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ABSTRACT  

An Incrementally Non-linear Model for Clays with Directional Stiffness 

and a Small Strain Emphasis  

Xuxin Tu 

      In response to construction activities and loads from permanent structures, soil generally is 

subjected to a variety of loading modes varying both in time and location.  It also has been 

increasingly appreciated that the strains around well-designed foundations, excavations and 

tunnels are mostly small, with soil responses at this strain level generally being non-linear and 

anisotropic.  To make accurate prediction of the performance of a geo-system, it is highly 

desirable to understand soil behavior at small strains along multiple loading directions, and 

accordingly to incorporate these responses in an appropriate constitutive model implemented in a 

finite element analysis.   

      This dissertation presents a model based on a series of stress probe tests with small strain 

measurements performed on compressible Chicago glacial clays.  The proposed model is 

formulated in an original constitutive framework, in which the tangent stiffness matrix is 

constructed in accordance with the mechanical nature of frictional materials and the tangent 

moduli therein are described explicitly.  The stiffness description includes evolution relations 

with regard to length of stress path, and directionality relations in terms of stress path direction.  

The former relations provide distinctive definitions for small-strain and large-strain behaviors, 
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and distinguish soil responses in shearing and compression.  The latter relations make this 

model incrementally non-linear and thus capable of modeling inelastic behavior.   

      A new algorithm based on a classical substepping scheme is developed to numerically 

integrate this model.  A consistent tangent matrix is derived for the proposed model with the 

upgraded substepping scheme.  The code is written in FORTRAN and implemented in FEM via 

UMAT of ABAQUS.  The model is exercised in a variety of applications ranging from 

oedometer, triaxial and biaxial test simulations to a C-class prediction for a well-instrumented 

excavation.  The computed results indicate that this model is successful in reproducing soil 

responses in both laboratory and field situations.   
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1    INTRODUCTION  

 

 

 

      Due to conservative codes and standards for design and construction, the strains induced in 

the soil for a well-designed geotechnical project are usually very small, i.e. the limit state is not 

crucial in the design of most projects.  Rather, accurate prediction of the corresponding small 

ground movements is the governing factor in design.  For instance, the design of an excavation in 

a crowded urban area must carefully consider the influence of excavation-induced ground 

movements on adjacent existing buildings.  The strain levels of the affected soil in this case are 

mostly on the order of 0.1% or smaller, a level referred to as small strains.  To make accurate 

prediction of the performance of such a geo-system, it is highly desirable to well understand the 

soil properties at small strains and subsequently incorporate them in an appropriate soil model 

implemented in a finite element analysis.   

      For the past twenty years, research concerning compressible Chicago glacial clays at 

Northwestern University has resulted in a database of stress-strain responses under axisymmetric 

and, to a lesser extent, plane strain conditions.  Recently, an experimental investigation of soil 

behavior at small strains was started.  A series of stress probe tests on high-quality block samples 

with high resolution strain measurements were conducted, the data from which constitute the 

main experimental basis for the constitutive study presented in this dissertation.   
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      The research into soil behavior at small strains gained momentum in 1980’s.  It was found 

that for a variety of soils there are three notable behaviors at small strain levels – stiffness 

degradation (e.g. Burland 1989; Atkinson 2000), stiffness directionality (e.g. Burland and 

Georgiannou 1991; Costanzo et al. 2006) and influence of recent stress history (Atkinson et al. 

1990).  Stiffness degradation refers to the initial high stiffness at very small strains, with rapidly 

decreasing values with increasing strains.  Stiffness directionality means that soil stiffness has 

significant path-dependency.  Influence of recent stress history refers to the soil property that soil 

stiffness changes dramatically for any sharp change in loading path, in contrast to the consistent 

decrease in value if the path is continued with the same direction.  Research also showed that 

these properties play important roles in predicting ground movements accurately at small strains 

(e.g. Jardine et al. 1986; Burland 1989; Stallebrass and Taylor 1997).  Although there are several 

soil models that attempt to account for some of the previously mentioned behaviors, so far no 

one has been able to produce satisfactory results in simulating the responses of compressible 

Chicago glacial clays.  However, many components of these models were found to be useful. 

      This dissertation presents a soil model based on the stress probe tests performed on block 

specimens of compressible Chicago glacial clay.  The theoretical framework of this model is 

original, in which the tangent stiffness is explicitly described in terms of two basic behaviors, 

stiffness evolution and stiffness directionality, respectively.  Because of the explicitness in the 

stiffness description, this model is experiment-friendly, for tangent stiffness can be directly 

measured in most experiments.  Because of the description of directionality, this model 

distinguishes itself from a conventional “variable moduli” model, and provides an alternative and 

simple approach to incremental non-linearity.  Such a framework shows great advantages in 
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incorporating small strain relations and taking into account other well-known relations for 

soils or soil properties, such as the critical state, the virgin compression curve, hysteresis in a 

loading cycle and shear-induced volume change.  The model development is achieved with 

straightforward formulation, easy-to-understand parameters and simple numerical 

implementation.   

      In Chapter 2, technical background for the work is provided.  Incremental non-linearity and 

its recent development, the stress probe tests performed on the compressible Chicago glacial clay, 

and a number of existing models that deal with small strain behaviour of soils are summarized.  

In addition, a statement of the notation convention used in this dissertation is given.   

      Chapter 3 presents the mathematical formulation and experimental basis for the proposed 

model.  First, the form of the tangent stiffness matrix is proposed for axisymmetric conditions.  

The physical nature of the tangent moduli involved in the matrix is discussed.  A mathematical 

mapping from axisymmetric conditions to general conditions is developed.  Two basic variables 

and three characteristic zones are introduced as important features of the proposed model.  Next, 

relations for stiffness evolution are presented with regard to different characteristic zones.  The 

emphasis is placed on the definition of small strain behavior, with elaboration of its relation for 

compressible Chicago clays with the well-known ageing effect.  Relations for stiffness 

directionality are proposed in terms of each tangent modulus.  The mechanism used by the model 

to handle stress reversals is presented.  Relations between directionality and plasticity and recent 

history effect are discussed.  Finally, the material parameters required for the model are 

summarized, as are recommendations for their experimental determination.   
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      Chapter 4 discusses the numerical implementation of the proposed model in a finite 

element code.  A typical coupling system used to perform a non-linear finite element 

computation is introduced initially.  Details are given of the existing substepping method with 

error control, and how to improve it to integrate the proposed constitutive equations.  Emphasis 

is placed on deriving the algorithmically-consistent tangent matrix for the improved substepping 

method.  In comparison with other constitutive models, it is shown that the proposed model has 

remarkable advantages in numerical implementation.   

      Chapter 5 shows the computed model responses in drained/undrained triaxial tests, 

drained/undrained biaxial tests, an oedometer test involving an unload-reload cycle, and a well-

instrumented deep excavation in downtown Chicago.  It is shown that this model is successful in 

simulating various soil tests and is promising in its ability to predict ground movements due to 

earth constructions.  Suggestions for future improvements of this model are also made.   

      Chapter 6 presents a summary of this dissertation, conclusions, and recommendations for 

future research.   
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2    TECHNICAL BACKGROUND  

 

 

 

2.1 INCREMENTAL NON-LINEARITY 

      Any constitutive relation or material model can be generally expressed by a rate form:   

)(σε && F=  (2.1) 

where ε, σ and F are total strain, effective stress and a tensorial function of second-order, 

respectively.  The mark “·” either represents a time rate for a time-dependent material or an 

infinitesimal increment for a time-independent material.  Sometimes Eq. (2.1) is expressed in 

reverse way, i.e., .  For that case, which is merely an issue of preference, the 

positions of 

)( && F 1 εσ −=

ε&  and σ&

)(

 simply need to be exchanged in the subsequent discussions.  To be rate-

independent, the function σ&F  must be positively homogeneous of degree one, i.e.   

)()( σσ && FF λλ =  (2.2) 

where λ is an arbitrary positive real number.  For most materials, )()( σσ && FF −≠−  due to 

irreversible or plastic responses, which means λ cannot be negative.  Eq. (2.2) imposes a 

mathematical constraint on developing models for rate-independent materials.   
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      The constitutive relation is so-called incrementally linear if )(σ&F  is a linear function, i.e., 

)()()( 2121 σσσσ &&&& FFF +=+ , with 1σ&  and 2σ&

)(

 arbitrarily given.  Otherwise, it is incrementally 

non-linear, corresponding to a non-linear σ&

||||)(

F  that does not satisfy the proceeding equation.  

Note that homogeneity does not necessarily infer linearity.  For instance, the function 

σσ && =F  is homogeneous but non-linear, with || || denoting the Euclidean norm.  However, 

linearity sufficiently infers homogeneity, not only positive homogeneity, which means λ could 

be negative.  Therefore, a linear function )(σ&F  essentially represents a reversible or elastic 

relation, which has long been known not to be applicable to most geomaterials.  However, plastic 

responses can be generated using more than one linear functions: 

niif ii L&&& 1;),( =∈= Ψσσε F  (2.3) 

where Ψi sometimes is referred to as tensorial zone (Darve and Labanieh 1982), a subdomain 

defined in the incremental stress space, for which the linear function )(σ&iF  is defined.  The term 

n denotes the total number of the tensorial zones.  A constitutive relation in the form of Eq. (2.3) 

is called incrementally multi-linear (Darve et al. 1988) for n > 1 in general, and incrementally bi-

linear for n = 2 specifically.  For instance, both the Duncan-Chang model (Duncan and Chang 

1970) and the Cam-clay model (Schofield and Wroth 1968) are incrementally bilinear, with one 

tensorial zone defined for loading and the other for unloading.  Generally, elastoplatic models 

are multi-linear, for yield surfaces are typically used for defining multiple tensorial zones.   

      Despite a number of significant advances achieved along these lines (Lade 1977; Mroz et al. 

1979; Dafalias and Herrmann 1982; Al-Tabbaa and Wood 1989; Whittle and Kavvadas 1994; 
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Stallebrass and Taylor 1997; Puzrin and Burland 2000), the elastoplastic approach has some 

noticeable limitations when modeling soils:   

i.) Most soils do not exhibit distinct yielding and thus the determination of the yield surface 

tends to be uncertain (e.g. Smith et al. 1992);   

ii.) The decomposition of total strain into elastic and plastic parts is extremely hard to be 

experimentally determined and often needs assumptive approximations (e.g. Anandarajah 

et al. 1995);   

iii.) Special care must be taken to guarantee the continuity of the incremental response across 

the boundary between two adjacent tensorial zones (Darve and Labanieh 1982);   

iv.) Mathematical structure of this type is relatively complicated, whereas model calibration is 

often based on a limited variety of soil tests (Tu and Finno 2007).   

      To overcome these limitations, incrementally non-linear relations have attracted much recent 

attention.  In hypoplastic models, the following rate form has been adopted by different research 

groups (e.g. Chambon et al. 1994; Tamagnini et al. 1999; e.g. Kolymbas 2000):   

||||εεσ &&& BA +⋅=  (2.4) 

where A is a fourth-order tensor, B is a second-order tensor, and “·” is the operator of tensor 

contraction.  The non-linearity of Eq. (2.4) comes from || ||ε& , due to which model responses vary 

with strain increment directions.  This distinctive feature enables a description of plastic behavior 

without resorting to strain decomposition and yield surface specification.  Furthermore, division 

into multiple tensorial zones can be avoided, for the dependency of response on path direction 
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can be continuously defined in the tensorial function B.  Hence, hypoplastic models possess 

distinctive advantages for soils in comparison with conventional elastoplastic models.  

      Though the strain decomposition is not required for hypoplastic models, a decomposition of 

total response into linear and non-linear parts instead has been imposed by Eq. (2.4), which 

actually presents another challenge for experimental determination.  To be more experiment-

friendly, the following form of incremental non-linearity is proposed for soils:   

εσσ && ⋅= )ˆ(E  (2.5) 

where ||||/ˆ σσσ &&=  represents the path direction of the stress increment.  Apparently, Eq. (2.5) 

meets the mathematical requirement for rate-independency.  Darve (1982) suggested a form 

similar to Eq. (2.5) as a general form of incremental non-linearity for rate-independent materials.  

However, the equation proposed herein serves as a specific case of the general form suggested by 

Darve (1982).  He proposed )ˆ(σE  as a generalized representation of the tangent stiffness matrix.  

In hypoplastic models, for instance, ε̂⊗+≡ BAE , where ⊗  is the operator of tensor product 

and ||||/ˆ εεε &&= )ˆ( represents the path direction of the strain increment.  However, σE  of Eq. 

(2.5) corresponds to a direct description of the tangent matrix, without decomposition into 

multiple parts, as is done in hypoplasticity.  Since tangent stiffness is directly measurable in most 

cases, the setup of an explicit tangent matrix could enable a constitutive relation to be largely 

experiment-based.  Instead of ε̂ , the path direction in Eq. (2.5) is solely described by σ̂ , the 

advantages of which will be detailed later.   
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      The proposed form of Eq. (2.5) appears similar to a “variable moduli” model (e.g. Duncan 

and Chang 1970; Jardine et al. 1986).  However, the proposed model is fundamentally different 

from the “variable moduli” model, mainly because of the dependency of the tangent matrix on 

the path direction σ̂ , which, from the author’s point of view, is the essence of the incremental 

non-linearity.  The “variable moduli” model is known for two main shortcomings.  One 

limitation is coaxiality between stress and strain increments and a complete volumetric-

deviatoric uncoupling (Tamagnini et al. 1999).  The other drawback is numerical instabilities due 

to either the lack of continuity of model response across tensorial zones (Gudehus 1979) or the 

inconsistency in distinguishing between loading and unloading (Schanz et al. 1999).  In the 

proposed model, the first problem is treated by adopting a cross-anisotropic matrix for E, in 

which mechanisms for stress-strain non-coaxiality and volumetric-deviatoric coupling are 

naturally included.  The second problem is naturally solved using continuous functions in terms 

of σ̂ .   

2.2 STRESS PROBE TEST WITH SMALL STRAIN MEASUREMENTS  

      In most geotechnical construction, the affected soil generally is subjected to a variety of 

loading modes varying both in time and location, as has been frequently demonstrated in 

numerical analysis (e.g. Finno et al. 1991; Whittle et al. 1993; Viggiani and Tamagnini 2000).  

Hence, it is of practical interest to systematically investigate mechanical properties of soils under 

various loading modes.  Among experimental approaches to this end, a natural one is to perform 

so-called stress probe tests, in which a number of ‘identical’ soil specimens are tested with a 

series of stress increments along different stress path directions.  The importance of probe tests 
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has been increasingly recognized and several large programs have been carried out on 

different soils, mostly under axisymmetric condition (e.g. Smith et al. 1992; Callisto and 

Calabresi 1998; Finno and Roboski 2005; Costanzo et al. 2006).   

      It also has been increasingly appreciated that the strains around well-designed foundations, 

excavations and tunnels are mostly small, typically on the order of 0.1% (e.g. Jardine et al. 1986; 

Burland 1989; Atkinson 2000; Clayton and Heymann 2001), with soil responses at this strain 

level generally being non-linear and anisotropic (e.g. Tamagnini and Pane 1999; Shibuya 2002; 

Ng et al. 2004).  To investigate soil non-linearity and anisotropy at small strain levels, it is 

important to implement small strain measurements in experimental programs.  In the stress probe 

tests performed on compressible Chicago glacial clay, Holman (2005) used subminiature LVDTs 

mounted directly on specimens to record local axial and radial strain values.   

      Fig. 2-1 illustrates the stress probes carried out by Holman (2005).  In these tests, triaxial 

specimens were hand-trimmed from the block samples with a nominal diameter of 71 mm and a 

height-to-diameter ratio between 2.1 and 2.3.  Each specimen was reconsolidated under k0 

conditions to the in-situ vertical effective stress σv0′ of 134 kPa, and then subjected to a 36 hour, 

drained k0 creep cycle, wherein lateral restriction was enforced.  Following this k0 creep phase, 

specimens were subjected to directional stress probes under drained axisymmetric conditions.  

The internal deformation measurements made by subminiature LVDTs mounted directly on the 

specimen were used to calculate axial and radial strains using the measured axial gage length and 

sample diameter, respectively.  The axial load was measured using an internal load cell and 

corresponding axial stress were calculated using the measured axial load and the current sample 
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area from the measured radial deformation.  Cell and pore pressures were measured using 

external differential pressure transducers.  Internal stress and strain measurements were made at 

5 to 20 second intervals by an automated data acquisition and control system.   
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Ts were averaged to produce a single axial deformation 
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TC: Triaxial Compr

      The readings from the two axial LVD

response, assumed to be representative of the centerline deformations within the zone of local 

measurement.  Smoothed values of data collected by each transducer and load cell were used to 

calculate the local axial strain, εa, local radial strain, εr, vertical stress, σv′, and horizontal stress, 

σh′.  All stress probes were carried out at a stress rate of 1.2 kPa/hour to minimize accumulation 

of excess pore water pressure within a specimen.  Duplicate tests were conducted for the 

majority of the stress probes.   
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in and Burland 2000) have been developed in the form of an 

2.3 SMALL STRAIN MODELS 

      Though a successful numerical analysis is affected by many factors (Finno and Tu 2006), the 

constitutive model is undoubtedly among the most critical ones.  There are a number of models 

capable of dealing with various aspects of soil behavior at small strains.  As a major 

improvement of the classical critical state model (Schofield and Wroth 1968), the bounding 

surface model (Dafalias and Herrmann 1982) enabled volumetric-shearing coupling inside a 

conventional yield surface, which in most cases overlaps the small strain range. On the basis of 

bounding surface plasticity, MIT-E3 (Whittle and Kavvadas 1994) further introduced a hysteretic 

elastic relation (Hueckel and Nova 1979) within the inner surface to reproduce the hysteretic 

response observed in most soil tests. Consistent with a 3-loci hypothesis (Smith et al. 1992), a 

series of multiple-surface kinematic hardening models (e.g. Al-Tabbaa and Wood 1989; 

Stallebrass and Taylor 1997; Puzr

anisotropic hardening model (Mroz et al. 1979). This type of model provides a conceptually 

simple way to account for the effect of recent stress history (Atkinson et al. 1990) on directional 

stiffness at small strains.  Another notable method is the hypo-plastic approach (e.g. Niemunis 

and Herle 1997; Viggiani and Tamagnini 1999; e.g. Kolymbas 2000; Lanier et al. 2004), founded 

on the theory of hypo-elasticity (Truesdell 1955) and the concept of incremental non-linearity 

(Darve 1991).  Among other advantages, hypo-plastic models need neither strain decomposition 

nor determination of yield or potential surfaces, which are difficult to define in most soil 

experiments.   
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n 

fact, it is still an open question that conventional constitutive approaches, typically developed 

upon relatively limited experimental information, are actually capable of extrapolating correctly 

soil response upon different path directions (Costanzo et al. 2006).  A case in point is that soil 

responses, especially the tangent stiffness, are significantly dependent on path direction, a 

material property having been reported by a number of researchers on various soils (e.g. Graham 

and Houlsby 1983; Callisto and Calabresi 1998; Finno and Roboski 2005; Costanzo et al. 2006) 

but only considered in very few soil models (Puzrin and Burland 1998).  This property has made 

it difficult for most existing models to use same set of input parameters to simulate soil responses 

in all stress probes, though simulating one or two probes might not pose a problem.   

 

on experimental observations.  In the meanwhile, the drawbacks of a “variable moduli” model, 

wherein tangent stiffness is expressed explicitly as well, are avoided by taking into account 

incremental non-linearity.  Furthermore, it can be shown that the proposed constitutive 

      A solid constitutive model demands a solid experimental basis.  The stress probe tests, 

equipped with small strain measurements, can systematically investigate soil responses in the 

entire axi-symmetric space, thus providing a comprehensive experimental basis for soil modeling. 

Unfortunately, very few, if any, existing models were developed on the basis of such tests.  I

      This dissertation presents a constitutive model mostly based on the stress probe tests 

performed on compressible Chicago glacial clay (Holman 2005).  This work also serves as an 

example of how to formulate an incrementally non-linear relation based on the conceptual 

platform laid out by Eq. (2.5).  Unlike most existing soil models, the proposed model describes 

the tangent stiffness explicitly, which facilitates formulating constitutive relations directly based
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g small strain behaviours of “unstructured” soils.  

ONV

      In 

re assumed throughout this dissertation, 

though its traditional mark “′” sometimes is omitted for simplicity.  The usual sign convention of 

soil mechanics (compression positive) is adopted.  In the representation of stress and strain 

ates, use is made of the following invariant quantities: mean normal stress p′ = tr(σ′)/3; 

deviatoric stress q = 

framework is fairly suitable for describin

Though this proposed model does not provide a special mechanism guaranteeing thermo-

mechanical correctness as does a hyper-plastic model (e.g. Collins and Houlsby 1997; Houlsby 

and Puzrin 2000), employing solid experimentally-based relations will effectively minimize 

possible violations of the fundamental principle, especially in the experimentally-evaluated 

loading modes.  A theoretically rigorous treatment in this aspect remains for future work.   

2.4 NOTATION C ENTION  

this dissertation, the usual sign convention of soil mechanics (compression positive) is 

adopted throughout.  As a default, effective stresses a

st

)2/3( ||dev(σ′)||; volumetric strain εv = tr(ε); and deviatoric strain εs = 

)3/2( ||dev(ε)||.  Tensors are represented by bold letters.  Unless otherwise stated, summation 

convention is not employed in equations listed herein.   
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3    MODEL FORMULATION  

 

 

 

      This chapter describes the experimental basis and mathematical formulation for the proposed 

directional stiffness model, so-called to emphasize the path-dependency of tangent stiffness, and 

to distinguish this model from a traditional “variable moduli” model, in which moduli only vary 

with stress/strain levels.   

 

3.1 TANGENT STIFFNESS MATRIX  

      As defined in Eq. (2.5), the tangent stiffness E is a 6×6 matrix linking stress and strain 

increments.  Generally, this matrix includes 36 independent components.  To be practical, the 

form of E needs to be prescribed in such a way that matrix components of relative importance 

should be identified and emphasized.  Furthermore, it is noted that the matrix components that 

can be investigated in conventional soil experiments are quite limited.  In developing the 

proposed model, a basic idea was to formulate experimentally-based relations for these limited 

components first and then make appropriate extensions to general conditions.  Note that these 

kinds of extensions, essentially due to the limitation of current experimental capability, are not 

only needed by this specific model but needed by any other model as well.   
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3.1.1 AXI-SYMMETRIC CONDITION  

3.1.1.1 FOUR TANGENT MODULI  

      In most standard soil experiments, soil specimens are trimmed into a cylindrical shape and 

tested under axi-symmetric conditions.  Under these conditions, the tangent stiffness matrix can 

be generally expressed as:     
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⎨
⎧
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3/1/1
/1/1

 
(3.1) 

where K is the bulk modulus, G is the shear modulus and Jv and Js are two coupling moduli.  

These four moduli are all tangent moduli.  The infinitesimal mark “δ” is adopted in this chapter 

for infinitesimal stress/strain increments, indicating that the current version of directional 

stiffness model is time-independent.  This infinitesimal “δ” should be distinguished from the 

finite mark “∆” that will be frequently used later in Chapter 4 to denote finite stress/strain 

increments in numerical schemes.   

      According to Eq. (3.1), Jv defines shear-induced volume change of the material, a behavior 

that has been widely observed for many soils.  For instance, it is well-known that loose sand or 

normally consolidated clay tends to contract while dense sand or highly overconsolidated clay 

tends to dilate, under drained shear conditions.  These phenomena can be fully described by 

devising a proper function for Jv.  Specifically, shear-induced contraction can be captured by 

positive Jv for δq > 0 or negative Jv for δq < 0, while shear-induced dilation can be simulated by 

negative Jv for δq > 0 or positive Jv for δq < 0.  Note that the shear-dilation response also can be 

accounted for using dilatancy angle ψ (Rowe 1962), which links volumetric change to shear 
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strain and typically is implemented in an elasto-plastic model (e.g. Menetrey and Willam 1995; 

Schanz et al. 1999).  In essence, Jv and ψ are two different approaches to the same issue.   

      In contrast to Jv, Js describes how the change in mean stress p′ contributes to shear strain 

development, a property that has not received much attention.  It is worth having a special 

discussion on the nature of this unconventional modulus.   

3.1.1.2 PHYSICAL NATURE OF JS  

      In literature, the two coupling moduli typically are assumed to be identical (e.g. Graham and 

Houlsby 1983; Puzrin and Burland 1998).  Nevertheless, not only their mathematical definitions 

(cf. Eq. (3.1)), but also experimental observations, indicate that Jv and Js are different from each 

other.  There are two particular stress probe tests that are especially important for understanding 

the physical meaning of Js. Fig. 3–1(a) shows the volumetric strain and the shear strain measured 

in constant q unloading (CQU) test, wherein p′ keeps decreasing while q remains constant, i.e., 

∆q = 0.  Because shear strains as large as 2% develope in this test, when there is no change in 

shear stress, Js must play an important role in the response.   
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b) AU test 

Another relevant phenomenon is observed in anisotropic unloading (AU) test, wherein the s

path basically points straight back to the origin of the p′-q space, as shown in Fig. 2-1.  Though 

this test involves a significant change in q, the measured shear strain is surprisingly small, nearly 

negligible as shown in Fig. 3–1(b).  These two observations viewed together strongly suggest 

η 

hereinafter, rather than mere change in q.  This observation corresponds to the following 
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Fig. 3–1. Measured strain components in (a) CQU test and (
 

tress 

that shear strain in soil is actually governed by change in the stress ratio q/p′, denoted by 

mathematical form for describing the shear behavior of soils.   

*Gs
δηδε =  (3.2) 

where G* is a nondimensional modulus, different from the conventional shear modulus G.  

According to Eq. (3.2), the observed shear strain in AU test should be relatively small, because η 

does not change therein.  Conversely, in a CQU test, η increases until failure is reached, and a 
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      A further expansion of the right hand side of Eq. (3.2) yields:   

substantial amount of shear strain should be expected.  It can be shown that Eq. (3.2) is 

suitable for any other stress probe wherein the stress path leads to failure.   

*2* '' GpGps
'pqq δδδε −=  

Note that the expression for ε

(3.3) 

s implied in Eq. (3.1) is:   

s
s J

pq '
G3

δδδε +=  (3.4) 

s

      Note that η is an alternative representation of mobilized friction angle, the peak value of 

which defines the failure surface for frictional materials.  The geometry of a failure surface 

reveals intrinsic information about the shear behavior of the material.  An important 

characteristic of failure via a critical state definition is the theoretically infinite amount of shear 

 which the most dramatic change in shear strain will 

By comparing Eq. (3.3) to Eq. (3.4), it is apparent that G*, G and Js are related to one another:   

qGpJqGpJGpG /'3;/';3/' *2* −=−==  (3.5) 

Therefore, both G and J  essentially originate from G*, a nondimensional modulus describing the 

relation between stress ratio η and shear strain.   

ss

strain.  Therefore, the failure surface is also a surface of equal shear strain, an analogy to an 

equipotential surface.  As the normal to the equipotential surface designates the direction of the 

driving force that leads to the most dramatic change in potential, the normal to failure surface 

designates the direction in stress space along
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o  

unit magnitude that produces the largest amount of shear strain.   

ccur.  Thus, the stress quantity measured in this direction represents the stress increment of

      Fig. 3–2 shows the failure surfaces for non-frictional material and frictional material, 

respectively.  As shown, the failure of non-frictional material is independent of p′.  The norm to 

the failure surface is parallel to the q-axis, which means q is the most critical factor in generating 

shear strain for non-frictional material.  Mathematically, it corresponds to the following. 

G
q

s
δδε =  (3.6) 

Though this equation has been frequently used for describing soil behavior, fundamentally it is 

applicable only to non-frictional materials, like most metals.  As shown in Fig. 3–2(b), an 

idealized failure surface for frictional material corresponds to a constant stress ratio, and thus the 

norm to the failure surface can be mathematically represented by a change in η alone.  In other 

words, the most critical factor controlling shear strain development for frictional material is the 

stress ratio η.  Therefore, Eq. (3.2) in essence originates from the mechanical nature of frictional 

material, as does the coupling modulus J .   

 

s
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Fig. 3–2. Relation between failure surface (F.S.) and material shear response: (a) non-frictional material and 

(b) frictional material 
 

      Note that the admissible stress space enveloped by the failure surface of frictional material is 

distorted in comparison to that of non-frictional material.  For non-frictional material, nearly all 

by an envelope 

parallel to the failure surface.  Along any stress path falling in this sector that is oriented to the 

right with an angle with the p′-axis less than that of the failure surface, the material undergoes a 

e s a

ting that Eq. (3.6) is more applicable 

to the shear response in this sector than Eq. (3.2) and thus Js is negligible therein.  The difference 

between the hatched sector and the remaining stress space will be detailed later.   

 

stress paths point to the failure surface, which means Eq. (3.6) is generally applicable.  Note that 

the only two paths not pointing to the failure surface are horizontally oriented in p′-q space, 

which are still covered by Eq. (3.6) as two special cases in which no shear strain develops.  In 

contrast, for frictional material, a significant percentage of stress paths do not point to the failure 

surface, as indicated by the hatched sector in Fig. 3–2(b), which is bounded 

more compressive deformation mode, for which Eq. (3.2) is not necessarily suitable because it 

s entially describes friction l shearing.  In fact, test data from CQL probe, wherein p′ increases 

with no change in q, exhibits very little shear strain, indica
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3.1.2 GENERAL CONDITION  

      For in situ soils that have been deposited in horizontal layers, it is appropriate to assume their 

properties are cross-anisotropic.  The following cross-anisotropic matrix has been implemented 

in a number of soil models (e.g. Lings et al. 2000; Kuwano and Jardine 2002; Jung et al. 2004).   
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(3.7) 

where subscripts x and y indicate the two horizontal axes and z indicates the vertical axis.  There 

are seven independent indices involved in this matrix.  Under axisymmetric conditions in a 

triaxial cell, only the 3×3 sub-matrix at the top-left corner is applicable, which inc

⎪
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ludes five 

independent indices.  To investigate the relation between these five indices and the four moduli 

discussed in the previous section, the sub-matrix is extracted and expressed as:   
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where the five new indices A through E are introduced for convenience, with A = 1/E , B = -

ν /E

⎬⎨=⎬⎨
'CAB δσδε  

h

hh h, C = -νvh/Ev, D = -νhv/Eh and E = 1/Ev.  For axisymmetric conditions, the incremental 

shear and volumetric strains can be derived from Eq. (3.8):  

⎩
⎨
⎧ = q/92C)-B+A+2E+2(-2D+p/3C)-B-A-E+(2D2 δδδε s  

= q/32C)+B-A-E+2(-D+p2C)+2B+2A+E+(2D δδδε v

(3.9) 

Comparing  Eq. (3.9) with Eq. (3.1), one obtains the following set of linear equations: 
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(3.10) 

Rearranging Eq. (3.10), the following equations can be established (Finno and Tu 2006):   
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(3.11) 

Hence, if the four tangent moduli are known, C, D, E and the sum of A and B can be computed 

through Eq. (3.11).  Note that the determination of A and B depends on νhh, since B/A = -νhh 

while the sum of A and B is known.  Experimentally, νhh can be determined using true triaxial 

en orientation in a regular triaxial test.  Besides νhh, the 
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⎪⎩ )/93/J+3/J+1/K+(3/G = E vs

⎪
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⎨

tests, or accordingly changing the specim

other two unknown indices are Ghh and Gvh, which can be investigated by properly-oriented 

bender elements, or in either hollow cylinder torsion tests or direct simple shear tests with 

specimens appropriately orientated.  However, these tests are not common and little test data are 

available.  For simplicity, three hypothetic relations are used in this proposed model.   

GcGGbGa hvhhhh ⋅=⋅== ;;ν  (3.12) 

where a = 0.2 and b = c = 1 in default.  Note that both νhh and Ghh are not exercised under plane 

strain conditions, seemingly the most common case in numerical analysis.  Bender element 

Gvh.   

measurements on the compressible Chicago clay have shown that different shear moduli at very 

small strains are relatively insignificant (Cho 2007), with Ghh approximately 20% higher than 
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Note that the matrix in (3.7) is a compliance matrix.  Its inverse matrix, substituted with Eqs. 

(3.11) and (3.12), leads to the following stiffness matrix:   

 stiffness  := 
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Eqs. (3.11)~(3.13) provide a complete mapping of tangent stiffness from an axisymmetric 

condition to a general condition.  The general tangent matrix can be fully obtained, as long as the 

3.2 GENERAL CONSIDERATIONS IN STIFFNESS DEFINITION 

on in literature to report observed soil stiffness variations 

with regard to a relevant strain.  Accordingly, it is convenient to define moduli as functions of 

(3.13) 

four tangent moduli under axisymmetry can be identified.  The subsequent sections then describe 

how to define these tangent moduli based on experimental observations.   

 

      Before going into details of this directional stiffness model, it is worthwhile to briefly discuss 

several substantial issues related to definition of tangent moduli.   

3.2.1 TWO BASIC VARIABLES 

      The first important issue is how to select the basic variables upon which the moduli will be 

mathematically described.  It is comm
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strains.  However, in is theoretically 

finite at failure, while failure definition in stress has no such ambiguity.  More fundamentally, 

eformation/strain is its consequence.  

Therefore, it is rational to use stresses as basic variables when defining stiffness measures.   

th between O and C along the stress path 

experienced by the material, which is mathematically defined as: 

 strains are mathematically inconvenient since shear stra

in

in many field applications, force/stress is the cause while d

      To this end, it is proposed herein to use two stress-based quantities, length of stress path, 

LSP, and orientation angle, β.  As shown in Fig. 3–3, the points O and C represent the initial and 

current stress states respectively.  LSP is the leng

∫Γ
+= 22 )()'( qpLSP δδ  

(3.14) 

where the integration path Γ corresponds to real stress path, which is generally nonlinear.  This 

integration can be easily computed in a numerical scheme by linearizing the stress path in each 

time step and adding its increment at the end of each step.  In Fig. 3–3, the arrow emanating from 

point C represents current stress increment δσ′.  Its inclination with the p′ axis is defined by β as:   

(3.15) 

where δp′ = tr(δσ′)/3; δq = 

⎪
⎩

⎪
⎨

⎧

<>+
≤+

≥>
=

0,0')'/arctan(2
0')'/arctan(

0,0')'/arctan(

qpifpq
pifpq

qpifpq

δδδδπ
δδδπ

δδδδ
β  

)2/3( ||dev(δσ′)||.  Accordingly, β increases counterclockwise and 

falls in [0, es 

the points O and C, is different from β.  β represents the direction of current stress increment, 

 2π), with β = 0 parallel to the p′ axis   Note that in a straight stress path, β coincid.

with the orientation angle of the overall stress path.  However, in a general case, such as in Fig. 

3–3, the overall stress path direction, which can be represented by the line segment connecting 



 

 

39

 

abrupt changes in 

path direction, e.g., a stress reversal, LSP should be “reset”, as will be elaborated in Section

while LSP accounts for the entire stress history starting from the initial state to the current 

stress state, as long as changes in path direction, if any, are continuous.  For 

 3.3.3.  

It will be shown later that LSP and β are useful terms to define the stiffness variation with both 

magnitude and direction of loading.   
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ria

tress path leading to the 

failure surface, wherein the soil specimen will eventually be failed in shear.  All stress paths of 

this type together form the shear zone in Fig. 3–4.   

 
Fig. 3–3. Two basic va bles for stiffness definition: LSP and β 

 

3.2.2 SHEAR ZONE & COMPRESSION ZONE 

      Soil experiments essentially can be categorized into two types – shear and compression tests.  

