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ABSTRACT

Perceptual and Cognitive Affordances of Data Visualizations

Cindy Ya Yang Xiong

Visualization is a powerful tool to help people better communicate and understand data.

But the perception and interpretation of data is riddled with bias. Data visualizations are am-

biguous objects such that different people viewing the same visualization can come to different

conclusions. The ambiguity is likely associated with people’s perceptual biases when viewing

visualizations, and that their viewing behaviour can be heavily influenced by their background

knowledge and experiences. In addition to the ambiguous nature of visualizations, designing

a visualization is a difficult task. This process involves multiple design decisions, and each

design decision can dictate viewer takeaways from the visualization. In my dissertation, I share

several empirical studies investigating how visualization design could influence viewer percep-

tion and interpretation of the same data, referencing methods and insights from psychology and

computer sciences. From these studies, I extract usable design guidelines that could help future

researchers and practitioners design more effective visualizations to communicate data.
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CHAPTER 1

Introduction

Across science, education, healthcare, and public discourse, we rely heavily on data to un-

derstand, communicate, and make decisions. By tapping the power of our visual processing

system, which can crunch vast arrays of numbers at a glance and provide us with critical values,

statistics, and patterns needed to interpret the world around us, visualized data — maps, info-

graphics, flow charts, word clouds, and network diagrams — can massively enhance our ability

to analyze and understand patterns in order to make data-driven decisions.

Well-designed data visualizations can lead to powerful and intuitive processing by a viewer,

both for visual analytics and data storytelling. Designing a good visualization is difficult. It

requires multiple forms of expertise, weeks of training, and years of practice. Even after this,

designers still require ideation and several critique cycles before creating an effective visualiza-

tion. When badly chosen, that visualization leaves important patterns opaque, misunderstood,

or misrepresented.

How can we create well-designed data visualizations to more effectively communicate data?

I have taken a ‘reverse engineering’ approach where I examine what people tend to see and take-

away from a visualization through observations, interviews, and controlled lab studies. Refer-

encing methods from perceptual psychology, behavioural economics, and computer science, I

have established a research program that focuses on creating a mapping between some visual-

ization design elements and the type of interpretations they tend to elicit. This mapping help us
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understand how viewers perceive, interpret, and make decisions from visualizations, and it can

help designers and researchers more effectively communicate their data.

Understanding how people perceive a visualization and use it to make decisions can benefit

researchers and practitioners from a multiple disciplines. For example, researchers in pub-

lic policy communication or political science could use this knowledge to create trustworthy

and persuasive visualizations to aid decision making (Nyhan and Reifler, 2019). Education

researchers might use this information to help students form better mental representations of

difficult topics, such as teaching students water cycles with visual diagrams (Márquez et al.,

2006). In healthcare, this knowledge can help doctors better communicate the risks of medical

procedures to patients (Ancker et al., 2006), and in politics, journalists can better communicate

uncertainties in election outcomes or hurricane paths (Ruginski et al., 2016).

I’ve been exploring the perceptual and cognitive affordances of visualized data through

empirical studies. Affordances are the relationships between the properties of an object that

convey potential interactions and a user’s capabilities (Norman, 2013). An example would be

that a door with a handle can be pulled opened, whereas a door with just a metal plate surface

can only be pushed open. Similar to physical objects, visual data representations also appear to

hold similar affordances, via common tasks done with those designs, or conceptual associations

driven by their underlying metaphors (Tversky, 2014).

In the past five years, I realize that designing a good visualization is difficult because, unlike

physical objects, people’s interpretations of visualized data deeply depend on its design. Creat-

ing a visualization involves a series of design decisions, ranging from the type of visualization

chosen, how data is aggregated, the color scheme chosen for the visualization, to how visual
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marks that the visualization is composed of is spatially arranged. Each of these design decisions

may lead to a different interpretation from the viewer.

I present the work I’ve done to date exploring the connections between the design decisions

and the viewer interpretation. In Chapter 1, I demonstrate that visualized data is an intriguing

but difficult target of study as its interpretation is ambiguous, unlike non-visualizations where

the data is presented as raw numbers. Different people looking at the same visualization can

come to different conclusions. In Chapter 2 and 3, I demonstrate that the ambiguous nature

of visualizations is likely associated with the fact that people are perceptually biased when

they view visualizations, and how we look at visualizations is deeply influenced by our back-

ground knowledge and expertise. These three chapters justify why it’s critical for visualization

researchers to investigate how the design of visualizations impacts what viewers see in a visu-

alization, which data values they compare, how they reason with the information available, and

what decisions they make with it. In Chapter 4 and 5, I share some initial investigations into

how visualization designs could influence viewer interpretations and generate design guidelines

that might help future designers create more effective visualizations. Chapter 4 examines how

people think about correlation and causation with data and demonstrate that aggregated bar

charts tend to elicit incorrect causal thinking. Chapter 5 looks into how spatial arrangement and

color mapping of data values can impact viewer takeaways.

This space investigating how visualization design can impact viewer interpretations and

decision making is incredibly rich. It’s an interdisciplinary effort with practical implications.

These design guidelines can be incorporated into visualization tools or be utilized by data jour-

nalists or data scientists in the future to generate visualizations that best communicate the de-

signers’ intended message and help ensure the viewer sees the ‘right’ story.
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CHAPTER 2

Same Data, Different Decisions

You’d hope that people would interpret data objectively, but that process is riddled with

biases (Kahan et al., 2017). Ambiguous figures like the duck-rabbit and Necker cube illusions

reveal that our brain can lock into a single view of a multi-stable percept Attneave (1971). The

duck-rabbit ambiguity is rare in the real, visual world, but it is ubiquitous in the artificial world

of information and affects how we interpret representations of information. In this first Chapter,

we demonstrate that visualizations can be similar to the duck-rabbit illusion such that two people

looking at the same visualization can “see” different patterns – one the duck and the other the

rabbit, and make different conclusions. Imagine reading a story in the New York Times Upshot

with a visualization depicting the unemployment rate during the Obama administration from

â09 to â12, as shown in Figure 2.1. Democrats might focus on the steadily decreasing trend in

the figure and see it as a validating accomplishment of the administration. Republicans might

instead focus on the large difference between the 8% goal level and the actual unemployment

rate, leading to frustration with the administration (Bostock et al., 2012).

When reading a visualization, viewers need to exercise top-down attentional control to ex-

tract a series of relationships and patterns from the data values (Szafir et al., 2016; Egeth et al.,

2010; Michal et al., 2016; Michal and Franconeri, 2017). A dataset can contain many patterns

to perceive. Extracting patterns and relations from a dataset is more similar to reading sentences

in a paragraph, where the reader has to sequentially process each sentence, rather than looking

at a picture or scene, in which elements are processed simultaneously to create a gist (Shah
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Figure 2.1. An adaptation of an example from data journalists (Bostock et al., 2012).

and Freedman, 2011). For example, when a scientist reads a typical bar chart depicting the re-

sults of a two factorial design, they could extract main-effect comparisons like "overall, people

performed better in condition A than condition B" or interactions such as "group X performed

better in condition A but group Y performed better in condition B" (Shah and Freedman, 2011).

This diversity of percepts extractable from a graph might lead to two people seeing different

patterns in the same dataset - one viewer might see the main effects (the duck) and another

viewer might see the interaction (the rabbit). We know that people can diverge to see different

patterns in visualizations and make different decisions due to their motivation, belief, or exper-

tise (Parsons, 2018), but it is still unclear whether this could still happen without the influence

of belief.

In the Chapter, I first examine whether the data presentation format impacts viewer deci-

sions. We present some data depicting a neutral topic, either as a table or a bar chart, and
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compare what participants identify as a salient pattern in the data and how they make predic-

tions about future trends in the data. I hypothesize that people could see different patterns and

make different decisions in a visualization, but not in non-visual formats such as tables.

Figure 2.2. Visualizations are ambiguous figures. Stimuli used in Experiment.
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2.1. Experiment 1

I recruited 125 (Mage = 32.84(8.81), 51 female) participants from Amazon’s Mechanical

Turk. I excluded workers who are not based in the United States, have an approval rate below

95%, failed our attention checks, have seen our experimental stimulus before (including in

another study), or entered nonsensical answers. The participants were compensated at the rate

of 9 dollars per hour.

Figure 2.2A shows a bar graph visualization that displays the results of a student government

election across the past three years, with competition between the blue and the green party. The

y-axis shows the percentage support the two parties received. Participants were asked ‘Which

party will win in Year 4?’ The visualization contains competing data patterns that might be

used to answer this question. As shown in Figure 2.2D, one could notice that the blue party

has won most recently, or that blue has won every year from Year 1 to Year 3, both suggesting

that blue is more likely to win. Alternatively, one might notice that the green party has been

steadily gaining support over the past three years, or that it has decreased the gap between itself

and the blue party over the past three years, and conclude that the green party is more likely to

win. The underlying data from this bar graph could also be depicted in a table 2.2B. The table

contains identical information in the same arrangement as the bar chart, except that data values

were shown as numbers.

In the experiment, participants completed a survey released through Qualtrics (Qualtrics,

2014) on Amazon’s Mechanical Turk. They viewed either the bar visualization or the table,

as shown in Figure 2.2. They stated who they thought would win in the student government

election in Year 4, via both a binary forced choice (blue or green party) and a slider to indicate

the likelihood of their predicted victory. The slider ranged from 0 to 50 , where 0 indicated



23

green likely wins, 25 indicated a tie, and 50 indicated blue likely wins, except that the numerical

values were hidden from participants. They also briefly explained their reasoning. Afterwards,

on a separate page, they matched their explanation to one of four choices, shown in Figure

2.2D (participants in the Table condition saw only the sentences, not the annotated graphs).

These choices were collected from a series of pilot studies where participants indicated potential

patterns that they saw in the same chart. If the participant couldn’t match their reasoning to one

of the choices, they were instructed to select “other.”

2.1.1. Experiment 1 Results

All statistical analysis were done in R. The data, R-script used for analyses, and other experiment-

related files are available at the Open Science Framework website: https://osf.io/

vmnh5/.

Figure 2.3. Experiment 1 results showing that visualizations are ambiguous figures.

https://osf.io/vmnh5/
https://osf.io/vmnh5/
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This experiment shows that tables and bar graphs can afford different conclusions, even

within the same trivially simple dataset. The left of Figure 2.3 compares the conclusions that

people drew from the visualization versus the tabular data for continuous slider response. It

shows the distribution of slider response on winning likelihood for blue and green party in

visualization and table presentation. Responses in the visualization condition are bimodally

distributed while responses in the tabular condition are right-skewed. People that viewed the

bar visualization were equally likely to predict blue and green to win while people that viewed

the table mostly predicted blue to win. The color represents what the participant indicated as

their reasoning for their predictions. with blue representing participants who reasoned with blue

supporting features and green representing participants who reasoned with green supporting

features (see Figure 2.2D). Overall, the slider response shows a right-skewed distribution for

the table, versus a bimodal distribution for the bar graph, suggesting that people’s prediction

patterns drastically differed depending on how the data was presented to them.

The color-coding in Figure 2.3 depicts the data pattern (see Figure 2.2) that participants

picked out to support their prediction. Light blue maps to "blue won in the most recent year"

and dark blue maps to "blue has been winning every year." Light green maps to "green has

increasing support over the past 3 years." Dark green maps to "green has been decreasing the gap

between the two parties over the past 3 years." Grey represents ‘others’ - where the participant

indicated that none of the options captured the pattern that they noticed. Only 4.5% of the

responses fell in the ‘other’ category and examples these responses included “I guessed”. From

the color distribution in Figure 2.3 left, we see that most people focused on blue-features when

they predicted blue to win, and most people focused on green-features when they predicted
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green to win (χ2=120, V =1, p<0.001), showing an association between the patterns that people

notice, and the conclusions that they draw.

The right of Figure 2.3 shows the count of people that indicated blue or green would win

in binary forced choice task fro visualization and text condition. Error bars represent standard

error. There is a significant difference between the visual presentation format they saw and the

predictions they made (χ2=6.07, V =0.22, p=0.014), such that participants who saw the tables

were more likely to say blue would win, and the participants who saw the bars were equally

likely to say blue and green would win, corroborating our findings from the continuous slider

shown on the left of Figure 2.3.

2.2. Experiment 2

Experiment 1 asked participants to predict a winner before providing the data pattern that

they found salient, showing an association between the salient pattern and the eventual deci-

sion. However, putting the decision first might have led participants to pick a pattern that was

consistent with their decision, instead of pattern salience contributing to the decision. To

strengthen the evidence for that direction of this relationship, we reverse the order of these

questions in Experiment 2, and tested only the bar graph condition, where responses showed

the far stronger bimodality.

We recruited 141 participants for Experiment 2 (Mage = 33.40(9.91), 58 female), also from

Amazon’s Mechanical Turk and followed the same exclusion procedure as that in Experiment

1. We showed participants the bar visualization from Figure 2.2A and asked them to indicate

the feature they find the most visually salient. Afterwards, on a separate page, we asked them to
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indicate which party they predict would win, using the same slider and the binary forced choice

from Experiment 1.

When viewing the data as a bar graph, responses were again bimodally distributed across the

likelihood of election outcomes. The left of Figure 2.4 shows the distribution of reported elec-

tion outcome likelihood. Blue colors represent participants who indicated blue-supporting fea-

tures as visually salient and green colors represent participants who indicated green-supporting

features as visually salient, following the same color scheme as in Figure 2.3. Participants who

predicted that “Blue likely Wins" were more likely to have indicated blue-supporting features

as visually salient prior to making the prediction, and those who predicted that “Green Likely

Wins" were more likely to have indicated green-supporting features as salient. No participants

indicated the pattern corresponding to dark green to be visually salient. Again, we see that

roughly half of the participants predicted that each party would win.

The right of Figure 2.4 shows the summary of binary decisions on which party would win,

illustrating a congruence between salient patterns with predictions of which party would win.

Error bars represents standard error. This observation is consistent with the slider response

measures, as shown in the left of Figure 2.4. A chi-square analysis shows a significant differ-

ence between identified salient features for people that made differing predictions (χ2=18.04,

V =0.36, p<0.001).

2.3. Discussion

These two experiment shows that visualizations, unlike tables, are one form of ambiguous

figures such that two people looking at the same dataset could come to different conclusion

as they focus on different patterns. In the student government election dataset, the increasing
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Figure 2.4. Experiment 2 results showing that visualizations are ambiguous figures.

trend of the green party was mostly undetected by participants when the data was presented as a

table. Most participant noticed that the blue party has won every year, including the most recent

year. When the data was visualized into a bar chart, half of the participant saw the increasing

trend in green as visually salient and used that information to predict that green would win the

election. This supports our hypothesis that visual representation of data can afford different

pattern extraction and thus different decisions with data.

Why were people split in their decisions when the data is shown as a visualization but not

when the data is shown as a table? The bar chart visualizes the growing trends for the green

party, but this trend is less obvious when the data is presented as a table. We suspect there is

a bottom-up process such that visualization emphasizes the pattern of the increasing popularity

of the green party, making it more noticeable, and thus increasing the likelihood for people to

predict green to win.

There also seem to be a consistent individual differences in perceived saliency of visual

features. Future iterations of this work aims to examine the strength of visual saliency in data
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patterns relative to motivation and belief. We aim to improve data communication to facilitate

data-driven, instead of motivation-driven decisions by identifying perceptual components or

data visualization techniques that influence cognitive decision making.

These two experiments have limitations that provides promising future research directions.

In the present design of the study, participants did two tasks: indicating the features they found

salient and predicting who they thought would win the election. While the order of the two

tasks has been counterbalanced in Experiment 1 and 2 to show consistent results despite which

care first, we don’t yet know whether there exists a causal relationship between the two, and in

which direction the causal arrow points.

First, what we observed could be entirely perception-driven. Viewers may, through a bottom-

up process, find certain features and patterns visually salient, and then form a belief to drive their

decisions. For example, imagine a participant looking at the bar chart on student government

election. The three blue bars are overall taller and more noticeable. The participant’s attention

is drawn to these tall blue bars. They didn’t even notice that the green bars and them increasing

overtime. Their impression on the large blue bars subsequently led them to form a belief that

the large blue bars are so large that the blue party will likely win.

On the other hand, viewers could exert their top-down attentional control and pick out pat-

terns that supports a pre-existing belief they have. For example, imagine a participant who

believes that the general preferences of voters don’t change over time. This participant then

looks for patterns in the data that supports this belief, noticing that the blue party has been his-

torically victorious. They then report the pattern of the blue bars beating the green to be very

salient. This is also an instance of confirmation bias, as the viewer has already made up their

mind and is merely looking for evidences to support their belief.
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Both processes could have played a role in our experiment, influencing how viewers per-

ceived and made decisions about visualizations. This may imply that bottom-up process can

interact with top-down processes in data interpretation to form a feedback loop, creating a cir-

cular causal chain similar to the "which came first: the chicken or the egg?" question. Say an

individual sees some data and makes a decision using the data. Did they form a belief first and

then seek out corresponding patterns in the data? Or did they found certain patterns visually

salient first and then form the belief? Future iterations of this work could further tease these two

processes apart, and asses their effect in real-world visual data communication instances such

as the one in Figure 2.1.

I encourage future researchers to bridge work in human cognition and data visualization

to shed light on the impact of information visualization on data communication and decision-

making. As we increasingly rely on data to understand, communicate, and make decisions, we

need to further understand how our brains work to extract critical values, statistics, and patterns

needed to make decisions about data, to help us design data visualizations that increase data

comprehension and effective data communication. As Klein and O’Brien pointed out, people

use less information than they think to make decisions (Klein and OâBrien, 2018). Now more

than ever before, it is critical to consider implications of visualization design to facilitate data-

driven, instead of motivation-driven or saliency-driven decisions with data.
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CHAPTER 3

Perceptual Bias in Data Visualizations

“Seeing is believing” implies that vision delivers reality. Yet, experiments in perceptual

psychology reveal that perception of a variety of visual information can be systematically influ-

enced by recent history and context. Staring at downwardly moving dots can cause a ‘waterfall

illusion’ where people may perceive subsequent, static dots as moving in the opposite direction

(Wade, 1994). Similarly, a circle will appear smaller in size in the context of larger, concen-

tric circles than when surrounded by smaller, concentric circles, as in the Ebbinghaus illusion

(Roberts et al., 2005).

A small set of systematic biases based on history and context is already on the radar of

visualization designers, such as how hue categories can bias the perception and memory of

colors, or how background colors can strongly alter the perception of foreground colors (Ware,

2012). But we generally assume that data visualizations are otherwise perceived in an unbiased

(albeit, potentially noisy) manner, particularly for more precise visual data encodings such as

position (Cleveland and McGill, 1984a).

The perception of visual magnitudes can be biased across multiple feature dimensions. Ori-

entation estimates for a line can be either repulsed or attracted by the orientations of nearby

objects, depending on the parameters of the display (Parkes et al., 2001). Perceived brightness

can be affected by background brightness (Ware, 2012). Categorical boundaries between hues

can exaggerate differences between those that straddle a boundary, compared to hues that do

not (Bornstein and Korda, 1984).
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Similar patterns of categorical bias are found for object sizes once a set of object size cate-

gories have been learned (Kosslyn et al., 1977). When a short ellipse is in the context of a taller

ellipse, the short ellipse is perceived as even shorter and the taller ellipse as even taller (Sweeny

et al., 2011). After adapting to a vertically tall ellipse that is no longer present, the perceived

height of a subsequent circle will appear vertically shorter (Köhler and Wallach, 1944). Mem-

ory for the size of a single object in a crowd of other objects can be biased toward the average

size of all objects (Ariely, 2001; Chong and Treisman, 2003; Brady and Alvarez, 2011).

Most importantly for the present study, even the perceived positions of objects can be biased,

especially when positional changes break a categorical or relational boundary. Positions are

encoded somewhat categorically (similar to color), so that changes to a category boundary are

easier to detect, compared to equally distant changes that do not cross a category boundary

(Kosslyn et al., 1989). Viewers are more accurate at detecting change for a dot position when

the dot is moved to the opposite side of a set of crossed gridlines, as opposed to moving to an

equally distant position on the same side of the gridline (Kranjec et al., 2014). When detecting

changes to the spacing between pairs of circles, performance is higher when the changes affect

the categorical position relations for the circles (‘touching’ to ‘not touching’), as opposed to

when they do not (‘not touching but close’ to ‘not touching but far’) (Kim and Biederman,

2012; Lovett and Franconeri, 2017).

Most relevant for the present work is the susceptibility of position estimates to biases in

memory, such that the position memory of a briefly presented object can be biased by context

or nearby salient points in the display. Memory for the position of an object can be biased

toward the average position of an associated group of objects (Alvarez and Oliva, 2008; Lew

and Vul, 2015). The recalled position of a dot inside a circle is pulled toward the center of
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one of four imaginary quadrants within the circle (Huttenlocher et al., 1991), suggesting that

the nearest of these salient category boundaries pulled the position representation toward itself

during recall.

Similar effects of irrelevant ‘background’ values can bias cognitive processing, such as mag-

nitude estimates at the level of verbal, numerical reports. In the ‘anchoring effect’ (Tversky and

Kahneman, 1974; Furnham and Boo, 2011), uncertain target estimates can be strongly biased

by other provided values, even if they are objectively irrelevant. For example, a population esti-

mate of Nova Scotia would be biased by introducing an irrelevant value (e.g. “Is the population

of Nova Scotia more or less than 200,000?”), such that a larger primed value (e.g., 200,000)

would lead to a larger population estimate, while a smaller primed value (e.g., 20,000) would

lead to a smaller estimate (Jacowitz and Kahneman, 1995).

