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ABSTRACT 

Using Predictive Models in Engineering Design: Metamodeling, Uncertainty 

Quantification, and Model Validation 

Ying Xiong 

 

Predictive modeling has emerged as a new research subject that studies a broad range of 

modeling techniques to provide confident prediction of the phenomenon of interest by 

integrating scientific principles together with both computer models and observed physical 

experiments.  Motivated by overcoming the existing challenges, the objective in this dissertation 

is to develop methodology and techniques to facilitate the use of predictive models in 

engineering design. 

To develop an improved metamodeling technique that better captures changing 

smoothness behavior in high-dimensional engineering applications, a Kriging method with 

sparse yet flexible parameterization of non-stationary covariance is investigated.  

To efficiently yield an improved predictive model, a bias-correction approach is 

examined considering two scenarios by combining either computer and physical experimental 

data or data from variable fidelity computer models. A Bayesian approach is applied to the 

Gaussian process model to assess the uncertainty of the bias-corrected model.  

To achieve a better understanding of the various model updating strategies, we examine 

different model updating formulations as well as different solution methods. As opposed to 

traditional calibration approaches we pay particular attention to the situations in which certain 

computer model parameters vary from trial to trial. A maximum likelihood estimation approach 
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for parameter estimation s developed toward the best agreement between physical and computer 

observations. 

Motivated by the need for validating predictive models in engineering design, a design-

driven Bayesian model validation procedure is employed. With the quantified uncertainty of 

Bayesian prediction models, decision validation metrics are proposed to provide confidence 

measures in making a design choice.  

To facilitate resource allocation in updating a predictive model, a new objective oriented 

sequential sampling approach is developed for computer experiments, by employing a periodical 

switching criterion in sampling for balancing the needs of optimizing a design objective versus 

reducing the metamodel uncertainty. A design confidence metric is proposed as the stopping 

criterion to facilitate design decision making. 

 Through various example problems, it is illustrated that the research developments in 

this dissertation are applicable to various engineering applications, thus providing useful 

techniques in metamodeling, uncertainty quantification, and model validation that are critical to 

using predictive models in engineering design. 

 

 

 

 

 

 

 

 



 

 

5 

ACKNOWLEDGEMENT 

First, I would like to express my sincere and the greatest thanks to my advisor, Professor 

Wei Chen, for providing me with her guidance, extensive support, inspiration, and 

encouragement throughout my Ph.D. study and life at Northwestern University. She is one of the 

most outstanding advisors, active researchers, and excellent teachers I have ever known. I owe 

my special gratitude to Dr. Chen. 

I am very thankful to my committee members: Professor Daniel Apley, Professor Kornel 

Ehmann, for their suggestions and contributions to my PhD research. I also owe my gratitude to 

Professor Kwok-Leung Tsui at Georgia Institute of Technology for his ongoing help and 

valuable advice during the past three years while working collaboratively on the research topics 

of sequential sampling, model updating, and model validation.  

I am grateful to my great colleagues at the Integrated DEsign Automation Laboratory 

(IDEAL). Many thanks go to Dr. Huibin Liu (now working in BD Medical), Dr. Deepak Kumar 

Dileep Kumar (now working in Google), Mr. Xiaolei Yin, Mr. Chris Hoyle, Dr. Sanghoon Lee, 

Mr. Shikui Chen, Ms. Lin He, Ms. Fenfeng Xiong, Professor Hongzhong Huang, for their 

valuable discussions, advice, and help from various aspects. I enjoyed the friendly and 

collaborative environment in the IDEAL. This research was supported by the US National 

Science Foundation (NSF). The supports are gratefully acknowledged. I would also like to thank 

all the staff in the Department of Mechanical Engineering at Northwestern University for always 

being very friendly and helpful. 



 

 

6 

I am also very grateful to Dr. Xuru Ding in General Motors for providing simulation data 

of a vehicle crash model and co-authoring the paper on non-stationary Kriging method. The 

exposure to real industry problems through this collaboration were valuable experiences. 

Finally, I am most grateful to my parents, my elder brother, and my parents-in-law for all 

they have done for me. They always encourage me to go after my dreams. I cannot imagine 

finishing my graduate study without their constant support. I also would like to thank my wife 

Lulu for her love, understanding, and support throughout my graduate study. Her 

encouragements always give me the confidence to continue to pursue my goals. 

 

 



 

 

7 

 

DEDICATION 

This dissertation is dedicated to my parents Dawu Xiong and Chenghua Liu. 

 



 

 

8 

TABLE OF CONTENTS 

CHAPER 1. INTRODUCTION....................................................................................... 12 

1.1 Research Motivation............................................................................................................. 12 

1.2 Predictive Modeling and Research Issues........................................................................... 14 

1.3 Dissertation Outline .............................................................................................................. 22 

CHAPTER 2. TECHNICAL BACKGROUND ................................................................ 24 

Nomenclature .............................................................................................................................. 24 

2.1 Introduction........................................................................................................................... 25 

2.2 Kriging Techniques for Metamodeling............................................................................... 25 
2.2.1 Overview of Kriging Techniques..................................................................................... 25 

2.2.2 Bayesian Interpretation of the Kriging Method ............................................................... 27 

2.2.3 Determination of hyperparameters in Kriging mdoel ...................................................... 29 

2.2.4 General Bayesian Analysis of Kriging metamodeling..................................................... 33 

2.3 Optimal Design of Computer Experiments ........................................................................ 34 

2.4 Sequential Sampling Strategies ........................................................................................... 35 
2.4.1 Sequential Sampling for Global Metamodeling .............................................................. 36 

2.4.2 Objective-Oriented Sequential Sampling ........................................................................ 38 

2.5 Overview of Model Verification and Validation (V&V) ................................................... 42 
2.5.1 Definitions of Model Verification and Validation........................................................... 42 

2.5.2 Sources of Uncertainty in Verification and Validation.................................................... 44 

2.6 Model Validation Metrics..................................................................................................... 46 
2.6.1 Traditional Metrics........................................................................................................... 46 

2.6.2 Frequentist’s Metrics ....................................................................................................... 47 

2.6.3 Hypothesis Testing based Metrics ................................................................................... 48 

2.6.4 Metrics based on Pooling Multiple Data ......................................................................... 50 

2.7 Concepts of Model Calibration and Bias-Correction ........................................................ 52 

CHAPTER 3. A NEW KRIGING MODEL WITH NON-STATIONARY COVARIANCE 

STRUCTURE ................................................................................................................ 55 



 

 

9 

Nomenclature .............................................................................................................................. 55 

3.1 Introduction........................................................................................................................... 56 

3.2. Technological Base............................................................................................................... 59 
3.2.1 Kriging metamodeling with a stationary covariance function......................................... 59 

3.2.2 Representing Non-stationary Covariance: The Nonlinear Map Approach...................... 61 

3.3. A Proposed Non-stationary Covariance Structure........................................................... 63 
3.3.1 Proposed Density Function .............................................................................................. 64 

3.3.2 Determining Hyperparameters......................................................................................... 66 

3.4 Case Study ............................................................................................................................. 68 
3.4.1 Improvement of Prediction Accuracy.............................................................................. 68 

3.4.2 Improvement of Uncertainty Quantification.................................................................... 77 

3.5 Summary................................................................................................................................ 80 

CHAPTER 4. MODEL BIAS-CORRECTION WITH UNCERTAINTY QUANTIFICATION

...................................................................................................................................... 81 

Nomenclature .............................................................................................................................. 81 

4.1 Introduction........................................................................................................................... 82 

4.2 Bias-correction of Computer Model against Physical Experiment Data......................... 84 

4.3 Bias-Correction of Low Fidelity (LF) Computer Model against High Fidelity (HF) 

Computer Model ......................................................................................................................... 92 

4.4 Case Studies........................................................................................................................... 97 
4.4.1 Combining Variable Fidelity Computer Models: A Single Dimensional Problem ......... 97 

4.4.2 Computer Model vs. Physical Experiment: Engine Piston Problem ............................... 99 

4.4.3 Accuracy Comparison of Different Model Fusion Approaches .................................... 104 

4.5 Summary.............................................................................................................................. 105 

CHAPTER 5. BETTER UNDERSTANDING OF MODEL UPDATING STRATEGIES IN 

VALIDATING ENGINEERING MODEL ...................................................................... 107 

Nomenclature ............................................................................................................................ 107 

5.1 Introduction......................................................................................................................... 107 

5.2 Role of Model Updating in a Validation Procedure ........................................................ 110 



 

 

10 

5.3 Examination of Existing Model Updating Methods ........................................................ 112 
5.3.1 Model bias-correction approaches ................................................................................. 112 

5.3.2 Model calibration approaches ........................................................................................ 114 

5.3.3 Limitations of Bayesian approaches .............................................................................. 117 

5.4 A Maximum Likelihood Estimation (MLE) Based Model Updating Methodology ..... 118 
5.4.1 Model updating formulations and parameters ............................................................... 118 

5.4.2 Determining model updating parameters via MLE ....................................................... 120 

5.4.3 Comparison of the MLE based model updating with traditional Bayesian approach ... 122 

5.5 Prediction Using the Updated Model ................................................................................ 124 

5.6 Case Study: Comparative Studies Using the Thermal Challenge Problem .................. 124 
5.6.1 Problem description ....................................................................................................... 124 

5.6.2 Bayesian approaches to the thermal challenge problem ................................................ 128 

5.6.3 Three model updating formulations used for testing the MLE method......................... 129 

5.6.4 Results of model updating parameters of different formulations .................................. 130 

5.6.5 Studing of the predictive capability of the updated models........................................... 131 

5.6.6 Model validation metrics ............................................................................................... 135 

5.6.7 Comparison of regulatory test results ............................................................................ 137 

5.7 Summary.............................................................................................................................. 138 

CHAPTER 6. DESIGN DRIVEN MODEL VALIDATION METRICS AND PROCEDURE

.................................................................................................................................... 141 

Nomenclature ............................................................................................................................ 141 

6.1 Introduction......................................................................................................................... 142 

6.2 A Proposed Design-Driven Model Validation Procedure ............................................... 145 

6.3 Design-Driven Model Validation Metrics......................................................................... 149 

6.4 Case Study: Engine Piston Design..................................................................................... 154 

6.5 Summary.............................................................................................................................. 158 

CHAPTER 7. OBJECTIVE ORIENTED SEQUENTIAL EXPERIMENTATION........... 160 

Nomenclature ............................................................................................................................ 160 

7.1 Introduction......................................................................................................................... 160 

7.2 A New Objective Oriented Sequential Sampling Approach........................................... 162 



 

 

11 

7.3 Stopping Criteria for Sequential Sampling ...................................................................... 164 

7.4 Application of the Proposed Sequential Sampling Approach in Variable Fidelity 

Optimization.............................................................................................................................. 167 
7.4.1 Background of variable-fidelity optimization................................................................ 167 

7.4.2 Sequential sampling based variable-fidelity optimization approach ............................. 168 

7.5 Case Study ........................................................................................................................... 170 
7.5.1 Computer Experiment: One Dimensional Problem ....................................................... 170 

7.5.2 Computer Experiment: Two Dimensional Problem (the Modified Branin Function) ... 171 

7.6 A Framework of Sequential Physical Experimentation .................................................. 179 

7.7 Summary.............................................................................................................................. 185 

CHAPTER 8. CONCLUSION...................................................................................... 187 

8.1 Contribution ........................................................................................................................ 187 

8.2 Future work......................................................................................................................... 189 

REFERENCES............................................................................................................ 193 

APPENDIX.................................................................................................................. 203 

VITA............................................................................................................................ 212 



 

 

12 

 

Chapter 1. Introduction 

1.1 Research Motivation  

In many engineering fields, computer simulation models (simply called computer 

models) have been widely used for engineering analysis and design, to predict the behavior of a 

real system when the physical phenomenon is not accessible by direct measurements or the 

physical experiments are much more expensive than numerical simulations. Associated with the 

advancement of simulation-based engineering and science (SBES) (NSF report 2006) is the 

emergence of a new design paradigm called simulation based design, which takes an increased 

responsibility for the success of new “engineered” systems, in replacement of the present design 

practice that relies heavily on extensive testing of components, subsystems and prototype 

systems.  In addition, Predictive Modeling has emerged as a new research subject that studies a 

broad range of modeling techniques to provide confident prediction of the phenomenon of 

interest by integrating scientific principles together with the information obtained from both 

computer models and observed physical experiments. There are several major challenges in 

using predictive models for engineering design: 

(1) A computer model could be computationally very expensive, which largely 

downgrades the efficiency and effectiveness of using it for design analysis and synthesis. For 

designing new and complex “engineered” systems in various applications such as microsystems, 

biological systems, and energy generation and consumption systems, the computational cost of 

sophisticated multi-discipline and multi-physics simulations can be extremely expensive and the 

use of simulation-based design becomes prohibitive. It is impractical to rely exclusively on high-
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fidelity simulation models for the purpose of engineering design. Metamodeling techniques are 

widely used to build cheap-to-compute surrogate models (called metamodels) to replace the 

original expensive models in simulation-based design. However, with most metamodeling 

techniques, a general assumption is that the smoothness of a response is uniform over the input 

space domain. This is a convenient assumption that simplifies the metamodeling analysis and 

lessens the amount of prior information required. However, for engineering systems with 

complex physical behavior, cases are common where the level of smoothness of a response 

changes over its input space.  There is a need for developing flexible metamodeling techniques 

that are capable of capturing highly nonlinear behaviors with changing smoothness of responses. 

(2) Various sources of uncertainty should be sufficiently taken into account when using 

predictive models for engineering design. To name a few, there are uncertainties due to the 

model/method error, design parameter uncertainty, lack of data, experimental uncertainty, 

metamodeling uncertainty, etc. Because uncertainties have a large impact on the credibility of 

any consequent decision making, it is important to quantify each source of uncertainty, to study 

its impact on the final prediction, and more importantly, to mitigate its effect on the final design 

performance. While methods are widely accessible for uncertainty quantification of model 

parameters, there does not exist a unified theory or approach to quantify model uncertainty.  To 

yield confident predictions, reliable design, and to minimize the unforeseen risk of final decision 

making, uncertainty of a predictive model must be sufficiently quantified with a comprehensive 

treatment of uncertainties from different sources.  Throughout this process, there is also a need 

for developing model updating techniques that effectively combine information from both 

physical and computer experiments to improve model prediction. 
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(3) Before a model can be used for prediction purpose, its validity should be critically 

assessed, which is called model validation. Recent years have seen growing interest in model 

validation from both government and industries. In most of the existing efforts, model validation 

is viewed as verifying the model accuracy through comparing the model predictions with 

physical experiment observations.  Due to the lack of resource, validation metrics are assessed 

based on limited test points without considering the predictive capability at untested but potential 

design space and the various sources of uncertainties. Therefore, the existing approaches for 

validating analysis models are not directly applicable for assessing the confidence of using 

predictive models in engineering design. There is a need to define a new model validation 

framework and metrics from the perspective of engineering design, and to establish the 

mathematical procedure accordingly.  

1.2 Predictive Modeling and Research Issues 

Figure 1.1 depicts a general framework considered in this work for predictive modeling 

by combining the information from both computer experiments (simulations), and physical 

experiments. A brief explanation of the steps in this flowchart is provided as follows. 
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Figure 1.1 A general framework of predictive modeling based on computer model and 

physical experiment data 

(1) If a given a computer model is expensive to simulate, computer experiments will be 

first designed to simulate the computer model and construct a metamodel to replace the 

expensive model in the later steps of the framework.  

(2) In parallel to computer experiments, physical experiments are conducted to provide a 

better understanding of the system.  Once the observational data is available, the computer model 
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will be updated by “fusing” both the original computer model and the new information obtained 

from physical experiments.   

(3) This updated predictive model is then subject to a validation procedure that utilizes 

both existing and, more importantly, additional physical experiments associated with the 

intended region of interest in prediction. Note that unlike many contemporary model validation 

works that assess the validity of the original computer model, this proposed framework allows 

model validation to be applied to the predictive model, which is an updated computer model.  

(4) If the predictive model passes the validation test, it will be further used for prediction 

and design purposes. The prediction may be associated with two scenarios: prediction at a single 

design site and prediction within an intended design region. In addition to the uncertainty of 

model itself, other sources of uncertainty must be considered (e.g., the input parameter 

uncertainty) in the final prediction. 

(5) If the predictive model fails the validation test, remedy will be taken by refining the 

computer model, and collecting additional computer experimental data to further update and 

validate the computer model.  

