but with limitations

of low respond bandwidth from the compliant material of the contact dome, and the

designed sensing contact surface need to be at the top of the contact dome.

For the experiments conducted in this thesis, none of the tactile and force sensors were

used. Therefore for the rest of this chapter, we focus on integrating the WAM arm, the

Allegro hand, and the high-speed vision system. And for the rest of this thesis the ERIN

system refers to combination of these three.
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100 Mb TCPIP

Figure 3.2. Hardware architecture of the WAM and vision system.

3.2. System Architecture

In this section we introduce the design of the system architecture in hardware and

software levels. Since the subsystems are from di↵erent manufactures and running at

di↵erent rates, building the communication between them is the primary task.

3.2.1. Hardware Architecture

The design of the hardware architecture is shown in Fig. 3.2. To increase modularity and

computing power of the system, we use multiple PCs to control the hardwares:

• The WAM arm is controlled by an external computer named WAM PC, which has

an Intel® Core™ i7-4770 CPU and 16 GB RAM. The WAM PC sends command

motor torques to Pucks, which are the motor controller of the WAM and read

encoders data from it through a 1 Mb CAN bus.
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• The allegro hand is controlled by the Hand PC, which has an Intel® Core™ i7-

3770k CPU and 8 GB RAM. Information of commanded torques and joint encoder

readings are transmitted through another 1 Mb CAN bus.

• For the OptiTrack™ motion capture system, the Vision PC has an Intel® Core

Quad Q8400 CPU and 3 GB RAM. Camera data are sent to the Vision PC through

a standalone 1 Gb network.

The WAM PC and Hand PC are running Linux and the Vision PC is a Windows machine.

The choices of the PCs are based on the used APIs which will be detailed in the software

architecture section. All of the PCs are connected in a local network.

For more details of the motion capture system, the OptiTrack™ system consists of 10

cameras, a PoE switch, and an E-Sync device. The cameras are infrared cameras with

high capturing rate up to 360 Hz and 1.7 MP resolution (1664 ⇥ 1088). Balls covered

with reflective paint are used as markers that reflect infrared lights from LEDs mounted

on the cameras. The PoE (Power over Ethernet) switch transmits data between devices

and also powering the cameras and the E-Sync. The E-Sync is sending control and

triggering signals to the cameras which is controlled by the Vision PC. By default the E-

Sync generates periodical signals to trigger the cameras and the frequency of the signals

are controlled by the program running at the Vision PC. Since there is no clock in the

E-Sync and the Vision PC only sends reference frequency signals, the captured frames are

not time-stamped by default, which means the exact time when each frame was captured

is unknown. Although there is an alternative method by using external SMPTE signals

to trigger the cameras and time-stamping the frames, it is limited by the maximum of

30 Hz update rate from the SMPTE protocol. It turns out that there is no clean way

to accurately time-stamp camera frames using the triggering mechanism when the

cameras are running at high-speed.
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An experiment was implemented to estimate the delay from when a camera frame is

captured to the time when corresponding vision data is received by the WAM PC. The

camera control program named Motive measures the time delay from the capture time

to the time when 3D-reconstructed vision data is ready. The mean value of this delay

is 0.2 ms with a standard deviation of 0.05 ms. After synchronizing clocks of WAM PC

and Vision PC, we measured the delay of data transmission between them: mean value

of the delay is 0.065 ms with a standard derivation of 1.3 ms. With low occurrence, some

notable delays can reach up to around 20 ms compared to the control loop period (2 ms

at 500 Hz).

3.2.2. Software Architecture

Fig. 3.3 shows the software architecture of the ERIN system. The WAM control programs

run at the WAM PC based on libbarrett, a C++ library written and maintained by

Barrett Technology, Inc. including a low-level and a high-level interfaces for controlling

the WAM 1. The library generates a realtime thread to compute the controls of the WAM

under a version of Linux kernel modified by Xenomai.

The Hand PC runs ROS indigo under Ubuntu 14.04 to control the allegro hand. The

software is built upon Allegro Hand ROS stack2 which contains low-level communications

with the hand and joint torque and position controllers. We add several functions to the

allegro�hand node to calculate finger endpoint positions and create a topics to publish the

information. We also add another node called sockets to communicate with the WAM PC.

The fingertip positions are calculated and published to a bu↵er at 333 Hz. The sockets

node receives control commands from the WAM PC and sends latest fingertip positions in

the bu↵er upon request.

1More details can be found at http://web.barrett.com/libbarrett/.
2https://github.com/felixduvallet/allegro-hand-ros.

http://web.barrett.com/libbarrett/
https://github.com/felixduvallet/allegro-hand-ros
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Figure 3.3. Software architecture of the ERIN system.

For the vision data, after camera frames are captured, raw images are first pre-

processed by on-camera micro chips. On each camera after a frame is captured, all marker

lumps will be detected and then calculate and send information including 2D location,

size and roundness of the lumps to Motive software running at the Vision PC. Motive

receives and filters the 2D marker data and then reconstructs 3D positions of the markers.

To track 3D rigid-bodies pose information (center positions and orientations), users can

use multiple markers (at least 3) to define polyhedron-shaped rigid-bodies that are fixed
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to the tracking objects. Then when a new camera frame data is received and filtered,

the program will try to fit subsets of the 3D markers locations to the pre-defined polyhe-

drons, and if any fits are found, the locations and orientations of the frames attached to

the polyhedrons will be updated.

Since Motive can only run under Windows platform and the WAM PC is running

Linux, we set the Motive to publish processed rigid-bodies information through UDP and

the data is received and decoded in the WAM PC. NaturalPoint® supplies NatNet SDK, a

Client/Server networking SDK for sending and receiving vision data across networks. In

the WAM PC end, we use NatNetLinux3, a lightweight library built on NatNet API that

reads the NatNet UDP packets in Unix-based OSs, to receive the vision data from the

Vision PC.

Because the WAM control thread runs at a higher rate (typically 500 Hz) than the

vision system (maximum 360 Hz), we developed a two threads structure with a fixed-size

RAM bu↵er to transmit data between them (see in Fig. 3.3). The vision data thread is

a non-realtime thread waiting for new UDP packets from specified IP address. As long

as a new packet arrives, it will decode the vision data, timestamp it with the current

system time and store it to the bu↵er. As described in Sec. 3.2.1, for the current system

there is no way to accurately timestamp capture time to the vision data. The idea of this

method is to compensate the delay from data processing and communication by vision

data filtering, which will be detailed in the next section. In the WAM control loop the

raw vision data is read from the bu↵er, filtered and estimated object poses. Fig. 3.4 shows

the data flow between the primary C++ classes of the program running at the WAM PC.

3NatNetLinux is written and maintained by Philip G. Lee, more details can be found at https://github.
com/rocketman768/NatNetLinux.

https://github.com/rocketman768/NatNetLinux
https://github.com/rocketman768/NatNetLinux
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3.3. Vision Data Filtering

In this section we focus on the vision data filtering problem. In general, the design of

the filter need to satisfy the following three criteria:

(1) Incorporating time delay – As mentioned in Sections 3.2.1 and 3.2.2, since

there is no way to accurately timestamp the capturing time with the current

system, the time delay caused by Ethernet communication and vision data pro-

cessing need to be incorporated.
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Figure 3.5. Vision filter diagram and experiment result shown in x-direction.

(2) Feed data to the realtime thread – Solving the problem of passing vision

data from a non-realtime thread to a realtime thread with a di↵erent operating

frequency. As mentioned in Section 3.2.2, the vision data thread is a non-realtime

thread and running slower than the WAM control thread.

(3) Realtime calculation – The goal of filter is to supply object poses as a real

time feedback to the control loop, so another criteria is that the algorithm must

be computationally e�cient — i.e., the computation time of each cycle should

be at least smaller than 2 ms as the typical control loop runs at 500 Hz. we

found that in each control loop, main tasks including reading joint angles and

robot status, calculating desired joint torque and logging data usually take about

0.6 ms ⇠ 1.2 ms depending on the complexity of the motion planning algorithm.

Therefore a reasonable goal of the filter calculation time is around 0.5 ms or less.

Based on the design criteria above, the proposed filter algorithm and its implementation

result are shown in following subsections.
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3.3.1. Filter Algorithm

The basic idea of the filter algorithm is to fit n most recent history data to a quadratic

curve with respect to time t, and then calculate the current position value with current

time. The number n need to be greater or equal to three since a quadratic curve need

to be uniquely described by at least three parameters. Fig. 3.5a illustrates the idea with

the x-direction displacement of an object: the red dots represent the received position

data xi (i 2 1...n) at corresponding received time trec,i on the WAM PC; and at time t
⇤

the control thread requested feedback data and then n of the most recent pairs of the

xi and trec,i is pulled out from the bu↵er (sized m,m � n) to fit into a quadratic curve

x(t); and finally plug in the current time t
⇤ to x(t) and calculate the current estimated

position x(t⇤). In practise all the 6 configurations of the object in 3D space is filtered

individually with the same algorithm as describe above. Quadratic is chosen since it is

the lowest-order polynomial that can smooth the data therefore minimize the calculation

time.

The philosophy behind this algorithm is assuming that during a small time period

around the current time, the acceleration of the object remains the same, and the motion

of the object can be predicted based on history data. Therefore we call the filter Constant

Acceleration Filter (CAF).

The CAF can meet the design criteria e↵ectively: the CAF incorporates feedback data

with a di↵erent rate than the control loop and even when the feedback is delayed for a

relative long period, the CAF can still reasonably predict the feedback value from the

received data. Meanwhile the CAF is also fast. As we recorded, the average calculation

time for CAF with n = 10 is around 0.1 ms, which is under the desired calculation time

0.5 ms.
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3.3.2. Result

Fig. 3.5b shows the result of the x position tracking of an object that moves randomly in

space. The cameras are running at 360 Hz and the filter function was called at 500 Hz in

the control loop. For the CAF we used m = n = 10. From the result we could tell the

raw data is smoothed out after filtering.

3.4. Soft-catch Example

To test the performance of the ERIN system, we implemented a dynamic manipulation

task: soft-catching a ball. The task can be described as: a ball is thrown by a user, and

the robot arm with a plat palm mounted at the end try to catch and balance the ball to

the center of the palm. The word soft-catch means that at the moment that the ball touch

the palm, both the position and velocity of robot end-point will be the same with the ball’s

to minimize bouncing. In this example, we substituted the Allgegro hand with a plastic

board to reduce the weight in order to achieve higher acceleration of the end-e↵ector.

The problem is challenging since the trajectory of the ball must be estimated in real

time . And the motion of the robot arm should also be planned in real time as well.

The center position of the ball in Cartesian space is denoted as pball = [xball, yball, zball]T ,

and the trajectories of ball pball(t) in free flight are described by quadratic time polyno-

mials assuming the total external forces are constant. we denote z-direction along the

gravity direction. At the beginning of the task, whether the ball is in free flight or not

is detected by checking whether the z-direction acceleration of the ball z̈ball exceed a

threshold. And when the ball is in the free flight phase, an algorithm will calculate the

trajectory of the ball pball(t) by fitting in its history position data of free flight.

For the motion of the robot arm, we denote the position of the end-point frame as

parm = [xarm, yarm, zarm]T . Before the ball is thrown out, the arm remains at the same
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initial position. When the ball is in free flight, the motion of the end-point position parm(t)

are described by polynomials w.r.t. time, among them xarm(t) and yarm(t) are defined as

cubic polynomials and zarm(t) is defined as a quadratic polynomial. Then parm(t) can be

calculated by solving following equations:

parm(t⇤) = parm,current(3.1)

ṗarm(t⇤) = ṗarm,current(3.2)

parm(t⇤ + �t) = pball(t
⇤ + �t)(3.3)

ṗarm(t⇤ + �t) = ṗball(t
⇤ + �t)(3.4)

where t
⇤ means the time when the calculation is executed and �t is the time interval

from t
⇤ to the contact time. Eq. (3.1) and (3.2) shows the initial conditions of the end-

point trajectories, and Eq. (3.3) and (3.4) shows the final conditions at the contact time,

both the position and velocity of the arm end-point should match with the ball’s. From

Eq. (3.1)–(3.4) we have twelve constraints and by the definition of parm(t) and �t we have

total 4 + 4 + 3 + 1 = 12 unknowns. Therefore the motion of the arm can be uniquely

solved at each control loop.

After the contact is formed, the robot arm will decelerate the ball to rest and start

palming. The word palming means to balance the ball in the palm and prevent it from

falling o↵. The deceleration motion of the robot arm is given as to stop the ball in a pre-

defined distance dstop from the point when the contact was formed. Then the reference

acceleration of the robot arm end-point can be calculated as

(3.5) q̈arm = 1/2dstop[ẋarm(tc)
2
, ẏarm(tc)

2
, żarm(tc)

2]T ,

where tc refers to the contact time. And at the same time, the palming algorithm starts to

calculate the desired orientation of the palm to let the ball stay in the palm. The palming
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algorithm is a PD controller uses x, y position errors to calculate the desired orientation of

the palm. The reference ball position is specified at the center of the palm so the position

error is calculated by subtracting the current end-point position with the ball position.

We implemented the algorithms mentioned above and the result of a successful run

can be found in Fig. 3.6. The ball we used is a pressure ball with a diameter of 2.5 in,

and the palm we used is a 1 ⇥ 1 ft plastic pad. The task is challenging in terms of the

workspace limit and motor torque and speed limits of the WAM arm. Soft-catching will

fail in mostly following cases: calculated catching/resting points go out of the workspace,

and calculated arm trajectories qarm(t) exceed joint velocity/acceleration limits.
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Figure 3.6. Experiment result of soft-catch and palming a ball.
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CHAPTER 4

Dynamic In-hand Sliding Manipulation

In this chapter we investigate the problem of regrasping an object by inertia loads.

Our testbed is the ERIN robot manipulation system as shown in Chapter 3. Assuming

the fingers are compliantly mounted, and the initial grasp configuration is chosen, current

research problems include:

(1) given the state of the hand and object, the contact normal forces, and the acceler-

ation of the hand, find the relative acceleration of the object (forward dynamics);

(2) given the state of the hand and object and the desired relative acceleration of the

object, find appropriate hand accelerations and contact normal forces (inverse

dynamics);

(3) plan the hand motion (and possibly contact normal forces) to achieve a desired

regrasp;

(4) repeatedly plan and execute hand motions to iteratively reduce grasp error;

(5) use real-time feedback control of hand motion and finger normal forces during

sliding motion to achieve the desired regrasp; and

(6) estimate friction properties from observed hand and object motions, given the

contact normal forces.