As shown in Fig. 3–4, a shear test in the stress space corresponds to a s
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Fig. 3–4. Characteristic zonation: shear zone, compression zo

In contrast, a compression test is characterized by a stress path in which shear failure will never 

occur and the dominant deformation mode is compression.  All paths of this type form a 

compression zone in Fig. 3–4.  In a general stress space, the boundary between the shear and 

compression zones is a conical surface, and can be mathematically defined as: 

0)''( =− cFSf σσ  (3.16) 

σ σ

manifests itself as two curves that “parallel” the failure state 

curves.  For a Mohr-Coulomb failure criterion, and using the stress path direction β defined in Eq. 

where fFS( ′) = 0 is the function for the failure surface, and ′c is the current stress.  Hence, the 

boundary surface can be obtained by shifting the tip of the failure cone to the current stress point.  

In the p'-q plane, the boundary 
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ted by two parameters derived from the friction (3.15), the two boundary curves can be deno

angle φ :   

)
sin3

sin6
sin3

sin6
φ

arctan(2);arctan( φπβ
φ

φβ −== lowerupper  

one but increase with LSP in the 

compression zone.  The shear and compression zones constitute two tensorial zones using 

ather than a mathematical consideration.   

      It is worth mentioning here that these two characteristic zones correspond to different yield 

 are conceptual counterparts of the shear and 

n.   

      Of all stress probe tests performed on the soft Chicago clays (cf. Fig. 2-1), the probes AL and 

+−

(3.17) 

where βupper and βlower correspond to the upper and lower boundary curves, respectively.   

      Generally speaking, the shear zone is dominated by shear response, while the compression 

zone is dominated by volumetric response.  In terms of stiffness definition, it can be expected 

that tangent moduli will decrease with LSP in the shear z

Darve’s terminology (1982).  These two tensorial zones, however, fundamentally originate from 

the frictional nature of soils, r

surfaces if accounted for in an elasto-plastic framework.  For instance, the double hardening 

model (Lade 1977) uses a conical surface and a cap surface accounting for yielding in shear tests 

and consolidation tests, respectively, which

compression zones used herei

CQL are within compression zone and the others are within shear zone.   
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his zone is not a tensorial zone, because 

its boundary is measured in terms of LSP instead of β.   

 

      The stiffness definition in this model includes separate relations for stiffness evolution and 

stiffness directionality.  While these two sets of relations are conceptually independent and were 

developed separately on the basis of test data, they are associated in the sense that the 

directionality relations are mathematically hosted by the evolution relations.   

3.3.1 STIFFNESS EVOLUTION 

tiffness 

evolutions in the shear and compression zones are fundamentally different, and thus are treated 

separately.   

3.3.1.1 EVOLUTION IN SHEAR ZONE 

      A stress path falls in shear zone when it leads toward the failure surface, i.e. the path will 

intersect the failure surface if extended unlimitedly along its direction.  As shown in Fig. 3–3, 

this intersection, denoted by point F, defines an image point of point C on the failure surface, 

which serves as a benchmark for measuring the “distance” of the current stress state to possible 

failure.  Note that this mapping approach is a useful technique in developing soil models (e.g. 

      The small strain zone, the hatched area bounded by experimental data points in Fig. 3–4, 

will be introduced later as another characteristic zone.  T

3.3 RELATIONS FOR STIFFNESS DEFINITION 

      The evolution relations describe how the tangent moduli vary with LSP.  Again, s
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Dafalias and Herrmann 1982).  The stress at this image point, denoted by σ′f, can be defined in 

terms of the current stress σ′c and the stress increment ∆σ′.   

''' σσσ ∆mcf +=  (3.18) 

where m is an unknown scalar.  Since the failure surface is defined as fFS(σ′f) = 0, m can be 

obtained by solving:   

0)''( =+ σσ ∆mf cFS  (3.19) 

Note that there could exist two solutions for m of different signs and the desired one is always 

positive to be consistent with the direction of loading.  The “distance” between points C and F 

then is computed as m∆LSP, where ∆LSP = 22 .  And the “distance” between points O 

and F is defined as follows.   

(3.20) 

      Fig. 3–5 shows tangent shear modulus G versus LSP observed in selected stress probes in the 

shear zone, with G nor y LSPf, a constant in 

rn of stiffness evolution in all stress 

probes conducted in the shear zone by Holman (2005).   

' qp ∆∆ +

LSPmLSPLSPf ∆+=  

malized by its initial value G0, and LSP normalized b

each individual stress probe.  Note that G is computed according to Eq. (3.5).  These curves are 

quite similar to each other, exhibiting the general patte
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Fig. 3–5. Normalized shear modulus evoluti  selected stress probes in the shear zone  
 

      As shown in Fig. 3–5, these evolution curves are composed of two distinct stages.  Initially, 

the modulus decreases linearly and rapidly.  After passing an easily visible kink in the curves, the 

degradation becomes nonlinear and much milder.  This kink has a clear physical meaning and 

ill be 

discussed later in more detail.   

on in

provides a reasonable criterion for defining the threshold of small strain behavior, which w
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      This twofold pattern is observed not only for G, but also for the other tangent moduli.  Fig. 

3–6 shows that the same pattern is also observed for degradation curves of other moduli.  In the 

shear zone, Js is defined according to Eq. (3.5) and thus degrades in a way similar to G.   
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      In summary, evolution relations in the shear zone for the different moduli in Eq. (3.1) have 

an identical form, as schematically shown in Fig. 3–7.   

 
Fig. 3–6. Degradation of various moduli in the shear zone  
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Fig. 3–7. Relation for stiffness evolution in shear zone 
 

ed by f1(LSP) and f2(LSP):   

 

E* represents any of the four tangent moduli and is defin

s

s

LSPLSPifLSPfE

LSPLSPifLSPfE

>=

≤=

,)(

,)(

2
*

1
* (3.21) 

where:   

sLSPEELSPELSPf )/-()( *
s

*
0

*
01 ×−=  (3.22) 

 

LSPLSPLSP
LSPEEEELSPELSP

LSPf ffssffs )-+(+-1)-(
)(2 µµ

µµ
+−

=  

*

*

fs )-(2-)1(

***** (3.23) 

where E 0 is the initial modulus, LSPs is the threshold LSP, defining the boundary of the small 

strain zone (cf. Fig. 3–4), E s is the threshold modulus, and µ is the coefficient of non-linearity 

that controls the non-linearity of Eq. (3.23), as shown in Fig. 3–8.  E*
0, LSPs, E*

s and µ serve as 

four parameters in the evolution relations.  Instead, LSPf is a state variable to be computed 
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low, while Kf should be large enough in comparison 

with Gf, so that a critical state (Schofield and W ately achieved.  Jsf 

can be derived from Gf according to Eq. (3.5).  Jvf is assumed to be large in comparison with Kf, 

according to Eq. (3.20).  E*
f is the failure modulus, assumed to be constant.  At failure, Gf 

should be small enough to generate a shear f

roth 1968) can be approxim

and thus its effect is neglected in a failure state.  In this model, Gf = 1 kPa, Kf = 50 kPa, Jvf = 

1000 kPa for qf > 0 and Jvf = -10000 kPa for qf < 0, where qf denotes q at failure.   

LSP

f 2
(L

SP
) E s

*

E*
f

µ = 2

µ = 2.5

LSP s LSP f

µ = 3.5

µ =5

µ =15

µ =8

 

) is essentially a hyperbolic function of the following form: 

Fig. 3–8. Parameter µ controlling non-linearity of f2(LSP) 
 

      In essence, f1(LSP) defines the small strain behavior and f2(LSP) defines the large strain 

behavior.  f2(LSP
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c
LSPb
aE +

+
=*  

(3.24) 

The three unknowns, a, b and c, are derived by making Eq. (3.24) satisfy three conditions:   

2 )( ss ELSPf =

***
2 /)(/2 /2( ffsfs EEELSPLSPf +−=+ µ

The 3

*
2

*

)

)( ff ELSPf =  

(3.25) 

 be determined by identifying the range of 

the linear degradation portion, while LSPf basically is the maximum LSP value.  Accord

      It is worth pointing out that if the twofold relation of Eq. (3.22) and (3.23) is plotted in terms 

f stiffness, either tangent or secant, versus relevant strain measure in a semi-logarithmic scale, 

as shown in Fig. 3–9.  Similar curves for other stress 

rd condition provides a straightforward way to determine µ from experimental results.  

Given a stiffness degradation curve E*~LSP, LSPs can

ingly, 

E*
s and E*

f can be obtained from the curve.  To determine µ, one needs to find out on the curve 

the E* value at LSP = (LSPs+LSPf)/2, denoted as E*
m.  Then µ = (E*

s - E*
f)/ (E*

m - E*
f), according 

to Eq. (3.25).  Typically, E*
f is much smaller than E*

s and E*
m.  Thus, µ ≈ E*

s/E*
m.   

o

the resulted curve is of a reversed-S shape, 

probes in the conventional way of data presentation can be found in Finno et al. (2005) and 

Holman (2005).   
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Fig. 3–9. The twofold relation plotted in conventional way 
 

Stiffness degradation curves in reversed-S shape have been widely reported in the literature on 

numerous soils.  As an example, Fig. 3–10 shows an illustration from Atkinson’s paper (2000).  

The point here is that the twofold relation, comprising Eq. (3.22) and (3.23), is consistent with

the common characteristic of soils, and thus is ex lly applicable.   

 

pected to be genera
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Fig. 3–10. A typical stiffness degradation curve for soils (after Atkinson 2000) 

 

3.3.1.2 EVOLUTION IN COMPRESSION ZONE 

      Fig. 3–11 shows how the bulk and shear moduli evolve in the two compression tests, based 

on the raw data given by Holman (2005).  Note that the significant jumps, especially on the two 

K curves, are mainly caused by the applied curve fitting techniques.  As explained in Appendix 

B, it is usually difficult to find a single polynomial function to fit entire stress-strain relation.  

Hence, the ta  fit different 

segments of the curve.  As a matter of fact, curve fitting tends to be relatively inaccurate at ends 

of a segment, especially when the fitted curve is not particularly smooth.  Therefore, fluctuations 

or discontinuities are expected around connections of two adjacent segments.  However, these 

sk typically is achieved using different polynomial functions to
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drawbacks do not prevent the fitting technique from revealing global patterns of tangent 

stiffness evolution, as shown in Fig. 3–11.   
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Fig. 3–11 Observed stiffness evolution in the compression zone  

 

      Fig. 3–12 shows the relation accordingly proposed for stiffness evolution in the compression 

zone.  As shown, the linear function f1(LSP) defined in shear zone also applies to the 

com ression zone.  LSPs and E*
s are again identified by a kink on the global curve.  Unlike in 

ssion zone eventually increase with LSP, 

consistent with the well-established equation for normally consolidated soils of a straight line in 

a ln(p′)~εv plot.   

p

shear zone, however, tangent moduli in compre
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(3.27) 

′ p = p′p – p′0.   

pppifpK ''/' * ≥= λ  (3.26) 

where λ* is a modified compression index and p′p is the pre-consolidation mean normal stress, 

which typically is calculated given the over-consolidation ratio (OCR) and the initial mean 

normal effective stress p′0.  Accordingly, as a part of f3(LSP), the proposed evolution relation for 

K in large strain range is as follows: 

pLSPLSPifLSPpK ≥+= *
0 /)'( λ  

where p 0 is the initial effective pressure and LSP
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Fig. 3–12 Relation for stiffness evolution in compression zone 
 

The relation for G in this region is derived by assuming a constant lateral stress ratio for normal 

consolidation:   
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pnc

nc

LSPLSPifK
k

kG ≥
+
−

=
)21(2

)1(3
0

0  
(3.28) 

where knc
0 is the lateral stress coefficient in a normal consolidation.  By default, knc

0 = 1 – sin(φ) 

(Holtz and Kovacs 1981).  φ is the friction angle.   

      According to experimental observations, the shearing-volumetric coupling in the 

compression zone is insignificant.  Hence, for convenience, the two coupling moduli Js and Jv are 

assumed to be one order of magnitude larger than K:   

(3.29) 

Eqs. (3.27) to (3.29) constitute a complete representation of f3(LSP) (cf. Fig. 3–12), the definition 

of large strain behavior in the compression zone.  For over-consolidated soils, LSPs is smaller 

than LSPp, as shown in Fig. 3–12.  In this case, a linear interpolation is used to describe the 

stiffness evolution in the transition.   

 

HAVIOR  

      Based on the preceding discussions, the soil response at the beginning of any stress path 

follows an identical pattern, i.e., as LSP increases, soil stiffness decreases linearly and rapidly 

from a relatively large initial value.  This behavior is mathematically described by Eq. (3.22), 

and its range is specified by LSPs.  As has been shown in Fig. 3–4, a characteristic zone, herein 

named the small strain zone, is outlined by the dots scattering around the initial state, which 

correspond to LSPs values obtained from stress probe tests.   

psv LSPLSPifKJJ ≥== 10  

3.3.1.3 SMALL STRAIN BE
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 stage to the end of the AL test.   

      As introduced in Section 2.2, all stress probe tests on the compressible Chicago clay are 

preceded by a k0-consolidation stage and a subsequent drained creep stage at constant vertical 

stress with lateral restriction.  It is well-known that most soils get stiffer after creep (e.g. Hueckel 

and Nova 1979; Rammah et al. 2004), which is commonly referred to as “aging.”  This aging 

effect can be well demonstrated in the AL probe test.   

      As shown in Fig. 2-1, the AL test is essentially a continuation of the k0-consolidation since 

these two paths are nearly identical.  In Fig. 3–13, the measured volumetric response is plotted 

for the entire process from the consolidation
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Fig. 3–13. Volumetric response throughout the AL probe test 
 

Fig. 3–13(a) 

 

and (b) plot the same data but in different fashions.  In Fig. 3–13(a), the significant 

“hump” at the beginning of the AL probe indica s a jump in soil stiffness, more specifically, the 

bulk modulus.  As the probe continues, however, the bulk modulus gradually decreases, until the 

te
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local slope of the stress-strain curve in Fig. 3–13(a) approaches the slope at the end of the 

consolidation stage.   

      The εv-logp′ curve in Fig. 3–13(b) is found quite consistent with Bjerrum’s (1967) 

generalized time-dependent behavior of soils.  Bjerrum (1967) postulated the dashed portion of 

the curve in Fig. 3–14(a) is the soil response without any creep, while its solid counterpart results 

from certain period of drained creep, or ageing.  This response exactly corresponds to what is 

decribed by Eq. (3.22), with point A corresponding to the LSPs measured from the AL test.  

Therefore, the small strain behavior defined by Eq. (3.22) physically is an outcome of ageing, 

assuming the soil is not cemented in any way.  There is no reason that soil stiffness increases 

only in one path direction, e.g., the direction of AL probe.  Instead, soil stiffness increases in all 

path directions, but only for a limited strain/stress range (e.g. Hueckel and Nova 1979; Rammah 

et al. 2004).  That is the reason why a small strain zone exists, as illustrated in Fig. 3–14(b).  

Experimentally, LSPs can be determined for any stress probe by identifying the “kink” on a 

stiffness evolution curve.  The scattering dots outlining the hatched area in Fig. 3–4 correspond 

to those LSPs values experimentally obtained for compressible Chicago clay.   
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ory are always shorter than in situ geological 

histories, it is worth noting that both volumetric creep strain and stiffness increase due to creep 

tend to change quickly at the beginning of creep and approach to asymptotic values as creep 

 
 

Fig. 3–14. The relation between effect of creeping and small strain behavior 
 

      It is expected that the initial stiffness E*
0 will increase as the length of the creep period 

increases.  However, the form of Eq. (3.22) is not expected to change as creep period changes, 

i.e., no matter how much increase in E*
0 occurs, soil stiffness always decreases linearly as LSP 

increases, until E*
s is resumed.  E*

s represents the stiffness level unaffected by the aging and thus 

is independent of the ageing period.  To estimate E*
0 for in situ soils, whic y have 

experienced hundreds or thousands of years of ageing, it is recommended to use field seismic 

testing.  Though creep periods applied in laborat
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persists (Holtz and Kovacs 1981).  Therefore it  still possible to make a close estimate of E*
0 

based on laboratory tes

osed for defining a range for small strain 

behavior, including generalized strain (Simpson et al. 1979), major principal strains (Jardine 

1985), strain energy (Burland and Georgiannou 1991) and tangent stiffness ratio (Puzrin and 

Burland 1998). These definitions, however, are somewhat arbitrary and do not involve 

specifying the mechanical nature of the small strain behavior.  In comparison, Eq. (3.22) and the 

s

strain range respectively, with an identified physical meaning and ease of experimental 

e a systematic and concise description of stiffness evolution 

within each characteristic zone using a limited number of parameters, i.e. E*
0, E*

s, LSPs and µ.  

However, due to directionality, i.e., the dependency of soil response on stress path direction, 

these parameters are actually functions of the path direction β.  This section deals with these 

directionality functions – E 0(β), E s(β), LSPs(β) and µ(β).  Based on experimental results, 

piecewise linear relations are used to construct these functions.  Measures are taken to make 

is

ts with short but adequate creep periods.   

      In literature, several criteria have been prop

threshold parameter LSP  provide a new set of definition for small strain behavior and small 

determination.  Note that this definition is intended for unstructured soils such as the Chicago 

glacial clay and does not necessarily apply to cemented or structured soils.   

 

3.3.2 STIFFNESS DIRECTIONALITY 

      The evolution relations enabl

* *
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smooth transition between the shear and compression zones.  Furthermore, discussions are 

made on the relation of directionality with plasticity and recent history effect.   

      Fig. 3–15 shows the directionality relation proposed for the threshold shear modulus, G , in 

comparison with data calculated from Holman’s tests (2005).  According to the test data, the 

maximum value Gmax occurs in the CPE test, where β = 1.5π, while its minimum value Gmin 

occurs in the AL test (β = 0.66).  Accordingly, a piecewise linear relation is proposed to 

represent the observed variation in Gs with direction of loading, as shown in Fig. 3–15.   

3.3.2.1 DIRECTIONALITY RELATIONS  

s

β (rad.)

testGs

Gmax

Gmin

0 β βupper 2π1.5π lower

compression
zone

compression
zone

proposed
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Fig. 3–15. Proposed directionality relation for Gs in comparison with test data 
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      The directionality relation observed for the compressible Chicago clay is very similar to 

some test data reported on other clays.  Fig. 3–16 shows the data from stress probe tests on Pisa 

clay reported by Callisto and Calabresi (1998), with ω defined in the same way as β, except that 

the angle is expressed in degree.  The Pisa clay had a natural water content around 60%, an OCR 

varying between 1.5 and 2, and a friction angle of about 26º.  As shown, the Pisa clay data bear 

much resemblance to the Chicago clay data, despite a small rightward shift, with maximum 

values occurring around the TE test (ω = 303.7°) and minimum values occurring in the CPC test 

(ω = 90°).  Note that the shear modulus in Fig. 3–16 was computed by Callisto and Calabresi 

(1998) as G = (δq/δεs)/3, which differs from Eq. (3.5) that is used herein with results shown in 

Fig. 3–15. However, these two computations yield the same results in the CPC and CPE tests, 

The two constants βupper and βlower, introduced in Eq. (3.17), define the boundaries between the 

shear and compression zones.   

which control the overall shape of the directionality curves.  In other words, the difference in 

computing G does not affect the shape of the observed curves in a significant way.  This 

similarity between Chicago clay and Pisa clay suggests that different soils could have a similar 

directionality relation for shear modulus.   
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Fig. 3–16. Directionality rel llisto and Calabresi 1998) ation of shear modulus served on Pisa clay (Ca ob

 

      There is no need to specify any directionality relation for Js because it is computed from G, in 

both the shear and compression zones.  

      Fig. 3–17 shows the directionality relations proposed for Ks and Jvs.  Unlike G and Js, K and 

Jv are mutually independent in most cases.  Consequently, K is experimentally obtainable only in 

CQL (β = 0) and CQU (β = π) tests, while Jv is obtainable only in CPC (β = 0.5π) and CPE (β = 

1.5π) tests.  Hence, the relations proposed in Fig. 3–17 are mostly hypothetical.  However, these 

hypotheses can be verified using this model to simulate relevant probe tests, as will be shown in 

Chapter 5.   
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ive for ∆q > 0 and negative for ∆q > 0.  Suppose 

      As shown in Fig. 3–17(b), the Jv-β relation is discontinuous at β = 0 and β = π.  There are 

two main reasons for this discontinuity.  First, Holman’s tests (2005) have shown that the 

compressible Chicago clay undergoes contraction in both CPC and CPE tests, i.e., it is a shear-

contractive material.  Accordingly, Jv is posit

that the Jv-β relation is continuous on )2 ,0[ πβ ∈ .  Then, Jv must be zero at certain β, 

corresponding to an infinite volume change due to an infinitesimal change in q, which is 

certainly unrealistic.  Hence, a discontinuous Jv-β relation is inevitable for materials showing 

consistent trend in volume change no matter how q changes, which is the case for most 

s

0

s 0

normalized G0 and Gs curves with regard to β.  As shown, G0 and Gs have similar trend of 

soils.  

The relation proposed in Fig. 3–17(b) basically assumes a consistent sign of Jv for either ∆q > 0 

(β < π) or ∆q < 0 (β > π).   

      Directionality relations have been constructed for the threshold stiffness E* , mainly based on 

experimental observations.  In a similar way, directionality relations could be developed for the 

initial stiffness E* , which, however, would double the number of model parameters.  Instead, it 

is found in Holman’s tests (2005) that the directionality relations E* (β) and E* (β) for the 

compressible Chicago clay differ by an approximate constant.  For instance, Fig. 3–18 shows 

dependency on β, meaning that the ratio G0(β)/Gs(β) maintains constant for )2 ,0[ πβ ∈ .  This 

similarity between the initial and threshold stiffness relations has been detected on K and Jv too, 

with similar ratios for different tangent moduli.    
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Fig. 3–18. Observed directionality relations for G  and G
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Accordingly, a material parameter is introduced:   
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(3.30) 

JvKGs

For the compressible Chicago glacial clay, r0
s ranges from 3 to 5.  With this parameter, there is 

ent.   

no need to specify E*
0(β), as long as E*

s(β) is known.  It is worth noting that E*
s values generally 

are more reliable than E*
0 values, because the latter demand more accuracy in strain 

measurem
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, rx is approximately 5.  With rx, there is no need to specify 

E*
max as long as E*

m  is known.   

3–19 s S min

RTC min RTE

re σ1f is horizontal, with σ1f denoting the maximum principle stress at failure.  The 

ratio of µC to µE is designated by a constant rµ:   

      Further reduction in parameter number is supported by another experimental observation 

that the ratio of E*
max/E*

min (cf. Fig. 3–15 and Fig. 3–17) remains an approximate constant for 

different E*
s(β) relations.  Thus, another ratio is introduced as a material parameter:   

minmaxminmaxminmax /// JvJvKKGGrx ===  (3.31) 

For the compressible Chicago clay

in

      Fig. shows the directionality relation proposed for LSP , with its minimum L P  at 

β  (= 2.16) and its maximum LSP  in a range from β  (= 4.39) to 2π.  The ratio between 

two extremes is designated by a constant.   

minmax / LSPLSPrLSP =  (3.32) 

      Another directional parameter used in this model is µ, introduced in Eq. (3.23) to define the 

nonlinearity of stiffness degradation at medium to large strains.  According to the test data, the 

dependence of µ on direction is such that µ equals a constant µC for any stress path leading to a 

failure where σ1f is vertical, and equals another constant µE for any stress paths leading to a 

failure whe

CEr µµµ =  (3.33) 

Note that unlike E

/

*
0, E*

s and LSPs, µ is only used in f2(LSP) (cf. Eq. (3.23)), which is strictly 

applicable to the shear zone.   
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3.3.2.2 DIRECTIONALITY VS. PLASTICITY  

LSP

LSP min

Fig. 3–19. Directionality relation for LSPs

      Fig. 3–20 shows a stress-strain relation commonly observed in soils.  This figure is a 

classical representation of plastic response, in the sense that irreversible strain has resulted from 

a loading-unloading cycle.  To account for this phenomenon, the conventional approach of 

elasto-plasticity uses strain decomposition and provides different relations for elastic and plastic 

strain development.  The directionality approach proposed herein attributes the irreversible strain 

to the variation of tangent stiffness with loading direction.  As shown in Fig. 3–20, the 

irreversible strain develops because G , the shear modulus in the loading direction, is smaller 

than G , the shear modulus in the unloading direction.  In other words, if directionality is 

properly addressed, the irreversible or plastic response can be reproduced naturally.  In this sense, 

max

+

-
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directionality and plasticity are two different approaches to account for the same material 

behavior.   

 
q 

εs 

G+

G-

loading 

A 

 

 

      Note that in situ soils could have an initial state similar to the state represented by the point A 

in Fig. 3–20.  Therefore it is no surprise to observe the dependence of the initial stiffness E*
0 on 

, if a soil does exhibit purely elastic responses 

around initial state, e.g., as postulated by the Y1 surface of the 3-loci hypothesis (Smith et al. 

1992), one can accordingly use a constant function for E*
0(β), as a special case of this 

irectionality approach.   

 

unloading

 

Fig. 3–20. Stiffness directionality vs. plasticity 

path direction.  This variation of E*
0 with path direction does not diminish no matter how low the 

strain level is reached to measure E*
0.  However

d
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3.3.2.3 RECTIO & RECENT HISTORY EFFECT  

      The effect of recent stress history addres issue how the change in the stress path 

direction affects the subsequent soil stiffness. As shown in Fig. 3–21, the dashed curve 

represe s a stress to point O, a  stress state.  Th arrow denoted by β 

represe ubsequ crement, whil ow denoted by βp sents the direction 

of the recent history.  According to the hypothesis m de by Atkinson et al.(1990), provided that 

βp is f β  to vary in i  range, soil stiffness tends to reach the 

maxim  value if a ress reversal o π, while the minimum value is 

encountered if there is no change in the path direction, i.e., | β- βp| = 0.   

 DI NALITY 

ses the 

nt history up  current e 

nts a s ent stress in e the arr  repre

a

ixed while  is allowed ts entire

um  complete st ccurs, i.e., | β- βp| = 

q 

p’ 

O 

βp 

β 

 
 

Fig. 3–21. Path direction of re  history 

      Though the recent histo ct has not been inclu in the current model, it could lead to a 

further generalization of the proposed directio king into account stress 

history prior to the initial stress state.  It is clear that the directionality relations proposed in this 

model refer to a unique stress history – k0-consolidation.  However, other stress histories also 

0

cent stress
 

ry effe ded 

nality relations, by ta

exist in reality, e.g. k -unloading due to water table raising in the recent geologic history.  In the 



 

 

68

 

 the recent stress history might explain the slight but consistent difference in the β 

s

r s

st  e e ll

probe tests performed on the Pisa clay (Callisto and Calabresi 1998) (cf. Section 3.3.2.1), the 

initial stress state was preceded by a segmented stress path composed of an isotropic 

consolidation and a triaxial compression shear (Callisto and Calabresi 1998), i.e., the recent 

history direction βp corresponds to the shearing phase of a conventional triaxial compression test.  

But βp corresponds to the k0-consolidation in the tests conducted on the Chicago clay.  This 

difference in

values corresponding to the two extreme stiffnesses, as mentioned earlier.   

      Though there is no other experimental justification, it is possible that the difference in the 

recent stress history, denoted by ∆βr, only makes the directionality relations shift along the β-

axis by a certain amount, denoted by ∆β .  If this is the case, the recent history effect issue can be 

reduced to defining the relation between ∆β  and ∆β , with the directionality relations intact.   

      For the proposed model, the recent hi ory ffect ess ntia y relates to how the directionality 

relations vary with the recent history.  However, it is best to note that there exist contradictive 

experimental observations on this issue, and no conclusion has been reached to date among 

researchers (e.g. Clayton and Heymann 2001).  More experimental investigation is required to 

fully understand this specific behavior. When definitive data exists, the current model could be 

changed to reflect the observations.   
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ameters obtained at a specific initial stress state can be employed under 

general conditions of arbitrary initial states.   

3.3.3 STRESS LEVEL DEPENDENCY  

      In the previous sections, relations for stiffness evolution and stiffness directionality have 

been proposed based on experimental observations, mainly from Holman’s stress probe tests 

(2005).  Note that those tests start from the same stress state.  In many cases, one needs to make 

prediction for the same material, but with a different initial stress state.  For instance, in different 

areas around the Chicago region, the compressible Chicago clay actually finds itself in various 

depth, corresponding to different in situ stress states.  Under such a circumstance, one 

particularly needs a relation to describe the stiffness dependency upon the initial stress state, so 

that the material par

      Given the constitutive relations developed previously, the aforementioned problem can be 

mostly solved by making E*
min (cf. Fig. 3–15 & Fig. 3–17) dependent upon the initial mean 

normal stress p'0:   

n
aaref pppEE )/'( 0

**
min =  (3.34) 

where pa is atmospheric pressure (≈ 100 kPa).  E*
ref and n, both nondimensional, control the 

dependency of E*
min on p′0.  This equation, with trivial variance in expression, has been 

commonly used for soils (e.g. Duncan et al. 1980).  For most soils, n = 0.5 can be used as a 

default value (Pestana and Whittle 1999).  According to Eq. (3.34), E*
ref serve as material 

parameters, while E*
min are treated as internal parameters, internally calculated by the model 

based on E*
ref and p′0.  Ideally, dependency of E*

min on q0 should be taken into account as well.  
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owever, it seems that no established relation is available in this aspect.  Thus, q0-dependency 

is left for future improvement.   

    Unlike E*
min, the parameter LSPmin (cf. Eq. (3.32)) mostly depends on the time-dependent 

sponse of the material, as discussed in Section 3.3.1.3:  There is no direct relation of LSPmin to 

e initial stress state, though this parameter might vary with different in situ conditions.   

      In this model, LSPmin is used as an internal parameter, which is related to a normalized 

parameter LSPref via the following definition:   

(3.35) 

Again, pa is atmospheric pressure.  The purpose is to achieve a nondimensional material 

parameter.   

 

3.3.4 CRITERION FOR STRESS REVERSAL  

      Note that the constitutive equations of the proposed model are essentially founded on 

experimental observations made in monotonic loading paths, in which no abrupt change in stress 

path direction is encountered.  In contrast, an unload-reload cycle in an oedometer test is made 

by switching between increasing and decreasing the vertical stress.  Such stress reversals take 

place in cyclic loading and wave propagation.  Apparently, the proposed model cannot be 

directly applied to these conditions, if proper modifications are not made.  This section discusses 

the mechanism the directional stiffness model applies to deal with stress reversals.   

H

  

re

th

aref pLSPLSP /min=  
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      To th

model (Pestana and Whittle 1999), a stress reversal point is

criterion: 

is end, the first issue is to define the stress reversal in a general way.  In MIT-S1 

 defined in strain using the following 

0: <χχ &  (3.36) 

here the tensor χ is the accumulated strain from the last reversal pointw , χ&  is the incremental 

strain, and the operator “:” represents a double contraction.  Eq. (3.36) means a stress reversal 

occurs when χ and χ& are “opposite” in a tensor space.  Basically, χ represents the overall strain  

path direction, which can be described in other ways.  In a hypoplastic model (Niemunis and 

Herle 1997), the incremental strain is compared to the so-called intergranular strain to determine 

stress reversals.  Following the basic idea behind these criteria, this model defines a stress 

reversal in terms of stresses: 

0':)''( <− σσσ & (3.37) 
revc  

where σ′c is the current stress, σ′rev corresponds to the last reversal point, and 'σ&  is the 

incremental stress.  Accordingly, this criterion uses (σ′ - σ′ ) to represent the overall stress path 

direction from the last reversal point.   

easure of distance from the current state to the reversal point.  This 

distance is zeroed whenever a new reversal point is found.  Note that the stiffness evolution in 

the proposed model is described in terms of LSP, which is a distance between the initial and 

current stress states.  In analogy to the hysteretic model, the definition of LSP can be slightly 

modified: 

c rev

      In a perfect hysteretic elastic model (Hueckel and Nova 1979), stiffness evolution is 

described in terms of some m
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∫ +=
c

rev
dqdpLSP 22 )()'(  

(3.38) 

to the current stress σ′c.  When a stress reversal is identified using Eq. (3.37), σ′rev is updated by 

σ′c and thus LSP is zeroed according to Eq. (3.38).  That means small strain response will be 

invoked upon stress reversal.  Though the small strain behaviour in the model is initially defined 

as a consequence of ageing, it is convenient to use the same definition to describe post-reversal 

      In accordance with Eq. (3.38), the function of stress level dependency for E*
min (cf. Eq. (3.34)) 

llows:   

min  (3.39) 

where p′rev corresponds to σ′rev.  E*
min will be updated every time that σ′rev is updated, according 

to Eq. (3.39), and will be hold constant until next stress reversal occurs.  Note that the initial 

tangent moduli E*0 can be derived from E min using the directionality relations and the r s ratio 

rev 0 0

mental stress '

where ∫
c means an integral path identical to the actual stress path from the reversal stress σ′
rev

rev 

behaviour.  Though these two behaviours have different physical natures, they have similar 

patterns, i.e., an initial high stiffness and subsequent quick degradation.   

is modified as fo

** = n
arevaref pppEE )/'(

* 0

(cf. Section 3.3.2.1 ).  At an initial state, or in a monotonic loading, p′  = p′ , where p′  

corresponds to the initial state.  Therefore, Eqs. (3.38) and (3.39) do not alter model responses 

under monotonic loading conditions, only extend the model to stress reversals.    

      Note that the stress reversal criterion is different from the loading-unloading criterion in 

elastoplastic theory, which compares the incre σ&  to the local norm of the yield 

surface.  At same stress point, the direction of the local norm is relatively constant in most 
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3.4 MATERIAL PARAMETERS 

      Table 3-1 lists the thirtee model, description for each 

parameter, recommendations for their experimental determination, and values found from block 

samples of compressible Chicago clay.  The over-consolidation ratio OCR is used to initialize 

LSPp (cf. Fig. 3–12), an internal parameter in this model.  For the compressible Chicago clay, 

also for most soils, the friction angle is not a pure constant.  Instead, it is notably dependent on 

p'f, which will be further discussed in the Chapter 5.  The value listed in Table 3-1 is a mean 

value for the compressible Chicago clay.   

      The typical conventional properties of the Chicago clay are summarized in Table 3-2, as a 

comparison with the values listed in Table 3-1.   