Such higher-level cognitive influences may also affect pattern perception in data visualiza-

tions. Socially-derived information signals (e.g., polls) can influence graph perception, such

that other individuals’ judgment of graphical information can bias how a single individual per-

ceives and judges the same information (Hullman et al., 2011). The intensity of title-wording

can cause graph viewers to overestimate or underestimate the slope of an associated, noisy scat-

terplot line, such that viewers who saw a high-intensity title recall a steeper slope than those

who saw a low-intensity title (Newman et al., 2018). Previously viewed scatterplots can also in-

fluence viewer judgments of class separability in novel scatterplots, which could be interpreted

similarly as an anchoring effect (Valdez et al., 2018). For example, priming with a clearly sep-

arable point cloud can bias perception of an ambiguous point cloud to appear more separable

than if primed with a non-separable point cloud.



33

The present experiments will show that, despite the high precision of position, perception of

data from positional encodings can also be biased in systematic ways. Specifically, depending

on the visualization, these data values can be significantly underestimated, overestimated, or

‘pulled’ toward other irrelevant position values present in the same graph.
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Figure 3.1. Experimental procedure and design for Chapter 2 Experiments.

3.1. Experiment 1

Experiment 1 tests how accurately people can perceive average positions of a single line

or single set of bars in a graph. This experiment establishes a baseline to understand how a

single graphed data series is perceived without the potential influence of other graphed data

series. These findings will be later compared to how the presence of an additional graphed data

series may further bias perception. We investigates whether people report average line and bar

positions in graphs in a biased way by comparing participants’ estimation of average line or bar

positions to the true average position of the line or bars in a mixed-model design.

Participants were cued before each trial with the task of either estimating the average po-

sition of a line or a set of bars to be shown on a subsequent stimulus display (see Figure 3.1).

Depending on that precue, participants then saw a stimulus display that contained a set of bars
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or a line appearing on the top or bottom half of the display (see Figure 3.1). As shown in Fig-

ure 3.2, these data series could be uniform (where all points on the line or on the set of bars are

of the same value), or noisy (where all points are of different values).

For a total of 576 trials, each participant completed 288 trials for each line and bar position

estimate, with half of trials for each condition displaying a noisy version of the data series and

the remaining half of the trials displaying a uniform data series. For analysis, we examined the

average position estimations participants made across all these dimensions. We also examined

the effect of the initial location of the response probe.

Thirteen undergraduate students from Northwestern University (Mage = 18.62 years, SDage

= 0.65) participated in exchange for course credit in an introductory psychology class. We

excluded one participant who did not complete the experiment from our data analysis.

Noisy Stimulus Displays Uniform Stimulus Displays

Experiment 1

Compound Stimulus Displays Single Stimulus Displays

Experiment 2

Compound Stimulus Displays Single Stimulus Displays

Experiment 3

target

target

target

target

Figure 3.2. Design space for Experiment 1, 2, and 3 in Chapter 3.

3.1.1. Underestimation of Lines

We used a mixed-effect linear model to predict estimated position with fixed effects of the

actual display location of the line (i.e., the pixel value and whether it was on the top or bottom

half of the display), whether the line was noisy or uniform, the initial location of the response

probe, practice effect (as trial number), and participants as random intercept. In this model, we
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excluded all trials in which participants made an obviously wrong estimate, defined as making

an estimate in the bottom quarter of the display for a stimulus appearing in the top half of the

display, or vice versa.

The top two rows of Figure 3.4 shows the results of the line estimates in Experiment 1.

The first and fourth columns show example displays representing the ‘medium’ mean position

for noisy and uniform displays, respectively. The second and third columns show the density

curves for true average position distributions (solid black lines for each of the three means:

high, medium, low; pixel values given), and density curves for the estimated average position

distributions for each of the three means (line estimates: solid red lines; bar estimates: solid

blue lines). The orientations of the solid red or blue lines (shown between the density curves for

the estimated average position distributions) show the differences in position estimates between

noisy and uniform conditions.

As shown in Figure 3.4 (top two rows), we observed an overall underestimation of line po-

sition, in which participants estimated average line positions to be lower than where the average

position of the line actually appeared (MDoverall=-4.49 pixels, SE=0.11, Est=1.01, CI95%=[0.95,

1.07], p<0.001, ηpartial=0.68). This underestimation persisted regardless of whether the line ap-

peared on the top or bottom half of the display screen (MDbottom=-6.50, SEbottom=0.15, MDtop=-

2.47 pixels, SEtop= 0.16, Est=-5.57, CI95%=[-8.45, -2.70], p<0.01, ηpartial=0.96), although

participants underestimated the average of the bottom line more than the average of the top

line. Estimation error did not depend on whether the line was noisy or uniform (Est=0.12,

CI95%=[-0.28,0.53], t=0.61, p=0.54, ηpartial=0.00). This provides further evidence that the un-

derestimation of average line positions is not an artifact of the noise in the line stimulus, as

underestimation occurred for even uniform lines on the display.
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There was also a very small interaction between the average pixel position of the line and

whether that line was presented in the top half or bottom half of the display (Est=-0.094,

CI95%=[-0.13, -0.054], p<0.001, ηpartial=0.006). For lines appearing in the top half of the

display, participants underestimated average position less when the lines were located closer

to the center of the screen. For lines appearing in the bottom half of the display, participants

underestimated average position less when the lines were located closer to bottom boundary of

the display box (further away from center).

We found no practice effect (ηpartial=0.00, p=0.45), suggesting that average position esti-

mations did not get more or less biased as participants completed more trials. We also found

that while initial probe location (where the response probe for position estimations was ini-

tially presented in the display) had a significant influence on the estimation error (Est=0.62,

CI95%=[0.21, 1.02], p=0.0022, ηpartial=0.003), its effect size was small (see Figure 3.3).

Was this systematic underestimation an artifact of poor average estimation strategies? We

considered whether the underestimation in average line position was the result of participants

simply choosing the lowest point on the noisy line as their response for the average position of

the line. To test this, we compared participants’ estimated average line positions with the lowest

point on the noisy line using a different mixed-effect linear model, with estimated line locations

as the dependent variable (DV) and the position of the lowest point on the noisy line as the

independent variable (IV). If participants estimated the average line only relying on the position

of the lowest point, the slope of the linear model should be 1. Using a Wald test with confidence

intervals at 95%, we found that the test slope of the mixed-effect model was in the range of

[0.64, 0.70] for lines on the top of the display, and in the range of [0.57, 0.63] for lines on the

bottom of the display. Neither range included the value 1, which suggests that participants did
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not base their average position estimations only on the lowest point for lines on both the top and

bottom half of the display. We did a similar comparison predicting whether estimated average

positions depended on the average of the highest and lowest points on the line, and found the

slope of this regression line to also not include 1 in its 95% confidence interval, (Esttop=[-0.057,

0.12], Estbottom=[-0.10, 0.06]). This suggests that the participants were not simply averaging

the highest and lowest points on the line stimulus to make their estimations.
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Figure 3.3. Difference between the initial probe location in average line and bar
estimation tasks.

3.1.2. Overestimation of Bars

We utilized the same mixed-effect linear model to examine estimated average bar positions.

As shown in Figure 3.4 (bottom two rows), we observed an overall overestimation of bar po-

sition, where participants systematically estimated average bar positions to be higher than its

actual position (MDoverall=4.19 pixels, SE=0.086, Est=0.72, CI95%=[0.59, 0.84], ηpartial=0.33,

p<0.001). This overestimation persisted regardless of whether the bar stimulus appeared on the
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Figure 3.4. Results from Experiment 1 for noisy and uniform simple graphs.

top (MDtop=4.43, SEtop=0.12) or bottom half of the display screen (MDbottom = 3.95, SEbottom =

0.12, Est=10.26, CI95%=[4.00, 16.51], p<0.001, ηpartial=0.98), although participants overesti-

mated the average position of the bottom bars significantly more than the average position of the

top bars. There was no effect of whether the bars were noisy or uniform (MD=0.15, SE=1.33,

Est=0.12, CI95%=[-0.21, 0.45], p=0.57, ηpartial=0.00), suggesting that this systematic bias may

not be the result of participants utilizing outliers for position averages. There was no practice

effect (ηpartial=0.00, p=0.85), but an effect of initial probe location (η2
partial=0.007, p<0.001)

with a small effect size (see Figure 3.3).



39

We then further investigated whether this overestimation was an artifact of participants bas-

ing average bar position estimations on the highest point on the bar graph. We compared partic-

ipants’ estimated average bar positions with the highest point on the noisy set of bars using the

same method as before, and found the 95% confidence interval for the test slope of the model

to be in the range of [0.29, 0.36] for the bottom set of bars and [0.22, 0.29] for the top set of

bars. Since 1 is not included in either confidence interval, the results suggest that participants

did not simply base their average position estimations on the highest point on the bars. Simi-

lar comparisons between estimated average position and the average of the highest and lowest

points on the bars also found that the slope of the regression line did not include 1 in its 95%

confidence interval (Esttop= [0.01, 0.11], Estbottom=[0.22, 0.29]), suggesting that the partici-

pants were not simply averaging the highest and lowest points on the set of bars to generate

their average positional estimates.

3.1.3. Discussion

Experiment 1 illustrated a systematic underestimation of average line positions and overesti-

mation of average bar positions. Interestingly, this effect occurred regardless of whether the

lines and bars were noisy or uniform. Comparing the variance of the estimations via an F-test,

we found that while participants estimated uniform lines and uniform sets of bars with more

precision and less variance than with noisy lines and noisy sets of bars (F(1,3454)=1.1479,

p<0.0001), biases were still prevalent in both noisy and uniform displays. Overall, this experi-

ment showcased that position encoding is not immune to perceptual bias.
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3.2. Experiment 2

Experiment 1 provided evidence for biased reports of average position for a simple graph

with one data series, but how is this bias affected by the presence of an additional data series

within a complex graph? Experiment 2 expands on this investigation of biases by determining

whether the perception of average line and bar positions can be further biased by other lines and

bars present on the same graph, respectively. We first explore how the position of one line may

influence the perceived position of a target line within a display containing two lines (referred

to as “compound line-line” displays). We then test the effect of an additional set of bars on the

average position estimations of a target set of bars in a display with two sets of bars (referred to

as “compound bar-bar” displays).

The methods were similar to those in Experiment 1, with the following changes. Participants

were presented with noisy compound line-line or noisy compound bar-bar displays and were

precued to report the average position of a line or a set of bars presented at the top or bottom of

the display (see Figure 3.1).

For a total of 240 trials, each participant completed 120 trials for each line and bar average

position estimation condition. For half of these trials, participants were tasked with judging the

position of the top data series and in the other half, the bottom data series. We also included 144

control trials in which each participant estimated the average position of a single noisy line or

a single noisy set of bars (referred to as “single-line” or “single-bar” displays; see Figure 3.2),

replicating Experiment 1.

Twelve different undergraduate students from Northwestern University (Mage=19.31 years,

SDage=1.55) participated in exchange for course credit in an introductory psychology class.
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3.2.1. Underestimation and Overestimation

Using the same analysis method as Experiment 1, Experiment 2 replicated the results of Exper-

iment 1 in the single-line and single-bar conditions.

In the single-line displays, participants still underestimated average line positions (MD=-

5.27, SE=0.18, p<0.001) (see first two rows in Figure 3.6). Further analyses showed no practice

effect (η2
partial=0.00, p=0.91) and no effect of initial location of the response probe (η2

partial =

0.003, p = 0.12).

In single-bar displays, participants overestimated average bar positions (MD=3.39, SE=0.17,

p<0.001) (see last two rows in Figure 3.6). We found no practice effect (η2
partial=0.001, p=0.23),

but a small effect of the initial response probe location (η2
partial=0.004, p=0.0025).

3.2.2. Perceptual Pull

For compound line-line displays and compound bar-bar displays, we observed an underestima-

tion in average line positions and an overestimation in average bar positions. Additionally, we

also found an effect of “perceptual pull”: position estimates for a target data series (a set of bars

or a line) were ‘pulled’ toward the irrelevant data series shown on the same graph.

We used another mixed-effect model predicting estimation error with fixed effects of whether

the data series was present in the top half of the display or the bottom half, whether the dis-

play was compound or single, and trial number, and a random effect of participants. In com-

pound line-line displays, there were no main effects of line location (top or bottom) (Est=-2.05,

CI95%=[-2.22, -0.44], p=0.82, ηpartial=0.00) or display type (compound or single) (Est=-2.05,
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CI95%=[-3.07, -1.02],p=0.82, ηpartial=0.00). However, there was a significant interaction be-

tween line location and display type, such that the magnitude of line position underestima-

tion between lines that appeared on the top and bottom half of the display differed (Est=3.75,

CI95%=[2.30, 5.19], p<0.001, ηpartial=0.011). Underestimation of the top line was exaggerated,

such that participants underestimated the top line even more compared to single-line displays
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(MDtop,single−compound=-1.92, SE=0.71). In contrast, underestimation of the bottom line was

reduced compared to single-line displays (MDbottom,single−compound=2.01, SE=0.65).

From this interaction between display type and location of the line (top or bottom) on posi-

tion estimation, we speculate that the top and bottom lines ‘pulled’ position perception toward

one another. The presence of the irrelevant top line further biased perception of the average po-

sition of the bottom target line, and the presence of the irrelevant bottom line further influenced

perception of the average position of the top target line.

We also observed the same perceptual pull in the compound bar-bar displays using an iden-

tical mixed model. There was a significant main effect of bar position such that bottom bars

were significantly more overestimated than top bars (Est=-8.08, CI95%=[-8.81, -7.34], p<0.01,

ηpartial=0.22). There was no main effect of display type (Est=-0.61, CI95%=[-1.46, 0.23],

p=0.63, ηpartial=0.00), but there was a significant interaction between bar location and dis-

play type (Est=1.51, CI95%=[0.32, 2.71], p=0.013, ηpartial=0.003). Overestimation of the top

bars was reduced1, such that participants overestimated the top bars less compared to single-bar

displays (MDtop,single−compound=0.97, SE=0.44). In contrast, overestimation of the bottom set

of bars was exaggerated more compared to single-bar displays (MDbottom,single−compound=-0.53,

SE=0.48). This interaction again suggests that, similar to the lines, there exists a perceptual pull

between bars, ‘pulling’ the perception of their average positions toward one other.

3.2.3. Discussion

Experiment 2 replicated evidence that perception of average line and bar positions is biased.

Furthermore, it showcased a perceptual pull effect, in which the presence of an irrelevant line

1Note that this is a decrease in absolute position in the reference frame of the display, meaning participants
perceived the top set of bars as vertically longer in the compound bar-bar displays than the single displays.
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or set of bars in the same display pulled average position estimations of a target line or set of

bars toward the position of this irrelevant data series (see Figure 3.6).

3.3. Experiment 3

Experiment 2 illustrated the existence of perceptual pull, but what determines the extent

of the perceptual pull? Is it data series-dependent (in which a specific type of graphed data

series could influence the strength of the perceptual pull more than another type)? Is percep-

tual pull dependent on sufficient perceptual similarity between the two graph elements (i.e.,

irrelevant bars would exert a larger influence on average bar judgments than on average line

judgments)? Experiment 3 expands upon Experiment 2 by diversifying the types of graphed

data series present in the display to test the extent to which a line and a set of bars on the same

graph can influence each other.

3.3.1. Design and Procedure

The methods used in Experiment 3 were similar to that of Experiment 2. We will refer to

displays with a line present in the top half and a set of bars in the bottom half of the display as

“compound line-bar” displays, and displays with a set of bars on the top half and a line on the

bottom half of the display as “compound bar-line” displays (see Figure 3.2).

Twelve different undergraduate students from Northwestern University (Mage=19.00 years,

SDage=1.04) participated in this experiment in exchange for course credit in an introductory

psychology class.
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3.3.2. Underestimation and Overestimation

Experiment 1 and 2 results were replicated. In single-line displays, there was still a system-

atic underestimation of average line positions as lower than their true positions (MD=-6.47,

SE=0.26, p<0.001), and an overestimation of average bar positions as higher than their true

positions (MD=3.85, SE=0.19, p<0.001) (see far right of Figure 3.5). There was no evi-

dence of a practice effect in either the line-bar (p=0.36, ηpartial=0.00) or the bar-line (p=0.23,

ηpartial=0.00) displays, but there was an effect of the initial location of the response probe with

a small effect size for both line-bar (p<0.001, η2
partial=0.03) and bar-line conditions (p<0.001,

η2
partial=0.02).

3.3.3. Perceptual Pull

As in Experiment 2, we still found an underestimation in average line positions and an overes-

timation in average bar positions for all compound displays. Similarly, we observed an effect

of perceptual pull between the two data series (one line and one set of bars) in the display.

We used a mixed-effect model with display type (single or compound), graphed data series

type (line or bar), the interaction between display type and graphed data series type, trial, and

initial probe position as fixed effects, and with participants as a random effect. In the compound

line-bar condition, we found a significant main effect of graphed data series type (Est=-11.14,

CI95%=[-12.16, -10.12], p<0.001, ηpartial=0.188), a significant interaction of display type and

graphed data series type (Est=4.72, CI95%=[3.06, 6.39], p<0.001, ηpartial=0.014), a small effect

of initial probe location (Est=3.41, CI95%=[2.60, 4.21], p<0.001, ηpartial=0.188), and negligi-

ble effects from other predictors (all ηpartial<X, all ps>X). The underestimation of the top line

was exaggerated when compared to the single-line displays (MDtopLine,single−compound=-2.96,
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Figure 3.6. Results from Experiment 3 for compound stimulus displays (com-
plex graphs; i.e., two lines or two sets of bars) and single stimulus displays
(simple graphs; i.e., one line or one set of bars).

SE=0.90, p<0.001), as the bottom bars ‘pulled’ the average positional percept of the top line

down. Overestimation of the bottom set of bars was also exaggerated, such that participants

overestimated the bar position more when there was an above line ‘pulling’ the average posi-

tional percept of the set of bars up (MDbottomBar,single−compound=-1.37, SE=0.53, p<0.001).

Similarly, in the compound bar-line condition, a mixed-effect model showed a significant

main effect of graphed data series type (Est=7.90, CI95%=[6.94, 8.85], p<0.001, ηpartial=0.209),

a significant interaction effect between display type and graphed data series type (Est=3.45,
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CI95%=[1.88, 5.01], p<0.001, ηpartial=0.008), a small effect of initial probe location (Est=2.86,

CI95%=[2.10, 3.62], p<0.001, ηpartial=0.023), and negligible effects from other predictors (all

ηpartial<0.01, all ps>0.10). Overestimation of the top set of bars was significantly reduced

when a line appeared below its position on the display (MDtopBar,single−compound=1.49, SE=0.67,

p<0.001), suggesting that the bottom line ‘pulled’ the average positional percept of the set of

bars down. Underestimation for the bottom line was also reduced, such that the average position

for the bottom line was underestimated less (MDbottomLine,single−compound = 1.50, SE = 0.65, p <

0.001), as the top set of bars ‘pulled’ the average positional percept of the bottom line up.

In the compound displays overall, the effect of perceptual pull exaggerated the underestima-

tion of average line positions and the overestimation of average bar positions when a line was

located in the top half and a bar was located in the bottom half of the display. But perceptual

pull reduced the same underestimation and overestimation bias when a line was located in the

bottom half and a bar was located in the top half of the display.

3.3.4. Strength of Influence

The effect of perceptual pull occurs across graphed data series type, but is the extent of this

perceptual pull dependent on the type of data series present? In other words, would a data series

pull the same or different type of series more strongly, or would it pull all data series equally?

With data from Experiment 2 and 3, we conducted a between-subject ANOVA comparison

examining the variation in average line and bar position estimations depending on the non-

target data series (a line or a set of bars) (see Figure 3.7, which compares the average estimated

line/bar positions when the non-target data series is a line (red) or a set of bars (blue)). Neither
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top nor bottom target line position estimations in a compound line-line display were signifi-

cantly different from that in a compound line-bar display (top: MD=0.46, SE=0.70, p=0.57,

with Tukey correction; bottom: MD=1.31, SE=0.56, p=0.42). Similarly, neither top nor bot-

tom target bar position estimations in a compound bar-bar display were significantly different

from that in compound bar-line displays (top: MD=3.11, SE=0.52, p=0.21; bottom: MD=1.98,

SE=0.43, p=0.29). This suggests that the extent of perceptual pull does not depend on data

series type.

Figure 3.7. Estimation error for target data series is not dependent on the irrele-
vant graphed data series.

3.3.5. Discussion

Experiment 3 showed that perceptual pull is not dependent on graphed data series type, but

can generalize across data series (e.g., lines and/or bars). A single, irrelevant line has a similar

pulling force for a target set of bars as for a target line, and vice versa for a single set of

irrelevant bars on a target set of bars or a target line. To further examine the extent to which

average position estimates for a target line or set of bars are perceptually pulled by non-target,

graphed data series, we introduce a perceptual mixture model.
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3.4. Mixture Modeling

We propose a simple perceptual mixture model to computationally quantify the strength of

the perceptual pull exerted by other graphed data series onto the target data series. The basic

idea of the model is that a compound stimulus generates independent percepts of both graphed

data series (the target and the ‘non-target’), and the reported target estimate is thought to be

a weighted combination of these two independent percepts. An ideal observer would have a

weight associated with the target data series of 1 and a weight for the non-target data series of

0, indicating no influence of the irrelevant non-target on perception of the target. However, the

perceptual pull phenomenon indicates that the weight associated with the target data series will

be less than 1, due to influence from the non-target data series.

The aim of this section is simply to assess the viability of this idea. As such, we develop the

model based on the ‘top line, bottom bar’ compound stimulus from Experiment 3. For the sake

of illustration, suppose the top line is the target data series. To model the compound stimulus

judgments, we proceed as follows:

(1) Draw a random sample from the empirical distribution of single line estimation errors,

Xtarget .