In this study, we use a simple, spring-actuated passive hand in place of the Allegro

hand and tactile sensors, and we study items 1)–4) above. In particular, we focus on the

case of planar motion, where the laminar object moves with three degrees of freedom (two

translational and one rotational) and the fingers contact the object on opposite sides that
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are parallel to the plane of motion. Friction property estimation and feedback control

exceeds the scope of this paper and will be addressed in future work.

The rest of this chapter can be summarized as following: In Section 4.1 we solve

problems 1)–4) for a simple 1-DOF example, as a template for the more general case. In

Section 4.2 we generalize the problem statement to an n-fingered grasp moving in a plane.

In Section 4.3 we discuss the limit surface model for friction and derive expressions for the

frictional wrench given the sliding velocity of an object in an n-fingered grasp consisting

of patch contacts. In Section 4.4 we derive the sliding dynamics within the motion plane

and outline a method to calculate the acceleration of the object relative to each finger

given the accelerations of the fingers. In Section 4.5 we solve the finger motion planning

problem for a given n-fingered grasp to achieve a desired regrasp.

The material in Sections 4.2–4.5 solves the planar regrasp problem for general n-

fingered grasps of an object with parallel faces. The details of the finger normal forces and

grasp limit surface depend on the particular grasp configuration, however. In Section 4.6

we derive the details of the grasp limit surface for a particular type of grasp, a two-

fingered pinch grasp. In Section 4.7 we implement the motion planning algorithm for

in-hand manipulation with a two-fingered pinch grasp, and we show experimentally that

iterative planning and execution can further reduce error in the final grasp configuration.

4.1. 1-DoF Example

In this section we address research topics 1)–4) from the introduction for a 1-DOF

example with no gravity. This example serves as a template for the more general problem

beginning in Section 4.2.

Consider an object that accelerates in the positive or negative direction due to fric-

tional contact with a single finger. Based on a Coulomb friction coe�cient µ and a normal

force fN , the finger can provide a tangential force to the object of up to µfN before sliding.
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Figure 4.1. (Top) Configuration of the 1-DOF system. The red diamond
shows the center of mass (CM) of the object and the blue dot shows the
contact point of the finger. (Bottom) An example of in-hand sliding of the
1-DOF system with initial condition qf (0) = qo(0) = 0. The finger initially
accelerates to the right, and then accelerates to the left causing the finger
to slide on the object and achieve a desired position relative to the object
CM dgoal. The corresponding acceleration, velocity, and position profiles
are shown in Figure 4.2.

We assume the object has unit mass, so the maximum object acceleration is ao = µfN .

We also assume the finger is capable of a maximum acceleration af > ao. Additionally we

define a finger acceleration a greater than 0 but less than ao. The relationship between

the accelerations can be written as af > ao > a > 0.

Let qf (0) = qo(0) be the initial position of the finger and the object w.r.t. the world

frame W respectively, and let d(t) = qo(t) � qf (t) be the object position relative to the
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finger position at time t. The problem is to choose a finger acceleration profile q̈f :

[0, T ] ! R that causes the object to slide relative to the finger by dgoal at time T , i.e.,

d(T ) = qo(T ) � qf (T ) = dgoal as shown in Figure 4.1. Without loss of generality, assume

dgoal > 0. Similar reasoning applies for the case dgoal < 0.

4.1.1. Forward Dynamics

The forward dynamics problem is to determine the relative sliding acceleration d̈ given a

finger acceleration q̈f . If ḋ 6= 0, then d̈ = sgn(ḋ)ao � q̈f . If ḋ = 0 and |q̈f |  a0, no sliding

occurs (d̈ = 0). If ḋ = 0 and |q̈f | > a0, then d̈ = sgn(q̈f )a0 � q̈f .

4.1.2. Inverse Dynamics

The inverse problem is to determine the finger acceleration q̈f that achieves a desired

relative sliding acceleration d̈. If ḋ 6= 0, then q̈f = sgn(ḋ)ao � d̈. If ḋ = d̈ = 0, no slip

occurs so any |q̈f |  ao is valid. If ḋ = 0 and |d̈| > 0 (you are trying to initiate slip), then

q̈f = sgn(d̈)a0 � d̈.

4.1.3. Motion Planning

We assume the finger and object are initially at rest and qf (0) = qo(0) = 0, and require

that the finger’s net displacement and velocity after the motion are zero. To achieve the

sliding regrasp while satisfying these constraints, first accelerate the finger with q̈f = a

for time T1. Then apply the maximum negative acceleration q̈f = �af for time T2. Next

apply q̈f = a for time T3 + T4 = T34. To achieve zero final displacement and velocity for

the finger, we choose T1 = T34 and q̇f (T1) = �q̇f (T1 + T2).

The motion plan consists of three phases: an initial sticking phase of duration T1, a

sliding phase of duration T2 + T3, and a final sticking phase of duration T4. During phase
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1 (0  t < T1) , ḋ is zero and |q̈f |  ao so no relative motion occurs. During the first part

of phase 2 (T1  t < T1 + T2), the negative acceleration is su�ciently high that sliding

occurs (q̈f < �ao). During the second part of phase 2 (T1 + T2  t < T1 + T2 + T3),

the acceleration magnitude is decreased (|q̈f |  ao) but ḋ 6= 0 so sliding still occurs until

ḋ ! 0. During phase 3 (T1 + T2 + T3  t < T1 + T2 + T3 + T4), the object is sticking and

ḋ = 0. Figure 4.1 shows an example of in-hand sliding of the 1-DOF system. The full

series of accelerations, resulting velocities, and positions are shown in Figure 4.2.

The total relative sliding distance dgoal is the integral between the finger and object

velocity curves in the sliding phase. With given values of af , ao, a and dgoal, we solve the

following constraints to find the durations T1, T2, T3, and T4:

2aT1 = afT2,(4.1)

ao(T2 + T3) = a(2T1 � T3),(4.2)

dgoal = 0.5(af � ao)(T
2
2 + T2T3),(4.3)

T4 = T1 � T3.(4.4)

Equation (4.1) enforces that the finger velocity at time T1+T2 is the opposite of the finger

velocity at time T1. Equation (4.2) requires the object to stop slipping relative to the finger

at time T1 + T2 + T3. Equation (4.3) enforces the desired slipping distance of the object.

Together, Equations (4.1), (4.2) and (4.4) ensure the total finger displacement is zero after

the regrasp motion. The chosen constraints ensure that T1, T2, T3, and T4 can be solved

for analytically which simplifies the 1-DOF problem. We can solve Equations (4.1)–(4.3)
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for T1, T2, T3:

T1 =
af

a

s
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,

T2 =

s
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(a + af )(af � ao)
,
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s
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.

(4.5)
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Figure 4.3. Friction uncertainty a↵ects the sliding distance. We denote
d1, d2, d3, d4 as the areas of di↵erent triangles and d1 + d2 = d3 + d4 = dgoal.
The areas d2 and d3 show the uncertainty in the sliding distance. Area d2

represents the error when the friction coe�cient is underestimated, and d3

represents the overestimated case.

4.1.4. Iterative Error Reduction

Following the execution of a planned repositioning trajectory, there will be some error in

the actual relative displacement due to trajectory tracking error, errors in initial condi-

tions, or unmodeled dynamics. A significant source of error is an incorrect estimate of

the friction coe�cient µ. The following theorem shows that iterated executions of motion

plans based on updated displacement information are su�cient to bring the object to

the desired goal position dgoal in the presence of significant uncertainty in the friction

coe�cient.
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Theorem 1. Consider the 1-DOF sliding regrasp system with a desired net sliding

distance dgoal, a known constant normal force fN , an estimated friction coe�cient µ0, and

an actual (unknown) constant friction coe�cient µ 2 [µ0(1 � ✏), µ0(1 + ✏)] for a friction

coe�cient uncertainty 0 < ✏ < 2/3.

For any acceleration a in the range µ0fN(2✏ � 1) < a < µ0fN(1 � ✏), and for any

positive constant ⇢ satisfying µ0fN ✏

a+µ0fN (1�✏) < ⇢ < 1, by iterating the finger motion described

in Section 4.1.3 (where dgoal is recalculated at each iteration based on perfect sensor data),

the error in the net sliding distance converges exponentially to zero at least as fast as ⇢k

converges to zero as the iteration number k goes to infinity, provided

af �
µ0fN [µ0fN(1 � ✏) + a(✏/⇢+ 1)]

a� µ0fN [✏(1 + 1/⇢) � 1]
.

Proof: See Appendix A.

Remark 1. From the condition on af given in Theorem 1, as the chosen value of

⇢ gets smaller, the required minimum value of af increases to ensure the convergence

property.

The following example shows how choices of a, ⇢, and af a↵ect the iterative reduction

algorithm. For a given ao > 0 and ✏ = 0.2, we choose a = 0.4ao. The feasible range of

⇢ is 0.167 < ⇢ < 1 according to the ⇢ constraints from Theorem 1. Note that the value

of ⇢ determines the basic error convergence rate, and also a↵ects the lower bound of the

maximum finger acceleration af .

In practice the choice of ⇢ and af should be based on manipulator acceleration con-

straints. Choosing ⇢ = 0.5 requires a finger acceleration af to be at least 1.7a0 to ensure

that the error can be driven to zero at the rate ⇢k. Figure 4.4 illustrates how the net
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bounding convergence rate ±⇢

k.

sliding distance error converges to zero by iterating the motion planning in worst case

scenarios µ = µ0(1 � ✏) and µ = µ0(1 + ✏).

4.2. General Problem Statement

In this section we generalize the in-hand manipulation problem outlined in Section 4.1

to an n-fingered grasp, and define notation used in the rest of the paper.

We assume the object to be a laminar part that moves in a plane, held by n patch-

contact fingers located on opposite sides of the part. The laminar part, and all motion of

the part, are in a plane fixed at an angle ↵ relative to a horizontal plane orthogonal to the

gravity direction. A fixed frame W is defined in the plane of motion such that its x and y

axes are basis vectors for the plane of motion and the y-axis is opposite to the projection

of the gravity vector to the motion plane gk = [0,�mg sin↵]T, as shown in Figure 4.5.

The mass of the object is denoted m, and its scalar inertia about its CM is I. The sum

of out-of-plane forces applied to the object satisfies force balance at all instances so the

object remains in the xy-plane of frame W . We assume we can control the acceleration

of each finger.
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Figure 4.5. Laminar object grasped by n patch contact fingers. (Top) View
of the system in the object plane. The variables are defined in Section 4.2.
(Bottom) The angle between the object plane and the horizontal plane is
denoted as ↵.

Frame B is the body frame fixed to the CM of the object, and the x
B and y

B axes

are in the plane of the object. The finger contact patches are assumed circular. The

frame Fi of the ith finger is located at the center of the finger’s contact patch. We

denote B
+ and F

+
i

as frames where the origins are coincident with B and Fi respectively

and the axes are aligned with W . All configurations and velocities are defined with

respect to the world frame W unless noted otherwise. All vectors are written in bold
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lowercase letters, all matrices are written in bold capital letters, and scalars are written

in italic letters. We denote the configuration of the object by its pose qo = [x, y, ✓]T,

representing the position and orientation of B relative to W . The location of the frame Fi

is qfi = [xfi, yfi, ✓fi]T, and the entire n-fingered grasp is defined as qf = [qT
f1, . . . ,q

T
fn

]T.

The relative positions between the object and the finger contacts are defined as rfi =

[xrfi, yrfi, ✓rfi]T, where qfi = qo + rfi, and the relative position for the entire grasp is

defined as rf = [rT
f1, . . . , r

T
fn

]T. The configuration and velocity of the system are denoted

as q = [qT
o
,qT

f
]T and q̇ = [q̇T

o
, q̇T

f
]T. The full state of the system is defined as [qT

, q̇T]T.

Figure 4.5 shows an example of a planar system with a rectangular object and patch

contact fingers.

4.3. Frictional Limit Surface

In this section we discuss the concept of frictional limit surfaces (LS) and how they are

shaped given circular patch contacts. Additionally we derive expressions for the frictional

force applied to the object from a patch contact with a given finger velocity relative to

the object, and for the grasp limit surface given n individual limit surfaces.

4.3.1. Patch Contact

In this paper, friction is assumed to conform to Coulomb’s law. For a circular patch

contact, we denote f = [fx, fy,mz]T as the frictional wrench applied to the object expressed

in frame F+. To describe the boundary of the frictional wrenches given the contact normal

force, we use the concept of a frictional limit surface [19, 20, 21]. Frictional limit surfaces

are convex and closed. When the frictional wrench f lies within the LS, the finger sticks

on the object; and if the finger slides with velocity v relative to the object, the frictional

wrench fc is on the LS at a location where v is normal to the LS at fc to satisfy the

maximum work inequality (Figure 4.6).
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Figure 4.6. Ellipsoid limit surface expressed in a local frame F
+ attached

to the center of the contact. The sliding direction v is along the normal of
the ellipsoid at the corresponding frictional wrench fc.

The LS for a soft-finger contact can be approximated by an ellipsoid in the local frame

[66]. A mathematical representation of the LS is given by the following quadratic form

expressed in a local frame F
+:

(4.6) fTAf = 1,

where the matrix A 2 R3⇥3 is a symmetric positive-definite matrix that determines the

shape of the LS ellipsoid.

During sliding, the frictional wrench fc lies on the LS, and we can write the relative

velocity v along the direction of the gradient of the ellipsoid with respect to f at fc as

(4.7) v = �
@

@f

⇣
fTAf

⌘����
fc

for some � 2 R which scales the normal vector to the relative velocity vector. For a given

relative velocity, the corresponding frictional wrench can be written as

(4.8) fc =
1

�
Bv,
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Figure 4.7. A 4-fingered grasp and the resulting limit surfaces in the local
finger frames, the body frame, and the composite grasp limit surface. (a) is
a sketch of the grasp with three fingers on one side and one on the opposite
side. (b) identical limit surface for fingers 1–3 in the local finger frames
F

+
i

. (c), (d), and (e) limit surfaces from fingers 1, 2, and 3 respectively
mapped to the common frame B

+ using the Gi transformation. (f) limit
surface for finger 4, which is the same in F

+
4 as B+ since they are coincident.

(h) composite grasp limit surface. The axes in (b)–(g) are all aligned and
equivalent to the axes in (g).

where B = 1

2
A�1. Substituting Equation (4.8) into Equation (4.6) and utilizing (A�1)T =

A�1, we have

(4.9) � =
1

2

p

vTA�1v.
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Combining Equations (4.8) and (4.9) we derive the function �(·) which gives the frictional

wrench as a function of a given relative velocity v:

(4.10) fc = �(v) =
A�1v

p

vTA�1v
.

