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ABSTRACT

Materials Discovery from Statistical Modeling

and Atomistic Simulations

Abhijith M. Gopakumar

Selecting the best material to deliver optimum performance in real-world applications is one

of the most significant challenges in engineering. Hundreds of thousands of computationally-

predicted, but experimentally unexplored materials exist today in the public inorganic material

databases as candidates for consideration. This thesis discusses three projects in the domain of

materials selection and discovery, and in each of them, one or more materials with a desired set of

properties are identified from a large pool of candidates. The first work describes the computational

discovery of three high-dielectric, high-bandgap materials within 17 selections from a set of more

than 11,000 candidate materials obtained from the Open Quantum Materials Database (OQMD).

We built statistical machine learning (ML) models from a sub-dataset of the Materials Project high

throughput database to predict dielectric values along with the associated model uncertainty. The

final material selections are made using a statistical optimization algorithm, and the final vali-

dations are done using expensive first-principles calculations to compute the dielectric properties.

The second project details the identification of a new bridge material for MoS2-based 2D electronic

inks that acts as an adhesive between the 2D ink nanoparticles without interfering with the ink’s

electronic properties. This project uses a sequential selection workflow incorporating machine

learning-aided high-throughput heuristic modeling to select the best material from a candidate set

of more than 2000 materials, and subsequent estimation of the charge-transport properties from
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expensive atomistic simulations. In the third project, we created a machine learning model that

can identify the semiconductors and insulators which are misclassified from lower-accuracy Den-

sity Functional Theory (DFT) calculations to be metallic. The accuracy of bandgaps computed

using DFT is dependent on the functionals chosen to describe the exchange-correlation energy of

electron interactions. The PBE functional results in less accurate, but significantly cheaper estima-

tions of the bandgaps compared to using the HSE hybrid functional. Our ML model predicts the

bandgaps at an accuracy level of DFT-HSE at the cost of doing a cheaper DFT-PBE calculation.

The reliability of ML predictions is analyzed from quantified model uncertainties and extensive

literature surveys.
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Fekete, Á., Gopakumar, A., Gražulis, S., Merkys, A. and Mohamed, F., 2021. OPTIMADE,

an API for exchanging materials data. Scientific data, 8(1), pp.1-10.

(co-first author)

• Shen, J., Griesemer, S.D., Gopakumar, A., Baldassarri, B., Saal, J.E., Aykol, M., Hegde,

V.I. and Wolverton, C., 2022. Reflections on one million compounds in the open quantum

materials database (OQMD). Journal of Physics: Materials, 5(3), p.031001.

(co-first author)



8

TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 1: Introduction and Background . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Chapter 2: General Methods and Formalism . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter 3: Discovery of High-Dielectric Constant Compounds in Rare-Earth Families
from Statistical Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Materials design strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.3 Statistical Modeling and Optimization . . . . . . . . . . . . . . . . . . . . 38



9

3.2.4 Calculation of E(I) in via an Example . . . . . . . . . . . . . . . . . . . . 41

3.2.5 Design Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.6 New High-Dielectric Materials . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.1 Efficient Global Optimization . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.2 Density Functional Perturbation Theory . . . . . . . . . . . . . . . . . . . 57

Chapter 4: Identification of Hexagonal GaS as a Bridge Material For Molybdenum
disulfide-based 2D Inks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Selection of GaS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.2 2D Ink Heterostructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.3 Heterostructure Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 Branch point Energy Calculations . . . . . . . . . . . . . . . . . . . . . . 78

4.4.2 DFT Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.3 Conductivity Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 81



10

Chapter 5: Assessing the Accuracy of DFT Calculations from Multifidelity Modeling
of Bandgaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Data and Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.2 Predictions and Uncertainty Quantification . . . . . . . . . . . . . . . . . . 88

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.1 co-kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.2 HSE Bandgap Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Chapter 6: Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Other Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Appendix A: Main Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.1 2D Inks: Band Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.2 Multi-fidelity Modeling: Deployment of Predictions . . . . . . . . . . . . . . . . . 126

A.2.1 hse.oqmd.org . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



11

Appendix B: OQMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

B.1 OQMD and FAIR Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



12

LIST OF FIGURES

3.1 Workflow for materials design implemented in this work. A single design cycle
consists of three stages - Data, Modeling, and Validation. In the first stage, the
design challenge is translated into a set of datasets. Since the Eg values are readily
available from high-throughput datasets, we consider only the ϵ as the unknown tar-
get property. The set of materials from the Materials Project with already known ϵ
values is set as the training-data. The set of stable non-metals from OQMD whose ϵ
value is not calculated yet is defined as the search-space to find the best candidates
for being novel high-dielectrics. The methods to generate feature vectors repre-
senting each material in training-data and the search-space are also established in
this stage. During the Modeling stage, we created an ensemble of Artificial Neural
Networks (ANNs) trained on the randomly sampled subsets of training-data to pre-
dict the ϵ value of materials when their structure, chemical composition, and Eg are
known. Since each ANN model predicts a single ϵ value, the ensemble with 2000
independent ANN models predicts a distribution for the ϵ value for each material
in the search space. This predicted ϵ distribution is used by Efficient Global Opti-
mization[36] (EGO) to rank the materials based on how likely the selection of that
material will lead to the eventual optimization of ϵ within as few design cycles as
possible. The EGO algorithm can exploit the modeling power of ANNs while also
exploring the classes of materials in the search space that are not well represented
in the training-data. In this work, five to seven materials are selected from EGO-
based rankings in each design cycle and passed on to the next stage - Validation.
During validation, the ϵ values of the selected materials are calculated using the
ab-initio DFPT calculations. The design workflow ends at this stage if the design
goals based on the required material property optimization are met. Otherwise,
the newly generated DFPT data is fed into the next cycle by appending it to the
training-data, and a new design cycle is started. We conducted three such design
cycles until we identified multiple high-ϵ, high=Eg materials. . . . . . . . . . . . . 35
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3.2 Distribution of ϵ values in the training-data. More than 95% of the values are be-
low 50. So it is probable that most of the feature-vector space spanned by materials
with large ϵ values are not well sampled within the training-data. Theoretically, ex-
ploratory materials design with knowledge feedback, as implemented in this work,
is expected to perform very well even in such unevenly sampled data scenarios. . . 38

3.3 The plots show the trends of how the electronic (ϵele), ionic (ϵion), ϵ (highest eigen-
value of total dielectric tensor), and ϵele

ϵion
values change with increasing bandgap

value in training-data. The total dielectric tensor is obtained by tensor addition
of ionic and electronic dielectric tensors. While ϵele decays inversely with the
bandgap (Subplot a), we find that ϵion shows weak dependence on the bandgap
(Subplot b). However, ϵ is dominated by the electronic contribution in the low
bandgap regime, hence exhibiting an inverse relationship with the bandgap (Sub-
plot c). Subplot c also shows that the inverse relation between ϵ and bandgap weak-
ens at high bandgap limits because the ϵion is the dominant factor in that range, as
shown in subplot d that plots ϵele

ϵion
. Hence, the generalization of this trend ( ϵ vs.

bandgap) in high-bandgap regions is less reliable due to the sparse population of
data points, unlike the low-bandgap limit. The trend line is plotted using Locally
Weighted Scatterplot Smoothing[40] (LOWESS) algorithm as implemented in the
Plotly python package[41] with 5% of the dataset considered near each point to
compute the local weights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Variance in materials data between the OQMD and MP databases. Difference
in the material representation vector components of the structures obtained from
OQMD and MP for 1717 materials in the training data. a) Mean absolute difference
in the 272 feature vectors generated from Magpie on the structures obtained from
the MP and OQMD for 1717 materials in the training-data. The cross-referencing
of materials across the databases was done by finding the database entries with the
common ICSD Collection codes associated with their structures. We also made
sure that all the 1717 materials have the same symmetry group listed in MP and
OQMD, even though their lattice parameters may differ by a small amount due to
differences in the DFT parameters and initial states used to generate the data. For
143 materials in the MP training-data, ICSD Collection Codes were unavailable.
So they are not included in this analysis even though their counterparts in OQMD
could have been found by matching composition and crystal symmetries. This
strict mapping via ICSD codes helps in avoiding the materials that have changed
the spacegroups after DFT relaxation. b) Distribution of the difference between the
DFT bandgap (Eg) values listed in OQMD and MP in log scale for the same 1717
materials in the training-data. The bandgap values show very good agreement in
most cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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3.5 The optimization algorithm. The value ymax
t represents the currently available

highest value of ϵ among all materials in the training-data. µ and σ represent
the mean and standard deviation of the ϵ distribution for a material (blue dot) in
the search-space predicted by ANN-ensemble. The predicted distribution is as-
sumed as a normalized Gaussian function here. The region above ymax

t covered in
green stripes represents the region of improvement. It is because, if the validation
from the DFPT calculation determines that the material’s ϵ lies above the minimum
threshold that is ymax

t in this diagram, it will be considered as an improvement in
property optimization among materials. . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Results from statistical modeling. (a) ANN model validation on a test set of 373
materials split from the training-data. This particular model-fit plot is taken from
a single ANN model that was part of the ensemble containing 2000 ANNs in the
second design cycle. The ensemble was used, instead of a single ANN, to generate
a distribution of ϵ for each material and quantify the uncertainty in predictions for
each material in the search space. The 373 materials plotted here are part of the
full MP training-data, and were not seen by this particular ANN model at any stage
during the training. These predictions are made only to show this particular ANN
model’s learning capabilities, and they are not used anywhere during the actual
selection. In the design workflow, each ANN model in the ensemble is exposed
only to a unique subset of the full MP training-data, excluding 373 randomly cho-
sen materials. The trained ANN models are used to predict the dielectric values of
only the search-space materials from OQMD, not of the 373 materials split from
the MP dataset, and used as test-data during ML model training. All ANNs in this
work are trained to predict log2(ϵ) instead of ϵ, because the latter values are highly
non-uniform in the training-data with most of the values below 25, making some
of the very large values outliers. A log-scale transformation of ϵ reduces the nu-
merical scale of spread among the ϵ values, making the very large values less of an
outlier. The model fit shown in this plot has an R2 score of 70%, and a Spearman’s
rank correlation of 85%. (b) This plot shows the predicted ϵ-distributions and cor-
responding E(I) values on the same test dataset that in Subplot (a) consisting of
373 materials split from the training-data. The error bars represent the standard
deviation in ANN-ensemble predictions. This standard deviation is quantified as
the uncertainty of ANN predictions. For a clearer perspective, both the radius and
color of the circles represent the same quantity - the Expected Improvement, E(I).
E(I) value is calculated from ANN model predictions with uncertainty using the
EGO algorithm. A point without an outer circle around it represents a material
with a negligible (< 10−3) value for E(I). In this figure, only 25 materials have an
E(I) value that is greater than 10−3. . . . . . . . . . . . . . . . . . . . . . . . . . 45
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3.7 Modification of the Pareto-front after each design cycle The Pareto-front is the
set of the most optimized group of materials in a multi-objective dataset. If a
material M belongs to the Pareto-front of the known dataset in this work, that
implies that there are no other materials in the known dataset that has a higher value
for both ϵ and Eg than the material M. Subplots (a), (b), and (c) show the Pareto-
front of the known data after design cycles 1, 2, and 3 respectively. The known data
is the union set of the initial MP training-data and the newly characterized materials
from DFPT in this work. None of the materials selected and characterized in design
cycle 1 made it to the Pareto-front due to their very low bandgap values, and thus,
the Pareto-front in Subplot (a) is the same as the Pareto-front of the initial MP data.
Only the materials with Eg >2.0 eV are plotted in Subplots (b) and (c) to highlight
the area where some of the newly discovered dielectrics in their corresponding
cycles joined the Pareto-front. Two materials from the MP-dataset with very high
ϵ values - tetragonal TiO2 (ϵ=988, Eg=1.8 eV) and cubic KTaO3 (ϵ=640, Eg=2.1
eV) are in the Pareto-front in plots (b) and (c), but that part of the Pareto-front is
cropped out for better visibility of the section of interest. . . . . . . . . . . . . . . 49

3.8 Crystal structures of (a) HoClO, (b) Eu5SiCl6O4, and (c) Tl3PbBr5 . . . . . . . . . 50

3.9 Phase diagram of Ba-Ti-O-Sr-Ta-Si phase space in OQMD database. The most rel-
evant materials are shown in large circles in the inner shells. The tie lines between
the inner-shell materials are plotted in thick red lines, while the thinner gray lines
are the tie lines that connect the inner-shell materials to the materials on the outer-
most shell. A tie line exists between Si and Gd2O3 indicating the relative stability
of these two materials when in contact with each other. No tie-lines originate from
Si to BaTiO3, SrTiO3, TiO2 or Ta2O5 indicating their energetic instability. . . . . . 53
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3.10 The convex-hull phase diagram of all stable compounds in Ho-Cl-O-Eu-Si-
Ge-Ga-As-C-N phase-space from OQMD (as of January 2022). The two most
promising dielectrics identified in this work - HoClO and Eu5SiCl6O4 are plotted
in large green circles in the center. The elements (Ho, Eu, Si, Cl, Ge, Ga, As, C, N,
and O) and semiconductors of interest (Si, Ge, GaAs, SiC, and GaN) as suggested
by Robertson[49] are plotted in the middle layer in medium-sized yellow circles.
All other stable compounds in the phase diagram are plotted in small dark circles in
the outermost layer. Tie-lines between the new dielectrics and the semiconductors
or elements are shown as thick red lines. Other tie-lines from the dielectrics to the
rest of the stable materials in the outer layer are drawn as narrow gray lines. An-
other 2326 tie-lines exist in this phase diagram that does not include either of the
dielectrics. Those lines are not shown in this network plot for better visibility of
the information relevant to the new dielectrics. The elements and compounds with-
out any visible tie-lines in the outermost layer are still part of this phase diagram
since they have tie-lines with some of the other materials in the outer layer even
though they lack tie-lines to HoClO or Eu5SiCl6O4. We observe that there exists
a tie-line from each dielectric material to each semiconductor that is considered
here for comparison, indicting that HoClO and Eu5SiCl6O4 are in thermodynamic
equilibrium with Si, Ge, GaAs, GaN, and SiC at 0K. . . . . . . . . . . . . . . . . 54

3.11 Electronic bandstructures (left-side) and partial density of states (right-side) of
Tl3PbBr5 (top), Eu5SiCl6O4 (middle), and HoClO (bottom). From this analysis,
we find that the top of the valence band found is dominated by the orbitals of the
anions, and the bottom of the conduction band primarily comes from the orbitals
of the rare-earth elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 A qualitative diagram showing how the internal structure of circuits looks like
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materials that are expected to not interfere with the main ink material’s electronic
properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Band alignments of binary oxides and binary sulfides with their branch-point en-
ergies as the common reference energy point. Only those binary materials whose
CBM offset with hexagonal MoS2 is less than 0.2 eV are shown in this plot. The
error bar values are obtained from the uncertainty quantification of the co-kriging
model bandgap predictions. A similar plot containing ternary oxides and ternary
sulfides is given in the appendix Figure A.1 . . . . . . . . . . . . . . . . . . . . . 66
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4.3 The workflow of 2D ink bridge material design implemented in this work. DFT-
PBE refers to DFT calculations conducted with PBE functional approximation for
exchange-correlation energy. Similarly, DFT-HSE refers to DFT calculations with
HSE functional approximation for exchange-correlation energy. ML refers to ma-
chine learning. The set of 2466 materials downloaded in the first step forms the
initial candidate set. After each step of the design, the number of candidate ma-
terials is reduced as the materials are picked from the candidate set based on how
they meet the requirements evaluated at a given step. The preference for synthesis
method is given s lower priority while filtering even though it is an important fac-
tor in manufacturing because a lack of reporting on solution processing in literature
does not mean that the material cannot be synthesized using that method. . . . . . . 68

4.4 Crystal structure of the MoS2/GaS heterostructure. This heterostructure is obtained
as the structure with the lowest strain among all configurations when the 2D-MoS2
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We initially set the distance between 2D-MoS2 and 2D-GaS planes to be 3.6 Å, but
it was reduced to 3.3 Åafter tight structural relaxation using DFT. . . . . . . . . . . 69

4.5 Electronic bandstructure and density of states (DOS) of (a) 2D-MoS2, (b) 2D-GaS,
and (c) the heterostructure from DFT calculations. The DOS in plot (c) shows that
the orbitals of S and Mo dominate the VBM and CBM orbitals of the heterostructure 70

4.6 Orbital-projected band structure of the 2D MoS2/GaS heterostructure. The con-
duction band of the heterostructure predominantly consists of the Mo d-orbital,
suggesting an n-type carrier conductivity similar to that of pure 2D MoS2. The
heterostructure has an indirect bandgap of 1.8 eV. The direct bandgap of the het-
erostructure is also computed from this band structure as 1.9 eV. . . . . . . . . . . 71

4.7 Local potential energies computed from the slab calculations. The plots (a), (b),
and (c) show the energy distribution on the axis perpendicular to the 2D plane of
2D-MoS2, 2D-GaS, and the heterostructure slabs respectively. In the case of both
2D-MoS2 and 2D-GaS, the 2D plane is positioned in the middle of the unit cell
with a 15 Å-long vacuum on top and bottom. In the case of the heterostructure,
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30 Åpresent only on top. Thus, the plots (a) and (b) have constant energy levels at
low and high values of vertical distance while plot (c) has constant energy portions
only at the higher values of vertical distance. . . . . . . . . . . . . . . . . . . . . . 73



18

4.8 The positions of CBM (grey line), VBM (dark line), and the fermi energy (dotted
line) are plotted for 2D-MoS2, 2D-GaS, and the heterostructure as obtained from
DFT-PBE calculations in this work, reported experimental works, and also from re-
ported DFT-HSE works in the literature. The VBM, CBM, and fermi energy levels
are marked with text on the left-most energy levels diagram (for the heterostruc-
ture). The work function is obtained as the absolute magnitude of the Fermi energy
since we assume the energy of the vacuum to be 0 eV. References are as follows -
α: Hu et al[118], β: Carey et al.[116], γ: Zhung et al[117]. The values of CBM
and bandgap computed in this work for hexagonal 2D MoS2 from slab calculations
are in good agreement with the corresponding values reported from experiments.
The CBM, bandgap, and work function values of 2D MoS2 and the heterostructure
are close to each other, which suggests a similarity in their electronic properties. . 74

4.9 Results from Boltzmann calculations of 2D-MoS2 and heterostructures at 300 K
and different n-type (negative carrier concentration values) and p-type (positive
carrier concentration values) doping concentrations. (a) Mobility of carriers along-
side experimentally reported values in published literature for comparison. The
mobilities of 2D-MoS2 and the heterostructure are close to each other at high car-
rier concentrations, while the heterostructure has significantly lower values at lower
carrier concentrations. The computationally obtained values for 2D-MoS2 agree
with the experimental values at higher carrier concentrations. (b) The conductivity
values of 2D-MoS2 and the heterostructure are close to each other in a log scale at
all carrier concentrations. The experimentally reported values of 2D-MoS2 from
published literature agree with the calculated values . . . . . . . . . . . . . . . . . 76

4.10 Phase diagram of Mo-Ga-S elemental phase space obtained from OQMD (as of
October 14, 2022). The green-filled circles and the unfilled, red circles represent
the stable and unstable compounds present in this phase-space. The presence of
a tie-line between two compositions indicates the thermodynamic stability at 0 K
when these two compounds are in contact with each other. Based on this phase
diagram at 0K, using GaS as a bridge material in MoS2 inks is not expected to
have thermodynamic instabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.11 A qualitative diagram showing the VBM, CBM, and EBP within an electronic
bandstructure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