(2) Draw a random sample from the empirical distribution of single bar estimation errors,

Xnon−target .

(3) Draw a random pair of true line and bar positions in the compound stimulus. Add the

sampled single line and bar estimation errors to these true positions, giving the single

data series percepts in a compound stimulus: x∗target and x∗non−target .

(4) For a given weight associated with the target, compute the target line estimate in the

compound stimulus: y∗target = wtargetx∗target +(1−wtarget)x∗non−target .
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(5) Repeat steps 1-4, M times (M = 10,000 below). The resulting distribution may be

regarded as a synthetic distribution of compound target estimates, Y ∗.

(6) Fit the resulting distribution of compound target estimates with a kernel density. This

is a kernel density approximation of the likelihood Hartig et al. (2011).

(7) For each observed target estimate, yi,obs for i = 1, . . . ,N, in the compound condition,

compute the approximate likelihood by plugging it into the kernel density (using linear

interpolation).

(8) Across all observations, compute the overall log-likelihood as L =∑
N
i=1 ln p(yi,obs|θ),

where θ is the vector of model parameters (i.e. the weight associated with the target

data series).

(9) Find the best-fitting weight parameter(s) through maximum likelihood estimation.2

In modeling the data, we made a number of other necessary assumptions. First, we must

assume that the only graphical elements influencing position estimations are the lines and bars

on the display, and do not include other potentially biasing elements, such as the display frame.

Second, all participants are assumed to behave in the same way. We have limited data for

individual participants, so estimating model parameters at the level of the individual would

involve sampling from a limited set of single data series estimates, which is likely to bias the

approximate likelihood. Third, position estimation errors are assumed to be independent of

the true positions of the graphed data series. That is, we sample from the single data series

distributions pooled over the three different target means. As a result, any effects of the true

position of the data series in a compound stimulus are not captured by the model. However, our

data indicate that any such effects were very small (ηpartial=.006; see section 6.2). Fourth, we

2Note that the likelihood is stochastic, because it is based on weighted combinations of many random samples.
We will deal with this issue below.
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assume that the weight associated with the target data series can depend on whether the target is

the line (and the non-target is the bar) or whether the target is the bar (and the non-target is the

line) (i.e., wtarget=line 6= wtarget=bar). Since we previously observed asymmetrical behaviors in

average line and bar position estimations (underestimating lines and overestimating bars), this

final assumption allows for asymmetric effects of non-target bars on target lines and vice versa.

These assumptions mean that a given compound stimulus configuration (e.g., top line and

bottom bars) is modeled with just two free parameters: the relevant target weight, which is

allowed to depend on which data series is the target3. We make no assumptions about the nature

of the single data series error distributions. The only assumption we make about the compound

error distribution is that it is a weighted combination of the distributions of single data series

errors. Overall underestimation or overestimation of the graphed data series is accounted for

by the single data series error distributions, and the model captures how these overall shifts are

‘pulled’ by competing, irrelevant data series.

For the test case here (top line and bottom bars), there were 1552 target estimates in a com-

pound stimulus (773 line estimates; 779 bar estimates). Best fitting weight parameters were

found using the standard ‘optim’ function in R (R Core Team, 2014). Comparison with an op-

timal observer was performed by comparing the model fit with a 0-parameter model in which

the weight associated with the target data series was set to 1 and the weight associated with

non-target data to 0. For this optimal model, the distribution of compound target estimates is

simply equivalent to the corresponding distribution of single target estimates. Model compar-

ison was performed using the Akaike Information Criterion. To accommodate stochasticity in

the likelihood function, we performed the optimization 50 times with random starting points

3It could be argued that the bandwidth of the kernel density is also a model parameter, but we simply adopted
the default rule of thumb for a Gaussian kernel density (Silverman, 2018).
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for the weight parameter over the interval [0.9,1]. We report the average AIC difference with

the optimal model (mixture model AIC - optimal model; negative values indicate a better fit of

the mixture model). Any variation in the log-likelihood for the mixture model stems from two

sources: the best-fitting parameters may depend slightly on the randomly chosen starting val-

ues. However, even with the same (best-fitting) parameters, the model would return a slightly

different likelihood due to the random sampling from the single data series error distributions.

For the baseline model, only this second source of variation was considered.

Figure 3.8. The mixture model of perceptual pull is suggested to be a good fit.
In 50 iterations of optimization, only 4% had positive AICs.

For the 50 model fits conducted in this way, the average AIC difference was −104 (95%

highest density interval=[−145,−22]). Only 2 out of 50 model fits had positive AICs, as shown

in Figure 3.8. The mean weight for the line target was 0.945,CI = [0.901,0.990], and the mean

weight for the bar target was 0.971,CI = [0.933,0.989]. These weights are clearly close to 1, but
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Figure 3.9. Comparison of mean model fit and 95% confidence intervals of
model predictions (represented by purple lines).

the 95% highest density intervals do not include 1. We would expect the weights to be close to

1, because the perceptual pull effects are relatively subtle but reliable. This suggests that when

participants viewed compound line-bar displays, they made average line position estimates by

attributing 94.5% weight to the actual line position and the remaining 5.5% to the bars below the

lines, on average. Participants made average bar position estimates by attributing 97.1% weight

to the actual bar positions and the remaining 2.9% to the lines above, on average. Figure 3.9

illustrates the model fit compared to the observed data.

This model isolates the unique contribution of perceptual pull from the irrelevant depiction

of the second data series. When there were two data series present on the graph, participants

were not able to completely filter out the irrelevant data series. As a result, their target position

estimate reflected a weighted combination of the target and non-target positions, reflecting an

effect of perceptual pull.
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3.5. Discussion

In three experiments, we empirically test estimation accuracy of average line and bar posi-

tions in simple or complex visualizations. Experiment 1 investigates whether systematic biases

exist in position estimates for simple graphs, where a single line or a single set of bars is the

only present, graphed data series. Experiment 2 and 3 investigate potential positional biases

found in complex graphs. Specifically, Experiment 2 explores how average position perception

of a graphed data series can be distorted in the presence of an identical type of data series (e.g.,

single line presented with another line on the display, or a single set of bars presented with an-

other set of bars). Experiment 3 combines graphed data series (e.g., lines and bars on the same

display) to examine how the average perception of one type of data series can be distorted by a

different type of data series. Figure 3.2 illustrates this design space.

Much of the previous literature investigating perceptual biases has focused on biases within

visualizations in a higher-level, cognitive context — how do elements (e.g., priming, titles,

axes, etc) influence perception of relevant data? In the current study, we are interested in po-

tential biases found in lower-level perception of data — can people accurately perceive purely

graphical information? Specifically, we focus on possible biases within average position es-

timations to better understand perception of distributed visual information in both simple and

complex graphs. Position averaging is not only one of the most common and crucial tasks when

interpreting visualized data, but also an area few have studied.
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These findings show that people systematically perceive graphed data series in a biased

manner4, underestimating the average positions of lines and overestimating the average posi-

tions of bars in a graph. We also found that under- and over-estimation of the target line or set of

bars, respectively, can be exaggerated or diminished by the presence of other such graphed data

series. The average position estimates for lines or bars tend to gravitate toward the positions of

the other lines and/or bars present on the same graph. We call this perceptual bias of irrelevant,

graphed data series on relevant, targeted series “perceptual pull”.

4Note that any mention of “underestimation” or “overestimation” is in relation to the 140-pixel display frame,
where values of [0,140] map onto the bottom and top of the frame, respectively. For example, for a set of top
(downward-pointing) bars with an average of 100 pixels, overestimation (100-140 pixels) in this display-based
frame will actually reflect shorter bar lengths. We chose this naming convention to be more closely aligned with
real-world scenarios where downward-pointing bars are observed, such as bars that depict negative values. See
Figure 6.1 for clarification.
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CHAPTER 4

The Curse of Expertise

Imagine a scientist showing experimental results at a conference or colloquium, or a data

analyst updating the company leadership on recent customer feedback with a dashboard. These

people are experts in their respective fields, yet they overwhelm their audiences with overly

complex visualizations, delivered too quickly, oblivious to the fact that others do not see what

they see. We replicated this phenomenon in the lab, providing empirical evidence for a ‘curse of

knowledge’ in data visualization â once an expert recognizes a given pattern in data as visually

salient, the expert assumes that it is also visually salient to naïve observers.

This ‘curse of knowledge’ is a well-studied psychological phenomenon that appears in many

domains. Well-informed decision makers fail to predict the judgments of less-informed decision

makers, implicitly allowing their own knowledge to guide those predictions (Camerer et al.,

1989). People given disambiguating information about ambiguous sentences, like “the daughter

of the man and the woman arrived,” assume that the sentence would no longer be ambiguous

to other naïve listeners (Keysar and Henly, 2002). When people have access to additional

information, e.g. that a message is sarcastic, they tend to perceive ambiguous messages such as

“that restaurant was marvelous, just marvelous” as sarcastic – but they also predict that other

people would read the same tone (Gilovich et al., 1998).

In one particularly powerful demonstration, people were asked to tap the rhythm of a set

of well-known songs, such as “Happy Birthday,” on a desk, and listeners guessed the songs

based on the recorded rhythm of the tappers (Newton, 1990). Tappers estimated that listeners
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would identify around 50% of the songs, but in reality, listeners could only identify around

3%, revealing a vast overconfidence in how much information they communicated. The tappers

‘filled in’ missing information in their own heads, such as the pitches of the ‘notes’, and it

appears impossible to turn off this filling-in process to simulate the experience of others. Taking

a naïve perspective can be literally inconceivable (Roese and Vohs, 2012).

This curse of knowledge has powerful consequences for communication, because people

generally do not convey information to others if they assume that it is already shared (Grice

et al., 1975). Presenters must therefore have an accurate idea of what their audiences know

and do not know, so that they can include only the information the audiences still need (Hart,

1996). Unfortunately, this knowledge is too often not present or not leveraged. Even teachers

misjudge their students’ abilities and understanding, hindering effective instruction (Allbritton

et al., 1996; Keysar and Henly, 2002; Ward et al., 1997).

Existing work in cognitive psychology shows that the curse of knowledge bias can impact

interpersonal communication (Grice et al., 1975). The curse of knowledge can have particularly

strong effects in children, who have more trouble inhibiting their own knowledge. In the ‘Sally-

Ann’ task, children hear a story about Sally, who put her candy in a box before leaving the

room. While she was gone, Ann removed the candy from the box and put it in a basket. Where

will Sally look for the candy when she returns? Unable to inhibit their own knowledge of the

illicit swap, most 4-year old children will assume that Sally will look in the basket (Bernstein

et al., 2004; Pohl and Haracic, 2005). A modified ‘Sally-Ann Task’ targeting adults introduc-

ing several “boxes” and “baskets,” demonstrated that adults also make this error with a more

complex scenario and a subtler measure (Birch and Bloom, 2007).
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The curse of knowledge can also occur within a single person (Leary, 2007), in the form

of ‘hindsight bias’. This bias, studied in business decision making, political strategizing and

marketing, is the irrational belief that an outcome was more predictable after it becomes known

(Roese and Vohs, 2012). People seem unable to recreate the novel and uncertain feelings from

their own mind prior to the revelation of the outcome (Zwick et al., 1995; Cassar and Craig,

2009; Blank et al., 2003).

While the curse of knowledge is well-studied in the psychology of language, decision mak-

ing and reasoning, there is less direct research on potential consequences for communication

with data visualizations. Compared to numerical and textual formats, data visualizations are

effective in highlighting the relationships and patterns in data to facilitate understanding (Card,

1999). But at the same time, understanding complex visualizations can be similar in time and

effort to reading a paragraph (Hegarty, 2005; Khan and Khan, 2011). Critically, just as one can

read many possible sentences from the paragraph, providing multiple perspectives on a topic, a

graph or figure can be seen and interpreted in multiple ways depending on the how they select

and interpret visual information over time (Shah and Freedman, 2011; Michal and Franconeri,

2017). The present experiment demonstrates that different experience with a dataset can cause

people to adopt a particular perspective, which can substantially change their predictions about

what naïve viewers will find salient in a visualization.

Given the primary role visualizations play in the communication of analytic data across

science, education and industry (McKenzie et al., 2016; Knaflic, 2015), focusing on different

patterns in the same dataset harbors the potential for miscommunications between the presenters

and their audiences (Gilovich et al., 1998; Shah and Freedman, 2011; Yarbus, 1967). We suspect

that the inability to separate one’s own knowledge and expertise from that of their audience can
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make visual data communication more difficult and less clear than presenters realize. This

means that among the many features and patterns within a visualization, graph viewers could

selectively focus on some while ignoring others, and in turn predict that naïve viewers would

focus on the same feature and patterns.

Across four experiments, we demonstrate that the ‘curse of knowledge’ indeed extends to

data visualizations. Knowledge, specifically, makes an expert recognize a given pattern in data

as more visually salient, and the expert assumes that it is also visually salient to observers that

they know to be naïve. To my knowledge, this would be provides the first examination of the

curse of expertise in data visualization: whether a viewer’s background knowledge will affect

their predictions about what naïve others will see in a visualization.

4.1. Methods

Participants completed a Qualtrics (Qualtrics, 2013) survey in which they read a story that

conveyed background knowledge about a graph depicting political polling data. They were told

that the experimenters will show the same graph they saw to 100 people, along with only the

following short description – “in the months before the elections of 2014 in a small European

country, a polling organization asked citizens about their voting intentions on a daily basis.”

They were then asked to predict what uninformed viewers (with no knowledge of the story)

would find to be the most visually salient features or patterns in the graph. The participants

then predicted a second most salient feature, up to a fifth most salient feature. We intentionally

did not specify what types of “features or patterns” the participants should predict, and did

not provide them with examples. We defined “saliency” as “the most noticeable and important

feature” for our participants. After writing down each feature they predicted, the participants
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also circled regions on the graph corresponding to each feature on a paper copy of the graph.

They then reported how salient (1 = not at all salient, 5 = very salient) they thought their five

predicted features were to themselves. Finally, they matched their five predictions as best as

possible with five pre-determined features, as shown in Figure 4.1.

This within-subject experiment compares individual participant’s saliency ratings of primed

features (a subset of five critical graph features that were highlighted with a particular story)

vs. unprimed features. We introduced three stories to counterbalance the possible primed or

unprimed features, and randomly assigned participants to read one of those stories. The crit-

ical comparison in this experiment is between the salience ratings that participants assign for

primed features vs. unprimed features. The independent variable is therefore whether a feature

was primed or not, and the dependent variable the salience ratings for those features. We also

measured a second dependent variable of how visually salient each participant rated their pre-

dicted features to themselves, on a continuous scale from one (very salient) to five (not at all

salient).

4.2. Experiment 1a

Eighteen Northwestern University students (10 women) participated in this experiment in

exchange for course credits in an introductory psychology class. All participants were asked to

bring corrective eye wear if needed.

The participants read a story highlighting a competition between two out of four political

parties, illustrating how citizen voting intentions fluctuated with current events. Figure 4.2

shows a sample display of the story highlighting the Labour and Alliance party.
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Labour

Conservatives

United

Alliance

Labour

United

Alliance

[A]	Labour	 lost	ground	to	the	
Conservatives around	April	21

[B]	Labour	 regained	the	strong	lead	
from Conservatives	 around	May	20

[C]	Alliance	dropped	below	United		
around	May	25

[E]	Labour	and	Alliance seem	to	be	
vertical	mirror-images	of	each	other.

[D]	United	swapped	position	
withAlliance,	around	June	17

Please	rank	the	following	statements	(A,	B,	C,	D,	and	E)	to	match	
your	written	ranking	predictions,	as	best	as	you	can.	If	you	didn’t	write	
something	down,	select	N/A.

Figure 4.1. Matching five pre-determined features in Experiment 1.

According to the story, initially, between the two highlighted parties, one had a healthy lead

in the polls. During an initial debate, the leading party lost voters to the less popular party and

eventually lost the lead. In a later debate, the originally leading party was able to take back

the votes the candidate lost and take the lead back again after a bad debate performance by his

opponent. The three versions of the story all describe this same competition over time, but as-

cribing it to the top two parties (Top-Prime Story), the top and third party (Middle-Prime Story)

or the bottom two parties (Bottom-Prime Story), highlighting the corresponding fluctuations.

As shown in Figure 4.3, participants were randomly assigned to read a version of the story and

were shown polling data after reading the story. In each pair of lines, the party with the higher

line cedes votes to the party with the lower line (initial debate), and then the higher line gains

back that ground (later debate).
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Figure 4.2. Snapshot of the story participants read.

When participants predicted what an uninformed graph viewer would see as the most vi-

sually salient feature on the graph, they were shown an unannotated version of the line graph,

depicted in Figure 4.4. They were told that this unannotated graph (with no story), was all

that the uninformed graph viewers would see. Paper copies of this non-highlighted graph were

provided to the participants to mark down their five predictions separately. We attempted to

construct this graph in a way that balanced the relative salience of several critical features. The

bottom two lines were made darker in color to balance the top two lines, which we expected to

be more salient as a baseline (McKenzie et al., 2016). We further added two intersections to the

bottom two lines to counter the top two lines’ natural visual saliency for just being on the top.
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Alliance
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Conservatives

United

Alliance

United

Alliance

United

Alliance
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Story
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Story

Labour

United

Alliance

Conservatives

United

Alliance

initial debate later
debate

Middle-Prime 
Story

A B

E

C D

Figure 4.3. Three stories highlighting different features in Experiment 1.

We worried that the green ‘mirror image’ lines would form a less salient pattern, so we aligned

their major change points to maximize the salience of that pattern. We also conducted several

pilot versions of this experiment where we tracked the most salience features regardless of what

was primed, and adjusted its appearance to equate those salience values (e.g., by making a peak

less sharp, or a color difference stronger).

The participants then matched their own predictions to the five pre-determined features, re-

ferring to their markings on the paper copies of the unannotated graph, shown in Figure 4.4. A
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Figure 4.4. The unannotated graph of the line graph experiment.

subset of the five pre-determined features are highlighted in each of the three stories, as shown

in Figure 4.3. The top-prime version of the story highlighted features A and B on top (describ-

ing the two almost-intersections of the top two lines). The middle-prime version of the story

highlighted features C and D in the bottom right corner (describing the two intersections of the

bottom two lines). The middle-prime version of the story highlighted feature E pointing towards

the center section of the graph (describing the mirroring trend of the two green lines). Partici-

pants’ referred to their freely identified salient feature drawings and matched them with the five

features mentioned above. If the feature they drew did not match any of the five, they indicated

it as “N/A.” The subsequent quantitative data analysis of the saliency predictions and rankings

were done on the rankings of the five pre-determined features. Among the five pre-determined

features, 48% matched with the participants’ freely identified salient feature drawings, and 56%

matched if we only look at the participant’s top three predictions. We discuss potential limi-

tations of this approach at the end of this paper. We include the actual freely identified salient

feature drawings of the predicted top three salient features in the qualitative results section to

provide a fuller picture of the participants’ responses in addition to our quantitative analysis.
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4.2.1. Qualitative Results

Examining what the participants marked down on their physical copies of the unannotated

graph, we find qualitatively observable differences among the three story versions. Figure 4.5

shows what the 18 participants who read different versions of the story (6 for each top, middle

and bottom-prime story) marked on paper as their predictions of the most, 2nd most and 3rd

most salient features to an uninformed viewer.

The top and bottom rows of Figure 4.5 directly compares the story versions and the respec-

tively highlighted features to the overall predictions participants made. We see that depend-

ing on what version of the story participants read, free predictions reflected that they thought

other uninformed viewers would see the features highlighted in their particular story as visually

salient, even though participants were explicitly told to ignore the story when making their pre-

dictions. For example, looking at the bottom row of Figure 4.5, participants who read the top

story identified features highlighting the top two lines to be salient more often than participants

who read the bottom prime story and middle prime story. The participants who read the middle-

prime story identified global and mirroring features to be salient to other viewers (notice how

participants often circled pairs of features spanning a larger area), as opposed to local features

identified by participants who read the top and bottom prime story.

4.2.2. Quantitative Results

Using the data from the feature matching section of the experiment, rankings were assigned to

the five pre-determined features (ABCDE). The results are shown in Figure 4.6. For example,

if a participant matched their most visually salient feature to uninformed viewer prediction to
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Figure 4.5. Summary of Qualitative Results from Experiment 1a. Each column
represents one story version, read by 6 participants who marked their most, 2nd
most and 3rd most salient feature predictions.

feature C (which is a bottom feature), feature C would receive a rank of ‘1’ for this participant.

The rank ‘1’ would be entered in R for statistical calculations.
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We reverse coded the rank in Figure 4.6, renaming it “saliency prediction,” to be more

intuitive (e.g. a feature ranked ‘1’ will have a saliency prediction of ‘5’). For example, if a

participant matched their predicted fourth-most feature to feature B (which is a top feature),

feature B would receive a rank of ‘4’ and reversely coded as ‘2’ on the ‘saliency prediction’

axis in Figure 4.6.

If a participant matched pre-determined features to multiple predictions, then the feature

would receive the ranking of the highest rank. For example, if a participant matched their

predicted second and third salient features to feature A, then feature A would receive a ranking

of two.

If a participant did not think any of the five pre-determined features matched to one of their

predictions, that specific prediction would be matched to “N/A.” The ranking spot of this pre-

diction would be counted as taken. For example, if a participant matched the predicted second

most visually salient feature to feature E, the fourth most visually salient feature to feature D,

and every other prediction they made did not match to any of the five pre-determined features,

feature E would receive a rank of ‘2’ and feature D would receive a rank of ‘4.’ Remaining

unranked features (ABC) would take on a rank of ‘6,’ which translate to “saliency predictions”

of ‘0.’