4.3.2. Grasp Limit Surface

When multiple fingers contact an object, the individual LS can be mapped to a common

frame to generate the grasp limit surface (GLS). Let fi represent the frictional wrench

applied to the object expressed in the local frame F
+
i

. A reasonable choice of a common

frame is the frame B
+. The 3⇥ 3 matrix G(rfi) is the map relating the frictional wrench

fi in F
+
i

to the wrench expressed in B
+. Matrices G(rfi) depend on the contact position

relative to the object CM and is defined as

(4.11) G(rfi) = Gi =

2

6664

1 0 0

0 1 0

�yrfi xrfi 1

3

7775
.

The grasp limit surface is the convex hull of the sum of all possible friction forces that

the grasp can resist. The GLS can be expressed in B
+ as

(4.12) GLS = �{f |f =
nX

i=1

Gifi 8 fi 2 LSi},

where � is an operator that takes the boundary of the set, f = [fx, fy,mz]T is an arbitrary

friction force on the GLS, and LSi is the limit surface for contact i.

Figure 4.7 shows an example of a four-fingered grasp on an object and the resulting

limit surfaces with frictional torques about the corresponding contact center, transferred

frictional torques expressed in B
+, and the combined grasp limit surface.
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4.4. Dynamics

In this section we derive the dynamics for the case where the object is sticking and

when it is sliding. We assume that the system state [qT
, q̇T]T, the matrices Ai that

determine the shape of LSi, and either the desired relative finger accelerations r̈fi(t) or

the finger accelerations q̈fi(t) are given.

4.4.1. Sticking Dynamics

The object’s dynamics are defined as

(4.13) Mq̈o =
nX

i=1

Gifi + g,

where M = diag(m,m, I) is the mass matrix of the object and g = [0,�mg sin↵, 0]T is

the wrench on the object due to gravity in the object plane expressed in frame B
+. For

the sticking case the frictional force at each contact is contained within the limit surface,

i.e., fT
i
Aifi < 1.

4.4.2. Sliding Dynamics

During sliding relative velocity at each contact is defined as

(4.14) vi = q̇fi �GT
i
q̇o.

The forward dynamics problem is to determine the relative acceleration of each finger r̈fi

when given the state of the system [q, q̇]T, the LSi shape matrices Ai, and the accelera-

tions of each finger q̈fi. First we define the relative acceleration as

(4.15) r̈fi = q̈fi � q̈o.
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The dynamics in Equation (4.13) can be rewritten as

(4.16) q̈o = M�1

"
nX

i=1

Gifi + g

#
.

Combining Equations (4.10), (4.14), (4.15), and (4.16), we can write the relative finger

acceleration as

(4.17) r̈fi = q̈fi �M�1

"
nX

i=1

Gi�(q̇fi �GT
i
q̇o) + g

#
.

This equation allows us to calculate the relative sliding motion for given finger accelera-

tions, and solves the forward dynamics problem.

The inverse problem is trivial, and Equation (4.17) can easily be rearranged to solve

for the required finger accelerations when given a desired relative sliding motion. For the

inverse problem it is more convenient to give the relative acceleration w.r.t. the body

frame as the input. Denoting r̈B
fi

as the relative acceleration w.r.t. the body frame B, we

have

(4.18) rfi = Ti(✓)r
B

fi
,

where Ti(✓) 2 SE(2) is the homogeneous transformation which maps rB
fi

into rfi,

Ti(✓) =

2

6664

cos ✓ � sin ✓ 0

sin ✓ cos ✓ 0

0 0 1

3

7775
.
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Taking the first and second derivative with respect to time on both sides of Equation (4.18)

gives

ṙfi = Ṫir
B

fi
+ Tiṙ

B

fi
,(4.19)

r̈fi = T̈ir
B

fi
+ 2Ṫiṙ

B

fi
+ Tir̈

B

fi
.(4.20)

4.5. Motion Planning

In this section, we focus on motion planning to achieve a desired sliding regrasp. For

simplicity, we assume that each finger of the hand remains stationary relative to the palm

of the hand, so we only plan the motion of the three degrees of freedom of the palm, not

individual motions of the fingers.

The motion planning problem can be stated as: given an initial grasp of the object

and a desired relative configuration between the object and the hand, find a motion of

the hand that achieves this reconfiguration by dynamic in-hand sliding.

The details of the grasp limit surface, and therefore the sliding dynamics, are a function

of the number of fingers, their placement on the object, and the normal force control

strategy. A specific type of grasp, a two-fingered pinch grasp, is examined in Section 4.6

and used in our experiments.

4.5.1. Specifications for the Motion Planner

• The grasp limit surface details for the specific grasp are given.

• The hand motion yields a sticking phase, followed by a sliding phase, followed

by a sticking phase. The time periods for each phase are denoted T1, T2, and T3

respectively, and the total time is denoted Ttotal = T1 + T2 + T3.
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• From the given initial grasp and desired relative configuration, the initial and

goal relative positions between the object and the fingers rB
f,init and rB

f,goal can be

calculated and are inputs to the motion planner.

• The relative finger trajectory rB
f
(t) in the sliding phase and object trajectories

qo(t) in the sticking phases are defined as cubic polynomials of time, where each

motion component is of the form a0+a1t+a2t
2+a3t

3, defined by four coe�cients.

Thus the start and end position and velocity provide four constraints on the four

coe�cients, uniquely defining the polynomial as a function of time.

• The system starts and ends at rest with no relative velocity between the part

and object, so q̇o(0) = 0, q̇o(Ttotal) = 0, ṙB
f
(T1) = 0, ṙB

f
(T1 + T2) = 0.

4.5.2. Planning Algorithm

With the specifications above, the hand and object motion is determined by a set of design

variables. The system motion is split into three phases: sticking, sliding, and sticking. In

the first sticking phase, we have to choose the object start configuration (initial velocity is

zero), end configuration, end velocity, and duration (3 + 3 + 3 + 1 = 10 design variables).

For the sliding phase, we have to choose only the duration of sliding (one design variable).

For the second sticking phase, we have to specify the final object configuration and the

duration of the phase (3 + 1 = 4 design variables). Thus there is a total of 15 design

variables defining a motion plan. As described below, the motion planning problem is

turned into a nonlinear root-finding problem to find these 15 variables.

We denote t as the time variable for the entire motion, t 2 [0, Ttotal], and ti as the

time variable for each phase starting at zero and ending at the duration of that phase,

ti 2 [0, Ti], i = 1, 2, 3. The details of the design variables and constraints on each phase

are given below.
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First sticking phase. The design variables are qo(0),qo(T1), q̇o(T1) and T1. The use

of cubic polynomials means there are no freedoms in the trajectory shapes once the

boundary conditions are set. Therefore qo(t1) is determined with a given set of the 10

design variables. Note that because the initial relative position is not relevant to where

the object is in the world frame, we can choose any initial position qo(0). The frictional

wrench fi(t1) can be calculated by the sticking dynamics discussed in Section 4.4.1. Since

there is no relative motion in the sticking phase, the finger motions qfi(t1) are determined

as long as qo(t1) and the relative positions rB
f,init are given.

The constraints that have to be satisfied are manipulator constraints (including

workspace, velocity and acceleration limits) and that the frictional wrenches are always

inside the limit surfaces during the first sticking phase.

Sliding phase. The design variable is T2. In the sliding phase, the cubic polynomial

defining the object motion relative to the hand is fully specified by rB
f,init and rB

f,goal which

are given. The initial state of the hand is given by the design variables qo(T1) and q̇o(T1)

from the first sticking phase above. To find the hand motion during this sliding phase, we

first solve the inverse dynamics using the hand state at the beginning of the trajectory, as

well as r̈B
f
, to find the hand acceleration q̈f . Taking a small integration step, we get the

next state of the hand, solve the inverse dynamics again, etc., until we have numerically

constructed the trajectory of the hand during the sliding phase based on the initial state

of the hand and the pre-specified relative object motion during sliding.

The constraints that have to be satisfied in the sliding phase are manipulator con-

straints.

Second sticking phase. The design variables are qo(Ttotal) and T3. Similar to the first

sticking phase, the hand motion qfi(t3) and object motion qo(t3) are determined by the

specified final conditions and the initial conditions q(T1 + T2) and q̇(T1 + T2) from the

final state of the sliding phase.
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The constraints that have to be satisfied are manipulator constraints and that the

frictional wrenches are always inside the limit surfaces during the second sticking phase.

Full motion planning problem statement.

given rB
f,init, r

B

f,goal

find T1, T2, T3, qo(0), qo(Ttotal), qo(T1), q̇o(T1)

such that rB
f
(T1) � rB

f,init = 0,

rB
f
(T1 + T2) � rB

f,goal = 0,

and the dynamics of each phase

and manipulator constraints are satisfied.

This is a multidimensional root-finding problem with constraints, and we use MAT-

LAB’s fmincon SQP solver to solve it. An initial guess of the design variables is auto-

matically generated based on heuristics encoding our knowledge of the task.

4.6. Limit Surface for a Pinch Grasp

The modeling and motion planning of the previous sections requires the individual

fingertip limit surfaces as a function of the configuration of the object relative to the

hand, and these limit surfaces depend on the specifics of the grasp. In this paper, we

focus on a two-fingered pinch grasp with fingertip patch contacts. To focus on the essen-

tial ideas of this paper, the mechanics of sliding regrasp, and iterative motion planning

and execution, we built a custom two-fingered passive gripper, shown in Figure 4.8. We

use this gripper instead of the Allegro hand for two reasons: (1) it is lighter than the

Allegro hand (0.25 kg vs. 1.2 kg), which allows larger accelerations, and (2) it creates a
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gravity

TOP view

SIDE view

Figure 4.8. The lightweight, spring-powered, constant-gripping-force gripper.

well-characterized constant normal force at the fingertips, allowing us to avoid the po-

tential confounding issue of errors in fingertip force control while we validate the general

approach.

In this section we describe the contact model of the constant-gripping-force gripper,

and in Section 4.7 we describe regrasp experiments using it.

4.6.1. Pinch-Grasp Description

For this analysis we focus on the case of a zero-thickness planar object pinched by two

fingers on opposite sides of the part (Figure 4.9). The two fingers stay stationary relative

to each other, and we assume circular contact patches with the same fixed radius a.

The plane in which the object and the manipulator move is tilted by angle ↵ from the

horizontal plane as shown in Figure 4.5. We denote fg = �mg cos↵ as the gravity force

acting on the object in the out-of-plane direction.
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Figure 4.9. Side view of the system. The green shaded regions show the
pressure distributions of the contacts.

Finger 1, on the top of the object, is connected to the manipulator by two hinges and

an arm of length L. Finger 2, on the bottom of the object, is connected to the manipulator

through an arm fixed to the manipulator with the same length L. The two hinges keep

the two flat circular fingers parallel to each other and in full contact with the object. The

distance from the hinges to the contact of finger 1 is assumed to be zero. The spring is

located LS away from the manipulator and the spring force is denoted S. This model

allows us to control the normal forces at the fingers by the spring sti↵ness (another model

could be force control of the manipulator in the normal direction and motion control in

the two linear tangent directions and rotation about the contact normal).

4.6.2. Fingertip Limit Surfaces

We first note four important features of the two-fingered pinch grasp:

(1) Collocated point fingers cannot hold the object. Remembering that the

laminar object is modeled in the limit of zero thickness, the contact point of

each finger would be at the same point. Therefore contact forces from the two

collocated fingertips always make zero moment about the contact point, and they
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cannot balance the moment due to gravity. This issue can be addressed by having

contact patches instead of point contacts.

(2) The pressure distribution at a contact patch is generally unknowable.

If the object and fingertip are modeled as rigid bodies, then the pressure as a

function of the location on a continuous contact patch will be indeterminate. Our

approach is to use the simplest possible model of the pressure distribution that

is physically consistent, and to account for any unknowable modeling errors by

iterative regrasping.

(3) The simplest pressure distribution, uniform pressure, is physically in-

consistent. If both contact patches have a uniform pressure distribution, then

the two design variables available (the pressure at each patch) are insu�cient to

provide force-moment balance of the object in gravity.

(4) The lowest-order physically consistent pressure distribution model is

uniform pressure on finger 1 and linearly-varying pressure on finger 2.

The uniform pressure on finger 1 assures that the total normal force passes

through the rotational joint above the finger. The linearly varying pressure dis-

tribution on finger 2 provides the extra variable needed to solve uniquely for

the pressure distributions while assuring that the object remains in the plane of

motion.

Figure 4.9 illustrates the two contact pressure distributions, viewed from the side.

The pressure p1 is constant over the contact patch, modeled as a disk of radius a. The

pressure p2 is also defined over a disk of radius a. Defining a y
0-axis as the axis from the

center of mass of the object to the center of the contact disk, the pressure distribution

varies linearly along y
0 and is constant along the orthogonal direction (see Equation (B.3)

in Appendix B for the expression of p2). As shown in Figure 4.9, to maintain a static
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grasp, p2 is larger closer to the center of mass and drops with increasing y
0. This allows

for force and moment balance considering the gravity force on the object.

Let � be the distance from the object center of mass to the center of the finger contact

patches. As shown in Appendix B, the minimum spring force S needed to maintain the

grasp increases as � increases, according to

(4.21) S �
fgL

LS

✓
4�

a
� 1

◆
.

For a spring force less than this bound, the required pressure p2 for force-moment bal-

ance becomes negative within finger 2’s contact patch, which is not physically realizable.

Therefore moment balance cannot be achieved, and the object rotates and falls out of the

plane of motion. You can try a simple experiment with a cell phone to see that a larger

grip force is needed to hold the phone horizontal as the pinching fingers move further

from the center of mass.

Based on the modeling above, Appendix B derives the detailed forms of the limit

surfaces describing the contacts at finger 1 and finger 2. The limit surfaces are based

on ellipsoidal approximations to the elliptic integrals corresponding to the finger contact

forces and moments. The resulting closed-form expressions are fT
i
Aifi = 1, where for

finger 1 A1 = A(0) and for finger 2 A2 = A(�). The expression for A(�) can be found in

Equation (B.26) in Appendix B.

With the description of the contact limit surfaces as a function of the configuration

of the object in the hand, we apply the dynamics and motion planning described in

Sections 4.3–4.5 to experiments.

