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ABSTRACT
An Incrementally Non-linear Model for Clays with Directional Stiffness
and a Small Strain Emphasis

Xuxin Tu

In response to construction activities and loads from permanent structures, soil generally is
subjected to a variety of loading modes varying both in time and location. It also has been
increasingly appreciated that the strains around well-designed foundations, excavations and
tunnels are mostly small, with soil responses at this strain level generally being non-linear and
anisotropic. To make accurate prediction of the performance of a geo-system, it is highly
desirable to understand soil behavior at small strains along multiple loading directions, and
accordingly to incorporate these responses in an appropriate constitutive model implemented in a

finite element analysis.

This dissertation presents a model based on a series of stress probe tests with small strain
measurements performed on compressible Chicago glacial clays. The proposed model is
formulated in an original constitutive framework, in which the tangent stiffness matrix is
constructed in accordance with the mechanical nature of frictional materials and the tangent
moduli therein are described explicitly. The stiffness description includes evolution relations
with regard to length of stress path, and directionality relations in terms of stress path direction.

The former relations provide distinctive definitions for small-strain and large-strain behaviors,
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and distinguish soil responses in shearing and compression. The latter relations make this

model incrementally non-linear and thus capable of modeling inelastic behavior.

A new algorithm based on a classical substepping scheme is developed to numerically
integrate this model. A consistent tangent matrix is derived for the proposed model with the
upgraded substepping scheme. The code is written in FORTRAN and implemented in FEM via
UMAT of ABAQUS. The model is exercised in a variety of applications ranging from
oedometer, triaxial and biaxial test simulations to a C-class prediction for a well-instrumented
excavation. The computed results indicate that this model is successful in reproducing soil

responses in both laboratory and field situations.
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1 INTRODUCTION

Due to conservative codes and standards for design and construction, the strains induced in
the soil for a well-designed geotechnical project are usually very small, i.e. the limit state is not
crucial in the design of most projects. Rather, accurate prediction of the corresponding small
ground movements is the governing factor in design. For instance, the design of an excavation in
a crowded urban area must carefully consider the influence of excavation-induced ground
movements on adjacent existing buildings. The strain levels of the affected soil in this case are
mostly on the order of 0.1% or smaller, a level referred to as small strains. To make accurate
prediction of the performance of such a geo-system, it is highly desirable to well understand the
soil properties at small strains and subsequently incorporate them in an appropriate soil model

implemented in a finite element analysis.

For the past twenty years, research concerning compressible Chicago glacial clays at
Northwestern University has resulted in a database of stress-strain responses under axisymmetric
and, to a lesser extent, plane strain conditions. Recently, an experimental investigation of soil
behavior at small strains was started. A series of stress probe tests on high-quality block samples
with high resolution strain measurements were conducted, the data from which constitute the

main experimental basis for the constitutive study presented in this dissertation.
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The research into soil behavior at small strains gained momentum in 1980’s. It was found

that for a variety of soils there are three notable behaviors at small strain levels — stiffness
degradation (e.g. Burland 1989; Atkinson 2000), stiffness directionality (e.g. Burland and
Georgiannou 1991; Costanzo et al. 2006) and influence of recent stress history (Atkinson et al.
1990). Stiffness degradation refers to the initial high stiffness at very small strains, with rapidly
decreasing values with increasing strains. Stiffness directionality means that soil stiffness has
significant path-dependency. Influence of recent stress history refers to the soil property that soil
stiffness changes dramatically for any sharp change in loading path, in contrast to the consistent
decrease in value if the path is continued with the same direction. Research also showed that
these properties play important roles in predicting ground movements accurately at small strains
(e.g. Jardine et al. 1986; Burland 1989; Stallebrass and Taylor 1997). Although there are several
soil models that attempt to account for some of the previously mentioned behaviors, so far no
one has been able to produce satisfactory results in simulating the responses of compressible

Chicago glacial clays. However, many components of these models were found to be useful.

This dissertation presents a soil model based on the stress probe tests performed on block
specimens of compressible Chicago glacial clay. The theoretical framework of this model is
original, in which the tangent stiffness is explicitly described in terms of two basic behaviors,
stiffness evolution and stiffness directionality, respectively. Because of the explicitness in the
stiffness description, this model is experiment-friendly, for tangent stiffness can be directly
measured in most experiments. Because of the description of directionality, this model
distinguishes itself from a conventional “variable moduli” model, and provides an alternative and

simple approach to incremental non-linearity. Such a framework shows great advantages in
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incorporating small strain relations and taking into account other well-known relations for
soils or soil properties, such as the critical state, the virgin compression curve, hysteresis in a
loading cycle and shear-induced volume change. The model development is achieved with
straightforward  formulation, easy-to-understand parameters and simple numerical

implementation.

In Chapter 2, technical background for the work is provided. Incremental non-linearity and
its recent development, the stress probe tests performed on the compressible Chicago glacial clay,
and a number of existing models that deal with small strain behaviour of soils are summarized.

In addition, a statement of the notation convention used in this dissertation is given.

Chapter 3 presents the mathematical formulation and experimental basis for the proposed
model. First, the form of the tangent stiffness matrix is proposed for axisymmetric conditions.
The physical nature of the tangent moduli involved in the matrix is discussed. A mathematical
mapping from axisymmetric conditions to general conditions is developed. Two basic variables
and three characteristic zones are introduced as important features of the proposed model. Next,
relations for stiffness evolution are presented with regard to different characteristic zones. The
emphasis is placed on the definition of small strain behavior, with elaboration of its relation for
compressible Chicago clays with the well-known ageing effect. Relations for stiffness
directionality are proposed in terms of each tangent modulus. The mechanism used by the model
to handle stress reversals is presented. Relations between directionality and plasticity and recent
history effect are discussed. Finally, the material parameters required for the model are

summarized, as are recommendations for their experimental determination.



17

Chapter 4 discusses the numerical implementation of the proposed model in a finite
element code. A typical coupling system used to perform a non-linear finite element
computation is introduced initially. Details are given of the existing substepping method with
error control, and how to improve it to integrate the proposed constitutive equations. Emphasis
is placed on deriving the algorithmically-consistent tangent matrix for the improved substepping
method. In comparison with other constitutive models, it is shown that the proposed model has

remarkable advantages in numerical implementation.

Chapter 5 shows the computed model responses in drained/undrained triaxial tests,
drained/undrained biaxial tests, an oedometer test involving an unload-reload cycle, and a well-
instrumented deep excavation in downtown Chicago. It is shown that this model is successful in
simulating various soil tests and is promising in its ability to predict ground movements due to

earth constructions. Suggestions for future improvements of this model are also made.

Chapter 6 presents a summary of this dissertation, conclusions, and recommendations for

future research.
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2 TECHNICAL BACKGROUND

2.1 INCREMENTAL NON-LINEARITY

Any constitutive relation or material model can be generally expressed by a rate form:
e=F(o0) 2.1
where €, o and F are total strain, effective stress and a tensorial function of second-order,
respectively. The mark “-” either represents a time rate for a time-dependent material or an
infinitesimal increment for a time-independent material. Sometimes Eq. (2.1) is expressed in
reverse way, i.e., 6 =F '(¢). For that case, which is merely an issue of preference, the
positions of & and ¢ simply need to be exchanged in the subsequent discussions. To be rate-
independent, the function F (&) must be positively homogeneous of degree one, i.e.
F(lo)=AF(o) (2.2)
where A is an arbitrary positive real number. For most materials, F(-c) #—F(g) due to
irreversible or plastic responses, which means A cannot be negative. Eq. (2.2) imposes a

mathematical constraint on developing models for rate-independent materials.



19
The constitutive relation is so-called incrementally linear if F (o) is a linear function, i.e.,

F(o,+0,)=F(0,)+F(0,), with 0, and o, arbitrarily given. Otherwise, it is incrementally
non-linear, corresponding to a non-linear F (o) that does not satisfy the proceeding equation.
Note that homogeneity does not necessarily infer linearity. For instance, the function
F (o) =||o || is homogeneous but non-linear, with || || denoting the Euclidean norm. However,
linearity sufficiently infers homogeneity, not only positive homogeneity, which means A could
be negative. Therefore, a linear function F (o) essentially represents a reversible or elastic
relation, which has long been known not to be applicable to most geomaterials. However, plastic
responses can be generated using more than one linear functions:
e=F(o), if oe¥; i=1--n 2.3)
where W; sometimes is referred to as fensorial zone (Darve and Labanieh 1982), a subdomain
defined in the incremental stress space, for which the linear function F,(o) is defined. The term
n denotes the total number of the tensorial zones. A constitutive relation in the form of Eq. (2.3)
is called incrementally multi-linear (Darve et al. 1988) for n > 1 in general, and incrementally bi-
linear for n = 2 specifically. For instance, both the Duncan-Chang model (Duncan and Chang
1970) and the Cam-clay model (Schofield and Wroth 1968) are incrementally bilinear, with one

tensorial zone defined for /oading and the other for unloading. Generally, elastoplatic models

are multi-linear, for yield surfaces are typically used for defining multiple tensorial zones.

Despite a number of significant advances achieved along these lines (Lade 1977; Mroz et al.

1979; Dafalias and Herrmann 1982; Al-Tabbaa and Wood 1989; Whittle and Kavvadas 1994;
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Stallebrass and Taylor 1997; Puzrin and Burland 2000), the elastoplastic approach has some
noticeable limitations when modeling soils:
i.)  Most soils do not exhibit distinct yielding and thus the determination of the yield surface
tends to be uncertain (e.g. Smith et al. 1992);
ii.)  The decomposition of total strain into elastic and plastic parts is extremely hard to be
experimentally determined and often needs assumptive approximations (e.g. Anandarajah
et al. 1995);
iii.)  Special care must be taken to guarantee the continuity of the incremental response across
the boundary between two adjacent tensorial zones (Darve and Labanieh 1982);
iv.)  Mathematical structure of this type is relatively complicated, whereas model calibration is

often based on a limited variety of soil tests (Tu and Finno 2007).

To overcome these limitations, incrementally non-linear relations have attracted much recent
attention. In hypoplastic models, the following rate form has been adopted by different research
groups (e.g. Chambon et al. 1994; Tamagnini et al. 1999; e.g. Kolymbas 2000):
oc=A-¢+Bj¢g]| (2.4)
where A is a fourth-order tensor, B is a second-order tensor, and “-” is the operator of tensor
contraction. The non-linearity of Eq. (2.4) comes from || £ ||, due to which model responses vary
with strain increment directions. This distinctive feature enables a description of plastic behavior
without resorting to strain decomposition and yield surface specification. Furthermore, division

into multiple tensorial zones can be avoided, for the dependency of response on path direction
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can be continuously defined in the tensorial function B. Hence, hypoplastic models possess

distinctive advantages for soils in comparison with conventional elastoplastic models.

Though the strain decomposition is not required for hypoplastic models, a decomposition of
total response into linear and non-linear parts instead has been imposed by Eq. (2.4), which
actually presents another challenge for experimental determination. To be more experiment-
friendly, the following form of incremental non-linearity is proposed for soils:
6=E(6)-é 3
where ¢ = ¢/ || o || represents the path direction of the stress increment. Apparently, Eq. (2.5)
meets the mathematical requirement for rate-independency. Darve (1982) suggested a form
similar to Eq. (2.5) as a general form of incremental non-linearity for rate-independent materials.
However, the equation proposed herein serves as a specific case of the general form suggested by
Darve (1982). He proposed E(&) as a generalized representation of the tangent stiffness matrix.
In hypoplastic models, for instance, E = A+ B® &, where ® is the operator of tensor product
and £ = £/|| €| represents the path direction of the strain increment. However, E(J) of Eq.
(2.5) corresponds to a direct description of the tangent matrix, without decomposition into
multiple parts, as is done in hypoplasticity. Since tangent stiffness is directly measurable in most
cases, the setup of an explicit tangent matrix could enable a constitutive relation to be largely
experiment-based. Instead of &, the path direction in Eq. (2.5) is solely described by &, the

advantages of which will be detailed later.



22
The proposed form of Eq. (2.5) appears similar to a “variable moduli” model (e.g. Duncan

and Chang 1970; Jardine et al. 1986). However, the proposed model is fundamentally different
from the “variable moduli” model, mainly because of the dependency of the tangent matrix on
the path direction 6, which, from the author’s point of view, is the essence of the incremental
non-linearity. The ‘“variable moduli” model is known for two main shortcomings. One
limitation is coaxiality between stress and strain increments and a complete volumetric-
deviatoric uncoupling (Tamagnini et al. 1999). The other drawback is numerical instabilities due
to either the lack of continuity of model response across tensorial zones (Gudehus 1979) or the
inconsistency in distinguishing between loading and unloading (Schanz et al. 1999). In the
proposed model, the first problem is treated by adopting a cross-anisotropic matrix for E, in
which mechanisms for stress-strain non-coaxiality and volumetric-deviatoric coupling are
naturally included. The second problem is naturally solved using continuous functions in terms

A

of 0.

2.2 STRESS PROBE TEST WITH SMALL STRAIN MEASUREMENTS

In most geotechnical construction, the affected soil generally is subjected to a variety of
loading modes varying both in time and location, as has been frequently demonstrated in
numerical analysis (e.g. Finno et al. 1991; Whittle et al. 1993; Viggiani and Tamagnini 2000).
Hence, it is of practical interest to systematically investigate mechanical properties of soils under
various loading modes. Among experimental approaches to this end, a natural one is to perform
so-called stress probe tests, in which a number of ‘identical’ soil specimens are tested with a

series of stress increments along different stress path directions. The importance of probe tests
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has been increasingly recognized and several large programs have been carried out on
different soils, mostly under axisymmetric condition (e.g. Smith et al. 1992; Callisto and

Calabresi 1998; Finno and Roboski 2005; Costanzo et al. 2006).

It also has been increasingly appreciated that the strains around well-designed foundations,
excavations and tunnels are mostly small, typically on the order of 0.1% (e.g. Jardine et al. 1986;
Burland 1989; Atkinson 2000; Clayton and Heymann 2001), with soil responses at this strain
level generally being non-linear and anisotropic (e.g. Tamagnini and Pane 1999; Shibuya 2002;
Ng et al. 2004). To investigate soil non-linearity and anisotropy at small strain levels, it is
important to implement small strain measurements in experimental programs. In the stress probe
tests performed on compressible Chicago glacial clay, Holman (2005) used subminiature LVDTs

mounted directly on specimens to record local axial and radial strain values.

Fig. 2-1 illustrates the stress probes carried out by Holman (2005). In these tests, triaxial
specimens were hand-trimmed from the block samples with a nominal diameter of 71 mm and a
height-to-diameter ratio between 2.1 and 2.3. [Each specimen was reconsolidated under ko
conditions to the in-situ vertical effective stress 6y’ of 134 kPa, and then subjected to a 36 hour,
drained ko creep cycle, wherein lateral restriction was enforced. Following this k, creep phase,
specimens were subjected to directional stress probes under drained axisymmetric conditions.
The internal deformation measurements made by subminiature LVDTs mounted directly on the
specimen were used to calculate axial and radial strains using the measured axial gage length and
sample diameter, respectively. The axial load was measured using an internal load cell and

corresponding axial stress were calculated using the measured axial load and the current sample
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area from the measured radial deformation. Cell and pore pressures were measured using
external differential pressure transducers. Internal stress and strain measurements were made at

5 to 20 second intervals by an automated data acquisition and control system.

q TC AL: Anisotropic Loading
RTC

CPC o .
A AL TC: Triaxial Compression

CPC: Constant-p” Compression
RTC: Reduced Triaxial Compression
CQU: Constant-q Unloading

AU: Anisotropic Unloading

RTE: Reduced Triaxial Extension

CPE: Constant-p’ Extension

TE: Triaxial Extension

‘/ M TE CQL: Constant-q Loadi
RTE CPE Q onstant-q Loading

Fig. 2-1. Schematic diagram of a stress probe test program

The readings from the two axial LVDTs were averaged to produce a single axial deformation
response, assumed to be representative of the centerline deformations within the zone of local
measurement. Smoothed values of data collected by each transducer and load cell were used to
calculate the local axial strain, g,, local radial strain, €,, vertical stress, 6,/, and horizontal stress,
on’. All stress probes were carried out at a stress rate of 1.2 kPa/hour to minimize accumulation
of excess pore water pressure within a specimen. Duplicate tests were conducted for the

majority of the stress probes.
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2.3 SMALL STRAIN MODELS

Though a successful numerical analysis is affected by many factors (Finno and Tu 2006), the
constitutive model is undoubtedly among the most critical ones. There are a number of models
capable of dealing with various aspects of soil behavior at small strains. As a major
improvement of the classical critical state model (Schofield and Wroth 1968), the bounding
surface model (Dafalias and Herrmann 1982) enabled volumetric-shearing coupling inside a
conventional yield surface, which in most cases overlaps the small strain range. On the basis of
bounding surface plasticity, MIT-E3 (Whittle and Kavvadas 1994) further introduced a hysteretic
elastic relation (Hueckel and Nova 1979) within the inner surface to reproduce the hysteretic
response observed in most soil tests. Consistent with a 3-loci hypothesis (Smith et al. 1992), a
series of multiple-surface kinematic hardening models (e.g. Al-Tabbaa and Wood 1989;
Stallebrass and Taylor 1997; Puzrin and Burland 2000) have been developed in the form of an
anisotropic hardening model (Mroz et al. 1979). This type of model provides a conceptually
simple way to account for the effect of recent stress history (Atkinson et al. 1990) on directional
stiffness at small strains. Another notable method is the hypo-plastic approach (e.g. Niemunis
and Herle 1997; Viggiani and Tamagnini 1999; e.g. Kolymbas 2000; Lanier et al. 2004), founded
on the theory of hypo-elasticity (Truesdell 1955) and the concept of incremental non-linearity
(Darve 1991). Among other advantages, hypo-plastic models need neither strain decomposition
nor determination of yield or potential surfaces, which are difficult to define in most soil

experiments.
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A solid constitutive model demands a solid experimental basis. The stress probe tests,

equipped with small strain measurements, can systematically investigate soil responses in the
entire axi-symmetric space, thus providing a comprehensive experimental basis for soil modeling.
Unfortunately, very few, if any, existing models were developed on the basis of such tests. In
fact, it is still an open question that conventional constitutive approaches, typically developed
upon relatively limited experimental information, are actually capable of extrapolating correctly
soil response upon different path directions (Costanzo et al. 2006). A case in point is that soil
responses, especially the tangent stiffness, are significantly dependent on path direction, a
material property having been reported by a number of researchers on various soils (e.g. Graham
and Houlsby 1983; Callisto and Calabresi 1998; Finno and Roboski 2005; Costanzo et al. 2006)
but only considered in very few soil models (Puzrin and Burland 1998). This property has made
it difficult for most existing models to use same set of input parameters to simulate soil responses

in all stress probes, though simulating one or two probes might not pose a problem.

This dissertation presents a constitutive model mostly based on the stress probe tests
performed on compressible Chicago glacial clay (Holman 2005). This work also serves as an
example of how to formulate an incrementally non-linear relation based on the conceptual
platform laid out by Eq. (2.5). Unlike most existing soil models, the proposed model describes
the tangent stiffness explicitly, which facilitates formulating constitutive relations directly based
on experimental observations. In the meanwhile, the drawbacks of a “variable moduli” model,
wherein tangent stiffness is expressed explicitly as well, are avoided by taking into account

incremental non-linearity.  Furthermore, it can be shown that the proposed constitutive
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framework is fairly suitable for describing small strain behaviours of “unstructured” soils.
Though this proposed model does not provide a special mechanism guaranteeing thermo-
mechanical correctness as does a hyper-plastic model (e.g. Collins and Houlsby 1997; Houlsby
and Puzrin 2000), employing solid experimentally-based relations will effectively minimize
possible violations of the fundamental principle, especially in the experimentally-evaluated

loading modes. A theoretically rigorous treatment in this aspect remains for future work.

2.4 NOTATION CONVENTION

In this dissertation, the usual sign convention of soil mechanics (compression positive) is
adopted throughout. As a default, effective stresses are assumed throughout this dissertation,

e

though its traditional mar sometimes is omitted for simplicity. The usual sign convention of

soil mechanics (compression positive) is adopted. In the representation of stress and strain
states, use is made of the following invariant quantities: mean normal stress p’ = tr(c’)/3;
deviatoric stress q = ,/(3/2) ||dev(c’)||; volumetric strain &, = tr(g); and deviatoric strain g =

J(2/3)||dev(e)||. Tensors are represented by bold letters. Unless otherwise stated, summation

convention is not employed in equations listed herein.
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3 MODEL FORMULATION

This chapter describes the experimental basis and mathematical formulation for the proposed
directional stiffness model, so-called to emphasize the path-dependency of tangent stiffness, and
to distinguish this model from a traditional “variable moduli” model, in which moduli only vary

with stress/strain levels.

3.1 TANGENT STIFFNESS MATRIX

As defined in Eq. (2.5), the tangent stiffness E is a 6x6 matrix linking stress and strain
increments. Generally, this matrix includes 36 independent components. To be practical, the
form of E needs to be prescribed in such a way that matrix components of relative importance
should be identified and emphasized. Furthermore, it is noted that the matrix components that
can be investigated in conventional soil experiments are quite limited. In developing the
proposed model, a basic idea was to formulate experimentally-based relations for these limited
components first and then make appropriate extensions to general conditions. Note that these
kinds of extensions, essentially due to the limitation of current experimental capability, are not

only needed by this specific model but needed by any other model as well.



29

3.1.1 AXI-SYMMETRIC CONDITION

3.1.1.1 FOUR TANGENT MODULI

In most standard soil experiments, soil specimens are trimmed into a cylindrical shape and
tested under axi-symmetric conditions. Under these conditions, the tangent stiffness matrix can

be generally expressed as:

o, [U/K 1/J,](%p' G.1)
se. | |1/J, 1/3G|| &g

where K is the bulk modulus, G is the shear modulus and J, and J; are two coupling moduli.
These four moduli are all tangent moduli. The infinitesimal mark “6” is adopted in this chapter
for infinitesimal stress/strain increments, indicating that the current version of directional
stiffness model is time-independent. This infinitesimal “d” should be distinguished from the
finite mark “A” that will be frequently used later in Chapter 4 to denote finite stress/strain

increments in numerical schemes.

According to Eq. (3.1), J, defines shear-induced volume change of the material, a behavior
that has been widely observed for many soils. For instance, it is well-known that loose sand or
normally consolidated clay tends to contract while dense sand or highly overconsolidated clay
tends to dilate, under drained shear conditions. These phenomena can be fully described by
devising a proper function for J,. Specifically, shear-induced contraction can be captured by
positive J, for 8q > 0 or negative J, for dq < 0, while shear-induced dilation can be simulated by
negative J, for 8q > 0 or positive J, for dq < 0. Note that the shear-dilation response also can be

accounted for using dilatancy angle y (Rowe 1962), which links volumetric change to shear
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strain and typically is implemented in an elasto-plastic model (e.g. Menetrey and Willam 1995;

Schanz et al. 1999). In essence, J, and y are two different approaches to the same issue.

In contrast to J,, Js describes how the change in mean stress p’ contributes to shear strain
development, a property that has not received much attention. It is worth having a special

discussion on the nature of this unconventional modulus.

3.1.1.2 PHYSICAL NATURE OF Jg

In literature, the two coupling moduli typically are assumed to be identical (e.g. Graham and
Houlsby 1983; Puzrin and Burland 1998). Nevertheless, not only their mathematical definitions
(cf. Eq. (3.1)), but also experimental observations, indicate that J, and J; are different from each
other. There are two particular stress probe tests that are especially important for understanding
the physical meaning of J. Fig. 3—1(a) shows the volumetric strain and the shear strain measured
in constant q unloading (CQU) test, wherein p’ keeps decreasing while q remains constant, i.e.,
Aq = 0. Because shear strains as large as 2% develope in this test, when there is no change in

shear stress, Js must play an important role in the response.



31

Shear Strain, g5 [%] Shear Strain, 5 [%)]
0 0.5 1 1.5 2 25 -05 0
0
= g
c>‘i '0.5 i 5‘)
£ . c
g ] T
U) 1 +—
o 1 3
@ ] 15
g ] \w,“‘ g
S -15 - 3
> 1 . =
: (a) (b)
-2 ] -2

Fig. 3—1. Measured strain components in (a) CQU test and (b) AU test

Another relevant phenomenon is observed in anisotropic unloading (AU) test, wherein the stress
path basically points straight back to the origin of the p’-q space, as shown in Fig. 2-1. Though
this test involves a significant change in q, the measured shear strain is surprisingly small, nearly
negligible as shown in Fig. 3—1(b). These two observations viewed together strongly suggest
that shear strain in soil is actually governed by change in the stress ratio q/p’, denoted by m
hereinafter, rather than mere change in q. This observation corresponds to the following
mathematical form for describing the shear behavior of soils.

on (3.2)

o€, =
G

where G~ is a nondimensional modulus, different from the conventional shear modulus G.
According to Eq. (3.2), the observed shear strain in AU test should be relatively small, because 1

does not change therein. Conversely, in a CQU test, 1 increases until failure is reached, and a
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substantial amount of shear strain should be expected. It can be shown that Eq. (3.2) is

suitable for any other stress probe wherein the stress path leads to failure.

A further expansion of the right hand side of Eq. (3.2) yields:

e, = %— qu(’; _ 3.3)
PG p

Note that the expression for & implied in Eq. (3.1) is:

0€, =ﬁ+5£ 3.4
3G J,

By comparing Eq. (3.3) to Eq. (3.4), it is apparent that G, G and J, are related to one another:
G=p'G /3 J =-p°Glq, J,=-3p'Glq (3.5)
Therefore, both G and J, essentially originate from G, a nondimensional modulus describing the

relation between stress ratio 1 and shear strain.

Note that n is an alternative representation of mobilized friction angle, the peak value of
which defines the failure surface for frictional materials. The geometry of a failure surface
reveals intrinsic information about the shear behavior of the material. An important
characteristic of failure via a critical state definition is the theoretically infinite amount of shear
strain. Therefore, the failure surface is also a surface of equal shear strain, an analogy to an
equipotential surface. As the normal to the equipotential surface designates the direction of the
driving force that leads to the most dramatic change in potential, the normal to failure surface

designates the direction in stress space along which the most dramatic change in shear strain will
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occur. Thus, the stress quantity measured in this direction represents the stress increment of

unit magnitude that produces the largest amount of shear strain.

Fig. 3-2 shows the failure surfaces for non-frictional material and frictional material,
respectively. As shown, the failure of non-frictional material is independent of p’. The norm to
the failure surface is parallel to the g-axis, which means q is the most critical factor in generating

shear strain for non-frictional material. Mathematically, it corresponds to the following.

e = 2 (3.6)

Though this equation has been frequently used for describing soil behavior, fundamentally it is
applicable only to non-frictional materials, like most metals. As shown in Fig. 3-2(b), an
idealized failure surface for frictional material corresponds to a constant stress ratio, and thus the
norm to the failure surface can be mathematically represented by a change in n alone. In other
words, the most critical factor controlling shear strain development for frictional material is the
stress ratio 1. Therefore, Eq. (3.2) in essence originates from the mechanical nature of frictional
material, as does the coupling modulus Js.

Aq q F.S.
F.S.

\

F.S.

(a) (b)
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Fig. 3-2. Relation between failure surface (F.S.) and material shear response: (a) non-frictional material and
(b) frictional material

Note that the admissible stress space enveloped by the failure surface of frictional material is
distorted in comparison to that of non-frictional material. For non-frictional material, nearly all
stress paths point to the failure surface, which means Eq. (3.6) is generally applicable. Note that
the only two paths not pointing to the failure surface are horizontally oriented in p’-q space,
which are still covered by Eq. (3.6) as two special cases in which no shear strain develops. In
contrast, for frictional material, a significant percentage of stress paths do not point to the failure
surface, as indicated by the hatched sector in Fig. 3-2(b), which is bounded by an envelope
parallel to the failure surface. Along any stress path falling in this sector that is oriented to the
right with an angle with the p’-axis less than that of the failure surface, the material undergoes a
more compressive deformation mode, for which Eq. (3.2) is not necessarily suitable because it
essentially describes frictional shearing. In fact, test data from CQL probe, wherein p’ increases
with no change in q, exhibits very little shear strain, indicating that Eq. (3.6) is more applicable
to the shear response in this sector than Eq. (3.2) and thus J; is negligible therein. The difference

between the hatched sector and the remaining stress space will be detailed later.
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3.1.2 GENERAL CONDITION
For in situ soils that have been deposited in horizontal layers, it is appropriate to assume their

properties are cross-anisotropic. The following cross-anisotropic matrix has been implemented

in a number of soil models (e.g. Lings et al. 2000; Kuwano and Jardine 2002; Jung et al. 2004).

e, | VE, -v,/E, -v,/E, 0 0 0 |[sc. (3.7
¢, -v,/E, 1/E, -v,/E, 0 0 0 |0,
€. -v,,/E, -v,/E, 1/E, 0 0 0 ||oo.
D 0 o G, 0 o [or,
5., 0 0 0 0 1/G, 0 |lor,
sr.) | o 0 0 0 0 1/G,||sr,

where subscripts x and y indicate the two horizontal axes and z indicates the vertical axis. There
are seven independent indices involved in this matrix. Under axisymmetric conditions in a
triaxial cell, only the 3x3 sub-matrix at the top-left corner is applicable, which includes five
independent indices. To investigate the relation between these five indices and the four moduli

discussed in the previous section, the sub-matrix is extracted and expressed as:

s¢) [4 B C][so. 3.8)
e t=|B A Cdo,
d¢.| |D D El||do.

where the five new indices A through E are introduced for convenience, with A = 1/E;,, B = -
vi/En, C = -wy/E,, D = -w/E, and E = I/Ev. For axisymmetric conditions, the incremental
shear and volumetric strains can be derived from Eq. (3.8):

Se. =2(2D+E-A-B-C)p/3+2(-2D+2E + A + B-2C)5q/9 3.9
¢, =(2D+E+2A+2B+2C)ép +2(-D+E-A-B+2C)dq/3

Comparing Eq. (3.9) with Eq. (3.1), one obtains the following set of linear equations:
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2(A+B)+2C+2D+E=1/K (3.10)
2[(A+B)+2C-D+E]3=1/lv
2[-(A +B)-C+2D+E]/3=1/Js
2[(A + B)-2C-2D + 2E}/9 =1/(3G)

Rearranging Eq. (3.10), the following equations can be established (Finno and Tu 2006):

A+B=(-6/], +4/K+3/G-6/],)/18 @.11)
C=(6/1,-3/J,+2/K-3/G)/18
D= (2/K-3/G+6/J, -3/1,)/18
E=(3/G+1/K+3/T +3/1)/9

Hence, if the four tangent moduli are known, C, D, E and the sum of A and B can be computed
through Eq. (3.11). Note that the determination of A and B depends on v, since B/A = -vy,
while the sum of A and B is known. Experimentally, vy, can be determined using true triaxial
tests, or accordingly changing the specimen orientation in a regular triaxial test. Besides vy, the
other two unknown indices are Gp, and Gys, which can be investigated by properly-oriented
bender elements, or in either hollow cylinder torsion tests or direct simple shear tests with
specimens appropriately orientated. However, these tests are not common and little test data are
available. For simplicity, three hypothetic relations are used in this proposed model.

v, =a;, G, =b-G;, G, =c-G (3.12)
where a = 0.2 and b = ¢ = 1 in default. Note that both vy, and Gy, are not exercised under plane
strain conditions, seemingly the most common case in numerical analysis. Bender element
measurements on the compressible Chicago clay have shown that different shear moduli at very
small strains are relatively insignificant (Cho 2007), with Gy, approximately 20% higher than

Gyh.
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Note that the matrix in (3.7) is a compliance matrix. Its inverse matrix, substituted with Egs.

