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ABSTRACT

Multi-agent Coordination by Decentralized Estimation and Control

Peng Yang

This thesis contributes in two ways. First it describes a new framework for the sys-

tematic design of collective behaviors and solves a key stability issue under this design

framework. In this thesis we apply this framework to solve three tasks in the swarm

robotics field: connectivity maintenance, formation control and target tracking. Second,

in the process of solving one problem, the connectivity maintenance task, we design a de-

centralized power iteration algorithm. Given any connected graph, this generic algorithm

allows each agent to estimate its corresponding component of the Fiedler eigenvector, the

eigenvector corresponding to the second smallest eigenvalue of the graph Laplacian [45].

The Fiedler eigenvector and eigenvalue have proved to be useful in many areas, including

Google’s pagerank system, graph segmentation algorithms and connectivity maintenance

in mobile sensor networks.

Given a group of mobile agents, this thesis describes a framework for the systematic

design of collective behaviors. The approach is based on decentralized simultaneous es-

timation and control, where each agent communicates with neighbors and estimates the
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global performance properties of the swarm needed to make a local control decision. Steps

of the approach include designing a control law with desired convergence properties, as-

suming each agent has perfect global knowledge; designing an estimator that allows each

agent to make correct estimates of the global properties needed to implement the con-

troller; and possibly modifying the controller to recover desired convergence properties

when using the estimates of global performance. In addition, the performance of this

design framework can be optimized by increasing the convergence speed of the estimator

through tuning the communication weights.

We apply this framework to three different problems: (1) estimation and control of

graph connectivity, (2) controlling the moment statistics describing the location and shape

of a swarm, and (3) cooperative target localization. For the first task, we design a decen-

tralized power iteration algorithm allowing each agent to estimate its component of the

Fiedler eigenvector of the graph. For the last two tasks, we derive small-gain conditions

which, if satisfied, guarantee that the system falls into a stable equilibrium set, even in

the presence of a changing network topology and the addition and deletion of robots. We

validate our approach through computer simulation and physical experiments.
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CHAPTER 1

Introduction and Thesis Overview

1.1. Introduction to Mobile Sensor Network

Recent advances in wireless communications and electronics have enabled the devel-

opment of low-cost, low-power, multi-functional sensor nodes that are small in size and

communicate untethered in short distances, e.g. the Berkeley Mote [34], the Intel Mote [2]

and the BTnodes [1]. These tiny sensor nodes, consisting of sensing, data processing and

communicating components, enable the idea of sensor networks. Sensor networks are en-

visioned to revolutionize our daily life by ubiquitously monitoring our environment and

adjusting to suit our needs. Exemple applications include managing inventory, monitoring

disaster areas and monitoring product quality. Among many design challenges, here are

some from the controller design perspective [3], [20]:

Limited Resources: Sensor nodes are limited in power, computational capacity

and memory. E.g.: The Berkeley Mote [34] has a 4 Mhz processor and 8k RAM,

and powered by a single CR2450 battery. The system runs 30 hours at peak load,

200 hours at the idle mode and over a year at the inactive mode.

Highly Distributed: Such networks are pictured to be deployed in large numbers,

and therefore it is important that all algorithms are scalable. This should include

both the system layer services (localization, time synchronization, routing) and

the application layer services. It is also important to make sure these distributed
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algorithms are robust to individual agent failures/new agent coming in due to

the nature of such sensor networks.

Deployment and Coverage: One of the initial challenges to use large sensor net-

works is deployment. Since the number of nodes being deployed is very high, it

is difficult to carefully handplace each of the nodes. Current approach often re-

quires dense deployment of them to guarantee the connectedness of the network

in a probabilistic sense [85].

Network Dynamics: Variation in communication range, frequent death of nodes

due to lack of energy and other environmental causes result in large variations in

network topology. Accordingly, applications should be able robust to variations

in network topology.

Controlled mobility enables a whole new set of possibilities in sensor networks. The

ability of actively changing locations can be used to solve many design challenges outlined

above [20], and adding new functionalities to make the sensor networks more adaptive

and robust. With the mobility fully leveraged, we can imagine a mobile sensor network

being able to self-deploy into the environment while cooperatively localizing themselves

and building a map of the environment. Besides all the data-aggregation abilities of the

static sensor network, such mobile sensor networks can adaptively monitor a dynamic en-

vironment by self-aggregating around areas of interest. With additional actuation devices,

they can also perform cooperative transportation of an object and dynamically allocate

tasks. At the same time, the system connectivity is being monitored continuously and the

network self-reconfigures to maintain connectivity when some sensor nodes run out of en-

ergy or newly charged sensor nodes rejoin the network. The active research effort into the
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Figure 1.1. The sensor networks protocol stack proposed in [3].

existing mobile sensor networks, e.g. swarm-bots [22], robomote [20], Icosystem/Irobot

swarm [68] and underwater glider networks [58], are turning this vision into reality.

Next we examine the mobile sensor networks in greater detail, specifically reviewing

some common application layer tasks (Fig. 1.1) and current research effort on them. These

tasks differ in nature: Some tasks, like maintaining connectivity, act like a low-level system

service, and the corresponding solution should put constraints on the higher level tasks

like deployment, coverage or localization. Our review focus is biased toward coordinated

tasks, in contrast to individual tasks which each agent can solve alone without sensing or

communicating with other agents.
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1.1.1. Deployment and Coverage

One of the initial design challenges in mobile sensor networks is how to automatically

deploy the sensors over the environment. As can be imagined, the availability of a precise

environment map greatly affects the difficulty of the problem. When this information

is known as a priori, Voronoi partition of the environment is used to develop a cover-

age metric and in the deployment phase each sensor moves to maximize the sum of the

information gain from its own Voronoi partition and its neighbors [18], [71]. In envi-

ronments of uniform interestingness, this results in an even distribution of the agents.

In environments with hot spots of information, agents achieve a higher density in these

regions. In fact, it is easy to conceive a family of algorithms for deployment that optimize

various metrics like coverage area [18], [15] or required connectivity [61]. In contrast,

only heuristic algorithms exist when the environment map is dynamic (e.g. a search and

rescue task) or totally unknown (e.g. exploring a hostile or unknown environment). One

way to spread out the sensors is to design simple inter-agent and agent-obstacle repulsive

potential fields [36]. Another approach deploys the sensors sequentially: each next-in-line

sensor calculates the optimal position to maximize the existing coverage measure while

maintaining line of sight visibility constraint and move to the calculated spot [37]. A good

heuristic for the art gallery deployment problem is also proposed, where each agent moves

towards the furthest vertex in its Voronoi partition of the overall visibility polygon [37].

1.1.2. Maintain Connectivity

Usually it is desirable for a mobile sensor network to achieve a task while maintaining the

overall network connectivity. One appropriate connectivity measure is the second smallest
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eigenvalue λ2 of its Laplacian matrix, λ2 > 0 being necessary and sufficient for connectivity

[32]. There is another measure built on the following fact: Given A as the adjacency

matrix of an undirected and unweighted graph, the (i, j)-th entry of Ak is the number of

paths of length k for node i to node j. The matrix Ck(A) = I+A+ · · ·+Ak can be used to

measure the k-hop connectivity of the graph [87]: Every entry of Ck(A) > 0 if every pair

of nodes is connected with a path of length no longer than k. This gives a nice scalable

measure: the simple and restrictive C1(A) can be computed locally, and to the other end

Cn−1(A) measures connectivity in the usual sense. With a measure of connectivity, it is

natural to enforce the connectivity constraint by deriving the motion constraints for each

agent using the Control Lyapunov Function approach [87]. For each agent, the motion

constraint in general needs central computation and filters the control effort given by the

original motion planner. The simplest way to have a distributed implementation is to

use a restrictive approach: designing a motion controller while maintaining every existing

communication link [51], [43].

1.1.3. Collaborative Localization and Mapping

Due to the inherent odometer error and other sensor measurement noises, self localiza-

tion and environmental mapping are fundamental estimation problems for mobile robots.

Besides devising separate estimation procedures [28], the SLAM (Simultaneous Localiza-

tion and Mapping) approach aims to solve these two problems at the same time [21]. For

mobile sensor networks, the multi-robot SLAM (Simultaneous Localization and Mapping)

problem offers new challenges and opportunities. Existing centralized solutions use Ex-

tended Kalman Filters or Extended Information Filters, and the computational efficiency
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can be improved by using sparse matrix computations [77] or by limiting the frequency

with which each robot exchanges its local map information [83]. An alternative to the

EKF approach is the sample-based approach, e.g. using particle filters [35]. The EKF ap-

proach remains to be decentralized and more importantly it doesn’t take advantage of the

new multi-agent scenario. For example, there is a possibility of better localization abili-

ties in multi-agent systems, where agents can localize themselves not only by measuring

distances to the landmarks [28], but also by measuring distances to its nearby agents and

maintaining motion models of them [69]. The current EKF approach is passive, meaning

there is no controlled motion during the SLAM estimation procedure. Instead, motion

controllers can be designed to improve the performance of the estimation procedures [28].

1.1.4. Formation Control

Formation control is one of the most-studied problems in decentralized control due to

its wide range of applicability. For a given task, for simplicity it is often desirable to

decouple the problem into trajectory design and formation control [58]. For example

to collaboratively monitor an environment, centralized algorithms are developed to move

mobile sensors in a fixed shape along the estimated gradient [52] or contour plot [89] of the

environment (although the environmental monitoring problem can also be formulated as a

coverage problem where the goal is to spread the sensors over the environment). Similarly

in Target Tracking problems, a common setup is to deploy the sensors to maximize some

measure of the information gain. Sometimes the resulting optimal/suboptimal sensor

configurations can be calculated beforehand, and it can used to ease the motion controller

design [71,4,89,52].
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1.2. Introduction to Consensus Algorithms

Our work is built directly on consensus algorithms. These algorithms are distributed

estimation procedures that each agent can use to iteratively calculate the aggregated

information of the network. The explicit investigation of these consensus algorithms

dates back from the 1980s [7,6].

One well-known consensus algorithm was thoroughly investigated by Olfati-Saber and

Murray [55], who studied the convergence of the differential equation

ẋ = −Lx ,

where x is a decision variable (e.g., an estimator state in our framework) and L is the

Laplacian of a communication graph of agents (see Section 2.2.1). They showed that

each agent’s decision variable xi converges to a common value, and that this common

value is the average of the initial values xi(0) if the communication graph is balanced, i.e.,

for each node in the graph, the in-degree and out-degree are equal. Average consensus

is reached even with switching network topologies and communication delays bounded

by a function of the largest eigenvalue of L. The rate of convergence of the consensus

estimator as a function of the network topology and weights, as well as heuristic and

analytic approaches to choosing network topologies and weights to optimize convergence

rates, are studied in [84,54,86,47,49]. See [8,66]and [24] for extensions to the cases of

uniform and non-uniform communication delays and probabilistic dropping of packets.
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Consensus problems arise in a variety of engineering tasks (load balancing, clock syn-

chronization, data aggregation in sensor networks). Therefore, other solutions are pro-

posed from different perspectives around the theme of distributed iteration. The Consen-

sus Propagation method [44] is an asynchronous distributed averaging method that has

guaranteed convergence for a fixed, tree topology, with convergence time as small as the

diameter of the graph. Taking advantage of the tree topology, for each node the network

can be decomposed into several non-overlapping subgroups based on its neighbors. Each

node maintains an estimate of cardinality and average of all its subgroups, and iterate to

refine the estimate. In case of a general graph with cycles, additional parameters need

to be introduced and tuned to give good heuristic performance. The algorithm [57],

which is used to solve the load balancing problem, is also similar to the consensus algo-

rithm [55]. The only difference is, at each time the distributed averaging is done only

along one communication channel which bears the biggest node value differences among

all channels in one neighborhood. This modification will slow down the convergence speed

compared to the consensus algorithm, but is simpler for digital implementations. Lastly it

is worth mentioning the consensus algorithms belong to a much broader class of problems,

synchronization using nonlinear coupled-oscillators [41].

We refer to this average consensus problem as static, as it incorporates only the initial

data x(0). To build an estimator capable of tracking the average of changing inputs,

a high-pass dynamic consensus estimator was proposed in [73, 79]. In this thesis we

develop dynamic consensus estimators that have improved noise rejection properties and

steady-state performance in the face of the addition and deletion of agents were introduced
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in. Dynamic consensus filters have also been utilized to construct decentralized Kalman

filters [53].

The true power of the consensus algorithm lies in its robustness to dynamic topologies,

which is inherent in sensor network applications [3]. Compared to a tree based method to

collect data, this robustness property is obtained at a much higher communication cost.

In fact, it was recently shown that the consensus algorithm can be accomplished in finite

time in case of a fixed topology [76].

In the present work we use average consensus estimators to explicitly estimate global

properties of the system. These estimates are then used in the control law. Much past

work has instead focused on using average consensus algorithms directly as the memoryless

control law K. Typically agents sense the states of their neighbors and choose controls

based on the average of these states. Such an approach can be applied to the problems of

bringing agents to a common meeting point, or rendezvous [40,17],where and to various

types of flocking and formation control [38,65,42]. Extensions of the basic idea to agents

with second-order dynamics can be found in [39,64]. Many of these algorithms are robust

to a broad class of switching network topologies [38,46].

There are other types of consensus as well, for example in minimal-time rendezvous [50]

where all robots reach consensus and move to the center of their minimal enclosing ball

of their starting configurations.

1.3. Thesis Overview

We are studying the following general problem: given a set of mobile agents, design a

control law to run on each agent, based on sensor and communication input, to achieve
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a desired collective “emergent” global behavior of the system. In other words, the global

dynamical system defined by the interaction of the many individual agents’ control laws

should have the desired collective behavior as an attractor, preferably a global attractor.

The performance of the system is judged by the global behavior of the system—it must

be evaluated over all the agents.

The key constraints are that each agent has limited sensing, computation, motion,

and communication capabilities, and may have significant dynamics. The performance of

the group should improve or degrade gracefully as agents are added or deleted; in other

words, the approach should be scalable, robust, and require no central controller.

While intelligent collective behavior can emerge even when each agent is ignorant of

global properties of the system, as demonstrated in a number of models of schooling and

flocking [67,70,19,59], there are few tools to guide the design of local control laws to

achieve a particular desired collective behavior. Only a limited class of tasks can be solved

by reactive controllers using immediate sensory and communication input from neighbors,

and some of these require that the agents be able to implement a sensing or communication

network of a particular structure. Instead, we are pursuing a design framework for a

broader class of tasks, with changing numbers of agents and few requirements on the

time-varying communication network. We begin with the desired behavior encoded in

a global cost functional J . We then equip each agent with (a) a local controller that

chooses an action to minimize the cost based on knowledge of the global performance

of the group, and (b) an estimator that provides estimates of the global properties of

the group needed to implement the controller. This estimator uses sensory data and

information communicated by other agents.
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To ensure desired convergence properties when using estimates, we can modify the

controller according to the properties of the estimator. For example, we can enforce a

small-gain condition or a time-scale separation of the estimator and controller dynamics.

These conditions can typically be written as bounds on motion control gains as a function

of the estimator’s communication network structure. Deriving such conditions is one of

the main goals of our work. In Chapter 2, for example, we provide small-gain conditions

that express bounds on the aggressiveness of the motion controls as a function of the

communication graph Laplacian.

The estimate-and-control approach can be applied to both motion coordination tasks

and mobile sensing tasks. This is illustrated by the examples of formation control, where

the cost function is in terms of the positions of the agents, and cooperative target localiza-

tion, where the cost function is in terms of the uncertainty in the agents’ estimates of the

moving target. In the formation control problem, the agents’ global estimates serve the

motion coordination problem; in the target localization problem, motion control serves to

improve the agents’ estimates.

Example 1 (Formation Control). We can encode an abstraction of a robot formation

using a finite number of geometric moments [5]. If the position of agent i in a plane is

denoted pi = [pix piy]
T , then a formation of n robots can be abstracted to an `-vector of

moments of the form

f(p) =
1

n

n∑
i=1

[pix piy p2
ix p2

iy pixpiy p3
ix . . .]T ,
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Figure 1.2. (Left) The initial configuration of a swarm, a uniform-density
ellipse with the same mass and first- and second- order moments as the
swarm, and the goal formation of the swarm represented as another uniform-
density ellipse. (Right) The swarm converges to a configuration having the
desired first- and second- order moment statistics.

where p = [pT
1 . . . pT

n]T . To achieve a desired vector of moments f ∗, which may be com-

manded by an exogenous input or derived from environmental variables, we can define a

cost function

J = [f(p)− f ∗]TΓ[f(p)− f ∗] ,

where Γ is a positive-definite weighting matrix. This is the primary example of the thesis,

studied in detail in Section 5 (see Figure 1.2).

Our primary interest is in large swarms where it is not necessary to specify the exact

position of each robot. Instead, the swarm formation can be described by a set of summary

moment statistics that form a basis for the space of all formations. These statistics have

the property that low-order moments capture much of the essential shape of the swarm,

but progressively higher-order moments can be specified until only a single formation is

consistent with the statistics. Low-order moments then provide a convenient abstraction

of the total swarm formation, allowing, for example, high-level human interaction with

a large number of robots. We show that the estimate-and-control approach provides
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guarantees on the convergence of the swarm to desired formation statistics in the face of

changing communication networks and the addition and deletion of agents.

Example 2 (Cooperative Target Localization). A group of agents cooperatively tracks

the location of a target in the environment. Each agent takes noisy sensor range and

bearing readings of the target and maintains an estimate of the target location. Each

agent shares its estimate with its neighbors to reach consensus on a belief distribution of

the location of the target, represented by a mean and a covariance matrix P . The noise

in the information gathered by each agent’s sensor is dependent on the relative location of

the target, so each agent moves to maximize the expected new sensor information relative

to the current uncertainty P . The cost function can be expressed as

J = det(P ) .

1.4. Summary of the Thesis

Before proceeding with the main exposition, we summarize here the specific technical

contribution of the thesis.

Chapter 2: In Section 2.1 we propose a new framework to design algorithms for

multi-agent coordination tasks. Each agent is equipped with a controller and estimator

in a feedback loop. A systematic design procedure is broken down to four steps: En-

coding the desired behavior in a cost function, designing a initial controller, designing a

distributed estimator and modifying the controller to guarantee the stability of the feed-

back system. Then two types of distributed estimators that can dynamically track the

average of all sensor readings, the proportional consensus estimator (P estimator) and the
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proportional-integral consensus estimator (PI estimator), are introduced in Section 2.2.

The convergence properties of the two estimators are also characterized. In Section 2.3

we develop a systematic design procedure for the simplest class of problems within this

framework. Compared to a centralized design approach, the system with this distributed

controller converges to the same equilibrium set as in the centralized control.

Chapter 3: In general the consensus estimation algorithm is built on a weighted

graph and this chapter looks at how to choose the weights to maximize the convergence

speed of this estimation procedure. This optimization problem is solved in a centralized

fashion in Section 3.1 and distributed heuristic weightings are given in Section 3.2. In

Section 3.3 it is shown through simulations the random-rewiring mechanism on graphs

can also speed up the estimation convergence speed by creating long range communication

links among networks.

Chapter 4: This chapter studies how to maintain the connectivity of the communi-

cation graph in a decentralized way. The key component in our solution is a decentralized

power iteration algorithm that estimates the eigenvector corresponding to the second

smallest eigenvalue of a weighted Laplacian matrix. This eigenvector estimation procedure

is then used to estimate the algebraic connectivity of a graph. We use this estimate in a

decentralized controller that maintains the global connectivity of the graph over time.

Chapter 5: This chapter is devoted to the problem of controlling swarm formation

by controlling its formation statistics. We solve it through our simultaneous estimation

and control approach, and use both the P estimator and the PI estimator. In Section 5.3

and Section 5.4 separate nonlinear damping mechanisms are incorporated into the original
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controller to guarantee the stability of the feedback system. The equilibrium set is exam-

ined in Section 5.2, and it shows every local maximum of the cost function is unstable.

In Section 5.5 and 5.6 we validate our approaches through simulations. In Section 5.7 we

describe our experimental testbed and the results from the experiment.

Chapter 6: This chapter studies how to use a mobile sensor network to track one or

many moving targets. Initially it is assumed all sensors are of the same type and there is

only one target to be tracked. After developing a performance measure for the tracking

task in Section 6.1, two methods are proposed to solve the problem in Section 6.2 and

Section 6.3 and they are validated through simulations in Section 6.4. Lastly, Section 6.5

extends the methods to heterogeneous sensors and multiple targets cases.
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CHAPTER 2

Designing Coordination Algorithms: Decentralized Estimation

and Control

2.1. A New Framework for Multi-agent Coordination

The system consists of a collection of n identical mobile agents, each implementing

the same control system with no identifying tags or ID numbers. Agents may be added

or deleted from the system at any time, i.e., n may change. The (physical) state of agent

i is written as the vector pi, its control is the vector ui, and its state evolves according to

the dynamics

(2.1) ṗi = F (pi, ui,Pphys
i ) ,

where Pphys
i represents the set of states of any nearby agents that may physically impact

the motion of agent i (e.g., through contact, fluid wake, hydrophobic effects, etc.). For

the problems we consider, Pphys
i can be omitted from the motion dynamics, yielding

ẋi = F (pi, ui).