Associated with the above framework, the overall objective in this dissertation is to 

develop methodology and techniques to facilitate the use of predictive models in engineering 

design, with emphasis on techniques for metamodeling, model uncertainty quantification, and 

model validation. Five individual research tasks are identified in this work to accomplish this 

overall objective. 

 

� Task 1. Developing an improved Kriging metamodeling approach for capturing non-

stationary behavior 
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The research objective of this task is to develop an improved metamodeling technique 

that allows for high-dimensional engineering applications using the data from computer 

experiments.  In addition to enhancing the prediction accuracy of model behavior with changing 

smoothness, the method is also expected to provide convenient assessments of “interpolation 

uncertainty” due to the use of metamodels. 

Among the most widely used metamodeling techniques, Kriging model is well 

recognized for its capability of capturing nonlinear behavior and providing estimation of 

prediction error without using extra validation tests (Sacks et al., 1989).  The latter feature makes 

Kriging model very attractive especially when the estimation of metamodel uncertainty is needed 

for purposes such as sequential sampling in multistage metamodeling. The assumption of a 

stationary covariance structure underlying ordinary Kriging does not hold in situations where the 

level of smoothness of a response varies significantly, which may downgrade the accuracy of 

Kriging prediction in terms of response prediction and error estimation. Although non-stationary 

Gaussian process models were put forward years ago in statistics and geostatistics communities, 

they are largely considered suitable in the scenario of physical experimental data with relatively 

low dimensions (Santner et al., 2003). Little prior work has been done on non-stationary 

covariance modeling for complex systems design based on deterministic computer experiments. 

This is mostly because complex design problems are often high dimensional, which leads to 

overparameterized non-stationary covariance functions. Therefore, the development of an 

efficient and effective non-stationary Gaussian process modeling approach for metamodeling is 

one of the research tasks undertaken in this work.  

To be specific, a Kriging method with sparse yet flexible parameterization of non-

stationary covariance, essentially a modified version of Gibbs (1997)’s nonlinear map approach, 
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is investigated. Through both mathematical and engineering examples, it is demonstrated that 

Kriging modeling based on the proposed non-stationary covariance representation is flexible 

enough to capture the changing smoothness behavior of a response, while providing a more 

accurate qualification of prediction uncertainty.  

Details of the proposed method will be presented in Chapter 3. 

 

� Task 2. Developing a Bayesian Bias-Correction Approach for Model Fusion 

Although metamodeling techniques have been widely developed to construct a predictive 

model based on computer experiment data, very little research is on constructing a predictive 

model based on a combination of multiple sources of information with different fidelities and 

costs. Two scenarios of combining or fusing different sources of information are considered. 

 Scenario (a) 

Multiple computer models are available but at different levels of model fidelity.  No 

physical experiments are available. 

Scenario (b) 

Both computer simulations and physical experiment data are available. 

Model fusion techniques have been developed to combine different sources of 

information under Scenarios (a) and (b). However, the existing approaches do not offer a unified 

mathematical framework for different scenarios, and lack the capability of quantifying the 

prediction uncertainty of the “fused” models. 

The research objective under this task is to develop a generic model fusion approach that 

is able to effectively assess the uncertainty in model prediction by integrating data from different 

sources. More specifically, uncertainty associated with various levels of fidelity and 
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experimental error will be accounted for by a bias-function that models the difference between a 

low-fidelity and a high-fidelity model (Scenario (a)) or between computer predictions and 

physical experiments (Scenario (b)).  The physical experiment data possesses the highest level of 

fidelity because it is the closest to reality.  The approach is therefore generic to be applicable to 

both Scenarios (a) and (b) presented earlier. 

In our approach, the Gaussian process model is used to represent the bias-function.  A 

Bayesian approach is applied to the Gaussian process model to assess the uncertainty of the 

prediction error of the bias-corrected model. The approach provides a generic and flexible 

framework for drawing inferences for predictions in the intended but untested design domains, 

where data of physical experiments or high fidelity simulations are very limited. The Bayesian 

approach also provides a solid foundation for further research that may incorporate other, much 

broader, forms of uncertainty in engineering design. 

Details of this task will be presented in Chapter 4. 

 

� Task 3. Achieving a Better Understanding of Model Updating Strategies 

Model updating is a strategy that utilizes mathematical means to update a computer 

model based on both physical and computer observations to improve the predictive capability of 

a computer model. Although various model updating techniques such as bias-correction and 

calibration are seen in literature, there is a need to achieve a better understanding of their merits.  

In this work, different model updating formulations, e.g., calibration and bias correction, as well 

as different solution methods are examined.. Traditional approaches to calibration treat certain 

computer model parameters as fixed over the physical experiment, but unknown, and the 

objective is to infer values for the so-called calibration parameters that provide a better match 
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between the physical and computer data. In many practical applications, however, certain 

computer model parameters vary from trial to trial over the physical experiment, in which case 

there is no single calibrated value for a parameter. We pay particular attention to this situation 

and develop a maximum likelihood estimation (MLE) approach for estimating the distributional 

properties of the randomly varying parameters which, in a sense, calibrates them to provide the 

best agreement between physical and computer observations.  Furthermore, the newly developed 

u-pooling method (Ferson et al. 2008) is employed as a validation metric to assess the accuracy 

of an updated model over a region of interest.  Using the benchmark thermal challenge problem 

as an example, several possible model updating formulations are studied using the proposed 

methodology.  The effectiveness of the various formulations is examined.  The benefits and 

limitations of using the MLE method versus the Bayesian approach are presented.  Insights into 

various model updating strategies are provided through this study. 

Details of this task will be presented in Chapter 5. 

 

� Task 4. Developing Design Driven Model Validation Framework and Metrics  

Even though there is a growing interest from both government and industries in 

developing fundamental concepts and terminology for model validation, model validation are 

still poorly understood in engineering design. Most of the existing model validation work is 

rooted in computational science where validation is viewed as verifying the model accuracy, i.e., 

a measure of the agreement between computational and experimental results. In most of the 

existing work, model validation has been primarily carried out from the perspective of model 

builders (or analysts), but not from that of designers (model users). They cannot provide 
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stochastic measurements with regard to the confidence (as well as the risk) in using a model for 

design purpose.  

The research objective under this task is to develop a framework that combines both 

computer and physical experiments in validating the use of predictive models for engineering 

design.  Different from the existing view in literature for assessing the model accuracy, model 

validation in this work is considered as a means to provide designer with statistical confidence 

measure while using predictive models in making a specific design decision. Built upon the 

techniques developed in Task 3 for uncertainty quantification of model prediction, the research 

objective here is to develop design-oriented model validation metrics to guide designers for 

achieving high confidence of using predictive models in making a specific design decision.   

Appropriate metrics are developed to measure the confidence in using the predictive 

model for choosing one design candidate versus the other alternatives. Meanwhile, metrics are 

also intended to guide validation activities. If large uncertainty exists in predicting a design 

outcome and the validation requirement is not satisfied, new physical experiments will be 

designed and added sequentially to reduce the model uncertainty as well as improving the 

confidence of accepting a design solution.  

Details of this task will be presented in Chapter 6. 

 

� Task 5. Developing A New Strategy in Objective Oriented Sequential Experiment 

 Sequential experimentation has been shown to be a useful strategy in predictive 

modeling for engineering design because it helps maximize the information gained from 

experimental data sampled sequentially, especially when computer simulations are 

computationally expensive or physical experiments are resource taking. The interest in this task 
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is to research new strategies in sequential experiments in support of multistage metamodeling, 

model updating, and model validation in the context of engineering design. Considering that the 

end goal of using a predictive model in engineering design is to obtain a “true” optimal design 

solution with high level of confidence, an objective oriented sequential sampling approach is 

proposed for computer experiments towards improving a design objective as well as reducing the 

interpolation uncertainty due to the lack of experimentation data.  In connection with the bias 

correction approach for combining variable-fidelity models developed under Task 2, the 

proposed objective oriented sequential sampling approach is applied to variable fidelity 

optimization where both the high-fidelity and low-fidelity simulations are integrated.  

As an extension of the sequential sampling of computer experiments, a general 

framework that guides objective oriented sequential physical experimentation for updating 

predictive models in engineering design is also described. 

Details of this task will be elaborated in Chapter 7. 

1.3 Dissertation Outline 

The outline of this dissertation can be illustrated in Figure 1.2. The technological bases 

related to the five research tasks are introduced in Chapter 2. The five research tasks are 

respectively presented in Chapters 3 – 7.  Chapter 8 summarizes the contributions and presents 

the conclusion of this dissertation. 
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Figure 1.2 Outline of dissertation 
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Chapter 2. Technical Background 

Nomenclature 

1 2[ , ,..., ]T

D n
=X x x x  sample points 

1 2[ , ,..., ]T

D n
y y y=y  simulation outputs 

fj(x) polynomial items 

βj polynomial coefficients 

Z(x) Gaussian process 

mθ  correlation parameters 

2σ  variance of Gaussian process 

R correlation matrix 

EI, ( )EI x  Expected Improvement 

SLB, SLB(x)  Statistical Lower Bound 

( )ey x  Physical experiment 

( , )my x θ  computer model 

( )cε x  software coding errors 

( )hε x  numerical errors  

θ  calibration parameters, Model uncertainty parameter  

( )δ x  modeling error/bias (assessed by validation) 

( )eε x  Experimental error (assessed by validation) 

RMSE Root Mean Square Error 
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2R  R Square 

RAME Root Absolute Mean Error 

( )δ x  Bias function 

2.1 Introduction 

This chapter provides the technical background related to the several major research tasks 

in this dissertation. An overview of basic concepts and existing methods of metamodeling 

techniques is first provided in Section 2.2. In Section 2.3, techniques of optimal design of 

computer experiments are summarized, followed by the challenge and techniques in sequential 

sampling strategies in Section 2.4. In Section 2.5, fundamental concepts of model verification 

and validation are introduced, and the mathematical framework of model prediction based on 

both computer experiments and physical experiments is provided. In Section 2.6, general model 

validation approaches in literature are reviewed. Finally in Section 2.7, fundamental concepts in 

model calibration and bias-correction for model updating are described. 

2.2 Kriging Techniques for Metamodeling 

2.2.1 Overview of Kriging Techniques 

Metamodels are widely applied in engineering design to facilitate the analysis and 

optimization of complex systems based on computationally expensive simulations. The 

simulation model studied here is assumed to be deterministic: if the simulation model is run 

twice (on the same computer) with the same value of input setting, the same value of output will 

result. The metamodeling problem can be formulated as: given n sample points 

1 2[ , ,..., ]T

D n=X x x x and their simulation outputs (responses) 1 2[ , ,..., ]T

D ny y y=y , what is an 
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approximation for the functional relationship between input (design variables) x and output 

(response) y of the simulation model? Each sample point is expressed as a vector of values of 

input variables, for k-dimensional problem, xi=[xi1, xi2,...,xik]
T
. Various approaches have been 

widely used in engineering applications. The Response Surface Methodology (Box, et al.; 1978; 

Myers and Montgomery, 1995) is a well-known approach for constructing simple and fast 

approximations of complex computer codes. Kriging is a widely used interpolation method for 

the design and analysis of computer experiments (Sacks, et al., 1989; Currin, et al, 1991), as well 

as for design optimization (Booker, et al., 1999; Jones, et al., 1998).   Other techniques, such as 

Artificial Neural Network (ANN) methods (Smith, 1993; Cheng and Titterington, 1994), 

Multivariate Adaptive Regression Splines (Friedman, 1991), and radial basis function methods 

(Hardy, 1971; Dyn, et al., 1986; Mullur and Messac, 2005) have drawn the attention of many 

researchers. Numerous comparative studies of metamodel types have been published over the 

years in an attempt to determine a “best” model (Jin et al. 2000, Simpson 2001; and Mullur et al. 

2005; Turner et al. 2006).  

Kriging model, named after the South African mining engineer D.G. Krige, was 

originally developed to analyze mining data (Krige, 1951). Krige’s work formed the foundation 

for an entire field of study now known as geostatistics (see, e.g., Cressie, 1997). Sacks, et al. 

(1989a, 1989b) extended the techniques of Kriging to deterministic computer experiments. 

Currin, et al. (1991) provided a Bayesian interpretation for the Kriging method. In the recent 

years, this new research avenue of using Kriging for metamodeling was quickly explored by 

engineering community as its potential for more general engineering applications became 

apparent (e.g., Simpson, et al., 2001a; Jones, 2001; Booker, 1998; Stinstra et al., 2001). One of 

the distinctive advantages of Kriging is that it provides not only the prediction of a response at 
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any site, but also the Mean Square Error (or the uncertainty) associated with the prediction. 

Currin et al. (1991) provided a comprehensive review of Kriging with a Bayesian interpretation.  

Kriging method treats the simulation model y(x) as a combination of a polynomial model 

(global trend) and a lack-of-fit part, i.e.,   

 
1

( ) ( ) ( ) ( ) ( )
P

T

j j

j

y f z zβ
=

= + = +∑x x x β f x x ,                                    (2.1) 

where fj(x) and βj (j =1,2,..,P) are polynomial items and corresponding coefficients, respectively; 

f(x)=[f1(x),f2(x),..., fP(x)]
T
 and 1 2[ , ,..., ]T

P
β β β=β ; z(x) is the lack of fit. Kriging method 

assumes that the lack-of-fit values at different locations are not independent; rather z(x) is a 

systematic departure, which is a realization of a stochastic process Z(x) with mean zero, variance 

σ2
 and non-zero covariance. The covariance of Z(x) between two points t and u is expressed as: 

 ( ) 2cov ( ), ( ) ( , ; )Z Z σ ρ=t u t u θ ,                                            (2.2) 

where ρ  is the correlation function and θθθθ = [θ1, θ2,... θM]
T
 are correlation parameters. The 

correlation function can have many different forms (cf., Simpson, et al., 1998b), among which 

the most popular is the Gaussian correlation function. The correlation parameter is used to 

measure how fast the correlation between t and u decays with the increase of the distance 

between t and u in the direction of the corresponding coordinate. The smaller the correlation 

parameter is, the slower the correlation decays, which means the response is smooth in the 

corresponding direction.  

2.2.2 Bayesian Interpretation of the Kriging Method 

The Kriging method can be interpreted in a Bayesian point of view in many ways. 

Gaussian process (GP) prior over functions (Sacks et al. 1989, Currin et al. 1988, 1991).are 
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similar to the Bayesian approach to neural networks, where a prior is put on the weights of a 

network which represents a prior over functions. In Kriging method, such a prior is in the form 

Gaussian process. Compared to neural networks, Kriging model allows for analytical treatment 

because at least the lowest level of a Bayesian hierarchical model can be treated analytically (Li 

and Sudjanto, 2003).   

The prior knowledge about a model can be expressed by a Gaussian process Y(x) 

= ( ) ( )T Z+β f x x  as in Eq. (2.1), with ( )Tβ f x as its mean, σ2
 as its variance and Eq. (2.2) as the 

correlation function. The variance represents the uncertainty in the prior knowledge for the 

simulation model. After observing the responses on some sample points, more knowledge about 

the simulation model is obtained in the posterior process, reflecting the posterior knowledge. 

From the Bayesian viewpoint, the variance of posterior process is the uncertainty in the posterior 

knowledge on the simulation model. It has been shown that the mean and variance of the 

posterior process in Bayesian are exactly the Kriging predictor (Eq. 2.8) and the estimator of the 

prediction error (Eq. 2.9), respectively, when Gaussian process with improper uniform priors on 

β ’s. 

Figure 2.1 shows the comparison between the prior and posterior distribution of Kriging 

metamodeling from the Bayesian point of view. As can be in (a) shows in the figure, the function 

of Y(x) is assumed as a Gaussian process, where the prior distribution of function Y(x) are 

identically distributed (with prior mean and covariance function). At the presence of two 

observations the function values (y1 and yi) at site x1 and xi, the posterior distribution of function 

Y(x) (with posterior mean and covariance) is shown in Figure 2.1 (b).  
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(a) prior                                                      (b) posterior 

Figure 2.1 Bayesian view of Kriging metamodeling (Li and Azarm, 2006) 

 

2.2.3 Determination of hyperparameters in Kriging mdoel 

Given the form of the correlation function and the observations yD = [y(x1), y(x2), …, 

y(xn)]
T
 of the unknown function y(x), we need to identify the values of β̂ , 2σ̂ , and θ̂ .  One 

approach is to use the maximum likelihood estimation (MLE) method that maximizes the 

likelihood function (joint probability distribution function for yD): 

 2 1

1/ 2 22 / 2

1 1
( , , ) ( ) exp [ ] [ ]

2(2 )

T

D D Dn
L pσ

σπσ
− = = − − − 

 
β θ y y Fβ R y Fβ

R

) )
,         (2.3) 

where 1 2[ ( ), ( ),..., ( )]T

n=F f x f x f x ; R is the correlation matrix, whose elements are 

( , ; ),1 ,ij i jR i j nρ= ≤ ≤x x θ .  