(3.11) and (3.12), leads to the following stiffness matrix:

I AD-EC B BD-EC B C . 0'
DA>-2ECA-B*D+2EBC DA -2ECA-B*D+2EBCc AP72ECHBD
BD-EC AD-EC C 0 0 0 (3.13)
DA2 - 2ECA-B*D+2EBC D4*-2ECA-B*D+2EBCc  AP72ECHBD
. E . E A+B -
AD-2EC+BD AD-2EC+BD AD-2EC+BD
0 0 0 G 0 0
0 0 0 0 G 0
] 0 0 0 0 0 G

Egs. (3.11)~(3.13) provide a complete mapping of tangent stiffness from an axisymmetric
condition to a general condition. The general tangent matrix can be fully obtained, as long as the
four tangent moduli under axisymmetry can be identified. The subsequent sections then describe

how to define these tangent moduli based on experimental observations.

3.2 GENERAL CONSIDERATIONS IN STIFFNESS DEFINITION

Before going into details of this directional stiffness model, it is worthwhile to briefly discuss

several substantial issues related to definition of tangent moduli.

3.2.1 TWO BASIC VARIABLES

The first important issue is how to select the basic variables upon which the moduli will be
mathematically described. It is common in literature to report observed soil stiffness variations

with regard to a relevant strain. Accordingly, it is convenient to define moduli as functions of
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strains. However, strains are mathematically inconvenient since shear strain is theoretically
infinite at failure, while failure definition in stress has no such ambiguity. More fundamentally,
in many field applications, force/stress is the cause while deformation/strain is its consequence.

Therefore, it is rational to use stresses as basic variables when defining stiffness measures.

To this end, it is proposed herein to use two stress-based quantities, length of stress path,
LSP, and orientation angle, B. As shown in Fig. 3-3, the points O and C represent the initial and
current stress states respectively. LSP is the length between O and C along the stress path

experienced by the material, which is mathematically defined as:

L5P = [ @) + (&)’ G19

where the integration path I" corresponds to real stress path, which is generally nonlinear. This
integration can be easily computed in a numerical scheme by linearizing the stress path in each
time step and adding its increment at the end of each step. In Fig. 3-3, the arrow emanating from

point C represents current stress increment dc’. Its inclination with the p’ axis is defined by 3 as:

arctan(og/p')  if p'>0, &g=0 (3.15)
P =<m+arctan(og/op') if p'<0
2z +arctan(og/op')  if op'>0, &g <0

where 0p’ = tr(60’)/3; 8q = /(3/2) ||dev(da’)||. Accordingly, B increases counterclockwise and
falls in [0, 2m), with B = O parallel to the p' axis. Note that in a straight stress path, B coincides
with the orientation angle of the overall stress path. However, in a general case, such as in Fig.

3-3, the overall stress path direction, which can be represented by the line segment connecting

the points O and C, is different from . [ represents the direction of current stress increment,
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while LSP accounts for the entire stress history starting from the initial state to the current
stress state, as long as changes in path direction, if any, are continuous. For abrupt changes in
path direction, e.g., a stress reversal, LSP should be “reset”, as will be elaborated in Section 3.3.3.
It will be shown later that LSP and 3 are useful terms to define the stiffness variation with both

magnitude and direction of loading.

A

q F
<
& { sl
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B
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Fig. 3-3. Two basic variables for stiffness definition: LSP and 3

L

3.2.2 SHEAR ZONE & COMPRESSION ZONE

Soil experiments essentially can be categorized into two types — shear and compression tests.
As shown in Fig. 3—4, a shear test in the stress space corresponds to a stress path leading to the
failure surface, wherein the soil specimen will eventually be failed in shear. All stress paths of

this type together form the shear zone in Fig. 3—4.



40

150 small strain zone
E : ® initial state
2 L /
- i /
100 - , 7/\
L failure ,
i surface R compression zone
| \\'
Ny
i shear zoily\‘ N
- N
N
- N
. N
O | | 1 \\\‘ | |
\\
0 50 100 150 200
p' [kPa]

Fig. 3-4. Characteristic zonation: shear zone, compression zone and small strain zone

In contrast, a compression test is characterized by a stress path in which shear failure will never
occur and the dominant deformation mode is compression. All paths of this type form a
compression zone in Fig. 3—4. In a general stress space, the boundary between the shear and
compression zones is a conical surface, and can be mathematically defined as:

Srs(o'=0'.)=0 (3.16)
where frs(0”) = 0 is the function for the failure surface, and &, is the current stress. Hence, the
boundary surface can be obtained by shifting the tip of the failure cone to the current stress point.
In the p'-q plane, the boundary manifests itself as two curves that “parallel” the failure state

curves. For a Mohr-Coulomb failure criterion, and using the stress path direction [ defined in Eq.
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(3.15), the two boundary curves can be denoted by two parameters derived from the friction
angle ¢ :

6sin ¢

6sin ¢ (3.17)
Boper = arctan(———)>; B,... =27 — arctan(———
e (3—sin¢) : (3+s1n¢

where Bupper and Biower correspond to the upper and lower boundary curves, respectively.

Generally speaking, the shear zone is dominated by shear response, while the compression
zone is dominated by volumetric response. In terms of stiffness definition, it can be expected
that tangent moduli will decrease with LSP in the shear zone but increase with LSP in the
compression zone. The shear and compression zones constitute two tensorial zones using
Darve’s terminology (1982). These two tensorial zones, however, fundamentally originate from

the frictional nature of soils, rather than a mathematical consideration.

It is worth mentioning here that these two characteristic zones correspond to different yield
surfaces if accounted for in an elasto-plastic framework. For instance, the double hardening
model (Lade 1977) uses a conical surface and a cap surface accounting for yielding in shear tests
and consolidation tests, respectively, which are conceptual counterparts of the shear and

compression zones used herein.

Of all stress probe tests performed on the soft Chicago clays (cf. Fig. 2-1), the probes AL and

CQL are within compression zone and the others are within shear zone.
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The small strain zone, the hatched area bounded by experimental data points in Fig. 3-4,
will be introduced later as another characteristic zone. This zone is not a tensorial zone, because

its boundary is measured in terms of LSP instead of f3.

3.3 RELATIONS FOR STIFFNESS DEFINITION

The stiffness definition in this model includes separate relations for stiffness evolution and
stiffness directionality. While these two sets of relations are conceptually independent and were
developed separately on the basis of test data, they are associated in the sense that the

directionality relations are mathematically hosted by the evolution relations.

3.3.1 STIFFNESS EVOLUTION

The evolution relations describe how the tangent moduli vary with LSP. Again, stiffness
evolutions in the shear and compression zones are fundamentally different, and thus are treated

separately.

3.3.1.1 EVOLUTION IN SHEAR ZONE

A stress path falls in shear zone when it leads toward the failure surface, i.e. the path will
intersect the failure surface if extended unlimitedly along its direction. As shown in Fig. 3-3,
this intersection, denoted by point F, defines an image point of point C on the failure surface,
which serves as a benchmark for measuring the “distance” of the current stress state to possible

failure. Note that this mapping approach is a useful technique in developing soil models (e.g.
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Dafalias and Herrmann 1982). The stress at this image point, denoted by 6’r, can be defined in
terms of the current stress o’; and the stress increment Ac’.
o' =o' +mAc’ (3.18)
where m is an unknown scalar. Since the failure surface is defined as frs(c’s) = 0, m can be
obtained by solving:
Srs(o' +mAc') =0 (3.19)
Note that there could exist two solutions for m of different signs and the desired one is always
positive to be consistent with the direction of loading. The “distance” between points C and F

then is computed as mALSP, where ALSP = \/Ap"”+Aq” . And the “distance” between points O

and F is defined as follows.

LSP, = LSP + mALSP (3.20)

Fig. 3-5 shows tangent shear modulus G versus LSP observed in selected stress probes in the
shear zone, with G normalized by its initial value Gy, and LSP normalized by LSPy, a constant in
each individual stress probe. Note that G is computed according to Eq. (3.5). These curves are
quite similar to each other, exhibiting the general pattern of stiffness evolution in all stress

probes conducted in the shear zone by Holman (2005).
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G/Go

LSP/LSP;

Fig. 3-5. Normalized shear modulus evolution in selected stress probes in the shear zone

As shown in Fig. 3-5, these evolution curves are composed of two distinct stages. Initially,
the modulus decreases linearly and rapidly. After passing an easily visible kink in the curves, the
degradation becomes nonlinear and much milder. This kink has a clear physical meaning and
provides a reasonable criterion for defining the threshold of small strain behavior, which will be

discussed later in more detail.
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This twofold pattern is observed not only for G, but also for the other tangent moduli. Fig.
3—6 shows that the same pattern is also observed for degradation curves of other moduli. In the

shear zone, J; is defined according to Eq. (3.5) and thus degrades in a way similar to G.

70000 -
: —— K in CQU
60000 1 —— Jv in CPC
50000 - —*— G 1n CPC
—— G in CPE

40000 -

30000 - S

Tangent Modulus [kPa

20000 -

AT XDOONAAALAAAA L AAAAA
------------

LSP [kPa]

Fig. 3-6. Degradation of various moduli in the shear zone

In summary, evolution relations in the shear zone for the different moduli in Eq. (3.1) have

an identical form, as schematically shown in Fig. 3-7.
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Fig. 3-7. Relation for stiffness evolution in shear zone

E' represents any of the four tangent moduli and is defined by f;(LSP) and f,(LSP):

E"=f, (LSP), if LSP<LSP, (3.21)
E" = f, (LSP), if LSP>LSP,

where:

f, (LSP)=E, — LSPx(E, - E. )/LSP. 622)

£.(LSP) = (4-V)LSPE, -LSP,E; +(E. + E; - uE,)LSP (3.23)
, =

(4 =1)LSP, - LSP, +(2 - u)LSP
where E’y is the initial modulus, LSPy is the threshold LSP, defining the boundary of the small
strain zone (cf. Fig. 3-4), E' is the threshold modulus, and p is the coefficient of non-linearity
that controls the non-linearity of Eq. (3.23), as shown in Fig. 3-8. E’y, LSP,, E'; and p serve as

four parameters in the evolution relations. Instead, LSP; is a state variable to be computed
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according to Eq. (3.20). E';is the failure modulus, assumed to be constant. At failure, G¢
should be small enough to generate a shear flow, while K¢ should be large enough in comparison
with Gy, so that a critical state (Schofield and Wroth 1968) can be approximately achieved. Js¢
can be derived from Gy according to Eq. (3.5). Jvris assumed to be large in comparison with Ky,
and thus its effect is neglected in a failure state. In this model, Gr = 1 kPa, K¢ = 50 kPa, Jv; =

1000 kPa for q¢> 0 and Jv¢=-10000 kPa for qr < 0, where qf denotes q at failure.

n=2
n=2.5

£2(LSP)

n=3.5

pn=5

p =8
n=15

Fig. 3-8. Parameter p controlling non-linearity of f,(LSP)

In essence, fi(LSP) defines the small strain behavior and f,(LSP) defines the large strain

behavior. f>(LSP) is essentially a hyperbolic function of the following form:
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. a (3.24)
+c
b+ LSP

The three unknowns, a, b and c, are derived by making Eq. (3.24) satisfy three conditions:

f2(LSP)=E; (3.25)
f2(LSP,)=E,
fo(LSP,)2+ LSP,/12)=(E, —E )/ u+E,

The 3™ condition provides a straightforward way to determine p from experimental results.
Given a stiffness degradation curve E' ~LSP, LSP, can be determined by identifying the range of
the linear degradation portion, while LSPr basically is the maximum LSP value. Accordingly,
E’, and E'f can be obtained from the curve. To determine 1, one needs to find out on the curve
the E” value at LSP = (LSP+LSPy)/2, denoted as E',. Then u= (E*S - E*f)/ (E*m - E*f), according

to Eq. (3.25). Typically, E’¢is much smaller than E's and E .. Thus, U= E'VE m

It is worth pointing out that if the twofold relation of Eq. (3.22) and (3.23) is plotted in terms
of stiffness, either tangent or secant, versus relevant strain measure in a semi-logarithmic scale,
the resulted curve is of a reversed-S shape, as shown in Fig. 3-9. Similar curves for other stress
probes in the conventional way of data presentation can be found in Finno et al. (2005) and

Holman (2005).
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Fig. 3-9. The twofold relation plotted in conventional way

Stiffness degradation curves in reversed-S shape have been widely reported in the literature on
numerous soils. As an example, Fig. 3—10 shows an illustration from Atkinson’s paper (2000).
The point here is that the twofold relation, comprising Eq. (3.22) and (3.23), is consistent with

the common characteristic of soils, and thus is expected to be generally applicable.
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Fig. 3-10. A typical stiffness degradation curve for soils (after Atkinson 2000)

3.3.1.2 EVOLUTION IN COMPRESSION ZONE

Fig. 3—11 shows how the bulk and shear moduli evolve in the two compression tests, based
on the raw data given by Holman (2005). Note that the significant jumps, especially on the two
K curves, are mainly caused by the applied curve fitting techniques. As explained in Appendix
B, it is usually difficult to find a single polynomial function to fit entire stress-strain relation.
Hence, the task typically is achieved using different polynomial functions to fit different
segments of the curve. As a matter of fact, curve fitting tends to be relatively inaccurate at ends
of a segment, especially when the fitted curve is not particularly smooth. Therefore, fluctuations

or discontinuities are expected around connections of two adjacent segments. However, these
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drawbacks do not prevent the fitting technique from revealing global patterns of tangent

stiffness evolution, as shown in Fig. 3—11.

sk

Tangent Modulus, E [kPa]

) ‘
0 50 100 150
LSP [kPa]

Fig. 3-11 Observed stiffness evolution in the compression zone

Fig. 3—12 shows the relation accordingly proposed for stiffness evolution in the compression
zone. As shown, the linear function fj(LSP) defined in shear zone also applies to the
compression zone. LSPg and E*S are again identified by a kink on the global curve. Unlike in
shear zone, however, tangent moduli in compression zone eventually increase with LSP,
consistent with the well-established equation for normally consolidated soils of a straight line in

a In(p")~¢, plot.
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K=p'/Z if p> r, (3:26)
where 1" is a modified compression index and p'p is the pre-consolidation mean normal stress,
which typically is calculated given the over-consolidation ratio (OCR) and the initial mean

normal effective stress p'o. Accordingly, as a part of 3(LSP), the proposed evolution relation for

K in large strain range is as follows:
K =(p'\+LSP)/ X if LSP>LSP, (3.27)

where p'y is the initial effective pressure and LSP, = p’, — p'o.

LSP, LSP, LSP

Fig. 3—12 Relation for stiffness evolution in compression zone

The relation for G in this region is derived by assuming a constant lateral stress ratio for normal

consolidation:
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_ e (3.28)
==k g i rspsLsp
2(1+2k1°) p

where k™ is the lateral stress coefficient in a normal consolidation. By default, k™) =1 — sin(¢)

(Holtz and Kovacs 1981). ¢ is the friction angle.

According to experimental observations, the shearing-volumetric coupling in the
compression zone is insignificant. Hence, for convenience, the two coupling moduli Js and J, are
assumed to be one order of magnitude larger than K:

J,=J,=10K if LSP2=LSP, (3.29)
Egs. (3.27) to (3.29) constitute a complete representation of f3(LSP) (cf. Fig. 3—12), the definition
of large strain behavior in the compression zone. For over-consolidated soils, LSPs is smaller
than LSP,, as shown in Fig. 3-12. In this case, a linear interpolation is used to describe the

stiffhess evolution in the transition.

3.3.1.3 SMALL STRAIN BEHAVIOR

Based on the preceding discussions, the soil response at the beginning of any stress path
follows an identical pattern, i.e., as LSP increases, soil stiffness decreases linearly and rapidly
from a relatively large initial value. This behavior is mathematically described by Eq. (3.22),
and its range is specified by LSP;. As has been shown in Fig. 3—4, a characteristic zone, herein
named the small strain zone, is outlined by the dots scattering around the initial state, which

correspond to LSP; values obtained from stress probe tests.
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As introduced in Section 2.2, all stress probe tests on the compressible Chicago clay are
preceded by a ko-consolidation stage and a subsequent drained creep stage at constant vertical
stress with lateral restriction. It is well-known that most soils get stiffer after creep (e.g. Hueckel
and Nova 1979; Rammah et al. 2004), which is commonly referred to as “aging.” This aging

effect can be well demonstrated in the AL probe test.

As shown in Fig. 2-1, the AL test is essentially a continuation of the ko-consolidation since
these two paths are nearly identical. In Fig. 3—13, the measured volumetric response is plotted

for the entire process from the consolidation stage to the end of the AL test.
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Fig. 3-13. Volumetric response throughout the AL probe test

Fig. 3—13(a) and (b) plot the same data but in different fashions. In Fig. 3—13(a), the significant
“hump” at the beginning of the AL probe indicates a jump in soil stiffness, more specifically, the

bulk modulus. As the probe continues, however, the bulk modulus gradually decreases, until the
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local slope of the stress-strain curve in Fig. 3—13(a) approaches the slope at the end of the

consolidation stage.

The &,-logp’ curve in Fig. 3-13(b) is found quite consistent with Bjerrum’s (1967)
generalized time-dependent behavior of soils. Bjerrum (1967) postulated the dashed portion of
the curve in Fig. 3—14(a) is the soil response without any creep, while its solid counterpart results
from certain period of drained creep, or ageing. This response exactly corresponds to what is
decribed by Eq. (3.22), with point A corresponding to the LSP; measured from the AL test.
Therefore, the small strain behavior defined by Eq. (3.22) physically is an outcome of ageing,
assuming the soil is not cemented in any way. There is no reason that soil stiffness increases
only in one path direction, e.g., the direction of AL probe. Instead, soil stiffness increases in all
path directions, but only for a limited strain/stress range (e.g. Hueckel and Nova 1979; Rammah
et al. 2004). That is the reason why a small strain zone exists, as illustrated in Fig. 3—14(b).
Experimentally, LSPs can be determined for any stress probe by identifying the “kink™ on a
stiffness evolution curve. The scattering dots outlining the hatched area in Fig. 3—4 correspond

to those LSP; values experimentally obtained for compressible Chicago clay.
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Fig. 3—14. The relation between effect of creeping and small strain behavior

It is expected that the initial stiffness E’, will increase as the length of the creep period
increases. However, the form of Eq. (3.22) is not expected to change as creep period changes,
i.e., no matter how much increase in E’y occurs, soil stiffness always decreases linearly as LSP
increases, until E'; is resumed. E’ represents the stiffness level unaffected by the aging and thus
is independent of the ageing period. To estimate E’y for in situ soils, which typically have
experienced hundreds or thousands of years of ageing, it is recommended to use field seismic
testing. Though creep periods applied in laboratory are always shorter than in situ geological
histories, it is worth noting that both volumetric creep strain and stiffness increase due to creep

tend to change quickly at the beginning of creep and approach to asymptotic values as creep
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persists (Holtz and Kovacs 1981). Therefore it is still possible to make a close estimate of E

based on laboratory tests with short but adequate creep periods.

In literature, several criteria have been proposed for defining a range for small strain
behavior, including generalized strain (Simpson et al. 1979), major principal strains (Jardine
1985), strain energy (Burland and Georgiannou 1991) and tangent stiffness ratio (Puzrin and
Burland 1998). These definitions, however, are somewhat arbitrary and do not involve
specifying the mechanical nature of the small strain behavior. In comparison, Eq. (3.22) and the
threshold parameter LSPg provide a new set of definition for small strain behavior and small
strain range respectively, with an identified physical meaning and ease of experimental
determination. Note that this definition is intended for unstructured soils such as the Chicago

glacial clay and does not necessarily apply to cemented or structured soils.

3.3.2 STIFFNESS DIRECTIONALITY

The evolution relations enable a systematic and concise description of stiffness evolution
within each characteristic zone using a limited number of parameters, i.e. E*o, E*s, LSPs and p.
However, due to directionality, i.e., the dependency of soil response on stress path direction,
these parameters are actually functions of the path direction . This section deals with these
directionality functions — E*O(B), E*S(B), LSPy(B) and p(B). Based on experimental results,

piecewise linear relations are used to construct these functions. Measures are taken to make
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smooth transition between the shear and compression zones. Furthermore, discussions are

made on the relation of directionality with plasticity and recent history effect.

3.3.2.1 DIRECTIONALITY RELATIONS

Fig. 3—15 shows the directionality relation proposed for the threshold shear modulus, Gs, in
comparison with data calculated from Holman’s tests (2005). According to the test data, the
maximum value Guax occurs in the CPE test, where B = 1.5w, while its minimum value G,
occurs in the AL test (B = 0.66). Accordingly, a piecewise linear relation is proposed to

represent the observed variation in G with direction of loading, as shown in Fig. 3—15.

G, ® test
G proposed
e ) relation
compression ! compression
zone i zone
G eL
| | | . B (rad.)

0 Bupper 1.5 Prower 2

Fig. 3—15. Proposed directionality relation for G, in comparison with test data
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The two constants Bypper and Biower, introduced in Eq. (3.17), define the boundaries between the

shear and compression zones.

The directionality relation observed for the compressible Chicago clay is very similar to
some test data reported on other clays. Fig. 3—16 shows the data from stress probe tests on Pisa
clay reported by Callisto and Calabresi (1998), with ® defined in the same way as 3, except that
the angle is expressed in degree. The Pisa clay had a natural water content around 60%, an OCR
varying between 1.5 and 2, and a friction angle of about 26°. As shown, the Pisa clay data bear
much resemblance to the Chicago clay data, despite a small rightward shift, with maximum
values occurring around the TE test (o = 303.7°) and minimum values occurring in the CPC test
(o = 90°). Note that the shear modulus in Fig. 3—16 was computed by Callisto and Calabresi
(1998) as G = (0q/0¢s5)/3, which differs from Eq. (3.5) that is used herein with results shown in
Fig. 3-15. However, these two computations yield the same results in the CPC and CPE tests,
which control the overall shape of the directionality curves. In other words, the difference in
computing G does not affect the shape of the observed curves in a significant way. This
similarity between Chicago clay and Pisa clay suggests that different soils could have a similar

directionality relation for shear modulus.
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Fig. 3—-16. Directionality relation of shear modulus observed on Pisa clay (Callisto and Calabresi 1998)

There is no need to specify any directionality relation for J; because it is computed from G, in

both the shear and compression zones.

Fig. 3—17 shows the directionality relations proposed for K and Jys. Unlike G and Js, K and
J, are mutually independent in most cases. Consequently, K is experimentally obtainable only in
CQL (B =0) and CQU (B = m) tests, while J, is obtainable only in CPC ( = 0.5n) and CPE (B =
1.57) tests. Hence, the relations proposed in Fig. 3—17 are mostly hypothetical. However, these
hypotheses can be verified using this model to simulate relevant probe tests, as will be shown in

Chapter 5.
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As shown in Fig. 3—17(b), the J,- relation is discontinuous at 3 = 0 and 3 = n. There are
two main reasons for this discontinuity. First, Holman’s tests (2005) have shown that the
compressible Chicago clay undergoes contraction in both CPC and CPE tests, i.e., it is a shear-
contractive material. Accordingly, J, is positive for Aq > 0 and negative for Aq > 0. Suppose

that the J,-f relation is continuous on S €[0,27). Then, J, must be zero at certain J3,

corresponding to an infinite volume change due to an infinitesimal change in q, which is
certainly unrealistic. Hence, a discontinuous J,-B relation is inevitable for materials showing
consistent trend in volume change no matter how q changes, which is the case for most soils.
The relation proposed in Fig. 3—17(b) basically assumes a consistent sign of J, for either Aq > 0

(B<m)orAq<0(B>m).

Directionality relations have been constructed for the threshold stiffness E ', mainly based on
experimental observations. In a similar way, directionality relations could be developed for the
initial stiffness E*o, which, however, would double the number of model parameters. Instead, it
is found in Holman’s tests (2005) that the directionality relations E*S(B) and E*O(B) for the
compressible Chicago clay differ by an approximate constant. For instance, Fig. 3—18 shows
normalized Gy and G; curves with regard to B. As shown, Gy and G have similar trend of
dependency on [3, meaning that the ratio Go(p)/Gs(B) maintains constant for fe€[0,27). This
similarity between the initial and threshold stiffness relations has been detected on K and J, too,

with similar ratios for different tangent moduli.
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Accordingly, a material parameter is introduced:

#0 = G,(B) _ K,(B) _ Jvy () )

Fig. 3—-18. Observed directionality relations for G, and G;

* UGB K(P)

For the compressible Chicago glacial clay, 1’s ranges from 3 to 5. With this parameter, there is
no need to specify E o(B), as long as E i(B) is known. It is worth noting that E's values generally

are more reliable than E( values, because the latter demand more accuracy in strain

measurement.

J (B

for pel0, 2x)
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(3.30)
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Further reduction in parameter number is supported by another experimental observation
that the ratio of E"max/E min (cf. Fig. 3—15 and Fig. 3—17) remains an approximate constant for
different E*S(B) relations. Thus, another ratio is introduced as a material parameter:
r,=G_ /G . =K_/K_=Jv_ /Jv, (3.31)
For the compressible Chicago clay, ry is approximately 5. With ry, there is no need to specify

% * .
E max as long as E iy is known.

Fig. 3—19 shows the directionality relation proposed for LSP,, with its minimum LSP,,;, at
Brrc (= 2.16) and its maximum LSP,,;, in a range from Brte (= 4.39) to 2n. The ratio between
two extremes is designated by a constant.
top = LSP_, | LSP, . (3.32)

Another directional parameter used in this model is p, introduced in Eq. (3.23) to define the
nonlinearity of stiffness degradation at medium to large strains. According to the test data, the
dependence of p on direction is such that p equals a constant pic for any stress path leading to a
failure where o is vertical, and equals another constant pg for any stress paths leading to a
failure where ¢ is horizontal, with G denoting the maximum principle stress at failure. The
ratio of pic to pg is designated by a constant r,:

r, =g e 3.33)
Note that unlike Eo, E's and LSP,, p is only used in 4(LSP) (cf. Eq. (3.23)), which is strictly

applicable to the shear zone.
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Fig. 3-19. Directionality relation for LSP;

3.3.2.2 DIRECTIONALITY VS. PLASTICITY

Fig. 3-20 shows a stress-strain relation commonly observed in soils. This figure is a
classical representation of plastic response, in the sense that irreversible strain has resulted from
a loading-unloading cycle. To account for this phenomenon, the conventional approach of
elasto-plasticity uses strain decomposition and provides different relations for elastic and plastic
strain development. The directionality approach proposed herein attributes the irreversible strain
to the variation of tangent stiffness with loading direction. As shown in Fig. 3-20, the
irreversible strain develops because G, the shear modulus in the loading direction, is smaller
than G’, the shear modulus in the unloading direction. In other words, if directionality is

properly addressed, the irreversible or plastic response can be reproduced naturally. In this sense,
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directionality and plasticity are two different approaches to account for the same material

behavior.

A loading

Fig. 3-20. Stiffness directionality vs. plasticity

Note that in situ soils could have an initial state similar to the state represented by the point A
in Fig. 3-20. Therefore it is no surprise to observe the dependence of the initial stiffness E ¢ on
path direction. This variation of E*y with path direction does not diminish no matter how low the
strain level is reached to measure E'y. However, if a soil does exhibit purely elastic responses
around initial state, e.g., as postulated by the Y; surface of the 3-loci hypothesis (Smith et al.
1992), one can accordingly use a constant function for Eo(B), as a special case of this

directionality approach.
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3.3.2.3 DIRECTIONALITY & RECENT HISTORY EFFECT

The effect of recent stress history addresses the issue how the change in the stress path
direction affects the subsequent soil stiffness. As shown in Fig. 3-21, the dashed curve
represents a stress history up to point O, a current stress state. The arrow denoted by [
represents a subsequent stress increment, while the arrow denoted by 3, represents the direction
of the recent history. According to the hypothesis made by Atkinson et al.(1990), provided that
Bp 1s fixed while B is allowed to vary in its entire range, soil stiffness tends to reach the
maximum value if a complete stress reversal occurs, i.e., | B- 3| = , while the minimum value is

encountered if there is no change in the path direction, i.e., | B- Bp| = 0.

A
q

»
|

Fig. 3-21. Path direction of recent stress history

Though the recent history effect has not been included in the current model, it could lead to a
further generalization of the proposed directionality relations, by taking into account stress
history prior to the initial stress state. It is clear that the directionality relations proposed in this
model refer to a unique stress history — ko-consolidation. However, other stress histories also

exist in reality, e.g. ko-unloading due to water table raising in the recent geologic history. In the
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probe tests performed on the Pisa clay (Callisto and Calabresi 1998) (cf. Section 3.3.2.1), the
initial stress state was preceded by a segmented stress path composed of an isotropic
consolidation and a triaxial compression shear (Callisto and Calabresi 1998), i.e., the recent
history direction 3, corresponds to the shearing phase of a conventional triaxial compression test.
But B, corresponds to the ko-consolidation in the tests conducted on the Chicago clay. This
difference in the recent stress history might explain the slight but consistent difference in the 3

values corresponding to the two extreme stiffnesses, as mentioned earlier.

Though there is no other experimental justification, it is possible that the difference in the
recent stress history, denoted by AB;, only makes the directionality relations shift along the -
axis by a certain amount, denoted by Af. If this is the case, the recent history effect issue can be

reduced to defining the relation between AB; and As, with the directionality relations intact.

For the proposed model, the recent history effect essentially relates to how the directionality
relations vary with the recent history. However, it is best to note that there exist contradictive
experimental observations on this issue, and no conclusion has been reached to date among
researchers (e.g. Clayton and Heymann 2001). More experimental investigation is required to
fully understand this specific behavior. When definitive data exists, the current model could be

changed to reflect the observations.
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3.3.3 STRESS LEVEL DEPENDENCY

In the previous sections, relations for stiffness evolution and stiffness directionality have
been proposed based on experimental observations, mainly from Holman’s stress probe tests
(2005). Note that those tests start from the same stress state. In many cases, one needs to make
prediction for the same material, but with a different initial stress state. For instance, in different
areas around the Chicago region, the compressible Chicago clay actually finds itself in various
depth, corresponding to different in situ stress states. Under such a circumstance, one
particularly needs a relation to describe the stiffness dependency upon the initial stress state, so
that the material parameters obtained at a specific initial stress state can be employed under

general conditions of arbitrary initial states.

Given the constitutive relations developed previously, the aforementioned problem can be
mostly solved by making E i (cf. Fig. 3-15 & Fig. 3-17) dependent upon the initial mean

normal stress p'p:

Ep.=E., p.(py/p,) (3.34)

where p, is atmospheric pressure (= 100 kPa). E'.f and n, both nondimensional, control the
dependency of E'min on p’o. This equation, with trivial variance in expression, has been
commonly used for soils (e.g. Duncan et al. 1980). For most soils, n = 0.5 can be used as a
default value (Pestana and Whittle 1999). According to Eq. (3.34), E'w serve as material
parameters, while E i, are treated as internal parameters, internally calculated by the model

based on E s and p'o. Ideally, dependency of E i, on qo should be taken into account as well.
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However, it seems that no established relation is available in this aspect. Thus, qo-dependency

is left for future improvement.