If participants matched two features to a predicted feature, the two features would receive

the same rank (e.g., if a participant wrote down a feature to be the second most visually salient

feature to an uninformed viewer and matched both feature A and B to it, then both feature A

and B would receive a rank of ‘2.’)

4.2.2.1. Wilcoxon Signed-Ranked Test. We conducted a non-parametric Wilcoxon Signed-

Rank Test comparing the participants’ saliency rankings of primed and not primed features
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(Kerby, 2014). Primed feature rankings are rankings of features highlighted in the story the

participant read. For example, the middle feature (E) rankings ranked by participants who read

the middle-prime version of the story are primed feature rankings. Non-primed feature rankings

are rankings of features not highlighted in the story the participant read. For example, top (AB)

and bottom (CD) feature rankings ranked by participants who read the middle-prime version of

the story are non-primed feature rankings.

The Wilcoxon Signed-Rank test indicates that the overall primed feature rankings, Wilcoxon

mean score = 59.77, rank mean = 2.63, were significantly higher compared to the overall not

primed feature ranks, Wilcoxon mean score = 38.37, rank mean = 0.87, Z = 4.03, p < 0.01.

Primed features were given higher saliency rankings and thus were predicted to be more visually

salient to other uninformed viewers than not primed features.
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Figure 4.6. Ranking details for each story version. The grey oriented lines rep-
resent individual participant ratings. The right column shows saliency ratings of
primed and not primed features (e.g. in Top Prime, top is primed; middle and
bottom are not primed), across the three stories.
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4.2.2.2. Descriptive Statistics. In order to more clearly illustrate the differences in saliency

rankings, we visualized their descriptive statistics. Since there are two pre-determined features

highlighted in the top-prime and bottom-prime stories, and only one pre-determined feature is

highlighted in the middle-prime story, the rankings of the top features (A and B) were averaged

to generate a top feature average ranking. Similarly, the rankings of the bottom features (C and

D) were averaged. The left column of Figure 4.6 shows the participant prediction rankings of

the top features (AB), middle feature (E) and bottom feature (CD) for the three story versions

(no standard deviation is shown because ranking data is nonparametric). The right column of

Figure 4.6 shows saliency ratings of primed and not primed features (e.g. in Top Prime, top is

primed; middle and bottom are not primed), across the three stories.

Overall, most participants rated features that were highlighted in the story (primed), as

more visually salient than other features that were not highlighted in the story (not primed).

This supports the results of our Wilcoxon Signed-Rank Test. Inspecting the grey lines in the

right column of Figure 4.6, we also see that some participants did not rate the primed features

as more visually salient. This might mean that these participants were relatively immune to the

curse of knowledge, though the present design cannot distinguish robust individual differences

from measurement (or other sources of) noise.

4.2.2.3. Salience Prediction Ranking. After participants marked down a feature that they pre-

dicted other uninformed graph viewers would find visually salient, participants also rated how

visually salient that predicted feature was to themselves. We see from Figure 4.6 that not every-

one predicted the story-primed features to be visually salient to others. In the present analysis,

we take a different approach here by looking at whether the participants would find features
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they predicted to be salient to other people also salient to themselves, regardless of whether

they were primed features or not.

In Figure 4.7, ‘Saliency to Self’ is how salient each participant’s predictions were to them-

selves on a continuous scale, where one means not at all visually salient, and five means very

visually salient. Feature Rank is the order of the predictions. For example, 1 corresponds to

the feature the participant predicted to be the most salient and 5 corresponds to the feature the

participant predicted to be the 5th most salient, to a naïve viewer. Each dot represents one rating

from one participant and the three lines are regression lines based on the scattered points.

There was a negative correlation between the Feature Rank and Saliency to Self, showing

that regardless of whether the features were primed or not, participants rated the features pre-

dicted to be the most/least visually salient to a naïve viewer also to be the most/least visually

salient to themselves, suggesting a curse of knowledge where they could not separate their own

perspectives from that of another person. Using Spearman’s Correlation, we found a moder-

ately strong association (rs = 0.55, p < 0.001) between the self-rated salience of a feature, and

the predicted salience rating for other naïve observers.

4.2.3. Discussion

The knowledge the participants obtained by reading the story biased their predictions such that,

in general, they saw the features depicted in the story as more visually salient than features not

depicted in the story. More importantly, after acquiring this background knowledge, participants

were biased to predict that other uninformed graph viewers would rate those features as more

visually salient as well.
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Figure 4.7. Regression of predicted saliency and saliency to self in Experiment 1a.

Both qualitative and quantitative statistical analyses for this experiment were done post-

hoc. To ensure the validity of our findings, we conducted two follow up experiments with slight

modifications with a new set of participants, and analyzed the data following similar procedures

and an identical data analysis.
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4.3. Experiment 1b

In Experiment 1a, participants were told the story and then shown a graph visually high-

lighting the story content before they made their predictions. Experiment 1b hoped to tease

apart the priming effect of the visual annotations and that of the story by only including the

story and removing the graph visual highlighting the story. The procedures and data analyses

of Experiment 1b were identical to that of Experiment 1a, except we removed the feature cue

after viewing the story (see Figure 4.8). The participants read the story and were presented the

same unannotated line graph to draw and predict what other uninformed viewers would see. I

hypothesize that even without the visual cue the participants would be just as biased in predict-

ing what other uninformed viewers would see, thinking they would see the same features as

visually salient.

Twenty-nine Northwestern University students (23 women) participated in this experiment

in exchange for course credits in an introductory psychology class or monetary payment. All

participants were asked to bring corrective eyewear if needed.

Participants again referred to their freely identified salient feature drawings and matched

them with the five features mentioned above. Among the five pre-determined features, 66%

matched with participants’ freely identified salient feature drawings, and 78% matched if we

only look at the top three predictions.

4.3.1. Quantitative Results

The Wilcoxon Signed-Rank Test Kerby (2014) indicates that the overall primed feature ranks,

Wilcoxon mean score = 83.15, rank mean = 2.48, were significantly higher compared to the

overall not primed feature ranks, Wilcoxon mean score = 67.98, rank mean = 1.79, Z = 2.13,
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But	on	June	17th,	you	can	see	the	United	Party	Candidate	attempt	to	bring	up	the	issue	again	
resulted	in	a	loss	of	voters,	bringing	the	Alliance	Party	in	the	lead	again.		
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But	on	June	17th,	you	can	see	the	United	Party	Candidate	attempt	to	bring	up	the	issue	again	
resulted	in	a	loss	of	voters,	bringing	the	Alliance	Party	in	the	lead	again.		
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Figure 4.8. Comparison between Experiment 1a and 1b annotations.

p = 0.035. Primed features were given higher saliency rankings and were predicted to be more

visually salient to other viewers than not primed features, even without visual annotations.

Inspecting the grey lines in the right column of Figure 4.9, we again see that some partic-

ipants did not rate the primed features as more visually salient. This might mean that these

participants were relatively immune to the curse of knowledge. Compared to Experiment 1a,
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we see that by taking away the visual annotations, the curse of knowledge effect weakened and

the number of people might be immune to the curse of knowledge increased.

We also observed an interesting change in the middle prime saliency prediction from Exper-

iment 1a to 1b, such that the participants in 1a who were primed with the middle feature rated

it slightly more visually salient than participants in 1b. The middle feature â- the mirroring

pattern of the two green lines, are more spatially separated than the top and bottom features.

Since the participants in 1b only received a story prime without the visual annotation, the more

spatially separated middle feature may have become harder for them to see compared to the

participants in 1a who were shown clear visual annotations of this spatially separated middle

feature. We speculate that while background story and visual annotation both contribute to the

curse of knowledge, as shown in Experiment 1a and 1b, for spatially separated features, the

visual annotation may play a more influential role in creating a curse of knowledge effect.

4.3.1.1. Salience Prediction Ranking. We found a significant relation (rs = 0.31, p < 0.01)

using Spearman’s Correlation between the predicted salience ranking of features for other naïve

observers and the self-rated salience of these features, see Figure 4.10. This indicates that

even without the visual annotation cue, the more visually salient a feature participants rated to

themselves, the more visually salient they think the features were to a naïve viewer.

4.3.2. Discussion

We observed a statistically weaker curse of knowledge effect without the visual annotations in

the present experiment. However, most participants nonetheless reported features primed by

the story to be more visually salient than features not primed by the story, even without visual

annotations. This suggests that only having the background knowledge, without any visual
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Figure 4.9. Saliency prediction ranking for Experiment 1b.

annotation cues, is still enough to bias people to predict that other naïve graph viewers would

see features primed by the story as more visually salient.
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Figure 4.10. Regression of predicted saliency and saliency to self 1b.

4.4. Experiment 1c

We conducted a third follow up experiment on a new set of participants and analyzed the

data following the same procedures and data analysis method. Since Experiment 1a and 1b did

not specify in the instructions what types of features the participants should be predicting or

drawing, we designed Experiment 1c with more specific instructions to maximize the amount
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of matching between freely identified salient features and the five pre-determined features. This

experiment 1c also serves as a conceptual replication of Experiment 1a and 1b.

Previously, participants predicted features with no specific restrictions or requirements,

leading some to pick out features irrelevant to the study (e.g., one participant circled the en-

tire graph as being visually salient, another circled the y-axis, see Figure 4.5). To decrease such

uninterpretable responses in the feature free-identification stage, participants were instructed to

only describe features that involved two or more parties.

Twenty-one Northwestern University students (10 women) participated in this experiment

in exchange for course credits in an introductory psychology class. All participants were asked

to bring corrective eyewear if needed.

Among the five pre-determined features, 64% matched with participants’ freely identified

salient feature drawings, which is a 16% increase from Experiment 1a. When we look at the

top three predictions, 83% matched in Experiment 1c, which is a 27% increase compared to

Experiment 1a and a 5% increase compared to Experiment 1b.

4.4.1. Quantitative Results

The Wilcoxon Signed-Rank test indicated that the overall primed feature ranks, Wilcoxon mean

score = 65.93, rank mean = 3.26, were statistically significantly higher than the overall not

primed feature ranks, Wilcoxon mean score = 46.54, rank mean = 1.80, Z = 3.17, p < 0.01.

The descriptive statistics are shown in Figure 4.11. This result is consistent with the Experiment

1a and 1b such that the primed features were given higher saliency rankings and were predicted

to be more visually salient to other naïve viewers than unprimed features.
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Figure 4.11. Saliency prediction ranking for Experiment 1c.

Spearman’s Correlation again showed a moderately strong relationship (rs = 0.43, p <

0.001) between the self-rated salience of a feature, and the predicted salience rating for other

uninformed graph viewers, shown in Figure 4.12.
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Figure 4.12. Regression of predicted saliency and saliency to self 1c.

4.4.2. Discussion

Both Experiment 1a, where we primed participants with both a story and visual annotations,

and Experiment 1b, where we took away the visual annotations, show a curse of knowledge

effect where people predict features they themselves see as visually salient to also be salient to

naïve viewers. This effect decreased by half in Experiment 1b when we took away the visual
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annotations, suggesting that both background story and visual annotations contributed to this

effect, as shown in Figure 4.13.

Comparing Experiment 1a and 1c (where we gave the participants more specific instructions

on what types of features and patterns to identify), we observed a higher number of matches

between the freely identified features and the pre-determined features. We also see that overall

feature saliency for primed and not primed features increased from Experiment 1a to 1c. This

instruction phrasing seems to have strengthened the curse of knowledge effect. There was also

a decrease in effect size from Experiment 1a to 1c, though not statistically robust. But it is

also possible that, by asking participants to predict features that include two or more parties

in Experiment 1c, participants were able to match more of their own predictions to the pre-

determined features (which involves two parties). This may have increased the likelihood of

unprimed features to be included in the participants’ predictions, which in turn increased the

saliency rating of not primed features and decreased the differences between primed and not

primed feature saliency ratings, resulting in a smaller effect size for Experiment 1c.

A comparison of the “Everyone” row across Figure 4.6, 4.9 and 4.11 shows that people

gave similar saliency ratings to top and bottom features overall, but slightly lower ratings for

the middle features. We speculate this to be due to the middle feature â the mirroring of the two

green lines being more spatially separated than the top and bottom features, which makes the

middle feature a more difficult feature to see without annotation. Participants still rated this less

salient middle feature as the most visually salient to both themselves and other people when

they read a story highlighting this feature, supporting the hypothesis that participants predict

features they see as more visually salient also visually salient to an uninformed viewer, and that
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they rated the feature predicted to be the most/least visually salient to an uninformed viewer to

also be the most/least visually salient to themselves.

# % 
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Saliency 
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Sample 
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and Not Primed

1a	 48% 56% 4.03 0.95 0.55 18 2.75 0.81 1.94

1b 66% 78% 2.13 0.40 0.31 29 2.48 1.79 0.69

1c 64% 83% 3.17 0.69 0.43 21 3.29 1.62 1.67

Figure 4.13. Comparison across all three Line Graph Experiments.

4.5. Experiment 2

To evaluate the generalizability of this specific curse of knowledge effect, we replicated our

findings using a novel type of graph, and a new story.

Seventeen Northwestern University students (9 women) participated in this experiment in

exchange for course credits in an introductory psychology class. All participants were asked to

bring corrective eyewear if needed.

This bar graph experiment followed the same within-subject design and experimental pro-

cedures as the line graph experiments. Participants were randomly assigned to read one of three

different backstories describing events leading to a presidential election between the Liberal

and the Conservative parties.

After reading the story, they were shown public polling data highlighting a key aspect of

public opinion that eventually led to the victory of the winning candidate. They were asked to

freely identify top five features they predict to be visually salient to a naïve graph viewer on

an unannotated graph (Figure 4.14), rank the saliency of these predicted features to themselves,
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and match the freely identified predictions to five pre-determined features, as shown in Figure

4.15.

Undecided

Liberal

Conservative

Education

Defense

Immigration

Crime

Figure 4.14. Unannotated bar graph in bar graph experiment.

Figure 4.14 shows an unannotated version of the bar graph the participants freely drew

their predictions on. The stacked bar represents how people with different political stances

(e.g., Liberal vs Conservative) view the topics listed, such as education. The length of the bars

represents the number of voters.

We pre-determined five features on this graph, as shown in Figure 4.15. The graph and

the features are balanced such that from the top to bottom, the four issues the public polls

demonstrate correspond to education, defense, immigration, and crime issues. In the top two

bars, the areas of purple and orange bars are the same. Between the bottom two bars, the area

of the orange bar on the immigration issues equals the area of the purple bar on the crime issue.

Similarly, the area of the purple bar on the immigration equals the area of the orange bar on the
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crime issue. Additionally, the area of the two undecided bars are equal. Overall, the total area

of purple bars equals the total area of the orange bars.

Critically, they were told that this unannotated graph (Figure 4.14) was all that the unin-

formed graph viewers had access to, and that there was no background story provided for the

uninformed graph viewers. Also, paper copies of this unannotated graph were provided to the

participants to mark down their predictions, prior to matching their predicted features to the five

pre-determined features, as shown in Figure 4.15.

A.	Voters	felt	particularly	Liberal on	
the	issue	of	Crime

Undecided

Liberal

Conservative

B.	Voters	felt	particularly	
Conservative on	the	issue	
of	Immigration

C.	Voters	felt	particularly	Undecided on	
the	issue	of	Education

D.	Voters	felt	similarly	Undecided for	
Defense,	Immigration,	and	Crime

E.	Voters	felt	most	balanced	
between	Liberal and	Conservative
for	Defense

Please	rank	the	following	statements	(A,	B,	C,	D,	and	E)	to	match	
your	written	ranking	predictions,	as	best	as	you	can.	If	you	didn’t	write	
something	down,	select	N/A.

Figure 4.15. Matching five pre-determined features.

4.5.0.1. Story. There are three versions of the story in this experiment: crime, immigration

and education, Figure 4.16 shows a snapshot of the stories. The crime story was a story about

police brutality toward specific minority groups. The Conservative Party leader supported the
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police, brazenly stating that people in the minority group deserved such punishment, which was

an unpopular position to take. Meanwhile, the Liberal Party advocated for reform in police de-

partments and better treatment of suspected criminals. Participants saw graphs that highlighted

the majority’s Liberal public opinion of crime, explaining it as the reason behind the Liberal

Party’s victory, as shown in left most column in Figure 4.17.

The immigration story described a terrorist attack on the country’s bus system two weeks

before the election. The Conservative candidate had predicted in the past that immigrants posed

a threat to the country’s citizens. There was no information whether terrorists were immigrants,

but the public was too frightened to care. While the Liberal candidate had laughed at his op-

ponent for being too overly paranoid, the frightened public supported the Conservative view on

immigration, leading to the victory of the Conservative candidate at the election. The graph

the participants saw corresponded to the story highlighting the majority’s Conservative public

opinion on immigration, explaining it as the reason behind the Conservative Party’s victory,

shown in the right-most column in Figure 4.17.

The education story described a debate between the Liberal and Conservative Parties on

the country’s education system. They were told that the country had not been performing well

compared to other EU countries academically. Neither candidate could come up with a clear

vision on how to solve this, and the public was shocked at their incompetence. This opened

an opportunity for a third candidate, who was an expert on education (as well as being female,

a salient characteristic), in the election. The graph corresponded to the story by highlighting

the fact that most people in the country had been undecided (neither Liberal nor Conservatives)

on the issue of education, opening the opportunity for the third candidate, shown in the middle

column in Figure 4.17.
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Figure 4.16. Snap-shot of bar graph experiment story.

4.5.0.2. Matching Features. The participants referred to their paper copies of the unannotated

graph and matched their own predictions to five pre-determined features, shown Figure 4.15.

Feature A corresponds to the feature reflected in the crime story, highlighting the purple

section in the bottom bar representing public opinion on crime issues. Feature B corresponds

to the feature reflected in the immigration story, highlighting the orange section in the second

to bottom bar representing public opinion on immigration issues. Feature C corresponds to the

feature reflected in the education story, highlighting the green section in the top bar on public
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opinion on education issues. These remaining features (DE) were not directly reflected in any

stories, serving as “fillers”. Feature D highlighted how the public was equally undecided on

the issue of defense, immigration, and crime. Feature E highlighted how the defense issue had

equal Conservative and Liberal support.

Among the five pre-determined features, 82% matched with participants’ freely identified

salient feature drawings, and 94% matched if we only look at the top two predictions.

Figure 4.17. Highlighted feature for three story versions.

4.6. Qualitative Results

Examining what the participants marked down on their physical copies of the unannotated

graph, we find observable differences in the order of feature predictions for the three story

versions.

In Figure 4.18, each column represents the responses of participants who read that version

of the story. The top row shows the highlighted feature in that story version. Underneath, the

first and second rows show the most and second most visually salient predicted features. There

are participants who indicated multiple features to be salient for each of the five predictions,
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therefore the numbers on the graph represent the number of times the highlighted feature was

chosen to be visually salient to a naïve viewer. Because the predictions can be overlapped visu-

ally across all participants, the darker the shading of a highlighted feature, the more frequently

it was chosen to be visually salient to a naïve viewer.

Overall, the participants generally indicated features primed by the story version they read

as what others would see as visually salient. Figure 4.18 compares the story versions and their

respectively highlighted features to the overall predictions participants made, supporting our

hypothesis.

4.6.1. Quantitative Results

We analyzed our data using the same method and criteria as the line graph experiments 1a,

1b and 1c. Comparing the feature highlighted in the story (primed feature) with the average

rankings of all the features not explicitly highlighted in the story (unprimed features) as shown

in Figure 4.19, across all three stories, descriptive statistics show that participants predicted

primed features to be more visually salient than not primed features to naïve viewers. For

example, for participants who read the crime story, feature A (the crime feature) was ranked to

be more visually salient to naïve viewers than not primed features BCDE.

The non-parametric Wilcoxon Signed-Rank Test indicated that the overall primed feature

ranks, Wilcoxon score mean = 34.74, rank mean = 4.29, were statistically significantly higher

than the overall not primed feature ranks, Wilcoxon score man = 21.63, rank mean = 3.38,

Z = 3.09, p < 0.01. This result adds to the line experiments 1a, 1b and 1c, supporting that

the features depicted in the story were given higher priority rankings and predicted to be more

visually salient to naïve viewers than features not depicted by the story.
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Figure 4.18. Qualitative result of bar graph experiment. Heat map shows partic-
ipants indicated the primed features to be more visually salient to naïve viewers
than other features.

We also found strong, significant correlation between predicted features’ saliency ranking

and self-rated saliency of these features using Spearman’s Correlation, rs = 0.65, p < 0.001,

indicating that participants predicted features which were visually salient to themselves to also

be salient to naïve viewers, consistent with previous experiments, see Figure 4.20.
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primed in bar graph experiment. The grey lines represent individual participant
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4.6.2. Discussion

The significant differences between saliency rankings of the primed and not primed features

reveals the curse of knowledge bias in viewing bar graphs. This result is consistent with the line

graph experiments, showing that this curse of knowledge can be generalized to bar graphs with

different data sets and visual features.
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Figure 4.20. Regression of predicted saliency and saliency to self.
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4.7. Conclusion

Across four experiments and two types of graphs, it is clear that participants are susceptible

to a ‘curse of knowledge’ when asked to simulate what others would see in a visualization.

When a participant was told one of three possible background stories, each of which made a

particular pattern within a graph visually salient to them, that participant assumed that naïve

viewers would also see the same pattern as visually salient. This effect occurred despite explicit

instructions to ignore what they knew, and to take a naïve perspective. To our knowledge, this

is the first empirical demonstration of the curse of knowledge in the realm of data visualization,

and even in the broader realm of visual perception.