 

elastoplastic models, while the overall stress path, which is defined by (σ′c- σ′rev) in this model, 

might point to any direction in stress space.  In fact, material responses upon stress reversals are 

closely related to the issue of recent history effect (Atkinson et al. 1990).  Using Eqs. (3.38) and 

(3.39), the response generated by the model upon a stress reversal is generally stiffer than that in 

a monotonic loading, assuming that this comparison is made at same stress points and with 

identical incremental stresses.  Therefore, this proposed model is expected generally to be 

consistent with the recent history effect suggested by Atkinson et al. (1990), though no special 

measure has been taken to address this issue.   

n material parameters involved in this 
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Table 3-1. Input parameters of the directional stiffness model 

Parameters Description Tests Chicago Clay 

G Eq. (3.34) triaxial/bender element 19 ref

Jv Eq. (3.34) triaxial 116 ref

Kref Eq. (3.34) triaxial 48 

n Eq. (3.34) triaxial/bender element 0.55 

r0 Eq. (3.30) triaxial 4 s

r Eq. (3.31) triaxial 5 x

LSPref Eq. (3.35) triaxial 0.07 

rLSP Eq. (3.32) triaxial 3 

µ Eq. (3.23) triaxial 8 C

rµ Eq. (3.33) triaxial 0.5 

λ* Eq. (3.26) triaxial/oedometer 0.04 

OCR over-consolidation ratio triaxial/oedometer 1.5 

φ friction angle triaxial test 28° 

 

 
Table 3-2. Summary of conventional properties of compressible Chicago clay  

 
Parameter Value 

Water content (%) 28.5 

Liquid limit (%) 37 

Plasticity index (%) 19 

Void ratio 0.79 

Unit weight (kN/m3) 19.0 

Limit pressure(kPa) 190 

OCR 1.5 



 

 

75

 

t of these thirteen parameters can be estimated in triaxial probe tests.  Using the 

directionality relations designated in the model, the value of E*
s(β1) can always be derived from 

E*
s(β2), where β1 ≠ β2.  Therefore, the ways to experimentally determine E*

ref are essentially 

unlimited.  As a general rule, it is recommended to choose stress probes approximating as closely 

as possible the loading conditions expected in the problem of interest.  To analyze a supported 

excavation, for instance, the RTC and RTE tests are particularly desirable for parameter 

development, which well represent the loading conditions for soils behind the support wall and 

soils at the bottom of the excavation, respectively.  More discussion will be given in Chapter 5.   

      A brief procedure of parameter development for this model is given here as an illustrative 

example.  Triaxial ed in three path 

directions – CQL, CPC and CQU.  Certainly, these tests are better performed from an initial 

stress state matching the in situ condition.  The two Gs values from CPC and CQU tests are used 

to compute Gref, Gmax/Gmin ratio and thus the rx ratio.  Kref and Jvref are obtainable from CQL and 

CPC tests, respectively.  The Kmax/Kmin ratio from CQL and CQU tests serves as a double check 

for rx.  If necessary, the mean value of Gmax/Gmin and Kmax/Kmin ratios should be used to estimate 

the rx ratio.  Two G0/Gs values, two K0/Ks values and one Jv0/Jvs value can be obtained from 

these three tests and the r s ratio can be estimated using their average (cf. Eq. (3.30)).  Given the 

directionality relation designated in Fig. 3–19, the LSPs values from the three probe tests are 

 

      Mos

 probe tests with small strain measurements are perform

0

more than adequate for estimating both LSPref and rLSP values.  The parameter µC can be 

estimated using the mean µ value obtained from the CQU and CPC tests.  λ* and OCR are 
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d in literature have 

shown that n is close to 0.5 for most soils (e.g. Pestana and Whittle 1999).   

      The ratio rµ cannot be obtained from the CQL, CPC and CQU tests.  In the case that the 

material response in the extension side (∆q < 0) is of critical concern, performing an extra CPE 

φ is mostly unimportant for simulating oedometer tests.  Similar situations exist for the other 

parameters listed in Table 3-1.  It largely depends on the goal of specific application and users’ 

judgment which parameters deserve experimental exploration and which parameters can be 

y.  In the 

* *

 does not require fine-resolution small strain data.  Hence, if 

small strain behavior is not a big concern, it is recommended to use measured E*
s values to

estimate E*
0 values, using an assumed rx value.  Alternatively, data from field seismic tests can 

be used to estimate G0 value at β = π/2, as suggested by Holman (2005).  Hopefully, when more 

attainable from CQL test and φ can be measured in both CPC and CQU tests.  Though the 

power n can be obtained using bender elements, abundant test data reporte

test is highly recommended.  Otherwise, it is feasible to simply use a default value, e.g. 2, for this 

parameter.  In many cases, not all of the material parameters are critical.  For instance, the 

compression index λ* is generally irrelevant for simulation of shear tests, while the friction angle 

roughly estimated.   

      The aforementioned procedure employs local small strain measurements to obtain E*
0 values 

in triaxial tests, typically requiring mounting electronic units, e.g., LVDTs on the soil sample, 

which seems too cumbersome to become a common practice in the geotechnical industr

author’s opinion, the E s value is much more reliable than the E 0 value and is much more easily 

obtained, since detecting the “kink”
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data become available regarding some of the parameters, e.g., r0 , r , r  and r , or relations 

between individual parameters, e.g., the G /K  ratio, the required tests for the parameter 

development is expected to be reduced further.  And the demand for an unconventional test 

technique, e.g., small strain measurement or bender element, is expected to be diminished.   

 

 

s x LSP µ

ref ref
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 METHOD  

 

 

describes how to implement the proposed model in the finite element method.  

First, a coupling system typically used to perform a non-linear finite element analysis is briefly 

of me and a 

local scheme.  The proposed model is integrated in the local scheme, using a mo

substepping method that not only has automatic error control, an advantage of the original 

iv

ermore, a consistent tangent matrix for the proposed model is derived to guarantee the 

stability and efficiency of the proposed substepping method.  For this part, it is especially 

4    NUMERICAL IMPLEMENTATION IN FINITE 

ELEMENT

 

      This chapter 

 

explained.  This coupling system is composed  two solution schemes – a global sche

dified 

substepping method, but also is capable of treating the incremental non-linearity caused by 

stiffness directionality, a new type of constitut e relation proposed in the preceding chapters.  

Furth

important to understand how the coupling system works, i.e., the interactions between the global 

and local solution schemes.   
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s 

      At a Gauss integration point, a constitutive equation can be generally expressed in the 

following form: 

4.1 GLOBAL AND LOCAL SOLUTION SCHEMES  

      A static finite element method involves two basic types of equations – equilibrium equation

and constitutive equations.  For a concise discussion, an equilibrium equation can be expressed 

in a simplified weak form: 

0)(),(),( =−= I
ext

IIJ
int

IIJI dfdfdR σσ  (4.1) 

where the subscripts I and J denotes nodal number and Gauss point number, respectively.  dI, the 

nodal displacement, and σJ, the stress at a Gauss point, are unknown variables in this equation.  

An equilibrium demands the nodal residual force RI to be zero, i.e., the internal force fint
I equals 

the external force fext
I for each finite element node.   

JJ )(εψσ && =  (4.2) 

When a finite element analysis only involves simple elastic materials, i.e., an explicit relation 

between σJ and εJ can be obtained, the constitutive equation can be directly substituted into the 

quilibrium equations.  Since εJ can be expressed in terms of dI, the only unknown in Eq. (4.1) 

s 

points can be obtained subsequently.  However, this approach does not work for general 

equations uses a coupling system, in which a global solution scheme and a local solution sc

are interactively operated to obtain solutions.   

e

becomes dI.  Therefore, the nodal displacements can be solved first and the stresses at Gaus

conditions involving non-linear materials.  A general approach to solve the finite element 

heme 
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      The global solution scheme deals with the equilibrium equations.  In this scheme, stresses 

are treated as constants, while nodal displacements are collectively updated using the global 

stiffness matrix.  In most finite element packages, this updating typically is carried out using 

Newton method (Belytschko et al. 1999), especially for static analyses.  Discussions herein are 

thus limited to the Newton method serving as the global scheme, though other numerical 

ely.  As shown, 

the iterative 

pro .   

methods can be used as well (Abbo and Sloan 1996; Belytschko et al. 1999).  An illustration of 

the Newton method is given in Fig. 4-1.  In this figure, the superscript denotes the iteration 

number.  d and R in the bold case are equivalent to RI and dI in Eq. (4.1), respectiv

 computation starts from d0, and iteratively converges to the wanted solution d*.  The 

cedure essentially depends on the computation of the inverse of the Jacobian ∂R/∂d

 

R

d

d0

R0

d1

R1

d*

d2

R

d

d0

R0

d1

R1

d*

d2

 
 

Fig. 4-1. Illustration of the Newton method  
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      In a finite element analysis, numerical computation typically is executed in a numb

steps, which are usually specified by users in most finite element codes.  A finite step typically 

bsequent increment as a 

computation proceeds.  For each increment, the Newton method is applied to obtain conv

placements using a series of iterations, as shown in Fig. 4-1.   

      After the ith Newton iteration is completed within the nth increment, the global solution 

scheme computes ∆εi
n, the strain increment at a specific Gauss point, based on the updated nodal 

displacements.  For discussions herein, the Gauss point number, denoted by the subscript J

previously, is dropped for simplicity.  ∆εi
n is then passed to a local solution scheme, which 

 of state variables, 

based on specified constitutive equations.  Note that ∆εi
n, ∆σi

n and ∆ξi
n all refer to the same 

Gauss point.  Such an integration is made one-by-one for each Gauss point in the entire finite 

element mesh.  Hence, the local solution scheme is point-dependent.  When different materials 

are involved in the same analysis, different local solution schemes can be used for different 

points.  For a path-dependent material, which is the case for the compressible Chicago clay, the 

integration of ∆ n and n should respectively start from n-1 and n-1, the states converged in 

the (n-1)  increment.  Accordingly, ∆ε n actually corresponds to the total change in nodal 

the current increment.  This 

treatment can effectively avoid non-converged values of stress and state variables from 

er of 

requires a computation to be executed in a number of small increments.  In ABAQUS (2003), 

there is a set of criteria that automatically determines the magnitude of su

erged 

nodal dis

 

accordingly integrates ∆σi
n, the stress increment, and ∆ξi

n, the increments

σi ∆ξi σ ξ

th i

displacements counted from the 1st to the ith iteration within 
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erroneously driving the constitutive equations (Belytschko et al. 1999) and it has been 

implemented in most commercial codes.   

      A main output of the local scheme, ∆σi
n, is then given back to the global scheme, wherein the 

corresponding stress is updated to σi
n and subsequently will be used as a constant in the (i+1)th 

Newton iteration.  This procedure continues until converged solutions are achieved for the 

current increment, i.e. the nth increment.  Another important output of the local scheme is ∂σ/∂ε, 

a tangent stiffness matrix for the Newton global scheme to compute the Jacobian matrix ∂R/∂d, 

which will be discussed in details later.  The interaction between the global and local solution 

schemes is illustrated in Fig. 4-2, wherein the subscripts are consistent with those used in Eq. 

(4.1).   

0),( =IJ dR σ Global Solution Scheme

)(εσ && Ψ= Local Solution Scheme

∆ Id

∆εJ
J

J εδ
σδ;σ∆

equilibrium

0),( =IJ dR σ

constitutive

Global Solution Scheme

)(εσ && Ψ= Local Solution Scheme

∆ Id

∆εJ
J

J εδ
σδ;σ∆

equilibrium

constitutive

 
 

Fig. 4-2. Coupling system of the global and local solution schemes  
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depends on specific model and does not have an established standard.  The pros and cons of 

applying the two different methods to local solution schemes have been discussed in literature 

(Sloan 1987; Potts and Ganendra 1994; Luccioni et al. 2001; Zhao et al. 2005).   

      Note that whether an implicit or explicit method is used, the local solution scheme in a 

coupling solution system has the same computational sequence, i.e., σn-1, ξn-1 and ∆εi
n are passed 

in, while ∆σi
n and ∆ξi

n are to be integrated.  For the rest of this chapter, ∆εi
n and ∆σi

n are 

simplified as ∆ε and ∆σ, respectively, if no explanation is otherwise given.   

 

4.2 MODIFIED SUBSTEPPING SCHEME FOR STRESS INTEGRATION  

      This section describes a solution scheme developed for integration of the proposed model.  

This scheme is an improvement of the original substepping scheme with automatic error control, 

which is briefly introduced for general constitutive relations of a rate-form type.  Then, the 

improved scheme is presented, with regard to the specific relations involved in the directional 

stiffness model, especially the stiffness directionality, to which the original substepping scheme 

does not directly apply.   

      Both implicit and explicit methods can be used in either global solution scheme or local 

solution scheme.  Basically, an implicit method requires an inverse of Jacobian matrix while an 

explicit method does not.  As stated previously, Newton method, which is an implicit method, is 

favored for the global scheme.  In contrast, using which method for local solution scheme
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RROR CONTROL  

e devised for the directional stiffness model is a modification of the 

TT 1,εε  

tions are made in two rounds within each ∆εk.  For the first round: 

kk

εσ

εσσ

∆Ξ=∆

∆=∆

−−

−−

ξξ

ξE
 

4.2.1 AUTOMATIC SUBSTEPPING WITH E

      The local solution schem

automatic substepping with error control (Sloan 1987), which is an explicit method.  To describe 

this scheme, it is necessary to give a brief description of the substepping method first.   

      This method divides ∆ε into a number of substeps ∆εk and integrates a constitutive relation in 

each ∆εk: 

m

kkk
1

(4.3) 

where subscript k is the substep number and m is the total number of substeps.  T

∑ =∆=∆

k is a scalar no 

more than one.  Integra

),,(

),(

11
1

11
1

kkkk

kk
(4.4) 

In the original substepping method (Sloan 1987), the tangent stiffness matrix E is a function of 

stress σ and a set of state variables ξ, while Ξ is a known function to calculate increments of 

state variables.  Note that σk-1 and ξk-1 are known in the kth substep.  For Eq. (4.4) basically is an 

forward Euler method, ∆σ1
k has a local truncation error of order O(Tk

2).  The results of the first 

round of integration are used in the second round:   

),,(

),(
**2

**2

kkkk

kkkk

εσ

εσσ

∆Ξ=∆

∆=∆

ξξ

ξE (4.5) 

where 
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ξξξ ∆+=

∆+=

−

− σσσ
 

(4.6) 

∆σ1
k and ∆σ2

k are illustrated in Fig. 4-3, wherein ∆σ1
k is an underestimate of stress increment 

while ∆σ2
k is an overestimate.   

 

σ 

ε 
0 

∆σ1
k 

∆εk 

∆εk 

∆σ2
k 

 

 

A more accurate integration is thus given by:   

kkk σσσ ∆+∆=∆
 

(4.7) 

3

and Ostermann 2002).  This error can be approximated by:   

 
Fig. 4-3. Two stress integrations in each substep 

2/)( kkk ξξξ ∆+∆=∆

Using Taylor expansion, it can be shown that the truncation error of ∆σ

2/)(
21

21

k is O(Tk ) (e.g. Fellin 
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the global error, which is 

calculated by a summation of Errk over k = 1 to m and thus is of order O(Tk), can always be 

controlled by li

2/)( 12
kkk σσ ∆−∆≈Err  (4.8) 

Errk is of order O(Tk
2), serving as an upper bound estimate.  Hence, 

miting substep size Tk.  To this end, a relative local error REk is defined and 

satisfies:  

RE
k

k TOLRE ≤=
||||
||||

σ
Err

 

Based on the fact that Err

k

(4.9) 

k:   k is of order O(Tk
2), Tk+1 can be estimated given Tk and RE

k
k

RE
k T

RE
TOLT

2/1

1 8.0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+  

k+1 conservatively.  To prevent an 

k+1

      Eqs. (4.10) and (4.11) together enable an automatic procedure, in which integrations are 

made using Eqs. (4.4)~(4.7) while Tk is iteratively updated until Eq. (4.9) is satisfied.  Then, Eq. 

(4.10) and Eq. (4.11) will provide an initial value of Tk+1, to initiate the procedure for the next 

substep.  The entire process is started by setting T1 = 1 and continues until ∑Tk ≥ 1.  Note that 

this error and substep size control is fundamentally similar to the Richardson extrapolation 

(Fellin and Ostermann 2002), though these two methods appear to have different forms.   

(4.10) 

where 0.8 is a reduction factor, introduced for predicting T

extrapolation from being carried too far, the T  estimated by Eq. (4.10) is further constrained 

by:   

(4.11) 
kkk TTT 21.0 1 ≤≤ +  
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      Using the substepping method for stress integration has two main advantages.  Beside the 

simplicity of numerical implementation for complex models (Zhao et al. 2005), substepping for 

the local solution scheme generally can reduce computational time for solving the global 

problem.  In most finite element analyses, computation difficulties, typically caused by severe 

non-linearity in material or in geometry, usually only occur at a limited number of Gauss points.  

substepping is allowed in the local scheme.  This amounts to letting the most restrictive Gauss 

point control the global problem.  In contrast, the automatic substepping method is able to 

 

These difficulties will force the global scheme to use a smaller increment to proceed, if no 

increase the number of substeps only at those Gauss points with severe situations, without 

reducing the global time increment too much.  In this way, the computational cost of more local 

substepping at limited Gauss points is marginal in comparison with the cost of more global 

iterations (Perez-Foguet et al. 2001).   

4.2.2 A SUBSTEPPING SCHEME IMPROVED FOR INCREMENTAL NON-
LINEARITY  

      In essence, the proposed directional stiffness model can be expressed in an incremental form: 

εσσ δβδ ),,( LSPE=  (4.12) 

where E(σ, LSP, β) is a generalized function for the tangent stiffness matrix, including the 

relations for stiffness evolution with LSP and the relations for dependency of stiffness on the 

path direction β.  The current stress σ is needed for computing the internal variable LSPf given β.  

An implicit form of E(σ, LSP, β) has been given by Eq. (3.13).   
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3.  But the discussion therein is not 

on zone, calculate E* using Eqs. (3.27)~(3.29);   

4.) Calculate variables A~E with the four tangent moduli using Eq. (3.11), and then the 

      Given the form of Eq. (4.12), it is natural to integrate the proposed model using the strategy 

(4.14) 

where   

      Details of E(σ, LSP, β) have been given in Chapter 

organized in a computational sequence.  Before moving forward to the numerical scheme, it is 

worth giving a sequential outline of the procedure for E(σ, LSP, β) calculation:   

1.) Calculate E*
0, E*

s and LSPs based on β (cf. Fig. 3–15, Fig. 3–17 and Fig. 3–19);   

2.) If LSP < LSPs, calculate G, K and Jv using Eq. (3.22), and Js using Eq. (3.5);   

3.) If LSP ≥ LSPs, use Eq. (3.17) to determine whether the path direction falls in the shear 

zone or the compression zone (cf. Fig. 3–4).  For the shear zone, calculate LSPf using Eqs. 

(3.18)~(3.20).  Then calculate E*, the four tangent moduli, according to Eqs. (3.23) and 

(3.5).  For the compressi

tangent stiffness using Eq. (3.13).   

of the substepping method, which is especially suitable for an explicitly expressed tangent 

stiffness matrix, as shown in Eqs. (4.4) and (4.5).  Substituting Eq. (4.12) in Eq. (4.4), the first 

round of integration in each substep is as follows: 

)(

),,(
11

11
1

kk

kkkkk

LSPLSP

LSP

σ

εσσ

∆∆=∆

∆=∆ −− βE (4.13) 

where the definition of ∆LSP is obtained by replacing each infinitesimal “δ” in (3.14) with finite 

increment “∆”.  Similarly, stress can be integrated for the second round: 

kkkkk LSP εσσ ∆=∆ ),,( **2 βE  
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(4.15) 

Finally,   

(4.16) 

The error control and iterative procedure are the same as Eqs. (4.8)~(4.11).   

      Note that Eq. (4.13) uses βk instead of βk-1.  Unlike σ and LSP, which are accumulated from 

the previous state, β .13), there will be 

two main problems.  For the first local substep w  

there is no simply way to m β ss reversal is 

applied, i.e., βk is quite different from βk-1, an integration using βk-1 might produce totally 

erroneous results that lead to serious computational instabilities.   

      βk can be expressed in terms of ∆σ1
k according to Eq. (3.15):   

(4.17) 

Eqs. (4.17) and (4.13) together form an implicit scheme.  Instead of ∆σ1
k, βk is treated as the 

unknown to be solved, by substituting Eq. (4.13) in Eq. (4.17):   

.18) 

To solve Eq. (4 obtained using 

numerical differentiation, since its analytical derivation is extremely tedious.  During updates, it 

is guaranteed that βk falls in the range [0, 2π], by invoking the periodic relation βk = βk + 2πN 

1
1

*

1
1

*

kkk

kkk

LSPLSPLSP ∆+=

∆+=

−

− σσσ
 

)(

2/)( 21

kk

kkk

LSPLSP σ

σσσ

∆∆=∆

∆+∆=∆
 

 only depends on the current state.  If βk-1 is used in Eq. (4

ithin the first global step, i.e., k = 1 and n = 1,

ake an initial gues  s of 0.  Furthermore, when a stre

)( 1
kk σ∆= ββ  

0)),,(()( 11 =∆−= −− kkkkkk LSPH εσ ββββ E  (4

.18), the Newton method is used.  The derivative ∂H/∂βk is 
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accordingly, where N is an integer.  A flowchart of the subroutine for β calculation is shown 

in Fig. 4-4.  There are two numerical parameters used in this subroutine - TOLβ and rβ.  TOLβ, in 

rad., specifies the convergence criterion for the iterative procedure.  A nondimensional quantity, 

rβ, designates the perturbance for numerically calculating ∂H/∂βk.  For computations with the 

compressive Chicago clay, it is adequate that TOLβ = 0.01 and rβ = 0.1.  In Fig. 4-4, βpre is the 

path direction obtained in the previous substep.   

β1
x = βpre

| β1
y x

TOLβ ?
- β1 | <

βk = β1
x , ∆σ1

k = ∆σ1

N

Y

)(

),
11

1
1

σ

ε

∆=

∆−

ββ

β

y

kx,( 1
1 σσ =∆ − kk LSPE

βββ

βββββ

β

∆+=

−−⋅

∆=∆

11

12121
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)/()()
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−−=∆
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σ

 
Fig. 4-4. Subroutine for β calculation  

      Note that β*
k is approximated by βk in Eq. (4.14), with β*

k = β(∆σ2
k).  This approximation, 

made for saving computer time, is justified by the fact that ∆σ1  is limited by the error control 
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ed for the second round of integration.   

stress increment is determined.  The remaining part 

of the solution scheme then iteratively chooses the substep size and computes the magnitude of 

chart of this modified substepping scheme is shown in Fig. 4-5.   

and thus the difference between βk and β*
k tends to be negligible.  Consequently, no extra 

solution scheme, like that for Eq. (4.18), is need

      Hence, the automatic substepping method with error control (Sloan 1987) can be slightly 

modified to integrate the proposed incrementally non-linear model.  Specifically, the incremental 

non-linearity, or the path dependency, can be treated in the first round of integration in each 

substep.  As a result, the path direction of the 

the stress increment.  The flow
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[cf. subroutine for β calculation]

T = 0, ∆T = 1, r = 1, k = 1
σ0 = σn-1, LSP0 = LSPn-1

βpre = βn-1

RE  < TOL  ?k RE

r = 0.1 if r < 0.1
r = 2 if r > 2

T = 1 ?

σn = σk, LSPn = LSPk

Y N

NY

∆ε ∆ ∆εk = T

∆T = r∆T

∆T  = r∆T
βpre = βk
k = k +1
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if T > 1,
∆T = 1−Τ

4.3 A T M  

edure, the key part of which is a Jacobian matrix 

computed at the end of each iteration.  When Newton method serves as a global solution scheme, 

 
 

Fig. 4-5. Flowchart of the modified substepping scheme for the proposed model  

LGORITHMIC ANGENT ATRIX 

4.3.1 DEFINITION  

Newton method is an iterative solution proc
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hich is the case for discussions herein, computing this Jacobian matrix requires the local 

solution scheme to provide a tangent stiffness matrix for each Gauss point.  This tangent stiffness 

matrix is a result of consistent linearization of finite element equations (Hughes and Pister 1978).  

imo and Taylor (1985) pointed out that computing this matrix should be consistent with the 

integration algorithm used in the local solution scheme, which can be defined as follows with the 

notation used herein:   

w

S

i

ATM

)(
)(

ε
σ

∆
∆

∂
∂

≡c  
(4.19) 

Again, ∆ε is the strain increment calculated by the global scheme at the end of the ith Newton 

iteration of the current nth increment, while ∆σ is the stress increment calculated by the local 

scheme based on ∆ε.  “∂” is differential operator.  “|i” means the derivative is evaluated at the 

end of the ith iteration, because the Jacobian matrix in Newton method is always evaluated at the 

end of each iteration.  CATM is the resulting matrix, herein referred to as algorithmic tangent 

matrix (ATM).  According to Eq. (4.19), the key of computing cATM is to find the relation 

between ∆σi
n and ∆εi

n, which not only depends on the constitutive equations but also on the 

algorithm used to integrate these equations.   

      The counterpart of ATM is a continuum tangent matrix (CTM), which is computed as:   

i

CTM

ε
σ

∂
∂

≡c  
(4.20) 

wherein the relation between stress σ and strain ε is described by the original constitutive 

equations.  The difference between ATM and CTM is graphically demonstrated in Fig. 4-6, 
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wherein the stress-strain relation σ(ε) is defined by the

∆σ(∆ε) corresponds to the numerical integration of these equations by certain local solution 

scheme.  Though these two relations ideally should be close to each other, their local tangents 

ould be quite different, which means ATM and CTM could be quite different, as shown in the 

gure.  Simo and Taylor (1985) showed that using ATM instead of CTM can achieve the 

expected quadratic convergence rate with a Newton global scheme.  In essence, ATM complies 

 original constitutive equations, while 

c

fi

with a consistent linearization of finite element equations, while CTM does not.   

 σ 

ε 
∆ε 

∆σ 
σ(ε) 
∆σ(∆ε) 
CTM 
ATM 

 
 

Fig. 4-6. Continuum tangent matrix (CTM) and algorithmic tangent matrix (ATM) 

 

4.3.2 DERIVATION  

      Substituting Eqs. (4.13) and (4.14) in Eq. (4.16), the relation between ∆σk and ∆εk can be 

obtained: 
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11*

ck is a secant stiffness matrix over a single substep, which can be easily calculated, for the two 

k

))](,())(),(([5.0 1 kkkkkk

kkk

LSPLSP σσσ

εσ

∆+∆∆×=

∆=∆

− ββ EEc

c
 

(4.21) 
1

required matrices have already been calculated in Eq. (4.13) and Eq. (4.14), respectively.  

Accordingly, the stress-strain relation ∆σ(∆ε) integrated with the automatic substepping can be 

determined with c  known for each substep, as shown in Fig. 4-7.   

 σ 

ε 

c1 

c2… 

c

∆ε1 

m 

∆ε2… ∆εm 

∆ε 

∆σ 

∆σm 

∆σ2 
… 

∆σ1 

 
 

s integ tepping over entir

A  

Hence, to calculate the ATM for a model integ ed by substepping, what really matters is the 

m m

Fig. 4-7. Stres ration with subs e strain increment 
 

ccording to Eq. (4.19), ATM in essence is the local tangent at the end of the ∆σ(∆ε) curve. 

rat

relation ∆σ (∆ε ) at the last substep, rather than the entire relation ∆σ(∆ε), i.e.   

mm )( ε∆∂
≡c  

(4.22) 
mATM )( σ∆∂
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where “|m” means the derivative is evaluated at the end of the m  substep, the last one.  Note 

that Eq. (4.22) is applicable to any model integrated with a substepping scheme, not limited to a 

specific model.  In Perez-Foguet et al.(2001), an expression of ATM for substepping scheme is 

ation point.  The details of the differentiated 

function at any point other than the evaluation point basically have nothing to do with the 

derivative at the evaluation point, as illustrated in Fig. 4-6.  Substituting Eq. (4.21) in Eq. (4.22), 

th

derived directly based on Eq. (4.19), which takes every substep into account and involves m 

times of matrix inverse.  In contrast, the point presented herein suggests that only the last substep 

is relevant to ATM, because the differential operator “∂”, in either Eq. (4.19) or Eq. (4.20), 

computes the local tangent at a specified evalu

the expression of the ATM for substepping results: 

m
m

m
m

ATM ε∆
∂

+=
ccc  

(4.23) 

ε∆ )(∂

c  is calculated according to Eq. (4.21).  The derivative of c  with respect to ∆ε  is governed by 

e of Eq. (4.23) can be conveniently neglected:   

(4.24) 

Apparently, the smaller the ∆εm is, the more accurate the computed ATM will be.  On the one 

hand, the accuracy is always achievable by controlling the TOLRE value, though a smaller TOLRE 

m m m

the local non-linearity of the constitutive relation and is independent of the size of ∆εm.  This 

derivative is difficult to obtain, due to the complexities of the constitutive equations.  However, it 

is noted that ∆εm generally is quite small, thanks to the error control of the automatic substepping 

method, i.e., a conservatively small value usually assigned for TOLRE in Eq. (4.9).  Consequently, 

the second term on the right hand sid

m
ATM cc ≈  
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n time.  This possible extra cost in computation time is justified, 

cy, though a totally irrelevant substitute for ATM 

could make the solution scheme never converge.  The well-known quasi-Newton method could 

serve as an example of what a “minor” deviation could be, in which the ATM computed for one 

iteration is repeatedly used for several subsequent iterations so that the overall time-efficiency 

can be enhanced by skipping some computations of matrix inverse.  That means the Newton 

method itself allows certain amount of inaccuracy in computing the ATM, which serves as 

another justification for Eq. (4.24).   

 

4.3.3 TESTING OF CONVERGENCE RATE  

      To evaluate the convergence rate resulting from the algorithmic tangent matrix derived in the 

previous section, a series of computations with ABAQUS (2003) were performed on single 

elements under various load conditions.  The computations include a uniaxial loading test, a 

uniaxial unloading test l extension test.  The 

boundary conditions and load conditions for each simulated test are illustrated in Fig. 4-8.  All of 

these computations start from the same initial state, with the vertical stress σ’v0 = 133 kPa and 

the horizontal stress σ’h0 = 74.5 kPa.  In these computations, both TOLRE (Eq. (4.9)) and TOLβ 

(Fig. 4-4) are equal to 0.001.   

value means more computatio

especially when computing the ATM must otherwise resort to numerical differentiation (e.g. 

Fellin and Ostermann 2002).  On the other hand, a “minor” deviation from the true ATM is not 

expected to impair Newton method’s efficien

, a biaxial compression test and a reduced biaxia
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(a) 

∆σ’v 

(c) 

∆σ’v

(b) 

∆σ’v

(d) 

∆σ’v 

 

Fig. 4-8. Computations niaxial unloading, (c) 

4-4.  As introduced in Section 4.1, the residual force is the difference between the internal force 

and external force at a specific finite element node (cf. Eq. (4.1)).  As illustrated in Fig. 4-1, the 

residual force is evaluated at each iteration in a Newton scheme.  The “residual force” columns 

within the tables show “largest residual force” values recorded by ABAQUS, which can also be 

obtained in the ABAQUS Message file or via the Visualization module of CAE.  The reduction 

ratio is the absolute value of the ratio of the current residual force to the previous residual force.  

 

Table 4-1. Convergence of the computed uniaxial loading test  
 

 
 for convergence rate evaluation: (a) uniaxial loading, (b) u

biaxial compression, and (d  reduced biaxial extension  )
 
 

      The convergence information obtained from the computed tests is listed in Table 4-1 to Table 

The smaller the reduction ratio, the faster the Newton scheme will converge.   
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force rate force rate force rate

2 -6.04E-01 0.108 6.95E-04 0.0067 6.31E-04 0.0053

4 -2.37E-04 0.020 3.14E-08 0.0067 2.25E-08 0.0066

6 -9.47E-08 0.020 -- -- -- --

iteration residual reduction residual reduction residual reduction

1 -5.58E+00 -- 1.04E-01 -1.18E-01

3 -1.18E-02 0.020 4.67E-06 0.0067 -3.38E-06 0.0054

5 -4.74E-06 0.020 -- -- -- --

increment 1 increment 10 increment 20

#

 
 

Table 4-2. Convergence of the computed uniaxial unloading test  

iteration residual reduction residual reduction residual reduction

1 -8.50E-01 -- 1.90E-05 2.23E-05
2 -2.00E-03 0.0024 9.32E-08 0.0049 1.19E-07 0.0053
3 -4.64E-06 0.0023 4.58E-10 0.0049 6.34E-10 0.0053
4 -1.07E-08 0.0023 2.27E-12 0.0050 3.32E-12
5 -2.30E-11 0.0021 -- --

increment 1 increment 10 increment 20

 

 

force rate force rate force rate

0.0052
-- --

#

 
 
 

Table 4-3. Convergence of the computed biaxial compression test  
 

9 5.12E-07 0.22 -- -- -- --

increment 1 increment 10 increment 20

iteration
#

residual
force

reduction
rate

residual
force

reduction
rate

residual
force

reduction
rate

1 5.67E-02 -- 1.28E-04 1.50E-04
2 1.71E-02 0.30 -1.10E-07 0.00086 -1.46E-07 0.00098
3 4.01E-03 0.23 -3.83E-10 0.00349 -5.51E-10 0.00376
4 9.04E-04 0.23 -- -- -- --
5 2.03E-04 0.22 -- -- -- --
6 4.55E-05 0.22 -- -- -- --
7 1.02E-05 0.22 -- -- -- --
8 2.28E-06 0.22 -- -- -- --
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Table 4-4. Convergence of the computed reduced biaxial extension test  

.99E-07 0.00367
3 -1.05E-02 0.27 2.69E-10 0.00419 -3.62E-09 0.00453
4 2.21E-03 0.21 -- -- -- --
5 -4.97E-04 0.22 -- -- -- --
6 1.11E-04 0.22 -- -- -- --

-- -- -- --
-- -- -- --

9 -1.23E-06 0.22 -- -- -- --

increment 1 increment 10 increment 20

 

 

iteration
#

residual
force

reduction
rate

residual
force

reduction
rate

residual
force

reduction
rate

2 3.93E-02 0.04 6.43E-08 0.00419 -7
1 -0.918 -- 1.54E-05 -2.18E-04

7 -2.47E-05 0.22
8 5.50E-06 0.22

10 2.73E-07 0.22 -- -- -- --  

algorithmic tangent matrix results in a linear convergence rate.  As mentioned previously, a 

rigorous ATM should lead to a quadratic convergence rate for a Newton global scheme (e.g. 

Simo and Taylor 1985).  If the force residual of the previous iteration is on the order of 1E-n, for 

instance, the force residual of the curren

 

      Three major observations can be made from Table 4-1 to Table 4-4.  First, the reduction ratio 

tends to be constant for iterations within the same increment, indicating that the proposed 

t iteration will be on the order of 1E-2n, with n being a 

positive integer.  Apparently, a linear convergence rate is slower than a quadratic convergence 

rate.  This reduction in the order of convergence rate is mainly due to the approximation made in 

the proposed ATM (cf. Eq. (4.24)).   

      Secondly, the reduction rate tends to be low in the first increment under the same load 

condition.  Furthermore, the reduction rate for the initial increment is found dependent upon load 
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conditions, or stress paths.  As shown in the tables, the reduction rate of the initial increment 

is lower in the uniaxial tests than in the biaxial tests.   

      In most increments other than the first one, the reduction rate tends to be relatively constant 

and independent of load conditions.  As shown in the tables, this rate is about 0.005 for the 

compressible Chicago clay.  Note that ABAQUS recommends using the control parameter Rα
n = 

0.005 as the convergence criterion for most engineering applications, with Rα
n defined as the 

ratio of the largest residual force to the average force over a finite element mesh.  For the 

comp tion 

rate of 0.005, a convergence with residual forces less than 1E-6 kPa can be achieved within only 

two to three iterations, as shown in the tables.  With such a small reduction rate, the difference 

between a linear convergence rate and a quadratic convergence rate becomes insignificant, 

especially from an engineering point of view.   

has a simple form and an extremely low computational cost, with only a slight approximation.  

linear convergence rate with a mostly small 

utations presented herein, the average force is on the order of 100 kPa.  With the reduc

      It is worth noting that a linear convergence rate guarantees computational stability, as long as 

the reduction rate is smaller than unit, because the residual force can always be reduced to a 

desired level within a finite number of iterations and thus divergence generally is not expected.    