Unlike Ein, the parameter LSPy,;, (cf. Eq. (3.32)) mostly depends on the time-dependent
response of the material, as discussed in Section 3.3.1.3: There is no direct relation of LSP,,, to

the initial stress state, though this parameter might vary with different in situ conditions.

In this model, LSP, is used as an internal parameter, which is related to a normalized

parameter LSP;. via the following definition:

LSPref

=LSP, /p, (3.35)
Again, p, is atmospheric pressure. The purpose is to achieve a nondimensional material

parameter.

3.3.4 CRITERION FOR STRESS REVERSAL

Note that the constitutive equations of the proposed model are essentially founded on
experimental observations made in monotonic loading paths, in which no abrupt change in stress
path direction is encountered. In contrast, an unload-reload cycle in an oedometer test is made
by switching between increasing and decreasing the vertical stress. Such stress reversals take
place in cyclic loading and wave propagation. Apparently, the proposed model cannot be
directly applied to these conditions, if proper modifications are not made. This section discusses

the mechanism the directional stiffness model applies to deal with stress reversals.
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To this end, the first issue is to define the stress reversal in a general way. In MIT-S1
model (Pestana and Whittle 1999), a stress reversal point is defined in strain using the following
criterion:
2:x<0 (3.36)
where the tensor y is the accumulated strain from the last reversal point, y is the incremental

€,9

strain, and the operator “:” represents a double contraction. Eq. (3.36) means a stress reversal

occurs when y and y are “opposite” in a tensor space. Basically, y represents the overall strain

path direction, which can be described in other ways. In a hypoplastic model (Niemunis and
Herle 1997), the incremental strain is compared to the so-called intergranular strain to determine
stress reversals. Following the basic idea behind these criteria, this model defines a stress
reversal in terms of stresses:

):6'<0 (3.37)

(¢',~c'

where o'. is the current stress, G’y corresponds to the last reversal point, and o' is the
incremental stress. Accordingly, this criterion uses (6'.- G'ry) to represent the overall stress path

direction from the last reversal point.

In a perfect hysteretic elastic model (Hueckel and Nova 1979), stiffness evolution is
described in terms of some measure of distance from the current state to the reversal point. This
distance is zeroed whenever a new reversal point is found. Note that the stiffness evolution in
the proposed model is described in terms of LSP, which is a distance between the initial and
current stress states. In analogy to the hysteretic model, the definition of LSP can be slightly

modified:
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c 3.38
LSP=[" (dp')’ +(dg)’ (3.38)

where J’ ° means an integral path identical to the actual stress path from the reversal stress 'y

to the current stress 6’.. When a stress reversal is identified using Eq. (3.37), ¢'ry is updated by
o'c and thus LSP is zeroed according to Eq. (3.38). That means small strain response will be
invoked upon stress reversal. Though the small strain behaviour in the model is initially defined
as a consequence of ageing, it is convenient to use the same definition to describe post-reversal
behaviour. Though these two behaviours have different physical natures, they have similar

patterns, i.e., an initial high stiffness and subsequent quick degradation.

In accordance with Eq. (3.38), the function of stress level dependency for E iy (cf. Eq. (3.34))
is modified as follows:
Epw=E p.(P/p,) (3-39)
where p'rey corresponds to O'rey. E*min will be updated every time that o'y is updated, according
to Eq. (3.39), and will be hold constant until next stress reversal occurs. Note that the initial
tangent moduli E*; can be derived from E’ni, using the directionality relations and the r’ ratio
(cf. Section 3.3.2.1 ). At an initial state, or in a monotonic loading, p'.y = p'o, Where p'y
corresponds to the initial state. Therefore, Eqs. (3.38) and (3.39) do not alter model responses

under monotonic loading conditions, only extend the model to stress reversals.

Note that the stress reversal criterion is different from the loading-unloading criterion in
elastoplastic theory, which compares the incremental stress o' to the local norm of the yield

surface. At same stress point, the direction of the local norm is relatively constant in most
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elastoplastic models, while the overall stress path, which is defined by (6'c- 6"ry) in this model,
might point to any direction in stress space. In fact, material responses upon stress reversals are
closely related to the issue of recent history effect (Atkinson et al. 1990). Using Egs. (3.38) and
(3.39), the response generated by the model upon a stress reversal is generally stiffer than that in
a monotonic loading, assuming that this comparison is made at same stress points and with
identical incremental stresses. Therefore, this proposed model is expected generally to be
consistent with the recent history effect suggested by Atkinson et al. (1990), though no special

measure has been taken to address this issue.

3.4 MATERIAL PARAMETERS

Table 3-1 lists the thirteen material parameters involved in this model, description for each
parameter, recommendations for their experimental determination, and values found from block
samples of compressible Chicago clay. The over-consolidation ratio OCR is used to initialize
LSP, (cf. Fig. 3-12), an internal parameter in this model. For the compressible Chicago clay,
also for most soils, the friction angle is not a pure constant. Instead, it is notably dependent on
p's, which will be further discussed in the Chapter 5. The value listed in Table 3-1 is a mean

value for the compressible Chicago clay.

The typical conventional properties of the Chicago clay are summarized in Table 3-2, as a

comparison with the values listed in Table 3-1.



Table 3-1. Input parameters of the directional stiffness model

Parameters | Description Tests Chicago Clay
Giref Eq. (3.34) triaxial/bender element | 19
JVier Eq. (3.34) triaxial 116
Kief Eq. (3.34) triaxial 48
n Eq. (3.34) triaxial/bender element | 0.55
1’ Eq. (3.30) triaxial 4

Ix Eq. (3.31) triaxial 5
LSPer Eq. (3.35) triaxial 0.07
rLsp Eq. (3.32) triaxial 3
uc Eq. (3.23) triaxial 8

I, Eq. (3.33) triaxial 0.5
A Eq. (3.26) triaxial/oedometer 0.04
OCR over-consolidation ratio | triaxial/oedometer 1.5
) friction angle triaxial test 28°

Table 3-2. Summary of conventional properties of compressible Chicago clay

Parameter Value
Water content (%) 28.5
Liquid limit (%) 37
Plasticity index (%) 19
Void ratio 0.79
Unit weight (kN/m’) 19.0
Limit pressure(kPa) 190
OCR 1.5
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Most of these thirteen parameters can be estimated in triaxial probe tests. Using the
directionality relations designated in the model, the value of E*S(Bl) can always be derived from
E'«(B,), where B # Bo. Therefore, the ways to experimentally determine E'.¢ are essentially
unlimited. As a general rule, it is recommended to choose stress probes approximating as closely
as possible the loading conditions expected in the problem of interest. To analyze a supported
excavation, for instance, the RTC and RTE tests are particularly desirable for parameter
development, which well represent the loading conditions for soils behind the support wall and

soils at the bottom of the excavation, respectively. More discussion will be given in Chapter 5.

A brief procedure of parameter development for this model is given here as an illustrative
example. Triaxial probe tests with small strain measurements are performed in three path
directions — CQL, CPC and CQU. Certainly, these tests are better performed from an initial
stress state matching the in situ condition. The two G values from CPC and CQU tests are used
to compute Gref, Gmax/Gmin ratio and thus the ry ratio. Kier and Jv,er are obtainable from CQL and
CPC tests, respectively. The Kp/Kmin ratio from CQL and CQU tests serves as a double check
for ry. If necessary, the mean value of Gyax/Gmin and Kiax/Kmin ratios should be used to estimate
the 1, ratio. Two Gy/G; values, two Ky/K; values and one Jvy/Jvs value can be obtained from
these three tests and the 1’ ratio can be estimated using their average (cf. Eq. (3.30)). Given the
directionality relation designated in Fig. 3—19, the LSP; values from the three probe tests are

more than adequate for estimating both LSP. and risp values. The parameter pc can be

estimated using the mean p value obtained from the CQU and CPC tests. A~ and OCR are
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attainable from CQL test and ¢ can be measured in both CPC and CQU tests. Though the
power n can be obtained using bender elements, abundant test data reported in literature have

shown that n is close to 0.5 for most soils (e.g. Pestana and Whittle 1999).

The ratio r, cannot be obtained from the CQL, CPC and CQU tests. In the case that the
material response in the extension side (Aq < 0) is of critical concern, performing an extra CPE
test is highly recommended. Otherwise, it is feasible to simply use a default value, e.g. 2, for this
parameter. In many cases, not all of the material parameters are critical. For instance, the
compression index A s generally irrelevant for simulation of shear tests, while the friction angle
¢ is mostly unimportant for simulating oedometer tests. Similar situations exist for the other
parameters listed in Table 3-1. It largely depends on the goal of specific application and users’
judgment which parameters deserve experimental exploration and which parameters can be

roughly estimated.

The aforementioned procedure employs local small strain measurements to obtain E’; values
in triaxial tests, typically requiring mounting electronic units, e.g., LVDTs on the soil sample,
which seems too cumbersome to become a common practice in the geotechnical industry. In the
author’s opinion, the E*S value is much more reliable than the E*o value and is much more easily
obtained, since detecting the “kink™ does not require fine-resolution small strain data. Hence, if
small strain behavior is not a big concern, it is recommended to use measured E*S values to
estimate E*o values, using an assumed 1y value. Alternatively, data from field seismic tests can

be used to estimate Gy value at = n/2, as suggested by Holman (2005). Hopefully, when more
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data become available regarding some of the parameters, e.g., ros, Iy, I'sp and ry, or relations
between individual parameters, e.g., the Gi.f/Kr ratio, the required tests for the parameter
development is expected to be reduced further. And the demand for an unconventional test

technique, e.g., small strain measurement or bender element, is expected to be diminished.
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4 NUMERICAL IMPLEMENTATION IN FINITE
ELEMENT METHOD

This chapter describes how to implement the proposed model in the finite element method.
First, a coupling system typically used to perform a non-linear finite element analysis is briefly
explained. This coupling system is composed of two solution schemes — a global scheme and a
local scheme. The proposed model is integrated in the local scheme, using a modified
substepping method that not only has automatic error control, an advantage of the original
substepping method, but also is capable of treating the incremental non-linearity caused by
stiffness directionality, a new type of constitutive relation proposed in the preceding chapters.
Furthermore, a consistent tangent matrix for the proposed model is derived to guarantee the
stability and efficiency of the proposed substepping method. For this part, it is especially
important to understand how the coupling system works, i.e., the interactions between the global

and local solution schemes.
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4.1 GLOBAL AND LOCAL SOLUTION SCHEMES

A static finite element method involves two basic types of equations — equilibrium equations
and constitutive equations. For a concise discussion, an equilibrium equation can be expressed
in a simplified weak form:

R, (0,,d,)=f/"(0,.d,)~ f"(d,)=0 @D
where the subscripts I and J denotes nodal number and Gauss point number, respectively. dj, the
nodal displacement, and o, the stress at a Gauss point, are unknown variables in this equation.
An equilibrium demands the nodal residual force R; to be zero, i.e., the internal force f™; equals

the external force [ for each finite element node.

At a Gauss integration point, a constitutive equation can be generally expressed in the
following form:
&, =y(,) “r
When a finite element analysis only involves simple elastic materials, i.e., an explicit relation
between 6, and €, can be obtained, the constitutive equation can be directly substituted into the
equilibrium equations. Since g; can be expressed in terms of dj, the only unknown in Eq. (4.1)
becomes d;. Therefore, the nodal displacements can be solved first and the stresses at Gauss
points can be obtained subsequently. However, this approach does not work for general
conditions involving non-linear materials. A general approach to solve the finite element
equations uses a coupling system, in which a global solution scheme and a local solution scheme

are interactively operated to obtain solutions.
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The global solution scheme deals with the equilibrium equations. In this scheme, stresses

are treated as constants, while nodal displacements are collectively updated using the global
stiffness matrix. In most finite element packages, this updating typically is carried out using
Newton method (Belytschko et al. 1999), especially for static analyses. Discussions herein are
thus limited to the Newton method serving as the global scheme, though other numerical
methods can be used as well (Abbo and Sloan 1996; Belytschko et al. 1999). An illustration of
the Newton method is given in Fig. 4-1. In this figure, the superscript denotes the iteration
number. d and R in the bold case are equivalent to R; and d; in Eq. (4.1), respectively. As shown,
the computation starts from d’, and iteratively converges to the wanted solution d”. The iterative

procedure essentially depends on the computation of the inverse of the Jacobian 6R/dd.

RO |-

R! |-oeeee

(U |

d? d  d?

Fig. 4-1. Illustration of the Newton method
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In a finite element analysis, numerical computation typically is executed in a number of
steps, which are usually specified by users in most finite element codes. A finite step typically
requires a computation to be executed in a number of small increments. In ABAQUS (2003),
there is a set of criteria that automatically determines the magnitude of subsequent increment as a
computation proceeds. For each increment, the Newton method is applied to obtain converged

nodal displacements using a series of iterations, as shown in Fig. 4-1.

After the i"™ Newton iteration is completed within the n™ increment, the global solution
scheme computes Ag',, the strain increment at a specific Gauss point, based on the updated nodal
displacements. For discussions herein, the Gauss point number, denoted by the subscript J
previously, is dropped for simplicity. Ag', is then passed to a local solution scheme, which
accordingly integrates Ac’,, the stress increment, and AE',, the increments of state variables,
based on specified constitutive equations. Note that Asin, Acin and A?’;in all refer to the same
Gauss point. Such an integration is made one-by-one for each Gauss point in the entire finite
element mesh. Hence, the local solution scheme is point-dependent. When different materials
are involved in the same analysis, different local solution schemes can be used for different
points. For a path-dependent material, which is the case for the compressible Chicago clay, the
integration of Ac', and AE', should respectively start from o,.; and &, the states converged in
the (n-l)th increment. Accordingly, Ag', actually corresponds to the total change in nodal
displacements counted from the 1% to the i"™ jteration within the current increment. This

treatment can effectively avoid non-converged values of stress and state variables from
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erroneously driving the constitutive equations (Belytschko et al. 1999) and it has been

implemented in most commercial codes.

A main output of the local scheme, Aoy, is then given back to the global scheme, wherein the
corresponding stress is updated to o', and subsequently will be used as a constant in the (i+1)"
Newton iteration. This procedure continues until converged solutions are achieved for the
current increment, i.e. the n™ increment. Another important output of the local scheme is do7de,
a tangent stiffness matrix for the Newton global scheme to compute the Jacobian matrix 0R/dd,
which will be discussed in details later. The interaction between the global and local solution

schemes is illustrated in Fig. 4-2, wherein the subscripts are consistent with those used in Eq.

(4.1).

R(o,,d,;)=0— Global Solution Scheme

equilibrium l

&y
Ag;
constitutive omeeee l --------------------------------- !
g="Y() Local Solution Scheme

Fig. 4-2. Coupling system of the global and local solution schemes
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Both implicit and explicit methods can be used in either global solution scheme or local
solution scheme. Basically, an implicit method requires an inverse of Jacobian matrix while an
explicit method does not. As stated previously, Newton method, which is an implicit method, is
favored for the global scheme. In contrast, using which method for local solution scheme
depends on specific model and does not have an established standard. The pros and cons of

applying the two different methods to local solution schemes have been discussed in literature

(Sloan 1987; Potts and Ganendra 1994; Luccioni et al. 2001; Zhao et al. 2005).

Note that whether an implicit or explicit method is used, the local solution scheme in a
coupling solution system has the same computational sequence, i.¢., Opn.1, En1 and Ag'y are passed
in, while Acin and A?’;in are to be integrated. For the rest of this chapter, Asin and Acin are

simplified as Ag and Ac, respectively, if no explanation is otherwise given.

4.2 MODIFIED SUBSTEPPING SCHEME FOR STRESS INTEGRATION

This section describes a solution scheme developed for integration of the proposed model.
This scheme is an improvement of the original substepping scheme with automatic error control,
which is briefly introduced for general constitutive relations of a rate-form type. Then, the
improved scheme is presented, with regard to the specific relations involved in the directional
stiffness model, especially the stiffness directionality, to which the original substepping scheme

does not directly apply.
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4.2.1 AUTOMATIC SUBSTEPPING WITH ERROR CONTROL

The local solution scheme devised for the directional stiffness model is a modification of the
automatic substepping with error control (Sloan 1987), which is an explicit method. To describe

this scheme, it is necessary to give a brief description of the substepping method first.

This method divides Ag into a number of substeps Agx and integrates a constitutive relation in

each Agy:

m 4.3)
Ag, =T Ae, DT, =1
1

where subscript k is the substep number and m is the total number of substeps. 7} is a scalar no

more than one. Integrations are made in two rounds within each Agg. For the first round:

Ao-li =E(0,.,,6)Ag, @4
Aé]l =E(0,1,61,A8,)

In the original substepping method (Sloan 1987), the tangent stiffness matrix E is a function of
stress o and a set of state variables &, while = is a known function to calculate increments of
state variables. Note that oy, and &, are known in the k™ substep. For Eq. (4.4) basically is an
forward Euler method, Aclk has a local truncation error of order O(7; kz). The results of the first
round of integration are used in the second round:

Ao} =E(o,,&)Ae, 4.5)
A& =E(0y.5.A¢8,)

where
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o, =0, ,+Ao, (4.6)

é:; = é:k—l + Afz&

Ao’y and A’y are illustrated in Fig. 4-3, wherein Ao’ is an underestimate of stress increment

. 2 . .
while Ac“ is an overestimate.

A,

0 . ,
A&'k

Fig. 4-3. Two stress integrations in each substep

A more accurate integration is thus given by:

Ao, =(Ao, +Ac})/2 @.7)

AE, = (AE +AED)/2
Using Taylor expansion, it can be shown that the truncation error of Aoy is O(7] i) (e.g. Fellin

and Ostermann 2002). This error can be approximated by:

85
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Err, ~ (Ao} —Ao,)/2 4.8)
Erry is of order O(T)’), serving as an upper bound estimate. Hence, the global error, which is
calculated by a summation of Err; over k = 1 to m and thus is of order O(T%), can always be
controlled by limiting substep size 7;. To this end, a relative local error REy is defined and

satisfies:

_IErm Il (4.9)

Based on the fact that Erry is of order O(7; kz), T+, can be estimated given T; and RE}:

oL o
k

T, = 0.8[
k

where 0.8 is a reduction factor, introduced for predicting 7j+; conservatively. To prevent an

extrapolation from being carried too far, the Ty, estimated by Eq. (4.10) is further constrained

by:

0.17, <T,,, <2T, 4.11)
Egs. (4.10) and (4.11) together enable an automatic procedure, in which integrations are

made using Eqs. (4.4)~(4.7) while Ty is iteratively updated until Eq. (4.9) is satisfied. Then, Eq.

(4.10) and Eq. (4.11) will provide an initial value of Tj;, to initiate the procedure for the next

substep. The entire process is started by setting 7; = 1 and continues until ) 7; > 1. Note that

this error and substep size control is fundamentally similar to the Richardson extrapolation

(Fellin and Ostermann 2002), though these two methods appear to have different forms.

86
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Using the substepping method for stress integration has two main advantages. Beside the

simplicity of numerical implementation for complex models (Zhao et al. 2005), substepping for
the local solution scheme generally can reduce computational time for solving the global
problem. In most finite element analyses, computation difficulties, typically caused by severe
non-linearity in material or in geometry, usually only occur at a limited number of Gauss points.
These difficulties will force the global scheme to use a smaller increment to proceed, if no
substepping is allowed in the local scheme. This amounts to letting the most restrictive Gauss
point control the global problem. In contrast, the automatic substepping method is able to
increase the number of substeps only at those Gauss points with severe situations, without
reducing the global time increment too much. In this way, the computational cost of more local
substepping at limited Gauss points is marginal in comparison with the cost of more global

iterations (Perez-Foguet et al. 2001).

4.2.2 ASUBSTEPPING SCHEME IMPROVED FOR INCREMENTAL NON-
LINEARITY

In essence, the proposed directional stiffness model can be expressed in an incremental form:
oo = E(o,LSP, )o€ (4.12)
where E(o, LSP, B) is a generalized function for the tangent stiffness matrix, including the
relations for stiffness evolution with LSP and the relations for dependency of stiffness on the
path direction . The current stress G is needed for computing the internal variable LSP¢ given .

An implicit form of E(o, LSP, ) has been given by Eq. (3.13).

87
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Details of E(o, LSP, ) have been given in Chapter 3. But the discussion therein is not

organized in a computational sequence. Before moving forward to the numerical scheme, it is
worth giving a sequential outline of the procedure for E(o, LSP, ) calculation:

1.) Calculate Ey, E's and LSP, based on B (cf. Fig. 3—15, Fig. 3-17 and Fig. 3-19);

2.) If LSP < LSP;, calculate G, K and J, using Eq. (3.22), and J; using Eq. (3.5);

3.) If LSP > LSP,, use Eq. (3.17) to determine whether the path direction falls in the shear
zone or the compression zone (cf. Fig. 3—4). For the shear zone, calculate LSPrusing Egs.
(3.18)~(3.20). Then calculate E’, the four tangent moduli, according to Egs. (3.23) and
(3.5). For the compression zone, calculate E' using Egs. (3.27)~(3.29);

4.) Calculate variables A~E with the four tangent moduli using Eq. (3.11), and then the

tangent stiffness using Eq. (3.13).

Given the form of Eq. (4.12), it is natural to integrate the proposed model using the strategy
of the substepping method, which is especially suitable for an explicitly expressed tangent
stiffness matrix, as shown in Egs. (4.4) and (4.5). Substituting Eq. (4.12) in Eq. (4.4), the first

round of integration in each substep is as follows:

Ao, =E(o,_,LSF, ;. B,)Ag, “-13)
ALSP! = ALSP(Ac,)

where the definition of ALSP is obtained by replacing each infinitesimal “8” in (3.14) with finite
increment “A”. Similarly, stress can be integrated for the second round:
Ao} = E(o,,LSP,, B,)A¢g, (4.14)

where
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o, =0, ,+Ac; (4.15)
LSP, = LSP, , + ALSP}

Finally,

Ao, =(Ac, +Ac})/2 (4.16)

ALSP, = ALSP(AG,)

The error control and iterative procedure are the same as Egs. (4.8)~(4.11).

Note that Eq. (4.13) uses Py instead of By.;. Unlike o and LSP, which are accumulated from
the previous state, B only depends on the current state. If Bk is used in Eq. (4.13), there will be
two main problems. For the first local substep within the first global step, i.e., k=1 and n =1,
there is no simply way to make an initial guess of Bo. Furthermore, when a stress reversal is
applied, i.e., Px is quite different from Py.;, an integration using Bi.; might produce totally

erroneous results that lead to serious computational instabilities.

Bk can be expressed in terms of Ac'y according to Eq. (3.15):
B, = p(Acy) @.17)
Eqs. (4.17) and (4.13) together form an implicit scheme. Instead of Ac'y, Py is treated as the
unknown to be solved, by substituting Eq. (4.13) in Eq. (4.17):
H(p,) = p, — P(E(0o,_,LSF,_,, B, )Ag,) =0 (4.18)
To solve Eq. (4.18), the Newton method is used. The derivative 0H/0Bx is obtained using
numerical differentiation, since its analytical derivation is extremely tedious. During updates, it

is guaranteed that By falls in the range [0, 2rt], by invoking the periodic relation By = Bx + 2nN

&9
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accordingly, where N is an integer. A flowchart of the subroutine for (3 calculation is shown
in Fig. 4-4. There are two numerical parameters used in this subroutine - TOLgand rg. TOLg, in
rad., specifies the convergence criterion for the iterative procedure. A nondimensional quantity,
rg, designates the perturbance for numerically calculating 0H/0Bx. For computations with the
compressive Chicago clay, it is adequate that TOLg= 0.01 and rg = 0.1. In Fig. 4-4, By 1s the

path direction obtained in the previous substep.

Ac' =E(o, ,LSP,,,B)As,
Bl = B(Ac')

B =p! +1,; xTOL,
Ac’ =E(o, ,,LSP, ,,B})Ae,

B; =B(Aa?)
AB=~(By =B (B = BB - B,)
Bi=PB.+AB

|

< B, =B, Ac', = Ac’ >

Fig. 4-4. Subroutine for 3 calculation

Note that B*k is approximated by Pk in Eq. (4.14), with B*k = B(Ac%). This approximation,

made for saving computer time, is justified by the fact that Ac'y is limited by the error control
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and thus the difference between By and B’y tends to be negligible. Consequently, no extra

solution scheme, like that for Eq. (4.18), is needed for the second round of integration.

Hence, the automatic substepping method with error control (Sloan 1987) can be slightly
modified to integrate the proposed incrementally non-linear model. Specifically, the incremental
non-linearity, or the path dependency, can be treated in the first round of integration in each
substep. As a result, the path direction of the stress increment is determined. The remaining part
of the solution scheme then iteratively chooses the substep size and computes the magnitude of

the stress increment. The flowchart of this modified substepping scheme is shown in Fig. 4-5.
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Fig. 4-5. Flowchart of the modified substepping scheme for the proposed model

4.3 ALGORITHMIC TANGENT MATRIX

4.3.1 DEFINITION

Newton method is an iterative solution procedure, the key part of which is a Jacobian matrix

computed at the end of each iteration. When Newton method serves as a global solution scheme,
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which is the case for discussions herein, computing this Jacobian matrix requires the local
solution scheme to provide a tangent stiffness matrix for each Gauss point. This tangent stiffness
matrix is a result of consistent linearization of finite element equations (Hughes and Pister 1978).
Simo and Taylor (1985) pointed out that computing this matrix should be consistent with the
integration algorithm used in the local solution scheme, which can be defined as follows with the

notation used herein:

oA 0(Ao) (4.19)
o(Ag) |,

Again, Ag is the strain increment calculated by the global scheme at the end of the i™ Newton
iteration of the current n™ increment, while Ac is the stress increment calculated by the local

scheme based on Ae. “0” is differential operator. “|i” means the derivative is evaluated at the

cc|.”
end of the i" iteration, because the Jacobian matrix in Newton method is always evaluated at the
end of each iteration. C*™ is the resulting matrix, herein referred to as algorithmic tangent

M is to find the relation

matrix (ATM). According to Eq. (4.19), the key of computing ¢’
between Ao’y and Ag',, which not only depends on the constitutive equations but also on the

algorithm used to integrate these equations.

The counterpart of ATM is a continuum tangent matrix (CTM), which is computed as:

crv _ OO (4.20)

C =
o€ |,

wherein the relation between stress ¢ and strain € is described by the original constitutive

equations. The difference between ATM and CTM is graphically demonstrated in Fig. 4-6,
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wherein the stress-strain relation o(g) is defined by the original constitutive equations, while
Ac(Ag) corresponds to the numerical integration of these equations by certain local solution
scheme. Though these two relations ideally should be close to each other, their local tangents
could be quite different, which means ATM and CTM could be quite different, as shown in the
figure. Simo and Taylor (1985) showed that using ATM instead of CTM can achieve the
expected quadratic convergence rate with a Newton global scheme. In essence, ATM complies

with a consistent linearization of finite element equations, while CTM does not.

Fig. 4-6. Continuum tangent matrix (CTM) and algorithmic tangent matrix (ATM)

4.3.2 DERIVATION

Substituting Eqgs. (4.13) and (4.14) in Eq. (4.16), the relation between Aoy and Agg can be

obtained:
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A, = C,As, @21)
¢, = 0.5x[E(LSP, (Ac)), A(AG) + E(LSP, . f(AG)))]
¢k 1s a secant stiffness matrix over a single substep, which can be easily calculated, for the two

required matrices have already been calculated in Eq. (4.13) and Eq. (4.14), respectively.

Accordingly, the stress-strain relation Ac(Ag) integrated with the automatic substepping can be

determined with ¢, known for each substep, as shown in Fig. 4-7.

A

(o)
7| Aom
AO'z

Ao <
AO'l

v

Fig. 4-7. Stress integration with substepping over entire strain increment

According to Eq. (4.19), ATM in essence is the local tangent at the end of the Ac(Ag) curve.
Hence, to calculate the ATM for a model integrated by substepping, what really matters is the

relation Ac,(Agen) at the last substep, rather than the entire relation Ac(Ag), 1.e.

ATM _ o(Ac,) 4.22)
 d(As,)|
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where “|;,” means the derivative is evaluated at the end of the m™ substep, the last one. Note

that Eq. (4.22) is applicable to any model integrated with a substepping scheme, not limited to a
specific model. In Perez-Foguet et al.(2001), an expression of ATM for substepping scheme is
derived directly based on Eq. (4.19), which takes every substep into account and involves m
times of matrix inverse. In contrast, the point presented herein suggests that only the last substep
is relevant to 4TM, because the differential operator “0”, in either Eq. (4.19) or Eq. (4.20),
computes the local tangent at a specified evaluation point. The details of the differentiated
function at any point other than the evaluation point basically have nothing to do with the
derivative at the evaluation point, as illustrated in Fig. 4-6. Substituting Eq. (4.21) in Eq. (4.22),

the expression of the ATM for substepping results:

(4.23)
CATM — Cm + 6Cm gm
o0(Aeg,)

cm is calculated according to Eq. (4.21). The derivative of ¢,, with respect to Agy, is governed by
the local non-linearity of the constitutive relation and is independent of the size of Aen. This
derivative is difficult to obtain, due to the complexities of the constitutive equations. However, it
is noted that Agy, generally is quite small, thanks to the error control of the automatic substepping
method, i.e., a conservatively small value usually assigned for TOLgg in Eq. (4.9). Consequently,
the second term on the right hand side of Eq. (4.23) can be conveniently neglected:

cAT™M ¢ (4.24)
Apparently, the smaller the Agy, is, the more accurate the computed A7M will be. On the one

hand, the accuracy is always achievable by controlling the TOLgg value, though a smaller TOLgg
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value means more computation time. This possible extra cost in computation time is justified,
especially when computing the A7TM must otherwise resort to numerical differentiation (e.g.
Fellin and Ostermann 2002). On the other hand, a “minor” deviation from the true ATM is not
expected to impair Newton method’s efficiency, though a totally irrelevant substitute for A7M
could make the solution scheme never converge. The well-known quasi-Newton method could
serve as an example of what a “minor” deviation could be, in which the A7M computed for one
iteration is repeatedly used for several subsequent iterations so that the overall time-efficiency
can be enhanced by skipping some computations of matrix inverse. That means the Newton
method itself allows certain amount of inaccuracy in computing the A7M, which serves as

another justification for Eq. (4.24).

4.3.3 TESTING OF CONVERGENCE RATE

To evaluate the convergence rate resulting from the algorithmic tangent matrix derived in the
previous section, a series of computations with ABAQUS (2003) were performed on single
elements under various load conditions. The computations include a uniaxial loading test, a
uniaxial unloading test, a biaxial compression test and a reduced biaxial extension test. The
boundary conditions and load conditions for each simulated test are illustrated in Fig. 4-8. All of
these computations start from the same initial state, with the vertical stress ¢’y = 133 kPa and
the horizontal stress ¢’yo = 74.5 kPa. In these computations, both TOLrg (Eq. (4.9)) and TOLg

(Fig. 4-4) are equal to 0.001.
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(a) (b) (©) (d)

Fig. 4-8. Computations for convergence rate evaluation: (a) uniaxial loading, (b) uniaxial unloading, (c)
biaxial compression, and (d) reduced biaxial extension

The convergence information obtained from the computed tests is listed in Table 4-1 to Table
4-4. As introduced in Section 4.1, the residual force is the difference between the internal force
and external force at a specific finite element node (cf. Eq. (4.1)). As illustrated in Fig. 4-1, the
residual force is evaluated at each iteration in a Newton scheme. The “residual force” columns
within the tables show “largest residual force” values recorded by ABAQUS, which can also be
obtained in the ABAQUS Message file or via the Visualization module of CAE. The reduction
ratio is the absolute value of the ratio of the current residual force to the previous residual force.