19

4.12 Results from Boltzmann calculations of 2D-MoS2 and heterostructures at 300 K
and different n-type (negative carrier concentration values) and p-type (positive
carrier concentration values) doping concentrations. (a) Seebeck Coefficients of
2D-MoS2 and the heterostructure show the values close to each other for the two
materials at all carrier concentrations. Small absolute values are calculated for
higher carrier concentrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 A partial diagram of Jacobs ladder in DFT[136]. This section of the ladder includes
only those XC-functional approximations which are relevant to this work. . . . . . 85

5.2 Distribution of DFT-derived EHSE
g values in the training-data. The EHSE

g is zero
in 62% of the materials in training-data. . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Performance of different machine learning models in the same test data sampled
from the DFT-HSE dataset containing EHSE

g values. The train:test split is 2:8,
representing a scenario when the training-data may not have sufficiently sampled
the feature space spanned by the search-space. All the models were trained on the
same training-data. Both random forests regression (RFR), shown in subplot (a),
and support vector regression (SVR), shown in subplot (b), suffer from the unbal-
anced training-dataset biased toward EHSE

g =0. Since the majority of the materials
in the training-data have EHSE

g =0, this behavior is expected from RFR and SVR
models. But as shown in subplot (c), co-kriging is significantly less biased from
the training-data imbalance, and thus, more accurate at a lower mean squared error
(MSE) than the other two models. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Multifideity co-kriging model benchmarking results on HSE bandgap dataset of
1117 materials. A part of the full training-data is split and set aside as test-data
during model training. The trained model’s predictions on the test-data are plot-
ted in these figures. The plot (a) has an optimistic train:test split of 8:2, which
imitates a situation where training-data is large enough to reliably learn the corre-
lation between input features and the target property, EHSE

g . In such a situation, the
vector space spanned by input features is sufficiently sampled by the training-data.
The plot (b) shows the predictions from a different model trained and tested on a
pessimistic train:test data split of 1:9. The pessimistic benchmarking was done to
examine the prediction capability of co-kriging model in situations where training-
data is not large enough to fully represent the relatively larger portion of the feature
space spanned by the candidate materials. The uncertainty quantification analysis
from these two models is shown in Figure 5.5 . . . . . . . . . . . . . . . . . . . . 91



20

5.5 The multi-fideity co-kriging model’s quantified uncertainty predictions on the test-
data are plotted as a part of model benchmarking. The corresponding ϵ prediction
plots from these same models are shown in Figure 5.4. The train-test split is done
on the full training data containing HSE bandgap values of 1117 materials. The
uncertainty quantified for each test data point by the co-kriging model during the
prediction is analyzed in two data conditions. In both optimistic (left) and pes-
simistic (right) cases, the materials in test data with a large prediction error, which
can be considered as a ”negative” prediction, also had a large uncertainty predicted
by the co-kriging model. This shows a higher true-negative rate and a smaller
false-positive rate. Considering the accurate prediction of HSE bandgaps from
co-kriging as a ”positive” prediction, it is shown to be possible to largely avoid
false-positive predictions if the materials that have a large predicted uncertainty
are excluded from the candidate list. In the optimistic case, the precision and recall
based on true-positive (small error, small uncertainty), false-positive (large error,
small uncertainty), and false-negative rates (small error, large uncertainty) are 83%
and 84%, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6 (a) Bandgap openings predicted by the multi-fideity model. EpredHSE
g refers to the

HSE-fidelity bandgap value predicted from co-kriging. In about 30% of all materi-
als in the search-space, the PBE results and co-kriging model predictions disagree
on whether a material is metallic or not. (b) Elemental distributions among the ma-
terials in search-space with the highest values for model uncertainty. The ordinate
of the bar plot represents the percentage of the compounds with a high uncertainty
prediction among all the compounds in the search-space that contains the element
specified in the abscissa of the plot. The bars of only those elements are shown
which have an ordinate value of more than 2%. Such a cutoff is kept to make
the relevant information stand out and skip other elements, such as O, F, etc., that
have less than 2% of the compounds predicted to have a high uncertainty value.
The model uncertainty is quantified as the standard deviation of the predicted co-
kriging Gaussian distribution of EpredHSE

g . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 (a)Predicted HSE bandgaps of search-space materials from the co-kriging Model
are plotted against the corresponding DFT-PBE bandgaps. A LOWESS smoothing
function[137] is also plotted to show the trend of how the co-kriging predictions
change with the DFT-PBE bandgap. The underestimation of bandgaps in DFT-PBE
compared to DFT-HSE is well known, and that same behavior is also seen between
DFT-PBE and co-kriging model predictions. A reversal of that trend is seen near
7 eV. (b) Distribution of the number of materials in a heatmap between DFT-PBE
bandgaps and the co-kriging predictions. . . . . . . . . . . . . . . . . . . . . . . 95



21

5.8 Verifying the disagreements of DFT-PBE and co-kriging when compared against
the published experimental or DFT-HSE results in scientific literature. None of the
DFT-HSE values in this chart are from the training-space data used in this work.
The crystal structure of each material is provided in brackets beside its chemical
formula. The full set of references for Experimental/DFT-HSE data is provided in
the manuscript currently under author review[131] . . . . . . . . . . . . . . . . . . 96

6.1 General designflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.1 The band alignment of ternary oxides and ternary sulfides based on their DFT-PBE
bulk bandstructure, cross-referenced based on the common branch-point energy
value. Most of the ternary materials were filtered out in the subsequent step due
to the lack of experimentally reported data on their 2D phase stability, nature of
carriers, synthesis methods, etc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.2 The web portal created and deployed at the URL hse.oqmd.org to serve the datasets
used and generated in the multi-fidelity co-kriging modeling project . . . . . . . . 127

B.1 The Cloud infrastructure of OQMD - as of October 2022 . . . . . . . . . . . . . . 130



22

LIST OF TABLES

3.1 DFT-calculated dielectric constants of 17 compounds selected during the three de-
sign cycles. The OQMD ID refers to the materials’ unique entry ID in the OQMD
database, Eg refers to the bandgap energy in eV, ϵx,y,z refers to the three eigenvalues
(xx, yy, zz) of the of dielectric constant tensor, and the Design Cycle column notes
the design cycle when the material was selected for the calculations of dielectric
constant using DFPT. The values ϵx,y,z are ordered in such a way that ϵx > ϵy > ϵz.
The best materials identified in this work are highlighted in bold letters. . . . . . . 48

3.2 Fraction of ionic contribution ϵion
ϵion+ϵele

to the total static dielectric constants (ϵ =
ϵionic + ϵelectronic) for the best three high-dielectrics identified in this work. The
ionic contribution is most significant in the case of Tl3PbBr5 and Eu5SiCl6O4 on all
three diagonal dielectric tensor components. In HoClO, both ionic and electronic
contributions are similar in magnitude. . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Imaginary phonon modes in high-dielectric materials. The phonon frequencies
of the three acoustic phonon modes at Γ-point for the high-dielectric materials
identified in this work. These small imaginary frequencies reported here fall within
the numerical error of the calculations.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Dielectric constants and bandgaps of common dielectric materials. We computed
the dielectric properties of the commonly known dielectric materials to assess the
reliability of our DFPT calculation framework. The results are listed here alongside
the reference values obtained from peer-reviewed computational literature . . . . . 60



23

4.1 Bandgap values of bulk phases of MoS2 and GaS, and 2D phases of MoS2, GaS,
and the heterostructure. The DFT-HSE bandgaps listed are obtained from the ref-
erences cited, except in the case of bulk GaS whose DFT-HSE bandgap was cal-
culated as a part of this work. The acronyms ”dir” and ”indir” refer to direct and
indirect bandgaps, respectively
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 The mechanical and dielectric properties of 2D-MoS2 and the 2D-heterostructure.
E, G, and v refer to Young’s modulus, Shear Modulus, and Poisson’s ratio, respec-
tively
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 Literature comparison of co-kriging model predictions on search-space. The EPredHSE
g

column refers to the HSE bandgap value predicted by the co-kriging model. These
materials are selected based on the difference in their EPredHSE

g and DFT-derived
EPBE

g . Information about many other materials which were filtered out from
search-space based on their bandgap value differences did not have any reported
values on DFT-derived EHSE

g or experimental bandgap in scientific literature within
the scope of our search. Further details about the listed materials, including crystal
structure and DFT (with PBE XC-functionals) calculation details, can be found on
the material’s web page identified by OQMD ID at oqmd.org . . . . . . . . . . . . 97



24

CHAPTER 1

INTRODUCTION AND BACKGROUND

Material selection is one of the most influential subdomains of science and engineering that fuels

innovation in all other fields of technology. Some of the greatest examples of material selections in

the past centuries include the identification of tungsten as a good filament material for incandescent

bulbs, steel as a better construction material, silicon as a suitable semiconductor, and copper as a

good conductor - among numerous others. Before the 2010s, the mainstream approach to material

selection had been via individualistic efforts to search through a limited set of materials that are

known from literature surveys and localized databases. During the search for a new material to

improve the performance of a given device, most of the computational research efforts went into

finding prior data from published scientific literature, manually selecting a small set of materials

to explore based on heuristic selection methods, and finally, doing material simulations to estimate

the applicable material properties. This entire process has been repeated by several researchers for

even the same property optimization problems, due to the limitations in reusing the resources such

as data gathered by others.

In 2011, the Materials Genome Initiative (MGI)[1] triggered a new era in the scientific ap-

proach to the design and discovery of materials. MGI seeks to unify the different parts of materials

research by combining the data infrastructure, computational tools, and experimental methods to

accelerate materials discovery. Different parts of materials science may develop their tools and

infrastructure independently but with a focus on smoothly passing the relevant knowledge to the

next phase. Integrating isolated efforts in a robust infrastructure is expected to avoid delays in the

materials discovery process. A good data infrastructure in place makes the old and new materials
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data more easily findable, accessible, interoperable, and reusable (FAIR)[2]. FAIR data enhances

the manual search for individual materials and machine-actionability on large datasets. The scope

and applications of MGI vary in implementation at different parts of material science, but all these

related efforts are intended to contribute to the primary goal of accelerating materials discovery.

In computational materials sciences, the MGI put forward the philosophy of laying out future-

proof infrastructure on large and small scales to systematically approach the materials selection

with the goal of suggesting new advanced materials to experimentalists and manufacturers to con-

sider. It includes the creation and active maintenance of large-scale material databases, automation

of data access and processing, integration of statistical modeling and analysis to select materi-

als, and validation of materials from simulation methods. Since the characterization of a material

through experiments is significantly more expensive than doing the same via computational meth-

ods, the advantage of the latter comes through the capability of screening thousands or even mil-

lions of materials to select a smaller set of best candidates that the experimentalists can consider.

In this work, we focus on the discovery of inorganic crystalline materials. Some of the most

prominent databases containing computational data of crystalline materials are Open Quantum

Materials Database[3], [4] (OQMD), Materials Project[5], and AFLOW[6] among others[7]–[9].

These datasets hold chemical and physical property data of millions of materials generated from

ab-initio atomistic simulations in a high-throughput manner. They can be used as a place to learn

information on materials or to search for novel materials with enhanced properties. Most HT crys-

talline material databases hold information on the material’s chemical composition, crystal struc-

ture, unit cell, electronic bandgap, and formation energy. Both bandgap and formation energy val-

ues are obtained from relatively cheaper-to-compute ab-initio simulations that can be automated.

Even though these two properties can provide crucial knowledge into the material’s electronic

properties and stability, more complex and expensive simulations are often required to calculate
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other properties such as thermoelectric performance, photosensitivity, etc. There are smaller sub-

datasets, often available from the same HT databases, containing data on more complex properties

of hundreds to thousands of materials. But doing those expensive calculations on hundreds or thou-

sands of materials becomes infeasible in most cases due to constraints on available resources. This

is where statistical modeling becomes helpful in learning from the available data and then search-

ing for better materials in the larger pool of materials with relatively much lower consumption

of resources than atomistic simulations. Machine learning (ML) algorithms are among the most

popular statistical modeling tools used today in materials science[10]–[15]. Several ML model

architectures have been proposed over the years specifically for the domain of crystalline materials

where the data is minimally available for learning most properties[11], [13], [16]. Since the ML

models act like a black box when used to predict the properties with varying confidence levels

in each material’s prediction, other statistical methods, such as optimization algorithms, are used

to aid the ML models in finalizing the material selection. The exact strategy needed in materials

selection depends on how expensive are the subsequent validations. The materials selected from

statistical modeling are validated further from more reliable atomistic simulations and eventually

passed on to the experimentalists. Several quantum mechanical strategies exist today to simulate

the atoms inside a crystal. Density functional theory[17] (DFT) is one of the most popular methods

developed to do this job. DFT is used to simulate an unperturbed crystalline material at 0 K and

calculate its stability, electronic band structure, optimal unit cell parameters, atomic positions, etc.

All of the projects mentioned in this thesis fit into the theme of discovering novel materials for

specific applications using statistical modeling and atomistic simulations. We have used multiple

HT databases as sources to train ML models and also to search for novel materials. In Chapter

3, a complete materials design workflow with multiple design cycles and knowledge feedback

is implemented to identify novel high-dielectric materials that can improve the performance of
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batteries, memory devices, etc. In Chapter 4, a new 2D electronic ink material is identified from a

single design cycle that also follows a robust materials discovery workflow involving HT databases

and literature surveys, heuristic models aided by ML, and expensive characterization of material

properties from ab-initio simulations. In Chapter 5, a specialized ML model is built to predict a

material’s bandgap with quantified prediction confidences with high accuracy at the expense of

doing much cheaper, low-accuracy DFT calculations. In the end, we also discuss the outlook of

this field with a focus on computational infrastructure and best practices for materials discovery.
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CHAPTER 2

GENERAL METHODS AND FORMALISM

This section details the set of methods and theories used in multiple projects mentioned in this

proposal.

2.1 Density Functional Theory

Density Functional Theory (DFT) is a computational modeling method used to calculate the prop-

erties of crystalline solids at 0 K. DFT computes crystal properties as a functional of the electron

density, ρ(r). The fundamental advantage of using DFT, as opposed to computing the full Hamil-

tonian for an N -electron system, is that the former reduces the dimensionality of the problem from

3N to 3 - making it scalable to systems with many electrons. In DFT, the Schrodinger equation for

interacting many-electron system is modified to Kohn-Sham equations[17], [18] by expressing the

energy as a functional of electron density in a system containing non-interacting pseudoparticles,

as shown in equation 2.1.

E(ρ) = Ts(ρ) +

∫
dr Vext(r)ρ(r) + EH(ρ) + Exc(ρ) (2.1)

Vext, Ts, and EH denote the external potential due to the presence of positive charges in the nucleus,

the kinetic energy functional, and the classical electron-electron interaction, respectively. The last

part of the equation, Exc(ρ), represents the exchange and correlation (XC) energy functional which

contains energy from all other many-electron interactions such as the interaction between electrons

with opposite spins. Equation 2.1 is a complete re-formulation of the full Hamiltonian without
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any approximations, and solving either of them would give the exact same quantified values for

material properties - including the ground state energy. But the correct functional form of Exc(ρ)

is unknown even though it is independent of the system under consideration.

In practice, different forms of Exc(ρ) functional are approximated in DFT implementations

with varying accuracy. The most popular XC approximations are localized density approximation

(LDA) and generalized gradient approximation (GGA). In 1996, Perdew et al.[19] implemented

the most used version of GGA, called Perdew-Burke-Ernzerhof functional[19] (PBE). But nei-

ther of them accounts for the discontinuities in the interaction potential; thus, they cannot find

the exact ground state electron density. To further increase the accuracy of XC approximations,

Heyd et al.[20] proposed a new version of hybrid functional approximations called Heyd-Scuseria-

Ernzerhof (HSE) functionals. The HSE often calculates bandgap and electronic properties with

higher accuracy than PBE but at about 100 times the additional computational cost. Because of

that, the usage of HSE is limited to cases where the accuracy of PBE does not suffice to make a

final decision. Vienna Ab-initio Simulation Package[21]–[23] (VASP) is one of the most popular

software available to do DFT on materials and estimate properties. In this work, we use VASP

with Projector Augmented Wave[24], [25] (PAW) potentials and PBE exchange-correlation func-

tionals to do atomistic calculations. Additionally, we also make use of a high-throughput dataset

generated by other researchers using HSE functionals to build machine learning models.

2.2 Machine Learning

Machine learning (ML) refers to the process of detecting patterns in datasets. A dataset consists of

information about multiple objects - like materials. ML models learn the underlying function that

maps a set of variables, called features, that are cheap to calculate and can represent a given object

to another variable or a set of variables, called targets, that are often hard to estimate. This mapping
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between features and target(s) is initially unknown to the ML model, but it learns from the available

data to best represent the underlying function with the least amount of averaged error, while also

leaving room to tolerate the imperfections in data. The set of data objects whose both features and

targets are initially known is called training data because this set is used to train the ML model.

Once the model is trained, it is used to predict the target values of objects whose features are

known, but the targets are not. The choice of features can highly influence how much information

the ML model can learn. Since this is where the model searches to find new, useful data objects,

it is called as the search space. As much easily-available data about the object must be encoded

in the feature vector. But a large feature vector with a small number of data objects in training

data can lead to underfitting of the ML model where the underlying function is too complex to be

learned from the limited number of data objects. Similar to underfitting, the model can also overfit

on the data where it maps a function so complex that it fits the training data perfectly without

considering the possible errors during the data generation. Overfitting the data leads to large errors

while predicting because of the unpredictability of the complex mapping function in unsampled

areas of the feature vector space.

Different ML algorithms learn the internal mapping of features to target differently. For ex-

ample, tree-based algorithms construct a set of if-else conditions, the support vector machines

algorithm constructs high-dimensional hyperplanes in the feature vector space, Gaussian Process

models perform bayesian inference and other probabilistic methods, and artificial neural networks

create a network of linear models arranged in specialized configurations to allow approximation of

complex functions. Each ML model has a different set of internal parameters to build the mapping

function and a set of hyperparameters describing the model’s high-level architecture. The internal

parameters are learned automatically during the training process, while the hyperparameters are to

be optimized either manually or from other external methods. Overall, a large number of choices



31

can influence how well the ML model learns the mapping function, including the number of train-

ing data objects, feature vector selection, feature vector size, ML model, model hyperparameters,

quality of training data, the complexity of underlying function, etc. To avoid the overfitting of

data, a fraction - often 10% to 30% - of the training data is set aside and not used for training. This

subset of the full training data is called the test data. Since the real target values are known in test

data as well, the target values predicted by the trained ML model on the test data are compared

against the real target values to assess the performance of ML models reliably predicting the target

values.

Once the model is built and trained, it is used to predict target properties in the search space.

But since the real target properties of search space objects are unknown, the model may produce

inaccurate predictions when the search-space is much larger than the training data, even if it per-

formed well on the test data. This happens due to the limited sampling of the feature vector space

by the training data, while the objects in a larger search space may belong to an undersampled re-

gion in the feature space. One way to solve this uncertainty in accuracy is to quantify the model’s

prediction uncertainty. Some ML models, such as Gaussian processes, generate the quantified un-

certainty inherently based on how close a new data object lies to the training data objects in the

high-dimensional feature space. In other ML models, this uncertainty can be quantified by creat-

ing a statistical distribution of predictions from an ensemble of models trained with different initial

parameters and possible different subsets of training data. The predicted distribution’s standard

deviation can be assumed as the prediction uncertainty.

In materials science, the data objects are often the materials. The features representing the

materials can be generated in different ways by considering the material’s composition or structure

or both. It is also possible to use some of the material’s properties derived from cheaper simulations

as extra features, as long as they are readily available for both training data and search space
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materials. For example, bandgap and formation energy values are often available for millions of

materials from high throughput databases. Training data in materials science can be obtained as

sub-datasets of HT databases or from literature surveys and mini-throughput sets of simulations.