4.7. Experiment

We tested the motion planner discussed in Section 4.5 with a pinch-grasp introduced

in Section 4.6 using the ERIN system described in Chapter 3.
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Figure 4.10. Repositioning example: showing trajectories found by the mo-
tion planner. The plot on the left shows the entire motion with a time
interval between frames of 60 ms. Plots on the right show the initial and fi-
nal configurations, and give more details of motion during the sliding phase.
Solid gray curves are the object CM trajectories, red dots represent the fin-
ger contacts, and the brown lines represent the finger orientation. Thick
black arrows show the directions of the object motion. Thick black curves
show the sliding regions. Thin red and green arrows are the x and y direc-
tions of the body frame B.

We used the lightweight passive gripper rather than the Allegro hand for the higher

achievable accelerations and better contact force characterization as discussed in the be-

ginning of Section 4.6. We used three joints of the 7-DOF WAM arm (joints 1, 4, and 6)

while keeping the other joints fixed to emulate a 3R planar arm. Manipulator workspace,

velocity, and acceleration constraints in the root-finding problem were based on joint, ve-

locity, and motor properties given by the manufacturer as well as conservative estimates

of the inertia matrix. The values of manipulator velocity and acceleration constraints are

shown in Table 4.1.

Given initial and goal relative configurations, the motion planner plans the hand

trajectory and solves the joint trajectories using inverse kinematics. The planned joint
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Figure 4.11. Repositioning example: showing the trajectories of the object
(red dashed curves) and the finger (blue solid curves) found by the motion
planner to reposition an object. Green shaded regions show the planned
sliding phase. (Left) Finger contact center trajectories qf and object CM
trajectories qo. Initial relative position error is shown as the space between
the dashed red line and the blue line which is reduced to zero after the
sliding motion. (Middle) Finger velocities q̇f and object contact points
velocities (points on the object that are coincident with the contact center)
GTq̇o are shown to demonstrate relative velocities at the contact. (Right)
Finger accelerations q̈f and object contact point accelerations d

dt
(GTq̇o)

demonstrate relative accelerations at the contact.

trajectories were generated o✏ine, and real-time control was used to follow the trajectories

specified by the planner. The motion control loop used encoder feedback and ran at

500 Hz on a Linux PC with an Intel Core i7-4770 CPU and 16 GB RAM. Motion was in

a horizontal plane (↵ = 0) to achieve more isotropic control authority than would be the

case in a vertical plane. The values of the constants used in modeling and planning are

summarized in Table 4.2.

joint # ⇥̇min (rad/s) ⇥̇max (rad/s) ⇥̈min (rad/s2) ⇥̈max (rad/s2)
1 -2 2 -12 12
4 -5 5 -80 80
6 -20 20 -100 100

Table 4.1. Limits for manipulator joint velocities and accelerations.
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object mass m 0.049 kg
object dimensions 0.12 m⇥0.09 m
object inertia I (about its CM) 2.78⇥10�4 kg·m2

angle between the horizontal plane ↵ 0
gravity constant g 9.8 m/s2

gripper arm length L 0.17 m
spring location LS (as shown in Figure 4.9) 0.05 m
spring load S �7 N
measured friction coe�cient µ̂ 0.34
friction coe�cient used in planning µ 0.16
radius of the contact patch a 0.0254 m
3R robot link 1 length 0.552 m
3R robot link 2 length 0.303 m
3R robot link 3 length 0.287 m
Table 4.2. Parameter values for the two-fingered grasp system.
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Figure 4.12. Repositioning example: blue curves showing the planned joint
positions, velocities, and accelerations of the manipulator calculated from
the finger trajectories shown in Figure 4.11 by solving inverse kinematics.
The green dashed lines are the joint velocity and acceleration limits cor-
responding to the values in Table 4.1. Joint position limits are not shown
since the trajectories are far from the limits.
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Figure 4.13. Experiment result of one-shot planning showing the relative
position changes vs. time. Red dashed curves show the reference relative
position rB

f
trajectories. Blue curves represent the actual relative position

trajectories. Green shaded regions indicate the planned sliding phase.

4.7.1. One-shot Planning and Execution

Before planning, the initial relative position rB
f,init was measured by the vision system.

With the goal relative position rB
f,goal given by the user, the motion planner calculated the

motion of the robot to realize the repositioning satisfying all the constraints.

Figures 4.10 and 4.11 show the motion planning result of a sliding regrasp example.

The initial relative position was measured as rB
f,init = [�0.011 m, �0.022 m, 164�]T, and

the goal relative position was given as rB
f,goal = [0, 0, 180�]T. Figure 4.12 shows the planned

joint trajectories of the 3R robot which were calculated from the inverse kinematics applied

to the finger position trajectories in Figure 4.11. The planned time periods for each phase

were T1 = 0.64 s, T2 = 0.29 s and T3 = 1.33 s.

The planned motions were tested experimentally. The WAM arm followed the pre-

planned joint trajectories using a PID-based joint position controller. The object poses

were obtained from the vision system. To prevent overshoot during the sliding motion, we
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Figure 4.14. Experiment result of one-shot planning, showing the
finger contact center trajectories. Green shaded regions indi-
cate the planned sliding phase. The mean absolute tracking er-
rors are [1.02 mm, 2.56 mm, 0.296 �]T, and the standard deviations are
[1.04 mm, 2.75 mm, 0.27 �]T.

chose an underestimated friction coe�cient in the motion planner. Experimental results

of relative position change are shown in Figure 4.13. Finger position tracking results

are shown in Figure 4.14, where the finger poses were calculated from the recorded joint

angles and the forward kinematics of the system.

During the implementation, the finger moved relative to the object along the desired

direction and ended up with some undershoot errors, which were more apparent in the

y-direction. One reason for this undershoot is the intentionally underestimated friction

coe�cient in the motion planner. Another reason is the trajectory tracking error is larger

in the y-direction as shown in Figure 4.14. Since there is more error in the y-direction from

the initial configuration, the planned motion has higher accelerations in this direction

which increases tracking error. The final relative position errors could also have been

caused by modeling errors and uncertainties in measuring the initial relative positions.



66

xBrf (mm)
yBrf (mm)

1 6 5

1 7 0

1 7 5

5

1 8 0

θ
B rf

(◦
)

1 8 5

0
-5 -2 0-1 0 -1 0

0 -1 0-505
xBrf (mm)

-2 0

-1 5

-1 0

-5

0
yB rf

(m
m
)

goa l rBf
iter 0
iter 1
iter 2

Figure 4.15. Experimental results of iterative planning and execution for
one experiment consisting of three iterations. The plots show the planned
and actual relative configurations rB

f
(t). Each color represents one iteration.

Triangles and circles show the initial and final points of each trajectory.
The dashed lines are the planned trajectories and the solid curves shows
the experimental results. Plots on the left and right show the same result
from di↵erent viewpoints.

4.7.2. Iterative Planning and Execution

This section reports the results of iterative planning and execution for 3-DOF planar

regrasping. Unlike the idealized 1-DOF example in Section III, we have no theoretical

convergence results for iterative in-hand regrasping for the 3-DOF case and all possible

sources of error. The motivation for iterative regrasping (essentially discrete-time one-step

deadbeat feedback control) is the same, however.

In each experiment, we tested three iterations of motion planning and execution with

the same goal. In each iteration, the initial state was measured from the last state of

the previous iteration. The robot trajectories were planned automatically by the motion
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iteration 0

iteration 1

iteration 2

Figure 4.16. Iterative planning experiment corresponding to Figure 4.15.
Total times for iterations 0, 1, and 2 are 2.26 s, 1.6 s, and 1.95 s respectively.
Time intervals between snapshots were manually chosen to show the motion
of the system. A video of this experiment is shown in the attached media.
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Figure 4.17. Experiment results of 10 trials, showing the changes of relative
positions. Each color represents one iteration. The red lines within the
boxes show the mean values, edges of the boxes are the 25th and 75th
percentiles, and whiskers extend to the most extreme data points.
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Figure 4.18. Planning time of 10 trials. Each color represents one iteration.
Red lines within the boxes show the mean values, edges of the boxes are the
25th and 75th percentiles, and whiskers extend to the most extreme data
points.

planner based on the initial state and goal state. Then the robot followed the planned

trajectories.

Results of the iterative planning are shown in Figures 4.15 and 4.16. The first itera-

tion corresponds to the example given in Section 4.7.1. After each iteration, the relative
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position was closer to the goal configuration. Once the object is near the goal state,

additional iterations did not decrease the error. In cases where the error was close to the

mean vision error of the vision system (⇠ 0.5 mm), additional iterations could actually

introduce more error.

4.7.3. Repeatability

To test the repeatability of the repositioning experiment, we ran the previous three-

iteration experiment ten times, making a total of 30 motion plans and executions. At

the beginning of each three-iteration trial, the object was manually placed at approxi-

mately the same initial configuration. Figure 4.17 shows a boxplot of the relative position

changes. Figure 4.18 shows a boxplot of the planning time. Further iterations produce

no statistically significant improvement (or worsening) of the grasp.

Sources of error in achieving planned regrasps include vision errors (as mentioned

above), error in following the planned robot trajectory, and contact modeling errors (e.g.,

the Coulomb friction approximation and the contact pressure distribution approxima-

tions). The mean absolute robot trajectory tracking errors were [1.2 mm, 2.6 mm, 0.35 �]T,

with standard deviations [0.91 mm, 2.6 mm, 0.22 �]T, respectively. Errors induced by the

assumed form of the contact pressure distributions are likely less meaningful for n-fingered

grasps than for our 2-fingered grasp, because the distances between the finger contacts

play a larger role in determining the shape of the grasp limit surface than the detailed

pressure distribution at single fingers. While our finger/object contacts approximately

obeyed a dry Coulomb friction model, other finger/object contacts, particularly involving

soft, hysteretic materials such as rubber, may require a di↵erent contact model.

The goal configuration was the same in all 30 individual planning and execution steps,

but the initial configurations varied considerably. The results of the reported experiments

are in line with what we observed with other 3-DOF 2-fingered laminar regrasps we tried,



70

and point to a typical final error on the order of a few millimeters in linear position and

a few degrees in orientation. Achieving a smaller final error would require improvements

in the vision system, trajectory tracking, or contact modeling.
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CHAPTER 5

In-hand Manipulation with Spring-Sliding Compliance

In the previous chapter, an object is regrasped using dynamic loads and sliding is

restricted to parallel surfaces. In this work we focus on quasistatic regrasping by push-

ing theobject against stationary constraints. Each finger is modeled as a frictional point

contact connected by a three-dimensional linear spring to an anchor point whose motions

is controlled in three linear directions. Given the finger sti↵ness, by position control-

ling the anchor we can change the fingertip contact force and initiate sliding when the

contact forces are at the edges of their friction cones. External contacts provide forces

that maintain object force balance during the motions. More details can be found in

Section 5.2.

Similar to spring compliance that maps contact forces to finger compressions, slid-

ing can be treated as another source of compliance that yields accommodating sliding

directions. Advantages of spring-sliding compliant grasps include:

• The spring compliance ensures that fingers remain in contact while sliding over

general surfaces in addition to parallel planes.

• With spring compliance the contact forces are determined by finger compressions,

so contact force control can be achieved by controlling finger anchor motions.

• Sliding compliance bounds the tangential contact forces and allows sliding mo-

tions for in-hand manipulation.

• A spring-compliant grasp can be both programmable and mechanically passive,

ensuring stability [24], [28].
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spring 
compliance

spring-sliding 
compliance

(a) (b) (c)

anchors
move down

Figure 5.1. Example showing spring-sliding compliance: two springy fingers
grasp an object with two point contacts. The spring anchors move down
vertically and push the object against a fixed table. Lines at the contact
points show friction cones and arrows show the contact forces applied to
the object. When the anchors move from (a) to (b), the fingers are further
compressed and the contact forces increase in the vertical direction. The
fingertips are still sticking since the contact forces are within the friction
cones. As the anchors move to (c), the contact forces reach the edges of
the friction cones and the fingertips start to slide on the contact surfaces.
Contact forces from the table keep the object stationary and force-balanced.

We define a grasp configuration as a set of finger relative contact positions to the

object. The goal is to achieve a desired new grasp by controlling the anchor motions

while maintaining object quasistatic force balance. Figure 5.1 shows an example of in-

hand regrasping. When the anchors move down, fingertip contact forces are first moved

to the edges of the friction cones and then sliding is initiated to achieve regrasping. The

object remains stationary and contacts with the environment provide external forces to

keep the object force-balanced.

In general case, we assume the external contacts locations are fixed in the object

frame and the external environment is stationary. This allows rolling and sliding motions

of the object with respect to the environment other than remain stationary. The problem

that we address in this paper is to find the object and anchor motions that can realize a

given regrasp for multi-fingered point-contact grasps with environment contacts. A more

complete problem statement and list of assumptions are given in Section 5.1.
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The main results and contributions can be summarized as following:

(1) Contact mechanics of a single finger (Section 5.3) : Given a system configuration

(including object, finger anchor, and contact point positions) and the object

velocity, find the relationship between the anchor velocities and the fingertip

velocities.

(2) Object mechanics (Section 5.4) : Given the motions of the object and all the

anchors, find object velocity constraints that maintain external contacts and

force-balance constraint in terms of the forces from the fingers and the external

contacts.

(3) Robustness analysis (Section 5.5) : A set of object and anchor trajectories are ro-

bust when finger contact wrench uncertainties can always be balanced by counter

wrenches from the environment contacts. The goal of the analysis is to find the

robust conditions for a given set of object and anchor motions with respect to

given uncertainties.

(4) Motion planning (Section 5.6) : Find feasible and robust object and finger anchor

trajectories that can realize a desired regrasp satisfying constraints derived from

(2).

(5) Implementation (Section 5.7) : We detail a two-fingered system and specify the

motion planning algorithm in (4) to find feasible anchor trajectories that can

realize a desired regrasp and maximize the robustness assuming the object’s mo-

tion remains stationary. Simulation and experiment results are presented for a

planar regrasp example.

5.1. Problem Description

The system consists of an n-fingered hand grasping an object with n point contacts.

Each finger anchor can be motion-controlled individually. The object also contacts a
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rigid stationary environment with a total of m frictional point contacts (a line contact

is approximated by two points and a face contact by three or more points). A system

configuration is defined by the positions of the finger anchors, finger contact points, and

the object. The problem can be described as: given an initial system configuration where

the object is force balanced with no relative motion at the fingertips and a desired new

grasp, find anchor and object motions that realize the regrasp while maintaining force

balance at all times.

5.1.1. Assumptions

(1) Quasistatic motions.