The smaller the reduction ratio, the faster the Newton scheme will converge.

Table 4-1. Convergence of the computed uniaxial loading test



increment 1 increment 10 increment 20
iteration| residual | reduction| residual reduction | residual reduction
# force rate force rate force rate
1 -5.58E+00 -- 1.04E-01 -1.18E-01
2 -6.04E-01 0.108 6.95E-04 0.0067 6.31E-04| 0.0053
3 -1.18E-02 0.020 4.67E-06 0.0067 -3.38E-06] 0.0054
4 -2.37E-04 0.020 3.14E-08 0.0067 2.25E-08] 0.0066
5 -4.74E-06 0.020 -- - - -
6 -9.47E-08 0.020 -- - - -
Table 4-2. Convergence of the computed uniaxial unloading test
increment 1 increment 10 increment 20
iteration| residual | reduction| residual reduction | residual | reduction
# force rate force rate force rate
1 -8.50E-01 - 1.90E-05 2.23E-05
2 -2.00E-03 | 0.0024 9.32E-08 0.0049 1.19E-07 0.0053
3 -4.64E-06 | 0.0023 4.58E-10 0.0049 6.34E-10 0.0053
4 -1.07E-08 | 0.0023 2.27E-12 0.0050 3.32E-12 0.0052
5 -2.30E-11 | 0.0021 - - - -
Table 4-3. Convergence of the computed biaxial compression test
increment 1 increment 10 increment 20
iteration| residual | reduction| residual reduction | residual | reduction
# force rate force rate force rate
1 5.67E-02 -- 1.28E-04 1.50E-04
2 1.71E-02 0.30 -1.10E-07] 0.00086 -1.46E-07 | 0.00098
3 4.01E-03 0.23 -3.83E-10] 0.00349 -5.51E-10 | 0.00376
4 9.04E-04 0.23 - - - -
5 2.03E-04 0.22 - - - -
6 4.55E-05 0.22 - - - -
7 1.02E-05 0.22 - - - -
8 2.28E-06 0.22 - - - -
9 5.12E-07 0.22 - - - -




Table 4-4. Convergence of the computed reduced biaxial extension test

100

increment 1 increment 10 increment 20
iteration| residual | reduction| residual | reduction | residual | reduction

# force rate force rate force rate
1 -0.918 -- 1.54E-05 -2.18E-04
2 3.93E-02| 0.04 6.43E-08 | 0.00419 | -7.99E-07 | 0.00367
3 -1.05E-02] 0.27 2.69E-10 [ 0.00419 | -3.62E-09 | 0.00453
4 2.21E-03| 0.21 -- -- - --
5 -4.97E-04] 0.22 -- -- -- --
6 1.11E-04| 0.22 -- -- -- --
7 -2.47E-05] 0.22 -- -- -- --
8 5.50E-06] 0.22 -- -- -- --
9 -1.23E-06] 0.22 -- -- -- --
10 2.73E-07| 0.22 -- -- - --

Three major observations can be made from Table 4-1 to Table 4-4. First, the reduction ratio
tends to be constant for iterations within the same increment, indicating that the proposed
algorithmic tangent matrix results in a linear convergence rate. As mentioned previously, a
rigorous ATM should lead to a quadratic convergence rate for a Newton global scheme (e.g.
Simo and Taylor 1985). If the force residual of the previous iteration is on the order of 1E-n, for
instance, the force residual of the current iteration will be on the order of 1E-2n, with n being a
positive integer. Apparently, a linear convergence rate is slower than a quadratic convergence

rate. This reduction in the order of convergence rate is mainly due to the approximation made in

the proposed ATM (cf. Eq. (4.24)).

Secondly, the reduction rate tends to be low in the first increment under the same load

condition. Furthermore, the reduction rate for the initial increment is found dependent upon load
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conditions, or stress paths. As shown in the tables, the reduction rate of the initial increment

1s lower in the uniaxial tests than in the biaxial tests.

In most increments other than the first one, the reduction rate tends to be relatively constant
and independent of load conditions. As shown in the tables, this rate is about 0.005 for the
compressible Chicago clay. Note that ABAQUS recommends using the control parameter R*, =
0.005 as the convergence criterion for most engineering applications, with R*, defined as the
ratio of the largest residual force to the average force over a finite element mesh. For the
computations presented herein, the average force is on the order of 100 kPa. With the reduction
rate of 0.005, a convergence with residual forces less than 1E-6 kPa can be achieved within only
two to three iterations, as shown in the tables. With such a small reduction rate, the difference
between a linear convergence rate and a quadratic convergence rate becomes insignificant,

especially from an engineering point of view.

It is worth noting that a linear convergence rate guarantees computational stability, as long as
the reduction rate is smaller than unit, because the residual force can always be reduced to a

desired level within a finite number of iterations and thus divergence generally is not expected.

4.3.4 DISCUSSIONS

The previous sections basically state that the 47M associated with the substepping scheme
has a simple form and an extremely low computational cost, with only a slight approximation.

Furthermore, this proposed ATM leads to a linear convergence rate with a mostly small
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reduction rate, which sustains an efficient and stable numerical computation. However, the
substepping scheme, with the exhibited advantages, cannot be directly applied to elastoplastic
models, because the stresses integrated thereby may diverge from the yield surface (Crisfield
1991; Belytschko et al. 1999), a problem commonly known as yield surface “drift”. That is the
main reason why most elastoplastic models have been integrated using implicit methods (Simo
and Hughes 1998; Belytschko et al. 1999). That in turn makes it generally difficult to compute
the corresponding ATM (Zhao et al. 2005), because an already complex relation c(g) and an
implicit method blended togather tend to make the resulting relation Ac(Ag) even more complex
and implicit. It is not unusual to come across a situation where computing the ATM turns out
infeasible. A remedy for such a circumstance is numerical differentiation (Miehe 1996; Perez-
Foguet et al. 2000a; Perez-Foguet et al. 2000b), which, however, requires a substantial extra

amount of computations and thus is not quite time-efficient.

Rather than resort to implicit methods, the yield surface “drift” can be remedied using
correction algorithms in an explicit scheme (Potts and Gens 1985; Sloan 1987), by which
diverted stresses are iteratively sent back to the yield surface. These extra iterations alter the
relation Acy(Agy) defined in Eq. (4.21) and the local secant stiffness ¢, is not explicit any more.

Consequently, how to derive ATM becomes an issue for the corrected substepping method.

Apparently, the difficulties of computing the ATM for an elastoplastic model mostly originate
from the yield surface. Though defining yield surface is straightforward for metals, it is
generally difficult for soils. Essentially, recent research on soil modeling, such as the bounding

surface model (Dafalias and Herrmann 1982; Whittle and Kavvadas 1994), the multi-surface
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kinematic hardening model (Al-Tabbaa and Wood 1989; Stallebrass and Taylor 1997) and
the hypoplastic model (Viggiani and Tamagnini 1999; Kolymbas 2000), also confirmed that
classical elastoplasticity theory is not quite suitable for modeling soil behavior. Under this
backdrop, the directional stiffness model is proposed as an alternative approach to modeling soils,
in which material tangent stiffness is explicitly defined while plastic responses are generated
without the need for a yield surface. In addition to other advantages of this model, as elaborated
in Chapter 2 and Chapter 3, the numerical implementation of this model, including the stress
integration and the ATM computation, as discussed previously, is remarkably simply, especially

in comparison with an elastoplastic model.
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S MODEL TESTING

The numerical scheme proposed in the preceding chapter has been coded in FORTRAN and
employed in a series of computations for testing and verification purposes. In these
computations, two forms of this code were used. The first one is an executable file generated by
a FORTRAN compiler, using an input file containing incremental strain data prepared by users.
The second one has the same numerical algorithm as the first one but was coded in the UMAT
file of ABAQUS (ABAQUS Inc. 2003), with input data passed in from the finite element
program. The constitutive relations and numerical algorithms implemented in these two forms

are completely identical. Using which code is dependent on convenience.

The model has been tested under various conditions, including drained/undrained triaxial
tests, drained/undrained biaxial tests and an oedometer test involving an unload-reload cycle. It
was additionally used to compute ground movement at the Lurie site, a well-instrumented deep
supported excavation in downtown Chicago. In all cases, the input parameters for the model
were developed from drained triaxial probe tests performed on block samples obtained at the
Lurie site, as listed in Table 3-1. To simulate the drained triaxial probe tests, the executable

version of the model was used for convenience and the simulations were strain-controlled. All
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other computations were performed using ABAQUS, wherein the laboratory test simulations

were stress-controlled and single elements were used to represent soil specimens.

Due to a limited sample quantity, the soil specimens used in the simulated tests were not
obtained from the same site, though all of them are regarded as compressible Chicago glacial
clays. Table 5-1 shows where and from which geologic stratum the specimens used in each type
of test were obtained. Project descriptions of Lurie Center, Ford Center and Block 37 are given
by Rechea-Bernal (2006), Blackburn (2005) and Morgan (2006), respectively. Geologic

classifications and material properties of soil strata in Chicago area are discussed by Chung and

Finno (1992).
Table 5-1. Laboratory tests used to verify model

Type of test Site of sampling Geologic stratum
Drained triaxial tests Lurie Center Blodgett
Drained biaxial test Ford Center Upper Deerfield
Oedometer test Lurie Center Blodgett
Undrained triaxial tests Block 37 Blodgett
Undrained biaxial tests Ford Center Upper Deerfield

Note: All computations based on parameters obtained from drained triaxial probe tests on Lurie
block specimens

The main purpose of the laboratory test simulations presented herein is to reveal model responses
under various boundary conditions, though computed results and experimental data are compared

for most cases. In light of the difference in sample source and the fact that all computations were
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carried out with material parameters developed from stress probes on the Lurie block
specimens, care must be taken when reviewing and interpreting both the computed and

experimental results.

While the soil samples used in the drained triaxial probe tests were obtained from the Lurie
Center site, the modeling of this excavation using parameters developed on the triaxial probe
tests constituted a class C prediction (Lambe 1973), in light of the fact that the computation was

performed after the excavation was completed.

5.1 DRAINED AXISYMMETRIC CONDITIONS

As elaborated in Chapter 3, the development of the directional stiffness model is mostly
based on the observations made in the drained triaxial probe tests. Therefore, a first step to
verify both the model formulation and implementation is to reproduce soil responses observed in
these tests. In this way, the validity of the constitutive equations can be verified and the
feasibility of the improved substepping method can be tested. Furthermore, the proposed
constitutive relation involves several assumptions, e.g., the directionality relations proposed for
K and J,, and these can be evaluated from the simulations. All simulations were conducted with

the parameters shown in Table 3-1.
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5.1.1 STRESS PATHS

Fig. 5-1 shows the axial strain, €,, and the radial strain, g;, measured in each probe test. In
the simulation, the numerical model uses these strain data as inputs, and computes stress
components ¢, and 6'; accordingly.

4 —

e, [%]

e, [%]

Fig. 5-1. Measured strains input to the numerical model

Fig. 5-2 shows the computed stress paths in comparison with those actually applied in the
tests, where p' = (6',+206';)/3 and q = ¢',—c'.. As shown, the computed path generally matches
the experimental one for each probe. The most perceivable difference occurs in the TE test,

mainly due to a slight but constant deviation persisting for a significant length of stress path. In
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essence, Fig. 5-2 indicates that the numerical model is successful in finding the right path
direction in each simulation. Note that in those stress paths wherein both Ap’ and Aq are nonzero,
e.g., TC, RTC, AU, RTE, TE and AL, the directionality relations for K and J, are essentially
assumed without experimental validations. These assumptions are justified partially by the

model’s success in reproducing the stress paths.
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Fig. 5-2. Simulated stress paths of the triaxial probe tests

The proposed model uses one failure parameter, i.e., the friction angle ¢, to define the failure

condition. However, the experimental results show that ¢ varies with the path direction. For
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example, ¢ measured in CQU test is 39°, while the value measured in TC is 27°. In fact,
most shear tests shown in Fig. 5-2 are close to failure. Therefore, the tips of those stress paths
roughly outline a failure envelope for the soil, indicating that the friction angle ¢ tends to
decrease with p's, the effective mean normal stress at failure. In the simulating these tests, ¢
values are assigned on a case-by-case basis, instead of using a single value, which is a limitation
of the current model. However, it is not difficult to incorporate a p'r-dependent relation for ¢ in

this model, as long as it is established on a solid experimental basis.

5.1.2 SHEAR RESPONSES

Fig. 5-3 shows the simulated and observed shear responses in the tests with o;¢ vertical and
Aq > 0, and the tests with o¢ horizontal and Aq < 0. The displayed responses at a strain level
less than 1% emphasize the small-intermediate strain behaviours. Note the deviatoric stress
change, Aq, conventionally is plotted versus the shear strain & (= 2(g¢',—¢';)/3), which by no
means indicates & is solely caused by Aq. As elaborated in Section 3.1.1.2, for frictional
materials like soils, changes in the stress ratio n (=q/p’), fundamentally results in shear strains.
Accordingly, the slopes of the curves in Fig. 5-3 do not truly reveal the tangent shear modulus G.
For instance, although the stress-strain curves in Fig. 5-3(a) are very close to one another in the
small strain range less than 0.1%, the corresponding values of the initial shear modulus Gy are
quite different, for example, Gy for the RTC path is about twice the value for the TC path. In

another case, the small strain response in the RTE path seems stiffer than that in the CPE path,
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while the Gy value turns out being larger in the CPE path. Hence, the curves in Fig. 5-3
merely serve as a tool to present and compare the material and model responses. As shown,

overall matches between the simulations and observations are satisfactory.
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Fig. 5-3. Simulated and observed shear responses in (a) compression tests, and (b) extension tests.

Note the relatively small magnitude of shear strain developed in the AU test (Fig. 5-3b)
wherein 7 is essentially kept constant, and the significant amount of shear strain developed in the
CQU test (Fig. 5-5a) wherein q is kept constant. These observations serve as two important
pieces of evidence in support of the fundamental notion behind this model — the stress ratio m

governs shear responses of frictional materials (cf. Section 3.1.1.2).
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5.1.3 VOLUMETRIC RESPONSES

Fig. 5-4 shows the simulated and observed volumetric responses in the loading tests wherein
Ap' > 0, and the unloading tests wherein Ap’ < 0. As explained in Section 3.1.1, the volumetric
strain &, is not only caused by Ap’ via the bulk modulus K, but also by Aq via the coupling
modulus Jy. Thus, plotting Ap’ along with &, is merely a form of data presentation, not inferring
any exclusive relation between these two quantities. For instance, the RTC curve in Fig. 5-4(b)
does not indicate a negative K. In fact, the Ag-induced volume contraction exceeds the Ap'-

induced volume dilation in this probe.
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Fig. 5-4. Simulated and observed volumetric responses in (a) loading tests, and (b) unloading tests.

Note that CQL and AL probes are within the compression zone, wherein the stress paths do
not lead to the failure surface. As mentioned in Section 3.3.1.2, J is assumed to be one order of
magnitude larger than K in the compression zone. According to Eq. (3.1), therefore, the volume

change due to Aq is much less than that due to Ap’ in the compression zone, and thus can be
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neglected. Hence, the slopes of both CQL and AL curves in Fig. 5—4(a) approximately
represent magnitudes of the tangent bulk modulus K. As shown, these curves are quite similar to
each other, suggesting that K follows an identical evolution rule in the compression zone, as has

been implemented in the proposed model.

Again, in those stress paths wherein both Ap’ and Aq are nonzero, the directionality relations
of both K and J, use the assumed linear interpolation in Fig. 3—17. The success in reproducing
the volumetric responses in these paths, i.e., TC, RTC, AU and RTE in Fig. 54, serves as a

justification of these assumptions.

5.1.4 COUPLING RESPONSES

Fig. 5-5 shows the simulated and observed coupling responses in constant-q tests wherein Aq
= 0, and constant-p’ tests wherein Ap’ = 0. Because one stress component is zero, the effect of

the other component is explicitly exhibited herein. As shown, the coupling responses are well

reproduced by the model.
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Fig. 5-5. Simulated and observed coupling responses in (a) constant-q tests, and (b) constant-p’ tests.

In the constant-q tests (Fig. 5-5(a)), only Ap’ contributes to Arn. Therefore, shear strain & is
solely caused by Ap’ and their relation is described by the coupling modulus Js. In the CQL test,
the stiff response justifies the assumption made in the model that the effect of J; is negligible in
the compression zone. In the CQU test, the large shear strain developed in the CQU path serves
as another important evidence that shear strains in soils are essentially caused by change in n

instead of q alone, as q is constant throughout the test.

In the constant-p’ tests (Fig. 5-5(b)), the relation between Aq and &, is described by the
coupling modulus J,. As shown, contractive volume changes are generated, whether q is
increased (CPC test) or decreased (CPE test). This is consistent with the fact that the
compressible Chicago clay is lightly overconsolidated, because lightly overconsolidated soils

tend to be contractive during shearing. In an undrained cyclic shear test, therefore, soil skeleton
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is prone to contraction. As a result, positive pore water pressure will be generated in order to

satisfy the constant volume condition.

It is worth mentioning that the computed results shown in Fig. 5-5(b) indicate that this model
might be applicable to liquefaction analysis. Since the contraction occurs in either way of cyclic
shearing, as exhibited in the figure, the positive pore water pressure is expected to accumulate
and the effective pressure p’ will keep decreasing as the cyclic loading continues, until the soil is
failed, which is the mechanical nature of a liquefaction phenomenon. Hence, the coupling
modulus J, provides a reasonable mechanism to simulate the pore water pressure buildup during
a cyclic loading. Furthermore, the material degradation during this process can be taken into
account by the mechanism in the model for stress reversals, which updates stiffness parameters
based on p’ at each stress reversal. Since p’ keeps decreasing as explained previously, computed
material stiffness will degrade cycle by cycle. Though cyclic or seismic loadings are not major

concern of this dissertation, it is worth noting the model’s potential in dynamic applications.

By adjusting the sign of J, accordingly, the shear-induced dilation, which mainly occurs in
highly overconsolidated clays or dense sands, can be simulated as well. Ideally, J, should be a
function of OCR for clays and a function of relative density for sands. However, this application

has not been evaluated in the current model, due to a lack of test data.



115

5.2 DRAINED PLANE STRAIN CONDITIONS

A series of biaxial tests have been performed on both natural and reconstituted samples of
Chicago clay (Erickson 2006). In a biaxial test, soil responses are probed under plane strain
conditions, which are frequently encountered in field applications and numerical analysis. Since
this proposed model is based on triaxial tests, performing plane strain computations allows one
to check the generalization of the constitutive relation from axisymmetric to plane strain

conditions.

As shown in Table 5-1, the samples used in the biaxial tests were obtained from the Ford
Center site in Evanston, IL (Erickson 2006), not the same site as the triaxial test samples
(Holman 2005). Furthermore, Holman’s samples are from the Blodgett stratum while Erickson’s
samples are from the upper Deerfield stratum. Though both of them are categorized as
compressible Chicago clays, it is known that the Deerfield clay is generally stiffer than the

Blodgett clay (Chung and Finno 1992).

Only one drained biaxial test has been performed on a natural sample, in which load was
added vertically until failure, i.e., a biaxial compression (BC) test. This test was modeled using a
stress-controlled finite element procedure. In accordance with the test, the initial condition was

specified as ¢’y = 133 kPa and o’y = 74.5 kPa. An increment of 60 kPa was then added

vertically to the simulated element.

Fig. 5-6 shows the shear and volumetric responses in the BC test. The subscript “1”” denotes

the in-plane vertical axis, respectively. In either case, the computation is able to capture the
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overall trend of the stress-strain relation. It is noted that the observed response is initially
stiffer than the computed response, which is consistent with the fact that the Deerfield clay is

stiffer than the Blodgett clay, since the parameters used in the computation are based on Blodgett

samples.
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Fig. 5-6. Drained biaxial compression test: (a) shear response, and (b) volumetric response

Fig. 5-7 shows the computed and observed out-of-plane stress development with the vertical
load, which exhibits a reasonable match. Though the out-of-plane stress is usually ignored in
plane strain computation, it is a useful tool to verify a constitutive relation. Because the core
relations of the directional stiffness model mostly rely on experimental observations under
axisymmetric conditions, the evaluation of the out-of-plane stress, which is characteristic of
plane strain condition, is especially important. The match shown in Fig. 5-7 indicates a
reasonable extension of the proposed constitutive relation from axisymmetric conditions to plane

strain conditions.
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Fig. 5-7. Drained biaxial compression test: Out-of-plane stress

5.3 UNLOAD-RELOAD UNDER ONE-DIMENSIONAL CONDITIONS

In an oedometer test, a soil specimen may be subjected to one or more unload-reload cycles,
so that the compression and recompression indices can be obtained for the material. In the
unload-reload cycle, the stress path direction is reversed, a situation referred to as stress reversal
(cf. Section 3.3.3). This section presents computed material responses in an unload-reload cycle
in an oedometer test. The computation was made using stress-controlled finite element

procedure, in which the material was treated as drained and pore water dissipation was not



118
actually simulated, since time-dependent hydrodynamic responses were not of concern in this
case. The computation was made by starting from the same initial stress state as that used in the
stress probe tests, increasing the vertical load by 300 kPa, then decreasing it by 400 kPa, and
finally increasing it again by 800 kPa. During the entire computation, the lateral deformation of

the element is restricted to enforce zero lateral strain conditions.

Fig. 5-8 shows the computed stress-strain relation in comparison to the curve obtained from
an oedometer test conducted on a Lurie site sample. In traditional soil mechanics, the average
slope of the unload-reload portions of the curve is represented by the recompression index C,.
However, there is no such parameter in the model to control this slope. As shown, not only the
slope but also the hysteretic behaviour are well represented by the model. In the MIT series of
models (e.g. Whittle 1990; Pestana and Whittle 1999), hysteretic behaviours are separately
considered using a perfect hysteretic relation (Hueckel and Nova 1979), which requires several
special parameters. In contrast, Fig. 5-8 has shown that the hysteretic response is naturally taken
into account in the directional stiffness model, mainly due to the non-linear relations for stiffness

evolution (cf. Section 3.3.1) and the criterion for stress reversals (cf. Section 3.3.3).

As shown in Fig. 5-8, the initial portion of the computed curve is inclined in an angle
approximately the same as that of the unload-reload cycle. As discussed in Section 3.3.1.3, this
portion corresponds to the small strain behavior and is defined by Eq. (3.22). It is worth pointing
out that the proposed model is intended for in situ soils that are subject to ageing. It treats the
small strain behavior as an inherent property of in situ soils, which explains the reason why the

small strain behavior manifests itself in Fig. 5-8. In conventional elastoplastic theory for soils,
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the same behavior is represented by a linear segment in the semi-logarithmic scale (e.g.
Bjerrum 1967), similar to the approach of using C, to describe the unload-reload portions. In
comparison, the computed response exhibits a nonlinear curve. The linear relation used in the
conventional approach is an approximation, in comparison with the small strain relation defined

in this model.
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Fig. 5-8. Computed and observed responses in oedometer test
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5.4 UNDRAINED CONDITIONS

This section explains how the directional stiffness model is applied to undrained
computations, discusses characteristics of effective stress paths expected in undrained tests, and

presents computed and observed responses for undrained triaxial and biaxial tests.

5.4.1 UNDRAINED COMPUTATION

With an effective stress constitutive relationship available, undrained computations can be
performed by invoking the principle of effective stress.
o=0'+u (CRY
where U =[u, u, u, 0, 0, O]T, with u being the pore fluid pressure. The effective stress o', can be
computed by the effective model in a rate form.
c'=E'¢ (5-2)
where E' represents the stiffness of soil skeleton. Under undrained conditions, soil skeleton and
pore fluid deform together and the strains in each phase can be regarded as the same, if the pore
fluid is imaged as a uniform material occupying the total volume of the soil. Thus, the change in
the pore fluid pressure can be computed from the macroscopic average strain.
u=Ezé (5:3)
where E, is the stiffness matrix for the imaginary pore fluid. Since a fluid does not transmit

shear, this matrix has the following form
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0 (5.4)
Elt = Klt ]-3 3
03 03

where 15 is a 3%3 matrix with all elements equal to 1, 03 is a 3%3 null matrix, and the constant K,
can be related to Ky, the bulk modulus of the pore fluid, and K,,, the bulk modulus of the soil
particles (Naylor 1974). However, since both K¢ and K, are typically much larger than the bulk
modulus of the soil skeleton — K, the exact value of K, becomes unimportant, as long as it is a

large number. Potts and Zdravkovic (1999) recommend setting K,, equal to nK;, where n ranges

from 100 to 1000.

Note that a total stress instead of an effective stress is eventually required by UMAT in
ABAQUS for each integration point. With E’ and E, available, the total stress increment can be
computed given the strain increment.

6 =(E“+E))é (5:5)
where the sum of E’ and E, represents the overall stiffness of the undrained soil. A nearly zero
volume change condition is enforced by the presence of E,, with K, much larger than K. For
the directional stiffness model, E’ is given by Eq. (3.13). In the model, an undrained condition is
activated by making K, equal to the bulk modulus of water (= 2*¥10° kPa), while a drained

condition results when K, is set to zero.
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5.4.2 EFFECTIVE STRESS PATH (ESP)

5.4.2.1 UNIQUENESS OF ESP

Before presenting computed results for undrained tests, it is beneficial to review the general
characteristics of effective stress paths (ESP) in undrained tests. Under either an axisymmetric
or a plane strain condition, an undrained test is subject to two possible loading modes only,

corresponding to two unique ESPs.

Fig. 5-9 shows any applied stress in an undrained triaxial test can be decomposed into two
components — a hydrostatic component and a deviatoric component. The hydrostatic component
does not contribute to any change in effective stresses of the tested sample, because K, the bulk
modulus of water, is typically much larger than K, the bulk modulus of the soil skeleton, as
explained in the previous section. Thus, nearly all increase in the hydrostatic stress will be
sustained by the bulk of pore water. In other words, one unit of change in the hydrostatic stress
results in approximately one unit change in the excess pore water pressure, while the effective
stress exerted on the soil skeleton virtually does not change. In contrast, variation of the
deviatoric component (see Fig. 5-9) leads to change in the effective stress, because water cannot
sustain shearing. Apparently, there are only two possibilities of shearing mode, i.e., Acy-Acy > 0,
a compression mode, or Acy-Acy < 0, an extension mode. Accordingly, these two distinct modes

will result in two unique ESPs, no matter how the hydrostatic load component varies.
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Fig. 5-9. Decomposition of undrained triaxial test into hydrostatic and deviatoric components

For an undrained biaxial test, this approach using stress decomposition to explain unique ESP
is not straightforward because the out-of-plane boundary condition is displacement-controlled.
However, no matter what in-plane stress is applied to the specimen, the vertical strain g; and
horizontal strain €3 must maintain the relation &3 = - g; to satisfy the undrained condition.
Therefore, all undrained biaxial tests could only have two deformation modes, i.e., &1 > 0, a
compression mode or g; < 0, an extension mode. Obviously, these two modes correspond to two

unique ESPs.

Because of the uniqueness of the ESP, one needs only two different tests to investigate
undrained responses of a soil under either axisymmetric or plane-strain conditions,

corresponding to the two distinct modes, respectively.

5.4.2.2 ORIENTATION OF ESP

In the foregoing section, it is made clear that ESP is unique in each of the two distinct modes.

The next important issue is the orientation in stress space of the unique ESP.
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It is well known that the orientation of ESP for an isotropic elastic material is vertically

up in p'-q plot for a compression mode (Aq > 0) and vertically down for an extension mode (Aq <
0), because there is no shear-volumetric coupling for this material, i.e., both J, and Js are
infinitely large. Therefore, an isotropic elastic relation is a special case of the relation proposed
in this dissertation. In general, the orientation of observed ESP in most soil tests is not vertical.
Using B (cf. Eq. (3.17)) to define the orientation of ESP, in a compression mode, 3 is generally
larger than /2 for normally consolidated or slightly overconsolidated clays or loose sands, and is

generally smaller than /2 for highly overconsolidated clays or dense sands.

In the directional stiffness model, the orientation of ESP is governed by the ratio of J, and K.
According to Eq. (3.1), the volumetric strain is calculated as follows,
o, =0p'/K+9/J, (5-6)
In an undrained computation, the zero volume change condition is enforced by Eq. (5.5).
Therefore, dg, = 0, and
oqlop'=—=J,/K (5.7
The left hand side basically represents the orientation of ESP (cf. Eq. (3.17)). Hence, Eq. (5.7)
shows how the ratio of J,/K affects the orientation of ESP under undrained conditions. Given a
constitutive relation with constant J, and K, one can calculate the orientation directly using Eq.
(5.7). With the proposed directional stiffness model, the tangent moduli, including J, and K,
vary with f and LSP. It is not straightforward to determine a priori the orientation of ESP.
Consequently, one needs an iterative algorithm (cf. Section 4.2.2 ) to find the right orientation, in

which the path-dependent J, and K yield zero volume change.
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A qualitative determination of the orientation of ESP, however, can be achieved simply

by knowing the sign of J,. Here, attention is paid to which side the ESP is oriented from the
vertical direction, i.e., B = ©/2 for the compression mode, or 3 = 37/2 for the extension mode.
These two values correspond to isotropic elastic responses. For conciseness, discussion herein is
made for the compression mode. Because K is always positive, the sign of 6q/0p' solely depends
on the sign of J,, according to Eq. (5.7). For a positive J,, i.e., a shear-contractive material,
8q/dp' <0, B > /2, and thus the ESP leans to the left of a vertical line in the p'-q plot. According
to Eq. (5.7), the smaller the ratio of J,/K, the more leftward the ESP will track. Apparently, the
ESP of a shear-dilative material leans rightward in the compression mode. The deviation from
the vertical direction represents the degree of anisotropy (Wood 1990). Note that whether the
ESP leans to the left or right hand side is governed by material properties of the soil skeleton,

and is independent of the orientation of total stress path (TSP).

Hence, the orientation of ESP can be intrinsically derived from the constitutive relation of the
material, and thus is purely material-dependent. In the proposed model, it is controlled by the
ratio of J,/K. In contrast, the excess pore pressure u. is partially material-dependent, because it
results from the difference between ESP (material-dependent) and TSP (material-independent).
For this reason, it is undesirable to use any parameter directly describing u. as a material
parameter in a constitutive relation. Using the decomposition illustrated in Fig. 5-9, the change
in u. due to the hydrostatic component of a load is basically material-independent, while the
change in u. due to the deviatoric component is material-dependent. The total change in u. is the

sum of them.
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From a physical point of view, an undrained test is an interaction between the pore water
and the soil skeleton, in which u, develops and ESP is mobilized in a way that the condition of
no volume change of the soil skeleton is observed. An undrained test can be regarded as a
special drained test, in the sense that a drained test conducted along the observed ESP from an
undrained test on the same material should yield zero volume change. Therefore, the drained
and undrained material responses are intrinsically related to one another. Using this idea,

drained and undrained tests can be designed to verify results obtained in either case.

