
NORTHWESTERN UNIVERSITY

Optimal Experimental Learning and Infinite Linear Embeddings

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Mechanical Engineering

By

Ian Abraham

EVANSTON, ILLINOIS

September 2020



2

c© Copyright by Ian Abraham 2020

All Rights Reserved



3

Abstract

Optimal Experimental Learning and Infinite Linear Embeddings

Ian Abraham

In the current state of robotics, the systems we create are heavily reliant on our consistent

guidance, programming of tasks, and oracle information that allow them to operate in the world

that we inhabit. What happens to our robotic systems when we are unable to perform as an oracle,

creating the absence of information about what is known and unknown to our robots? Can we

expect our robotic systems to operate in our world? And what are the necessary requirements for

them to explore and navigate the increasing complexities that we face in an unknown world? In this

thesis, I argue that robotic systems are required to have the ability to intentionally learn, model,

and explore what is unknown about the world for them to be less reliant on the oracle information

that we as the developers provide.

This thesis establishes the stated problems as one of active robot learning and decision making.

Through the use of existing methods and tools from hybrid control theory, this thesis first looks to
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enhance the capabilities of the current approaches for robot learning and lays the groundwork for

subsequent theoretical advancements for learning and control. Active learning through automated

experimental design is then motivated as an approach that enables robotic systems to develop

actions that intentionally seek out informative measurements for learning what is unknown. Coupled

with methods from ergodicity and ergodic exploration, active learning is shown to be a promising

approach for modeling complex and spatially sparse environments using only rudimentary contact

sensing. These results are extended to the case of safe exploration and active learning in dynamic

state-spaces where robot safety and the quality of informative measurements are provably balanced

through Lyapunov attractiveness and hybrid control theoretic analysis. Last, I argue that we should

not only care about active learning, but also how we model and represent what robotic systems are

learning. The class of infinite linear embeddings is presented as a candidate model that simplifies

and improves the control and active learning capabilities of robotic systems. Through simulated

and experimental application, I illustrate the potential of the presented approaches for pushing the

boundaries of robotic systems towards being more capable, self-sufficient, and curious systems that

intentionally learns the unknown and complex nature of interacting in our world.
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Chapter 1

Introduction

What hidden assumptions do we make when we develop and analyze systems that operate au-

tonomously in the world? Typically, we assume that these systems have a way of interacting in the

world, a way of observing the world through various sensing modalities, an understanding of the

world through predictive models, some knowledge of uncertainty, and a signal associated with good

and bad behavior while interacting in the world. In the case for robotic systems, these assumptions

are synonymous with having a model of robot dynamics and the interaction with the physical world,

a way to measure the state of the robot, a guess at what might not be known to the robot, and

a reward or cost function. But what happens when these assumptions are not present or missing?

Can the autonomous systems properly function and interact with the world to discover and learn

the necessary information to achieve success at an intended task?

For robotic systems that interact with the physical world, this problem is one which involves

exploring and learning with respect to the constraints of the sensors and physical interactions.
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In order for robots to construct and learn what is necessary to operate in the world, we cannot

simply tell the robot “go and learn X from observing Y”. The robot needs to take action and move

through the physical world to observe what is needed to learn. However, choosing what needs

to be observed is often arbitrary and a passive process. In addition, choosing what to observe

given time and physical restrictions adds constraints that exasperates the problem. This problem

is underscored by the fact that observing redundant measurements yields redundant models. Thus

action, sensing, and measurements are intertwined and must be chosen and optimized with intent

to improve the quality and efficacy of what is being learned with the consideration of the robot’s

safety in mind. Moreover, how we choose to model and structure what is being learned comes with

its own limitations. These are questions that are fundamental to robot learning and control that

are constantly appearing as robotic systems start to become more autonomous and independent of

human operators.

1.1 Contributions and related work

This thesis addresses the problem of intentional learning in robotics where actions must be chosen

such that they result in information-rich measurements that improve the efficiency of learning tasks

and respect the physical constraints of robotic systems. This is accomplished through the use of

tools and concepts from hybrid control theory, optimal experimental design, ergodic exploration,

and Koopman operator theory that improves and optimizes the learning capabilities of robotic sys-

tems into an active and intentional process grounded by principled mathematics. These principled

approaches provide theoretical guarantees for active learning and safety that extends to the physi-

cal domain which is presented through simulated and experimental robot examples throughout this

thesis.
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Thus, the contribution of this thesis is the development of fast and efficient methods

for online active learning that are readily deployed on robotics systems that operate

subject to safety constraints.

This thesis resides at the intersection of optimal control, reinforcement learning, sensing, active

learning, and optimal experimental design. As a result, there is a plethora of topics which relate

to each of these fields of study individually. Conveniently, much of the contributions in this thesis

are related to the problem of robot learning which is commonly modeled as a robotic decision

process (more formally defined in general terms as a Markov process [1]). Rather than doing an

large expansive review of each of the fields of intersection and machine learning as a whole, I focus

on how the contributions presented in this thesis relate and expand upon our knowledge of robot

learning and control.

1.1.1 Learning robot motor skills

One of the most common and general methods for describing and solving the problem of robot

learning and control is with the Markov decision processes and reinforcement learning [2, 3]. Most

reinforcement learning methods fall between one of two categories: model-based or model-free

reinforcement learning.

Model-based learning methods, as the name implies, uses models to solve reinforcement learning

tasks in robotics. The primary idea is that learned models can be used to predict how a robot

will interact with the world given an input action to the robot. The predicted feedback from

the environment (usually through a reward function) is used to estimate whether the action was

desirable and forwarded to the robot. Model-based learning methods possess the desirable trait

of being “sample-efficient” [4–6] when solving robot learning tasks. That is, model-based methods
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require significantly less data to learn a control response to achieve the desired robot learning task.

However, a downside to model-based learning is that the models are often highly complex and

require special structure to model the necessary intricacies [6–9].

Model-free methods, on the other hand, approach the problem of robot learning through a unique

interpretation of the reinforcement learning objective that avoids the need to have predictive models

and instead learns a mapping (a policy) that returns an action based on prior experience [10, 11].

Despite having better performance than model-based methods, model-free approaches require a

significant amount of data and diverse experience to work properly [5]. How is it then, that humans

are capable of rapidly learning tasks with a limited amount of experience? And is there a way to

enable robotic systems to achieve similar performance?

Some recent work tries to address these questions by exploring “how” models of environments

are structured by combining probabilistic models with deterministic components [5]. Other work

has explored using latent-space representations to condense the complexities [8,9]. Related methods

use high fidelity Gaussian Processes to create models, but are limited by the amount of data that

can be collected [12]. Finally, some researchers try to improve model-free methods by adding

exploration as part of the objective [13]. However, these approaches often do not formally combine

the use of model-based planning with model-free learning.

Those that do combine model-based planning and experience-based learning tend to do so in

stages [7, 14]. First, model-based learning is used to collect data to warm-start a policy for model-

free learning. Supervised learning is used to update a policy [14,15] and model-free learning is used

to continue the learning from that stage [7]. While novel, this approach heuristically combines the

two robot learning methods (which may require hand-tuning by a human assistant). Moreover, the

model is often used as an oracle, which provides labels to the supervised learning. As a result, the

model-based approach is held fixed and does not get improved upon, and the resulting models are
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under-utilized. This thesis presents an approach that algorithmically combines model-based and

model-free learning by using the learned models as a gauge for how well a model-free policy will

behave. The approach then optimally updates the resulting actions that is forwarded to the robotic

system. Using tools from hybrid control theory, I derive a controller that optimally uses model-

based actions when the policy is uncertain, and allows the robot to fall back on the model-free

policy (which is based on experience) when there exists high confidence actions that will result in a

favorable outcome. As a result, the approach does not rely on improving the model (but can easily

integrate high fidelity models), but instead optimally combines the policy generated from model-free

methods with predictive models to achieve improved task performance. Improving reinforcement

learning methods through existing formal tools in control theory provides us with insight that opens

up new research avenues which are used in later contributions of this thesis. Specifically, within

the field of reinforcement learning, the contributions presented in this thesis are as follows:

(i) a hybrid control theoretic perspective on robot learning

(ii) deterministic and stochastic variations for robot learning using hybrid control

(iii) a measure for determining the agreement between planning with learned predictive models

and policies

(iv) improved sample-efficiency and robot learning performance

(v) diverse implementation using standard off-policy reinforcement learning [11] and behavior

cloning [16]

1.1.2 Active learning

Active learning is a field that is focused on acquiring measurements that have high information

which improves modeling accuracy. The field of active learning has existing for some time, but has
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taken a variety of meanings depending on the underlying learning task and how sampling is done

(with or without robotic systems involved). In its essence, active learning reduces model uncertainty

through sequential active sampling and estimation that yields the most information about what is

being learned.

Active Exploration: One of the earliest approaches for active learning in robotics focusing

on how robotic systems explore an environment. Existing work formulates this problem of active

exploration as information maximization with respect to a known parameterized model [17, 18].

These approaches often have an abundance of local optima [18, 19] resulting in insufficient data

collection. Other approaches have sought to solve this problem by viewing information maximization

as an area coverage problem [19, 20]. Ergodic exploration, in particular, has remedied the issue of

local optima by using the ergodic metric to minimize the Sobelov distance [21] from the time-

averaged statistics of the robot’s trajectory to the expected acquired information from exploring

a region. This enables both exploration (quickly in low information regions) and exploitation

(spending more time in highly informative regions) in order to avoid local optima and harvest

informative measurements. In this thesis, I explore the concept of ergodicity to improve how

robotic systems explore and learn models from measurements in sparse environments.

Ergodicity and Ergodic Exploration: A downside with the current methods for generating

ergodic exploration for robotic systems is that there is the assumption that the model of the robot

dynamics is fully known. Moreover, there is little guarantee that the robot will not destabilize

during exploration. This becomes an issue when the robot must explore its dynamics (i.e., velocity

and acceleration space) in order to explore for informative measurements. Another challenge with

current ergodic exploration methods is scalability with the dimensionality of the search space. This

thesis contributes an approach that overcomes these issues using a sample-based KL-divergence

measure [20] as a replacement for the ergodic metric. This form of measure has been used pre-
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viously; however, it relies on motion primitives in order to synthesize controls for the robot [20].

This thesis shows that it is possible to generate a continuous control signal that minimizes this

ergodic measure using tools from hybrid control theory. The same approach is shown to be readily

amenable to existing equilibrium policies which provide stability for robotic systems. As a result,

approximate models of dynamical systems can be used instead of complete dynamic reconstructions

while ensuring safety while actively learning through a notion of Lyapunov attractiveness.

Information Maximization: Many active learning problems in robotics are commonly posed

as an information maximizing problems [22–24]. These methods operate through direct maximiza-

tion of an information measure (which assigns a utility to what measurements are most informa-

tive) [25]. Generally, this approach suffers from multiple local minima due to the non-convex nature

of information objectives [23]. Moreover, the existing methods do not scale well with number of

model parameters used in a learning task. In this thesis, I present examples of direct information

maximization using approximations of information measures constructed with optimal experimen-

tal design [24] in mind. These approximations allow for learning of complex neural-network models

with many parameters. In addition, this thesis introduces the idea of emergent learning as a direct

consequence of optimizing information objectives that does not require exploration heuristics which

is common in many deterministic robot learning examples [26]. These ideas are later expanded

upon in the thesis to address the local minima problem using ergodic exploration [19,27]. Ergodic

exploration provides robotic systems with a method for sampling from information objectives in-

directly. Thus, it is possible to avoid the multiple local minima problem found with non-convex

information objectives. As a contribution of this thesis, I show that using ergodic exploration ex-

pands robot learning to modeling sparse environments which require robots to actively seek out

informative measurements. This thesis then builds upon earlier work on hybrid learning to develop

safe active learning strategies for robotic systems using the ergodic exploration strategy.
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Bayesian Optimization: Bayesian optimization (which I go into more detail in Chapter 2)[28–

30] is a Bayesian approach to active learning. In Bayesian optimization, the goal is to find the

maximum of an objective function which is unknown or can only be sampled a finite number

of times. At each iteration of Bayesian optimization, the unknown objective is sampled and a

probabilistic model is generated. An acquisition function is then used as a metric for an “active

learner” to find the next best sample. This loop repeats until a maximum is found. In this thesis,

the “active learner” becomes the robotic system which must abide by the physical constraints that

govern its motion in the world. As a result, the assumption that the active learner has the ability

to sample anywhere in the search space becomes invalid. In this thesis, Bayesian optimization is

viewed as an ergodic sampling problem [19, 27]. Thus, the active learner is able to sample from

regions which have lower probability densities quickly and spend time in regions which are likely

to produce an optima. A useful benefit of solving Bayesian optimization with ergodic exploration

is that the robot is able to avoid local optima.

Safe learning: Safety-based robot controllers are controllers that enforce desirable safety prop-

erties onto robotic systems. Control Lyaponov functions (CLFs) [31, 32] is a class of safety-based

controllers that enforce stability properties of a robotic system through a feedback stabilizing control

law that monotonically drives a positive definite differentiable function towards zero and ultimately

drives the robot to an equilibrium state or set (e.g., LaSalle’s invariance principle). Another, re-

lated, approach is known as control barrier functions (CBFs) [33–35]. CBFs controllers require

the specification of a “safe” set of states through a differentiable barrier function and knowledge

of the dynamics. CBF controllers then maintain a robotic system within the specified safe set

where the robot is free to move about. Note that the CBF approach requires construction of a

function that meets the criteria of a CBF and knowledge of the safe set to begin with. Other,

reachability-based approaches, directly solve for the safe set, but require the computation of the
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Hamilton-Jacobi-Isaacs partial differential equation which can be computationally expensive [36,37].

Furthermore, CLFs and CBFs can be used directly with additional objective functions but requires

solving Quadratic Programs (QPs) in order to obtain safety controllers that impose the safety con-

straints [32, 34, 38, 39]. In this thesis, I develop methods for active learning that directly inherits

and utilizes CLF-based safety controllers and safety properties that filters unsafe robot exploration

and enables safe exploration1 so long as the conditions for the CLF controller can still be met. This

is accomplished by combining pre-defined CLF controllers with an exploration strategy using tools

from hybrid control theory instead of directly solving QP problems which would require strictly

imposing the safety constraints (i.e., monotonically decreasing Lyaponov function). The result is

the synthesis of a single active learning controller that inherits the properties of a safety controller

that allows robot exploration within a derived safety set where the CLF constraints are relaxed and

can be used with approximate robot dynamics with locally known equilibrium states without the

need to pre-specify a safe set of states. In summary, within the field of active learning for robotics

this thesis contributes the following:

(i) approximations of information measures in optimal experimental design for complex models

(ii) introduction of ergodic exploration as a method for robot learning

(iii) extension of the ergodic metric to active learning in high-dimensional dynamics exploration

spaces

(iv) safe active learning with ergodic measure using tools from hybrid control theory

(v) various examples of active learning for robotic systems using the proposed approaches

1Safe exploration is defined by exploration of states that meet the conditions of CLFs when the equilibrium
policies are applied.
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1.1.3 Modeling dynamics with latent embeddings

How we represent and model robotic systems is always a fundamental question in robot learning.

Typically the complexity of the model will vary depending on the system in question; however,

the resulting models are often nonlinear to start. If the state is large, it is common to embed the

state into a compressed latent representation [40] which makes it computationally easier to use for

planning and prediction. Unfortunately, the latent representations can often be more complex than

the original system which makes it difficult to use with gradient-based optimal control methods. Is

it possible to construct simple representations that can embed the nonlinearities of robotic systems

to improve control synthesis without the added structural complexities? How much improvement

can be expected from modeling robotic systems in such a way and what learning trade-offs are to

be expected?

In this thesis, I examine the class of infinite linear embeddings known as Koopman operators as

a candidate model for model-based robot learning and control. As the name of the class suggests,

Koopman operators embed nonlinear dynamical systems into a larger (often infinite) embedded

space that evolves linearly in time. Koopman operators were first proposed in 1931 in work by

B.O. Koopman [41]. At the time, approximating the Koopman operator was computationally in-

feasible; the onset of computational methods enabled data-driven approximations to the Koopman

operator [42–44]. The typical research into the use of Koopman operator looks to use the linear

structure in search of eigenfunctions and invariant subspaces that determine the nonlinear dynamic

characteristics and the overall dimensionality of the Koopman operator formulated dynamical sys-

tem [45–47]. However, some of the most recent research has shown the capabilities of the Koopman

operator model for control [46,47].

Koopman operators for model-based control research has suggested that such a use is promising
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avenue for many fields including robotics [46–54]. Koopman operators are closely related to latent

variable (embedded) dynamic models [55]. In embedded dynamic models, an autoencoder [40,55] is

used to compress the original state-space into a lower-dimensional representation. The embedded

dynamics model then only evolves the latent representation that can predict the overall dynamical

system behavior. In contrast, Koopman operators represent the state of dynamical systems in an

expanded dimensional representation where the evolution of the embedding is defined as a linear

dynamical system. Thus, Koopman operators latent states are able to represent the nonlinear

behavior of the original dynamical system as a linear differential equation that can be used for linear

model-based control. In this thesis, I present the Koopman operator for enhancing robot control

and learning. I show that this slight change in representation of the robot dynamics improves the

learning and control performance compared to existing nonlinear approaches for robotic systems. In

keeping with the theme of this thesis, I present an active learning approach that exploits the linear

structure of the Koopman operator that allows robotics systems to learn within a single roll-out

(i.e., execution of the robot in the world). Within the field of latent embeddings for robot control

the contributions of this thesis are as follows:

(i) robot control in infinite linear embedded space

(ii) active learning in infinite embedded spaces

(iii) flexible automated learning of lifted linear embeddings

1.2 Thesis layout and published content

This thesis is organized in a way which is designed for each chapter to build off one another.

Therefore, each new chapter brings with it either an advancement of a previous chapter or uses the

content as the foundational work. As described below, the work in Chapters 3,5,6, and 7 is partially
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published in [56–60], and the work in Chapter 4 along with Chapter 6.3.4 will be submitted for

publication.

For the reader following along, I provide an initial chapter on background and preliminary

mathematics that are used throughout the thesis in Chapter 2. In this chapter, I discuss the

general problem setup for robot learning and decision making. I then introduce variations to the

problem of learning and decision making as well as the common solutions which I will be comparing

to in each chapter that contributes an advancement to the field. Some of the tools that are used

throughout the thesis will also be briefly introduced to provide the reader with some information

and context for motivation. These tools are overviewed in more detail in the main text of the thesis.

Chapter 3 introduces the first set of contributions which are used throughout this thesis. Specifi-

cally, this chapter presents hybrid learning as a method for enhancing motor skill learning in robotic

systems through the use of tools from hybrid control theory. The main contribution of this chap-

ter is the formulation of robot learning as a hybrid mode scheduling problem. Deterministic and

stochastic variations of hybrid learning are presented and are used as the foundation for the sub-

sequent chapters. The proposed approaches are then tested against a variety of robot learning

tasks and evaluated against existing methods. The theoretical, simulated and experimental work

presented in this chapter are published in [56].

Chapter 4 deviates momentarily from learning motor skills through hybrid control and instead

introduces the problem of active learning for robotic systems through examples of direct optimiza-

tion of information measures. In this chapter, I first motivate the problem of how robotic systems

should acquire data for learning as a problem of generating a control signal that gives robotic sys-

tems the ability to experiment in the world. This is accomplished through the maximization of

measures that label informative data in a maximum likelihood estimation problem. As a contribu-

tion, this chapter presents a derivation for these information measures for more general, complex
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network-like models. Examples of active learning are then presented for learning robot dynamics

and query-based interactive imitation learning. The results in this chapter are discussed and used

as motivation for the subsequent chapters which present solutions to some of the limitations with

direct optimization of information measures. The contents in this chapter will be submitted for

publication.

Chapter 5 looks at the problem of active learning in sparse environments where measurements

change infrequently through space. This chapter is where the thesis first introduces ergodicity and

ergodic control for active learning. The problem of active learning is motivated for robotic systems

that need to explore and model environments where sensory signals (like touch or contact) are

spatially sparse, requiring the robot to take action in order to measure the world. Information

measures for non-parametric models are introduced and are indirectly optimized through the use

of ergodic control. Examples for modeling and localization using contact-based robotic systems are

presented. The theoretical, simulated, and experimental work presented in this chapter is published

in [57].

This next chapter builds upon each of the previous chapters to develop a method for safe active

learning for robotic systems. Specifically, Chapter 6 presents KL-E3, a method for safe ergodic

exploration in high dimensional dynamic spaces that uses tools and methods from hybrid control

theory and hybrid learning. In this chapter, I first present the problem with using the ergodic

controller shown in Chapter 5 for active learning. In addition, I motivate the need for active learning

methods that are bounded to safe equilibrium robotic states but do not hinder the acquisition of

informative measurements for learning. This is accomplished through the use of ideas stemming

from Chapter 3 and a notion of Lyaponov attractiveness2 is derived for the proposed approach.

This chapter then present various use-cases for KL-E3 for active learning in robotic systems. The

2Not to be confused with Lyaponov stability.
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theoretical contributions and parts of the examples in this chapter are published in [58, 59]. The

results and examples in Chapter 6.3.4 are to be submitted for publication.

In the following Chapter 7, the thesis takes a drastic turn and reevaluates some of the last

chapters through the lenses of infinite linear embeddings. The thesis first introduces and justifies

the use of infinite linear embeddings for modeling and control of robotic systems in Chapter 7. The

justifications are used to present infinite linear embeddings for active learning. Specifically, I show

that the structure of modeling the robot dynamic through infinite linear embeddings results in not

only simpler mathematical structure, but also improved learning and control performance of robotic

systems. Through a variety of simulated and experimental results, I show that active learning with

infinite linear embedding structure give robotic systems the ability to learn in a single roll-out of

the robotic system. In addition, the special modeling structure allows equilibrium policies to be

quickly synthesized for control which makes use of Chapters 3 6. The results in these chapters are

published in [52,60].

Last, I conclude this thesis in Chapter 8. In this last chapter, I take this opportunity to restate

the contributions of this thesis and provide some take-away messages that I have learned throughout

each chapter. I provide an outlook for future work and what I envision to be the end goal of a long

and arduous journey for true robot autonomy that starts with the work in this thesis.

1.3 Collaboration acknowledgments and extended

published content

In this section, I would like to acknowledge the collaborative work presented in this thesis and

the published/ongoing work that is not a part of this thesis, but stems directly from the ideas
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presented. To start, the work published in Chapter 3 is work that is a result of a collaborative

effort with the Computer Science department at Northwestern University and the Shirley Ryan

Rehabilitation Institute. The ideas from this work has led to a collaborative effort with the Uni-

versity of Washington and the NVIDIA Seattle robotics lab on the development of methods that

exploit complex simulations with large parameter uncertainty for robot control. The contents of

this research is published in [6] are are continually being developed and stem directly from the the-

oretical work developed in Chapter 3.1.2. The work on ergodic exploration presented in Chapter 5

has also been expended for decentralized control of multi-agent systems and published in [61]. The

ideas and theoretical contributions from this work has largely been a part of an effort that further

develops human-swarm capabilities that has recently been published in [62] and whose work is cur-

rently on-going. The theoretical work in Chapter 6 is currently being adapted for on going research

for developing human-robot rehabilitation techniques and on learning structured representations of

complex sensory systems. In addition, part of the work developed in Chapter 7 has also influenced

collaborative work done with the Computer Science department at Northwestern University and

the Shirley Ryan Rehabilitation Institute on shared-control that is published in [63]. Last, the work

in Chapter 7 has inspired a series of research that further develops Koopman operator theory for

robot control [48,54].
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Chapter 2

Background

This chapter presents an overview of some mathematical concepts that are often discussed in robot

learning and modeling decision making. Specifically, the topics are directly related to the context

of this thesis and the contributions that the thesis provides. Thus, I encourage anyone reading to

use this chapter as reference for the following chapters and as a source of motivating future work.

I will first introduce a common approach to modeling decision making in robotics and relate it to

optimal control. I will then introduce methods for solving robot decision making problems and

additional variations to the optimal control problem which will be used in the following chapters

as motivation. Section 2.2 introduces and motivate a reformulation of modeling robot decisions for

learning, also known as active learning. In particular, this section will present various approaches for

active learning and motivate active learning in the context of physical systems whose actions have

consequences to what is measured and learned. Last, Section 2.3 introduces the idea of modeling

physical dynamics as infinite, linear dynamic embeddings known as the Koopman operator.
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2.1 Markov decision processes and optimal control

Modeling how autonomous systems make decisions is a first step towards achieving true autonomy.

There needs to be a way to model and understand the complexities of decisions, and their conse-

quences, particularly in the field of robotics where physical phenomena plays a large role in how we

control these systems. Markov decision processes (MDP’s) enable modeling of decision making in

not just robotic systems, but many complex systems with different interaction dynamics, actions,

and objectives. Robot decision making is modeled as an MDP through the definition of a tuple

{X ,U ,L,P} which represents a set of n dimensional accessible states xt ∈ Xn, ut ∈ Um defines

the set of admissible m dimensional actions (or control inputs) that can be taken, L : X × U → R

defines the space of external values associated with a state-action pair1, and P(xt+1 | xt, ut) is the

state transition probability associated with transitioning from a state xt and action ut to the state

at the next time step xt+1.

Given an MDP formulation, the goal is to find a mapping from state to action that maximizes

the expected external value over a finite time. This can be written as the following optimization

problem:

π? = arg max
π

Eu∼π(· | x)

[
T−1∑
t=0

rt

]
(2.1)

subject to P(xt+1 | xt, ut)

where E is the expectation operator, T is the discrete time horizon2 rt = r(xt, ut) ∈ L is an

external reward value3 at time t, u ∼ π(· | x) is a stochastic policy as a function of state, and

1Often the external value can be defined as a cost ` (i.e., penalty) or reward r for the state-action pair.
2The optimization problem can also be formulated in continuous time.
3The problem can be posed as minimization if a cost function `t = `(xt, ut) is used.
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π? is the optimal policy that returns sampled actions that maximize the expected reward. If the

transition model and the reward function are known, the MDP formulation becomes a stochastic

optimal control problem. 4. Given a deterministic transition model, P = 1, then the stochastic

optimal control problem is converted into a deterministic optimal control problem subject to the

deterministic transition model often defined as

xt+1 = f(xt, ut) (2.2)

where f(x, u) : X × U → X is the general transition model (in robotics the transition model often

defines the dynamics of the robot itself).

2.1.1 Learning-based approaches to MDP

If we are given the conditions of an optimal control problem one can choose from a long list

of methods such as iLQG, MPPI, and Projection-Based optimization [64–66]. However, if the

transition model or the reward function are unknown, the robotic system would be required to

learn models of the missing functions from sensor measurements and then solve the MDP objective

using what is learned. These methods often fall under two categories of reinforcement Learning:

model-based and model-free reinforcement learning.

Model-based reinforcement learning operators by first learning a model of the reward function

and transition model from measurement data. This is done through optimizing some loss function

(usually a least-squares variation) between the model predictions and observed measurements. The

models are then used to maximize the reward either through directly learning the state-action

4Often optimal control problems are specified with a cost (penalty) function; however, the definition remains the
same with a minimization instead of a maximization
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policy (gradient based optimization of a parameterized policy) or through model-based planning5.

In model-based planning, the models are used to predict the state and reward outcomes given

a sequence of predicted actions over a time horizon. The sequence of actions are optimized and

the first action is applied to the robot and the subsequent actions are recycled following a new

sample of the state xt. Model-based methods have the benefit of being “sample-efficient”, meaning

that significantly less measurements and interactions with the environment are required to solve

the MDP than the counter-part model-free learning approaches. The downside is that the model-

based methods often require significantly more complex models and yield poor performance when

compared against model-free methods.

In contrast, model-free reinforcement learning methods approach the problem of solving the

MDP through a unique interpretation of the MDP objective stated in Eq. 2.1 which avoids the need

of a transition model unused [2]. Therefore, only experienced measure data and a value function

which indicates whether a sequence of actions was improves the objective is used to update the

policy. Thus, only a policy and value function are learned to solve the MDP using model-free

methods (where in model-based methods, a policy, value, and transition model is learned). As

a consequence, model-free methods require less complex models and are able to achieve better

performance than model-based methods. This is at a cost of requiring significantly more data and

interaction with the environment to obtain the models and maximize the expected reward.