(2) Fingers contact the object at point fingertips.

(3) Each finger is linearly springy and the sti↵ness is known. The sti↵ness matrix

is symmetric positive definite to ensure grasp stability [24, 3, 28, 27], i.e., for

small position disturbance of the object the grasp is able to restore the object to

its desired location instead of tending to eject the object.

(4) Each finger maintains a positive contact normal force.

(5) The object is rigid, smooth, and of known geometry.

(6) Dry Coulomb friction applies at each contact. The friction coe�cients at all

contacts are known. For convenience, we assume that finger contacts with the

object have a friction coe�cient µ and environment contacts with the object have

a friction coe�cient µe.

(7) The m external contact points are given and fixed w.r.t. the object.

5.1.2. Notations

Within the scope of this paper, all vectors are written in bold lowercase letters, all matrices

are written in bold capital letters, scalars are written in italic letters and coordinate frames
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Figure 5.2. System configuration.

are denoted with calligraphic letters. All variables are in the world frame W unless noted

otherwise in the superscripts. For example, pfi is fingertip position of the ith finger in

the world frame W and pB

fi
is the fingertip position in the object frame B.

1) For the object:

B Object frame attached to the object.

po The position of the origin of B, po = [xo, yo, zo]T .

Ro Rotation matrix of the object, Ro 2 SO(3).

!o Object angular velocity. [!o] 2 so(3) is the skew-symmetric matrix

representation of !o.

2) For the fingers:

pfi The ith fingertip position, pfi = [xfi, yfi, zfi]T .

pai The ith anchor position, pai = [xai, yai, zai]T .

d0i The equilibrium position of the ith fingertip.

di Compression of the ith finger, di = pfi � d0i � pai.

Ki Sti↵ness matrix of the ith finger, Ki 2 R3⇥3.

Figure 5.2 shows the configuration of the n-fingered grasp for a general spatial case.

3) For the contact forces:
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The contact force applied to the object by the ith finger is

(5.1) fci = �Kidi = �Ki(pfi � pai � d0i).

With the given contact surface geometry, the contact normal direction which always points

into the object is a function of the finger contact position in B

(5.2) n̂i(p
B

fi
) = Rfi[0, 0, 1]T ,

where the hat means the vectors are normalized. The contact normal force is the projec-

tion of fci to the normal direction as

(5.3) fNi = (fci · n̂i)n̂i = fT
ci
n̂in̂i,

and the contact tangential force is

(5.4) fti = fci � fNi.

5.2. Finger Spring Compliance Model

In this paper we introduce a general finger spring compliance model in order to realize

sliding control through controlling the finger anchor positions. In this section we show how

this model can represent physical fingers. Figure 5.3 shows two di↵erent type of fingers.

For (a), there is a spring-mounted fingertip attached to the end of a position-controlled

finger. The anchor point is the end of the position-controlled finger. This design directly

matches the model as long as the 3D sti↵ness of the spring mounting is known and the

3D spring deflection is measured.

Figure 5.3(b) represents the case where the fingertip is rigidly mounted to the finger.

The e↵ective sti↵ness may come from an active sti↵ness control law or from passive com-

pliance at the joints (as with series elastic actuators) or at the links. Another interesting
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Figure 5.3. Generalized finger spring compliance model. (a) shows a com-
pliant unit fixed to the fingertip of an otherwise rigid position-controlled
finger. (b) shows a joint-torque controlled finger. Fingertip sti↵nesses of
both cases can be modeled by (c).

case is where there is no passive compliance but the joints are torque controlled. In this

case, the anchor is the base of the finger and the entire finger acts as a spring. We examine

this case in more detail below.

Let ✓ denote the finger joint angle vector, ⌧ denote the joint torque vector, and J(✓)

denote the Jacobian matrix. From finger kinematics and using the principal of virtual

work, we have the mapping from fingertip contact forces to the joint torques ⌧ = JT fc .

When J is invertible, we have

fc = J�T⌧

! @fc = @(J�T )⌧ + J�T
@⌧.(5.5)

For simplicity we assume the world frame is at the finger base and pf is the fingertip

position relative to the anchor. From the velocity mapping ṗf = J✓̇ we have

(5.6) @pf = J@✓.
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Figure 5.4. Eigenvalues of sti↵ness matrix K for the example 2R finger. In
this example, ⌧1 = ⌧2 = 1 Nm and both link lengths are 1 m. The green
shaded region shows the feasible range for ✓2 that can yield positive definite
K.

Combining Equations (5.5) and (5.6), we can write the finger sti↵ness matrix as

(5.7) K = �
@fc
@pf

= �
@(J�T )

@✓
⌧J�1

� J�T
@⌧

@✓
J�1

.

The specific expression for K depends on the Jacobian and how the joint torques ⌧ are

commanded.

Assume, for example, that joint torques are independent of the finger position ( @⌧
@✓ =

0), i.e., open-loop torque control. As an example, consider a 2R finger example as shown

in Figure 5.3(b). We assume that the links have unit length and the joint torques have a

constant value of 1. Then the sti↵ness matrix simplifies to

(5.8) K(✓) = �
@(J�T )

@✓

2

4 1

1

3

5J�1 =

2

4 k11 k12

k21 k22

3

5 ,
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Figure 5.5. We pick some points on Figure 5.4 and draw corresponding
finger configurations with ✓1 = 0. Each chosen ✓2 and corresponding sti↵-
ness matrix K and its eigenvalues by Equation (5.8) are shown. Dashed
lines show eigenvectors of K. Stream plots at fingertips show how contact
force change @fc reacting to fingertip position changes @pf . Brown arrows
represent fingertip contact forces.

where

k11 =
1

4
csc3

✓2 (cos (2✓1 � ✓2) + 2 (cos ✓2 + cos (2✓1 + 2✓2) + 1) + cos (2✓1 + ✓2)) ,

k12 = k21 =
1

4
(sin (2✓1 � ✓2) + 2 sin (2✓1 + 2✓2) + sin (2✓1 + ✓2)) csc3

✓2,

k22 = �
1

4
csc3

✓2 (cos (2✓1 � ✓2) � 2(cos ✓2 � cos (2✓1 + 2✓2) + 1) + cos (2✓1 + ✓2)) .
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@fc@pf

object

✓2 = �1

Figure 5.6. An unstable sliding example for case A in Figure 5.5: since
⌧1 = ⌧2 the fingertip force always aligns with the first link. For a fingertip
displacement @pf as the blue vector, the corresponding contact force change
@fc shown as the orange vector will keep rotating counterclockwise and
remain outside the friction cone. The green shaded area shows the friction
cone.

The eigenvalues of K are

�1 =
1

2
csc3

✓2

⇣
1 + cos ✓2 �

p
1 + cos (3✓2) + cos ✓2 + cos2 ✓2

⌘
,

�2 =
1

2
csc3

✓2

⇣
1 + cos ✓2 +

p
1 + cos (3✓2) + cos ✓2 + cos2 ✓2

⌘
.

The eigenvalues are only related to ✓2 since ✓1 only changes the finger’s orientation rel-

ative to the base. The sti↵ness matrix K is symmetric and the two eigenvalues must both

be positive to satisfy the assumption of positive-definite sti↵ness. We plot the eigenvalues

with respect to ✓2 as shown in Figure 5.4. And Figure 5.5 shows the finger configuration

and sti↵ness for four values of ✓2. From the plots the finger configuration should satisfy

0 < ✓2 <
⇡

2 to satisfy the positive-definite sti↵ness assumption. In Figure 5.5, A, C and D

are cases where the sti↵ness matrix is not positive definite. When the fingertip slides on

the contact surface, these cases may cause unstable sliding conditions. In Figure 5.6 we

show an example for case A of Figure 5.5 to illustrate the unstable sliding and violation

of the quasistatic assumption: given a line contact with an object and the friction cone as
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shown, initially the contact force lies on the edge of the friction cone. By either moving

the anchor or the object, for a fingertip position change @pf as the blue vector, the corre-

sponding contact force change @fc is shown as the orange vector. The contact force goes

out of the friction cone and initiates sliding. In this example since ⌧1 = ⌧2 the fingertip

force always aligns with the first link. As the fingertip moves upwards, the contact force

will keep rotating counterclockwise and remain outside the friction cone. Therefore the

fingertip will keep sliding and never reach an equilibrium state. We provide more analysis

of the unstable sliding conditions for general cases in Section 5.3.4.

5.3. Contact Mechanics of A Single Finger

This section answers the following question: given the ith finger anchor and contact

positions, and the object position and velocity, what is the relationship between the finger

anchor velocities ṗai and the corresponding fingertip motions ṗfi?

First we need to tell which contact mode each fingertip is in. For the point contacts

of the fingertips, the possible contact modes are sticking or sliding. Given the anchor and

contact locations, the contact forces can be determined by the spring compliance. When

the contact forces are in the interior of the friction cones, the fingers stick on the object

and the contact points follow the motion of the object. When the fingertips slide the

contact forces are on the boundaries of the friction cones and the fingertip motions are

aligned with the tangential contact forces. For the sliding case, the forward mechanics

problem is to find the contact point velocity ṗfi given the anchor velocity ṗai, and the

inverse mechanics problem is to find the anchor velocity ṗai corresponding to a given

desired contact sliding velocity ṗfi. A simple example of a planar 1-finger system is

shown in Figure 5.7. Although in this example the forward and inverse mechanics can

be solved geometrically, below we analytically derive the explicit solutions for the general

spatial case.
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(b) sliding (forward) (c) sliding (inverse)
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↵
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Figure 5.7. A planar 1-finger example: the object is fixed and the finger
sti↵ness matrix is the identity matrix, therefore the contact force is fci =
�di. The finger rest point is right above the contact point. If the anchor
moves above it the finger will break contact. The shaded area is the sticking
region for the anchor positions, ↵ = tan�1

µ. (a) shows a sticking case. (b)
shows a sliding case of the forward problem: given an anchor velocity ṗai,
find the finger contact point velocity ṗfi. When the anchor is at the edge of
the sticking region, the motion ṗai “pushes” the sticking region and causes
the contact to slide left. And (c) shows an inverse problem example: all the
anchor motions that go to the left edge of the new sticking region yield to
the same sliding motion ṗfi.
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5.3.1. Sticking Case

When sticking the ith contact follows the object, i.e.,

(5.9) ṗB

fi
= 03⇥1

.

The transformations of the contact position and velocity from B to W can be written as

pfi = po + Rop
B

fi
,(5.10)

ṗfi = ṗo + Ṙop
B

fi
+ Roṗ

B

fi
.(5.11)

Substituting Equation (5.9) into Equation (5.11), we have the contact velocity in the

sticking case as

(5.12) ṗfi = ṗo + Ṙop
B

fi
= ṗo + [!o]Rop

B

fi
.

5.3.2. Sliding Case – Forward Mechanics

In sliding cases we first solve the forward problem as finding the corresponding ṗfi for a

given anchor velocity ṗai. When sliding the contact forces of the ith finger satisfy

(5.13) kftik = µkfNik.

The sliding direction is along the tangential force direction

(5.14) ˆ̇pfi = f̂ti.

We define the finger sliding velocity w.r.t. B as

(5.15) ṗB

fi
= �if

B

ti
= �iR

T

o
fti,
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where �i is a positive scalar showing how fast the fingertip slides. During sliding the

contact force of the fingertip remains on the boundary of the friction cone. We use this

relationship to solve for �i as a function of the given system configuration and object

velocity:

First, substituting Equation (5.15) into (5.11), we have

ṗfi = ṗo + Ṙop
B

fi
+ Ro�iR

T

o
fti

= cfi + �ifti,(5.16)

where cfi = ṗo + [!o]RopB

fi
reflects the change of the contact point position due to the

object motion.

From Equation (5.13), we can derive that

kftikkftik = µ
2
kfNikkfNik

! fti · fti = µ
2 fNi · fNi

d
dt
�! ḟti · fti + fti · ḟti = µ

2(ḟNi · fNi + fNi · ḟNi)

! fT
ti
ḟti = µ

2 fT
Ni
ḟNi.(5.17)

Then from Equation (5.2) we have

(5.18) ˙̂ni =
@n̂i

@pB

fi

ṗB

fi
=

@n̂i

@pB

fi

�if
B

ti
= �igni,

where gni = @n̂i

@pB
fi
RT

o
fti.

For general cases we define the sti↵ness matrix as Ki(pfi, &) which depends on the

finger contact position and other related variables &. For example & could include finger

joint angles for articulated fingers or mechanical properties that determine the finger

sti↵ness. Therefore, taking the derivative of Equation (5.1) and combining Equation (5.16)
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gives

ḟci = �K̇idi �Ki(ṗfi � ṗai)

= �

✓
@Ki

@pfi

ṗfi +
@Ki

@&
&̇

◆
di �Ki(cfi + �ifti) + Kiṗai

= �igci + cci,(5.19)

where gci = �Kifti�
@Ki
@pfi

ftidi, and cci = Kiṗai� (@Ki
@& &̇ + @Ki

@pfi
cfi)di�Kicfi. By denoting

hi =
⇣

@Ki
@& &̇ + @Ki

@pfi
cfi

⌘
di + Kicfi, we have cci = Kiṗai � hi.

Taking derivative of Equations (5.3) and (B.13) and combining Equations (5.18) and

(5.19) yields

ḟNi = ḟT
ci
n̂in̂i + fT

ci
˙̂nin̂i + fT

ci
n̂i

˙̂ni

= (�igci + cci)
T n̂in̂i + fT

ci
�ignin̂i + fT

ci
n̂i�igni

= �igNi + cNi(5.20)

where gNi = gT

ci
n̂in̂i + fT

ci
gnin̂i + fT

ci
n̂igni, and cNi = cT

ci
n̂in̂i. And

ḟti = ḟci � ḟNi = �igti + cti,(5.21)

where gti = gci � gNi and cti = cci � cNi.

Substituting Equations (5.20) and (5.21) into (5.17) we can solve the expression for

�i as

(5.22) �i =
µ

2fT
Ni
cNi � fT

ti
cti

fT
ti
gti � µ2fT

Ni
gNi

.

In the numerator, since cNi = cT
ci
n̂in̂i = (cci · n̂i)n̂i is along the contact normal, the

term fT
Ni
cNi is equivalent to fT

Ni
cci. By plugging in cti = cci� cNi, Equation (5.22) can be
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simplified to

�i =
µ

2fT
Ni
cci � fT

ti
cci +����*

0(orthogonal)

fT
ti
cNi

fT
ti
gti � µ2fT

Ni
gNi

=
aT

i
cci

�den,i

=
aT

i
Ki

�den,i
ṗai �

aT

i
hi

�den,i

= g�iṗai � c�i ,(5.23)

where ai = µ
2fNi� fti , �den,i = fT

ti
gti�µ

2fT
Ni
gNi , g�i = aT

i
Ki/�den,i and c�i = aT

i
hi/�den,i.