Each agent takes measurements of the form

(2.2) zi = C(pi,Psens
i ) ,
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where Psens
i represents the states of other agents that affect or contribute to the mea-

surements. The vector zi may measure absolute or relative positions and velocities of the

agents, or environmental variables such as temperature, salinity, or locations of points of

interest in the environment. This vector also includes any exogenous reference inputs.

The dimension of zi may change depending on the number of neighbors in the sensing

network.

We are interested in the design of dynamic local state feedback controllers of the form1

ui = K(pi, zi, ηi, yi,Si)(2.3)

si = G(pi, zi, ηi, yi,Si)(2.4)

η̇i = Q(pi, zi, ηi, yi,Si)(2.5)

yi = R(pi, zi, ηi,Si) ,(2.6)

where si denotes the fixed-dimension signal vector agent i sends to its neighbors, Si denotes

the variable-dimension collection of signals agent i receives from its neighbors Ni through

communication channels, the vector ηi is an estimator state containing information about

the global performance of the system, and the vector yi represents the output of the

estimator (Figure 2.1). The formulation above expresses the estimator Q and R using

continuous-time dynamics for simplicity, but sampled-data or hybrid dynamics could be

substituted as appropriate.

Note that implicit in the formulation are three dynamic interaction networks: a net-

work of physical interaction, represented by {Pphys
i }; a network of sensing interaction,

1Not all of K,G,Q,R will necessarily use all parameters. Local state observers can be used to provide
estimates p̂i of pi if required.
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Figure 2.1. Block diagram for agent i.

represented by {Psens
i }; and a network of communication interaction, implicit in {Si}.

These networks may be changing over time.

The goal of our work is to design a local controller K, a signal generator G, and a

state estimator Q and R to minimize a cost functional J encoding the desired behavior

of the system,

(2.7) J = φ(Y(tf ), tf ) +

∫ tf

t0

L(Y(τ), u(τ), τ) dτ ,

where u = [uT
1 . . . uT

n]T and Y represents the collection of all pi, ηi, and yi. Even when

controllers cannot be designed to exactly minimize J , it can be used to measure the

quality of a control design. This framework does not include sensing or communication

costs, which may be important factors in certain applications.

2.1.1. The Need for Estimation

The need for the global state estimator Q and R is clear for the target localization

problem—it is required to maintain estimates of the target location—but perhaps not

so clear for the formation control problem. A natural question is whether purely reactive



33

memoryless controllers can be used to solve the same problem. For example, one common

approach to coordinated behavior relies solely on sensing interaction of the agents. In

this framework, each agent might sense the positions and velocities of its neighbors and

choose its motion based on this information. In this simplification, there is neither an

estimator state ηi nor an estimator output yi, and only a memoryless controller K is to be

designed. Simple memoryless gradient control laws are effective when the spatial gradient

of J can be shown to be spatially distributed over the sensing network—the gradient of

J with respect to pi is a function only of pi and Psens
i [16,14]. For a particular cost J ,

the idea is to have the agents implement a sensing network over which the gradient of

J is spatially distributed. Cortés et al. [16, 14] describe a number of possible network

structures based on different notions of distance to neighbors. When the gradient of J

is spatially distributed over none of these networks, we can instead use a cost J ′ that

approximately encodes the desired behavior and whose gradient is spatially distributed

over some network.

This approach requires agents to reliably implement a particular distance-based sens-

ing network topology. Even when these networks are implemented reliably, the require-

ment of a spatially-distributed gradient of J is restrictive. We are interested in a broader

class of tasks with fewer restrictions on the network topology. As an example, the follow-

ing variance-control task, a simplified version of the formation control problem, is only

spatially distributed over a fully-connected network. As we see later, a gradient-based

controller can be effective even in the face of changing communication networks using

simultaneous estimation and control.
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Example 3 (Variance Control). Consider a network of n agents with pi ∈ R. Each

agent has simple integrator dynamics

ṗi = ui ∈ R

and takes noise-free measurements of its own state as well as the states of its neighbors

in the sensing network

zi = {pi,Psens
i } .

(Alternatively, each agent could simply measure the signed distance to its neighbors.) The

desired behavior of the system is encoded by

J =

[
1

n

n∑
i=1

(pi − µ(p))2 − σ2
d

]2

,

where µ(p) = 1
n

∑
i pi. The cost is minimized (J = 0) when the variance of the agents’

states is σ2
d. The system is clearly controllable to the (n − 1)-dimensional goal set M.

However, the gradient of J is only spatially distributed over the fully-connected sensing

network. We conjecture that there is no reactive memoryless controller K that stabilizes

the goal exactly for all n and all possible connected sensing networks.2 An interesting

avenue for further research is to characterize the motion coordination problems that can

and cannot be solved using purely reactive controllers.

2Simple reactive controllers can be developed that approximately solve the task for arbitrary n and specific
network structures, e.g., radius-limited sensing.
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2.1.2. Simultaneous Estimation and Control

To solve a broad class of decentralized sensing and control problems, including the problem

above, we adopt the following four-step design methodology:

(1) Choose a cost functional J encoding the desired performance of the system.

(2) Design an initial local controller K initial to achieve desired convergence properties.

This controller may use global information on the performance of the system (and

thus may not be implementable), and it is often based on gradient descent.

(3) Design a signal generator G and a global state estimator Q and R such that each

agent can estimate the global information required by the controller K initial. The

estimator should provide correct estimates in steady state.

(4) Construct the final control law K by replacing the global variables in K initial by

their local estimates, adding terms in the control law (if necessary) to preserve

the desired convergence properties.

The design should be robust to changing network topologies and the addition and deletion

of agents. It should also be scalable, meaning that the number of signals communicated

by each agent dim(si) is independent of n.

The power of this approach rests on the capability of G, Q, and R to provide each agent

with necessary estimates of the global performance of the system, subject to scalability

constraints. In other words, each agent cannot simply pass around messages from all other

agents with unique ID’s attached to each message. Quantities that can be estimated in a

scalable way include the minimum and maximum of state or sensed variables (each agent

simply transmits the max or min value of its own sensor and any signal yet received) as
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well as averages of variables. An algorithm for decentralized consensus estimation of the

average of static inputs was described in [55] and extended to changing inputs in [73,31].

In this thesis we focus on problems that can be solved using average consensus esti-

mators. The class of functions that can be estimated using average consensus estimators

is quite large, as we can first apply nonlinear functions to the variables, then pass them

through the average estimator, and then apply nonlinear transformations to the result.

For example, using a natural log transformation, average consensus estimators can be

used to calculate the geometric mean of inputs, as opposed to the arithmetic mean. In

the formation control example, formation moments are estimated using nonlinear trans-

formations (powers) of agent position data.

To summarize, we typically choose the controller K in (2.3) based on the gradient of J

with respect to xi, the estimator Q and R in (2.5)–(2.6) to use dynamic average consensus

estimation to estimate the quantities needed to implement K, and the signal generator G

in (2.4) to broadcast agent estimates.

2.2. Dynamic Average Consensus Estimators

The simultaneous estimation and control framework we proposed in principal applies

to very wide range of problems. For the left of the thesis, we focus a class of problems

where the estimation task can be performed by dynamic consensus estimators. Exem-

plary problems like this include controlling the center of mass of a robotic swarms and

cooperating mobile sensors to do target tracking. In this section we introduce two dy-

namic consensus estimators and describe their convergence properties. These estimators

on constructed on the general directed, weighted graphs (negative weights are allowed).
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2.2.1. Proportional Consensus Estimator

Suppose each agent implements a proportional dynamic consensus estimator of the form

ẇi(t) = −γwi(t)−
∑
j 6=i

aij(t)
[
xi(t)− xj(t)

]
(2.8)

xi(t) = wi(t) + ri(t) ,(2.9)

where ri(t) ∈ R is the input, xi(t) ∈ R is the estimator output, wi(t) ∈ R is the internal

estimator state, γ > 0 is a global estimator parameter, and aij(t) are piecewise-continuous,

time-varying estimator gains. This estimator is modified from the estimator in [72] by

adding a forgetting factor γ.

We impose the constraint that aij(t) = aji(t) = 0 if agents i and j cannot communicate

with each other at time t. The specific communication model varies in different context,

e.g. it can be Euclidean distance based or line-of-sight based. We may write the collection

of these n estimators in vector form as

ẇ(t) = −γw(t)− L(t)x(t)

= −
[
γI + L(t)

]
w(t)− L(t)r(t)(2.10)

x(t) = w(t) + r(t)(2.11)

where L(t) is the Laplacian matrix for the network graph. In fact the set of all possible

Laplacians for such graphs is precisely the set

L =
{
L ∈ Rnn : L1 = 0

}
=
{
L ∈ Rnn : LΠ = L

}
,(2.12)
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where Π ∈ Rnn denotes the projection matrix

Π = I − 11T

n
.(2.13)

For each real parameter ε we define

Lε =
{
L ∈ L : Π(L + LT )Π > 2εΠ

}
(2.14)

and we use

Lbal =
{
L ∈ L : LT1 = 0

}
(2.15)

to represent the set of Laplacians for balanced graphs.

We are interested in achieving average consensus, namely, we would like the error

vector

ex(t) = x(t)− 11T

n
u(t)(2.16)

to approach zero as t → ∞. We cannot expect to achieve small steady-state errors

when the input vector u(t) is changing too rapidly, because it takes time for the effects

of u(t) to flow across the network. For this reason we will assume that both u(t) and its

derivative u̇(t) are bounded. The convergence result of this estimator is analyzed in [31]:

Theorem 1. Let L ∈ Lbal be a piecewise-continuous, time-varying Laplacian matrix,

and suppose there exist ε, t0 ∈ R such that L(t) ∈ Lε for all t > t0. Let γ > 0 be such

that γ + ε > 0, and suppose there exists µ > 0 such that the input vector r(t) is absolutely
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continuous and satisfies

|γr(t) + ṙ(t)| 6 µ(2.17)

for almost all t > t0. Then the consensus estimator (2.10)–(2.11) is such that the error

vector ex(t) in (2.16) satisfies

|ex(t)| 6
1√
n
|1Tw(t0)|e−γ(t−t0)

+ |Πx(t0)|e−
1
2
(γ+ε)(t−t0) +

µ

γ + ε
(2.18)

for all t > t0.

In the theorem, there is no requirement for the parameter ε to be positive; in particular,

the estimate (2.18) holds even when L(t) ≡ 0, namely, when there is no communication at

all between the agents. However, in this case the steady-state value of the bound (2.18)

on the error |ex(t)| will be no smaller than |r| for a constant input r (take µ = γ|r|). To

achieve small steady-state errors for constant (or slowly varying) inputs, we need ε > 0

and γ � ε. Furthermore, we see from (2.14) that ε scales with the estimator weights, so

when ε > 0 we can simply increase these weights to achieve arbitrarily small steady-state

errors for given values of γ and µ. However, in doing so we also increase the maximum

eigenvalue of the graph Laplacian and thereby reduce the robustness of the estimator to

communication delays between agents [56]. Hence the presence of any such delays will

limit the bound on the derivative u̇(t) under which we can achieve accurate tracking.

The choice γ = 0 is appealing for the case ε > 0 because then for constant inputs we

have δ(t)→ 0 as t→∞ (take µ = 0). However, in this case 1Tw(t) is constant and thus
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ex(t)→ 11Tw(t0)/n as t→∞. In other words, only a correct estimator initialization (say

w(t0) = 0) will lead to zero steady-state error. One consequence of this property is that

if an agent enters or leaves the network, a simultaneous reinitialization of the estimators

will be required to guarantee zero steady-state error for the new consensus system. In

contrast, choosing a small but positive γ would introduce a small steady-state error but

would also allow the network to slowly “forget” any larger errors introduced by incorrect

estimator initializations. To eliminate steady-state errors entirely without the need for

correct initializations, at least for the case of constant inputs and Laplacians, we introduce

an integral term in the estimator as described in the next section.

We call this estimator (2.10)–(2.11) a high-pass estimator because if the estimator

gains aij were constant, then the resulting LTI system taking the inputs ri to the outputs yi

would be a high-pass filter with unity high-frequency gain.

2.2.2. Proportional-Integral Consensus Estimator

Suppose each agent implements a proportional-integral dynamic consensus estimator of

the form

ẋi(t) = −γxi(t)−
∑
j 6=i

aij(t)
[
xi(t)− xj(t)

]
+
∑
j 6=i

bji(t)
[
wi(t)− wj(t)

]
+ γri(t)(2.19)

ẇi(t) = −
∑
j 6=i

bij(t)
[
xi(t)− xj(t)

]
,(2.20)

where ri(t) ∈ R is the input, xi(t) ∈ R is the estimator output, [xi(t) wi(t)]
T ∈ R2 is

the internal estimator state, γ > 0 is a global estimator parameter, and aij(t) and bij(t)
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are piecewise-continuous time-varying estimator gains. We impose the constraint that

aij(t) = aji(t) = bij(t) = bji(t) = 0 if agents i and j cannot communicate with each other

at time t. We may write the collection of these n estimators in vector form as ẋ(t)

ẇ(t)

 =

 −γI − LP (t) LT
I (t)

−LI(t) 0


 x(t)

w(t)

+

 γI

0

 r(t) ,(2.21)

where LP (t) is the proportional Laplacian (constructed from the weights aij) and LI(t) is

the integral Laplacian (constructed from the weights bij).

Unlike the high-pass estimator (2.10)–(2.11), this PI estimator has no direct feedthrough

from its input ri to its output yi, and thus it may provide better filtering of high-frequency

noise. In addition, it approaches a ball around zero whose size is related to the rate of

change of the input, with constant input producing errors that decay exponentially to

zero [31]. For the high-pass estimator [73], zero steady-state error requires extra book-

keeping to keep track of which communication links are active. Besides, intermittent

communication noise or drops cause the high-pass filters to drift, whereas a “forgetting”

factor in the PI filter results in a stable filter from communication noise to errors relative

to the solution manifold.

We are again interested in achieving average consensus, namely, we would like the

error vector ex(t) in (2.16) to approach zero as t→∞.

Theorem 2. Assuming LP , LI are constant Laplacians and let ε ∈ R be such that

LI ∈ Lτ , LP ∈ Lε. Suppose rank LI = n − 1 and suppose the estimator parameter γ > 0

is chosen such that γ + ε > 0. Then for any constant input u ∈ Rn and any initial states
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x(t0), w(t0) ∈ Rn, the trajectories of the system ẋ(t)

ẇ(t)

 =

 −γI − LP LT
I

−LI 0


 x(t)

w(t)

+

 γI

0

u(2.22)

are such that x(t) and w(t) converge to constant vectors and ex(t) → 0 exponentially as

t→∞.

2.3. A Simple Case: Kinematic and Holonomic Agents on an Undirected,

Unweighted Communication Network

In this section, we describe the detailed design procedures for a simple case within the

general framework outlined in the last section. In this simple case, we assume that

(1) The agent model is kinematic, fully actuated and holonomic.

(2) There is no communication delay in the network.

(3) The cost function J only depends on the average type of global information.

(4) The agents share an undirected communication network.

Next we explain the four-step design procedures step by step.

2.3.1. Cost Function

We have n kinematic agents, and the configuration of agent i is written pi = [p1
i . . . pq

i ]
T ∈

Rq. The total system configuration is p ∈ Rnq. The cost J encoding the desired group

behavior is a function of global properties f of the system. Specifically, we consider cost

functions that can be written in a special form

(2.23) J(p) = J(f(p), β),
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where

(2.24) f(p) =
1

n

n∑
i=1

g(pi) = [f 1 · · · fm]T ∈ Rm

are m pieces of global information. These are simply the average over each agent’s local

information g(pi), obtained from internal state and sensor measurements. Examples of f

include the center of mass of a swarm in formation control [30], average sensor readings

(temperature, gas concentration, etc.) in sensor networks [11] and global estimate un-

certainty in target localization [12]. The constants β are known to each agent, and may

represent common goals or controller gains. We require J to be nonnegative and proper

in p (i.e., radially unbounded) so we can use it as a global storage function.

2.3.2. Design the Initial Controller Kinitial

In the initial design, each agent implements a gradient controller

(2.25) ṗi = ui = − ∂J

∂pi

.

Note that the control gains are present in the definition of the cost J ; a cost αJ with

α > 1 would give agent motions in the same direction, but at a higher speed. Notice that

∂J

∂pi

=


∂f1

∂p1
i
· · · ∂fm

∂p1
i

...
...

∂f1

∂pq
i
· · · ∂fm

∂pq
i




∂J
∂f1

...

∂J
∂fm


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= DT

i


∂J
∂f1

...

∂J
∂fm


with Di = ∂f

∂pi
∈ Rm×q. In general this is a centralized design; although Di can be

obtained locally for each agent i, the value of ∂J
∂f

depends on f . This is in contrast to

spatially distributed objective function gradients where ∂J
∂pi

depends only on pi and its

sensed neighbors.

This design guarantees J to be non-increasing along trajectories in forward time.

When J is nonnegative and proper, we know every trajectory is bounded. Based on

LaSalle’s theorem we further conclude that every trajectory converges to an equilibrium

set at which ∂J
∂p

= 0. In general this set may contain local minima which are not global

minima.

2.3.3. Designing the Signal Generator G and the State Estimator Q, R

To estimate f in the initial controller Kinitial, each agent runs a Proportional Average

Consensus Estimator in section 2.2.1 with local input φi = g(pi). Given inputs, internal

states and outputs φi, wi, xi ∈ Rm, the P estimator looks like:

ẇi = −γwi −Kp

∑
j∈Ni

[
xi − xj

]
(2.26)

xi = wi + φi.(2.27)

Note that we are using an undirected network, and we apply equal weight on each

link.
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2.3.4. Construct the Final Control Law K

We obtain the final distributed controller K as follows. Each agent estimates the global

information f by running a P average consensus estimator with local input φi = g(pi),

then replaces the f in the controller with its estimator output xi = [x1
i · · ·xm

i ]T . After

that we scale the control effort by [I + DT
i ΛiDi]

−1, yielding

(2.28) ṗi = ui = −[I + DT

i ΛiDi]
−1 ∂J

∂pi

∣∣∣∣
f=xi

.

where Di = ∂f
∂pi
∈ Rm×q, I ∈ Rm×m is the identity matrix and Λi > 0.

The foremost concern of this new feedback system is stability: in a stable centralized

controller, when we replace the global information f with an estimator output xi, the

introduced estimation error ei = f − xi may drive the system unstable. The positive-

definite matrix DT
i ΛiDi in (6) serves to reduce the control gains to guaranteed the overall

stability of the feedback-connected estimation and control process. For this reason, we

refer to Λi as a nonlinear damping matrix. Larger damping, i.e., smaller control gains,

improve the stability of the system, possibly at the expense of performance. Our small-

gain condition specifies a lower bound on Λi that guarantees semi-global stability of the

coupled system. The full stability analysis is presented in the next section.

2.3.5. Stability: the Small-gain Condition

We define the estimator input and output variables Z,E as:

Z = [z1 · · · zn]
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= [
d

dt
g(p1) · · ·

d

dt
g(pn)]

E = [e1 · · · en]

= [f · · · f ]− [x1 · · ·xn]

Taking U = tr(EET ) as the measure of the estimation error, the input-output rela-

tionship of the P estimator is given in [30]:

U̇ 6 −εU +
1

ε
tr(ZZT ) =

n∑
i=1

[
−ε|ei|2 +

1

ε
|zi|2

]
(2.29)

where ε(t) = Kpλ2(t) and λ2(t) is the algebraic connectivity [32] of the underlying com-

munication graph Laplacian. Here we use the undirected graph given by the neighbor

relations Ni with unit weights. For a connected network with n nodes, it is known that λ2

reaches its minimum value λmin = 2− 2 cos(π/n) [23] when the communication topology

is a line graph (Fig. 2.2).

Now we characterize the input-output relationship of the controller. First we find out

how much the control effort changes when we replace the global information f with xi in

the controller. We can use the Mean Value theorem to obtain:

(2.30)
∂J

∂f j

∣∣∣∣
f=f

− ∂J

∂f j

∣∣∣∣
f=xi

=
∂2J

∂f j∂f

∣∣∣∣
f= efij

ei

where each

f̃ij = f − αj(f − xi)

= f − αjei 0 ≤ αj ≤ 1(2.31)
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Figure 2.2. Two communication topologies and graph Laplacians induced
from neighborhood relations. Among connected graphs, the line graph in
(a) has the smallest algebraic connectivity λ2 = 2− 2 cos(π/5) = 0.382.

is on the line segment between f and xi. We denote the row vector ∂2J
∂fj∂f

∣∣∣
f= efij

as Cij.