 

4.3.4 DISCUSSIONS  

      The previous sections basically state that the ATM associated with the substepping scheme 

Furthermore, this proposed ATM leads to a 
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duction rate, which sustains an efficient and stable numerical computation.  However, the 

substepping scheme, with the exhibited advantages, cannot be directly applied to elastoplastic 

models, because the stresses integrated thereby may diverge from the yield surface (Crisfield 

hao et al. 2005), because an already complex relation σ(ε) and an 

implicit method blended togather tend to make the resulting relation ∆σ(∆ε) even more complex 

and implicit.  It is not unusual to come across a situation where computing the ATM turns out 

infeasible.  A remedy for such a circumstance is numerical differentiation (Miehe 1996; Perez-

Foguet et al. 2000a; Perez-Foguet et al. 2000b), which, however, requires a substantial extra 

amount of computations and thus is not quite time-efficient.   

      Rather than resort to implicit methods, the yield surface “drift” can be remedied using 

correction algorithms in an explicit scheme (Potts and Gens 1985; Sloan 1987), by which 

dive the 

and Kavvadas 1994), the multi-surface 

re

1991; Belytschko et al. 1999), a problem commonly known as yield surface “drift”.  That is the 

main reason why most elastoplastic models have been integrated using implicit methods (Simo 

and Hughes 1998; Belytschko et al. 1999).  That in turn makes it generally difficult to compute 

the corresponding ATM (Z

rted stresses are iteratively sent back to the yield surface.  These extra iterations alter  

relation ∆σk(∆εk) defined in Eq. (4.21) and the local secant stiffness ck is not explicit any more.  

Consequently, how to derive ATM becomes an issue for the corrected substepping method.   

      Apparently, the difficulties of computing the ATM for an elastoplastic model mostly originate 

from the yield surface.  Though defining yield surface is straightforward for metals, it is 

generally difficult for soils.  Essentially, recent research on soil modeling, such as the bounding 

surface model (Dafalias and Herrmann 1982; Whittle 
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plementation of this model, including the stress 

integration and the ATM computation, as discussed previously, is remarkably simply, especially 

in comparison with an elastoplastic model.   

kinematic hardening model (Al-Tabbaa and Wood 1989; Stallebrass and Taylor 1997) and 

the hypoplastic model (Viggiani and Tamagnini 1999; Kolymbas 2000), also confirmed that 

classical elastoplasticity theory is not quite suitable for modeling soil behavior.  Under this 

backdrop, the directional stiffness model is proposed as an alternative approach to modeling soils, 

in which material tangent stiffness is explicitly defined while plastic responses are generated 

without the need for a yield surface.  In addition to other advantages of this model, as elaborated 

in Chapter 2 and Chapter 3, the numerical im
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e numerical algorithm as the first one but was coded in the UMAT 

file of ABAQUS (ABAQUS_Inc. 2003), with input data passed in from the finite element 

ovement at the Lurie site, a well-instrumented deep 

supported excavation in downtown Chicago.  In all cases, the input parameters for the model 

5    MODEL TESTING  

 

      The numerical scheme proposed in the preceding chapter has been coded in FORTRAN and 

employed in a series of computations for testing and verification purposes.  In these 

computations, two forms of this code were used.  The first one is an executable file generated by 

a FORTRAN compiler, using an input file containing incremental strain data prepared by users.  

The second one has the sam

program.  The constitutive relations and numerical algorithms implemented in these two forms 

are completely identical.  Using which code is dependent on convenience.   

      The model has been tested under various conditions, including drained/undrained triaxial 

tests, drained/undrained biaxial tests and an oedometer test involving an unload-reload cycle.  It 

was additionally used to compute ground m

were developed from drained triaxial probe tests performed on block samples obtained at the 

Lurie site, as listed in Table 3-1.  To simulate the drained triaxial probe tests, the executable 

version of the model was used for convenience and the simulations were strain-controlled.  All 
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ents were used to represent soil specimens.   

ns and material properties of soil strata in Chicago area are discussed by Chung and 

Finno (1992).   

Table 5-1. Laboratory t s used to verify model 
 

other computations were performed using ABAQUS, wherein the laboratory test simulations 

were stress-controlled and single elem

      Due to a limited sample quantity, the soil specimens used in the simulated tests were not 

obtained from the same site, though all of them are regarded as compressible Chicago glacial 

clays.  Table 5-1 shows where and from which geologic stratum the specimens used in each type 

of test were obtained.  Project descriptions of Lurie Center, Ford Center and Block 37 are given 

by Rechea-Bernal (2006), Blackburn (2005) and Morgan (2006), respectively.  Geologic 

classificatio

 
est

Type of test  Site of sampling  Geologic stratum  

Drained triaxial tests  Lurie Center  Blodgett   

Drained biaxial test  Ford Center  Upper Deerfield  

Oedometer test  Lurie Center  Blodgett   

Undrained triaxial tests  Block 37  Blodgett  

Undrained biaxial tests  Ford Center  Upper Deerfield  

 
Note: All computations based on parameters obtained from drained triaxial probe tests on Lurie 

block specimens 
 

The main purpose of the laboratory test simulations presented herein is to reveal model responses 

under various boundary conditions, though computed results and experimental data are compared 

for most cases.  In light of the difference in sample source and the fact that all computations were 
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carried out with material parameters developed from stress probes on the Lurie block 

specimens, care must be taken when reviewing and interpreting both the computed and 

experimental results.   

      While the soil samples used in the drained triaxial probe tests were obtained from the Lurie 

Center site, the modeling of this excavation using parameters developed on the triaxial probe 

tests constituted a class C prediction (Lambe 1973), in light of the fact that the computation was 

performed after the excavation was completed.   

 

5.1 DRAINED AXISYMMETRIC CONDITIONS  

      As elaborated in Chapter 3, the development of the directional stiffness model is mostly 

ased on the observations made in the drained triaxial probe tests.  Therefore, a first step to 

verify both the model formulation and implementation is to reproduce soil responses observed in 

ese tests.  In this way, the validity of the constitutive equations can be verified and the 

roposed 

constitutive relation involves several assumptions, e.g., the directionality relations proposed for 

K and J , and these can be evaluated from the simulations.  All simulations were conducted with 

the parameters shown in Table 3-1.  

b

th

feasibility of the improved substepping method can be tested.  Furthermore, the p

v
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a r

a r

5.1.1 STRESS PATHS 

      Fig. 5–1 shows the axial strain, ε , and the radial strain, ε , measured in each probe test.  In 

the simulation, the numerical model uses these strain data as inputs, and computes stress 

components σ′  and σ′  accordingly.   
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Fig. 5–1. Measured strains input to the numerical model 
 

 

      Fig. 5–2 shows the computed stress paths in comparison with those actually applied in the 

tests, where p′ = (σ′a+2σ′r)/3 and q = σ′a–σ′r.  As shown, the computed path generally matches 

the experimental one for each probe.  The most perceivable difference occurs in the TE test, 

mainly due to a slight but constant deviation persisting for a significant length of stress path.  In 
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 in reproducing the stress paths.   

essence, Fig. 5–2 indicates that the numerical model is successful in finding the right path 

direction in each simulation.  Note that in those stress paths wherein both ∆p′ and ∆q are nonzero, 

e.g., TC, RTC, AU, RTE, TE and AL, the directionality relations for K and Jv are essentially 

assumed without experimental validations.  These assumptions are justified partially by the 

model’s success
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Fig. 5–2. Simulated stress paths of the triaxial probe tests 
 

ow that φ varies with the path direction.  For 

 

      The proposed model uses one failure parameter, i.e., the friction angle φ, to define the failure 

condition.  However, the experimental results sh
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example  measured in CQU test is 39°, while the value measured in TC is 27°.  In 

ich is a limitation 

of the current model.  However, it is not difficult to incorporate a p′f-dependent relation for 

 

5.1.2 SHEAR RESPONSES 

      Fig. 5–3 shows the simulated and observed shear responses in the tests with σ  vertical and 

∆q > 0, and the tests with σ  horizontal and ∆q < 0.  The displayed responses at a strain level 

all-

is solely caused by ∆q.  As elaborated in Section 3.1.1.2, for frictional 

materials like soils, changes in the stress ratio η (=q/p′), fundamentally results in shear strains.  

Accordingly, the slopes of the curves in Fig. 5–3 do not truly reveal the tangent shear modulus G.  

For instance, although the stress-strain curves in Fig. 5–3(a) are very close to one another in the 

small strain range less than 0.1%, the corresponding values of the initial shear modulus G0 are 

quite different, for example, G0 for the RTC path is about twice the value for the TC path.  In 

another case, the small strain response in the RTE path seems stiffer than that in the CPE path, 

, φ fact, 

most shear tests shown in Fig. 5–2 are close to failure.  Therefore, the tips of those stress paths 

roughly outline a failure envelope for the soil, indicating that the friction angle φ tends to 

decrease with p′f, the effective mean normal stress at failure.  In the simulating these tests, φ 

values are assigned on a case-by-case basis, instead of using a single value, wh

φ in 

this model, as long as it is established on a solid experimental basis.   

1f

1f

less than 1% emphasize the sm intermediate strain behaviours.  Note the deviatoric stress 

change, ∆q, conventionally is plotted versus the shear strain εs (= 2(ε′a–ε′r)/3), which by no 

means indicates εs 
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while the G  value turns out being larger in the CPE path.  Hence, the curves in Fig. 5–3 

merely serve as a tool to present and compare the material and model responses.  As shown, 

overall matches between the simulations and observations are satisfactory.   

0
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      Note the relatively small magnitude of shear strain developed in the AU test (Fig. 5–3b) 

wherein η is essentially kept constant, and the significant amount of shear strain developed in the 

 
 

Fig. 5–3. Simulated and observed shear responses in (a) compression tests, and (b) extension tests. 

CQU test (Fig. 5–5a) wherein q is kept constant. These observations serve as two important 

pieces of evidence in support of the fundamental notion behind this model – the stress ratio η 

governs shear responses of frictional materials (cf. Section 3.1.1.2).   
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Jv. Thus, plotting ∆p′ along with εv is merely a form of data presentation, not inferring 

any exclusive relation between these two quantities. For instance, the RTC curve in Fig. 5–4(b) 

does not indicate a negative K.  In fact, the ∆ -induced volume contraction exceeds the ∆p′-

5.1.3 VOLUMETRIC RESPONSES 

      Fig. 5–4 shows the simulated and observed volumetric responses in the loading tests wherein 

∆p′ > 0, and the unloading tests wherein ∆p′ < 0. As explained in Section 3.1.1, the volumetric 

strain εv is not only caused by ∆p′ via the bulk modulus K, but also by ∆q via the coupling 

modulus 

q

induced volume dilation in this probe.   
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      Note that CQL and AL probes are within the compression zone, wherein the stress paths do 

Fig. 5–4. Simulated and observed volumetric responses in (a) loading tests, and (b) unloading tests. 

not lead to the failure surface.  As mentioned in Section 3.3.1.2, Jv is assumed to be one order of 

magnitude larger than K in the compression zone.  According to Eq. (3.1), therefore, the volume 

change due to ∆q is much less than that due to ∆p’ in the compression zone, and thus can be 
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d h CQL and AL curves in Fig. 5–4(a) approximately 

ssion zone, as has 

 

      Fig. 5–5 shows the simulated and observed coupling responses in constant-q tests wherein ∆q 

∆  the effect of 

the other component is explicitly exhibited herein.  As shown, the coupling responses are well 

reproduced by the model.   

neglecte .  Hence, the slopes of bot

represent magnitudes of the tangent bulk modulus K.  As shown, these curves are quite similar to 

each other, suggesting that K follows an identical evolution rule in the compre

been implemented in the proposed model.   

      Again, in those stress paths wherein both ∆p′ and ∆q are nonzero, the directionality relations 

of both K and Jv use the assumed linear interpolation in Fig. 3–17.  The success in reproducing 

the volumetric responses in these paths, i.e., TC, RTC, AU and RTE in Fig. 5–4, serves as a 

justification of these assumptions.   

5.1.4 COUPLING RESPONSES 

= 0, and constant-p′ tests wherein p′ = 0.  Because one stress component is zero,
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Fig. 5–5. Simulated and observed coupling responses in (a) constant-q tests, and (b) constant-p′ tests. 

     In the constant-q tests (Fig. 5–5(a)), only ∆p′ contributes to ∆η.  Therefore, shear strain ε  is 

solely caused by ∆p′ and their relation is described by the coupling modulus J .  In the

the stiff response justifies the assumption made in the model that the effect of J  is negligible in 

the compression zone.  In the CQU test, the large shear strain developed in the CQU path serves 

as another important evidence that shear strains in soils are essentially caused by change in η 

instead of q alone, as q is constant throughout the test.   

      In the constant-p′ tests (Fig. 5–5(b)), the relation be

 

 

s

s  CQL test, 

s

tween ∆q and εv is described by the 

coupling modulus Jv.  As shown, contractive volume changes are generated, whether q is 

increased (CPC test) or decreased (CPE test).  This is consistent with the fact that the 

compressible Chicago clay is lightly overconsolidated, because lightly overconsolidated soils 

tend to be contractive during shearing.  In an undrained cyclic shear test, therefore, soil skeleton 
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      It is worth mentioning that the computed results shown in Fig. 5–5(b) indicate that this model 

might be applicable to liquefaction analysis.  Since the contraction occurs in either way of cyclic 

shearing, as exhibited in the figure, the positive pore water pressure is expected to accumulate 

ings are not major 

concern of this dissertation, it is worth noting the model’s potential in dynamic applications.   

      By adjusting the sign of J  accordingly, the shear-induced dilation, which mainly occurs in 

highly overconsolidated clays or dense sands, can be simulated as well.  Ideally, Jv should be a 

is prone to contraction.  As a result, positive pore water pressure will be generated in order to 

satisfy the constant volume condition.   

and the effective pressure p′ will keep decreasing as the cyclic loading continues, until the soil is 

failed, which is the mechanical nature of a liquefaction phenomenon.  Hence, the coupling 

modulus Jv provides a reasonable mechanism to simulate the pore water pressure buildup during 

a cyclic loading.  Furthermore, the material degradation during this process can be taken into 

account by the mechanism in the model for stress reversals, which updates stiffness parameters 

based on p’ at each stress reversal.  Since p’ keeps decreasing as explained previously, computed 

material stiffness will degrade cycle by cycle.  Though cyclic or seismic load

v

function of OCR for clays and a function of relative density for sands.  However, this application 

has not been evaluated in the current model, due to a lack of test data.   
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 plane strain 

conditions.   

      As show  the Ford 

 load was 

the in-plane vertical axis, respectively.  In either case, the computation is able to capture the 

5.2 DRAINED PLANE STRAIN CONDITIONS  

      A series of biaxial tests have been performed on both natural and reconstituted samples of 

Chicago clay (Erickson 2006).  In a biaxial test, soil responses are probed under plane strain 

conditions, which are frequently encountered in field applications and numerical analysis.  Since 

this proposed model is based on triaxial tests, performing plane strain computations allows one 

to check the generalization of the constitutive relation from axisymmetric to

n in Table 5-1, the samples used in the biaxial tests were obtained from

Center site in Evanston, IL (Erickson 2006), not the same site as the triaxial test samples 

(Holman 2005).  Furthermore, Holman’s samples are from the Blodgett stratum while Erickson’s 

samples are from the upper Deerfield stratum.  Though both of them are categorized as 

compressible Chicago clays, it is known that the Deerfield clay is generally stiffer than the 

Blodgett clay (Chung and Finno 1992).   

      Only one drained biaxial test has been performed on a natural sample, in which

added vertically until failure, i.e., a biaxial compression (BC) test.  This test was modeled using a 

stress-controlled finite element procedure.  In accordance with the test, the initial condition was 

specified as σ’v = 133 kPa and σ’v = 74.5 kPa.  An increment of 60 kPa was then added 

vertically to the simulated element.   

      Fig. 5–6 shows the shear and volumetric responses in the BC test.  The subscript “1” denotes 
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e Deerfield clay is 

stiffer than the Blodgett clay, since the parameters used in the computation are based on Blodgett 

samples.   

overall trend of the stress-strain relation.  It is noted that the observed response is initially 

stiffer than the computed response, which is consistent with the fact that th
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Fig. 5–6. Drained biaxial compression test: (a) shear response, and (b) volumetric response  
 

      Fig. 5–7 shows the computed and observed out-of-plane stress development with the vertical 

load, which exhibits a reasonable match.  Though the out-of-plane stress is usually ignored in 

plane strain computation, it is a useful tool to verify a constitutive relation.  Because the core 

relations of the directional stiffness model mostly rely on experimental observations under 

axisymmetric conditions, the evaluation of the out-of-plane stress, which is characteristic of 

plane strain condition, is especially important.  The match shown in Fig. 5–7 indicates a 

reasonable extension of the proposed constitutive relation from axisymmetric conditions to plane 

strain conditions.   
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Fig. 5–7. Drained biaxial compression test: Out-of-plane stress 

 

      In an oedometer test, a soil specimen may be subjected to one or more unload-reload cycles, 

so that the compression and recompression indices can be obtained for the material.  In the 

unload-reload cycle, the stress path direction is reversed, a situation referred to as stress reversal 

(cf. Section 3.3.3).  This section presents computed material responses in an unload-reload cycle 

procedure, in which the material was treated as drained and pore water dissipation was not 

 

5.3 UNLOAD-RELOAD UNDER ONE-DIMENSIONAL CONDITIONS  

in an oedometer test.  The computation was made using stress-controlled finite element 
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itial stress state as that used in the 

stress probe tests, increasing the vertical load by 300 kPa, then decreasing it by 400 kPa, and 

finally increas formation of 

ent is restricted to enforce zero lateral strain conditions.   

rve obtained from 

an oedometer test conducted on a Lurie site sample.  In traditional soil mechanics, the average 

slope of the unload-reload portions of the curve is represented by the recompression index Cr.  

However, there is no such parameter in the model to control this slope.  As shown, not only the 

slope but also the hysteretic behaviour are well represented by the model.  In the MIT series of 

models (e.g. Whittle 1990; Pestana and Whittle 1999), hysteretic behaviours are separately 

considered using a perfect hysteretic relation (Hueckel and Nova 1979), which requires several 

special parameters.  In contrast, Fig. 5–8 has shown that the hysteretic response is naturally taken 

      As shown in Fig. 5–8, the initial portion of the computed curve is inclined in an angle 

approximately the same as that of the unload-reload cycle.  As discussed in Section 3.3.1.3, this 

portion corresponds to the small strain behavior and is defined by Eq. (3.22).  It is worth pointing 

out that the proposed model is intended for in situ soils that are subject to ageing.  It treats the 

small strain behavior as an inherent property of in situ soils, which explains the reason why the 

small strain behavior manifests itself in Fig. 5–8.  In conventional elastoplastic theory for soils, 

actually simulated, since time-dependent hydrodynamic responses were not of concern in this 

case.  The computation was made by starting from the same in

ing it again by 800 kPa.  During the entire computation, the lateral de

the elem

      Fig. 5–8 shows the computed stress-strain relation in comparison to the cu

into account in the directional stiffness model, mainly due to the non-linear relations for stiffness 

evolution (cf. Section 3.3.1) and the criterion for stress reversals (cf. Section 3.3.3).   
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the same behavior is represented by a linear segment in the semi-logarithmic scale (e.g. 

Bjerrum 1967), similar to the approach of using Cr to describe the unload-reload portions.  In 

comparison, the computed response exhibits a nonlinear curve.  The linear relation used in the 

conventional approach is an approximation, in comparison with the small strain relation defined 

in this model.   
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Fig. 5–8. Computed and observed responses in oedometer test  
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5.4 UNDRAINED CONDITIONS  

computations, discusses characteristics of effective stress paths expected in undrained tests, and 

presents computed and observed responses for undrained triaxial and biaxial tests.   

5.4.1 UNDRAINED COMPUTATION  

      With an effective stress constitutive relationship available, undrained computations can be 

performed by invoking the principle of effective stress.   

      This section explains how the directional stiffness model is applied to undrained 

 

u+= 'σσ  (5.1) 

where u = [u, u, u, 0, 0, 0]T, with u being the pore fluid pressure.  The effective stress σ′, can be 

computed by the effective model in a rate form.   

εσ && '' E=  (5.2) 

where E′ represents the stiffness of soil skeleton.  Under undrained conditions, soil skeleton and 

pore fluid deform together and the strains in each phase can be regarded as the same, if the pore 

fluid is imaged as a uniform material occupying the total volume of the soil.  Thus, the change in 

the pore fluid pressure can be computed from the macroscopic average strain.   

(5.3) ε&& uEu =  

where Eu is the stiffness matrix for the imaginary pore fluid.  Since a fluid does not transmit 

shear, this matrix has the following form   
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⎢E uu K  

ranges 

from 100 to 1000.   

      Note that a total stress instead of an effective stress is eventually required by UMAT in 

ress increment can be 

omputed given the strain increment.   

⎥
⎦

⎤

⎣

⎡
=

33

33

00
01 (5.4) 

where 13 is a 3×3 matrix with all elements equal to 1, 03 is a 3×3 null matrix, and the constant Ku 

can be related to Kf, the bulk modulus of the pore fluid, and Kp, the bulk modulus of the soil 

particles (Naylor 1974). However, since both Kf and Kp are typically much larger than the bulk 

modulus of the soil skeleton – Ks, the exact value of Ku becomes unimportant, as long as it is a 

large number.  Potts and Zdravkovic (1999) recommend setting Ku equal to nKs, where n 

ABAQUS for each integration point.  With E′ and Eu available, the total st

c

εσ && )'( uEE +=  (5.5) 

where the sum of E′ and Eu represents the overall stiffness of the undrained soil.  A nearly zero 

volume change condition is enforced by the presence of Eu, with Ku much larger than Ks.  For 

the directional stiffness model, E′ is given by Eq. (3.13).  In the model, an undrained condition is 

activated by making Ku equal to the bulk modulus of water (≈ 2*10  kPa), while a drained 

condition results when Ku is set to zero.   

6
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SP) in undrained tests.  Under either an axisymmetric 

r a plane strain condition, an undrained test is subject to two possible loading modes only, 

corresponding to two unique ESPs.   

      Fig. 5–9 shows any ap  be decomposed into two 

 mode, or ∆σv-∆σh < 0, an extension mode.  Accordingly, these two distinct modes 

will result in two unique ESPs, no matter how the hydrostatic load component varies.   

5.4.2 EFFECTIVE STRESS PATH (ESP) 

5.4.2.1 UNIQUENESS OF ESP  

      Before presenting computed results for undrained tests, it is beneficial to review the general 

characteristics of effective stress paths (E

o

plied stress in an und ained triaxial test canr

components – a hydrostatic component and a deviatoric component.  The hydrostatic component 

does not contribute to any change in effective stresses of the tested sample, because Ku, the bulk 

modulus of water, is typically much larger than Ks, the bulk modulus of the soil skeleton, as 

explained in the previous section.  Thus, nearly all increase in the hydrostatic stress will be 

sustained by the bulk of pore water.  In other words, one unit of change in the hydrostatic stress 

results in approximately one unit change in the excess pore water pressure, while the effective 

stress exerted on the soil skeleton virtually does not change.  In contrast, variation of the 

deviatoric component (see Fig. 5–9) leads to change in the effective stress, because water cannot 

sustain shearing.  Apparently, there are only two possibilities of shearing mode, i.e., ∆σv-∆σh > 0, 

a compression
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 ∆σv 

∆σh 
= 

(∆σv+ 2∆σh)/3

(∆σv+ 2∆σh)/3
+

2(∆σv- ∆σh)/3 

(∆σv- ∆σh)/3 

 
 

Fig. 5–9. Decomposition of undrained triaxial test into hydrostatic and deviatoric components 
 

      For an undrained biaxial test, this approach using stress decomposition to explain unique ESP 

is not straightforward because the out-of-plane boundary condition is displacement-controlled.  

However, no matter what in-plane stress is applied to the specimen, the vertical strain ε1 and 

horizontal strain ε3 must maintain the relation ε3 = - ε1 to satisfy the undrained condition.  

Therefore, all undrained biaxial tests could only have two deformation modes, i.e., ε1 > 0, a 

compression mode or ε1 < 0, an extension mode.  Obviously, these two modes correspond to two 

unique ESPs.   

      Because of the uniqueness of the ESP, one needs only two different tests to investigate 

undrained responses of a soil under either axisymmetric or plane-strain conditions, 

orresponding to the two distinct modes, respectively.   

.4.2.2 ORIENTATION OF ESP  

tion, it is made clear that ESP is unique in each of the two distinct modes.  

c

 

5

      In the foregoing sec

The next important issue is the orientation in stress space of the unique ESP.   
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fine the orientation of ESP, in a compression mode, β is generally 

larger than π/2 for normally consolidated or sligh y overconsolidated clays or loose sands, and is 

generally smaller than    

the directional stiffness model, the orientation of ESP is governed by the ratio of Jv and K.  

n metric strain is calculated as follows,   

      It is well known that the orientation of ESP for an isotropic elastic material is vertically 

up in p'-q plot for a compression mode (∆q > 0) and vertically down for an extension mode (∆q < 

0), because there is no shear-volumetric coupling for this material, i.e., both Jv and Js are 

infinitely large.  Therefore, an isotropic elastic relation is a special case of the relation proposed 

in this dissertation.  In general, the orientation of observed ESP in most soil tests is not vertical.  

Using β (cf. Eq. (3.17)) to de

tl

π/2 for highly overconsoli ated clays or dense sands.d

      In 

Accordi g to Eq. (3.1), the volu

vv JqKp //' δδδε +=  (5.6) 

In an undrained computation, the zero volume change condition is enforced by Eq. (5.5).  

Therefore, δε  = 0, and  v

KJpq v /'/ −=δδ  (5.7) 

The left hand side basically represents the orientation of ESP (cf. Eq. (3.17)).  Hence, Eq. (5.7) 

shows how the ratio of Jv/K affects the orientation of ESP under undrained conditions.  Given a 

constitutive relation with constant Jv and K, one can calculate the orientation directly using Eq. 

(5.7).  With the proposed directional stiffness model, the tangent moduli, including Jv and K, 

vary with β and LSP.  It is not straightforward to determine a priori the orientation of ESP.  

onsequently, one needs an iterative algorithm (cf. Section 4.2.2 ) to find the right orientation, in 

which the path-dependent Jv and K yield zero volume change.   

C
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e orientation of ESP, however, can be achieved simply 

      Hence, the orientation of tive relation of the 

material, and thus is purely material-dependent odel, it is controlled by the 

ratio of Jv/K.  In con e exce re pre  ue artially material-dependent, because it 

results from the diffe between P (mat e den nd TS (material-independent).  

For this reason, it i ble e any m r di  de ibing ue as a material 

parameter in a constitutive relation.  Using the decomposition illustrated in Fig. 5–9, the change 

 ue due to the hydrostatic component of a load is basically material-independent, while the 

change in ue due to the deviatoric component is material-dependent.  The total change in ue is the 

sum of them.   

      A qualitative determination of th

by knowing the sign of Jv.  Here, attention is paid to which side the ESP is oriented from the 

vertical direction, i.e., β = π/2 for the compression mode, or β = 3π/2 for the extension mode.  

These two values correspond to isotropic elastic responses.  For conciseness, discussion herein is 

made for the compression mode.  Because K is always positive, the sign of δq/δp' solely depends 

on the sign of Jv, according to Eq. (5.7).  For a positive Jv, i.e., a shear-contractive material, 

δq/δp' < 0, β > π/2, and thus the ESP leans to the left of a vertical line in the p'-q plot.  According 

to Eq. (5.7), the smaller the ratio of Jv/K, the more leftward the ESP will track.  Apparently, the 

ESP of a shear-dilative material leans rightward in the compression mode.  The deviation from 

the vertical direction represents the degree of anisotropy (Wood 1990).  Note that whether the 

ESP leans to the left or right hand side is governed by material properties of the soil skeleton, 

and is independent of the orientation of total stress path (TSP).   

 ESP can be intrinsically derived from the constitu

.  In the proposed m

trast, th ss po ssure  is p

rence  ES erial-d pen t) a P 

s undesira to us  para ete rectly scr

in
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undrained test is an interaction between the pore water 

ses are intrinsically related to one another.  Using this idea, 

 designed to verify results obtained in either case.   

5.4.3 UNDRAINED AXISYMMETRIC CONDITIONS  

      K -consolidated, undrained triaxial compression (CK U-TXC) and reduced triaxial extension 

(CK U-RTXE) tests were performed on tube samples of compressible Chicago glacial clay from 

the Block 37 site in Chicago (Cho 2007).  These samples were not obtained from the same site as 

those used for the stress probe tests (Holman 2005).  However, both of them were retrieved from 

the same geologic stratum and thus were expected to have similar responses despite being 

extracted from different sites.   

      From a physical point of view, an 

and the soil skeleton, in which ue develops and ESP is mobilized in a way that the condition of 

no volume change of the soil skeleton is observed.  An undrained test can be regarded as a 

special drained test, in the sense that a drained test conducted along the observed ESP from an 

undrained test on the same material should yield zero volume change.  Therefore, the drained 

and undrained material respon

drained and undrained tests can be

 

0 0

0

      The computations were made in four different total stress paths – U-TXC, U-RTXC, U-TXE 

and U-RTXE, all of which started from same initial stresses, corresponding to the in situ state of 

the samples used in the undrained tests.  Fig. 5–10 shows the computed ESPs in comparison with 

the observed ones.  As expected, the computations for these paths have converged to a unique 
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h the conclusion drawn in Section 5.4.2.1.   

ESP for the compression mode (∆q > 0), and another for the extension mode (∆q < 0), which 

is consistent wit
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Fig. 5–10. Computed and observed effective stress paths for undrained triaxial tests 
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      However, the difference is perceivable between the orientations of the observed and 

computed ESPs, especially in the compression mode, as shown in Fig. 5–10.  According to the 

discussion made in Section 5.4.2.2, the deviation in the compression mode is due to the 

difference in Jv/K ratio.  Specifically, the Jv/K ratio used in the computation, which was obtained 

from the drained tests , is smaller than the Jv/K ratio observed in the undrained test.  That means 

the drained tests (Holman 2005) are not quite consistent with the undrained test, as one would 

expect when samples are taken from sites that are about 1 mile apart.   

      Fig. 5–11 shows that using an increased Jvref value, the proposed model yields an ESP close 

to that observed in the undrained test.  The computation of U-TXC_1 is the same as the 

computation of U-TXC shown in Fig. 5–10, using the parameters listed in Table 3-1.  Based on 

those parameters, Jvmax/Jvmin = 5, because rx = 5 (cf. Eq. (3.31)).  Note that Jvref = Jvmin.  The

compu Jvmin 

equal to Jvmax.  This additional computation ser  an example how the ESP varies with Jv/K 

      Furthermore, in comparison to the drained stress probe tests, it is found that the computed 

ESP in the compression mode is close to the stress path of the RTC test (cf. Fig. 5–2).  And the 

computed ESP in extension mode is close to the stress path of the RTE test (cf. Fig. 5–2).  In fact, 

it is found that the volume changes in both of these two tests are quite small (cf. Fig. 5–4).  In 

other words, the undrained computations with material parameters obtained from the drained 

tests have yielded results consistent with the responses observed in the drained tests.   

 

tation of U-TXC_2 using a Jvref 5 times of Jvref used in U-TXC_2 basically makes 

ves as

ratio with the proposed model.  Fig. 5–11 basically shows that the proposed model is capable of 

accommodating either observed response.   
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Fig. 5–11. Variation of the orientation of ESP: Jvref = 116 in U-TXC_1 and Jvref = 580 in U-TXC_2 

:

 

 

      Fig. 5–12 shows the computed and measured shear responses in the two undrained triaxial 

tests.  As shown, the computation well matches the response measured in the U-RTXE test.  The 

differences in the responses in the U-TXC test is mainly due to the mismatch in ESP (cf. Fig. 5–

10), which is caused by the inconsistency in volumetric response, as discussed before.  One can 

imagine that the computed and observed responses will match by proportionally stretching the 

computed curve along vertical axis.  Therefore, it is fair to say that the overall trend of the 

material response is captured by the computation.  Though there exists inconsistency in the 
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 drained conditions, since the computed shear response is largely 

derived from the observed drained material response.  

observed volumetric response, Fig. 5–10 shows that the observed responses generally are 

consistent under undrained and
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Fig. 5–12. Computed and observed shear responses in undrained triaxial tests 
 

 

5.4.4 UND

      Soil responses under undrained plane strain r analyzing short-term 

RAINED PLANE STRAIN CONDITIONS  

 conditions are critical fo

construction activities in many geotechnical applications, which is the case for the computation 

presented in the next section for a real excavation in downtown Chicago.  In order to manifest 

model responses under undrained plane strain conditions, four different stress paths were 

computed, including U-BC, U-RBC, U-BE and U-RBE, wherein one of the two in-plane stresses 

is monotonically increased or decreased while the other remains constant.   
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SPs lead to similar directions under 

axisymmetric and plane strain conditions.  Furthermore, the computed ESPs are nearly linear, as 

also observed for the in paths are linear in 

either triaxial or biaxial tests, due to the condition of zero volume change.  The computed results 

      Fig. 5–13 shows that the computed effective stress paths have converged in the 

compression and extension modes, respectively, which is expected according to Section 5.4.2.  In 

comparison with Fig. 5–10, it is found that the computed E

axisymmetric cases.  Under undrained conditions, stra

imply that this model tends to yield linear ESPs given linear strain paths.   
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Fig. 5–13. Computed effective stress paths in undrained biaxial tests 
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ally result in the same ESPs, they are skipped in Fig. 5–14 for 

conciseness.  As shown, the stress-strain response in the U-RBE path is much stiffer than that in 

the U-BC path, which is similar to the model response under an undrained axisymmetric 

condition.   

 

 

      Fig. 5–14 shows the computed stress-strain responses in the U-BC and U-RBE paths.  Since 

the other two computations basic
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Fig. 5–14. Computed stress-strain relations under undrained plane strain conditions  
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      Fig. 5–15 shows the computed exce

change.  As indicated in Fig. 5–13, the TSP of U-RBE is orientated to the left of the unique ESP 

in the extension mode, while the TSP of U-BC is to the right of the unique ESP in the 

ompression mode, resulting in the development of negative excess pore pressures in the U-RBE 

test and positive excess pore pressures in the U-BC test.   
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Fig. 5–15. Computed excess pore water pressure under undrained plane strain conditions 
 

      When numerical analysis is to be performed under plane strain conditions, it is desirable to 

test the pertinent soils under the same condition.  Experimentally, however, biaxial tests are 

much more complicated and much less common than triaxial tests.  The computed results 

presented herein suggest that the two unique ESPs tend to have similar directions under 
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ain conditions.  For 

the same purpose, drained tests can be performed in the vicinity of the two unique ESPs.   

5.5 PREDICTIONS FOR LURIE CENTER EXCAVATION  

      The Robert H. Lurie Medical Research Building included a 12.8 m deep cut for two 

basement levels.  Detailed descriptions and ground responses of the excavation are reported by 

undrained axisymmetric and plane strain conditions.  For the compressible Chicago clays 

tested by Holman and Cho, the two unique ESPs are around RBC and RBE paths under plane 

strain conditions, and the RTXC and RTXE paths under axisymmetric conditions, respectively.  

Accordingly, the mobilized soil responses tend to be similar.  Hence, it might be justified to use 

undrained triaxial tests to estimate soil responses under undrained plane str

 

 

5.5.1 LURIE PROJECT DESCRIPTION  

Finno and Roboski (2005).  A plan view of the approximately 80 m × 68 m area is shown in Fig. 