5.4.3 UNDRAINED AXISYMMETRIC CONDITIONS

Ko-consolidated, undrained triaxial compression (CKoU-TXC) and reduced triaxial extension
(CKoU-RTXE) tests were performed on tube samples of compressible Chicago glacial clay from
the Block 37 site in Chicago (Cho 2007). These samples were not obtained from the same site as
those used for the stress probe tests (Holman 2005). However, both of them were retrieved from
the same geologic stratum and thus were expected to have similar responses despite being

extracted from different sites.

The computations were made in four different total stress paths — U-TXC, U-RTXC, U-TXE
and U-RTXE, all of which started from same initial stresses, corresponding to the in situ state of
the samples used in the undrained tests. Fig. 5-10 shows the computed ESPs in comparison with

the observed ones. As expected, the computations for these paths have converged to a unique
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ESP for the compression mode (Aq > 0), and another for the extension mode (Aq < 0), which

1s consistent with the conclusion drawn in Section 5.4.2.1.
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Fig. 5-10. Computed and observed effective stress paths for undrained triaxial tests
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Furthermore, in comparison to the drained stress probe tests, it is found that the computed
ESP in the compression mode is close to the stress path of the RTC test (cf. Fig. 5-2). And the
computed ESP in extension mode is close to the stress path of the RTE test (cf. Fig. 5-2). In fact,
it is found that the volume changes in both of these two tests are quite small (cf. Fig. 5-4). In
other words, the undrained computations with material parameters obtained from the drained

tests have yielded results consistent with the responses observed in the drained tests.

However, the difference is perceivable between the orientations of the observed and
computed ESPs, especially in the compression mode, as shown in Fig. 5-10. According to the
discussion made in Section 5.4.2.2, the deviation in the compression mode is due to the
difference in J,/K ratio. Specifically, the J,/K ratio used in the computation, which was obtained
from the drained tests , is smaller than the J,/K ratio observed in the undrained test. That means
the drained tests (Holman 2005) are not quite consistent with the undrained test, as one would

expect when samples are taken from sites that are about 1 mile apart.

Fig. 5-11 shows that using an increased Jvi.s value, the proposed model yields an ESP close
to that observed in the undrained test. The computation of U-TXC 1 is the same as the
computation of U-TXC shown in Fig. 5-10, using the parameters listed in Table 3-1. Based on
those parameters, JVmax/JVmin = 5, because ryx = 5 (cf. Eq. (3.31)). Note that Jvier = Jvmin. The
computation of U-TXC 2 using a Jvier 5 times of Jvyer used in U-TXC 2 basically makes Jviin
equal to Jvim.. This additional computation serves as an example how the ESP varies with J,/K
ratio with the proposed model. Fig. 5-11 basically shows that the proposed model is capable of

accommodating either observed response.
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Fig. 5-12 shows the computed and measured shear responses in the two undrained triaxial
tests. As shown, the computation well matches the response measured in the U-RTXE test. The
differences in the responses in the U-TXC test is mainly due to the mismatch in ESP (cf. Fig. 5—
10), which is caused by the inconsistency in volumetric response, as discussed before. One can
imagine that the computed and observed responses will match by proportionally stretching the
computed curve along vertical axis. Therefore, it is fair to say that the overall trend of the

material response is captured by the computation. Though there exists inconsistency in the
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observed volumetric response, Fig. 5-10 shows that the observed responses generally are
consistent under undrained and drained conditions, since the computed shear response is largely

derived from the observed drained material response.
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Fig. 5-12. Computed and observed shear responses in undrained triaxial tests

5.4.4 UNDRAINED PLANE STRAIN CONDITIONS

Soil responses under undrained plane strain conditions are critical for analyzing short-term
construction activities in many geotechnical applications, which is the case for the computation
presented in the next section for a real excavation in downtown Chicago. In order to manifest
model responses under undrained plane strain conditions, four different stress paths were
computed, including U-BC, U-RBC, U-BE and U-RBE, wherein one of the two in-plane stresses

is monotonically increased or decreased while the other remains constant.
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Fig. 5-13 shows that the computed effective stress paths have converged in the
compression and extension modes, respectively, which is expected according to Section 5.4.2. In
comparison with Fig. 5-10, it is found that the computed ESPs lead to similar directions under
axisymmetric and plane strain conditions. Furthermore, the computed ESPs are nearly linear, as
also observed for the axisymmetric cases. Under undrained conditions, strain paths are linear in
either triaxial or biaxial tests, due to the condition of zero volume change. The computed results

imply that this model tends to yield linear ESPs given linear strain paths.
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Fig. 5-13. Computed effective stress paths in undrained biaxial tests
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Fig. 5-14 shows the computed stress-strain responses in the U-BC and U-RBE paths. Since
the other two computations basically result in the same ESPs, they are skipped in Fig. 5-14 for
conciseness. As shown, the stress-strain response in the U-RBE path is much stiffer than that in

the U-BC path, which is similar to the model response under an undrained axisymmetric

condition.
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Fig. 5-14. Computed stress-strain relations under undrained plane strain conditions
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Fig. 5-15 shows the computed excess pore water pressure developed with vertical stress
change. As indicated in Fig. 5-13, the TSP of U-RBE is orientated to the left of the unique ESP
in the extension mode, while the TSP of U-BC is to the right of the unique ESP in the
compression mode, resulting in the development of negative excess pore pressures in the U-RBE

test and positive excess pore pressures in the U-BC test.
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Fig. 5-15. Computed excess pore water pressure under undrained plane strain conditions

When numerical analysis is to be performed under plane strain conditions, it is desirable to
test the pertinent soils under the same condition. Experimentally, however, biaxial tests are
much more complicated and much less common than triaxial tests. The computed results

presented herein suggest that the two unique ESPs tend to have similar directions under
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undrained axisymmetric and plane strain conditions. For the compressible Chicago clays
tested by Holman and Cho, the two unique ESPs are around RBC and RBE paths under plane
strain conditions, and the RTXC and RTXE paths under axisymmetric conditions, respectively.
Accordingly, the mobilized soil responses tend to be similar. Hence, it might be justified to use
undrained triaxial tests to estimate soil responses under undrained plane strain conditions. For

the same purpose, drained tests can be performed in the vicinity of the two unique ESPs.

5.5 PREDICTIONS FOR LURIE CENTER EXCAVATION

5.5.1 LURIE PROJECT DESCRIPTION

The Robert H. Lurie Medical Research Building included a 12.8 m deep cut for two
basement levels. Detailed descriptions and ground responses of the excavation are reported by
Finno and Roboski (2005). A plan view of the approximately 80 m % 68 m area is shown in Fig.
5-16. To monitor the ground response to excavation activities, 150 surface survey points, 18
embedded settlement points and 30 utility points were installed on three surrounding streets prior
to wall installation. Measurements of both lateral and vertical ground surface movements were
obtained. In addition to the optical survey data, seven inclinometers were installed at distances

from 1 to 2.4 m from the sheet-pile wall.
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Fig. 5-17 shows the support system in relation to the stratigraphy. The excavation is
supported by a PZ-27 sheet pile wall on all sides. Three levels of tieback anchors provided
lateral support for the south wall section analyzed herein. Both the first and second level ground

anchors are founded in the beach sand.



136

NORTH Pedestrian Tunnel
) L e A 4
g /7 E. SUPERIOR STREET
. - ., . A E ./' /Aa . . . 'g . . . . . . L0
. . & A A & S
\ - [ &%)/ AdLR3 * ot * ‘R
| LR4 [N
L\, P LR-5 /// /
O OS]
a o =
& =] N
34 7 | =5
QO R % g
O- - - n- m
: 83
= .
% Temporary =
< ... Ramp
wo04) @ LR6 Locations
= Ao o / \ A
A LR7 _ LR-8
4 2@ A A Ad A A
. .E - - . - o- .

T éj * E. 'HURON{:E'STREET' ot

LEGEND:

J{
.

« - PK Nalil

O - Embedded Settlement Point (18)
A - Utility Monitoring Point

@ - Inclinometer

-~ - Sheeting (PZ-27)

Fig. 5-16. Plan view of Lurie Center excavation

Prior to installation of the sheeting, the excavator “pot-holed” the site to remove large

obstructions such as pile caps and building rubble. PZ-27 sheets of length 18.3 meters were
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installed by a vibratory hammer. Ground water within the site was removed by dewatering
wells. Surface water and leakage through the sheeting into the excavation was controlled by
sump pits and pumps. Excavation of the site and tieback installation took place simultaneously
within the site. However, four distinct excavation stages were defined: excavation to elevations
+1.5 m CCD, -2.5 m CCD, -5.8 m CCD, and —8.5 m CCD, corresponding to levels immediately
below tieback elevations and the final excavated grade. Excavation was limited to a distance of

0.6 to 1.2 meters below the tieback installation elevation, depending on the angle of the tieback

installation.
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Fig. 5-17. Support system of Lurie Center excavation
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5.5.2 FINITE ELEMENT DESCRIPTION

5.5.2.1 F.E.MESH

The finite element simulation of the Lurie Center excavation was made using ABAQUS.
The finite element mesh used for the prediction is shown in Fig. 5-18, which corresponds to the
final stage of the excavation and thus does not include those elements representing the excavated
soils. The simulation was made assuming a plane strain condition with the excavation system
being symmetric about the centerline. The entire mesh was fixed at the bottom and allowed to
move vertically and freely at both sides. To eliminate influences of the boundary condition on
the modeling, the mesh behind the support wall was extended to a distance five times the

excavation depth.
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Fig. 5-18. Finite element mesh for Lurie Center excavation
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5.5.2.2 ELEMENT TYPES

In the finite element model, the soils were simulated using 8-node biquadratic elements with
reduced integration (CPE8R), the sheet pile wall was represented by the 3-node quadratic beam
element (B22), and the interfaces between the wall and soils were simulated by the small sliding
contact pair provided in ABAQUS. The tiebacks were simulated by 2-D truss elements (T2D2)
with axial stiffness determined from performance tests. For each truss, one end was connected to
the beam element using connection type JOIN and the other was fixed in space. This
approximation is much closer to reality than if the anchor was modeled explicitly, because the
proximity of the first two levels of bonded lengths in a 2-D representation (cf. Fig. 5—17) results

in an unrealistically flexible support in an explicit simulation (Finno and Tu 2006).

5.5.2.3 MATERIAL MODELS

In terms of material modeling, the fill, sand, stiff clay and hard clay (cf. Fig. 5-17) were
simulated by the Mohr-Coulomb (M-C) model given in ABAQUS, while the soft-medium clay
was simulated by the directional stiffness model implemented in UMAT. The M-C parameters
for each soil stratum are shown in Table 5-2, which were obtained from results of site
investigations made in conjunction with foundation design studies for the Lurie Center structure,
and past research experience with excavations in the Chicago area (e.g. Finno et al. 1991;
Calvello and Finno 2004). Note that the fill and sand are drained, while the stiff and hard clays
are undrained, which is approximated by specifying v = 0.49 for these layers. The parameters

used for the directional stiffness model are completely based on the drained stress probe tests on
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the block samples obtained from the Lurie site. Their values have been given in Section
3.3.3. Material parameters for the beam, trusses and interfaces can be found in the ABAQUS

input file given in Appendix D. The same information is also given by (Rechea-Bernal 2006).

Table 5-2. Parameters for soils using M-C model

Stratum E (MPa) |v ¢° c (kPa) | vy
Fill 51 0.2 30 0 2
Sand 29 0.39 |35 0 5
Stiff clay 171 049 |0 105 0
Hard clay | 677 049 |0 383 0

5.5.24 COMPUTATION STEPS

The finite element simulation represented the construction history near inclinometer LR-8 (cf.
Fig. 5-16). The modeling consisted of 12 steps, including stress field initialization using a user-
defined “GEOSTATIC” procedure, activating the beam elements and contact pairs, and cycles of
element removals and truss element activations. Detailed definitions for these computation steps

can be found in Appendix D.

5.5.2.5 STATIC PORE PRESSURE

Ground water is present in the Lurie site (cf. Fig. 5-17). It is not straightforward to model
static pore pressure in ABAQUS, though ABAQUS allows analyses that couple effective stresses

and excess pore pressures. There are two approaches to this problem, using effective stress and
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total stress, respectively. The effective stress approach has been elaborated by Hashash
(1992). In this approach, the soil skeleton serves as the object to be analyzed. Accordingly,
effective density is used for the soils and the finite element code computes effective stresses. In
the computation, pore water pressure is regarded as an external load. Specifically, the
unbalanced water pressure on both sides of the wall is treated as lateral traction on the exposed
wall. Similarly, the unbalanced water pressure at the bottom of the excavation is treated as uplift
force on the exposed soil surface. The exposed part of the wall and the exposed soil surface vary
as the excavation proceeds. When a simulation consists of many computation steps, this
approach can be somewhat cumbersome, because the unbalanced forces must be defined by
manually modifying the input file, instead of being graphically defined in CAE, the GUI

preprocessor of ABAQUS.

In contrast, a total stress approach was adopted herein, wherein soil skeleton and pore water
together serve as the object to be analyzed. Total density is used for the soil body and total
stresses are calculated by the FEM code. Accordingly, the constitutive relation for a soil needs
to represent total stress response of the material. How to obtain the total stress relation based on
an effective stress model is elaborated in Section 5.4.1. In UMAT, a variable of excess pore
water pressure should be included in STATEV, the array containing the “solution-dependent
state variables,” and another variable computes hydrostatic pressure according to COORDS, the
array containing the coordinates of the integration point. More details can be found in the
UMAT file given in Appendix C. Therefore, the user-defined soil model is able to update and

track pore water pressure, and performs stress integration in terms of effective stresses. To make
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this total stress approach work, the initial lateral stress must be specified in terms of total
stress and match the expected in situ condition. In this computation, the stress field was
initialized using a user-defined “GEOSTATIC” procedure, in which the balance between the

internal and external nodal forces was checked by ABAQUS without actual computation.

5.5.3 RESULTS

Fig. 5-19 shows the computed ground movements around the excavation when the final
grade is reached. The end of each displacement vector is located at the corresponding finite
element node. The vector length corresponds to the displacement magnitude, with the scale
shown at the top-right corner. The global pattern of the ground movements caused by the
excavation is shown in this figure. Computed ground movements extend to a distance about 2.5
times of the final depth of the excavation, with the maximum settlement occurring at a distance
about half of the excavation depth. In terms of lateral movements, there is very little cantilever
movement, indicating an effective restriction provided by the upper level tiebacks. The
maximum lateral movement occurs at a depth corresponding to the soft to medium clay layer,
with the maximum lateral displacement about twice of the maximum settlement. In contrast, the

bottom heave due to the excavation is relatively insignificant.
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Fig. 5-19. Computed ground movements around the excavation when the final grade is reached

Fig. 5-20 shows the computed and observed lateral movements of the wall at three different
excavation levels, including the grades —2.5m CCD, -5.8m CCD and —8.5m CCD, corresponding
to the installations of the 2™ and 3™ levels of tiebacks and the final grade of the excavation,
respectively. It is found that significant movements start to occur when the excavation proceeds
into the soft to medium clay layer, the top of which corresponds to the depth of —5m CCD. This
result agrees with the observation that the softest soil layer involved in an excavation governs the
magnitude of the resulting ground movement (e.g. Clough et al. 1989). As shown in the figure,
the observed deformations were somewhat overpredicted at each stage. However, the overall

deformation patterns were well captured by the computation in a consistent manner.
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Fig. 5-20. Lateral movements of the sheet pile wall

Fig. 5-21 shows the observed and computed ground settlements behind the wall at the end of
the excavation. Settlement observations were made for a distance up to 12m away from the

excavation. As shown, the computation was successful in predicting the location of the
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maximum settlement, which is around 6m away from the excavation, though the maximum
was slightly underpredicted. Note that observed settlement tends to be somewhat larger than the
actual settlement caused by the excavation, because both construction vibration and onsite traffic
tend to increase the observed settlement. Under a fully undrained condition, the maximum
settlement should be approximately the same as the maximum lateral displacement. This is not
the case for the Lurie site, because of the 10m thick of sand layers present in the field (cf. Fig. 5—
17). The settlement profile beyond the surveyed area is estimated using the empirical relation
suggested by Hsieh and Ou (1998). As shown in Fig. 5-21, the predicted settlement profile is
consistent with the empirical relation. Both of them indicate that the major impact range of the

excavation is about 28 m.
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Fig. 5-21. Ground settlements behind the wall when the final grade is reached
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Fig. 5-22 shows two effective stress paths at points A and B (Fig. 5-18), respectively. Point
A is within the soft to medium clay layer (cf. Fig. 5-17) behind the wall, while point B is within
the same layer at the bottom of the excavation and at the same depth as A. It is found that the
direction of the ESP for most soils behind the wall is similar to the ESP of point A, while the
direction of the ESP for most soils at the bottom of the excavation is similar to the ESP of point
B. This is reasonable, because the soils behind wall experience a compression mode of
undrained shearing, i.e., A(c'y - o'y) > 0, while the soils at the bottom of excavation experience
an extension mode, i.e., A(c’y - 6'y) < 0. According to the conclusion of Section 5.4.2, there
should exist two unique ESPs. Furthermore, the two ESPs shown in Fig. 5-22 are found similar

to those computed ESPs shown in Fig. 5-13, as expected.
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Fig. 5-22. Effective stress paths at two representative points

Note that the loading conditions encountered in such a field computation is somewhat different
from those in a biaxial test, in the sense that the former case involves 1y, the in-plane shear
stress. However, the computed results have shown that the development of t,, is not quite
significant in comparison with the change in horizontal and vertical normal stresses. Ty, at point

A is less than 7 kPa while 1,4 at point B is no more than 10 kPa.

Overall, the computation of the Lurie Center excavation yielded reasonable results, in

comparison with filed observations and computed results from numerical testing with single
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elements. Note that the soil samples used in the triaxial stress probe tests, from which the
material parameters used in this computation were developed, were obtained exactly from the
Lurie site. Thus, this computation constituted a successful class-C prediction (Lambe 1973).
The computation also showed the importance of the two unique ESPs (cf. Section 5.4.2) for an
undrained analysis. To perform a finite element analysis under undrained conditions, it is

desirable to used soil parameters developed from tests corresponding to these two ESPs.

In summary, this chapter shows the computed model responses in drained/undrained triaxial
tests, drained/undrained biaxial tests, an oedometer test involving an unload-reload cycle, and a
well-instrumented deep excavation in downtown Chicago. It is shown that this model is
successful in simulating various soil tests and is promising in its ability to predict ground

movements due to excavations.
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6 CONCLUDING REMARKS

This dissertation presents a constitutive model capable of representing soil response in a wide
variety of loading modes and strain levels. The key parts of this model include (a) a cross-
anisotropic tangent matrix that is consistent with the mechanical nature of frictional materials
and (b) a generalized relation that uses length of stress path and stress path direction as internal
variables. Soil stiffness evolutions in stress space are quantified by variations in 4 tangent
moduli, K, J,, G and J;, in shear, compression and small strain zones. Accordingly, small strain
and large strain behaviors are defined. The definition of small strain behavior is hypothesized to
be related to ageing effects. This definition is applicable to “unstructured” clays wherein only
ageing effects cause large variations in stiffness at very small strains, and is applied herein to
freshwater, lightly overconsolidated Chicago glacial clays. The effects of direction of loading on
each modulus is included in the proposed evolution relations, which allows this model to
simulate irrecoverable deformations, and provides an experimentally-based approach to

incremental non-linearity.

Model responses are defined in terms of 13 material parameters, most of which have clearly

identified physical meanings and can be determined from triaxial experiments. In particular, it is
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recommended that parameters be developed from results of CPC, CPE, CQU and CQL tests.
It is noted that not all of the 13 parameters are of critical concern in many cases. Typically, three
of those four tests would be adequate and selecting the tests largely depends on the specific goal
of the application. More work needs to be done to relate some of the non-traditional parameters

to those more easily identified with conventional field and laboratory tests.

The proposed model is implemented in the finite element program ABAQUS via UMAT, the
user-defined material file. The numerical scheme for stress integration is based on an existing
substepping method with automatic error control, with an improvement made to deal with the
complexity caused by the stiffness directionality. Furthermore, a consistent tangent matrix is
derived for this improved substepping method with the proposed model. This matrix, which
becomes remarkably simple with a reasonable and slight approximation, makes the proposed
model and substepping method quite stable and efficient when functioning in a finite element

computation.

In this dissertation, model responses are exercised in a variety of applications ranging from
laboratory test simulations to a computation of ground deformations from a well-instrumented
excavation. The simulations of the drained triaxial probe tests have shown that the numerical
model is able to find the right stress path in each probe test, indicating that the numerical scheme
devised for stress integration is successful. The model has been able to reproduce shear,
volumetric and coupling responses over a wide strain range, providing evidence that those

assumptions made in directionality relations are reasonable. The computation for a drained
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biaxial test has shown that the model satisfactorily reproduces the out-of-plane stress

development, and reasonably reproduces the overall stress-strain responses.

The model computation of an unloading-reloading cycle in an oedometer test has shown that
the recompression index and the hysteretic behavior are naturally implied by the model without
resorting to extra parameters as a result of the nonlinear evolution relations and the extensions

for stress reversals.

Under either undrained axisymmetric or plane strain conditions, there exist two unique
effective stress paths for a compression mode and an extension mode, respectively. The
computations for the undrained tests converge to these two ESPs successfully. It has been
showed that the predicted ESPs for the undrained triaxial tests are consistent with the
observations made in the drained triaxial tests. Furthermore, the computed ESPs for the

undrained biaxial tests have exhibited similar orientations as those for the undrained triaxial tests.

Using the original model parameters based on results of stress probe tests on block samples
obtained from the same site, the results of a simulation of a well-instrumented deep excavation in
downtown Chicago have shown that the model is promising in its ability to predict both lateral
wall deformations and ground settlements behind the wall. The ESPs computed at various
locations around the excavation are found consistent with the computed ESPs under undrained
plane strain conditions. For the compressible Chicago clays, it is found that the drained RTC and
RTE tests are of particular importance in predicting undrained excavations through these

materials.



152
Among possible improvements of this model for future work, a relation of J, and OCR is

needed to account for the differences between highly overconsolidated clays and slightly
overconsolidated to normally consolidated clays. The dependency of friction angle on effective
mean normal stress can be incorporated to describe a nonlinear failure surface. It is desirable to
further investigate the dependency of stiffness parameters on the deviatoric stress, to
complement the dependency on the mean normal stress that has been already incorporated into
the model. Within the context of numerical implementation, it is worth exploring the general
solvability of a problem with directional stiffness. Given an arbitrary set of directionality
relations, for instance, does a solution always exist for an arbitrary strain increment? With a
discrete directionality relation, what is the solvability condition? Recall that the directionality
relation for J, is intrinsically discrete. Furthermore, room always exists for optimizing the

numerical algorithm in implementing the directional stiffness model.
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APPENDICES

A. MAJOR SMALL STRAIN MODELS

Al MIT-E3 MODEL

MIT-E3 is a successor of MIT-E1 that was developed by Kavvadas (1982) in MIT. To be
consistent with results from soil laboratory, Kavvadas modified the Modified Cam-clay model
(MCC) and replaced the isotropic yield surface with a distorted or anisotropic ellipsoidal surface
in stress space. The associated hardening rule was designed such that with plastic volumetric
strain increments, the yield surface rotates as well as expands in stress space. The larger the
distance between the axis of the yield surface and the current stress point, the larger the rotation
rate of the yield surface during hardening. Such an anisotropic yield surface was designed to

simulate the stress-induced anisotropy of natural soil.

Basically, MIT-E1 improved simulations for normally consolidated clays. However, it is not
applicable to overconsolidated clays at small strains, because the simulation inside the yield
surface was oversimplified by linear isotropic elasticity, as used in MCC. There were three main
issues in characterization of overconsolidated clays. First, most overconsolidated clays are

highly nonlinear even at small strain levels to which linear elasticity does not apply. Second, it
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was noted that when reloaded beyond the maximum past pressure, yielding of
overconsolidated clays is rather smooth, not pronounced as predicted by a traditional elasto-
plastic model. Lastly, the volumetric and shear behavior needs to be coupled because
overconsolidated clays can fail due to excessive pore water pressure accumulated under cyclic

loading.

To address these issues, Whittle (1987) updated MIT-E1 to MIT-E3, with focus on model
responses inside the traditional yield surface. The major modifications include applying the
concept of bounding surface plasticity (Dafalias and Herrmann 1982) and replacing linear
isotropic elasticity with perfectly hysteretic elasticity (Hueckel and Nova 1979). The bounding
surface plasticity is shown in Fig. A - 1, wherein p’ is effective mean normal stress and q is the
deviatoric stress. The bounding surface in MIT-E3 is exactly the yield surface in MIT-E1, and
corresponds to the locus of maximum past stress states. The load surface functions as a classical
yield surface, i.e. the border between elastic and elasto-plastic regions in stress space. And the
load surface is designed such that the current stress point is always on the load surface. As shown
in Fig. A - 1, point C represents current stress state, and point I is the image point of point C on
the bounding surface. There is a mapping rule in terms of the distance of these two points to
determine both magnitude and orientation of plastic strain during loading, e.g. from point C to
point L as shown in Fig. A - 1. By exploiting the bounding surface plasticity, the coupling of

volumetric and shear behavior can be achieved and smooth yielding can be produced as well.

During unloading such as the stress path from point C to point U, the model response is

described by hysteretic elasticity. Basically, the hysteretic elasticity creates nonlinearity in
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constitutive relation, which is desirable. However, this elastic relation is isotropic in nature.
In other words, it cannot simulate the stiffness anisotropy of Chicago clays observed at very
small strains in Holman’s tests. Here, it is worthy to mention that this model was initially
proposed to study the performance of offshore friction piles supporting tension leg platforms
where soil behavior under cyclic loading controls the responses of the system. Since anisotropic
stiffness, e.g. cross anisotropy, enables coupling between volumetric and shear responses, the

solution for cyclic loading condition can be further facilitated by applying stiffness anisotropy.

bounding
surface

load
surface

Fig. A - 1. Bounding surface plasticity in MIT-E3

A.2 THREE SURFACE KINEMATIC HARDENING MODEL

Kinematic hardening means that during loading the yield surface moves in stress space

without change in size. The concept is based on the experimental evidence that “elastic” or
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quasi-elastic range of natural soil is typically very small and its size is relatively independent
of the starting stress (Wood 1990). The kinematic nature makes the yield surface behave like a

bubble floating in stress space. That is why this class of constitutive relation is also referred to

as ‘bubble’ model.

A«

load
surface

bounding
surface

Fig. A - 2. The early version of ‘Bubble’ model (Al-Tabbaa, 1987)

Similar to MIT-E3, the ‘bubble’ model was developed in two stages as well. The early
version of the model was developed by Al-Tabbaa (1987). As shown in Fig. A - 2, inside a
bounding surface of MCC type, one kinematic ellipsoidal surface was introduced as a load
surface. As before, the load surface serves as the border between the elastic and elasto-plastic

regions in stress space. As shown in Fig. A - 2, for loading stress path, e.g. from point C to point
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L, the load surface moves with the current stress point, while for unloading path, e.g. from
point C to point U, the surface remains stationary. The point I is the image point of the current
stress point C on the bounding surface. The distance between these two points is used as an
internal variable in a bounding surface plastic relation to quantify the plastic strain during
loading. A transition law of the load surface was made to ensure that it never intersects the
bounding surface. Continued loading after the two surface contact will reproduce exactly the

same response as MCC.

The current version of the ‘bubble’ model was presented by Stallebrass (1990) with emphasis
on stress history issues. In this model, a third surface, called the history surface, is added
between the load and bounding surfaces. Actually, the movement of this history surface is
controlled by a translation law of the same form as that used for the load surface. The relative
position of the history surface to the load surface is incorporated into the formula for plastic

modulus to control the rate of stiffness degradation.

Fig. A - 3 shows how this model works for two different stress paths. In Fig. A - 3 (a), the
path is A-B-E while in Fig. A - 3 (b) the path is C-B-E. With respect to the identical portion B-E,
portion A-B and C-B are termed ‘recent stress history’ (Atkinson et al. 1990). As shown, after
the recent history of A-B, the model response is elasto-plastic, while after C-B, the response is
elastic. The portion B-D shown in Fig. A - 3 (b) is elastic and during it, the load surface does not
move, as previously mentioned. That is why there is a plateau of constant stiffness at the initial
portion of the solid curve in Fig. A - 3 (c). Thus at the same point B, lower stiffness is produced

after A-B while higher stiffness is produced after C-B, as shown in Fig. A - 3 (¢). This result is
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consistent with the experimental observations that the smaller the deviation from the recent
stress path (history), the softer the soil response, and vice versa. Furthermore, in spite of the
difference in recent stress history, the model will reach an identical state after continued loading
along path B-E. The starting point of the identical state, point E in Fig. A - 3 (¢), is called state
of ‘swept-out memory’, beyond which the influence of recent stress history will be eliminated

(Gudehus et al. 1977). The history surface is designed to represent the locus of that state.

After CB
) [EPP——— Aﬁer hE

Fig. A - 3. The variation of stiffness with recent stress history (Stallebrass and Taylor 1997)
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It must be pointed out that the elastic model response inside the load surface is still
isotropic. So, this model can do no better in simulating stiffness anisotropy at very small strains
than a traditional elasto-plastic model. However, the ‘bubble’ model does address an associated

and important issue, i.e. stiffness anisotropy is highly dependent upon recent stress history.

A.3 HYPOPLASTIC MODEL

The two models previously reviewed are extensions to a traditional elasto-plastic relationship.
The capability of models of elasto-plastic type is typically gained by sacrificing simplicity,
which is manifested by incorporating complicated formulations and a large number of material
constants. Furthermore, there seem to be difficulties in applying the elasto-plastic relation to
natural soils, because most soils do not exhibit an elastic range even at small strain levels. As a
consequence, the decomposition of deformation into elastic and plastic parts is questionable, and

does not necessarily reflect the reality.

The development of hypoplastic theory was exactly motivated by the above thoughts. The
prefix ‘hypo-’ means non-existence of yield surface (Kolymbas 2000). The work was initiated in
Karlsruhe in late 70’s by Kolymbus and his associates. The initial model was designed for
granular materials (vonWolffersdorff 1996; Wu et al. 1998; Kolymbas 2000), and was extended
to cohesive materials later on (Niemunis and Herle 1997; Wu et al. 1998; Gudehus 2003). The

constitutive relation of hypoplasticity can be expressed as follows:

o

T,=L,D,+N,|D| (A-D)

ikl kil



168

where T, is co-rotational or Jaumann stress rate, Dy is Euler’s stretching tensor, |D| equals

/DD, » and L and N are functions of Tj; and other state variables such as void ratio. Owing to

the second term in Eq. (A-1), the stress rate is a function nonlinear in D. Furthermore, the second
nonlinear term leads to the result that — T( D) # f’(_ D). If the relation is invertible, then it is

equivalent to state that the recovered strain is not equal to the incurred strain in a complete stress
cycle. The inelastic behavior is thus achieved without the decomposition of strain measure into

elastic and plastic parts, as in elasto-plasticity.

The rate form of its general equation gives hypoplasticity advantages in dealing with the
small strain behaviors mentioned before. Stiffness anisotropy is naturally controlled by the
tensorial function L. Meanwhile, the function N can be designed to describe a particular
nonlinear relation and stiffness degradation at small strain levels. Furthermore, the influence of
recent strain history has also been investigated within hypoplastic framework (Niemunis and
Herle 1997). In terms of large strain behavior, it has been shown by Von Wolffersdorftf (1996)

that appropriate L and N can lead to implicit failure criteria.