Note that both methods can be formulated into a variation of optimal control with the constraint

that the models are learned from data. That being said, this thesis attempts to bridge that gap

between optimal control and reinforcement learning using methods from hybrid control theory. In

doing so, I present the problem of robot learning and decision making as a problem of switching

between different modes of learning (see Chapter 3).

5Another term for a similar approach is model predictive control
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2.1.2 Hybrid control theory for mode scheduling

Hybrid control theory is an approach to solving a specific kind of optimal control problem. Specif-

ically, the goal is to solve a variation of the MDP problem where actions are selected between a

set of “modes” or fixed control strategies. This shifts the optimization from learning the policy to

learning a schedule of switching times for the policies.

To describe the hybrid control problem, it is often easier to think of the MDP formulation as a

deterministic continuous time MDP. First, define the transition model as the continuous process

ẋ(t) = f(x(t), u(t)) (2.3)

where ẋ(t) : R → Ẋn denotes the infinitesimal change in state at the continuous time t, f(x, u) :

S × A → Ẋ represents the continuous transition model in the tangent space Ẋ , and x(t), u(t)

denote the continuous time state and action which now become a function of continuous time. Note

that we overload the notation to avoid complicating the background discussion and introducing

unnecessary notations. A common variation to f(x, u) is the control affine transition dynamics

ẋ(t) = f(x(t), u(t)) = g(x(t)) + h(x(t))u(t) (2.4)

where g(x) : X → Ẋ is the free dynamics and h(x) : X → Ẋ ×U is a mapping from state to control.

The hybrid control problem (as used in this thesis) is then specified as

arg max
τ,λ

J =

∫ tH

t=0

r(x(t), u(t))dt (2.5)

subject to ẋ(t) = f(x(t), u(t)), x(0) = x0
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where

u(t) =


û(t), if t ∈ [τ, τ + λ]

udef(t) otherwise

, (2.6)

tH is the time horizon (in seconds), and x(t) is generated from some initial condition x(0) using

the model (2.3) and action sequence (2.6), τ is then the switching time and λ is the time duration

for switching between a default action udef(t) and an arbitrary action û(t). These problems are

interesting because they occur so often in engineering problems. As an example, consider the vertical

take-off-landing vehicle (VTOL) which has two modes: flight and hover. The problem of flight is

well studied as is hovering, but switching is problematic particularly when the optimal behaviors

differ significantly between modes. Thus, finding when to optimally switch without having an

adverse reaction to the performance of the VTOL can be constructed as an hybrid control problem.

I make similar analogies for robot learning which is discussed in Chapter 3 as a contribution of this

thesis.

2.2 Active learning

While the MDP formulation models decision making in robotics, it does not directly address the

problem of learning the possibly unknown models (like the transition dynamics or external reward

function) in an optimal manner. In most common approaches for solving MDP’s within the context

of robot learning, an initial guess at the unknown models is used and updated as new measure-

ments of the state and reward are obtained. As a result, there is this trade-off of exploration and

exploitation that occurs in most robot learning tasks. How much of the environment interaction

time is spent exploring for novel measurements versus how much time is spent exploiting the learned

models to solve the MDP problem? With robots that physically interact in the world, blindly ex-
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ploring will lead to permanent damage and harm. In contrast, not exploring enough can result in

the inability to solve the MDP due to poor modeling of the world. If we consider that robots can

only have limited interactions with the environment, then how informative each measurements is

must be taking into account.

In this thesis, I address this problem of “optimally” learning as an active learning problem.

Active learning address the problem of selective learning where an autonomous system has to make

decisions on what measurements are collected to improve the conditions of the learning problem

as best as possible. In other words, seek out the most informative measurements that improves

learning efficiency. The idea behind active learning is that measurements are chosen such that

they provide high information about what is being learned (resulting in fast learning to achieve the

desired outcome). The high information measurements can be interpreted as measurements that

reduce model uncertainty and prediction error. Active learning is particularly a powerful concept

in robotics as actions taken by the robot incur a physical consequence that has to be managed and

dealt with efficiency. This can include actively learning the transition model (or dynamics), the

reward function, or interactively learning from expert demonstrations. In this thesis, I introduce a

set of existing methods for active learning and extend the problem statement to robotic systems with

physical constraints while proposing methods that are capable of handling the added restrictions.

2.2.1 Bayesian optimization

A common example of active learning is known as Bayesian optimization. In Bayesian optimization,

the goal is to find the maximum of an objective function which is unknown or can only be evaluated
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a handful of times. Formally, the problem is specified as

x? = arg max
x

ψ(x) (2.7)

where x ∈ Sd is a d dimensional measurement in the search space S of the function ψ : Sd → R.

In many cases, ψ can not be evaluated directly, thus the approach in Bayesian optimization is

to construct a stochastic surrogate model from measured evaluations of ψ. The idea is that the

posterior of the surrogate model can be used to infer regions in S where measurements are more

likely to provide information about the maximum of ψ through what is defined as a utility function.

This utility function U(x) : S → R is constructed from the surrogate model posterior given the

already sampled measurements xi, ψ(xi). The surrogate function is often modeled using a Gaussian

Process GP(µ(x), σ2(x)) where µ(x), σ2(x) are the predictive mean and variance posterior of the

GP obtained from a previously sampled measurement data set D = {xi, ψ(xi)}Ni=1 with N being

the total number of queries to the function ψ.

At each iteration of Bayesian optimization, the acquisition function is generated from the pos-

terior to inform an “active learner” where samples are most informative. The active learner then

samples the search space based on the acquisition function and updates the posterior of the GP.

This loop repeats until a maximum is found. An example algorithmic pseudo-code is provided in

Algorithm 1.

In this thesis, I consider the problem of when the “active learner” inhabits the physical world,

resulting in dynamic constraints that govern the motion of the robot and its ability to sample at

desired informative locations (specifically when S intersect the dynamic space of the robot i.e.,

velocity, acceleration). Thus, the ability of the active learner to query particular measurements is

constrained and will involve planning.
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Algorithm 1 Bayesian Optimization

1: init: Gaussian prior on objective ψ, data set D, i = 0, imax

2: while i < imax do
3: xsample = arg maxU(x)
4: active learner samples yi = ψ(xsample)
5: D ← {xsample, yi}
6: update GP posterior distribution on ψ using D
7: update U(x) from GP
8: i← i+ 1
9: end while

10: return max yi of GP surrogate at xsample

2.2.2 Optimal experimental design

Another approach to active learning is known as optimal experimental design (OED) (there is also

a Bayesian optimal experimental design, but I do not go over that method in this thesis). The idea

behind OED is to use the structure of the learning problem itself (i.e., the model) to decide how to

improve the conditions and experiments for learning (e.g., what to measure, where to measure, how

many measurements). The ultimate goal being to improve the learning by selecting measurements

that infers the most about the underlying model and minimize parameter uncertainty.

I motivate the use of optimal experimental design through the following linear regression example

and then generalize the motivation to a larger class of maximum likelihood learning problems.

Consider a linear model y = φ(x)>θ + ε. where x ∈ Rd is a measurement point, y ∈ R is the

predicted output, θ ∈ Rp is a vector of learnable parameters, φ : Rd → Rp is a vector of basis

functions that are evaluated at the measurement point x, and ε ∼ N (0, σ2) is i.i.d noise with

variance σ2. For a data set of N measurement points D = {xi, yi}Ni=1 obtained by querying the



39

unknown function yi = ψ(xi), the linear regression problem is defined as

θ? = arg min
β

(Y − Φθ)
>

(Y − Φθ)

where Y = [y1, . . . , yN ]>, Φ = [φ(x1), . . . , φ(xN )]> ∈ RN×p, and θ? is the optimal parameter which

minimize the least squares regression. Since the regression problem is convex in θ, the optimal

solution is

θ? =
(
Φ>Φ

)−1
Φ>Y

where θ? is known as the maximum likelihood estimator. If we calculate the variance of θ? we

obtain the following relationship

var [θ?] =
((

Φ>Φ
)−1

Φ>
)

var [Y ]
(

Φ
(
Φ>Φ

)−1
)

= σ2
(
Φ>Φ

)−1

where Φ>Φ is defined as the Fisher information matrix [24]. Note that the Fisher information is

only a function of the measurement query points xi and is directly related to the variance of the

maximum likelihood estimator without needing to query the unknown function we are trying to

learn. We can use this knowledge to optimize over query points xi to improve our estimate of the

maximum likelihood estimator through maximizing the Fisher information matrix! This is a direct

consequence of what is known as the Cramér-Rao lower bound [67,68] defined as

var [θ?] ≥ I(θ)−1

where I(θ) is the Fisher information matrix.
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We can define the Fisher information for the more general maximum likelihood estimation

problem. Let p(y | x, θ) be a family of θ parameterized probability densities that model observations

D = {xi, yi}Ni=1. Then the likelihood that parameter θ models the data is given by ΠN
n=1p(yi | xi, θ).

Maximizing the log likelihood with respect to the parameters θ gives the maximum likelihood

estimator

θ? = arg max
θ

log ΠN
n=1p(yi | xi, θ).

The Fisher information for the more general maximum likelihood problem is defined through vari-

ance of the “score” function and the Hessian of the likelihood problem:

I(θ) = var [∇θ log p]

= E
[
(∇θ log p) (∇θ log p)

>
]
− E [∇θ log p]

2︸ ︷︷ ︸
=0

.

= E
[
(∇θ log p) (∇θ log p)

>
]

= −E
[
∇2
θ log p

]

where ∇θ log p = ∂
∂θ log p(y | x, θ) is the score function, ∇2

θ = ∂2

∂θ2 is the Hessian, and E indicates

an expectation over measurements drawn from the underlying data distribution. Here, the last

equatilty is obtained by ∇2
θ log p and relating it to (∇θ log p) (∇θ log p)

>
at expectation. If we use

the model p(y | x, θ) = N (φ(x)>θ, σ2), it is easy to show that we recover the original definition of

the Fisher information for the linear regression problem.

Thus, we can infer and improve upon the minimum obtainable variance of a model’s parameters

through maximizing the Fisher information matrix and effectively planning what measurements

to collect. In Chapters 4, I introduce various forms of optimizing the Fisher information through

optimality conditions and expand upon applications of Fisher information maximization for more

general, complex modeling problems. This thesis also presents methods for active learning through
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direct and indirect optimization of the Fisher information for fast and efficient robot learning.

2.2.3 Ergodicity and ergodic exploration

I will now overview a more recent strategy for exploration and sampling known as ergodic ex-

ploration. Consider the problem of exploration versus exploitation where the robot must decide

whether to allocate time to exploit what it already knows (maximum of some objective using learned

models) or explore for more information (improve models sampling measurements in unexplored

areas).

Definition 1. Ergodicity, in robotics, is defined when a robot whose time-averaged statistics over its

states is equivalent to the spatial statistics of an arbitrarily defined target distribution that intersects

those states.

Rather than choosing to explore or exploit, ergodic exploration reduces the exploration versus

exploitation trade-off as proportionally matching the time-averaged trajectory distribution to a

spatially determined statistic.6 Thus, a robot that explores ergodicity will spend more of its time in

regions directly proportion to high statistics (positive outcomes in exploitation) and quickly explores

the search space where there are low statistics (low probability of positive outcome exploration).

The exact specifications of a spatial statistic varies depending on the underlying task and is

defined differently depending on the learning task and a utility function similar to Bayesian opti-

mization. For now, let us define the time-averaged trajectory distribution of a robot by considering

its continuous time trajectory x(t) : R → Xn ∀t ∈ [t0, tf ] generated through an arbitrary control

sequence u(t) : R→ Um.

6The spatial statistics are often defined through a utility function that indicates where informative measurements
reside.
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Definition 2. Given a search domain Sv ⊂ Xn where v ≤ n, the time-averaged statistics (i.e., the

time the robot spends in regions of the search domain Sv) of a trajectory x(t) is defined as

c(s | x(t)) =
1

tf − t0

∫ tf

t0

δ [s− x̄(t)] dt, (2.8)

where s ∈ Sv is a point in the search domain, x̄(t) is the component of the robot’s state x(t) that

intersects the search domain, and δ[·] is the Dirac delta function.

In general, the target spatial statistics are defined through its probability density function p(s)

where p(s) > 0, and
∫
Sv p(s)ds = 1. Given a target spatial distribution p(s), we can calculate an

ergodic metric E(x(t))as the distance between the Fourier decomposition of p(s) and c(s | x(t)): 7

E(x(t)) =
∑
k∈Nv

Λk (ck − pk)
2

where Λk is a weight on the harmonics defined in [27],

ck =
1

tf − t0

∫ tf

t0

Fk(x̄(t))dt, pk =

∫
Sv

p(s)Fk(s)ds,

and Fk(s) is the kth cosine Fourier basis function. Minimizing the ergodic metric results in the

time-averaged statistics of x(t) matching the defined target spatial distribution p(x). In addition,

on a finite horizon, an ergodically exploring robotic system samples measurements in high utility

regions more often while still exploring at low utility regions.

Exploring in low utility regions has the added benefit of acquiring novel measurement and

information that often improves the learning capabilities of robots. In addition, this approach

side-steps the problem of gradient-based optimization of non-convex utility functions by instead,

7This distance is known as the Sobelov distance [69].
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solving a simpler optimization problem through the Fourier decomposition. As in [19, 70], one can

calculate a controller that optimizes the ergodic metric such that the trajectory of the robot is

approximately ergodic with respect to the distribution p(x). Unfortunately, this approach scales

O(|k|n) where |k| is the maximum integer–valued Fourier term. As a result, this approach is

ill-suited for high-dimensional search spaces (n > 3). Furthermore, the resulting time-averaged

distribution reconstruction will often have residual artifacts which require additional conditioning

to remove. This motivates part of the thesis work on defining a variation to the ergodic metric that

can be expanded to high dimensional search spaces.

2.3 Infinite linear embeddings

In this last section, I introduce a class of infinite linear representations of dynamical systems (often

referred to as Koopman Operators). The Koopman operator is an important part of this thesis and

will be discussed more completely within the context of robotics in the later chapters.

2.3.1 The Koopman operator

The Koopman operator is a way to represent nonlinear systems as linear systems in the infinite

vector space. Thus, the Koopman operator is a class of infinite linear embedding where the non-

linearity of a dynamical system can be represent by an infinite set of features that are related

linearly in time. Consider a set of features z(x) : X → F where F is the lifted functional space of

dimension.8 Then the Koopman operator dynamical system is defined as

z(xt+1) = Kz(xt) = z(f(xt)) (2.9)

8As before, we can define the dimensionality of X and F with a superscript.
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where K : F → F is the linear Koopman operator matrix that predicts the value of the functions

z(xt)→ z(xt+1) in time, f(x) is the transition model (excluding control). Adding control actuation

u to the Koopman operator is as simple as expanding the definition of the features to include the

control space U : 9

z(xt+1, ut+1) = Kz(xt.ut). (2.10)

The intuition behind the infinite linear embedding is that there exists a set of observations of the

state whose evolution in time approximates a linear dynamical system. Most nonlinear systems

can be represented as linear systems as the dimensionality of z approaches infinity (resulting in the

infinite Koopman operator matrix). While there does exist finite representations (finite Koopman

subspaces), these are often difficult to find and have only been discovered for specific kinds of

dynamical systems [46]. In this thesis, I focus on generating approximate Koopman dynamical

systems in a subset of the functional space from data.

Let z(x, u) be defined by a finite set of real-valued functions. Then, given a data set of N

sequential measurements D = {xi, ui, xi+1, ui+1}Ni=1 the Koopman operator can be approximated

through the linear regression

min
K

1

2

N∑
i=1

‖z(xi+1, ui+1)−Kz(xi, ui)‖2. (2.11)

The solution defines the approximate Koopman dynamical system which can be used for prediction

in the lifted latent space. In this thesis, I explore the linear dynamics of the Koopman operator for

improving learning and control of nonlinear robotic systems. In addition, I introduce an approach for

automatically learning the functions z and present examples of active learning using the Koopman

operator model.

9I will later show different variations to choosing z with control than one stated here.
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Chapter 3

Learning as a hybrid mode scheduling problem

In this first chapter, I present the problem of robot learning and decision making from the perspec-

tive of hybrid control theory. Specifically, the goal of this chapter is to introduce hybrid learning as

viable method for robot learning through optimally combining model-based and model-free learning

(which in this chapter I refer to as experience-based learning). The predictive models in model-based

learning provide an understanding of the task and the physics (which improves sample-efficiency),

while experience-based policy mappings in model-free learning are treated as “muscle memory” that

encode favorable actions as experiences that overrides planned actions. Hybrid control tools are used

to create an algorithmic approach for combining learned predictive models with experience-based

learning. In the following sections, hybrid learning is presented as a method for robot learning that

efficiently learns motor skills by systematically combining and improving the performance of predic-

tive models and experience-based policies. I derive a deterministic variation of hybrid learning and

extend the approach into a stochastic implementation that relaxes some of the key assumptions in
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the original derivation. Each variation is tested on various tasks (where the robot interacts with the

environment to gain experience) as well as scenarios found in imitation learning (where experience

is provided through demonstrations and tested in the environment). The results show that this

approach is capable of improving the performance and sample-efficiency of learning motor skills in

a variety of experimental domains. The foundations of this chapter are then utilized throughout

the remainder of this thesis.

3.1 Hybrid Learning

The goal of this section is to introduce hybrid learning as a method for optimally utilizing model-

based predictions and model-free policy learning. I start with the deterministic variation of the

algorithm that provides theoretical proofs, which describe the foundations of the approach. The

stochastic variation is then derived as a method for relaxing the assumptions made in the deter-

ministic variation. The main theme in both the deterministic and stochastic derivations is that

the learning problem is solved indirectly. That is, we solve the (often harder) learning problem by

instead solving sub-problems whose solutions imply that the harder problem is solved.

3.1.1 Deterministic

Consider the continuous time formulation of the objective and dynamics in (2.5) and (2.3) with

the MDP formation where f and r are learned using arbitrary regression methods (e.g., neural

network least squares, Gaussian processes), and the policy π in (2.1) is learned through a model-

free approach (e.g., policy gradient [2]). In addition, let us assume that in the default action in

(2.6) is defined as the mean of the policy π where we ignore uncertainty for the time being1. That

1We will add the uncertainty into the hybrid problem in the stochastic derivation of our approach for hybrid
learning
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is, udef(t) = µ(x(t)) where we assume that the policy has the form π(u | x) = N (µ(x),Σ(x)), where

N is a normal distribution and µ(x), Σ(x) are the mean and variance of the policy as a function

of state. For now we assume that we leave û as a free variable, let us first calculate how sensitive

(2.5) is at any τ to switching from µ(x)→ û for an infinitely small λ2.

Lemma 1. Assume that f , r, and µ are first order differentiable and continuous in time. The

sensitivity of (2.5) (also known as the mode insertion gradient [71]) with respect to the duration

time λ from switching between µ(x) to û and any time τ ∈ [0, tH ] is defined as

∂

∂λ
J (τ) = ρ(τ)>(f2 − f1)|τ (3.1)

where f1 = f(x(t), µ(x(t))) and f2 = f(x(t), û(t)), and ρ(t) ∈ Xn is the adjoint variable which is

the the solution to the the differential equation

ρ̇(t) = − ∂r
∂x
−

(
∂f

∂x
+
∂µ

∂x

> ∂f

∂u

)>
ρ(t) (3.2)

with terminal condition ρ(tH) = 0.

Proof. See Appendix A for proof.

Lemma 1 gives us the proof and definition of the mode insertion gradient (3.1), that tells us the

infinitesimal change in the objective function when switching from the default policy behavior to

some other arbitrarily defined control û for a small time duration λ. The mode insertion gradient

is directly used to see how an arbitrary action changes the performance of the task from the policy

that is being learned. However, in this chapter the mode insertion gradient is used as a method for

2We avoid the problem of instability of the robotic system from switching control strategies as later we develop
and use the best action for all τ ∈ [0, tH ] instead of searching for a particular time when to switch.
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obtaining the best action the robot can take given the learned predictive models of the dynamics

and the task rewards. We can be more direct in our approach and ask the following question.

Given a suboptimal policy π, what is the best action the robot can take to maximize

(2.5), at any time t ∈ [0, tH ], subject to the uncertainty (or certainty) of the policy

defined by Σ(x)?

We approach this new sub-problem by specifying the auxiliary optimization problem:

u?(t) = arg max
û(t) ∀t∈[0,tH ]

∫ tH

0

∂

∂λ
J (t) + log π (û(t) | x(t)) dt (3.3)

where the idea is to maximize the mode insertion gradient (i.e., find the action that has the most

impact in changing the objective) subject to the log π term that ensures the generated action u?

is penalized for deviating from the policy, when there is high confidence that was based on prior

experience.

Theorem 1. Assuming control affine dynamics (2.4) and f , r, and π are continuous and differen-

tiable in x, u and t, the best possible action that improves the performance of (2.5) and is a solution

to (3.3) for any time t ∈ [0, tH ] is

u?(t) = Σ(x(t))h(x(t))>ρ(t) + µ(x(t)) (3.4)

where ρ(t) is defined by (3.2) and h(s) : Rn → Rn×m is the affine mapping from actions to the

dynamics.

Proof. Inserting the definition of the mode insertion gradient (3.1) and taking the derivative of
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(3.3) with respect to the point-wise û and setting it to zero gives

ρ>h(x) (û− µ(x))− Σ(x)−1 (û− µ(x)) = 0

where we drop the dependency on time for clarity. Solving for û gives the best actions u?

u?(t) = Σ(x(t))h(x(t))>ρ(t) + µ(x(t))

which is the action that maximizes the mode insertion gradient subject to the certainty of the policy

π for all t ∈ [0, tH ].

The proof in Theorem 1 provides the best action that a robotic system can take given a default

experience-learned policy. Each action generated uses the sensitivity of changing the objective based

on the predictive models while relying on the experience-based policy to regulate when the predicted

information will be useful. We convert the result in Theorem 1 into our first (deterministic) hybrid

learning learning algorithm (see Alg. 2).

The benefit of the proposed approach is that we are able to make (numerically based) statements

about the generated action and the contribution of the learned predictive models towards improving

the task. Furthermore, it is possible to make the claim that (3.4) provides the best possible action

given the current belief of the dynamics f and the task reward r.

Corollary 1. Assuming that ∂
∂uH 6= 0 where H = r(x) + log π(u | x) + ρ>f(x, u) is the control

Hamiltonian for (2.5), then ∂
∂λJ = ‖h(x)>ρ‖Σ(x) > 0 and is zero when the policy satisfies the

control Hamiltonian condition ∂
∂uH = 0.
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Algorithm 2 Hybrid Learning (deterministic)

1: Randomly initialize continuous differentiable models f , r with parameters ψ and policy π with
parameter θ. Initialize data buffer D, prediction horizon parameter tH , exploration noise ε.

2: while task not done do
3: reset environment and initialize exploration noise ε
4: for i = 1, . . . , T do
5: observe state x(ti) from environment
6: . simulation loop
7: for τi ∈ [ti, . . . , ti + tH ] do
8: . forward predict states using any integration method (Euler shown)
9: x(τi+1), r(τi) = x(τi) + f(x(τi), µ(x(τi)))dt, r(x(τi), µ(x(τi)))

10: end for
11: . backwards integrate using ρ̇(t) defined in (3.2)
12: ρ(ti + tH) = 0
13: for τi ∈ [tH + ti, . . . , ti] do
14: ρ(τi−1) = ρ(τi)− ρ̇(τi)dt
15: end for
16: u?(ti) = Σ(x(ti))h(u(ti))

>ρ(ti) + µ(x(ti)) + ε(t)
17: apply u?(ti) to robot
18: append data D ← {x(ti), u

?(ti), rt, x(ti+1)}
19: end for
20: Update f, r by sampling N data points from D using any learning method
21: Update π using any model-free method
22: end while

Proof. Inserting (3.4) into (3.1) using the control affine dynamics 2.4 yields

∂J
∂λ

= ρ>
(
g(x) + h(x)

(
Σ(x))h(x)>ρ+ µ(x)

)
− g(x)− h(x)µ(x)

)
= ρ>h(x)Σ(x)h(x)>ρ = ‖h(x)>ρ‖Σ(x) > 0.

From Pontryagin’s Maximum principle, a solution that is a local optima of the objective function

satisfies the following

∂

∂u
H = −Σ(x)−1 (u− µ(x)) + h(x)>ρ = 0

when u = Σ(x)h(x)>ρ+µ(x) or ρ = 0. Therefore, if the policy π is a solution, then it must be that
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the adjoint ρ = 0 and π a solution to the optimal control problem (2.5).

Corollary 1 tells us that the action defined in (3.4) generates the best action that will improve

the performance of the robot given valid learned models. In addition, Corollary 1 also states that

if the policy is already a solution, then our approach for hybrid learning does not impede on the

solution and returns the optimal policy’s action.

Taking note of each proof, we can see that there is the strict requirement of continuity and

differentiability of the learned models and policy. As this restrictions are not always possible to

obtain, and often learned models from complex function approximators have noisy derivatives, the

goal is to try to reformulate (2.5) into an equivalent problem that can be solved without the need

for the assumptions. One way is to formulate the problem in discrete time (as an expectation),

which we will do in the following section.

3.1.2 Stochastic

We relax the continuity, differentiability, and continuous-time restrictions specified (2.5) by first

restating the objective as an expectation:

maxEv∼π(· | x) [J (v)] (3.5)

where J (v) =
∑T−1
t=0 r(xt) subject to xt+1 = f(xt, vt), and v = [v0, . . . vT−1] is a sequence of T ran-

domly generated actions from the policy π. Rather than trying to find the best time τ and discrete

duration λ, we approach the problem from an hybrid information theoretic view and instead find

the best augmented actions to π that improve the objective. This is accomplished by defining two
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distributions P and Q which are the uncontrolled system response distribution3 and the open loop

control distribution (augmented action distribution) described by their probability density func-

tions p(v) =
∏T−1
t=0 π (vt | xt) and q(v) =

∏T−1
t=0

1√
(2π)m|Σ(xt)|

exp
(
− 1

2 (vt − ut)>Σ(st)
−1(vt − ut)

)
respectively. Here, π(u | x) = N (µ(x),Σ(x)) and q(v) use the same variance Σ(x) as the policy.

The uncontrolled distribution P represents the default predicted behavior of the robotic system

under the learned policy π. Furthermore, the augmented open-loop control distribution Q allows

us to define a probability over arbitrary augmented actions, but more importantly, a free variable

for which to optimize over given the learned predictive models. Following the work in [4], we use

Jensen’s inequality and importance sampling on the free-energy [72] definition of a stochastic control

system using the open loop augmented distribution Q:

F(v) = −λ log

(
EP

[
exp

(
1

λ
J (v)

)])
≤ −λEQ

[
log

(
p(v)

q(v)
exp

(
1

λ
J (v)

))]
(3.6)

where λ ∈ R+ here is what is known as the temperature parameter (and not the time duration as

used prior). Note that in (3.6) if p(v)
q(v) ∝ 1/ exp

(
1
λJ (v)

)
then the inequality becomes a constant.

Further reducing the free-energy gives the following:

F(v) ≤ −λEQ

[
log

(
p(v)

q(v)
exp

(
1

λ
J (v)

))]
≤ −EQ

[
J (v)− λ log

(
p(v)

q(v)

)]

which is the optimal control problem we seek to solve plus a bounding term which penalizes actions

that are far from the policy. In other words, the free-energy formulation can be used as an indirect

approach to solve for the hybrid optimal control problem by asserting that the likelihood ratio

pushes the dynamic system towards an equilibrium of the free-energy (implying a solution to the

3We refer to uncontrolled as the unaugmented control response of the robotic agent subject to a stochastic policy
π
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optimal control problem). Specifically, if we can make p(v)
q(v) ∝ 1/ exp

(
1
λJ (v)

)
, then the free-energy

bound reduces to a constant (implying the likelihood ratio results in an equilibrium state of the

free-energy). Using this knowledge, we can define an optimal distribution Q? through its density

function

q?(v) =
1

η
exp

(
1

λ
J (v)

)
p(v), η =

∫
Ω

exp

(
1

λ
J (v)

)
p(v)dv

where Ω is the sample space.4 Letting the ratio be defined as p(v)
q?(v) gives us the proportionality that

we seek to make the free-energy a constant. However, because we can not directly sample from Q?,

and we want to generate a separate set of actions at defined in q(v) that augments the policy given

the learned models, our goal is to push q(v) towards q?(v). As done in [4, 73] this corresponds to

the following optimization:

u? = arg min
u

DKL (Q? | Q) (3.7)

which minimizes the Kullback-Leibler divergence of the optimal distribution Q? and the open-loop

distribution Q. In other words, we want to construct a separate distribution that augments the

policy distribution p(v) (based on the optimal density function) such that the objective is improved.