This result joins other recent explorations of the influence of perceptual and cognitive biases

on interpretations of patterns in data visualizations, many of which cannot be easily mitigated

(Bateman et al., 2010; Borgo et al., 2012; Dimara et al., 2017; Herman et al., 2000; Michal and

Franconeri, 2017; Moere et al., 2012; Pandey et al., 2014; Segel and Heer, 2010). Some of this

research has begun to explore visual designs and interactive decision-making environments that

mitigate these biases (Dimara et al., 2019).

This experiment simulates the real-world context of focusing on a particular pattern out of

multiple possibilities. But if the visualization contained a single dominantly salient pattern (e.g.,

a downward trend among upward trends), the dominance of that pattern could hide any effect of

the curse of knowledge. We attempted to balance the salience of the alternative patterns and the

data suggests that these patterns were roughly balanced, according to the ‘Everyone’ section of

Figure 4.6, 4.9, and 4.11, which collapse over the instructional primes (though there is a trend in

Experiment 1a for ‘bottom’ to be more salient). Similarly, we used a set of stories, party names,

and pictures, that we hoped would maintain a balance across the experiments. For example,
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we picked a salient female candidate, and a top position in the visualization, to balance out

the presumed lower salience of the green ‘Education’ bar, which was in the horizontal-center

of the graph. Such balancing is critical for finding any experimental effect of a single factor

among multiple other factors that potentially compete. However, we have not tested the baseline

saliency of the graph in the absence of story primes. Future research could test the robustness

of this bias with less balanced visualizations, or more complex visualizations, to more closely

emulate real world situations and further explore how stronger baseline salience differences

might prevent the curse of knowledge bias.

We recognize that there are many kinds of visual data communication across many types

of conversation partners. Communication could be between the creator of the visualization and

an audience listening to the creator’s story, or between people who did not create a visualiza-

tion, but are sharing their interpretations with each other. This experiment focused on the later

situation where the experts did not create the visualizations themselves. Future research could

investigate if the curse of knowledge persists if the communication is between the visualization

designer and a naïve audience, perhaps even in more realistic situations instead of lab simula-

tions. We predict the curse to be stronger in these conditions as visualization creators would

have richer expertise and deeper understanding of the data pattern and trends, making it even

more difficult for them to separate their knowledge with that of their audience.

While most participants predicted primed features to be more visually salient to uninformed

others, some participants did not. Why are some people immune to the curse of knowledge, at

least for this case study? Are some people simply better at simulating the thoughts of others, or

do they use different strategies? The curse of knowledge can manifest not just from differences

in perceived salience, as tested here, but by memorability, context, or impact of the data. Future
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research could investigate other consequences of the curse and evaluate different methods to

discover the manifestation of the curse of knowledge. While these question veers more closely

toward the psychology literature (see (Epley and Waytz, 2010; Zhou et al., 2017) on discussions

of strategy differences in inferring and simulating the perspectives of others), understanding the

underlying difference could lead to prescriptions for mitigating the bias.
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CHAPTER 5

The Illusion of Causality

Visualization designs affect decisions. Imagine coming across a piece of BBC news, as

shown in Figure 5.1, showing that the number of crimes in London rises with temperature.

It can be easy for viewers to conclude that warmer temperature causes violent crimes (News,

2018; Matute et al., 2015; Kahneman, 2011).

Concluding causality from the visualized data alone is misguided. We can only establish a

correlation - the tendency of two variables changing together - between temperature and crime

rate because it is possible that other factors not shown on the graph caused the difference in

the number of violent crimes. For example, when the temperature gets warmer, more people go

outside, more crimes may happen overall, and thus more violent crimes. If the amount of people

outside is kept constant, decreasing temperature would not likely lower crime rates. While the

variables illustrated are linked, they are not necessarily causally linked. Yet, people routinely

see causal relationships in data.

Confusing correlation with causation is a ubiquitous decision-making error. Just because

two factors are correlated (i.e., they tend to co-occur together), it does not mean that one is

causing the other. A large portion of work in economics, education, epidemiology, psychology

and public health involves analyzing correlations in observed data, which cannot definitively

establish causation (Robins et al., 2000). Researchers and journalists can sometimes exaggerate

causal implications from these results, making it even more difficult for people to decide what
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kind of conclusions are sound (Shiffrin, 2016; Sumner et al., 2014). This can pave way for mis-

understanding of correlation and causation (Halpern, 1998; Shaklee and Elek, 1988; Koslowski,

1996), potentially having detrimental impact. When researchers or journalists misinterpret or

misrepresent correlation for causation, for example, the general public may be misled into think-

ing correlated factors, such as time of getting vaccinated and time of autism diagnosis, or na-

tional debt and GDP growth, are also causally related (Dixon and Clarke, 2013; Reinhart and

Rogoff, 2010).

It is difficult to distinguish causation from correlation (Rothman, 2012). Even for people

who learned ‘correlation is not causation’ with classroom examples, it could still be challenging

to apply their learning to new contexts (Shtulman and Valcarcel, 2012; Rhodes et al., 2014). Be-

cause establishing causal inference is complex, even trained scientists can sometimes struggle

with correlation and causation (Halpern, 1998). We are interested in whether a simple change

in the visualization design can reduce unwarranted conclusions of causality.

Although many have looked at the effect of visualization designs on perceptual analytic

tasks such as determining anomalies or estimating data trends (Saket et al., 2018; Correll and

Gleicher, 2014; Croxton and Stryker, 1927; Eells, 1926; Harrison et al., 2014; Spence and

Lewandowsky, 1991; Cleveland and McGill, 1984b; Kay et al., 2016), researchers have only

begun to explore the effect of visualization design on cognitive reasoning tasks, such as un-

derstanding uncertainty (Hullman et al., 2018; Kale et al., 2019), persuading attitude or belief

change (Kim et al., 2019; Pandey et al., 2014) or eliciting empathy (Boy et al., 2017). Previous

work has demonstrated visualization designs could influence data interpretation. For exam-

ple, many people conclude “on average, Dutch are taller than Americans” from a bar graph

visualizing the height of Americans and Dutch, but when the same information is visualized
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Figure 5.1. Recreation of BBC news article figure, "Heatwave: Is there more
crime in hot weather?"(News, 2018)

with a line graph, people are more likely to conclude “people get taller as they become more

Dutch.”(Zacks and Tversky, 1999). We suspect visualization designs can also afford different

cognitive reasoning routines in data, triggering perceived causal links more or less strongly in

data.

What types of visual formats are commonly used to present correlated data? Bar graphs,

line graphs and scatter plots are common ways to depict correlated data in media (News, 2018;

Guo, 2016), alongside text, as shown in Figure 5.1 and Figure 5.2. We investigate how bar

graphs, line graphs, scatter plots and text influence causal reasoning of data.

Research on perceptions of causality indicates that they can be context-dependent, in addi-

tion to being visualization design-dependent. When the evidence presented aligns with people’s
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Figure 5.2. Recreation of NPR article "Money Buys Happiness," showing a cor-
relation between GDP and life satisfaction (Radio, 2011) and of the Washington
Post news article “Researchers have debunked one of our most basic assump-
tions about how the world works” showing a correlation between income and
SAT scores(Guo, 2016).

prior experience, emotional response or beliefs, they become more likely to judge the evidence

as sound Shah et al. (2017). People often perceive high causality when they judge the evidence

as sound and stop thinking through other possible explanations Kahneman (2011). Prior work

suggests that persuasiveness of visualized data depends on both context (does the topic align

with the viewers’ prior beliefs?) and visualization designs (tabular design or bar graphs) Kim

et al. (2017, 2019); Pandey et al. (2014). Thus we also examine the effect of context by testing

a set of paired variables that vary in the plausibility of their causal link, which we establish in a

pilot experiment.

The task people perform when viewing the visualizations may also influence the conclu-

sions they draw. Our experiments consider two common tasks people perform when interacting
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with data. The first is a judgment task in which they decide whether they agree or disagree with

the presented information. For example, media often present people with visualizations along-

side text describing a correlational or a causal relation between depicted variables Bromme and

Goldman (2014). In this scenario, information consumers have to decide how much they agree

with the description based on the visualized data. Judgment tasks can be evaluated by com-

paring participant ratings of how much they agree with statement describing a correlation or

a causation. The second is a generative task where people have to independently interpret a

visualization to draw their own conclusions. One example is when a data analyst working to

make sense of their data hoping to deliver a research report on the newest scientific findings.

In this scenario, the data analyst has to actively interpret some visualizations and generate a

conclusion. Generative tasks may shed more insights on how participants interpreted data and

arrived at possible correlational/causal conclusions, but because they are open-ended, they tend

to be more difficult to formally evaluate. In our pilot experiment, we asked participants to gen-

erate interpretations of data, then used their interpretations to develop a taxonomy to facilitate

analysis of generative tasks in Experiment 1.

5.1. Pilot Experiment

Taking inspiration from the anecdotes of a set of local instructors of research methods and

data analytics, we generated 19 potential variable pairs, from those with plausible causal rela-

tions to those with implausible causal relations. We conducted a pilot experiment to test the

perceived correlation and causation of these variable pairs, and identified pairs within a range

from low to high perceived correlation and causation for use in Experiment 1.
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Specifically, we surveyed 21 participants for their perceived plausibility of correlational

and causal relations of the 19 variable pairs through Qualtrics on Amazon’s Mechanical Turk

(MTurk) (Qualtrics, 2013). Participants viewed the 19 correlation and causation statement sets

in random orders. For each pair, they first interpreted its message and justified their reasoning

in a text box. This is the generative task. Then, on a separate page, they read a correlation

statement and a causation statement, as shown in Table 5.1. The correlation statement accu-

rately describes the relation between the depicted data variables, while the causation statement

attributes causal relations to the depicted data variables. They gave a plausibility rating for each

(0 = extremely implausible, 100 = extremely plausible). This task reflects the judgment tasks

people would perform in real life.

The participants rated their perceived plausibility of both the correlation and causation state-

ments. Table 5.1 shows the four contexts we picked with varying plausibility. These four context

differed significantly in their perceived correlation and causation ratings, based on an analysis

of variances, as shown in Figure 5.3. We visualized information using these four contexts in

Experiment 1 to investigate the effect of visualization design on perceived causality.

5.1.1. Qualitative Coding: Interpretation Taxonomy

To provide a structured way of interpreting participants’ statements in our experiments, we an-

alyzed the freeform written response from the generative task in the pilot, in which participants

drew conclusions from the information and justified their correlation and causation ratings, to

create a taxonomy to characterize these conclusions in the experiment. We identified six di-

mensions that could help us characterize and evaluate the conclusions participants generated –

whether the participant concluded correlation, concluded causation, mentioned third variables,
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Figure 5.3. Pilot results. Grey numbers indicate the index of the 19 statements,
details see supplementary. The line positions represent mean correlation and
causation plausibility ratings. Red lines are the correlation and causation plausi-
bility ratings for the selected contexts, intended to cover a range of plausibility.

grouped variables together, made direct observations or explicitly stated the data to be incon-

clusive. Each response is coded independently on these six dimensions, which means the same

response could fit into multiple categories.
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Distinguishing Correlation from Causation: Referencing past work outlining a taxonomy

of causal arguments Oestermeier and Hesse (2000), we looked for causal inference patterns in

the verbal responses in the generative task, to distinguish a causal interpretation from a cor-

relational one. Specifically, words such as "causes", "leads to" and "results in" depending on

the context, suggests causal interpretations, while phrases such as "as X increases, Y tend to

increase" were classified as correlational interpretations.

Mentioning Third Variables: If participants discussed variables not depicted in the visual-

ization as influencing the relations between the two depicted variables, we additionally labelled

the response as "considered third variables."

Grouping Variables: Participants could also group the levels of a variable together when

justifying their reasoning. For example, one could say "when X is high, Y is high, but when

X is low, Y is low," which arbitrarily divides the x–variable into two dimensions. Grouping

of variables may be associated with misattributed causal relations. Thus we examine variable-

grouping as part of our taxonomy.

Direct Observations: We also anticipated that not all participants would provide high-level

reasoning. Some could make direct observations, stating the values depicted in a visualization

verbatim. "When X is 2, Y is 3" and "there is a vertical line starting at 15000" are both instances

of direct observations.

Inconclusive Responses: Participants could also deem the amount of data present incon-

clusive without drawing any correlational or causal conclusions.
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Table 5.1. Correlation and causation plausibility ratings for the four selected
statement sets from the pilot experiment.

Variables Statement Type Plausibility Rating
spending and fitness People who spend more on admission to sporting events

tend to be more physically fit.
correlation 65.91

If people were to spend more on admission to sporting
events, they would be more fit.

causation 52.52

smoking and cancer People who smoke more have a higher risk of getting
lung cancer.

correlation 88.14

If people smoke more, they would have higher risk of
getting lung cancer.

causation 91.19

breakfast and GPA Students who more often eat breakfast tend to have
higher GPA.

correlation 83.86

If students were to eat breakfast more often, they would
have higher GPA.

causation 78.43

internet and homicide When there are more people using Internet Explorer, the
homicide rates in the United States tend to be higher.

correlation 35.57

If more people used Internet Explorer, there would be
more homicide in the United States.

causation 28.38

5.2. Experiment 1 Causality in Context

Experiment 1 investigates whether visualization design influences how people interpret cor-

relation and causation in data, using the four variable pairs selected from the pilot experiment.

We asked participants to complete both judgment and generative tasks, in which they rate how

much they agree with a correlation or causation statement, and verbally interpret the information

and justify their judgment task reasoning, as shown in Figure 5.4.

5.2.1. Method

Participants were recruited through the Human Intelligence Task (HIT) postings on MTurk.

We excluded workers who are not based in the United States, have an approval rate below

95%, failed the attention checks, entered nonsensical answers for the free response questions

or failed the graph reading comprehension checks (details of these checks are included in the

supplementary materials). An omnibus power analysis based on pilot effect sizes suggested
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What do you conclude from this information? Provide several sentences explaining what you conclude from this and why.

Based on the graph, students who more often eat breakfast tend to have higher GPA.

Based on the graph, if students were to eat breakfast more often, they would have higher GPA.

Disagree Somewhat disagree Neither Somewhat agree Agree

Disagree Somewhat disagree Neither Somewhat agree Agree

Figure 5.4. Example of generative task (top) and judgment task (middle and
bottom) in Experiment 1. The three questions were shown on separate pages in
Qualtrics in the order from top to bottom.

a target sample of 136 participants would give us 95% power to detect an overall difference

between visualization designs at alpha level of 0.05. We iteratively surveyed and excluded

participants until we reached this sample size.

This experiment had a 4× 4 Graeco Latin Square design. As shown in Figure 5.5, each

participant saw four sets of data in the four variable pairing chosen from the pilot experiment,

presented using four visualization designs. We will refer to the variable pairing as ‘context.’ We

replicated each condition 34 times with different participants to increase the reliability in our

measures. We chose three simple visualization designs commonly seen in media and education

News (2018); Guo (2016); Tufte (2001); Knaflic (2015) – bar graphs, line graphs and scatter

plots as well as a plain text, as shown in Figure ??. The plain text was written to parallel the

bar graph, including identical information in which one variable (X) was arbitrarily divided into

two groups and the corresponding average value for the other variable (Y) at those two groups

were specified.

Our independent variables are the visualization design and context plausibility. Visualiza-

tion design is a categorical variable indicating the design we presented the information to the
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Figure 5.5. Graeco-Latin Square design showing the four conditions for Exper-
iment 1. Each row represents a condition. Each column represents the order
in which the participants saw the stimuli, with the left-most seen first and the
right-most seen last.

participants, which could be bar graphs, line graphs, scatter plots or plain text. Context plausi-

bility is the correlation and causation statement plausibility collected from the pilot experiment,

which is a continuous variable from 0, extremely implausible, to 100, extremely plausible. We

recorded the order in which the participants viewed the visualizations. We also collected demo-

graphic information such as participant age, gender, political orientation and level of education.

There were two dependent variables. Four researchers blind to both the study design and

the condition manipulations coded the response in the generative task based on the interpretive

taxonomy, and the participant count in each category (e.g., direct observation) was one depen-

dent variable. The other dependent variable was participants’ ratings on how much they agreed

with the correlation and causation statements listed in Table 5.1 in the judgment task.
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We used MATLAB to randomly generate 100 pairs of data points from a normal distribution

with a correlation of 0.6 to avoid ceiling and floor effect of rating the underlying correlation as

too high or too low. We visualized this dataset into a bar graph, line graph and scatter plot,

as shown in Figure ??. To ensure all participants viewed the same visualized data across all

conditions, we relabeled the axis to fit the context without changing the underlying dataset. For

example, Figure 5.6 shows the bar graph depicted in the four contexts.

Smoking and Risk of Lung Cancer Breakfast and GPA

Sport Spending and Physical Fitness Internet Explorer and Homicide Rates

Spending on Sporting Event Admissions per Year Number of People Using Internet Explorer
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Figure 5.6. The bar graph stimulus in the four contexts.
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Upon accepting the HIT, participants clicked on a Qualtrics link to access the experiment.

Participants completed the four task trials and finished with demographic questions. On each

trial, participants viewed a visualization (bar, line, scatter or text) and answered two graph

reading comprehension check questions. They then completed the generative task in which

they wrote several sentences explaining what they concluded from the visualization and why.

This was followed by the judgment task in which participants read a correlation and a causation

statement (presented separately on two pages), and rated how much they agree with each on a

scale from 0 (disagree) to 100 (agree), as shown in Figure 5.4.
causation correlation
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Figure 5.7. Quantitative results from all three experiments showing participants’
correlation and causation agreement ratings.

5.2.2. Causation Judgment Results

We used a mixed-effect linear model to fit the causation ratings (Bates, 2005), which was how

much each participant agreed with the causation statements, under the four visualization designs

(bar, line, scatter and text). For fixed effects, we used visualization design, causation statement
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plausibility, trial order and demographic information (age, gender, education and political orien-

tation) as predictors. Because it seemed plausible that certain combinations of contexts (pairs)

and visualization designs could interact to increase or lessen perceived causality (i.e., based on

conventions for showing data in certain domains), we also considered an interaction between

visualization design and causation statement plausibility. We used a random intercept term

accounting for individual differences as random effects.

The regression model indicated a relatively large effect of causation statement plausibility

(context), χ2=162.70, η2
partial=0.274,p<0.001, a relatively small effect of visualization design

(χ2=11.65,η2
partial=0.026,p<0.01), and negligible interaction effect between causation state-

ment plausibility (context) and visualization design (χ2=0.97,η2
partial=0.002,p=0.81). Refer-

encing Figure 5.7, participants rated bar graphs to be the most causal (M=76.59, CI95%=[71.51,

81.76]) and text the second most causal (M=71.26, CI95%=[65.30, 77.23]). This largely agreed

with the results from the generative tasks where participants also made causal interpretations

and the most group-wise comparisons in bar graphs and text. Given the similarity between bar

graphs and text, which was written to contain identical information as the bar graph (grouping

the data into two groups), we suspected that perceived causality differed between visualization

designs because information was organized and presented differently among them.

Line graphs and scatter plots, unlike bar graphs and text, did not group variables together.

Participants rated line graphs (M=68.43, CI95%=[62.52, 74.35]) and scatter plots (M=67.29,

CI95%=[61.52, 73.07]) the least causal, which were the two designs with the most correlation

interpretation in the generative task. This suggests that the effect of visualization design on

perceived causality could be driven by data aggregation and visual encoding marks.
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There is negligible effect of the order the visualizations were presented (χ2 = 0.11, η2
partial

= 0.002, p = 0.74), which means perceived causation does not depend on what was presented

to them previously nor was there a learning effect. Results also indicated a comparatively small

effect of gender (χ2 = 4.23,η2
partial = 0.007,p = 0.040), such that male participants gave higher

causation ratings, and education (χ2 = 0.4.53, η2
partial = 0.011,p = 0.033), such that participants

with higher levels of educating gave lower causation ratings.

5.2.3. Correlation Judgment Results

We used a similar mixed-effect linear model to predict how much each participant agreed with

the correlation statements. We kept all predictors the same with the exception of swapping

the causation statement plausibility with the correlation statement plausibility. Only correlation

statement plausibility had a sizable effect predicting perceived correlations (χ2 = 71.02, η2
partial

= 0.141, p < 0.001), there was negligible effect of visualization design (χ2 = 1.98, η2
partial =

0.005, p = 0.58), a small interaction between the two (χ2 = 6.15, η2
partial = 0.012, p = 0.10),

a tiny effect of education (χ2 = 2.99, η2
partial = 0.007, p = 0.08), such that participants with

higher levels of education gave lower correlation ratings. There were negligible effects of order,

age and gender (details included in the supplementary materials). We can see this from the

similar correlation confidence intervals in Figure 5.7. This suggests visualization design does

not significantly influence people’s judgment of correlation from data, at least when participants

were given a concrete context.
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Figure 5.8. Qualitative coding results of Experiment 1. Each bar represents the
percentage of participants that mentioned the indicated dimension (e.g., third
variable) for a certain visualization design.

5.2.4. Qualitative Results from Generative Task

Each of generative task responses was coded as "yes" or "no" on each of the six categories, as

shown in the top row of Figure 5.8.

Correlation Conclusions: Many participants appropriately inferred correlation between

depicted variables, using words and phrases such as "tend to" and "the more X the more Y." A

chi-square test of independence with Bonferroni adjustment suggests that varying proportion of

participants drew correlation conclusions from different visualization designs (χ2 = 27.84, p <

0.001). On average, in 75.7% of the trials participants drew correlation conclusion from line

graphs (CI95%=[68.7, 82.9]), 69.1% from scatterplots (CI95% = [61.4, 76.9]), 52.9% from bar

graphs (CI95% = [44.6, 61.3]), and 50.0% from text (CI95% = [41.6, 58.4]). Figure 5.8 shows

one example of a correlation interpretation.