B. CALCULATION OF TANGENT MODULI FROM TEST DATA

It is straightforward matter to calculate the secant moduli from data obtained in triaxial tests.
When calculating the tangent moduli, however, one has to smooth the curve first, because of

unavoidable fluctuation in the stress-strain curve. Approximating the tangent by directly
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connecting two consecutive data points usually yields fluctuating results. Hence, it is
necessary in most circumstances to conduct a regression analysis to obtain an analytical function
that fits the raw curve. The tangent modulus is then calculated by differentiating the regression

function.

An example is given in Fig. B - 1, wherein polynomial function is used to smooth the Ap-g,
curve. The order of the polynomial function depends on the non-linearity of the curve. Normally,
the order is increased until a satisfactory match is reached. If the match cannot be improved by
increasing order, the whole curve is divided into several segments and different polynomial
function is used to fit different curve segments, as shown in Fig. B - 1. By differentiating these

functions, the tangent modulus K can be obtained for the whole stress/strain range.

Note that herein the form of the regression function is not crucial. One can use any type of
function for the curve fitting if there is an apparent advantage. In addition, it is unnecessary, and
difficult in most cases, to use a single function to fit the entire curve. In most cases, a visual fit is

what is needed to make a judgment about a “satisfactory” fit.
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Fig. B - 1. Regression method used to smooth stress-strain curve

C. MODEL CODED IN UMAT FILE (ABAQUS)

C

C kK kK
Cll An Incrementally Non-linear Model for Clays I

C|| with Directional Stiffness and a Small Strain Emphasis ||
C kk sk
C

C Copyright by Xuxin Tu & Richard Finno 2006

C All Rights Reserved

C

C contact: Xuxin. Tu@gmail.com

C

C

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,
1 RPL,DDSDDT,DRPLDE,DRPLDT,
2 STRAN,DSTRAN, TIME,DTIME, TEMP,DTEMP,PREDEF,DPRED,CMNAME,
3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,
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4 CELENT,DFGRDO,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC)
C
INCLUDE 'ABA_ PARAM.INC'
C
CHARACTER*80 CMNAME
| NPROPS = 15; NSTATV = 15
!
DIMENSION STRESS(NTENS),STATEV(NSTATV),
| DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),
2 STRAN(NTENS),DSTRAN(NTENS), TIME(2),PREDEF(1),DPRED(1),
3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRDO0(3,3),DFGRD1(3,3)
REAL*8 STRESS, DSTRAN, STRAN, DDSDDE, PROPS, STATEV

REAL*8 TIME
C
C
C UMAT Interface
C sk sk sk sk sk she st sk sk sk sk ske sk st sk sk sk sk sk st sie sk sk sk sk sk st sie sk sk sk sk sk st sk sk sk skeosk sk sk sk skeosie sk sk steosie sk sk skeosk sk skeoske skt sk sk skeoske skeokeskokeskoskosk
C Variable Declaration
C
R Material Parameters (External) -----------
!
!
REAL*8 G _ref, Jv_ref, K ref
' refer to Es minatp a
REAL*8 LSP_ref
! refer to LSP_min at p_a (normalized by p_a already)
REAL*8 mu_up
!' mu for stress path leading to the upper F.S.
REAL*8 nn
! E/pa=Eref*(p'/pa)*nn !
REAL*8r Os,r x,r LSP,r mu
! r 0s=E O/E s; r_ x=Emax/Emin; r LSP=LSP max/LSP min;
r_ mu=mu_down/mu_up

REAL*S8 faf
! frictonal angle at failure [degree]
REAL*8 lambda
! Dstrn = lambda*D(In(strss))
REAL*8 OCR
! over-condolidated ratio
REAL*8 k nc
| lateral stress ratio for normal consolidation
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!
REAL*8 G_max, G_min, K max, K min, Jv_max, Jv_min
! used in directionality relations for Estar s
REAL*8 LSP_max, LSP_min
REAL*8 Mf, Mf upper, Mf lower, beta_upper, beta_lower
! Mf upper --> beta_upper; Mf lower --> beta_lower

REAL*8 Beta pre, LSP pre
! values in the previous increment
REAL*8 p 0, p0 pre
! p_0: p' value at the starting point of the most recent 'monotonic' path
! updated upon a path reversal
! p0_pre: previous p 0
REAL*8 s p
!'s p: preconsolidation stress; from OCR & p0
REAL*8 Ue
! excess pore water pressure
INTEGER flag drain
! 1: drained; 0: undrained
REAL*8 WT
I vertical coordinate of water table
REAL*8 Uh
! hydrostatic pressure

REAL*§ K, Jv, G, Js

! Tangent moduli under axisymmetric condition

! Dev = Dp/K+Dgq/Jv; Des = Dq/G+Dp/Js
REAL*8 stif NTENS,NTENS)

I Cross-anisotropic matrix for general conditions
REAL*8 strs(NTENS)

! used in MAIN program
C
C Variable Declaration
C 3k e sk sk sk s sk s sk s sk sk s sk s sk s sk sk s sk s sk s sk sk sk sk s s s sk sk sk sk s sk s sk sk sk sk sk s sk sk sk sk sk s sk sk sk sk sk sk sk skeosk ok skoskosk ks
C Variable Assignment
C
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REAL*8, PARAMETER :: pi=3.14159265D0
REAL*8, PARAMETER :: p a=100.D0
! atmospheric pressure [kPa]
REAL*8, PARAMETER :: K fld=2.D6 ! Bulk Modulus of water: 2.D6 kPa
! "Bulk modulus" for pore water
REAL*8, PARAMETER :: TOL ZERO = 1.D-18
REAL*8, PARAMETER :: TOL r=1.0D-3
! for substepping
REAL*8, PARAMETER :: TOL Beta=1.0D-3
! for Beta_Converge
REAL*8, PARAMETER :: K f=50.D0, G_f=1.DO,
1 Jvf up =1000.D0, Jvf low =-10000.D0
! E fregarded as independent of materials
INTEGER, PARAMETER :: m_max=12
! record size in "Beta_Converge", for
INTEGER, PARAMETER :: KSUB_max = 100000
! in case exceptions occur
REAL*8, PARAMETER :: r JvK =10.D0, r JsK =30.D0
! the ratio of Jv/Js to K in Compression Zone

G _ref=19.D0 1'76.D0 for GO
K ref=48.D0 '115.D0 for KO
Jv ref=116.D0 1462.DO0 for JvO
LSP ref=0.07D0
mu_up = 8.D0
r 0s=4.D0
r x=5.D0
r LSP=3.D0
r mu=0.5D0
nn = 0.55D0
faf =28.D0 ! RTXC: 29.D0, RTXE: 26.5
OCR =1.5D0
lambda = 0.04D0
k nc=0.7D0
!
Mf = DSIN(faf*pi/180.D0)
! Mf = (sigmalf-sigma3f)/((sigmalf+sigma3f)
SELECT CASE (NTENS)
CASE (4)
Mf upper = 2.D0* Mf
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C sk e sk sk sk s sk sk e sk sk sk s sk sk e sk sk sk s sk sk st sk sk sk sk sk sk s s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk sk skeosk sk skeokeskokosk

C
C

Mf lower = Mf upper

CASE (6)

Mf upper = 6.D0*M{/(3.D0-M¥)
Mf lower = 6.D0*M{/(3.D0+MT)

END SELECT

Beta upper = DATAN(MS upper)
Beta lower = 2.D0*pi-DATAN(MT lower)

! Mf lower is positive & beta: [0, 2*pi)

WT =0.D0
flag drain=0

!
!

Variable Assignment

Main Program

"N DEBUG
OPEN(UNIT=16,FILE='E:\DEBUG.txt',POSITION="APPEND")
!

IF (NOEL==1 .AND. NPT==1 .AND. KSTEP==1 .AND. KINC==1) THEN

CALL DEBUG_GENERAL

END IF

!
!

IF(KSTEP==28 .AND. KINC==28) THEN
| (NOEL==122 .AND. NPT==2)
| (KSTEP==28 .AND. KINC==28)
CALL DEBUG GENERAL
END IF
|
IF (KSTEP == 1) THEN
CALL ISO ELA(3.0D4, 0.4D0)
ELSE IF (KSTEP == 2) THEN
CALL INI_STATEV
CALL ISO_ELA(3.0D4, 0.495D0)
ELSE IF (KSTEP == 4 .OR. KSTEP == 7 .OR. KSTEP == 10) THEN
CALL ISO_ELA(3.0D4, 0.495D0)
|

! nu for s'h/s'v=0.5

ELSE IF (Norm(DSTRAN) < TOL_ZERO) THEN
| DSTRAN =0
CALL READ STATEV

174



C
C

CALL Sign_Change(strs, STRESS)
CALL Eff Stress(strs)
CALL P_Dependency
!
CALL Axisymmetry(strs, LSP_pre, beta pre)
CALL Cross_Anisotropy
DDSDDE = stiff
ELSE
!
CALL READ STATEV
CALL Sign_Change(Strs, STRESS)
CALL Eff Stress(Strs)
CALL P_Dependency
!

CALL Integration Scheme(strs)
CALL WRITE STATEV

END IF

!

CLOSE(16)
|

RETURN

Main Program

C sk e sk sk sk s sk sk e sk sk sk s sk s e sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk sk skeosk sk skeokesk skosk

C
C

C
C
C

Internal Procedures

CONTAINS

[ Internal Subroutine ] Integration Scheme

SUBROUTINE Integration_Scheme(strs_t)

! An automatic substepping scheme extended for incremental non-linearity
I strs_t in geomechanics sign convention

! Main Components
! Beta_Converge, Dstrs CALC, OUT _FS,

!

REAL*8 strs t(NTENS) ! passed in

REAL*8 Dx(NTENS) ! strain incrmnt

REAL*8 y(2,NTENS), Dy(2,NTENS) P*(1,:): ks *(2,0): k+1
REAL*S stiff I INTENS,NTENS) ! record stiff in the 1st guess
REAL*8 beta, LSP, LSP2, D_LSP, Dp, Dq

REAL*8 D_beta ! for stress reversal treatment

REAL*8t, Dt, r ! r: estimated ratio for next strain incrmnt

175
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REAL*8 Err y(NTENS), norm_Err, norm_y, Err Ratio
INTEGER KSUB ! KSUB: substep #
INTEGER flag_end ! for each substep: 1=converged, O=unconverged
INTEGER flag fail ! 1=upper F.S.; 2= lower F.S.; 0= pre-failure
!
!
!
CALL Sign Change(Dx, DSTRAN)

! Using sign convention of geomechanics, i.e. compressive = (+)
y(1,:)=strs t
!

R failure treatment ---------------
flag fail = Failure(y(1,:))

IF(flag_fail /= 0) THEN

!

"' DEBUG
CALL DEBUG_SUBSTEP(KSUB)
!
CALL OUT _FS(Dx, flag_fail, y(1,:), beta)
! update y(1,:), beta & stiff
WRITE (16,'("OUT OF F.S. at beginning")")
GOTO 828
END IF
I ---- variable initialization
LSP =LSP pre
beta = Beta pre
Dt=1.D0
t=0.D0
r=1.D0
KSUB =0
!
Do extended substepping -------------
DO WHILE (t < 1.D0 .AND. KSUB < KSUB_max)
flag end =0 ! O:inaccurate; 1: accurate
KSUB = KSUB+1
!
Dt =r*Dt
IF (t+Dt> 1.D0) THEN
Dt=1.DO0 -t
END IF
!
CALL Beta Converge(y(1,:), LSP, Dt*Dx, Dy(1,:), beta)
! update beta, Dy(1,:) & stiff
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!
D ommmeeeee stress reversal treatment ----------
D beta = beta - beta_pre
CALL Dbeta_ Correction(D_beta)
! make D beta fall in [-pi, pi]
D beta=DABS(D beta)
!
IF (D_beta > 0.5D0*pi) THEN
I stress reversal
LSP=0.D0
p0 pre=p 0
p_0=pp(y(1,))
CALL P_Dependency
!

IF (p_ 0>s p) THEN
sp=p 0

END IF

!

CALL Beta Converge(y(1,:), LSP, Dt*Dx, Dy(1,:), beta)
! update beta, Dy(1,:) & stiff

beta pre = beta

LSP pre =LSP

!

END IF

!

R original substepping -------------

stiff] = stiff

Dp = pp(Dy(1,:))

Dq = qq(Dy(1,:))

D LSP = DSQRT(Dp*Dp + Dg*Dq)

!

DO WHILE (flag_end == 0)

!'in this LOOP, y(1,:) doesn't change
!

y(2,:) = y(1,:)+Dy(1,:)

LSP2=LSP+D LSP

!

CALL Dstrs CALC(y(2,:), LSP2, beta, Dt*Dx, Dy(2,:))
I calculate Dy(2,:) & stiff

!

Err y = (Dy(2,:)-Dy(1,:))/2.D0
!

norm_Err = Norm(Err _y)



norm_y = Norm(y(1,:))
Err Ratio = DABS(norm_Err/norm_y)
r = 0.8DO*DSQRT(TOL _1/Err Ratio)
!
IF (Err_Ratio < TOL r) THEN
! converged

flag end=1

!

IF (r > 2.D0) THEN
r=2.D0
END IF
ELSE
! unconverged
IF (r <0.1D0) THEN
r=0.1D0

END IF
!

Dy(1,:) = r*Dy(1,:)
D LSP=r*D LSP
!

Dt =r*Dt

|

END IF
!

END DO

|

Dy(1,) = (Dy(1,:)+Dy(2,:))/2.D0

Dp = pp(Dy(1,:))

Dq = qq(Dy(1,:))

D LSP = DSQRT(Dp*Dp + Dg*Dq)

|

LSP=LSP+D LSP

t = t+Dt

y(1,)) = y(1,:) + Dy(1,:)
stiff = 0.5D0*(stiff1+stiff)

|

! secant stiffness matrix for this substep
!'an approximation of ATM

—————————— failure treatment ---------------

flag_fail = Failure(y(1,:))
IF(flag_fail /= 0) THEN

"' DEBUG
CALL DEBUG_SUBSTEP(KSUB)
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!
CALL OUT _FS((1.D0-t)*Dx, flag fail, y(1,:), beta)
! update y(1,:), beta & stiff
WRITE (16,'("OUT OF F.S. within substepping")")
GOTO 828

END IF

R et Final Update -------------

Beta pre = beta

LSP pre =LSP

CALL Final Update(y(1,:), Dx)

! Update Ue, STRESS & DDSDDE

!

! DEBUG

IF (NOEL==1 .AND. NPT==1) THEN
CALL DEBUG_SUBSTEP(KSUB)

END IF

!

END SUBROUTINE Integration Scheme

[ Internal Subroutine ] Beta Converge

oNoNeNe!

SUBROUTINE Beta Converge(strs_t, LSP t, Dstrn, Dstrs, beta t)

I calculate Dstrs & beta t using Newton method and numerical differentiation

! update k, Jv, G, Js & stiff

e main components -----------------

! Dstrs CALC, FN_Beta, Dbeta_Correction, Beta Period
!

REAL*8 strs_ t(NTENS), Dstrn(NTENS), Dstrs(NTENS)
REAL*8 LSP t, beta t

REAL*8 beta_rec(m_max) ! beta t

REAL*8 x1, x2, y1,y2,y p, Dx, x_disturb

!'y_p:y prime, numerical differentiation; y p = (y2-y1)/(x2-x1)

I'x2 =x1 +x_disturb
'Dx=-ylly p
REAL*8 Dp, Dq
INTEGER flag_end
!'1: converged, 0: unconverged
INTEGER m
! m: Newton iteration #
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|

x_disturb =0.01D0*TOL Beta

beta_rec(l:m_max) = 0.D0

m=1

beta rec(1) =beta t

!

x1 =beta t

!

CALL Dstrs CALC(strs_t, LSP_t, x1, Dstrn, Dstrs)
beta t=FN_ Beta(Dstrs)

!

yl =beta t-x1
!
CALL Dbeta Correction(yl)
! makes y1 fall in [-pi, pi]
IF (DABS(yl) < TOL Beta) THEN
flag end=1
ELSE
flag end =0
END IF
!
!
DO WHILE (flag_end == 0 .AND. m < m_max)
!
x2 =x1 + x_disturb
!
CALL Dstrs CALC(strs_t, LSP_t, x2, Dstrn, Dstrs)
beta t=FN_ Beta(Dstrs)
!

y2 =beta_t-x2
CALL Dbeta_Correction(y2)
! makes y1 fall in [-pi, pi]
!
y_p = (y2-yD/(x2-x1)
Dx=-yl/y p
beta t=x1+ Dx
!
CALL Beta Period(beta t)
! makes beta t fall in [0, 2pi)
!
x1 =beta _t
!

CALL Dstrs CALC(strs_t, LSP_t, x1, Dstrn, Dstrs)
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! update stiff also
beta t=FN_ Beta(Dstrs)
!

yl =beta t-x1
!

CALL Dbeta Correction(yl)
! makes y1 fall in [-pi, pi]
IF (DABS(y1) < TOL Beta) THEN
flag end=1
ELSE
flag end =0
END IF
!
m=m+ |
beta rec(m) = x1
!
END DO
!
beta t=x1
! must be consistent with Dstrs
!
! DEBUG -------=-------
'TF(m <= m_max) THEN
! WRITE (16,'("Beta: ", F6.3)'") beta_t
! WRITE (16,'("beta_rec(): ", 12F6.3)") beta_rec
'END IF
!
!
END SUBROUTINE Beta Converge

[ Internal Subroutine ] Dbeta_Correction

SUBROUTINE Dbeta_Correction(Dbeta)
! makes Dbeta fall in [-pi, pi]

! Dbeta: the difference between 2 betas

! Note: any Dbeta should fall in (-2pi, 2pi)
!

REAL*8 Dbeta
!
IF (Dbeta > pi) THEN
Dbeta = Dbeta - 2.D0*pi
ELSE IF (Dbeta < -pi) THEN
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Dbeta = Dbeta + 2.D0*pi
END IF
!
!
END SUBROUTINE Dbeta_Correction

[ Internal Subroutine ] Beta Period

SUBROUTINE Beta Period(beta t)
! make beta_t fall in [0, 2*p1)
!
REAL*8 beta t
DO WHILE (beta_t < 0.D0)
beta t=beta t+2.0D0*pi1
END DO
!
DO WHILE (beta_t >=2.D0*pi)
beta t=beta t-2.0D0*pi
END DO

!
END SUBROUTINE Beta Period

[ Internal Subroutine |  Dstrs CALC

SUBROUTINE Dstrs CALC(strs_t, LSP t, beta t, Dstrn, Dstrs)
I calculate Dstrs at strs_t based on LSP _t, beta t & Dstrn
! updated quantities: 'K, Jv, G, Js', stiff(*,*)
!
REAL*8 strs_t(NTENS), Dstrs(NTENS), Dstrn(NTENS)
REAL*8 LSP t, beta t
!
CALL Axisymmetry(strs t, LSP t, beta t)
! calculate K, Jv, G, Js
CALL Cross_Anisotropy
I calculate stiff(*,*) using K, Jv, G, Js
CALL Dstrs Dstrn(Dstrs, Dstrn)
I calculate Dstrs using stiff(*,*) & Dstrn

!
END SUBROUTINE Dstrs CALC
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[ Internal Subroutine ] Axisymmetry

SUBROUTINE Axisymmetry(strs _t, LSP t, beta t)

I calculate tangent moduli - K,Jv,G,Js - under axisymmetric condition

R e e main components --------------
! Evolution_CZone, Evolution SZone, LNR
!

REAL*S8 strs t(NTENS), LSP t, beta t
REAL*8 beta min, beta_max

I specify transition zones between Shear & Compression Zones

REAL*§K 1,K 2,Jv 1,Jv 2,G 1,G 2,Js 1,Js 2
! for transition between Shear & Compression Zones
!
beta_min = 1.01D0*beta_upper
beta max = 0.995D0*beta lower
!
!
IF (beta t <=beta upper .OR. beta t >=beta_lower) THEN
! In Compression Zone
CALL Evolution_ CZone(strs_t, LSP t, beta t)
!
ELSE IF (beta t >=beta_min .AND. beta t <=beta_max) THEN
!' In "PURE" Shear Zone
CALL Evolution_SZone(strs t, LSP t, beta t)
!
ELSE IF (beta t > beta_upper .AND. beta t <beta min) THEN
! upper part of transition
CALL Evolution_CZone(strs_t, LSP t, beta upper)
K 1=K
v 1=1Jv
G1=G
Js 1=1Js
CALL Evolution_SZone(strs_t, LSP_t, beta min)
K 2=K
Jv2=Jv
G2=G
Js 2=1s
K =LNR(beta upper, beta min, K 1, K 2, beta t)
Jv =LNR(beta upper, beta min, Jv_1,Jv_2, beta t)
G = LNR(beta upper, beta min, G_1, G 2, beta t)
Js = LNR(beta upper, beta min, Js 1, Js 2, beta t)
!
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ELSE
! lower part of transition
CALL Evolution CZone(strs_t, LSP t, beta lower)
K 1=K
v 1=Jv
G 1=G
Js 1=1Js
CALL Evolution SZone(strs_t, LSP_t, beta max)
K 2=K
v 2=1Jv
G2=G
Js 2=1Js
K =LNR(beta lower, beta max, K 1, K 2, beta t)
Jv=LNR(beta lower, beta max, Jv_1,Jv 2, beta t)
G = LNR(beta lower, beta max, G 1, G_2, beta t)
Js = LNR(beta lower, beta max, Js 1, Js 2, beta t)
END IF
!
!
END SUBROUTINE Axisymmetry

[ Internal Subroutine ] Evolution CZone

SUBROUTINE Evolution CZone(strs_t, LSP t, beta t)
! for stiffness evolution in Compression Zone
'update E 0, E s, LSP_s based on beta t
I calculate K,Jv,G,Js
R main components -------------
! Ks Beta, Jvs Beta, Gs Beta, LSPs Beta, LNR
!
REAL*8 strs t(NTENS), LSP t, beta t
REAL*8p t,q t
REAL*8K 0,K s,Jv 0,Jv s, LSP s
REAL*8§ G 0,G s,Js 0,Js s
REAL*8 sign Js, sign Jv ref
REAL*§ LSP p,K p,Jv. p,G p,Js p
! values at beta=0 & LSP=LSP p
REAL*8 K ic, Jv ic, G ic, Js ic
! values at beta=0 & LSP>LSP p
REAL*8 Js_min
!'Js_s varies in Compression Zone, but other E s don't
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!

p_t=pp(strs_t)
q_t=qq(strs_t)
!

!

LSP s =LSPs beta(beta t)
LSP p=s pp 0

!

IF (LSP_t <=LSP_s) THEN
! Small Strain Zone
K s=Ks Beta(beta t)
Jv_s=Jvs Beta(beta t)
G_s =Gs_Beta(beta t)
Js s=1Jss Beta(beta t,p t,q t)
!

K 0=r 0s*K s
Jv 0=r 0s*Jv_s
G 0=r 0s*G_s
Js 0=r 0s*Js s
!
K =LNR(0.DO, LSP_s,K 0,K s, LSP t)
Jv=LNR(0.DO, LSP_s, Jv_0,Jv_s, LSP t)
G =LNR(0.DO, LSP s,G 0,G _s,LSP ¢t)
Js =LNR(0.DO, LSP_s,Js 0,Js s, LSP t)
(x1,x2, yl,y2,x)
ELSE
sign _Jv_ref = DABS(Jv_ref)/Jv_ref
sign_Js = DABS(-q t)/(-q_t)
1Js = (-3p/q)*G
e e calculate K _ic ----------------
IF (LSP_t>=LSP p) THEN
! Normal Consolidation at beta=0
K ic =p t/lambda
ELSE
! Transition at beta=0
K p=s_ p/lambda
K s=Ks Beta(0.DO0)
!
K ic=LNR(LSP s, LSP p,K s,K p, LSP t)
END IF
R calculate other E_ic -------------
IF (beta t <beta upper) THEN
Jv_ic=sign Jv ref*r JvVK*K ic
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ELSE

Jv_ic =-sign Jv ref*r JVK*K ic

END IF
G ic=1.5D0*(1-k_nc)/(1+2.D0*k nc)*K ic
Js_ic =sign Js*r JsK*K ic

!
'E at

the boundaries equal to E_s because LSP_fis infinite

IF (beta_t <beta upper) THEN
!

ELSE

K s=Ks Beta(beta upper)

Jv_s =Jvs Beta(beta upper)

G _s=Gs_Beta(beta upper)

Js_s=1Jss Beta(beta upper,p t,q t)

!

K =LNR(0.DO, beta_upper, K ic, K s, beta t)
Jv=LNR(0.DO, beta_upper, Jv_ic, Jv_s, beta t)
G = LNR(0.DO0, beta_upper, G ic, G_s, beta t)
Js = LNR(0.DO0, beta upper, Js ic, Js_s, beta t)

K s=Ks Beta(beta lower)

Jv_s=Jvs Beta(beta lower)

G _s=Gs_Beta(beta lower)

Js_s=1Jss Beta(beta lower,p t, q t)

!

K =LNR(2.D0*pi, beta_lower, K ic, K s, beta_t)
Jv =LNR(2.D0*pi, beta lower, Jv_ic, Jv_s, beta t)
G = LNR(2.D0*pi, beta_lower, G ic, G_s, beta t)
Js = LNR(2.D0*pi, beta_lower, Js_ic, Js_s, beta t)

END IF
END IF

END SUBROUTINE Evolution CZone

[ Internal Subroutine ] Evolution SZone

SUBROUTINE Evolution SZone(strs_t, LSP t, beta t)
! for stiffness evolution in Shear Zone

'update E 0, E s, LSP s based on beta t

! calculate K,Jv,G,Js

main components -------------
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! Ks Beta, Jvs Beta, Gs_Beta, LSPs Beta,

' LNR, LSP_tf, NONLNR

!

REAL*S strs_ t(NTENS)

REAL*8 LSP t, beta t

REAL*8p t,q t,LSP f

REAL*8G 0,G s,K 0,K s,Jv 0,Jv_s,LSP s

REAL*8 mu, Jv_f

INTEGER flag_upward
! 1: Dstrs leads to the upper F.S.
! 0: Dstrs leads to the lower F.S.

!

K s=Ks Beta(beta t)

Jv_s=Jvs Beta(beta t)

G_s =Gs_Beta(beta t)

LSP s =LSPs beta(beta t)

!

K 0=r 0s*K s

Jv 0=r 0s*Jv_s

G 0=r 0s*G_s

!

p_t=pp(strs_t)

q_t=qq(strs_t)

!

IF (LSP_t<=LSP s) THEN
! Small Strain Zone
K =LNR(0.DO, LSP s,K 0,K S,LSP ¢t)
G =LNR(0.DO, LSP_s, G 0, G_S, LSP _t)
Jv=LNR(0.DO, LSP s, Jv 0,Jv_S,LSP t)
'(x1,x2, yl,y2,x)
ELSEIF (p t<=s p) THEN
! Large Strain
LSP f=LSP t+LSP tf(strs t, beta t, flag upward)
!
IF (flag_upward == 1) THEN
Jv f=Jvf up
mu =mu_up
ELSE
Jv_f=1Jvf low
mu=r_mu*mu_up
END IF
!

K = NONLNR(LSP s, LSP f, K s, K _f, LSP _t, mu)
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Jv=NONLNR(LSP s, LSP f,Jv s, Jv_f, LSP_t, mu)
G = NONLNR(LSP_s, LSP f, G s, G_f, LSP_t, mu)
'( x1,x2,yl, y2, x, mid)
END IF
!
IF (DABS(q t) < TOL ZERO) THEN
Js =-3.D0*G*p t/TOL ZERO*(q _t/DABS(q t))
lavoidp t=0
ELSE
Js =-3.D0*G*p t/q t
END IF
!
!
END SUBROUTINE Evolution SZone

IN-SUB Cross_Anisotropy

SUBROUTINE Cross_Anisotropy

I calculate stiff(*,*) using 'K, Jv, G, Js'

I'a mapping from axisymmetric condition to general conditions
!

REAL*§ A,B,C,D,E ! (/A,B,C,B,A,C,.D,D.E/)
REAL*8 denol, deno2 ! 2 denominators in stiff matrix

s Compliance matrix
A = (-1.D0/(Js*3.D0)+1.D0/(K*4.5D0)+1.D0/(G*6.D0)-1.D0/(Jv*3.D0))
1 *1.25D0
B =-A*0.2D0
C =1.D0/(Jv*3.D0)-1.D0/(Js*6.D0)+1.D0/(K*9.D0)-1.D0/(G*6.D0)
D = 1.D0/(K*9.D0)-1.D0/(G*6.D0)+1.D0/(Js*3.D0)-1.D0/(Jv*6.D0)
E = 1.D0/(G*3.D0)+1.D0/(K*9.D0)+1.D0/(Js*3.D0)+1.D0/(Jv*3.D0)
lommmmeee Stiffness matrix
denol = -A*A*E+2.D0*A*C*D+B*B*E-2.D0*B*C*D
deno2 = -A*E+2.D0*C*D-B*E
!
stiff(1:NTENS,1:NTENS) = 0.D0
!
SELECT CASE (NTENS)
CASE (4) ! dimension-2 is vertical
stiff(1,1) = ((-A*E+C*D)/denol
stiff(1,3) = (B*¥*E-C*D)/denol
stiff(1,2) = C/deno2
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stiff(3,1) = stiff(1,3)
stiff(3,3) = stiff(1,1)
stiff(3,2) = stiff(1,2)
stiff(2,1) = D/deno2
stiff(2,3) = stiff(2,1)
stiff(2,2) = -(A+B)/deno2
stiff(4,4) = G

CASE (6) ! dimension-3 is vertical
stiff(1,1) = ((-A*E+C*D)/denol

stiff(1,2) = (B*E-C*D)/denol
stiff(1,3) = C/deno2
stiff(2,1) = stiff(1,2)
stiff(2,2) = stiff(1,1)
stiff(2,3) = stiff(1,3)
stiff(3,1) = D/deno2
stiff(3,2) = stiff(3,1)
stiff(3,3) = -(A+B)/deno2
stiff(4,4) = G
stiff(5,5) =G
stiff(6,6) = G

END SELECT

!

END SUBROUTINE Cross_Anisotropy

[ Internal Subroutine ]

Dstrs_Dstrn

SUBROUTINE Dstrs Dstrn(Dstrs, Dstrn)

I get Dstrs using stiff(*,*)
!

REAL*8 Dstrs(NTENS), Dstrn(NTENS)

|

Dstrs(1:NTENS) = 0.D0
DO i=1,NTENS
DO j=1,NTENS

Dstrs(i) = Dstrs(i)+stiff(i,j)*Dstrn(j)

END DO
END DO
|

END SUBROUTINE Dstrs Dstrn

[ Internal Subroutine ]

READ PROPS
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SUBROUTINE READ PROPS m
!

G_ref= PROPS(1)
Jv_ref= PROPS(2)
K ref= PROPS(3)
LSP_min = PROPS(4)
mu_up = PROPS(5)
nn = PROPS(6)
r_0s =PROPS(7)
r_x = PROPS(8)
r LSP =PROPS(9)
r_ mu =PROPS(10)
faf = PROPS(11)
lambda = PROPS(12)
OCR =PROPS(13)
k nc = PROPS(14)

!