Theorem 2. The recursive, sample-based, solution to (3.7) is

u?t = ut +
∑
k

ω(vkt )δukt where ω(v) =
exp

(
1
λJ (v)

)
p(v)∑

n exp
(

1
λJ (v)

)
p(v)

(3.8)

where k denotes the sample index, vt = ut + δut, and vt ∼ π(· | xt).

Proof. See Appendix A for proof.

The idea behind the stochastic variation is to generate samples from the stochastic policy and

4The motivation being to use the optimal density function to gauge how well the policy π performs.
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evaluate its utility based on the current estimate of the dynamics and the reward function. Since

samples directly depend on the likelihood of the policy, any actions that steers too far from the

policy will be penalized depending on the confidence of the policy at that state. Conversely, when

the policy has low confidence (high variance) the action sample span increases and the penalty

decreases, this more of the model-based information is utilized. Note that we do not have to worry

about continuity and differentiability conditions on the learned models and can utilize arbitrarily

complex models for use of this algorithm (albeit the optimal control has only been defined for

normally distributed policies). We outline the stochastic algorithm for hybrid learning Alg. 3.

3.2 Robot learning examples

In this section, I apply hybrid learning (both deterministic and stochastic variations) on various

robot learning examples. In these examples, I show that hybrid learning improves the overall

performance and sample-efficiency of robot learning when compared against the current state of

the art in model-free and model-based learning. In addition, I show that through this approach the

individual components of model-based and model-free methods that are used in the joint hybrid

learning are improved. The proposed hybrid learning is also posed as an imitation learning method

where expert demonstrations are used to generate the experience-based policy (through behavior

cloning) and use the learned predictive models to adapt to the uncertainty in the policy. All

implementation details are provided in Appendix B.

3.2.1 Model-based and model-free learning

We evaluate hybrid learning in the deterministic and stochastic settings and compare against the

standard in model-based and model-free learning. In addition, we illustrate the ability to evaluate
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Algorithm 3 Hybrid Learning (stochastic)

1: Randomly initialize continuous differentiable models f , r with parameters ψ and policy π with
parameter θ. Initialize data buffer D, prediction horizon parameter T , environment interaction
time H.

2: while task not done do
3: reset environment
4: for t = 0, . . . ,H − 1 do
5: observe state x̄t from environment
6: . simulation loop
7: for k ∈ {0, . . . ,K − 1} do
8: set sim state xkτ
9: for τ ∈ {0, . . . , T − 1} do

10: vkτ ∼ π(· | xkτ )
11: . forward predict state and reward
12: xkτ+1, r

k
τ = f(xkτ , v

k
τ ), r(xkτ , v

k
τ )

13: end for
14: end for
15: . update actions
16: for τ ∈ {0, . . . , T − 1} do

17: J (vkτ )←
∑T−1
t=τ r

k
t

18: δukτ ← vkτ − uτ
19: uτ ← uτ +

∑K−1
k=0 ω(vkτ )δukτ

20: end for
21: apply u0 to robot and observe x̄t+1

22: append data D ← {x̄t, u0, rt, x̄t+1}
23: shift actions u0:T−2 = u1:T−1, init uT−1 = 0
24: end for
25: Update f, r by sampling N data points from D using any learning method
26: Update π using any model-free method
27: end while

our method’s agreement of the learned models through the mode insertion gradient. Experimen-

tal results validate hybrid learning for real robot tasks. For each example, we use Soft Actor

Critic (SAC) [11] as our model-free method and a neural-network based implementation of model-

predictive path integral for reinforcement learning [4] as a benchmark standard method. The pa-

rameters for SAC are held as default across all experiments to remove any impact of hyperparameter

tuning.
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Figure 3-1: Performance curves of our proposed deterministic hybrid learning algorithm on multiple
environments (averaged over 5 random seeds). All methods use the same structured learning models.
Our method is shown to improve the model-based benchmark results (due to the use of experience-based
methods) while maintaining significant improvements on the number of interactions necessary with the
environment to obtain those results. The mode insertion gradient is also shown for each example which
illustrates the model-policy agreement over time and the improvement over time.

Hybrid learning is tested in four simulated environments: pendulum swingup, cartpole swingup,

the hopper environment, and the half-cheetah environment (Fig. 3-1) using the Pybullet sim-

ulator [74]. In addition, we compare against state-of-the-art approaches for model-based and

experience-based learning. We first illustrate the results using the deterministic variation of hybrid

learning in Fig. 3-1 (compared against SAC and a deterministic model-predictive controller [75]).

Our approach uses the confidence bounds generated by the stochastic policy to infer when best to

rely on the policy or predictive models. As a result, hybrid learning allows for performance compa-

rable to experience-based methods with the sample-efficiency of model-based learning approaches.
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Furthermore, the hybrid control approach allows us to generate a measure for calculating the agree-

ment between the policy and the learned models (bottom plots in Fig. 3-1), as well as when (and

how much) the models were assisting the policy. The commonality between each example is the

eventual reduction in the assistance of the learned model and policy. This allows us to better mon-

itor the learning process and dictate how well the policy is performing compared to understanding

the underlying task.
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Figure 3-2: Performance curves of our proposed stochastic hybrid learning algorithm on multiple environ-
ments (averaged over 5 random seeds). As shown before, our approach improves both the sample-efficiency
but also the highest expected reward. In addition, the stochastic variation of the hybrid learning algorithm
generates smoother learning curves as a result of not requiring derivatives of learned models.

We next evaluate the stochastic variation of hybrid learning, where we compare against a stochas-

tic neural-network model-based controller [4] and SAC. As shown in Fig. 3-2, the stochastic variation

still maintains the improved performance and sample-efficiency across all examples while also having

smoother learning curves. This is a direct result of the derivation of the algorithm where continuity

and differentiability of the learned models are not necessary. In addition, exploration is naturally

encoded into the algorithm through the policy, which results in more stable learning when there is

uncertainty in the task. In contrast, the deterministic approach required added exploration noise

to induce exploring other regions of state-space. A similar result is found when comparing the

model-based performance of the deterministic and stochastic approaches, where the deterministic
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Figure 3-3: Hybrid learning compared with model-free policy results on the Sawyer robot (averaged
over 5 trials). The task is to push a block to a designated target through environment interactions (see
time-series results above). Our method is able achieve the task within 3 minutes (each episode takes
10 seconds) through effectively using both predictive models and experience-based methods. The same
amount of interaction with SAC was unable to successfully push the block to the target. For videos visit
https://sites.google.com/view/hybrid-learning-theory.

variation suffers from modeling discontinuous dynamics.

We can analyze the individual learned model and policy in Fig. 3-2 obtained from hybrid learn-

ing. Specifically, we look at the cartpole swingup task for the stochastic variation of hybrid learning

in Fig. 3-4 and compare against benchmark model-based learning (NN-MPPI [4]) and experience-

based learning (SAC [11]) approaches. Hybrid learning is shown to improve the learning capabilities

of both the learned predictive model and the policy through the hybrid control approach. In other

words, the policy is “filtered” through the learned model and augmented, allowing the robotic sys-

tem to be guided by both the prediction and experience. Thus, the predictive model and the policy

are benefited, ultimately performing better as a standalone approach using hybrid learning.

Next, we apply hybrid learning on real robot experiments to illustrate the sample-efficiency and

performance our approach can obtain (see Fig. 3-3 for task illustration). 5 We use a Sawyer robot

whose goal is to push a block on a table to a specified marker. The position of the marker and the

block are known to the robot. The robot is rewarded for pushing the block to the marker. What

makes this task difficult is the contact between the arm and the block that the robot needs to

5The same default parameters for SAC are used tor this experiment.

https://sites.google.com/view/hybrid-learning-theory
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Figure 3-4: Performance curves for the individual
learned model and policy on the cartpole swingup en-
vironment during hybrid learning (averaged over 10
trials). Our method is shown to improve the ca-
pabilities of the model-based and experience-based
components through mutual guidance defined by hy-
brid control theory. Reference model-based learning
(NN-MPPI) and experience-based learning (SAC) ap-
proaches are shown for comparison.
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Figure 3-5: Results for hybrid stochastic control with behavior cloned policies (averaged over 10 trials)
using the Ant Pybullet environment (shown in a time-lapsed running sequence). Expert demonstrations
(actions executed by an expert policy on the ant robot) are used as experience to boot-strap a learned
stochastic policy (behavior cloning) in addition to predictive models which encode the dynamics and the
underlying task of the ant. Our method is able to adapt the expert experience to the predictive models,
improving the performance of behavior cloning and performing as well as the expert. For videos visit
https://sites.google.com/view/hybrid-learning-theory .

discover in order to complete the pushing task. Shown in Fig. 3-3 our hybrid learning approach is

able to learn the task within 20 episodes (total time is 3 minutes, 10 seconds for each episode). Since

our method naturally relies on the predictive models when the policy is uncertain, the robot is able

to plan through the contact to achieve the task whereas SAC takes significantly longer to discover

the pushing dynamics. As a result, we are able to achieve the task with minimal environment

interaction.

https://sites.google.com/view/hybrid-learning-theory
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3.2.2 Learning from demonstrations

We extend our method to use expert demonstrations as experience (also known as imitation learn-

ing [76,77]). Imitation learning focuses on using expert demonstrations to either mimic a task or use

as initialization for learning complex data-intensive tasks. We use imitation learning, specifically

behavior cloning, as an initialization for how a robot should accomplish a task. Hybrid learning as

described in Section 3.1 is then used as a method to embed model-based information to compensate

for the uncertainty in the learned policy, improving the overall performance through planning. The

specific algorithmic implementation of hybrid imitation learning is provided in Appendix B.

Hybrid imitation learning is tested on the Pybullet Ant environment. The goal is for the four

legged ant to run as far as it can to the right (from the viewer’s perspective) within the allotted

time. At each iteration, we provide the agent with an expert demonstration generated from a

PPO [10] solution. Each demonstration is used to construct a predictive model as well as a policy

(through behavior cloning). The stochastic hybrid learning approach is used to plan and test

the robot’s performance in the environment. Environment experience is then used to update the

predictive models while the expert demonstrations are solely used to update the policy. In Fig. 3-5,

we compare hybrid learning against behavior cloning. Our method is able to achieve the task at

the level of the expert within 6 (200 step) demonstrations, where the behavior cloned policy is

unable to achieve the expert performance. Interestingly, the ant environment is less susceptible to

the covariate shift problem (where the state distribution generated by the expert policy does not

match the distribution of states generated by the imitated policy [77]), which is common in behavior

cloning. This suggests that the ant experiences a significantly large distribution of states during

the expert demonstration. However, the resulting performance for the behavior cloning is worse

than that of the expert. Our approach is able to achieve similar performance as behavior cloning
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Figure 3-6: Hybrid learning compared with behavior cloning results on the Franka panda robot (averaged
over 5 trials). The task is to stack a block on top of another using expert demonstrations. Our method is
able to learn the block stacking task within three expert demonstrations and provides solutions that are
more repeatable than with behavior cloning. For videos of experiment visit https://sites.google.com/

view/hybrid-learning-theory .

with roughly 2 fewer demonstrations and performs just as well as the expert demonstrations.

The hybrid imitation learning approach is tested on a robot experiment with the Franka Panda

robot (which is more likely to have the covariate shift problem). The goal for the robot is to learn

how to stack a block on top of another block using demonstrations (see Fig. 3-6). As with the ant

simulated example in Fig. 3-5, a demonstration is provided at each attempt at the task and is used

to update the learned models. Experience obtained in the environment is solely used to update

the predictive models. We use a total of ten precollected demonstrations of the block stacking

example (given one at a time to the behavior cloning algorithm before testing). At each testing

time, the robot arm is initialized at the same spot over the initial block. Since the demonstrations

vary around the arm’s initial position, any state drift is a result of the generated imitated actions

and will result in the covariate shift problem leading to poor performance. As shown in Fig. 3-6,

hybrid learning is capable of learning the task in as little as two demonstrations where behavior

cloning suffers from poor performance. Since our approach synthesizes actions when the policy is

uncertain, the robot is able to interpolate between regions where the expert demonstration was

lacking, enabling the robot to achieve the task.

https://sites.google.com/view/hybrid-learning-theory
https://sites.google.com/view/hybrid-learning-theory
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3.3 Discussion and summary

This chapter presents hybrid learning, a method that formally introducing robot learning as a hybrid

mode switching problem between model-based and model-free learning. The proposed approach

derives the best action a robotic agent can take given the learned models acquired from model-

based and model-free methods. Hybrid learning is shown to improve both the sample-efficiency of

the learning process as well as the overall performance of both the model and policy combined and

individually. Each of these claims are tested in various simulated and real-world environments and

compared against existing methods for robot learning.

Within the context of this thesis, this chapter serves as a foundation for the following chapters.

More specifically, the ideas of robot learning while subject to different safety and exploration re-

strictions are explored in the following chapters using the analysis and derivations provided in this

chapter. I encourage the reader to refer back to this chapter and compare the theoretical analysis

to later proofs in search of analogous ideas that may bring new insights in robot learning.
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Chapter 4

Direct active learning through optimal experimental design

One of the fundamental assumptions in learning theory is that data is readily available and ac-

cessible. This, unfortunately, does not always hold true in most examples of robot learning (as

demonstrated in the previous chapter). In many cases the robot needs to infer its own dynamics

and how they interact with the world which requires actively moving and measuring the interaction

in the physical domain. Approaching the problem through heuristic exploration methods (e.g.,

injecting noise into the control input [78]) generally requires additional tuning and multiple testing

trials which is counter-productive to the ultimate goal of self-sufficient robotic systems. Thus, this

chapter motivates the question: how do we make robot learning a more natural an emergent conse-

quence of solving optimal control problems. That is, can we embed experimentation and curiosity

about physical interactions (akin to what scientists and toddlers do when they try to understand

the world) into a formal optimization that avoids the need for exploration heuristics. The goal

for this chapter is to illustrate the necessity of active learning for intentional robot learning. In
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doing so, I aim to present the underlying issues that one might encounter when setting up an active

learning problem, the limitations that require approximations, and variations to the robot learning

problem which are a consequence of dealing with physical robotic systems.

In more explicit detail, I present the problem of active learning in robotics where the goal is

to directly optimize for informative measurements that improve the underlying learning task. I

first present optimal experimental design (see Chapter 2.2) as a method for active learning where

exploration is a emergent consequence optimization with respect to planned actions. I then illustrate

approximations which make directly optimizing active learning objectives tractable. Examples are

presented for learning robot dynamics and active (interactive) imitation learning.

4.1 Direct information maximization

and emergent exploration

Optimal experimental design [24] is an approach to active learning that considers the structure

of the learning problem and how a set of anticipated independent measurements (or experiments)

change the resulting model accuracy. Through choosing an appropriate experiment, it is possible

to predict and reduce the modeling uncertainty in a learning task. In this section, I introduce

optimal experimental design as an approach for active learning in robotics. Specifically, I consider

the problem of actively learning the dynamics of a robotic system through direct optimization of the

Fisher information matrix which is commonly used in optimal experimental design. The following

equations and derivations were first presented in [79].

Consider a trajectory generated from a sequence of T discrete actions u = {u0, . . . , uT−1} which

yields a data set D = {xi, ui, xi+1}T−1
i=0 of state xi, action ui, and the subsequent measured state
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xi+1. Let the task be to learn the parameter θ ∈ Rp that parameterizes a transition dynamics

model p(xt+1 | xt, ut, θ). What is the best possible sequence of actions u such that we minimize the

uncertainty in the learned parameter θ?? To solve this problem, we first define the log likelihood

loss function of model learning problem as

θ? = arg max
θ

log ΠT−1
i=0 p(xi+1 | xi, ui, θ).

While the ultimate goal is to maximize the log likelihood, instead, let us first try to minimize the

variance of the maximum likelihood estimator θ?. As discussed in Chapter 2.2, we can relate the

variance of the maximum likelihood estimator through the the Cramér-Rao bound

var(θ?) ≥ I(θ)−1

where

I(θ) = −E
[
∇2
θ log p(xt+1 | xt, ut, θ)

]
is the Fisher information. Using this relationship, it is possible to optimize over the sequence

of actions that yields a predicted maximum of the Fisher information given the current belief of

θ. Assuming that p(xt+1 | xt, ut, θ) = N (f(xt, ut, θ),Σ) where f(x, u, θ) : Xn × Um → Xn and

Σ ∈ Rn×n parameterizes the mean and variance of the multivariate normal distribution, we can use

the reparametrization property of the Fisher information [24] to obtain

I(θ) =
∂ft
∂θ

>
I(f)

∂ft
∂θ

where I(f) = Σ−1 and ft = f(xt, ut, θ). Since the state measurements are time-dependent and
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occur sequentially starting from an initial condition x0, we can expand the derivative term ∂ft
∂θ and

obtain the following [79]:

∂ft
∂θ

=
∂ft
∂xt

∂xt
∂θ

+
∂ft
∂θ

(4.1)

=
∂ft
∂xt

∂ft−1

∂θ
+
∂ft
∂θ

where we use the fact that xt = f(xt−1, ut−1, θ) to replace ∂xt

∂θ with ∂ft−1

∂θ . Given that we can

measure the initial condition x0, and noting that the (4.1) is defined recursively, we can redefine

(4.1) as the following dynamical system

ψt+1 =
∂ft
∂xt

ψt +
∂ft
∂θ

(4.2)

such that ψ0 = {0}n×p.

This equation become the parameter dynamics under the maximum likelihood problem statement

1. Using the parameter dynamics (4.2), we can define optimality conditions [80] on the information

matrix which maps the information matrix to a scalar value for use in directly optimization subject

to a sequence of planned actions. These results was first introduced in [79,81] for a finite number of

parameters and lays the groundwork for the following contributions which expands the derivation

to more general and more complex models with larger parameters.

Computing the information matrix, and any optimality conditions, becomes more intractable

as the model complexity increases. This is particularly true when modeling complex dynamics

with general function approximation (e.g., a neural network) where p � n. Instead, let us re-

duce the model complexity of the dynamics as a diagonalized normal distribution of the form

1A similar version is obtained through the least-squares problem statement as well.
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p(xt+1 | xt, ut, θ) = N (f(xt, ut, θ),diag(σ2)) where f(x, u, θ) : Xn × Um → Xn and σ2 ∈ Rn pa-

rameterizes the mean and variance. Next, rather than calculating the full information matrix, we

instead compute an approximate diagonal Fisher information matrix

I(θ) =
∂f

∂θ

>
I(f)

∂f

∂θ

≈ diag

(
(σ−2)>

(
∂f

∂θ

)2
)

(4.3)

where

diag

(
∂f

∂θ

>
I(f)

∂f

∂θ

)
= (σ−2)>

(
∂f

∂θ

)2

∈ Rp

and I(f) = diag(σ−2). Since the Fisher information is related to the maximum likelihood estimator

variance, optimzing the diagonal of the Fisher information matrix is equivalent to minimizing the

diagonal variance of the maximum likelihood estimator. Although the Fisher information matrix

is being approximated as a diagonal matrix, we can now tractably compute its inverse when the

parameter space is large as the inverse of a diagonal matrix is simply the inverse of each element

in the diagonal. Note that in this approximation of the Fisher information, we are only required

to compute the first order derivatives of the model mean with respect to the parameters. Using

the A-optimality condition (or trace) of the approximate Fisher information matrix and given

some auxiliary cost function `(x, u), we can formulate the active learning objective in the following
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manner:

u? = arg min
u

T−1∑
t=0

`(xt, ut) + tr
(
I−1
t

)
(4.4)

subject to xt+1 = f(xt, ut, θ),

It = diag
(
(σ−2)>ψ2

t

)
,

and ψt+1 =
∂ft
∂xt

ψt +
∂ft
∂θ

with initial conditions x0 and ψ0 = {0}n×p. The optimal solution u? in (4.4) gives the predicted

information maximizing actions that improve the model accuracy. At this point, it is straight

forward to apply optimization techniques for planning and control for robotic systems. Here, Eq. 4.4

is solved in a receding horizon model-predictive control formulation (see Algorithm 4) where the

first action applied and the following sequences are replanned whenever a new state is sampled

or the learning parameters are updated. The following sections illustrates toy examples for active

learning using information maximization.

4.1.1 Dynamic experimentation

This first example illustrates the benefits of active learning through direct optimization of Eq 4.4 to

learn the dynamics of a cart pole (see [79] for dynamics). Here, `(x, u) = − cos(x1)+0.1x8
2 +0.01u2

which encourages the swing-up behavior for the cart pole system with x ∈ X 4, where x1, x2 are the

pole angle and cart position respectively and the remaining two states are their time derivatives.

The goal is to actively learn the dynamics model as quickly as possible which allows the cart pole

to achieve the swing-up task. The dynamics model we are learning is a two-layer network with

16 nodes each layer using the sin function as a nonlinearity (p = 436) making the dimensionality
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Algorithm 4 Direct Active Learning via Fisher Information Maximization

1: Randomly initialize dynamics models f with parameter θ, cost function `. Initialize planned
actions u0:T−1, learning rate γ, planning iterations N , data buffer D, and prediction horizon
parameter T

2: while task not done do
3: sample robot state x̄
4: set sim state x0 ← x̄, ψ0 = {0}n×p
5: for t ∈ {0, . . . , T − 1} do
6: xt+1, `t = f(xt, ut, θ), `(xt, ut)
7: ψt+1 = ∂ft

∂xt
ψt + ∂ft

∂θ

8: It = diag
(
(σ−2)>ψ2

t

)
9: end for

10: . update actions
11: J (u0:T−1)←

∑T−1
t=0 `t + tr

(
I−1
t

)
12: for N iterations do
13: u0:T−1 ← u0:T−1 − γ ∂

∂u0:T−1
J (u0:T−1)

14: end for
15: apply u0 to robot and observe x̄′

16: append data D ← {x̄, u0, x̄
′}

17: shift actions u0:T−2 = u1:T−1, init uT−1 = 0
18: update θ with max. log likelihood using M sampled data points from D
19: end while

of the parameter dynamics 4 × 436. We solve (4.4) using automatic differentiation JAX [82] for

gradient-based optimization with respect to u in a model-based planning approach as shown in

Alg. 4. The active learning approach is compared against 10% and 20% control saturation noise

injected control exploration [78] which added exploration noise to the model-based control signal

during swingup attempts. Each approach is subjected to the same random seed. Model updates

are done at each instance a new measurement is obtained using the Adam optimizer [83] with a

learning rate of 0.003 iterated over 5 epochs.

Figure. 4-1 illustrates the results of directly optimizing over the active learning objective for the

cart pole. Because the active learning approach is deterministic, exploration is a naturally occurring

by-product of optimization of the active learning objective. Thus, how to explore is automatically
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Figure 4-1: Results for active learning of the cart pole dynamics through Fisher information maximization
during swing-up task compared against control noise injection of 10% and 20%. (a) Illustrates the trajectory
cost for the swing-up task for each episode. (b) Model loss over iterations of Adam [83] during robot
execution. (c) Information gain as defined by Eq.(6.28). Information maximization naturally explores
the dynamic space earlier in training yielding stable learning curves and improved model-based control
performance.

generated with no need to heuristically introduce exploration noise which often destabilizes the

robotic system. The destabilization effect is illustrated in the episode costs over each learning

episode in Fig. 4-1 (a) for the noise injected exploration methods. Furthermore, optimally planning

for information maximizing actions generally results in more stable and consistent learning as the

most informative measurements are acquired earlier in the learning as shown by Fig. 4-1(b) and

(c). While one could search for the optimal control noise injection (and even an optimal decay

rate), this would require multiple runs and “resets” of the robotic system in order to optimize over

the additional exploration hyper parameters. Unfortunately doing so is counter-productive to the

ultimate goal of achieving true autonomous robotic systems that function in the world.

Exploring for informative measurements should be an emergent consequence of optimizing active

learning objectives without the need to consider heuristic additive exploration. That being said, it

is often the case that a robot is required to learn a task from a teacher or from demonstrations. In

general, a robot will not have a defined objective for every single task that it can experience. This

is generally true when the underlying task is difficult to interpret or explain as a cost or reward
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function, but instead must but presented through demonstrations. The following section presents

this problem from the perspective of active learning where the robot is allowed to ask (or query)

the teacher/demonstrator what to do in specific states to accomplish a task.

4.2 Active query imitation learning

In this section I pose the problem of imitation learning, specifically focusing on behavior cloning [77],

from the perspective of active learning. I illustrate how giving robotic systems the ability to query

enables them to learn a task more quickly when posed as an active learning problem.

The concept behind imitation learning, specifically, the case of behavior cloning, centers around

the idea of robots learning how to do a task without having access to a reward (or cost) function

and instead learning from a set of demonstrations provided by a teacher (or expert policy). The

robot does not have access to the expert policy, but can only obtain state-action pairs from the

expert policy. Here, the ideas of active learning are explored to the most fundamental of imitation

learning strategies, behavior cloning (see Chapter 3 for behavior cloning examples).

In behavior cloning, the goal is to learn a policy u = π(x, θ) such that it matches a set of

demonstrations D = {xi, π?(xi)}Ni=1 provided by a an expert policy u? = π?(x) 2 without knowing

the underlying task or the expert policy. Thus, the behavior-cloned policy is obtained through the

optimization over demonstration

θ? = arg max
θ

∑
D
‖π?(x)− π(x, θ)‖2

where u? = π?(x) is the expert demonstrator (which is not accessible and treated as constant).

2I abuse and overload the notation for a deterministic and stochastic policy. Here, the = indicates deterministic
where ∼ indicates stochastic sampling.
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Naively solving this optimization results in what is known as the covariate shift where the behavior

cloned policy drifts due to training on the demonstration data set. The cause is due to the learned

policy drifting the robot’s state away from the training data distribution. As a result, the policy

returns suboptimal actions that compound errors over time, ultimately causing the robot to drift

away from the optimal behavior. Existing methods that propose solutions to the covariate shift

problem use an on-policy approach, that is, the current estimate of the behavior cloned policy is

deployed on the robot during learning and the expert relabels the collected data with the optimal

ones [77]. Other approaches try to minimize the covariate shift using an off-policy approach through

robust learning with noise injection of the expert demonstrations [77]. Many other variations

exists which use reinforcement learning in an on-policy manner to improve the learning and reduce

covariate shift. However, what if the robot had the ability to interact and query the expert policy

for informative demonstrations?

Given the ability to query the expert, we can pose the problem of behavior cloning as an active

learning problem where the robot wants to optimize over the most informative queries to the expert

that maximize the behavior cloned policy accuracy. An candidate approach is to seek queries that

maximize the Fisher information matrix with respect to the behavior cloned policy. We can quickly

justify this approach through the Cramér-Rao bound

var [θ?] ≥ I(θ)−1

and the fact that there is no additional external signal which guides the quality of the behavior

cloned policy. Therefore, the only solution is to use the Cramér-Rao bound and reduce the maximum

likelihood estimator variance as much as possible by choosing query points which maximize the

Fisher information. In the case of on-policy learning, this corresponds to the following optimization
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x? = arg min
x

tr
(
I(θ)−1

)
(4.5)

where

I(θ) =
∂π

∂θ

>
I(π)

∂π

∂θ

≈ diag

(
(σ−2)>

(
∂π

∂θ

)2
)

(4.6)

is approximated in the same form as Eq.6.28, and the variance σ is assumed known.

Since the optimization of the Fisher information has many local minima, we seed the optimiza-

tion (4.5) using the current measured state of the robot during an on-policy roll-out of the current

behavior cloned policy parameters. At each step, the point x? is used to query the expert policy

π? which is aggregated into a data-set D. Policy updates occur at each step using sampled batches

from the aggregated data-set. Note that the query points x? may be dynamically infeasible to

achieve; however, like any good student, often the best questions may not make any sense to the

teacher, but mean a lot to the student.