Causal Conclusions Among the participants who generated causal conclusions from the

data, some used causation suggestive words such as “leads to” or “causes”, while others seemed

to have assumed causation without using causation suggestive words. Some of these participants

dismissed the visualized information as illogical because the causal relation they interpreted

went against their belief or intuition. As a result, some did not reach a conclusion from the
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visualization, not because they were aware that correlation is not causation, but because they

thought the visualization was depicting a causal relation that did not make sense to them.

For example, in response to the "spending and fitness" visualization, one participant sug-

gested that the visualization did not make sense because "there is no correlation between the

two," mistaking correlation for causation. In this case, the participant seemed to understand the

notion that correlation is not causation, but assumed that the visual results implied more than

just correlation nonetheless. We coded the response as both "causation" and "no conclusion."

There were also two participants who mentioned "experiments" in their responses with bar

graphs, even though we specifically noted that the visualizations are generated from survey data.

It is possible that some people associate bar graphs with controlled experiments, from which

causal conclusions can be validly drawn.

We found several common characteristics among participants who did not assume causal

relations. They questioned the directionality and predispositions, or mentioned third variables

at play. For example, in the "breakfast and GPA" context, participants who did not assume

causation questioned whether it is people who ate breakfast more were more likely to get good

grades, or that people who were more likely to get good grades were more organized, and thus

more likely to get up early and eat breakfast.

A chi-square test of independence revealed an overall effect of visualization design on

whether people drew causal conclusions as defined by their generated responses (χ2 = 21.77, p

< 0.0001). As shown in the causation column in Figure 5.8, in 39.0% of the trials participants

drew causal conclusion from text (CI95% = [30.8, 47.2]), in 33.8% from bar graphs (CI95% =

[25.9, 41.8]), in 20.6% from scatter plots (CI95% = [13.8, 27.4]), and 18.4% from line graphs

(CI95% = [11.9, 24.9]).



111

Third Variables Visualization designs might influence whether people think of third vari-

ables when drawing conclusions from visualizations. We observed participants justifying both

correlation and causation by connecting a third variable to the two visualized. For example,

in the "internet and homicide" context, one participant speculated that "using Internet Explorer

causes homicide rates to rise because using Internet Explore[r] creates anger, and anger leads

to homicides." Anger is not visualized on the graph, therefore it is a third variable.

A chi-square test of independence suggested that there was no relation between visualization

design and mentioning of third variables (χ2=2.03, p=0.57), suggesting no particular visualiza-

tion design makes people more or less likely to think of third variables, as shown in the 3rd

variable column in Figure 5.8. On average, in 30.9% of the trials participants mentioned third

variables in scatter plots (CI95%=[23.1, 38.7]), 30.9% in text (CI95%=[23.1, 38.7]), 30.2% in line

graphs (CI95%=[22.4, 37.9]), and 24.3% in bar graphs (CI95%=[17.1, 31.5]).

Grouping in Response We observed an overall effect of visualization design on the number

of group-wise comparisons made (χ2=15.57, p<0.001). Researchers coded responses as group-

wise comparisons when the participant described the visualized data in two groups by one

dimension and compared the two grouped values in the other dimension. For example,

"The students who ate less than four breakfasts a week had a lower GPA than those who ate

more than four breakfasts a week."

In 27.9% of the trials participants made group-wise comparisons of variables in bar graphs

(CI95%=[20.4, 35.5]), 16.2% in text (CI95%=[9.99, 22.4]), 16.2% in scatter plots (CI95%=[9.99,

22.4]), and 9.6% in line graphs (CI95%=[4.6, 14.5]).

Direct Observations While no visualization elicited more direct observations than others

χ2=5.09, p=0.17), we observed several direct, number-specific comparisons instead of global
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pattern or trend observations across all designs. For example, when viewing a bar visualization

on "breakfast and GPA," one participant concluded –

"On average, students who eat less than 4 breakfasts per week has average GPA around 3.0."

As shown in Figure 5.8, in 11.0% of the trials participants made direct observations in bar

graphs (CI95%=[5.8, 16.3]), 6.6% in scatter plots (CI95%=[2.4, 10.8]), 5.9% in text (CI95%=[1.9,

9.8]), and 4.4% line graphs (CI95%=[0.96, 7.9]).

No Conclusions All visualizations elicited the same proportion of non conclusions (χ2=2.57,

p=0.46). In 11.0% of the trials participants drew no conclusion in text (CI95%=[5.8, 16.3]), 8.1%

in bar graphs (CI95%=[3.5, 12.7]), 7.4% in line graphs (CI95%=[3.0, 11.7]), and 5.9% in scatter

plots (CI95%=[1.9, 9.8]).

We observed two types of no conclusion responses, one in which participants inferred

causality from the visualization but decided to draw no conclusion because it went against their

intuition, and the other in which participants made a conscious decision not to. This could be

a result of them choosing to be skeptical about the completeness of the information or being

aware of "correlation is not causation." For example, in response to the "internet and homicide"

context, one participant wrote

"I am not sure I can conclude anything —the use of Internet Explorer may have declined at the

same time the murder rate declined with no connection except coincidence."

In general, many people drew from their personal experience or knowledge to make sense of

the visualized information. Congruent with prior research, most participants’ first intuition is to

justify a potential relation between the variables visualized, despite the plausibility of the causal

link (Ibrahim et al., 2016; Kahneman, 2011). Few stopped and thought of "counter examples,"
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questioned the validity of the data, or showed clear signs of understanding that correlation is

not causation.

Some participants used "template" words or phrases, such as "correlation is not causation"

or "Y tend to increase with varying levels of X" to frame their conclusions. For example, one

participant made the following conclusion in the "internet and homicide" scenario.

"The graph shows that in cities with more people using Internet Explorer, there tend to be many

more homicides. While the results are pretty clear, I think "correlation is not causation" should

be applied here. I’m not a scientist, but I don’t think the two variables are really related in any

meaningful way."

It is also apparent when a participant only memorized the phrase "correlation is not causa-

tion" without truly understanding the concept. They read correlation from the data, and assumed

the data to be telling a causal story as they confuse correlation for causation. But, because they

were superficially aware that "correlation is not causation," they dismissed the correlation in

data despite the observable correlation in data. For example, this participant was clearly aware

of the phrase "correlation is not causation," but instead of critically thinking through third vari-

ables or other possibilities, quickly dismissed the data and the apparent correlation.

"With only this information I can’t conclude anything since I do not see any correlation. In my

opinion these two variables are uncorrelated..."

Furthermore, all participants interpreted the visualization assuming the X -> Y directional-

ity, such as "as X increases Y increases." For people who made causal conclusions, all of them

described the x-axis variable as the cause and the y-axis variable as the effect. This suggests

that there may exist a conventional interpretation of causality in data for the x-axis variable to

be seen as the cause and the y-axis variable to be seen as the cause.
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5.2.5. Discussion

In general, the quantitative and qualitative results told similar stories of how, when given specific

pairs of common variables, people perceived causality as more likely in bar graphs and less

likely in scatter graphs. Context also had a relatively large effect on perceived causality, but

the effect of visualization design on perceived causality was not context dependent. We took

away the specific pairs of common variables in subsequent experiments to further examine how

visualization designs influence perceived causality.

5.3. Experiment 2 Aggregation levels

Experiment 1 found that people perceived high causality from bar graphs and low causality

from scatter plots. But is this driven by properties of the visual encoding marks (e.g., rectangular

bars versus circular points versus lines), or by how aggregated data is? For example, the bar

graph we showed aggregated the data into 2 groups while the scatter plot did not aggregate any

data, showing each data point individually. Experiment 2 tested the effect of the amount of

aggregation in data on perceived causality, and whether the visual encoding marks interact with

this effect by comparing bar graphs, line graphs and scatter plots.

5.3.1. Method

Because visualization context (i.e., what specific pair of variables was shown) did not influence

the effect of visualization design on perceived causality, we omitted context from the visualiza-

tions in Experiment 2. Instead of presenting the data in four scenarios with varying plausibility,

we stripped the variable names (e.g., "GPA") and replaced with abstract variable labels (e.g.,

"X","Y"). We operationalized the amount of aggregation as the number of bins the data is sorted
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Figure 5.9. Three aggregation levels tested in Experiment 2 for bar, line and dot
type encoding marks.

in. The bar graph used in Experiment 1 aggregated the data into two bins. For Experiment 2, we

additionally created bar graphs that aggregated the data into eight bins and 16 bins. We created

dot plots and line graphs using the same binned data in the bar graphs, but replacing the rectan-

gular bars with circles and lines, as shown in Figure 5.9. Here, bar graphs depict comparisons

of data between two, eight or 16 groups, which fit regular conventions of graphic communica-

tion using bar graphs(Zacks and Tversky, 1999). Line charts are also sometimes aggregated,

such as when showing daily, weekly, or monthly estimates. However, conventional scatter plots

typically illustrate each dot as an individual data value (Sarikaya and Gleicher, 2018), making

our scatterplot stimuli less realistic but useful for the sake of a controlled comparison.
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We explicitly told the participants that the visualized data were generated by summarizing

and binning data as they viewed the visualizations, as shown in the left figure in Figure 5.10. To

ensure the participants understood the plotted data, we created instructions with examples for

participants to read through (see supplementary for the example). We asked each participant six

graph comprehension questions on the specific visualizations we examined for the experiment,

to confirm that participants understood the visualizations, as shown in Figure 5.10. Similar to

Experiment 1, participants who failed the comprehension checks were excluded from analysis

as they did not appear to have understood the data (the full experiment and data are available as

supplementary materials). Participants completed the judgment task by rating how much they

agreed with correlation and causation statements, similar to Experiment 1, but we excluded the

generative task as the variables were abstract.

Exp 2

Exp 3

The following graph gives you information regarding factors B and G, 
based on a survey from 100 participants. 

Each of the 2 bars in the graph summarizes the data about factors B 
and G from approximately ½ of the participants. 

Here is data regarding variable B and G surveyed from 16 people. 

Each of the bars in the graph shows the data for a single participant.
The vertically aligned bar pairs represent data of the same person.

Comprehension Check:

True or False: Based on the graph, on average, when B is 
between 0 and 80, G has an average value of around 16.

Comprehension Check:

True of False: Based on the graph, on average, the participant with 
the smallest B value has a G value of about 1.

Figure 5.10. Snapshots from Experiment 2 (left) and Experiment 3 (right).
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The independent variables in this experiment are visual encoding marks, which can be rect-

angular bars, lines or dots, and aggregation level, which can be two, eight or 16. The dependent

variables are correlation ratings and causation ratings, similar to Experiment 1. We used a

3× 3 Graeco Latin Square design crossing visualization design and aggregation groups, simi-

lar to that in Experiment 1, which crossed visualization design and context. Each participant

saw three visualizations — bar graph, line graph and dot plot, one of which aggregated into

two groups, one into eight groups and other into 16 groups. We recruited 129 participants for

Experiment 2 using the same method and exclusion criteria.

causation correlation

0 25 50 75 100 0 25 50 75 100

aggregation lvl 16
aggregation lvl 8

 aggregation lvl 2

scatter
line
bar

Agreement Ratings Agreement Ratings

Figure 5.11. Main effect of aggregation levels (top) and visual encoding types
(bottom) on correlation and causation ratings in Experiment 2.

5.3.2. Causation Judgment Results

We used a similar mixed-effect linear model from Experiment 1 to fit the causation ratings

with fixed effects of visual encoding marks, aggregation level, an interaction between encoding

marks and aggregation level, trial order and demographic information (age, gender, education

and political orientation), and a random intercept term accounting for individual differences as

random effects.

The regression model indicated a relatively small main effect of visual encoding marks (χ2

= 5.97, η2
partial = 0.020,p = 0.050), such that aggregated dot plots had the highest causality
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ratings (M = 79.38, CI95% = [75.67, 83.09]), followed by line encodings (M = 77.78, CI95%

= [73.29, 82.26]), and rectangular bar encodings had the lowest causality ratings (M = 74.32,

CI95% = [69.73, 78.90]), as shown in Figure 5.11 (top).

There is relatively large main effect of aggregation level, such that visualizations with the

more data aggregation were perceived as more causal (χ2 = 117.05,η2
partial = 0.29,p < 0.001).

Visualizations with aggregation level two, the most aggregation which binned data into two

groups, had the highest average causality ratings (M = 84.76, CI95% = [81.00, 88.55]), followed

by visualizations with aggregation level eight (M = 82.95, CI95% = [79.16, 86.75], and visual-

ization with the least aggregation, which binned data into sixteen groups, had the lowest average

causality ratings (M = 63.74, CI95% = [59.46, 68.03]), as shown in Figure 5.11 (bottom).

There is an interaction effect between visual encoding marks and aggregation level (χ2

= 28.10,η2
partial = 0.089,p < 0.01) on perceived causality, as shown in Figure 5.7. For dot

encodings, perceived causality did not differ significantly between aggregation level two (M

= 87.19, CI95% = [82.54, 91.84]), aggregation level eight (M = 74.53, CI95% = [66.51,82.56])

and aggregation level 16 (M = 76.42, CI95% = [70.42,82.41]). For line encodings, perceived

causality significantly decreased as the number bins increased, such that aggregation level two

(M = 94.37, CI95% = [91.76,96.98]) was perceived the most causal, followed by aggregation

level eight (M = 84.91, CI95% = [78.55,91.26]), and aggregation level 16 was perceived the

least causal (M = 54.05, CI95% = [46.43,61.67]). For bar encodings, aggregation level eight was

perceived as being the most causal (M = 89.42, CI95% = [84.85,93.98]), followed by aggregation

level two (M = 72.77, CI95% = [63.62, 81.92]), and aggregation level 16 the least causal (M =

60.77, CI95% = [53.33, 68.20]). There is a negligible effect of the order the visualizations were
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presented (χ2 = 0.14,η2
partial = 0.002, p = 0.71) as well as participant age, political orientation,

gender and education.

5.3.3. Comparing Experiment 1 and Experiment 2 Bars

Experiment 1 seemed to indicate that bar graphs conveyed a greater impression of causation

than other representations, Experiment 2 suggests that this impression is due to an interaction

between the visual encoding marks and aggregation level. Comparing the causation ratings

of bar graphs in Experiment 2 with that in Experiment 1, as shown marked in red in Figure

5.7, we see that although participants gave lower causation ratings for bar encodings overall,

if we only compare the aggregation level two bar condition from Experiment 2 with the bar

condition in Experiment 1 (which is an aggregation level two bar graph with context), the two

results match (p = 0.47), suggesting that bar graphs with two bars may be an interesting case

study, see section ??. Examining participant quotes for the Experiment 1 in Section ?? (Causal

Conclusions), one explanation may be that many participants associate aggregation level 2 bar

graphs with controlled experiments, which can be a valid way to establish causal relationships.

5.3.4. Correlation Judgment Results

We used the same mixed-effect linear model to fit the correlation ratings. The model indicated

a relatively small main effect of visual encoding marks (χ2 = 9.93,η2
partial = 0.03,p < 0.01),

such that aggregated dot plots had the highest correlation ratings (M = 87.67, CI95% = [85.23,

90.11]), followed by line encodings (M = 84.69, CI95% = [81.06, 88.32]), and rectangular bar

encodings had the lowest ratings (M = 82.10, CI95% = [78.17, 86.03]), as shown in 5.11.
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There is a relatively large main effect of aggregation level, such that visualizations with

more data aggregation were perceived as more correlational (χ2 = 212.31, η2
partial = 0.40,p <

0.001). Visualizations with aggregation level two, the most aggregation which binned data into

two groups, had the highest average correlation ratings (M = 92.32, CI95% = [89.85, 94.79]),

followed by visualizations with aggregation level eight (M = 92.31, CI95% = [90.39, 94.25],

and visualization with the least aggregation, which binned data into 16 groups, had the lowest

average ratings (M = 69.82, CI95% = [65.96, 73.68]), as shown in 5.11.

There is a medium interaction effect between visual encoding marks and aggregation level

(χ2 = 30.32,η2
partial = 0.088,p < 0.001) on perceived correlation, as shown in Figure 5.7. For dot

encodings, perceived correlation did not differ significantly between aggregation level two (M =

91.77, CI95% = [87.88, 95.66]), aggregation level eight (M = 88.28, CI95% = [83.49,93.06]) and

aggregation level 16 (M = 82.95, CI95% = [79.12,86.79]). For line encodings, perceived corre-

lations significantly decreased as the number bins increased, such that aggregation level two (M

= 96.42, CI95% = [94.49,98.35]) was perceived to be the most correlational, followed by aggre-

gation level eight (M = 93.37, CI95% = [91.03,95.72]), and aggregation level 16 was perceived

to be the least correlational (M = 64.28, CI95% = [56.88,71.68]). For bar encodings, aggrega-

tion level eight was perceived to be the most correlational (M = 95.30, CI95% = [93.18,97.43]),

followed by aggregation level two (M = 88.77, CI95% = [82.74, 94.80]), and aggregation level

16 the least correlational (M = 62.23, CI95% = [55.39, 69.07]).

There is a relatively small effect of the order the visualizations were presented (χ2 = 10.65,

η2
partial = 0.022, p = 0.001), indicating a learning effect, which is reasonable given the novelty

of the visualization designs. There was negligible effect of age and gender, but a relatively

small effect of political orientation (χ2 = 1.85,η2
partial = 0.013, p = 0.17), such that more liberal
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participants gave higher correlation ratings overall, and education (χ2 = 3.5, η2
partial = 0.019, p

= 0.84), such that participants with higher levels of education gave higher correlation ratings.

5.3.5. Discussion

Bar visual encoding marks received the lowest causal ratings, followed by line, and dot encod-

ings received the highest causal ratings. These ratings could be further increased or decreased

by the amount of data aggregation, such that decreased aggregation (increasing the number of

bins) decreased perceived causality, and increased aggregation increased perceived causality in

data. However, the visualizations in this experiment all aggregated data, even at the smallest

aggregation level (with 16 bins). In order to isolate the effect of visualization encoding, we

test how visual encoding marks influence perceived causality when no data is aggregated in

Experiment 3.

5.4. Experiment 3

The bar graphs and line graphs examined in our first two experiments aggregated data.

Experiment 1 showed aggregated bars binned into two groups and a continuous line, which

essentially aggregated across all levels. Experiment 2 used aggregated plots which are not

commonly seen, because scatter plots and to some extent line charts don’t typically depict

binned data, as least as often as bar charts do. Scatter plots, for example, usually show non-

aggregated raw data. One familiar instance where data is naturally dis-aggregated is a nominal

list, which usually shows ranking data, such as (Gratzl et al., 2013).
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5.4.1. Method

We created modified bar graphs, line graphs and scatter plots to present non-aggregated data,

as shown in Figure 5.12. This modification aims to parallel the non-aggregated way that scatter

plots present data in bar and line charts. For each graph, the x-axis shows the index of each

data point. This is a nominal dimension in which order is typically not meaningful, such as an

index assigned to each unique name of a person or university. Each of the two graphs shows the

value of one variable associated with the index, and the vertically aligned bar pairs represent the

variable values associated with the same index. One of the variables was sorted in increasing

value to mimic the x-axis and the other is left unsorted mimicking the y-axis in a scatter plot.

We made the same modification to line graphs and scatter plots, as shown in Figure 5.12.

bar line scatter

Figure 5.12. Non-aggregated data visualized with bars, lines and dots.

Similar to Experiment 2, the visualizations created for this experiment are not conventional

and therefore may seem unintuitive to some viewers (although we do sometimes see them in

the real world, as shown in the left column of Figure 5.2). To ensure the participants in this
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experiment understood the plotted data, we created instructions with examples for participants

to read through (see supplementary for example details). We applied the same exclusion criteria

as those in Experiment 2.

In this within-subject design, every participant viewed all three visualization designs in

different order, counterbalanced with different axis values labels. An omnibus power analysis,

based on pilot effect sizes, suggested a target sample of 62 would yield enough power to detect

an overall difference between visualization designs. We collected data following the same data

collection and exclusion method as the previous experiments.

5.4.2. Visual Mark Encoding Types

As shown in Figure 5.7, a mixed-model linear regression model predicting perceived causality

using visual encoding type, trial order and demographic information as fixed effects and individ-

ual participants as random effects showed an effect of visual encoding types (χ2 = 15.44,η2
partial

= 0.10, p < 0.01), such that dot encodings were perceived to be the most causal (M = 55.49,

CI95% = [49.62, 61.36]), closely followed by line encodings (M = 52.02, CI95% = [46.19, 57.84])

and bar encodings the least causal (M = 43.21, CI95% = [37.35, 49.07]). There is a relatively

small effect of order (χ2 = 2.58,η2
partial = 0.019) suggesting that participants showed compar-

atively small learning effects towards the potentially unfamiliar non-aggregated visualizations,

age (χ2 = 3.43,η2
partial = 0.014), such that older participants rated causation less on average,

and education (χ2 = 4.84,η2
partial = 0.035), such that participants with higher levels of educa-

tion gave higher causation ratings.

A mixed-model linear regression model predicting perceived correlation using the same

fixed effects and random effects showed an effect of visual encoding types (χ2 = 15.17,η2
partial
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= 0.10,p < 0.01), such that dot encodings were perceived to be the most correlational (M =

60.10, CI95% = [53.86, 66.33]), closely followed by line encodings (M = 56.27, CI95% = [50.48,

62.06]) and bar encodings the least correlational (M = 47.86, CI95% = [41.71, 54.00]). There

is a relatively small effect of order (χ2 = 7.68,η2
partial = 0.055) suggesting a relatively small

learning effect, and negligible effects of age, gender, political orientation and education.