The finger contact sliding velocity ṗfi can be solved for by substituting �i into Equa-

tion (5.16).

5.3.3. Sliding Case – Inverse Mechanics

The result of the forward mechanics, Equation (5.23), gives the finger sliding velocity for

a given finger anchor velocity. For the inverse mechanics problem, we solve for the anchor

motions ṗai that cause a desired finger contact sliding velocity ṗfi. Since the object

motion and the contact force are given, giving a desired finger contact sliding velocity

ṗfi is equivalent to giving a desired �i from Equation (5.16). Therefore we can write all

solutions to the inverse problem as

(5.24) ṗai = g†

�i
(�i + c�i) + (I3⇥3

� g†

�i
g�i)ṗ

⇤

ai
,

where g†

�i
= gT

�i
(g�ig

T
�i

)�1 = gT
�i
/kg�ik

2 is the pseudoinverse of g�i , ṗ
⇤

ai
is an arbitrary

anchor velocity and (I� g†

�i
g�i) projects any vector to the nullspace of g�i .

For di↵erent solutions of ṗai, all the corresponding contact sliding velocities are the

same but the changes of the contact force ḟci are di↵erent. In Equation (5.24), ṗ⇤

ai
handles
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the redundancy of the inverse mechanics. By Equation (5.19) we can solve the correspond-

ing contact force change ḟ⇤
ci

for each ṗ⇤

ai
. The choice of ṗ⇤

ai
could be based on additional

constraints of the anchor motions or optimizing some desired contact force properties.

5.3.4. Sliding Case Ill Condition Analysis

In the sliding mode, Equations (5.23) and (5.24) describe the relationship between the

anchor motion and the contact point motion. This section analyzes specific cases where

the model is ill conditioned. The key terms in the equations are g�i and c�i . The term

c�i = aT

i
hi/�den,i is a scalar determined by the given system state. From Equation(5.19),

when the finger sti↵ness is constant and the object is stationary, hi = 0 and c�i will be

zero if �den,i is nonzero.

For the other term g�i = aT

i
Ki/�den,i, when the denominator �den,i 6= 0, one obvious

ill condition is when aT

i
Ki = 0. In this case the contact force is on the edge of the friction

cone and the fingertip will stick on the surface no matter how the anchor moves.

Proposition 1. The product of aT

i
Ki will be nonzero when the sti↵ness matrix Ki is

positive definite.

Proof. With assumption 4) the term ai = µ
2fNi�fti will be nonzero, therefore Propo-

sition 1 holds since the matrix Ki is full rank when it is positive definite. ⇤

For the denominator term �den,i = fT
ti
gti�µ

2fT
Ni
gNi, besides given current positions, ve-

locities and corresponding contact force, it is also determined by the sti↵ness Ki, sti↵ness

variances @Ki
@pfi

and @Ki
@& and change of the normal direction @n̂i

@pB
fi

. When the denominator

�den,i = 0, the sliding velocity will go to infinity and the quasistatic assumption will be

violated as we have shown in the unstable sliding example of Section 5.2. Now we focus

on a case where finger sti↵ness and contact normal are fixed and derive conditions that

avoid unstable sliding.
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Theorem 2. When the finger sti↵ness matrix and contact normal direction are con-

stant, the denominator term �den,i will be nonzero when the sti↵ness matrix Ki is sym-

metric positive definite.

Proof. When @Ki
@pfi

= 0, @Ki
@& = 0 and @n̂i

@pB
fi

= 0, the key variables in Equations (5.20)

and (5.21) will become

(5.25) gci = �Kifti and gNi = �fT
ti
KT

i
n̂in̂i.

Because gNi and fNi are both vectors in the direction of n̂i, we have fT
Ni
gNi = �kfNikfTtiK

T

i
n̂i.

Plugging Equation (5.25) into (5.23), we have

�den,i = fT
ti

(gci � gNi) � µ
2fT

Ni
gNi

= �fT
ti
Kifti + µ

2fT
ti
KT

i
fNi.

When Ki is symmetric,

�den,i = fT
ti
Ki(µ

2fNi � f̂ti) = fT
ti
Kiai,(5.26)

where fti and ai are both nonzero due to assumption 4. Therefore similar to the proof of

Proposition 1, when Ki is positive definite, �den,i will be nonzero. ⇤

Note that the ill conditions discussed in Proposition 1 and Theorem 2 are excluded

by the assumption of symmetric positive definite sti↵ness in Section 5.1.1.

5.4. Object Mechanics

In the previous section, we study the contact mechanics of a single finger with respect

to given object positions and velocities. In this section we extend the previous work to

consider all the finger contacts and the external contacts with the environment. For given

the motions of the object and all the anchors, we solve for object velocity constraints that
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maintain external contacts and force-balance constraint in terms of the forces from the

fingers and the external contacts.

5.4.1. Object Velocity Constraints

For the given external contact locations, the object motion need to satisfy that all the

external contacts remain fixed to the object, i.e., no motions that break any external

contact or penetrate into the environment is allowed.

We denote the contact point position of the jth (j = 1, ...,m) external contact as pej

in W , and pB

ej
in B. we can write the jth contact point velocity as

(5.27) ṗej = ṗo + [!o]Rop
B

ej
+ Roṗ

B

ej
.

Since we assume the contact point cannot move in the contact normal direction, we have

(5.28) ṗT

ej
n̂j = 0,

where n̂j is the normal direction at the jth external contact. For all the external contacts,

there are m object velocity constraints in total.

5.4.2. Object Force Constraint

Considering the contacts from both the fingers and the external environment, the object

force constraint refers to that all the wrenches applied to the object should be balanced

at all times in order to maintain the quasistatic assumption. For the jth external contact,

the contact force applied to the object is denoted as fej. When the contact point is

sticking, its friction cone is approximated with nc-sided right pyramids where nc � 3

for the spatial case and nc = 2 for the planar case. The corresponding external contact

wrench is wej = [(pej⇥fej)T , fTej]
T . The friction cones are turned into a wrench cone of the
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object, denoted by WCe. The wrench wej can be expressed as the conical combination of

basis vectors:

(5.29) wej =
ncX

k=1

�jkŵjk, �jk � 0,

where ŵjk, k = 1, ..., nc denote basis vectors of WCe. We denote we as the sum of all the

external contact wrenches:

(5.30) we =
mX

j=1

wej = Ŵ�,

where Ŵ = [ŵ11, ŵ12, ... , ŵmnc , ] 2 R6⇥mnc and � = [�11, �12, ... , �mnc ]
T
2 Rmnc⇥1.

For the finger contact force fci, the corresponding wrench applied to the object is

(5.31) wci = [(pfi ⇥ fci)
T
, fT

ci
]T .

Therefore the object force balance condition can be written as

(5.32) wc + we + wg = 0,

where wc =
P

n

i=1 wci is the total finger contact wrench and wg is the gravitational

wrench. Equation (5.32) describes the object force constraint related to the object and

finger anchor motions.

A set of object and anchor trajectories are feasible when both the object velocity

(5.28) and force constraints (5.32) are satisfied.

5.5. Robustness Analysis

System performance can be a↵ected by state errors due to imperfect trajectory tracking

and uncertainty in estimated parameters such as friction coe�cients and object geometry.

In this section we discuss conditions that ensure that a given set of object and anchor
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trajectories will be robust to these uncertainties. Due to the spring compliance, from

Equations (5.1) and (5.31) uncertainties in anchor motions, finger sti↵nesses and finger

contact point positions would result in a contact wrench uncertainty �wc.

Definition 1. A set of object and anchor trajectories is robust to a contact wrench

uncertainty �wc, when there always exists a external contact wrench �we = ��wc that

can guarantee the force balance of the object (Equation (5.32)).

The external contact wrenches we are bounded by the external frictional wrench cone

WCe. To guarantee a resistant �we exist, we + �we should also lie in WCe. Therefore the

further away we is from the edges of WCe the more robust the trajectory will be.

Theorem 3. Consider a set of object and anchor trajectories with resulting contact

wrenches wc(t) = w̄c(t) + �wc, where w̄c(t) are the nominal finger contact wrench trajec-

tories and �wc are random wrench uncertainties with �"1  �wc  "1, where " > 0 and

16⇥1 is column vector with all ones. The trajectories are robust to the bounded wrench un-

certainty when Ŵ is full rank and � � "kŴ†1k at all times, where Ŵ† = ŴT (ŴŴT )�1.

Proof. Since the uncertainty �wc spans all dimensions of the wrench space, when Ŵ

is not full rank it is impossible to guarantee the counter wrench ��wc can always be

provided by the external contacts.

From Definition 1 and Equation (5.30), the resistant external contact wrench is

�we = Ŵ�� = ��wc

! �� = �Ŵ†
�wc.(5.33)

To satisfy the Coulomb friction assumption we have

(5.34) � + �� � 0.
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Substituting Equation (5.33) to (5.34) gives

(5.35) � � Ŵ†
�wc.

Since �"1  �wc  "1, if Equation (5.35) holds for any �wc, � should satisfy

(5.36) � � "kŴ†1k.

⇤

5.6. Motion Planning

In previous sections, we provide tools to model the system of an n-fingered hand

regrasping an object and analyze the robustness of given trajectories. In this section, we

discuss the motion planning problem used to generate candidate trajectories. We focus

on the cases where the object external contacts are given and remain in a single contact

mode. The goal is to find feasible and robust object and finger anchor motions that can

achieve the desired regrasp. We propose a general motion planning framework as follows.

For initial grasps which are force-balanced and with all the fingers sticking, we define

regrasp motions that consist of two phases: a sticking phase from time 0  t1 < T1 and a

sliding phase from time 0  t2  T2. In the sticking phase we plan the anchor and object

motions that can move the finger contact forces to the edges of the friction cones. At the

end of the sticking phase, the tangential contact forces applied to the object should along

the initial sliding directions. In the sliding phase, we choose desired finger contact and

object trajectories such that the fingertips slide to the goal. Using the result of Section 5.3,

along with the initial sliding condition given from the last state of the sticking phase, we

can calculate the anchor trajectories.

During both the sticking and sliding phases, the object and sliding motions should

be chosen such that the trajectories are feasible and robust as discussed in Sections 5.4
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(a) hardware setup (b) configuration (0.05 m/div)

x

y

B

H

g

finger 1 finger 2

Figure 5.8. The planar system: (a) shows the Allegro hand grasping an
extruded object sitting on a fixed table, (b) shows the configuration of the
system. The positions of the virtual anchors (squares) are fixed in the hand
frame H. The colored lines between the anchors and contact points (circles)
show the programmed springs.

and 5.5. Additional constraints and optimal cost-to-go could be introduced to handle the

motion redundancy when planning the anchor motions. In the next section, we detail a

planar system to show an implementation of the proposed algorithm.

5.7. Implementation

In this section we detail a two-fingered planar system and specify the motion planning

algorithm in the previous chapter to find anchor trajectories that can realize a desired re-

grasp and maximize the robustness to wrench uncertainty. We assume the object remains

stationary. We identify modeling parameters from experimental data using the forward

contact mechanics model. We implement the motion planning algorithm with the identi-

fied parameters and comparisons between simulated sliding trajectories and experimental

result are shown.
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5.7.1. Description of A Planar System

The system consists of a two-fingered hand grasping an object with smooth edges (Fig-

ure 5.8). The object sits on a fixed table, and the motions of the hand are in the vertical

plane. Let H denote a hand frame attached to the hand and originating at ph. The finger

sti↵nesses and anchor positions are assumed to be fixed in H, i.e., KH

i
and pH

ai
are con-

stant. Therefore the two anchor positions are uniquely determined by the hand positions

and in-hand sliding is realized by controlling the hand motion. For simplicity, we allow

only translational hand motions and assume the object is stationary. By adding these

constraints the inverse mechanics problem in Section 5.3.3 will yield a unique solution of

anchor motions.

The experiments are implemented with the ERIN system as introduced in Chapter 3.

we use two fingers of the Allegro hand to grasp the extruded object. Each finger consists

of four joints which are individually controlled by geared DC motors. The fingers are

joint-torque controlled at 333 Hz to perform desired fingertip springiness KH

i
. Deviations

from fingertip positions pH

fi
to their programmed equilibrium points pH

0i multiplied by

KH

i
give desired fingertip forces. The forces are turned into referenced joint torques by

multiplying transpose of Jacobian matrix:

(5.37) ⌧i = JT

i

⇥
KH

i
(pH

0i � pH

fi
)
⇤
,

where ⌧i denotes referenced joint torques for the ith finger and Ji denotes the Jacobian

matrix. Fingertip positions pH

fi
and Ji are evaluated with joint encoder feedback. The

hand is mounted at the end of the WAM arm which is controlled at 500 Hz. Positions of

the hand and the object are both sensed by the motion capture system.

This method of simulating contact compliance using torque control of the finger joints

has a number of tradeo↵s with using a passively compliant hand. It has advantages of
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Figure 5.9. Parameter fitting result of finger contact point position trajec-
tories pB

fi
(t). Dashed lines are experimental data and solid lines are fitting

results.

programmability and compatibility with other dexterous robotic hands, but may introduce

errors due to control bandwidth limitations, joint friction and backlash, and low encoder

resolution.

5.7.2. Parameter Identification

By using knowledge of the forward contact mechanics from Section 5.3.2, given anchor

and object motions we can simulate the fingertip motions from initial states. Therefore

with this model we can identify modeling parameters using experimental data. Besides

the finger contact friction coe�cient µ, we also included the finger sti↵ness parameters

(KH

i
and pH

0i) to be identified due to the uncertainties from the Allegro hand.

The initial grasp was manually positioned and the hand was commanded to move in

the �y-direction for 0.15 m. Optimal parameters were fitted by a SQP solver and the cost

function was chosen to be the sum of absolute errors between simulated and experiment

finger contact positions. We used data from a 10 s long experiment with 5000 samples of

fingertip positions. Result of the parameter identification can be found in Table 5.1. And
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parameters initial guess optimal

µ 0.24 0.2502

KH

1 (N/m)


150 0
0 100

� 
152.06 0

0 101.1

�

KH

2 (N/m)


150 0
0 100

� 
150.23 0

0 105.94

�

pH

01 (m) [�0.025, 0.04]T [�0.0255, 0.0397]T

pH

02 (m) [0, 0.04]T [0.0006, 0.0412]T

Table 5.1. Parameter identification result.