Furthermore, we call the assembled matrix Ci = [CT
i1 · · · CT

im]T the Hessian matrix of the

system. With this notation, the change in control effort is written

∂J

∂pi

∣∣∣∣
f=f

− ∂J

∂pi

∣∣∣∣
f=xi

=

(
∂f

∂pi

)T
(

∂J

∂f

∣∣∣∣
f=f

− ∂J

∂f

∣∣∣∣
f=xi

)
= DT

i Ciei.(2.32)

which is the error between the centralized design and the distributed design. Then the

input-output relationship of the controller is given as

J̇ =
n∑

i=1

ṗi
T ∂J

∂pi
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Figure 2.3. At any given time t, f̃ij lies on the line segment of f and xi for
every (i, j) pair. It is therefore bounded by a circle of radius ‖f‖+ ‖ei‖.

=
n∑

i=1

ṗi
T [I + DT

i ΛiDi][I + DT
i ΛiDi]

−1(
∂J

∂pi

∣∣∣∣
f=xi

+ DT
i Ciei)

= −
n∑

i=1

ṗi
T [I + DT

i ΛiDi]ṗi +
n∑

i=1

ṗi
T DT

i Ciei

≤ −
n∑

i=1

ṗi
T (I + DT

i (Λi −
CiC

T
i

ε
)Di)ṗi +

n∑
i=1

ε|ei|2

= −
n∑

i=1

ṗi
T ṗi −

n∑
i=1

zT
i (Λi −

CiC
T
i

ε
)zi +

n∑
i=1

ε|ei|2.

To combine J and U together, we define a storage function

(2.33) Υ(p, E) = J + (1 + µ)U
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with µ > 0. The dissipation inequality looks like:

(2.34) Υ̇ 6 −
n∑

i=1

ṗi
T ṗi −

n∑
i=1

zT
i (Λi −

CiC
T
i + (1 + µ)I

ε
)zi −

n∑
i=1

µε|ei|2.

The following theorem gives a sufficient condition for a stable design of the feedback

system.

Theorem 3. Given task J = J(f, β) and we assume its centralized gradient design is

stable and the possibly time-varying communication network remains connected. If either

one of the following conditions holds:

(1) the cost function J is smooth and proper in f , or

(2) the global information f is globally bounded,

Then there exists a corresponding distributed design: Each agent constructs a P estimator

to estimate the required global information and closes the feedback loop by adding nonlinear

damping with gains

(2.35) Λi ≥
Q + (1 + µ)I

λminKp

where Q = sup( efi1,··· , efim)∈Ψm CiC
T
i . The resulting system is stable and each trajectory

converges to the same equilibrium set as in the central design.

Proof. We use Υ0 to denote the initial value of the storage function Υ. Based on its

definition in (2.33), we know

(2.36) ‖ei‖ ≤

√
Υ0

1 + µ
, J(f) ≤ Υ0.
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In either J is proper in f or f is globally bounded, we have

(2.37) ‖ei‖ ≤

√
Υ0

1 + µ
, ‖f‖ ≤ a

for some scale a ∈ R. Starting from (2.31), the triangle inequality gives

(2.38) ‖f̃ij‖ ≤

√
Υ0

1 + µ
+ a

Additionally we have

(2.39) CiC
T

i ≤ Q = sup
( efi1,··· , efim)∈Ψm

CiC
T

i <∞

with Ψ = [−
√

Υ0

1+µ
− a,

√
Υ0

1+µ
+ a] (see Fig. 2.3). Q is a function of the Ci, which are a

function of the control gains. Now we choose

(2.40) Λi ≥
Q + (1 + µ)I

λminKp

≥ Q + (1 + µ)I

εKp

so that the small gain condition in (2.34)

(2.41) εΛi ≥ CiC
T

i + (1 + µ)I

is satisfied at t = 0. From the Lyapunov stability theorem, Υ(t) < Υ0 and there-

fore (2.37), (2.38) remain satisfied. Because (2.31) holds over time, we know (2.38) still

holds and the domain Ψ will not increase. Therefore by satisfying (2.40), the small

gain condition (2.41) is automatically satisfied over time and Υ̇(t) ≤ 0 from (2.34). By

LaSalle’s theorem, every trajectory converges to an equilibrium set at which ṗ = 0 and
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E = 0. So in steady state the estimation error vanishes and the trajectory will converge

to the same equilibrium set as in the centralized design. �

When CiC
T
i is globally bounded (e.g., J is a quadratic cost function) we get a global

stability result, otherwise the result is semi-global. In general, the value of Q can be

obtained from a standard nonlinear optimization solver. It is also possible to bound Ci

by taking advantage of special problem structures. We use the second approach when we

analyze the stability of the target localization algorithm.
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CHAPTER 3

Designing Coordination Algorithms: Optimizing the Estimator

Convergence Speed

In this chapter we are interested in speeding up the convergence speed of the consensus

estimators. Based on the small gain condition 2.41 in Theorem 3, this helps decrease

the nonlinear damping gain, and therefore increase the convergence speed of the overall

feedback system. As discussed in section 1.2, we can use communication weights as our

design freedom to optimize the convergence speed.

In the original static consensus estimator, each agent looks to its neighbors and changes

its decision value based on the difference between its own value and the weighted average

of its neighbors:

ẋi =
∑
j 6=i

aij(xj − xi).

Collecting the individual agents’ estimators together into a continuous-time matrix equa-

tion, we get

(3.1) ẋ(t) = −Lx(t).

When all the nonzero eigenvalues of the symmetric Laplacian L(G) have strictly positive

real parts, this protocol is known to solve the static average consensus problem—the final

network decision value is equal to the average of the initial decision values, e.g., the sensed

inputs to the network at t = 0 [55].
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The worst-case convergence time of the first-order differential equation in (3.1) is

inversely proportional to λ2(L), the second-smallest eigenvalue of L (i.e., other than the

one at 0). λ2(L) is called the algebraic connectivity of the graph, and 1/λ2(L) is the

associated time constant.

The sum of the eigenvalues of a symmetric Laplacian L is equal to the trace of its

degree matrix D. Therefore, λ2 can be made arbitrarily large, and the convergence time

constant arbitrarily small, by choosing the communication weights aij to be arbitrarily

large positive numbers. As shown by Olfati-Saber and Murray, however, the presence of a

communication delay in the communication links may destabilize the estimator for large

weights [55]. In particular, they showed that stability of the estimation is only assured if

the maximum communication delay T > 0 is bounded by T < π/(2λmax), where λmax = λn

is the largest eigenvalue of L. This establishes an upper bound λ∗max. With this in mind,

we define the (normalized) speed of the network convergence to be ν = λ2(L)/λmax(L)

with associated normalized time constant τ = 1/ν. Our goal is to minimize τ , i.e., to

minimize the convergence time subject to the constraint that the system always remain

stable in the presence of intermittent time delays bounded by T . Note that τ = 1 is the

minimum time constant possible, and this is achieved for a fully connected network with

all weights positive and equal. In this case, λ2 = λ3 = . . . = λn > 0.

To summarize, we can compare arbitrary weighted symmetric graphs by comparing

how closely they resemble a fully connected network with equal weights, the ideal. The

optimal edge-weighting problem is to choose edge weights that achieve a τ as close to 1

as possible.
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(a) (b)

Figure 3.1. (a) A regular network on S1 with n = 16 and k = 4. (b) One
possible outcome of the network after random rewiring with p = 0.1.

3.1. Optimal Edge Weighting - a Central LMI Approach

As the basic network topology is derived from radius-limited communication, agents

evenly distributed over a space will all have the same number of network neighbors, and

locally the network will look the same everywhere (except at boundaries). We call this

a regular grid. If each agent has k neighbors, we call it a k-regular grid. To focus our

examples, we use the model case of evenly-spaced agents on a one-dimensional metric

space, giving rise to a regular grid with n nodes and k neighbors per node. To eliminate

boundary effects, the underlying space is the circle S1. An example regular grid with

n = 16 and k = 4 is shown in Figure 3.1. The adjacency matrix for this undirected graph

has the symmetric banded form

(3.2) A =



0 a12 a13 0 · · · 0 a1(n−1) a1n

a21 0 a23 a24 0 · · · 0 a2n

a31 a32 0 a34 a35 0 · · · 0

...


.

The graph edges are undirected and we can see that the graph structure has rotation

symmetry. Therefore each row of the optimal A matrix, as well as L(A) = D(A)−A, will
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be a cyclic shift of the row above it. Such a matrix is called a circulant matrix. If the

top row of a circulant matrix C is [c0, . . . , cn−1], where each row below is shifted cyclically

one to the right, we can find the n eigenvalues λm and eigenvectors ym, m = 1 . . . n, of C

analytically [33] as

λm =
n−1∑
p=0

cpe
−2πimp/n,(3.3)

ym = [1, e−2πim/n, . . . , e−2πim(n−1)/n]T .(3.4)

The circulant matrix C = L(A) also has the property that cp = cn−p due to reflection sym-

metry. Therefore we can choose k/2 variables u1, . . . , uk/2, where k is the number of neigh-

bors, and write the top row of L(A) as [c0,−u1, . . . ,−uk/2, 0, . . . , 0,−uk/2,−u(k/2)−1, . . . ,−u1],

where each row below is a cyclic shift. With the constraint c0 = 2
∑k/2

p=1 up, and by can-

celation of imaginary components, (3) becomes

(3.5) λm = 2

k/2∑
p=1

up(1− cos(2πmp/n)).

As we uniformly scale the weights up, the eigenvalues of L grow without bound, possibly

resulting in instability in the presence of time delays. Therefore we impose the constraint

λmax ≤ 1. The problem now is to find the weights that maximize λ2 subject to this

constraint, thereby minimizing τ . This can be reduced to the following linear program:

find u1, . . . , uk/2, λ

maximizing λ
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subject to λ ≤ 2
∑

p

up(1− cos(2πmp/n))

2
∑

p

up(1− cos(2πmp/n)) ≤ 1

m = 1, . . . , n− 1.

Figure 3.2(a,b) gives the results of the optimization for a regular grid with n = 150.

The optimal edge weights for n = 150, k = 80 are given in Figure 3.2(a). Interestingly,

for every scenario we tested, we find that optimal weights for nearby agents are very

small numbers (even negative), and weight for the most distant agent is large. We have

no simple explanation for these optimal weights, but they are heavily dependent on the

strict symmetry of the regular grid. Figure 3.2(c) shows the convergence speedup from

optimal weighting of the edges. The graph shows the time constant τ associated with

the näıve weighting strategy assigning all edges equal weight as compared to the time

constant of the optimally weighted graph.

If we restrict all weights to be nonnegative, the optimal time constant increases, as the

problem is more constrained. For every scenario we tested with this constraint, we find

that neither τ nor the shape of the optimal weights profile changes much. An example is

shown in Figure 3.2(b).

The edge-weight optimization problem for the more general case of arbitrary but fixed

network topologies can be formulated using linear matrix inequality (LMI) theory. The

Laplacian matrix for arbitrary undirected graphs is still symmetric, but not necessarily

circulant. If the network has r edges, let up, p = 1 . . . r, be the weights associated with

those edges, and let L(u) be the associated graph Laplacian. We keep the normalization

constraint λmax ≤ 1. The goal is to find the vector u maximizing λ2(L).
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Figure 3.2. (a) The optimal weights for a network with n = 150, k = 80.
(b) The optimal nonnegative weights for the same network (a). (c) The
consensus speedup for optimal and distance weighting for n = 150 and for
a range of k values (k/2 shown on the x-axis).

To do this, find an n × (n − 1) matrix A satisfying AT A = I whose column vectors

form an orthogonal complement of the eigenvector 1, which corresponds to the eigenvalue

of L at 0. Then the eigenvalues of the (n − 1) × (n − 1) matrix AT LA are the same as

the remaining eigenvalues of L. The smallest eigenvalue of AT LA is equivalent to λ2(L).

As AT LA is symmetric, the quantity AT LA − λI is positive definite if λ is smaller

than the smallest eigenvalue of AT LA, and similarly the normalization constraint can be
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formulated as AT LA ≤ I. So the optimization becomes

find u1, . . . ur, λ

maximizing λ

subject to AT L(u1, . . . , ur)A− λI ≥ 0

I − AT L(u1, . . . , ur)A ≥ 0,

an LMI problem, as L is linear in u. This problem can be solved readily using standard

methods. We are using this formulation to compare optimal weighting strategies on

arbitrary graphs to simple distributed heuristic weighting strategies, as discussed in the

next section (Figure 5).

3.2. Decentralized Heuristic Edge Weighting

The optimal edge-weighting algorithms above are centralized algorithms. If the net-

work topology is unknown or changing, each agent must decide the weights to apply to

its edges in a decentralized way, without sacrificing the correctness of the algorithm. As

shown in [55], the network must be balanced to converge to the average of the inputs, i.e.,

for each agent, the sum of its outgoing weights must be equal to the sum of its incoming

weights.

A simple way to satisfy this condition is to ensure L is symmetric. We also must make

sure that the nonzero eigenvalues of L are positive. This is satisfied trivially by requiring

that each edge weight be positive. Therefore we restrict our search for heuristic weighting
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Figure 3.3. The consensus speedup for different heuristic weighting schemes
over equal weighting on a random radius-limited graph on a ring with 500
nodes. The communication radius is in degrees around the ring. Error bars
are standard deviations over 100 graphs; the same holds for all subsequent
graphs.

strategies to symmetric functions of the form a(i, j) = a(j, i) > 0 for any two nodes i, j

with a communication link.

One heuristic weighting strategy satisfying these conditions that each agent can im-

plement in a decentralized fashion is to weight each edge proportionally to the metric

distance between the agents. This captures the idea that more distant information should

be weighted more heavily, in the interest of propagating information more quickly. This

heuristic is motivated by the fact that the metric of the underlying space is encoded in

the topology of the radius-limited communication graph. As seen in Figure 3.2(b), this

simple heuristic provides marginal speedup over the equal weighting strategy.

Figure 3.3 compares time constants of distance weighting over the equal weighting for

networks consisting of 500 nodes randomly chosen on the ring from a uniform distribution.

A similar speedup as in the regular network case is observed.
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Figure 3.4. The weights assigned under different schemes: (a) Equal weight-
ing with τ = 3.73. (b) Inverse-degree weighting with τ = 3.43. (c) Optimal
weighting with τ = 3 solved by LMI.

Another weighting heuristic we have explored is choosing a link’s weight to be the

reciprocal of the total number of agents the two agents are in communication with. This

inverse-degree weighting algorithm requires each agent to communicate the number of

its neighbors. The idea is that information from an agent with little contact with other

agents should be weighted more heavily to help its information propagate faster, and to

help information from other agents propagate more quickly to it, as the convergence time

is determined by the slowest mode. Simulations prove the effectiveness of this heuristic

for different network sizes and densities, as shown in Figure 3.3.

To further explore the hypothesis that the power of this heuristic derives from more

heavily weighting nodes with fewer connections, we tested the heuristic on a number

of random graphs. Each graph had 500 nodes and was generated to satisfy a desired

distribution of the connection degrees of the nodes, using the algorithm in [80]. (Note:

these graphs do not derive from radius-limited communication among agents on a ring, as

with other graphs discussed in this thesis.) We tested a one-parameter family of graphs

with degree histograms with fixed total degree, as it is known that adding edges decreases

the convergence time [27]. The degree histograms are symmetric triangles with a peak at
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Figure 3.5. The influence of degree distribution on convergence time. The
network has 500 nodes and an average degree connection of 50. Each sample
point is generated from 100 trials. Insets show the degree histograms at
sample points as well as the time constant ratio between two weighting
schemes.

degree 50. The one parameter controlling the histogram shape is the height of the peak,

which we varied from a minimum of 5 nodes to a maximum of 40. As the histogram

becomes narrower and more peaked, the random graph approaches a regular graph, and

the inverse-degree weighting becomes equivalent to equal weighting. Figure 3.5 confirms

that the inverse-degree heuristic is more useful when the degree distribution contains

nodes of low degree. It also shows a phase transition in the time constant as a function

of the degree histogram for both the equal and inverse-degree weighting schemes.

As the nonnegative combination of any two symmetric positive functions is also sym-

metric and positive, we would like to know if some linear combination of the distance

weighting scheme and inverse-degree weighting scheme can result in better network per-

formance. We do not yet know the answer in general. For a particular network of n = 200

and communication radius of r = 15◦ (Figure 3.6), the inverse-degree heuristic is better

than any linear combination with the distance metric. In contrast to the good heuristics
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Figure 3.7. Time constants for the degree weighting and inverse-distance
weighting schemes. Note that the time constant is plotted in log scale, so
these two bad schemes have much larger time constants.

described above, Figure 3.7 shows the performance of some bad heuristics, specifically

weighting by inverse distance or by the sum of the degrees of the two nodes. Simulation

shows that time constants under these schemes are consistently worse than that of the

equal weighting case.
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3.3. The Benefit of Long-range Connections

Adding a few long-range connections (LRCs) to a network is well known to greatly

reduce the average path length between nodes in a grid, making it into a small world

[48,82] when enough are added, usually a small percentage of the total number of edges

in the grid. Given a specific set of LRCs on the grid, we can use the LMI formulation to

evaluate the maximum benefit that can be obtained from LRCs.

Instead of adding new connections, we can also create a small world utilizing the

“random rewiring” method introduced in [82]. This algorithm starts with a regular

network {V , E} on S1, say Figure 3.1(a). For each edge eij ∈ E , we then replace it

by a new edge eij′ with probability p. Node j′ is chosen uniformly at random from the

nodes that were not previously connected to node i. An example network after rewiring

is shown in Figure 3.1(b).

Watts and Strogatz [82] show that as we increase the parameter p, the average path of

the network reduces significantly, turning the regular grid into a small world. Subsequent

work by Olfati-Saber [54] revealed other key features of this small-world network: as p

increases, λ2 increases quickly while λmax increases only a little. This property means the

rewiring procedure will decrease the convergence time λmax

λ2
as we increase the parameter

p. Figure 3.8 shows the time constants for a ring network with 100 nodes and 20 neighbors

per node, for a varying parameter p under equal weighting and inverse-degree weighting

schemes. Note that the additional speedup by the heuristic weighting slowly takes effect

as p increases. This is because the inverse-degree weighting heuristic works better for

irregular networks, and particularly it reduces to equal weighting in the case of a regular

lattice.
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Figure 3.8. The speedup of network consensus through rewiring.

Boosting the communication radius of each agent, making the swarm heterogeneous

by introducing some long-range connections, and “good” edge weighting each reduce the

convergence time to consensus. The mobile network designer can trade these off against

each other according to their cost to implement.
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CHAPTER 4

Estimating and Maintaining the Communication Network

Connectivity

In this chapter we apply the decentralized estimation and control framework to the

problem of maintaining connectivity in a mobile sensor network. The ability of a robot

team to reconfigure itself is useful in many applications: for metamorphic robots to change

shape, for swarm motion towards a goal, for biological systems to avoid predators, or

for mobile buoys to clean up oil spills. In many situations, auxiliary constraints, such

as connectivity between team members or limits on the maximum hop-count, must be

satisfied during reconfiguration. In this paper, we show that both the estimation and

control of the graph connectivity can be accomplished in a decentralized manner. We

describe a decentralized estimation procedure that allows each agent to track the algebraic

connectivity of a time-varying graph. Based on this estimator, we further propose a

decentralized gradient controller for each agent to maintain global connectivity during

motion.

4.1. Connectivity Measure

Given n mobile agents, we assume they can exchange information on an undirected

communication network. For agent i, we denote its set of communication neighbors as N i.

We denote the overall communication graph as G and the edge set as E = {(i, j)| j ∈ N i}.
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The adjacency matrix A ∈ Rn×n is defined as

(4.1) Aij =

 Aji > 0 if j ∈ N i,

0 otherwise.

The degree of each node is di =
∑n

j=1 Aij or d = A1 where 1 is a column vector of all ones.

The degree matrix is defined as D = diag(d), and the weighted Laplacian matrix of the

graph is defined as L = D − A. The unweighted Laplacian matrix L can be treated as a

special case where Aij = 1. The spectral properties of L have been shown to be critical in

many multiagent applications, such as formation control [30,25], consensus seeking [56]

and direction alignment [38].

For the weighted Laplacian L, because we restrict the weights Aij to be positive, the

spectral properties of L are similar to those of L [45]. Specifically, we know

(1) L1 = 0.

(2) Given {{λi}| i = 1, . . . , n} as the spectrum of L, all the eigenvalues are real and

they satisfy 0 = λ1 ≤ λ2 ≤ · · · ≤ λn, and λ2 > 0 if and only if the graph is

connected. As in the unweighted case, we call λ2 the algebraic connectivity of the

graph.

4.2. Centralized Power Iteration

We want to design an algorithm to estimate the graph connectivity measure λ2. To

do this, we first estimate the corresponding eigenvector v2 (Lv2 = λ2v2), which is then

used to determine λ2.
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Throughout the rest of the paper, we use superscripts to index the agents and compo-

nents of a vector, and subscripts to index eigenvalues, eigenvectors, and their estimates.

For example, a Laplacian L has n eigenvalues λ1, . . . , λn and n eigenvectors v1, . . . , vn.