5.4.3. Aggregated and Non-Aggregated Data

We did a post-hoc between-subject comparison using a mixed-effect linear model comparing the

non-aggregated visualization causality ratings in Experiment 3 to the ratings of the visualization

with aggregation level 16 in Experiment 2, since both conditions showed 16 data values (16

pairs of values in Experiment 3), differing only in data manipulation – whether the data was

explicitly stated to be aggregated or not. We found a relatively large effect of data manipulation

(χ2 = 93.38,η2
partial = 0.17,p < 0.001) such that visualizations that aggregated data (Experiment

3, M = 50.24, CI95% = [46.84, 53.64]) were perceived to be more causal than visualizations that

did not (Experiment 2, M = 77.16, CI95% = [74.70, 79.62]).

5.5. General Discussion

Overall, the choices authors make between visual encoding marks and the amount of data

aggregation likely contribute to perceived causality in data. Although our results from Exper-

iment 1 suggest that bar charts were perceived as most likely to be causal, controlling for the

amount of data aggregation in Experiment 2 and Experiment 3 suggested that the level of ag-

gregation was the driving factor of higher perceived causality in bar graphs. We also found an

effect of visual encoding marks such that bars were perceived to be less causal than line and dot
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encodings. However, as discussed in section 5.3.3, two-bar bar graphs seemed to be a special

case where participants consistently perceived the relationship it depicted to be highly causal.

Our qualitative characterization of verbal responses could be improved. We encountered

several instances of ambiguous language, such as "there is some sort of relationship between

A and B," which made it difficult for researchers to decide whether the participants meant a

correlation or a causal relation. Some participants used template phrases such as "correlation is

not causation" and "A is correlated with B" to describe relations in data, but we lacked ways of

evaluating whether they actually read a causal relation from the data or not.

This work took an initial step toward showing that visualizations can be designed to mitigate

misinterpretation of correlation and causation. Future experiments could investigate how other

techniques, such as verbal annotation on the visualization, could reinforce better interpretation

of correlation and causation in addition to visualization designs, potentially contributing to data

journalism and education.
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CHAPTER 6

Data Arrangement Matters

One key task viewer tend to do with visualizations is making comparisons. Comparison is

a foundational perceptual operation in data visualizations (Gleicher et al., 2011). For example,

among the four data values depicted by the bar charts in Figure 1, you might compare the

average of the two A values to the average of the two B values, the average of West vs. East,

or any two particular points. An experienced graph reader might compare the interaction –

the delta among deltas – between the two factors. Within the scatterplots, you might compare

average values along X or Y, for the categories indicated by color or shape.

Even for an expert, reading a chart is less like instantly recognizing a picture, and more like

slowly reading a paragraph (Shah and Freedman, 2011), with the sentences being individual

comparisons that unfold as a sequence over time (Nothelfer and Franconeri, 2019). Imagine

a data analyst who has carefully walked through this type of sequence for a dataset and has

identified the specific pattern that they would like to communicate to an audience. We argue

that the analyst can vastly improve the efficiency of their communication by not only choosing

the right visualization, but also knowing how to arrange and group the values within the visual-

ization to guide a viewer toward seeing that key pattern early in their sequence of comparisons.

We demonstrate that visual comparison is guided not only by conscious decisions about which

comparisons are of interest for a given problem or dataset, but also by the way data values are

arranged by visual grouping cues like the proximity, size, color, and shape of the visualization’s

marks.
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The importance of this factor should be visible in Figure 6.1: the two bar charts reflect an

identical underlying dataset, yet each layout affords different comparisons. The same differ-

ence should be clear across the two scatterplots. We explore and model how grouping cues

can control the salience of a given comparison, with the goal of producing guidelines for data

communication design.

A has overall higher revenue 
in both West and East.

A B

West

Revenue

West has overall higher 
revenue than East.  

West East

A
B

A
BRevenue

D is on average 
higher than C on Y.

North is on average 
higher than South on Y.

Y

X

East West

East Y

X

C
D

North
South

North
South

C
D

Figure 6.1. The two bar charts above depict the same data values. But differ-
ent arrangements can guide the viewer to notice different patterns, as illustrated
by the single most likely participant conclusion shown below each chart. The
two scatterplots also depict the same data values, but viewers are most likely to
compare across the category coded by color (instead of shape).

6.1. Pilot Experiment

We first tested whether crowdworkers on Amazon’s Mechanical Turk (MTurk) could pro-

duce typed responses that we could interpret to confidently assess the comparison that they

found most salient. We showed 58 participants bar charts through Qualtrics on MTurk (Snow

and Mann, 2013). Participants viewed a bar chart depicting the revenues of two companies in

two regions, as shown in the left-most chart in Figure 6.1. The underlying data comprises a 2x2

factorial design - two levels of company (A and B) and two levels of region (East and West). It

illustrated a main effect of company (revenue of A is greater than that of B), a main effect of

region (revenue in the West is greater than that in the East), and an interaction between company
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and region. In the experiment, the bars could either be spatially grouped by company (see first

chart in Figure 6.1) or by region (see second chart in Figure 6.1).

Participants were prompted to type the first conclusion they would draw from the chart.

After typing the first conclusion, a new prompt would appear on the same page and ask them

to enter the second conclusion. This continued until the participant entered five conclusions.

Then, on a separate page, they entered demographic information such as their age and gender.

The order in which they wrote the sentence conclusions were recorded as the sentence rankings.

The effect sizes obtained from these results were also used to determine the sample size needed

for Experiment 1.

6.1.1. Qualitative Coding: Interpretation Taxonomy

To provide a structured way of interpreting participants’ sentence conclusions in our experi-

ments, we analyzed the conclusions participants drew and coded them into the following cate-

gories, shown on Table 6.1.

Main Effect: Drawing inspiration from research on interpreting results from 2x2 factorial

design experiments (Cozby, 2007), we categorized conclusions comparing how the two levels

of each factor affect revenue as a main effect comparison. Comparing overall revenues of com-

panies A and B and comparing overall revenues of regions East and West are both main effects.

A comparison that is incongruent to the spatial grouping would be a distal-group comparison.

That is, the two levels of the factor compared are spatially separated on the x-axis. A compar-

ison that is congruent to the spatial grouping would be a proximal-group comparison. That is,
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Table 6.1. Examples of conclusions, coded expressions, and categories

.

Example Sentence Conclusions Expression Category Comparison

A has more sales than B. A > B Main Distal

East is worse than West. East <West Main Proximal

A does much better in the West as
opposed to the East.

WestA > EastA Pair-wise Distal

A’s West region generates more rev-
enue than that of B.

WestA >WestB Pair-wise Proximal

A’s West region has higher revenue
than B’s East region.

WestA > EastB Pair-wise Edge

B’s West region has higher revenue
than A’s East region.

WestB > EastA Pair-wise Middle

A shows more difference in revenue
between the two regions than B.

|WestA−EastA|> |WestB−EastB| Interaction Distal

West’s profitability fluctuates more
than East.

|WestA−WestB|> |EastA−EastB| Interaction Proximal

Company A West is the best. max(4) =WestA Superlative

the two levels of the factor compared are nested on the x-axis. As shown in Table 6.1, com-

paring revenue between A and B would be a distal-group comparison and comparing revenue

between East and West would be a proximal-group comparison.

Pair-Wise Comparisons: Comparing one level of a factor across the two levels of the other

factor is a pair-wise comparison, such as comparing A’s revenue from the West to that from the

East. Similar to main effect comparisons, pair-wise comparisons can be categorized either as

distal-group, which compares the two spatially separated levels of one factor, or as proximal-

group, which compares the nested two levels of one factor. As shown in Table 6.1, comparing
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revenue between West A and East A would be a distal-group comparison and comparing revenue

between West A and West B would be proximal-group. Although no participant has concluded

these in the pilot, we identified a third type of pair-wise comparison: an edge comparison

between the left most and the right most bars, as well as a fourth type of pair-wise comparison:

a middle comparison between the middle two bars. Examples of these comparisons can also be

found in Table 6.1.

Interaction: When the effect of one factor on the dependent variable depends on the par-

ticular level of the other factor, we have an interaction. We think of interaction comparisons as

comparing the slopes of lines connecting two factor levels. There are two possible interaction

comparisons. One is distal-group interaction comparison, which looks at the effect of the spa-

tially grouped variable on the dependent variable (revenue), moderated by the nested variable

(either location or company). This is essentially a comparison of the slope of the line connecting

the first and third bars to the slope of the line connecting the second and fourth bars. The other

is proximal-group interaction comparison, which looks at the effect of the nested variable on

the dependent variable (revenue), mediated by the spatially separated variable (either location

or company). This is a comparison of the slopes of lines connecting the spatially grouped pairs.

Again, as shown in Table 6.1, a distal-group interaction would compare the difference between

West A and East A to the difference between West B and East B. A proximal-group interaction

would compare the difference between West A and West B to the difference between East A

and East B.

Superlative: These sentences include conclusions about single values reflecting maximum

and minimum revenues. Unlike comparative relations (e.g., X is bigger/taller/longer than Y),

which take more effort to extract because they require an eye movement from one data value
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to the other (Michal and Franconeri, 2017; Wolfe, 1998), finding the maximal or minimal el-

ement is automatic and effortless (Picon and Odic, 2017), suggesting that a different cogni-

tive/perceptual process is at work.

Other: Not all participants made comparisons or superlative conclusions. This category

included conclusions about the number of companies, colors, title or axis-labels and are coded

as other. Further, referencing methods from Shah and Freedman (2011), comments about im-

plications, novelty or "obviousness" of data would be included in this category.

All responses were transformed into expressions by two human coders and categorized fol-

lowing the taxonomy above. These expressions categorize the human sentences into common

comparisons in data. We discuss the potential of using this coding system for creating rec-

ommendation systems in Section ??. Table 6.1 summaries the taxonomy, giving examples of

responses, expressions and comparison categories.

6.1.2. Insights from Pilot

We noticed that several participants mentioned multiple comparisons in the same conclusion.

For example, when prompted to report the first conclusion, the participant identified both a

distal-group pair-wise comparison and a proximal-group pair-wise comparison. In these cases,

we broke up the response in two parts and included each in its corresponding categories, pre-

serving the rank order for both. We also noticed that many participants stopped giving inter-

pretable answers after the third conclusion, typing answers such as "I can’t draw any additional

conclusions." We therefore limited the total number of comparison prompts to three.

The underlying data chosen for the pilot includes both main effects and an interaction, but

we observed very few conclusions mentioning interactions. This may reflect interactions being
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cognitively more difficult to extract, but it also could be due to the particular data values used

in the pilot. For the main experiment we therefore decided to sample other possible datasets for

the 2x2 factorial visualizations. We also noticed that people tended to be guided by size-spatial

grouping, such as whether a tall bar is spatially grouped with another tall bar, versus a short bar.

Because size-spatial grouping depends on the values in the dataset, this factor is intertwined

with the previous challenge of choosing new sets of data values.

Figure 6.2 depicts eight possible categories of datasets, depending on whether there exist

main effects and/or interactions. Note that size grouping can be congruent or incongruent with

spatial grouping, as shown in (b) and (c), respectively.

Figure 6.2. Eight possible relations of two two-level factors. Note that the out-
comes are idealized examples; perfect outcomes rarely occur in actual data. Blue
colored ones are examined in depth in this chapter.

6.2. Experiment 1: Bar Visualizations

To investigate the effect of spatial, color, and size groupings on comparisons, we chose a set

of data values and arrangements that minimized potential confounds created by data relations

and size grouping. To cover blue subset of the relationships from the eight possibilities shown
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in Figure 6.2, we selected three combinations of main effects and interactions (the three top-

level columns of Figure 6.3). These three datasets have three different underlying relations:

one dataset with no main effect but an interaction as in (e), one with one main effect but no

interaction as in (b) or (c), and one with two main effects but no interaction as in (d). The

datasets used to produce each chart were perturbed with noise (+/- 10% vertical length) so that

no two values were identical. This created trivial interactions even in the no interaction charts;

see Figure 6.3. Note that (f), (g), and (h) were not selected for examination in the experiment

because they are visually similar to (d), (c), and (b), especially after perturbing each with noise.

No Main Effect, Yes Interaction One Main Effect, No Interaction Two Main Effects, No Interaction
Grouped by Company Grouped by Region Grouped by Company Grouped by Region Grouped by Company Grouped by Region

A B
WestEast WestEast

East West
BA BA

A B
WestEast WestEast

East West
BA BA

A B
WestEast WestEast

East West
BA BA

Figure 6.3. Design space for bar visualization experiment. These are the three
data relations used for this experiment, chosen from the set of relations depicted
in Figure 6.2. The first row shows no color mapping, the second row shows
incongruent color-spatial mapping, and the third row shows congruent color-
spatial mapping.

We used the same two factors (company and region) from the pilot. Each dataset was

presented as a bar chart either grouped spatially by company or by region, subsequently making

the size grouping either congruent or incongruent to the spatial grouping. We also incorporated

color grouping for each chart. Color was either mapped onto region or company, making it
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either congruent or incongruent with spatial grouping. Congruent color-spatial mapping means

the spatially proximate two bars share the same color (e.g., grey, grey, white, white), while

incongruent color-spatial mapping means the spatially proximate two bars have different colors

(e.g., grey, white, grey, white). Figure 6.3 maps this design space.

This experiment followed the same procedure as the pilot. Participants viewed these bar

charts and wrote down their top three conclusions. A power analysis based on the pilot effect

sizes derived from logistic regression models suggested a target sample of 45 conclusions per

chart would give 80% power to detect patterns in conclusion frequencies at alpha level of 0.05

(Hsieh et al., 1998). Because we have no control over the conclusions a given participant would

draw from a visualization, we iteratively surveyed and excluded participants on Amazon’s Me-

chanical Turk who gave nonsensical answers or failed attention tests until we had at least 45

conclusions for each bar chart.
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4a. Viewers likely made main effect comparisons as their first conclusions. 

4c. Interactions were rarely compared and mostly as the third conclusion.
4b. Pair-wise comparisons became more frequently made after the second conclusion.

Figure 6.4. Conclusions by underlying data relations. Each row section repre-
sents the order in which the sentence conclusion was made. Orange color shows
distal-group comparisons, purple proximal, and grey others. Each grid box of
five bars represents the percentage of participant responses for that fixed number
of trials.
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6.2.1. Sentence Conclusion Overview

We collected sentence conclusions from 312 unique participants (Mage = 40.62, SDage = 9.95,

125 females), each writing their top three conclusions (in the order of which came to mind

first). After excluding the nonsensical conclusions (4.2%), we ended up with 897 conclusions

total. As shown in Figure 6.4 annotation 1, most were conclusions on main effects (45.4%),

followed by pair-wise comparisons (31.9%), with few interactions (11.7%), superlatives (7.1%),

and others (3.9%). More specifically, the prominence of pair-wise comparisons seemed to be

largely driven by people more likely making pair-wise comparisons when the underlying data

depicted no main effect but an interaction, see Figure 6.4 annotation 2 (more details discussed

in Section 6.2.2).

As shown in Figure 6.4 annotation 3a+b, participants who viewed the bar charts with the

additional color mapping seemed to follow the same pattern as those that viewed the bar charts

without the color mapping. There was no significant effect of color mapping on the overall

conclusion type or ranking order (χ2 = 6.28, p = 0.18) (Ripley et al., 2016), which suggested

that color grouping did not have a significant effect on what conclusion categories people drew.

Table 6.2 shows the odds ratio of participants writing sentence conclusions in each category

(e.g., main effects) for each color mapping, using distal-group main effect conclusions as refer-

ence. Each number shows the percentage likelihood a viewer would make a specific category of

sentence conclusion compared to making a distal-group main effect comparison for a specific

color mapping. For example, for the no color mapping condition (first column), participants

were 1.45 times more likely to make a proximal-group main effect conclusion compared to a

distal-group main effect (one asterisk represents p < 0.05, two asterisks represents p < 0.01,

three asterisks represents p < 0.001, and a dot represents 0.05 < p < 0.09).
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As shown in Table 6.3 and Figure 6.4 annotation 4a+b, multinomial logistic regression anal-

ysis (Ripley et al., 2016) predicting conclusion rankings with conclusion categories suggests

that people were most likely to make a main effect comparison first. Those who did not make

a main effect comparison were more likely to have made a pair-wise comparison than anything

else (pinteraction = 0.002, psuperlative = 0.001, pother < 0.001). By the second conclusion, people

were more likely to make a main effect comparison or a pair-wise comparison than other con-

clusions, but the likelihood of them making main effect comparison and pair-wise comparison

were not significantly different (p = 0.74). By the third conclusion, people became more likely

to make main effect comparisons again, and similar to what they did for the first conclusion,

those who did not make a main effect comparison more likely made pair-wise comparisons

(pinteraction = 0.02, psuperlative = 0.004, pother < 0.001). Participants were not likely to make

interaction comparisons, and when they did, it was mostly as their third conclusion, see Figure

6.4 annotation 4c. More statistical details can be found in the supplementary materials.

6.2.2. Effect of Underlying Data Relation

A χ2 test of independence with Bonferroni adjustment suggests that people more likely made

main effect comparisons when they viewed data depicting one main effect and no interactions,

or two main effects and no interactions, compared to data depicting an interaction but no main

Table 6.2. Bar Odds Ratio of Comparison Category by Color Mapping

Category No Mapping Incongruent Congruent
main distal 1.00 1.00 1.00
main proximal 1.45* 1.39• 2.24***
pair-wise distal 0.80 0.78 1.24
pair-wise proximal 0.64* 0.85 0.82
interaction distal 0.10*** 0.42*** 0.12***
interaction proximal 0.38*** 0.37*** 0.65.



137

Table 6.3. Bar Odds Ratio of Comparison Category by Order Compared

Category First Rank Second Rank Third Rank
main effect 1.00 1.00 1.00
pair-wise 0.38*** 1.00 0.93
interaction 0.12*** 0.28*** 0.48***
superlative 0.14*** 0.17*** 0.19***
others 0.04*** 0.10*** 0.15***

effects (χ2 = 101.3, p < 0.001), as shown in Figure 6.5 annotation 1. Post-hoc comparisons

with Bonferroni corrections revealed that they were more likely to make pair-wise comparisons

when viewing data depicting an interaction but no main effects (z= 8.73, p< 0.001), see Figure

6.5 annotation 2. Multinomial logistic regression analysis Ripley et al. (2016) predicting con-

clusion type with data relations further shows that people take into consideration the underlying

data relation as they make comparisons of data. Table 6.4 shows the odds ratio of participants

making a specific comparison for each of the three data relations, all using distal-group main

effect comparisons as reference. We bolded the conclusion with the highest odds ratio for each

color mapping per data relation.

Specifically, viewers were more likely to make pair-wise comparisons when they see charts

depicting no main effect but an interaction. Referencing Table 6.4 top section row 3 and 4,

when the chart has no color-spatial mapping or incongruent color-spatial mapping, participants

more readily made proximal-group pair-wise comparisons. When the chart had congruent color-

spatial mapping, participants more readily made distal-group pair-wise comparisons. When the

data depicted one main effect, but no interaction, viewers were more likely to make proximal-

group main effect comparisons, see Table 6.4 middle section row 2. When the data depicted

two main effects and no interaction, although not significantly, viewers more readily made
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Table 6.4. Bar Odds Ratio of Data Relations by Color Mapping

Data Relation Category No Mapping Incongruent Congruent
63.6emNo Main Effect, Yes Interaction main distal 1.00 1.00 1.00

main proximal 1.20 1.88 4.00**
pair distal 2.00• 1.66 5.40***
pair proximal 2.60* 3.11** 3.60*
int. distal 0.00 0.44 0.00
int. proximal 1.10 1.11 2.20

63.6emOne Main Effect, No Interaction main distal 1.00 1.00 1.00
main proximal 2.16** 2.58** 4.00**
pair distal 0.83 1.83• 1.80
pair proximal 0.22** 1.08 0.50
int. distal 0.22** 0.83 0.19*
int. proximal 0.44• 0.74 1.30

63.6emTwo Main Effects, No Interaction main distal 1.00 1.00 1.00
main proximal 1.10 0.85 1.23
pair distal 0.37** 0.20*** 0.23**
pair proximal 0.24*** 0.20*** 0.42*
int. distal 0.06*** 0.28*** 0.12***
int. proximal 0.10*** 0.05*** 0.12***

proximal-group main effect comparisons for charts with no color mapping and congruent color-

spatial mapping, and more distal-group main effect comparisons for charts with incongruent

color-spatial mapping, see Table 6.4 bottom section row 1 and 2.

When we additionally consider the order in which the sentence conclusions were produced,

for bar charts depicting an interaction but no main effect, viewers seemed to start making com-

parisons by looking at the main effect or the pair-wise comparisons, as shown in Figure 6.5 top

left grid. By the second conclusion, most viewers shifted to make pair-wise comparisons. Very

few participants made pair-wise proximity and edge comparisons (about 6%), so we lumped

them together as ‘others’ in our figures. For those who did, these comparisons were often the

second or third conclusion people drew, never the first. Notice there were few grey color patches

in the top rows of Figure 6.5 (first conclusions), and more grey patches towards the bottom (third

conclusions).
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For bar charts depicting one main effect and no interaction, the majority of conclusions

were main-effect comparisons. People were the most likely to make proximal-group main ef-

fect comparisons as their first conclusion, as shown in figure 6.5 annotation 3a (note that size

grouping is collapsed here). In fact, participants mostly made proximal-group main effect com-

parisons for their second and third comparisons as well. Those who didn’t make main-effect

comparisons mostly made pair-wise distal-group comparisons, although not as many people

made pair-wise comparisons when viewing this data compared to data depicting no main effect

but an interaction.