The values for β  and σ are obtained by considering: 

 1 1 10 )T T

D

L − − −∂
= ⇒ =

∂
β (F R F F R y

β

)
                                         (2.4) 
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1
ˆ0 [ ] [ ]

( )

T

D D

L

n
σ
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−∂

= ⇒ = − −
∂

y Fβ R y Fβ
) )

.                              (2.5) 

The correlation coefficients θ , however, cannot be determined analytically. They are typically 

obtained numerically by solving the optimization problem, i.e., maximizing the likelihood 

function in Eq. (2.3).  The values of β̂ , 2σ̂ , and θ̂ reflect the typical pattern of variations in the 

observations.  

In general, σ2
, ββββ and the correlation parameters θθθθ are estimated by the maximum 

likelihood estimation (MLE) method. Furthermore, it can be proved that the following realization 

is the best predictor of y(x) in terms of the maximum likelihood function: 

 1

0
ˆ ˆˆ( ) ( ) ( ) ( )

T T
y

−= + −x β f x r x R y Fβ ,                                     (2.6) 

where β̂  is the MLE of ββββ; F denotes the matrix of the values of all the polynomial items at the 

sample points, i.e., 
1 2[ ( ), ( ),..., ( )]T

N=F f x f x f x ; [ ]
ij N N

R ×=R  is a  N×N  matrix (correlation 

matrix), whose element ( , )ij i jR ρ= x x  is the correlation between sample points xi and xj; 

1( ) [ ( )]
i N

r ×=r x x  is a N×1 vector, whose element ( ) ( , )
i i

r ρ=x x x  is the correlation between x and 

xi. This prediction model is an interpolation model in that it passes through all the sample points. 

In Y(x), there are infinite realizations which pass through all the sample points. These 

realizations form a new stochastic process, which is denoted as ( ) | DY x y . In fact, the unknown 

function y(x) is one of the realizations in the new stochastic process. The maximum likelihood 

method is used to obtain a predictor of y(x) (Jones, 2001), i.e., the predictor should maximize: 

 
( ( ), )

( ( )) ( ( ) )
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D
D

D

p y x
L y p y
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= =
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x x y
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.                                   (2.7) 
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By considering 0,
L

y

∂
=

∂
 

the maximum likelihood predictor of y(x), i.e., the Kriging 

metamodel prediction, can be expressed as 

 1ˆ( ) ( ) ( )T T

Dy
−= + −x β f x r R y Fβ

) )
.                                       (2.8) 

The correlation of the errors will affect the estimate of prediction accuracy. Since y(x) is 

unknown, it is impossible to obtain the prediction error of ˆ( ) ( )y y−x x . One way to estimate the 

prediction error is to use the variance of the new stochastic process ( ) | DY x y , i.e., the estimator 

of the prediction error can be expressed in Eq. (2.9), which is also called the  mean squared error 

(MSE, Sacks et al., 1989). 

 2 2 2 1ˆ ˆ( ) [( ( ) ( ) | ) ] (1 )T

Ds E y Y σ −= − = −x x x y r R r .                        (2.9) 

The covariance will be: 

( )2 1ˆ( , ) ( , ) ( ) ( )T

i j i j i j
Cov rσ −= −x x x x r x R r x ,                        (2.10) 

where 
i

x  and 
j

x  are any two sites. 

Eq. (2.8) and Eq. (2.9) are the two major outputs yielded by Kriging modeling. It can be 

verified from these two equations that: (1) ˆ( )
i i

y y=x  (meaning that Kriging is interpolative); (2) 

2 ( ) 0
i

s =x , where 
i

x  is one of the sampling points. 
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Figure 2.2 The sampling points (16) used in a Kriging model in two dimension 

 

           (a) Kriging predictor ˆ( )y x         (b) Kriging prediction uncertainty (variance) 

Figure 2.3 Kriging predictor and the prediction uncertainty 

based on sixteen (16) sampling points 

 

Figure 2.3 shows an example of the Kriging predictor and estimator of the prediction 

error for a two-dimensional function, based on sixteen sampling points shown in Figure 2.3. It is 

found that at any sample point, the estimation of the prediction error is exactly equal to 0 and at 
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any other locations the estimation of the prediction error is dependent on the distance between 

the point for prediction and the other sample points. 

2.2.4 General Bayesian Analysis of Kriging metamodeling 

As described in Section 2.2.3, the three unknown hyperparameters β̂ , 2σ̂ , and θ̂  are 

determined through the MLE approach. There are several deficiencies of using MLE approach to 

determine the hyperparameter in Kriging metamodel (Martin et al., 2005). One deficiency of this 

approach is that it is characterized as an optimization process that suffers from multiple 

maximum issues in many cases. To guarantee the selection of the global maximum likelihood, 

stochastic optimization and some penalty function based approaches (Li and Sudjanto, 2005) are 

required. 

A second deficiency of using the MLE approaches is resulted from the treatment of the 

three unknown hyperparameters β̂ , 2σ̂ , and θ̂  as fixed parameters. However, under very rare 

cases can such parameters be known (e.g., from expert’s advices or pervious experience). 

Therefore, the MLE treatment potentially leads to the underestimation of the stochastic process 

variability (Martin 2005). To mitigate this problem, a general Bayesian analysis can be applied to 

determine the hyperparameters β̂ , 2σ̂ , and θ̂  in Kriging model. Specifically, prior distributions 

are assigned to these parameters. Given observed experimental data, the posterior distributions of 

these parameters are viewed as the uncertainty of parameters and could be propagated through 

the deterministic predictor in further predictions. 
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2.3 Optimal Design of Computer Experiments  

The selection of sample points, namely the design of experiments (DOE, also called 

experimental design or sampling technique), has direct impact on the performance of a 

metamodel. “Classical” DOE methods, such as full-factorial designs, fractional factorial designs, 

central composite designs, etc, are mainly developed for physical experiments, in which 

substantial random noise is assumed to be present.  

However, the simulation yielded by computer model is deterministic and therefore able to 

replicate observations from running the code with the same inputs. Furthermore, with simulation 

models, it is common to allow the variables to vary over wider ranges than in physical 

experiments. The function behavior over such large ranges may be much more nonlinear than 

what is normally observed in physical experiments. It is argued by many researchers (e.g., Currin, 

et al., 1991; Sacks, 1989) that classical experimental designs are not well-suited for computer 

experiments. It is generally believed that a good design of computer experiments should have a 

good space-filling (Sacks et al., 1989) property and a good projective property (Fang et al., 2002). 

Numerous experimental designs have been developed in an effort to provide more efficient and 

effective means for deterministic computer experiments. Some examples of these experimental 

designs are the Latin Hypercube design, orthogonal arrays (OA) and maximin designs. Different 

experimental designs have distinctive features. However, with a limited number of sample points, 

a tradeoff often has to be made between the space-filling properties and the projective properties 

in low dimensional subspaces. 

Optimal Design of Computer Experiment refers to designs constructed by algorithmic 

approaches under certain optimality criteria. Many different optimality criteria have been 

proposed for computer experiments are widely used in literature, such as the Minimax and 
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Maximin distance criterion, the maximum entropy criterion (Currin et al, 1991), integrated mean 

squared-error (IMSE) criterion (Sacks et al, 1989) and the uniformity criterion (Fang and Wang, 

1994). Jin et al. (2005) proposed an efficient evolutionary optimization algorithm to search the 

optimal Latin Hypercube design (OLHD), by exchanging elements in the design matrix in a pair-

wise manner. This approach is gaining popularity and is used as one of the standard DOE 

methods in some commercial software packages (e.g., iSIGHT).  

2.4 Sequential Sampling Strategies 

Sequential sampling procedures are extremely important in engineering problems when 

simulations are expensive, because they help obtain the most information from a limited number 

of simulations. Even though the following review on sequential sampling strategies focuses on 

their uses in designing computer experiments, they are not restricted to computer experiments. 

Similar ideas could be extended to the design of physical experiments. 

The merits of sequential sampling strategies lie in the following aspects: 

  (1) They are akin to the common industry practice of conducting non-parallel simulations 

in a sequential or stage-by-stage manner, as opposed to single stage (one-shot). 

  (2) They provide a mechanism to monitor the accuracy of metamodels and to control the 

size of samples based on the accuracy of metamodels. This allows sampling process to be 

terminated as soon as the metamodel is deemed sufficiently accurate or dependable for the 

purpose of design (Sacks, et al., 1989). 

  (3) With appropriate criteria, they allow the sampling process to adapt to the metamodel 

previously obtained. The adaptivity of sequential sampling here has a two-fold meaning: a) it 

helps identify a design region of interest and thereby improve the accuracy of metamodel in a 
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narrowed design region of interest; b) it helps efficiently allocate sampling points: if the behavior 

of response varies dramatically throughout the input space, that regions of poor approximation 

could be allocated with more sampling points, while regions of enough accuracy would not be 

over-sampled.  

  (4) They help quickly identify the design variables with prominent or negligible influence 

to a response. The information can be used to reduce problem dimension in the later design 

process. 

Depending on various purposes, two categories of strategies are seen in literature, which 

will be elaborated in Sections 2.4.1 and 2.4.2 that follow. 

 

2.4.1 Sequential Sampling for Global Metamodeling  

The goal of global metamodeling is to fit a metamodel that is accurate over the entire 

input space. Currin et al. (1988) proposed the maximum Entropy criterion for selecting the 

sequential sampling points. Because the information matrix used for entropy assessment is 

closely related to the covariance matrix of the samples, this method incorporates the covariance 

information (i.e. the estimated correlation parameters) gained from previous metamodels. 

However, Currin’s method is limited to Kriging metamodel, since the adjusted covariance comes 

directly from the Kriging model. Lin et al. (2004) developed a SEED (Sequential Exploratory 

Experimental Design) method, together with two possible ways to adjust the covariance matrix 

of sampling. In Lin’s method, additional sampling points are used for estimating the prediction 

error, which provides the basis of adjusting the covariance matrix. As a result, more sampling 

points are expected in regions of larger prediction error. The disadvantage of this method is that 
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it wastes some sampling points as test data for verifying the prediction error, rather than as 

training data. Similar to Lin’s method, Farhang Mehr et al. (2005) incorporated the local 

fluctuation behavior of response surface into the covariance matrix. As a result, regions of higher 

fluctuation are filled with more sampling points. Osio and Amon (1996) proposed an adaptive 

sequential procedure based on the A-optimality criterion. These works utilized a common 

Bayesian view of sampling, with different adaptation criteria in selecting sample sites. 

Sacks et al. (1989) proposed the Integrated Mean Squared Error (IMSE) criterion to guide 

the sampling, in which a new sampling point is selected so that the IMSE is minimized. A 

similar method is to select the new sampling point where the MSE prediction is maximized. 

These two methods are directly based on the MSE prediction provided by the Kriging model (see 

also Section 2.2). 

Jin et al. (2002) used a scaled distance in the Maximin distance criteria, based on the 

Maximin Distance Criterion proposed by Johnson, et al. (1990). The scaling parameter in each 

dimension reflects the importance of each input variable, which could be obtained by the 

sensitivity indicator of global sensitivity analysis approaches, such as the variance-based 

approaches (Sobol 1993). Jin et al. (2002) also proposed a Cross-validation approach, in which a 

point with the largest cross-validation error is selected as the new sampling point. The above two 

approaches have no limitation on the metamodeling technique used. 

Xiong et al. (2008) recently presented a sequential sampling approach called Quasi-LHD, 

considering simultaneously the space-filling property and the projection property. The method 

extends the Maximin distance criterion (i.e. space-filling) that is formulated as an unconstrained 

optimization problem, placing a constrained optimization problem with a minimum distance on 

each dimension of a design space. 
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2.4.2 Objective-Oriented Sequential Sampling 

The Objective-oriented sequential sampling approach shows advantages in engineering 

design because it is driven by the intended purpose or objective in design optimization. It focuses 

on how to efficiently update a metamodel, while overlooking inferior or less promising design 

region and narrowing the sampling down to the most promising design region or site. Several 

major sampling approaches in this category are reviewed as follows. 

 

(1) Expected Improvement 

The concept of Expected Improvement (EI) was first applied in the Efficient Global 

Optimization (EGO) algorithm proposed by Jones et al. (1998). The algorithm selects the next 

sampling site to maximize the expected improvement of a design objective function with respect 

to the interpolation uncertainty. Two aspects of goals are achieved with traded-offs in the EI 

maximization: local search and global search. The local search tends to put the next sampling 

site at the location where the objective function is optimized (e.g., point xA in Figure 2.4), while 

the global search tends to put the next sampling at the location where the interpolation 

uncertainty is maximized (e.g., point xB in Figure 2.4). Considering the tradeoff between these 

two aspects, the EI function is formulated as min 1[max{0,[ ( )]}]s

N
E y y +− x  and further expanded 

as 

min min

1 min( ) [ ] ( ) ( )
y y

N y y

y y

y y
EI y

µ µ
µ σ φ

σ σ+

− −
= − Φ +x ,                           (2.11) 

where ( )Φ ⋅ and ( )φ ⋅ are the CDF and PDF functions, respectively, of the standard normal 

distribution, miny = ˆ ( *)s

iy x , xi* is the optimal design point based on the current metamodel, 
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1( )s

N
y +x  stands for the surrogate model at site 1N+x  with mean 1

ˆ ( )s

y Nyµ += x  and standard 

deviation 1/ 2

1[ ( )]s

y NVar yσ += x . According to the study done in Sasena (2002) and Sekishiro et 

al. (2006), although the EI method is intended to balance between the local search and the global 

search, it may not converge in some cases. Sometimes, it is difficult to optimize the EI function 

because it may show extremely ‘bumpy’ behavior at existing sampling points and extremely 

‘flat’ (close to zero) behavior in regions that are largely inferior to the optimum. 

 

Figure 2.4 Expected improvements (EI, the shaded area) at two sites xA and xB. 

E[I(xA)]> E[I(xB)]. 

 

 

Figure 2.5 Plot of Expected Improvements across the whole design region 
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In Figure 2.4, the two PDF curves at sites xA and xB are determined by the prediction 

distribution of ˆ( )AY x  and ˆ( )BY x , indicating the uncertainty in model prediction. Figure 2.5 

shows the expected E[I(x)] function vs. design site x. Since Ax  achieves the maximum EI, Ax  is 

chosen as the next sampling point. The advantage of EGO over a normal deterministic 

optimization approach based on a deterministic objective function lies in its capability of 

balancing the two objectives: to improve the accuracy of metamodel and to improve the 

objective, so regions that might contain potential optimal points will be explored more than those 

less promising. It is shown that EGO is an efficient global optimization approach even though it 

does not rely on a globally accurate metamodel. 

 

(2) Prediction Interval Based Approaches 

Given the uncertainty quantification associated with a metamodel, the prediction interval 

with a specified confidence level can also be utilized to formulate a sequential sampling problem. 

One of the approaches that utilize the information of the prediction interval is the Statistical 

Lower Bound (SLB) criterion (Cox et al.,1997), which has the following form: 

Minimize 1 1 1( ) ( ) ( )s sN N Ny y
SLB kµ σ+ + +≡ −x x x ,                           (2.12) 

where 1 1
ˆ( ) ( )s

s

N Ny
yµ + +=x x , 1/ 2

1 1( ) [ ( )]s

y N NVar yσ + +=x x , and k is a user-defined parameter. A 

larger k value implies the emphasis on reducing interpolation uncertainty or the need for global 

search. The SLB criterion is easier to be controlled and interpreted than the EI criterion.  

In Apley et al (2005), a promising design region is narrowed down by comparing the 

prediction interval of one design to that of the optimal design. The approach deals with the 
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robust design objective (rather than the deterministic optimization), i.e., 1 2( ) ( )s s
y y

f w wµ σ= +x x , 

where ( )sy x is the metamodel with uncertainty, 1w  and 2w  are the weights defined in the robust 

design objective. The uncertainty of ( )f x is determined by propagating the uncertainty of ( )sy x . 

By doing so, the effect of prediction uncertainty is isolated from those caused by random design 

variables/parameters. In Figure 2.6, x* is the optimal design determined over ( )
f

µ x  .  Points in 

regions marked by darker solid lines are of over 95% confidence that they are inferior to the 

optimal design  x*, therefore, there is no need to further refine those regions by adding further 

sampling points.  