Active query imitation learning is defined in an sequential learning algorithmic approach similar

to the DAgger on-policy algorithm in [77] which we present in Algorithm 5 as Direct Active Imitation

Learning (DAIL). The original DAgger algorithm is presented as a batched learning approach

where single full trajectory demonstrations are provided and used for learning. For comparison,

the original DAgger algorithm is adapted for sequential learning. In addition, a variation to the

DAgger algorithm, Random Query DAgger (RQ-Dagger), is presented that randomly queries the

expert policy without verifying if the query improves the information matrix. The goal with the

comparisons is to illustrate that even random queries that are infeasible can often provide more
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information than passively obtaining demonstrations from an expert policy. Querying with respect

to an active learning objective (such as the Fisher information) improves the quality of the queries

and ultimately yields better learning. Thus, the active learning approach should result is a set of

queried demonstrations that learns a behavior-cloned policy that matches the expert policy with

less data than a method that passively acquires expert demonstrations.

Algorithm 5 Direct Active Imitation Learning (DAIL) via Fisher Information Maximization

1: Randomly initialize policy model π with parameter θ, data buffer D, max demonstrations N
and roll-out horizon parameter T

2: initialize D with single T trajectory demonstration from expert
3: for i ∈ {1, . . . , N} do
4: for t ∈ {0, . . . , T − 1} do
5: sample state xt
6: search inf. max. query with xt as seed
7: x? = arg minx tr

(
I(θ)−1

)
8: . sequential DAgger step
9: apply ut = π(xt, θ) to robot

10: query teacher u? = π?(x?)
11: add label to data D ← {x?, u?}
12: gradient step θ log likelihood by sampling M data points from D
13: end for
14: end for

4.2.1 Interactively learning to walk

Algorithm 5 is applied to the ant bullet environment [74] where the task is for simulated ant to

learn how to walk solely from expert demonstrations. Here, the expert policy is obtained using a

model-free reinforcement method [10]. The ant robotic system has the ability to query a single state

point x? to get an expert labeled control demonstration u?. The DAIL is compared against DAgger

and the RQ-DAgger. In Algorithm 5 line 7 is solved by sampling 10 normally distributed states with

the mean at the current state x with a standard deviation of 0.2. Each sample is used to evaluate
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Figure 4-2: Behavior-cloned policy evaluation
curves (evaluated over 1000 time steps) for the ant
bullet environment using Algorithm 5 (DAIL), DAg-
ger, and RQ-DAgger methods versus number of
episodic expert demonstrations (each totaling 1000
queries). The expert policy is obtained using a model-
free reinforcement method [10]. The error bars indi-
cate 95% confidence bounds over 5 random seeds. The
proposed active imitation learning algorithm is able to
learn a policy that is comparable to the expert within
a single trajectory demonstration.

the Fisher information matrix where the sample with the highest information value is chosen as a

query point. The random query-based version of DAgger uses the same random sampling strategy,

but does not post filter for the most informative sample. The random query version is used as

benchmark to illustrate the improvements of arbitrarily querying the expert versus doing so with

respect to an active learning objective. All methods use a two layer network with 32 nodes each

with the rectifying linear unit (ReLU) as the policy model.

In Figure 4-2 we can see that the learned policy through the proposed active query-based method

performs comparable to the expert in a couple of episodic demonstration of the task. Furthermore,

Fig. 4-2 illustrates that having the ability to arbitrarily query the expert policy improves the

behavior cloned policy performance when compared to passively acquiring demonstrations. Thus,

having the ability to query in imitation learning generally improves the capabilities of robotic

systems for learning tasks from demonstrations alone.
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4.3 Discussion and summary

While the results in this chapter illustrate that active learning improves the quality of models

that robotic systems are required to learn, there are still a few limitations with the proposed active

learning approach. The first issue is the assumption that our measurements are dense and the robot

is able to measure data at any time. If the measurements are sparse, either in time or spatially3, then

acquiring informative measurements becomes much more challenging, requiring more of an effort

on the robot’s part to explore. Given the nature of the nonlinear Fisher information optimality

conditions, it is likely that the robot will run into local optima which prevent it from exploring in

challenging environments.

The next issue is with regards to dimensionality and robot safety. If you are a keen reader

that is familiar with the network function approximators, you would have noticed that the models

are small compared to the normal multi-layer networks with at least over a hundred nodes per

layer. These modeling choices were made as a consequence of direct gradient-based optimization

of active learning objectives which are generally computationally expensive. Thus, the increased

computation time, and the non-linearity of the active learning objective make robot safety a primary

concern when exploring in highly dynamic and volatile exploration spaces. Unfortunately, avoiding

these unstable regions is often undesirable as its generally the case that these regions hold dynamic

information that is necessary for learning.

The last limitation is with regards to active imitation learning. In order for active imitation

learning to be possible, there needs to be a system in place for which the robot can query the expert

through a joint state interface. In the example in this chapter, the expert policy is directly used

to return an action at any state. This is not always the possible, and in general not a situation

3That is, the measurement value change infrequently depending on time or place
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that will occur with robots in the real-world. In addition, the queried states are infeasible, thus

any physical interface for queries will not be possible without some projections into a physically

realizable state. If the states are dynamic, then the expert may have difficultly providing feedback.

These limitations should not detract from the fact that actively acquiring measurements still

provides significant improvements to robot learning and the limitations are simply challenges for

future work. The following chapters address each of the limitations mentioned above through

the use of indirectly solving active learning objectives through thoughtful structure that embeds

exploration, provides safety and stability as part of active learning, and models the physical world

through infinite linear abstractions that makes active learning a simpler and more realizable problem

to solve in robotics.
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Chapter 5

Modeling sparse environments through ergodic exploration

It is common to see a combination of movement and sensing in many biological systems, particularly

with tactile sensing [84–87]). In a similar manner, humans use their hands to grasp objects and

actively move their fingers across objects. These sensing behaviors are a consequence of spatially

sparse environments where learning about elements in an environment can only be done through

intentional behaviors that enable informative sensor information. If we expect robotic systems

to operate under these conditions, we need to develop methods that are capable of generating

intentional exploratory behaviors that overcome sparse environments.

As mentioned in Chapter 2, ergodic control has been used previously to enable exploration

for spatially distributed information [19, 88, 89]. In this chapter, I present a method for actively

exploring and learning models of sparse environments that uses ergodic exploration at its core. By

using ergodic exploration, in combination with information measures on learned models, I present

a specific application of active learning where a robot becomes capable of exploring and building
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models of environments where sensor feedback is sparse and nonlinear. Furthermore, I show that

the same approach can be used for localized the environment through an active learning approach

based on spatial transforms and illustrate results on robotic systems. Note that some of the ideas

in this chapter were partially presented in a prior masters thesis; however, all the results, the text,

and theoretical results do not overlap and are new contributions that were later published in [57].

5.1 Ergodic control for exploring sparse worlds

Consider a robotic agent whose dynamics are governed by the control-affine dynamical system of

the form

ẋ = f(x(t), u(t)) = g(x(t)) + h(x(t))u(t)

as mentioned in Chapter 2 Equation 2.4 where x is the state of the robot. Next, define a bounded

domain Sv ⊂ Xn with v ≤ n such that y ∼ p(·|s) is a sample (or measurement) at s ∈ Sv with

probability p(y|s). Here, p(y|s) is unknown and is spatially sparse, that is, the measurements in the

search domain take on only a few values that change infrequently over movement in Sv. The goal in

this chapter is to learn p(y|s) (often referred to as a measurement model) by collecting measurements

yi, si as the robot moves around the world. The difficult part is that the measurements yi are

spatially sparse. Thus, in order to acquire novel measurements yi, the robot will need to explore

the search domain. We approach this problem through ergodic control.

Ergodic control allows us to synthesize a control law that allows a robot to take measurement

samples in a space proportional to some spatial statistical distribution φ(s). We set this problem

for sparse environments by specifying a unique φ(s) such that the robot samples from regions which

yield informative measurements that allow the robot to model p(y|s) from sampled data. Ergodic
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control is first calculated through the definition of the ergodic metric (see Chapter 2 for more detail)

presented again below:1

E(x(t)) =
∑
k∈Nv

Λk (ck − φk)
2

=
∑
k∈Nv

Λk

(
1

T

∫ ti+T

ti

Fk(x̄(t))dt− φk

)2

where

φk =

∫
Sv
φ(s)Fk(s)ds, ck =

1

T

∫ ti+T

ti

Fk(x̄(t))dt,

T ∈ R+ is the time horizon, ti ∈ R+ is the ith sampling time, s ∈ Rv is the search domain such

that x̄(t) : R+ → Sv is the state of the robot that intersects Sv,

Fk(x) =
1

hk

v∏
i=1

cos

(
kiπxi
Li

)

being the cosine basis function for a given coefficient k ∈ Nv, hk is the normalization factor defined

in [27], and Λk = (1 + ‖k‖2)−
v+1
2 is a weight on the frequency coefficients. Using a variation of the

Maximum principle [90] on the augmented objective

J = E(x(t)) +

∫ ti+T

ti

u(t)>Ru(t)dt

we can obtain an ergodic controller through the adjoint (or co-state) equation

ρ̇ = − 2

T

∑
k∈Nv

Λk(ck − φk)
∂Fk
∂x
− ∂f

∂x

T

ρ

1A slight change in notation for the target distribution is done to distinguish the model p(y|s) from the target
distribution φ(s).
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Env. Meas. 
Model

Ergodic
Controller

Figure 5-1: Block diagram for receding horizon er-
godic control with online model construction. Mea-
surements are processed and used to update the model
as well as the target distribution φ(s). This informa-
tion is then passed onto the ergodic controller which
returns an action for the robot to take.

where ρ(ti + T ) = 0 ∈ Rn. The control is then

u?(t) = R−1h(x)T ρ(t)

where R ∈ Rm×m is a positive definite weight on the control that is obtained though the aug-

mented objective function. Controls are calculated in a receding horizon manner to incorporate

new information into the model for p(y|s) which subsequently updates φ(s) as shown in Fig 5-1.

5.2 Non-parametric model information

and spatial transforms

Using the probabilistic nature of the measurement model p(y|s), we can derive a target distribution

φ(s) to which we pass to the ergodic controller. This is done through the reparametrization trick

that is often used with the Fisher information matrix (see Chapter 4). Consider that we already

have a measurement model p(y|s) and we want to use the model to localize the robot in a new

space s̄ = g(θ)−1s where g(θ) ∈ SE(v) where SE(v) is the v dimensional group transform of the

space s→ s̄ and θ is a parameterization of SE(v). Furthermore, let us consider a prior probability
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distribution p(θ) over the parameter θ.

Lemma 2. The expected information of an environment measurement model with respect to a

transformation g(θ) is given by

φ(s) = det

[∫
θ

∂
(
g(θ)−1s

)
∂θ

>

I(s)
∂
(
g(θ)−1s

)
∂θ

p(θ)dθ

]
(5.1)

where

I(s) ≈ ∂µ

∂s

>
Σ−1 ∂µ

∂s

is the Fisher information with respect to the search space of the robot, p(θ) is the belief of the parame-

ter θ, p(y|x) ≈ N (µ(s),Σ) is approximated locally as a normal distribution, and D-optimality [91,92]

(determinant) is chosen a measure of information.

Proof. We first calculate the Fisher information matrix of the locally approximated measurement

model p(y|s̄) ≈ N (µ(s̄),Σ)) with respect to the transformation:

I(s, θ) =
∂µ

∂θ

>
Σ−1 ∂µ

∂θ
. (5.2)

Applying chain rule to the derivative terms in (5.2) gives us the expanded derivative terms

∂µ

∂θ
=
∂µ(

s̄︷ ︸︸ ︷
g(θ)−1s)

∂s̄

∂
(
g(θ)−1s

)
∂θ

. (5.3)
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Replacing (5.3) into (5.2) gives

I(s, θ) =

(
∂µ

∂s̄

∂g(θ)−1s

∂θ

)>
Σ−1

(
∂µ

∂s̄

∂g(θ)−1s

∂θ

)
(5.4)

=
∂
(
g(θ)−1s

)
∂θ

>(
∂µ

∂s̄

>
Σ−1 ∂µ

∂s̄

)
︸ ︷︷ ︸

I(s)

∂
(
g(θ)−1s

)
∂θ

.

As I(s, θ) is still uncertain in θ, we take the expectation of (5.4) and map the information matrix

to a scalar value using the D-optimality measure [91,92] giving us the expected information density

of a measurement model

φ(s) = det

[∫
θ

∂
(
g(θ)−1s

)
∂θ

>

I(s)
∂
(
g(θ)−1s

)
∂θ

p(θ)dθ

]
.

Notice that in Lemma 2, we never specified a parametrization for p(y|s) which gives us the

capability to utilize non-parametric methods for acquiring the measurement model from solely

data. This is beneficial as non-parametric modeling techniques such as Gaussian processes or

support vector machines (SVM) allow us to model arbitrarily complex environments. That being

said, it is still possible to parametrize p(y|s) and carry out the analysis for I(s) if necessary, but

for sparse environments, non-parametric methods are ideal as few key measurements are required

to model the environment.

In the following sections, we illustrate the use of ergodic control with sampling proportional to

the expected information φ(s) derived through the Fisher information matrix det [I(s)] which is

obtained through the identity transform in Eq. 5.2. As shown in [93], I(s) can be approximated

using the transition surface dictated by p(y = 1|s). Sampling with respect to Fisher information
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matrix allows the robot to sample environment measurements that reduce the overall uncertainty of

the model based on the measurements themselves (due to the non-parametric nature of the model

we will be using). We then illustrate the use of the proposed method for localization in sparse

environments through the same information density described in Eq. 5.2.

5.3 Modeling an environment through contact

We consider the case where we have a second order point-mass robot2 that experiences the world

through point-based contact. In the environment, there are fixed objects that are unknown to the

robot that we want to model and use to localize the robot at a later time. This is accomplished

through the use of ergodic control while constructing the measurement model p(y|s). Here, the

measurement model is defined using a SVM and the target spatial statistics φ(s) is defined through

the identity transform, making

φ(s) = det [I(s)]

which we approximate with the transition surface of the sparse model p(y = 1|s) as done in [93].

3 An example ergodic trajectory is presented in Fig. 5-2 for learning a contact-based measurement

model of the object in the environment. Here, we can see that the robot is able to collect mea-

surements which fully captures each of the objects in the measurement model. In addition, the

trajectory is shown exploring regions where there are no objects, which is a direct consequence of

minimizing the ergodic exploration. More specifically, a trajectory that minimizes the ergodic met-

ric is one where the robot spends a proportional amount of time with respect to the statistics in the

target distribution. Thus, the non-zero probability that a contact measurement can be encountered

2States are the position in the environment and velocity.
3This approximation is valid as the gradient of the mean of the sparse measurement model is zero everywhere but

at the transition between the sparse measurements.
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Environment Measurement Model Generation

Robot Trajectory

Figure 5-2: Estimating the measurement model of the en-
vironment with multiple objects in a 2-dimensional search
space using contact measurements. Objects are shown with
the purple outline. The background contours indicating
where there is high likelihood of a contact in darker re-
gions. The learned measurement model is used to guide
the exploration through the model information as data is
collected. The resulting robot trajectory is shown as the
red line. Note that the robot still visits low probability re-
gion in search for new information. Thus, the robot is able
to sufficiently explore around objects and the environment.

(a) (b)

Figure 5-3: Diagram of localization with sparse models using ergodic control. Objects in the environment
are defined by the blue shapes. (a) A robot with an exploratory trajectory x(t) is shown as the gray line
estimating the measurement model of an environment in the fixed frame P. Contact measurements are
used to construct the measurement model. (b) The same environment originally shown in P is transformed
into search space W under transform g(θ). The robot exploratory trajectory used to generate an estimate
of the transform g(θ) is created using the learned measurement model in (a).

ensures us that the robot will eventually sample and explore these regions as time goes to infinity.

The model that is learned can now be recycled for localization with a sparse environment (see

Fig. 5-3 for illustration). The robot is now in a transformed environment which we can define

a measurement point as s̄ = g(θ)−1s where θ is the unknown environment transformation with

probability p(θ). Since we now have a transform g(θ) that is not the identity transform, we can use

the expression for φ(s) in Eq. 5.1 for ergodic exploration.

Normally, the parameter distribution p(θ) is updated through some variation of a Bayesian filter

based off a measurement model p(y|s). However, because the measurement model is sparse, and
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as a consequence discontinuous, the continuity assumptions needed by the Bayesian filter are not

available. Hence, we use a manifold particle filter [94] which is generally used with measurement

models that are discontinuous.Figure 5-4 illustrates the procedure for localization given a model

of the sparse contact environment. In this example, the initial target distribution is initialized as

uniform target distribution until the first contact. A belief over how the environment is transformed

is provided by the particle filter which is subsequently used to calculate φ(s) shown in the back-

ground of Fig. 5-4. The robot trajectory is shown reacting to the expected information distribution

as measurements are acquired. Interestingly, the behavior of the robot is shown to utilize the lack

of contact measurements just as much as contact measurements to reduce the uncertainty in where

the environment is located. As a result, exploration, regardless of sparsity, is encouraged with

ergodic control and provides us with a method to avoid local minima as a result of non-convex

information measures which guide active learning. We validate this claim in the following section

with a comparison using a common active learning method known as expected entropy reduction

(EER) [19,88,95].

Figure 5-4: Localization of objects using a given measurement model is illustrated for an environment
containing three objects. The expected information of the measurement model is shown as the distribution
in the background of each time frame ti space 1.25 seconds apart. The transparent green objects are the
depiction of the current belief of their location p(θ). The ground truth object location is shown in black
and the robot trajectory in shown as the blue line. The robot estimates the transformation using the
information of the environment measurement model as a target for active sensing.
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5.3.1 Comparison to entropy reduction

We compare our method against expected entropy reduction (EER) [19, 88, 95] which is a method

similar to that used in [96–99] where a location in the search space is chosen based on where the

expected change in entropy is maximized. The location is chosen from a set of 200 uniformly

distributed samples in the search space. The trajectory that maximizes the entropy reduction is

then chosen and an LQR controller is used to control the robot to the target location.

Here, the reduction in entropy is calculated as

Hreduction = H(θ)− E
[
H(θ) | y(t)+

]

where

H(θ) = −
∫
p(θ) log p(θ)dθ

is the entropy for a random variable θ, and y(t)+ is the expected measurement given the current

model along the sampled trajectory. In the case of measurement model construction with contacts

using non-parametric models, θ is replaced with s whereas in environment localization, the random

variable is the transform parameters θ for g(θ) ∈ SE(2).

We compare a 20 second simulation of environment construction and localization in Fig. 5-5.

EER prioritizes immediate reduction in entropy, thus only the most recent and known measure-

ments are used rather than considering where the robot has or has not been. In situations where

measurements are sparse, this causes the EER algorithm to become stuck as shown in Fig. 5-5(d).

Similarly, in Fig. 5-5(b), EER is only able to acquire measurements with two out of the three ob-

jects in the environment, and only one side of each object. In contrast, ergodic control as shown in

Fig. 5-5 (a) and (c) illustrates the benefit for seeking out informative measurements in sparse and
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(a) Ergodic Control Est. (b) EER Est.

(c) Ergodic Control Loc. (d) EER Loc.

Figure 5-5: Comparison of Ergodic control versus entropy re-
duction for environment measurement estimation (a-b) and lo-
calization using the environment measurement model that is
known (c-d). Contact likelihood shown as the dark regions in
(a-b). Particle filter beliefs are shown as the cyan colored es-
timates of the shapes in (c-d). Using ergodic control enables
a robot to consider low probability regions which are beneficial
in acquiring measurements that are sparse in the environment.
Entropy reduction results in search patterns that immediately
reduce the entropy which results in a lack of exploration.

in unknown environments. Low probability regions are not omitted and are important to explo-

ration and learning. As time goes to infinity, the ergodic controller would drive the robot to explore

annd learn about the whole domain such that the time spent is proportional to the statistics in the

region [19,88,89,95].

5.4 Hamster ball robot exploration

In this section, we present experimental validation of our method for active learning in sparse

environments. A hamster ball robot (ball with an internal differential drive robot) known as the

Sphero SPRK is used for collision-based sensing. The SPRK robot has an internal contact sensor

which uses its inertial measurement unit to detect a collision with an external object. Position and

velocity of the robot is acquired using image tracking from above. Once a measurement model is

generated in the first stage, we use this model to localize the transformed environment. Note that

the only assumption that is made is that the robot moves subject to planar point-mass dynamics.

Experimental results for learning the measurement model from contact with the SPRK robot

are shown in Fig. 5-6. Within the first few measurements, the environment measurements are not
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useful as the robot has not explored the entire domain. However, due to the low probability value

of unexplored regions, the robot under ergodic control must still visit these regions. In doing so, it

becomes more likely that the robot encounters more informative measurements that are used to learn

the difficult to model sparse contact environment. By the termination time (tf = 120 seconds),

the robot has constructed a contact-based measurement model that is sufficient for subsequent

localization.

Figure 5-6: Left: Photo of the experiment setup of the environment. The robot is initialized with a
uniform target distribution. Top: Time series of the environment measurement model construction process
from left to right. The red boundaries indicate the mean transition value of the measurement model. Sphero
robot is shown as a green circle. The robot trajectory up to the current time is also shown. Bottom: p(y|x)
is shown being built as the robot collides with the objects in the environment.

It is worth noting that the collision sensor of the robot is sensitive to quick movements which

will result in false-positive contact measurements. While in a engineered or physics-based ap-

proach, the noisy behavior of the robot’s sensors are modeled, our approach automatically learns

the measurement model, including the uncertainty based on measurements that disagree with one

another. Furthermore, this uncertainty is used by the ergodic controller to return to regions that

is disagreement due to the information gained by disambiguating the measurements.

We can use the same approach with the learned measurement model to localize a transformed
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Figure 5-7: The robot estimates the transformation of the environment state using the measurement model
extracted from Fig. 5-6 using contact measurements. The global position of the objects is shown as the red
outlines. The ergodic controller generates a robot trajectory with a sequence of contact measurements that
localizes the environment based on the acquired measurement information defined in Eq. 5.1.

environment with similar contact features. The objects presented in Fig. 5-6, are rotated and

translated as shown in Fig. 5-7. The initial prior belief p(θ) is defined as a uniform distribution

over the domain θ ∈ [0, 1.2] × [0, 1] × [−2π, 2π] which correspond to the positional and rotational

transformation. Here, the experiment is run for tf = 130 seconds. We can see that as the robot

begins to react to the measurements with ergodic exploration, the localization of the environment

starts to approach the ground truth shown as the red outlined shapes.

While the sparse contact measurements are important in this experiment, the absense of the

sparse measurements are found to be equally, if not more important for localizing. We can see an

example of this in the final frame of Fig. 5-7 where the robot explores the regions where a sparse

contact is less likely to occur. This kind of concept is anecdotally common when we think of how

humans or animals explore. Specifically, the absence of an object is generally more informative

than the chance to encounter the object. Ergodic exploration allows us to place this anecdote

into concrete mathematics that we can use to improve the capabilities of robotic systems. In

the end of the experiment, the robot is successful in estimating the current configuration (θactual =

[0.5, 0.6,−1.1], θestimated = [0.521, 0.609,−1.103]) of the environment through the use of the learned

measurement model of the sparse environment.
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5.5 Discussion and summary

In this chapter, I presented a method for actively learning and utilizing models of sparse environ-

ments with the aid of ergodic exploration. The ergodic controller enables robotic systems to actively

seek out informative measurements in sparse environments through Fisher information-based active

learning measures in search for new information. The proposed approach illustrates the ability to

enact active learning in robotic systems when passive learning is not an option. Through simulated

and experimental examples, I show examples of constructing models of sparse environments in sim-

ulated and real-robot examples where the robot is required to put additional work into collecting

measurements and doing so in an intentional manner. The following chapter looks at the case where

we not only want the robot to learn with intent, but we want the robot to do so in a safe manner.

This is a problem not mentioned in this chapter as contacts and collisions, in the current state of

some robotic systems, are generally undesirable. However, what if we can allow robotic systems

to explore and collective information rich measurements in dynamic spaces where safety is of the

upmost importance?
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Chapter 6

Safe ergodic active learning in high dimensional dynamic

search spaces

This chapter reflects upon previously presented work as inspirational building blocks for the develop-

ment of a safe active learning strategy for robotic systems in high dimensional dynamic exploration

spaces. I first present a variation to the ergodic metric that allows robotic systems to expand er-

godic active learning to larger search spaces. The ideas from hybrid learning (Chapter 3) are then

utilized for embedding safe equilibrium policies in a manner that does not impede on the inherently

unstable behavior that is active learning. I prove that the approach not only guarantees that the

robot will continue to take actions that provide informative measurements, but also maintains the

robot in dynamic regions where it can safely return to an equilibrium state. Last, I evaluate the

proposed method on a number of active learning scenarios related to robot learning and show that

safe learning is a possibility in robotics when one jointly formulates the problem of learning with

stability and safety in mind.
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6.1 KL-ergodic measure for exploration

As in discussed in Chapter 5 and in [19,100], one can calculate a controller that optimizes the ergodic

metric such that the trajectory of the robot is ergodic with respect to a distribution p(s). However,

this approach scales O(|k|n) where |k| is the maximum integer–valued Fourier term. As a result,

this method is ill-suited for high-dimensional learning tasks whose exploration states are often the

full state-space of the robot (often n > 3 for most mobile robots). Furthermore, the resulting time-

averaged distribution reconstruction will often have residual artifacts from the Fourier transform

which require additional conditioning to remove. This motivates the following section which defines

an ergodic measure for active learning. 1

As an alternative to computing the ergodic metric, we present an ergodic measure which cir-

cumvents the scalability issues. To do this, we utilize the Kullback-Leibler divergence [20,101,102]

(KL–divergence) as a measure for ergodicity. Let us first define the approximation to the time-

averaged statistics of a trajectory x(t):

Definition 3. Given a search domain Sv ⊂ Xn the Σ-approximated time-averaged statistics of the

robot trajectory from time t0 to tf is defined by

q(s | x(t)) =
1

tf − t0

∫ tf

t0

µ(s | x̄(t))dt (6.1)

where µ(s | x̄(t)) = N (x̄(t),Σ), Σ ∈ Rv×v is a positive definite matrix parameter that specifies the

width of the Gaussian, and x̄ is the state that intersect the search space.

We call this an approximation because the true time-averaged statistics, as described in [19],

1We make note of the use of the work “measure” as opposed to metric as we allude to using the KL-divergence
which itself is not a metric, but a measure.
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is a collection of delta functions parameterized by time. We approximate the delta function as a

Gaussian distribution with variance Σ, converging as ‖Σ‖ → 0. As an aside, one can treat Σ as a

function of x̄(t) if there is uncertainty in the position of the robot.

With this approximation, the ergodic objective in [19] is relaxed using the following KL-

divergence objective [20]:

DKL(p‖q) =

∫
Sv

p(s) log
p(s)

q(s)
ds

=

∫
Sv

p(s) log p(s)ds−
∫
Sv

p(s) log q(s)ds,

= −
∫
Sv

p(s) log q(s)ds

= −Ep(s) [log q(s)]

where E is the expectation operator, q(s) = q(s | x(t)), and p(s) is an arbitrary spatial distribution.

Note that we drop the first term in the expanded KL-divergence because it does not depend on the

trajectory of the robot x(t). Rather than computing the integral over the exploration space Sv (as

this can be intractable), we approximate the expectation operator as

DKL(p‖q) = −Ep(s) [log q(s)]

≈ −
N∑
i=1

p(si) log q(si)

∝ −
N∑
i=1

p(si) log

∫ tf

t0

µ(si | x̄(t))dt, (6.2)

whereN is the number of samples in the search domain drawn from p(s).2 Through this formulation,

we still obtain the benefits of indirectly sampling from the spatial distribution p(s) without having

2We can always use importance sampling to interchange which distribution we sample from.
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to directly compute derivatives of the commonly non-convex p(s) to generate an optimal control

signal for the robot.

6.1.1 KL-ergodic control synthesis

The KL-ergodic measure is used to construct exploration strategies for robotic systems in a similar

manner as with ergodic control. Constructing a model-based ergodic controller using the KL-

divergence is done in a similar manner as presented in Chapter 5 with an augmented objective

function:

J = DKL(p‖q) +

∫ tt

t0

u(t)>Ru(t)dt

= −
N∑
i=1

p(si) log

(∫ tf

t0

µ(si | x̄(t))dt

)
+

∫ tt

t0

u(t)>Ru(t)dt (6.3)

where R ∈ Rm×m is a positive definite weight matrix on the control input, and x(t) is obtained

from simulating Eq. 2.4. Solving 6.3 with respect to a sequence of planned controls u(t) can be

done either through direct optimization or using the Maximum principle [90] to define conditions

for optimality through a shooting-based approach. An example trajectory generated by optimizing

Eq. 6.3 with respect to a bi-modal distribution using a robot with point mass dynamics is presented

in Fig. 6-1. Samples are drawn uniformly within the search space at each optimization iteration of

Eq. 6.3.