The components of an eigenvector are vi = (v1
i , . . . , v

n
i )T . In addition, if x ∈ Rn is the

network’s estimate of the eigenvector v2, then xi ∈ R is the ith component of the estimate

x, stored by agent i. We also write λi
2 ∈ R for agent i’s estimate of λ2.

4.2.1. Discrete-time Power Iteration

Given a square matrix Q and its eigenvalue spectrum satisfying |µ1| < |µ2| · · · < |µn|,

power iteration is an established iterative method to compute the eigenvalue µn and its

associated eigenvector vn [78]. Now assume instead of µn, we are interested in its second-

largest eigenvalue µn−1. If we already know µn and vn, we can estimate µn−1 by running

the power iteration on the deflated matrix

(4.2) Q̃ = Q− vnv
T

n .

Specifically this power iteration procedure is carried out in three steps. For a random

initial vector w,

(1) Deflation on Q: Q̃ = Q− vnv
T
n .

(2) Direction update: x = Q̃w.

(3) Renormalization: w = x
‖x‖ . Then go to step 2.

This power iteration method converges exponentially with time constant µn−1/µn−2.

Once it converges, w is the eigenvector corresponding to the second largest eigenvalue

µn−1 of Q. In the case of repeated eigenvalues where µn−1 = . . . = µn−k+1 > µn−k, the
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iteration converges in the ratio µn−k/µn−1. If µn−1 = . . . = µ1, then any unit vector w is

a solution.

4.2.2. Continuous-time Power Iteration

Inspired by the power iteration algorithm, we define a variant to find the second-smallest

eigenvalue λ2. To do this, we make two primary modifications to the algorithm. First,

we modify the algorithm to run in continuous-time. Second, instead of performing the

direction update step using a deflated matrix Q̃, we use a deflated matrix of −L. The

deflation causes −λ2 to be the leading (least negative) eigenvalue, and the negative sign

results in convergence to the eigenvector v2 corresponding to the eigenvalue with the

minimum magnitude (as opposed to that with the maximum magnitude in the previous

section).

Let x = (x1 . . . xn)T ∈ Rn be the estimate of the eigenvector v2. The continuous-time

algorithm has three parts:

(1) Deflation: ẋ = −Ave({xi})1.

(2) Direction update: ẋ = −Lx.

(3) Renormalization: ẋ = −(Ave({(xi)2})− 1)x.

where the function Ave({qi}) , (
∑

i q
i)/n. Step 1 drives x to the null space of 1, i.e., the

space spanned by the eigenvectors {v2, . . . , vn}. For most initial conditions the direction

update in step 2 drives x towards the eigenvector direction associated with the largest

eigenvalue of −L, which is 0. But if the state x belongs to the null space of 1, the direction

update step will keep x in the null space, and drive x towards the eigenvector direction
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associated with the largest eigenvalue of the null space, which is −λ2. Step 3 drives x

towards the unit sphere.

In order to achieve the three steps simultaneously, we combine the three pieces in a

linearly weighted fashion:

(4.3) ẋ = −k1Ave({xi})1− k2Lx− k3(Ave({(xi)2})− 1)x

where k1, k2, k3 are scalar control gains. This equation can be rewritten as

(4.4) ẋ = −k1

n
11Tx− k2Lx− k3

(xTx

n
− 1
)
x.

The weighted Laplacian matrix L is real symmetric, so it has an eigenvalue decom-

position L = T TL∗T with L∗ = diag(0, λ2, . . . , λn) and T being an orthonormal matrix.

It is easier to analyze system (4.4) under a new set of coordinates y = (y1 . . . yn)T = Tx

where both matrices L and 11T can be simultaneously diagonalized:

(4.5) ẏ = −k1diag(1, 0, . . . , 0)y − k2L
∗y − k3

(yTy

n
− 1
)
y.

Denoting L̃∗ = diag{k1/k2, λ2, . . . , λn}, the system (4.5) can be rewritten as

(4.6) ẏ = −k2L̃
∗y − k3

(yTy

n
− 1
)
y.

The following theorem shows that for suitable gain conditions on k1, k2 and k3, system (4.3)

is convergent from almost all initial conditions to an eigenvector ṽ2 corresponding to the

eigenvalue −λ2.
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Theorem 4. Given any initial condition x(t0) and positive gains k1, k2, k3 > 0, as

long as y2(t0) 6= 0, the gain conditions

k1 > k2λ2(4.7)

k3 > k2λ2(4.8)

are necessary and sufficient for system (4.4) to converge to an eigenvector ṽ2 corre-

sponding to the eigenvalue −λ2 of the weighted Laplacian matrix −L satisfying ‖ṽ2‖ =√
n
(

k3−k2λ2

k3

)
.

Proof. See the Appendix. �

Next we modify the continuous-time power iteration (4.3) so that it can be decen-

tralized over the graph. In the decentralized algorithm, no single agent maintains an

estimate of the entire eigenvector ṽ2; instead, agent i maintains the single component xi

of the network’s estimate x of ṽ2. This is sufficient to maintain an estimate λi
2 of λ2.

4.3. Decentralized Power Iteration and Connectivity Estimation

To obtain a decentralized version of the power iteration algorithm, we first note that

it is possible for each agent to satisfy the gain conditions (4.7) and (4.8) without knowing

the graph topology. We know

∑
i

λi = trace(L) =
∑

Aij ≤ n(n− 1) max Aij.
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Additionally, in our edge weighting scheme introduced in Section 4.4, we have Aij ≤ 1.

Therefore each agent can satisfy (4.7) and (4.8) by choosing k3, k1 > n(n−1)k2 (assuming

n is known to every agent).

Next we point out that the matrix iteration ẋ = −Lx is a naturally decentralized

operation, and its implementation only requires local communication.

The last obstacle to decentralize the continuous-time power iteration (4.3) is the aver-

aging operation Ave(·). We can use the PI average consensus estimator [31] to decentral-

ize this averaging operation. As there are two averaging functions in (4.3), we need two

consensus estimators. Average consensus estimators allow n agents, each of which mea-

sures some time-varying scalar αi(t), to compute an approximation of α(t) = 1
n

∑
i α

i(t)

using only local communication. We use the PI estimator introduced in Chapter 2.2.2:

żi = γ(αi − zi)−KP

∑
j∈N i

[
zi − zj

]
+ KI

∑
j∈N i

[
wi − wj

](4.9)

ẇi =−KI

∑
j∈N i

[
zi − zj

]
.(4.10)

Here zi is the average estimate, γ > 0 is the rate new information replaces old information,

N i contains all one-hop neighbors of agent i in the communication network, and KP , KI

are estimator gains. When the network is connected, the estimator error is ei(t) = yi(t)−
1
n

∑n
i=1 αi(t) for each agent i.

In the decentralized implementation of (4.3), agent i maintains a scalar xi (which

converges to the i-th component of the eigenvector ṽ2) and four consensus estimator states

{zi,1, wi,1, zi,2, wi,2} (zi,1 and zi,2 are agent i’s estimates for Ave({xi}) and Ave({(xi)2})
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respectively) and receives from communication its neighbors’ {xj, zj,1, wj,1, zj,2, wj,2} for

all j ∈ N i. There are two ways to estimate the connectivity measure λ2. First, noticing

−Lṽ2 = λ2v2, agent i can estimate λ2 as

(4.11) λi
2 = −

∑
j∈N i Lijx

j

xi

when xi 6= 0. This estimate is nonsmooth when xi passes through zero, however. Therefore

we use a second method, based on Theorem 4, which says that zi,2 → ‖ṽ2‖2
n

= k3−k2λ2

k3
.

Agent i can therefore compute its estimate of λ2 as

(4.12) λi
2 =

k3

k2

(1− zi,2).

Example 1: We simulated the eigenvalue estimation algorithm over the 5-node con-

stant graph (Fig. 4.1), where the weights are set as Aij = 1. The eigenvalue spectrum of

its Laplacian matrix is {0, 0.83, 2.69, 4.00, 4.48}. The gains for the two PI average consen-

sus estimators are γ = 25, KP = 50, KI = 10 and the gains for the eigenvector estimator

are k1 = 6, k2 = 1, k3 = 20, satisfying (4.7) and (4.8). Fig. 4.1 (b) shows the estimated λi
2

for each node i.

4.4. Control to Maintain Connectivity

In this section we show how the connectivity estimator can be applied in a connectivity-

control algorithm. We start by showing one additional property of λ2.

Lemma 5. Given any positively weighted graph G, λ2 is a nondecreasing function of

each weight Aij.
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Figure 4.1. (a) A five-node network with all weights equal to 1. Nodes
are counter-clockwise numbered from 1 to 5 starting from the top node.
(b) Eigenvalue estimation through equation (4.12). The initial eigenvalue
estimate for each agent is randomized. The inset plot shows the transient
dynamics of the eigenvalue estimator.

Remark 1. This lemma is easily demonstrated from the following equivalent definition

of λ2:

(4.13) λ2 = min
x⊥1,x 6=0

xTLx

xTx
= min

x⊥1,x 6=0

∑
(i,j)∈E Aij(x

i − xj)2

xTx
.

Based on this property, we can choose a weight function Aij that is position-dependent.

Then we can design connectivity-maintaining motion controllers, moving the agents to

increase the connectivity of the network.

Given a scalar r as the maximal reliable inter-agent communication distance, one

simple weighting choice is

Aij =

 e−‖p
i−pj‖22/2σ2

if ‖pi − pj‖2 ≤ r,

0 otherwise.
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The weight decreases as the inter-agent distance gets larger. We choose the scalar pa-

rameter σ to satisfy a threshold condition e−r2/2σ2
= ε, with ε being a small predefined

threshold.

We know λ2 > 0 for connected graphs, and based on Lemma 5, λ2 increases as the

graph adds more links or as individual link weights increase as two agents come closer. We

can design a gradient controller where each node moves to maximize λ2, and this will in

effect maintain the connectivity of a graph. The gradient controller in [88] was designed

based on a similar idea. In that paper, each node moves to maximize the determinant of

the deflated Laplacian matrix of a graph, in effect guaranteeing the algebraic connectivity

λ2 is bounded away from 0.

Next we derive the analytical form of the gradient controller for fully-actuated first-

order agents. We use the normalized eigenvector corresponding to λ2 to make the gradient

of λ2 easier to derive. Given the normalized eigenvector v̂2 (‖v̂2‖ = 1) corresponding to

λ2, the differential of λ2 is

dλ2 = d(v̂T

2 Lv̂2)

= dv̂T

2 Lv2 + v̂T

2 dLv̂2 + v̂T

2 Ldv̂2.(4.14)

Because LT = L, we know that

(4.15) v̂T

2 Ldv̂2 = dv̂T

2 Lv2 = λ2dv̂T

2 v̂2 =
1

2
d(v̂T

2 v̂2) = 0.
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Based on (4.14) and (4.15), the gradient controller for agent k is

(4.16) uk = ṗk =
∂λ2

∂pk
= v̂T

2

∂L

∂pk
v̂2.

Next we replace the v̂2 in (4.16) with the ṽ2 in Theorem 4, which scales the control

effort but does not change its direction:

(4.17) uk = ṽT

2

∂L

∂pk
ṽ2 =

∑
(i,j)∈E

∂Aij

∂pk
(ṽi

2 − ṽj
2)

2.

Since we have defined Aij = e−‖p
i−pj‖22/2σ2

, we can compute

∂Aij

∂pi
= −Aij(p

i − pj)/σ2 i 6= j(4.18)

∂Aij

∂pj
= Aij(p

i − pj)/σ2 i 6= j(4.19)

∂Aii

∂pi
= 0(4.20)

∂Aij

∂pk
= 0 k 6= i, j.(4.21)

Plugging (5.1)-(5.4) into (4.17), we get

uk =
∑

(k,j)∈E

∂Akj

∂pk
(ṽk

2 − ṽj
2)

2

=
∑

(k,j)∈E

−Akj(ṽ
k
2 − ṽj

2)
2pk − pj

σ2
.(4.22)

Compared to the eigenvector estimators (4.11) and (4.12), the implementation of (4.22)

requires agent k to additionally obtain its neighbors’ positions {pj, j ∈ N i}. Agent k
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approximates the exact ṽk
2 , ṽ

j
2 with the estimates xk, xj, yielding the final control law:

(4.23) uk =
∑

(k,j)∈E

−Akj(x
k − xj)2pk − pj

σ2
.

Example 2: We simulated the connectivity-maintaining algorithm over a randomly-

generated six-node network. The communication radius is r = 20 and we set the threshold

ε = 0.01. In this network, the three big nodes are leaders. They all follow the same sinu-

soidal motion model ṗi
x(t) = −0.2, ṗi

y(t) = 0.5 cos(pi
x) with different initial configurations.

The three small nodes run (4.23) to move along with the leaders and maintain graph

connectivity.

The gains for the two average consensus estimators are γ = 100, KP = 50, KI = 200

and the gains for the eigenvector estimator are k1 = 18, k2 = 3, k3 = 60. We choose the

consensus and eigenvector estimator gains to approximately achieve a time-scale separa-

tion: the time constant of consensus estimation is significantly less than the time constant

of eigenvector estimation, which is significantly less than the time constant of the motion

controller. Fig. 4.2 shows four snapshots of these nodes during the motion and Fig. 4.3

shows the estimated λi
2 of each node i during the motion. A video of the simulation is

available at http://lims.mech.northwestern.edu/projects/swarm/connect.wmv.

http://lims.mech.northwestern.edu/projects/swarm/connect.wmv
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Figure 4.2. Snapshots of the agents during motion: (a) t = 0; (b) t = 14;
(c) t = 27; (d) t = 47.
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Figure 4.3. Each agent’s estimate of the the graph connectivity λ2 over
time. All agents’ estimates converge to the true algebraic connectivity of
the graph within a few seconds.
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CHAPTER 5

Formation Control

In this chapter we apply the decentralized estimation and control framework to the

problem of controlling a group of mobile agents to achieve the desired formation statistics.

We described two controllers, constructed based on the P consensus and the PI consensus

estimator respectively. Through the simulation section we show the advantage of the PI

estimator that this estimation procedure is robust to individual agent failures and has

zero steady-steady error for constant or slowly-changing inputs. We also validate our

approaches through physical experiments.

5.1. Formulation

Suppose a swarm consists of a collection of n mobile agents having positions p1, . . . , pn ∈

Rm, which we write also as the combined vector p = [pT
1 . . . pT

n]T ∈ Rmn. Then we can

represent the collection of all possible swarm configurations as the topological coproduct

P ,
∐∞

n=1 Rmn. We describe the desired swarm configuration using a vector goal function

f : P → R`. The primary objective of each agent is to move itself to an equilibrium

position so that the final swarm configuration p satisfies f(p) = f ?, where f ? ∈ Im(f) is

a goal vector known to each agent.

The total number n of agents in the swarm is unknown to each agent, although the

agents may have knowledge of an upper bound on n. Each agent measures its own

position and velocity and controls its own acceleration, p̈i = ui. Furthermore, each agent
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can communicate with its neighbors; specifically, agents i and j can communicate with

each other whenever pi ↔ pj, where↔ is a fixed symmetric relation on Rm. For example,

we may have pi ↔ pj if and only if |pi−pj| 6 r, where r represents a fixed communication

radius. Thus each configuration p ∈ P defines the graph of an underlying communication

network, and we let C ⊂ P denote the set of all such configurations for which this graph

is connected. As the agents move with time, the topology of this network can change, but

we will perform our stability analysis below under the assumption that p(t) ∈ C, namely,

that the network remains connected in forward time. For this reason we will assume

f ? ∈ f(C).

Our approach is based on following estimates of the gradient ∇J of the potential

function J : P→ R given by

J(p) =
[
f(p)− f ?

]T
Γ
[
f(p)− f ?

]
,(5.1)

where Γ ∈ R`×` is a suitably chosen symmetric positive-definite global gain matrix. We

let the set

Crit(J) ,
{
p ∈ P : ∇J(p) = 0

}
(5.2)

denote the set of critical points of J , and we classify such points as “good” critical points

where f(p) = f ? (these are the global minima of J) and “bad” critical points where f(p) 6=

f ?. We want the swarm to avoid getting stuck at bad critical points. Unfortunately, even

if a bad critical point of a C∞ potential J is a strict local maximum of J , it can still be

a stable equilibrium of the associated gradient flow ṗ = −∇J(p). For example, suppose
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J : R→ R is the C∞ function

J(p) =

[
1−

∫ p

0

x exp
(
− 1

x2

)
cos2

( 1

x2

)
dx

]2

.(5.3)

This function J(p) has a strict local maximum at p = 0, but this point is not isolated

in Crit(J) and is in fact a stable equilibrium of the gradient flow. To rule out such

pathological behavior, we will assume that J is locally constant on Crit(J).1 This will

indeed be the case for potentials of the form (5.1) when the goal function f is subanalytic

(see the Appendix) or in particular when f is a polynomial function.

Our algorithms will guarantee that the swarm trajectories always converge to equilib-

rium sets.2 For this reason we want all positive limit sets containing bad critical points

of J to be “unstable” in the following sense:

Definition 6. Let π(t, x) be a continuous stationary flow on a topological space X . A

closed, π-invariant set L ⊂ X is strongly unsteady (respectively, weakly unsteady) when

there exists an open set O ⊂ X with L ⊂ O such that for any open set U ⊂ X with

L ∩ U 6= ∅ (respectively, with L ⊂ U), there exists an initial state x0 ∈ U and a time

T > 0 such that π(t, x0) ∈ X \ O for all t > T .

Clearly all strongly unsteady invariant sets are weakly unsteady, and the two notions

coincide for equilibria. A weakly unsteady invariant set is both unstable (in the sense of

Lyapunov) and unattractive, but the converse is not always true (for example, one can

have an unstable, unattractive equilibrium which is not unsteady). If all positive limits

1We say that a function f on a topological space X is locally constant on a set S ⊂ X when every x ∈ S
has an open neighborhood N ⊂ X such that f is constant on N ∩ S.
2Note that convergence to an equilibrium set does not guarantee convergence to a single equilibrium,
even in gradient systems.



81

sets containing bad critical points are strongly unsteady, then whenever a swarm trajec-

tory approaches such a limit set, a small perturbation will cause it to leave a neighborhood

of this set forever.

5.2. Moment Statistics

We focus on goal functions f of the form

f(p) =
1

n(p)

n(p)∑
i=1

φ(pi) ,(5.4)

where φ : Rm → R` is a given moment-generating function and n(p) is the unique integer n

such that p ∈ Rmn. For example, for m = 3 and pi = [pix piy piz]
T , this function φ might

be a list of ` monomials of the form

φ(pi) = pa
ix pb

iy pc
iz ,(5.5)

where a, b, and c are nonnegative integers. In this case the goal function (5.4) is a list

of ` moments of the form

Mabc =
1

n

n∑
i=1

pa
ix pb

iy pc
iz ,(5.6)

where the sum a + b + c is called the order of the moment. Given a particular swarm

formation, a sufficient number of moments is guaranteed to distinguish it from any other

formation. In other words, moments can provide an exact formation description. We

are interested, however, in the case where a small number of low-order moments is used

to specify a family of formations. If ` moment constraints are specified on n robots in

an m-dimensional space, in general there is an (mn − `)-dimensional algebraic set of
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  (a)                                            (b)

Figure 5.1. (a) For three robots in the plane (mn = 6), first- and second-
order moment constraints (` = 5) restrict the swarm formation to a one-
dimensional space. Shown are three example formations, where the robots
in the same formation share the same symbol. The robots are confined to
an ellipse determined by the constraints. (b) For five robots in the plane
(mn = 10), first-, second-, and third-order moment constraints (` = 9)
restrict the swarm formation to a one-dimensional space. The robots are
shown moving along the constraint-preserving set.

swarm configurations that satisfy the constraints. Examples of one-dimensional families

of swarm configurations are given in Figure 5.1. The structure and topology of such

formation families can be studied using tools from real algebraic geometry [9]. Our

primary example in this thesis involves formations defined by first- and second-order

moments. The m first-order moments specify the center of mass of the swarm. From the

m(m + 1)/2 second-order moments we can derive m(m − 1)/2 variables describing the

orientation of orthogonal principal axes of inertia of the swarm and m shape variables

summarizing the elongation of the swarm along the principal axes. Our abstraction of

the swarm formation, then, is given by the m(m + 1)/2 group variables describing the

position and orientation of the principal axis frame in SE(m) and the m shape variables

describing the elongation of the swarm along these axes [5].

To write the moment-generating function φ for first- and second-order moments, let

vech : Rm×m → Rm(m+1)/2 denote the linear map which stacks the main and upper
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diagonals of a matrix into a vector, so that for m = 3,

vech


α11 α12 α13

α21 α22 α23

α31 α32 α33

 =



α11

α22

α33

α12

α23

α13


.(5.7)

Then φ for first- and second-order moments can be written as

φ(pi) =

 pi

vech(pip
T
i )

 ∈ R` ,(5.8)

where ` = m(m + 3)/2.