END SUBROUTINE READ PROPS

[ Internal Subroutine ] P Dependency

SUBROUTINE P_Dependency

I calculate internal stiffness parameters based on p 0
'E min=E ref*p a*(p_0/p_a)*nn

' LSP_min = (LSP_ref*p _a)*(p _0/p_a)

!
!
REAL*8r t,r E, sign Jv ref
REAL*8 p 0Ot

!

IF (p0_pre==s p.AND.p 0<p0 pre) THEN
p_Ot=p0 pre

ELSE
p Ot=p O

END IF

!

rt=p Otp a

r E=p a*r t**nn

sign_Jv_ref = DABS(Jv_ref)/Jv_ref

!
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K min=K ref*r E
'K min falls in Compression Zone
Jv_min=Jv_ref*r E
'Beta_Jvmin = 0.5pi
G min=G ref*r E
!G_min falls in Compression Zone
!
K max=r x*K min
'Beta Kmax = pi; K _max falls in Shear Zone
Jv_max = (-sign_Jv_ref)*r JvK*K min
Jv_max at 1.5pi
G max=r x*G_min
'Beta Gmax = 1.5pi
!
LSP min=p O*LSP_ref
'Beta LSPmin = Beta RTC
LSP max =r LSP*LSP min
!LSPmax falls in [Beta RTE, 2pi]
!

END SUBROUTINE P_Dependency

[ Internal Subroutine ] INI STATEV

SUBROUTINE INI_STATEV

I'strs_t with general mechanics sign convention (compressive: +)
!

REAL*8 strs t(NTENS)
!

STATEV(1) = 0.5D0*pi ! Beta pre
STATEV(2) =0.D0 ' LSP pre
!

CALL Sign Change(strs_t, STRESS)
Ue=0.DO0

CALL Eff Stress(strs t)
!

STATEV(3) = pp(strs_t) 'p O
STATEV(4) = pp(strs_t)*OCR !'s p

STATEV(S5) = Ue | Ue
|

! STATEV(6-9) for K, Jv, G, Js, for debug purpose
!
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STATEV(10) = STATEV(3) ' p0_pre
!

END SUBROUTINE INI STATEV

[ Internal Subroutine ] READ STATEV

SUBROUTINE READ STATEV
!
Beta pre = STATEV(1)
LSP_pre = STATEV(2)
!

p 0=STATEV(3)

s p=STATEV(4)

Ue =STATEV(S)

!

I state variables K, Jv, G, Js are only for debug purpose
!

p0_pre = STATEV(10)
!

END SUBROUTINE READ STATEV

[ Internal Subroutine ] WRITE STATEV

SUBROUTINE WRITE STATEV
!
STATEV(1) = Beta_pre
STATEV(2) = LSP _pre
!

STATEV(3)=p 0
STATEV(4)=s p
STATEV(5) = Ue

!

STATEV(6) =K
STATEV(7)=1Jv
STATEV(8)=G
STATEV(9) =1Js

!

STATEV(10) =p0 pre
!

END SUBROUTINE WRITE STATEV
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[ Internal Subroutine ] Sign Change()

SUBROUTINE Sign Change(strsl, strs2)
I switch between General Mechanics & GeoMechanics sign conventions

! from strs2 to strsl
'

REAL*8 strs](NTENS), strs2(NTENS)
|

DOi=1,NDI
strs1(i) = -strs2(i)
END DO
!
DO i =NDI+1, NTENS
strs1(i) = strs2(i)
END DO
!

END SUBROUTINE Sign Change

[ Internal Subroutine ] OUT _FS

SUBROUTINE OUT_FS(Dstrn_t, flag fail, strs_t, beta t)

! update strs_t, beta t & stiff using failure parameters
!

REAL*8 Dstrn_t(NTENS), strs t(NTENS), Dstrs t(NTENS)
INTEGER flag_fail

REAL*8 beta t,p t,q t

!

p_t=pp(strs_t)

q_t=qq(strs_t)

!

K=K f

IF (flag_fail == 1) THEN
Jv=1Jvf up

ELSE
Jv =1Ivf low

END IF

G=G f

Js =-3.D0*G*p t/q t

!

CALL Cross_Anisotropy
! calculate stiff(*,*) using K, Jv, G, Js



oNoNeNe

CALL Dstrs Dstrn(Dstrs_t, Dstrn_t)
! calculate Dstrs using stiff(*,*) & Dstrn
beta t=FN_Beta(Dstrs_t)
!
strs_t=strs t+ Dstrs_t
!

END SUBROUTINE OUT _FS

[ Internal Subroutine |  Eff Stress

SUBROUTINE Eff Stress(strs_t)

I strs in geotechnical sign convention
!

REAL*8 strs t(NTENS)
!

SELECT CASE (NTENS)
CASE (4)
! dimension-2 is vertical
IF (WT > COORDS(2)) THEN
Uh =9.8D0*(WT - COORDS(2))
ELSE
Uh=0.D0
END IF
!
CASE (6)
! dimension-2 is vertical
IF (WT > COORDS(3)) THEN
Uh =9.8D0*(WT - COORDS(3))
ELSE
Uh=0.D0
END IF
!

END SELECT
!
IF (flag_drain == 0) THEN
! undrained
DO i=1,NDI
strs_t(i) = strs_t(i) - Ue - Uh
END DO
ELSE
! drained
DO i=1,NDI
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strs_t(i) = strs_t(i) - Uh
END DO
END IF
!

END SUBROUTINE Eff Stress

[ Internal Subroutine ]|  Final Update

SUBROUTINE Final Update(strs_t, Dstrn_t)
! Update Ue, STRESS & DDSDDE
!
REAL*8 strs t(NTENS), Dstrn_t(NTENS)

! both in geotechnical sign convention, i.e. compressive=(+)

!
IF (flag_drain == 0) THEN
! undrained
Ue =Ue + K _f1d*3.D0*pp(Dstrn_t)
DO i=1,NDI
strs_t(i) = strs_t(i) + Ue + Uh
!

DO j=1,NDI
stiff(i,j) = stiff(i,j) + K _fld
END DO
!
END DO
ELSE
I drained
DO i=1,NDI
strs_t(i) = strs_t(i) + Uh
END DO
END IF
!
CALL Sign Change(STRESS, strs_t)
I update in general mechanics sign convention
DDSDDE = stiff
!
!

END SUBROUTINE Final Update
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[ Internal Subroutine ] ISO_ELA
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SUBROUTINE ISO_ELA(E, nu)
! update DDSDDE & STRESS
!
REAL*8 E, nu
INTEGER k1, k2
REAL*8 GG, cl
!
! Matrix - Drained
DO k1=1,NTENS
DO k2=1,NTENS
DDSDDE(k2,k1) = 0.
END DO
END DO
!
cl = (1.D0-2.D0*nu)*(1.D0+nu)
DO k1=1,NDI
DO k2 = 1,NDI
DDSDDE(k1,k2) = nu*E/cl
END DO
END DO
!
DO k1=1,NDI
DDSDDE(k1,k1) = (1.DO-nu)*E/cl
END DO
!
GG = 0.5D0O*E/(1.D0+nu)
DO k2=NDI+1, NTENS
DDSDDE(k2.k2) = GG
END DO
!
DO k1=1,NTENS
DO k2=1,NTENS

STRESS(k1) = STRESS(k1)+DDSDDE(k1,k2)*DSTRAN(k2)

END DO
END DO
!
|

END SUBROUTINE ISO_ELA

[ Internal Subroutine ]

DEBUG_GENERAL
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SUBROUTINE DEBUG GENERAL
!
!
WRITE (16,'("-----=-====-=----- Numerical ")
WRITE (16,'("TOL r=", F10.9)") TOL r
WRITE (16,'("TOL Beta=", F10.9)") TOL Beta
WRITE (16,'("K_f=",F5.0))K f
WRITE (16,'("G_f=",F5.0))G_f
WRITE (16,'("Jvf up =", F8.0)") Jvf up
WRITE (16,'("Jvf low =", F8.0)") Jvf low
WRITE (16,'("r JvK =", F5.0)") r JVvK
WRITE (16,'("r_JsK =", F5.0)") r_JsK
WRITE (16,'("K_fld =", F8.0)") K fld
WRITE (16,'("-----=--=-=-=----- Material "))
WRITE (16,'("K _ref=", F5.0)") K _ref
WRITE (16,'("G_ref=", F5.0)") G_ref
WRITE (16,'("Jv_ref =", F5.0)") Jv_ref
WRITE (16,'("LSP_ref=", F5.0)") LSP_ref
WRITE (16,'("mu_up =", F5.2)") mu_up
WRITE (16,'("r_ 0s=",F5.2)")r Os
WRITE (16,'("r x=",F5.2)")r x
WRITE (16,'("r_ LSP =", F5.2)")r _LSP
WRITE (16,'("r mu=",F5.2))r mu
WRITE (16,'("nn =", F5.3)") nn
WRITE (16,'("faf =", F6.2)") faf
WRITE (16,'("OCR =", F5.3)") OCR
WRITE (16,'("lambda =", F8.6)") lambda
WRITE (16,'("k_ nc=",F5.3)")k nc
WRITE (16,'("-----=--=--=------ Others "))
WRITE (16,'("WT =", F6.3)") WT
WRITE (16,'("flag_drain =", 13)') flag_drain
WRITE (16,'()")
WRITE (16,'("-----=---===------ Computation ----------------- "))
WRITE (16,'("NOEL,KSTEP,KINC, KSUB, p, q, strs(1l), strs(3),
1 ev, es, K, Jv, G, Js,
Beta, LSP, Uh, Ue"))
WRITE (16,'(" "))
!
!
END SUBROUTINE DEBUG GENERAL

[ Internal Subroutine ] DEBUG_SUBSTEP
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SUBROUTINE DEBUG_SUBSTEP(KSUB)
!
!
!
INTEGER KSUB
REAL*8 strs t(NTENS)
REAL*8p t,q t,ev, es
!

CALL Sign Change(strs_t, STRESS)
p_t=pp(strs_t)

q_t=qq(strs_t)

'

ev =-300.D0*pp(STRAN)

es =-100.D0*qq(STRAN)

!

WRITE (16,'(415, 4F8.2, 2F10.7, F8.0, F12.0, F8.0, F12.0, 4F8.2)")
1 NOEL, KSTEP, KINC, KSUB, p t, q t, strs_t(1), strs_t(3),

2 ev,es, K, Jv, G, Js, Beta_pre, LSP pre, Uh, Ue

WRITE (16,'(4F12.8)") DSTRAN(1:4)

!

!

END SUBROUTINE DEBUG _SUBSTEP

[ Internal Subroutine ] DEBUG Beta

SUBROUTINE DEBUG Beta

! record computational info in Beta Converge
!
!
'WRITE (16,'(" ")
!

END SUBROUTINE DEBUG_Beta

SUBROUTINES
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FUNCTIONS

[ Internal Function ] LSP tf



REAL*8 FUNCTION LSP_tf(strs_t, beta t, flag upward)

I evaluate distance in LSP from strs_t to its image point on F.S.

! return flag upward for determining mu
!
REAL*S strs_ t(NTENS)
REAL*S beta_t
INTEGER flag upward

! 1: path direction is flag_upward; 0: downward
REAL*8 Beta_crit

! boundary for Mf upper and Mf lower
REAL*8 Dp, Dq, p, q
REAL*8 D_LSP, mm

! mm = LSP_tf/D LSP

!
Dp = DCOS(beta t)
Dq = DSIN(beta_t)
D LSP =DSQRT(Dp*Dp + Dq*Dq)
! Magnitudes of D_LSP does not matter here
p = pp(strs_t)
q = qq(strs_t)
!

!

Beta crit = FN_Beta(strs t) + pi

CALL Beta Period(Beta_crit)
!

!

IF (beta t < Beta crit . AND. beta t > Beta upper) THEN
' FS(p+rmm*Dp, gtmm*Dq) = 0
mm = (-Mf upper*p+q)/(Mf_upper*Dp-Dq)
flag upward =1

ELSE
mm = (Mf_lower*p+q)/(-Mf_lower*Dp-Dq)
! note: Mf lower is positive
flag upward =0

END IF

!

LSP tf=mm*D LSP

!

!

END FUNCTION LSP _tf
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[ Internal Function ] Failure

INTEGER FUNCTION Failure(strs_t)
I evaluate failure state
!'1: out of upper F.S.; 2: out of lower F.S.; 0: allowable

I strs in geotechnical sign convention
!

REAL*8 strs t(NTENS)
REAL*8p t,q t

!

p_t=pp(strs_t)
q_t=qq(strs_t)

!

IF(Mf upper*p t<q t) THEN
Failure = 1

ELSE IF(q t <-Mf lower*p t) THEN

! Note: Mf lower is positive

Failure =2

ELSE
Failure =0

END IF

!

!

END FUNCTION Failure

[ Internal Function ] FS MN

REAL*8 FUNCTION FS_MN(strs)

I Matsuoka-Nakai failure surface

! NOTE: M-N function represents multiple surfaces,

! only one of which is intended for Failure Surface.

! Extra numerical measures must be taken if one has to use M-N for F.S.

!
REAL*8 strs(NTENS)
REAL*8a,1 1,1 2,13
!

a = faf*pi/180.D0
!

[ 1= strs(1)+strs(2)+strs(3)
!

SELECT CASE (NTENS)
CASE (4)
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I 2 = strs(4)*strs(4)-strs(1)*strs(2)

1 -strs(2)*strs(3)-strs(3)*strs(1)
! (s1,s3:horizontal; s2:vertical; s4:12)
I 3 = strs(1)*strs(2)*strs(3)-strs(3)*strs(4)*strs(4)

!

CASE (6)
I 2 = strs(4)*strs(4)+strs(5)*strs(5)+strs(6)*strs(6)

1 -strs(1)*strs(2)-strs(2)*strs(3)-strs(3)*strs(1)
! (s1,s2:horizontal; s3:vertical; s4:12; s5:13; s6:23)
I 3 = strs(1)*strs(2)*strs(3)+2*strs(4)*strs(5)*strs(6)

1 -strs(1)*strs(6)*strs(6)-strs(2)*strs(5)*strs(5)
-strs(3)*strs(4)*strs(4)

END SELECT

!

FS_MN = DCOS(a)*DCOS(a)/(9-DSIN(a)*DSIN(a))

FS MN =1 3+FS MN*I 1*I 2

!

!

END FUNCTION FS_MN

[ Internal Function ] FN eta

REAL*8 FUNCTION FN_eta(strs_t)
! for Matsuoka-Nakai Surface
!
REAL*8 strs t(NTENS)
REAL*8a,1 1,1 2,13
!
I 1=strs t(1)+strs t(2)+strs_t(3)
!
SELECT CASE (NTENS)
CASE (4)
[ 2 =strs t(4)*strs_t(4)-strs_t(1)*strs t(2)
1 -strs_t(2)*strs_t(3)-strs_t(3)*strs t(1)
! (s1,83:horizontal; s2:vertical; s4:12)
I 3 =strs t(1)*strs_t(2)*strs_t(3)-strs_t(3)*strs_t(4)*strs_t(4)
!
CASE (6)

[ 2 =strs t(4)*strs_t(4)+strs_t(5)*strs_t(5)+strs_t(6)*strs_t(6)
1 -strs_t(1)*strs_t(2)-strs_t(2)*strs_t(3)-strs_t(3)*strs_t(1)

! (s1,s2:horizontal; s3:vertical; s4:12; s5:13; s6:23)

I 3 =strs t(1)*strs_t(2)*strs_t(3)+2*strs_t(4)*strs_t(5)*strs_t(6)
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1 -strs_t(1)*strs_t(6)*strs t(6)-strs_t(2)*strs_t(5)*strs t(5)

-strs_t(3)*strs_t(4)*strs t(4)
END SELECT
!
a=-1 3/(1 1*I 2)
a=(1.D0-9.D0*a)/(1.D0-a)
FN_eta=DSQRT(a)
!
END FUNCTION FN_eta

[ Internal Function ] Norm

REAL*8 FUNCTION Norm(strs_t)
! Euclidean norm
|

REAL*8 strs t(NTENS), nm
!
nm = 0.D0
DO i=1,NTENS
nm = nm + strs_t(i)*strs_t(i)
END DO
Norm = DSQRT(nm)
!
END FUNCTION Norm

[ Internal Function ] Dot

REAL*8 FUNCTION Dot(Dstrs1, Dstrs2)

I evaluate the difference of the two path directions

! Dot=0: perpendicular; Dot>0: "small"; Dot<0: "large"
!

REAL*8 Dstrs1(NTENS), Dstrs2(NTENS), dt
!

dt=0.D0
DO i=1,NTENS

dt = dt + Dstrs1(i)*Dstrs2(i)
END DO
Dot = dt/(Norm(Dstrs1)*Norm(Dstrs2))
!

END FUNCTION Dot
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[ Internal Function ] pp
REAL*8 FUNCTION pp(strs_t)
!
REAL*8 strs t(NTENS)
!
SELECT CASE (NTENS)
CASE (4)
I dimension-2 is vertical, dimension-1 is in-plane horizontal
pp = (strs_t(1)+strs_t(2))*0.5D0
I consistent with simplified definition for q
'pp = (strs_t(1)+strs_t(2)+strs_t(3))/3.D0
CASE (6)
pp = (strs_t(1)+strs_t(2)+strs_t(3))/3.D0
END SELECT
!
END FUNCTION pp
[ Internal Function ] qq
REAL*8 FUNCTION qq(strs_t)
! for simplicity, q = sigma_v - sigma_h
! note: if one uses general definition for q,
! measures must be taken to distinguish different quadrants
! in normal stress space (sigmal, sigma2, sigma3).
!
!
REAL*8 strs t(NTENS)
!
SELECT CASE (NTENS)
CASE (4)
I dimension-2 is vertical
qq = strs_t(2)-strs_t(1)
! qq = DSQRT(((strs_t(1)-strs_t(2))*(strs_t(1)-strs_t(2))+
1! (strs_t(2)-strs_t(3))*(strs_t(2)-strs t(3))+
2! (strs_t(3)-strs_t(1))*(strs_t(3)-strs_t(1)))*0.5D0+
3! 3.D0*strs_t(4)*strs_t(4))
CASE (6)

! dimension-3 is vertical
qq = strs_t(3)-strs_t(1)
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! qq = DSQRT(((strs_t(1)-strs_t(2))*(strs_t(1)-strs_t(2))+
1! (strs_t(2)-strs_t(3))*(strs_t(2)-strs t(3))+

2! (strs_t(3)-strs_t(1))*(strs_t(3)-strs_t(1)))*0.5D0+
3.D0*(strs_t(4)*strs_t(4)+strs_t(5)*strs_t(5)+strs_t(6)*strs_t(6)))
!

END SELECT
!

END FUNCTION qq

[ Internal Function ] NONLNR (Nonlinear Degradation)

REAL*8 FUNCTION NONLNR(x1, x2, y1, y2, xx, mu)
l'eqnl: a/(x1+b)+c =yl

! eqn2: a/(x2+b)+c =y2

'eqn3: a/(1/2*x1+1/2*x2+b)+c = (y1-y2)/mu+y2

! eqnd: a/(xxtb)tc =y

! calculate y

!
REAL*§ x1, x2, y1, y2, xx, mu

REAL*8 nume, deno

!

nume = -y2*x1 + y2*mu*x1 - y1*x2 + xx*y1 - xx*y2*mu + xx*y2
deno = 2.D0*xx - xx*mu - x1 - x2 + mu*x1

NONLNR = nume/deno

!

END FUNCTION NONLNR

[ Internal Function ] LNR (Linear Interpolation)

REAL*8 FUNCTION LNR(x1, x2, y1, y2, xx)
l'eqnl: a*x1+b=yl

! eqn2: a*x2+b=y2

! eqn3: a*xx+b=y

! calculate y

!

REAL*§ x1, x2, y1, y2, xx

!

LNR = (xx*yl-xx*y2+x1*y2-x2*y1)/(-x2+x1)
|

END FUNCTION LNR
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[ Internal Function ] FN_Beta

REAL*8 FUNCTION FN_Beta(Dstrs)
!

! Beta: [0, 2*pi)

!

REAL*8 Dstrs(NTENS)
REAL*8 Dp, Dq

!

Dp = pp(Dstrs)
Dq = qq(Dstrs)
!

|

IF (Dp > 0.D0 .AND. Dq > 0.D0) THEN
FN Beta = DATAN(Dg/Dp)
!

ELSE IF(Dp < 0.D0 .AND. Dq > 0.D0) THEN
FN Beta = DATAN(Dqg/Dp) + pi
!

ELSE IF(Dp <0.D0 .AND. Dq <0.D0) THEN
FN Beta = DATAN(Dg/Dp) + pi
!

ELSE IF(Dp > 0.D0 .AND. Dq < 0.D0) THEN
FN_ Beta = DATAN(Dg/Dp) + 2.D0*pi
!

!quadrant 1

!quadrant 2

!quadrant 3

!quadrant 4

ELSE IF(Dp > 0.D0 .AND. Dq == 0.D0) THEN !p-axis (+)

FN_ Beta=0.D0
!

ELSE IF(Dp < 0.D0 .AND. Dq == 0.D0) THEN !p-axis (-)

FN Beta = pi
!

ELSE IF(Dp == 0.D0 .AND. Dq > 0.D0) THEN !g-axis (+)

FN_Beta = 0.5D0*pi
!

ELSE IF(Dp == 0.D0 .AND. Dq < 0.D0) THEN !g-axis (-)

FN_Beta = 1.5D0*pi
ELSE

I exception
END IF
!

END FUNCTION FN_Beta

! Dp=Dqg=0
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[ Internal Function ] Ks beta

REAL*8 FUNCTION Ks_beta(beta t)

'ForK s

! Ks beta(beta upper) = Ks_beta(beta lower) = K_min;
! Ks beta(pi) = K_max

! beta: [0, 2*pi)

!

REAL*8 beta _t
!
[F(beta t>=Beta lower .OR. beta_t <= Beta upper) THEN
! compression zone
Ks beta=K min
ELSE IF(beta t> Beta upper .AND. beta t <= pi) THEN
! shear zone - 1
Ks beta = LNR(Beta upper, pi, K min, K max, Beta t)
' LNR(x1, x2, y1, y2, x)
ELSE
! shear zone - 2
Ks beta=LNR(Beta lower, pi, K min, K max, Beta t)
END IF
!
!

END FUNCTION Ks_beta
!

ONONONON®!

[ Internal Function ] Jvs beta

REAL*8 FUNCTION Jvs_beta(beta t)

!For Jv_s

I -Jvs beta(beta upper) = Jvs_beta(beta_lower) = Jv_max;
! Jvs_beta(0.5*pi) = Jv_min

! beta: [0, 2*pi)

!

REAL*8 beta_t

!

IF(beta_t <= Beta_upper) THEN
! upper compression zone
Jvs beta =-Jv_max
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! Jv_max refering to beta=1.5pi
ELSE IF(beta t >= Beta lower) THEN
! lower compression zone
Jvs_beta =Jv_max
! sign of Jv changes with Dq
ELSE IF(beta t > Beta upper .AND. beta_t <= 0.5D0*pi) THEN
! shear zone - 1 (upper)
Jvs_beta = LNR(Beta upper, 0.5D0*pi, -Jv_max, Jv_min, Beta t)
' LNR(x1, x2, y1, y2, x)
ELSE IF(beta_t > 0.5D0*pi .AND. beta_t <=pi) THEN
! shear zone - 2 (upper)
Jvs_beta = LNR(0.5D0*pi, Beta_lower, Jv_min, -Jv_max, Beta t)
ELSE
! shear zone - 3 (lower)
Jvs beta = LNR(0.5D0*pi, Beta lower, -Jv_min, Jv_max, Beta t)
! sign of Jv changes with Dq
END IF
!
!
END FUNCTION Jvs_beta
!
!

[ Internal Function ] Gs_beta

REAL*8 FUNCTION Gs_beta(beta t)

'For G s

! Gs_beta(beta_upper)=Gs_beta(beta lower)=G_min;
! Gs_beta(1.5*pi)=G_max

! beta: [0, 2*pi)

!

REAL*8 beta_t
REAL*8 Gs 0 ! Gs value at beta=0
!
Gs_0=1.5D0*(1-k_nc)/(1+2.D0*k_nc)*K min
!
[F(beta_t <= Beta upper) THEN
! compression zone - upper
Gs_beta = LNR(Beta_upper, 0.D0, G_min, Gs_0, Beta t)
' LNR(x1, x2, y1, y2, x)
'ELSE IF(beta t >= Beta lower) THEN
! compression zone - lower
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! Gs_beta = LNR(Beta_lower, 2.D0*pi, G_min, Gs_0, Beta t)
!
ELSE IF(beta_t > Beta_upper .AND. beta_t <= 1.5D0*pi) THEN
! shear zone - 1
Gs_beta = LNR(Beta_upper, 1.5D0*pi, G_min, G_max, Beta t)
!
ELSE
! shear zone - 2
Gs_beta = LNR(2.D0*pi, 1.5D0*pi, Gs_0, G_max, Beta t)
! Gs_beta = LNR(Beta lower, 1.5D0*pi, G_min, G_max, Beta t)
END IF
!
!

END FUNCTION Gs_beta
!

[ Internal Function ] Jss beta

REAL*8 FUNCTION Jss beta(beta t,p t, q t)

! For Js_s in compression zone

! Jss_beta(beta upper)=(-3p/q)*Gs_beta(beta_upper)
! Jss_beta(beta lower)=(-3p/q)*Gs_beta(beta lower)
I'Jss_beta(0) = (sign)*r JsK*K min

s involved procedure ---------------
! Gs_beta

REAL*8 beta t,p t,q t
REAL*8 Jss_upper, Jss_lower, Jss 0
! Jss values at Beta upper, Beta lower & Beta=0
REAL*8 sign Js
!

Jss_upper = (-3.D0*p _t/q t)*Gs_Beta(Beta upper)
Jss_lower = (-3.D0*p _t/q t)*Gs_ Beta(Beta lower)
sign_Js = DABS(-q t)/(-q_t)

Jss_0=sign Js*r JsSK*K min

!

IF(beta_t <= Beta_upper) THEN
!
Jss_beta = LNR(0.DO, Beta_upper, Jss 0, Jss_upper, Beta t)
'LNR(x1, x2, y1, y2, X)

ELSE IF(beta t >= Beta lower) THEN



|

Jss beta = LNR(2.D0*pi, Beta_lower, Jss 0, Jss lower, Beta t)

END IF
!
|

END FUNCTION Jss_beta
!

N NONONQ!

[ Internal Function ] LSPs_beta

ONON@!

REAL*8 FUNCTION LSPs_beta(beta _t)

! For LSP_s

! LSPs_beta(0) = LSPs beta(beta RTE) = LSP_max;
' LSPs_beta(beta RTC) = LSP_min

! beta: [0, 2*pi)

!
!
REAL*8 beta t, beta RTC, beta RTE
beta RTC=2.16D0

beta RTE=4.39D0

!

IF(beta t >=0.D0 .AND. beta t <=beta RTC) THEN
!

LSPs_beta = LNR(0.DO, beta RTC, LSP_max, LSP_min, Beta t)

' LNR(x1, x2, y1, y2, x)
!

ELSE IF(beta_t>beta RTC .AND. beta t <=beta RTE) THEN
!

LSPs beta = LNR(beta RTC, beta RTE, LSP_min, LSP_max, Beta t)

ELSE
!
LSPs beta = LSP_max
END IF
!
!

END FUNCTION LSPs_beta
!

END
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C END of UMAT
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C

C

SUBROUTINE UVARM(UVAR,DIRECT,T,TIME,DTIME,CMNAME,ORNAME,
1 NUVARM,NOEL,NPT,LAYER,KSPT,KSTEP,KINC,NDI,NSHR,COORD,
2 IMAC,JMATYP,MATLAYO,LACCFLA)
C
INCLUDE 'ABA_ PARAM.INC'
C
CHARACTER*80 CMNAME,ORNAME
CHARACTER*3 FLGRAY(15)
DIMENSION UVAR(NUVARM),DIRECT(3,3),T(3,3),TIME(2)
DIMENSION ARRAY(22),JARRAY(22),JMAC(*),JMATYP(*),COORD(*)
!
INTEGER NTENS
NTENS = NDI + NSHR
C
C Error counter:
JERROR =0
C Stress tensor:
CALL GETVRM('E,ARRAY,JARRAY,FLGRAY,JRCD,JMAC,JMATYP,
1 MATLAYO,LACCFLA)
''SDV": The 'Output Variable Identifier' for 'Solution-dependent State Variables'
JERROR = JERROR + JRCD
!
SELECT CASE (NTENS)
CASE (4)
I dimension-2 is vertical, dimension-1 is in-plane horizontal
UVAR(1) =-(ARRAY(1)+ARRAY(2))*100.D0O lev
UVAR(2) =-100.D0*(ARRAY(2)-ARRAY(1)) l'es
I consistent with simplified definition for q
CASE (6)
UVAR(1) =-(ARRAY(1)+ARRAY(2)+ARRAY(3))*100.D0O
UVAR(2) =-200.D0*(ARRAY(3)-ARRAY(1))/3.D0
END SELECT
!
IFJERROR.NE.O)THEN
WRITE(6,*) 'REQUEST ERROR IN UVARM FOR ELEMENT NUMBER ',
1 NOEL,INTEGRATION POINT NUMBER ',NPT
ENDIF
!
!