We can compare the KL-ergodic control with the Fourier-based ergodic control in Fig. 6-2. In

particular, we can see that KL-ergodic measure yields time-averaged trajectory statistical recon-

structions that do not have additional artifacts (compared with the Fourier-based ergodic control).

Furthermore, the complexity of calculating the KL-ergodic measure does not increase with the
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Figure 6-1: Illustration of a KL-ergodic trajectory and the time-averaged trajectory statistics reconstruc-
tion. The target distribution (left) is a bi-modal distribution. The robot trajectory (magenta) is shown
ergodicaly sampling through optimizing Eq. 6.3. The time-averaged statistics of the robot trajectory (right)
is constructed using Definition 3.

exploration state which allows us to compute ergodic exploration controllers for much larger di-

mensional exploration spaces.

0 10 20

time

2

0

2

4

x

(a) Ergodic Trajectory

x(t)

samples

0 10 20

likelihood

(b) p(s)
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(c) c(s|x(t))

0 10 20

(d) q(s|x(t))
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(e) appr. q(s|x(t))

Figure 6-2: (a) Illustration of an ergodic trajectory x(t) with respect to (b) target distribution p(s). Time-
averaged distribution reconstructions of x(t) are shown using Definitions 2, 3, and Eq. 6.17. The Fourier
decomposition approach often has residual artifacts due to the cosine approximation. 20 basis functions
are used to approximate the time-averaged distribution. Σ-approximation to the time-averaged statistics
minimizes residual artifacts. (e) Moment matching of the Σ-approximation provides a simplification for
computing the time-averaged statistics.

The following section uses the KL-ergodic measure to derive a controller which optimizes (6.2)

while directly incorporating learned models and policies. The ideas and theoretical analysis pre-
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sented are a direct extension of the work in Chapter 3.

6.2 KL-E3: KL-Ergodic Exploration from Equilibrium

In this section, KL-Ergodic Exploration from Equilibrium (KL-E3) is derived which locally opti-

mizes and improves (6.2) subject to safety constraints. Here, stability is imposed through an feed-

back control equilibrium policies that defined by control Lyaponov functions (CLFs) [31, 32] and

approximate transition model of the robot’s dynamics on the algorithm. By synthesizing KL-E3

with existing CLF policies that allow the robot to return to an equilibrium state (e.g., local linear

quadratic regulator (LQR) controllers), we can take advantage of approximate transition models for

planning the robot’s motion while providing a safety guarantees that the robot will be maintained

within the safety region of attraction defined by the CLF. I then show how this method is Lyapunov

attractive [103, 104] which is related to control Barrier Functions (CBFs) safety definition [35, 38],

allowing the robot to freely move about the CLF region of attraction and ensuring that the robot

will eventually return to an equilibrium.

6.2.1 Assumptions for equilibrium

We assume that we have a robot whose approximate dynamics can be modeled using the continuous

time transition model (2.4) restated below:

ẋ(t) = f(x(t), π(x(t)))

= g(x(t)) + h(x(t))π(x(t))
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In in our modeling assumption, we consider a feedback stabilizing equilibrium policy π(x) : Xn →

Um which provides the control signal to the robotic system such that there exists a continuous

Lyapunov function V (x) [31,104,105] which has the following conditions:

V (0) = 0

∀x ∈ B\{0} V (x) > 0 (6.4a)

∀x ∈ B\{0} ∇V · f(x, π(x)) < 0

where B ⊂ Rn is a compact and connected set, and

V̇ (x(t)) =
∂

∂x
V (x) · f(x, u) = ∇V · f(x, u) (6.5)

which implies a monotonically decreasing Lyaponov function. This is also referred to as a control

Lyaponov function (CLF) [31,38,104] . Thus, a trajectory x(t) with initial condition at time t = t0

subject to the dynamics and π(x) is defined as

x(t) = x(t0) +

∫ t

t0

f(x(t), π(x(t)))dt. (6.6)

For the rest of the paper, we will refer to π(x) as an equilibrium policy which is constructed from a

CLF which returns the robot to an equilibrium state. As an aside, CLFs are closely related to the

value function in optimal control [106] which can be used to define a equilibrium policy for a task

other than stabilization.
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6.2.2 Synthesizing a schedule of exploratory actions

Given the assumptions of a known approximate model with a valid equilibrium policy, the goal

is to generate a control signal that augments π(x) and minimizes (6.2) while ensuring the state

x remains within the compact set B which will allow the robot to return to an equilibrium state

within the time t ∈ [t0, tf ] once the active learning objective is minimized.

The approach starts by using the same approach as done in hybrid learning (Chapter 3) by

quantifying how sensitive (6.2) is to switching from the policy π(x(t)) to an arbitrary control vector

û(t) at any time τ ∈ [t0, tf ] for an infinitesimally small duration of time λ. We will later use this

sensitivity to calculate a closed-form solution to the most influential control signal u?(t).

Proposition 1. The sensitivity of (6.2) with respect to the duration time λ, of switching from the

policy π(x) to an arbitrary control signal ū(t) at time τ is

∂DKL

∂λ
= ρ(τ)>(f2 − f1) (6.7)

where f2 = f(x(τ), û(τ)) and f1 = f(x(τ), π(x(τ)), ρ(t) ∈ Rn is the adjoint, or co-state variable

which is the solution of the following differential equation

ρ̇(t) =
∑
i

p(si)

q(si)

∂µ

∂x
−
(
∂f

∂x
+
∂f

∂u

∂π

∂x

)>
ρ(t) (6.8)

subject to the terminal constraint ρ(tf ) = 0, and ∂µ
∂x is evaluated at each sample si.

Proof. See Appendix A

The sensitivity ∂
∂λDKL is known as the mode insertion gradient [107]. Note that the second

term in (6.8) encodes how the dynamics will change subject to the policy π(x). We can directly
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compute the mode insertion gradient for any control û(t) that we choose. However, our goal is to

find a schedule of û(t) which minimizes (6.2) while still bounded by the equilibrium policy π(x).

We solve for this augmented control signal by formulating the following optimization problem:

u?(t) = arg min
û(t)∀t∈[t0,tf ]

∫ tf

t0

∂

∂λ
DKL

∣∣∣
τ=t

+
1

2
‖û(t)− π(x(t))‖2Rdt (6.9)

where R ∈ Rm×m is a positive definite matrix that penalizes the deviation from the policy π(x)

and ∂
∂λDKL|τ=t is (3.1) evaluated at time t.

Proposition 2. The augmented control signal u?(t) that minimizes (6.9) is given by

u?(t) = −R−1h(x(t))>ρ(t) + π(x(t)). (6.10)

Proof. Taking the derivative of (6.9) with respect to û(t) at each instance in time t ∈ [t0, tf ] gives

∫ tf

t0

∂

∂û

(
∂

∂λ
DKL

∣∣∣
τ=t

+
1

2
‖û(t)− π(x(t))‖2R

)
dt (6.11)

=

∫ tf

t0

h(x(t))>ρ(t) +R(û(t)− π(x(t)))dt

where we expand f(x, u) using (2.4). Since the expression under the integral in (6.9) is convex in

û(t) and is at an optimizer when (7.6) is equal to 0 ∀t ∈ [t0, tf ], we set the expression in (7.6) to

zero and solve for û(t) at each instant in time giving us

u?(t) = −R−1h(x(t))>ρ(t) + π(x(t))

which is the schedule of exploratory actions that reduces the objective for time t ∈ [t0, tf ] and is
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bounded by π(x).

In practice, the first term in (6.10) is calculated and applied to the robot using a true measure-

ment of the state x̂(t) for the policy µ(x). We refer to this first term as δu?(t) = −R−1h(x(t))>ρ(t)

yielding u?(t) = δu?(t) + π(x̂(t)).

Given the derivation of the augmented control signal that can generate ergodic exploratory

motions, we verify the following through theoretical analysis in the next section:

(i) that (6.10) does in fact reduce (6.2)

(ii) that (6.10) imposes a bound on the conditions in (6.4)

(iii) and that a robotic system subject to (6.10) has a notion of Lyapunov attractiveness

6.2.3 Theoretical analysis

We first illustrate that our approach for computing (6.10) does reduce (6.2).

Corollary 2. Let us assume that ∂
∂µH 6= 0 ∀t ∈ [t0, tf ], where H is the control Hamiltonian. Then

∂

∂λ
DKL = −‖h(x(t))>ρ(t)‖2R−1 < 0 (6.12)

∀t ∈ [t0, tf ] subject to u?(t).
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Proof. Inserting (6.10) into (3.1) and dropping the dependency of time for clarity gives

∂

∂λ
DKL = ρ(t)> (f2 − f1)

= ρ> (g(x) + h(x)u? − g(x)− h(x)π(x))

= ρ>(−h(x)R−1h(x)>ρ+ h(x)π(x)− h(x)π(x))

= −ρ>h(x)R−1h(x)>ρ

= −‖h(x(t))>ρ(t)‖2R−1 ≤ 0. (6.13)

Thus, ∂
∂λDKL is always negative subject to (6.10).

For λ > 0 we can approximate the reduction in DKL as ∆DKL ≈ ∂
∂λDKLλ ≤ 0. Thus, by

applying (6.10), we are generating exploratory actions that minimize the ergodic measure defined

by (6.2) with respect to some active learning utility distribution p(s).

Our next set of analysis involves searching for a bound on the conditions in (6.4) when (6.10) is

applied at any time τ ∈ [0, t− λ] for a duration λ ≤ t.

Theorem 3. Given the conditions in (6.4) for a policy π(x), then V (xτλ(t))−V (x(t)) ≤ λβ, where

xτλ(t) is given by

xτλ(t) = x(t0) +

∫ τ

t0

f(x, π(x))dt+

∫ τ+λ

τ

f(x, u?(t))dt+

∫ tf

τ+λ

f(x, π(x))dt (6.14)

for τ ∈ [0, t− λ], λ ≤ t, and

β = sup
t∈[τ,τ+λ]

−∇V · h(x(t))R−1h(x(t))>ρ(t). (6.15)
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Proof. See Appendix A.

We can choose any time τ ∈ [0, t− λ] to apply u?(t) and provide an upper bound quantifying

the change of the Lyaponov function described in (6.4) by fixing the maximum value of λ during

active exploration. In addition, we can tune u?(t) using the regularization value R such that as

‖R‖ → ∞, β → 0 and u?(t)→ π(x(t)).

Given this bound, we can guarantee Lyapunov attractiveness [108], where the system is allowed

to freely move within a bounded set where the system can still be driven to an equilibrium state

(or set) defined by a CLF feedback equilibrium policy.

Definition 4. A robotic system defined by (2.4) is Lyapunov attractive if at some time t, the

trajectory of the system x(t) ∈ C ⊂ B where C = {x(t)|V (x) ≤ β?,∇V · f(x(t), π(x(t))) < 0},

β? > 0 is the maximum level set of V (x) where ∇V · f(x, π(x)) < 0, and limt→∞ x(t) → x0 such

that x0 is an equilibrium state.

Theorem 4. Given the schedule of exploratory actions (6.10) ∀t ∈ [τ, τ + λ], a robotic system

governed by (2.4) is Lyapunov attractive such that limt→∞ xτλ(t)→ x0.

Proof. Using Theorem 3, the integral form of the Lyapunov function (A.18), and the identity

(A.19), we can write

V (xτλ(t)) = V (x(0)) +

∫ t

0

∇V · f(x(s), π(x(s)))ds

−
∫ τ+λ

τ

∇V · h(x(s))R−1h(x(s))>ρ(s)ds

≤ V (x(0))− γt+ βλ < β?,
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where

−γ = sup
s∈[0,t]

∇V · f(x(s), π(x(s))) < 0. (6.16)

Since λ is fixed and β can be tuned by the matrix weight R, we can choose a t such that γt� βλ.

Thus, limt→∞ V (xτλ(t)) → V (x0) and limt→∞ xτλ(t) → x0, implies Lyapunov attractiveness, where

V (x0) is the minimum of the Lyapunov function at the equilibrium state x0.

The Lyapunov attractiveness property defines a theoretical safe set C for which the exploration

controller can be applied to the robotic system for a specific time t and duration λ such that ∀x ∈ C,

V (x) ≤ β? where β? is the level set with which ∇V · f(x, π(x)) < 0. This is a direct consequence

of formulating (6.10) using the hybrid control formulation where the safety properties of the CLF

equilibrium policy are inherited without overriding the controls synthesized for ergodic exploration.

As a result, the restrictive CLF condition that V̇ (x) < 0 ∀x ∈ B is not enforced and instead is used

to filter through exploration-based controllers that will often have V̇ (x) > 0 so long as x ∈ C where

it is still possible to enforce the CLF equilibrium policy with∇V ·f(x, π(x)) < 0. Note that a similar

inheritance-based result can be obtained using closed-form policies from control barrier functions

(CBFs) [34, 35] with exploration controllers. CBFs define safety through enforcing invariance of a

“safe” set (i.e., a predefined set of known safe states) that prevents a robotic system from leaving

the safe set. This would require a knowledge of the safe set and the system dynamics to construct

a corresponding closed-form CBF policy for the robotic system. For many robot learning tasks,

the safe set and the dynamics are not always known and often only approximate dynamics and a

singular safe (equilibrium) state are known. The more restrictive CLF equilibrium policies are used

in this thesis as they can be defined for approximate local dynamics and only require knowledge of

an equilibrium state3.

3Although one can define a set of states using LaSalle’s invariance principle and the local dynamics.
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In the following section, we extend this work [109] by further approximating the time averaged-

statistics so that computing the adjoint variable can be done more efficiently.

6.2.4 Efficient planning and exploration

We extend our initial work by providing a further approximation to computing the time-averaged

statistics which improves the computation time of our implementation. Taking note of (6.2), we can

see that we have to evaluate q(si) at each sample point si where q(s) = q(s|x(t)) has to evaluate the

stored trajectory at each time. In real robot experiments, often the underlying spatial statistics p(s)

change significantly over time. In addition, most robot experiments require replanning which results

in lost information over repeated iterations. Thus, rather than trying to compute the whole time

averaged trajectory in Definition 3, we opt to approximate the distribution by applying Jensen’s

inequality to the definition of µ(s|x̄(t)):

q(s|x(t)) ∝
∫ tf

t0

exp

[
−1

2
‖s− x̄(t)‖2Σ−1

]
dt

≥ exp

(
−1

2

∫ tf

t0

‖s− x̄(t)‖2Σ−1dt

)
. (6.17)

Using this expression in (6.2), we can write

DKL ∝ −
∫
Sv

p(s) log q(s)ds

= −
∫
Sv

p(s) log

(
exp

(
−1

2

∫ tf

t0

‖s− x̄(t)‖2Σ−1dt

))
ds

∝
∫
Sv

p(s)

(∫ tf

t0

‖s− x̄(t)‖2Σ−1dt

)
ds

≈
N∑
i

p(si)

∫ tf

t0

‖si − x̄(t)‖2Σ−1dt. (6.18)
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Following the results to compute (6.7), we can show that (6.10) remains the same where the only

modification is in the adjoint differential equation where

ρ̇(t) = −
∑
i

p(si)
∂`

∂x
−
(
∂f

∂x
+
∂f

∂u

∂π

∂x

)>
ρ(t) (6.19)

such that ` = `(s, x) = ‖s−x‖2Σ−1 . This formulation has no need to compute q(s) and instead only

evaluate p(s) at sampled points. We reserve using this implementation for robotic systems that are

high dimensional or when calculating the derivatives can be costly due to high-parameterization (i.e.,

multi-layer network models). Note that all the theoretical analysis still holds as the fundamental

theory relies on the construction through hybrid systems theory rather than the KL-divergence

itself. The downside to this approach is that one now loses the ability to generate finer ergodic

movements. The effect can be seen in Figure 6-2(e) where the trajectory is approximated by a wide

Gaussian—rather than the bi-model distribution found in Fig. 6-2(d). However, for non-stationary

p(s), having exact ergodic behavior is not necessary and such approximations at the time-averaged

distribution level are sufficient.

In the following section, we provide a base algorithm and implementation details for KL-E3 and

present variations based on active learning goals one can often find in many robotic scenarios.

6.2.5 Algorithm implementation

In this section, we provide an outline of a base implementation of KL-E3 in Algorithm 6. We also

define some variables which were not previously mentioned in the derivation of KL-E3 and provide

further implementation detail.

There exist many ways one could use (6.10). For instance, it is possible to simulate a dynamical

system for some time horizon tH and apply (6.10) in a trajectory optimization setting. Another way
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is to repeatedly generate trajectory plans at each instance and apply the first action in a model-

based predictive control (MPC) manner. We found that the choice of τ and λ can determine how

one will apply (6.10). That is, given some time ti, if τ = ti and λ = tH , we recover the trajectory

optimization formulation whereas when τ = ti and λ = dt, where dt is the time step, then the MPC

formulation is recovered.4 Rather than focusing on incremental variations, we focus on the general

structure of the underlying algorithm when combined with a learning task.

We first assume that we have an approximate transition model f(x, u) and an equilibrium

policy µ(x). A simulation time horizon tH and a time step dt is specified where the true robot

measurements of state are given by x̂(t) and the simulated states are x(t). Last, a spatial distribution

p(s) is initialized (usually uniform to start), and an empty data set D = {x̂(tj), y(tj)}j is initialized

where y(t) are measurements.

Constructing p(s) will vary depending on the learning task itself. The only criteria that is

necessary for p(s) is that it depends on the measurement data that is collected and used in the

learning task. Furthermore, p(s) should represent a utility function that indicates where informative

measurements are in the search space to improve the learning task. In the following sections, we

provide examples for constructing and updating p(s) given various learning tasks.

Provided the initial items, the algorithm first samples the robot’s state x̂(ti) at the current time

ti. Using the transition model and policy, the next states x(t)∀t ∈ [ti, ti + tH ] are simulated. A set

of N , samples (s1, s2, . . . , sN ) are generated and used to compute p(s), q(s). The adjoint variable

is then backwards simulated from t = ti + tH → ti and is used to compute δµ?(t). We ensure

robot safety by applying δµ?(t) +µ(x̂(t)) with real measurements of the robot’s state. Data is then

collected and appended to D and used to update p(s). Any additional steps are specified by the

learning task. The pseudo-code for this description is provided in Algorithm 6 .

4One can also automate choosing τ and λ using a line search [110].
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Algorithm 6 KL-E3 Base Algorithm

1: init: approximate transition model f(x, u), initial true state x̂(0), equilibrium policy π(x),
spatial information distribution p(s), simulation time horizon tH , time step dt. data set D,
i = 0

2: while task not done do
3: set x(ti) = x̂(ti)
4: . simulation loop
5: for τi ∈ [ti, . . . , ti + tH ] do
6: . forward predict states using any integration method (Euler shown)
7: x(τi+1) = x(τi) + f(x(τi), π(x(τi)))dt
8: end for
9: . backwards integrate choosing ρ̇(t) set the terminal condition

10: generate N samples of si uniformly within Sv
11: ρ(ti + tH) = 0
12: for τi ∈ [tH + ti, . . . , ti] do
13: ρ(τi−1) = ρ(τi)− ρ̇(τi)dt
14: . since x(t) is simulated, we return
15: . just the first term of (6.10)
16: . and calculate π(x) online
17: δu?(τi−1) = −R−1h(x(τi−1))>ρ(τi−1)
18: end for
19: . apply to real robot
20: chose τ ∈ [ti, ti + tH ] and λ ≤ tH or use line search [110]
21: for t ∈ [ti, ti+1] do
22: if t ∈ [τ, τ + λ] then
23: apply u?(t) = δu?(t) + π(x̂(t))
24: else
25: apply π(x(t))
26: end if
27: if time to sample then
28: measure true state x̂(t) and measurements y(t)
29: append to data set D ← {x̂(t), y(t)}
30: end if
31: end for
32: update p(s) given D . task specific
33: update f(x, u), π(x) . if needed
34: update learning task
35: i← i+ 1
36: end while
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6.3 Example active learning tasks

In this section, our goal is to use KL-E3 for improving example methods for learning. In particular,

we seek to show that our method can improve Bayesian optimization, transition model learning (also

known as dynamics model learning or system identification), and off-policy robot skill learning. In

each subsection, we provide an overview of the learning goal and define the spatial distribution p(s)

used in our method. In addition, we show the following:

(i) that our method is capable of improving the learning process through exploration

(ii) that our method does not violate equilibrium policies and destabilize the robot

(iii) and that our method efficiently explores through exploiting the dynamics of a robot and the

underlying spatial distribution.

For each example, we provide implementation, including parameters used, in the appendix.

6.3.1 Bayesian optimization with dynamic constraints

In this first example, KL-E3 is explored for Bayesian optimization using a cart double pendulum

system [111] that needs to maintain itself at the upright equilibrium. As discussed in Chapter 2,

Bayesian optimization is a probabilistic approach for optimizing objective functions φ(x) : Rn → R

that are either expensive to evaluate or are highly nonlinear. Pseudo-code for Bayesian optimization

is provided in Alg 1.

In many examples of Bayesian optimization, the assumption is that the learning algorithm can

freely sample anywhere in the sample space x ∈ Rn; however, this is not always true. Consider an

example where a robot must collect a sample from a Bayesian optimization step where the search

space of this sample intersects the state-space of the robot itself. The robot is constrained by
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Figure 6-4: Comparison of KL-E3 against Bayesian Optimization without dynamic constraint, LQR-
Bayesian optimization, and direct maximization of the acquisition function through gradient propagation
of the cart double pendulum approximate dynamics in determining the maximum value of the objective
function through exploration. Our method is able to perform as well as Bayesian optimization directly
sampling the exploration space while performing better than the naive LQR-Bayesian optimization. Dashed
black line indicates the maximum value of the function.
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its dynamics in terms of how it can sample the objective. Thus, the Bayesian optimization step

becomes a constrained optimization problem where the goal is to reach the optimal value of the

acquisition function subject to the dynamic constraints of the robot. Furthermore, assume that

the motion of the robot is restricted to maintain the robot at an equilibrium (such as maintaining

the inverted equilibrium of the cart double pendulum). The problem statement is then to enable a

robot to execute a sample step of Bayesian optimization by taking into account the constraints of

the robot. We use this example to emphasize the effectiveness of our method for exploiting the local

dynamic information using a cart double pendulum where the equilibrium state is at the upright

inverted state and a policy maintains the double pendulum upright.

Here, we use a Gaussian process with the radial basis function (RBF) to build a model of the

objective function shown in Fig. 6-3. Using Gaussian process predictive posterior mean µ̄(x) and

variance σ(x), the upper confidence bound (UCB) [29] acquisition function is defined as

UCB(x) = µ̄(x) + κσ(x) (6.20)

where κ > 0. We augment Alg 6 for Bayesian optimization by setting the UCB acquisition function

as the target distribution which we define through the Boltzmann softmax function, a common

method of converting functions that indicate regions of high-value into distributions [112,113]: 5

p(s) =
exp(cUCB(s))∫

Sv exp(cUCB(s̄))ds̄
(6.21)

where c > 0 is a scaling constant. Note that the denominator is approximated as a sum over the

samples that our method generates. An approximate linear model of the cart double pendulum

5Other distribution forms are possible, but the analysis of their effects is left for future work and we choose the
Boltzmann softmax formulation for consistency throughout each example.
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dynamics centered around the unstable equilibrium is used along with an LQR policy that main-

tains the double pendulum upright. We provide brief pseudo-code of the base Algorithm 6 in the

Appendix Alg. 9.

We first illustrate that our method generates ergodic exploration through an execution of our

method for Bayesian optimization in Figure 6-3. Here, the time-series evolution of KL-E3 is shown

to sample proportional to the acquisition function. As a result, our method generates samples near

each of the peaks of the objective function. Furthermore, we can see that our method is exploiting

the dynamics as well as the equilibrium policy, maintaining Lyapunov attractiveness with respect

to the inverted equilibrium (we will later discuss numerical results in Fig 6-5).

Next, our method is compared against three variants of Bayesian optimization: the first is

Bayesian optimization with no dynamics constraint (i.e., no robot is used); second, a linear quadratic

regulator (LQR) variation of Bayesian optimization where the maximum of the acquisition function

is used as a target for an LQR controller; and last a direct maximization of the acquisition using

the stabilizing equilibrium policy (see [60] for detail) is used. A total of 10 trials for each method

are collected with the agent starting at the same location uniformly sampled between −0.8 and 0.8

throughout the sample space. In Fig. 6-4 we show that our method not only performs comparably

to Bayesian optimization without dynamic constraints6, but outperforms both LQR and direct

maximization variants of Bayesian optimization. Because LQR-Bayes method does not take into

account dynamic coverage, and instead focuses on reaching the next sample point, the dynamics

of the robot often do not have sufficient time to stabilize which leads to higher variance of the

learning objective. We can see this in Fig. 6-5 where we plot a Lyapunov function for the cart

double pendulum [111] at the upright unstable equilibrium. Specifically, our method is roughly

6This may change if the dynamics of the robot are slower or the exploration space is sufficiently larger. Note that
the other methods would also be equally affected.
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6 times more stable at the start of the exploration compared to the LQR variant of Bayesian

optimization. Lyapunov attractiveness is further illustrated in Fig. 6-5 as time progresses and each

exploratory motion is closer to the equilibrium. Last, directly optimizing the highly nonlinear

acquisition function often leads to local optima, yielding poor performance in the learning goal.

This can be seen with the performance of directly optimizing UCB using the cart double pendulum

approximate dynamics in Fig. 6-4) where the cart double pendulum would often find and settle at

a local optima.
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Figure 6-5: Normalized Lyapunov function for the cart double pendulum with upright equilibrium. Our
method (shown in blue) is roughly 6 times more stable than LQR-Bayesian optimization. The large initial
values indicate the sweeping shown in Fig. 6-3(a) when the cart double pendulum moves across the search
space. Subsequent application of the exploratory motion refine the exploration process. The Lyapunov
attractiveness property is enforced through automatic switching of the exploration process.

In this example, the cart double pendulum only needed to explore the cart position domain to

find the maximum of the objective function. The following example illustrates a more dynamic

learning goal where the robot needs to generate a stochastic model of its own dynamics through

exploration within the state-space.
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6.3.2 Stochastic transition model learning mid-flight

In this next example KL-E3 is used to collect data for learning a stochastic transition model of a

quadcopter [114] dynamical system by exploring the state-space of the quadcopter while remaining

at a stable hover. Our goal is to show that our method can efficiently and effectively explore the

state-space of the quadcopter (including body linear and angular velocities) in order to generate

data for learning a transition model of the quadcopter for model-based control. In addition, we show

that the exploratory motions improve the quality of data generated for learning while exploiting

and respecting the stable hover equilibrium in a single execution of the robotic system [60].

An LQR policy is used to keep the vehicle hovering while a local linear model (centered around

the hover) is used for planning exploratory motions. The stochastic model of the quadcopter is of

the form [115]

dx ∼ N (fθ(x, u), σθ(x)) (6.22)

where N is a normal distribution with mean fθ, and variance σθ(x), and the change in the state

is given by dx ∈ Rn. Here, f(x, u; θ) = fθ(x, u) : Rn×m → Rn specifies a neural-network model

of the dynamics and σ(x; θ) = σθ(x) is a diagonal Gaussian σθ(x) : Rn → Rn which defines the

uncertainty of the transition model at state x all parameterized by the parameters θ.

We use KL-E3 to enable the quadcopter to explore with respect to the variance of the model

(that is, exploration in the state-space is generated based on how uncertain the transition model is

at that state). In a similar manner as done in the previous subsection, we use a Boltzmann softmax

function to create the distribution

p(s) =
exp(cσθ(s))∫

Sv exp(cσθ(s̄))ds̄
. (6.23)
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Method Average Power Loss Average ‖u‖
KL-E3 0.16 +- 0.0130 0.68 +- 0.0043

Inf. Max* 0.59 +- 0.0463 1.32 +- 0.3075
Normal 0.1* 1.41 +- 0.0121 0.72 +- 0.0016

OU 0.3 2.73 +- 0.0228 1.17 +- 0.0152
OU 0.1 0.97 +- 0.0096 0.73 +- 0.0033

OU 0.01* 0.10 +- 0.0007 0.67 +- 0.0002
Uniform 0.1* 0.84 +- 0.0090 0.69 +- 0.0004

Table 6.1: Comparison of our method against various methods for state-space exploration using a quad-
copter. Each method uses the same base stabilization policy which maintains hover height and is instanti-
ated and run once for 1200 time steps. Data from a single execution is used to generate a neural network
dynamics model. This is repeated 20 times to estimate the performance of each method. Methods with (*)
were unable to generate a dynamics model that completed the tracking objective.