Given a closed set of swarm configurations D ⊂ P and a goal vector f ? ∈ f(D), we let

G(f ?, D) denote the cone of all symmetric positive definite matrices Γ such that no bad

critical points of J in D are local minima of J . To reduce the risk of the swarm getting

stuck at a bad critical point of J , we would ideally choose a weighting matrix Γ belonging

to G(f ?, D) for a large set D (i.e., one containing all likely swarm configurations). However,

it may be difficult to find such matrices Γ for general goal functions f . Nevertheless, for

the case of formations defined by first- and second-order moments with φ as in (5.8), we

can always compute members of G(f ?, D) when D contains all possible configurations of

at least m + 1 agents:
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Theorem 7. Let φ be as in (5.8), let D =
⋃∞

n=m+1 Rmn, and let f ? ∈ f(D). Then

there exists a symmetric matrix Γ > 0 such that for every bad critical point p ∈ D of J ,

the Hessian matrix HJ(p) has at least one strictly negative eigenvalue. In particular,

Γ ∈ G(f ?, D).

The proof of this theorem, which is constructive, is provided in the Appendix.

5.3. Nonlinear Gradient Control with High-Pass Estimators

In the notation of Section 2.1, the physical state of agent i is xi = [pT
i ṗT

i ]T , with

dynamics

ẋi = F (xi, ui) =

 ṗi

ui

(5.9)

and noise-free measurements

zi = C(xi,Psens
i ) =

 xi

f ?

 .(5.10)

We have already completed the first step in the design methodology of Section 2.1.2 by

choosing the cost J in (5.1) with f(p) in (5.4). According to the second step, we choose

an initial (unimplementable) local controller ui = K initial based on the gradient of this

cost, with an additional damping term:

ui = K initial(p, ṗi, f
?)

= −Bṗi −
[
Jφ(pi)

]T
Γ
[
f(p)− f ?

]
,(5.11)
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where B ∈ Rm×m is a damping matrix and Jφ(·) denotes the `×m Jacobian matrix of φ.

Here f(p) represents global information unavailable to each agent, so according to the

third step in our methodology, we design signal generator G and a global state estimator

Q and R to provide local estimates yi of the global variable f(p). In this section we

consider the P estimator in 2.2.1:

si = G(xi, zi, ηi, yi,Si) =

 pi

yi

(5.12)

η̇i = Q(xi, zi, ηi, yi,Si)

= −γηi −
∑
j 6=i

a(pi, pj)
[
yi − yj

]
(5.13)

yi = R(xi, zi, ηi,Si) = ηi + φ(pi) .(5.14)

Here yi(t) ∈ R` is the agent’s current estimate of f(p) and ηi(t) ∈ R` is the internal

estimator state. To implement this estimation algorithm, each agent i must continually

transmit its current values of pi and yi to its neighbors, as indicated by the signal gener-

ator (5.12). In the estimator dynamics (5.13), γ > 0 is an estimator “forgetting factor”

and a : Rm × Rm → R is a C1 symmetric function3 such that supp(a) ⊂ Graph(↔) (so

that a(pi, pj) 6= 0 only if agents i and j can communicate with each other).

The fourth and final step in our design is to construct the actual local control law K

by replacing f(p) in (5.11) with yi and adding a stabilizing nonlinear damping term:

ui = K(xi, zi, ηi, yi,Si)

3If X and Y are nonempty sets, we say that a function ψ : X×X → Y is symmetric when ψ(a, b) = ψ(b, a)
for all a, b ∈ X .
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= −Bṗi −
[
Jφ(pi)

]T
Γ
[
yi − f ?

]
−
[
Jφ(pi)

]T
Λ
[
Jφ(pi)

]
ṗi ,(5.15)

where Λ ∈ R`×` is a damping gain matrix. The utility of the extra nonlinear damping

term is apparent in the proof (in the Appendix) of Theorem 8, stated below. We now

proceed to investigate the behavior of this scheme (5.12)–(5.15).

Suppose the number n of agents in the swarm is fixed. We let 1n ∈ Rn denote the

vector of n ones (or simply 1 when n is clear from context), and we let Orth(1) denote the

collection of n× (n− 1) matrices S such that STS = I and ST1 = 0 (namely, the columns

of S form an orthonormal basis for span{1}⊥). Then by orthogonal decomposition,

I = SST +
11T

n
(5.16)

and thus ASSTAT 6 AAT for any n-column real matrix A (in particular we have |AS|F 6

|A|F where |·|F denotes the Frobenius norm). We define the Laplacian L(p) ∈ Rn×n to

be the symmetric matrix whose off-diagonal elements in row i, column j are equal to

−a(pi, pj) and whose diagonal elements are the negatives of the sums of the off-diagonal

elements in the same row (so that L(p)1 ≡ 0). Moreover, fixing some S ∈ Orth(1), we

define the reduced Laplacian L?(p) to be the (n− 1)× (n− 1) symmetric matrix

L?(p) = STL(p)S ,(5.17)

and we note from (5.16) that SL?(p) = L(p)S. Furthermore, for a connected configuration

p ∈ C and for positive estimator weights a(·, ·) on the connected arcs, the smallest eigen-

value of the reduced Laplacian L?(p) (called the algebraic connectivity of the underlying
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graph) will be strictly positive [23]. The first of our two primary assumptions we use to

prove our convergence results is that this eigenvalue is bounded away from zero, i.e., that

L?(p) > εI(5.18)

along trajectories in forward time for some constant ε > 0. In particular, (5.18) implies

that p(t) ∈ C for all t > t0. The second of our two primary assumptions takes the form

of the small-gain condition

λmax(Γ) <
ε

2
λmin

(
Λ + ΛT

)
,(5.19)

where λmax(·) and λmin(·) denote the maximum and minimum eigenvalues (respectively).

To better understand these conditions (5.18) and (5.19), suppose the estimator gain func-

tion a(·, ·) in (5.13) is simply

a(pi, pj) =


a0 when pi ↔ pj

0 otherwise,

(5.20)

where a0 > 0 is a scalar constant estimator gain (technically, a(·, ·) would be a C1 approx-

imation to this simple choice). Then for a connected network, the value of ε is bounded

from below by 2a0 − 2a0 cos(π/n), its value for the worst-case configuration of a linear

chain of agents [23]. Thus if we know an upper bound nmax on the total number n of

agents in the swarm, then we can choose our gains to satisfy

λmax(Γ) < a0

[
1− cos

( π

nmax

)]
λmin

(
Λ + ΛT

)
.(5.21)
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In this case we will always satisfy (5.18) and (5.19) provided the network remains con-

nected. The inequality (5.21) involves the gradient-descent control gain Γ, the estimator

gain a0, and the nonlinear damping gain Λ. Because of the possibility of noise and delay

in the communication channels, we would not choose the estimator gain a0 to be too large,

which means we would satisfy (5.21) by moving slowly enough, either by choosing a small

control gain Γ or a large damping gain Λ.

The following theorem states our results for the case that γ = 0 and that each state ηi

has the initial value ηi(t0) = 0; the more general cases will be discussed below.

Theorem 8. Suppose φ is C2 and proper, fix f ? ∈ f(C), suppose B+BT > 0, suppose

ηi(t0) = 0 for each i, and suppose the weighting a(·, ·) is C1 and symmetric. Suppose n is

fixed, suppose (5.18) and (5.19) hold for some ε > 0, and fix γ = 0. Then each trajectory

of the swarm system (5.12)–(5.15) is bounded in forward time, and its positive limit set L+

consists of equilibria. If in addition φ is subanalytic and there exists a closed set D ⊂ P

such that Γ ∈ G(f ?, D) and p(t) ∈ D for all t > t0, then every positive limit set L+

containing a bad equilibrium (i.e., an equilibrium corresponding to a bad critical point

of J) is strongly unsteady.

In particular, if we choose φ as in (5.8) to include all first- and second-order moments,

if we assume n > m+1, and if we choose Γ and D according to Theorem 7, then clearly φ

is C2, proper, and subanalytic, Γ ∈ G(f ?, D), and p(t) ∈ D for all t > t0. In this case the

swarm will generically converge to the set of configurations satisfying the desired moment

statistics, leaving any bad configuration after a slight perturbation.
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As is evident in the proof of this theorem in the Appendix, the dynamics of the

estimator (5.13)–(5.14) include a subsystem of the form χ̇ = −γχ which is uncontrollable

from the inputs φ(pi) but observable through the estimation errors ei = f(p) − yi. If

γ = 0 and if the states ηi(t0) are not initialized to zero, then the constants χ will generate

persistent nonzero constant offsets in the error variables ei. These steady-state estimation

errors will cause the swarm to converge to a formation with the wrong statistics. To avoid

such errors, one would have to somehow globally simultaneously reinitialize these states

to zero whenever agents leave the swarm (e.g., due to failure) or new agents join the

swarm. Furthermore, if γ = 0 then any additive noise in the communication channels

will pass through pure integrators χ̇ = noise, resulting in random drift in the estimation

errors. To alleviate these problems one could choose γ > 0; in this case any incorrect

initialization of the states ηi(t0) will be asymptotically forgotten, and communication noise

will not cause random drift. However, the estimator (5.13)–(5.14) exhibits steady-state

error under constant inputs, an error whose size is proportional to γ/(γ + ε) (and hence

nonzero for γ > 0) [31]. Nevertheless, as we will illustrate in Section 5.5, a small error

due to a small positive γ may be preferable to errors caused by incorrect initializations.

In the next subsection we introduce a more complex estimator which achieves robustness

to initialization errors and adding or subtracting agents from the network but does so

without introducing any steady-state error.

The conclusion of Theorem 8 (and likewise of Theorem 9 below) remains valid if

the damping matrix B is a C1 function of the states x1, . . . , xn and η1, . . . , ηn, provided

B(·) + BT (·) > 0 holds globally (however, keep in mind that B can only depend on local

variables, i.e., variables available to each agent via sensing or communication). Hence we
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can view this damping matrix B as an additional source of control, and we might design

it to help maintain network connectivity or to help avoid collisions between agents. This

extension is a topic of future research.

5.4. Nonlinear Gradient Control with PI Estimators

In this section we assume that there exists a proper metric d on Rm such that the

quantity

d(n) , sup
p∈C∩Rmn

max
16i,j6n

d(pi, pj) ,(5.22)

which is the maximum diameter of a connected swarm of n agents, is finite for every n. For

the case in which pi ↔ pj if and only if |pi−pj| 6 r, where r > 0 is a fixed communication

radius, we can take d to be the usual Euclidean metric on Rm. It follows from (5.22) that

there exists a class-K function a and a C1 function ζ : Rm → R such that

|φ(pi)− φ(pj)|2 6 a
(
d(n(p))

)
· ζ(pi)(5.23)

for every p ∈ C and every i, j ∈ {1, . . . , n(p)} [29, Corollary A.15].

The agent dynamics, measurements, and initial local controller are as before in (5.9),

(5.10), and (5.11), but now we use the PI estimator introduced in Section 2.2.2:

si =

 pi

ηi

 , where ηi =

 vi

wi

(5.24)
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v̇i =− γvi −
∑
j 6=i

a(pi, pj)
[
vi − vj

]
+
∑
j 6=i

b(pi, pj)
[
wi − wj

]
+ γφ(pi)

(5.25)

ẇi =−
∑
j 6=i

b(pi, pj)
[
vi − vj

]
(5.26)

yi = vi .(5.27)

Here γ > 0 is a global forgetting factor which controls the rate of replacing old information

with new (with γ = 0 no longer allowed as it now scales the input to the estimator), and

a, b : Rm × Rm → R are bounded C1 symmetric functions such that supp(a) ∪ supp(b) ⊂

Graph(↔). We also assume that b has bounded first-order partial derivatives.

The actual control law for use with this new PI estimator is similar to the one in (5.15)

but includes an additional nonlinear damping term:

(5.28) ui = −Bṗi −
[
Jφ(pi)

]T
Γ
[
yi − f ?

]
−
[
Jφ(pi)

]T
Λ
[
Jφ(pi)

]
ṗi − cζ(pi)ṗi ,

where B and Λ are damping gain matrices as before and c > 0 is a new scalar nonlinear

damping gain. We now proceed to investigate the behavior of this scheme (5.24)–(5.28).

Again, suppose n is fixed. We define the proportional Laplacian LP (p) ∈ Rn×n to

be the symmetric matrix whose off-diagonal elements in row i, column j are equal to

−a(pi, pj) and whose diagonal elements are such that LP (p)1 ≡ 0. We define the integral

Laplacian LI(p) ∈ Rn×n in the same way but using b(·, ·) instead of a(·, ·). Again fixing

S ∈ Orth(1), we define the corresponding reduced Laplacians L?
P (p) = STLP (p)S and

L?
I(p) = STLI(p)S. Our first primary assumption we use to prove our convergence results
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is that there exist constants ρ > −γ and ε > 0 such that

ρI 6 L?
P (p) 6 ρ̄I(5.29)

εI 6 L?
I(p) 6 ε̄I(5.30)

along trajectories in forward time (again implying a connected network p(t) ∈ C). Here

the constants ρ̄, ε̄ > 0 represent upper bounds on the reduced Laplacians which exist

because the functions a and b are bounded. Notice that ρ need not be a positive number;

in particular, the choice a(·, ·) ≡ 0 results in L?
P (·) ≡ 0 which satisfies (5.29) with ρ = 0.

Such a choice simplifies the estimator without changing our convergence results, but it

might adversely impact performance.

Our second primary assumption takes the form of the small-gain condition

λmax(Γ) < δ1λmin

(
Λ + ΛT

)
6 δ2c ,(5.31)

where δ1, δ2 > 0 are scalar constants depending on n, ρ, ρ̄, ε, ε̄, γ, and the bounds on the

partial derivatives of b (the exact dependencies are provided in the proof of Theorem 9

in the Appendix). As before, if an upper bound on n is known, then we can compute

gains Γ, Λ, and c which satisfy (5.31).

Theorem 9. Suppose φ is C2 and proper, fix f ? ∈ f(C), suppose B + BT > 0, and

suppose a(·, ·) and b(·, ·) are C1, bounded, symmetric, and such that b has bounded first-

order partial derivatives. Suppose n is fixed, suppose (5.29) and (5.30) hold for some

ρ > −γ and ε > 0 (with γ > 0), and suppose the inequalities (5.31) are satisfied. Then

each trajectory of the swarm system (5.24)–(5.28) is bounded in forward time, and its
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positive limit set L+ consists of equilibria. If in addition φ is subanalytic and there exists

a closed set D ⊂ P such that Γ ∈ G(f ?, D) and p(t) ∈ D for all t > t0, then every positive

limit set L+ containing a bad equilibrium is strongly unsteady.

Like the high-pass estimator (5.13)–(5.14) with γ = 0, the PI estimator (6.21)–(5.27)

(with γ > 0) includes a subsystem of the form χ̇ = 0 which is uncontrollable from the

inputs φ(pi) (see the proof in the Appendix). Thus, as before, χ might be nonzero due

to inconsistent initializations and might drift due to communication noise. However,

unlike the high-pass case, these states χ are not observable through the estimation errors

ei = f(p)− yi, which means their behavior will not affect the swarm dynamics.

5.5. Simulation Results

We simulated the algorithms in Sections 5.3 and 5.4 for a swarm of n = 7 planar

robots (m = 2), φ as in (5.8), and f ? = [0 0 50 0 50]T . The controller gain matrix was

Γ = diag(80, 80, 8, 8, 8). The estimator gain functions where chosen according to an equal

weighting scheme with a communication radius of 15: a(pi, pj) = a0 and b(pi, pj) = b0

when |pi − pj| ≤ 15 and a(pi, pj) = b(pi, pj) = 0 otherwise (the fact that these gain

functions are discontinuous had little effect on the simulations). Also, we set the nonlinear

damping gains Λ and c in (5.15) and (5.28) to zero as the constant B provided adequate

damping over a bounded region.

We first simulated the high-pass scheme of Section 5.3 with damping B = 40I, esti-

mator gain a0 = 20, and no forgetting factor (γ = 0). Figure 5.2 shows the results of

the inertial moments M10 = CMx (the first component of f) and M02 = Ixx (the fifth

component of f). The first 25 seconds show the convergence of the formation statistics to
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Figure 5.2. The high-pass algorithm with no forgetting factor (γ = 0).

their desired values with no steady-state error. At time t = 25, one of the agents fails and

leaves the swarm, resulting in a permanent nonzero steady-state error after that point.

Actually, the remaining agents do not move at all from their equilibria after time t = 25,

demonstrating that the high-pass estimator with no forgetting factor does not recover

from initialization errors. If we include a nonzero forgetting factor of γ = 0.3, then we

do recover from the loss of the agent (Figure 5.3), but we now incur a small nonzero

steady-state error both before and after the loss.

We next simulated the PI scheme of Section 5.4 with increased damping B = 100I,

estimator gains a0 = 20 and b0 = 0.2, and γ = 6. Figures 5.4 and 5.5 show that the PI

algorithm can also recover from the loss of an agent (again at time t = 25) but now with

zero steady-state error.

5.6. Performance Increase through Optimized Communication Weights

To illustrate the effect of improved estimation speed, we consider a formation control

example with 6 robots. We assume the robots maintain a fixed communication topology
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Figure 5.3. The high-pass algorithm with forgetting factor γ = 0.3.
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Figure 5.4. The PI algorithm.

as they move, shown in Figure 3.4. Figure 5.6 shows the convergence of the x-coordinate

of the swarm center of mass from the same initial condition for estimators using the

equal weighting strategy and the inverse-degree weighting heuristic. The performance is

significantly improved using the heuristic weighting strategy.
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(a) (b) (c) (d) 

Figure 5.5. Snapshots of the robots’ movement under the PI scheme: (a)
t = 0 initial condition, (b) t = 25 robots satisfy the goal, (c) t = 25 one
robot dies, (d) t = 45 robots move to re-satisfy the goal.
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Figure 5.6. Convergence of CMx with different weighting schemes. For
this particular network topology, the encoded Laplacian has time constant
τ = 3.73 under equal weighting and τ = 3.43 under inverse degree weight-
ing.

5.7. Physical Experiments

5.7.1. Hardware and Software Description

We use a group of e-puck robots designed by EPFL [13] as our test bed. Each e-puck

is a two-wheel differential drive vehicle powered by a 3.6V, 1.4Ah Lion battery. It has

two stepper motors each with 20 steps per revolution and a gear reduction ratio of 50 : 1
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(a) (b) (c)

Figure 5.7. (a) The e-puck mobile robot developed by EPFL. (b) For vision
localization system, each e-puck is associated with a uniquely-identifiable
pattern. (c) The gradient controller effectively controls the velocity of the
reference point (the offset h = 35.0mm), and this reference velocity is trans-
lated to the individual wheel velocity through a motion controller (described
in Section 5.7.3.

(see Fig. 5.7 (a)). The e-puck uses a 16 bit PIC30F6014A microprocessor (144k program

space and 8k data RAM), and it can communicate with other e-pucks through bluetooth

or Xbeer communication. During the experiment, we use the 802.15.4 based Xbeer

communication, at a baud rate of 115200.

On the software side, each e-puck is driven by two interrupts. Timer1 generates

a high level ISR at 2.5Hz: this routine handles obstacle avoidance and the high level

estimation and control calculation (Fig. 5.8). Dead reckoning is calculated each time

the stepper motor steps. UART2 handles the low level ISR, and within this routine the

robot receives the packet from other e-pucks and preprocesses the data for the consensus

calculation. Each data packet contains thirteen 32 bit floating-point numbers representing

the ten estimator states, and two 32 bit floating-point numbers representing the reference

point position of the e-puck. This low level ISR is designed to run as fast as possible.

To offset the position drift caused by the odometry error, each e-puck is covered by a

white box with a uniquely-identifiable grid pattern on top (See Fig. 5.7 (b)). A camera
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Figure 5.8. A block diagram of the control systems on each e-puck.

system (See Fig. 5.9), overseeing all grid patterns, sends out continuous images to a central

PC which runs computer vision algorithms to track the positions of all the e-pucks. The

PC sends out the updated position information to each e-puck at approximately 1Hz.

5.7.2. First-order Formation Control Controller

The original formation control controller we developed in Section 5.4 is for second-order

systems. In this experiment, we implement a first-order version of this controller:

(5.32) ui =
[
I +

[
Jφ(pi)

]T
Λ
[
Jφ(pi)

]]−1[
Jφ(pi)

]T
Γ
[
f ? − yi

]
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Figure 5.9. The camera system, consisting of four overhead Logitech we-
bcams, can cover a 3m by 3m workspace. After calibration, the camera
system can recognize a static pattern anywhere in the workspace within an
error bound of 2.

where yi is the output of the PI consensus estimator introduced in Section 2.2.2. We

rewrite the estimator equations here for easy reference:

v̇i = −γvi −
∑
j 6=i

a
[
vi − vj

]
+
∑
j 6=i

b
[
wi − wj

]
+ γφ(pi)

ẇi = −
∑
j 6=i

b
[
vi − vj

]
yi = vi .