 

Figure 2.6 The prediction interval based approach to rule out inferior design region 

 

In the recently developed multi-stage and multi-response sequential sampling approach 

proposed by Chen et al (2008), the idea of prediction intervals is used to identify the worst and 

best possible designs to determine the region of interest for both the design objective and design 

constraints.  Distinct from the existing objective-oriented sequential sampling methods, where 

the design objective and constraints have to be combined into a single response of interest, this 
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method offers the flexibility of building metamodels for multiple responses (objective/constraints) 

simultaneously. Based on the extreme values of the optimal solution identified within the 

confidence interval, the level set representation, together with a series of Boolean operations, is 

used to synthesize the region(s) of interest with arbitrary topologies. The method possesses 

superior efficiency in design exploration and allows multiple sample points at each sampling 

stage.  

 

2.5 Overview of Model Verification and Validation (V&V) 

2.5.1 Definitions of Model Verification and Validation 

Verification and validation (V&V) are the primary approaches to assess the accuracy and 

the reliability of computer models. The prediction by a computer model is used to simulate the 

physical event and is fundamental to decision-making. There is growing interest from both 

government and industries in developing fundamental concepts and terminology for model 

verification and validation. The definition of V&V by AIAA (1997) is adopted in this work as 

follows.  

• Verification is the assessment of the accuracy of the solution to a computational model; 

• Validation is the assessment of the accuracy of a computational simulation by comparison 

with experimental data.  



 

 

43 

 

Figure 2.7 A general flowchart of Verification & Validation  

 

To put into simple words, verification deals with the mathematics associated with the 

implementation of a model on computer, whereas validation deals with the physics associated 

with a model (Roach, 1998). Figure 2.7 shows a general flowchart of V&V, which explains the 

relationship between verification and validation. As shown, the comparison between the physical 

experiments and the computer outputs is the key element in V&V processes.  It is often expected 

that the model verification needs to be implemented first before a model is validated. 

Verification involves two basic components, namely, code verification and solution 

verification. Code verification deals with the error due to computer programming. In the process 

of code verification, two types of verifications are involved: Numerical Algorithm Verification 

(NAV); and Software Quality Assurance (SQA). Solution verification (also referred to as 

‘numerical error estimation’) deals with four types of errors that can occur in a computer model: 

(1) error due to spatial discretization; (2) error due to temporal discretization; (3) error due to 

iterative procedure; and (4) computer round-off error. The first three types of errors are also 

called the ‘approximation error’ or ‘numerical error’. The numerical model (computer model) 
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must be carefully verified, including features of the model such as load functions, boundary and 

initial conditions, constitutive models. Numerical error is opposed to modeling error, which is 

due to natural imperfections of abstract models. Much effort in quantifying the numerical error 

has been devoted by Ainsworth et al. (1997), Oden et al. (2003), in which the solution 

verification is viewed as essentially an estimation of posteriori error.  

Ideally, a computer model should be carefully verified before it can be passed to the 

validation process. The validation analyst should be aware of the magnitude or characteristics of 

possible numerical error, because the reliability of the validation would be decreased by the 

imperfection of the computer model. However, the focus of this work is on model validation. It 

is assumed that the computer model has been verified with ignorable numerical error. 

2.5.2 Sources of Uncertainty in Verification and Validation 

Predicting the amount by which a model output may differ from the true value is often 

complicated by the presence of uncertainties and errors from various sources, such as model 

(lack of knowledge), parametric, algorithmic, computational, and system variability, as well as 

testing data that are used to compare with the model prediction.  Different ways of classifying 

uncertainties in model prediction are seen in the literature (Apostolakis 1994; Trucano, 1998; 

Hazelrigg, 1999; Oberkampf et al., 1999).   

The following equation between ( )ey x  and ( , )my x θ  is intended to encompass all sources 

of error/uncertainty that are involved in a model verification and validation process: 

{ }( , ) ( , ) , ( ), ( ), ( )e m

c h ey y ε ε δ εε= +x θ x θ x x x                      (2.13) 

( )ey x  - Physical experiment 
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( , )my x θ - Computer model 

( )
c
ε x   - Software coding errors (assessed by verification) 

( )
h
ε x   - Numerical errors (assessed by verification) 

θ   - Calibration parameters, Model uncertainty parameter (assessed by validation)  

( )δ x   - Modeling error/bias (assessed by validation) 

( )
e
ε x   - Experimental error (assessed by validation)  

                           

Assuming that ( )
c
ε x  and ( )

h
ε x  are already eliminated in verification, a simplified 

equation can be established: 

( , ) ( , ) ( ) ( )e m

e
y y δ ε= + +x θ x θ x x                                     (2.14) 

Statistical approaches for characterizing the probability distributions of ( )δ x  are generally 

divided into two categories, classical statistical (Easterling and Berger, 2002) and Bayesian 

(Bayarri et al., 2002) approaches. The fundamental difference between the two is that the former 

draws confidence intervals of prediction based on statistical data analysis, while the latter 

assumes that the model parameters themselves are random and follow a prior distribution, 

specified based on model builder/designers’ prior knowledge.  The prior distribution will be 

updated once data is available and becomes posterior distribution. The Bayesian approach is 

preferred to the classical statistical approach when it is too expensive to obtain statistically 

sufficient amount of data. 
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2.6 Model Validation Metrics 

2.6.1 Traditional Metrics 

Most of the earlier model validation work (e.g., Marczyk et al. 1997; Freese, 1960; 

Reynolds, 1984; Gregoire and Reynolds, 1988; Hills and Trucano, 1999) is rooted in 

computational science. In these works, validation is viewed as verifying the model accuracy, i.e., 

a measure of the agreement between computational results and experimental results. For instance, 

graphical comparisons through visual inspection of x-y plots, scatter plots and contour plots are 

often subjective and not sufficient (Oberkampf and Trucano, 2000). Quantitative comparisons 

(Marczyk et al. 1997) that rely on the measures of correlation coefficient and other weighted and 

non-weighted norms to quantify the distance between the two “clouds” cannot provide statistical 

judgment of model validity. Other techniques, such as χ2 (Chi-square) test on residuals between 

model and experimental results (Freese, 1960; Reynolds, 1984; Gregoire and Reynolds, 1988) 

require multiple evaluations of the model and experiments, and many statistical assumptions that 

are difficult to satisfy. 

An extensive discussion of traditional validation literature, and examples of statistical 

analysis of physics models and experiments are given in Hills, Trucano (1999) and Easterling 

and Berger (2002), Oberkampf and Trucano (2000). Among the traditionally used validation 

metrics in statistics community, we provide the formulations of several widely seen metrics, 

namely, R
2
(R-Square), RMSE (Root Mean Square Error), and RAME (Root Absolute Mean 

Error), Eqs. (2.15) – (2.17).  

2 2 2

1 1

ˆ1 ( ) ( )
N N

i i i

i i

R y y y y
= =

= − − −∑ ∑ ,                                   (2.15) 
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( )2

1

1
ˆ

N

i i

i

RMSE y y
N =

= −∑ ,                                           (2.16) 

2

1,..,
1

1
ˆmax ( )

N

i i i
i N

i

RAME y y y y
N=

=

= − −∑ .                                (2.17) 

In the above equations, N represents the total number of validation points; iy and ˆ
iy  represent the 

real and predicted value at the validation point, respectively; y  represents the mean of iy .The 

above three validation metrics all consist a common term ( ˆ
i iy y− ), which measures the 

individual error (lack of fit) at each experimental site.  

The advantage of these three validation metrics is that they are easy to compute and 

interpret. However, they do not explicitly take into account the uncertainty of model prediction 

ˆ
iy and the uncertainty of the physical data iy . 

2.6.2 Frequentist’s Metrics 

Recent approaches to quantitatively comparing computations and experiments can be 

roughly divided into two categories, namely classical frequentist approach (Oberkampf and 

Barone, 2004) and Bayesian approach (Kennedy and O’Hagan, 2001; Bayarri et al., 2002; Buslik, 

1994; Hanson, 1999; Wang, et al., 2008).  

One of the frequentist’s validation approaches can be exemplified by the confidence 

interval based approach developed by Oberkampf and Barone (2004). The confidence intervals 

in Eq. (2.18) are used to assess the model accuracy separately at individual tested points, by 

comparing a maximum allowable error with the confidence interval.  

                         
/ 2, 1 / 2, 1

( ) ( )
ˆ ˆ( ( ) , ( ) )n n

s x s x
e x t e x t

n n
α α− − − −− ⋅ + ⋅ ,                               (2.18) 
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where the confidence level is specified at )%1(100 α− , and the confidence interval for the true 

prediction error e is defined at different values of design input, )(xe . The estimated prediction 

error is ])()([
1

)(ˆ
1

∑ −=
=

n

i

ME
i xyxy

n
xe ,  My  is the deterministic outcome from the model, and 

niy
E

i ,,1, L=  is the repetitive experimental observations at the same input, which are assumed 

to be independently, identically, and normally distributed, and 2
s  be  the sample variance. To 

assess the model within an entire test region, a single global validation metric based on the 1L  

norm and the ∞L norm (worst-case idea), with linear interpolation, is defined, respectively as 

(Oberkembf and Barone, 2004). 

ˆ 1 ( ) ( )
d

( )

u

l

M Ex

E Ex
u lavg

e y x y x
x

x xy y x

−
=

− ∫                                    (2.19)

  

        
)(

)()(
max

ˆ

max
xy

xyxy

y

e
E

EM

xxxE
ul

−
=

≤≤
                                        (2.20) 

The advantage of the above metrics is that they offer the capability of validating over a 

region rather than individual design sites. However, one difficulty of this method is that it relies 

on good interpolation of error function ( )Ey x  from observed sites to non-observed sites, which 

might not be accurate. Secondly, in multi-dimensional cases, the evaluations of such 

interpolation can be computationally expensive. 

2.6.3 Hypothesis Testing based Metrics 

  By assessing prediction confidence, the model validation problem can be treated as a 

hypothesis test. Classical hypothesis testing is a well-developed statistical method of choosing 

between two competing models of an experimental outcome.  
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  In the hypothesis test approach developed by Chen et al. (2004) and Buranathiti et al. 

(2004), metamodels are utilized for uncertainty propagation of simulation models. The 

probability distributions of function performance at multiple design settings are used to generate 

the joint probability distributions. The contours of the joint probability distributions are then used 

to define the boundary of a given confidence level for model validation and compared with the 

results from physical tests. However, this approach is more useful for rejecting (invalidating) a 

model rather than accepting (validating) a model.  

 It has been argued that the classical hypothesis testing is difficult to interpret and 

sometimes misleading. As an alternative method, the Bayesian hypothesis testing which uses 

assumptions on the prior distribution for the hypothesis that the model is incorrect, could be 

useful.  

  Mahadevan and Rebba (2005) developed a Bayesian hypothesis testing approach. As a 

result of applying the Bayesian analysis when comparing two competing hypotheses, Bayes 

factor is a metric derived from the Bayesian hypothesis testing used to compare prior and 

posterior distributions (Mahadevan et al., 2005). By definition, Bayes factor is the ratio of 

posterior and prior density values at the predicted value of a given set of input data. The same 

input data are used in the model prediction as well as in the validation experiment, so that the 

predicted output may be compared with the measured output.  

  One important difference between the classical hypothesis test and the Bayesian 

hypothesis test is that the Bayesian approach focuses on model acceptance whereas classical 

hypothesis testing focuses on model rejection.  

  However, as pointed out by Romero (2007), one widely recognized problem with 

hypothesis tests is that hypothesis tests themselves have subjectivity in the level-of-significance 
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criteria. Furthermore, small perturbations in the level-of-significance threshold can switch 

between rejecting and accepting a model. Furthermore, a potential problem with hypothesis test 

is that the more noisy and uncertain the experiment, the easier it is to pass the validation test, and 

vise versa: the more precise the validation experiment, the more difficult to pass. 

  One possible way to solve this problem could be to allow a small amount of acceptable 

bias error between the model and data, and then test the hypothesis that the differences are likely 

less than this allowed error.  

2.6.4 Metrics based on Pooling Multiple Data 

 The above validation metrics are limited to comparing the mean prediction of a computer 

model and the mean performance of a physical system. Although hypothesis testing based 

validation metrics can be used to compare the mean and variance of computer model output with 

that of experimental data, the metrics only apply for a specific input setting x and requires a large 

amount of physical experimental data which is always difficult to gather in practice.  

 A u-pooling method recently developed by Ferson et al. is used to measure the difference 

between the physical experiments and the distribution of computer outputs. A nice feature of the 

u-pooling method is that it allows for integrating or pooling all available physical experiments 

over a validation domain at different input settings x into a single aggregate metric. First, a value 

iu  is obtained for each experiment by calculating the CDF at e

iy , i.e.,  

( )e
i

e

i iu F y=
x

    (i=1,…,N
e
),                                             (2.21) 

where e

iy  represents a physical observation at the experimental site e

ix  (i=1,…,N
e
). ( )e

i

F y
x

 

represents the corresponding CDF function generated by the updated model '( , )my Θx at e

ix . 
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Figure 2.8 (a) provides an illustration of calculating the values iu  for three observations 1

e
y ( 1

e
x ), 

2

e
y ( 2

e
x ), and 3

e
y ( 3

e
x ). After pooling all values of iu  for all physical experiments, a distribution of 

iu  could be characterized. According to Ferson et al., if each physical observation e

iy  

hypothetically comes from the same ‘mother’ distribution ( )e
i

F y
x

, all iu ’s are expected to 

constitute a stranded uniform distribution on [0, 1]. An explanation of the u-pooling method is 

given in Figure 2.8, with three (N
e
=3) experimental sites. By comparing the empirical 

distribution of iu to that of the standard uniform distribution, the area difference (depicted as the 

shaded region in Figure 2.8 (b), henceforth termed ‘u-pooling’ metric (Ferson et al. 2008) can be 

used to quantify the mismatch between the dispersion of physical experiments and the 

distributions of model output. The larger the difference, the less agreement, and therefore less 

accuracy can be concluded. 

 

(a)                                                                          (b) 

Figure 2.8 Illustration of the u-pooling method 

  From the above introduction, we note that the u-pooling method becomes especially 

handy when a sparse set of physical experiment data was collected over a wide region with 

limited or no repeated tests at each site. One drawback of the u-pooling approach is that it 
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assumes that the data can be reproduced with the predicted mother distribution, which may not 

be true if the predicted model distribution is resulted by uncertainty that is different from the 

cause of uncertainty observed in the experimental data. 

2.7 Concepts of Model Calibration and Bias-Correction 

Calibration and bias-correction are two approaches employed to improve the agreement 

between a computer model and the observed experiments. In this section the similarity and the 

difference between the concepts of model calibration and bias-correction are reviewed.  

(1) Model Calibration 

Computer models often have some uncertainty with the values of physical constants. 

These values can be determined by using the results from physical experiments to calibrate the 

simulation models. In model calibration, the goal is to adjust the value of the calibration 

parameters to bring the computer model outputs as close as possible to the physical observations. 

There is clear distinction between calibration and tuning (Higdon et al., 2005): calibration 

parameters have physical interpretation, while tuning parameters usually have little or no 

meaning in the physical system. In practice, the parameters are usually treated indifferently. 

Denote ( , )my x θ as the computer model output given input vector ( , )x θ , where x are observable 

inputs which are often controllable, and θ  are additional unobservable calibration and tuning 

parameters which are required to run the computer code. 

For complex codes and corresponding experiments, one computation and one experiment 

can each yield thousands of data-values – traces of multiple response variables over time and 
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space. There may be many parameters in θ  that could be adjusted to bring the computer model 

toward the data.  

One simple approach is to minimize the mean squared error between the prediction from 

a simulation model and the results from physical experiments, i.e., 

Minimize 2

1

1
[ ( , ) ]

N
m

i i

i

y z
N =

−∑ x θ ,                             (2.22) 

where ( , )m

iy x θ  is the simulation model, zi (i=1, 2,...,N) are physical experiment results; xi = 

[xi1,xi2,…, xik]
T
 (i=1,2,..N) are sample points, θ  = [θ 1, θ 2,…, θ m]

T
 are m unknown physical 

constants, k is the number of  model input variables x. A metamodel (denoted as ˆ( , )iη x θ ) could 

be used to replace the computationally expensive simulation model ( , )m

iy x θ . For example, 

Leoni, et al. (2000) used Kriging metamodels to calibrate heat transfer simulation models of 

wearable computers. In Figure 2.9, 16 sampling points for ( , )m

iy x θ and 5 samples for iz  are 

used for calibrating the parameter θ . The best θ  for calibrating (tuning) parameters could be 

around c3. 