For bar charts depicting two main effects and no interaction, people likely first made a

proximal or distal main effect comparison. For their second conclusion, they either switched

to make the other main effect comparison, or made a pair-wise comparison. Different from

those who viewed bar charts depicting one main effect, participants who viewed bar charts

depicting two main effects were equally likely to make distal-group and proximal-group pair-

wise comparisons.

6.2.3. Effect of Size-Spatial Grouping

Because underlying data relations (whether there exists main effect/interaction in the data or

not) impacted the conclusions people drew, we also investigate the influence of size-spatial

grouping of the marks, which is typically determined by the similarity of the underlying data

values. We suspect that size-spatial grouping would serve as a better predictor to conclusions

viewers make because it captures visual differences that collapsing over data relation does not.

For example, the size-spatial congruent (tall tall short short) and incongruent (tall short tall

short) versions of the one main effect no interaction chart are visually different. This difference
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Figure 6.5. Conclusions by underlying data relations, aggregated across color
mappings. The bar length presents the percentage of conclusions out of the total
amount of conclusion per grid box (each grid box adds up to 100%).

is only captured when we look at size-spatial grouping, as they have the same underlying data

relation.

We sorted the bar charts into four size-spatial grouping categories. As shown in Figure 6.6,

size grouping could be congruent with spatial grouping such that the two similarly large bars

are spatially proximate, and the two similarly small bars are spatially proximate. An example

of this category is the "one main effect, no interaction" chart that is grouped by company, see

Figure 6.2(b). The second category is a variation that arranges the bars in decreasing size. An

example of this category is the "two main effects, no interaction" chart that is grouped by region,
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see Figure 6.2(d). This decreasing grouping still maintains spatial-size congruency, such that

the two larger bars are spatially proximate, and the two smaller bars are spatially proximate, but

the bar sizes are not as similar as those in the first category. The third category is when size and

spatial grouping are incongruent, such that the spatially proximate two bars significantly differ

in size (tall short tall short). An example of this is the "one main effect, no interaction" chart

grouped by region, see Figure 6.2(c). The fourth category is a variation that is also size-spatial

incongruent where the tallest two bars are the furthest away from each other. Examples include

the "no main effect, yes interaction" charts, see Figure 6.2(e)
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Figure 6.6. Size grouping and proximal-group and distal-group conclusions
made by viewers, with aggregated color mapping. The values in each cell in-
dicate the percentage of conclusions in that category out of the total amount of
conclusions for the column.

People drew more proximal-group comparisons when size-spatial grouping is congruent,

and more distal-group comparisons when size-spatial grouping is incongruent. As the size

grouping become more incongruent with spatial grouping, people became more likely to draw

a balanced amount of both proximal-group and distal-group conclusions. You can see that there

were more orange (distal comparisons) moving from left (congruent size-spatial-grouping) to

right (incongruent size-spatial grouping) in Figure 6.6 annotation 1. This shows a competition

between spatial and size grouping, suggesting both drive what a viewer would conclude. If spa-

tial grouping was always the stronger driver, you would expect participants to have always made



142

proximal-group main comparisons. If size-grouping was the stronger driver, you would expect

participants to have always made distal-group main comparisons when size-spatial grouping is

incongruent. But this was not the case.

We observed similar dominance of main effect conclusions, with an increased number of

pair-wise comparisons in incongruent polarizing charts, as shown in Figure 6.6 annotation 2+3.

This makes sense as size-spatial grouping often depends on the underlying data relation, and

incongruent polarizing charts are often depicting no main effects but an interaction, which sug-

gests that size-spatial grouping is a better predictor than data relations as it captures the impact

of data relations in a more nuanced way. Table 6.5 shows the results of a multinomial logistic

regression analysis predicting conclusion type with size-spatial grouping. The likelihoods of

participants drawing a particular conclusion under each size-spatial grouping were compared,

using the likelihood of distal-group main comparison as reference (except for the incongruent

color-spatial condition’s congruent size-spatial column. No participant made distal-group main

effect comparison when viewing the incongruent color-spatial chart, thus using distal-group

main effect as a reference would result in exaggerated odds ratio). More details can be found in

the supplementary materials.

As shown in Table 6.5 top section, for charts with no color mapping, viewers were most

likely to make proximal-group main comparisons when they saw congruent size-spatial group-

ing charts, 2.44 times that of making a distal-group main comparison, and significantly more

than other comparison types. Viewers were the most likely to make proximal-group pair-

wise comparisons when they saw congruent decreasing charts, equally highly likely to make

proximal- and distal-group main effect comparisons when they saw incongruent size-spatial



143

Table 6.5. Bar Odds Ratio of Color Mapping by Size-Spatial Grouping

Color Category Congru. Decreas. Incongru. Polariz.
63emNo Mapping main distal 1.00 1.00 1.00 1.00

main proximal 2.44* 1.46 1.20 1.20
pair distal 0.33• 0.23* 0.80 2.00•
pair proximal 0.11* 3.08* 0.24** 2.60*
int. distal 5.00e-09 1.21e-08 0.24** 2e-07
int. proximal 0.33• 0.08* 0.28** 1.10

63emIncongr. Color Spatial main distal 2.29e-07*** 1.00 1.00 1.00
main proximal 1.00 1.83• 0.74 1.89
pair distal 0.62 0.33• 0.49* 1.67
pair proximal 0.77 0.17* 0.23*** 3.11**
int. distal 0.31* 0.25* 0.37** 0.44
int. proximal 0.54 0.08* 0.09*** 1.11

63emCongr. Color Spatial main distal 1.00 1.00 1.00 1.00
main proximal 26.0** 3.29** 0.82 4.00**
pair distal 2.00 0.29 0.71 5.40***
pair proximal 4.00 0.57 0.29** 3.60*
int. distal 4.44 0.14• 0.14*** 5e-07***
int. proximal 1.10* 0.14• 0.14*** 2.20

grouping charts, and most likely too make proximal-group pair-wise comparisons when view-

ing incongruent polarizing charts. For charts with incongruent color-spatial mapping, view-

ers were most likely to make proximal-group main effect comparisons when viewing congru-

ent size-spatial charts, slightly more likely to make proximal-group main effect comparisons

when they saw decreasing charts, equally likely to make proximal- and distal-group main effect

comparisons when they saw incongruent size-spatial grouping charts, and most likely to make

proximal-group pair-wise comparisons when they saw incongruent polarizing charts. For charts

with congruent color-spatial mapping, viewers were most likely to make proximal-group main

effect comparisons when viewing congruent size-spatial charts and congruent decreasing charts,

equally highly likely to make proximal- and distal-group main effect comparisons when they

saw incongruent size-spatial grouping charts, and more likely to make distal-group pair-wise

comparisons when viewing incongruent polarizing charts.
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Although color grouping has a weak effect on comparisons, we did see an effect of of

color on comparisons made when the size-grouping is incongruent polarizing (see right-most

column, the middle and bottom sections in Table 6.5). When the chart had incongruent color-

spatial grouping, participants more readily made proximal-group pair-wise comparisons, 3.11

times that of main distal comparisons, but when the chart had congruent color-spatial grouping,

participants more readily made distal-group pair-wise comparisons, 5.40 times that of main

distal comparisons.

Overall, the effects of size-spatial grouping seemed to be more granular and able to account

for the effect of data relation, suggesting that size grouping is a more effective predictor guiding

viewer conclusions. Next, we examine potential interactions between color- and size-spatial

grouping on comparisons made.

6.2.4. Interaction between Color, Size, and Spatial Grouping

We compared the odds ratio of participants comparing the two spatially proximate groups for

each color mapping, across the four possible size-spatial groupings, as shown in the top section

of Table 6.6, using no color mapping as reference. Overall, besides that viewers were more 1.57

times more likely to make proximal comparisons when viewing congruent size-spatial charts

with congruent color-spatial mapping, everything else was approximately equal. The middle

section documents the odds ratio of participants comparing the two distal groups. Again, be-

sides that viewers were only a quarter as likely to make distal comparisons when viewing con-

gruent size-spatial charts with congruent color-spatial mapping, everything was approximately

equal. This again suggests that color had negligible effects on guiding comparisons.
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Table 6.6. Bar Odds Ratio Aggregated Color, Size, and Spatial Grouping

Proximal Comparisons Congru. Decreasing Incongru. Polarizing
No Color Mapping 1.00 1.00 1.00 1.00
Color-Spatial Incongru. 1.15 1.04 0.86 1.12
Color-Spatial Congru. 1.57* 1.16 0.81 1.00

Distal Comparisons Congru. Decreasing Incongru. Polarizing
No Color Mapping 1.00 1.00 1.00 1.00
Color-Spatial Incongru. 0.99 1.18 1.27 0.93
Color-Spatial Congru. 0.24* 0.63 1.01 1.07

Total Congru. Decreasing Incongru. Polarizing
proximal 2.11** 1.00 0.40*** 1.70***
distal 0.47** 0.99 2.48*** 0.59***

The bottom section directly compares the odds ratio of participants making a proximal-

versus a distal-comparison across size-spatial groupings, collapsing over color-spatial group-

ing. This serves as a proxy to estimate and compare the effect of spatial and size grouping on

sentence conclusion generations. For instance, larger likelihoods of making proximal compar-

isons suggests a stronger effect of spatial grouping on eliciting comparisons. Participants were

more likely to make proximal comparisons overall. They were approximately twice as likely

to make proximal comparisons, and half as likely to make distal when they viewed congruent

size-spatial charts and incongruent polarizing charts. This pattern flipped for when participants

viewed incongruent size-grouping charts. When they viewed congruent decreasing chart, they

were equally likely to make proximal- and distal-comparisons.

6.2.5. Discussion

In general, viewers are the most likely to make main effect comparisons. They made pair-wise

comparisons more readily when the underlying data is depicting an interaction but no main
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effect, or when the size-spatial grouping is incongruent and polarizing (these patterns tend to

co-occur, see Figure 6.2(e). Viewers rarely generated interaction comparisons, even when the

underlying data was showing only an interaction with no main effects. When viewers saw this

type of charts, they made pair-wise comparisons between spatially adjacent data values. Sur-

prisingly, varying color mapping in bar visualizations had only a small impact on what compar-

isons a viewer would make. There was one exception, where color influenced which pair-wise

comparison a viewer would make when the data depicted an interaction but no main effect, such

that incongruent color-spatial arrangements increased the likelihood of viewers making proxi-

mal pair-wise comparisons. On the other hand, size-spatial grouping have a much bigger impact

on guiding viewer conclusions. Overall, viewers are approximately 31% more likely to generate

sentence conclusions comparing spatially proximate data values than spatially separated ones,

and this tendency can be doubled or halved depending on the size-spatial grouping.

6.3. Experiment 2: Scatterplot Visualizations

The previous investigation of bar charts revealed a grouping strength ranking of spatial first,

size second, and color third. Experiment 2 compared two other grouping cues – color versus

shape – in scatterplots. We followed the two binary factor setup in the bar visualization exper-

iment and created scatterplots visualizing the performance of two types of car engine (straight

and v-shaped) on quarter mile time and fuel economy for two transmission types (automatic

and manual).

Similar to the bar experiment, participants viewed scatterplots and typed the top three con-

clusions they would draw. We tested four configurations of the scatter plots, as shown in Figure
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6.7. We used the mtcars dataset, identified two factors - engine and transmission, which are en-

coded either with color (default ggplot teal 00BFC4 and red F8766D) or shape (default circle or

triangles) - and plotted their corresponding fuel economy and quarter mile time. We crossed the

color and shape encodings, and counterbalanced the x- and y-axes to produce the four configu-

rations: two have engine encoded using color, and two have transmission encoded using color;

two have quarter mile time plotted on the x-axis, and two have fuel economy plotted on the

x-axis. Participants were excluded following the same exclusion criteria as Experiment 1. We

excluded 2 participants and 11 nonsensical or empty responses, and are left with 69 participants

(MeanAge = 39.2, SD = 11.31, 23 females) and 202 conclusions.

6.3.1. Response Categorization

We categorized the conclusions participants made from the scatterplots following a similar tax-

onomy as the bar chart experiment. Participants drew main effects and pair-wise comparisons,

and identified superlatives. The scatterplot format also enabled participants to draw additional

categories of conclusions, including correlations and distributions. No one compared interac-

tions between any of the factors.

Main Effects: We categorized conclusions comparing how each factor performed on either

the x- or y-axis as a main effect comparison. Comparing manual to automatic transmission

or straight to v-shaped engine performance on either axis (quarter mile time or fuel economy)

are main effect comparisons. These comparisons could happen either using color or shape

grouping. For instance, if manual transmissions were colored red and automatic transitions were

colored blue, concluding "manual transmissions have a faster quarter mile time than automatics"
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Figure 6.7. Scatterplot stimuli used in Experiment 2, depicting two factors en-
coded with color or shape. The same data was presented and counterbalanced
with which factor was encoded to which channel (color or shape) as well as
switching of the x and y variables.

would be a color comparison. If transmission were encoded by shape instead, the previous

example would be a shape main effect comparison.

Pair-Wise Comparisons: Conclusions comparing one level of a factor while keeping the

levels of the other factor constant is categorized as pair-wise conclusions. These comparisons

can be across color or across shape. For instance, "V-shaped engines with manual transmissions

are slower than straight engines with manual transmissions." For the condition in which engines

were assigned shape, this would be an across-shape comparison, comparing two shapes across
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the same color. For the condition in which engines were assigned color, this would be an across-

color comparison, comparing different colors across the same shape. Therefore, a pair-wise

comparison counts towards both color and shape.

Superlatives: Some participant conclusions were about the single best performing combi-

nation of engine and transmission. For example, a participant concluded, "A straight manual

transmission will give you the highest fuel economy." Unique to the scatterplot condition, some

superlative codes were about performance in the x-axis, while some were about performance in

the y-axis, and some were about overall performance across both axes. In this example, because

the participant mentioned both engine (straight) and transmission (manual), we consider it as

having mentioned both color and shape.

Correlations: Participants also commented on the relation between the x- and y-axes. Con-

clusions in this category often included descriptions of a correlation between fuel economy

and quarter mile time. "The faster the car, the more fuel economy it gets" is an example that

indicated the viewer’s understanding of the general positive trend in the data.

Distributions: This category included any conclusion that centered around the spread of the

data rather than the performance differences between factors. It contains three sub-categories:

count, range, and variation. Count pertains to the number of each factor. For instance, "there are

more V-shaped than straight engines." Range mentions the performance of the data points but

makes a value statement, rather than a comparison, such as "there are no engines that are over

35 [miles per gallon] for fuel economy." While this mentions the performance of engines, there

are no comparisons being made. Instead, the conclusion refers again to the spread of the data.

Variation is about data variability, such as "V-Shaped manuals seem to perform consistently."
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0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

1. Viewers more likely made color main 
effect comparisons as their first conclusions.

2. Most viewers switched from color to shape 
comparisons by their third conclusion.

3. Superlative is the second 
most popular comparison 
viewers make.

5. Distribution conclusions 
mostly involved comparing 
color.

4. Few people mentioned 
color or shape when 
comparing correlations.

color
shape
both
neither

Figure 6.8. Comparison category by features compared in scatterplots. Top row
shows the distribution of people comparing color versus shape for main effects.
Bottom two rows show stacked distribution of features compared (color, shape,
both, neither) for other categories. Bar length shows the number of comparisons
made in a specific category out of all comparisons made for that rank. Error bars
show standard error.

6.3.2. Sentence Conclusions for Scatterplots

Overall, viewers most likely drew main effect conclusions (68.3%), followed by superlative

conclusions (15.3%), distribution conclusions (6.9%), pair-wise conclusions (5.0%), and least

likely correlations (4.5%). Table 6.7 shows the odds ratio of a particular category of conclusion

being drawn for each rank order, using main effect conclusion as reference. Similar to that in

bar charts, participants were significantly more likely to make main effect comparisons across

all three conclusions they made. For example, looking at the top table column for the ‘First’
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rank, pair-wise comparisons were only 2% as likely to be mentioned as the first conclusion

compared to main effects.

Table 6.7. Scatterplot Odds Ratio of Comparison Category and Order Compared

Conclusion First Second Third
main effect 1.00 1.00 1.00
pair-wise 0.02*** 0.09*** 0.12***
superlative 0.22*** 0.25*** 0.21***
correlation 0.08*** 0.09*** 0.02***
distribution 0.04*** 0.07*** 0.37***

Comparison First Second Third
compare color 1.00 1.00 1.00
compare shape 0.26*** 0.38** 1.28
mention both 0.28*** 0.38** 0.86
mention neither 0.07*** 0.03*** 0.05**

Participants were more likely to compare color as their first and second comparison, see

Figure 6.8 annotation 1 and Table 6.7 bottom section. A majority of people shifted to com-

pare shape or mentioned both color and shape by their third comparison, as shown in Table 6.7

and Figure 6.8 annotation 2. More specifically, as shown in the bottom of Table 6.7, viewers

compared shape only 0.26 times as likely as they compared color in the first sentence conclu-

sion. But by the third sentence conclusion they generated, they became 1.28 times more likely

to compare shape relative to comparing color. In multi-class scatterplots we tested, color and

shape are salient features such that very few people generated sentences without mentioning

either color or shape.

As shown in Table 6.8, overall color was the most compared feature across all categories.

Viewers were half as likely to compare shape when making main effect comparisons. When

viewers made pair-wise comparisons1, because this relied on selecting one dimension (either

1The low-N in the pair-wise comparison category created super large and super small odds ratios.
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Table 6.8. Scatterplot Odds Ratio of Category and Features Compared

Conclusion Color Shape Both None
main effect 1.00 0.51*** 0.00*** 0.00
pair-wise1 1.00 0.00 0.00 1.26e+41***
superlative 1.00 0.00*** 30.00*** 0.00***
correlation 1.00 1.00 0.00 2.50
distribution 1.00 0.43 0.57 0.00

color or shape) and comparing how the levels of the other dimension differed on the selected

dimension, both color and shape must have been mentioned. This resulted in a skewed, large

odds ratio in the ‘Both’ column. While there were only 10 conclusions that were pair-wise

comparisons in our data, eight of them compared the two groups with different shapes of the

same color, while only two compared the two groups of the same shape with different colors.

While there were not enough data points to make reliable statistical inferences, it seemed to

support the previous analysis that color was a stronger grouping cue than shape. We expand on

this observation in Section ?? to further discuss potential implications.

We also examined whether viewers more readily compared visual groups based on the x-

or y-axis value. Chi-squared test for given probabilities comparing the number of times peo-

ple made x- or y- axis based comparisons suggested that, with post-hoc bonferroni adjustmets

Hervé and Hervé (2020), people were equally likely to compare values on the x- and y-axis

(χ2 = 63.72, pxy(posthoc) = 1.00).

6.4. Discussion

Overall, viewers were the most likely to make main effect comparisons. When viewing bar

charts, they made pair-wise comparisons more readily when the underlying data depicted no
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main effect but an interaction, or when the data was organized with polarizing incongruent size-

spatial grouping (they tend to co-occur, as shown in Figure 6.2(e)). They rarely generated in-

teraction comparisons, even when the underlying data showed only an interaction with no main

effects, corroborating findings in psychology suggesting that interaction is cognitively difficult

to discern and express Halford et al. (2005); Shah and Freedman (2011). Varying color mapping

in bar visualizations had a negligible impact on what comparisons a viewer would make. There

was a competition between size- and spatial-grouping, such that viewers were approximately

31% more likely to generate sentence conclusions comparing spatially proximate data values

than spatially separated ones, and this tendency could be doubled or halved depending on the

size-spatial grouping. In multi-class scatterplots, color was more likely to be compared first

than shape, but by the third conclusion, shape became more likely to be compared.

I provide some design guidelines to help inform visualization researchers and practitioners

on how to arrange their data values. For a bar chart, place the values that your audience should

compare (or treat as a group) next to each other. Making them different colors may not hurt, but

the added benefit is likely minimal. Beware that viewers are likely to group values of similar

sizes, whether or not they should do so. For a scatterplot, your viewers will prioritize comparing

different colors over shapes.

Most current work on visual comparison focuses on the efficiency or precision of a given

comparison. We argue that these factors are important, but irrelevant if a visualization viewer

never makes that comparison in the first place. In our real-world experience, the biggest delays

in understanding a new visualization are knowing how to read a visualization and knowing

which patterns one should pay attention to. When communicating data, analysts tend to assume

that the viewer sees what they see (Xiong et al., 2019), instead of designing the visualization to
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push the viewer toward seeing the ‘right’ pattern. We hope that refinement of the type of model

developed here can lead to a set of guidelines or concrete tools to help them achieve that goal.
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CHAPTER 7

Conclusion

I’ve demonstrated that visualizations are one form of ambiguous figures such two people

looking at the same dataset could come to different conclusions. Visualization design can also

influence the type of information people extract and the inferences people make from data. This

corroborates existing findings in visual analytics and decision making that suggest choosing the

appropriate visualization designs can improve the accuracy and efficiency of data interpretation.

But this line of work is far from done. Designing a visualization is like mixing music with a

soundboard — every design decision you make is a switch or a knob. With the turn of each

nob and switch, youâll generate something new. There are so many decisions that can go into

creating a visualizations, and I’m excited to continue exploring the perceptual and cognitive

affordances of these design decisions.

I encourage future researchers to bridge work in human cognition and data visualization

to shed light on the impact of information visualization on data communication and decision-

making. As we increasingly rely on data to understand, communicate, and make decisions, we

need to further understand how our brains work to extract critical values, statistics, and patterns

needed to make decisions about data, so we can design more effective visualizations.
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