100

α1

α2

x

y

Figure 5.10. Schematic of the motion control algorithm. In between the
mainloop interrupts, the gradient controller computes the desired speed for
each wheels based on the desired ending position of the reference point.

5.7.3. Motion Controller Implementation

The gradient controller described in the last section computes a desired velocity for the

reference point (See Fig. 5.10). The motion controller translates this velocity into indi-

vidual wheel speed based on the desired end position of the reference point before the

next mainloop interrupt.

Assuming the desired velocity for the reference point is v = (vx, vy) (in the local frame)

and the time between two interrupts is dt. Then in between two interrupts the desire angle

of rotation for the reference point is

(5.33) θ = α2 − α1

where

α1 = arctan(
h

w + L
)(5.34)
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α2 = arctan(
h + vydt

w + L− vxdt
)(5.35)

In order to find the center of rotation, we need to solve for L. Based on the geometry, we

know that

(5.36) h2 + (w + L)2 = (h + vydt)2 + (w + L− vxdt)2

which gives

(5.37) 2w + 2L− vxdt =
vy

vx

(2h + vydt)

Based on (5.37), we can solve for the angles α1 and α2:

α1 = arctan(
2hvx

2hvy + v2dt
)(5.38)

α2 = arctan(
2vx(h + vydt)

2vy(h + vydt)− v2dt
).(5.39)

Then the left and right wheel speed can be solved as

vl =
α2 − α1

dt
(2w + L)(5.40)

vr =
α2 − α1

dt
L(5.41)

where the value of L is given in (5.37).

5.7.4. Obstacle Avoidance Implementation

Each packet the e-puck broadcast out contains its own reference point position, so by

receiving the packets from other agents each e-puck can keep track of the variable dist,
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the distance from itself to its nearest neighbor. dist is computed as the distance between

the reference point positions of the two e-pucks. When dist is smaller than a predefined

safe distance SAFEDIST , the e-puck changes its heading direction to the right of it

nearest neighbor.

In the implementation, we design the turning rate to be related to the variable dist:

the smaller dist is, the faster the e-puck turns. Each e-puck has a radius of 35mm, so

two e-pucks may collide into each other when dist ≤ 120mm. Based on this, we defined

a distance-based weighting function

(5.42) wt =
SAFEDIST − dist

SAFEDIST − 120

when dist > 120 and wt = 1 when dist < 120. If θact is the current heading direction and

θ0 is the collision-safe direction (See Fig. 5.11), θact is updated as

(5.43) θact ← θact − (θact − θ0)wtαwt

where 0 < αwt ≤ 1 is a parameter used to tune the turning rate. An increase of the

maximal speed allowed by each e-puck or a slow down of the main interrupt loop Timer1

may cause more collisions, and one can decrease αwt to increase the turning rate. An

increased tuning rate will help avoid more potential collisions, but too high turning rate

will make the trajectory of the e-puck nonsmooth.

5.7.5. Experiment Setup and Results

Our formation control experiment has three phases. After initialized in random locations,

eight e-pucks first move to achieve the desired statistics of (100, 300, 130000, 60000, 120000).
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θact

θ0
r

Figure 5.11. Schematic of the obstacle avoidance algorithm. Each e-puck
is drawn as a solid circle with a triangle indicating the reference point.
Because each e-puck only knows the reference point position of its nearest
neighbor, to the e-puck its neighbor can be anywhere within a circle with
radius r = 70mm, which is the diameter of an e-puck.
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Figure 5.12. Trajectories of the e-pucks for the first 100 seconds during
phase 1.

After they have satisfied these statistics, at approximately t = 500sec we let them

move again to satisfy a different set of statistics (100,−200, 130000, 20000, 80000) (See

Fig. 5.12). After the group of e-pucks satisfy the new statistics again, at approximately
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t = 570sec, we randomly turned off two e-pucks, the remaining six e-pucks move again to

re-satisfy the statistics (100,−200, 130000, 20000, 80000).

As mentioned before, since the gradient-based swarm controller is developed for point-

mass system, in the experiment we are effectively controlling the velocity of the reference

point of the e-puck, and this desired velocity is translated to the two desired wheel ve-

locities. We set our controller gains as Γ = diag(8, 8, 0.01, 0.01, 0.01). We set the com-

munication mode for each e-puck to be broadcasting, and within this workspace range all

e-pucks form a all-to-all communication network. The estimator gains (Section 5.7.2 ) are

a0 = 0.23, b0 = 0.03, γ = 0.02.

As shown in Fig. 5.13, the PI dynamic consensus estimator is able to track the average

of all agents’ inputs. Moreover, the feedback system is stable and the agents reach the

group equilibrium which satisfies the desired moment statistics.

There are a number of factors that limit the performance of the system. It is desirable

to speed the system up, but the maximum rotating speed of the wheel is limited to 1

revolution per second and the main loop interrupt time can not be less than 0.4 second

due to the current hardware constraint (See Fig. 5.8 for the main loop tasks). One

potential idea for future improvement is to use state-dependant control gains, so that the

wheel velocities are always saturated when the actual group statistics is still far from the

desired group statistics. In terms of accuracy of the system, encoder noise causes errors

in dead reckoning, and the central vision system itself has position errors around 2cm as

well. In addition, packet error in the wireless communication system causes additional

transient in the consensus estimation and delays the correct convergence of the overall

system. Due to these numerous error sources, each e-puck jitters when the group statistics
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Figure 5.13. Estimated statistics from all e-pucks.

is close to the target statistics. We can further add in a dead-band or hysteresis in the

control gains to reduce the jittering behavior.
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CHAPTER 6

Target Localization

In this chapter we will apply the decentralized estimation and control framework to the

problem of localizing a moving target with a mobile sensor network. Each agent maintains

a target estimate, fuses its own estimate with its neighbors estimates, and moves so as to

maximize the expected information from its sensor, relative to the current uncertainty in

the estimate.

6.1. Formulation

6.1.1. Measurement Model

We consider n sensors and one target moving in the plane, having positions p1, · · · , pn ∈ R2

and xt ∈ R2, respectively. The observation made by the i th sensor is given by

zi = Hixt + vi , i = 1, . . . , n ,(6.1)

where the measurement noise vi is a continuous-time Gaussian noise with zero mean. This

measurement model can include several different types of sensors, and in this thesis we

focus on range-bearing sensors and range-only sensors as illustrative examples.

In a standard linear range-finding sensor model [63], [12], Hi = I2 (the 2× 2 identity

matrix) and its covariance matrix Ri assumes a diagonal structure in the sensor’s local
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range/bearing frame:

Ri =

 (σi
range)

2 0

0 (σi
bearing)

2

 .(6.2)

The range measurement noise variance (σi
range)

2 is commonly represented by a function

fr(ri) of the distance ri from the target to sensor i. The bearing noise variance (σi
bearing)

2

also depends on the range and can be modeled as fb(ri). We use the following simple yet

representative forms of these functions:

(σi
range)

2 = fr(ri) = a2(ri − a1)
2 + a0(6.3)

(σi
bearing)

2 = fb(ri) = αfr(ri) ,(6.4)

where a0, a1, a2, α are model parameters. This measurement uncertainty model assumes

the existence of a “sweet spot” location ri = a1 at which the noise is at its minimum

value. In practice, when the target is out of the sensing range, we can initialize the

diagonal entries of Ri to be ∞.

If the sensor being used takes a nonlinear measurement of the state, we will use its

linearized approximate model. For example, given a range-only sensor i:

(6.5) zi = ‖xt − pi‖2 + vi

with the Gaussian noise level Ri = fr(ri) (as in (6.3)), we can linearize it around the point

xt0 = (x0, y0):

(6.6) z̃i = −Hixt + vi
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Figure 6.1. Schematic of the measurement models for range-bearing sensors
(r-b) and range-only sensors (r). For the range-bearing sensor, the segment
of the annulus shows the one-sigma uncertainty of each sensor’s estimate
and the ellipse is the approximation that we use.

with

Hi =

[
px

i −x0

2
√

(x0−px
i )2+(y0−py

i )2

py
i −y0

2
√

(x0−px
i )2+(y0−py

i )2

]
=

[
cos(θi0) sin(θi0)

]
(6.7)

and z̃i = zi − ||xt0 − pi||2 −Hixt0 is our modified measurement to take into account the

linearization effect. Here both Hi and z̃i can be obtained by sensor i locally. In this thesis,

we do not deal with the sensor i’s self-localization error and assume pi can be measured

perfectly.

6.1.2. Gradient Controller Design

We consider two different ways of fusing the local target position measurements zi and

error covariances Ri to obtain a global target position estimate x̂global and global error

covariance Pglobal. The first method, described in Section 6.2 and based on the work
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in [12], uses only current measurements to obtain x̂global and Pglobal. The second method,

described in Section 6.3, defines x̂global and Pglobal by means of a Kalman filter. In either

case, the matrix Pglobal depends on the sensor and target locations, which means the

sensors can move to reduce the uncertainty Pglobal. To formulate a proper cost function,

we can use either

(6.8) J = det(Pglobal)

or

(6.9) J = tr(Pglobal)

In optimal experiments theory [26], they are referred to as D-optimal design and A-

optimal design, respectively. For simplicity, we assume all agents are kinematic and fully

actuated so that ṗi = ui, and we use the gradient controller

ui = K initial(·) = −ΓT T

i


∂J

∂ri

1

ri

∂J

∂θi

 ,(6.10)

where Γ > 0 is a gain matrix, θi = ∠(pi − xt) is the angle from the target to sensor i,

and Ti is the rotation matrix

Ti =

 cos(θi) sin(θi)

− sin(θi) cos(θi)

 .(6.11)
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We also use Ti to transform Ri, the covariance matrix in the local frame, to TiRiT
T
i , the

covariance matrix in the global Cartesian frame. In the face of the nonlinear transforma-

tion from polar frames to Cartesian frames, this is a convenient approximation (Fig. 6.1).

Furthermore, we define

P r
i ,

∂Pglobal

∂ri

, P θ
i ,

∂Pglobal

∂θi

,(6.12)

and use the following facts from matrix calculus [10]:

∂

∂x
f(A(x)) = tr[

∂f

dA

∂A

∂x
](6.13)

∂

∂A
det(A) = |A|A−T = |A|A−1(6.14)

∂

∂A
tr(A) = I(6.15)

∂

∂x
A−1 = −A−1(

∂A

∂x
)A−1(6.16)

From above we can calculate the gradients in (6.10) as

∂J

∂ri

= J · tr
[
P−1

globalP
r
i

]
(6.17)

∂J

∂θi

= J · tr
[
P−1

globalP
θ
i

]
(6.18)

when we use the D-optimal design (6.8) or the alternative form

∂J

∂ri

= tr
[
P r

i

]
(6.19)

∂J

∂θi

= tr
[
P θ

i

]
(6.20)
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when we use the A-optimal design (6.9).

In general the controller in (6.17)− (6.20) is centralized because Pglobal, P
θ
i , P r

i each

contains information from all sensors. We will obtain the implementable, decentralized

local controller ui = K(·) from (6.10) by replacing any unavailable global quantities with

local estimates.

6.1.3. Distributed Estimator Design

In both the sensor fusion schemes in Sections 6.2 and 6.3, the sum of the information from

each individual sensors is used to calculate the global information Pglobal (also P θ
i , P r

i ). To

have better noise suppression, we use PI dynamic average consensus estimator this time.

For n agents, assume each agent i has an input ui(t) ∈ Rk×r, internal states vi, wi ∈ Rk×r

and output yi = vi. We use the following simplified PI estimator form:

v̇i =− γvi −Kp

∑
j∈Ni

[
vi − vj

]
+ Ki

∑
j∈Ni

[
wi − wj

]
+ γui

(6.21)

ẇi =−Ki

∑
j∈Ni

[
vi − vj

]
.(6.22)

The following two sections propose two generic sensor fusion schemes to obtain Pglobal.

In each scheme, the explicit form of the derived motion controller depends on the choice of

cost functions (D-optimal or A-optimal) and sensor models (range-bearing, range-only).

In Sections 6.2 and 6.3 we derive these equations for range-bearing sensors. The more

complicated case with the range-only sensors are dealt with in Section 6.5.
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6.2. One-Time Measurement Approach

An instantaneous fusion of current sensor readings leads to the following relations

[12,63]:

P−1
globalx̂global =

n∑
i=1

HT

i (TiRiT
T

i )−1zi =
n∑

i=1

HT

i TiR
−1
i T T

i zi(6.23)

P−1
global =

n∑
i=1

HT

i (TiRiT
T

i )−1Hi =
n∑

i=1

HT

i TiR
−1
i T T

i Hi ,(6.24)

We further use the rules in (6.13) – (6.16) to find P r
i , P θ

i :

P r
i =

∂

∂ri

(
n∑

i=1

HT

i TiR
−1
i T T

i Hi)
−1

= −Pglobal
∂

∂ri

(
n∑

i=1

HT

i TiR
−1
i T T

i Hi)Pglobal

= −Pglobal
∂

∂ri

(HT

i TiR
−1
i T T

i Hi)Pglobal(6.25)

and similarly

P θ
i = −Pglobal

∂

∂θi

(HT

i TiR
−1
i T T

i Hi)Pglobal.(6.26)

For range-bearing sensors, we plug in Hi = I2 and (6.3), (6.11) into (6.25), (6.26):

P r
i = 2a2(ri − a1)PglobalTiR

−2
i

 1 0

0 α

T T

i Pglobal(6.27)

P θ
i = Pglobal

(
Ai + AT

i

)
Pglobal(6.28)
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with

Ai =

 0 −1

1 0

TiR
−1
i T T

i .(6.29)

We implement a decentralized version of the resulting gradient control law (6.10) as

follows. Each agent runs a PI average consensus estimator with local matrix input ui =

nTiR
−1
i T T

i (for a total of 3 scalar estimators due to the symmetry of this 2 × 2 matrix),

but with the unknown quantities ri and θi replaced by the measurements

ri ≈ |pi − zi| , θi ≈ ∠(pi − zi) .(6.30)

The inverse of the output of this estimator is Pi, the local estimate of Pglobal. Each agent

runs a second average consensus estimator with local vector input nTiR
−1
i T T

i zi (for a total

of 2 scalar estimators), again with the replacements (6.30). The output of this second

estimator, when multiplied by Pi, yields x̂i, the local estimate of x̂global. We now evaluate

the expressions (6.8), (6.27), and (6.28) by replacing Pglobal with Pi and using the following

filtered versions of the replacements (6.30):

ri ≈ |pi − x̂i| , θi ≈ ∠(pi − x̂i) .(6.31)

These replacements lead to the decentralized version of the control law (E.10) with gradi-

ents (6.17), (6.18) The same approach applies when we use the control law (6.19), (6.20).

This implementation assumes the sensor model parameters a0, a1, a2, and α are known

to each agent.
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6.3. Kalman Filter Approach

The approach in Section 6.2 fuses sensor readings from current measurements only.

To make use of past measurements as well, we can adopt a Kalman filter approach to

defining x̂global and Pglobal. We begin with a linear target model

ẋt = Fxt + Gut + w ,(6.32)

where ut is an exogenous input and w is a continuous-time Gaussian noise with zero mean

and covariance matrix Q. We consider the centralized Kalman-Bucy filter [74]:

Ṗglobal = FPglobal + PglobalF
T + Q− nPglobalCPglobal(6.33)

˙̂xglobal = Fx̂global + Gut + nPglobal(y − Cx̂global) ,(6.34)

where C and y are the fused measurements

C =
1

n

n∑
i=1

HT

i TiR
−1
i T T

i HI , y =
1

n

n∑
i=1

HT

i TiR
−1
i T T

i zi(6.35)

and initial conditions are given by the one-time measurements (6.23) and (6.24). The

partial derivatives in (6.12) can be obtained by taking partial derivatives on both sides

of (6.33):

Ṗ r
i = FP r

i + P r
i F T − nP r

i CPglobal − nPglobalCP r
i

+ Pglobal
∂

∂ri

(HT

i TiR
−1
i T T

i Hi)Pglobal(6.36)

Ṗ θ
i = FP θ

i + P θ
i F T − nP θ

i CPglobal − nPglobalCP θ
i
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+ Pglobal
∂

∂θi

(HT

i TiR
−1
i T T

i Hi)Pglobal(6.37)

For range-bearing sensors, we plug in Hi = I2 and (6.3), (6.11) into (6.36), (6.37):

Ṗ r
i = FP r

i + P r
i F T − nP r

i CPglobal − nPglobalCP r
i

+ 2a2(ri − a1)PglobalTiR
−2
i

 1 0

0 α

T T

i Pglobal(6.38)

Ṗ θ
i = FP θ

i + P θ
i F T − nP θ

i CPglobal − nPglobalCP θ
i

+ Pglobal

(
Ai + AT

i

)
Pglobal(6.39)

with initial conditions calculated according to the one-time measurements (6.27) and (6.28).

We implement a decentralized version of the resulting gradient control law (6.10) as

follows. Each agent runs two average consensus estimators, one with local matrix input

TiR
−1
i T T

i and local output Ci, and the other with local vector input TiR
−1
i T T

i zi and local

output yi. Each agent also maintains estimates Pi and x̂i of Pglobal and x̂global (respectively)

by means of the differential equations

Ṗi = FPi + PiF
T + Q− nPiCiPi(6.40)

˙̂xi = Fx̂i + Gut + nPi(yi − Cix̂i)(6.41)

with initial conditions

Pi(0) = (TiRiT
T

i )(0) , x̂i(0) = zi(0) .(6.42)
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Finally, each agent maintains local copies of the gradients P r
i and P θ

i (which we again

name P r
i and P θ

i with a slight abuse of notation) by means of the differential equations

Ṗ r
i =

∂

∂ri

(FPi + PiF
T + Q− nPiCiPi)

= FP r
i + P r

i F T − nP r
i CiPi − nPiCiP

r
i

+ 2a2(ri − a1)PiTiR
−2
i

 1 0

0 α

T T

i Pi(6.43)

Ṗ θ
i =

∂

∂θi

(FPi + PiF
T + Q− nPiCiPi)

= FP θ
i + P θ

i F T − nP θ
i CiPi − nPiCiP

θ
i

+ Pi

(
Ai + AT

i

)
Pi(6.44)

with initial conditions given by (6.27) and (6.28) but with Pi(0) replacing Pglobal(0). In

all of these equations we use the replacements (6.31), and we arrive at an implementable

version of the local controller (E.10). This implementation assumes that F , G, Q, ut, n,

and the sensor model parameters a0, a1, a2, and α are known to each agent.

6.4. Simulation Results

We use three range-bearing sensors starting from (88.73, 106.76), (89.05, 75.98), (99.94, 77.93)

and a moving target starting from (100, 100). The dynamic model of the target is

ẋt = ut + w with ut =

[
0.1 0.1

]T

and Q = diag(0.05 0.05). The sensor model pa-

rameters are a0 = 0.3528, a1 = 15.625, a2 = 0.0008, and α = 5. Here we use a radius

based communication model. The communication radius is set at r = 50 to guarantee the

connectedness of the network. We choose a controller gain of Γ = 20I.
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Figure 6.2. Trajectories of sensors with a moving target starting from
(100, 100). The solid lines denote the Kalman filter scheme and the dashed
lines denote the one-time measurement scheme.

Figure 6.2 shows the actual trajectories of the sensors. In both sensor fusion schemes,

the sensors space themselves from others by 60 degrees (relative to the target). Previous

analysis shows this is the optimal collaborative configuration to do a one-measurement

sensor fusion [12]. In Figure 6.3 we compare the performance of these decentralized

algorithms with each other and with the centralized versions, where each sensor has

access to the correct centralized computation of Pglobal. In both cases, the decentralized

schemes recover the results of their centralized counterparts after an initial transient.

Figure 6.4 compares the performance of static and mobile sensor fusion schemes. Sen-

sors start from the same positions, and in this simulation we changed the parameter a2 of

the sensor model to 0.5 to increase the spatial influence on the measurement noise level.

We see that the moving sensors more quickly obtain accurate estimates of the target po-

sition. For control gains Γ > 5I, we start to see oscillatory behaviors in sensor motions

and the dynamics of sensor 1’s estimate looks almost the same as the case when Γ = 5I.
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6.5. Heterogeneous Sensors and Multiple Targets

6.5.1. Extension to Heterogeneous Sensors

Here we address the cases where range-bearing sensors need to collaborate with range-only

sensors for the estimation task. The control laws for the range-bearing sensors remain as

they are in (6.27), (6.28), (6.38), (C.20). All we need to do is to derive the controllers

for those range-only sensors. We derive the explicit form of P r
i , P θ

i for the one-time

measurement case, and the Kalman filter case can be done in a similar manner.