5–16.  To monitor the ground response to excavation activities, 150 surface survey points, 18 

embedded settlement points and 30 utility points were installed on three surrounding streets prior 

to wall installation.  Measurements of both lateral and vertical ground surface movements were 

obtained.  In addition to the optical survey data, seven inclinometers were installed at distances 

from 1 to 2.4 m from the sheet-pile wall.   
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 anchors provided 

lateral support for the south wall section analyzed herein.  Both the first and second level ground 

anchors are founded in the beach sand.   

      Fig. 5–17 shows the support system in relation to the stratigraphy.  The excavation is 

supported by a PZ-27 sheet pile wall on all sides.  Three levels of tieback

 



 

 

136

 

 
 

Fig. 5–16. Plan view of Lurie Center excavation 
 

      Prior to installation of the sheeting, the excavator “pot-holed” the site to remove large 

obstructions such as pile caps and building rubble.  PZ-27 sheets of length 18.3 meters were 
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installed by a vibratory hammer.  Ground water within the site wa

ells.  Surface water and leakage through the sheeting into the excavation was controlled by 

mp pits and pumps.  Excavation of the site and tieback installation took place simultaneously 

ithin the site.  However, four distinct excavation stages were defined: excavation to elevations 

o levels immediately 

installa

s removed by dewatering 

w

su

w

+1.5 m CCD, -2.5 m CCD, -5.8 m CCD, and –8.5 m CCD, corresponding t

below tieback elevations and the final excavated grade.  Excavation was limited to a distance of 

0.6 to 1.2 meters below the tieback installation elevation, depending on the angle of the tieback 

tion.   
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Fig. 5–17. Support system of Lurie Center excavation 
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5.5.2 FINITE ELEMENT DESCRIPTION  

 

      The finite element simulation of the Lurie Center excavation was made using ABAQUS.  

The fin ponds to the 

being s

the mo e times the 

 

5.5.2.1 F.E. MESH  

ite element mesh used for the prediction is shown in Fig. 5–18, which corres

final stage of the excavation and thus does not include those elements representing the excavated 

soils.  The simulation was made assuming a plane strain condition with the excavation system 

ymmetric about the centerline.  The entire mesh was fixed at the bottom and allowed to 

move vertically and freely at both sides.  To eliminate influences of the boundary condition on 

deling, the mesh behind the support wall was extended to a distance fiv

excavation depth.   

A B 

0 10

 

 

[m] 

 
Fig. 5–18. Finite element mesh for Lurie Center excavation 
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      In t  using 8-node biquadratic elements with 

elemen were simulated by the small sliding 

with ax

approx e the 

 

5.5.2.3 

simulated by the Mohr-Coulomb (M-C) model given in ABAQUS, while the soft-medium clay 

for eac

investigations made in conjunction with foundation design studies for the Lurie Center structure, 

and past research experience with excavations in the Chicago area (e.g. Finno et al. 1991; 

are und  0.49 for these layers.  The parameters 

s probe tests on 

5.5.2.2 ELEMENT TYPES  

he finite element model, the soils were simulated

reduced integration (CPE8R), the sheet pile wall was represented by the 3-node quadratic beam 

t (B22), and the interfaces between the wall and soils 

contact pair provided in ABAQUS.  The tiebacks were simulated by 2-D truss elements (T2D2) 

ial stiffness determined from performance tests.  For each truss, one end was connected to 

the beam element using connection type JOIN and the other was fixed in space.  This 

imation is much closer to reality than if the anchor was modeled explicitly, becaus

proximity of the first two levels of bonded lengths in a 2-D representation (cf. Fig. 5–17) results 

in an unrealistically flexible support in an explicit simulation (Finno and Tu 2006).   

MATERIAL MODELS  

      In terms of material modeling, the fill, sand, stiff clay and hard clay (cf. Fig. 5–17) were 

was simulated by the directional stiffness model implemented in UMAT.  The M-C parameters 

h soil stratum are shown in Table 5-2, which were obtained from results of site 

Calvello and Finno 2004).  Note that the fill and sand are drained, while the stiff and hard clays 

rained, which is approximated by specifying ν =

used for the directional stiffness model are completely based on the drained stres
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3.3.3.  n be found in the ABAQUS 

Table 5-2. Parameters for soils using M-C model 

 φ° c (kPa) ψ° 

the block samples obtained from the Lurie site.  Their values have been given in Section 

Material parameters for the beam, trusses and interfaces ca

input file given in Appendix D.  The same information is also given by (Rechea-Bernal 2006).   

 
Stratum E (MPa) υ

Fill 51 0.2 30 0 2 

Sand 29 0.39 35 0 5 

Stiff clay 171 0.49 0 105 0 

Hard clay 677 0.49 0 383 0 

 

 

5.5.2.4 

Fig. 5–16).  The modeling consisted of 12 steps, including stress field initialization using a user-

defined irs, and cycles of 

can be found in Appendix D.   

 

      Ground straightforward to model 

static pore pressure in ABAQUS, though ABAQUS allows analyses that couple effective stresses 

and exc ctive stress and 

COMPUTATION STEPS  

      The finite element simulation represented the construction history near inclinometer LR-8 (cf. 

 “GEOSTATIC” procedure, activating the beam elements and contact pa

element removals and truss element activations.  Detailed definitions for these computation steps 

5.5.2.5 STATIC PORE PRESSURE  

water is present in the Lurie site (cf. Fig. 5–17).  It is not 

ess pore pressures.  There are two approaches to this problem, using effe
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(1992).  In this approach, the soil skeleton serves as the object to be analyzed.  Accordingly, 

the co

wall.  S treated as uplift 

as the 

manually modifying the input f ly defined in CAE, the GUI 

preproc

together serve as the object to be analyzed.  Total density is used for the soil body and total 

stresses s 

an effe In UMAT, a variable of excess pore 

state va according to COORDS, the 

track p

total stress, respectively.  The effective stress approach has been elaborated by Hashash 

effective density is used for the soils and the finite element code computes effective stresses.  In 

mputation, pore water pressure is regarded as an external load.  Specifically, the 

unbalanced water pressure on both sides of the wall is treated as lateral traction on the exposed 

imilarly, the unbalanced water pressure at the bottom of the excavation is 

force on the exposed soil surface.  The exposed part of the wall and the exposed soil surface vary 

excavation proceeds.  When a simulation consists of many computation steps, this 

approach can be somewhat cumbersome, because the unbalanced forces must be defined by 

ile, instead of being graphical

essor of ABAQUS.   

      In contrast, a total stress approach was adopted herein, wherein soil skeleton and pore water 

 are calculated by the FEM code.  Accordingly, the constitutive relation for a soil need

to represent total stress response of the material.  How to obtain the total stress relation based on 

ctive stress model is elaborated in Section 5.4.1.  

water pressure should be included in STATEV, the array containing the “solution-dependent 

riables,” and another variable computes hydrostatic pressure 

array containing the coordinates of the integration point.  More details can be found in the 

UMAT file given in Appendix C.  Therefore, the user-defined soil model is able to update and 

ore water pressure, and performs stress integration in terms of effective stresses.  To make 
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stress a in situ condition.  In this computation, the stress field was 

interna n.   

 

      Fig  shows the computed ground movements around the excavation when the final 

grade i

element node.  The vector length corresponds to

shown bal pattern of the ground movements caused by the 

times of the final depth of the excavation, with the maximum settlement occurring at a distance 

about h

movement, indicating an effective restriction provided by the upper level tiebacks.  The 

maxim e soft to medium clay layer, 

this total stress approach work, the initial lateral stress must be specified in terms of total 

nd match the expected 

initialized using a user-defined “GEOSTATIC” procedure, in which the balance between the 

l and external nodal forces was checked by ABAQUS without actual computatio

5.5.3 RESULTS  

. 5–19

s reached.  The end of each displacement vector is located at the corresponding finite 

 the displacement magnitude, with the scale 

at the top-right corner.  The glo

excavation is shown in this figure.  Computed ground movements extend to a distance about 2.5 

alf of the excavation depth.  In terms of lateral movements, there is very little cantilever 

um lateral movement occurs at a depth corresponding to th

with the maximum lateral displacement about twice of the maximum settlement.  In contrast, the 

bottom heave due to the excavation is relatively insignificant.   
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into the .  This 

magnit n in the figure, 

 

Fig. 5–19. Computed ground movements around the excavation when the final grade is reached 
 

      Fig. 5–20 shows the computed and observed lateral movements of the wall at three different 

excavation levels, including the grades –2.5m CCD, -5.8m CCD and –8.5m CCD, corresponding 

installations of th nd rd

respectively.  It is found that significant movements start to occur when the excavation proceeds 

 soft to medium clay layer, the top of which corresponds to the depth of –5m CCD

result agrees with the observation that the softest soil layer involved in an excavation governs the 

ude of the resulting ground movement (e.g. Clough et al. 1989).  As show

the observed deformations were somewhat overpredicted at each stage.  However, the overall 

deformation patterns were well captured by the computation in a consistent manner.   
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Fig. 5–20. Lateral movements of the sheet pile wall 
 
 

      Fig. 5–21 shows the observed and computed ground settlements behind the wall at the end of 

the excavation.  Settlement observations were made for a distance up to 12m away from the 

excavation.  As shown, the computation was successful in predicting the location of the 
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maximum settlement, which is around 6m away from the excavatio

was slightly underpredicted.  Note that observed settlement tends to be somewhat larger than the 

actual settlement caused by the excavation, because both construction vibration and onsite traffic 

nd to increase the observed settlement.  Under a fully undrained condition, the maximum 

settlement should be approximately the same as the maximum lateral displacement.  This is not 

the case for the Lurie site, because of the 10m thick of sand layers present in the field (cf. Fig. 5–

ea is estimated using the empirical relation 

(1998).  As shown in Fig. 5–21, the predicted settlement profile is 

consistent with the empirical relation.  Both of them indicate that the major impact range of the 

excavation is about 28 m.   

n, though the maximum 

te

17).  The settlement profile beyond the surveyed ar

suggested by Hsieh and Ou 
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Fig. 5–21. Ground settlements behind the wall when the final grade is reached 
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      Fig. 5–22 shows two effective stress paths at points A and B (Fig. 5–18), respectively.  Point 

A is within the soft to medium clay layer (cf. Fig. 5–17) behind the wall, while point B is within 

the same layer at the bottom of the excavation and at the same depth as A.  It is found that the 

direction of the ESP for most soils behind the wall is similar to the ESP of point A, while the 

 

direction of the ESP for most soils at the bottom of the excavation is similar to the ESP of point 

B.  This is reasonable, because the soils behind wall experience a compression mode of 

undrained shearing, i.e., ∆(σ′v - σ′h) > 0, while the soils at the bottom of excavation experience 

an extension mode, i.e., ∆(σ′v - σ′h) < 0.  According to the conclusion of Section 5.4.2, there 

should exist two unique ESPs.  Furthermore, the two ESPs shown in Fig. 5–22 are found similar 

to those computed ESPs shown in Fig. 5–13, as expected.   
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Fig. 5–22. Effective stress paths at two representative points 
 
 

Note that the loading conditions encountered in such a field computation is somewhat different 

from those in a biaxial test, in the sense that the former case involves τvh, the in-plane shear 

stress.  However, the computed results have shown that the development of τ  is not quite 

significant in comparison with the c rmal stresses.  τvh at point 

 is less than 7 kPa while τvh at point B is no more than 10 kPa.   

      Overall, the computation of the Lurie Center excavation yielded reasonable results, in 

vh

hange in horizontal and vertical no

A

comparison with filed observations and computed results from numerical testing with single 
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o showed the importance of the two unique ESPs (cf. Section 5.4.2) for an 

undrained analysis.  To perform a finite elem t analysis under undrained conditions, it is 

desirable to used so wo ESPs.   

 

elements.  Note that the soil samples used in the triaxial stress probe tests, from which the 

material parameters used in this computation were developed, were obtained exactly from the 

Lurie site.  Thus, this computation constituted a successful class-C prediction (Lambe 1973).  

The computation als

en

il parameters developed from tests corresponding to these t

      In summary, this chapter shows the computed model responses in drained/undrained triaxial 

tests, drained/undrained biaxial tests, an oedometer test involving an unload-reload cycle, and a 

well-instrumented deep excavation in downtown Chicago.  It is shown that this model is 

successful in simulating various soil tests and is promising in its ability to predict ground 

movements due to excavations.   
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      This dissertation presents a constitutive model capable of representing soil response in a wide 

variety of loading modes and strain levels.  The key parts of this model include (a) a cross-

anisotropic tangent matrix that is consistent with the mechanical nature of frictional materials 

and (b) a generalized relation that uses length of stress path and stress path direction as internal 

variables.  Soil stiffness evolutions in stress space are quantified by variations in 4 tangent 

moduli, K, Jv, G and Js, in shear, compression and small strain zones.  Accordingly, small strain 

and large strain behaviors are defined.  The definition of small strain behavior is hypothesized to 

be related to ageing effects.  This definition is applicable to “unstructured” clays wherein only 

ageing effects cause large variations in stiffness at very small strains, and is applied herein to 

freshwater, lightly overconsolidated Chicago glacial clays.  The effects of direction of loading on 

each modulus is included in the proposed evolution relations, which allows this model to 

simulate irrecoverable deformations, and provides an experimentally-based approach to 

incremental non-linearity.   

      Model responses are defined in terms of 13 material parameters, most of which have clearly 

identified physical meanings and can be determined from triaxial experiments.  In particular, it is 

6    CONCLUDING REMARKS  
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recommended that parameters be developed from results of CPC, CPE, CQU and CQL tests.  

It is noted that not all of the 13 parameters are of critical concern in many cases.  Typically, three 

of those four tests would be adequate and selecting the tests largely depends on the specific goal 

of the application.  More work needs to be done to relate some of the non-traditional parameters 

to those more easily identified with conventional field and laboratory tests.   

      The proposed model is implemented in the finite element program ABAQUS via UMAT, the 

user-defined material file.  The numerical scheme for stress integration is based on an existing 

substepping method with automatic error control, with an improvement made to deal with the 

complexity caused by the stiffness directionality.  Furthermore, a consistent tangent matrix is 

derived for this improved substepping method with the proposed model.  This matrix, which 

becomes remarkably simple with a reasonable and slight approximation, makes the proposed 

model and substepping method quite stable and efficient when functioning in a finite element 

computation.   

      In this dissertation, model responses are exercised in a variety of applications ranging from 

laboratory test simulations to a computation of ground deformations from a well-instrumented 

hat those 

assumptions made in directionality relations are reasonable.  The computation for a drained 

excavation.  The simulations of the drained triaxial probe tests have shown that the numerical 

model is able to find the right stress path in each probe test, indicating that the numerical scheme 

devised for stress integration is successful.  The model has been able to reproduce shear, 

volumetric and coupling responses over a wide strain range, providing evidence t
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del satisfactorily reproduces the out-of-plane stress 

tric or plane strain conditions, there exist two unique 

effective stress paths for a compression mode and an extension mode, respectively.  The 

  

ples 

obtained from the same site, the results of a simulation of a well-instrumented deep excavation in 

downtown Chicago have shown that the model is promising in its ability to predict both lateral 

locations

ce in predicting 

materials.   

biaxial test has shown that the mo

development, and reasonably reproduces the overall stress-strain responses.   

      The model computation of an unloading-reloading cycle in an oedometer test has shown that 

the recompression index and the hysteretic behavior are naturally implied by the model without 

resorting to extra parameters as a result of the nonlinear evolution relations and the extensions 

for stress reversals.   

      Under either undrained axisymme

computations for the undrained tests converge to these two ESPs successfully.  It has been 

showed that the predicted ESPs for the undrained triaxial tests are consistent with the 

observations made in the drained triaxial tests.  Furthermore, the computed ESPs for the 

undrained biaxial tests have exhibited similar orientations as those for the undrained triaxial tests. 

      Using the original model parameters based on results of stress probe tests on block sam

wall deformations and ground settlements behind the wall.  The ESPs computed at various 

 around the excavation are found consistent with the computed ESPs under undrained 

plane strain conditions.  For the compressible Chicago clays, it is found that the drained RTC and 

RTE tests are of particular importan undrained excavations through these 
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ighly overconsolidated clays and slightly 

overconsolidated to normally consolidated clays.  The dependency of friction angle on effective 

mean normal stress can be incorporated to describe a nonlinear failure surface.  It is desirable to 

further investigate the dependency of stiffness parameters on the deviatoric stress, to 

complement the dependency on the mean normal stress that has been already incorporated into 

the model.  Within the context of numerical implementation, it is worth exploring the general 

solvability of a problem with directional stiffness.  Given an arbitrary set of directionality 

relations, for instance, does a solution always exist for an arbitrary strain increment?  With a 

discrete directionality relation, what is the solvability condition?  Recall that the directionality 

lation for Jv is intrinsically discrete.  Furthermore, room always exists for optimizing the 

l algorithm in implem ing the directional stiffness model.   

      Among possible improvements of this model for future work, a relation of Jv and OCR is 

needed to account for the differences between h

re

numerica ent
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S  

that was developed by Kavvadas (1982) in MIT. To be 

atory, Kavvadas modified the Modified Cam-clay model 

ic yield surface with a distorted or anisotropic ellipsoidal surface 

ociated hardening rule was designed such that with plastic volumetric 

tes as well as expands in stress space.  The larger the 

istanc betwe e current stress point, the larger the rotation 

ening. Such an anisotropic yield surface was designed to 

mulat the st f natural soil.  

    Bas ally, 

cause the simulation inside the yield 

asticity, as used in MCC.  There were three main 

st overconsolidated clays are 

ot apply.  Second, it 
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A.   MAJOR SMALL STRAIN MODELS  

A.1   MIT-E3 MODEL 

      MIT-E3 is a successor of MIT-E1 

consistent with results from soil labor

(MCC) and replaced the isotrop

in stress space.  The ass

strain increments, the yield surface rota

d e en the axis of the yield surface and th

rate of the yield surface during hard

si e ress-induced anisotropy o

  ic MIT-E1 improved simulations for normally consolidated clays. However, it is not 

applicable to overconsolidated clays at small strains, be

surface was oversimplified by linear isotropic el

issues in characterization of overconsolidated clays.  First, mo

highly nonlinear even at small strain levels to which linear elasticity does n
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maximum past pressure, yielding of 

 not pronounced as predicted by a traditional elasto-

d shear behavior needs to be coupled because 

 clays can fail due to excessive pore water pressure accumulated under cyclic 

    To  updated MIT-E1 to MIT-E3, with focus on model 

ional yield surface. The major modifications include applying the 

errmann 1982) and replacing linear 

ty with perfectly hysteretic elasticity (Hueckel and Nova 1979). The bounding 

face plasticity is shown in Fig. A - 1, wherein p’ is effective mean normal stress and q is the 

iato c stre ce in y the yield surface in MIT-E1, and 

nctions as a classical 

en elastic and elasto-plastic regions in stress space.  And the 

 on the load surface. As shown 

 the image point of point C on 

le in terms of the distance of these two points to 

eterm . from point C to 

oint L as sho .  By exploiting the bounding surface plasticity, the coupling of 

olumetric and shear behavior can be achieved and smooth yielding can be produced as well.  

    Du s path from point C to point U, the model response is 

sically, the hysteretic elasticity creates nonlinearity in 

was noted that when reloaded beyond the 

overconsolidated clays is rather smooth,

plastic model.  Lastly, the volumetric an

overconsolidated

loading.  

  address these issues, Whittle (1987)

responses inside the tradit

concept of bounding surface plasticity (Dafalias and H

isotropic elastici

sur

dev ri ss.  The bounding surfa MIT-E3 is exactl

corresponds to the locus of maximum past stress states.  The load surface fu

yield surface, i.e. the border betwe

load surface is designed such that the current stress point is always

in Fig. A - 1, point C represents current stress state, and point I is

the bounding surface. There is a mapping ru

d ine both magnitude and orientation of plastic strain during loading, e.g

p  wn in Fig. A - 1

v

  rin loading such as the stresg un

d ed by hysteretic elasticity.  Baescrib
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able. However, this elastic relation is isotropic in nature. 

 the stiffness anisotropy of Chicago clays observed at very 

all s lman’s tests. Here, it is worthy to mention that this model was initially 

es supporting tension leg platforms 

ior under cyclic loading controls the responses of the system. Since anisotropic 

oss anisotropy, enables coupling between volumetric and shear responses, the 

olutio for cy e further facilitated by applying stiffness anisotropy.   

constitutive relation, which is desir

In other words, it cannot simulate

sm trains in Ho

proposed to study the performance of offshore friction pil

where soil behav

stiffness, e.g. cr

s n clic loading condition can b

bounding 
surface 

p’ 

q I

C

load 
surface

L

U

 
 

ding surface plasticity in MIT-E3 
 

    Kin matic rface moves in stress space 

 on the experimental evidence that “elastic” or 

Fig. A - 1. Boun

 

A.2   THREE SURFACE KINEMATIC HARDENING MODEL 

  e hardening means that during loading the yield su

without change in size.  The concept is based
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tural soil is typically very small and its size is relatively independent 

ood 1990).  The kinematic nature makes the yield surface behave like a 

ubble loating in stre  class of constitutive relation is also referred to 

quasi-elastic range of na

of the starting stress (W

b  f  ss space.  That is why this

as ‘bubble’ model.  

p’ 

q 

C

I

bounding 
surface 

load 
surface 

L

U

 

el (Al-Tabbaa, 1987) 

    Sim as developed in two stages as well.  The early 

a (1987).  As shown in Fig. A - 2, inside a 

e, one kinematic ellipsoidal surface was introduced as a load 

rface ves as the border between the elastic and elasto-plastic 

gions  A - 2, for loading stress path, e.g. from point C to point 

 
Fig. A - 2. The early version of ‘Bubble’ mod

 

  ilar to MIT-E3, the ‘bubble’ model w

version of the model was developed by Al-Tabba

bounding surface of MCC typ

su . fore, the load surface ser As be

re  in stress space.  As shown in Fig.
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ce moves with the current stress point, while for unloading path, e.g. from 

 point I is the image point of the current 

ween these two points is used as an 

to quantify the plastic strain during 

 made to ensure that it never intersects the 

er the two surface contact will reproduce exactly the 

me re ponse

of the ‘bubble’ model was presented by Stallebrass (1990) with emphasis 

e, called the history surface, is added 

d and bounding surfaces.  Actually, the movement of this history surface is 

trolled by a translation law of the same form as that used for the load surface.  The relative 

e is incorporated into the formula for plastic 

or two different stress paths.  In Fig. A - 3 (a), the 

ath is t to the identical portion B-E, 

ory’ (Atkinson et al. 1990).  As shown, after 

ponse is elasto-plastic, while after C-B, the response is 

 during it, the load surface does not 

sly mentioned.  That is why there is a plateau of constant stiffness at the initial 

e point B, lower stiffness is produced 

 Fig. A - 3 (c).  This result is 

L, the load surfa

point C to point U, the surface remains stationary. The

stress point C on the bounding surface. The distance bet

internal variable in a bounding surface plastic relation 

loading.  A transition law of the load surface was

bounding surface. Continued loading aft

sa s  as MCC.  

      The current version 

on stress history issues. In this model, a third surfac

between the loa

con

position of the history surface to the load surfac

modulus to control the rate of stiffness degradation.  

      Fig. A - 3 shows how this model works f

p A-B-E while in Fig. A - 3 (b) the path is C-B-E.  With respec

portion A-B and C-B are termed ‘recent stress hist

the recent history of A-B, the model res

elastic.  The portion B-D shown in Fig. A - 3 (b) is elastic and

move, as previou

portion of the solid curve in Fig. A - 3 (c). Thus at the sam

after A-B while higher stiffness is pro  a -B, as shown induced fter C
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e deviation from the recent 

ch an identical state after continued loading 

cal state, point E in Fig. A - 3 (c), is called state 

ill be eliminated 

e locus of that state.  

consistent with the experimental observations that the smaller th

stress path (history), the softer the soil response, and vice versa.  Furthermore, in spite of the 

difference in recent stress history, the model will rea

along path B-E.  The starting point of the identi

of ‘swept-out memory’, beyond which the influence of recent stress history w

(Gudehus et al. 1977).  The history surface is designed to represent th

 
 

Fig. A - 3. The variation of stiffness with recent stress history (Stallebrass and Taylor 1997) 
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    It m st be the l d surface is still 

 no better in simulating stiffness anisotropy at very small strains 

model. However, the ‘bubble’ model does address an associated 

s anisotropy is highly dependent upon recent stress history. 

.3   HYPO

al elasto-plastic relationship. 

f models of elasto-plastic type is typically gained by sacrificing simplicity, 

ulations and a large number of material 

plying the elasto-plastic relation to 

ange even at small strain levels. As a 

plastic parts is questionable, and 

    The motivated by the above thoughts.  The 

ace (Kolymbas 2000).  The work was initiated in 

associates.  The initial model was designed for 

996; Wu et al. 1998; Kolymbas 2000), and was extended 

 cohe ive ma rle 1997; Wu et al. 1998; Gudehus 2003). The 

essed as follows:   

(A-1) 

  u  pointed out that the elastic model response inside oa

isotropic.  So, this model can do

than a traditional elasto-plastic 

and important issue, i.e. stiffnes

 

A PLASTIC MODEL 

      The two odels previously reviewed are extensions to a traditionm

The capability o

which is manifested by incorporating complicated form

constants.  Furthermore, there seem to be difficulties in ap

natural soils, because most soils do not exhibit an elastic r

consequence, the decomposition of deformation into elastic and 

does not necessarily reflect the reality.  

   development of hypoplastic theory was exactly 

prefix ‘hypo-’ means non-existence of yield surf

Karlsruhe in late 70’s by Kolymbus and his 

granular materials (vonWolffersdorff 1

to s terials later on (Niemunis and He

constitutive relation of hypoplasticity can be expr

|D| NDLT ijklijklij +=
o
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otational or Jaumann stress rate, Dkl is Euler’s stretching tensor, |D| equals where T
o

 is co-rij

klkl DD  of Tij and other state variables such as void ratio. Owing to 

ss rate is a function nonlinear in D. Furthermore, the second 

DT −≠
o

. If the relation is invertible, then it is 

t equal to the incurred strain in a complete stress 

hieved without the decomposition of strain measure into 

ticity.  

all s ain b tropy is naturally controlled by the 

b  designed to describe a particular 

ore, the influence of 

ithin hypoplastic framework (Niemunis and 

n shown by Von Wolffersdorff (1996) 

TANGENT MODULI FROM TEST DATA  

uli from data obtained in triaxial tests.  

ooth the curve first, because of 

mating the tangent by directly 

, and L and N are functions

the second term in Eq. (A-1), the stre

nonlinear term leads to the result that (DT−
o

)()

equivalent to state that the recovered strain is no

cycle.  The inelastic behavior is thus ac

elastic and plastic parts, as in elasto-plas

      The rate form of its general equation gives hypoplasticity advantages in dealing with the 

sm tr ehaviors mentioned before.  Stiffness aniso

tensorial function L.  Meanwhile, the function N can e

nonlinear relation and stiffness degradation at small strain levels.  Furtherm

recent strain history has also been investigated w

Herle 1997).  In terms of large strain behavior, it has bee

that appropriate L and N can lead to implicit failure criteria.   

 

B.   CALCULATION OF 

      It is straightforward matter to calculate the secant mod

When calculating the tangent moduli, however, one has to sm

unavoidable fluctuation in the stress-strain curve.  Approxi
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ata points usually yields fluctuating results.  Hence, it is 

ssion analysis to obtain an analytical function 

tiating the regression 

l function is used to smooth the ∆p-εv 

mial function depends on the non-linearity of the curve. Normally, 

h cannot be improved by 

and different polynomial 

 in Fig. B - 1. By differentiating these 

hole stress/strain range.  

ote th t here  the e can use any type of 

, it is unnecessary, and 

 single function to fit the entire curve.  In most cases, a visual fit is 

 make a judgment about a “satisfactory” fit.   

connecting two consecutive d

necessary in most circumstances to conduct a regre

that fits the raw curve.  The tangent modulus is then calculated by differen

function.  

      An example is given in Fig. B - 1, wherein polynomia

curve.  The order of the polyno

the order is increased until a satisfactory match is reached. If the matc

increasing order, the whole curve is divided into several segments 

function is used to fit different curve segments, as shown

functions, the tangent modulus K can be obtained for the w

N a in form of the regression function is not crucial.  On

function for the curve fitting if there is an apparent advantage.  In addition

difficult in most cases, to use a

what is needed to
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y1 = 867-10 891x6 - 871578x5 + 340861x4 - 65911x3 + 6809.7x2 - 471.53x
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B - 1. Regression method used to smooth stress-strain curve 

 

.   MODE S)  

 
-----------------------------** 

lly Non-linear Model for Clays              || 
 ||    w h Dir

-----------------------------------------------** 

hard Finno  2006 
served 

 
--------------------------------------- 

UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

ED,CMNAME, 
OT,PNEWDT, 

Fig. 

 

C L CODED IN UMAT FILE (ABAQU

C
C **-----------------------------------------
C ||         An Incrementa
C it ectional Stiffness and a Small Strain Emphasis     || 
C **-----------------------
C 
C  Copyright by Xuxin Tu & Ric
C    All Rights Re
C 
C  contact: Xuxin.Tu@gmail.com
C ---------------------------------------------------------
C 
 SUBROUTINE 
     1 RPL,DDSDDT,DRPLDE,DRPLDT, 
     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPR
     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DR
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   4 CE ENT,DFGR AYER,KSPT,KSTEP,KINC) 

BA_PARAM.INC' 
 

TEV(NSTATV), 
,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 

ENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 
ROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3) 

DSDDE, PROPS, STATEV 
REAL*8 TIME 

ce 
 **** ************************************ 

riable Declaration   
   

nal) ----------- 

 G_ref, Jv_ref, K_ref  
_a 

a (normalized by p_a already) 
 

, r_mu 
r_LSP=LSP_max/LSP_min; 

_mu=
 faf     

egree] 
 lambda   

s)) 

al consolidation 

ernal) ----------- 

  L D0,DFGRD1,NOEL,NPT,L
C 
      INCLUDE 'A
C
      CHARACTER*80 CMNAME 
      ! NPROPS = 15; NSTATV = 15 
 ! 
 DIMENSION STRESS(NTENS),STA
     1 DDSDDE(NTENS
     2 STRAN(NT
     3 PROPS(NP
 REAL*8 STRESS, DSTRAN, STRAN, D
 
C 
C 
C      UMAT Interfa
C ******************************
C      Va
C
 ! ----------- Material Parameters (Exter
 ! 
 !  
 REAL*8
  ! refer to Es_min at p
 REAL*8 LSP_ref     
  ! refer to LSP_min at p_
 REAL*8 mu_up
  ! mu for stress path leading to the upper F.S. 
 REAL*8 nn  
  ! E/pa=Eref*(p'/pa)^nn !  
 REAL*8 r_0s, r_x, r_LSP
  ! r_0s=E_0/E_s; r_x=Emax/Emin; 
r mu_down/mu_up 
 REAL*8
  ! frictonal angle at failure [d
 REAL*8
  ! Dstrn = lambda*D(ln(strs
 REAL*8 OCR  
  ! over-condolidated ratio 
 REAL*8 k_nc  
  ! lateral stress ratio for norm
 ! 
 ! ----------- Material Parameters (Int
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_min, Jv_max, Jv_min 
ons for Estar_s 

lower, beta_upper, beta_lower 
ower --> beta_lower 

ment 

 point of the most recent 'monotonic' path 
reversal 

on stress; from OCR & p0 

ore water pressure 
R flag_drain 

REAL*8 WT  

Variables -------------  

Tangent moduli under axisymmetric condition 
/Jv; Des = Dq/G+Dp/Js 

TENS) 
ix for general conditions 

rogram 

  Variable Declaration 
******************************** 

    Variable Assignment 

 ! 
 REAL*8 G_max, G_min, K_max, K
  ! used in directionality relati
 REAL*8 LSP_max, LSP_min 
 REAL*8 Mf, Mf_upper, Mf_
  ! Mf_upper --> beta_upper; Mf_l
 ! 
 ! -------------- State Variables -------------  
 !  
 REAL*8 Beta_pre, LSP_pre  
  ! values in the previous incre
 REAL*8 p_0, p0_pre 
  ! p_0: p' value at the starting
  ! updated upon a path 
  ! p0_pre: previous p_0 
 REAL*8 s_p  
  ! s_p: preconsolidati
 REAL*8 Ue  
  ! excess p
 INTEGE
  ! 1: drained; 0: undrained 
 
  ! vertical coordinate of water table  
 REAL*8 Uh  
  ! hydrostatic pressure 
 ! 
 ! -------------- Other Global 
 !  
 REAL*8 K, Jv, G, Js 
  ! 
  ! Dev = Dp/K+Dq
 REAL*8 stiff(NTENS,N
  ! Cross-anisotropic matr
 REAL*8 strs(NTENS)  
  ! used in MAIN p
C 
C   
C **************************************
C 
C 
 ! 
 ! ------------- Numerical Parameters ------------  
 !  
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EAL* a= 100.D0 

EAL* fld = 2.D6 ! Bulk Modulus of water: 2.D6 kPa   
  

EAL* L_ZERO = 1.D-18 
EAL*  :: T L_r=1.0D-3 

 = 1.0D-3 

0.D0, G_f = 1.D0,  

of materials 
x=12  

_Converge", for  
ER :: KSUB_max = 100000 

REAL*8, PARAMETER :: r_JvK = 10.D0, r_JsK = 30.D0 
 ! the ratio of Jv/Js to K in Compression Zone 

0 
r Jv0 

 8.D0 

3.D0 

! RTXC: 29.D0, RTXE: 26.5 

0 
.7D0 

80.D0) 
sigma3f) 

 CASE (NTENS) 

 REAL*8, PARAMETER :: pi=3.14159265D0 
 R 8, PARAMETER :: p_
  ! atmospheric pressure [kPa] 
 R 8, PARAMETER :: K_
  ! "Bulk modulus" for pore water
 R 8, PARAMETER :: TO
 R 8, PARAMETER O
  ! for substepping 
 REAL*8, PARAMETER :: TOL_Beta
  ! for Beta_Converge 
 REAL*8, PARAMETER :: K_f = 5
 1      Jvf_up = 1000.D0, Jvf_low = -10000.D0 
  ! E_f regarded as independent 
 INTEGER, PARAMETER :: m_ma
  ! record size in "Beta
 INTEGER, PARAMET
  ! in case exceptions occur 
 
 
 !  
 ! 
 ! ----------- Material Properties ------------- 
 ! 
 G_ref = 19.D0  ! 76.D0 for G0 
 K_ref = 48.D0  ! 115.D0 for K
 Jv_ref = 116.D0  ! 462.D0 fo
 LSP_ref = 0.07D0 
 mu_up =
 r_0s = 4.D0 
 r_x = 5.D0 
 r_LSP = 
 r_mu = 0.5D0   
 nn = 0.55D0 
 faf = 28.D0    
 OCR = 1.5D0 
 lambda = 0.04D
 k_nc = 0
 ! 
 Mf = DSIN(faf*pi/1
  ! Mf = (sigma1f-sigma3f)/((sigma1f+
 SELECT
 CASE (4) 
  Mf_upper = 2.D0* Mf 
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f_upper 

.D0*Mf/(3.D0-Mf) 

CT 

r) 
 beta: [0, 2*pi) 

n = 0 

e Assignment 
 **** ***** ******************************* 

 Main Program 

!!! DEBUG 
OPEN(UNIT=16,FILE='E:\DEBUG.txt',POSITION='APPEND') 

ND. KINC==1) THEN 

INC==28) THEN 
(NOEL==122 .AND. NPT==2) 

) 
 EBUG L 

D IF  

STEP == 1) THEN 
3.0D4, 0.4D0)  ! nu for s'h/s'v = 0.5 

LSE IF (KSTEP == 2) THEN 

95D0) 
STEP == 10) THEN 

CALL ISO_ELA(3.0D4, 0.495D0) 

LSE IF (Norm(DSTRAN) < TOL_ZERO) THEN 

CALL READ_STATEV 

  Mf_lower = M
 CASE (6) 
  Mf_upper = 6
  Mf_lower = 6.D0*Mf/(3.D0+Mf) 
 END SELE
 ! 
 Beta_upper = DATAN(Mf_upper) 
 Beta_lower = 2.D0*pi-DATAN(Mf_lowe
  ! Mf_lower is positive &
 ! 
 WT = 0.D0 
 flag_drai
 ! 
 ! 
C     Variabl
C * *****************************
C                        
C   
 
 
 ! 
 IF (NOEL==1 .AND. NPT==1 .AND. KSTEP==1 .A
  CALL DEBUG_GENERAL 
 END IF 
 ! 
 ! 
  IF(KSTEP==28 .AND. K
  ! 
  ! (KSTEP==28 .AND. KINC==28
   CALL D _GENERA
  EN
  ! 
  IF (K
   CALL ISO_ELA(
  E
   CALL INI_STATEV 
   CALL ISO_ELA(3.0D4, 0.4
  ELSE IF (KSTEP == 4 .OR. KSTEP == 7 .OR. K
   
   ! 
  E
  ! DSTRAN = 0 
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rs, STRESS) 
  CALL Eff_Stress(strs) 

CALL READ_STATEV 
L Sign_Change(Strs, STRESS) 
L Eff_Stress(Strs) 
L P_Dependency 

! 