A more complex target distribution can be built (see [26,60]), however; due to the high-parameterization

of the neural-network model, using such methods would require significant computation.

The stochastic model is optimized by maximizing the log likelihood of the model using the

likelihood function

L = N (dx | fθ(x, u), σθ(x)) (6.24)

where updates to the parameters θ are defined through the gradient of the log likelihood function:

θ ← θ + α
∑
k

∇θ logL. (6.25)

Here, a batch of K measurements {x̂k, dx̂k, uk}Kk=1 are uniformly sampled from the data buffer D

where the subscript k denotes the kth time. A variation of Alg. 6 for model learning is provided in

the Appendix in Algorithm 10.

We compare our method against time-correlated Ornstein-Uhlenbeck (OU) noise [116], uniform

and normally distributed random noise at different noise levels, and using a nonlinear dynamics
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Figure 6-6: Learned quadcopter model evaluations on a model-based tracking objective. Our method is
able to generate a model that performs comparably to OU noise at 0.1 and 0.3 noise levels while using less
energy through dynamic exploration.

variant of the information maximizing method in [26, 60] which directly maximizes the variance of

the model subject to the equilibrium policy. Each simulation is run using the LQR controller as

a equilibrium policy for a single execution of the robot (no episodic resets) for 1200 time steps.

During this time, data is collected and stored in the buffer D. Our method and the information

maximizing method use the data in the stored buffer to update the variance σθ(x), guiding the

exploration process. However, for evaluation of the transition model, we separately learn a model

using the data that has been collected as a gauge for the utility of the collected data for each method.

A stochastic model is learned by sampling a batch of 200 measurements offline from the buffer using

2000 gradient iterations. The model is evaluated for target tracking using stochastic model-based

control [73] over a set of uniformly randomly generating target locations uniform(−2, 2) ∈ R3.

We first illustrate that our method is more energetically efficient compared to other methods in

Table 6.1. Here, energy is calculated using the resulting thrust of the quadcopter and we show the

average commanded action u over the execution of the quadrotor in time. Our method is shown

to be more energetically efficient (due to the direct exploitation of the equilibrium policy and the

ergodic exploration process). Furthermore, our method is able to generate measurements in the
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state-space that can learn a descriptive stochastic model of the dynamics for model-based tracking

control (methods that could not learn a model for tracking control are indicated with a [*]). The

resulting methods that could generate a model were comparable to our method (see Fig. 6-6),

however; our method is able to directly target the regions of uncertainty (see Fig. 6-7) through

dynamic exploration allowing the quadcopter to use less energy (and more directed exploratory

actions).
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Figure 6-7: Control signal ‖u(t)‖ and resulting body linear and angular velocities ω, v for the quadcopter
system using KL-E3, information maximization, and OU noise with 0.1 maximum noise level. KL-E3 gener-
ates smoother control signals while exploring the necessary regions of the state-space without destabilizing
the system. For videos of this example visit https://sites.google.com/view/kle3 .

The following example illustrates how KL-E3 can be used to aide exploration for off-policy robot

skill learning by viewing the learned skill as an equilibrium policy.

6.3.3 Learning motor skills

In this example, I explore KL-E3 for improving robot skill learning (here we consider off-policy

reinforcement learning). For all examples, we assume that the learned policy is the equilibrium

policy and is simultaneously learned and utilized for safe exploration. As a result, we cannot confirm

Lyaponov attractiveness, but assume that the learned policy will eventually yield the Lyaponov

https://sites.google.com/view/kle3
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property. Thus, the goal is to show that we can consider a robot skill as being at equilibrium

(using a feedback policy) where our method can explore within the vicinity of the robot skill in an

intentional manner, improving the learning process.

In many examples of robot skill learning, a common mode of failure is that the resulting learned

skill is highly dependent on the quality of the distribution of data generated that is used for learning.

Typically, these methods use the current iteration of the learned skill (which is often referred to

as a policy) with added noise (or have a stochastic policy) to explore the action space. Often the

added noise is insufficient towards gaining informative experience which improves the quality of the

policy. Here, we show that our method can improve robot skill learning by generating dynamic

coverage and exploration around the learned skill, reducing the likelihood of suboptimal solutions,

and improving the efficiency of these methods.

Deep deterministic policy gradient (DDPG) [78] is used as the choice of off-policy method. Given

a set of data, DDPG calculates a Q-function defined as

Q(x, u) = E [r(x, u) + γQ(x′, π(x′))] (6.26)

where r(x, u) : Rn×m → R is a reward function, x′ is the next state subject to the control u, the

expectation E is taken with respect to the states, 0 > γ > 1 is known as a discounting factor [113],

and the function Q(x, u) : Rn×m → R maps the utility of a state and how the action at that state

will perform in the next state given the policy π(x). DDPG simultaneously learns Q(s) and a policy

π(x) by sampling from a set of collected states, actions, rewards, and their resulting next state. We

refer the reader to the pseudo-code of DDPG in [78].

Our method uses the learned Q(x, u) and π(x) as the target distribution and the equilibrium

policy respectively. We modify the Q function such that it becomes a distribution using a Boltzmann



120

0 50 100
episodes

0

1
re

w
ar

ds

(a) CartPole Inversion

DDPG

KL E3 DDPG

0 250 500 750

0

1
(b) Half Cheetah

Figure 6-8: Comparison of KL-E3 enhanced DDPG against DDPG using the cart pole inversion and
the half cheetah running tasks. KL-E3 provides a more informative distribution of data which assists the
learning process, improves the overall performance, and achieves better performance faster for DDPG. For
videos of this example visit https://sites.google.com/view/kle3.

softmax

p(s) =
exp(cQ(s))∫

Sv exp(cQ(s̄))ds̄
(6.27)

where s ∈ Rn+m includes both states and actions. This form of Equation (6.27) has been used

previously for inverse reinforcement learning [117, 118]. Here, Eq. (6.27) is used as a guide for the

ergodic exploration where our exploration is centered around the learned policy and the utility

of the learned skill (Q-function). Since most reinforcement learning deals with large state-spaces,

we use the approximation to the time-averaged statistics in (6.17) to improve the computational

efficiency of our algorithm. A parameterized dynamics model is built using the first 200 points of

each simulation (see Appendix for more detail) and updated as each trial continues. OU noise is

used for exploration in the DDPG comparison with the same parameters shown in [78]. We provide

a pseudo-code of a KL-E3 enhanced DDPG in the Appendix Alg. 11.

KL-E3 is tested on the cart pole inversion and the half-cheetah running task (see Figure 6-8 for

results). For both robotic systems, KL-E3 is shown to improve the overall learning process, making

https://sites.google.com/view/kle3
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learning a complex robot skill more sample efficient. Specifically, inverting the cart pole starts to

occur within 50 episodes and the half cheetah begins generating running gaits within 250 episodes of

the half cheetah (each episode consists of 200 time steps of each environment). In contrast, DDPG

alone generates suboptimal running (as shown in (https://sites.google.com/view/kle3/home))

and unstable cart inversion attempts. Because our method is able to explore within the vicinity

of the learned skill in an intentional, active ergodic manner, it is able to quickly learn skills and

improve the overall quality of the exploration.

6.3.4 Learning backflips through interactive imitation learning

In this last example, I present KL-E3 for use in active imitation learning. As presented in Chapters 3

and 4, imitation learning, specifically behavior cloning, is an approach for robot systems to learn

tasks from expert demonstrations by imitating a set of N demonstrations D = {{xnt , unt }T−1
t=0 }Nn=1

of length T where xi, ui is the state-action pair associated with a task. The goal is then to learn a

policy π(x) that perfectly mimics the set of demonstrations D and can generalize to states outside

the distribution of demonstrations. The difficultly in this task is that the expert policy π? is not

accessible and the task objective function is also unknown.

In Chapter 4, active imitation learning (or interactive imitation learning) is motivated as an

approach that allows the robotic system to interactively learn a task by querying an expert for

demonstrations (x?i , u
?
i ) at query states x? which can be infeasible states. Through interactive

querying, it is possible to acquire more informative demonstrations from an expert by inferring how

an expert will behave in states which provide the most information about a task. By collecting

these informative (but often infeasible) states, it becomes possible for a robot to actively learn a

policy with fewer demonstrations as opposed to passively acquiring demonstrations from an expert.

https://sites.google.com/view/kle3/home
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Here, I investigate the case where the robotic system cannot query any arbitrary state to the expert

but instead can on query states it passes through. In addition, I test the capabilities of KL-E3 for

learning highly dynamics tasks solely from queried demonstrations under strict safety requirements.

The test system is a planar lunar-lander system whose task is to learn how to backflip by actively

querying an expert backflipper (or master-flipper) using only the state the system is currently

visiting. In addition, a restriction of maintaining stable hovering is enforced. The stable hovering

is defined by an LQR policy at an equilibrium hover height (see Appendix C for details on the

dynamics and policy). The imitated policy is learned through behavior cloning which corresponds

to the optimization following problem:

θ? = arg min
θ

∑
D
‖uni − π(xni , θ)‖2

where π(x, θ) is the θ parameterized deterministic behavior cloned policy. Demonstrations are ob-

tained by visiting a state x? and querying the expert for a demonstration of length T . Each demon-

stration is an example of how to backflip from the current query state x? defined as {xt, ut}T−1
t=0

(with a full backflip typically lasting T = 100 steps). The target distribution in this example is

defined using the Fisher information matrix (as described in Chapter 4 and 5) as

p(s) = ctr (I(θ))

where

I(θ) =
∂π

∂θ

>
I(π)

∂π

∂θ

≈ diag

(
(σ−1)>

(
∂π

∂θ

)2
)
, (6.28)
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Figure 6-9: Comparison of KL-E3 for active imita-
tion learning to Noise Injected Exploration (NIE) and
Max Information NIE or MINIE for learning lunar-
lander backflip task from demonstrations. Error bars
indicate 95 % confidence bound over behavior-cloned
policy evaluations for 100 normally distributed ini-
tial conditions using 4 random seeds. KL-E3 queries
informative expert demonstrations that yield learned
policies that successfully clones a backflip behavior.

σ is the known measurement uncertainty from the expert demonstration, and c is a normalization

constant. The motivation for using the Fisher information comes from the Cramér-Rao bound and

the fact that in imitation learning through behavior cloning, the best a policy can do is minimize

the uncertainty of the learned parameters. This is a consequence of the nature of learning tasks

from demonstrations and the lack of an external reward or cost.

In order to improve the impact of KL-E3, rather than querying the expert at every state, the

querying occurs when a state is reached which has an information measure defined by tr (I(θ))

that is greater than the previous queried state. At each planning iteration, the robot state is fed

into KL-E3 in receding horizon which returns a sequence of exploratory actions. In addition, we

assume we have a model of the dynamics of the lunar-lander. The behavior cloned policy (and

target distribution) is updated at each sampling instance of the robot and a final training loop is

run until convergence once a finite set of demonstrations are acquired. Pseudo-code for KL-E3 for

active query-based imitation learning is provided in Appendix C.

KL-E3 is compared to two methods for active learning (equivalent to the methods presented

in Chapter 6.3.2). The first method, Noise Injected Exploration (NIE), uses normally distributed

random noise injection with variance at 100% of the control saturation to the equilibrium hover
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policy of the lunar-lander. 7 A expert demonstration is obtained at every state the robot visited

during the exploration. The second method, Max Information Noise Injected Exploration (MINIE)

is similar to the random query-based method with maximum information filtering presented in

Chapter 4. The exploration method is the same random noise injection to the equilibrium policy at

100% control saturation with the added information filtering. Only queries that have a information

measure greater than the previous queried state are forwarded to the expert demonstrator. Each

example is run and tested for a finite set of queried demonstrations. The demonstration set is then

used to train the behavior-cloned policy until convergence is reached. The policy is then evaluated

on a series of 100 normally distributed random initial states for a set of 4 random seeds (totaling

400 policy evaluations) that tests the ability of the policy to successfully backflip.

Comparative results are presented in Figure 6-9 for active imitation learning after collecting a

set of 5, 10, and 20 expert demonstrations using KL-E3, NIE, and MINIE. Here, KL-E3 is shown

to query expert demonstrations which yield behavior cloned policies that have near 100% success

rate over the backflip evaluation samples within 5 active queries. In contrast, both NIE and MINIE

methods barely reach the 50 % threshold by 20 queried expert demonstrations. These results are a

direct consequence of the noise injected exploration methods fighting the equilibrium policy. KL-E3

uses the equilibrium policy as part of the planning and control of the robot for active query-based

imitation learning. In addition, the use of indirect sampling of the target distribution using the

Fisher information matrix avoids issues with local minima that can be problematic with direct active

learning optimization methods. These results are further reinforced if we look at the maximum

information acquired for each query in Fig. 6-10. We can see that simply choosing informative

states to query the expert already improves the quality of the behavior cloning process and increases

7The aggressive equilibrium policy prevented any control-injected noise from changing the state of the lunar-lander
at any value less than 100% control saturation.
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Figure 6-10: Maximum obtained information using
KL-E3 compared to MINIE for active query-based im-
itation learning for lunar-lander backflip task. KL-E3

exploits the equilibrium policy and works with the
policy to reach more informative query points to ob-
tain an expert demonstration. The information gain
is reflected in the percent success rates for MINIE and
KL-E3 in Fig. 6-9.

generalization of the task when comparing NIE to MINIE. However, adding stability constraints

that impede sampling highly dynamic states will result in a loss of quality in the resulting behavior

cloned policy. Both the ergodic sampling strategy and the equilibrium-based control synthesis

developed in KL-E3 improve these issues that allow robotic systems to actively learn from expert

demonstrators in a safe and reliable manner.

6.4 Discussion and summary

I present KL-E3, a method which is shown to enable safe active learning in robots through the

KL–divergence ergodic measure. The proposed method synthesizes ergodic sampling using the

KL-divergence measure that generates data through exploiting dynamic movement proportional to

the utility of the data. I show that ideas and tools from hybrid control theory can be used to

synthesize a schedule of exploratory actions that can incorporate learned policies and models in a

systematic manner that improves safety and reliability of robot learning. Last, I present examples

that illustrate the effectiveness of KL-E3 for various robot active learning examples and provide

theoretical analysis which bounds stability to equilibrium policies through Lyapunov attractiveness.
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The following chapter examines some of the fundamental assumptions made with how we model

the dynamics of robotic systems and the ability to measure the state of the robot and the world. In

doing so, I present a novel way to predict and plan with learned dynamic models that both improves

control authority and results in simpler mathematical structure. I then show how this structure

can be used to improve upon active learning and stable learning using the methods presented in

the previous chapters. I then present various examples which show the improved capabilities that

one can find through just considering structure in the learning problem.
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Chapter 7

Active learning in infinite linear embedding space

In most problems of robot learning and control, the robot, the task, and the environment are

often represented as set of nonlinear systems of equations generally described through the Markov

decision process. If we wanted to expand the scope of the robot dynamics and its interaction in the

world, we would need to figure out what needs to be modeled and measured for the robotic system

to operate successfully. Often the world can be infinitely complex, and arbitrarily expanding the

scope for robot operations can be impossible to do directly. Even if it were possible, the problem of

operating autonomously in the world under such a broad scope would generally yield more complex,

nonlinear models which are exceedingly difficult for optimal control solvers to exploit.

How then can we increase the capabilities of robotic systems without inheriting all the nonlin-

earities and complexities that come with such a problem? Is it possible to construct representations

that are mathematically simple, but provide robotic systems with the necessary information to

successfully operate in the world? In this chapter, I investigate infinite linear embeddings as a



128

candidate class of models that allow robotic systems to exceed the constraints of non-linearity and

model complexities. I illustrate the improved control authority from using such models for control,

and I present a method for safe active learning that uses infinite linear embeddings to achieve

instant learning of robot dynamics in a single execution of the robotic system.

7.1 Control in infinite linear embedded space

As discussed in Chapter 2, Koopman operators are a class of infinite linear embeddings that project

nonlinear dynamic constraints into a linear dynamical system in a modified (often infinite) vector-

space. Here, we examine the Koopman operator structure in the case of optimal linear quadratic

(LQ) control of robotic systems. The usefulness of Koopman operators comes from the idea that

the lifted linear features embed all the non-linear features into a linear representation that we can

exploit for use with linear quadratic optimal control.

7.1.1 Linear optimal control > nonlinear optimal control

Let us consider control of the nonlinear forced Van der Pol oscillator, the dynamics of which are

defined in Appendix D, as an example. We specify the control task as minimizing the following LQ

objective

J =

∫ ti+T

ti

x(t)>Qx(t) + u(t)>Ru(t)dt+ x(ti + T )>Qfx(ti + T )

where Q ∈ Rn×n, R ∈ Rm×m, and Qf ∈ Rn×n. Choosing a set of function observable (Ap-

pendix D), we can compute a Koopman operator K by repeated simulation of the Van der Pol

oscillator given a set of 5000 uniformly sampled state-control measurements.

Since the Van der Pol oscillator dynamics are nonlinear, an optimal control solution to the
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LQ control problem is to linearize the dynamics about the equilibrium state xt = [0, 0]
>

and

form a linear quadratic control regulator (LQR) feedback controller. Using the Kooman operator

formulation of the Van der Pol dynamics, we can compute a controller in a similar manner using

the following objective

J =

∫ ti+T

ti

z(t)>Q̃z(t) + u(t)>Ru(t)dt+ z(ti + T )>Q̃fz(ti + T )

where

Q̃ =

Q 0

0 0

 ∈ Ra×a and Q̃f =

Qf 0

0 0

 ∈ Ra×a.

where a is the dimensionality of the subspace of state lifted features z(x) ∈ Fa. Setting Q̃ and Q̃f

to only include the observations of state allows us to compare the same control objective using the

linearized dynamics against the Koopman operator dynamics where the first terms in the function

observable z(x(t)) is the state of the Van der Pol system itself.

Figure 7-1 illustrates the improvement in control performance when using the the Koopman

operator dynamics for LQ control instead of linearizing the dynamics around a local region. We

compare the control authority using a learned dynamics model in the original state-space using

Bayesian optimization with the same functions used for the Koopman operator. Figure 7-1 illus-

trates that the data used to compute the Koopman operator can learn a nonlinear model of the Van

der Pol dynamics in the original state-space. The Koopman operator formulation of the Van der

Pol approximates the dynamic constraints as a linear dynamical systems in a higher dimensional

space that captures nonlinear dynamical behavior. As a result, the Koopman operator formulation

coupled with LQ methods can be used to enhance the control the Van der Pol system as shown

in Figure 7-1b. Computing the resulting trajectory error (Figure 7-1a) shows that the trajectory
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Figure 7-1: Control performance of a forced Van der Pol oscillator with an LQR control using the learned
Koopman operator, the linearization of the known system dynamics, and the linearizion of a learned state-
space model using the same data and basis functions as the Koopman operator. The control performance
using the Koopman operator dynamics is shown to outperform the LQR control with known dynamics.
The learned dynamics model performs equally to the known dynamics model and is overlayed on top of the
known dynamics results.

taken from the Koopman operator controller results in less overall integrated error. This is due to

formulating the LQ controller with additional information in the form of a dynamical system that

evolves nonlinear functions of state in time.

While this example illustrates the possible benefits of utilizing the Koopman operator formula-

tion, we ignored how the data was collected for constructing the model the Van der Pol dynamical

system. The following sections introduce methods that enable robotic systems to fully utilize linear

embeddings in real scenarios through active learning.

7.2 Active learning formulation with linear embeddings

As discussed in prior chapters, active learning controllers need to consider the safety of the robot

itself based on the underlying task and manage the non-linearities often created through defining

additional active learning objectives. As showed before, control with the Koopman operator models
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gives us improved control performance and mathematical simplicity due to its linear structure. In

this section, I formulate a controller for active learning that exploits the linear structure of the

Koopman operator for learning and control of robotic systems. Using results from Chapters 3, the

active learning problem is approached as a hybrid control problem where the goal is to actively learn

the system dynamics while successfully solving an underlying stability task. Additional difficulty is

introduce through the added constraint of simultaneously learning the system dynamics and using

the models to construct stabilization policies online.1 Rather than converting the active learning

objectives using ergodic sampling, the linear structure of the Koopman operator is used to construct

simpler learning objectives. In addition, the Koopman operator model is used to assist with control

authority and construction of stabilization policies online to improve the learning and control of

the system.

The active learning problem is formulated as a hybrid switching problem [75] where the goal

is to switch between a task-based policy and an information maximizing controller that assists the

dynamical system in collecting informative measurements for learning. Consider a general objective

function of the form

J =

∫ ti+T

ti

`(z(t), π(z(t)))dt+m(z(ti + T )) (7.1)

where z(t) : R→ Fa is the value of the linear embedded features at time t subject to the Koopman

dynamics

ż(t) = Kzz(t) +Kvv(x(t), u(t)) (7.2)

with initial condition z(x(ti)), `(z, u) : Fa × Um → R is the running cost function, m(z) : Fa → R

is the terminal cost, and π(z) : Fa → Um is a continuous and differentiable policy defined in the

1During training, the policies derived from the Koopman operator dynamics will be inaccurate; however, over
time and with informative measurements, both the model and policy will converge. This is a common approach in
most model-based reinforcement learning techniques [119].
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lifted feature space. Here, Kz ∈ Ra×a, Kv ∈ Ra×b are the sub-components of K with v(x, u) :

Xn × Um → Fb. In this work, the running cost is split into two parts:

`(z, u) = `learn(z, u) + `task(z, u)

where `learn is the information maximizing objective (learning task) and `task is the task objective

for which the policy π(z) is a solution when `learn = 0.

Given equation (7.1), we want to synthesize a controller that is bounded to the policy π(z), but

also allows for improvement of an information measure for active learning. To do so, we follow the

same procedure as in Lemma 1 for a switching mode system.

Proposition 3. The sensitivity of switching from π(z) to an arbitrary control û for all τ ∈

[ti, ti + T ] for an infinitesimally small λ, is given by

∂J
∂λ

∣∣∣
τ,λ=0

= ρ(τ)>(f2 − f1) (7.3)

where f2 = f(z(τ), û(τ)), f1 = f(z(τ), π(z(τ))), with f defined in (7.2) and

ρ̇ = −

(
∂`

∂z
+
∂π

∂z

> ∂`

∂u

)
−
(
∂f

∂z
+
∂f

∂u

∂π

∂z

)>
ρ

subject to the terminal condition ρ(ti + T ) = ∂
∂zm(z(ti + T )).

Proof. See Appendix A.

As in Chapter 3, we can write an unconstrained optimization problem for calculating the optimal

û(τ) over the interval τ ∈ [ti, ti + T ] that will minimize2 the mode insertion gradient. We can write

2It is a minimization since we want to reduce the cost function.
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this optimization problem using an auxiliary objective function

J2 =

∫ ti+T

ti

∂

∂λ
J
∣∣∣
τ=t,λ=0

+
1

2
‖û(t)− π(z(t))‖2

R̃
dt, (7.4)

where R̃ ∈ Rm×m bounds the change of û to π(z), and ∂
∂λJ

∣∣∣
τ=t,λ=0

is evaluated at τ = t. Solv-

ing equation (7.4) with respect to û(t) can be viewed as a functional optimization over û(t)∀t ∈

[ti, ti + T ]. Since equation (7.4) is quadratic in û, we obtain a closed form solution for any applica-

tion time τ ∈ [ti, ti + T ].

Proposition 4. Assuming that v(x, u) is differentiable, the control solution that minimizes (7.4)

is

u?(t) = −R̃−1

(
Kv

∂v

∂u

)>
ρ(t) + π(z(t)). (7.5)

Proof. Since (7.4) is separable in time, we take the derivative of (7.4) with respect to û(t) at each

point in t which gives the following expression:

∂

∂û
J2 =

∫ ti+T

ti

∂

∂û

(
ρ(t)> (f2 − f1)

)
+ R̃ (û(t)− π(z(t)) dt

=

∫ ti+T

ti

(
Kv

∂v

∂u

)>
ρ(t) + R̃(û(t)− π(z(t)))dt. (7.6)

Solving for û(t) in (7.6) gives the optimal closed-form solution

u?(t) = −R̃−1

(
Kv

∂v

∂u

)>
ρ(t) + π(z(t)).

We can use equation (7.5) with (7.3) to show that our approach improves the active learning
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objective subject to bounds placed on arbitrarily defined tasks.

Corollary 3. Assume that the Koopman operator dynamics for a system are defined by the following

control affine structure:

ż = Kzz(x(t)) +Kvv(x(t))u(t) (7.7)

where v(x) : Xn → Rb×m where Kv ∈ Fa×b. 3 Moreover, assume that ∂
∂πH 6= 0 where H is the

control Hamiltonian for (7.1). Then

∂

∂λ
J = −‖ (Kvv(x))

>
ρ‖2

R̃−1 < 0 (7.8)

for u?(t) ∈ U ∀t ∈ [ti, ti + T ].

Proof. Inserting (7.5) into (7.3) gives

∂

∂λ
J = ρ(t)> (Kvv(x(t)))

(
−R̃−1 (Kvv(x(t)))

>
ρ(t)

)

which can be written as the norm

∂

∂λ
J = −‖ (Kuv(x))

>
ρ‖2

R̃−1 < 0.

The following subsection provides a candidate learning objective inspired by the results in Chap-

ter 3 using the Fisher information measure based on the Koopman operator model. We first describe

the Fisher information matrix for the linear Koopman operator parameters. We then show that

3This formulation assumes that we can recover x(t) from z(t) for computing v(x).
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using (7.5) and Corollary 3, that we can approximately calculate to first order the gain in informa-

tion.

7.2.1 Fisher information maximization of linear embeddings

Using the controller defined in (7.5), we investigate the Fisher information maximization to actively

learn the Koopman operator dynamics for robotic systems. We can learn the approximate Koopman

operator dynamics using the maximum likelihood objective

K? = arg max
K

N∑
i=1

log p(z(xi+1, ui+1) | z(xi, ui),K)

where linear structure of the Koopman operator makes p(z(xi+1, ui+1) | z(xi, ui),K) = N (Kz(xt, ut),Σ)

where Σ ∈ Ra×a is the variance. Thus, the Fisher information matrix over the parameters that

compose of the Koopman operator K is computed as

I(K) =
∂f

∂κ

>
Σ−1 ∂f

∂κ
∈ R|κ|×|κ| (7.9)

where κ = {Ki,j | Ki,j ∈ K}, |κ| is the cardinality of the vector κ, and f is defined by the Koopman

continuous dynamics (7.2). Here, we assume that the model is held fixed in order to avoid computing

the parameter dynamics illustrated in Chapter 4. This allows us to compute reactive active learning

strategies which can be executed on a robot at high frequencies without worrying about controller

lag time.

Because the Fisher information defined here can be positive semi-definite, we use the T-optimality

condition (different from the A-optimality) of the Fisher information matrix [120] as the learning
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objective defined as

`learn(z, u) = (trI(K) + ε)
−1

(7.10)

where ε� 1 is a small number to prevent singular solutions due to the positive semi-definite Fisher

information matrix [121–123]. Here, I(K) is computed using the evaluation of K at time ti which

is equivalent to greedily optimizing with respect to a single step of the parameter dynamics.

Assumption 1. Assume that I(K̃) > 0 implies I(K) > 0 where K̃ is an approximation to the

Koopman operator K computed from the data set D = {x(tm), u(tm)}im=0 that contains data up

until the current sampling time ti.

Theorem 5. Given Assumption 1 and dynamics (7.7), then the change in information 4 ∆I subject

to (7.5) is given to first order

∆I ≈ (‖(Kvv(x))
>
ρ‖2

R̃−1 + `task(z, u
?)− `task(z, π))Iu?Iπ +O(∆t), (7.11)

where Iu = trI(K)u + ε is the T-optimality measure (7.10) from applying an arbitrary control u.

Proof. See Appendix A.