From the schematic of the linearized measurement model (Fig. 6.5), we have:

cos θi0 =
a + ri cos θi√

(a + ri cos θi)2 + (ri sin θi − b)2
(6.45)

sin θi0 =
ri sin θi − b√

(a + ri cos θi)2 + (ri sin θi − b)2
(6.46)

Then based on (6.25) we have

P r
i = −Pglobal

∂

∂ri

(HT

i TiR
−1
i T T

i Hi)Pglobal

= −Pglobal
∂

∂ri

(
1

Ri

HT

i Hi)Pglobal

= Pglobal(
2a2(ri − a1)

a2(ri − a1)2 + a0

HT

i Hi −R−1
i

 ζ η

η −ζ

)Pglobal(6.47)

with

ζ =
−2 cos θi0 sin θi0

||pi − xt0||2
(sin θi cos θi0 − sin θi0 cos θi)

η =
cos2 θi0 − sin2 θi0

||pi − xt0||2
(sin θi cos θi0 − sin θi0 cos θi)
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and similarly

P θ
i = −Pglobal

∂

∂θi

(HT

i TiR
−1
i T T

i Hi)Pglobal

= −Pglobal
∂

∂θi

(
1

Ri

HT

i Hi)Pglobal

= − 1

Ri

Pglobal

 ζ2 η2

η2 −ζ2

Pglobal(6.48)

with

ζ2 =
−2ri cos θi0 sin θi0

||pi − xt0||2
(sin θi sin θi0 + cos θi cos θi0)

η2 =
ri(cos2 θi0 − sin2 θi0)

||pi − xt0||2
(sin θi sin θi0 + cos θi cos θi0).

Now we can finish the distributed design by replacing Pglobal with Pi and using the ap-

proximation (6.30) or (6.31).

For range-only sensors, singularity issues can arise when implementing these control

algorithms. This is because we need to use the invert the estimator output to calculate Pi

and the estimator input ui = HT
i TiR

−1
i T T

i Hi has 0 determinant. One solution is to let the

estimator run a short time before inverting its output to calculate the control effort; the

problematic matrix will become nonsingular when a range-only sensor fuses information

with other sensors.

6.5.2. Extension to Multiple Targets

In the multiple targets scenario we only consider the case when each sensor is capa-

ble of taking multiple measurements at a time and able to distinguish different targets.
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Figure 6.5. The linearized measurement model for range-only sensors.

Otherwise some dynamic sensor scheduling and target association algorithms need to be

developed, which is outside the scope of this thesis.

Assume we have M targets in total. For each target j, the previous calculation gives

a control vector uij for sensor i, and we can simply add them up in a weighted manner:

(6.49) ui =
M∑

j=1

wijuij, wij > 0,
M∑

j=1

wij = 1

This approach will retain the distributed nature of the algorithm. In essence, this ap-

proach is the same as in [12], which took an algebraic approach by redefining the target

state: Xt =

[
x1

t . . . xM
t

]
and assume the measurement noise for each target is uncor-

related from others. In this approach the number of consensus estimators being used is

proportional to the number of targets, and future research effort is needed to deal with

this communication constraint.
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Figure 6.6. Two range-bearing sensors (green circle) and one range-only
sensor (magenta circle) collaborate to track two moving targets (red square).

Here is an illustrative example: two different range-bearing sensors collaborate with a

range-only sensor to track the trajectories of two moving targets. Mobile sensors start from

(70.7, 100.8), (100.0, 86.0), (86.0, 85.9) and their measurement models are given below:

aj
0 aj

1 aj
2 αj

j = 1 0.1528 15.625 0.0008 5

j = 2 0.0166 10.800 0.0010 3

j = 3 0.1100 15.396 0.001 n/a

We set the control gain Γ = 50I, estimator gain Kp = 50I, Ki = 0.5I. The range-only

sensor measurement model is linearized around the point (100, 100). Figure 6.6 shows

how sensors divide into groups to track individual targets.
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CHAPTER 7

Conclusions and Future Work

7.1. Summary of the Thesis

Among other natural wonders, fish schools and bird flocks are amazing from an en-

gineering design perspective. Within a fish school of enormous size, each fish plans its

motion by only sensing its nearest neighbors’ positions. The global behavior of the group

emerges from each individual’s local interactions with its neighbors, and this behavior is

often termed self-organization.

In this thesis we describe a systematic way of designing emergent behaviors in sens-

ing and communication networks of mobile agents. The problem is to design a control

law to run on each agent, based on sensor and communication input, so that the desired

collective behavior emerges. We find that a wide range of tasks, including network con-

nectivity maintenance, swarm statistic control and cooperative target tracking, can be

solved through our proposed decentralized estimation and control approach.

In Chapter 2 and 3, we describe the detailed design steps for each agent using our

decentralized estimation and control approach. Each agent simultaneously estimates prop-

erties of the global behavior of the system by running dynamic consensus estimators and

use those estimates in a modified gradient control law to guarantee feedback stability and

accomplish the task. Furthermore, the extra design freedom in the estimator communi-

cation weights can be used to increase the overall convergence speed of the system.



124

For the rest of the thesis, we apply this methodology to solve three coordination tasks:

(1) Maintaining the connectivity in a mobile sensor network; (2) Drive a group of robots

to satisfy some desired first and second-order moment statistics and (3) Use a mobile

sensor network to track a moving target. These designs are validated by both computer

simulations and physical experiments. In the process of solving the first problem, we also

develop a decentralized power iteration algorithm that allows each agent to estimate the

algebraic connectivity of the graph and its associated eigenvector.

7.2. Directions of Future Research

7.2.1. Decentralized Optimal Weights Tuning for the Dynamic Consensus Es-

timator

In this thesis we have shown the convergence speed of the consensus estimators depends

significantly on the edge weights: the time constant of an unweighted consensus estimator

can be several times that of the optimally-weighted one. It is more desirable to have a

decentralized optimal weights tuning scheme as it is more robust to network topology

changes, which is inevitable in mobile sensor networks.

This decentralized optimal weighting problem looks hard initially because each node

can not accurately evaluate the connectivity function, or the change of the connectivity

function, with only local weights information. However, with the new technique of esti-

mating the eigenvector v2 also developed in this thesis, the solution may exist. This is

considering the fact that λ2 =
P

ij wij(v
i
2−vj

2)2P
ij((v

i
2−vj

2)2)
. Under this eigenvalue structure and with

good estimates of the eigenvector v2, each node may be able to evaluate the change of the

connectivity function due to weight changes.
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This direction of research falls under the category of decentralized optimization over

sensor networks. This is a burgeoning field, as there is a shifting focus in having more

in-network data processing in the use of sensor networks. Compared to the traditional

use of each sensor node for merely data relaying, this new approach offers higher commu-

nication efficiency [62], measured by transmitted bits over the transmitted distance. The

distributed optimization algorithm in [62] can only deal with quadratic functions, and

the development of an optimization algorithm for the eigenvalue type of functions will be

a nice addition in this field.

7.2.2. Finite-time Consensus Protocols

One promising extension of the research on existing consensus protocols is to investigate

finite-time consensus protocols. This is partially motivated by the constraints on the

current hardware: Each sensor node typically has relatively large storage space, lower

power consumption in computing but higher power consumption in communicating. This

first paper on finite-time static consensus [75] deals with fixed topologies. Its method,

which relies on using all the history of estimator states, is hard to be extended to the

time-varying graph case. Some alternative approaches are being investigated on the time-

varying graph case [81]. Another possible avenue is to investigate finite-time consensus

for the time-varying inputs. In the case of fixed topologies, the presence of time-varying

inputs will dilute the value of past estimator states. But since these inputs are available

information, the history of the inputs plus the history of the estimator states may still

help the consensus estimator converge faster. As far as the author knows, there is no

existing research in this area yet.
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7.2.3. Extending the Capabilities of Consensus Estimators

Existing consensus estimators can estimate the maximum, minimum and the average of

the node values (or any nonlinear function of the node value). We can not estimate∏
i xi now (assuming we do not know the total number of agents n), nor do we know

it is impossible. Future research is needed to answer the question of what other global

information can be estimated. In practice, the interested global information of interest in

mobile sensor networks is data-aggregated rather than sensor-aggregated [3]. This means

the global information has to be a symmetric function with respect to the sensor node

numbering. Functional basis of the symmetrical function space is an existing topic in

mathematics [60], and it would be useful to see if those established results can be applied

to the sensor network consensus estimation case.

7.2.4. Analysis of Dynamic Consensus Estimators under Realistic Networking

Conditions

Some analysis for the two dynamic consensus estimators under more realistic networking

conditions are needed, for example the effect of asynchronicity, packet delay and especially

packet loss due to packet collision and packet corruption. In the eight-robot physical

experiment that we conducted, possibly due to packet collision the packet loss rate on

each e-puck varies significantly from each other, and can be as severe as 20%. The packet

loss rate will further increase when the density of the sensor network increases. The

impact of these realistic communication conditions on the convergence and steady-state

error of the dynamic consensus estimators needs to be characterized.
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APPENDIX A

Stability of the Centralized Power Iteration

In the appendix we analyze the stability properties of system (4.3). We show the

boundedness of all trajectories, characterize the equilibrium sets and their local stability,

and finally give a proof of Theorem 4.

Proposition 1. Given any initial condition x(t0) and any positive gains k1, k2, k3 > 0,

the system trajectory remains bounded over time:

(A.1) ‖x(t)‖ ≤ max{‖x(t0)‖,
√

n}.

Proof. Defining V1 = xTx = yTy, we have

V̇1 = 2yT ẏ(A.2)

= 2yT [−k1diag(1, 0, . . . , 0)− k2L
∗ − k3

(yTy

n
− 1
)
I]y.

If ‖x(t0)‖ >
√

n, then k3(
yT y
n
− 1) > 0 and V̇1 < 0 until ‖x(t)‖ ≤

√
n. If ‖x(t0)‖ ≤

√
n,

then ‖x(t)‖ ≤
√

n for all t > 0. �

The following two propositions completely characterize the equilibrium sets of sys-

tem (4.3) and their local stability properties.

Proposition 2. System (4.3) has an equilibrium point x = 0, and it is locally unstable

when k3 > k2λ2.
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Proof. It is easy to verify that x = 0 (or y = 0) is an equilibrium state of system (4.3).

Linearizing the equivalent system equation (4.6) around the point y = ỹ we get

(A.3) ẏ = [−k2L̃
∗ − k3

( ỹT ỹ

n
− 1 + 2

ỹỹT

n

)
I]y.

Plugging in ỹ = 0, equation (A.3) is simplied to ẏ = [k3 − k2L̃
∗]y. The gain condition

k3 > k2λ2 makes the equilibrium point y = 0 locally unstable, at least in one direction. �

Now we proceed to investigate the non-zero equilibrium points of system (4.3).

Proposition 3. When the gain conditions (4.7), (4.8) are satisfied, system (4.3) has

n (when k3 > k1) or n − 1 (when k3 ≤ k1) pairs of distinct non-zero equilibrium points

{yi | 1 ≤ i ≤ n} where

(A.4) y1 =
(
±
√

n(
k3 − k1

k3

), 0, . . . , 0
)T

, if k3 > k1;

and {yi | 2 ≤ i ≤ n} is

(A.5) yj
i =

 0 if 2 ≤ j ≤ n, j 6= i,

±
√

n(k3−k2λi

k3
) if j = i.

Additionally, among all the n or n− 1 pairs of equilibria, only y2 is locally stable.

Proof. The insight here is that any nonzero equilibrium point y of system (4.6) has to

be an eigenvector of the matrix L̃∗ with an associated eigenvalue k3

k2
(yT y

n
−1). Furthermore,

we know the n different unit eigenvectors for the diagonal matrix L̃∗ ∈ Rn×n. Therefore,

we can solve for all the eigenvectors of the system (4.6) that are also equilibria of the

system. There are n such eigenvectors in total, described in (A.4) and (A.5). Additionally,
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we use the linearized models (A.3) to check the local stability of every yi. For y1, its

eigenvalue spectrum {µj
1 | j = 1, . . . , n} is

(A.6)

 µ1
1 = −2(k3 − k1) if j = 1,

µj
1 = k1 − k2λj if j = 2, . . . , n.

Since at least µ2
1 > 0, y1 is locally unstable. Similarly for the equilibrium point yi, i =

2, . . . , n, its eigenvalue spectrum {µj
i | j = 2, . . . , n} is

(A.7)


µ1

i = k2λi − k1 if j = 1,

µj
i = k2(λi − λj) if j = 2, . . . , n, j 6= i,

µi
i = −2(−k2λi + k3) if j = i.

Because 0 < λ2 ≤ · · · ≤ λn, yi is unstable for any i > 2 (at least in some directions), and

y2 is stable. �

Finally we give a proof for the near-global convergence result stated in Theorem 4.

It is useful to write out equation (4.6) in its scalar form:

ẏ1 = (−k1 − k3

(yTy

n
− 1
)
)y1(A.8)

ẏ2 = (−k2λ2 − k3

(yTy

n
− 1
)
)y2(A.9)

...

ẏn = (−k2λn − k3

(yTy

n
− 1
)
)yn.(A.10)

We first notice that the value of each component yi will not change its sign over time and

if yi(t0) = 0, yi(t) remains zero. Next we present the complete proof of the main theorem.
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Proof. (Sufficiency) Let us first consider y1. If y1(t0) = 0, then y1(t) = 0 for all t. If

y1(t0) 6= 0, combining (A.8) and (A.9) we get

(A.11)
d

dt
(ln

y2

y1
) =

d

dt
(lny2)− d

dt
(lny1) = k1 − k2λ2 > 0

which implies y2/y1 → ∞. We know y2 is bounded from Theorem 1, therefore y1 → 0.

The cases are similar for yi, i > 2. If yi(t0) = 0, then yi(t) = 0 for all t. If yi(t0) 6= 0, then

y2/yi →∞ and yi → 0.

Therefore over time equation (A.9) is reduced to ẏ2 = (−k2λ2−k3(
(y2)2

n
−1))y2. When (4.8)

holds, this scalar dynamical system can be rewritten as

(A.12) ẏ2 =
k3

n
(

√
n
(k3 − k2λ2

k3

)
+ y2)(

√
n
(k3 − k2λ2

k3

)
− y2)y2.

We see that y2 → ±
√

n
(

k3−k2λ2

k3

)
depending on the initial condition y2(t0) and the equi-

librium point y2 = 0 is unstable.

(Necessity) When y2 → ±
√

n
(

k3−k2λ2

k3

)
obviously condition (4.8) holds. Now we suppose

the condition k1 ≤ k2λ2 holds. If k1 < k2λ2, using the same argument method in (A.11),

y1/y2 →∞ and therefore y2 → 0, which is a contradiction. If k1 = k2λ2, then d
dt

(lny1

y2 ) = 0

and y1/y2 is a constant c. For initial conditions y1(t0) 6= 0, c = y1(t0)/y
2(t0) 6= 0, there-

fore y cannot converge to y2 where y1
2/y

2
2 = 0, which is also a contradiction. Therefore,

the gain condition (4.7) must hold. �

Remark 2. In case of repeated eigenvalues λ2 = · · · = λk < λk+1, Theorem 4 still

holds. In this case all trajectories with y2(t0) 6= 0 converge to an equilibrium point on the

k-dimensional manifold {y| ‖y‖ =

√
n
(

k3−k2λ2

k3

)
, y1 = 0, yi = 0,∀i > k}.
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APPENDIX B

Proof of Theorem 7

Let M denote the subspace of Rm×(m+1) comprised of all matrices of the form [x X],

where x ∈ Rm and X is a symmetric m×m matrix. Let V : M → R` denote the invertible

linear map given by

V
(
[x X]

)
,

 x

vech(X)

 .(B.1)

First suppose that f ? has the special form

f ? = V
(
[0 ∆]

)
(B.2)

for some diagonal matrix ∆ > 0. We now show that any diagonal Γ > 0 works in this

case. Given a swarm configuration p ∈ P, we let n = n(p) be such that p ∈ Rmn, and

we define P , [p1 . . . pn] ∈ Rm×n so that p = vec(P ) (where vec(·) is the invertible

linear map which stacks the columns of a matrix to produce a vector). For convenience

we introduce q = vec(Q), where Q = P T = [q1 . . . qm] ∈ Rn(p)×m. In these coordinates,

the function f(p) becomes

f(p) =
1

n(p)

 QT1

vech(QTQ)

 .(B.3)
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Computing Jqf , the q-Jacobian of f , we obtain

Jqf =
1

n(p)



1T 0 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 0 1T

2qT
1 0 0 . . . 0 0

0 2qT
2 0 . . . 0 0

0 0 2qT
3 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 2qT
m−1 0

0 0 0 . . . 0 2qT
m

qT
2 qT

1 0 . . . 0 0

0 qT
3 qT

2 . . . 0 0

...
...

. . . . . .
...

...

0 0 . . . qT
m−1 qT

m−2 0

0 0 . . . 0 qT
m qT

m−1

qT
3 0 qT

1 0 . . . 0

0 qT
4 0 qT

2 . . . 0

...
...

. . . . . . . . .
...

0 . . . 0 qT
m 0 qT

m−2

...
...

...
...

...
...

qT
m 0 0 . . . 0 qT

1



.
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If we define

z = Γ
[
f(p)− f ?

]
,(B.4)

then we can write the q-gradient of J in (5.1) as

∇qJ(p) = 2
[
Jqf
]T

z .(B.5)

We write z = [z1 . . . z`]
T , Γ = diag(γ1, . . . , γ`) with each γi > 0, and ∆ = diag(δ1, . . . , δm)

with each δi > 0. Now suppose p is such that ∇J(p) = 0 but z 6= 0; then also ∇qJ(p) = 0,

and in particular

0 =
[
qT

1 0 . . . 0
][

Jqf
]T

z(B.6)

=
1

n2(p)

[
γ1(1

Tq1)
2 + 2γm+1(q

T

1 q1)
(
qT

1 q1 − n(p)δ1

)
+ γ2m+1(q

T

2 q1)
2 + . . . + γ`(q

T

mq1)
2
]
.(B.7)

This implies qT
1 q1 6 n(p)δ1, and in a similar manner we can show that qT

i qi 6 n(p)δi for

1 6 i 6 m. Furthermore, because z 6= 0, there exists some j such that qT
j qj < n(p)δj, and

for simplicity we assume j = 1 (the other cases are similar). Let v ∈ Rmn(p) be a constant

vector, and define

F = vT∇qJ(p) = 2wTz , where w =
[
Jqf
]
v .(B.8)

If we let HqJ(p) denote the q-Hessian of J at p, then

[
∇qF

]T
v = vT

[
HqJ(p)

]
v = 2wTΓw + 2zT

[
Jqw

]
v .(B.9)
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Now ∇qJ(p) = 0 and z 6= 0 imply rank[1 Q] < m + 1; thus because n(p) > m + 1 there

exists a nonzero u ∈ Rn(p) such that uT [1 Q] = 0. Choosing v = [uT 0 . . . 0]T , we see

that w = 0 and thus

vT
[
HqJ(p)

]
v = 2zT

[
Jqw

]
v = 2zT

∂w

∂q1

u

=
4

n(p)
zm+1 · (uTu)

=
4

n2(p)
γm+1(u

Tu)
(
qT

1 q1 − n(p)δ1

)
< 0 .(B.10)

Therefore the Hessian of J has at least one strictly negative eigenvalue at p, and we

conclude that p cannot be a local minimum of J .

To complete the proof, we show the existence of a computable coordinate change which

is independent of n(p) and is such that any f ? ∈ f(D) takes the special form (B.2) in the

new coordinates. For each n, define the map Kn : Rm×n →M as

Kn(X) ,
1

n

[
X1n XXT

]
(B.11)

for X ∈ Rm×n. Then because

n∑
i=1

[
pi pip

T

i

]
=
[
P1n PP T

]
,(B.12)

we can write the moment vector f(p) in (5.4) as

f(p) =
(
V ◦Kn(p) ◦ vec−1

)
(p) .(B.13)
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Given f ? ∈ f(D), let ν > m + 1 and p? ∈ Rmν be such that f(p?) = f ?, and define

P ? = vec−1(p?) ∈ Rm×ν . We fix S ∈ Orth(1ν) and write the SVD of the matrix P ?S

as P ?S = UΣV T , where U ∈ Rm×m is an orthogonal matrix. Using U , for each n we

construct the invertible affine transformation Jn : Rm×n → Rm×n as follows:

Jn(X) , UT
[
X − 1

ν
P ?1ν1

T

n

]
,(B.14)

where X ∈ Rm×n. This mapping has the property that

(Kν ◦ Jν)(P
?) =

1

ν

[
0 ΣΣT

]
.(B.15)

Next we define T : M →M as

T
(
[x X]

)
,
[
T1(x) T2(x, X)

]
(B.16)

where x ∈ Rm, X ∈ Rm×m is symmetric, and

T1(x) , UT
[
x− 1

ν
P ?1ν

]
,(B.17)

T2(x, X) , UT
[
X − 1

ν
P ?1νx

T − 1

ν
x1T

ν(P
?)T

+
1

ν2
P ?1ν1

T

ν(P
?)T
]
U .(B.18)

It is clear that T is an invertible affine map, and it is straightforward to verify that

Kn ◦ Jn ≡ T ◦Kn for any n. We define G : P→ P and W : R` → R` as

G(p) ,
(
vec ◦Jn(p) ◦ vec−1

)
(p)(B.19)
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W (x) ,
(
V ◦ T ◦ V−1

)
(x)(B.20)

for p ∈ P and x ∈ R`. These maps G and W are such that f ◦ G ≡ W ◦ f , and in

particular we have

(
f ◦G

)
(p?) = W (f ?) =

1

ν
V
([

0 ΣΣT
])

.(B.21)

To summarize, we have the following commutative diagram:

P
f−−−→ R` V−1

−−−→ M
Kn←−−− Rm×n

G

y yW

yT

yJn

P
f−−−→ R` V←−−− M

Kn←−−− Rm×n

(B.22)

Because W is an invertible affine map, there exist an invertible matrix A ∈ R`×` and

b ∈ R` be such that W (x) = Ax + b for all x ∈ R`. Thus for Γ > 0,

(B.23)
[
f(G(p))−W (f ?)