CALL WRITE_STATEV 

 

! 

******************************* 

 

-------------------------------------------------- 
  ]  Integration_Scheme  

-------------------------------------  
egration_Scheme(strs_t) 

matic substepping scheme extended for incremental non-linearity 
anics sign convention 
Main Components---------------------- 

Dstrs_CALC, OUT_FS,   

 strs_t(NTENS) ! passed in  
! strain incrmnt 

 y(2,NTENS), Dy(2,NTENS) ! *(1,:): k; *(2,:): k+1  
ord stiff in the 1st guess 

REAL*8 beta, LSP, LSP2, D_LSP, Dp, Dq  
atment 

r: esti ext strain incrmnt 

   CALL Sign_Change(st
 
   CALL P_Dependency 
   ! 
   CALL Axisymmetry(strs, LSP_pre, beta_pre) 
   CALL Cross_Anisotropy 
   DDSDDE = stiff 
  ELSE 
   ! 
   
   CAL
   CAL
   CAL
   
   CALL Integration_Scheme(strs) 
   
  END IF 
  ! 
 CLOSE(16) 
 
 RETURN 
C  
C                     Main Program 
C ***************************************
C     Internal Procedures 
C
 CONTAINS 
C -----------------
C [ Internal Subroutine
C ------------------------------
 SUBROUTINE Int
 ! An auto
 ! strs_t in geomech
 ! --------------------- 
 ! Beta_Converge, 
 ! 
 REAL*8
 REAL*8 Dx(NTENS)  
 REAL*8
 REAL*8 stiff1(NTENS,NTENS)  ! rec
 
 REAL*8 D_beta  ! for stress reversal tre
 REAL*8 t, Dt, r  ! mated ratio for n
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atio 
p # 

 
! 1= upper F.S.; 2= lower F.S.; 0= pre-failure 

-- 

ange(Dx, DSTRAN) 
f geomechanics, i.e. compressive = (+) 

ent --------------- 

THEN 

 CALL DEBUG_SUBSTEP(KSUB) 

ALL 

  

0 

tepping ------------- 
. KSUB < KSUB_max) 

d = 0         ! 0:inaccurate; 1: accurate 
  

 =r*Dt 
) THEN 

Dt = 1.D0 - t 

t*Dx, Dy(1,:), beta) 

 REAL*8 Err_y(NTENS), norm_Err, norm_y, Err_R
 INTEGER KSUB ! KSUB: subste
 INTEGER flag_end ! for each substep: 1=converged, 0=unconverged 
 INTEGER flag_fail 
 !   
 ! ------------------------------------------------
 ! 
 CALL Sign_Ch
  ! Using sign convention o
 y(1,:) = strs_t 
 ! 
 !  ------------- failure treatm
 flag_fail = Failure(y(1,:)) 
 IF(flag_fail /= 0) 
 !  
  !!! DEBUG 
 
  ! 
  C OUT_FS(Dx, flag_fail, y(1,:), beta) 
  ! update y(1,:), beta & stiff 
  WRITE (16,'("OUT OF F.S. at beginning")') 
  GOTO 828 
 END IF 
 ! ---- variable initialization  
 LSP = LSP_pre 
 beta = Beta_pre 
 Dt = 1.D0
 t = 0.D0 
 r = 1.D0 
 KSUB = 
 ! 
 !  ------------ extended subs
 DO WHILE (t < 1.D0 .AND
  flag_en
  KSUB = KSUB+1 
  ! 
  Dt
  IF (t+Dt > 1.D0
   
  END IF 
  ! 
  CALL Beta_Converge(y(1,:), LSP, D
   ! update beta, Dy(1,:) & stiff  
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  ! ---------- stress reversal treatment ---------- 
eta_pre 

ALL Dbeta_Correction(D_beta) 
i, pi] 

 D_beta = DABS(D_beta) 

ency 
! 

N 
s_p = p_0 

 Dt*Dx, Dy(1,:), beta) 
! update beta, Dy(1,:) & stiff  

 = LSP 
! 

 ------------- 
iff1 =

:)) 

T(Dp*Dp + Dq*Dq) 

ag_end == 0) 
in this LOOP, y(1,:) doesn't change    

:)+Dy(1,:) 
+ D_LSP 

trs_CALC(y(2,:), LSP2, beta, Dt*Dx, Dy(2,:)) 
! calculate Dy(2,:) & stiff 

  
2,:)-Dy(1,:))/2.D0 

 = Norm(Err_y) 

  !  

  D_beta = beta - b
  C
   ! make D_beta fall in [-p
 
  ! 
  IF (D_beta > 0.5D0*pi) THEN 
   ! stress reversal 
   LSP = 0.D0 
   p0_pre = p_0 
   p_0 = pp(y(1,:)) 
   CALL P_Depend
   
   IF (p_0 > s_p) THE
    
   END IF 
   !  
   CALL Beta_Converge(y(1,:), LSP,
    
   beta_pre = beta 
   LSP_pre
   
  END IF 
  ! 
  ! ------------ original substepping
  st  stiff 
  Dp = pp(Dy(1,
  Dq = qq(Dy(1,:)) 
  D_LSP = DSQR
  ! 
  DO WHILE (fl
  ! 
   ! 
   y(2,:) = y(1,
   LSP2 = LSP 
   ! 
   CALL Ds
   
   !   
   Err_y = (Dy(
   ! 
   norm_Err
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orm_y = Norm(y(1,:)) 
Err_Ratio = DABS(norm_Err/norm_y) 

(TOL_r/Err_Ratio)    
  ! 

 2.D0 

! unconverged 
 0.1D0) THEN 
r = 0.1D0 

_LSP = r*D_LSP 

   

y(2,:))/2.D0   
= p

 
 DSQRT(Dp*Dp + Dq*Dq) 

,:) + Dy(1,:) 
iff = 0.5D0*(stiff1+stiff)  

! secant stiffness matrix for this substep 
 ATM 

 ! 
 ! ------------- failure treatment --------------- 

BSTEP(KSUB) 

   n
   
   r = 0.8D0*DSQRT
 
   IF (Err_Ratio < TOL_r) THEN 
   ! converged 
    flag_end = 1 
    ! 
    IF (r > 2.D0) THEN 
     r =
    END IF 
   ELSE  
   
    IF (r <
     
    END IF 
    ! 
    Dy(1,:) = r*Dy(1,:) 
    D
    !  
    Dt = r*Dt 
    ! 
   END IF 
   ! 
  END DO 
  !  
  Dy(1,:) = (Dy(1,:)+D
  Dp p(Dy(1,:)) 
  Dq = qq(Dy(1,:))
  D_LSP =
  ! 
  LSP = LSP + D_LSP 
  t = t+Dt  
  y(1,:) = y(1
  st
   
   ! an approximation of
 
 
  flag_fail = Failure(y(1,:)) 
  IF(flag_fail /= 0) THEN 
   !!! DEBUG 
   CALL DEBUG_SU
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.D0-t)*Dx, flag_fail, y(1,:), beta) 
pdate y(1,:), beta & stiff 

ITE (16,'("OUT OF F.S. within substepping")') 
8 

ND IF 
  

e ------------- 
 = beta 

re = LSP 
nal_Update(y(1,:), Dx) 

DDE 

 THEN 
ALL DEBUG_SUBSTEP(KSUB) 

F 

OUTINE Integration_Scheme 

----------------------------------------------------- 
Internal Subroutine ]  Beta_Converge 

-------------------------------- 
Converge(strs_t, LSP_t, Dstrn, Dstrs, beta_t) 

_t using Newton method and numerical differentiation 
e k, Jv, G, Js & stiff 

------- main components ----------------- 
Dbeta_Correction, Beta_Period 

(m_max)  ! beta_t  
 x1, x2, y1, y2, y_p, Dx, x_disturb 
y_p: y prime, numerical differentiation; y_p = (y2-y1)/(x2-x1) 

 ! Dx = -y1/y_p 

: Newton iteration # 

   ! 
   CALL OUT_FS((1
   ! u
   WR
   GOTO 82
  E
 !   
 END DO 
 ! 
 !------------ Final Updat
828 Beta_pre
 LSP_p
 CALL Fi
 ! Update Ue, STRESS & DDS
 ! 
 !!! DEBUG 
 IF (NOEL==1 .AND. NPT==1)
  C
 END I
 ! 
 END SUBR
C 
C --------------
C  [ 
C -----------------------------------
 SUBROUTINE Beta_
 ! calculate Dstrs & beta
 ! updat
 ! ---------
 ! Dstrs_CALC, FN_Beta, 
 ! 
 REAL*8 strs_t(NTENS), Dstrn(NTENS), Dstrs(NTENS) 
 REAL*8 LSP_t, beta_t 
 REAL*8 beta_rec
 REAL*8
  ! 
  ! x2 = x1 + x_disturb 
 
 REAL*8 Dp, Dq 
 INTEGER flag_end   
  ! 1: converged, 0: unconverged 
 INTEGER m          
  ! m
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strn, Dstrs) 

. m < m_max) 

) 

 

 x1 + Dx 
 

  ! makes beta_t fall in [0, 2pi) 

= be

Dstrs) 

 ! 
 x_disturb = 0.01D0*TOL_Beta 
 beta_rec(1:m_max) = 0.D0 
 m = 1 
 beta_rec(1) = beta_t 
 ! 
 x1 = beta_t 
 ! 
 CALL Dstrs_CALC(strs_t, LSP_t, x1, D
 beta_t = FN_Beta(Dstrs) 
 ! 
 y1 = beta_t-x1 
 ! 
 CALL Dbeta_Correction(y1) 
  ! makes y1 fall in [-pi, pi] 
 IF (DABS(y1) < TOL_Beta) THEN 
  flag_end = 1 
 ELSE 
  flag_end = 0 
 END IF  
 !  
 !    
 DO WHILE (flag_end == 0 .AND
  ! 
  x2 = x1 + x_disturb 
  ! 
  CALL Dstrs_CALC(strs_t, LSP_t, x2, Dstrn, Dstrs
  beta_t = FN_Beta(Dstrs) 
  ! 
  y2 = beta_t-x2 
  CALL Dbeta_Correction(y2) 
   ! makes y1 fall in [-pi, pi] 
  ! 
  y_p = (y2-y1)/(x2-x1)
  Dx = -y1/y_p 
  beta_t =
  ! 
  CALL Beta_Period(beta_t) 
 
  ! ------------------------------------ 
  x1 ta_t 
  ! 
  CALL Dstrs_CALC(strs_t, LSP_t, x1, Dstrn, 
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! update stiff also 

rection(y1) 
! makes y1 fall in [-pi, pi] 

EN 
ag_end = 1 

flag_end = 0 

 = m + 1 

x1  
must be consistent with Dstrs 

!!! DEBUG --------------- 

WRIT ) beta_
ec 

BROUTINE Beta_Converge 

-------------------------------------------------- 
ion 

------------------------------------------------------------------- 
SUBROUTINE Dbeta_Correction(Dbeta)  

! ------------------------------------- 
REAL*8 Dbeta 

   
  beta_t = FN_Beta(Dstrs) 
  ! 
  y1 = beta_t-x1 
  ! 
  CALL Dbeta_Cor
   
  IF (DABS(y1) < TOL_Beta) TH
   fl
  ELSE 
   
  END IF  
  !  
  m
  beta_rec(m) = x1 
  ! 
 END DO 
 ! 
 beta_t = 
  ! 
 !  
 
 !IF(m <= m_max) THEN 
  ! E (16,'("Beta:  ", F6.3)' t 
 ! WRITE (16,'("beta_rec():  ", 12F6.3)') beta_r
 !END IF 
 ! 
 ! 
 END SU
C 
C------------------
C [ Internal Subroutine ]  Dbeta_Correct
C-
 
 ! makes Dbeta fall in [-pi, pi] 
 ! Dbeta: the difference between 2 betas 
 ! Note: any Dbeta should fall in (-2pi, 2pi) 
 
 
 ! 
 IF (Dbeta > pi) THEN 
  Dbeta = Dbeta - 2.D0*pi 
 ELSE IF (Dbeta < -pi) THEN 
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beta_Correction 

------- --------
 

------- ------- -- 

eriod(beta_t) 
make 

----------------------------- 
 

(beta_t < 0.D0) 
*pi 

ILE (beta_t >= 2.D0*pi) 
beta_t = beta_t - 2.0D0*pi 

ND DO 

-------------------------------------------------- 

----------- 
strs) 

n LSP_t, beta_t & Dstrn 
tities: 'K, Jv, G, Js', stiff(*,*) 

EAL* NS), Dstrn(NTENS)  

xisymmetry(strs_t, LSP_t, beta_t) 
 

py 
te stiff(*,*) using K, Jv, G, Js 

 ! calculate Dstrs using stiff(*,*) & Dstrn 

ND S BROU

  Dbeta = Dbeta + 2.D0*pi 
 END IF 
 ! 
 ! 
 END SUBROUTINE D
C 
C - ---------------------------------------------------- 
C [ Internal Subroutine ]  Beta_Period
C -- --------------------------------------------------
 
 SUBROUTINE Beta_P
 ! beta_t fall in [0, 2*pi)  
 ! ---------
 REAL*8 beta_t 
  DO WHILE 
   beta_t = beta_t + 2.0D0
  END DO 
  ! 
  DO WH
   
  E
 ! 
 END SUBROUTINE Beta_Period 
C 
C -----------------
C              [ Internal Subroutine ]      Dstrs_CALC 
C --------------------------------------------------------
 SUBROUTINE Dstrs_CALC(strs_t, LSP_t, beta_t, Dstrn, D
 ! calculate Dstrs at strs_t based o
 ! updated quan
 ! ------------------------------------------- 
 R 8 strs_t(NTENS), Dstrs(NTE
 REAL*8 LSP_t, beta_t 
 ! 
 CALL A
  ! calculate K, Jv, G, Js
 CALL Cross_Anisotro
  ! calcula
 CALL Dstrs_Dstrn(Dstrs, Dstrn) 
 
 ! 
 E U TINE Dstrs_CALC 
C 
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------------ 
 tine ]   Axisymmetry  

SP_t, beta_t) 
ymmetric condition 

-------------- 
, Evolution_SZone, LNR 

TENS), LSP_t, beta_t 
in, beta_max 

specify transition zones between Shear & Compression Zones 
G_1, G_2, Js_1, Js_2 

een Shear & Compression Zones 

eta_m
_lower 

ta_upper .OR. beta_t >= beta_lower) THEN 
ression Zone 

ALL Evolution_CZone(strs_t, LSP_t, beta_t) 

ELSE IF (beta_t >= beta_min .AND. beta_t <= beta_max) THEN 

_ , LSP_t, beta_t)  

 < beta_min) THEN   

pper)   

SZo e(strs_t, LSP_t, beta_min) 
_2 = K 

 

 = LNR(beta_upper, beta_min, K_1, K_2, beta_t) 
_min, Jv_1, Jv_2, beta_t) 

beta_upper, beta_min, G_1, G_2, beta_t) 
, beta_t) 

C -------------------------------------------------------
C  [ Internal Subrou
C ------------------------------------------------------------------- 
 SUBROUTINE Axisymmetry(strs_t, L
 ! calculate tangent moduli - K,Jv,G,Js - under axis
 ! --------------- main components 
 ! Evolution_CZone
 !   
 REAL*8 strs_t(N
 REAL*8 beta_m
  ! 
 REAL*8 K_1, K_2, Jv_1, Jv_2, 
  ! for transition betw
 ! 
 b in = 1.01D0*beta_upper 
 beta_max = 0.995D0*beta
 ! 
 ! 
 IF (beta_t <= be
 ! In Comp
  C
  ! 
 
 ! In "PURE" Shear Zone 
  CALL Evolution_SZone(strs t
  ! 
 ELSE IF (beta_t > beta_upper .AND. beta_t
 ! upper part of transition  
  CALL Evolution_CZone(strs_t, LSP_t, beta_u
  K_1 = K 
  Jv_1 = Jv 
  G_1 = G 
  Js_1 = Js 
  CALL Evolution_ n
  K
  Jv_2 = Jv 
  G_2 = G
  Js_2 = Js 
  K
  Jv = LNR(beta_upper, beta
  G = LNR(
  Js = LNR(beta_upper, beta_min, Js_1, Js_2
  ! 
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ALL Evolution_CZone(strs_t, LSP_t, beta_lower)   

_2 = Js 
a_t) 

 = LNR(beta_lower, beta_max, G_1, G_2, beta_t) 
 = LNR(beta_lower, beta_max, Js_1, Js_2, beta_t)   

! 

ND S BROU

----------------------- 
Evolution_CZone 

--------------------- 
_C ne(strs_t, LSP_t, beta_t) 

ness evolution in Compression Zone 
 beta_t 

e K,Jv,G,Js 
---------- 

ta, Gs_Beta, LSPs_Beta, LNR 

 G_0, G_s, Js_0, Js_s 
sign_Jv_ref 

one, but other E_s don't 

 ELSE 
 ! lower part of transition  
  C
  K_1 = K 
  Jv_1 = Jv 
  G_1 = G 
  Js_1 = Js 
  CALL Evolution_SZone(strs_t, LSP_t, beta_max) 
  K_2 = K 
  Jv_2 = Jv 
  G_2 = G 
  Js
  K = LNR(beta_lower, beta_max, K_1, K_2, bet
  Jv = LNR(beta_lower, beta_max, Jv_1, Jv_2, beta_t) 
  G
  Js
 END IF 
 
 ! 
 E U TINE Axisymmetry 
C 
C 
C---------------------------------------------
C [ Internal Subroutine ]  
C-----------------------------------------------
 SUBROUTINE Evolution Zo
 ! for stiff
 ! update E_0, E_s, LSP_s based on
 ! calculat
 ! -------------- main components ---
 ! Ks_Beta, Jvs_Be
 ! 
 REAL*8 strs_t(NTENS), LSP_t, beta_t 
 REAL*8 p_t, q_t 
 REAL*8 K_0, K_s, Jv_0, Jv_s, LSP_s 
 REAL*8
 REAL*8 sign_Js, 
 REAL*8 LSP_p, K_p, Jv_p, G_p, Js_p 
  ! values at beta=0 & LSP=LSP_p 
 REAL*8 K_ic, Jv_ic, G_ic, Js_ic 
  ! values at beta=0 & LSP>LSP_p 
 REAL*8 Js_min 
  ! Js_s varies in Compression Z
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strs_t) 

LSPs_beta(beta_t) 

! 
IF (LSP_t <= LSP_s) THEN 

= K

t, p_t, q_t) 

_0 = r_0s*Jv_s 
 = r_0s*G_s 

 

0.D0, LSP_s, K_0, K_s, LSP_t) 
, LSP_s, Jv_0, Jv_s, LSP_t) 

 = LNR(0.D0, LSP_s, G_0, G_s, LSP_t) 
P_s, Js_0, Js_s, LSP_t)  

  ! ( x1, x2,  y1, y2, x ) 

/ _ref 

lidation at beta=0 

LSE  
! Transition at beta=0  

p/lambda 
  

p, K_s, K_p, LSP_t) 
ND IF 

late other E_ic ------------- 
 IF (beta_t < beta_upper) THEN 

 ! 
 p_t = pp(
 q_t = qq(strs_t) 
 ! 
 ! 
 LSP_s = 
 LSP_p = s_p-p_0 
 
 
 ! Small Strain Zone 
  K_s s_Beta(beta_t) 
  Jv_s = Jvs_Beta(beta_t) 
  G_s = Gs_Beta(beta_t) 
  Js_s = Jss_Beta(beta_
  ! 
  K_0 = r_0s*K_s 
  Jv
  G_0
  Js_0 = r_0s*Js_s
  ! 
  K = LNR(
  Jv = LNR(0.D0
  G
  Js = LNR(0.D0, LS
 
 ELSE  
  sign_Jv_ref = DABS(Jv_ref) Jv
  sign_Js = DABS(-q_t)/(-q_t) 
   ! Js = (-3p/q)*G 
  ! -------------- calculate K_ic ---------------- 
  IF (LSP_t >= LSP_p) THEN 
   ! Normal Conso
   K_ic = p_t/lambda 
  E
   
   K_p = s_
   K_s = Ks_Beta(0.D0)
   ! 
   K_ic = LNR(LSP_s, LSP_
  E
  ! ----------- calcu
 
   Jv_ic = sign_Jv_ref*r_JvK*K_ic 
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_ic 
_ic 

to E_s because LSP_f is infinite 
< beta_upper) THEN 

s = Jss_Beta(beta_upper, p_t, q_t) 

R(0.D0, beta_upper, K_ic, K_s, beta_t) 
Jv = LNR(0.D0, beta_upper, Jv_ic, Jv_s, beta_t) 

R(0.D0, beta_upper, G_ic, G_s, beta_t) 
  Js = LNR(0.D0, beta_upper, Js_ic, Js_s, beta_t) 

l wer) 

r) 
er, p_t, q_t) 

, beta_t) 
ic, G_s, beta_t) 

Js = LNR(2.D0*pi, beta_lower, Js_ic, Js_s, beta_t) 

lution_CZone 

 

------- -------------------- 
volution_SZone(strs_t, LSP_t, beta_t) 

 Shear Zone 
ta_t 

  ELSE 
   Jv_ic = -sign_Jv_ref*r_JvK*K_ic 
  END IF 
  G_ic = 1.5D0*(1-k_nc)/(1+2.D0*k_nc)*K
  Js_ic = sign_Js*r_JsK*K
  ! 
  ! E at the boundaries equal 
  IF (beta_t 
   ! 
   K_s = Ks_Beta(beta_upper) 
   Jv_s = Jvs_Beta(beta_upper) 
   G_s = Gs_Beta(beta_upper) 
   Js_
   ! 
   K = LN
   
   G = LN
 
  ELSE 
   K_s = Ks_Beta(beta_ o
   Jv_s = Jvs_Beta(beta_lower) 
   G_s = Gs_Beta(beta_lowe
   Js_s = Jss_Beta(beta_low
   ! 
   K = LNR(2.D0*pi, beta_lower, K_ic, K_s, beta_t) 
   Jv = LNR(2.D0*pi, beta_lower, Jv_ic, Jv_s
   G = LNR(2.D0*pi, beta_lower, G_
   
  END IF 
 END IF 
 ! 
 ! 
 END SUBROUTINE Evo
C 
C
C-------------------------------------------------------------------- 
C [ Internal Subroutine ]  Evolution_SZone 
C-------- ---------------------------------
 SUBROUTINE E
 ! for stiffness evolution in
 ! update E_0, E_s, LSP_s based on be
 ! calculate K,Jv,G,Js 
 ! -------------- main components ------------- 
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) 
 LSP_t, beta_t 

_f 
REAL*8 G_0, G_s, K_0, K_s, Jv_0, Jv_s, LSP_s 

. 

s_beta(beta_t) 

0s*G_s 

! Small Strain Zone 

 

 ) THEN       

P_t + LSP_tf(strs_t, beta_t, flag_upward) 

 
u = mu_up 

Jv_f = Jvf_low 
*mu_up 

 END IF 
 ! 

P_t, mu) 

 ! Ks_Beta, Jvs_Beta, Gs_Beta, LSPs_Beta,  
 ! LNR, LSP_tf, NONLNR 
 ! 
 REAL*8 strs_t(NTENS
 REAL*8
 REAL*8 p_t, q_t, LSP
 
 REAL*8 mu, Jv_f 
 INTEGER flag_upward 
   ! 1: Dstrs leads to the upper F.S
   ! 0: Dstrs leads to the lower F.S. 
 ! 
 K_s = Ks_Beta(beta_t) 
 Jv_s = Jvs_Beta(beta_t) 
 G_s = Gs_Beta(beta_t) 
 LSP_s = LSP
 !   
 K_0 = r_0s*K_s 
 Jv_0 = r_0s*Jv_s 
 G_0 = r_
 ! 
 p_t = pp(strs_t) 
 q_t = qq(strs_t) 
 !  
 IF (LSP_t <= LSP_s) THEN 
 
  K = LNR(0.D0, LSP_s, K_0, K_S, LSP_t) 
  G = LNR(0.D0, LSP_s, G_0, G_S, LSP_t)  
  Jv = LNR(0.D0, LSP_s, Jv_0, Jv_S, LSP_t) 
   ! ( x1, x2,  y1, y2, x ) 
 ELSE IF (p_t <= s_p
 ! Large Strain  
  LSP_f = LS
  ! 
  IF (flag_upward == 1) THEN 
   Jv_f = Jvf_up
   m
  ELSE 
   
   mu = r_mu
 
 
  K = NONLNR(LSP_s, LSP_f, K_s, K_f, LS
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R LSP_ _s, Jv_f, LSP_t, mu) 
P_t, mu) 

S(q_t) < TOL_ZERO) THEN 
ERO*(q_t/DABS(q_t)) 

t = 0 

0*G*p_t/q_t 

---------------------------------------- 

---------- 
Cross_Anisotropy  

a map to general conditions 
------------------------- 

/) 
ff matrix 

4.5D0)+1.D0/(G*6.D0)-1.D0/(Jv*3.D0)) 
.25D0 

*6.D0)+1.D0/(K*9.D0)-1.D0/(G*6.D0) 
0)-1.D0/(G*6.D0)+1.D0/(Js*3.D0)-1.D0/(Jv*6.D0) 

Jv*3.D0) 

+2.D0*A*C*D+B*B*E-2.D0*B*C*D 

 (NTENS) 
) ! dimension-2 is vertical 

D)/deno1 
 stiff(1,3) = (B*E-C*D)/deno1 

  Jv = NONLN ( s, LSP_f, Jv
  G = NONLNR(LSP_s, LSP_f, G_s, G_f, LS
   ! (  x1, x2, y1, y2, x, mid)  
 END IF 
 ! 
 IF (DAB
  Js = -3.D0*G*p_t/TOL_Z
   ! avoid p_
 ELSE   
  Js = -3.D
 END IF 
 ! 
 ! 
 END SUBROUTINE Evolution_SZone 
C 
C ---------------------------
C          IN-SUB  Cross_Anisotropy  
C ---------------------------------------------------------
 SUBROUTINE 
 ! calculate stiff(*,*) using 'K, Jv, G, Js' 
 ! ping from axisymmetric condition 
 ! ------------------
 REAL*8 A, B, C, D, E    ! (/A,B,C,B,A,C,D,D,E
 REAL*8 deno1, deno2     ! 2 denominators in sti
 ! 
 !-------- Compliance matrix 
 A = (-1.D0/(Js*3.D0)+1.D0/(K*
 1  *1
 B = -A*0.2D0 
 C = 1.D0/(Jv*3.D0)-1.D0/(Js
 D = 1.D0/(K*9.D
 E = 1.D0/(G*3.D0)+1.D0/(K*9.D0)+1.D0/(Js*3.D0)+1.D0/(
 !-------- Stiffness matrix  
 deno1 = -A*A*E
 deno2 = -A*E+2.D0*C*D-B*E 
 ! 
 stiff(1:NTENS,1:NTENS) = 0.D0 
 ! 
 SELECT CASE
 CASE (4
  stiff(1,1) = (-A*E+C*
 
  stiff(1,2) = C/deno2 
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f(2,1) = D/deno2 

)/deno2  
= G  

al 
E+C*D)/deno1 

iff(1,2) = (B*E-C*D)/deno1 

  
) = G  

BROUTINE Cross_Anisotropy 
 

-------------------------------------------------- 
 [ Internal Subroutine ]  Dstrs_Dstrn 

------------------------------------------------------------------- 

TENS 
f(i,j)*Dstrn(j) 

 

 D_PROPS  

  stiff(3,1) = stiff(1,3) 
  stiff(3,3) = stiff(1,1) 
  stiff(3,2) = stiff(1,2) 
  stif
  stiff(2,3) = stiff(2,1) 
  stiff(2,2) = -(A+B
  stiff(4,4) 
 CASE (6) ! dimension-3 is vertic
  stiff(1,1) = (-A*
  st
  stiff(1,3) = C/deno2 
  stiff(2,1) = stiff(1,2) 
  stiff(2,2) = stiff(1,1) 
  stiff(2,3) = stiff(1,3) 
  stiff(3,1) = D/deno2 
  stiff(3,2) = stiff(3,1) 
  stiff(3,3) = -(A+B)/deno2
  stiff(4,4
  stiff(5,5) = G 
  stiff(6,6) = G 
 END SELECT  
 ! 
 END SU
C
C------------------
C 
C-
 SUBROUTINE Dstrs_Dstrn(Dstrs, Dstrn) 
 ! get Dstrs using stiff(*,*) 
 ! -------------------------------------------  
 REAL*8 Dstrs(NTENS), Dstrn(NTENS) 
 ! 
 Dstrs(1:NTENS) = 0.D0 
 DO i=1,NTENS 
  DO j=1,N
   Dstrs(i) = Dstrs(i)+stif
  END DO 
 END DO
 ! 
 END SUBROUTINE Dstrs_Dstrn 
C 
C ------------------------------------------------------------------- 
C  [ Internal Subroutine ]  REA
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!!! 
---------------- ----- 

ROPS(8)  

= P
PROPS(12)  

CR =PROPS(13)  
nc =  PROPS(14) 

BROUTINE READ_PROPS 

ency  
 

internal stiffness parameters based on p_0 

/p_a) 
---------------- 

Jv_ref 

_0t = p0_pre 

IF

C -------------------------------------------------------------------  
 SUBROUTINE READ_PROPS 
 ! ------------------------------------
  G_ref =  PROPS(1)   
  Jv_ref =  PROPS(2)  
  K_ref =  PROPS(3)  
  LSP_min = PROPS(4)   
  mu_up =  PROPS(5)  
  nn =  PROPS(6)  
  r_0s = PROPS(7)   
  r_x = P
  r_LSP = PROPS(9)    
  r_mu =PROPS(10)  
  faf ROPS(11)  
  lambda = 
  O
  k_
 !   
 END SU
C 
C 
C ------------------------------------------------------------------- 
C  [ Internal Subroutine ]  P_Depend
C ------------------------------------------------------------------- 
 SUBROUTINE P_Dependency 
 ! calculate 
 ! E_min = E_ref*p_a*(p_0/p_a)^nn 
 ! LSP_min = (LSP_ref*p_a)*(p_0
 ! -------------------
 ! 
 REAL*8 r_t, r_E, sign_
 REAL*8 p_0t 
 ! 
 IF (p0_pre == s_p .AND. p_0 < p0_pre) THEN 
  p
 ELSE 
  p_0t = p_0 
 END  
 ! 
 r_t = p_0t/p_a 
 r_E = p_a*r_t**nn 
 sign_Jv_ref = DABS(Jv_ref)/Jv_ref 
 ! 
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ssion Zone 
v_min

in = 0.5pi 
f*r_E 

ssion Zone 

_max
max = pi; K_max falls in Shear Zone 

 (-sign_Jv_ref)*r_JvK*K_min 
v_max at 1.5pi 

eta_Gmax = 1.5pi 
! 

 
------------------------------------------------- 

 TEV  
-----------------------  

TINE INI_STATEV 
anics sign convention (compressive: +) 

(1) = 0.5D0*pi ! Beta_pre 

RESS) 

f_Stress(strs_t) 

(strs_t)  ! p_0 

 ! Ue 

or K, Jv, G, Js, for debug purpose 

 K_min = K_ref*r_E 
  !K_min falls in Compre
 J  = Jv_ref*r_E 
  !Beta_Jvm
 G_min = G_re
  !G_min falls in Compre
 ! 
 K  = r_x*K_min 
  !Beta_K
 Jv_max =
  !J
 G_max = r_x*G_min 
  !B
 
 LSP_min = p_0*LSP_ref 
  !Beta_LSPmin = Beta_RTC 
 LSP_max = r_LSP*LSP_min 
  !LSPmax falls in [Beta_RTE, 2pi] 
 ! 
 END SUBROUTINE P_Dependency 
C 
C
C ------------------
C  [ Internal Subroutine ]  INI_STA
C --------------------------------------------
 SUBROU
 ! strs_t with general mech
 ! ------------------------------------- 
 REAL*8 strs_t(NTENS) 
 ! 
 STATEV
 STATEV(2) = 0.D0  ! LSP_pre  
 !  
 CALL Sign_Change(strs_t, ST
 Ue = 0.D0 
 CALL Ef
 ! 
 STATEV(3) = pp
 STATEV(4) = pp(strs_t)*OCR ! s_p 
 STATEV(5) = Ue   
 ! 
 ! STATEV(6-9) f
 ! 