The search space can also be defined similarly. There are ML algorithms and architectures created

specifically to handle the material datasets, such as CGCNN[11] and SchNet[16]

In this work, various ML models are created and/or used in each project depending on the

amount of available data and the nature of the problem at hand. We also use uncertainty quan-

tification in all models since that will help in assessing prediction confidence for either avoiding

less-reliable predictions (as in Chapter 5) or to explore undersampled feature spaces (as in chap-

ter 3). We use data from HT databases like OQMD and Materials Project to create training data

and search spaces. The ML models and their associated pre- and post-processing data pipelines

are built on open-sourced libraries written in the Python programming language - such as Tensor-

flow[26], Keras[27], Scikit-learn[28], and OpenMDAO[29].
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CHAPTER 3

DISCOVERY OF HIGH-DIELECTRIC CONSTANT COMPOUNDS IN RARE-EARTH

FAMILIES FROM STATISTICAL OPTIMIZATION

3.1 Background

Dielectric materials are insulators that polarize in the presence of an external electric field. Be-

cause of their ability to store electric charges near their surfaces, dielectrics are used extensively in

electronic devices such as Central Processing Units (CPUs), Dynamic Random-Access Memory

(DRAM), and capacitor-based batteries. The efficiency of a dielectric material is measured in terms

of the dielectric constant (ϵ). ϵ is the factor by which the electric field induced by a finite electric

charge is reduced inside a dielectric material when compared to the electric field generated by the

same charge in the vacuum. Hence, the materials with higher ϵ values are most often preferred for

dielectric applications. Dielectric breakdown happens due to the carriers in the material’s valence

band crossing the electronic bandgap (Eg) under an external electric field, eventually resulting in

leakage currents and loss of the stored charge. The maximum threshold for charge storage due to

leakage currents significantly limits the usability of a given dielectric when the material has a small

Eg. Thus, an excellent dielectric material should have a high ϵ and a large Eg. Dielectrics that are

being used nowadays for commercial applications have their ϵ between 20 and 30 - for example,

Ta2O5 (ϵ ∼ 23-27, Eg=4.2 eV)[30]–[33] and TiO2 (ϵ=27, Eg=3.5 eV)[30], [32], [34].

It is observed that the Eg and ϵ are inversely proportional to each other[32], [35], making it a

challenge to discover materials with large values for both Eg and ϵ. Performing a high-throughput

computational screening across tens of thousands of possible compounds is not feasible because
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the underlying simulations based on Density Functional Perturbation Theory (DFPT) to accurately

calculate the total ϵ value, which is the sum of both ionic and electronic contributions, are signifi-

cantly more expensive than standard DFT calculations. The primary goal of this work is to screen

the large, existing high-throughput inorganic crystal structure databases and discover novel high-ϵ

dielectrics with large Eg by conducting as few DFPT calculations as possible.

3.2 Results and Discussion

3.2.1 Materials design strategy

This work focuses on finding materials with optimized dielectric properties and large bandgaps.

There are nine components in a material’s dielectric tensor, and it will be a significantly challenging

task to optimize more than a single dielectric component simultaneously. Thus, we define the

target property for optimization as the largest eigenvalue of the dielectric tensor and refer to it as

the ϵ. The largest eigenvalue of the total dielectric tensor is chosen here as opposed to the average

eigenvalue to account for the highest dielectric nature the material will exhibit when it can be

aligned perfectly in any necessary direction while making an electronic device. The total dielectric

tensor is the sum of the electronic and ionic dielectric tensors obtained from DFPT calculations.

As shown in Figure 3.1, each cycle in the materials design workflow implemented in this work has

three steps - the collection of data, selection of materials from statistical modeling, and validation

of the new materials’ properties using DFPT. During the first step, the training-data and a search-

space are determined. Training-data is the dataset of materials with known values for ϵ, and it

is used to train the machine learning models. Search-space is the dataset of materials whose ϵ

values are not known, and this is where we search for novel high-ϵ materials using machine-

learning model predictions. During the second step of the workflow, reliable machine learning

(ML) models are created by learning knowledge from the training-data, and then the trained models
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Figure 3.1: Workflow for materials design implemented in this work. A single design cycle con-
sists of three stages - Data, Modeling, and Validation. In the first stage, the design challenge is
translated into a set of datasets. Since the Eg values are readily available from high-throughput
datasets, we consider only the ϵ as the unknown target property. The set of materials from the Ma-
terials Project with already known ϵ values is set as the training-data. The set of stable non-metals
from OQMD whose ϵ value is not calculated yet is defined as the search-space to find the best can-
didates for being novel high-dielectrics. The methods to generate feature vectors representing each
material in training-data and the search-space are also established in this stage. During the Model-
ing stage, we created an ensemble of Artificial Neural Networks (ANNs) trained on the randomly
sampled subsets of training-data to predict the ϵ value of materials when their structure, chemical
composition, and Eg are known. Since each ANN model predicts a single ϵ value, the ensemble
with 2000 independent ANN models predicts a distribution for the ϵ value for each material in the
search space. This predicted ϵ distribution is used by Efficient Global Optimization[36] (EGO) to
rank the materials based on how likely the selection of that material will lead to the eventual opti-
mization of ϵ within as few design cycles as possible. The EGO algorithm can exploit the modeling
power of ANNs while also exploring the classes of materials in the search space that are not well
represented in the training-data. In this work, five to seven materials are selected from EGO-based
rankings in each design cycle and passed on to the next stage - Validation. During validation, the
ϵ values of the selected materials are calculated using the ab-initio DFPT calculations. The design
workflow ends at this stage if the design goals based on the required material property optimization
are met. Otherwise, the newly generated DFPT data is fed into the next cycle by appending it to
the training-data, and a new design cycle is started. We conducted three such design cycles until
we identified multiple high-ϵ, high=Eg materials.
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are used to predict the ϵ values of all materials in search-space with quantified model uncertainty.

Further, a statistical optimization-based selection algorithm is used to select a few materials from

the search-space as the best candidates for DFPT validation based on their ML-predicted ϵ data.

In the workflow cycle’s final step, the selected materials’ dielectric properties are computed using

high-accuracy DFPT methods. The newly gained knowledge of ϵ on the selected candidates is

appended to the training-data for the next design cycle, and those materials are removed from the

search-space. This knowledge feedback is expected to improve the ML modeling in the subsequent

design cycle due to the increased sampling of materials space by the new materials in the training-

data. The workflow cycles are continued sequentially until a few materials with high values for ϵ

and Eg are found.

3.2.2 Datasets

The initial training-data in this work consists of 1864 materials whose dielectric values were

available from Materials Project[37], [38] (MP). The search-space consists of 11,102 stable non-

metallic materials from OQMD. Since both MP and OQMD already contain data of DFT-estimated

bandgaps, the available information for both training-data and search-space consists of the crystal

structure, chemical composition, and bandgap energy values, while the training-data additionally

contains ϵ as the target property. It is required to represent all the materials in vectors of the same

length in order to use them in statistical modeling. We generated such material representations

using Magpie[39] crystal property generator tool which inputs the crystal structure and chemical

composition of a material and generates a vector of length 271. The bandgap value is appended to

the vector, making the final representation vector, also called the feature vector, length to be 272.

This feature vector size is further reduced to 100 by using some of the popular feature-reduction

methods, such as principal component analysis and model-based feature selections - as imple-
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mented in the Scikit-Learn python library. Since we use data from separate material databases

during the course of the statistical design by training the model on MP data and then using the

trained model to predict on the materials from OQMD, it is crucial to consider the possible dif-

ferences in the representation of the same material across databases. The main incompatibility

between databases may stem from the differences in DFT calculation parameters used to relax the

material’s crystal structure in the databases’ high throughput calculation frameworks. We investi-

gated the similarity between Magpie-generated feature vectors for equivalent materials in OQMD

and MP. In total, 1717 materials out of the 1864 materials in MP training-data had an equivalent

material phase entry in OQMD as well. A material from MP is considered equivalent to a material

in OQMD if both of them have the same chemical composition and crystal structure symmetry

spacegroup. The results are shown in Figure 3.4. Figure 3.4a, shows that there is a negligible

(< 2%) difference between MP and OQMD materials in 263 out of 271 Magpie features. The rest

of the 8 features also have relatively small (< 7%) deviations from each other. In Figure 3.4b,

the Bandgap values, which join the Magpie vector to form the final feature vector, are compared

across MP and OQMD for the same 1717 equivalent materials. It also shows a negligible mean

difference (0.1 eV) and a median absolute deviation (0.0 eV) between the two datasets. Hence, it

is shown that the cross-database statistical design is significantly less likely to suffer from database

incompatibilities in our case.

In the MP training-data, most of the ϵ values are between 0 and 25 with only less than 5%

materials with ϵ above 50 - as shown in Figure 3.2. The mean, median, and standard deviation

of the MP data are 20.2, 12.2, and 42.8, respectively. This bias in the training-data toward small

ϵ values makes the statistical modeling prone to model fitting bias and treats the large values as

rare outliers. One method to avoid the fitting bias is to reduce the numerical spacing between the

target values, which avoids steep changes in the model’s internal parameters such as the weights
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Figure 3.2: Distribution of ϵ values in the training-data. More than 95% of the values are below
50. So it is probable that most of the feature-vector space spanned by materials with large ϵ values
are not well sampled within the training-data. Theoretically, exploratory materials design with
knowledge feedback, as implemented in this work, is expected to perform very well even in such
unevenly sampled data scenarios.

and biases in an ANN during the training. In this work, we did a log-scale transformation of the

ϵ values to reduce the numerical spread. We also analyzed the trend of how ϵ and its components

change with Eg in the training-data and are given in Figure 3.3. The ionic contribution to the ϵ

is primarily independent of the bandgap, while the electronic contribution has a strong inverse

correlation with Eg, as expected.

3.2.3 Statistical Modeling and Optimization

We created an ensemble of artificial neural network (ANN) models to learn from the data and

trained each of them on a randomly sampled subset of the full training-data. The reason to choose

an ensemble, instead of building a single ANN, is to quantify the model uncertainties associated

with the ANN predictions of ϵ for each material in the search-space. When the training-data is
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Figure 3.3: The plots show the trends of how the electronic (ϵele), ionic (ϵion), ϵ (highest eigenvalue
of total dielectric tensor), and ϵele

ϵion
values change with increasing bandgap value in training-data.

The total dielectric tensor is obtained by tensor addition of ionic and electronic dielectric tensors.
While ϵele decays inversely with the bandgap (Subplot a), we find that ϵion shows weak depen-
dence on the bandgap (Subplot b). However, ϵ is dominated by the electronic contribution in
the low bandgap regime, hence exhibiting an inverse relationship with the bandgap (Subplot c).
Subplot c also shows that the inverse relation between ϵ and bandgap weakens at high bandgap
limits because the ϵion is the dominant factor in that range, as shown in subplot d that plots ϵele

ϵion
.

Hence, the generalization of this trend ( ϵ vs. bandgap) in high-bandgap regions is less reliable
due to the sparse population of data points, unlike the low-bandgap limit. The trend line is plotted
using Locally Weighted Scatterplot Smoothing[40] (LOWESS) algorithm as implemented in the
Plotly python package[41] with 5% of the dataset considered near each point to compute the local
weights.
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Figure 3.4: Variance in materials data between the OQMD and MP databases. Difference
in the material representation vector components of the structures obtained from OQMD and MP
for 1717 materials in the training data. a) Mean absolute difference in the 272 feature vectors
generated from Magpie on the structures obtained from the MP and OQMD for 1717 materials in
the training-data. The cross-referencing of materials across the databases was done by finding the
database entries with the common ICSD Collection codes associated with their structures. We also
made sure that all the 1717 materials have the same symmetry group listed in MP and OQMD,
even though their lattice parameters may differ by a small amount due to differences in the DFT
parameters and initial states used to generate the data. For 143 materials in the MP training-
data, ICSD Collection Codes were unavailable. So they are not included in this analysis even
though their counterparts in OQMD could have been found by matching composition and crystal
symmetries. This strict mapping via ICSD codes helps in avoiding the materials that have changed
the spacegroups after DFT relaxation. b) Distribution of the difference between the DFT bandgap
(Eg) values listed in OQMD and MP in log scale for the same 1717 materials in the training-data.
The bandgap values show very good agreement in most cases.

small compared to the candidate space, it may have under-sampled the high-dimensional vector

space spanned by the search-space materials. For example, a training-dataset consisting of only

organic compounds cannot reliably represent the feature-vector space that may have been spanned

by inorganic compounds. In this project, a single ANN would still predict an ϵ value for even the

materials that do not belong to the part of the feature space spanned by the MP training-data with-

out any information on how confident it is about that particular prediction. Hence, quantifying the

model uncertainty helps assess a prediction’s reliability and explore new areas within the feature

space of materials that are not sampled by the current training-data. Our model ensemble com-
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prising 2000 independent ANNs provides a statistically relevant distribution of the predicted ϵ for

each material in the search space. The standard deviation of this predicted ϵ distribution is defined

as the quantified uncertainty for that material. Since the new DFPT-calculated data is added to the

training-data after each design cycle, it increases the sampling range of the training-data in feature

space. Because of this feedback, a new ANN ensemble is created and trained at every design cycle.

Figure 3.6a shows the validation results from a randomly selected model from the second design

cycle’s ANN ensemble.

To assess the ANN predictions and rank the search space materials as potential candidates for

DFPT calculations, a statistical optimization algorithm called Efficient Global Optimization (EGO)

is used in this work. EGO takes in the mean and standard deviation of the ϵ distribution for each

material and estimates a quantity called Expected Improvement, denoted as E(I). The EGO algo-

rithm does the exploitation of the available information in training-data by considering the search

space materials with large mean values for their ϵ distribution, and also explores the unsampled

regions of feature vector space by considering the search space materials whose ϵ distribution has

a large standard deviation. The optimization that EGO looks for in this work is the maximization

of the ϵ value among search space materials within as few design cycles as possible. Theoretically,

the E(I) value of a material is the probability that the DFPT-estimation of that particular material’s

ϵ would lead to the discovery of a high-ϵ material in the current or subsequent design cycles. Figure

3.6b shows the E(I) values computed by EGO for the validation data in the second design cycle.

An example illustration of the calculation of E(I) is provided in the next section.

3.2.4 Calculation of E(I) in via an Example

Consider a set of materials Mi that belong to the search space, each with a ϵ distribution associated

with it. Let ymax
t be the largest value for ϵ in the training-data. If we trust the ML model about
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its prediction capabilities completely, the best candidate for selection is the material, say M1, with

the largest means and lowest standard deviations for their ϵ distribution. That also means that if

material M2 has a mean ϵ lower than ymax
t , it can be discarded completely even if it has a large

uncertainty associated with it. This is called the exploitation of the available knowledge by trusting

both the model and the capability of training-data in reliably sampling the material feature vector

space. But in reality, the training-data does not sample the feature space well, and some of the

materials may have a smaller ϵ distribution mean just because the ANN models could not arrive

at a confident prediction. In this case, the material M2 is still of interest even with a smaller ϵ

mean value since it has a larger uncertainty and may belong to a new class of materials that are

not sampled in the training-data. This is called the exploration of the feature space. In the EGO

algorithm, both exploration of the known data and the exploration of the unknown spaces are

considered while ranking the materials for selection. Thus, both M1 and M2 are assigned a higher

rank in the list of possible candidates for selection. The ranking is done by computing the E(I)

value as shown in Figure 3.5, and as follows:

Let Y represent the target property that is to be maximized in a given situation. In this work,

Y is the dielectric constant of a material. Now, φ(Y ) is the predicted distribution of Y from

the ANN ensemble. φ(Y = y) is the probability estimated by the ANN ensemble that the real

value of Y is the numerical value y. The expected improvement is calculated based on how much

improvement a search space material promises above the threshold set for what is to be considered

as the improvement. In the benchmarking studies of the EGO algorithm, this minimum threshold

for improvement is set by the best material in the training-data. It is the largest value of the target

property in the training-data, denoted as ymax
t . As formulated and benchmarked on surrogate
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models by Jones et al.[36], the EGO algorithm computes the expected improvement, E(I), as

E(I) =

∫ ∞

ymax
t

(y − ymax
t ) φ(Y = y) dy (3.1)

Balachandran et al. [10] benchmarked this optimization algorithm on material datasets with an

approximation of the predicted distribution as a normal (i.e., Gaussian) distribution with a mean µ

and a standard deviation σ. In this approximation, Equation 3.1 can be re-written as,

E(I) = σ[ϕ(z) + zΦ(z)] (3.2)

where, z =
µ−ymax

t

σ
, ϕ is the probability density function, and Φ is the cumulative distribution

function[36] of the normal distribution, φ(Y ).

In the MP-dataset used in this work, the largest ϵ value belongs to TiO2 with ϵ=988 and Eg=1.8

eV. But in this work, we search for high-ϵ materials with a large Eg as well. Setting the ymax
t

value to be 988, following the theoretical strategies, will focus only on very low Eg materials,

which often have very high ϵ values. For practical purposes, any new material with epsilon larger

than commonly used dielectrics may be considered as important as long as their bandgaps are

also large enough. hence, the minimum threshold of ϵ is assigned to be 100.0 to represent our

high-ϵ value preferences. With that assigned, any material whose ϵ prediction distribution extends

above 100 would have a finite E(I) value, even if the mean of the distribution falls below 100.

The ANN ensemble is not expected to produce a Gaussian distribution for ϵ even though the EGO

algorithm expects one. Instead, the mean and standard deviation of the ANN ensemble-predicted

ϵ distribution is used as the mean and standard deviation of a normal distribution of ϵ assigned for

each material.
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Figure 3.5: The optimization algorithm. The value ymax
t represents the currently available highest

value of ϵ among all materials in the training-data. µ and σ represent the mean and standard devia-
tion of the ϵ distribution for a material (blue dot) in the search-space predicted by ANN-ensemble.
The predicted distribution is assumed as a normalized Gaussian function here. The region above
ymax
t covered in green stripes represents the region of improvement. It is because, if the validation

from the DFPT calculation determines that the material’s ϵ lies above the minimum threshold that
is ymax

t in this diagram, it will be considered as an improvement in property optimization among
materials.

3.2.5 Design Cycles

In total, we conducted three design cycles sequentially, with 5 to 7 materials selected for DFPT

calculations at the end of each of them. The training-data increased by that same amount since

the new DFPT-calculated data from the previous cycle was appended to the new training-data.