 

Figure 2.9 Concept of model calibration 

 

(2) Model Bias-correction 
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Calibration approaches introduced earlier generally need a large amount of computer 

experiment data, especially when calibration parameters are high-dimensional. If there are no 

(affordably) correctable flaws in the computer model, and one still wants to use the 

computational model to make predictions, a second way in addition to calibration is the so-called 

model bias-correction, which adjusts a model by adding the estimated bias function (Easterling 

et al., 2002). As a result, with the added bias function, the adjusted model is based on the relation  

( ) ( ) ( )my y δ= +x x x ,                                                 (2.23) 

where ( )my x  is the output of computer model, and ( )δ x  denotes the bias function. Bias-

correction focuses on characterizing the systematic bias ( )δ x  between the computer output and 

reality. 

Bias is the evidence of correctable flaws in either the computational model or the 

experiments, which could be due to the wrong model assumption or wrong parameter values. For 

a model that has been calibrated, it is still possible that there is still residual of error that can not 

remedied by calibration or other means. In such cases, a bias function can be applied to account 

for the remaining errors. The distribution of bias function ( )δ x  not only captures the correction 

made to the computer model, but also incorporates the uncertainty caused by the experiment 

error.  

To quantify the uncertainty of a bias function due to the lack of sample points, various 

approaches could be used, e.g., the Gaussian process model and the linear regression. It is also 

possible to incorporate the bias-correction and calibration at the same time as we will further 

demonstrate in Chapter 5 that examines various model updating strategies. 
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Chapter 3. A New Kriging Model with Non-Stationary Covariance 

Structure 

Nomenclature 

( )Z x   the Gaussian process indexed by x  

( )Tβ h x   the polynomial regression part in Kriging model 

statC   stationary covariance 

statρ   stationary correlation 

nonstatC  non-stationary covariance 

nonstatρ  non-stationary correlation 

Θ     hyperparameter set 

J number of function basis centers 

L   number of input variables 

l   index of input variable (i.e. dimension) 

( )lθ    correlation parameter for input variable ( )l
x  

( ) ( )lf x  general mapping function 

( ) ( )( )l lf x  mapping function (univariate) 

( ) ( )lg x   general density function 

( ) ( )( )l lg x  mapping function (univariate) 

( )l

k
η   hyperparameter in the piecewise density function 
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k
ξ   knot in the piecewise density function 

K   number of pieces in the piecewise density function 

k   index of function piece (k=1,2,…,K); index of knots or hyperparameters  

3.1 Introduction 

Among the widely used metamodeling techniques (Friedman, 1991, Box, et al., 1978, 

Hardy, 1971, Sack et al, 1989, Jin et al., 2001, Wang et al., 2001, Booker et al., 1999, 

Barthelemy and Haftka, 1993), Kriging is considered powerful and flexible for building 

surrogate models (or metamodels) of simulated response surfaces with different functional forms 

(Wang et al., 1999, Simpson, et al., 2001). As discussed in Section 2.2 in Chapter 2, one of the 

distinctive advantages of Kriging is that it provides not only the prediction of the response at any 

site, but also the Mean Square Error (or the uncertainty) associated with the prediction.  

In a conventional Kriging model, a response is assumed to be a spatial random process 

with stationary covariance function. The stationary covariance, like the one in Eq. (3.2), implies 

that the smoothness of a response is fairly uniform in each region of the input space (Paciorek, 

2003). This is a convenient assumption that simplifies the analysis and lessens the amount of 

prior information required (Currin et al., 1991). However, cases are common where the level of 

smoothness of a response could change dramatically throughout the whole design region. For 

example, in engineering design, when subsystem models with distinctive underlying physics are 

integrated, the system response behavior can differ greatly from one design region to another. 

Similar phenomena have been observed in geostatistics and environmental problems, where the 

geology of spatial locations greatly influences the correlation between responses (Schmidt and 

O’Hagan, 2003; Kim et al. 2005). In those cases, the assumption of the uniformity of smoothness 
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is not well satisfied. One such function is illustrated in Figure 3.1, in which the roughness in 

region x ∈[0, 0.3] is larger than in the region [0.3, 1]. Assuming a stationary covariance structure 

forces a trade-off in which the estimated stationary covariance reflects the average smoothness 

over the entire domain, but fails to reflect the true local smoothness in each region.  
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                       (a) True function                    (b) Kriging prediction (stationary covariance) 

Figure 3.1 Example of Kriging prediction with stationary covariance 

 

One natural approach to solving this problem is to consider relaxing the stationary 

covariance assumption and allowing a non-stationary one. The idea of using non-stationary 

covariance in metamodeling can be found in the engineering design literature (Lin et al., 2004 

and Farhang Mehr et al.,2005).  However, all existing works consider the irregular performance 

behavior only in sampling but not in fitting metamodels. Based on the prediction error and the 

irregularity of a response surface, the entries of the covariance matrix are adjusted, which 

essentially leads to a non-stationary covariance for choosing sample sites. While samples 

generated by these methods tend to be non-uniform in the input space, all these existing work 

used ordinary stationary Kriging for building the metamodels. Moreover, they use heuristic 
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methods of adjusting the covariance matrix that do not guarantee that the covariance matrix is 

positive definite, a crucial property for the stability of a fitted Kriging model.  

 Non-stationary covariance Gaussian process models have been used for fitting response 

surface models in the fields of statistics, geostatistics and machine learning. However, this has 

primarily been under the scenario of physical experiments in relatively low dimensions (Santner 

et al., 2003). Various approaches have been proposed to formulate the non-stationary covariance 

structure. Sampson et al. (1992) developed a spatial deformation approach to reallocate all the 

points. Gibbs (1997) and MacKay et al. (1998) proposed two methods of representing the non-

stationary behavior: the first is to directly formulate a non-stationary covariance function, and the 

second is the so-called nonlinear map approach, in which the original Euclidean space is mapped 

to a new one for which the covariance can be approximated as stationary. Paciorek (2003) used a 

process convolution approach extended from Higdon et al. (1997)’s method and Gibbs’ first 

method. Other related works could be found in Schmidt and O’Hagan (2003), Pintore et al. 

(2004), and Stein (2005). Gramacy et al. (2004) presented an approach that utilizes Gaussian 

process trees to implement the non-stationary Gaussian process. However, discontinuity of the 

response across subregions cannot be avoided.   

Little prior work has been conducted on non-stationary covariance modeling for complex 

system design based on computer experiments. This is most likely because complex design 

problems are often high dimensional, and non-stationary covariance functions tend to be 

overparameterized in high dimensions. In this work, we develop an efficient method that allows 

non-stationary covariance in Kriging metamodeling for high-dimensional engineering 

applications with computer experiments.  We use a nonlinear mapping approach to represent the 

non-stationary covariance structure, in which a parameterized density function is used to map the 
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original space to one in which the covariance becomes approximately stationary. Although high-

dimensionality is undoubtedly a prohibitive problem with physical experimental data, on which 

most of the prior work in non-stationary covariance modeling has focused, we argue that the 

approach can be made quite robust for high dimensional computer experimental data. This is due 

to two factors: First, unlike physical experiments, computer experiments are usually perfectly 

repeatable, which drastically reduces the amount of data required to accurately fit non-stationary 

covariance functions in high dimensions. Second, we propose a modified version of Gibb's 

nonlinear map approach (1997), with a sparse, yet flexible, parameterization that is well suited 

for high-dimensional computer experimental data.   

The organization of this work is as follows. In Chapter 3.2, a review of Kriging modeling 

with a stationary covariance function is first provided; the Gibbs’ nonlinear map approach is then 

introduced. Details of the proposed approach are provided in Chapter 3.3. Computational issues 

related to the optimization strategies for estimating the hyperparameters is also addressed. In 

Chapter 3.4, mathematical and engineering examples are used to illustrate the effectiveness of 

the proposed approach.  We demonstrate that the proposed method not only improves the 

accuracy of metemodels for functions with changing irregularity, but also effectively quantifies 

the prediction uncertainty associated with the use of metamodels in engineering applications.  

Concluding remarks are given in Chapter 3.5. 

3.2. Technological Base 

3.2.1 Kriging metamodeling with a stationary covariance function 

In the conventional Kriging model (Sacks et al., 1989), the performance y(x) is modeled 

as 
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( ) ( ) ( )Ty Z= +x β h x x ,                                                   (3.1) 

where ( )Tβ h x  is the regression component (e.g., a polynomial) which captures global 

trends; ( )Z x is assumed a Gaussian process indexed by input variables x , with zero mean and 

stationary covariance. From a Bayesian perspective (Currin et al., 1991, Morris et al., 1993), the 

prior knowledge of the performance y(x) is specified by a Gaussian process, which is 

characterized by the prior mean (i.e. the global trend) and prior covariance. Given the 

observations, the posterior process is also a Gaussian process (treating the covariance parameters 

as known and assuming a Gaussian prior distribution for β ). The prediction of y(x) is usually 

taken to be the posterior mean, and the prediction uncertainty is quantified by the posterior 

covariance. 

The conventional Kriging model assumes that the Gaussian process has stationary 

covariance, with the covariance function defined as follows: 

( ) ( )2, ; , ;st m n st m nC σ ρΘ =x x x x θ ,                                     (3.2) 

where stρ  is the correlation function. The hyperparameter set Θ  is composed of 2{ ; }σ θ . A 

frequently used Gaussian correlation function is:  

( ) ( ) ( ) 2

1

( , ; ) exp ( )
L

l l l

st m n m n

l

ρ θ
=

 
= − − 

 
∑x x θ x x .                              (3.3) 

The variance 2σ  provides the overall vertical scale relative to the mean of Gaussian process in 

the output space, θ ={ ( ) ( 1, 2,..., )l l Lθ = } are the correlation parameters (scaling factors) 

associated with each input variable ( )lx , which reflects the smoothness of the true performance. 

The stationary covariance indicates that the correlation function ( , ; )st m nρ x x θ  between any two 
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sites mx and nx depends on only the distance (scaled by θ ) between mx and nx . In Eqs. (2.2) and 

(2.3), the subscript ‘st’ means ‘stationary’. 

3.2.2 Representing Non-stationary Covariance: The Nonlinear Map Approach 

Various approaches exist in literature to represent non-stationary covariance structures. 

The nonlinear map method (Gibbs, 1997) is attractive among others because it is intuitively 

interpretable with a notion of space mapping. A simple one-dimensional illustration of the map is 

provided in Figure 3.2. A mapping function ( )f x is defined by integrating a density function 

( )g x (see Eq. (3.4) for details). It can be seen in the original space (Figure 3.2 (a)) that the true 

function, denoted as ( )y x , is hard to be modeled with a stationary covariance due to abruptly 

changing smoothness of ( )y x . However, through mapping to the new space, the new response 

exhibits an improved uniformity of smoothness across the whole region. Hence the stationary 

covariance can be employed in the new space. Following the definition of the mapping function 

( )f x  as the integration of ( )g x , the distance between point C and D in the new space | |D C−x x% %  

corresponds to the shaded area in panel (a). Obviously, the higher density function around point 

C accounts for the higher abruptness of the real response. In other words, the relation between 

the density function ( )g x  and the smoothness of the real response can be established.  

 

                 (a) Original space                                           (b) New space 

Figure 3.2 A conceptual illustration of the nonlinear map  
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The mapping function becomes more complicated in high-dimensional situations. It is 

noteworthy that as long as the density function is positive and continuous, the positive-

definiteness of the resulting non-stationary covariance can be strictly guaranteed. This is one 

significant characteristic of the approaches based on map and space deformation. In Gibbs’ 

approach (refer to Paciorek (2003) for further details), the multidimensional mapping functions 

must be one-to-one and continuous, which ensures the order of points on any non-intersecting 

line in original x space is preserved in the new x%  space and the line in the x% space is non-

intersecting. Denote the mapping from x  to x% as (1) (2) ( )( ) ( ( ), ( ), , ( ))Lf f f= =x f x x x x% L , where 

( ) ( )lf x  defines the l
th

 coordinate of x% , i.e., ( )l
x% . To achieve the aforementioned mapping, the l

th
 

mapping function ( ) ( )lf x  is defined as an integral over a density function ( ) ( )lg x . 

 
( ) ( )

(1) ( )
0 0

( ) ( ) ( ) (1) ( )

0( ) ( )
l L

L

x x
l l l L

x x
f x g dx dx′ ′ ′= + ∫ ∫x xL L ,                           (3.4) 

where L  is the number of input variables; 
(1) ( )

0 0 0( , )L
x x=x L  is a reference vector, which is often 

chosen to be somewhere in the center of the data; The density function ( ) ( )lg x  is further defined 

as a weighted sum of positive radial basis functions: 

( ) ( )

1

( ) ( )
J

l l

j j

j

g ω ψ
=

=∑x x ,                                                 (3.5) 

where { }( )jψ x are a set of positive basis functions, common to all density functions ( ) ( )lg x ; J is 

the number of basis functions. To ensure positive weights, ( )l

jω can be taken as 
( )l
j

j e
αω = . The 

integral in Eq. (3.4) should be easily evaluated. To this end, uncorrelated Gaussian basis is 

utilized to form ( )jψ x , i.e.  
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( ) ( ) 2

( )2
1

( )1
( ) exp

2

l lL
j

j l
l

x c
ψ

σ=

′ −
= − 

  
∑x ,                                         (3.6) 

where ( )l

jc  and ( )lσ  quantify respectively the center and width for th
l dimension of the thj basis 

function. ( )l

jc  and ( )lσ  are predetermined and viewed as known and fixed. Applying the mapping 

function Eq. (3.4) to the stationary covariance function in Eq. (3.1), the non-stationary version of 

the covariance/correlation function in Eq. (3.2) is obtained by  

( ) ( ) ( )2
2 2 ( ) ( )

1

, ; , ; exp ( ) ( )
L

l l

non st m n non st m n m n

l

C f fσ ρ σ− −
=

 
Θ = Θ = − − 

 
∑x x x x x x  ,      (3.7) 

where the subscript ‘non-st’ means ‘non-stationary’. Note the original ( )lx  in Eq. (3.2) is 

replaced by ( ) ( )lf x and the original ( )lθ  disappears. As a result, the hyperparameter set Θ  

becomes 2 ( ){ ; ( 1, 2,..., ; 1, 2,..., )}l

j
j J l Lσ α = = , as opposed to its stationary counterpart 

2 ( ){ ; ( 1, 2,..., )}l l Lσ θ = . 

3.3. A Proposed Non-stationary Covariance Structure  

Drawbacks of Gibbs’ nonlinear map method are immediately observable. From Eqs. 

(3.4~3.6), the mapping function ( ) ( )lf x and the density function ( ) ( )lg x are multivariate 

functions of x . The unknown hyperparameters ( )l

jα  in ( ) ( )lg x  for different dimensions are 

indeed independent. In other words, with the nonlinear map method, the non-stationary 

covariance structure relies on J L×  unknown hyperparameters ( )l

jα s’ in total. It should be 

pointed out that J is the number of function basis centers, and it should be large enough so that 

the non-stationary structure is able to cover the design space. This formulation is affordable in 

low dimensional situations with small J and L, but can yield a large number of 
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hyperparameters ( )l

jα  in high dimensional cases because J increases with L. In other words, the 

non-stationary covariance will be over-parameterized in high dimensional situations, which has 

undesirable consequences on the stability and robustness of the model fitting. It is the goal in this 

section to develop certain forms of density functions using as few hyperparameters as possible to 

address the aforementioned difficulties. 

3.3.1 Proposed Density Function 

The non-stationary structure is simplified by assuming that the varying smoothness 

behavior in any single input variable is independent with respect to the other input variables. 

This simplifying assumption reduces the multivariate density functions to univariate density 

functions in which ( ) ( )lg x  depends only on a particular ( )l
x . By substituting ( ) ( )( )l lg x  in place of 

( ) ( )lg x , the mapping function in Eq. (3.4) becomes 

( )

( )
0

( ) ( ) ( ) ( ) ( )

0( ) ( ) ( )
l

l

x
l l l l l

x
f f x x g x dx′ ′= = + ∫x ,                                 (3.8) 

where ( )

0

l
x  is the reference point. Instead of using the nonlinear form in Gibb’s approach, further 

simplifications are made by assuming that ( ) ( )( )l lg x  is a continuous piecewise linear function in 

( )l
x . The continuity of ( ) ( )( )l lg x  is emphasized here because it is a critical requirement of the 

mapping functions as stated in section 3.2.2. For a selected number of pieces K, ( ) ( )( )l lg x  is 

defined as a summation of K linear components, 

                     ( ) ( ) ( ) ( ) ( ) ( )

1

( ) ( ; , )
K

l l l l l l

k k k

k

g x g x a b
=

=∑ .                                        (3.9) 

Each component ( ) ( ) ( ) ( )( ; , )l l l l

k k k
g x a b  is a single linear function over its support interval, 

while being zero elsewhere: 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 1

( )

1

, [ , ]
( ; , ) , ( 1, 2,..., )

0, [ , ]

l l l l

l l l l k k k k

k k k l

k k

a b x x
g x a b k K

x

ξ ξ
ξ ξ

−

−

 + ∈
= =

∉
,            (3.10) 

where ( ) ( )
{ , }

l l

k k
a b are the linear parameters for the k

th 
linear component; 0 1{ , ,..., }

K
ξ ξ ξ are a series 

of knots placed along input variable ( )l
x . Imposing the continuity constraints to ( ) ( )( )l lg x , Eq. 