]T
(AT )−1ΓA−1

[
f(G(p))−W (f ?)

]
=
[
f(p)− f ?

]T
Γ
[
f(p)− f ?

]
for all p ∈ P. Now because the restriction of G to each set Rmn is invertible, we have

Γ ∈ G(f ?, D) if and only if Γ0 ∈ G(W (f ?), D), where

Γ = ATΓ0A .(B.24)

Thus without loss of generality, we may assume that f ? has the structure of W (f ?),

namely, that f ? has the special form (B.2).
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APPENDIX C

Proof of Theorem 8

We will need the following technical result:

Lemma 10. Let X be a topological space, let Y be a set, let A ⊂ X , let B ⊂ A

be connected, and let h : X → Y. Suppose every x ∈ B has an open neighborhood

Nx ⊂ X such that h is constant on cl(Nx) ∩ A. Then h is constant on cl(N) ∩ A, where

N ,
⋃
{Nx : x ∈ B}.

Proof. Suppose there exist x1, x2 ∈ cl(N) ∩ A such that h(x1) 6= h(x2), and define

the following subsets of X :

N1 ,
⋃{

Nx : h(·) = h(x1) on cl(Nx) ∩ A
}

,(C.1)

N2 ,
⋃{

Nx : h(·) 6= h(x1) on cl(Nx) ∩ A
}

,(C.2)

O1 , N1 ∩B , O2 , N2 ∩B .(C.3)

Then O1 and O2 are nonempty, disjoint, open relative to B, and such that B = O1 ∪O2.

However, this contradicts the fact that B is connected. �

Consider the consensus estimators (5.13)–(5.14). Defining variables zi, ei ∈ R` as

zi =
d

dt
φ(pi) =

[
Jφ(pi)

]
ṗi(C.4)

ei = f(p)− yi ,(C.5)
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we introduce the following `× n matrices:

Y =

[
y1 . . . yn

]
(C.6)

H =

[
η1 . . . ηn

]
(C.7)

Φ(p) =

[
φ(p1) . . . φ(pn)

]
(C.8)

E =

[
e1 . . . en

]
= Φ(p)

11T

n
− Y(C.9)

Z =

[
z1 . . . zn

]
=

d

dt
Φ(p) .(C.10)

Hence we may write the collection of consensus estimators (5.13)–(5.14) in matrix form

as

Ḣ = −γH − Y L(p)(C.11)

Y = H + Φ(p) .(C.12)

We write the complete state of the closed-loop system as either the triple (p, ṗ, H), or

with the global coordinate change given by (C.9) and (C.12), the triple (p, ṗ, E). We see

from (5.15) that the derivative of the storage function

V (p, ṗ) = ṗTṗ + n J(p)(C.13)

can be written as

(C.14) V̇ =
n∑

i=1

[
−ṗT

i

[
B + BT

]
ṗi − zT

i

[
Λ + ΛT

]
zi + 2zT

i Γei

]
.
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We observe from (C.9) and (C.12) that E1 ≡ −H1 and thus

Ė1 = γH1 = 0 (using γ = 0),(C.15)

which means

E(t)1 = −H(t0)1 = 0 (using ηi(t0) = 0)(C.16)

for any t > t0. Because ES ≡ −Y S, we can write

ĖS = Y L(p)S − ZS = −ESL?(p)− ZS .(C.17)

Also because E1 ≡ 0 we have EET ≡ ESSTET , so

d

dt
EET = ĖSSTET + ESSTĖT

= −2ESL?(p)STET − ZSSTET − ESSTZT

6 −εEET +
1

ε
ZSSTZT

6 −εEET +
1

ε
ZZT .(C.18)

Defining the storage function U = Tr(EET ) we see that

U̇ 6 −εU +
1

ε
Tr(ZZT ) =

n∑
i=1

[
−ε|ei|2 +

1

ε
|zi|2

]
.(C.19)

Furthermore, using the fact that

2zT

i Γei 6
1

2
zT

i

[
Λ + ΛT

]
zi + 2eT

i Γ
[
Λ + ΛT

]−1
Γei ,(C.20)



148

we can bound (C.14) from above as

(C.21) V̇ 6
n∑

i=1

[
−ṗT

i

[
B + BT

]
ṗi −

1

2
zT

i

[
Λ + ΛT

]
zi + 2eT

i Γ
[
Λ + ΛT

]−1
Γei

]
.

To combine the storage functions V and U , we first use (5.19) to choose µ > 0 such that

Γ < µI <
ε

2

[
Λ + ΛT

]
.(C.22)

Upon taking inverses and then multiplying by Γ from the left and the right, we obtain

2

ε
Γ
[
Λ + ΛT

]−1
Γ < Γ .(C.23)

In particular, (C.22) and (C.23) imply the existence of a scalar constant ν > 0 such that

1

2

[
Λ + ΛT

]
− µ

ε
I > νI(C.24)

µεI − 2Γ
[
Λ + ΛT

]−1
Γ > νI .(C.25)

We then define Υ(p, ṗ, E) = V + µU and use (C.19), (C.21), (C.24), and (C.25) to obtain

Υ̇ 6
n∑

i=1

[
−ṗT

i

[
B + BT

]
ṗi − ν|zi|2 − ν|ei|2

]
.(C.26)

In particular, Υ(t) is nonincreasing along trajectories in forward time. Because J(p) is

proper, Υ is a proper function of the states p, ṗ, and E, and we can conclude that all

signals are bounded in forward time. By LaSalle’s theorem we further conclude that every

trajectory converges to its nonempty, compact, connected positive limit set L+, and that

every point in L+ is an equilibrium point of the form (p, ṗ, E) = (p̄, 0, 0) for some p̄ ∈ Rmn



149

such that

[
Jφ(p̄i)

]T
Γ
[
f ? − f(p̄)

]
= 0(C.27)

for every i, or equivalently such that ∇J(p̄) = 0. It follows that Υ and thus also J are

constant on every positive limit set. In particular, any positive limit set containing one

bad equilibrium must contain only bad equilibria.

Next suppose φ is subanalytic, suppose Γ ∈ G(f ?, D), and suppose a positive limit set

L+ consists of bad equilibria. We can write L+ as the product L+ = L+
0 ×{0}×{0}, where

L+
0 ⊂ D∩Crit(J). Because φ is subanalytic, so is J , and thus by Theorem ??, J is locally

constant on Crit(J). Hence every point p ∈ L+
0 has an open neighborhood Np such that J

is constant on the set cl(Np)∩Crit(J). Define the open set N ,
⋃
{Np : p ∈ L+

0 }; then the

set O = N ×Rmn×R`×n is an open neighborhood of L+. Also, it follows from Lemma 10

that J is constant on cl(N)∩Crit(J). Let U be any open set such that L+∩U 6= ∅, and fix

(p̄, 0, 0) ∈ L+∩U . By assumption p̄ is not a local minimum of J , which means there exists

a point (p0, 0, 0) ∈ U such that J(p0) < J(p̄) and therefore also Υ(p0, 0, 0) < Υ(p̄, 0, 0).

Let L+
1 × {0} × {0} denote the positive limit set of the trajectory starting from the state

(p0, 0, 0). Then J is constant on L+
1 , and because Υ is nonincreasing along trajectories,

the value of J on L+
1 is strictly less than its value on cl(N) ∩ Crit(J). Thus because

L+
1 ⊂ Crit(J) we have L+

1 ∩ cl(N) = ∅, and it follows that the trajectory starting from

(p0, 0, 0) eventually leaves the open neighborhood O of L+ forever. We conclude that L+

is strongly unsteady.
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APPENDIX D

Proof of Theorem 9

The derivative of the storage function (C.13) is

(D.1) V̇ =
n∑

i=1

[
−ṗT

i

[
B + BT

]
ṗi − 2cζ(pi)|ṗi|2 − zT

i

[
Λ + ΛT

]
zi + 2zT

i Γei

]
with zi and ei as in (C.4)–(C.5). We may write the collection of PI estimators (6.21)–(5.27)

in matrix form as

Ẏ = −Y
[
γI + LP (p)

]
+ WLI(p) + γΦ(p)(D.2)

Ẇ = −Y LI(p)(D.3)

with Y and Φ from (C.6) and (C.8), and with

W =

[
w1 . . . wn

]
.(D.4)

Defining E and Z as in (C.9)–(C.10) we obtain

Ė1 = Z1− Ẏ 1 = Z1− γ
[
Φ(p)1− Y 1

]
= −γE1 + Z1(D.5)

Ẇ1 = 0 .(D.6)
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From (5.16) we have LP ≡ LP SST and LI ≡ LISST , which means we can multiply both

sides of (D.2)–(D.3) from the right by S to obtain

ẎS = −YS
[
γI + L?

P (p)
]
+ WSL?

I(p) + γΦ(p)S(D.7)

ẆS = −YSL?
I(p) .(D.8)

With the change of variables

H = WS + γΦ(p)S
[
L?

I(p)
]−1

(D.9)

Ω =

[
YS H

]
(D.10)

the equations (D.7)–(D.8) become

Ω̇ = ΩF T + NGT ,(D.11)

where

F =

 −γI − L?
P (p) L?

I(p)

−L?
I(p) 0

 , G =

 0

I

 ,(D.12)

N = γZS
[
L?

I(p)
]−1

+ γΦ(p)S
d

dt

[
L?

I(p)
]−1

.(D.13)

We will write N as the sum

N = γ

n∑
i=0

Ni(D.14)
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where

N0 = ZS
[
L?

I(p)
]−1

(D.15)

Ni = −Φ(p)S
[
L?

I(p)
]−1

m∑
k=1

∂L?
I(p)

∂pi(k)

[
L?

I(p)
]−1

ṗi(k)

for 1 6 i 6 n(D.16)

and pi = [pi(1) . . . pi(m)]T ∈ Rm. We now derive bounds on these matrices Ni. First,

using (5.30) we obtain

N0N
T

0 = ZS
[
L?

I(p)
]−2

STZT 6
1

ε2
ZSSTZT(D.17)

Next, using (5.23) and our assumption that p(t) ∈ C for all t > t0, we obtain

|Φ(p)S|2F =
∣∣∣[Φ(p)− φ(pi)1

T
]
S
∣∣∣2
F

6
∣∣Φ(p)− φ(pi)1

T
∣∣2
F

6
∑
j 6=i

|φ(pj)− φ(pi)|2

6 (n− 1)a(d(n))ζ(pi) .(D.18)

It follows from (5.30) and the fact that b has bounded partial derivatives that there exists

a constant k > 0 such that

|Ni|2F 6 kζ(pi)|ṗi|2(D.19)
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for 1 6 i 6 n. This constant k depends on n, ε, and the bounds on the partial derivatives

of b. Let σ be a constant such that 0 < σ < 1 and

σ 6
ε(γ + ρ)

(γ + ρ̄2) + 2εε̄
.(D.20)

Then the positive definite matrices

P =

 I −σI

−σI I

 , Q =

 (γ + ρ)I 0

0 σεI

(D.21)

satisfy

(1− σ)I 6 P 6 (1 + σ)I(D.22)

and

PF + F TP + Q = −2L?
P (p) + (ρ− γ)I + 2σL?

I(p) σγI + σL?
P (p)

σγI + σL?
P (p) −2σL?

I(p) + σεI



6 −σ ·


(

1
σ
(γ + ρ)− 2ε̄

)
I −γI − L?

P (p)

−γI − L?
P (p) εI


︸ ︷︷ ︸

R(p)

6 0(D.23)

because (D.20) implies that R(p) > 0. Let κ > 0 be such that

κ < min
{γ + ρ

σ
, σε

}
.(D.24)



154

Then we have

PGGTP =

 σ2I −σI

−σI I



= P −

 (1− σ2)I 0

0 0

(D.25)

and thus also

Q− κ

1 + σ
PGGTP

=

 [γ + ρ + κ(1− σ)
]
I 0

0 σεI

− κ

1 + σ
P

> min
{
γ + ρ + κ(1− σ), σε

}
I − κI = αI ,

(D.26)

where α = min{γ + ρ− σκ, σε− κ}. It now follows that

PF + F TP +
κ

1 + σ
PGGTP 6 −αI .(D.27)

We define the matrix

Ψ = ΩPΩT + βE11TET + W11TW T(D.28)

where β > 0 is a constant parameter. Defining

ξ =
γ2(n + 1)(σ + 1)

κ
,(D.29)
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we use (5.16), (D.5), (D.6), (D.11), (D.14), (D.17), and (D.27) to obtain

Ψ̇ = Ω
[
PF + F TP

]
ΩT + γ

n∑
i=0

[
NiG

TPΩT + ΩPGNT

i

]
− 2βγE11TET + βZ11TET + βE11TZT(D.30)

6 Ω
[
PF + F TP +

κ

1 + σ
PGGTP

]
ΩT − βγE11TET

+ ξ

n∑
i=0

NiN
T

i +
β

γ
Z11TZT(D.31)

6 −αΩΩT − βγE11TET + max
{nβ

γ
,

ξ

ε2

}
ZZT + ξ

n∑
i=1

NiN
T

i .(D.32)

Because ES = −Y S we also have

ΩΩT = YSSTY T + HHT = ESSTET + HHT(D.33)

and therefore

Ψ̇ 6 −ν1EET − αHHT + ν2 ZZT + ξ
n∑

i=1

NiN
T

i ,(D.34)

where

ν1 = min
{
α, nβγ

}
(D.35)

ν2 = max
{nβ

γ
,

ξ

ε2

}
.(D.36)

Defining the storage function U = Tr(Ψ) we see that

U̇ 6 −α|H|2F +
n∑

i=1

[
−ν1|ei|2
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+ ν2|zi|2 + ξkζ(pi)|ṗi|2
]
.(D.37)

Furthermore, we can use (C.20) to bound (D.1) from above as

(D.38)

V̇ 6
n∑

i=1

[
−ṗT

i

[
B + BT

]
ṗi − 2cζ(pi)|ṗi|2 −

1

2
zT

i

[
Λ + ΛT

]
zi + 2eT

i Γ
[
Λ + ΛT

]−1
Γei

]
.

We assume that (5.31) holds with

δ1 =
1

2

√
ν1

ν2

, δ2 =
4δ1ν2

ξk
,(D.39)

and we choose µ > 0 so that

Γ <
µν1

2δ1

I < δ1

[
Λ + ΛT

]
.(D.40)

Upon taking inverses and then multiplying by Γ from the left and the right, we obtain

1

δ1

Γ
[
Λ + ΛT

]−1
Γ < Γ .(D.41)

In particular, (D.40) and (D.41) imply the existence of a scalar constant ν > 0 such that

1

2

[
Λ + ΛT

]
− µν2I > νI(D.42)

µν1I − 2Γ
[
Λ + ΛT

]−1
Γ > νI .(D.43)

Furthermore, (5.31) and (D.40) imply

2c > µξk .(D.44)
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We then define Υ(p, ṗ, E,W ) = V +µU and use (D.37), (D.38), (D.42), (D.43), and (D.44)

to obtain

Υ̇ 6 −αµ|H|2F +
n∑

i=1

[
−ṗT

i

[
B + BT

]
ṗi − ν|zi|2 − ν|ei|2

]
.

The rest of the proof mimics the proof of Theorem 8 above.
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APPENDIX E

Stability of the Active Localization Example

Applying the design theory developed in section 2.3, we show the feedback system is

stable for the one-time measurement approach using P estimators.

E.1. Choosing the global information f

For the one-time measurement approach, the global uncertainty matrix looks like

1

n
P−1

global =
1

n

n∑
i=1

TiR
−1
i T T

i

=
1

n

n∑
i=1

 cos2(θi)+
1
α

sin2(θi)

fr(ri)
− sin(2θi)

2fr(ri)
(1− 1

α
)

− sin(2θi)
2fr(ri)

(1− 1
α
)

sin2(θi)+
1
α

cos2(θi)

fr(ri)

 .

Now we define the global information f = [f 1 f 2 f 3]T with

f 1 =
1

n

n∑
i=1

1

fr(ri)
(E.1)

f 2 =
1

n

n∑
i=1

cos(2θi)

fr(ri)
(E.2)

f 3 =
1

n

n∑
i=1

sin(2θi)

fr(ri)
(E.3)
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Using triangular equalities, we obtain:

(E.4)
1

n
P−1

global =

 α+1
2α

f 1 + α−1
2α

f 2 1−α
2α

f 3

1−α
2α

f 3 α+1
2α

f 1 − α−1
2α

f 2


Then the cost function can be written as

J(f, β) = det(Pglobal)

=
1

n(α−1)2

4α2 [(α+1
α−1

f 1)2 − (f 2)2 − (f 3)2]
.(E.5)

E.2. Bounding the global information f

From the sensor model it is easy to see fr(ri) > a0. Therefore

(E.6) ‖f‖2 ≤
√

3|f 1| ≤
√

3

a0

So we can apply Theorem 3 to find the nonlinear damping gain Λi and next we give a

conservative lower bound on Λi.

E.3. A lower bound on the nonlinear damping gain

We start by giving an alternative strategy to bound the matrix product CiC
T
i without

solving any optimization problem. Given a square matrix Ci ∈ Rm×m, let λ∗i be its

eigenvalue with the largest absolute value. It is easy to verify that CiC
T
i < (λ∗i )

2I.

Furthermore, we have

|λ∗i | < ‖Ci‖∞ = max
j
| ∂2J

∂fj∂f

∣∣∣∣
f= efij

|∞
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≤ sup
f∈Ψ

max
j

∣∣∣∣∣ ∂2J

∂fj∂f

∣∣∣∣
f=f

∣∣∣∣∣
∞

= sup
f∈Ψ

∥∥∥∥∂2J

∂f 2

∥∥∥∥
∞

(E.7)

From that we obtain the following theorem:

Proposition 4. Using local information, each agent i can calculate a lower bound of

the Hessian matrix:

(E.8)

∥∥∥∥∂2J

∂f 2

∥∥∥∥
∞
≤ n(α2 − 1)f 2

r (ri)[n(3α2 − 4α + 1)fr(ri) + αa2
0]

2αa2
0

Proof. See Section E.4. �

Applying Theorem 3, we use the following control law:

(E.9)

 ũr
i

ũθ
i

 = [I +
(1 + µ + η2

i )D
T
i K−1

p Di

λmin

]−1

 ur
i

uθ
i


with

ηi =
n(α2 − 1)f 2

r (ri)[n(3α2 − 4α + 1)fr(ri) + αa2
0]

2αa2
0

ur
i = det(xi) · tr(2a2(ri − a1)TiR

−2
i

 1 0

0 α

T T

i xi)

uθ
i = det(xi) · tr(

(
Ai + AT

i

)
xi)/ri

Theorem 3 guarantees the stability of the coupled system.

E.4. A Lower Bound on the Hessian

Here we derive an upper bound of
∥∥∥∂2J

∂f2

∥∥∥
∞

.
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From (E.5), straightforward calculation gives :

∂2J

∂f 2
= 8ρ2J3vvT − 2ρJ2K(E.10)

with

ρ =
n(α− 1)2

4α2
(E.11)

v =

[
α+1
α−1

f1 −f2 −f3

]T

(E.12)

K =


α+1
α−1

0 0

0 −1 0

0 0 −1

 .(E.13)

Therefore,

(E.14)

∥∥∥∥∂2J

∂f 2

∥∥∥∥
∞
≤ 8ρ2J3‖vvT‖∞ + 2ρJ2‖K‖∞

From (E.13) we know

(E.15) ‖K‖∞ =
α + 1

α− 1
.

Using the fact |fi| ≤ 1
a0

, we get

(E.16) ‖vvT‖∞ ≤
(α + 1)(3α− 1)

(α− 1)2a2
0

.
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To bound the global uncertainty, each agent can relate J to its own measurement uncer-

tainty. Based on (6.23) we have

(E.17) P−1
global > TiR

−1
i T T

i >
1

αfr(ri)
I.

Therefore

(E.18) J = det(Pglobal) < α2f 2
r (ri).

Plugging (E.15), (E.16) and (E.18) into (E.19) gives

(E.19)

∥∥∥∥∂2J

∂f 2

∥∥∥∥
∞
≤ n(α2 − 1)f 2

r (ri)[n(3α2 − 4α + 1)fr(ri) + αa2
0]

2αa2
0

.

For each agent i, this bound only requires local information to calculate.
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