The feedback of data is expected to increase the confidence of ANN model predictions in the

next design cycle due to the increased sampling of the feature space. In addition to this knowledge

feedback mechanism between the cycles, the other main factor that influenced the selection process

is the bandgap minimum cutoff imposed on the search space data. During the first design cycle, the

only restriction was to have a non-zero bandgap, and it included all of the 11,102 stable non-metals

from OQMD. But it resulted in the selection of very low bandgap materials since the statistical
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Figure 3.6: Results from statistical modeling. (a) ANN model validation on a test set of 373
materials split from the training-data. This particular model-fit plot is taken from a single ANN
model that was part of the ensemble containing 2000 ANNs in the second design cycle. The
ensemble was used, instead of a single ANN, to generate a distribution of ϵ for each material and
quantify the uncertainty in predictions for each material in the search space. The 373 materials
plotted here are part of the full MP training-data, and were not seen by this particular ANN model
at any stage during the training. These predictions are made only to show this particular ANN
model’s learning capabilities, and they are not used anywhere during the actual selection. In the
design workflow, each ANN model in the ensemble is exposed only to a unique subset of the full
MP training-data, excluding 373 randomly chosen materials. The trained ANN models are used
to predict the dielectric values of only the search-space materials from OQMD, not of the 373
materials split from the MP dataset, and used as test-data during ML model training. All ANNs
in this work are trained to predict log2(ϵ) instead of ϵ, because the latter values are highly non-
uniform in the training-data with most of the values below 25, making some of the very large
values outliers. A log-scale transformation of ϵ reduces the numerical scale of spread among
the ϵ values, making the very large values less of an outlier. The model fit shown in this plot
has an R2 score of 70%, and a Spearman’s rank correlation of 85%. (b) This plot shows the
predicted ϵ-distributions and corresponding E(I) values on the same test dataset that in Subplot
(a) consisting of 373 materials split from the training-data. The error bars represent the standard
deviation in ANN-ensemble predictions. This standard deviation is quantified as the uncertainty
of ANN predictions. For a clearer perspective, both the radius and color of the circles represent
the same quantity - the Expected Improvement, E(I). E(I) value is calculated from ANN model
predictions with uncertainty using the EGO algorithm. A point without an outer circle around it
represents a material with a negligible (< 10−3) value for E(I). In this figure, only 25 materials
have an E(I) value that is greater than 10−3.
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modeling can get biased toward the inverse correlation of bandgap and ϵ. Thus, for the second

design cycle, a bandgap minimum cutoff of 2.25 eV was set, leaving 6191 materials in the search

space. During the third design cycle, this minimum cutoff was raised to 5 eV, and the search

space consisted of 1046 materials with very high values for Eg. In this work, the optimization

of multiple objectives - ϵ and Eg - is achieved by two different approaches. The optimization

of ϵ happens via statistical modeling while the optimization of Eg is achieved via simple data

filtering since all the Eg is already available. This strategy deviates from the ideal multi-objective

optimization algorithms benchmarked on dummy datasets and stands as an example for situations

where modifying theoretical approaches can be beneficial depending upon real-world conditions.

In total, we calculated the dielectric tensor of 17 compounds over the course of three design

cycles. Table 3.1 lists all of these materials along with their ϵ eigenvalues and the bandgaps. The

evolution of the Pareto-front of the known dielectric materials that include the MP training-data and

the new DFPT calculations is shown in Figure 3.7. Since this is a multi-objective optimization over

ϵ and Eg, modification of the Pareto-front is considered as the identification of a new promising

dielectric. Five materials were selected from the search space in the first design cycle based on

their E(I) values. Out of the five, two of them - HoN and Bi2SeO2 - turned out to have very high ϵ

values (∼ 370) but with very low bandgap values (≤0.5). This shows the reliability of the selection

algorithm because it found two high-ϵ valued compounds just as it was expected to. But since the

bandgaps are very small, these two materials are not fit for being good dielectrics. Another material

selected in this cycle, BaZrN2 (ϵ=31, Eg=1.2 eV), is, in fact, more preferred than the former two.

None of the materials modified the Pareto Front as shown in Figure 3.7a. The Parento front in

Figure 3.7a is fully populated by the materials in the initial MP dielectric data. Thus, we added

the data of all five new dielectrics to the training-data and proceeded to the next design cycle. In

the second design cycle, five more materials were selected based on their E(I) values. Due to the
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bandgap minimum threshold filter applied on the search space, all the selected materials had their

Eg ≥2.3 eV. All of the five materials had moderate to high dielectric values (24≥ ϵ ≤100) as well.

As shown in Figure 3.7b, one of the materials - Tl3PbBr5 - modified the Pareto Front due to its very

high ϵ value (100.8) and moderately high Eg value (2.9 eV). Even though the other four candidate

materials - Sr2LuBiO6, Bi5IO7, Bi3ClO4, and Bi3BrO4 - did not make it to the Pareto Front, they

are still good contenders for regular dielectric applications due to relatively large ϵ and Eg values.

During the third and the last design cycle, all the search space materials had exceptionally high Eg

values (> 5 eV) due to the bandgap threshold filter. Seven materials were selected in this cycle

for DFPT calculations. Two of them - HoClO (ϵ=75, Eg=5.2 eV), Eu5SiCl6O4 (ϵ=69, Eg=5.5 eV)

- made it to the Pareto Front as shown in Figure 3.7c. With three new materials joining the Pareto

Front, the materials design workflow ended after three design cycles.

3.2.6 New High-Dielectric Materials

The 17 materials selected and characterized using DFPT calculations during the design cycles are

listed in Table 3.1. Seven materials satisfied the initial constraint (ϵ > 20 and Eg > 2.25 eV). Out

of these seven materials, three of them even improved the Pareto front of the previously known

data, as seen in Figure 3.7. The most promising materials are the mixed-anion compounds mono-

clinic Eu5SiCl6O4 (ϵmax=69.3, Eg=5.54eV) and tetragonal HoClO (ϵmax=75.1, Eg=5.19eV). The

mixed-anion compounds are a class of materials with at least two different species of anions in their

composition. Mixed anionic materials are a class of emerging functional materials[42], and this

identification of high-dielectrics among them could boost the general research interest in them.

To reiterate the advantage of statistical materials selection, the monoclinic Eu5SiCl6O4 has 32

atoms in its primitive unit cell which often exceeds the maximum cutoff on the number of atomic

sites in high throughput studies involving computationally expensive material properties[38], [43].
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Statistical selection methods enable the expansion of the search during computational material se-

lection to materials with larger unit cells as well. Another promising rare-earth halide is tetragonal

Tl3PbBr5 (ϵmax=100.8, Eg=2.86eV). In all three new high-dielectric materials, the ionic contribu-

tion to the static dielectric constant is higher than the electronic contribution, as shown in Table

3.2. The crystal structures of these three best new dielectrics are visualized in Figure 3.8.

OQMD ID Material Eg ϵx ϵy ϵz Design Cycle
681780 CaVO3 0.4 4.7 4.5 4.5 1
14476 Sr2VN3 1.8 28.8 16.5 16.0 1
13450 BaZrN2 1.2 31.2 31.2 21.7 1
1104204 HoN 0.4 376.9 373.0 372.7 1
649584 Bi2SeO2 0.5 377.3 371.8 118.2 1
19571 Sr2LuBiO6 2.4 24.1 19.4 18.7 2
5958 Bi5IO7 2.7 35.8 28.2 23.1 2
24994 Bi3ClO4 2.3 38.9 24.2 25.7 2
22697 Bi3BrO4 2.3 39.0 23.7 22.1 2
118234 Tl3PbBr5 2.9 100.8 36.4 36.4 2
11916 Eu4Cl6O 5.3 7.4 7.3 5.5 3
18953 EuClF 5.6 11.1 11.1 10.4 3
646321 Rb2PrCl5 5.1 12.2 11.0 8.9 3
15191 Cs2NaCeCl6 5.1 13.2 13.2 13.2 3
4063 EuCl2 5.2 15.6 12.9 11.8 3
24611 Eu5SiCl6O4 5.5 69.3 15.1 12.9 3
13689 HoClO 5.2 75.1 37.9 15.2 3

Table 3.1: DFT-calculated dielectric constants of 17 compounds selected during the three design
cycles. The OQMD ID refers to the materials’ unique entry ID in the OQMD database, Eg refers
to the bandgap energy in eV, ϵx,y,z refers to the three eigenvalues (xx, yy, zz) of the of dielectric
constant tensor, and the Design Cycle column notes the design cycle when the material was se-
lected for the calculations of dielectric constant using DFPT. The values ϵx,y,z are ordered in such
a way that ϵx > ϵy > ϵz. The best materials identified in this work are highlighted in bold letters.

An important factor to consider while computing dielectric properties via DFPT is the pres-

ence of imaginary phonon modes in the calculation that will cause dynamic instability of the ma-

terial[44]. All of the imaginary phonon modes observed during the DFPT calculations of the best
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Figure 3.7: Modification of the Pareto-front after each design cycle The Pareto-front is the set
of the most optimized group of materials in a multi-objective dataset. If a material M belongs to
the Pareto-front of the known dataset in this work, that implies that there are no other materials in
the known dataset that has a higher value for both ϵ and Eg than the material M. Subplots (a), (b),
and (c) show the Pareto-front of the known data after design cycles 1, 2, and 3 respectively. The
known data is the union set of the initial MP training-data and the newly characterized materials
from DFPT in this work. None of the materials selected and characterized in design cycle 1 made
it to the Pareto-front due to their very low bandgap values, and thus, the Pareto-front in Subplot
(a) is the same as the Pareto-front of the initial MP data. Only the materials with Eg >2.0 eV are
plotted in Subplots (b) and (c) to highlight the area where some of the newly discovered dielectrics
in their corresponding cycles joined the Pareto-front. Two materials from the MP-dataset with very
high ϵ values - tetragonal TiO2 (ϵ=988, Eg=1.8 eV) and cubic KTaO3 (ϵ=640, Eg=2.1 eV) are in the
Pareto-front in plots (b) and (c), but that part of the Pareto-front is cropped out for better visibility
of the section of interest.
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HoClO Eu5SiCl6O4 Tl3PbBr5

Figure 3.8: Crystal structures of (a) HoClO, (b) Eu5SiCl6O4, and (c) Tl3PbBr5

Table 3.2: Fraction of ionic contribution ϵion
ϵion+ϵele

to the total static dielectric constants (ϵ =
ϵionic + ϵelectronic) for the best three high-dielectrics identified in this work. The ionic contribu-
tion is most significant in the case of Tl3PbBr5 and Eu5SiCl6O4 on all three diagonal dielectric
tensor components. In HoClO, both ionic and electronic contributions are similar in magnitude.

Material ϵionic/ϵ
xx yy zz

Tl3PbBr5 0.9 0.9 0.9
HoClO 0.6 0.6 0.6

Eu5SiCl6O4 0.9 0.7 0.7

three dielectrics are provided in Table 3.3. These phonon frequencies at the Γ-point are small and

well within the expected range of numerical error, thus, indicating the lack of any related struc-

tural instabilities. The two rare earth oxychlorides with very large bandgaps (> 5 eV)-Eu5SiCl6O4

and HoClO- are reported to have been experimentally synthesized [45]–[48], but their dielectric

properties remain unstudied to the extent of our knowledge.

The thermodynamic stability of a dielectric is of concern when they are used in electronic cir-

cuits. A dielectric may be used in contact with other common electronic materials, such as Si, Ge,

GaAs, GaN, and SiC, in addition to the chemicals in the environment, such as oxygen and nitrogen.

The dielectric must remain non-reactive with all of these compounds during its deployment in real
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Table 3.3: Imaginary phonon modes in high-dielectric materials. The phonon frequencies of the
three acoustic phonon modes at Γ-point for the high-dielectric materials identified in this work.
These small imaginary frequencies reported here fall within the numerical error of the calculations.

Material Imaginary Phonon modes

Tl3PbBr5
0.005650 THz
0.021434 THz
0.022159 THz

HoClO
0.015989 THz
0.034859 THz
0.052248 THz

Eu5SiCl6O4

0.013365 THz
0.021796 THz
0.048696 THz

devices[49]. Many high-dielectrics previously reported in the literature, such as Ta2O3[50]–[52],

TiO2[53], [54], BaTiO3[55] and SrTiO3[56], [57] suffer from reacting with Si when used in the

circuits and eventually decomposes into other compounds such as SiOx. This instability makes

these dielectrics unusable in practice. The thermodynamic stability of two compounds in contact

can be assessed from DFT by constructing a convex hull[58] of the phase space occupied by their

constituent elements. The convex hull method uses formation energies of materials that are readily

available from OQMD and other such HT databases. Every material that makes it to the convex

hull not only has the lowest formation energy at its composition but also has lower energy than any

linear combination of other materials in that phase space. The numerical difference between the

formation energy of a compound and energy at the convex hull for the same composition is called

hull distance (Ehd). By definition, each material that has a zero hull distance (Ehd = 0) is consid-

ered to be stable, while every material that has a small, but finite Ehd is considered as metastable
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(0 < Ehd ≤ 50 meV per atom). Materials with larger Ehd are considered to be unstable (Ehd > 50

meV per atom). The cutoff between metastability and complete instability is decided based on the

magnitude of Ehd according to the conventions practiced in literature [59]–[63]. In a convex hull

phase diagram, the presence of a tie line between two compounds indicates their thermodynamic

stability when in contact with each other.

In Figure 3.9, we show the convex hull built for some of the previously reported dielectrics

along with common electronic materials, based on the formation energy data obtained from OQMD.

The absence of tie-lines from Ta2O3, TiO2, BaTiO3, and SrTiO3 to Si suggests that they are un-

stable when in contact with Si. To confirm the reliability of convex hulls, we included another

material in the same phase diagram in Figure 3.9 - Gd2O3 (ϵ ∼ 20[64]). Gd2O3 is also experimen-

tally proven to be stable when in contact with Si[65]. In its phase diagram, Gd2O3 has a tie-line

to Si, making this DFT-based stability assessment agree very well with experimentally observed

results in the case of both stable and unstable materials that we considered to benchmark. We

constructed a new phase diagram in Figure 3.10 to assess the DFT-predicted stability of the two

new high-ϵ, high Eg dielectrics - HoClO and Eu5SiCl6O4 in a similar manner. Both of these ma-

terials are observed to have tie-lines to Si, Ge, GaAs, GaN, SiC, N, and O. This indicates that

they are expected to be fit for being used in electronic devices. The other promising material that

made to the Pareto-front with a larger ϵ (101) but relatively smaller bandgap (2.9 eV) - the tetrag-

onal Tl3PbBr5, is observed to be metastable in convex-hull analysis with Ehd = 16 meV per atom.

Tl3PbBr5 is also reported in the peer-reviewed literature as a material that had been experimentally

synthesized[66]–[68], without any mention of its dielectric properties to the best of our knowledge.

We did a further computational analysis of the top three dielectrics found in this work - HoClO,

Eu5SiCl6O4, and Tl3PbBr5 - by computing their electronic bandstructures as shown in Figure 3.11.

The bandstructures show that the conduction band maxima in each of them are occupied by lighter



53

SrTiO 3 
Gd 2 O 3 

BaTiO 3 

Ta 2 O 5 

TiO 2 

SiO 2 

Si

SrO

SrSi

Ba 2 GdTaO 6 

BaO 2 

Ba 3 SrTa 2 O 9 

Ta 3 Si

BaSiO 3 

TiSi 2 

BaSi 2 O 5 

GdTaO 4 

Ba 2 Ti 6 O 13 

Sr

Gd

BaO
Ba 3 SiO

BaSrTaTiO 6 

Ta 5 Si 3 Ba 2 TiO 4 
Ba 5 Ta 4 O 15 

Ba 2 SiO 4 
Gd 2 SiO 5 
SrO 2 

SrTa 4 O 11 

Gd 2 TiO 5 

BaTi 6 O 13 

Sr 2 Ta 2 O 7 

BaSrTa 2 O 7 

GdTa 3 O 9 

GdSi

Ba 3 Si 4 
Ti 3 O 5 
SrTa 2 O 6 

Sr 2 SiO 4 
BaTa 2 O 6 

Ti 2 Si
Ti 6 O

Ba
TaSi 2 

BaTiSi 3 O 9 

Sr 5 Si 3 

TiO

Sr 2 TaTiO 6 

Ba 3 Ta 6 Si 4 O 26 

Ti 2 O 3 

Sr 4 Ti 5 Si 4 O 22 

Ba 4 Ta 2 O 9 

Ta 2 Si

TaTi 2 Si 2 

Sr 3 SiO

Ti 5 Si 3 

BaSi

Sr 2 Ti 6 O 13 

Ta

Ba 2 Si 3 O 8 
TiSi

Ti 5 Si 4 
Ti 2 O

BaGd 2 O 4 
Sr 2 TiO 4 

BaGd 2 Si 3 O 10 
SrSiO 3 

Sr 2 GdTaO 6 

Ba 2 Sr 3 Si 7 

O

Ba 2 TiSi 2 O

BaSi 2 

Gd 3 Si 5 

SrTi 2 O 5 

Sr 3 Ti 2 O 7 

BaSrSi
Ba 2 Si

Ti 3 O
Ti

Ti 3 Si

Gd 2 Si 2 O 7 
BaTi 2 O 5 

Gd 5 Si 3 
Ba 2 Ta 15 O 32 

SrSi 2 

Sr 2 Si

Figure 3.9: Phase diagram of Ba-Ti-O-Sr-Ta-Si phase space in OQMD database. The most rele-
vant materials are shown in large circles in the inner shells. The tie lines between the inner-shell
materials are plotted in thick red lines, while the thinner gray lines are the tie lines that connect
the inner-shell materials to the materials on the outermost shell. A tie line exists between Si and
Gd2O3 indicating the relative stability of these two materials when in contact with each other. No
tie-lines originate from Si to BaTiO3, SrTiO3, TiO2 or Ta2O5 indicating their energetic instability.
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Figure 3.10: The convex-hull phase diagram of all stable compounds in Ho-Cl-O-Eu-Si-Ge-
Ga-As-C-N phase-space from OQMD (as of January 2022). The two most promising dielectrics
identified in this work - HoClO and Eu5SiCl6O4 are plotted in large green circles in the center. The
elements (Ho, Eu, Si, Cl, Ge, Ga, As, C, N, and O) and semiconductors of interest (Si, Ge, GaAs,
SiC, and GaN) as suggested by Robertson[49] are plotted in the middle layer in medium-sized
yellow circles. All other stable compounds in the phase diagram are plotted in small dark circles in
the outermost layer. Tie-lines between the new dielectrics and the semiconductors or elements are
shown as thick red lines. Other tie-lines from the dielectrics to the rest of the stable materials in
the outer layer are drawn as narrow gray lines. Another 2326 tie-lines exist in this phase diagram
that does not include either of the dielectrics. Those lines are not shown in this network plot for
better visibility of the information relevant to the new dielectrics. The elements and compounds
without any visible tie-lines in the outermost layer are still part of this phase diagram since they
have tie-lines with some of the other materials in the outer layer even though they lack tie-lines to
HoClO or Eu5SiCl6O4. We observe that there exists a tie-line from each dielectric material to each
semiconductor that is considered here for comparison, indicting that HoClO and Eu5SiCl6O4 are
in thermodynamic equilibrium with Si, Ge, GaAs, GaN, and SiC at 0K.
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anions (Cl, Br) and, thus, much lower in energy than the conduction band minima occupied by

contributions from cations (Ho, Eu, Tl). This indicates a tendency to form larger bandgaps, which

is a desired property in this work. Calculations using PBE in DFT often underestimate the bandgap

of materials. Because of that, the real bandgaps of HoClO and Eu5SiCl6O4 could be higher than

even the values mentioned here, making them even more resistant to leakage currents. The results

of this work hint that the mixed-anion compounds formed by rare-earth elements are a class to be

investigated in detail for their dielectric properties. The presence of rare-earth elements such as

Ho and Eu in the new dielectrics can raise concerns over their availability in manufacturing at an

industrial scale. However, this is an actively researched topic for other similar materials as well

these days, and some of the most practical recommendations involve better recycling of rare-earth

materials[69], [70], which may result in a sufficient supply of the rare elements for mass production

of small electronic components. In fact, Ho is more abundant in the earth’s crust than other widely

mined elements such as Mo, Bi, and precious metals[71] but still remains an underutilized element

in the industry[72]. Eu is more abundant on earth’s crust than Ho and some of the heavily mined

elements such as W and As[71] even though the processing methods to extract them from their

ores may still be limited. Tl3PbBr5 is a good candidate for dielectric applications in controlled

environments, but the presence of toxic elements such as Pb and Tl in it can make it less probable

to be used as a dielectric in consumer electronics.