Theorem 5 shows that our active learning controller with the Koopman operator dynamics

increases the rate of information that a robot would have normally acquired if it had only used the

control policy π(z). Thus, through the Cramér-Rao bound, this implies that the bound

var [K?] ≥ I (K)
−1

is continuously improving through the information maximizing actions. Weighing the information

4With respect to the information acquired from applying only π(z).
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measure against the task objective allows us to ensure that the relative information gain is positive

when using the active learning controller. That is, the difference between the information from

using the policy π(z) and the control u?(t) will be positive. Other heuristics can be used such as

a decaying weight on the information gain or setting the weight to 0 at a specific time so that the

robot attempts the task. We provide a basic overview of the control procedure in Algorithm 7.

Videos of the experiments and example code can be found at https://sites.google.com/view/

active-learning-koopman-op.

Algorithm 7 Online Active Learning via Infinite Linear Embedded Information Maximization

1: initialize: objective `(z, u), initial policy π(z), normally distributed random K ∼ N (0,1).
2: sample state measurement x(ti)
3: add x(ti) to dataset D, update K and π(z)
4: simulate z(t), ρ(t) for t ∈ [ti, ti + T ] with conditions z(ti) = z(x(ti)) and ρ(ti+T ) = ∂

∂zm(z(ti+
T )) with π(z)

5: compute u?(t) = −R̃−1
(
Kv ∂v∂u

)>
ρ(t) + π(z(t))

6: return u?(ti)
7: update timer ti → ti+1

The following sections use our derived controller to enable active-learning of Koopman operator

dynamics.

7.3 Single rollout active learning of free-falling quadcopters

In this example, we illustrate the capabilities of combining the Koopman operator representation

of a dynamical systems and active learning for single execution model learning of a free-falling

quadcopter for stabilization. Additionally, we compare our approach to other common learning

strategies such as active learning with Gaussian processes [25, 124, 125], online model adaptation

through direct attempts at the tasks of stabilization (common online reinforcement learning and

adaptive control approach [126–130]), and a two-stage noisy motor input (often referred to as

https://sites.google.com/view/active-learning-koopman-op
https://sites.google.com/view/active-learning-koopman-op
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“motor babble” [131–133]).

7.3.1 Problem definition

The task is as follows: The quadcopter, with dynamics described in Appendix D and [134], must

learn a model within the first second of free-falling and then use the model to generate a stabilizing

controller, preventing itself from falling any further. We define success of the quadcopter in the

task when ‖x− xd‖2 < 0.01 where xd is the desired target state defined by zero linear and angular

velocity. The controllers are designed as linear quadratic regulators using the model that was

learned the LQ formulation. The parameters used for this example are defined in Appendix D.

We compare the information gained (based on the T-optimality condition) and the stabilization

error in time against various learning strategies. Each learning strategy is tested with the same

20 uniformly sampled initial velocities (and angular velocities) between −2 and 2 radians/meters

per second. After each trial, the learned dynamics model is reset so that no information from the

previous trials are used.

7.3.2 Comparison with other active learning strategies

We compare our method for active learning against common dynamic model learning strategies.

Specifically, we compare three model learning approaches against our method, a two-stage noisy

control input approach [131], a direct stabilization with adaptive model using least squares [126,

127], and an active learning strategy using a Gaussian process [135, 136]. Each of these strategies

are generating a Koopman operator using the functions of state defined in Appendix D to generate

a dynamic model of the quadcopter. The Gaussian process formulation is the only model where

the functions map to the original state-space resulting in a nonlinear dynamics model.
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Least Squares Adaptive Stabilization The first strategy we compare to is to do the task of

stabilization at the while updating the model of the dynamics recursively [126, 127]. This is often

a strategy used in model-based reinforcement learning [132] and adaptive control [126].

Two-Stage Motor Babble The second strategy is a two stage approach using noisy motor

input (motor babble) for the first second and then pure stabilization [131]. Rather than directly

attempting to stabilize the dynamics, the priority is to simply try all possible motor inputs regardless

of the model of the dynamics that is being constructed. The motor babble strategy allows us to

bound the motor excitation which prevents the rotor from destabilizing once the learning stage is

complete. As with the direct stabilization method, we use a recursive least squares to update the

model of the Koopman operator.

Active Learning with Gaussian Process The last strategy is an active Gaussian process

strategy [135, 136]. In this active learning strategy, we build a model of the dynamics of the

quadcopter by generating a Gaussian process dynamics model [125, 135]. Using the variance esti-

mate [136], we uniformly sample points around the current state bounded by some ε constant and

find the state which maximizes the variance. The sampled state with the largest variance is then

used to generate a local LQ controller to guide the quadcopter dynamics to that state to collect the

data. After the first second, the Gaussian process model is used to generate a stabilizing controller

by linearizing the model about the final desired stabilization state. The kernel function used is

computed using the functions of state provided in Appendix D for a fair comparison. Note that for

the two-stage, least squared adaptive, and our approach, we learn a Koopman operator dynamics

model which we use to compute an LQ controller. The Gaussian process model is in in the original

state-space as described in [125].

Figure 7-2 (a) illustrates the information (T-optimality of the Fisher information matrix) for

each method. Our approach to active learning is shown to improve upon the information when com-
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Figure 7-2: Monte-Carlo simulation comparing various learning strategies to stabilize a quadcopter falling
for 20 trials with uniformly sampled initial linear and angular velocities. (a) Information gain (trace of
the Fisher information matrix) is shown for the various learning strategies. (b) Stabilization error and
standard deviation is shown over time for each learning strategy over 20 trajectories. (c) Representative
time series snapshots are shown depicting the various learning strategies. With our approach, maximization
of the information measure, coupled with the Koopman operator formulation of the dynamics, enables
quick stabilization of the quadcopter. For videos of this example visit https://sites.google.com/view/

active-learning-koopman-op

pared to motor babble (the most basic method for active learning). The other methods outperform

our approach in terms of the overall information gain by overly exciting the dynamics. The direct

adaptive stabilization method utilizes the incorrect dynamics model to self-adjust and eventually

stabilize the quadcopter (as shown in the variance). The active Gaussian process approach uses the

covariance estimate to actuate the quadcopter towards uncertain regions. Collecting data in uncer-

tain regions allows the active Gaussian process approach to actively select where the quadcopter

https://sites.google.com/view/active-learning-koopman-op
https://sites.google.com/view/active-learning-koopman-op
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should collect data next.

It is worth noting that these approaches will often lead the quadcopter towards unstable regions,

making it difficult to stabilize the dynamics in time. Our approach actively synthesizes when it

is best to explore and stabilize which assists in quickly stabilizing the quadcopter dynamics (see

Figure 7-2 (b)). The addition of the Koopman operator dynamics further enhances the control

authority of the quadcopter as shown with the direct adaptive stabilization, motor babble, and

our approach to active learning. While the active Gaussian process model does at times succeed,

the method relies on both the quality of data acquired and the local linear approximation to the

dynamics. This results in a deficit of nonlinear information that is needed to successfully achieve

the learning task in a single execution.

7.3.3 Sensitivity to initialization and parameters

We further test our algorithm against sensitivities to initialization of the Koopman operator. Our

algorithm requires an initial guess at the Koopman operator in order to boot-strap the active

learning process. We accomplish this using the same experiment described in the previous section

which used a zero mean, variance of 1 normally distributed initialization of the Koopman operator.

We vary the variance that initializes the Koopman operator parameters using a normal distribution

with zero mean and a variance experiment set of {0.01, 0.1, 1.0, 10.0}.

In Fig. 7-3, we find that so long as the initialization of the Koopman operator is within a reason-

able initialization (non-zero and within an order of magnitude), the performance is comparable to

active learning described in Fig. 7-2. However, this may not be true for all autonomous systems and

results may vary depending on the sampling frequency and the behavior of the underlying system.

A benchmark is provided for stabilizing the quadcopter when the Koopman operator is precom-
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Figure 7-3: Resulting sensitivities in stabilization error and information gain with respect to vari-
ance levels in Koopman operator initialization. Benchmark stabilization performance is provided for
known/precalculated Koopman operator.

puted in Fig 7-3 illustrating the performance of the control authority when using the Koopman

operator-based controller.

The choices in the parameters of our algorithm can also effect its performance. Specifically,

setting the value of the regularization term R̃ too large will prevent the robot from significantly

exploring the states of the robot. In contrast, if the regularization term is set too low, the robot will

widen its breath of exploration which can be harmful to the robot if the states are not bounded. A

similar effect is achieved by adding a weight on the active learning objective.

Changes in the time horizon T will also effect the performance of the algorithm. Generally,

smaller T will result in more reactive behaviors where larger T tends to have more intent driven

control responses. Choosing these values appropriately will be problem specific; however, the limited

number of tunable parameters (not including choosing a task objective) provides the advantage of

ease of implementation.
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7.4 Active learning with automatic discovery

of linear embedded features

As a solution to automating the choice of function observables, the use of deep neural networks [137]

have been used to automatically discover the function observables. In this section, we illustrate that

we can use these neural networks coupled with our approach for active learning to automatically

discover the Koopman operator and the associated functions of state.

Revisiting Chapter 2, we can parameterize z(x) and v(x, u) using a multi-layer neural network

with parameters θ ∈ Rd. We denote the parameterization of z, v as zθ(x) and vθ(x, u) where the

subscript θ denotes the function observables are parameterized by the same set of parameters θ.

Given the same data set that was defined previously, D = {x(tm), u(tm)}Mm=0, the new optimization

problem that is to be solved is

min
K,θ

1

2

M−1∑
m=0

‖z̃θ(x(tm+1), u(tm+1))−Kz̃θ(x(tm), u(tm))‖2, (7.12)

where z̃θ(x, u) =
[
zθ(x)>, vθ(x, u)>

]>
. Equation (7.12) can be solved using any of the current

techniques for gradient descent (Adam method [83] is used in this work). The continuous time

Koopman operator is obtained similarly using the matrix log of K, resulting in the differential

equation

żθ = Kzzθ(x(t)) +Kvvθ(x(t), u(t)). (7.13)

Because we are now optimizing over θ, we lose the sample efficiency of single execution learning

that was illustrated in the example in Section 7.3. Active learning can be used; however, adding the

additional parameters θ to the information measure significantly increases the computational cost
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of calculating the Fisher information measure (7.9). As a result, we only compute the information

measure with respect to K in order to avoid the computational overhead of maximizing information

with respect to θ.

7.4.1 Examples

We illustrate the use of deep networks for automating the function observables for the Koopman

operator for stabilizing a cart pendulum and controlling a 2-link robot arm to a target. A neural

network is first initialized (see Appendix D for details) for the Koopman operator functions zθ, vθ

as well as an LQ controller for the task at hand. At each iteration, the robot attempts the task

and learns the Koopman operator dynamics by minimizing (7.12). We compare against decaying

additive control noise as well as our method for active learning where a weight on information

measure is used which decays at each iteration according to γi+1 where 0 < γ < 1 and i is the

iteration number. The data collected is then used to update the parameters θ and K using (7.12)

and the LQ controller is updated with the new Kz,Kv parameters.

(a) Cart Pendulum (b) 2-Link Robot

Figure 7-4: ( a) Resulting stabilization time of a cart pendulum using Koopman operators with automatic
embedding discovery. (b) Control response of a 2-link robot using Koopman operators with automatic
function discovery. Active learning improves the rate of success of each task.
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Figure 7-4 illustrates that we can automate the process of learning the function observables as

well as the Koopman operator. With the addition of active learning, the process of learning the

Koopman operator and the function observables is improved. In particular, stabilization of the

cart pendulum is achieved in only 50 iterations in comparison to additive noise which takes over

100 iterations. Similarly, the 2-link robot can be controlled to the target configuration within 5

iterations with our active learning approach.

While this method is promising, there still exist significant issues that merit more investigation

in future work. One of which is the trivial solution where zθ, vθ = 0. This issue often occurs with

how the parameters θ were initialized. This trivial solution has been addressed in [138]; however,

their approach requires significantly complicating how the regression (7.12) is formulated. We found

that adding the state x as part of the neural network output of zθ was enough to overcome the

trivial solution.

7.5 Robot experiments

Our last set of examples test our active learning strategy with robot experiments. We use the

robots depicted in Figure 7-5 to illustrate control and active learning with Koopman operators.

The sphero SPRK robot (Figure 7-5a) is a differential drive robot inside of a clear outer ball. We

test trajectory tracking of the SPRK robot in a sand terrain where the challenge is that the SPRK

must be able to learn how to maneuver in sand. The Sawyer robot (Figure 7-5b) is a 7-link robot

arm whose task is to track a trajectory defined at the end effector where the challenge is the high

dimensionality of the robot.
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(a) Sphero SPRK (b) Sawyer Robot

Figure 7-5: Depiction of robots used for experimentation. For videos of the robot examples visit https:

//sites.google.com/view/active-learning-koopman-op

7.5.1 Playing in a sand pit

Active learning is applied in an experimental setting using the Sphero SPRK robot (Fig. 7-5a) in

sand. The interaction between sand and the SPRK robot makes physics-based models challenging.

The parameters for the experiment are defined in Appendix D. The experiment starts with 20 sec-

onds of active learning. After actively identifying the Koopman operator, the weight on information

maximizing is set to zero at t = 20 and the objective is switched to track the trajectory shown in

Fig. 7-6b. In Fig. 7-6c, we show the average root mean squared error (RMSE) of the x−y trajectory

tracking, the average x− y Pearson’s correlation using a two-sided hypothesis testing (values close

to 1 indicate responsive controllers), and the phase lag of the experimental results. Note that in

contrast to previous work in [52], the method of actively learning with Koopman operator improves

the performance of the model-based controller. In particular, we find that the overall responsiveness

and phase lag of the Koopman-based controller improved after active learning in sand.

https://sites.google.com/view/active-learning-koopman-op
https://sites.google.com/view/active-learning-koopman-op
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SPRK Robot

Sand Barrier

(a) Experimental Setup

Koopman Operator Control
Target Trajectory

State-Space Linear-Model Control

(b) SPRK Trajectories

Method RMSE Correlation Phase Lag (rad)

Koopman-based Control 0.3010 0.4028 1.1262
Controller in [52] 0.3535 0.1034 1.4667

(c) Controller performance

Figure 7-6: Experiment using the Sphero SPRK robot in sand. (a) The experimental setup is depicted
with the SPRK robot inside the sand pit. Position information is calculated with an overhanging Xbox
Kinect using OpenCV [139] for tracking. (b) Performance of the SPRK robot using the Koopman operator-
based controller after active learning. Performance is compared with results from [52]. (c) Performance
measures showing active learning significantly outperforms non-active learning in robot experiment. The
attached multimedia shows the experiment executed. For videos of this experiment visit https://sites.

google.com/view/active-learning-koopman-op

7.5.2 Learning Sawyer dynamics from wiggling

In this experiment, we use active learning with the Koopman operator to model the dynamics of

a 7 DoF Sawyer robot arm from Rethink Robotics. The 7-DoF system is of interest because it is

both high dimensional and inertial effects tend to dominate the dynamics of the system. We define

the parameters used for this experiment in Appendix D.

This example starts with the robot first actively learning its own dynamics (see videos in https:

//sites.google.com/view/active-learning-koopman-op). The resulting active learning trajec-

tory is sequence of “wiggling” which excites the information rich dynamics of the robot arm directly

https://sites.google.com/view/active-learning-koopman-op
https://sites.google.com/view/active-learning-koopman-op
https://sites.google.com/view/active-learning-koopman-op
https://sites.google.com/view/active-learning-koopman-op
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(a) Experimental Visualization

Sawyer Joint Controller
Koopman-based Control

Target Trajectory

(b) Sawyer Trajectories

Method RMSE Correlation Phase Lag (rad)

Koopman-based Control 0.0228 0.9777 0.2826
Sawyer Joint Controller 0.0443 0.6026 0.7041

(c) Controller performance

Figure 7-7: Experiment using Sawyer. Experimental data visualized using RViz [140]. (a) End-effector
trajectory paths using the embedded Rethink Joint controller and Koopman operator controller. Both
controllers are running at 100 Hz. (b) Trajectory overlaid from both controller responses. (c) Controller
performance shows that active learning for Koopman operator-based controllers performs comparably. We
refer the reader to the attached multimedia to view clips of this experiment. For videos of this experiment
visit https://sites.google.com/view/active-learning-koopman-op

from computed torques. The measurements are used to learn a Koopman model which we sub-

sequently test on torque based tracking. Figure 7-7 illustrates a comparison of the embedded

controller in the Sawyer robot and the model-based Koopman operator controller. Here, we show

the average root mean squared error of the tracking position, the Pearson’s correlation using a

two-sided hypothesis testing (values close to 1 indicate responsive controllers), and the phase lag

of the trajectory tracking. The resulting controller using the Koopman operator is shown to be

comparable to the built-in controller with the inclusion of the evolution of the nonlinearities on the

Sawyer robot which improve overall trajectory tracking performance. The trajectories of the two

methods are overlaid which illustrates the improvement in control from the Koopman operator after

https://sites.google.com/view/active-learning-koopman-op
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active learning has occurred. Since data is always being acquired online, the Koopman operator is

continuously being updated as the robot is tracking the trajectory. The Koopman operator-based

controller is able to capture dynamic effects of the individual joints from data. Note that one can

build a model to solve for similar, if not better, inverse dynamics of the Sawyer robot that can be

computed for control. In particular, the Sawyer robot provides an implementation of inverse dy-

namics in the robot’s embedded controller. However, the proposed approach provides high accuracy

without needing such a model ahead of time and without linearizing the nonlinear dynamics.

7.6 Discussion and summary

This chapter reexamines robot learning and control through the use of the linear embedding model

structure. Linear models are well studied and can provide mathematical guarantees that many non-

linear models can not provide. This chapter shows that infinite linear embedding provide nonlinear

information (at the cost of state-expansion) that makes them capable models for enhancing robot

learning and control. Furthermore, I show that we can utilize results from prior chapters and apply

them for actively learning infinite linear embedded models. The results in this chapter illustrate

that robotic systems are capable of achieving fast and immediate learning performance that is safe

and reliable through just a modification of how the learned models are structured.

The goal for this chapter, within the context of this thesis, is to illustrate that subtle modifi-

cations to the underlying learning problem can result in highly capable robotic systems. Simply

changing the structure of what is learned can result in significant improvements for robot learn-

ing. It is possible that there exist a redefinition of the robot learning problem that makes the

interconnectedness of action and sensing more clear and mathematically more elegant. However,

without further breadth of study these modifications might ultimately never be discovered. Thus,
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it is necessary for future work to seek out these hidden structures that can exploited to improve

the capabilities of robotic systems as much as possible.
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Chapter 8

Conclusions and outlook

Things are only impossible until they’re not

Captain Picard

Welcome to the end! If you have made it this far, than congratulations! I applaud you for your

tenacity. I can now tell you the secret meaning of life, and it is in fact, 42. By now, I hope that

the you (the reader) have had the opportunity to learn and be inspired by the many examples and

algorithms presented in this thesis that bring to light what is possible in robot learning and decision

making. I started off this thesis with the question of what exactly does robot learning mean within

the more general context of “machine” learning. The field of robot learning does not share the

same requirements as the more general machine learning problem when it comes to how data is

acquired and used. Robotic systems are inherently active systems that learn through interaction.

They operate in a world that has physical constraints with real consequences for interacting and

learning in the world. For most general machine learning problems, data is already acquired and
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is used to learn in a passive manner. And for methods like Bayesian optimization that do consider

active sampling, the physical constraints for sampling are never present or discussed as part of the

problem formulation. This problem motivates the theme of this thesis: how do we make robotic

systems capable of efficiently learning with intent where actions have physical consequences, where

the world is complex to model, and where safety is of the upmost importance?

8.1 Discussion

In Chapter 3, I first try address this problem through improving the state of the art in robot

learning. I introduced hybrid learning as an approach for viewing the current methods for robot

learning as a hybrid mode scheduling problem. The take-away message being that it is desirable to

first improve the current state of the art without necessarily relying on incremental improvements

of the various approaches. I show that combining different modes of learning through hybrid

control theory improves the overall learning process for robotic systems making them capable of

learning motor skills efficiently. Unfortunately, proposed method does not address the problem of

synthesizing intentional and informative actions for robotic systems, but instead tries to mask the

problem of consequential interactions through fast learning. That being said, the formal tools used

in this chapter are later adopted for more capable approaches for robot learning.

In the following Chapter 4, I first posed and motivated the problem of intentional learning in

robotic systems as a direct active learning problem through information maximization. I presented

the canonical maximum likelihood problem and derived an approach that uses the Cramér-Rao

bound to relate the uncertainty of posterior model parameters to the Fisher information matrix.

This relationship is used to construct optimizations problems that synthesize intentional robot

actions for learning in various scenarios. In addition, I derived a more tractable approach to the
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problem for complex neural-network style function approximators through an approximate Fisher

information measures. I used these examples as an opportunity to motivate the subsequent chapters

on why indirectly optimizing and sampling information measures for active learning is a better

approach to active learning.

Chapters 5 and 6 posed the question of active learning for intentional robot interaction in the

world through the use of ergodicity. I showed that optimizing the ergodic metric gives robotic

systems the capability of learning models of spatially sparse environments through contact sensing.

I showed that the ergodic control strategy is adaptable to the non-convex nature of information

measures and allows robotic systems to avoid the downfall of local optima. In Chapter 6, I expanded

the ergodic metric as a measure for exploring safely in high-dimensional dynamics spaces. The

theoretical results from Chapter 3 are used as the foundation for KL-E3 which enables active

learning for more complex robot tasks while bounding exploration to equilibrium policies that does

not impede on the acquisition of informative measurements.

In the last Chapter 7, I took the time to look back at the previous work and pose the question:

would active learning and control be mathematically simpler and more efficient if we just used linear

models to represent robotic systems? I posed this incredibly suggestive question not only to stir

the curiosity of the reader, but to put the reader into the mind-set of questioning the small, ignored

assumptions that we often impose on robotic systems that limit what our robots can achieve. It is

at this point where I introduce the Koopman operator, a class of infinite linear embeddings that is

capable of representing nonlinear systems as linear systems. Now, all of a sudden, it is possible to

use linear models as a way of making planning, control, and active learning of robotic systems. I

showed that this approach is not only simpler but provides more control authority in model-based

control settings. These results are extended to active learning where the linear structure of the

Koopman operator is used to optimize mathematically simpler information measures and provide
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the control authority for a series of tasks that concludes this dissertation.

8.2 Future outlook

In this thesis, I presented a variety of methods for active learning and control for robotic systems

which illustrate that under the right circumstances, it is possible for robotic systems to achieve

learning within a single roll-out. However, these results merely open up a set of open questions

that need to be expanded upon and investigated to further develop robotic system that can operate

autonomously in the world.

8.2.1 Stochastic systems

In many of the examples presented, I assume deterministic dynamics with predictable outcomes.

The main reasoning for choosing this for the dissertation is that the approaches presented were

developed with the intent generate emergent exploration without the need for heuristic stochastic-

ity as a boot-strap approach for learning. However, stochasticity and process noise is something

that is unavoidable in robotic systems and must be accounted for during active learning. This is

particularly true for the ergodic methods presented in this thesis. Having a way to reason about

state uncertainty through predicted stochastic processes is beneficial and can provide insight on

how we equip robotic systems with specific sensors.

Stochastic systems are incredibly interesting and insightful towards understanding active sensing

behavior and developing new strategies that exploits new understandings. One of great benefits of

Koopman operators is the ability to analyze the underlying systems’ dynamic modes. These modes

are a novel way to analyze nonlinear systems and expanding this kind of analysis to stochastic

systems can only improve our understanding of nonlinear stochastic process.
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8.2.2 Trajectory generation in active learning

Another avenue of research is trajectory generation in active learning. In Chapter 4, I presented

various examples with direct active learning using Fisher information maximization. While I illus-

trated that these approaches are often intractable without approximations for arbitrarily complex

models, constructing methods which make this approach tractable regardless of complexity or nu-

merical approximation is a rich avenue for future work. Often one can find equivalences that can

be exploited to indirectly solve the active learning problem (as done in Chapters 5 and 6). These

equivalences can be used to further our understanding of the nature of active learning and the kinds

of objective functions we an pose to solve these problems on larger settings. These new insights

can often provide guidance for constructing and setting up learning problems for robotics systems

in a variety of situations.

8.2.3 Continual learning and exploration

Inline with the idea of seeking out hidden assumption, what happens when we need to run our robots

as time tends to infinity is as important as active learning and how robots learn in general. In many

examples we see in research, our robotic systems generally are executed in episodes lasting a short

amount of time. How do we construct and build learning autonomous systems that still function and

operate even after a task is completed. How does one model “stand-by” mode and should the robot

be doing something else during the downtime? These questions are ones related to continual learning

and exploration in robotics. Creating robotic systems that can continually construct learning tasks

is a interesting research avenue and the obvious next steps towards developing autonomous robotic

systems. At some point, as human operators, we will not be able to teach the robotic system all the

things in the world (either through hard-coding or with demonstrations). At this point, we need
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to consider what it means for the robotic system to learn on its own; to adapt and comprehend

through observation and interaction is the key to a possible renaissance in capabilities of robotic

systems.
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Appendix A

Proofs

Proof of Lemma 1

Proof. First define the trajectory

x(t) = x(0) +

∫ τ

0

f(x(t), µ(x(t)))dt+

∫ τ+λ

τ

f(x(t), û(t))dt +

∫ tH

τ+λ

f(x(t), µ(x(t)))dt (A.1)

generated from u(t) =


û(t), if t ∈ [τ, τ + λ]

udef(t) otherwise

where adef(t) = µ(s(t)). Next, let us take the

derivative of (A.1) with respect to the time duration λ so that we have the following expression:

∂

∂λ
J =

∫ tH

τ+λ

∂r

∂x

> ∂x

∂λ
dt. (A.2)
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Using (A.1), we can define ∂x
∂λ as

∂x(t)

∂λ
= f2 − f1 +

∫ t

τ+λ

(
∂f

∂x
+
∂µ

∂x

> ∂f

∂u

)>
∂x(σ)

∂λ
dσ (A.3)

where σ is a place holder for time under the integrand, and f1 = f(x(t), µ(x(t))) and f2 =

f(x(t), û(t)) are remaining boundary terms from applying Leibniz’s rule.

Noting that (A.3) is a linear convolution (due to the repeating ∂x
∂λ terms) with initial condition

∂x
∂λ (τ) = f2 − f1, we can rewrite (A.3) using a state-transition matrix

Φ(t, τ) = exp

(∂f
∂x

+
∂µ

∂x

> ∂f

∂u

)>
(t− τ)


with initial condition f2 − f1 as

∂x(t)

∂λ
= Φ(t, τ)(f2 − f1) (A.4)

Using (A.4) in (A.2) and pulling out the term f2 − f1 from under the integrand, we can rewrite

(A.2) as the following:

∂

∂λ
J (τ) = lim

λ→0

∫ tH

τ+λ

∂r

∂x

>
Φ(t, τ)dt (f2 − f1) .

Taking the limit as λ → 0 gives the instantaneous sensitivity from switching from µ → û at any

time τ . Let us define this term as the adjoint variable

ρ(τ)> =

∫ tH

τ

∂r

∂s

>
Φ(t, τ)dt (A.5)
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which give us the mode insertion gradient

∂

∂λ
J (τ) = ρ(τ)> (f2 − f1) (A.6)

where the adjoint can be rewritten as the following differential equation

ρ̇(t) = − ∂r
∂x
−

(
∂f

∂x
+
∂µ

∂x

> ∂f

∂u

)
ρ(t) (A.7)

with terminal condition ρ(tH) = 0.

Proof of Theorem 2

Proof. Expanding the objective in (3.7), we can show that

u? = arg min
u

EQ?