(3.10) can be reformulated using the following linear substitutions: 

( )( )

( )( )

1( ) ( ) ( )

1 1 1

1( ) ( ) ( )

1 1

, ( 1, 2,..., )

l l l

k k k k k k k

l l l

k k k k k

a
k K

b

ξ η ξ η ξ ξ

η η ξ ξ

−

− − −

−

− −

 = − −
=

= − −

.                        (3.11) 

The original linear parameters ( ) ( )
{ , }

l l

k k
a b ( 1, 2,..., )k K=  are now replaced by K+1 new parameters 

( ) ( ) ( )

0 1{ , ,..., }
l l l

K
η η η . It can be verified that ( ) ( ) ( )

0 1{ , ,..., }
l l l

K
η η η  are equal to the density values at each 

knot respectively, i.e., ( ) ( )
( )

l l

k k
g ξ η= , ( 0,1,2,..., )k K= . According to Eq. (3.8), if the reference 

point is placed at the knot 0ξ , the mapping function ( ) ( )( )l lf x can be formulated as 

( )

0

( )
1

0 1

( )

1

( ) ( ) ( )

0

( ) ( ) ( )

0

( ) ( ) ( ) ( ) ( ) ( )

0 1 1

1

( ) ( )

( ) ( ) ( )

( ; , ) ( ; , )

l

l
M

M M

l
k

k M

x
l l l

x
l l l

M
x

l l l l l l

k k k k k

k

f x g x dx

g x dx g x dx g x dx

g x dx g x dx

ξ

ξ ξ

ξ ξ ξ

ξ

ξ ξ

ξ

ξ

ξ η η η η

−

−
− −

=

′ ′= +

′ ′ ′ ′ ′ ′= + + + +

′ ′ ′ ′= + +

∫

∫ ∫ ∫

∑∫ ∫

L ,                    (3.12) 

where M (0 ≤M<K) is the index of the knot left-neighboring ( )l
x , i.e., ( )

1

l

M M
xξ ξ +< ≤ . The 

number of parameters or the d.o.f. of ( ) ( )( )l lg x is K+1. In particular, K=1 means that ( ) ( )( )l lg x  

reduces to a single linear function ( ) ( ) ( ) ( )

0 1( ; , )
l l l l

g x η η . Because ( ) ( )( )l lg x is linear and univariate, 

all integrals in Eq. (3.12) can be easily computed in analytical way. The sum of integrals 

in ( ) ( )( )l lf x over the interval ( )

0[ , ]
l

xξ  corresponds to the shaded area in Figure 3.3.  
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Figure 3.3 Continuous piecewise linear density function  

 

Constraining ( ) ( )( )l lg x  is equivalent to imposing a bound to ( )l

k
η  since ( ) ( )( )l lg x  is linear. 

For instance, ( )l

k
lb ubη< < , for 0,1,..., ,k K= is equivalent to ( ) ( )( )l llb g x ub< < . When 

( ) ( ) ( )

0 1

l l l

K K
η η η−= = =L , ( ) ( )( )l lg x is essentially a constant, hence the non-stationary covariance 

reduces to the stationary one. The number of knots 
k
ξ  (which is K+1) reflects the resolution and 

complexity of the density function.  

3.3.2 Determining Hyperparameters 

Various methods exist for estimating the Kriging hyperparameters. One way is to 

perform the integration over Θ  using Monte Carlo methods (Handcock et al., 1993, Gibbs 1997). 

The method identifies the best values of the hyperparmeters as the mean, median, or the mode of 

the posterior distribution of Θ . In an alternative approach, the most probable value of Θ  is 

identified by maximum likelihood estimation (MLE) method (Mackay 1998, Li et al., 2003). 

Martin et al. (2004) compared the use of the AIC (Akaike Information Criterion) and the CV 

(Cross Validation) criterion. In this work, the MLE method is used to estimate the 
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hyperparameters for the non-stationary covariance. The Simulated Annealing method (Goffe et 

al., 1994) is used for optimization due to the highly nonlinear nature of the MLE function.  

Compared to other non-stationary covariance structures, the proposed non-stationary 

covariance structure employs very few hyperparameters, even though the total number will be 

larger than that of the stationary Kriging model. One way to alleviate the problem is to place 

fewer knots along each variable in high dimensional problems or to place more knots along 

critical variables. The other way is to impose reasonable bounds for each ( )l

k
η to expedite the 

search. This is easy to implement through the proposed density function. For bounding ( )l

k
η , a 

multiple-stage strategy is employed, in which the density function is estimated sequentially. 

Figure 3.4 illustrates the idea of such strategy with, for example, two stages. In the first stage, the 

density function is constructed with a low d.o.f., say, K=1 (i.e. d.o.f.=2). After ( )

0

lη  and ( )

1

lη are 

estimated (the filled squares), the density function is determined (the dashed line). In the second 

stage, the complexity of the density function could be increased, say, with ( ) ( ) ( )

0 1 2{ , , }
l l lη η η . Based 

on the estimated density function from the first stage, reasonable bounds can be set for 

( ) ( ) ( )

0 1 2{ , , }
l l lη η η . It is worth noting that imposing the bounds for ( )l

k
η  not only facilitates the 

optimization, but also allows us to express the belief about the abruptness of changing 

smoothness. If the smoothness is not expected to change abruptly, narrower bounds closer to 

their neighbors are preferred. 
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Figure 3.4 Setting bounds for the to-be-estimated ( )l

k
η ’s 

3.4 Case Study 

In this section, a few mathematical and engineering examples are presented to illustrate 

and verify the effectiveness of our proposed non-stationary covariance structure for modeling the 

varying smoothness of different responses. We first illustrate important characteristics of the 

approach with simple one- and two-dimensional examples. In Chapter 3.4, the approach for a 

high-dimensional vehicle crash/safety design example is demonstrated. A quadratic polynomial 

is used for the prior mean function in all cases. All input variables are normalized to the range [0, 

1]. Based on the density function derived from the first stage, reasonable bounds for the Kriging 

model with non-stationary covariance are used in the second stage.  In Chapter 3.4.2, the 

effectiveness of the proposed method in quantifying prediction uncertainty is illustrated. 

3.4.1 Improvement of Prediction Accuracy 

Ten mathematical examples and one engineering example are provided and discussed in 

that paper. For demonstrative purpose, only two 2D mathematical examples are selected and 

presented in this section. 
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(1) One-Dimensional Example 

 First consider the same example (Figure 3.1) used in the Introduction of this chapter, in 

which 17 sampling points are used to fit the Kriging model with a quadratic prior mean. The 

mathematical form of the true function is Function 11 (Eq. A11) in Appendix A. As observed 

earlier, the conventional Kriging model with stationary covariance fails to capture the varying 

level of smoothness of the function. Using the non-stationary Kriging method proposed in this 

work, two Kriging models are built by using density functions of different d.o.f.  Figure 3.5 and 

Figure 3.6 show respectively the results of the fitted Kriging model and the density function used 

for both cases with our proposed method. In Figure 3.5(b) and Figure 3.6(b), the stationary 

density function (a horizontal straight line) used for the conventional Kriging is also provided for 

comparison. The difference between Figure 3.5 and Figure 3.6 is that the former has only two 

d.o.f. (K=1) for the density function, while the latter has nine d.o.f. (K=8). The hyperparameters 

( )ˆ l

k
η (hence the density functions) are estimated for each Kriging model by using the MLE 

approach discussed in section 3.3.  

 

                  (a)  Kriging prediction                               (b) Estimated density function 

Figure 3.5 Results of non-stationary Kriging with single linear density function (K= 1) 
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       (a)  Kriging prediction                             (b) Estimated density function  

Figure 3.6 Results of non-stationary Kriging with piecewise linear density function (K=8) 

 

 To assess the accuracy of the fitted Kriging models, the response was predicted for 1000 

evenly spaced test points generated over the interval [0, 1]. Table 3.1 provides the accuracy 

comparison of the three Kriging models. Three well-known accuracy metrics are employed, 

namely the R
2 

(R-square), the RMSE (Rooted Mean Square Error) and the RAME (Relative 

Absolute Max Error). For R
2
, the larger the better; for RMSE and RAME, the smaller the better. 

  From Figure 3.5(b) it is noted that the single linear mapping function identified by 

maximizing the MLE has a negative slope, i.e., density function is smaller in the right half than 

in the left half. This properly reflects the fact that the left half region has higher roughness than 

the right part. Figure 3.5(a) indicates that prediction gaps still exist when using the single density 

function. The model in Figure 3.6 uses a slightly more complicated piecewise density function as 

well as wider bounds for ( )ˆ l

k
η . The density function adapts to the local behavior more closely and 

leads to almost perfect predictions. 

Table 3.1 The accuracy comparison (* the best values) 
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Stationary N/A 1×1 0.9196 0.0743 0.7523 

1 2×1 0.9771 0.0396 0.4401 
Non-stationary 

8 9×1 0.9991* 0.0109* 0.2157* 

 

 The accuracy comparison across the above three metamodels is summarized in Table 3.1. 

The worst performance comes with the conventional Kriging with the stationary covariance 

shown in Figure 3.1, where R
2
 is 0.9196, RMSE is 0.0743, and RAME is 0.7523. For the non-

stationary Kriging model with the single linear density function in Figure 3.5(b), the accuracy is 

significantly improved. R
2
 increases to 0.9771, while RMSE and RAME drop to 0.0396 and 

0.4401 respectively. The best accuracy is offered by the Kriging model with the largest 

complexity (K=8), which provides enough flexibility and resolution to capture the locally 

changing smoothness. 

 

(2) Two-Dimensional Example: evenly spaced sampling points 

The second mathematical example (Function 1, Appendix A) is a two-dimensional 

problem.  From the true surface in Figure 3.7 (a), it is observed that the smoothness of the real 

performance varies spatially. For the non-stationary Kriging, a density function with 4 d.o.f. 

(K=3) is used for each ( )l
x . In this example, 18 sampling points are generated using the Optimal 

Latin Hypercube approach (Jin et al., 2005). 

For verification, after fitting the various models based on the 18 sampling points, the 

response was predicted for a 300×300 grid of input values over the [0, 1]
2
 region. The accuracy 

comparison between the stationary Kriging model and non-stationary Kriging models is 

summarized in Table 3.1. R
2
, RMSE and RAME are all significantly improved, respectively 

from 0.9591 to 0.9861, from 0.1238 to 0.0723, and from 1.0779 to 0.6058.   
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                 (a) True surface                 (b) Density functions (stationary and non-stationary) 

Figure 3.7 The true surface and the results of density functions (Function 1) 

 

Table 3.1 The accuracy comparison (* the better values) 

Covariance structure K d.o.f. 2R  RMSE  RAME  

Stationary N/A 1×2 0.9591 0.1238 1.0779 

Non-stationary 3 4×2 0.9861* 0.0723* 0.6058* 

 

(3) Two-Dimensional Example: Adaptive Sampling Points 

In example 1, the sampling points are evenly spaced by certain space-filling criteria. In 

this example, adaptive sampling points are examined (e.g. Sacks et al. 1989; Currin, et al., 1991; 

Lin et al., 2004; Farhang Mehr et al. 2005). With adaptive sampling, additional points are 

sequentially placed in regions that are identified with highly nonlinear or irregular behavior. 
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            (a) True surface                               (b) Adaptive sampling points 

Figure 3.8 The true surface and adaptive sampling points 

 

The assessment of the accuracy of the two Kriging models is summarized in Table 3.2.  

The accuracy of the non-stationary Kriging model is found to be much better than the stationary 

Kriging in terms of R2, RMSE, and RAME. 

 

Table 3.2 The accuracy comparison (* the better values) 

Covariance structure K d.o.f. 2R  RMSE  RAME  

Stationary N/A 1×2 0.9346 0.1758 1.0996 

Non-stationary 3 4×2 0.9777* 0.1025* 0.8610* 
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                          (a) Stationary Kriging                            (b) Non-stationary Kriging 
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Figure 3.9 The predicted surface via the two Kriging models 

 

The predicted surfaces via the stationary Kriging and the non-stationary Kriging are 

shown in Figure 3.9, indicating that the stationary Kriging model yields worse prediction in the 

smoother regions, in which fewer sampling points are placed. In contrast, the non-stationary 

Kriging shows superior capability in capturing the varying density of sampling points as well as 

the varying smoothness between regions. 

 

(4) Tests via Multiple Functions and Various Sampling Sizes 

Many factors contribute to the accuracy of a metamodel, e.g., the true response behavior, 

problem dimension, and the sampling size.  It is our interest to test the robustness of the 

proposed method against various conditions on a set of functions (formulations and 3-D plots of 

ten testing functions are provided in Appendix A). We note that Functions 1-5 exhibit large 

changing smoothness; Functions 6-10 appear to be of less variability. We roughly categorize 

these into two groups, i.e., a non-stationary group and a stationary group.  

To compare the robustness with respect to different sampling sizes, ten tests are 

conducted for each of the selected functions. In each test, the results from using stationary 

Kriging and non-stationary Kriging are compared. The number of pieces (i.e. K) is chosen at 3 

for the non-stationary Kriging. For Functions 1-5, {30, 33, 36, 39, 42, 45, 48, 51, 55, 60} are 

used as the sampling size for the ten tests; for Functions 6-10, the sampling size follows {15, 17, 

19, 21, 23, 25, 27, 29, 31, 33}. Note the sampling size in the latter set is smaller considering that 

Functions 6-10 are smoother than Functions 1-5.  The Optimal Latin Hypercube is used to 

produce the sampling points throughout all tests; 300×300 grid points are used for accuracy 
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assessment. The results for the tests on Functions 1-5 and Functions 6-10 are summarized in 

Table 3.3. 

Table 3.3 The accuracy comparison for Functions 1-10 

 

 

 

 

 

 

 In Table 3.3, Nstat is used to count the tests in which the stationary Kriging outperforms 

the non-stationary one; NNonstat is used to count the tests in which the non-stationary Kriging 

outperforms the stationary one. For Functions 1-5, the Nstat / NNonstat ratio is 10/40, which means 

that about 80% of the tests favor the non-stationary Kriging models when the function behavior 

is non-stationary. For Functions 6-10, the Nstat / NNonstat ratio is 18/32, indicating that the non-

stationary Kriging slightly outperforms the stationary Kriging. Results imply that using non-

stationary Kriging at least will not deteriorate the prediction. 
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Figure 3.10 Average RMSE vs. sampling size (Function 1) 

 

Fun. No. 1 2 3 4 5 Total 

NStat 1 3 2 2 2 10 

NNonstat 9 7 8 8 8 40 

Fun. No. 6 7 8 9 10  

NStat 3 3 3 5 4 18 

NNonstat 7 7 7 5 6 32 
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Figure 3.11 Average RMSE vs. sampling size (Function 9) 

 

Figure 3.11 illustrates the average RMSE vs. sampling size, for Functions 1 and 9, which 

are selected to represent the typical non-stationary and stationary functions, respectively. 

Considering the random nature of Optimal Latin Hypercube, for each sampling size, ten 

experiment designs are conducted. From Figure 3.10, the non-stationary Kriging consistently 

achieves the lower average RMSE across over all the tested sampling sizes. In Figure 3.11, when 

the sampling size is not sufficient, the non-stationary Kriging is slightly less accurate than the 

stationary one; as the sampling size increases, they achieve the same level of accuracy. This 

indicates that when the sampling size is not sufficient, the proposed method might be misled by 

the sampling data.  

We further test the average performance of our proposed non-stationary Kriging. In these 

tests, the sampling size (i.e. Ns in Table 3.4) is chosen as Ns = 35 for Functions 1-5 and Ns = 25 

for Functions 6-10. Three Kriging models (one stationary Kriging model; two non-stationary 

Krigign models with K=1 and 3) are created in each test. Each test is repeated for ten times with 

the same sampling size (Ns) but different designs of Optimal Latin Hypercube sampling.  