3.3 Discussion

In this work, we report three new high-ϵ, high-Eg materials found via an iterative computational

materials design approach consisting of ab-initio density functional perturbation theory (DFPT)

calculations, high-throughput data analysis, and statistical optimization. We also demonstrate a

successful mixing of two different high-throughput databases (Materials Project and the Open
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Quantum Materials Database (OQMD)) to discover new high dielectric constant materials with

large bandgaps in a machine-learning-aided materials design framework. The thermodynamic sta-

bilities of the two best newly discovered dielectrics, HoClO (ϵ=75, Eg=5.2 eV) and Eu5SiCl6O4

(ϵ=69, Eg=5.5 eV) when in contact with other common electronic component materials are evalu-

ated using the convex-hull construction as implemented in the OQMD. Both of these materials are

found to be thermodynamically stable against common substrate materials such as Si, Ge, GaAs,

GaN, and SiC. Our screening strategy also uncovers another high-ϵ material - Tl3PbBr5 (ϵ=101,

Eg=2.9 eV), and four other dielectric materials with large Eg and relatively large ϵ - Sr2LuBiO6

(ϵ=24, Eg=2.4 eV), Bi5IO7 (ϵ=36, Eg=2.7 eV), Bi3ClO4(ϵ=39, Eg=2.3 eV), and Bi3BrO4(ϵ=39,

Eg=2.3 eV).

We computed the electronic bandstructure of HoClO, Eu5SiCl6O4, and Tl3PbBr5 and report

the composition of valence bands predominantly by lighter anion orbitals and the domination of

conduction band edges by cations, which may have contributed to the larger bandgaps in these

materials. The industrial availability concerns of the constituent elements, specifically the rare

earth metals, are discussed, and methods to solve this issue based on recycling are reported from

previously published literature. Investing in research toward cheaper and easier extraction methods

for rare earth elements may make it feasible to include them in mass-produced electronics in the

near future.

The new dielectrics were discovered after conducting three materials design cycles. Each de-

sign cycle consists of an artificial neural network (ANN) model ensemble to learn from known

data and predict dielectric value distributions for candidate materials, a statistical optimization

model to quantify exploration-exploitation potential of predictions, a set of high-accuracy DFPT

calculations on a selected subset of compounds and finally, feedback to the ANN modeling for

the subsequent design cycle. Overall, this work also shows an example of how a robust materials
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design workflow containing high-throughput data, statistical modeling, and expensive validation

methods can discover novel materials for high-performance applications within a few selections

when the resources are too limited to search through all the materials in search space.

3.4 Methods

The iterative design workflow implemented in this work is described in detail in Figure 3.1. The de-

sign involves the sequential usage of an optimization algorithm and an ab-initio simulation frame-

work. Both of them are described below.

3.4.1 Efficient Global Optimization

Efficient Global Optimization[10], [36] (EGO) is a statistical optimization algorithm, particularly

applicable when the search space is significantly larger than the training-data. In this work, the

predicted ϵ value distribution of search space materials is fed into the EGO algorithm. EGO assigns

an expected improvement value, E(I), for each material. Here, the E(I) of a material in the search

space is the quantified probability with which the calculation of ϵmax using DFPT for that material

will lead to a discovery of high-ϵmax material in the design workflow within as few design cycles as

possible. That means a material with large ϵmax would either be a material with a large mean for its

ANN ensemble prediction distribution, or a large standard deviation in ANN ensemble prediction

distribution.

3.4.2 Density Functional Perturbation Theory

Density Functional Perturbation Theory (DFPT) is an ab-initio method based on DFT to calculate

properties that are dependent upon some kind of perturbation in the system. High-accuracy DFPT

calculations are much more expensive to do than regular DFT calculations. Here, the DFPT algo-
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rithm, with PBE functional approximation for exchange-correlation energy, as implemented in the

Vienna Ab-initio Simulation Package[22], [23] (VASP), was used to compute total dielectric con-

stant values (eigenvalues of the sum of electronic and ionic tensors) for crystals. The method that

VASP follows to compute ϵ matrix is explained below, and derived in detail in Gajdoš et. al.[73]

First, a polarization vector, |βnk⟩, is defined within PAW[25] formalism as,

β⃗nk =
(
1 +

∑
i

⟨p̃ik|Qij |p̃jk⟩
)
|∇kũnk⟩+ i

(∑
ij

⟨p̃ik|Qij |p̃jk⟩ (r −Ri)
)
|ũnk⟩

− i
(∑

i

⟨p̃ik| τij |p̃jk⟩
)

(3.3)

where the indices i and j refer to atoms while Ri is the position of atom i. Other variables are, k

= Bloch wave vector[25], n = band index, p̃ = projector function[24], [73], ũ = cell-periodic part

of PAW pseudo wave-function[24], [25], [73], Q = norm of PAW one-center charge density[24],

[73], and τ = dipole moment of PAW one-center charge density[73].

The external electric field causes a modification to the one-electron wave functions, Ψnk. The

first order response of Ψnk is denoted as ξnk and is computed via solving the following linear

equation[73], [74],

[
H(k)− EnkS(k)

]
|ξnk⟩ = −∆HSCF (k) |ũnk⟩ −

∣∣∣q̂β⃗nk

〉
(3.4)

where, H(k) = Hamiltonian for cell-periodic wave-functions, S(k) = Overlap operator[73], [75],

q̂ = direction vector in reciprocal space, E = reference Eigen energy, and the ∆HSCF (k) refers to

the first-order microscopic cell-periodic change in H(k) due to the external field induced modifi-

cations in Ψ[73], [75]. Presence of ∆HSCF (k) term includes the local field effects in this method.
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The β⃗ and ξ are used while computing the electronic dielectric tensor, ε∞, as,

ε∞(q̂) = 1− 8πe2

Ω

∑
v,k

2wk

〈
q̂β⃗vk

∣∣∣ξvk〉 (3.5)

where v refers to valence band states, ε∞(q̂) = macroscopic electronic dielectric constant in q̂

direction, wk = k-point weights, Ω = primitive cell volume and the factor of 2 inside summation

corresponds to a spin degenerate system.

The gradient of ũ in reciprocal space, ∇kũnk which appears in Equation 3.3 is computed via

solving the linear Sternheimer equation[73], [76],

[
H(k)− EnkS(k)

]
|∇kũnk⟩ = −

∂
[
H(k)− EnkS(k)

]
∂k

|ũnk⟩ (3.6)

Further, the total dielectric tensor, ϵtotal is calculated as the sum of electronic and ionic contri-

butions:

ϵtotal = ϵ∞ +
∑
µ

ϵµ (3.7)

where, the ϵµ denotes the oscillator strength of phonon mode µ and is derived as[77]–[79]:

ϵµ =

∑
ω2
µ ̸=0

[∑
iγ Z∗

iαγ aµiγ m
1/2
i

][∑
iγ Z∗

iβγ aµiγ m
1/2
i

]
Ω ∈0 ω2

µ

(3.8)

where α and β denote Cartesian directions whose combinations create a 3x3 dielectric tensor

matrix for bulk crystals. The Born effective charge and normalized eigenmode of ion i with mass

mi in the direction γ due to phonon mode µ are denoted by Z∗
iαγ and aµiγ respectively[77]. The
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Table 3.4: Dielectric constants and bandgaps of common dielectric materials. We computed the
dielectric properties of the commonly known dielectric materials to assess the reliability of our
DFPT calculation framework. The results are listed here alongside the reference values obtained
from peer-reviewed computational literature

Material Structure
OQMD
Entry ID ϵx ϵy ϵz

Ref ϵ
(DFPT) Eg,OQMD Eg,Exp

HfO2 Cubic 647078 27 27 27 29 [80] 4.1 eV 5.7 eV [81]
ZrO2 Tetragonal 646648 50 50 21 47 [80] 4.0 eV 5.0 eV [82]
Anatase Tetragonal 2575 67 67 33 46-24 [83] 2.0 eV 3.2 eV [84]
Rutile Tetragonal 2475 144 144 139 165-117 [85] 1.7 eV 3 eV [86]
EuF2 Cubic 5660 6 6 6 8 [87] 7.9 eV -
EuO Tetragonal 1443633 26 26 25 24 [87] 2.9 eV 1.5 eV [88]
Ho2O3 Cubic 5389 13 13 13 13.1 [87] 4.1 eV 5.31 eV [89]

origin of ionic contribution to dielectric tensor is the polarization that arises when the ionic crystal

structure is slightly deformed due to phonons.

We calculated the ϵ values of some of the common dielectric materials to benchmark our DFPT

calculations, as listed in Table 3.4. The DFPT calculations are done using VASP and a tightly-

relaxed crystal structure of the crystal as input. A high k-point density (KPPRA=8000) and tight

energy convergence criteria (EDIFF=10−8) are used to get accurate results.
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Figure 3.11: Electronic bandstructures (left-side) and partial density of states (right-side) of
Tl3PbBr5 (top), Eu5SiCl6O4 (middle), and HoClO (bottom). From this analysis, we find that the
top of the valence band found is dominated by the orbitals of the anions, and the bottom of the
conduction band primarily comes from the orbitals of the rare-earth elements.
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CHAPTER 4

IDENTIFICATION OF HEXAGONAL GAS AS A BRIDGE MATERIAL FOR

MOLYBDENUM DISULFIDE-BASED 2D INKS

4.1 Background

Most electronic circuits today are comprised of materials like silicon which have varied sets of

electronic properties required to build components such as transistors and capacitors. But their

bulk structure also limits where these circuits can be placed to only the rigid surfaces resistant to

mechanical transformations of any kind. This limitation was not of significant concern to most

technologies until the relatively new interest in flexible electronics emerged. The rising popularity

of wearable devices and similar technologies demand the circuits be printed onto surfaces that are

frequently movable, stretchable, and exposed to external forces. A material that can be used to print

circuits even over flexible surfaces with reliable, long-term adhesiveness and optimal electrical

properties will be capable of reshaping the consumer electronics industry. Such a capability is

expected to lower manufacturing costs and decrease electronic circuits’ form factor. This opens the

doors for innovations and explorations into the world of 2D electronic materials that can be printed

as various electronic components onto such surfaces. Over the past decade, several materials that

are stable in their 2D form have been investigated for this purpose[90]–[93]. Since the materials’

electronic properties change when made into a 2D sheet due to quantum confinement effects, the

current set of materials that build the circuits in their bulk crystalline forms do not necessarily do

well when used in 2D forms. This opens doors for exploration into a new set of electronic materials

in the 2D domain. Currently, graphene and MXenes are often used as conductors while h-BN and



63

MoS2 are used as insulators and semiconductors in 2D inks[93].

One of the most practically efficient ways to create circuits using 2D materials is to use them

in liquid form as inks in an inkjet printer[91], [94]. Several materials, including graphene, WS2,

MoS2, black phosphorus, etc., are widely explored to be used as such 2D ink materials. Our work

focuses on MoS2-based 2D inks due to their desirable semiconducting properties and the ease of

synthesis from solution processing methods[94]–[98]. 2D-MoS2 is reported to have been used

for several semiconducting applications, including transistors[98], capacitors[99], and photodetec-

tors[94], [100]. But depending on their application, the MoS2 2D ink flakes may need another

material to act as an adhesive between them[100], as shown in Figure 4.1. These adhesive mate-

rials are henceforth referred to as bridge-material. An ideal bridge material should not interfere

with the charge transport between MoS2 flakes, and the heterostructure formed by MoS2 and the

bridge material should have electronic properties similar to those of MoS2. In this work, we iden-

tify hexagonal 2D-GaS as a new bridge material for MoS2 from a material selection workflow that

involves a low-fidelity high-throughput screening of more than 2000 materials followed by exten-

sive literature surveys to select GaS, and finally, the validation of the selection using expensive

DFT calculations to estimate the MoS2/GaS heterostructure’s charge transport properties and other

electronic characteristics. The new bridge material is also synthesizable via solution processing -

a requirement for large-scale production and acceptance of it to be used in 2D inks.

4.2 Results and Discussion

4.2.1 Selection of GaS

The complete material selection procedure implemented in this work is shown in Figure 4.3. First,

we obtained the electronic bandstructure data of 2466 semiconducting (0.5 eV ≤Eg ≤ 2.5 eV),

thermodynamically stable inorganic crystalline bulk materials from the Materials Project (MP)
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Bridge MaterialInk Material

Figure 4.1: A qualitative diagram showing how the internal structure of circuits looks like when
printed with 2D inks. The MoS2 flakes are held together with smaller bridge materials that are
expected to not interfere with the main ink material’s electronic properties

database[5] to search for an excellent candidate to be the bridge-material in MoS2 2D inks. The

ideal bridge-material should create a 2D heterostructure with hexagonal MoS2 without impacting

the charge transport properties of MoS2. In this work, we are looking at an extensive set of candi-

date materials whose heterostructure properties with MoS2 cannot be studied in a high-throughput

manner due to the substantial cost of computational resources such a study would incur. Instead,

we use the electronic bandstructures of bulk materials readily available from MP generated via

high throughput calculations using DFT and PBE functionals. Since the properties of the bulk

structures are expected to differ from that of nanoparticles or monolayered structures due to con-

finement effects, the bulk bandstructure is used only as the initial screening criteria in this project,

as shown in Figure 4.3. As the first step in screening for a good bridge-material, we compare the

alignment of conduction band minima (CBM) between the bulk hexagonal MoS2 and the 2466

candidate materials. The alignment of CBMs in a heterostructure with a small offset indicates with

high probability that the carrier transport in the conduction band happens with the least amount
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of interference[101], [102]. We focus on the CBM offset, rather than of valence band maximum

(VBM) offset between the materials because the MoS2 is known to be an n-type semiconductor

in most cases[103], [104]. A VBM offset is relevant to materials in which the holes are the main

carriers. Even though the CBM and VBM energy levels are readily available in any bandstruc-

ture data, they are not cross-comparable between materials due to the lack of a common universal

baseline. Surface slab calculations are commonly accepted as the method to get a high-fidelity

estimation of a common reference energy point by treating the vacuum energy level as the zero-

energy baseline. But since the surface calculations are computationally expensive, it is not viable

in this project to do them for several materials. Hence, we adopt the lower-fidelity estimation of

a cross-comparable energy reference baseline called branch-point energy[105], [106], denoted as

EBP , which can be obtained from any bandstructure data - including that from bulk structure cal-

culations. EBP is the energy level in the bandstructure at which the conduction band (CB)-like

behavior and the valence band (VB)-like behavior cancel each other out. As per Tersoff[105],

when two materials create a heterostructure, EBP is the energy level where their electronic bands

align perfectly after initial charge transfers and balances the interface dipole. Hence EBP is also

called the charge neutrality level. More details on the calculation of EBP from a given bandstruc-

ture are provided in the Methods section (Section 4.4). We calculated the EBP levels of all the

2466 materials with bandstructures. Since the EBP is the same energy level across materials, the

numerical values of energy levels are then shifted in each bandstructure to make EBP=0 eV. With

the bandstructure energy values readjusted in reference to the same baseline, their CBM values are

directly comparable with each other. But another factor to consider here is the low accuracy in

electronic bandgap (Eg) estimation in DFT-PBE calculations. Since the CBM values are obtained

as the sum of VBM and bandgap, the accuracy of bandgap has a significant impact on the final

CBM value. To correct the bandgap present in the DFT-PBE bandstructures, a machine learning
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(ML) model that can predict the Eg at a higher accuracy than that from DFT-PBE calculations is

used to predict the better estimation of Eg for each of the 2466 materials. This ML mode is built

as part of another project that is discussed in Chapter 5, and also briefly described in the Methods

section of this chapter (Section 4.4). Using the higher accuracy prediction of the bandgap from

the ML model, we corrected the position of CBM in the band structure relative to the VBM and

subsequently obtained the cross-comparable CBM values for all of the 2466 materials.
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MoS2 CBM = 1.88 eV
MoS2 VBM = 0.02 eV

Figure 4.2: Band alignments of binary oxides and binary sulfides with their branch-point energies
as the common reference energy point. Only those binary materials whose CBM offset with hexag-
onal MoS2 is less than 0.2 eV are shown in this plot. The error bar values are obtained from the
uncertainty quantification of the co-kriging model bandgap predictions. A similar plot containing
ternary oxides and ternary sulfides is given in the appendix Figure A.1

The top 50 materials were selected for the next step based on the following criteria - (i) small

CBM alignment offset with bulk hexagonal MoS2 (< 0.2eV ), (ii) reported to be experimentally

synthesized at ambient temperatures (T=300 ± 40 K) from Inorganic Crystal Structure Database

(ICSD), and (iii) do not contain any elements that are rare, radioactive, expensive (Sc, Rh, Pd,
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Rb, Cs, Os, Ir, Pt, Au, Tl, Hf, Ru, Re), or toxic (Cd, Hg, Tl, Pb, As). This set contains 24

binary oxides and sulfides (as shown in Figure 4.2) and 26 ternary oxides and sulfides (shown

in Appendix Figure A.1). Further, we conducted a thorough literature survey to find previously

reported information on other relevant properties such as (i) the dominance of n-type carriers for

charge transport at conduction band similar to that in MoS2, (ii) support for solution-processing

growth techniques which is a requirement for large-scale production of 2D-inks in industry, and

(iii) stability and bandgap of the corresponding 2D structure. Based on the findings in all three

aspects and further consideration of smaller unit cells, we narrowed the candidate set for doing DFT

slab calculations to five: trigonal ZrS2, monoclinic MoO3, hexagonal GaS, monoclinic MnMoO4,

and orthorhombic CaTiO3. he trigonal ZrS2 is found to have a polar surface from DFT calculations,

while the calculations of monoclinic MoO3, monoclinic MnMoO4, and orthorhombic CaTiO3 did

not converge within our resource limits. The DFT slab calculation converged reliably in the vase of

hexagonal GaS. In DFT slab calculations, a large vacuum space is added in the z-axis of the crystal

to simulate the surface exposed to the vacuum, and the material’s CBM value can be calculated

reliably with the common reference point of vacuum whose energy can be set to be 0 eV. Since

the slab calculations converged for hexagonal GaS, we chose hexagonal GaS as the best candidate

to further study using even more expensive DFT charge-transport calculations. Hexagonal GaS

is reported to have been synthesized from solution processing methods[107], [108] and is also

reported as a stable n-type semiconductor[109], [110]. Monolayer and few-layered phases of GaS

are also reported to be stable experimentally[111].

4.2.2 2D Ink Heterostructure

The initial bulk hexagonal GaS and hexagonal MoS2 structures for DFT calculations are obtained

from the OQMD crystal structure database. A vacuum of height 15 Åis added along the z-direction
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Candidate Space
Semiconductors with 

DFT-PBE Band Structures 
from Materials Project

Bulk/2D structure (DFT, PBE)

High Throughput 
Band Alignment

(Branch Point Energy)

Literature Survey 
for Carrier Types

➔ Electronic structure Calculations (band gap, DOS, band structure)
➔ Surface calculations  (Work Function, CBM, VBM)
➔ Charge transport calculations 

(Conductivity, Mobility, Seebeck Coeffs., Elastic tensor, Dielectric tensor, Effective Mass) 

2466 Materials

GaS (hexagonal)

Heterostructure (DFT-D3, PBE)Validation

Start »»

Selection

Data

Figure 4.3: The workflow of 2D ink bridge material design implemented in this work. DFT-PBE
refers to DFT calculations conducted with PBE functional approximation for exchange-correlation
energy. Similarly, DFT-HSE refers to DFT calculations with HSE functional approximation for
exchange-correlation energy. ML refers to machine learning. The set of 2466 materials down-
loaded in the first step forms the initial candidate set. After each step of the design, the number
of candidate materials is reduced as the materials are picked from the candidate set based on how
they meet the requirements evaluated at a given step. The preference for synthesis method is given
s lower priority while filtering even though it is an important factor in manufacturing because a
lack of reporting on solution processing in literature does not mean that the material cannot be
synthesized using that method.

to create the 2D GaS and MoS2 single-phase structures. We used a custom-modified version of the

Supercell-core python package[112] to create a vertically stacked van der Waals 2D heterostruc-

ture from the two single phases. The Supercell-core package searches through different stacking

orientations (rotations around the z-axis) between the two lattices and supercell sizes of the van

der Waals heterostructure, and finds the optimum supercell with minimal strain on the individual

lattices. The customization done on Supercell-core for this project are only to automate of pre-
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processing and post-processing of the 2D structures while keeping the main functionality intact. A

search was conducted for heterostructures with maximum strain across all dimensions being less

than 5% and the number of atoms per unit cell less than 100. Only one heterostructure met these

criteria, and it is shown in Figure 4.4. The initial separation between the MoS2 and GaS layers was

set to be 3.6 Åbut it changed to 3.3 Åupon tight structural relaxation in DFT to make the forces on

atoms less than 10−3 eV/Å.