CALL GETVRM('S',ARRAY,JARRAY,FLGRAY,JRCD,JMAC,JMATYP,
1 MATLAYO,LACCFLA)
''SDV'": The 'Output Variable Identifier' for 'Solution-dependent State Variables'
JERROR = JERROR + JRCD
!
SELECT CASE (NTENS)
CASE (4)
! dimension-2 is vertical, dimension-1 is in-plane horizontal
UVAR(3) =-(ARRAY(1)+ARRAY(2))*0.5D0 'p'
UVAR(4) =-(ARRAY(2)-ARRAY(1)) 'q
I consistent with simplified definition for q
CASE (6)
UVAR(3) =-(ARRAY(1)+ARRAY(2)*ARRAY(3))/3.D0
UVAR(4) =-(ARRAY(3)-ARRAY(1))
END SELECT
C If error, write comment to .DAT file:
IFJERROR.NE.O)THEN
WRITE(6,*) 'REQUEST ERROR IN UVARM FOR ELEMENT NUMBER ',
1  NOEL,INTEGRATION POINT NUMBER ',NPT
ENDIF
RETURN
END

SUBROUTINE SIGINI(SIGMA,COORDS,NTENS,NCRDS,NOEL,NPT,LAYER,
1 KSPT,LREBAR,REBARN)

INCLUDE 'ABA PARAM.INC'

DIMENSION SIGMA(NTENS),COORDS(NCRDS)
CHARACTER*80 REBARN

SIGMA(2) = -317.5%(4.3-COORDS(2))/(4.3+12.5)
SIGMA(1) = 0.667*SIGMA(2)
SIGMA(3) = SIGMA(1)
SIGMA(4) = 0

RETURN
END
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D. INPUT FILE (ABAQUS) FOR LURIE CENTER PREDICTION

*Heading
** Job name: Lurie-CAE Model name: Lurie
*Preprint, echo=NO, model=NO, history=NO, contact=NO

3k

** PARTS

sk

*Part, name=Soil-Left
*End Part

*Part, name=Soil-Right
*End Part

*Part, name=Strut-1
*End Part

*Part, name=Strut-2
*End Part

*Part, name=Strut-3
*End Part

*Part, name=Wall
*End Part

K3k

** ASSEMBLY

K3k

*Assembly, name=Assembly
K3k

*Instance, name=Strut-1, part=Strut-1

*Node
1, 0., 2.1
2, -6.4, 0.
*Element, type=T2D2
1,1,2

** Region: (Strut-1:Picked), (Beam Orientation:Picked)
*Elset, elset=_PickedSet6, internal

1,

** Section: Strut-1

*Solid Section, elset=_PickedSet6, material=Strut-1

1.,

*End Instance

skek

*Instance, name=Strut-2, part=Strut-2



*Node
1, 0., -1.2
2, -5.5, -2.1
*Element, type=T2D2
1,1,2

** Region: (Strut-2:Picked), (Beam Orientation:Picked)
*Elset, elset=_PickedSet6, internal

1,

** Section: Strut-2

*Solid Section, elset=_PickedSet6, material=Strut-2

1.,

*End Instance

K3k

*Instance, name=Strut-3, part=Strut-3

*Node
1, 0., -5.2
2, -2.6, -6.7
*Element, type=T2D2
1,1,2

** Region: (Strut-3:Picked), (Beam Orientation:Picked)
*Elset, elset=_PickedSet4, internal

1,

** Section: Strut-3

*Solid Section, elset=_PickedSet4, material=Strut-3

1.,

*End Instance

sk

*Instance, name=Soil-Left, part=Soil-Left

*Node

1, 15., -24 .4

2, 15., -20.7

3, 0., -20.7
skipped

758, -52.5, -2.549932

759, -52.5, -0.8499314

760,  -56.25, -1.699931
*Element, type=CPE8R
1, 1, 2, 43, 48,267,268, 269, 270
2, 48, 43, 44, 47,269, 271, 272, 273
3, 47, 44, 45, 46,272,274,275,276
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227,265, 159, 158, 266, 756, 638, 759, 757
228, 183, 266, 104, 25, 758, 760, 410, 745
229, 266, 158, 16, 104, 759, 642, 414, 760
*Nset, nset=Fill
16, 17, 18, 19, 20, 21, 22, 23, 24, 81, 82, 83, 84, 85, 86, 87
88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103
155, 156, 157, 158, 159, 160, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195
238, 239, 240, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358
359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374
375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390
391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406
407, 408, 409, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638
639, 640, 641, 642, 643
*Elset, elset=Fill
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42
43, 44, 45, 46, 47, 48, 49, 50, 155, 156, 157, 158, 159, 160, 161, 162
*Nset, nset=Sand-Up
16, 19, 21, 23, 25, 26, 27, 28, 29, 86, 87, 88, 90, 91, 92, 93
94, 95, 96, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116
158, 159, 160, 181, 182, 183, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205
264, 265, 266, 349, 355, 360, 365, 373, 378, 383, 388, 393, 398, 403, 408, 410
411,412,413,414, 415,416,417, 418, 419, 420, 421, 422, 423, 424, 425, 426
427,428, 429,430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442
443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458
459, 460, 461, 628, 633, 638, 642, 745, 747, 749, 750, 751, 752, 753, 754, 755
756, 757, 758, 759, 760
*Elset, elset=Sand-Up
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66
67, 68, 69, 70, 71, 72, 73, 74,222,223, 224,225, 226,227,228, 229
*Nset, nset=Sand-Down
8, 9, 12, 14, 25, 26, 27, 29, 55, 56, 57, 58, 59, 60, 61, 69
70, 71, 75, 76, 77,106, 107,108, 110, 111, 112, 113, 114, 115, 116, 181
182, 183,297, 301, 304, 307, 310, 313, 316, 319, 322, 325, 328, 331, 334, 337
340, 343, 413, 418, 422, 426, 432, 436, 440, 444, 448, 452, 456, 460, 462, 463
464, 465, 466, 467, 468, 469, 470, 471, 472,473, 474, 475, 744, 745, 746, 747
748, 749, 750
*Elset, elset=Sand-Down
75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,218, 219, 220, 221
*Nset, nset=Clay-Soft
8 9, 10, 11, 12, 13, 14, 15, 36, 37, 38, 39, 40, 55, 56, 57
58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73

214



74, 75, 76, 77, 78, 79, 80,129, 130, 131, 132, 133, 134, 135, 136, 137
138, 139, 140, 141, 142, 143, 144, 145, 152, 153, 154, 206, 207, 208, 209, 210
211,212,213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 258
259, 260, 261, 262, 263, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307
308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323
324,325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339
340, 341, 342, 343, 344, 345, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510
511,512, 513,514, 515,516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526
527,528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542
543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558
559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574
575,576,577, 578, 609, 615, 621, 625, 727, 728, 729, 730, 731, 732, 733, 734
735, 736, 737, 738, 739, 740, 741, 742, 743
*Elset, elset=Clay-Soft

11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26

95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110
111, 112,113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126
127,128, 129, 130, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217
*Nset, nset=Clay-Stiff

2, 3, 5, 6, 7,31, 32, 35, 36, 37, 38, 40, 42, 43, 44, 45

49, 50, 51, 52, 53, 54,117,118, 119, 123, 124, 125, 133, 134, 135, 138
139, 140, 141, 142, 143, 144, 146, 147, 148, 149, 150, 151, 152, 153, 154, 163
164, 165, 166, 167, 168, 169, 170, 178, 179, 180, 184, 185, 226, 227, 228, 229
230, 231, 232, 233, 234, 235, 236, 237, 241, 242, 243, 244, 245, 246, 247, 248
249, 250, 251, 252, 253, 254, 255, 256, 257, 268, 271, 274, 277, 280, 281, 282
283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 477, 480
483, 486, 490, 493, 496, 499, 504, 512, 518, 524, 535, 541, 547, 553, 559, 565
571,577, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592
593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608
609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624
625, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664
665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680
681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696
697, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726
*Elset, elset=Clay-Stiff

5, 6, 7, 8 9, 10,131, 132,133, 134, 135, 136, 137, 138, 139, 140

141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 166, 167
168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183
184, 185, 186, 187, 188, 189, 198, 199, 200, 201, 202, 203, 204, 205
*Nset, nset=Hard-Pan

1, 2, 3, 4, 7, 30, 31, 32, 33, 34, 35, 41, 43, 44, 45, 46

47, 48, 52, 53,117,118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128
161, 162, 163, 164, 165, 166, 167, 168, 169, 171, 172, 173, 174, 175, 176, 177
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267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 291, 294, 296
476,477,478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491
492,493, 494, 495, 496, 497, 498, 499, 500, 644, 645, 646, 647, 648, 649, 654
660, 666, 672, 678, 684, 690, 696, 698, 699, 700, 701, 702, 703, 704, 705, 706
707, 708, 709, 710, 711, 712
*Elset, elset=Hard-Pan
1, 2, 3, 4, 87, 88, 89, 90, 91, 92, 93, 94, 163, 164, 165, 190
191, 192, 193, 194, 195, 196, 197
** Region: (Hard-Pan:Hard-Pan)
** Section: Hard-Pan
*Solid Section, elset=Hard-Pan, material=Hard-Pan
1.,
** Region: (Clay-Stiff:Clay-Stiff)
** Section: Clay-Stiff
*Solid Section, elset=Clay-Stiff, material=Clay-Stiff
1.,
** Region: (Clay-Soft:Clay-Soft)
** Section: Clay-Soft
*Solid Section, elset=Clay-Soft, material=Clay-Soft
1.,
** Region: (Fill:Fill)
** Section: Fill
*Solid Section, elset=Fill, material=Fill
1.,
** Region: (Sand-Up:Sand-Up)
** Section: Sand-Up
*Solid Section, elset=Sand-Up, material=Sand-Up
1.,
** Region: (Sand-Down:Sand-Down)
** Section: Sand-Down
*Solid Section, elset=Sand-Down, material=Sand-Down
1.,
*End Instance
kk

*Instance, name=Soil-Right, part=Soil-Right

*Node
1, 35.1, -8.5
2, 15., -8.5
3, 15., -12.5
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243, 3.75, 3.2

244, 1.875, 4.3

245, 0., 3.2
*Element, type=CPE8R
1, 1, 31, 84, 36, 89, 90, 91, 92
2, 31, 32, 85, 84, 93, 94, 95, 90
3, 32, 2, 33, 85, 96, 97, 98, 94

68, 73, 81, 82, 74,239, 240, 241, 212
69, 74, 82, 83, 75,241,242,243,215
70, 75, 83, 30, 27,243, 244,245,218
*Nset, nset=Fill

7, 8, 9, 10, 11, 12, 27, 28, 30, 44, 45, 46, 47, 48, 49, 73

74, 75, 76, 77, 78, 81, 82, 83,126, 127, 128, 129, 130, 131, 132, 133

134, 135, 136, 137, 138, 139, 140, 141, 142, 209, 210, 211, 212, 213, 214, 215
216,217,218, 219, 220, 238, 239, 240, 241, 242, 243, 244, 245
*Elset, elset=Fill

15,16, 17, 18, 19, 20, 49, 50, 51, 52, 67, 68, 69, 70
*Nset, nset=Sand-Up

11, 12, 16, 17, 18, 19, 25, 26, 28, 48, 49, 55, 56, 57, 58, 67

68, 69, 70, 71, 72, 76, 77, 78,137,139, 141, 158, 159, 160, 161, 162
163, 164, 165, 166, 167, 168, 169, 170, 171, 197, 198, 199, 200, 201, 202, 203
204, 205, 206, 207, 208, 211, 214, 217, 220, 234, 235, 236, 237
*Elset, elset=Sand-Up

28, 29, 30, 31, 32, 33, 45, 46, 47, 48, 63, 64, 65, 66
*Nset, nset=Sand-Down

18, 19, 22, 23, 24, 26, 57, 58, 62, 63, 64, 65, 66, 70, 71, 72

166, 168, 170, 181, 182, 183, 184, 185, 186, 187, 189, 191, 193, 195, 199, 202
205, 208, 230, 231, 232, 233
*Elset, elset=Sand-Down

38, 39, 40, 59, 60, 61, 62
*Nset, nset=Clay-Soft

1, 2, 3, 4, 5, 6, 20, 21, 22, 23, 24, 29, 31, 32, 33, 34

35, 36, 37, 38, 39, 40, 41, 42, 43, 59, 60, 61, 62, 63, 64, 65

66, 79, 80, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96

97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112
113,114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 172, 173, 174
175,176, 177,178, 179, 180, 182, 184, 186, 188, 189, 190, 191, 192, 193, 194
195, 196, 221, 222, 223, 224, 225, 226, 227, 228, 229
*Elset, elset=Clay-Soft

1, 2,3,4,5,6,7,8,9,10,11, 12,13, 14, 34, 35
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218

36,37, 41, 42,43, 44, 53, 54, 55, 56, 57, 58
*Nset, nset=Clay-Stiff
3, 4, 6, 13, 14, 15, 34, 35, 41, 42, 43, 50, 51, 52, 53, 54
100, 103, 105, 119, 121, 123, 125, 143, 144, 145, 146, 147, 148, 149, 150, 151
152, 153, 154, 155, 156, 157
*Elset, elset=Clay-Stiff, generate
21, 27, 1
** Region: (Clay-Soft:Clay-Soft)
** Section: Clay-Soft
*Solid Section, elset=Clay-Soft, material=Clay-Soft
1.,
** Region: (Fill:Fill)
** Section: Fill
*Solid Section, elset=Fill, material=Fill
1.,
** Region: (Clay-Stiff:Clay-Stiff)
** Section: Clay-Stiff
*Solid Section, elset=Clay-Stiff, material=Clay-Stiff
1.,
** Region: (Sand-Up:Sand-Up)
** Section: Sand-Up
*Solid Section, elset=Sand-Up, material=Sand-Up
1.,
** Region: (Sand-Down:Sand-Down)
** Section: Sand-Down
*Solid Section, elset=Sand-Down, material=Sand-Down
1.,
*End Instance
sk

*Instance, name=Wall, part=Wall

0., -15.2, 0.
*Node
1, 0., 0.
2, 0., 10.
3, 0., 14.
4, 0., 17.3
5, 0., 19.5
6, 0., 2.
7, 0., 4.
8, 0., 6.
9, 0., 8.
10, 0., 12.
11, 0., 15.65



12,
13,
14,
15,
16,
17,
18,
19,
20,
21,

- - -

-

- -

-

cooooccoooo

*9

0.,

*Element, type=B22

I, 1,12, 6
2, 6,13, 7
3, 7,14, 8
4, 8,15, 9
5, 9,16, 2
6, 2,17, 10
7,10, 18, 3
8, 3,19,11
9,11, 20, 4
10, 4,21, 5

*Nset, nset=Wall, generate

1, 21, 1

*Elset, elset=Wall, generate

1,10, 1

** Region: (Wall:Wall), (Beam Orientation:Picked)
** Section: Wall Profile: Wall
*Beam General Section, elset=Wall, poisson = 0.3, section=RECT

1.,0.424
0.,0.,-1.

8.068¢+06, 3.103e+06
*End Instance

*Nset, nset=Strut-1, instance=Strut-1

1,2

*Elset, elset=Strut-1, instance=Strut-1

1,

*Nset, nset=Strut-2, instance=Strut-2

1,2

*Elset, elset=Strut-2, instance=Strut-2

1,

*Nset, nset=Strut-3, instance=Strut-3

1,2

*Elset, elset=Strut-3, instance=Strut-3
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1,
*Nset, nset=BC-Bottom, instance=Soil-Left
1, 4, 30, 33, 34, 41, 46, 47, 48,120, 121, 122, 126, 127, 128, 161
162, 171,172,173, 174, 175, 176, 177, 270, 273, 276, 279, 479, 482, 485, 488
492, 495, 498, 500, 644, 646, 648, 698, 700, 702, 704, 706, 708, 710, 712
*Elset, elset=BC-Bottom, instance=Soil-Left
1, 2, 3, 4, 87, 88, 89, 90, 91, 92, 93, 94, 163, 164, 165, 190
191, 192, 193, 194, 195, 196, 197
*Nset, nset=BC-Sides, instance=Soil-Left
5, 7, 14, 15, 18, 19, 26, 32, 33, 37, 41, 54, 85,105, 131, 132
148, 149, 283, 292, 344, 364, 367, 425, 427, 463, 487, 523, 526, 527, 598, 600
601, 649
*Nset, nset=BC-Sides, instance=Soil-Right
1, 4, 9, 10, 12, 14, 17, 19, 23, 29, 36, 92, 101, 134, 142, 149
164, 171, 187, 226, 229
*Elset, elset=BC-Sides, instance=Soil-Left
5, 8, 26, 33, 34, 57, 58, 75, 90, 104, 105, 106, 140, 141, 142, 165
*Elset, elset=BC-Sides, instance=Soil-Right
1, 4,17, 20, 23, 30, 33, 40, 55, 58
*Nset, nset=Removal-1, instance=Soil-Right
7, 8, 9, 10, 27, 30, 44, 45, 46, 47, 73, 74, 75, 81, 82, 83
126, 127,128, 129, 130, 131, 132, 133, 134, 135, 209, 212, 215, 218, 238, 239
240, 241, 242, 243, 244, 245
*Elset, elset=Removal-1, instance=Soil-Right
15,16, 17,67, 68, 69, 70
*Nset, nset=Removal-2, instance=Soil-Right
8, 9, 11, 12, 27, 28, 44, 45, 48, 49, 73, 74, 75, 76, 77, 78
127,130, 133, 136, 137, 138, 139, 140, 141, 142, 209, 210, 211, 212, 213, 214
215, 216, 217, 218, 219, 220
*Elset, elset=Removal-2, instance=Soil-Right
18,19, 20, 49, 50, 51, 52
*Nset, nset=Removal-3, instance=Soil-Right
11, 12, 16, 17, 25, 28, 48, 49, 55, 56, 67, 68, 69, 76, 77, 78
137,139, 141, 158, 159, 160, 161, 162, 163, 164, 197, 200, 203, 206, 211, 214
217, 220, 234, 235, 236, 237
*Elset, elset=Removal-3, instance=Soil-Right
28,29, 30, 63, 64, 65, 66
*Nset, nset=Removal-4, instance=Soil-Right
16, 17, 18, 19, 25, 26, 55, 56, 57, 58, 67, 68, 69, 70, 71, 72
159, 161, 163, 165, 166, 167, 168, 169, 170, 171, 197, 198, 199, 200, 201, 202
203, 204, 205, 206, 207, 208
*Elset, elset=Removal-4, instance=Soil-Right
31, 32, 33, 45, 46, 47, 48



221

*Nset, nset=Removal-5, instance=Soil-Right

18, 19, 22, 23, 24, 26, 57, 58, 62, 63, 64, 65, 66, 70, 71, 72

166, 168, 170, 181, 182, 183, 184, 185, 186, 187, 189, 191, 193, 195, 199, 202
205, 208, 230, 231, 232, 233
*Elset, elset=Removal-5, instance=Soil-Right

38, 39, 40, 59, 60, 61, 62
*Nset, nset=Removal-6, instance=Soil-Right

20, 21, 22, 23, 24, 29, 59, 60, 61, 62, 63, 64, 65, 66, 79, 80
173,176, 178, 180, 182, 184, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196
221,222,223, 224,225,226
*Elset, elset=Removal-6, instance=Soil-Right

41,42,43, 44, 53, 54, 55
*Nset, nset=Removal-7, instance=Soil-Right

1, 2, 5,20, 21, 29, 31, 32, 37, 38, 39, 59, 60, 61, 79, 80

89, 93, 96, 106, 109, 112, 115, 172, 173, 174, 175, 176, 177, 178, 179, 180
221,223,225,227, 228, 229
*Elset, elset=Removal-7, instance=Soil-Right

34, 35, 36, 37, 56, 57, 58
*Nset, nset=Soil-All, instance=Soil-Left, generate

1, 760, 1

*Nset, nset=Soil-All, instance=Soil-Right, generate
1, 245, 1

*Elset, elset=Soil-All, instance=Soil-Left, generate
1, 229, 1

*Elset, elset=Soil-All, instance=Soil-Right, generate
1, 70, 1

*Nset, nset=Wall, instance=Wall, generate
I, 21, 1

*Elset, elset=Wall, instance=Wall, generate

1,10, 1

*Elset, elset=_Surf-Soil-L_S4, internal, instance=Soil-Left
11,

*Elset, elset=_Surf-Soil-L_S3, internal, instance=Soil-Left
49, 50, 73, 74,128,129, 130, 187

*Elset, elset=_Surf-Soil-L_S2, internal, instance=Soil-Left
86,

*Surface, type=ELEMENT, name=Surf-Soil-L

_Surf-Soil-L_S4, S4

_Surf-Soil-L_S3, S3

_Surf-Soil-L_S2, S2

*Elset, elset=_Surf-Soil-Dn_S1, internal, instance=Soil-Left
5, 6, 7,198,199, 200,201

*Surface, type=ELEMENT, name=Surf-Soil-Dn
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_Surf-Soil-Dn_S1, S1
*Elset, elset=_Surf-Soil-R_S2, internal, instance=Soil-Right
10, 14
*Elset, elset=_Surf-Soil-R_S4, internal, instance=Soil-Right
24,34
*Elset, elset=_Surf-Soil-R_S3, internal, instance=Soil-Right
44,48, 52, 62, 66, 70
*Surface, type=ELEMENT, name=Surf-Soil-R
_Surf-Soil-R_S2, S2
_Surf-Soil-R_S4, S4
_Surf-Soil-R_S3, S3
*Elset, elset=_Surf-Soil-Up S1, internal, instance=Soil-Right, generate
21, 27, 1
*Surface, type=ELEMENT, name=Surf-Soil-Up
_Surf-Soil-Up_S1, S1
*Elset, elset=_Surf-Wall-L_SPOS, internal, instance=Wall, generate
1,10, 1
*Surface, type=ELEMENT, name=Surf-Wall-L
_Surf-Wall-L._SPOS, SPOS
*Elset, elset=_Surf-Wall-R_SNEG, internal, instance=Wall, generate
1,10, 1
*Surface, type=ELEMENT, name=Surf-Wall-R
_Surf-Wall-R_SNEG, SNEG
** Constraint: Tie-SoilSoil
*Tie, name=Tie-SoilSoil, adjust=yes
Surf-Soil-Up, Surf-Soil-Dn
** Constraint: Tie-WallSoil
*Tie, name=Tie-WallSoil, adjust=yes
Surf-Wall-R, Surf-Soil-R

3k

** CONNECTORS

3k

*Element, type=CONN2D2, elset=_Strutl-1 CnSet
1, Wall.4, Strut-1.1

*Connector Section, elset=_Strutl-1 CnSet

Join,

*Element, type=CONN2D2, elset=_Strutl-2 CnSet
2, , Strut-1.2

*Connector Section, elset=_Strutl-2 CnSet

Join,

*Element, type=CONN2D2, elset=_Strut2-1 CnSet
3, Wall.3, Strut-2.1
*Connector Section, elset=_Strut2-1 CnSet
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Join,

*Element, type=CONN2D2, elset=_Strut2-2 CnSet
4, , Strut-2.2

*Connector Section, elset=_Strut2-2 CnSet

Join,

*Element, type=CONN2D2, elset=_Strut3-1 CnSet
5, Wall.2, Strut-3.1

*Connector Section, elset=_Strut3-1 CnSet

Join,

*Element, type=CONN2D2, elset=_Strut3-2 CnSet
6, , Strut-3.2

*Connector Section, elset=_Strut3-2 CnSet

Join,

*End Assembly

*k

** MATERIALS
k3
*Material, name=Clay-Soft
*Density
1.89,
*Depvar
10,
*User Material, constants=2, unsymm
17000., 0.333
*User Output Variables
5,

*Material, name=Clay-Stiff
*Density

1.89,
*Elastic

171000., 0.49
*Material, name=Fill
*Density

1.89,
*Elastic
51000., 0.2
*Mohr Coulomb
30.,2.
*Mohr Coulomb Hardening
20.,0.
*Material, name=Grout
*Elastic

3e+06, 0.2



*Material, name=Hard-Pan
*Density

1.89,

*Elastic
677000., 0.49

*Material, name=Sand-Down
*Density

1.89,

*Elastic

175000., 0.365

*Mohr Coulomb
40.,8.

*Mohr Coulomb Hardening
0.1,0.

*Material, name=Sand-Up
*Density

1.89,

*Elastic
79000., 0.391

*Mohr Coulomb
35.,5.

*Mohr Coulomb Hardening
0.1,0.

*Material, name=Strut-1
*Elastic
69600., 0.3

*Material, name=Strut-2
*Elastic
57500., 0.3

*Material, name=Strut-3
*Elastic

17200., 0.3

*Material, name=Tieback
*Elastic

2.05e+08, 0.3

3k

** INTERACTION PROPERTIES

3k

*Surface Interaction, name=IntProp-L
1.,

*Friction, slip tolerance=0.005

0.3,

*Surface Behavior, no separation, pressure-overclosure=HARD

224



225

*Surface Interaction, name=IntProp-R

1.,

*Friction, slip tolerance=0.005

0.3,

*Surface Behavior, no separation, pressure-overclosure=HARD
K3k

** BOUNDARY CONDITIONS

K3k

** Name: BC-Bottom Type: Displacement/Rotation
*Boundary

BC-Bottom, 1, 1

BC-Bottom, 2, 2

** Name: BC-Sides Type: Displacement/Rotation
*Boundary

BC-Sides, 1, 1

K3k

** INTERACTIONS

skek

** Interaction: Int-SoilSoil

*Contact Pair, interaction=IntProp-L, small sliding
Surf-Soil-R, Surf-Soil-L

** Interaction: Int-SoilWall

*Contact Pair, interaction=IntProp-L, small sliding
Surf-Soil-L, Surf-Wall-L

*INITIAL CONDITIONS, TYPE=STRESS, USER

3k

k3k

** STEP: Step-1

ksk

*Step, name==Step-1

*Geostatic

*MODEL CHANGE, REMOVE

Wall

*MODEL CHANGE, REMOVE

Strut-1, Strut-2, Strut-3

*MODEL CHANGE, TYPE=CONTACT PAIR, REMOVE
Surf-Soil-L, Surf-Wall-L

3k

** LOADS

3k

** Name: gravity Type: Gravity
*Dload

Soil-All, GRAV, 10., 0., -1.



%k

** OUTPUT REQUESTS

%k

*Restart, write, frequency=1
k3

** FIELD OUTPUT: F-Output-1
k3%

*Output, field

*Node Output

U,

*Element Output

E, LE, S, SDV, SF, UVARM
*QOutput, history, frequency=0
*El Print, freq=999999
*Node Print, freq=999999
*End Step

%k

K3k

** STEP: Step-2

sk

*Step, name=Step-2

*Static

1., 1., 1e-05, 1.

*MODEL CHANGE, ADD

Wall

*MODEL CHANGE, TYPE=CONTACT PAIR, ADD
Surf-Soil-L, Surf-Wall-L

*MODEL CHANGE, TYPE=CONTACT PAIR, REMOVE
Surf-Soil-R, Surf-Soil-L

3k

** OUTPUT REQUESTS

3k

*Restart, write, frequency=1
3k

** FIELD OUTPUT: F-Output-1
kk

*Output, field

*Node Output

U,

*Element Output

E, LE, S, SDV, SF, UVARM
*QOutput, history, frequency=0
*End Step
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%k

K3k

** STEP: Step-3

sk

*Step, name=Step-3
*Static

0.1, 1., 1e-05, 0.2

*CONTROLS, PARAMETERS=FIELD, FIELD=DISPLACEMENT

,0.03,

*CONTROLS, PARAMETERS=LINE SEARCH

4,

kok

*MODEL CHANGE, REMOVE
Removal-1

ksk

** OUTPUT REQUESTS

%k

*Restart, write, frequency=1
k3

** FIELD OUTPUT: F-Output-1
k3

*Output, field

*Node Output

U,

*Element Output

E, LE, S, SDV, SF, UVARM
*Output, history, frequency=0
*End Step

K3k

3k

** STEP: Step-4

3k

*Step, name=Step-4

*Static

1., 1., 1e-05, 1.

*MODEL CHANGE, ADD
Strut-1

3k

** OUTPUT REQUESTS

3k

*Restart, write, frequency=1
3k

** FIELD OUTPUT: F-Output-1
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%k

*Output, field

*Node Output

U,

*Element Output

E, LE, S, SDV, SF, UVARM
*QOutput, history, frequency=0
*End Step

%k

K3k

** STEP: Step-5

skek

*Step, name=Step-5

*Static

0.1, 1., 1e-05, 0.15

*CONTROLS, PARAMETERS=FIELD, FIELD=DISPLACEMENT
,0.03,

*CONTROLS, PARAMETERS=LINE SEARCH
4,

skek

*MODEL CHANGE, REMOVE

Removal-2

Kk

** OUTPUT REQUESTS

k3k

*Restart, write, frequency=1
sk

** FIELD OUTPUT: F-Output-1
k3k

*Output, field

*Node Output

U,

*Element Output

E, LE, S, SDV, SF, UVARM
*Output, history, frequency=0
*End Step

Kk

3k

** STEP: Step-6

3k

*Step, name=Step-6
*Static

0.1, 1., 1e-05, 0.15
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*CONTROLS, PARAMETERS=FIELD, FIELD=DISPLACEMENT
, 0.05,

*CONTROLS, PARAMETERS=LINE SEARCH

4,

sk

*MODEL CHANGE, REMOVE

Removal-3

k%

** OUTPUT REQUESTS

K3k

*Restart, write, frequency=1
K3k

** FIELD OUTPUT: F-Output-1
sk

*Output, field

*Node Output

U,

*Element Output

E, LE, S, SDV, SF, UVARM
*QOutput, history, frequency=0
*End Step

K3k

%k

** STEP: Step-7

sk

*Step, name=Step-7

*Static

1., 1., 1e-05, 1.

*MODEL CHANGE, ADD
Strut-2

sk

*# OUTPUT REQUESTS

K3k

*Restart, write, frequency=1
sk

** FIELD OUTPUT: F-Output-1
K3k

*Output, field

*Node Output

U,

*Element Output

E, LE, S, SDV, SF, UVARM
*Output, history, frequency=0



*End Step

K3k

ek

** STEP: Step-8

sk

*Step, name=Step-8

*Static

0.05, 1., 1e-05, 0.1

*CONTROLS, PARAMETERS=FIELD, FIELD=DISPLACEMENT
0.01, 0.1,

*CONTROLS, PARAMETERS=LINE SEARCH

4,

*CONTROLS, PARAMETERS=TIME INCREMENTATION
8, 10,

0.5,0.8,

kok

*MODEL CHANGE, REMOVE

Removal-4

ksk

** OUTPUT REQUESTS

%k

*Restart, write, frequency=1
%k

** FIELD OUTPUT: F-Output-1
k3k

*Output, field

*Node Output

U,

*Element Output

E, LE, S, SDV, SF, UVARM
*Output, history, frequency=0
*End Step

K3k

3k

** STEP: Step-9

3k

*Step, name=Step-9

*Static

0.05, 1., 1e-05, 0.1

*CONTROLS, PARAMETERS=FIELD, FIELD=DISPLACEMENT
0.015,0.1,,,0.02

*CONTROLS, PARAMETERS=LINE SEARCH

4,
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*CONTROLS, PARAMETERS=TIME INCREMENTATION
8, 10,

0.5,0.8,

kok

*MODEL CHANGE, REMOVE

Removal-5

sk

** OUTPUT REQUESTS

ek

*Restart, write, frequency=1
%k

** FIELD OUTPUT: F-Output-1
%k 3k

*Output, field

*Node Output

U,

*Element Output

E, LE, S, SDV, SF, UVARM
*QOutput, history, frequency=0
*End Step

%k

K3k

** STEP: Step-10

K3k

*Step, name=Step-10
*Static

1., 1., 1e-05, 1.

*MODEL CHANGE, ADD
Strut-3

3k

** OUTPUT REQUESTS

3k

*Restart, write, frequency=1
3k

** FIELD OUTPUT: F-Output-1
kk

*Output, field

*Node Output

U,

*Element Output

E, LE, S, SDV, SF, UVARM
*QOutput, history, frequency=0
*End Step



%k

K3k

** STEP: Step-11

kok

*Step, name=Step-11

*Static

0.05, 1., 1e-05, 0.1

*CONTROLS, PARAMETERS=FIELD, FIELD=DISPLACEMENT
0.01, 0.1,

*CONTROLS, PARAMETERS=LINE SEARCH

4,

*CONTROLS, PARAMETERS=TIME INCREMENTATION
8, 10,

0.5,0.8,

ksk

*MODEL CHANGE, REMOVE

Removal-6

kok

** OUTPUT REQUESTS

K3k

*Restart, write, frequency=1
K3k

** FIELD OUTPUT: F-Output-1
skek

*Output, field

*Node Output

U,

*Element Output

E,LE, S, SDV, SF, UVARM
*QOutput, history, frequency=0
*End Step

ok

K3k

** STEP: Step-12

sk

*Step, name=Step-12

*Static

0.05, 1., 1e-05, 0.1

*CONTROLS, PARAMETERS=FIELD, FIELD=DISPLACEMENT
0.01, 0.1

*CONTROLS, PARAMETERS=LINE SEARCH

4,

*CONTROLS, PARAMETERS=TIME INCREMENTATION
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8, 10,

0.5,0.8,

ksk

*MODEL CHANGE, REMOVE
Removal-7

kk

** OUTPUT REQUESTS

K3k

*Restart, write, frequency=1
K3k

** FIELD OUTPUT: F-Output-1
skek

*Output, field

*Node Output

U,

*Element Output

E, LE, S, SDV, SF, UVARM
*QOutput, history, frequency=0
*End Step
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