From Table 3.4, it is observed that most of the best and second best values of average 

RMSE result from the non-stationary Kriging model. When the sampling sizes are sufficient for 
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the respective function behaviors, the non-stationary Kriging outperforms the stationary Kriging 

in majority of the tested functions.  It is also observed that the more complicated (K=3) non-

stationary Kriging models are generally more accurate than the less complicated (K=1) 

counterparts. 

Table 3.4 The RMSE average over ten tests for each function 

(** the best values; * the second best values) 

average RMSE Fun. 

No. 
Ns 

Stat Nonstat (K=1) Nonstat (K=3) 

1 35 0.0029  0.0009** 0.0012* 

2 35 0.0213** 0.0263* 0.0304 

3 35 0.0635  0.0592* 0.0371** 

4 35 0.0001* 0.0001* 0.0001** 

5 35 0.0029  0.0028* 0.0020** 

6 25 0.0106*  0.0321 0.0041** 

7 25 0.2553* 0.2375** 0.2782 

8 25 0.2882  0.2560* 0.1606** 

9 25 3.8846  2.6053* 1.8511** 

10 25 1.94E9* 2.13E9 1.93E9**  

 

3.4.2 Improvement of Uncertainty Quantification 

In this work, whether the use of nonstatioanary covariance could improve the 

quantification of prediction uncertainty by Kriging model.A one-dimensional example in Figure 

3.8 is used here for demonstrative purpose. To verify whether the theoretical prediction error 

variance provided by the Kriging modeling approach accurately quantifies the actual prediction 

error, plots of the actual absolute prediction error (i.e., ( )e x , where ˆ( ) ( ) ( )e x y x y x= − ) and the 

theoretical prediction error standard deviation ( ( )
pred

STD x ) are provided in Figures 3.13 and 

3.14, respectively for the stationary Kriging and the non-stationary Kriging. In both Figures 3.13 

and 3.14, panels (b) and (c) are two zoom-in plots of panel (a) around two selected sampling 
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points 
A

x (= 0.0690) and 
B

x (= 0.8276). It is observed from panel (a) that the actual and 

theoretical prediction error quantification is generally in much better agreement for the non-

stationary Kriging model than for the stationary Kriging model.   
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Figure 3.12 True function of the one-dimensional example 

 

Moreover, from the zoom-in plots in panels (b) and (c) of Figure 3.13, it is found that the 

theoretical prediction error standard deviation from the non-stationary Kriging model has 

different behavior in different regions of the input space, depending on the local level of 

smoothness in the function. The stationary Kriging model does not possess this desirable 

characteristic.  Specifically, Figure 3.13 (b and c) show that for the stationary covariance model, 

when x  moves away from sampling points 
A

x  (plot (b)) and 
B

x  (plot (c)), the theoretical 

( )
pred

STD x  increases at nearly identical rates (the slight slower increase of ( )
pred

STD x  around 

A
x  is caused by the fact that more sampling points were placed near 

A
x  than near 

B
x ). This is in 

disagreement with the fact that the response is known to be smoother in the vicinity of 
B

x , and 

hence it is expected that the prediction uncertainty to increase at a slower rate as we move away 
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from 
B

x . In contrast, the non-stationary Kriging model is able to capture this phenomenon. 

Figures 3.14 (b and c) show that the theoretical prediction uncertainty for the non-stationary 

Kriging model increases at much higher rates in regions in which the response is rougher than in 

regions in which the response is smoother. 

 

                              (a)                                               (b)                                      (c) 

Figure 3.13 The theoretical standard deviation of prediction error vs. the actual absolute 

prediction error yielded by stationary Kriging. 

 

                             (a)                                               (b)                                      (c) 

Figure 3.14 The theoretical standard deviation of prediction error vs. the actual absolute 

prediction error yielded by non-stationary Kriging 
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3.5 Summary 

In this chapter, Kriging models with non-stationary covariance structure for 

metamodeling is investigated based on data from computer experiments. Non-stationary 

covariance based methods in the existing literature suffer from over-parameterization difficulties, 

which are compounded in high-dimensional problems typical in complex system design 

optimization. To this end, a modified version of Gibb’s nonlinear map approach is proposed, 

with a sparser, yet flexible, parameterization.  

Through both mathematical and engineering examples, the Kriging modeling based on 

the proposed non-stationary covariance representation is flexible enough to capture the changing 

smoothness behavior of the response. It is demonstrated that, when the response surface has non-

stationary behavior, the non-stationary Kriging yields more effective quantification of the 

prediction uncertainty than the stationary Kriging. The robustness of the proposed non-stationary 

Kriging method was also demonstrated via testing multiple functions under different sampling 

situations. When the response performance exhibits obvious varying smoothness levels, the non-

stationary Kriging model is able to effectively capture local features and significantly enhance 

the prediction accuracy. For functions not exhibiting strong changing smoothness behavior, the 

non-stationary Kriging model performs no worse than the non-stationary covariance structure. 

With moderately selected model complexity and sufficient sampling, the robustness of the non-

stationary Kriging is reasonably assured.  It is also demonstrated that the nonstatioanry Kriging 

is even more effective when the data are obtained from adaptive sequential sampling in which 

the density of sampling points varies over the regions with different irregularity. 
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Chapter 4. Model Bias-Correction with Uncertainty Quantification 

Nomenclature 

( )eY x   physical experimental observation 

( )ε x   experimental error  

( )ry x  outcome true reality 

( )m
y x  computer model 

( )h
y x  high fidelity (HF) computer model 

( )l
y x  low fidelity (LF) computer model 

( )l

s
y x  scaled Low fidelity (LF) model 

( )δ x  bias function 

x  
1( )

T

px x= , ,x L , design in a p-dimensional space 

e
D  

1{ }
ee nD = , ,x xL , for physical experiments 

m
D  

1{ }
mnm

D = , ,′ ′x xL , for computer experiments 

m
n , e

n  size of 
m

D  / e
D , the number of computer / physical experiments 

2

εσ  variance parameter of ( )ε x  

2

δσ  variance parameter of the prior Gaussian process ( )δ x  

δφ  correlation parameter of the prior Gaussian process ( )δ x  
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τ  ratio of 2

εσ  to 2

δσ  

e m
nδ | ,  degree of freedom of t distribution 

( )
e mδµ | , x  noncentrality parameter of t distribution 

2 ( )
e mδσ | , x  scale parameter of t distribution 

( *)DM x  design validation metric 

4.1 Introduction 

 As depicted in Figure 1.1 in Chapter 1, model updating is one of the key activities 

involved in the framework of predictive modeling by combining the results from both computer 

model and physical experiments. Bias-correction, together with model calibration, are common 

strategies for model updating that improves the model accuracy though mathematical means.  As 

introduced in Section 2.7, bias-correction is regarded complimentary to model calibration, when 

improvement cannot be made by solely calibrating model parameters (Easterling et al., 2002). 

 The basic idea of bias-correction is to adjust the original model ( )my x by adding a bias 

function ( )δ x  to it. One general interpretation of bias-correction approach is that it captures the 

potential model or method error (e.g., due to incorrectly modeling a non-linear behavior with a 

linear model), which often cannot be compensated by other means. There are various 

formulations of bias-correction seen in literature. A general bias-correction has the form 

( ) ( ) ( )my y δ= +x x x ,                                                      (4.1) 

where ( )my x  is the original model to be bias-corrected, and ( )δ x  denotes the bias function to be 

estimated, and ( )y x  denotes the updated model after bias-correction. There are two aspects of 

concerns with the use of bias-function ( )δ x , (1) how to characterize the formulation of ( )δ x  to 
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best correct the original model, (2) how to quantify the uncertainty of ( )δ x  to reflect the 

uncertainties that are involved in the bias-correction process. Here the uncertainties include the 

uncertainty of experiment data and the uncertainty of the bias-function itself. 

In this work, bias-correction involves two scenarios depending on the type of experiment 

data that is utilized: (1) Bias-correction of computer model against physical experiment data; (2) 

Bias-correction of Low Fidelity (LF) model against High fidelity (HF) model simulation data. It 

is noted that scenario (2) can be treated as a special case of scenario (1) when the uncertainty of 

physical experimental data in scenario (1) degenerates to zero. Because two levels of models are 

involved in scenario (2), the bias-correction in scenario (2) is also referred to as model fusion.  

The uncertainty of predictive model ( )y x  in Eq. (4.1), called model uncertainty, plays a 

critical role optimization under uncertainty. Quantification of model uncertainty is critical to 

many activities in the process of using predictive models for engineering design, such as design 

driven model validation (see Chapter 6) and sequential sampling (experimentation) that is 

needed to update a predictive model (see Chapter 7). In this chapter, we investigate a Bayesian 

approach that offers a flexible mathematical framework to quantify the model uncertainty under 

the two scenarios defined in the preceding paragraph. A review of basic techniques of Bayesian 

approaches can be found in Bayarri et al. (2002).  The fundamental difference between the 

frequentist and the Bayesian approach is that the former draws confidence intervals of prediction 

based on statistical data analysis, while the latter assumes that the model parameters themselves 

are random and follow a prior distribution. The prior distribution will be updated once 

experimental data is available and becomes the posterior distribution.  The Bayesian approach is 

preferred to the classical statistical approach when it is too expensive to obtain a statistically 

sufficient amount of data, which is often the case in engineering design. 
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4.2 Bias-correction of Computer Model against Physical Experiment Data  

Using x to represent model input variables and y stand for model response, the 

relationship between the experimental observation ( )ey x and the result generated by a computer 

model ( )m
y x  is often generalized as follows: 

    ( ) ( ) ( ) ( )e my y δ ε= + +x x x x ,                                                 (4.2) 

where ( )ε x  is the random variable representing the experimental error (relating to both 

experimental setup and measurement) that may depend on x , and ( )δ x  is the error of the model 

(Mahadevan and Rebba, 2006), or called the prediction bias, i.e.,  

( ) ( ) ( )r my yδ = −x x x ,                                                    (4.3) 

which captures the model inadequacy, where ( )ry x  is the true output. 

 

Figure 4.1 Flowchart of the Bias-correction of Computer Model against Physical 

Experiment Data 

 

Prediction of reality ( )
r

y x  

+ 

Computer experiments Physical experiments 

Computer model Reality ( )ry x  

Prediction of computer output ( )my x  

Quantifying bias ( )δ x  
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In the above equations, the prediction bias ( )δ x can be directly used to access the model 

accuracy, while the prediction of the true model output ( )ry x  is essential for assessing the 

probabilistic response. Most research in validating computer models has focused on estimating 

bias, but much less work had been done on characterizing prediction uncertainty and bias under 

general situations.  It can be noted from Eq. (4.4) that estimating the prediction bias ( )δ x  is an 

intermediate step for estimating the true model output ( )ry x .  Based on the experimental data, 

outputs of the computer model, and the experimental error ( )ε x , the estimated prediction error, 

( )δ x , and its probability distribution is first obtained. The estimated prediction ˆ ( )r
y x , or 

Bayesian prediction model, can then be obtained by ˆˆ ( ) ( ) ( )r m
y y δ= +x x x .  

Kennedy and O’Hagan (2001) developed a general Bayesian approach to calibrate 

computer models, while also characterizing the bias between the computer model and the 

physical experimental data. Their method utilizes the following mathematical relationship, 

( ) ( , ) ( )e my yρ δ ε= ⋅ + +x x θ x ,                                              (4.4) 

where ρ  is an unknown regression parameter. The uncertainty of calibration parameter θ , 

regression parameter ρ , and the bias function ( )δ x are quantified based on Bayesian analysis. 

Their work was not carried out in the context of model validation, rather centered on integrating 

computer outputs and physical observations into the prediction of computer models. 

 In the Bayesian bias-correction model proposed by Chen et al. (2007) and Wang et al. 

(2008), a plain addictive bias-correction model is formulated as 

( ) ( ) ( )e my y δ ε= + +x x x ,                                                (4.5) 
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where the bias function ( )δ x  is a direct measure of the difference between the computer model 

( )my x  and the physical process ( )ey x . As compared to the bias-correction model presented by 

Kennedy & O’Hagan (2002) in Eq. (4.4), the bias-correction in Eq. (4.5) only considers the case 

where all inputs (x) of both the computer model ( ( )my x ) and the physical process ( ( )ey x ) are 

assumed as observable and controllable. The bias function ( )δ x  is assumed to be a Gaussian 

Process model, the uncertainty of which reflects the uncertainty involved in a model validation 

process such as the experimental error, lack of data, etc. One advantage of using the above 

formulation is that the closed form Bayesian posterior of the Gaussian process model δ(x) can be 

derived.  In Wang et al. (2008), the bias function ( )δ x  is utilized as a direct measure of the 

accuracy (or validity) of a computer model at an application site or over a region. 

 In addition to the addictive bias shown in Eqs. (4.4) and (4.5), a bias correction approach 

may employ a combination of multiplicative bias and additive bias, as shown in, 

( ) ( ) ( ) ( )e my yρ δ ε= + +x x x x ,                                                  (4.6) 

where ( )ρ x is modeled as a simple linear regression model w.r.t. x, ε  is assumed to be a zero 

mean Gaussian random variable. The scaling function ( )ρ x  in Eq. (4.6) brings more flexibility 

to the constant adjustment parameter ρ  used in Kennedy and O’Hagan (2001). The maximum 

likelihood estimation (MLE) method is utilized in their work to estimate the regression 

coefficients of ( )ρ x . Closed forms Bayesian posteriors of the hyperparameters in the Gaussian 

Process ( )δ x  are derived for given prior distributions. 

In this work, a Bayesian approach is used to provide uncertainty quantification of both 

( )δ x  and ( )r
y x . Theoretical details of the Bayesian approach can be found in Wang et al. 
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(2008), while related references for Bayesian analysis could be found in Qian and Wu (2005) and 

Reese et al. (2004). Bayesian inferences are preferred as they require fewer assumptions and are 

more flexible for engineering applications where it may be too expensive to obtain experimental 

data (Gunawan and Papalambros, 2006).  In addition, Bayesian methods may be preferable as 

additional information or designer’s belief can be incorporated through prior distributions.  

Below, some details of each step in the Bayesian procedure are provided. It should be pointed 

out that the mathematical framework considered in this work is similar to the one in Kennedy 

and O’Hagan (2001), however, this work focuses on characterizing the behavior of the prediction 

bias ( )δ x  while the emphasis of Kennedy and O’Hagan (2002)’s work is on the calibration of 

computer models based on physical observations, with the term ( )m
y x  in Eq. (4.4) replaced by 

( , )m
yρ Θx , where ρ  is an unknown regression parameter, and Θ  is the vector of calibration 

parameters.  

The bias-correction of computer models against physical experiments proposed in this 

work can be outlined with the following steps. 

 

 

Each step will be elaborated as follows: 

(1) Collect both physical and computer model data 

Both physical observations and computer model outputs are essential to model validation. 

Step (1): Collect both physical and computer model data 

Step (2): Determine the priors of Gaussian process parameters for bias 

Step (3): Compute the posterior of bias based on observations 

Step (4): Compute the Bayesian prediction model 
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Let 1( )T

p
x x= , ,x L  be a point in a p-dimensional design variable space. Let 

1
{ }

ee n
D = , ,x xL  

and 1{ }
mnm

D = , ,′ ′x xL be the design settings for physical experiments and computer experiments, 

respectively; 1( ( ) ( ))
e

e e e T

n
y y= , ,y x xL  and 1( ( ) ( ))

m

m m m T
ny y= , ,′ ′y x xL  be the corresponding 

physical experimental observations and deterministic computer model outputs, respectively. 

Note that 
e

D  and 
m

D  may or may not overlap. Physical observations are desired to be as many 

as possible and close to the intended design region. Compared to physical observations, 

computer model outputs are less costly and should be simulated at design settings where the 

physical observations are available and close, if not within, the intended design regions.   

When 
e

D  and 
m

D  do not overlap and computer simulations are expensive and time-

consuming, a metamodel ( ˆ ( )my x ) that interpolates the computer model data may be used to 

replace ( )my x .  One approach to approximating ( )my ⋅  is to fit a Gaussian process model based 

on the available computer experiments (Santner et al., 2003).  

 

(2) Determine the priors of Gaussian process parameters for bias 

One advantage of the Bayesian approach is its ability to take into account scientific 

knowledge and past information in the form of prior distributions for model parameters. From Eq. 