(a)

(b)

Ga Mo S

Figure 4.4: Crystal structure of the MoS2/GaS heterostructure. This heterostructure is obtained
as the structure with the lowest strain among all configurations when the 2D-MoS2 and 2D-GaS
planes on the x-y axes are vertically stacked and rotated on the z-axis. We initially set the distance
between 2D-MoS2 and 2D-GaS planes to be 3.6 Å, but it was reduced to 3.3 Åafter tight structural
relaxation using DFT.

4.2.3 Heterostructure Properties

We conducted several DFT calculations to calculate and analyze the charge transport properties of

the heterostructure when compared to that in the MoS2. The orbital-projected density of electronic
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Figure 4.5: Electronic bandstructure and density of states (DOS) of (a) 2D-MoS2, (b) 2D-GaS,
and (c) the heterostructure from DFT calculations. The DOS in plot (c) shows that the orbitals of
S and Mo dominate the VBM and CBM orbitals of the heterostructure

states(DOS) and the bandstructure of the 2D single phases and the heterostructure are estimated

from DFT-PBE calculations and plotted in Figure 4.5. The orbital-projected band structure of

the heterostructure is shown in Figure 4.6. The bandgap values obtained from the DOS for 2D-

GaS, 2D-MoS2, and the heterostructure are 2.41 eV, 1.61 eV, and 1.77 eV respectively. The 2D-

MoS2 bandgap is in very good agreement with the experimentally reported values[113]. A table of

computed Eg values for 2D and bulk phases of GaS, MoS2 alongside their reported values in the

literature for reference are provided in Table 4.1. The heterostructure bandgap is close to that of the
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2D-MoS2, signaling a lesser deviation in the bandgap-dependent electronic properties between 2D-

MoS2 and the 2D-MoS2/GaS heterostructure. It is also clear from the DOS and the band structure

that the conduction and the valence bands are dominated by the d-orbitals of Mo and p-orbitals

of S. The lack of dominance by the orbitals of Ga in the bandgap region is preferred to keep the

charge transport happening in Mo and S bands similar to that in MoS2.
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Figure 4.6: Orbital-projected band structure of the 2D MoS2/GaS heterostructure. The conduction
band of the heterostructure predominantly consists of the Mo d-orbital, suggesting an n-type carrier
conductivity similar to that of pure 2D MoS2. The heterostructure has an indirect bandgap of 1.8
eV. The direct bandgap of the heterostructure is also computed from this band structure as 1.9 eV.

We conducted slab surface calculations on the heterostructure and the 2D-MoS2 to compute the

work functions, CBMs, and VBMs. The CBM and VBM values computed from surface calcula-

tions are considered more reliable relative to the EBP -based method, even though the latter is much

cheaper to estimate in terms of computational resource requirements. The slab calculations enable

considering the vacuum as the shared reference energy. The numerical value of energy assigned to

the vacuum is subtracted from the rest of the energy levels in the band structure, effectively setting

the energy of the vacuum to be 0 eV. The work function, which is calculated as the difference
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Table 4.1: Bandgap values of bulk phases of MoS2 and GaS, and 2D phases of MoS2, GaS, and
the heterostructure. The DFT-HSE bandgaps listed are obtained from the references cited, except
in the case of bulk GaS whose DFT-HSE bandgap was calculated as a part of this work. The
acronyms ”dir” and ”indir” refer to direct and indirect bandgaps, respectively

Material
Bandgaps (in eV)

DFT-PBE [This Work] Experiment DFT-HSE
MoS2 (bulk) 1.4 (dir), 1.7 (indir) 1.3 (indir), 1.9 (dir)[114] 1.3 (indir), 1.8 (dir)[114]
GaS (bulk) 1.7 (dir) 2.3 (dir)[115] 2.1 (dir) (This work)
MoS2 (2D) 1.6 (dir) 1.6 (indir), 1.9 (dir)[114] 1.5 (indir), 1.8 (dir)[114]
GaS (2D) 2.4 (indir), 2.5 (dir) 3.0 (dir)[116] 3.2 (dir)[117]

Heterostructure 1.8 (indir), 1.9 (dir) - -

between the fermi energy and the vacuum energy, becomes the absolute value of the Fermi energy

when the vacuum energy is at 0 eV. Figure 4.7 shows the local potentials on 2D-MoS2, 2D-GS, and

the heterostructure in the direction perpendicular to the 2D plane. In all three cases, the potential

surface flattens at the vacuum and shows no polarization or instability. The CBMs, VBMs, work

functions, and bandgaps computed from the slab calculations are listed and compared against pre-

viously reported values in Figure 4.8. The work function values estimated for 2D-MoS2, 2D-GaS,

and the heterostructure are 5.6 eV, 5.7 eV, and 5.7 eV, respectively. Since the work functions of

MoS2 and the heterostructure differ only by 0.1 eV, the heterostructure creation is not expected to

have a pronounced impact on MoS2-based 2D inks in applications such as photoelectric devices,

thermionic applications, electrocatalysis, etc. The CBM values of 2D-MoS2 (-4.0 eV) and the het-

erostructure (-3.9 eV) are also observed to be close to each other, which is also expected from the

dominance of conduction band states of the heterostructure by Mo d-orbitals as seen in the DOS

and bandstructure (Figure 4.5e, 4.5f).

We also calculated the static dielectric and the elastic tensors, as given in Table 4.2. The

dielectric constants along all three directions (xx, yy, and zz) are larger for the heterostructure

than those in MoS2. This difference is expected to alter the behavior of some of the devices made
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(b)

(c)

(a)

5.6 eV

5.7 eV

5.7 eV

Figure 4.7: Local potential energies computed from the slab calculations. The plots (a), (b), and
(c) show the energy distribution on the axis perpendicular to the 2D plane of 2D-MoS2, 2D-GaS,
and the heterostructure slabs respectively. In the case of both 2D-MoS2 and 2D-GaS, the 2D plane
is positioned in the middle of the unit cell with a 15 Å-long vacuum on top and bottom. In the
case of the heterostructure, the slab is positioned at the bottom of the unit cell with a large vacuum
of length 30 Åpresent only on top. Thus, the plots (a) and (b) have constant energy levels at low
and high values of vertical distance while plot (c) has constant energy portions only at the higher
values of vertical distance.

with MoS2 2D inks such as capacitors. Even though it is not an ideal scenario for this particular

work since we aim to keep the properties similar between the 2D-MoS2 and the heterostructure.

But since the dielectric constant values are higher in the heterostructure, it can be a more preferred

material than even 2D-MoS2 in applications where the higher dielectric constants are desired,

for example, in charge storage applications[119]. The heterostructure’s elastic constants are also

computed to be higher than those in the 2D-MoS2. Higher elastic constants are expected to benefit

the 2D ink circuit components exposed to the external surface of a device and possibly subjected

to external mechanical forces.
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Figure 4.8: The positions of CBM (grey line), VBM (dark line), and the fermi energy (dotted line)
are plotted for 2D-MoS2, 2D-GaS, and the heterostructure as obtained from DFT-PBE calculations
in this work, reported experimental works, and also from reported DFT-HSE works in the literature.
The VBM, CBM, and fermi energy levels are marked with text on the left-most energy levels
diagram (for the heterostructure). The work function is obtained as the absolute magnitude of the
Fermi energy since we assume the energy of the vacuum to be 0 eV. References are as follows -
α: Hu et al[118], β: Carey et al.[116], γ: Zhung et al[117]. The values of CBM and bandgap
computed in this work for hexagonal 2D MoS2 from slab calculations are in good agreement with
the corresponding values reported from experiments. The CBM, bandgap, and work function
values of 2D MoS2 and the heterostructure are close to each other, which suggests a similarity in
their electronic properties.

Table 4.2: The mechanical and dielectric properties of 2D-MoS2 and the 2D-heterostructure. E,
G, and v refer to Young’s modulus, Shear Modulus, and Poisson’s ratio, respectively

Material
Dielectric Constants Mechanical Properties
ϵxx ϵyy ϵzz E (N/m) G (N/m) v

MoS2 (2D) 4.8 4.8 1.3 126 51 0.24
Heterostructure (2D) 12.1 12.1 5.6 217 88 0.23
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Finally, the electrical conductivity, mobilities, and the Seebeck coefficients are calculated for

2D-MoS2 and the heterostructure from Boltzman transport equations using the AMSET python

package[120]. These properties are calculated at 300 K to reflect the material properties under am-

bient temperature conditions when used as a 2D ink. We report the electric charge transport prop-

erties computed at carrier concentration levels (in cm3) of −1020, −1019, −1018, −1017, −1016,

1016, 1017, 1018, 1019, 1020. A negative carrier concentration indicates n-type carriers, and a pos-

itive carrier concentration indicates p-type carriers. Even though MoS2 is reported as an n-type

semiconductor and we focus on the conduction band charge transport behavior, the values in p-

type doping are also reported here for comparison. Some of the recent studies have reported

MoS2-based devices having stable p-type carrier conduction[121]. Figure 4.9b shows a compara-

ble conductivity trend for both 2D-MoS2 and the heterostructure across a large range of doping

concentrations. The experimental data reported in the literature also have a similar order of con-

ductivity values at high carrier concentrations and are plotted alongside the computed values for

comparison. The estimated conductivity values increase significantly from the order of 101 to

104 when the carrier concentration increases from 1016 to 1020 in both n-type and p-type cases,

indicating a linear trend between the carrier concentration and the conductivity. But the numeri-

cal values of the conductivity are larger in n-type doping than in p-type doping at the same carrier

concentration for both MoS2 and the heterostructure. Figure 4.9a shows the combined contribution

of different scattering mechanisms to the electron and hole mobilities at different doping levels.

The scattering mechanisms that are considered in this work are ionized impurity scattering (IMP),

acoustic deformation potential scattering (ADP), and polar optical phonon scattering (POP) - all as

implemented in the AMSET package[120]. The mobility is significantly lower in the heterostruc-

ture compared to MoS2 at low doping levels. As expected, the carrier mobilities decrease with an

increase in doping for both materials because of increased scattering from the extra carriers.
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(b)(a)

Figure 4.9: Results from Boltzmann calculations of 2D-MoS2 and heterostructures at 300 K and
different n-type (negative carrier concentration values) and p-type (positive carrier concentration
values) doping concentrations. (a) Mobility of carriers alongside experimentally reported values in
published literature for comparison. The mobilities of 2D-MoS2 and the heterostructure are close
to each other at high carrier concentrations, while the heterostructure has significantly lower values
at lower carrier concentrations. The computationally obtained values for 2D-MoS2 agree with the
experimental values at higher carrier concentrations. (b) The conductivity values of 2D-MoS2

and the heterostructure are close to each other in a log scale at all carrier concentrations. The
experimentally reported values of 2D-MoS2 from published literature agree with the calculated
values

The convex hull phase diagram of Mo-S-Ga composition is obtained from the OQMD database

and shown in Figure 4.10. The presence of a tie-line between GaS and MoS2 indicates that DFT

predicts them to be thermodynamically stable when in contact with each other[122]. Other advan-

tages of using GaS as a bridge-material are that neither Gallium nor Sulfur is among the generally

known toxic elements, and their abundance in the earth’s crust is sufficient[123] to be considered

for large-scale industrial manufacturing.
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GaS
GaSGa2S3

Ga4Mo

GaMo3

MoS2

Figure 4.10: Phase diagram of Mo-Ga-S elemental phase space obtained from OQMD (as of Octo-
ber 14, 2022). The green-filled circles and the unfilled, red circles represent the stable and unstable
compounds present in this phase-space. The presence of a tie-line between two compositions indi-
cates the thermodynamic stability at 0 K when these two compounds are in contact with each other.
Based on this phase diagram at 0K, using GaS as a bridge material in MoS2 inks is not expected to
have thermodynamic instabilities.

4.3 Discussion

In this work, we have identified hexagonal GaS as an excellent candidate to be used as a bridge-

material in MoS2-based 2D inks. The heterostructure is created with MoS2 and GaS lattices stacked

vertically with less than 5% strain on lattice vectors. The Boltzmann transport calculations based

on data obtained from DFT indicate that the electronic conductivity values of the 2D-MoS2 remain

similar in many doping concentrations upon forming a heterostructure with GaS. The mobility

is reduced upon heterostructure formation at lower doping concentrations, but they are similar at

higher carrier concentrations (> 1017). The conduction bands of the 2D-MoS2 and MoS2/GaS
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2D-heterostructure are calculated to be aligned well within the required limits. The work function

value of the heterostructure (5.7 eV) is also estimated to be close to that of 2D-MoS2 (5.6 eV).

We also report the thermodynamic stability of GaS and MoS2 when in contact with each other

by plotting a convex hull phase diagram of the Mo-Ga-S phase space derived from the formation

energy values listed in the OQMD database.

This work also shows the successful application of a machine learning-aided heuristic method

in materials selection when a high-throughput computational screening of thousands of materials

is infeasible. We used a multi-fidelity Co-Kriging model, which was built as a part of another work

(Chapter 5) to predict bandgaps of candidate materials at DFT-HSE accuracy. The bandgap in

electronic bandstructures is corrected using this model’s predictions before calculating conduction

band alignment.

4.4 Methods

4.4.1 Branch point Energy Calculations

Branch Point Energy (EBP ) calculations are considered a fast and computationally cheap method

to quantify the band alignments. This method relies on finding the intrinsic charge neutrality level,

EBP , of a given semiconductor where the valence band-like behavior and conduction band-like

behavior cancel each other inside the bandgap[124]. It is qualitatively shown in Figure 4.11, and

the related quantitative estimation of EBP is provided in Equation 4.1. At a heterojunction of

two semiconductors, a charge transfer occurs due to the offset in the Fermi-level alignment of the

semiconductors. This, in turn, causes the formation of an interfacial dipole. But the dipole causes

a certain alignment of electronic bands along materials’ EBP energy levels, eliminating the dipole

itself[105], [106]. Hence, the EBP acts as a common reference energy level for the interface and

makes it possible to quantify band alignments between materials. EBP -based band alignment is
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less accurate than the results of 2D crystal slab calculations in DFT with vacuum as the reference

energy point since the former method does not consider the surface properties. But EBP -based

calculations are significantly cheaper and quicker to perform on thousands of materials when their

bulk bandstructure is already known.

EBP =
1

2Lpath

Nseg∑
j

Lj

∑
k∈j

1

Nk,j

(
1

Nc

Nc∑
ci

ϵQP
ci

(k) +
1

Nv

Nv∑
vi

ϵQP
vi

(k)

)
(4.1)

Here, c and v represent conduction and valence bands, while Nc and Nv represent the number

of electrons in those bands, respectively. Lj is the length of each segment j in the computed

bandstructure that contains Nseg segments in total. Each such segment, j, has Nk,j number of k-

points. ϵ is the energy of a band and Lpath is the total length of the path. In this work, we have taken

Nc =
Ne

8
and Nv =

Ne

4
where Ne is the sum of number of valence electrons in s and p orbitals.

Figure 4.11: A qualitative diagram showing the VBM, CBM, and EBP within an electronic band-
structure.

Once the EBP value is computed in a bandstructure, all the energies are shifted by the -EBP
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eV to make EBP=0 eV. After shifting the bandstructures in this manner for two materials, their

new valence band minima (VBM) can be compared by their numerical values in eV. To obtain

the conduction band minimum (CBM), the bandgap value is added to the VBM. Thus, the CBM

values are sensitive to the accuracy of the bandgap values. Since the PBE functionals in DFT tend

to underestimate the bandgaps, we used an ML model to predict a more reliable bandgap for all the

materials under consideration and used the predicted bandgaps to calculate CBM from VBM. The

ML model we used in this work is obtained from a different work described in Chapter 5. This ML

model is created and validated to reliably predict the bandgaps of materials at the level of accuracy

expected from DFT calculations with HSE hybrid functionals.

4.4.2 DFT Calculations

All calculations in this work are done using the VASP package, and all of them were done with

tight convergence settings. The K-points per reciprocal atom (KPPRA) is set to be 8000, and

the EDIFF is set to be 10−8 for both relaxation and static calculations. The PBE functionals

are used in all the calculations to approximate the exchange-correlation energy. The structural

relaxation is conducted with high accuracy and tight convergence criteria to minimize the forces of

atoms by setting EDIFFG=-10−3. For the heterostructure calculations, the van der Waals dispersion

corrections to the DFT energies are included using DFT-D3[125], [126], as implemented in VASP.

A widely accepted, high-accuracy method to quantify band alignment from DFT is the 2D-slab

calculation of the material placed in the vacuum. In this method, the vacuum with an energy of

0 eV acts as a common reference point for both bandstructures. Surface calculations are of high

accuracy but are computationally expensive and time-consuming. Thus, using limited computa-

tional resources, it is not viable to do surface calculations for thousands of materials. In this work,

surface calculations are conducted for small unit cells of 2D-GaS, 2D-MoS2, and also for the large
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unit cell of the 2D heterostructure.

4.4.3 Conductivity Calculations

The conductivity and mobility values reported in this work are calculated using Boltzmann trans-

port equations on VASP calculation results, as implemented in the AMSET package[120]. We

conducted dense uniform bandstructure calculations, finite difference calculations to estimate the

elastic constants, deformation potential calculations, and the density functional perturbation theory

(DFPT) calculations to estimate dielectric response and the polar phonon frequency with the tight

convergence parameters. The polar phonon frequencies of 2D-MoS2 and the heterostructure were

computed to be 9.09 THz and 11.30 THz, respectively.

AMSET calculates Seeback coefficients (S), in addition to conductivity values and mobilities

even though estimation of the thermoelectric properties of MoS2 2D inks are not among the goals

of this work. The S values of MoS2 and the heterostructure at 300 K are shown in Figure 4.12

and are close to each other. The absolute magnitude of S decreases with an increase in the carrier

concentrations.
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Figure 4.12: Results from Boltzmann calculations of 2D-MoS2 and heterostructures at 300 K and
different n-type (negative carrier concentration values) and p-type (positive carrier concentration
values) doping concentrations. (a) Seebeck Coefficients of 2D-MoS2 and the heterostructure show
the values close to each other for the two materials at all carrier concentrations. Small absolute
values are calculated for higher carrier concentrations.
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CHAPTER 5

ASSESSING THE ACCURACY OF DFT CALCULATIONS FROM MULTIFIDELITY

MODELING OF BANDGAPS

5.1 Background

High throughput databases containing computational materials data generated using DFT have

changed the domain of materials selection in the past decade[3], [7]–[9], [127], [128]. An im-

portant property data available from most of these inorganic materials databases is the electronic

bandgap value of materials obtained from DFT using PBE[19] version of GGA functional to ap-

proximate the exchange-correlation energy. The bandgap values play vital roles in material se-

lection for devices such as transistors (semiconducting behavior), capacitors (insulating behavior),

etc. The DFT-PBE calculations are cheaper to compute, easier to automate, and generally more

accurate than gradient-less approximations such as Local Density Approximation (LDA) to the

exchange-correlation functional. But it is well known that DFT-PBE tends to underestimate the

bandgaps often and results in incorrect classification of electronic materials into metals, semicon-

ductors, and high-bandgap insulators[129], [130]. More accurate approximations to exchange-

correlation than PBE are available today, and one of them is HSE[20] hybrid functional. In HSE,

the bandgap values are calculated more accurately than PBE when compared with the experimental

values[129], [130], but they are also significantly more expensive to compute than PBE as shown

in Figure 5.1.