Figure 5.9 shows the finger contact position trajectories from both experiment and fitting

results.

5.7.3. Planar Robust Regrasp

In this section we show the planning and execution of a planar regrasp task using the

parameters identified above. The initial grasp is manually positioned and measured by

the motion capture system. Based on Section 5.6, we specify a motion planning algorithm

to find feasible hand motions to realize the desired regrasp and maximize robustness. The

planned hand trajectories are executed by the WAM arm.

For the planar system, when both the fingers are sliding, we know the contact forces

directions if given the contact positions and sliding directions. Due to redundancy in

the inverse mechanics, there are two remaining freedoms that control the magnitude of

the contact forces. Since we assume the anchors are fixed to the hand and the hand is

only allowed translational motions, there will be a unique solution for hand position ph
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in terms of given contact points and sliding directions. The expression for ph is derived

below.

The mapping of anchor positions from H to W is

(5.38) pai = ph + Rhp
H

ai
,

where Rh is the rotation matrix of H. Based on the previous assumptions, Rh and pH

ai

are fixed. We denote ?f̂ci as the perpendicular direction of the contact force fci, and we

have

(5.39) ?f̂ci · fci = 0 !
?f̂T

ci
fci = 0.

Since fci is along the edge of the friction cone, given a finger contact position, ?f̂ci can

be obtained from the object geometry, contact friction, and sliding direction information.

Substituting Equations (5.1) and (5.38) to (5.39), we can solve the hand position for a

given pair of finger contact positions {pf1, pf2} as

(5.40) ph =

2

64
?f̂T

c1K1

?f̂T
c2K2

3

75

�1 2

64
�1

�2

3

75 ,

where �i = ?f̂T
ci
Ki(pfi �RhpH

ai
� d0i).

With the solved ph, corresponding fingertip contact forces can be solved for using

Equation (5.1). Combined with Equations (5.31) and (5.32), we can also test if the

corresponding fingertip contact wrenches can be balanced by the external contacts.

5.7.3.1. Finger Contact Position Map. For the given object, the finger contact posi-

tions can be uniquely determined by the y-positions of the fingertips in the object frame

B. Given a pair of {yB
f1, y

B

f2}, we can calculate the contact positions {pB

f1, p
B

f2}, and given

the sliding directions we can determine the corresponding anchor and hand positions from
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Figure 5.10. A diagram of a robust task space sliding regrasp plan. The
diagram shows a finger contact position map (FCmap) where the green
shaded part is the feasible region where the object is in force balance. The
two fingers both moves in the �y-direction of B. The red curve shows the
most robust curve ⇠⇤. The black curve is the planned path for the regrasp.

Equation (5.40). Therefore the full task space of the planning problem can be represented

by the yB
fi

positions. Figure 5.10 shows the finger contact position map (FCmap): the start

point is at S = [0.1684 m, 0.169 m]T and the goal is to reach G = [0.055 m, 0.035 m]T .

The sliding directions determine which friction cone edges the contact forces lie on. In this

example we assume the fingers always slide toward the goal. For each point on the map,

we can get the contact position pfi from object position and geometry, then calculate

hand position ph, anchor positions pai and contact forces fci with Equations (5.40) (5.38)

and (5.1). Finally based on Equations (5.31) and (5.32), we can test if the contact forces
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could be balanced by the external contacts with a linear program:

(5.41) min
�

1T�, subject to

8
><

>:

Ŵ� = �wc �wg

� � 0mnc⇥1

,

where in this example m = 2 and nc = 2, and 1 is a 4⇥1 column vector with all ones.

If a solution of � is found, the contact positions satisfy the force balance constraint. In

Figure 5.10, feasible contact point positions are marked as green. The friction coe�cient

between the object and the table is µe = 1 and the gravity of the object is �10.1 N.

5.7.3.2. Planning Algorithm. In this example the desired regrasps are realized by

planning the hand motion ph(t). Initial grasps are assumed to be force-balanced and

with all the fingers sticking. The first step is to test if the goal position G is in the feasible

region with (5.41). If the goal is out of the feasible region, the desired regrasp cannot be

achieved with the current external contacts. Following Section 5.6, the planning algorithm

is detailed below.

Sticking Phase: we define the hand trajectories ph(t1) as cubic time polynomials

and set velocity boundary conditions ṗh(0) = ṗh(T1) = 0. Given initial condition S and

goal G, the hand position at the end of the sticking phase ph(T1) can be calculated with

Equation (5.40). The trajectories of the sticking phase are determined as long as the

period T1 is given.

Sliding Phase: Since the fingertip contact positions can be described by the coor-

dinates {y
B

f1, y
B

f2}, we use ⇠(t2) = [yB
f1(t2), y

B

f2(t2)]
T to represent sliding trajectories. To

accomplish the desired regrasp we have ⇠(0) = S and ⇠(T2) = G. From the robust analysis

in Section 5.5, sliding trajectories are feasible as long as ⇠(t2) always lies in the feasible

region of FCmap. Based on the findings in Section 5.5, the further away the required

external contact wrench we is from the boundaries of WCe, the more robust the current

fingertip relative positions are. In this system given the environment contacts and the
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Figure 5.11. Snapshots of the planned motions. Positions are in meters
(0.1 m/div). Small squares show the finger anchors. Blue (sticking) and
red (sliding) dots show finger contact points from simulation. Black dots
are the goal contact positions. Green lines shows the edges of the contact
friction cones. Blue, red and green arrows show contact forces, contact
normal forces and contact tangential forces respectively.

contact position of one finger, there is an optimally robust contact position of the other

finger. The union of the most robust fingertip position pairs draws a curve in FCmap,
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Figure 5.12. Experimental result showing contact point positions in B.
Dashed lines are experimental data and solid lines are simulated trajec-
tories.

denoted by ⇠⇤. To describe how far a wrench we is to the faces of the wrench cone WCe,

we define a matrix ?Ŵ whose rows are unit vectors normal to the faces of WCe and

pointing into the cone. The path of ⇠⇤ is then found by the following procedure:

8 y
B

f1, find y
B⇤

f2 such that

max d, subject to

8
><

>:

?Ŵŵe � d

d � 0
,

where ŵe are the normalized total external contact wrenches. The solved ⇠⇤ is shown as

the red curve in Figure 5.10.

To maximize robustness, the principle of our planning algorithm is to plan a ⇠ that

overlaps with ⇠⇤ as much as possible. By introducing a point S0 where ⇠ reaches ⇠⇤ and

a point G0 where ⇠ leaves ⇠⇤, the sliding trajectory ⇠(t2) is defined by three pieces:

• 1st piece (S ! S0, 0  t2  T21) : The contact sliding trajectories ⇠(t2) are cubic

time polynomials. The boundary conditions are ⇠(0) = S, ⇠(T21) = S0, ⇠̇(0) = 0,

and ⇠̇(T21) = vs, where vs is determined by the initial velocity of the next piece.
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• 2nd piece (S0
! G0, T21  t2  T21 + T22) : The contacts slide along ⇠⇤ for a

period of T22. The sliding velocities are assumed to have a constant magnitude

k⇠̇k = v2 = L2/T22 where L2 is the arc length of ⇠⇤ between S0 and G0. The initial

and final velocities are vs = v2
ˆ@⇠⇤|S0 and vg = v2

ˆ@⇠⇤|G0 , where ˆ@⇠⇤|X means the

normalized tangent vector at point X.

• 3rd piece (G0
! G, T21 + T22  t2  T2) : The contacts slide from G0 to G

following cubic time polynomials. The boundary conditions are ⇠(T21+T22) = G0,

⇠(T2) = G, ⇠̇(T21 + T22) = vg, and ⇠̇(T2) = 0.

With the definitions above, the motion planning problem can be described by the

following nonlinear program:

max
S0
,G0

,T21,T22

L2(⇠
⇤
,S0

,G0) � Vmax(S,G,S
0
,G0

, T21, T22),

subject to

8
><

>:

sgn(⇠̇) = sgn(G� S)

T21 + T22  T2,

,(5.42)

where  is a positive weighting scalar and Vmax = [1, 1] max(⇠̇) represents the maxi-

mum sliding velocities. The first constraint ensures that the sliding directions are always

towards the goal as we assumed in 5.7.3.1.

Given T1 = 5 s, T2 = 15 s and  = 0.5, the planned contact sliding path is shown in

Figure 5.10, and corresponding trajectories of the fingers are shown in Figure 5.11.

The planned trajectories were executed and the results are shown in Figure 5.12. The

final relative fingertip position errors are [2.2 mm, 2.6 mm] w.r.t. total travel distances of

[114.2 mm, 136.3 mm] for the two fingers respectively.
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CHAPTER 6

Conclusion

In this thesis we study in-hand manipulation by controlled sliding to reposition finger

contact positions relative to a grasped object. From di↵erent sources of external forces

and contact types, we investigate two versions of the problem.

In Chapter 4, we presented a general framework for planning dynamic in-hand sliding

manipulation motions and analyzed the dynamics for n-fingered grasps using soft-finger

limit surface models. We proposed a simple model of the contact pressure distribution and

constructed the frictional limit surfaces based on it. The framework was applied to the

problem of in-hand sliding manipulation with a two-fingered grasp in the horizontal plane.

Our motion planner was able to automatically find dynamic hand motions to achieve a

desired sliding regrasp based on the grasp contact model. Experimental implementations

of iterative planning and execution reduced the relative position error and demonstrated

the feasibility of the overall approach.

In Chapter 5, we showed that by combining spring and sliding compliances, regrasping

by in-hand sliding with external contacts can be realized without haptic feedback. The

finger spring compliance ensures contact while sliding, and allows contact force control

by only controlling the finger anchor motions. The proposed approach is validated with

a planar example and the experiment result shows less than 2% residual errors following

the execution of planned trajectories.
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6.1. Future Directions

In this thesis, both methods for performing in-hand manipulation were based on sys-

tem modeling, motion planning, and then experimental validation. In Chapter 4 we use

iterative replanning to reduce the residual errors and in Chapter 5 the open loop plans

were shown to yield small errors. A future research direction for both methods is to further

reduce errors, and this can be done in numerous ways.Firstly, more advanced modeling

and parameter estimation could help. For example, the accuracy of the Coulomb friction

model is limited to specific cases. A good model should balance adaptability, accuracy

and complexity. As addressed in topics 5) and 6) in Chapter 4, another method of error

reduction during dynamic sliding regrasps is to add feedback control to actively correct

planned motions during execution. This will likely require better fingertip force sen-

sors and higher-bandwidth fingertip force control than is currently available to us. The

performance of the feedback during dynamic regrasps is also limited by contact model

uncertainties, trajectory tracking performance of the robot, and object state estimation.

For example, Theorem 1, which promises zero ultimate error for an idealized 1-DOF re-

grasping problem, is based on perfect trajectory tracking, perfect sensing, and a constant

(though unknown) friction coe�cient. Each of these assumptions should be weakened to

better understand the importance of each factor.

Another future research direction is to study error-corrective sliding for assembly tasks.

The problem is to choose a grasp configuration that satisfies force-closure constraints and

provides error-corrective sliding motion in response to likely disturbance forces during the

place operation. For example, uncertainty in a peg-in-hole assembly task results in con-

tact forces that should be mapped to error-corrective motion, using the remote center of

compliance (RCC) device [65] or using active accommodation control [30]. Alternatively,

it is possible to use sliding at the fingertips as the source of compliance. By the choice
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of finger locations and normal forces, we can control the shape of the grasp limit surface

(Section 4.3.2), which governs the mapping from contact forces to sliding directions, much

like an accommodation control law maps contact forces to corrective velocities.

For Chapter 5 future work could modify the point contact model to allow regrasps

for more general patch contact grippers. For other compliant hands, the di�culty of

estimating the sti↵ness parameters Ki(pfi, &) may vary dramatically depending on the

specific structure of the hands. The forward contact mechanics analysis of Section 5.7.2

can be generalized to other grippers so that the finger sti↵nesses can be identified with

experimental data.

For the example in Section 5.7, we prespecified the external contact locations and

finger contact mode sequences. In future work the motion planning algorithm could be

expanded to judiciously choose the external contacts and sequences of fingertip sticking

and sliding phases to add more design freedoms for the anchor motions in order to optimize

other desired properties. Future works should focus on describing the reachable set of each

contact mode and deriving e�cient planning algorithms that incorporate uncertainties.
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APPENDIX A

Proof of Theorem 1

Proof. Without loss of generality, we prove the theorem for the case dgoal > 0, as

indicated in Figure 4.3. With friction uncertainty included, the friction coe�cient is

µ 2 [µ0(1 � ✏), µ0(1 + ✏)]. The object acceleration during sliding therefore satisfies

ao,actual 2 [ao � a✏, ao + a✏], where ao = µ0fN and a✏ = µ0fN✏.

To understand these conditions, we first discuss sliding distance error caused by the

friction uncertainty. For the case when the friction coe�cient is larger than the estimate,

the object will undershoot dgoal. The maximum sliding distance error caused by the

underestimated friction coe�cient is the area of the dark orange triangle d2 in Figure 4.3,

and

(A.1) d2 =
(a + af )a✏dgoal

(af � ao)(a + ao + a✏)
.

For the case where the actual friction coe�cient is smaller than the estimate, the

object will slide more than dgoal. The maximum sliding distance error is the area of the

dark green triangle d3 in Figure 4.3, which can be expressed as

(A.2) d3 =
(a + af )a✏dgoal

(af � ao)(a + ao � a✏)
.

From Equations (A.1) and (A.2), the maximum sliding distance errors satisfy d2 < d3

for any af > ao regardless of what af is chosen. Therefore we focus on the conditions on

d3 to ensure that the sliding distance errors decrease within the given rate.
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From Equation (A.2), when af > ao, and with given ao and a✏, as af increases to

infinity d3 converges to its minimum value of a✏dgoal

a+ao�a✏
. Although it initially seems counter-

intuitive, increasing the finger acceleration af decreases the overshoot error because the

phase durations become smaller (Equation (4.5)). To prevent the object from sliding too

far, the condition d3 < dgoal should be ensured. Therefore we have a lower bound for a:

a✏

a + ao � a✏
< 1 ) a > µ0fN(2✏� 1).

An upper bound on a ensures that the object sticks in the beginning and end modes when

the friction is overestimated, and is expressed by a < µ0fN(1 � ✏). To ensure a feasible a

exists, the upper and lower bounds of a should satisfy

µ0fN(2✏� 1) < µ0fN(1 � ✏) ) ✏ < 2/3.