 

 

192

 

STATEV(3)  ! p0_pre 

BROUTINE INI_STATEV 
  

-------------------------------------------------- 
 [ Internal Subroutine ]  READ_STATEV  

------------------------------------------------------------------  

-------

) 

riables K, Jv, G, Js are only for debug purpose 

BROUTINE READ_STATEV 
 

----------------------------------------- 

---------------------  
WRITE_STATEV 

eta_pre 

0 

e 

(6) = K 

(8) = G 
STATEV(9) = Js 
! 
STATEV(10) = p0_pre 

 STATEV(10) = 
 ! 
 END SU
C
C -----------------
C 
C -
 SUBROUTINE READ_STATEV 
 ! -------------------------------------------------- 
 Beta_pre = STATEV(1)  
 LSP_pre = STATEV(2)  
 ! 
 p_0 = STATEV(3) 
 s_p = STATEV(4) 
 Ue = STATEV(5
 ! 
 ! state va
 ! 
 p0_pre = STATEV(10) 
 ! 
 END SU
C
C --------------------------
C  [ Internal Subroutine ]  WRITE_STATEV  
C ----------------------------------------------
 SUBROUTINE 
 ! --------------------------------------------------------- 
 STATEV(1) = B
 STATEV(2) = LSP_pre  
 ! 
 STATEV(3) = p_
 STATEV(4) = s_p 
 STATEV(5) = U
 ! 
 STATEV
 STATEV(7) = Jv  
 STATEV
 
 
 
 ! 
 END SUBROUTINE WRITE_STATEV 
C 
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------------------------------------------------------------------- 
 [ Internal Subroutine ]  Sign_Change() 

oMechanics sign conventions 
! from strs2 to strs1 

-- 
REAL*8 strs1(NTENS), strs2(NTENS) 

END DO 

ROUTINE Sign_Change 

 Subroutine ]     OUT_FS 

_t, flag_fail, strs_t, beta_t) 
strs_t, beta_t & stiff using failure parameters 

--- 
NTENS), strs_t(NTENS), Dstrs_t(NTENS) 

N 
 = Jvf_up 

_f 
0*G*p_t/q_t 

,*) using K, Jv, G, Js 

C-
C 
C-------------------------------------------------------------------- 
 SUBROUTINE Sign_Change(strs1, strs2) 
 ! switch between General Mechanics & Ge
 
 ! -----------------------------------
 
 ! 
 DO i = 1, NDI 
  strs1(i) = -strs2(i) 
 END DO 
 ! 
 DO i = NDI+1, NTENS 
  strs1(i) = strs2(i) 
 
 ! 
 END SUB
C 
C ------------------------------------------------------------------- 
C   [ Internal
C ------------------------------------------------------------------- 
 SUBROUTINE OUT_FS(Dstrn
 ! update 
 ! ----------------------------------------
 REAL*8 Dstrn_t(
 INTEGER flag_fail 
 REAL*8 beta_t, p_t, q_t 
 !  
 p_t = pp(strs_t) 
 q_t = qq(strs_t) 
 ! 
 K = K_f 
 IF (flag_fail == 1) THE
  Jv
 ELSE  
  Jv = Jvf_low 
 END IF 
 G = G
 Js = -3.D
 ! 
 CALL Cross_Anisotropy 
  ! calculate stiff(*
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tiff(*,*) & Dstrn 
FN_Beta(Dstrs_t) 

strs_t 

ternal Subroutine ]     Eff_Stress 

gn convention 
------------------- 

) 

E (4) 
! dimension-2 is vertical 
IF (WT > COORDS(2)) THEN 

  Uh = 9.8D0*(WT - COORDS(2)) 
 ELSE  

! 

 ! dimension-2 is vertical 

*(WT - COORDS(3)) 
 ELSE  

! 
_drain == 0) THEN 
! undrained 

 DO i=1,NDI 
   strs_t(i) = strs_t(i) - Ue - Uh 

 ELSE  
 ! drained 
 DO i=1,NDI 

 CALL Dstrs_Dstrn(Dstrs_t, Dstrn_t) 
  ! calculate Dstrs using s
 beta_t = 
 ! 
 strs_t = strs_t + D
 ! 
 END SUBROUTINE OUT_FS 
C 
C ------------------------------------------------------------------- 
C   [ In
C ------------------------------------------------------------------- 
 SUBROUTINE Eff_Stress(strs_t) 
 ! strs in geotechnical si
 ! --------------------------------------
 REAL*8 strs_t(NTENS
 ! 
 SELECT CASE (NTENS) 
 CAS
  
  
 
 
   Uh = 0.D0 
  END IF 
 
 CASE (6) 
 
  IF (WT > COORDS(3)) THEN 
   Uh = 9.8D0
 
   Uh = 0.D0 
  END IF 
 ! 
 END SELECT 
 
 IF (flag
  
 

  END DO 

 
 



 

 

195

 

 strs_t(i) = strs_t(i) - Uh 

! 
 SUBROUTINE Eff_Stress 

----------------------------------------- 
 [ Internal Subroutine ]     Final_Update  

--------------------------------------- 
ROUTINE Final_Update(strs_t, Dstrn_t) 

TRESS & DDSDDE 
--------------------------------- 

t(NTENS), Dstrn_t(NTENS) 
! both in geotechnical sign convention, i.e. compressive=(+) 

flag_drain == 0) THEN 
rained 

Ue = Ue + K_fld*3.D0*pp(Dstrn_t)   
 DO i=1,NDI 

strs_t(i) = strs_t(i) + Ue + Uh 
  ! 

NDI 
   stiff(i,j) = stiff(i,j) + K_fld 

 ! 

 
 DO i=1,NDI 

END IF 

 ! update in general mechanics sign convention 
E = stiff  

! 

UBROUTINE Final_Update 

----------------------------------------- 
 [ Internal Subroutine ]  ISO_ELA 

  
  END DO 
 END IF 
 
 END
C 
C --------------------------
C  
C ----------------------------
 SUB
 ! Update Ue, S
 ! ---
 REAL*8 strs_
  
 ! 
 IF (
  ! und
  
 
   
 
   DO j=1,
 
   END DO 
  
  END DO 
 ELSE 
  ! drained
 
   strs_t(i) = strs_t(i) + Uh 
  END DO 
 
 !  
 CALL Sign_Change(STRESS, strs_t)  
 
 DDSDD
 
 ! 
 END S
C 
C 
C---------------------------
C 
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- 
, nu) 

! update DDSDDE & STRESS 
----------------------- 

INTEGER k1, k2 
8 GG, c1 

! 

DO k1=1,NTENS 

 0. 

 DO 

 
DO k1=1,NDI 

I 

   END DO 

! 

SDDE(k1,k1) = (1.D0-nu)*E/c1 

nu) 
k2=NDI+1, NTENS 

DDE(k2,k2) = GG 
 DO 

 
RESS(k1) = STRESS(k1)+DDSDDE(k1,k2)*DSTRAN(k2)  

! 
ND SUBROUTINE ISO_ELA 

--------------- 
DEBUG_GENERAL  
----------------  

C-------------------------------------------------------------------
 SUBROUTINE ISO_ELA(E
 
 ! --------------
 REAL*8 E, nu  
 
 REAL*
 
 ! Matrix - Drained 
 
         DO k2=1,NTENS 
            DDSDDE(k2,k1) =
         END DO 
      END
 ! 
      c1 = (1.D0-2.D0*nu)*(1.D0+nu)
      
         DO k2 = 1,ND
               DDSDDE(k1,k2) = nu*E/c1 
      
      END DO 
 
      DO k1=1,NDI 
         DD
      END DO 
 ! 
      GG = 0.5D0*E/(1.D0+
      DO 
         DDS
      END
 ! 
 DO k1=1,NTENS 
  DO k2=1,NTENS
   ST
  END DO 
 END DO 
 ! 
 
 E
C 
C ----------------------------------------------------
C  [ Internal Subroutine ]  
C ---------------------------------------------------
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TINE DEBUG_GENERAL 

low = ", F8.0)') Jvf_low 
6,'("r_JvK = ", F5.0)') r_JvK 

----------------- Material --------------------")') 

u = ", F5.2)') r_mu 
n = ", F5.3)') nn 

bda = ", F8.6)') lambda 

(16,'("------------------ Computation -----------------")') 
L,KSTEP,KINC, KSUB,  p,     q,   strs(1), strs(3), 

 Uh,    Ue")') 

 SUBROU
 !  
 ! -----------------------------------   
 WRITE (16,'("------------------ Numerical -------------------")') 
 WRITE (16,'("TOL_r = ", F10.9)') TOL_r 
 WRITE (16,'("TOL_Beta = ", F10.9)') TOL_Beta 
 WRITE (16,'("K_f = ", F5.0)') K_f 
 WRITE (16,'("G_f = ", F5.0)') G_f 
 WRITE (16,'("Jvf_up = ", F8.0)') Jvf_up 
 WRITE (16,'("Jvf_
 WRITE (1
 WRITE (16,'("r_JsK = ", F5.0)') r_JsK 
 WRITE (16,'("K_fld = ", F8.0)') K_fld 
 WRITE (16,'("-
 WRITE (16,'("K_ref = ", F5.0)') K_ref   
 WRITE (16,'("G_ref = ", F5.0)') G_ref   
 WRITE (16,'("Jv_ref = ", F5.0)') Jv_ref 
 WRITE (16,'("LSP_ref = ", F5.0)') LSP_ref 
 WRITE (16,'("mu_up = ", F5.2)') mu_up 
 WRITE (16,'("r_0s = ", F5.2)') r_0s 
 WRITE (16,'("r_x = ", F5.2)') r_x 
 WRITE (16,'("r_LSP = ", F5.2)') r_LSP 
 WRITE (16,'("r_m
 WRITE (16,'("n
 WRITE (16,'("faf = ", F6.2)') faf 
 WRITE (16,'("OCR = ", F5.3)') OCR 
 WRITE (16,'("lam
 WRITE (16,'("k_nc = ", F5.3)') k_nc 
 WRITE (16,'("------------------ Others --------------------")') 
 WRITE (16,'("WT = ", F6.3)') WT 
 WRITE (16,'("flag_drain = ", I3)') flag_drain 
 WRITE (16,'()') 
 WRITE 
 WRITE (16,'("NOE
 1  ev,       es,         K,        Jv,       G,       Js, 
     2        Beta,   LSP,   
 WRITE (16,'("------------------------------------------------")') 
 !  
 ! 
 END SUBROUTINE DEBUG_GENERAL 
C 
C ------------------------------------------------------------------- 
C   [ Internal Subroutine ]  DEBUG_SUBSTEP  
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(STRAN) 

------------------- 

******* 

ion ]  LSP_tf  

C -------------------------------------------------------------------  
 SUBROUTINE DEBUG_SUBSTEP(KSUB) 
 !  
 ! -------------------------------------- 
 ! 
 INTEGER KSUB 
 REAL*8 strs_t(NTENS) 
 REAL*8 p_t, q_t, ev, es 
 ! 
 CALL Sign_Change(strs_t, STRESS) 
 p_t = pp(strs_t) 
 q_t = qq(strs_t) 
 !  
 ev = -300.D0*pp
 es = -100.D0*qq(STRAN) 
 ! 
 WRITE (16,'(4I5, 4F8.2, 2F10.7, F8.0, F12.0, F8.0, F12.0, 4F8.2)')    
 1 NOEL, KSTEP, KINC, KSUB, p_t, q_t, strs_t(1), strs_t(3), 
     2 ev, es, K, Jv, G, Js, Beta_pre, LSP_pre, Uh, Ue 
 WRITE (16,'(4F12.8)') DSTRAN(1:4) 
 ! 
 ! 
 END SUBROUTINE DEBUG_SUBSTEP 
C 
C ------------------------------------------------------------------- 
C   [ Internal Subroutine ]  DEBUG_Beta  
C -------------------------------------------------------------------  
 SUBROUTINE DEBUG_Beta 
 ! record computational info in Beta_Converge 
 ! -------------------
 ! 
 !WRITE (16,'("-------------------------------------------------")') 
 ! 
 END SUBROUTINE DEBUG_Beta 
C 
C 
C         SUBROUTINES 
C ***************************************************************
C       FUNCTIONS 
C 
C 
C ------------------------------------------------------------------- 
C  [ Internal Funct
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---------------------------------------- 

om strs_t to its image point on F.S. 
termining mu 

----------------- 

REAL*8 beta_t 
  

 direction is flag_upward; 0: downward 

 ! boundary for Mf_upper and Mf_lower 

P, mm 

! 
eta_t) 

N(beta_t) 
Dq) 

 ! Magnitudes of D_LSP does not matter here 

! 
i 

d(Beta_crit) 

! 
_t < Beta_crit .AND. beta_t > Beta_upper) THEN  

 ! FS(p+mm*Dp, q+mm*Dq) = 0 
pper*Dp-Dq)  

 flag_upward = 1 

lower*p+q)/(-Mf_lower*Dp-Dq) 
ower is positive 

flag_upward = 0 
D IF 

 
LSP_tf = mm*D_LSP 

SP_tf 

------------------------- 

C ---------------------------
 REAL*8 FUNCTION LSP_tf(strs_t, beta_t, flag_upward) 
 ! evaluate distance in LSP fr
 ! return flag_upward for de
 ! -----------------
 REAL*8 strs_t(NTENS) 
 
 INTEGER flag_upward 
  ! 1: path
 REAL*8 Beta_crit  
 
 REAL*8 Dp, Dq, p, q  
 REAL*8 D_LS
  ! mm = LSP_tf/D_LSP 
 
 Dp = DCOS(b
 Dq = DSI
 D_LSP = DSQRT(Dp*Dp + Dq*
 
 p = pp(strs_t) 
 q = qq(strs_t) 
 ! 
 
 Beta_crit = FN_Beta(strs_t) + p
 CALL Beta_Perio
  !  
 
 IF (beta
 
  mm = (-Mf_upper*p+q)/(Mf_u
 
 ELSE 
  mm = (Mf_
  ! note: Mf_l
  
 EN
 !
 
 !   
 !  
 END FUNCTION L
C 
C-------------------------------------------
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tion ]  Failure 
------------------------- 

INTEGER FUNCTION Failure(strs_t) 
evaluate failure state  

! 1: out of upper F.S.; 2: out of lower F.S.; 0: allowable 
ion 
------------------ 

p_t, q_t 

er*p_t < q_t) THEN 

 -Mf_lower*p_t) THEN 

----------------- 
ernal Function ]  FS_MN 
------------------------------------- 

TION FS_MN(strs) 

. 

s(2)+strs(3) 

C   [ Internal Func
C-------------------------------------------
 
 ! 
 
 ! strs in geotechnical sign convent
 ! ---------------------------------------
 REAL*8 strs_t(NTENS) 
 REAL*8 
 ! 
 p_t = pp(strs_t) 
 q_t = qq(strs_t) 
 ! 
 IF(Mf_upp
  Failure = 1 
 ELSE IF(q_t <
   ! Note: Mf_lower is positive 
  Failure = 2 
 ELSE 
  Failure = 0 
 END IF 
 !  
 ! 
 END FUNCTION Failure 
C 
C---------------------------------------------------
C   [ Int
C-------------------------------
 REAL*8 FUNC
 ! Matsuoka-Nakai failure surface 
 ! NOTE: M-N function represents multiple surfaces, 
 ! only one of which is intended for Failure Surface.  
 ! Extra numerical measures must be taken if one has to use M-N for F.S
 ! ------------------------------------------ 
 REAL*8 strs(NTENS) 
 REAL*8 a, I_1, I_2, I_3  
 ! 
 a = faf*pi/180.D0 
 !  
 I_1 = strs(1)+str
 ! 
 SELECT CASE (NTENS) 
 CASE (4) 
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)-strs(1)*strs(2) 
  -strs(2)*strs(3)-strs(3)*strs(1) 

s2:vertical; s4:12) 
rs(1)*strs(2)*strs(3)-strs(3)*strs(4)*strs(4) 

CASE (6) 
trs(4)*strs(4)+strs(5)*strs(5)+strs(6)*strs(6) 
-strs(1)*strs(2)-strs(2)*strs(3)-strs(3)*strs(1) 

tical; s4:12; s5:13; s6:23) 
 I_3 = strs(1)*strs(2)*strs(3)+2*strs(4)*strs(5)*strs(6) 

6)*strs(6)-strs(2)*strs(5)*strs(5) 
strs(4)*strs(4) 

! 
S(a)/(9-DSIN(a)*DSIN(a)) 

+ FS_MN*I_1*I_2  

! 

 
  [ Internal Function ]  FN_eta 

---------------------------------- 
REAL*8 FUNCTION FN_eta(strs_t) 

ce 

REAL*8 strs_t(NTENS) 
_2, I_3  

s_t(2)+strs_t(3) 

TENS) 

t(4)*strs_t(4)-strs_t(1)*strs_t(2) 
-strs_t(2)*strs_t(3)-strs_t(3)*strs_t(1) 

rizontal; s2:vertical; s4:12) 
_t(2)*strs_t(3)-strs_t(3)*strs_t(4)*strs_t(4) 

s_t(4)+strs_t(5)*strs_t(5)+strs_t(6)*strs_t(6) 
strs_t(2)-strs_t(2)*strs_t(3)-strs_t(3)*strs_t(1) 
rizontal; s3:vertical; s4:12; s5:13; s6:23) 
s_t(2)*strs_t(3)+2*strs_t(4)*strs_t(5)*strs_t(6) 

  I_2 = strs(4)*strs(4
 1 
  ! (s1,s3:horizontal; 
  I_3 = st
 ! 
 
  I_2 = s
 1  
  ! (s1,s2:horizontal; s3:ver
 
 1  -strs(1)*strs(
     2  -strs(3)*
 END SELECT 
 
 FS_MN = DCOS(a)*DCO
 FS_MN = I_3 
 ! 
 
 END FUNCTION FS_MN 
C 
C--------------------------------------------------------------------
C 
C----------------------------------
 
 ! for Matsuoka-Nakai Surfa
 ! --------------------------------- 
 
 REAL*8 a, I_1, I
 ! 
 I_1 = strs_t(1)+str
 ! 
 SELECT CASE (N
 CASE (4) 
  I_2 = strs_
 1   
  ! (s1,s3:ho
 I_3 = strs_t(1)*strs
 ! 
 CASE (6) 
 I_2 = strs_t(4)*str
 1 -strs_t(1)*
  ! (s1,s2:ho
 I_3 = strs_t(1)*str
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trs_t(6)*strs_t(6)-strs_t(2)*strs_t(5)*strs_t(5) 
trs_t(4)*strs_t(4) 

*a)/(1.D0-a) 
ta = DSQRT(a) 

 FUNCTION FN_eta 

------------------------------------------------------ 
 [ Internal Function ]  Norm 

----------------------------------------------------- 
*8 FUNCTION Norm(strs_t) 
idean norm 

---- 
L*8 strs_t(NTENS), nm 

 = 0.D0 

(i)*strs_t(i) 

rm = DSQRT(nm) 

N Norm 

------------------------ 
  [ Internal Function ]  Dot 

---------------------- 
REAL*8 FUNCTION Dot(Dstrs1, Dstrs2) 

two path directions 
! Dot=0: perpendicular; Dot>0: "small"; Dot<0: "large" 

REAL*8 Dstrs1(NTENS), Dstrs2(NTENS), dt 

dt = 0.D0 

 dt = dt + Dstrs1(i)*Dstrs2(i) 

 1 -strs_t(1)*s
     2  -strs_t(3)*s
 END SELECT 
 ! 
 a = -I_3/(I_1*I_2) 
 a = (1.D0-9.D0
 FN_e
 ! 
 END
C 
C 
C--------------
C  
C---------------
 REAL
 ! Eucl
 ! ------------------------
 REA
 ! 
 nm
 DO i=1,NTENS 
  nm = nm + strs_t
 END DO 
 No
 ! 
 END FUNCTIO
C 
C--------------------------------------------
C 
C----------------------------------------------
 
 ! evaluate the difference of the 
 
 ! ---------------------------------- 
 
 ! 
 
 DO i=1,NTENS 
 
 END DO 
 Dot = dt/(Norm(Dstrs1)*Norm(Dstrs2)) 
 ! 
 END FUNCTION Dot 
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ction ]  pp 
------------------ 

AL*8 strs_t(NTENS) 

1 is in-plane horizontal 

finition for q 
+strs_t(3))/3.D0 

-------------- 

qq(strs_t) 

eneral definition for q,  
nguish different quadrants 

rs_t(1) 
))*(strs_t(1)-strs_t(2))+ 

_t(2)-strs_t(3))*(strs_t(2)-strs_t(3))+ 
s_t(3)-strs_t(1)))*0.5D0+ 

l 

C 
C-------------------------------------------------------------------- 
C   [ Internal Fun
C--------------------------------------------------
 REAL*8 FUNCTION pp(strs_t) 
 ! --------------------------------------------------------- 
 RE
 ! 
 SELECT CASE (NTENS) 
 CASE (4) 
 ! dimension-2 is vertical, dimension-
  pp = (strs_t(1)+strs_t(2))*0.5D0 
  ! consistent with simplified de
  !pp = (strs_t(1)+strs_t(2)
 CASE (6) 
  pp = (strs_t(1)+strs_t(2)+strs_t(3))/3.D0 
 END SELECT 
 ! 
 END FUNCTION pp 
C 
C------------------------------------------------------
C   [ Internal Function ]  qq 
C-------------------------------------------------------------------- 
 REAL*8 FUNCTION 
 ! for simplicity, q = sigma_v - sigma_h 
 ! note: if one uses g
 ! measures must be taken to disti
 ! in normal stress space (sigma1, sigma2, sigma3). 
 ! --------------------------------------------------------- 
 !  
 REAL*8 strs_t(NTENS) 
 ! 
 SELECT CASE (NTENS) 
 CASE (4)  
 ! dimension-2 is vertical 
  qq = strs_t(2)-st
 ! qq = DSQRT(((strs_t(1)-strs_t(2
 1!  (strs
 2!  (strs_t(3)-strs_t(1))*(str
     3!  3.D0*strs_t(4)*strs_t(4)) 
 CASE (6) 
 ! dimension-3 is vertica
  qq = strs_t(3)-strs_t(1) 
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T(((strs_t(1)-strs_t(2))*(strs_t(1)-strs_t(2))+ 
s_t(2)-strs_t(3))+ 

 

NONLNR (Nonlinear Degradation) 
------------- 

N NONLNR(x1, x2, y1, y2, xx, mu) 

 a/(x2+b)+c = y2 
+y2 

 a/(xx+b)+c = y 

-------------------------------------------------- 

 REAL*8 nume, deno   
 ! 
 nume = -y2*x1 + y2*mu*x1 - y1*x2 + xx*y1 - xx*y2*mu + xx*y2 
 deno = 2.D0*xx - xx*mu - x1 - x2 + mu*x1 
 NONLNR = nume/deno 
 ! 
 END FUNCTION NONLNR 
C 
C-------------------------------------------------------------------- 
C [ Internal Function ]  LNR (Linear Interpolation) 
C-------------------------------------------------------------------- 
 REAL*8 FUNCTION LNR(x1, x2, y1, y2, xx) 
 ! eqn1: a*x1+b=y1 
 ! eqn2: a*x2+b=y2 
 ! eqn3: a*xx+b=y 
 ! calculate y   
 ! --------------------------------------------------------- 
 REAL*8 x1, x2, y1, y2, xx 
 !  
 LNR = (xx*y1-xx*y2+x1*y2-x2*y1)/(-x2+x1) 
 ! 
 END FUNCTION LNR 
C 

 ! qq = DSQR
 1!  (strs_t(2)-strs_t(3))*(str
 2!  (strs_t(3)-strs_t(1))*(strs_t(3)-strs_t(1)))*0.5D0+
     3! 3.D0*(strs_t(4)*strs_t(4)+strs_t(5)*strs_t(5)+strs_t(6)*strs_t(6))) 
 ! 
 END SELECT 
 ! 
 END FUNCTION qq 
C 
C-------------------------------------------------------------------- 
C [ Internal Function ]  
C-------------------------------------------------------
 REAL*8 FUNCTIO
 ! eqn1: a/(x1+b)+c = y1 
 ! eqn2:
 ! eqn3: a/(1/2*x1+1/2*x2+b)+c = (y1-y2)/mu
 ! eqn4:
 ! calculate y 
 ! -------
 REAL*8 x1, x2, y1, y2, xx, mu 
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C 
C-------------------------------------------------------------------- 
C [ Internal Function ]  FN_Beta  
C-------------------------------------------------------------------- 
 REAL*8 FUNCTION FN_Beta(Dstrs) 
 ! --------------------------------------------------------- 
 ! Beta: [0, 2*pi) 
 ! 
 REAL*8 Dstrs(NTENS) 
 REAL*8 Dp, Dq 
 !  
 Dp = pp(Dstrs) 
 Dq = qq(Dstrs) 
 !  
 ! 
 IF (Dp > 0.D0 .AND. Dq > 0.D0) THEN  !quadrant 1 
  FN_Beta = DATAN(Dq/Dp) 
  !  
 ELSE IF(Dp < 0.D0 .AND. Dq > 0.D0) THEN !quadrant 2 
  FN_Beta = DATAN(Dq/Dp) + pi 
  ! 
 ELSE IF(Dp < 0.D0 .AND. Dq < 0.D0) THEN !quadrant 3 
  FN_Beta = DATAN(Dq/Dp) + pi 
  ! 
 ELSE IF(Dp > 0.D0 .AND. Dq < 0.D0) THEN !quadrant 4 
  FN_Beta = DATAN(Dq/Dp) + 2.D0*pi 
  ! 
 ELSE IF(Dp > 0.D0 .AND. Dq == 0.D0) THEN !p-axis (+) 
  FN_Beta = 0.D0 
  ! 
 ELSE IF(Dp < 0.D0 .AND. Dq == 0.D0) THEN !p-axis (-) 
  FN_Beta = pi 
  ! 
 ELSE IF(Dp == 0.D0 .AND. Dq > 0.D0) THEN !q-axis (+) 
  FN_Beta = 0.5D0*pi 
  ! 
 ELSE IF(Dp == 0.D0 .AND. Dq < 0.D0) THEN !q-axis (-) 
  FN_Beta = 1.5D0*pi  
 ELSE          ! Dp=Dq=0  
  !!! exception  
 END IF 
 ! 
 END FUNCTION FN_Beta 
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C 
C-------------------------------------------------------------------- 
C  [ Internal Function ]  Ks_beta 
C-------------------------------------------------------------------- 
 REAL*8 FUNCTION Ks_beta(beta_t) 
 ! For K_s 
 ! Ks_beta(beta_upper) = Ks_beta(beta_lower) = K_min; 
 ! Ks_beta(pi) = K_max 
 ! beta: [0, 2*pi) 
 ! ------------------------------------------ 
 REAL*8 beta_t 
 ! 
 IF(beta_t >= Beta_lower .OR. beta_t <= Beta_upper) THEN 
  ! compression zone 
  Ks_beta = K_min 
 ELSE IF(beta_t > Beta_upper .AND. beta_t <= pi) THEN  
  ! shear zone - 1 
  Ks_beta = LNR(Beta_upper, pi, K_min, K_max, Beta_t) 
  ! LNR(x1, x2, y1, y2, x) 
 ELSE  
  ! shear zone - 2 
  Ks_beta = LNR(Beta_lower, pi, K_min, K_max, Beta_t) 
 END IF 
 ! 
 ! 
 END FUNCTION Ks_beta 
 ! 
C 
C 
C-------------------------------------------------------------------- 
C  [ Internal Function ]  Jvs_beta 
C-------------------------------------------------------------------- 
 REAL*8 FUNCTION Jvs_beta(beta_t) 
 ! For Jv_s 
 ! -Jvs_beta(beta_upper) = Jvs_beta(beta_lower) = Jv_max; 
 ! Jvs_beta(0.5*pi) = Jv_min 
 ! beta: [0, 2*pi) 
 ! ------------------------------------------ 
 REAL*8 beta_t 
 ! 
 IF(beta_t <= Beta_upper) THEN 
  ! upper compression zone 
  Jvs_beta = -Jv_max 
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   ! Jv_max refering to beta=1.5pi 
 ELSE IF(beta_t >= Beta_lower) THEN  
  ! lower compression zone 
  Jvs_beta = Jv_max 
   ! sign of Jv changes with Dq 
 ELSE IF(beta_t > Beta_upper .AND. beta_t <= 0.5D0*pi) THEN  
  ! shear zone - 1 (upper) 
  Jvs_beta = LNR(Beta_upper, 0.5D0*pi, -Jv_max, Jv_min, Beta_t) 
     ! LNR(x1, x2, y1, y2, x) 
 ELSE IF(beta_t > 0.5D0*pi .AND. beta_t <= pi) THEN  
  ! shear zone - 2 (upper) 
  Jvs_beta = LNR(0.5D0*pi, Beta_lower, Jv_min, -Jv_max, Beta_t) 
 ELSE  
  ! shear zone - 3 (lower) 
  Jvs_beta = LNR(0.5D0*pi, Beta_lower, -Jv_min, Jv_max, Beta_t) 
   ! sign of Jv changes with Dq 
 END IF 
 ! 
 ! 
 END FUNCTION Jvs_beta 
 ! 
 ! 
C 
C-------------------------------------------------------------------- 
C  [ Internal Function ]  Gs_beta 
C-------------------------------------------------------------------- 
 REAL*8 FUNCTION Gs_beta(beta_t) 
 ! For G_s 
 ! Gs_beta(beta_upper)=Gs_beta(beta_lower)=G_min; 
 ! Gs_beta(1.5*pi)=G_max 
 ! beta: [0, 2*pi) 
 ! ------------------------------------------ 
 REAL*8 beta_t 
 REAL*8 Gs_0  ! Gs value at beta=0 
 ! 
 Gs_0 = 1.5D0*(1-k_nc)/(1+2.D0*k_nc)*K_min 
 ! 
 IF(beta_t <= Beta_upper) THEN 
  ! compression zone - upper 
  Gs_beta = LNR(Beta_upper, 0.D0, G_min, Gs_0, Beta_t)  
  ! LNR(x1, x2, y1, y2, x) 
 !ELSE IF(beta_t >= Beta_lower) THEN 
  ! compression zone - lower 
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 ! Gs_beta = LNR(Beta_lower, 2.D0*pi, G_min, Gs_0, Beta_t) 
  ! 
 ELSE IF(beta_t > Beta_upper .AND. beta_t <= 1.5D0*pi) THEN  
  ! shear zone - 1 
  Gs_beta = LNR(Beta_upper, 1.5D0*pi, G_min, G_max, Beta_t) 
  !  
 ELSE  
  ! shear zone - 2 
  Gs_beta = LNR(2.D0*pi, 1.5D0*pi, Gs_0, G_max, Beta_t) 
 ! Gs_beta = LNR(Beta_lower, 1.5D0*pi, G_min, G_max, Beta_t) 
 END IF 
 ! 
 ! 
 END FUNCTION Gs_beta 
 ! 
C 
C-------------------------------------------------------------------- 
C  [ Internal Function ]  Jss_beta 
C-------------------------------------------------------------------- 
 REAL*8 FUNCTION Jss_beta(beta_t, p_t, q_t) 
 ! For Js_s in compression zone 
 ! Jss_beta(beta_upper)=(-3p/q)*Gs_beta(beta_upper) 
 ! Jss_beta(beta_lower)=(-3p/q)*Gs_beta(beta_lower) 
 ! Jss_beta(0) = (sign)*r_JsK*K_min  
 !  
 ! ------------- involved procedure --------------- 
 !  Gs_beta 
 ! 
 REAL*8 beta_t, p_t, q_t 
 REAL*8 Jss_upper, Jss_lower, Jss_0 
  ! Jss values at Beta_upper, Beta_lower & Beta=0 
 REAL*8 sign_Js 
 ! 
 Jss_upper = (-3.D0*p_t/q_t)*Gs_Beta(Beta_upper) 
 Jss_lower = (-3.D0*p_t/q_t)*Gs_Beta(Beta_lower) 
 sign_Js = DABS(-q_t)/(-q_t) 
 Jss_0 = sign_Js*r_JsK*K_min 
 ! 
 IF(beta_t <= Beta_upper) THEN  
  !  
  Jss_beta = LNR(0.D0, Beta_upper, Jss_0, Jss_upper, Beta_t) 
  ! LNR(x1, x2, y1, y2, x) 
 ELSE IF(beta_t >= Beta_lower) THEN 
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  !  
  Jss_beta = LNR(2.D0*pi, Beta_lower, Jss_0, Jss_lower, Beta_t) 
 END IF 
 ! 
 ! 
 END FUNCTION Jss_beta 
 ! 
C 
C 
C-------------------------------------------------------------------- 
C  [ Internal Function ]  LSPs_beta 
C-------------------------------------------------------------------- 
 REAL*8 FUNCTION LSPs_beta(beta_t) 
 ! For LSP_s 
 ! LSPs_beta(0) = LSPs_beta(beta_RTE) = LSP_max; 
 ! LSPs_beta(beta_RTC) = LSP_min 
 ! beta: [0, 2*pi) 
 ! ------------------------------------------ 
 ! 
 REAL*8 beta_t, beta_RTC, beta_RTE 
 beta_RTC=2.16D0 
 beta_RTE=4.39D0 
 ! 
 IF(beta_t >= 0.D0 .AND. beta_t <= beta_RTC) THEN 
  ! 
  LSPs_beta = LNR(0.D0, beta_RTC, LSP_max, LSP_min, Beta_t) 
  ! LNR(x1, x2, y1, y2, x) 
  ! 
 ELSE IF(beta_t > beta_RTC .AND. beta_t <= beta_RTE) THEN  
  ! 
  LSPs_beta = LNR(beta_RTC, beta_RTE, LSP_min, LSP_max, Beta_t) 
 ELSE  
  !  
  LSPs_beta = LSP_max 
 END IF 
 ! 
 ! 
 END FUNCTION LSPs_beta 
 ! 
C 
C 
C 
 END 
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C        END of UMAT 
C ********************************************************************* 
C 
C 
      SUBROUTINE UVARM(UVAR,DIRECT,T,TIME,DTIME,CMNAME,ORNAME, 
     1 NUVARM,NOEL,NPT,LAYER,KSPT,KSTEP,KINC,NDI,NSHR,COORD, 
     2 JMAC,JMATYP,MATLAYO,LACCFLA)  
C 
      INCLUDE 'ABA_PARAM.INC' 
C 
      CHARACTER*80 CMNAME,ORNAME 
      CHARACTER*3 FLGRAY(15) 
      DIMENSION UVAR(NUVARM),DIRECT(3,3),T(3,3),TIME(2) 
      DIMENSION ARRAY(22),JARRAY(22),JMAC(*),JMATYP(*),COORD(*) 
 ! 
 INTEGER NTENS 
 NTENS = NDI + NSHR 
C 
C Error counter: 
      JERROR = 0 
C Stress tensor: 
      CALL GETVRM('E',ARRAY,JARRAY,FLGRAY,JRCD,JMAC,JMATYP, 
     1 MATLAYO,LACCFLA) 
      ! 'SDV': The 'Output Variable Identifier' for 'Solution-dependent State Variables' 
 JERROR = JERROR + JRCD 
 ! 
 SELECT CASE (NTENS) 
 CASE (4) 
 ! dimension-2 is vertical, dimension-1 is in-plane horizontal 
  UVAR(1) = -(ARRAY(1)+ARRAY(2))*100.D0  ! ev 
  UVAR(2) = -100.D0*(ARRAY(2)-ARRAY(1))  ! es 
  ! consistent with simplified definition for q 
 CASE (6) 

-(ARRAY(1)+ARRAY(2)+ARRAY(3))*100.D0 
 UVAR(2) = -200.D0*(ARRAY(3)-ARRAY(1))/3.D0 

! 

 WRITE(6,*) 'REQUEST ERROR IN UVARM FOR ELEMENT NUMBER ', 
     1      NOEL,'INTEGRATION POINT NUMBER ',NPT 
      ENDIF 

! 
 ! -------------------------------------------------------------- 

  UVAR(1) = 
 
 END SELECT 
 
 IF(JERROR.NE.0)THEN 
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 CALL GETVRM('S',ARRAY,JARRAY,FLGRAY,JRCD,JMAC,JMATYP, 

Output Variable Identifier' for 'Solution-dependent State Variables' 
 JERROR = JERROR + JRCD 
 ! 