There are more than a million materials in the OQMD database, out of which nearly 50,000 of

them are thermodynamically stable at 0K, and within that, about half of them are initially obtained
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from the ICSD crystal structure database of experimentally synthesized compounds. Material se-

lection strategies for novel electronic materials may look through this set containing nearly 25,000

experimentally synthesized, stable compounds and make decisions explicitly or implicitly based on

the value of DFT-PBE bandgaps (EPBE
g ). An underestimation of bandgap from DFT-PBE on a real

semiconductor can incorrectly label it as metallic with no bandgap. This would unnecessarily filter

the real semiconductor out from the search-space of semiconductors in a design workflow. Because

of that, it is crucial to correct the bandgap values of materials in HT databases. The best computa-

tional solution to achieve this is by re-calculating the bandgaps of all such materials using hybrid

functionals, but it would become too expensive in terms of computational resources and time con-

sumption. Mohan et al[131] computed the DFT-HSE bandgaps (EHSE
g ) of 1117 materials in the

OQMD database and recorded them alongside their DFT-PBE bandgaps. In this work, we use this

dataset of EPBE
g and EHSE

g to create a machine learning model that can predict the bandgaps at the

accuracy level of DFT-HSE (EPredHSE
g ) when the EPBE

g value and crystal structure information of

a material is known. We also analyze the uncertainty quantification from the ML model to reduce

the chances of selecting false-positives while searching for misclassified semiconductors among

materials with EPBE
g =0 eV.

Multifidelity modeling[132]–[134] is a specialized statistical learning algorithm designed to

work on datasets with more than one estimation for the target property available with varying

levels of accuracy (fidelity) and cost requirements. A method that provides higher accuracy in

the estimation of the target property most often also requires a higher computational cost. In this

work, EPBE
g (low fidelity) and EHSE

g (high fidelity) are estimations of material bandgaps at two

different fidelities. Multifidelity modeling methods are already reported to have been successfully

applied to material datasets over the past few years[132], [135]. Pilania et al[132] applied multi-

fidelity modeling to a similar problem where they predicted the EHSE
g values of a specific class of
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Figure 5.1: A partial diagram of Jacobs ladder in DFT[136]. This section of the ladder includes
only those XC-functional approximations which are relevant to this work.

materials with high accuracy. Here, we use the same algorithm, called co-kriging, to a generalized

set of materials belonging to different structural and composition classes and focus on practically

integrating the model into a big HT database such as OQMD. Our goal in this work is to correct

the materials data in the database and strengthen the general material selection processes, instead

of focusing on the model benchmarking results alone.

5.2 Results

5.2.1 Data and Modeling

Mohan et al.[131] generated a database containing EHSE
g and EPBE

g data of 1117 materials in

OQMD using a High Throughput (HT) DFT framework. We use this dataset, also referred to as

the training-data, to train a multi-fideity co-kriging machine learning (ML) model that inputs the

EPBE
g and several structural and chemical attributes of a given material and predicts its EHSE

g . The

trained model is used to predict the EHSE
g of 24,967 stable materials from OQMD whose EPBE

g are
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already available but the EHSE
g values are not yet calculated from DFT. This dataset on which the

EHSE
g is predicted by the ML model is also called the search-space. All of the materials included in

the training-data are excluded from the search-space. The distribution of EHSE
g in the training-data,

as plotted in Figure 5.2, shows a significant imbalance in the numbers of metals and non-metals.

62% of the materials in training-data are metallic with EHSE
g =0 eV.
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Figure 5.2: Distribution of DFT-derived EHSE
g values in the training-data. The EHSE

g is zero in
62% of the materials in training-data.

The structural and chemical features that are required to represent a material, in addition to

the EPBE
g , inside the co-kriging model are generated using Magpie[39] package. Examples of

the Magpie features include the average number of neighbors inside the unit cell, the average

electronegativity of atoms, etc. The Magpie feature vector is of size 272, and appending the EPBE
g

makes the final input feature size to be 273 for every material. General feature dimensionality

reduction methods such as principal component analysis and model-based selections are used to

reduce the feature vector size to 100 before starting the co-kriging model training.
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co-kriging is an extension of ordinary Kriging, a type of Gaussian process regression, designed

to learn from a dataset that has data on the same property estimated at two different levels of

accuracy (fidelity). The co-kriging method is originally implemented to learn knowledge even

when the low-fidelity data is unavailable for some of the training-data. But in this work, we use the

low-fidelity data (DFT-PBE bandgap) as one of the input features as well - making it mandatory

that all materials in training-data and search-space should have their DFT-PBE already calculated.

This requirement is not expected to pose an issue in the deployment of the model because most

of the large HT databases already have the DFT-PBE bandgap calculated. The trained co-kriging

model predicts the high-accuracy bandgap (at the HSE level) at the expense of doing a significantly

cheaper-to-compute DFT-PBE bandgap calculation on a new material. A short description of the

co-kriging is described below in Equation 5.1. A longer description of the algorithm is provided

in the Methods section toward the end of this chapter.

ZHSE(x) = ρZPBE(x) + Zd(x) (5.1)

Here, ZHSE(x) and ZPBE(x) are Gaussian processes which represent Eg,HSE and Eg,PBE respec-

tively. The term ZPBE is multiplied by a scaling parameter ρ whose value is optimized during the

model training via Maximum Likelihood Estimation (MLE). The third term, Zd, is the Gaussian

function representing the difference between the high-fidelity and scaled low-fidelity processes.

Since the Eg,PBE is already known for all materials in training-data and search-space in this work,

the evaluation of ZPBE(x) is less significant here than in the original co-kriging framework. The

primary advantage of doing co-kriging over other non-Gaussian ML models is that it is less biased

toward the training-data imbalance. We conducted a set of initial benchmark modeling to compare

the performance of different models in the same test data - which is a split from the training-data -

as shown in Figure 5.3. The random forest model and the support vector regression model suffer
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from low accuracy fits in this situation due to a large number of materials being predicted to be

metals, which in fact, is due to the larger representation of metals in the training-data split. We

have considered a data-pessimistic situation in Figure 5.3 by splitting the full training-data of 1117

materials into benchmark training:test data ratio of 2:8. Such a split of data with significantly more

materials in the test data represents the realistic data scenario of this work where the full training-

data (1117 materials) is significantly less than the search-space (24,967 materials). The relatively

lower sampling of feature vector space by the training-data compared to a larger area spanned by

the search-space can lead to a higher prediction error. In the ML model benchmarking results, the

underfit of ML models due to training-data imbalance is observed to be the least influential in the

case of co-kriging.

The exact model prediction errors on search-space are unverifiable until after the expensive

DFT-HSE calculations are performed. Thus, it is necessary to determine the uncertainty of the

model in predicting the HSE bandgap of each search-space material. Model uncertainty quan-

tification helps avoid less-confident material selections by discarding the predictions with high

uncertainty. This can benefit situations where only a limited amount of resources are available for

subsequent DFT-HSE validations on the selected materials. Since the ZPBE(x) is already known,

the advantage of using co-kriging over using regular Gaussian regression arises from the much

higher dimensional covariance matrix involved in the co-kriging that explicitly considers the dis-

tribution of data points in both low- and high-fidelity domains of the training-data. A detailed

discussion of the co-kriging model is provided in the Methods section.

5.2.2 Predictions and Uncertainty Quantification

We trained the co-kriging model on a train:test split of 8:2 with intense optimization of model

parameters and feature-selection algorithms to use it as the final model for predictions on search-
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Figure 5.3: Performance of different machine learning models in the same test data sampled from
the DFT-HSE dataset containing EHSE

g values. The train:test split is 2:8, representing a scenario
when the training-data may not have sufficiently sampled the feature space spanned by the search-
space. All the models were trained on the same training-data. Both random forests regression
(RFR), shown in subplot (a), and support vector regression (SVR), shown in subplot (b), suffer
from the unbalanced training-dataset biased toward EHSE

g =0. Since the majority of the materials
in the training-data have EHSE

g =0, this behavior is expected from RFR and SVR models. But as
shown in subplot (c), co-kriging is significantly less biased from the training-data imbalance, and
thus, more accurate at a lower mean squared error (MSE) than the other two models.
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space materials. The test-data prediction accuracy of this model is plotted in Figure 5.4a. In Figure

5.4b, we use the same model architecture and the same feature-selection pipeline to build a model

on a pessimistic train:test split ratio of 1:9. The difference between the models built on pessimistic

data in Figure 5.3c and in the Figure 5.4b is that the former is created with modest parameter op-

timization and without optimizing feature-selection pipeline specifically for co-kriging to achieve

an unbiased comparison with other ML models, while the latter co-kriging model is built on a

model architecture and feature-selection pipeline that is fully optimized to deliver the best predic-

tion accuracy. Henceforth, the HSE-level bandgap predictions on search-space materials used in

this work are generated by the optimistic co-kriging model shown in Figure 5.4a. More details on

the final model architecture and the feature-selection pipeline are provided in the Methods section.

The reliability of quantified model uncertainty in the final co-kriging model on test data is

shown in Figure 5.5c. In the case of the final model with an optimistic data split of 8:2, the model

estimates a high uncertainty value in 60% of the cases where there is an observable error (>0.1

eV) in the model predictions. Thus, filtering out co-kriging predictions with high uncertainty dur-

ing material selection can significantly improve the probability that the selected material has the

expected behavior. This is equivalent to avoiding false-positive predictions in categorical clas-

sification ML modeling. Only in 12% of all cases, the materials that are estimated to have low

uncertainty in predictions also had an inaccurate HSE bandgap prediction. The focus on increas-

ing the precision of ML model predictions is necessary when the resources to experimentally or

computationally validate the ML model-based selections are limited. A similar analysis from the

pessimistic data model is shown to the right of the final, optimistic model’s data in Figure 5.5c to

compare the performance in such conditions.

The predictions of HSE bandgap on search-space data by the final co-kriging model (Figure

5.4a) are analyzed across different classes of materials in Figure 5.6a with a focus on accurately



91

0.0 2.5 5.0 7.5
Calculated EHSE

g (eV)

0

2

4

6

8

P
re

d
ic

te
d

E
H
S
E

g
(e

V
)

MSE: 0.04

(a) Optimistic Model

0.0 2.5 5.0 7.5
Calculated EHSE

g (eV)

0

2

4

6

8

P
re

d
ic

te
d

E
H
S
E

g
(e

V
)

MSE: 0.08

(b) Pessimistic Model

Figure 5.4: Multifideity co-kriging model benchmarking results on HSE bandgap dataset of 1117
materials. A part of the full training-data is split and set aside as test-data during model training.
The trained model’s predictions on the test-data are plotted in these figures. The plot (a) has an
optimistic train:test split of 8:2, which imitates a situation where training-data is large enough to
reliably learn the correlation between input features and the target property, EHSE

g . In such a situ-
ation, the vector space spanned by input features is sufficiently sampled by the training-data. The
plot (b) shows the predictions from a different model trained and tested on a pessimistic train:test
data split of 1:9. The pessimistic benchmarking was done to examine the prediction capability
of co-kriging model in situations where training-data is not large enough to fully represent the
relatively larger portion of the feature space spanned by the candidate materials. The uncertainty
quantification analysis from these two models is shown in Figure 5.5

classifying a material as metallic or insulating. The co-kriging predicts that about half of the mate-

rials predicted as metals by DFT-PBE, may actually be semiconductors or insulators. This amounts

to about 30% of all materials in search-space where the DFT-PBE and co-kriging model disagree

on the material’s conducting nature. The DFT-PBE calculations and the co-kriging predictions are

in most agreement for oxides even though more than 80% of the oxides are already estimated to

be insulating by DFT-PBE. The uncertainty prediction statistics of search-space materials with a

focus on their constituent elements are shown in Figure 5.6b. In 12% of all hydrogen-containing

compounds, a high uncertainty is associated with the model predictions.
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Figure 5.5: The multi-fideity co-kriging model’s quantified uncertainty predictions on the test-
data are plotted as a part of model benchmarking. The corresponding ϵ prediction plots from
these same models are shown in Figure 5.4. The train-test split is done on the full training data
containing HSE bandgap values of 1117 materials. The uncertainty quantified for each test data
point by the co-kriging model during the prediction is analyzed in two data conditions. In both
optimistic (left) and pessimistic (right) cases, the materials in test data with a large prediction
error, which can be considered as a ”negative” prediction, also had a large uncertainty predicted
by the co-kriging model. This shows a higher true-negative rate and a smaller false-positive rate.
Considering the accurate prediction of HSE bandgaps from co-kriging as a ”positive” prediction, it
is shown to be possible to largely avoid false-positive predictions if the materials that have a large
predicted uncertainty are excluded from the candidate list. In the optimistic case, the precision
and recall based on true-positive (small error, small uncertainty), false-positive (large error, small
uncertainty), and false-negative rates (small error, large uncertainty) are 83% and 84%, respectively

The general trend of the variation between EPBE
g and EpredHSE

g is analyzed in Figure 5.7. The

well-known systematic underestimation of bandgaps in DFT-PBE framework is captured by the co-

kriging model in the low-medium bandgap range. But at very-high bandgap limits, the co-kriging

predicts a lower bandgap than the DFT-PBE. The LOWESS smoothing curve[137] fit on the EPBE
g

vs EpredHSE
g plot in Figure 5.7a shows the suggested crossing of the DFT-PBE underestimation

to overestimation near 7 eV. That said, this result is speculated based on the co-kriging model

predictions, and not from true DFT-HSE calculations. Because of that, a reliable argument on such
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Figure 5.6: (a) Bandgap openings predicted by the multi-fideity model. EpredHSE
g refers to the

HSE-fidelity bandgap value predicted from co-kriging. In about 30% of all materials in the search-
space, the PBE results and co-kriging model predictions disagree on whether a material is metallic
or not. (b) Elemental distributions among the materials in search-space with the highest values for
model uncertainty. The ordinate of the bar plot represents the percentage of the compounds with a
high uncertainty prediction among all the compounds in the search-space that contains the element
specified in the abscissa of the plot. The bars of only those elements are shown which have an
ordinate value of more than 2%. Such a cutoff is kept to make the relevant information stand out
and skip other elements, such as O, F, etc., that have less than 2% of the compounds predicted to
have a high uncertainty value. The model uncertainty is quantified as the standard deviation of the
predicted co-kriging Gaussian distribution of EpredHSE

g .
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a change in trend from underestimation to overestimation will require a high-throughput study of

high-bandgap materials that is out of the scope of this work.

We conducted a literature survey on 50 low-EPBE
g (<3 eV) materials with the highest disagree-

ment between EPBE
g and EpredHSE

g . Experimental or HSE bandgap data reported on peer-reviewed

articles were available for 28 of them, and are provided in Figure 5.6 for quick comparison of the

reliability of co-kriging in predicting materials that are incorrectly marked as metals by DFT-PBE.

The same data is also provided in Table 5.1 with external references for numerical comparison.

The co-kriging model correctly predicts the bandgap openings in the 13 materials that we consid-

ered. Among the other 15 materials shown in Figure 5.6, co-kriging estimates a more reliable value

in 13 materials compared to DFT-PBE. Even though the co-kriging predictions agree better with

the published experimental and DFT-HSE results, in some situations, like in the case of Fe3O3 and

LaVO3, the co-kriging significantly overestimates the bandgap. But overall, within the scope of

this small set of materials surveyed in literature, the co-kriging has proved effective in identifying

non-metals that are incorrectly classified as metals in DFT-PBE calculations.
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Figure 5.7: (a)Predicted HSE bandgaps of search-space materials from the co-kriging Model are
plotted against the corresponding DFT-PBE bandgaps. A LOWESS smoothing function[137]
is also plotted to show the trend of how the co-kriging predictions change with the DFT-PBE
bandgap. The underestimation of bandgaps in DFT-PBE compared to DFT-HSE is well known,
and that same behavior is also seen between DFT-PBE and co-kriging model predictions. A rever-
sal of that trend is seen near 7 eV. (b) Distribution of the number of materials in a heatmap between
DFT-PBE bandgaps and the co-kriging predictions.
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Figure 5.8: Verifying the disagreements of DFT-PBE and co-kriging when compared against the
published experimental or DFT-HSE results in scientific literature. None of the DFT-HSE val-
ues in this chart are from the training-space data used in this work. The crystal structure of
each material is provided in brackets beside its chemical formula. The full set of references for
Experimental/DFT-HSE data is provided in the manuscript currently under author review[131]
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Table 5.1: Literature comparison of co-kriging model predictions on search-space. The EPredHSE
g

column refers to the HSE bandgap value predicted by the co-kriging model. These materials are

selected based on the difference in their EPredHSE
g and DFT-derived EPBE

g . Information about

many other materials which were filtered out from search-space based on their bandgap value

differences did not have any reported values on DFT-derived EHSE
g or experimental bandgap

in scientific literature within the scope of our search. Further details about the listed materials,

including crystal structure and DFT (with PBE XC-functionals) calculation details, can be found

on the material’s web page identified by OQMD ID at oqmd.org

Material OQMD ID Spacegroup
Bandgap (eV)

PBE Predicted Expmt/HSE

Ti2O3 678225 R-3 (148) 0.0 0.8 ± 0.3 0.03-0.14 (EXP)[138]

Ti3O5 66123 C2/m (12) 0.0 0.8 ± 0.3 0.14 (EXP)[139]

Co3S4 4563 Fd-3m (227) 0.0 1.6 ± 0.2 1.45 (EXP)[140]

Mn2O3 33709 Ia-3 (206) 0.0 0.7 ± 0.3 1.4 (EXP)[141]

TiO 10207 C2/m (12) 0.0 0.4 ± 0.3 1.9 (EXP)[142]

TiF3 5608 R-3m (166) 0.0 1.1 ± 0.3 2.87 (HSE)[143]

Ni3S4 6716 Fd-3m (227) 0.0 1.5 ± 0.2 2.8 (EXP)[144]

MnF3 3777 C2/c (15) 0.0 0.9 ± 0.3 3.03 (HSE)[143]

NiF3 15556 R-3 (148) 0.0 1.4 ± 0.3 3.28 (HSE)[143]

VF3 5882 R-3 (148) 0.0 1.0 ± 0.3 3.40 (HSE)[143]

MnSe 30752 P63mc (186) 0.0 1.5 ± 0.2 3.5-3.8 (EXP)[145]

MgTiO3 692959 R-3 (148) 0.0 0.7 ± 0.3 3.7 (EXP)[146]

MnS 646143 P63mc (186) 0.0 1.4 ± 0.2 3.7, 3 (EXP)[147], [148]
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V2O3 678210 R-3 (148) 0.3 2.2 ± 0.5 1.51 (EXP)[142]

Mn3O4 5975 I41/amd (141) 0.8 3.5 ± 0.4 2.91 (EXP)[149]

ZnO 4908 P63mc (186) 1.0 3.2 ± 0.3 3.29, 3.44 (EXP)[149], [150]

Fe2O3 92501 Ia-3 (206) 1.1 4.0 ± 0.4 1.97 (EXP)[151]

SnO2 2477 P42/mnm (136) 1.2 2.6 ± 0.3 3.32 (EXP)[149]

MnO2 677684 I4/m (87) 1.2 3.9 ± 0.3 2.5, 2.7(HSE)[152], [153]

LaVO3 682189 Pnma (62) 1.2 3.4 ± 0.4 1.44 (EXP)[142]

CdS 5970 P63mc (186) 1.3 2.7 ± 0.2 2.58, 2.48 (EXP)[150]

CrF3 4854 R-3c (167) 1.4 4.0 ± 0.3 4.91 (HSE)[143]

GaP 7553 F-43m (216) 1.8 2.4 ± 0.1 2.26, 2.33 (EXP)[154], [155]

TiO2 2575 I41/amd (141) 2.0 4.5 ± 0.3 3.2 (EXP)[156]

SrTiO3 827052 R-3c (167) 2.0 4.0 ± 0.3 3.2 (EXP)[146]

LaCrO3 682305 Pnma (62) 2.1 3.6 ± 0.4 3.39 (EXP)[157]

ZnS 7652 F-43m (216) 2.3 3.4 ± 0.1 3.84 (EXP)[150]

BeSe 647324 F-43m (216) 2.8 3.9 ± 0.2 5.15 (EXP)[150]

5.3 Discussion

We created and trained an ML model based on the co-kriging algorithm to do multi-fideity learn-

ing on the electronic bandgap data of 1117 materials generated from DFT-PBE and DFT-HSE

calculations. This model is capable of predicting the bandgaps at the accuracy level of expensive

DFT-HSE calculations (high fidelity) at the expense of doing a much cheaper bandgap estimation

from DFT-PBE calculations (low fidelity). The model is benchmarked first on a test data that is split

from the full training-data in data-optimistic and data-pessimistic situations. In a data-pessimistic
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situation during the benchmarking where the train:test split is 2:8, the co-kriging is found to be

a better algorithm compared to random forest regression and support vector regression in terms

of having the lowest prediction errors with the least bias toward the imbalanced data. The data

imbalance comes from having 62% of the training-data being metallic with Eg=0 while the others

have 0<Eg<10. co-kriging predicts the EPredHSE
g and estimates an uncertainty associated with the

prediction. If the material being predicted belongs to a region in the feature space that is not well

represented in the training-data, the model does not learn sufficient knowledge about that part of

the feature space and, thus, estimates a large uncertainty during the prediction. The usefulness of

this inherent model uncertainty quantification is also assessed by analyzing how often an incorrect

prediction in test data had a high uncertainty already estimated by the co-kriging model. The model

is shown to estimate a high uncertainty in more than half the cases where the EPredHSE
g happened

to be different from the real value (EHSE
g ).