Note that the decrease of the net sliding error from one iteration to the next is never

better than a✏
a+ao�a✏

= µ0fN ✏

a+µ0fN (1�✏) . This gives the lower bound on the feasible convergence

rate ⇢.

The range of the actual sliding distance can be written as dactual 2 [dgoal�d2, dgoal+d3],

and the error in sliding distance as e = dgoal � dactual 2 [d2,�d3].

At each iteration, the error ek from the previous iteration becomes new (dgoal)k and is

used to replan a sliding motion:

(A.3) (dgoal)k+1 = (dgoal)k � (dactual)k 2 [(d2)k , (�d3)k].

To have the error in the net sliding distance converge to zero at least as fast as ⇢k,

we need to choose a maximum finger acceleration af such that ek  ⇢(dgoal)k. For the

case of an overestimated friction coe�cient, Equations (4.3) and (A.1) show that when
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af �
µ0fN [µ0fN (✏�1)⇢�a(✏+⇢)]

µ0fN (✏⇢�⇢+✏)�a⇢
we have

(A.4)
|(d2)k|

|(dgoal)k|


ao + a� a✏

ao + a + a✏
⇢ < ⇢.

Similarly for the case of an underestimated friction coe�cient, Equations (4.3) and (A.2)

show that when af �
µ0fN [µ0fN (✏�1)⇢�a(✏+⇢)]

µ0fN (✏⇢�⇢+✏)�a⇢
we have

(A.5)
|(d3)k|

|(dgoal)k|
 ⇢.

From Equations (A.1) and (A.2) we have d2 < d3 for any af > ao. Therefore we

only need to satisfy the af constraint that leads to Equation (A.4), which yields af �

µ0fN [µ0fN (✏�1)⇢�a(✏+⇢)]
µ0fN (✏⇢�⇢+✏)�a⇢

.

Combining Equations (A.3)-(A.5) gives
��� (dgoal)k+1

(dgoal)k

��� < ⇢, which demonstrates that |(dgoal)k|

converges exponentially to zero as the number of iterations k increases. ⇤
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APPENDIX B

Details of Limit Surface Modeling

We introduce a local finger frame F
0

i
at the center of the finger, and since the frames

F
0

1 and F
0

2 are coincident in this system, we use F
0 to represent the frame as shown in

Figures 4.9 and B.1. The y
0-axis is along the direction from the center of the object to the

center of the finger. The distance from the CM of the object to the center of the fingers

is � =
�� [xrf , yrf ]T

��.

The contact pressures p1 and p2 over the patches are a function of the position on the

patch. We have constraints on the pressure distributions to keep the object planar when

subject to the spring force, but the exact shape of the pressure distributions is unknown.

We chose to approximate the pressure distributions as either constant or linearly vary-

ing distributions, as these are the lowest-order models that can satisfy the force-moment

balance constraints that ensure the planar motion of the object. We assume that mod-

eling errors leading to execution error can be accommodated by our iterative replanning

approach.

In particular, the pressure distribution p1 is assumed to be constant over the contact

patch, while p2 must vary over the contact patch to achieve balance of forces and moments

that would otherwise move the object out of the plane. We assume p2 varies linearly in

the y
0 direction, as shown in Figures 4.9 and B.1. The shape of the contact patches are

assumed constant and independent of the contact pressures.
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Figure B.1. Contact pressure distribution of the two-fingered pinch grasp.

B.1. Mechanics of the System

B.1.1. Finger Pressure Distributions

Since the contact pressure of finger 1 is evenly distributed, the total normal force of

finger 1 fN1 is a function of the spring force S,

(B.1) fN1 =

Z

R1

p1(r) dA =
LS

L
S,
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where R1 is the circular contact region and dA is the infinitesimally small area located

at r = [xr, yr]T with respect to the local frame F
0 as shown in Figure B.1. From Equa-

tion (B.1) we have

(B.2) p1(r) =

8
<

:

LSS

⇡a2L
for |r|  a

0 for |r| > a

.

For finger 2 the contact pressure is assumed to be symmetrical about the y
0-axis.

Since we assume the shape of the pressure distribution function changes linearly in the

y
0-direction, as expressed by

(B.3) p2(r) =

8
<

:
C2 + kyr for |r|  a

0 for |r| > a

,

where k is the change in pressure dp/dyr, and C2 is the constant term of p2. The total

normal force of finger 2 is

fN2 =

Z

R2

p2(r) dA =

aZ

�a

Z p
a2�y2r

�

p
a2�y2r

(C2 + kyr)dxrdyr

= ⇡a
2
C2.

(B.4)

Since the motion of the system is in the xy plane of W , the total force in the vertical

direction and moments about the object CM must be balanced. We denote the total

contact moments about the CM of the object as mti. So we have

(B.5) mt1 =

Z

R1

[ro ⇥ ẑ0]p1(r) dA =
LSS�

L
,

where ro is the vector pointing from the object center O to the infinitesimally small area

dA, ro = [xr, yr + �]T as shown in Figure B.1, and ẑ0 is the unit vector in +z
0-direction.
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For finger 2 we have

(B.6) mt2 =

Z

R2

[ro ⇥ ẑ0]p2(r) dA =
⇡a

2

4
(a2

k + 4C2�).

The force and moment balance equations of the object are:

fN1 + fN2 + fg = 0,(B.7)

mt1 + mt2 = 0.(B.8)

Substituting Equations (B.1), (B.4), (B.5) and (B.6) into Equations (B.7) and (B.8) gives

C2 = �
1

⇡a2

✓
fg +

LSS

L

◆
,(B.9)

k =
4fg�

⇡a4
.(B.10)

Substituting Equation (B.9) into (B.4) gives

(B.11) fN2 = �

✓
fg +

LSS

L

◆
.

The finger contacts can only apply forces into the object, which means that for finger 2

the contact pressure at any contact point must be nonnegative, i.e., 8r 2 R2 : p2(r) � 0.

From Equation (B.10), we have k  0. And since � � 0 and fg  0, the minimum contact

pressure of finger 2 is the pressure at point B. To ensure feasible contact pressures,

p2(rB) � 0 should be satisfied, where rB = [0, a]T. By substituting Equations (B.3), (B.9)

and (B.10) into the inequality p2(rB) � 0, we can solve the maximum distance between

the finger center and the object center as

(B.12) � 
a

4

✓
1 +

LSS

fgL

◆
.



123

�

O
B

COR

l
c

 

ar

ft
dA

x0

y0

p
2

R2

A

z0

v
F

0

fg

Figure B.2. Close up view of finger 2 pressure distribution.

When � exceeds the limit, the contacts break and the object falls out of the grasp since

the contacts cannot supply pulling forces. To maintain contacts in this situation, the

spring force S should be increased.

B.2. Modeling of Limit Surfaces

B.2.1. Constructing Limit Surface Numerically

With the expressions for the finger contact pressure distributions given above, we calculate

the frictional forces and moments caused by the contacts for di↵erent sliding directions.

The set of possible relative velocities at a contact can be parameterized using the center

of rotation (COR) formulation as in [66]. The finger’s instantaneous center of rotation is

defined by two variables: the distance to the center of the finger lc and the angle from the

y
0-axis  , as shown in Figure B.2. The relative sliding velocity vector at the infinitesimal

area dA is v. The tangential frictional force ft acts in the opposite direction of v.The

total tangential frictional force of each contact is calculated by integrating shear forces
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over the entire contact patch Ri as

(B.13) ft,i =

2

4 fx,i

fy,i

3

5 = �

Z

Ri

µv̂pi(r)dA,

and the total frictional moment about the z
0-axis is

(B.14) mz,i = �

Z

Ri

µ[r⇥ v̂]pi(r)dA,

where v̂ is the unit vector in the direction of v:

(B.15) v̂ =
1

⇤

2

4 lc cos � yr

lc sin + xr

3

5 .

where ⇤ =
p

l2
c
� 2yrlc cos + 2xlc sin + x2

r
+ y2

r
. Substituting Equation (B.15) into

Equations (B.13) and (B.14), we have

(B.16) ft,i =

aZ

�a

Z p
a2�y2r

�

p
a2�y2r

�µpi(r)

⇤

2

4 lc cos � yr

lc sin + xr

3

5 dxrdyr,

(B.17) mz,i =

aZ

�a

Z p
a2�y2r

�

p
a2�y2r

�µ�pi(r)

⇤
dxrdyr ,

where � = lcxr sin � lcyr cos + x
2
r
+ y

2
r
.

The frictional forces and moments of finger 1 can be considered as a special case of

finger 2, where � = 0 and both p1 and p2 are constant. Therefore, we only analyze the

limit surface for finger 2.

Equations (B.16) and (B.17) do not have closed-form solutions since they are elliptic

integrals. Equations (B.9) and (B.10) can be numerically integrated to construct the limit

surfaces. Figures B.3 and B.4 show the results of numerical integration of limit surfaces
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Figure B.3. Numerically integrated and approximated limit surfaces of fin-
ger 2. The axes of the friction force space are aligned with the local frame
F

0 and normalized. Blue dots are the numerical integration results, green
ellipsoids show the approximated limit surfaces.

of finger 2 with four di↵erent values of �. Each blue dot represents an integration result

of a COR position on the x
0
y
0-plane (a pair value of lc and  ). Substituting LS = 0.05 m,

L = 0.17 m, fg = �0.5 N, S = �7 N, a = 0.0254 m into Equation (B.12) we find the

maximum � is �max ⇡ 1.279 a.

B.2.2. Approximation of the Limit Surfaces

Since the shape of LS1 is a special case of LS2 when � = 0, in this subsection we focus on

the derivation of the expression for the approximated LS2. The idea is to fit an ellipsoid

to the numerical integrals in the local frame F
0 that deforms as � increases. This LS

approximation is then expressed in the local frame F
+ which is used in the dynamics

derived in Section 4.3.
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Figure B.4. Numerically integrated and approximated limit surfaces when
the COR is moving along the y

0-axis, shown in the fxmz-plane. Blue dots
are numerical integration results, green ellipsoids show the approximated
limit surfaces.

Observation 1. From Figures B.3 and B.4 we observe that as the distance � from

the object center to the finger center increases, the mz components of points on the limit

surface increase or decrease by a factor linear in both � and fx.

From Equation (B.11) the total normal force is not a↵ected by �, which means that

the maximum linear frictional force µfN2 will be the same as long as �  �max, and the

projection of the limit surfaces to the fxfy-plane will be the same circle centered at the

origin with radius µfN2 . Equation (B.10) shows that the contact pressure distribution is

determined by �, which also a↵ects the maximum frictional moment mz,2 at each COR.

Therefore as � changes, the shape of the limit surfaces changes in the mz-direction.

Based on observation 1, we use deformed ellipsoids to approximate the limit surfaces.

We denote fF
0

e
= [fx,e, fy,e,mz,e]T as an arbitrary vector on an ellipsoid centered at the
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origin of the local finger frame F
0, and fF

0
= [fx, fy,mz]T as an arbitrary vector on the

corresponding approximated limit surface. The ellipsoid is represented by

(B.18) (fF
0

e
)TAef

F
0

e
= 1,

where the matrix Ae 2 R3⇥3 is a symmetric positive-definite matrix that determines the

shape of the ellipsoid. In the general ellipsoid definition, Ae = diag(s�2
1 , s

�2
2 , s

�2
3 ) where

s1, s2 and s3 represent the lengths of the semi-principal axes. We again assume isotropic

dry friction so the maximum tangential force the contact can resist is s1 = s2 = µ|fNi |.

The maximum moment along the normal direction is s3 = caµ|fNi |, where a is the radius

of the contact patch and c is a constant from numerical integration. Here we take c = 0.63

based on the findings in [66].

Since the limit surface is approximated by the ellipsoid deformed linearly in the mz-

direction proportional to fx, we have

(B.19) mz = mz,e + (�)fx,e,

where (�) is a variable which determines the linear mapping.

To derive (�), we choose a critical point fF
0

⇤
= [f ⇤

x
, f

⇤

y
,m

⇤

z
]T in the frame F

0. Let

f
⇤

x
= µfN2 , f

⇤

y
= 0 so the projection of fF

0
⇤

in the fxfy-plane is at the edge of the limit

circle. At this point, from the ellipsoid definition, we have m⇤

z,e
= 0. From Equation (B.19)

we find

(B.20) (�) = m
⇤

z
/f

⇤

x,e
.
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We calculate m
⇤

z
from Equations (B.10) and (B.17) by substituting  = 0 and lc = �1:

m
⇤

z
= �µ

Z
a

�a

Z p
a2�y2r

�

p
a2�y2r

yr(C2 + kyr)dxrdyr

= �
µ⇡a

4
k

4
= �µfg�.

(B.21)

Since the ellipsoid is only deformed in the mz-direction, we have f
⇤

x,e
= f

⇤

x
= µfN2 .

Substituting this expression and Equation (B.21) into Equation (B.20) we have

(B.22) (�) =
m

⇤

z

f ⇤
x

= �
fg�

fN2

.

The transformation from the ellipsoid to the limit surface is given by

(B.23) (fF
0
)T = (fF

0

e
)TD,

where D is an a�ne transformation matrix which deforms the ellipsoid as

D =

2

6664

1 0 

0 1 0

0 0 1

3

7775
.

From Equations (B.18) and (B.23) we have (fF
0
)TD�1AeD�TfF

0
= 1. The expression

for all the points on the limit surface can be written as

(B.24) (fF
0
)TAmf

F
0
= 1,

where

Am = D�1AeD
�T =

2

6664

(2
/s

2
3 + s

�2
1 ) 0 �/s

2
3

0 s
�2
2 0

�/s
2
3 0 s

�2
3

3

7775
.
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To describe the frictional limit surface in the frame F
+, we have

(B.25) fT = (fF
0
)TRF

0
F

+
,

where RF
0
F

+
is a transformation matrix that transfers the reference frame of linear force

vectors from F
0 to F

+, and

RF
0
F

+
=

2

6664

sin� � cos� 0

cos� sin� 0

0 0 1

3

7775
,

where � = tan�1( yrf2

xrf2
) as shown in Figure 4.5. From Equations (B.24) and (B.25), we

write the equation of the limit surface in frame F
+ as

(B.26) fTAf = 1,

where A = (RF
0
F

+
)�1Am(RF

0
F

+
)�T.

Comparisons showing the good agreement between the approximated frictional limit

surface and the numerically integrated points are shown in Figures B.3 and B.4.
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