(NTENS) 
 CASE (4) 

 is vertical, dimension-1 is in-plane horizontal 
UVAR(3) = -(ARRAY(1)+ARRAY(2))*0.5D0   ! p' 

R(4) = -(ARRAY(2)-ARRAY(1))     ! q 
  ! consistent with simplified definition for q 
 CASE (6) 

(2)+ARRAY(3))/3.D0 
  UVAR(4) = -(ARRAY(3)-ARRAY(1)) 

END SELECT 
C If error, write comment to .DAT file: 

OR.NE.0)THEN 
 WRITE(6,*) 'REQUEST ERROR IN UVARM FOR ELEMENT NUMBER ', 

ION POINT NUMBER ',NPT 
      ENDIF 

ND 
C 

INE SIGINI(SIGMA,COORDS,NTENS,NCRDS,NOEL,NPT,LAYER, 
     1 KSPT,LREBAR,REBARN) 

 

NS),COORDS(NCRDS) 
      CHARACTER*80 REBARN 

      SIGMA(2) = -317.5*(4.3-COORDS(2))/(4.3+12.5) 
 SIGMA(1) = 0.667*SIGMA(2) 

SIGMA(3) = SIGMA(1) 
 

     1 MATLAYO,LACCFLA) 
      ! 'SDV': The '

 SELECT CASE 

 ! dimension-2
  
  UVA

  UVAR(3) = -(ARRAY(1)+ARRAY

 

      IF(JERR
       
     1      NOEL,'INTEGRAT

      RETURN 
      E

C 
      SUBROUT

C 
      INCLUDE 'ABA_PARAM.INC'
C 
      DIMENSION SIGMA(NTE

 

 
 SIGMA(4) = 0
 
      RETURN 
      END 
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S) FOR LURIE CENTER PREDICTION  

e: Lurie 
istory=NO, contact=NO 

ly 

=Strut-1 

=T2D2 

ut-1:Picked), (Beam Orientation:Picked) 
edSet6, internal 

aterial=Strut-1 

trut-2, part=Strut-2 

D.   INPUT FILE (ABAQU

 

*Heading 
ob name: Lurie-CAE Model nam** J

*Preprint, echo=NO, model=NO, h
** 
** PARTS 
** 

t, name=Soil-Left *Par
*End Part 
*Part, name=Soil-Right 
*End Part 

=Strut-1 *Part, name
*End Part 

rt, name=Strut-2 *Pa
*End Part 

t, name=Strut-3 *Par
*End Part 

me=Wall *Part, na
*End Part 
** 

MBLY ** ASSE
** 
*Assembly, name=Assemb

 **  
*Instance, name=Strut-1, part

de *No
      1,           0.,          2.1 

,         -6.4,           0.       2
*Element, type
1, 1, 2 

egion: (Str** R
*Elset, elset=_Pick
 1, 
** Section: Strut-1 

ion, elset=_PickedSet6, m*Solid Sect
1., 

d Instance *En
**   

tance, name=S*Ins
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       0.,         -1.2 
  -2.1 

ked) 
lset, elset=_PickedSet6, internal 

tion: Strut-2 
ction, elset=_PickedSet6, material=Strut-2 

tance, name=Strut-3, part=Strut-3 

,           0.,         -5.2 

ment, type=T2D2 

egion: (Strut-3:Picked), (Beam Orientation:Picked) 
ickedSet4, internal 

ection: Strut-3 
et=_PickedSet4, material=Strut-3 

de 
    -24.4 

,          15.,        -20.7 
0.7 

 -2.549932 

60,       -56.25,    -1.699931 

 2,  43,  48, 267, 268, 269, 270 
,  44,  47, 269, 271, 272, 273 

7,  44,  45,  46, 272, 274, 275, 276 

*Node 
      1,    
      2,         -5.5,       
*Element, type=T2D2 
1, 1, 2 
** Region: (Strut-2:Picked), (Beam Orientation:Pic
*E
 1, 
** Sec
*Solid Se
1., 
*End Instance 
**   
*Ins
*Node 
      1
      2,         -2.6,         -6.7 
*Ele
1, 1, 2 
** R
*Elset, elset=_P
 1, 
** S
*Solid Section, els
1., 
*End Instance 
**   
*Instance, name=Soil-Left, part=Soil-Left 
*No
      1,          15.,    
      2
      3,           0.,        -2
   …… 
   skipped 
   …… 
    758,        -52.5,   
    759,        -52.5,   -0.8499314 
    7
*Element, type=CPE8R 
1,   1,  
2,  48,  43
3,  4
…… 
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6, 638, 759, 757 

 183, 266, 104,  25, 758, 760, 410, 745 
42, 414, 760 

et, nset=Fill 
,  24,  81,  82,  83,  84,  85,  86,  87 

  89,  90,  91,  92,  93,  94,  95,  96,  97,  98,  99, 100, 101, 102, 103 
 158, 159, 160, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195 
346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358 

, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374 
8, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390 

397, 398, 399, 400, 401, 402, 403, 404, 405, 406 
29, 630, 631, 632, 633, 634, 635, 636, 637, 638 

41, 642, 643 

  28,  29,  30,  31,  32,  33,  34,  35,  36,  37,  38,  39,  40,  41,  42 
7,  48,  49,  50, 155, 156, 157, 158, 159, 160, 161, 162 

et, nset=Sand-Up 
 26,  27,  28,  29,  86,  87,  88,  90,  91,  92,  93 

,  96, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116 
81, 182, 183, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205 

, 365, 373, 378, 383, 388, 393, 398, 403, 408, 410 
2, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426 

, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442 
8, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458 

, 460, 461, 628, 633, 638, 642, 745, 747, 749, 750, 751, 752, 753, 754, 755 

et, elset=Sand-Up 
,  59,  60,  61,  62,  63,  64,  65,  66 

  68,  69,  70,  71,  72,  73,  74, 222, 223, 224, 225, 226, 227, 228, 229 
nd-Down 
,  25,  26,  27,  29,  55,  56,  57,  58,  59,  60,  61,  69 

  71,  75,  76,  77, 106, 107, 108, 110, 111, 112, 113, 114, 115, 116, 181 
1, 304, 307, 310, 313, 316, 319, 322, 325, 328, 331, 334, 337 

432, 436, 440, 444, 448, 452, 456, 460, 462, 463 
70, 471, 472, 473, 474, 475, 744, 745, 746, 747 

50 

  76,  77,  78,  79,  80,  81,  82,  83,  84,  85,  86, 218, 219, 220, 221 
oft 

  9,  10,  11,  12,  13,  14,  15,  36,  37,  38,  39,  40,  55,  56,  57 
 63,  64,  65,  66,  67,  68,  69,  70,  71,  72,  73 

skipped 
……
227, 265, 159, 158, 266, 75
228,
229, 266, 158,  16, 104, 759, 6
*Ns
  16,  17,  18,  19,  20,  21,  22,  23
  88,
 155, 156, 157,
 238, 239, 240, 
 359
 375, 376, 377, 37
 391, 392, 393, 394, 395, 396, 
 407, 408, 409, 626, 627, 628, 6
 639, 640, 6
*Elset, elset=Fill 
  27,
  43,  44,  45,  46,  4
*Ns
  16,  19,  21,  23,  25, 
  94,  95
 158, 159, 160, 1
 264, 265, 266, 349, 355, 360
 411, 41
 427
 443, 444, 445, 446, 447, 44
 459
 756, 757, 758, 759, 760 
*Els
  51,  52,  53,  54,  55,  56,  57,  58
  67,
*Nset, nset=Sa
   8,   9,  12,  14
  70,
 182, 183, 297, 30
 340, 343, 413, 418, 422, 426, 
 464, 465, 466, 467, 468, 469, 4
 748, 749, 7
*Elset, elset=Sand-Down 
  75,
*Nset, nset=Clay-S
   8, 
  58,  59,  60,  61,  62, 
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,  76,  77,  78,  79,  80, 129, 130, 131, 132, 133, 134, 135, 136, 137 
 142, 143, 144, 145, 152, 153, 154, 206, 207, 208, 209, 210 

225, 258 
261, 262, 263, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307 

18, 319, 320, 321, 322, 323 
4, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339 

, 508, 509, 510 
2, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526 

 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542 
, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558 

, 566, 567, 568, 569, 570, 571, 572, 573, 574 
7, 578, 609, 615, 621, 625, 727, 728, 729, 730, 731, 732, 733, 734 

, 736, 737, 738, 739, 740, 741, 742, 743 

  12,  13,  14,  15,  16,  17,  18,  19,  20,  21,  22,  23,  24,  25,  26 
1, 102, 103, 104, 105, 106, 107, 108, 109, 110 

, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126 
, 209, 210, 211, 212, 213, 214, 215, 216, 217 

et, nset=Clay-Stiff 
   7,  31,  32,  35,  36,  37,  38,  40,  42,  43,  44,  45 
2,  53,  54, 117, 118, 119, 123, 124, 125, 133, 134, 135, 138 

, 140, 141, 142, 143, 144, 146, 147, 148, 149, 150, 151, 152, 153, 154, 163 
7, 168, 169, 170, 178, 179, 180, 184, 185, 226, 227, 228, 229 

236, 237, 241, 242, 243, 244, 245, 246, 247, 248 
55, 256, 257, 268, 271, 274, 277, 280, 281, 282 

85, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 477, 480 
1, 547, 553, 559, 565 

, 577, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592 
, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608 

, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624 
3, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664 

6, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680 
 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696 

726 
et=Clay-Stiff 

6, 137, 138, 139, 140 
1, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 166, 167 

, 181, 182, 183 
85, 186, 187, 188, 189, 198, 199, 200, 201, 202, 203, 204, 205 

t=Hard-Pan 
  2,   3,   4,   7,  30,  31,  32,  33,  34,  35,  41,  43,  44,  45,  46 

20, 121, 122, 123, 124, 125, 126, 127, 128 
3, 164, 165, 166, 167, 168, 169, 171, 172, 173, 174, 175, 176, 177 

  74,  75
 138, 139, 140, 141,
 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 
 259, 260, 
 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 3
 32
 340, 341, 342, 343, 344, 345, 501, 502, 503, 504, 505, 506, 507
 511, 51
 527, 528,
 543
 559, 560, 561, 562, 563, 564, 565
 575, 576, 57
 735
*Elset, elset=Clay-Soft 
  11,
  95,  96,  97,  98,  99, 100, 10
 111
 127, 128, 129, 130, 206, 207, 208
*Ns
   2,   3,   5,   6,
  49,  50,  51,  5
 139
 164, 165, 166, 16
 230, 231, 232, 233, 234, 235, 
 249, 250, 251, 252, 253, 254, 2
 283, 284, 2
 483, 486, 490, 493, 496, 499, 504, 512, 518, 524, 535, 54
 571
 593, 594, 595, 596
 609
 625, 650, 651, 652, 65
 665, 66
 681, 682, 683, 684,
 697, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 
*Elset, els
   5,   6,   7,   8,   9,  10, 131, 132, 133, 134, 135, 13
 14
 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180
 184, 1
*Nset, nse
   1, 
  47,  48,  52,  53, 117, 118, 119, 1
 161, 162, 16
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, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 291, 294, 296 
1, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491 

, 493, 494, 495, 496, 497, 498, 499, 500, 644, 645, 646, 647, 648, 649, 654 
 696, 698, 699, 700, 701, 702, 703, 704, 705, 706 

, 708, 709, 710, 711, 712 

  2,   3,   4,  87,  88,  89,  90,  91,  92,  93,  94, 163, 164, 165, 190 
 194, 195, 196, 197 
rd-Pan:Hard-Pan) 

ection: Hard-Pan 
et=Hard-Pan, material=Hard-Pan 

ff) 
 Clay-Stiff 

*Solid Section, elset=Clay-Stiff, material=Clay-Stiff 
1., 
** Region: (Clay-Soft:Clay-Soft) 
** Section: Clay-Soft 
*Solid Section, elset=Clay-Soft, material=Clay-Soft 
1., 
** Region: (Fill:Fill) 
** Section: Fill 
*Solid Section, elset=Fill, material=Fill 
1., 
** Region: (Sand-Up:Sand-Up) 
** Section: Sand-Up 
*Solid Section, elset=Sand-Up, material=Sand-Up 
1., 
** Region: (Sand-Down:Sand-Down) 
** Section: Sand-Down 
*Solid Section, elset=Sand-Down, material=Sand-Down 
1., 
*End Instance 
**   
*Instance, name=Soil-Right, part=Soil-Right 
*Node 
      1,         35.1,         -8.5 
      2,          15.,         -8.5 
      3,          15.,        -12.5 
   …… 
   skipped 
   …… 
 

 267
 476, 477, 478, 479, 480, 48
 492
 660, 666, 672, 678, 684, 690,
 707
*Elset, elset=Hard-Pan 
   1, 
 191, 192, 193,
** Region: (Ha
** S
*Solid Section, els
1., 
** Region: (Clay-Stiff:Clay-Sti
** Section:
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    243,         3.75,          3.2 
    244,        1.875,          4.3 
    245,           0.,          3.2 
*Element, type=CPE8R 
1,   1,  31,  84,  36,  89,  90,  91,  92 
2,  31,  32,  85,  84,  93,  94,  95,  90 
3,  32,   2,  33,  85,  96,  97,  98,  94 
…… 
skipped 
…… 
68,  73,  81,  82,  74, 239, 240, 241, 212 
69,  74,  82,  83,  75, 241, 242, 243, 215 
70,  75,  83,  30,  27, 243, 244, 245, 218 
*Nset, nset=Fill 
   7,   8,   9,  10,  11,  12,  27,  28,  30,  44,  45,  46,  47,  48,  49,  73 
  74,  75,  76,  77,  78,  81,  82,  83, 126, 127, 128, 129, 130, 131, 132, 133 
 134, 135, 136, 137, 138, 139, 140, 141, 142, 209, 210, 211, 212, 213, 214, 215 
 216, 217, 218, 219, 220, 238, 239, 240, 241, 242, 243, 244, 245 
*Elset, elset=Fill 
 15, 16, 17, 18, 19, 20, 49, 50, 51, 52, 67, 68, 69, 70 
*Nset, nset=Sand-Up 
  11,  12,  16,  17,  18,  19,  25,  26,  28,  48,  49,  55,  56,  57,  58,  67 
  68,  69,  70,  71,  72,  76,  77,  78, 137, 139, 141, 158, 159, 160, 161, 162 
 163, 164, 165, 166, 167, 168, 169, 170, 171, 197, 198, 199, 200, 201, 202, 203 
 204, 205, 206, 207, 208, 211, 214, 217, 220, 234, 235, 236, 237 
*Elset, elset=Sand-Up 
 28, 29, 30, 31, 32, 33, 45, 46, 47, 48, 63, 64, 65, 66 
*Nset, nset=Sand-Down 
  18,  19,  22,  23,  24,  26,  57,  58,  62,  63,  64,  65,  66,  70,  71,  72 
 166, 168, 170, 181, 182, 183, 184, 185, 186, 187, 189, 191, 193, 195, 199, 202 
 205, 208, 230, 231, 232, 233 
*Elset, elset=Sand-Down 
 38, 39, 40, 59, 60, 61, 62 
*Nset, nset=Clay-Soft 
   1,   2,   3,   4,   5,   6,  20,  21,  22,  23,  24,  29,  31,  32,  33,  34 
  35,  36,  37,  38,  39,  40,  41,  42,  43,  59,  60,  61,  62,  63,  64,  65 
  66,  79,  80,  84,  85,  86,  87,  88,  89,  90,  91,  92,  93,  94,  95,  96 
  97,  98,  99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112 
 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 172, 173, 174 
 175, 176, 177, 178, 179, 180, 182, 184, 186, 188, 189, 190, 191, 192, 193, 194 
 195, 196, 221, 222, 223, 224, 225, 226, 227, 228, 229 
*Elset, elset=Clay-Soft 
  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 34, 35 
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 36, 37, 41, 42, 43, 44, 53, 54, 55, 56, 57, 58 
*Nset, nset=Clay-Stiff 
   3,   4,   6,  13,  14,  15,  34,  35,  41,  42,  43,  50,  51,  52,  53,  54 
 100, 103, 105, 119, 121, 123, 125, 143, 144, 145, 146, 147, 148, 149, 150, 151 
 152, 153, 154, 155, 156, 157 
*Elset, elset=Clay-Stiff, generate 
 21,  27,   1 
** Region: (Clay-Soft:Clay-Soft) 
** Section: Clay-Soft 
*Solid Section, elset=Clay-Soft, material=Clay-Soft 
1., 
** Region: (Fill:Fill) 
** Section: Fill 
*Solid Section, elset=Fill, material=Fill 
1., 
** Region: (Clay-Stiff:Clay-Stiff) 
** Section: Clay-Stiff 
*Solid Section, elset=Clay-Stiff, material=Clay-Stiff 
1., 
** Region: (Sand-Up:Sand-Up) 
** Section: Sand-Up 
*Solid Section, elset=Sand-Up, material=Sand-Up 
1., 
** Region: (Sand-Down:Sand-Down) 
** Section: Sand-Down 
*Solid Section, elset=Sand-Down, material=Sand-Down 
1., 
*End Instance 
**   
*Instance, name=Wall, part=Wall 
          0.,        -15.2,           0. 
*Node 
      1,           0.,           0. 
      2,           0.,          10. 
      3,           0.,          14. 
      4,           0.,         17.3 
      5,           0.,         19.5 
      6,           0.,           2. 
      7,           0.,           4. 
      8,           0.,           6. 
      9,           0.,           8. 
     10,           0.,          12. 
     11,           0.,        15.65 



 

 

219

 

     12,           0.,           1. 
     13,           0.,           3. 
     14,           0.,           5. 
     15,           0.,           7. 
     16,           0.,           9. 
     17,           0.,          11. 
     18,           0.,          13. 
     19,           0.,       14.825 
     20,           0.,       16.475 
     21,           0.,         18.4 
*Element, type=B22 
1,  1, 12,  6 
2,  6, 13,  7 
3,  7, 14,  8 
4,  8, 15,  9 
5,  9, 16,  2 
6,  2, 17, 10 
7, 10, 18,  3 
 8,  3, 19, 11 
 9, 11, 20,  4 
10,  4, 21,  5 
*Nset, nset=Wall, generate 
  1,  21,   1 
*Elset, elset=Wall, generate 
 1, 10,  1 
** Region: (Wall:Wall), (Beam Orientation:Picked) 
** Section: Wall  Profile: Wall 
*Beam General Section, elset=Wall, poisson = 0.3, section=RECT 
1., 0.424 
0.,0.,-1. 
8.068e+06, 3.103e+06 
*End Instance 
*Nset, nset=Strut-1, instance=Strut-1 
 1, 2 
*Elset, elset=Strut-1, instance=Strut-1 
 1, 
*Nset, nset=Strut-2, instance=Strut-2 
 1, 2 
*Elset, elset=Strut-2, instance=Strut-2 
 1, 
*Nset, nset=Strut-3, instance=Strut-3 
 1, 2 
*Elset, elset=Strut-3, instance=Strut-3 
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 1, 
*Nset, nset=BC-Bottom, instance=Soil-Left 
   1,   4,  30,  33,  34,  41,  46,  47,  48, 120, 121, 122, 126, 127, 128, 161 
 162, 171, 172, 173, 174, 175, 176, 177, 270, 273, 276, 279, 479, 482, 485, 488 
 492, 495, 498, 500, 644, 646, 648, 698, 700, 702, 704, 706, 708, 710, 712 
*Elset, elset=BC-Bottom, instance=Soil-Left 
   1,   2,   3,   4,  87,  88,  89,  90,  91,  92,  93,  94, 163, 164, 165, 190 
 191, 192, 193, 194, 195, 196, 197 
*Nset, nset=BC-Sides, instance=Soil-Left 
   5,   7,  14,  15,  18,  19,  26,  32,  33,  37,  41,  54,  85, 105, 131, 132 
 148, 149, 283, 292, 344, 364, 367, 425, 427, 463, 487, 523, 526, 527, 598, 600 
 601, 649 
*Nset, nset=BC-Sides, instance=Soil-Right 
   1,   4,   9,  10,  12,  14,  17,  19,  23,  29,  36,  92, 101, 134, 142, 149 
 164, 171, 187, 226, 229 
*Elset, elset=BC-Sides, instance=Soil-Left 
   5,   8,  26,  33,  34,  57,  58,  75,  90, 104, 105, 106, 140, 141, 142, 165 
*Elset, elset=BC-Sides, instance=Soil-Right 
  1,  4, 17, 20, 23, 30, 33, 40, 55, 58 
*Nset, nset=Removal-1, instance=Soil-Right 
   7,   8,   9,  10,  27,  30,  44,  45,  46,  47,  73,  74,  75,  81,  82,  83 
 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 209, 212, 215, 218, 238, 239 
 240, 241, 242, 243, 244, 245 
*Elset, elset=Removal-1, instance=Soil-Right 
 15, 16, 17, 67, 68, 69, 70 
*Nset, nset=Removal-2, instance=Soil-Right 
   8,   9,  11,  12,  27,  28,  44,  45,  48,  49,  73,  74,  75,  76,  77,  78 
 127, 130, 133, 136, 137, 138, 139, 140, 141, 142, 209, 210, 211, 212, 213, 214 
 215, 216, 217, 218, 219, 220 
*Elset, elset=Removal-2, instance=Soil-Right 
 18, 19, 20, 49, 50, 51, 52 
*Nset, nset=Removal-3, instance=Soil-Right 
  11,  12,  16,  17,  25,  28,  48,  49,  55,  56,  67,  68,  69,  76,  77,  78 
 137, 139, 141, 158, 159, 160, 161, 162, 163, 164, 197, 200, 203, 206, 211, 214 
 217, 220, 234, 235, 236, 237 
*Elset, elset=Removal-3, instance=Soil-Right 
 28, 29, 30, 63, 64, 65, 66 
*Nset, nset=Removal-4, instance=Soil-Right 
  16,  17,  18,  19,  25,  26,  55,  56,  57,  58,  67,  68,  69,  70,  71,  72 
 159, 161, 163, 165, 166, 167, 168, 169, 170, 171, 197, 198, 199, 200, 201, 202 
 203, 204, 205, 206, 207, 208 
*Elset, elset=Removal-4, instance=Soil-Right 
 31, 32, 33, 45, 46, 47, 48 
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*Nset, nset=Removal-5, instance=Soil-Right 
  18,  19,  22,  23,  24,  26,  57,  58,  62,  63,  64,  65,  66,  70,  71,  72 
 166, 168, 170, 181, 182, 183, 184, 185, 186, 187, 189, 191, 193, 195, 199, 202 
 205, 208, 230, 231, 232, 233 
*Elset, elset=Removal-5, instance=Soil-Right 
 38, 39, 40, 59, 60, 61, 62 
*Nset, nset=Removal-6, instance=Soil-Right 
  20,  21,  22,  23,  24,  29,  59,  60,  61,  62,  63,  64,  65,  66,  79,  80 
 173, 176, 178, 180, 182, 184, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196 
 221, 222, 223, 224, 225, 226 
*Elset, elset=Removal-6, instance=Soil-Right 
 41, 42, 43, 44, 53, 54, 55 
*Nset, nset=Removal-7, instance=Soil-Right 
   1,   2,   5,  20,  21,  29,  31,  32,  37,  38,  39,  59,  60,  61,  79,  80 
  89,  93,  96, 106, 109, 112, 115, 172, 173, 174, 175, 176, 177, 178, 179, 180 
 221, 223, 225, 227, 228, 229 
*Elset, elset=Removal-7, instance=Soil-Right 
 34, 35, 36, 37, 56, 57, 58 
*Nset, nset=Soil-All, instance=Soil-Left, generate 
   1,  760,    1 
*Nset, nset=Soil-All, instance=Soil-Right, generate 
   1,  245,    1 
*Elset, elset=Soil-All, instance=Soil-Left, generate 
   1,  229,    1 
*Elset, elset=Soil-All, instance=Soil-Right, generate 
  1,  70,   1 
*Nset, nset=Wall, instance=Wall, generate 
  1,  21,   1 
*Elset, elset=Wall, instance=Wall, generate 
 1, 10,  1 
*Elset, elset=_Surf-Soil-L_S4, internal, instance=Soil-Left 
 11, 
*Elset, elset=_Surf-Soil-L_S3, internal, instance=Soil-Left 
  49,  50,  73,  74, 128, 129, 130, 187 
*Elset, elset=_Surf-Soil-L_S2, internal, instance=Soil-Left 
 86, 
*Surface, type=ELEMENT, name=Surf-Soil-L 
_Surf-Soil-L_S4, S4 
_Surf-Soil-L_S3, S3 
_Surf-Soil-L_S2, S2 
*Elset, elset=_Surf-Soil-Dn_S1, internal, instance=Soil-Left 
   5,   6,   7, 198, 199, 200, 201 
*Surface, type=ELEMENT, name=Surf-Soil-Dn 
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_Surf-Soil-Dn_S1, S1 
*Elset, elset=_Surf-Soil-R_S2, internal, instance=Soil-Right 
 10, 14 
*Elset, elset=_Surf-Soil-R_S4, internal, instance=Soil-Right 
 24, 34 
*Elset, elset=_Surf-Soil-R_S3, internal, instance=Soil-Right 
 44, 48, 52, 62, 66, 70 
*Surface, type=ELEMENT, name=Surf-Soil-R 
_Surf-Soil-R_S2, S2 
_Surf-Soil-R_S4, S4 
_Surf-Soil-R_S3, S3 
*Elset, elset=_Surf-Soil-Up_S1, internal, instance=Soil-Right, generate 
 21,  27,   1 
*Surface, type=ELEMENT, name=Surf-Soil-Up 
_Surf-Soil-Up_S1, S1 
*Elset, elset=_Surf-Wall-L_SPOS, internal, instance=Wall, generate 
 1, 10,  1 
*Surface, type=ELEMENT, name=Surf-Wall-L 
_Surf-Wall-L_SPOS, SPOS 
*Elset, elset=_Surf-Wall-R_SNEG, internal, instance=Wall, generate 
 1, 10,  1 
*Surface, type=ELEMENT, name=Surf-Wall-R 
_Surf-Wall-R_SNEG, SNEG 
** Constraint: Tie-SoilSoil 
*Tie, name=Tie-SoilSoil, adjust=yes 
Surf-Soil-Up, Surf-Soil-Dn 
** Constraint: Tie-WallSoil 
*Tie, name=Tie-WallSoil, adjust=yes 
Surf-Wall-R, Surf-Soil-R 
**  
** CONNECTORS 
**  
*Element, type=CONN2D2, elset=_Strut1-1_CnSet_ 
1, Wall.4, Strut-1.1 
*Connector Section, elset=_Strut1-1_CnSet_ 
Join, 
*Element, type=CONN2D2, elset=_Strut1-2_CnSet_ 
2,  , Strut-1.2 
*Connector Section, elset=_Strut1-2_CnSet_ 
Join, 
*Element, type=CONN2D2, elset=_Strut2-1_CnSet_ 
3, Wall.3, Strut-2.1 
*Connector Section, elset=_Strut2-1_CnSet_ 
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Join, 
*Element, type=CONN2D2, elset=_Strut2-2_CnSet_ 
4,  , Strut-2.2 
*Connector Section, elset=_Strut2-2_CnSet_ 
Join, 
*Element, type=CONN2D2, elset=_Strut3-1_CnSet_ 
5, Wall.2, Strut-3.1 
*Connector Section, elset=_Strut3-1_CnSet_ 
Join, 
*Element, type=CONN2D2, elset=_Strut3-2_CnSet_ 
6,  , Strut-3.2 
*Connector Section, elset=_Strut3-2_CnSet_ 
Join, 
*End Assembly 
**  
** MATERIALS 
**  
*Material, name=Clay-Soft 
*Density 
 1.89, 
*Depvar 
     10, 
*User Material, constants=2, unsymm 
17000., 0.333 
*User Output Variables 
      5, 
*Material, name=Clay-Stiff 
*Density 
 1.89, 
*Elastic 
171000., 0.49 
*Material, name=Fill 
*Density 
 1.89, 
*Elastic 
51000., 0.2 
*Mohr Coulomb 
30.,2. 
*Mohr Coulomb Hardening 
20.,0. 
*Material, name=Grout 
*Elastic 
 3e+06, 0.2 
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*Material, name=Hard-Pan 
*Density 
 1.89, 
*Elastic 
677000., 0.49 
*Material, name=Sand-Down 
*Density 
 1.89, 
*Elastic 
175000., 0.365 
*Mohr Coulomb 
40.,8. 
*Mohr Coulomb Hardening 
 0.1,0. 
*Material, name=Sand-Up 
*Density 
 1.89, 
*Elastic 
79000., 0.391 
*Mohr Coulomb 
35.,5. 
*Mohr Coulomb Hardening 
 0.1,0. 
*Material, name=Strut-1 
*Elastic 
69600., 0.3 
*Material, name=Strut-2 
*Elastic 
57500., 0.3 
*Material, name=Strut-3 
*Elastic 
17200., 0.3 
*Material, name=Tieback 
*Elastic 
 2.05e+08, 0.3 
**  
** INTERACTION PROPERTIES 
**  
*Surface Interaction, name=IntProp-L 
1., 
*Friction, slip tolerance=0.005 
 0.3, 
*Surface Behavior, no separation, pressure-overclosure=HARD 
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*Surface Interaction, name=IntProp-R 
1., 
*Friction, slip tolerance=0.005 
 0.3, 
*Surface Behavior, no separation, pressure-overclosure=HARD 
**  
** BOUNDARY CONDITIONS 
**  
** Name: BC-Bottom Type: Displacement/Rotation 
*Boundary 
BC-Bottom, 1, 1 
BC-Bottom, 2, 2 
** Name: BC-Sides Type: Displacement/Rotation 
*Boundary 
BC-Sides, 1, 1 
**  
** INTERACTIONS 
**  
** Interaction: Int-SoilSoil 
*Contact Pair, interaction=IntProp-L, small sliding 
Surf-Soil-R, Surf-Soil-L 
** Interaction: Int-SoilWall 
*Contact Pair, interaction=IntProp-L, small sliding 
Surf-Soil-L, Surf-Wall-L 
*INITIAL CONDITIONS, TYPE=STRESS, USER 
** ---------------------------------------------------------------- 
**  
** STEP: Step-1 
**  
*Step, name=Step-1 
*Geostatic 
*MODEL CHANGE, REMOVE 
Wall 
*MODEL CHANGE, REMOVE 
Strut-1, Strut-2, Strut-3 
*MODEL CHANGE, TYPE=CONTACT PAIR, REMOVE 
Surf-Soil-L, Surf-Wall-L 
**  
** LOADS 
**  
** Name: gravity   Type: Gravity 
*Dload 
Soil-All, GRAV, 10., 0., -1. 
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**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=1 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
U,  
*Element Output 
E, LE, S, SDV, SF, UVARM 
*Output, history, frequency=0 
*El Print, freq=999999 
*Node Print, freq=999999 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: Step-2 
**  
*Step, name=Step-2 
*Static 
1., 1., 1e-05, 1. 
*MODEL CHANGE, ADD 
Wall 
*MODEL CHANGE, TYPE=CONTACT PAIR, ADD 
Surf-Soil-L, Surf-Wall-L 
*MODEL CHANGE, TYPE=CONTACT PAIR, REMOVE 
Surf-Soil-R, Surf-Soil-L 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=1 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
U,  
*Element Output 
E, LE, S, SDV, SF, UVARM 
*Output, history, frequency=0 
*End Step 
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** ---------------------------------------------------------------- 
**  
** STEP: Step-3 
**  
*Step, name=Step-3 
*Static 
0.1, 1., 1e-05, 0.2 
*CONTROLS, PARAMETERS=FIELD, FIELD=DISPLACEMENT 
, 0.03, 
*CONTROLS, PARAMETERS=LINE SEARCH 
4, 
**  
*MODEL CHANGE, REMOVE 
Removal-1 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=1 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
U,  
*Element Output 
E, LE, S, SDV, SF, UVARM 
*Output, history, frequency=0 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: Step-4 
**  
*Step, name=Step-4 
*Static 
1., 1., 1e-05, 1. 
*MODEL CHANGE, ADD 
Strut-1 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=1 
**  
** FIELD OUTPUT: F-Output-1 
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**  
*Output, field 
*Node Output 
U,  
*Element Output 
E, LE, S, SDV, SF, UVARM 
*Output, history, frequency=0 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: Step-5 
**  
*Step, name=Step-5 
*Static 
0.1, 1., 1e-05, 0.15 
*CONTROLS, PARAMETERS=FIELD, FIELD=DISPLACEMENT 
, 0.03, 
*CONTROLS, PARAMETERS=LINE SEARCH 
4, 
**  
*MODEL CHANGE, REMOVE 
Removal-2 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=1 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
U,  
*Element Output 
E, LE, S, SDV, SF, UVARM 
*Output, history, frequency=0 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: Step-6 
**  
*Step, name=Step-6 
*Static 
0.1, 1., 1e-05, 0.15 
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*CONTROLS, PARAMETERS=FIELD, FIELD=DISPLACEMENT 
, 0.05, 
*CONTROLS, PARAMETERS=LINE SEARCH 
4, 
**  
*MODEL CHANGE, REMOVE 
Removal-3 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=1 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
U,  
*Element Output 
E, LE, S, SDV, SF, UVARM 
*Output, history, frequency=0 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: Step-7 
**  
*Step, name=Step-7 
*Static 
1., 1., 1e-05, 1. 
*MODEL CHANGE, ADD 
Strut-2 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=1 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
U,  
*Element Output 
E, LE, S, SDV, SF, UVARM 
*Output, history, frequency=0 
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*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: Step-8 
**  
*Step, name=Step-8 
*Static 
0.05, 1., 1e-05, 0.1 
*CONTROLS, PARAMETERS=FIELD, FIELD=DISPLACEMENT 
0.01, 0.1, 
*CONTROLS, PARAMETERS=LINE SEARCH 
4, 
*CONTROLS, PARAMETERS=TIME INCREMENTATION 
8, 10, 
0.5, 0.8, 
**  
*MODEL CHANGE, REMOVE 
Removal-4 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=1 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
U,  
*Element Output 
E, LE, S, SDV, SF, UVARM 
*Output, history, frequency=0 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: Step-9 
**  
*Step, name=Step-9 
*Static 
0.05, 1., 1e-05, 0.1 
*CONTROLS, PARAMETERS=FIELD, FIELD=DISPLACEMENT 
0.015, 0.1, , , 0.02 
*CONTROLS, PARAMETERS=LINE SEARCH 
4, 
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*CONTROLS, PARAMETERS=TIME INCREMENTATION 
8, 10, 
0.5, 0.8, 
**  
*MODEL CHANGE, REMOVE 
Removal-5 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=1 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
U,  
*Element Output 
E, LE, S, SDV, SF, UVARM 
*Output, history, frequency=0 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: Step-10 
**  
*Step, name=Step-10 
*Static 
1., 1., 1e-05, 1. 
*MODEL CHANGE, ADD 
Strut-3 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=1 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
U,  
*Element Output 
E, LE, S, SDV, SF, UVARM 
*Output, history, frequency=0 
*End Step 
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** ---------------------------------------------------------------- 
**  
** STEP: Step-11 
**  
*Step, name=Step-11 
*Static 
0.05, 1., 1e-05, 0.1 
*CONTROLS, PARAMETERS=FIELD, FIELD=DISPLACEMENT 
0.01, 0.1, 
*CONTROLS, PARAMETERS=LINE SEARCH 
4, 
*CONTROLS, PARAMETERS=TIME INCREMENTATION 
8, 10,  
0.5, 0.8,  
**  
*MODEL CHANGE, REMOVE 
Removal-6 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=1 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
U,  
*Element Output 
E, LE, S, SDV, SF, UVARM 
*Output, history, frequency=0 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: Step-12 
**  
*Step, name=Step-12 
*Static 
0.05, 1., 1e-05, 0.1 
*CONTROLS, PARAMETERS=FIELD, FIELD=DISPLACEMENT 
0.01, 0.1 
*CONTROLS, PARAMETERS=LINE SEARCH 
4, 
*CONTROLS, PARAMETERS=TIME INCREMENTATION 
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8, 10, 
0.5, 0.8,  
**  
*MODEL CHANGE, REMOVE 
Removal-7 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=1 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
U,  
*Element Output 
E, LE, S, SDV, SF, UVARM 
*Output, history, frequency=0 
*End Step 
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