We analyzed the co-kriging model predictions on the search-space containing 24,967 materials

whose EHSE
g is unknown while the EPBE

g is already known from the OQMD database. The num-

ber of materials in different classes of materials, such as oxides, halides, etc., where the DFT-PBE

calculated a zero bandgap while the co-kriging predicts a non-zero bandgap, is reported. The dis-

tribution of uncertainty in the search-space compositions with respect to the constituent elements

is also analyzed. Finally, the trend of how the EPredHSE
g value from the co-kriging model changes

with a change in EPBE
g is also plotted and analyzed.

To validate the model predictions in the search-space, we conducted an extensive literature

survey on the 50 materials whose EPredHSE
g differs from EPBE

g especially when the EPBE
g =0 eV.

The literature survey found data on 28 materials and successfully validated the reliability of all 13

bandgap opening (EPredHSE
g >0 eV, EHSE

g =0 eV) predictions that we explored. Among the other

15 materials, the EPredHSE
g value is seen to be closer to the literature-reported HSE or experimental
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bandgaps in 13 materials. The training-data with EHSE
g and EPBE

g values and the search-space with

EPredHSE
g and EPBE

g values are available from the web portal at hse.oqmd.org. We created this web

portal to deploy the results from this study as a part of correcting the bandgap data in OQMD.

5.4 Methods

5.4.1 co-kriging

The co-kriging method is an extension of the traditional Kriging method, with a base mathemat-

ical framework proposed by Kennedy and O’Hagan in the early 2000s[133], [158]. Forrester et

al[134] successfully applied it as a demonstration of a multi-fidelity co-kriging modeling problem

with two levels of fidelities. A work by Le Gratiet and Garnier[159], [160] reported the method

to decouple different levels of fidelity estimations in co-kriging effectively and thus, making the

co-kriging implementations scalable to real-world multi-fidelity datasets. This method has been

benchmarked in materials datasets recently[132], [135]. In this work, we apply co-kriging to our

two-fidelity problem (HSE vs PBE) utilizing the implementation of this algorithm in the OpenM-

DAO package[29]. Following the conventions and equations provided in Forrester et al[134] and

Pilania et al[132], a short description of the formulation of co-kriging in this work is as follows:

The set of material representation feature vectors for n materials is denoted by X with X =

x1, x2, ..., xi, ..., xn with each vector xi of length m representing the feature vector of material i.

The target properties are EPBE
g and EHSE

g denoted by yc and ye, respectively, with the subscript

c referring to the cheaper low-fidelity value and the subscript e referring to the expensive, high-

fidelity value. Similar to Kriging and other Gaussian process regressions, any estimated value

at in X is assumed to be a Gaussian distribution Z. The Gaussian random variables Zc and Ze

represent the low-fidelity estimation (EPBE
g ) and the high-fidelity estimation (EHSE

g ). Ze and Zc

https://hse.oqmd.org
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are connected by the scaling factor ρ and another independent Gaussian variable as:

Ze(xi) = ρZc(xi) + Zd(xi) (5.2)

The formulation of Equation 5.2 assumes that the high-fidelity prediction for a given material is

dependent on the low-fidelity value of the same material only, and independent of the low-fidelity

value of any other material. This assumption reduces the size of the covariance matrix to consider

in this work by setting

Cov(Ze(xi), Zc(xj))|Zc(xi) = 0; i ̸= j (5.3)

The covariance matrices in this work use a squared exponential kernel to compute the correla-

tion between Zc and Zd. The kernel, k(xi, xj) is of the form:

k(xi, xj) = σ2 exp

(
−

m∑
p=1

θp||xp
i − xp

j ||2
)

(5.4)

The full covariance matrix for this two-fidelity scenario with X being the same for both low-

and high-fidelities is:

K =

Cov[Zc(X), Zc(X)] Cov[Ze(X), Zc(X)]

Cov[Ze(X), Zc(X)] Cov[Ze(X), Ze(X)]

 (5.5)

The full covariance matrix in the above equation comprises two different correlation kernel

functions kc and kd within independent sets of σ and hyperparameters belonging to Zc and Zd

respectively. Hence, this entire model has a large number of internal parameters to optimize via

maximum likelihood estimation (MLE). Eventually, the final prediction of the high-fidelity value,
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in terms of mean µ∗
e and variance σ∗

e , are obtained for a material in the search-space by,

µ∗
e = µ̂+ kTK−1(y − 1µ̂) (5.6)

and

σ2∗
e = ρ̂σ̂2

c + σ̂2
d − kTK−1k (5.7)

with,

y =

yc

ye

 ,

µ̂ = 1TK−1(y − 1µ̂),

k =

 ρ̂k̂c(X, x∗)

ρ̂2k̂c(X, x∗) + k̂d(X, x∗)

 ,

while the ∧ symbol over a parameter denotes the MLE values of that parameter or those of its

constituent parameters and hyperparameters (in case of k̂). 1 is a vector consisting of 1 as its every

component.

5.4.2 HSE Bandgap Dataset

The training-dataset consisting of DFT-HSE and DFT-PBE bandgap values used in this work is

generated by Mohan et al, via high throughput (HT) computations. The DFT calculations in the

HT workflow used Projector Augmented Wave (PAW) method as implemented in the Vienna Ab-

initio Simulation Package (VASP). The k-point mesh densities were set at 8000 for DFT-PBE and

2000 for DFT-HSE. The bandgap is calculated from the electronic density of states data computed
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via static DFT calculations on crystal structures relaxed using PBE functionals. The full training-

data that we used in this work is available from the web portal hse.oqmd.org hosted as a sub-dataset

of the OQMD database.

https://hse.oqmd.org
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CHAPTER 6

SUMMARY AND OUTLOOK

6.1 Summary

In this thesis, I have described three main projects that fit into the field of computational materials

discovery from statistical selection and atomistic simulations. All these projects use or contribute

to the general materials design workflow described in Figure 6.1.

The work on dielectrics detailed in Chapter 3 makes use of the complete design workflow for

three design cycles sequentially. Most of the time and resources in this work were spent while

conducting the first design cycle. Many of the resources, such as ML model pipelines, training

data, search space, DFPT simulation files, etc, were reused with minimal modifications from the

second design cycle onward. Because this project was built with a robust design infrastructure,

its components are well connected while also being portable to other projects when required. We

discovered three very high-dielectric materials and four other moderately high-dielectric materials

within just 17 material selections. This high success rate may be attributed to the extra layer of

statistical optimization algorithm added after the ML model, and also to the filters on search space

with bandgap minimum cutoffs.

The work on 2D inks in Chapter 4 describes a different version of the workflow in Figure 6.1

where the knowledge-feedback and multiple design cycles could not be done due to a significantly

higher computational cost associated with the validation of material selection. Here, the workflow

was adapted to the project based on the specific constraints of the problem, but the main parts of

the workflow remained the same - Data, Modeling(Selection), and Validation. We used machine
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Figure 6.1: General designflow

learning in this work to aid a heuristic model to calculate the band alignment values more accu-

rately. The limited availability of resources and time for validation required the selection process

to be rigorous in confirming that the final candidate is, in fact, a good suggestion based on lit-

erature surveys as well. Eventually, the hexagonal GaS is identified and investigated for being a

bridge-materials for MoS2-based 2D inks.

In the third project in Chapter 5, we describe the works on solidifying parts of the materials

design infrastructure. The materials selection strongly depends upon the quality of the data and the

reliability of the modeling methods. This work is intended to improve both parts. A multi-fidelity

predictive model is built to predict the material bandgap values at higher accuracy than what is

estimated in most of the large HT databases from lower-accuracy first-principles calculations. The

predicted bandgaps for OQMD materials are deployed via a new web portal associated with the
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main OQMD database. The availability of bandgap values with higher accuracy than DFT-PBE

helps in identifying the real semiconductors which are misclassified as metals in DFT-PBE calcu-

lations. In addition to improving the search space for materials design, this work also shows the

importance of uncertainty quantification in machine learning models. The quantified uncertainty

values are shown to aid in avoiding incorrect predictions by pointing out which predictions are

made by the model with less confidence. The lack of uncertainty quantification in ML modeling

can lead to the unnecessary depletion of resources by focusing on false-positive selections.

Overall, we have achieved successful materials design in three different situations where the

material selection from large pools of candidate materials was necessary. In one of the projects,

data from two separate material repositories were combined within a statistical design - demon-

strating the usefulness of interoperability between high throughput databases. We also utilized

statistical model uncertainties in two different ways. In the case of dielectric selection, the quan-

tified model uncertainty guided the search for novel materials to previously unexplored classes of

materials. A prediction with high uncertainty was considered to be desired value in this case. In

contrast, we showed in the multi-fidelity modeling work that the quantified uncertainty can be used

to filter out unreliable predictions. This is desired when reliable bandgap predictions are preferred

over looking into unexplored material classes.

We also demonstrated two different kinds of uncertainty quantifications. In the case of dielec-

tric selection, the uncertainty was estimated by building a large number of statistical models over

different subsets of the training data and using this set of models to predict a distribution of target

values for each candidate material. The predicted distribution’s standard deviation was considered

to be the quantified uncertainty. This method is popularly known as bagging. But in the case of

multi-fidelity modeling, we quantified the uncertainty from a different method. The multi-fidelity

modeling is done by fitting a co-Kriging Gaussian model to the training data. The uncertainties are
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quantified internally inside the co-Kriging models by constructing covariance matrices to explicitly

compute how close a candidate material is to the training data materials in the feature vector space.

The ML model predictions are used directly to compute material properties in the dielectric

selection, and the bandgap multi-fidelity modeling works. But in the 2D inks design project, the

ML model aids in improving a heuristic model instead of predicting the final property. These

situations show two of the many different possible approaches to utilizing the capabilities of ML

models within the material design.

6.2 Other Works

In addition to the three major projects mentioned in this thesis, there are several other relatively

smaller works completed over the years that fit into one or more sections of the materials design

and discovery. Since mid-2019, I have worked with the OQMD database as the primary developer

of the OQMD API and the maintainer of the public server at oqmd.org. During the course of three

years, three separate projects were completed that improved the public materials data infrastruc-

ture. Each of them makes the data more FAIR[2] - Findable, Accessible, Interoperable, and/or

Reusable.

The first one is the development of the OPTIMADE REST API specification for universal ma-

terials data transfer in collaboration with other major material database providers and maintainers.

I co-first authored the OPTIMADE specification[161] and maintained the corresponding API at

OQMD servers. The primary achievement of OPTIMADE is the implementation of a fast data ac-

cess system across multiple databases with a unified query syntax. The OPTIMADE-related works

are intended to make the data more findable, accessible, and interoperable.

In the second work, I implemented the persistent identifiers for OQMD data entries, which was

done in collaboration with the National Institute of Standards and Technology to enhance the avail-
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ability of materials data in OQMD in the long term. The presence of persistent identifiers makes

data less vulnerable to link-rot issues that happen when the databases are moved to a different

domain URL, and any citations of data involving the previous URL lose the relevant information.

This work is intended to increase the reusability and findability of the data in the long term.

In the third work, I transitioned the OQMD.org server from on-premises hosting to a fully-

fledged cloud infrastructure, increasing the accessibility of the database for external researchers.

The improved server infrastructure (as shown in the appendix) has resulted in faster data access

and lesser downtime.

6.3 Outlook

This design process diagram in Figure 6.1 is a general suggestion for approaching most of the

materials discovery challenges today. Once the real-world application requirements are translated

into specific material property constraints, the workflow serves as a general guideline to follow.

Individual sections of the workflow can be developed independently as long as they can be plugged

into a workflow implemented for a specific materials discovery challenge in the future. There

is plenty of room to improve materials data infrastructure. We still need better interoperability

between databases. A system to connect the experimentally generated data to the computational

databases to validate the HT simulation frameworks is still unavailable. The materials data hosting

needs to be made more mainstream and easy so that more data will be available across the public

domains. To achieve all the above, there need to be more initiatives like CHiMaD that connect

computational researchers with experimentalists. But for now, it looks like the community is on

the right track toward the goal set in 2011 by the Materials Genome Initiative. The usage of

machine learning has exploded in materials science over the past half-decade. I believe that it will

continue to grow as long as the data infrastructure surrounding it can support that growth.
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Another area of interest is in creating better statistical prediction models and statistical selection

algorithms. The size of available data in materials science can vary drastically from very small

(< 10) to very large (> 106). And often, trusting the prediction from a statistical model leads to

conducting expensive computations and experiments. Hence, it is crucial to avoid false positives

during material selection in most projects. Material feature vector generation methods that can

reliably represent materials within a small set of vector components to support small-data ML are

also in demand. Overall, the statistical modeling research is yet to be fully customized to fit the

materials data modeling, and that leads to plenty of opportunities for future work.
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sible crystal candidate for middle infrared nonlinear optics,” J. Cryst. Growth, vol. 289,
no. 1, pp. 357–365, 2006.

[69] Y. Qiu and S. Suh, “Economic feasibility of recycling rare earth oxides from end-of-life
lighting technologies,” Resour. Conserv. Recycl., vol. 150, p. 104 432, 2019.

[70] A. Amato, A. Becci, I. Birloaga, et al., “Sustainability analysis of innovative technologies
for the rare earth elements recovery,” Renewable Sustainable Energy Rev., vol. 106, pp. 41–
53, 2019.

[71] A. Yaroshevsky, “Abundances of chemical elements in the earth’s crust,” Geochem. Int.,
vol. 44, no. 1, pp. 48–55, 2006.

[72] B. F. Thornton and S. C. Burdette, “Homely holmium,” Nat. Chem., vol. 7, no. 6, pp. 532–
532, 2015.
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APPENDIX A

MAIN PROJECTS

A.1 2D Inks: Band Alignment
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Figure A.1: The band alignment of ternary oxides and ternary sulfides based on their DFT-PBE
bulk bandstructure, cross-referenced based on the common branch-point energy value. Most of the
ternary materials were filtered out in the subsequent step due to the lack of experimentally reported
data on their 2D phase stability, nature of carriers, synthesis methods, etc.
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A.2 Multi-fidelity Modeling: Deployment of Predictions

A.2.1 hse.oqmd.org

We created a new web portal to distribute the datasets used and generated during the course of

the multi-fidelity modeling project and is hosted at the URL https://hse.oqmd.org since September

2022. This web portal, as shown in Figure A.2, is created using the Plotly Dash framework and

deployed on the Google Cloud Run serverless deployment platform. The data analysis operations,

such as filtering, sorting, etc, are performed locally on the user’s browser to avoid overload at the

servers. The main achievement of this web portal in materials science is providing a scalable server

solution to quickly deploy small to medium-sized material datasets in common CSV or JSON

formats to the public domain via a user-friendly interface. This work contributes to the building of

a robust material data infrastructure. As of November 2022, the web portal at hse.oqmd.org serves

the training data and the predictions from the co-kriging model.
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Figure A.2: The web portal created and deployed at the URL hse.oqmd.org to serve the datasets
used and generated in the multi-fidelity co-kriging modeling project
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APPENDIX B

OQMD

B.1 OQMD and FAIR Data

Open Quantum Materials Database[3], [4], [162] (OQMD) is one of the largest computational

materials databases in the world as of 2022. It stands as one of the pillars of public material data

infrastructure and is used by researchers around the world in their work[162]. We worked on three

different projects within the OQMD toward enhancing its findability, accessibility, interoperability,

and reusability (FAIR[2]).

In the first project, we co-created a universal standard for materials data transfer across most of

the major high-throughput database providers, called the OPTIMADE REST API standard[161].

The OPTIMADE specification is a set of rules to follow while deploying a corresponding REST

API data transfer system in materials databases. Every database that implements an OPTIMADE

REST API can be queried using the same syntax by changing only the base domain URL. This

work highly enhances the interoperability and accessibility of the materials databases. The OP-

TIMADE standard formulation work was funded by Centre Européen de Calcul Atomique et

Moléculaire (CECAM), and the work on implementing the same API in OQMD was funded by

grants from Toyota Research Institute (TRI).

In the second project, we created and hosted a Handle system[163] to assign persistent iden-

tifiers to the materials data in OQMD that prevents link-rot issues[164]. The persistent identifiers

system implemented in OQMD are similar to Digital Object Identifier (DOI) system, and it in-

creases the accessibility and reusability of data in OQMD. We also created and deployed structured



129

data based on the schema.org[165] standards for all material data pages in the OQMD database to

increase their findability and machine-actionability[2] in public web search engines. Both of the

works completed in this project are funded by grants from the National Institute of Standards and

Technology (NIST).

During the third project, we transferred the OQMD server from on-premises hosting to a scal-

able, container-orchestrated cloud hosting system, significantly reducing the latency and increasing

the bandwidth. This transition of the hosting environment enables a more robust data infrastructure

designed for long-term deployment. The full cloud architecture of OQMD as of October 2022, is

given in Figure B.1.
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Figure B.1: The Cloud infrastructure of OQMD - as of October 2022
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