[
log

(
q?(v)

q(v)

)]
= arg min

u

∫
Ω

q?(v) log

(
q?(v)

p(v)

p(v)

q(v)

)
dv

= arg min
u

∫
Ω

q?(v) log

(
q?(v)

p(v)

)
−
∫

Ω

q?(v) log

(
q(v)

p(v)

)
dv

= arg max
u

∫
Ω

q?(v) log

(
q(v)

p(v)

)
dv. (A.8)
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Defining the policy π(vt | xt) = N (µ(xt),Σ(xt)) as normally distributed, we can show that

q(v)

p(v)
∝ exp

(∑
t

−1

2
(vt − ut)>Σ−1(vt − ut) +

1

2
(vt − µ(xt))

>Σ−1(vt − µ(xt))

)

= exp

(∑
t

−1

2
(vt − ut)>Σ−1(vt − ut) +

1

2
(vt − µ(xt))

>Σ−1(vt − µ(xt))

)

= exp

(∑
t

−1

2
u>t Σ−1ut + u>t Σ−1vt + µ(xt)

>Σ−1(µ(xt)− 2vt)

)

where Σ = Σ(x) is used as short-hand notation. Plugging this expression into Eq. (A.8) gives

u? = arg max
u

∑
t

−1

2
u>t Σ−1ut + u>t

∫
Ω

q?(v)Σ−1vtdv + µ(xt)
>
∫
ω

q?(v)(µ(xt)− 2vt)dv.

which we can solve for ut at each time by setting the derivative with respect to ut to zero to give

the optimal solution

u?t =

∫
Ω

q?(v)vtdv. (A.9)

Note that the expression q?(v) ∝ exp
(

1
λJ (v)

)
p(v) which allows us to rewrite (A.9) in the following

way:

u?t =

∫
Ω

q?(v)vtdv =

∫
Ω

1

η
exp

(
1

λ
J (v)

)
p(v)vtdv

= EP

[
1

η
exp

(
1

λ
J (v)

)
vt

]
.

Using the change of variable vt = ut + δut, we get the recursive, sample-based solution

u?t = ut +
∑
k

ω(vkt )δukt
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where

ω(v) =
exp

(
1
λJ (v)

)
p(v)∑

n exp
(

1
λJ (v)

)
p(v)

.

Proof of Proposition 1

Proof. Let us define the trajectory x(t) switching from π(x(τ))→ û(τ) for a duration of λ as

x(t) = x(t0) +

∫ τ

t0

f(x, π(x))dt+

∫ τ+λ

τ

f(x, û)dt (A.10)

+

∫ tf

τ+λ

f(x, π(x))dt

where we drop the dependence on time for clarity. Taking the derivative of (6.2), using (A.10), with

respect to the duration time λ gives us the following expression:

∂

∂λ
DKL = −

∑
i

p(si)

q(si)

∫ tf

τ+λ

∂q

∂x

> ∂x

∂λ
dt. (A.11)

We obtain ∂x
∂λ by using Leibniz’s rule to evaluate the derivative of (A.10) with respect to λ at the

integration boundary conditions to obtain the expression

∂x(t)

∂λ
= (f2 − f1) +

∫ t

τ+λ

(
∂f

∂x
+
∂f

∂u

∂π

∂x

)>
∂x(s)

∂λ
ds (A.12)

where s is a place holder variable for time, f2 = f(x(τ+λ), û(τ+λ)) and f1 = f(x(τ+λ), π(x(τ+λ)).

Noting that ∂x
∂λ is a repeated term under the integral, (A.12) is a linear convolution with initial
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condition ∂x(τ+λ)
∂λ = f2−f1. As a result, we can rewrite (A.12) using a state-transition matrix [141]

Φ(t, τ + λ) = exp

((
∂f

∂x
+
∂f

∂u

∂π

∂x

)>
(t− τ)

)

with initial condition f2 − f1 as

∂x(t)

∂λ
= Φ(t, τ + λ)(f2 − f1). (A.13)

Using (A.13) in (A.11) gives the following expression

∂

∂λ
DKL = −

∑
i

p(si)

q(si)

∫ tf

τ+λ

∂q

∂x

>
Φ(t, τ + λ)dt (f2 − f1) . (A.14)

Taking the limit as λ→ 0 we then set

ρ(τ)> = −
∑
i

p(si)

q(si)

∫ tf

τ

∂q

∂x

>
Φ(t, τ)dt (A.15)

in (A.14) which results in

∂

∂λ
DKL = ρ(τ)> (f2 − f1) . (A.16)

Taking the derivative of (A.15) with respect to time τ yields the following:

∂

∂τ
ρ(τ)> =

∑
i

p(si)

q(si)

∂q

∂x

>
Φ(τ, τ)−

∑
i

p(si)

q(si)

∫ tf

τ

∂q

∂x

> ∂

∂τ
Φ(t, τ)dt.

Since Φ(τ, τ) = 1, and

∂

∂τ
Φ(t, τ) = −Φ(t, τ)

(
∂f

∂x
+
∂f

∂u

∂π

∂x

)
,
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we can show that

∂

∂τ
ρ(τ)> =

∑
i

p(si)

q(si)

∂q

∂x

>
−

(
−
∑
i

p(si)

q(si)

∫ tf

τ

∂q

∂x

>
Φ(t, τ)dt

)
︸ ︷︷ ︸

=ρ(τ)>

(
∂f

∂x
+
∂f

∂u

∂π

∂x

)
.

Taking the transpose, we can show that ρ(t) can be solved backwards in time with the differential

equation

ρ̇(t) =
∑
i

p(si)

q(si)

∂q

∂x
−
(
∂f

∂x
+
∂f

∂u

∂π

∂x

)>
ρ(t) (A.17)

with final condition ρ(tf ) = 0.

Proof of Theorem 3

Proof. Writing the integral form of the Lyapunov function switching between µ(x(t)) and u?(t) at

time τ for a duration of time λ starting at x(0) can be written as

V (xτλ(t)) = V (x(0))+

∫ τ

0

∇V · f(x(s), π(x(s)))ds

+

∫ τ+λ

τ

∇V · f(x(s), u?(s))ds

+

∫ t

τ+λ

∇V · f(x(s), π(x(s)))ds (A.18)
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where s is a place holder for time. Expanding f(x, u) to g(x) +h(x)u and using (6.10) we can show

the following identity:

∇V · f(x, u?) = ∇V · g(x) +∇V · h(x)u?

= ∇V · g(x) +∇V · h(x)π(x)−∇V · h(x)R−1h(x)>ρ

= ∇V · f(x, π(x))−∇V · h(x)R−1h(x)>ρ (A.19)

Using (A.19) in (A.18), we can show that

V (xτλ(t)) = V (x(0)) +

∫ t

0

∇V · f(x(s), π(x(s)))ds−
∫ τ+λ

τ

∇V · h(x(s))R−1h(x(s))>ρ(s)ds

= V (x(t))−
∫ τ+λ

τ

∇V · h(x(s))R−1h(x(s))>ρ(s)ds (A.20)

where x(t) is given by (6.6).

Letting the largest value of ∇V · h(x(t))R−1h(x(t))>ρ(t) be given by

β = sup
s∈[τ,τ+λ]

−∇V · h(x(s))R−1h(x(s))>ρ(s) > 0,

we can approximate (A.20) as

V (xτλ(t)) = V (x(t))−
∫ τ+λ

τ

∇V · h(x(s))R−1h(x(s))>ρ(s)ds

≤ V (x(t)) + βλ.
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Subtracting both side by V (x(t)) gives the upper bound

V (xτλ(t))− V (x(t)) ≤ βλ

which quantifies how much (6.10) deviates from the equilibrium conditions in (6.4).

Proof of Proposition 3

Proof. Consider the objective (7.1) evaluated at a trajectory z(t)∀t ∈ [ti, ti + T ] generated from a

dynamical system. Furthermore, assume that z(ti+T ) is generated by a policy π(z(t))∀t /∈ [τ, τ + λ]

and a controller u?(t)∀t ∈ [τ, τ + λ] where τ is the time of application of control u? and λ is the

duration of the control. Formally, z(ti + T ) can be written as

z(ti + T ) = z(ti) +

∫ τ

ti

f(z(t), π(z(t)))dt (A.21)

+

∫ τ+λ

τ

f(z(t), u?(t))dt

+

∫ ti+T

τ+λ

f(z(t), π(z(t)))dt,

where f(z, u) : Fa × Rm → Fa is a mapping which describes the time evolution of the state z(t).

Using (A.21) and (7.1), we compute the derivative of (7.1) with respect to the duration λ of

control u? applied at any time τ ∈ [ti, ti + T ]:

∂

∂λ
J

∣∣∣∣∣
τ

=

∫ ti+T

τ+λ

(
∂`

∂z
+
∂π

∂z

> ∂`

∂u

)>
∂z

∂λ
dt. (A.22)
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where

∂z(t)

∂λ
= f2 − f1 +

∫ t

τ+λ

(
∂f

∂z
+
∂f

∂u

∂π

∂z

)>
∂z(s)

∂λ
ds (A.23)

such that f2 = f(z(τ), u?(τ)), f1 = f(z(τ), π(z(τ))) are boundary terms from applying Leibniz’s

rule.

Because (A.23) is a linear convolution with initial condition, ∂z(τ)
∂λ = f2 − f1, we are able to

rewrite the solution to ∂z(t)
∂λ using a state-transition matrix Φ(t, τ) [141] with initial condition f2−f1

as

∂z(t)

∂λ
= Φ(t, τ) (f2 − f1) . (A.24)

Since the term f2 − f1 is evaluated at time τ , we can write (A.22) as

∂

∂λ
J

∣∣∣∣∣
τ

=

∫ ti+T

τ+λ

(
∂`

∂z
+
∂π

∂z

> ∂`

∂u

)>
Φ(t, τ)dt (f2 − f1) . (A.25)

Taking the limit of (A.25) as λ→ 0 gives us the sensitivity of (7.1) with respect to switching at

any time τ ∈ [ti, ti + T ]. We can further define the adjoint (or co-state) variable

ρ(τ)> =

∫ ti+T

τ

(
∂`

∂x
+
∂π

∂x

> ∂`

∂u

)>
Φ(t, τ)dt ∈ Rcx

which allows us to define the mode insertion gradient [71] as

∂

∂λ
J
∣∣∣
t=τ

= ρ(τ)> (f2 − f1)

where

ρ̇ = −

(
∂`

∂z
+
∂π

∂z

> ∂`

∂u

)
−
(
∂f

∂z
+
∂f

∂u

∂π

∂z

)>
ρ
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subject to the terminal condition ρ(ti + T ) = ∂
∂zm(z(ti + T )).

Proof of Theorem 5

Proof. First define (7.1) for a controller as

J (u(t)) =

∫ ti+∆t

ti

1

Iu
+ `task(z(t), u(t))dt (A.26)

where ∆t < T is a time duration, z(t) is subject to the controller u(t), and Iu = trI(K)u + ε is the

measure of information from applying the control u. If we consider the difference between J (u?)

and J (π) where π is a controller that minimizes `task(z, u), then

J (u?)− J (π) =

∫ ti+∆t

ti

1

Iu?

− 1

Iπ
+ `task(z, u?)− `task(z, π)dt

≈ ∆t

(
1

Iu?

− 1

Iπ
+ `task(z, u?)− `task(z, π)

)
+O(∆t).

(A.27)

From Corollary 3 and that,

∂

∂λ
J∆t ≈ J (u?)− J (π),

we can show that

∂

∂λ
J∆t ≈ J (u?)− J (π)

≈ ∆t

(
1

Iu?

− 1

Iπ
+ `task(z, u?)− `task(z, π)

)
+O(∆t).

(A.28)
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which we rearrange (A.28) and insert (7.8) to get

−‖ (Kuv(x))
>
ρ‖2

R̃−1 ≈
(

1

Iu?

− 1

Iπ
+ `task(z, u?)− `task(z, π)

)
+O(∆t).

≈ Iπ − Iu? + (`task(z, u?)− `task(z, π))Iu?Iπ
Iu?Iπ

+O(∆t).

(A.29)

Setting ∆I = Iu? − Iπ in (A.29) and simplifying gives the relative information gain

∆I ≈ (‖ (Kuv(x))
>
ρ‖2

R̃−1 + `task(z, u?)− `task(z, π))Iu?Iπ +O(∆t).
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Appendix B

Supplementary material for Chapter 3

Here, we present implementation details for each of the examples provided in the main paper as well

as additional algorithmic details presented and mentioned throughout the paper. Any parameter

not explicitly mentioned as deterministic or stochastic variations of hybrid learning are equivalent

unless otherwise specified. All simulated examples have reward functions specified as the default

rewards found in the Pybullet environments [74] unless otherwise specified. Table C.1 provides a

lists of all hyperparameters used for each environment tested.

Model configuration

For each simulated example using the experience-based method, we use the same model represen-

tation of the dynamics as xt+1 = xt + f(xt, ut) where f(xt, ut) = W2 sin(W1[xt, ut] + b1) + b2,

and W1 ∈ R200×(n+m), W2 ∈ Rn×200, b1 ∈ R200, b2 ∈ Rn are learned parameters. For locomotion

tasks we use the rectifying linear unit (ReLU) nonlinearity. The reward function is modeled as
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a two layer network with 200 hidden nodes and rectifying linear unit activation function. Both

the reward function and dynamics model are optimized using Adam [83] with a learning rate of

0.003. The model is regularized using the negative log-loss of a normal distribution where the

variance, Σmodel ∈ Rn×n, is a hyperparameter that is simultaneously learned based on model-free

learning. The predicted reward utility is improved by the error between the predicted target and

target reward equal to L = ‖rt + 0.95 r(st+1, at+1)− r(xt, ut)‖2 (similar to the temporal-difference

learning [142,143]). This loss encourages learning the value of the state and action that was taken

for environments that have rewards that do not strictly depend on the current state (i.e., the reward

functions used in Pybullet locomotion examples). A batch size of 128 samples are taken from the

data buffer D for training.

Policy configuration

For the policy, we parameterize a normal distribution with a mean function defined as a single layer

network with sin(x) nonlinearity with 128 nodes (similar to the dynamics model used). The diagonal

of the variance is specified using a single layer with 128 nodes and rectifying linear unit activation

function. Soft actor critic (SAC) is used to optimize the policy for the pendulum, cartpole, hopper,

and half-cheetah environments respectively. All examples use the same hyperparameters for SAC

specified by the shared parameters in [11] including the structure of the value and soft Q functions,

and excluding the batch size and policy (which we match the 128 samples used with model learning

and to utilize the simpler policy representation).

The ant and panda robot with behavior cloning use the policy structure defined in Table C.1,

which is structured in a similar stochastic parameterization as mentioned in the paragraph above.

The negative log loss of the normal distribution is used for behavior cloning expert demonstrations



182

Environment H T K λ policy dim nonlinearity

Pendulum Swingup 5 200 20 0.1 128 sin(x)
Cartpole Swingup 5 200 20 0.1 128 sin(x)

Hopper 5 1000 20 0.1 128 relu(x)
Half-Cheetah 10 1000 20 0.2 128 relu(x)

Sawyer 10 100 10 0.01 128× 128 relu(x)
Ant 20 400 40 1.0 128× 64 relu(x)

Franka Panda 40 200 40 1.0 32× 24 relu(x)

Table B.1: Parameters for all examples used in this chapter (only when applicable). Each example using
the deterministic variation of hybrid learning (Alg. 2) uses added action exploration of the form ε = 0.999t

where t is the total number of environment interactions.

with a learning rate of 0.01 for each method.

Robot experiment configuration

In all robot experiments, a camera is used to identify the location of objects in the environment

using landmark tags and color image processing. For the Sawyer robot example, the state is defined

as the pose of the end-effector of the arm to the block as well as the pose of the block to the target.

The action space is the target end-effector velocity. The reward is defined as

r(s, a) = −5‖pb2t‖ − 10‖pee2b‖ − 0.01‖a‖2

where pb2t, pee2b denote the poses of the block to the target and the end-effector to the target

location respectively.

For the Franka robot, the state is defined as the end-effector position, the block position, and

the gripper state (open or closed) as well as the measured wrench at the end-effector. The action
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space is defined as the commanded end-effector velocity. The reward function is defined as

r(s, a) = rstage(s)− 1.0e−6 (‖Fee‖+ ‖a‖)

where

rstage(s) =


−1.25‖pee − pstack‖, if grasped block

−‖pee − pblock‖, if not grasped block

denotes the stage at which the Franka is in at the block stacking task. Here, pee, pblock, pstack, and

Fee denote the end-effector pose, the block pose, the target stacking position, and the measured

wrench at the end-effector respectively.
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Algorithm 8 Hybrid Learning (stochastic) with Behavior Cloning

1: Randomly initialize continuous differentiable models f , r with parameters ψ and policy π with
parameter θ. Initialize memory buffer D and expert data buffer Dexp, prediction horizon pa-
rameter H.

2: while task not done do
3: . get expert demonstrations
4: for t = 0, . . . , T − 1 do
5: observe state xt, expert action ut
6: observe xt+1, rt from environment
7: Dexp ← {xt, ut, rt, xt+1}
8: D ← {xt, ut, rt, xt+1}
9: end for

10: . update models using data
11: update ψ using D any regression method
12: update θ using Dexp with behavior cloning
13: . test in environment
14: for t = 0, . . . , T − 1 do
15: observe state xt
16: get action ut Alg. 2 or 3
17: observe xt+1, rt from environment
18: D ← {xt, ut, rt, xt+1}
19: end for
20: if task not done, continue
21: end while
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Appendix C

Supplementary material for Chapter 6

Algorithmic variations of KL-E3 and example configurations

This appendix provides additional details for each learning goal presented in Chapter 6. This

includes pseudo-code for each method and parameters to implement our examples (see Table. C.1).

Videos of each example and demo code are provided in (https://sites.google.com/view/kle3/

home).

https://sites.google.com/view/kle3/home
https://sites.google.com/view/kle3/home
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Algorithm 9 KL-E3 for Bayesian Optimization

1: init: see Alg. 6 and Alg. 1
2: while task not done do
3: set x(ti) = x̂(ti)
4: . simulation loop (see Alg. 6 lines 4-18)
5: get δµ(t) from simulation
6: . apply to real robot (see Alg. 6 lines 20-28)
7: chose τ ∈ [ti, ti + tH ] and λ ≤ tH
8: .
9: for t ∈ [ti, ti+1] do

10: if t ∈ [τ, τ + λ] then
11: apply u?(t) = δu?(t) + π(x̂(t))
12: else
13: apply µ(x(t))
14: end if
15: if time to sample then
16: measure true state x̂(t) and y(t) = φ(x̂(t))
17: append to data set D ← {x̂(t), y(t)}
18: end if
19: end for
20: update posterior on φ given D
21: update p(s) from posterior
22: i← i+ 1
23: end while
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Algorithm 10 KL-E3 for Model Learning

1: init: see Alg. 6, generate initial parameter θ0 for model (6.22)
2: while task not done do
3: set x(ti) = x̂(ti)
4: . simulation loop (see Alg. 6 lines 4-18)
5: get δµ(t) from simulation
6: . apply to real robot
7: chose τ ∈ [ti, ti + tH ] and λ ≤ tH
8: for t ∈ [ti, ti+1] do
9: if t ∈ [τ, τ + λ] then

10: apply u?(t) = δu?(t) + π(x̂(t))
11: else
12: apply π(x(t))
13: end if
14: if time to sample then
15: measure state x̂(t), change in state dx̂(t), and applied control u(t)
16: append to data set D ← {x̂(t), dx̂(t), u(t)}
17: end if
18: end for
19: sample K batch {x̂k, dx̂k, uk}Kk=1

20: θi+1 ← θi +
∑
k∇θ logL given batch

21: update p(s) from σθi+1

22: i← i+ 1
23: end while
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Algorithm 11 KL-E3 enhanced DDPG

1: init: see Alg. 6, [78],
2: while task not done do
3: set x(ti) = x̂(ti)
4: . simulation loop (see Alg. 6 lines 4-18)
5: get δu?(t) from simulation and apply to real robot
6: chose τ ∈ [ti, ti + tH ] and λ ≤ tH
7: for t ∈ [ti, ti+1] do
8: if t ∈ [τ, τ + λ] then
9: apply u?(t) = δu?(t) + π(x̂(t))

10: else
11: apply µ(x(t))
12: end if
13: if time to sample then
14: measure state x̂(t), next state x̂′(t), applied control u(t), reward r(t)
15: append D ← {x̂(t), x̂′(t), u(t), r(t)}
16: end if
17: end for
18: if time to update and buffer is large enough then
19: update Q, µ from [78]
20: update p(s) using Q (6.27)
21: end if
22: i← i+ 1
23: end while

Algorithm 12 KL-E3 for Active Query-Based Imitation Learning

1: init: see Alg. 6, append known dynamics model, expert policy π?, behavior cloned policy
π(x, θ), policy parameters θ, demonstration data set D, Id = −∞

2: while task not done do
3: set x(ti) = x̂(ti)
4: . simulation loop (see Alg. 6 lines 4-18)
5: get δµ(t) from simulation
6: . apply to real robot (see Alg. 6 lines 20-28)
7: if trI(θ) |x(ti)> Id then

8: query expert demonstration D ← {xt, π?(xt)}T−1
t=0 with x0 = x(ti)

9: Id ← trI(θ) |x(ti)

10: end if
11: gradient update θ given D and behavior clone objective
12: update p(s) using trI(θ)
13: i← i+ 1
14: end while
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Supplementary material for interactive backflip learning example

The dynamics of the lunar-lander system are given by

ẋ =



x4

x5

x6

−
∑
i tan(ui) sin(x3)∑

i tan(ui) cos(x3)− 1

2(u1 − u2)



where the state is defined as x = [x1, x2, x3, ẋ1, ẋ2, ẋ3]> corresponds to the planar global positions,

the angular rotation, and the respective linear and angular velocities. The control u = [u1, u2]> are

the left and right thrusters respectively. Here, gravity and mass are normalized for simplicity and

the control input is saturated using the tangent function. The stabilization policy is defined by an

infinite horizon LQR policy with weights Q = I ∈ R6 and R = 0.001I ∈ R2 where I is the identity

matrix. Sampling is done at a frequency of 10 hertz. The planning time horizon for KL-E3 is set

to 4 seconds and Σ = 0.01I ∈ R6. The control regularization in KL-E3 is set the same as for the

LQR policy. The policy model for behavior cloning is defined as a single layer network model with

sine as the nonlinear function with 64 nodes. The behavior cloned policies are trained by sampling

64 unique state-action pairs from the demonstration data set using the Adam [83] method with a

learning rate of 0.003. After the total number of demonstrations are collected the policy is trained

until the parameters converge to a minima.

The expert backflip policy is trained using policy gradient using the same structure and dimen-
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sion as the behavior cloned model. The backflip cost function is defined as

`(x, u) = 10(x3 + π)2 + 5x2
2 + 10relu(−x2) +

∑
i

ẋ2
i + 0.1

∑
i

u2
i .

The policy is trained on normally distribution initial conditions at x = 0 with variance 0.1 using

Adam [83] with a learning rate of 0.003 until the parameters converge.
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Appendix D

Supplementary material for Chapter 7

Control of forced Van der Pol oscillator

The nonlinear dynamics that govern the Van der Pol oscillator are given by the differential equations

d

dt

x1

x2

 =

 x2

−x1 + ε(1− x2
1)x2 + u


where ε = 1 and u is the control input.

The Koopman operator functions used are defined as

z(x) =
[
x1, x2, x

2
1, x2x

2
1

]>
and v(u) = u. The same functions are used to compute a regression problem where the final
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equation is given by

d

dt

x1

x2

 = Az(x) + Bv(u)

where A ∈ Rn×a and B ∈ Rn×b are both generated using linear regression.

The weight parameters for LQ control are

Q = diag ([1, 1]) and R = 0.1

where

Q̃ =

Q 0

0 0

 ∈ Ra×a (D.1)

Quadcopter Free-Falling

The quadcopter system dynamics are defined as

ḣ = h

ω̂ v

0 0

 ,
Jω̇ = M + Jω × ω,

v̇ =
1

m
Fe3 − ω × v − gRT e3,
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where h = (R, p) ∈ SE(3), the inputs to the system are u = [u1, u2, u3, u4], and

F = kt(u1 + u2 + u3 + u4),

M =


ktl(u2 − u4)

ktl(u3 − u1)

km(u1 − u2 + u3 − u4)


(see [134] for more details on the dynamics and parameters used). Note that in this formulation of

the quadcopter, the control vector u has bidirectional thrust.

The measurements of the state of the quadcopter are given by

[ag, ω, v]
> ∈ R9 (D.2)

where ag ∈ R3 denotes the body-centered gravity vector and ω, v are the body angular and linear

velocities respectively. The sampling rate for this system is 200 Hz.

We define the basis functions for this system as

z(x) = [ag, ω, v, g(v, ω)]
T ∈ R18

where g(v, ω) = [v3ω3, v2ω3, v3ω1, v1ω3, v2ω1, v1ω2, ω2ω3, ω1ω3, ω1ω2] are the chosen basis functions

such that ωi, vi are elements of the body-centered angular and linear velocity ω, v respectively. The

functions for control are

v(u) = u ∈ R4.
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The LQ control parameters for the stabilization problem are given as

Q = diag ([1, 1, 1, 1, 1, 1, 5, 5, 5]) and R = diag ([1, 1, 1, 1])

where the weight on the additional functions Q̃ are set to zero as in (D.1) . The time horizon used

in 0.1s.

The active learning controller uses a weight on the information measure of 0.1 and a regulariza-

tion weight R̃ = diag(1000, 1000, 1000, 1000]). Motor noise used in the two-stage method is given

by uniform noise at 33% of the control saturation.

Models for automatic discovery of embeddings

In this example, we use the Roboschool environments [144] for the robot simulations. For the

cart pendulum example, we use a three layer network with a single hidden layer for zθ and vθ

with {4, 20, 40} and {2, 20, 10} nodes respectively for each layer making a = 40 and b = 10. The

exploration noise used on the control is given by additive zero mean noise with a variance of 40%

motor saturation decreasing at a rate of 0.9i+1. The decay weight on the information measure is

given by 0.2i+1. The LQ weights are given by Q̃ = diag([50.0, 1.0, 10.0, 0.1] + ~0) where the first

non-zero weights correspond to the states of the cart pendulum. A time horizon of 0.1s is used

with a sampling rate of 50 Hz. The regularization weight R̃ = 1× 106.

For the 2-link robot example, we use a similar three layer network with a single hidden layer for

zθ and vθ with {4, 20, 40} and {2, 20, 20} nodes respectively for each layer making a = 40 and b = 10.

The exploration noise used on the control is given by additive zero mean noise with a variance of

40% motor saturation decreasing at a rate of 0.9i+1. The decay weight on the information measure

is given by 0.2i+1. The LQ weights are given by Q̃ = diag([10.0, 1.0, 20.0, 1.0] + ~0) where the first
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non-zero weights correspond to the states of the cart pendulum. A time horizon of 0.05s is used

with a sampling rate of 100 Hz. The regularization weight R̃ = diag([1× 106, 1× 106]).

SPRK playing in sand

The SPRK robot is running a 30 Hz sampling rate for control and state estimation. Control vectors

are filtered using a low-pass filter to avoid noisy responses in the robot. The controller weights are

defined as

Q̃ = diag([60, 60, 5, 5, ~1])and R = diag([0.1, 0.1]).

The control regularization is R̃ = R. A weight of 80 is added to the information measure. A time

horizon of 0.5s is used to compute the controller.

We run the active learning controller for 20 seconds and then set the weight of the information

measure to zero and track the end effector trajectory given by

x(t)

y(t)

 =

 0.5 cos (t) + 1.12

0.3 sin (2t) + 0.85

 .
In this example, the set of functions are chosen as a polynomial expansion of the velocity states

x = [ẋ, ẏ] to the 3rd order. The function observables are defined as

z(x) =
[
x, y, ẋ, ẏ, 1, ẋ2, ẏ2, ẋ2ẏ, . . . , ẋ3ẏ3

]T ∈ R18

and

v(x, u) = u ∈ R2.
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Learning Sawyer dynamics

The Sawyer robot was run on a sampling rate of 100 Hz. Control vectors are filtered using a

low-pass filter to avoid noisy responses in the robot. The controller weights are defined as

Q̃ = diag([200× ~1 ∈ R14, ~1])and R = diag([0.001× ~1 ∈ R7]).

The control regularization is R̃ = R. A weight of 2000 is added to the information measure. A

time horizon of 0.5s is used to compute the controller.

We run the active learning controller for 20 seconds and then set the weight of the information

measure to zero and track the end effector trajectory given by


x(t)

y(t)

z(t)

 =


0.8

0.1 cos (2t)

0.1 sin (4t) + 0.4

 .

The functions of state using to compute the Koopman operator are defined as

z(x) =
[
xT , 1, θ1θ2, θ2θ3, . . . , θ

3
6θ

3
7, θ̇1θ̇2, . . . , θ̇

3
6 θ̇

3
7

]T
∈ R51

with v(u) = u ∈ R7 as the torque input control of each individual joint and states x containing the

joint angles and joint velocities.
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