(4.3), the prediction bias ( )δ x  could be formulated as ( )δ =x  ( ) ( ) ( )e my y ε− −x x x . In this work 

( )δ x  is treated as a Gaussian process, with the process parameters denoted as 

2 2( , , , )δ δ δ εθ σ β φ σ= , which respectively represent the variance parameter ( 2

δσ ), the location 

parameter ( δβ ), the correlation parameter ( δφ ), and the variance parameter related to the 

experiment error  ( )ε x  ( 2

εσ ). The following forms of priors for the variance parameter 2

δσ  and 
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location parameter δβ  are adopted (similar treatments could be found in Reese et al., 2004, Qian 

and Wu, 2005):  

2 2 2( ) ( ),IG Nδ δ δ δ δ δ δ δσ α γ β σ σ, , | ,b V� �  

where ( )IG α γ,  denotes the inverse gamma distribution. As will be detailed in the following 

description of step (3), to simplify the Bayesian analysis, no priors are specified for δφ  and 2

εσ  

which are instead treated as fixed and estimated directly from data. 

 

(3) Compute the posterior of bias function 

Based on the Bayes Theory, the posterior of the bias function ( )δ x  given the physical 

observations ey  and computer outputs my  can be obtained by integrating out θ  through the 

following equation 

( ( ) ) ( ( ) ) ( )d
e m e m e m

p p p
θ

δ δ θ θ θ| , = | , , | ,∫x y y x y y y y .                          (4.6) 

The density function ( ( ) )e mp δ θ| , ,x y y can be easily computed based on the data from 

both computer model and physical experiments. With some tedious mathematical derivations 

(refer to Appendix and Wang et al., 2008 for proof), it could be shown that the posterior of ( )δ ⋅  

follows a t-distribution: 

2( ) , ( ( ) ( ))e m

e m e m e m
T nδ δ δ δδ φ τ µ σ| , | , | ,| , , , , ,x y y x x�                             (4.7) 

with the following degree of freedom, noncentrality, and scale parameters:  

2
e m e

n nδ δα| , = + ,                                                        (4.8) 

1( ) ( ) ( )( ) ( )
e e

T T e m

e m n nδ δ δ δ δ δ δ δ δµ τ −
| , = + + − − ,x f x A v r x R I y y F A v                   (4.9) 
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1
12

2
( ) ( )

( ) (1 )
( ) ( )

e

T
T

e m

ne m

Q

n

δ δδ δδ
δ

δ δδ δδ

σ
τ

 
 
 
 
 
 
 
 

−−

| ,
| ,

−   
= ⋅ − ,   +   

V Ff x f x
x

F R Ir x r x
                      (4.10) 

where 

2 1 12 ( ) ( ) ( )
e e e

e m T e m T

n n n
Qδ δ δ δ δ δ δ δ δγ τ − −= + − + − + − ,y y R I y y b V b v A v                 (4.11) 

1 1 1( )
e

T

nδ δ δ δ δτ− − −= + + ,A F R I F V                                              (4.12) 

1 1( ) ( )
e e

T e m

n nδ δ δ δ δτ − −= + − + .v F R I y y V b                                     (4.13) 

In the above equations, 1( ( ) ( ))
e

T

nδ δ δ= , ,F f x f xL  is the 
e

n qδ×  design matrix, δR  is the 

e e
n n×  correlation (parameterized by δφ ) matrix of 

en
δ , and ( )

m
r x  is the correlation 

(parameterized by δφ ) between ( )δ x  and 
en

δ . Here, 
en

δ =
e

e m

n−y y  could be viewed as the 

‘observations’ at setting 
e

D , for the Gaussian process ( )δ x , and 
e

m

ny  is the computer model 

output ( )my ⋅  (or the metamodel ˆ ( )my ⋅  in the case that ( )my ⋅  is expensive to compute) at 
e

D . It 

naturally follows that 
en

δ  is essentially the observed bias between physical experiments and the 

computer model (or metamodel) outputs.  

We denote δφ  as the correlation parameter underlying δR and T

δr ; τ  as the ratio of 2

εσ  to 

2

δσ , i.e., 2 2/ε δτ σ σ= , where 2

δσ  denotes the process variance of ( )δ x  while 2

εσ  denotes the 

variance of ( )ε x . Unlike ( )δ x  which is assumed to be the Gaussian process with spatial 

correlation structure, ( )ε x  follows identical independent normal distribution at different design 

sites x . To get the marginal posterior of ( )δ x , δφ  and τ  also need to be integrated out, which is 

computationally prohibitive. Alternatively, δφ  and τ  can be treated as their true values and 

estimated with methods such as the Cross Validation (CV) (Hastie et al., 2000), maximum 
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likelihood estimates (MLE) (Hastie et al., 2000), Markov Chain Monte Carlo (MCMC) (Geyer, 

1992), and Minimum Mean Squared Error Estimates (MMSE) (Hastie et al., 2000). 

 

 

(4) Compute the Bayesian prediction model 

The true behavior ( )
r

y x is predicted using the following equations to estimate the mean 

and variance,  

 ˆˆ ( ) ( ) ( )r m
y y δ= +x x x ,                                               (4.14) 

2[ ( )] [ ( )] ( )r

e m
Var y Var δδ σ | ,= =x x x .                                      (4.15)   

The covariance between ( )
r

iY x  and ( )r

jY x  is given by: 

2 2

( ), ( ) ( ) ( ), ( ) ( )

[ ( ), ( )] [ ( ), ( )] 0 ( , ) ( , )

r r m m

i j i i j j

m m

i j i j e m i j e m i j

Cov y y Cov y y

Cov y y Cov δ δ

δ δ

δ δ σ σ| , | ,

   = + +   

= + = + =

x x x x x x

x x x x x x x x
,    (4.16) 

where 

1
12

2
( )( )

( , ) ( ( , ) ).
( )( )

e

T
T

ji

e m i j i j

jnie m

Q
R

n

δδ δδδ
δ δ

δδ δδδ

σ
τ

−−

| ,
| ,

 −   
= ⋅ −      +     

f xV Ff x
x x x x

r xF R Ir x
       (4.17) 

When 
i j
= =x x x , Eq. (4.17) reduces to Eq. (4.10) and Eq. (4.18) reduces to Eq. (4.11). The 

predictor of the true behavior ˆ ( )ry x , along with its uncertainty quantification, are referred to as 

the Bayesian prediction model in this work. 

In Appendix B, m kφ ,  represents the correlation associated with the computer prediction 

and its uncertainty. Since computer experiments are generally less expensive, when much more 

data is available, the prediction uncertainty of a ˆ ( )my x is usually much smaller compared with 
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the model uncertainty. On the other hand, kδφ ,  and τ  together determine the uncertainty of an 

estimated bias function ˆ( )δ x , which has a critical impact on the uncertainty quantification of the 

final predictive model ˆ ( )ry x . 

4.3 Bias-Correction of Low Fidelity (LF) Computer Model against High Fidelity 

(HF) Computer Model  

In Scenario 2, the observed data is obtained from experiments of a High Fidelity (HF) 

computer model, while the model to be bias-corrected is a separate Low Fidelity (LF) computer 

model. Similar to Eq. (4.2), the mathematical relationship between the HF model y
h
(x) and the 

LF model y
l
(x) is represented as 

( ) ( ) ( )h ly y δ= +x x x .                                                   (4.18) 

The flowchart of the bias-correction of LF model against HF model experiment data is 

described in Figure 4.2.  

 

Figure 4.2 Flowchart of the Bias-correction of LF model against HF model Simulation data 
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HF model ( )h
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Because two computer models are involved, the procedure of updating a LF model using 

HF simulations through bias-correction is also named as model fusion, which is to integrate the 

LF and HF models to yield an improved predictive model.  Here, the modeling error of a HF 

model is ignored. The yielded predictive model obtained from model fusion is essentially a 

surrogate mode of the HF model, and should pass through (or interpolate) all HF simulation 

points. The interpolation uncertainty of the predictive model is quantified based on the bias 

function in a similar way shown for scenario 1 in Section 4.2. 

Existing model fusion techniques include the difference or scaling approach (Gano et al. 

2004), the Taylor-series approach (Gano et al. 2006), the space mapping approach (Bandler et al. 

2004), and the multiple fidelity Kriging approach (Huang et al. 2006) etc. Due to the lack of HF 

simulation data in most practical problems, a Bayesian approach to model fusion and 

quantification of interpolation uncertainty is considered in this work. The model fusion approach 

described below follows the similar mathematical framework as combining computer and 

physical experiments in Chen et al. (2006).  

The mathematical relationship between the HF model y
h
(x) and the LF model y

l
(x) is 

represented as 

0 1( ) ( ) ( ) [ ( )] ( )h l l

sy y yδ ρ ρ δ= + = + +x x x x x ,                              (4.19) 

where 0ρ  and 1ρ are two scaling parameters that define the ‘scaled’ LF model  

( )l

sy x = 0 1 ( )l
yρ ρ+ x ,                                                 (4.20) 
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δ(x) is a bias function accounting for the discrepancy between the ‘scaled’ LF model ( )l

sy x  and 

the HF model y
h
(x). y

l
(x) represents either the original LF model or its surrogate model ˆ ( )ly x  

when necessary. 

The scaling parameters ρ0 and ρ1 help bring (or ‘scale’) the LF model as close as possible 

to the HF model. The application of similar linear scaling approach could be found in previous 

works, e.g., Gano et al. (2004) and Qian et al. (2006), even though the details of Bayesian 

modeling and its complexity vary. For determining the Bayesian modeling parameters, different 

approaches (e.g., Maximum Likelihood Estimation (Qian et al. 2006), Cross Validation (Hastie 

et al. 2001)) could be employed. In this work, 0ρ̂  and 1ρ̂  are identified by the least square (LS) 

method, together with bounds constraining both 0ρ̂  and 1ρ̂  as follows. 

2

0 1 0 11

0 0 0 1 1 1

min ( , ) [ ( ) ( )]

. ;

N l h

i ii
L y y

st l u l u

ρ ρ ρ ρ

ρ ρ
=

= + −

< < < <

∑ x x
,                          (4.21) 

where L(ρ0, ρ1) stands for the loss function in a square sense; xi(i=1…N) are the sampling points 

of HF model. The bounds (l0, u0) and (l1, u1) posed on parameter ρ0 and ρ1 reflect, respectively, 

the prior belief of the global constant bias and the multiplicative scaling between HF and LF 

models. As an example, we may specify (l1, u1) to be (0.8, 1.2), (l0, u0) to be (-0.1 ly∆ , 0.1 ly∆ ), 

where ly∆ is the range of ( )ly x , i.e., the difference of max and min values of ( )ly x  in the 

design range of x. Using bounds mitigates the overfitting issue with a regular linear regression 

problem when data is insufficient, by imposing reasonable ranges of ρ0 and ρ1. Due to the use of 

bounds, we call the proposed method the constrained linear scaling (CLS) approach.  

To simplify the Bayesian modeling procedure, the scaling parameters ρ0 and ρ1 are 

assumed to be unknown but fixed in this work. This treatment is different from that in Qian et al. 
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(2006), where a linear function ρ(x) is used for scaling instead of two constant parameters ρ0 and 

ρ1 used in our work. It is our belief that using ρ1will help better preserve the ‘profile’ of a LF 

model and the term ρ0 will help satisfy the assumption of ‘zero-mean’ priors associated with the 

bias function δ(x), especially if a global bias exists between LF and HF models. 

The bias function δ(x) accounts for the remaining discrepancy between the HF simulation 

data and the scaled LF model. For modeling the bias function, it is assumed that δ(x) follows a 

Gaussian process (GP) with mean function ( )Tβ F x and a covariance function C(σ
2
, θ), where β  is 

the vector of regression coefficients 0[ ,..., ]pβ β , ( )F x  is the vector of polynomial items 

0[ ( ),..., ( )]pf fx x , σ
2
 is the variance,  θ is the correlation parameters. The sampling points 

( )iδ x (i=1,…,N
h
) for bias function δ(x) are available by calculating the difference between the 

HF simulation data ( )h

iy x  and the scaled LF model ˆ ( )l

sy x = 0
ˆ ˆ ( )l

iyρ ρ+ x , i.e., 

0
ˆ ˆˆ( ) ( ) ( ) ( ) [ ( )]h l h l

i i s i iy y y yδ ρ ρ= − = − +x x x x x .                             (4.22) 

Given samples, a typical Kriging model (or a Gaussian process model) can be used to construct a 

surrogate model with uncertainty quantification for predicting δ(x) at site x where no HF 

simulation is available. Details of Kriging model or a Gaussian process could be found in many 

references, e.g. Martin et al. (2002). It is widely agreed that when sampling data are far from 

sufficient to explore the behavior of the true HF model performance, Kriging approach would 

typically underestimate the true interpolation uncertainty (Jones 2001, Stein 1999), because all 

Gaussian process parameters (β, σ
2
, θ) are treated as unknown but fixed and are determined 

through methods like the maximum likelihood estimation (MLE) (Qian et al. 2006) and the cross 

validation (CV) (Huang et al., 2006).  
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In this work, we investigate the Bayesian approach under the same framework described 

in Section 4.2, with some modification. The bias-correction of a computer model against high 

fidelity (HF) model proposed in this work is summarized with the following procedure. 

 

 

With the Bayesian approach, the prior knowledge of the unknown bias function δ(x) can 

be expressed through the prior distribution of (β, σ
2
, θ). Recall that parameter τ  was denoted as 

the ratio of 2

εσ  to 2

δσ  when describing the Bayesian bias-correction approach for scenario (1) in 

Section 4.2. For scenario (2), because there is no uncertainty of HF model experiments, it 

follows that 2 0εσ =  and thus 0τ = .  Similar to scenario (1), the following distribution can be 

used to specify the prior distributions of σ
2
 and β in the forms as 

2 2 2( ) ( )IG Nσ α γ σ σ, , | , ,β b I� �                                         (4.23) 

where IG ( , )⋅ ⋅  is the inverse Gamma distribution, N(·) is the normal distribution. The Bayesian 

approach is implemented while treating the correlation parameters θ unknown but fixed, which 

can be estimated by the Cross Validation (CV) approach. Recall again that τ =0. Because the 

scaled LF model ( )l

sy x  has been pulled as close as possible to the HF simulation data, it is 

reasonable to assume the prior mean for δ(x) as a zero (i.e., ( )Tβ F x =0), thus b=0 in Eq. (4.19). If 

Step (1): Collect both LF computer and HF computer data 

Step (2): Scale the LF computer model 

Step (3): Determine the priors of Gaussian process parameters for bias 

Step (4): Compute the posterior of bias 

Step (5): Compute the Bayesian prediction model 
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no previous knowledge is available, the recommended ‘vague’ priors, i.e., 2 (2 1)IGσ ,�  and 

2 2( )Nσ σ| ,β 0 I� , are also used throughout the three examples in this chapter. With the forms 

of priors of σ
2
 and β in Eq. (4.23), closed forms of the posteriors of the Gaussian process model 

of δ(x) can be derived.  

Since no uncertainty is posed on 0ρ̂  and ρ̂ , the resulted scaled LF model 0
ˆ ˆ ( )l

yρ ρ+ x  is 

viewed as deterministic. As a result, the surrogate model ˆ ( )sy ⋅ could be represented as the 

predictor or the (posterior) mean 

0
ˆˆ ˆˆ ( ) [ ( )] ( )s l

y yρ ρ δ= + +x x x .                                          (4.24) 

The interpolation uncertainty of the surrogate model ˆ ( )sy x  is only contributed by the 

interpolation uncertainty of the bias function δ(x), i.e., 

[ ( )] [ ( )]sVar y Var δ=x x ,                                           (4.25) 

[ ( ), ( )] [ ( ), ( )]s sCov y y Cov δ δ′ ′=x x x x ,                                  (4.26) 

where Var(·) and Cov(·,·) denote the variance and covariance, respectively.  

4.4 Case Studies 

4.4.1 Combining Variable Fidelity Computer Models: A Single Dimensional Problem 

A single dimensional problem is first studied, with HF and LF models being artificially 

created for the illustrative purpose (see Appendix for the mathematical equations). At the initial 

stage (Stage 0), 3 uniform HF sampling points in region [0 1] are generated. Figure 4.2 shows the 

plots of the true HF model, the LF model, the scaled LF model, and the 3 HF sampling points 

(dark solid circles). Note there are two local minima of the HF model, and the LF model only 
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roughly captures the general trend of the HF model but provides a poor approximation. It is 

noted that the optimal design (x*LF= 0.9150, marked with *) obtained from the LF model is a 

sub-optimal solution, located in an area that is quite far from the true optimum (x*HF= 0.2307, 

marked with star) obtained from the HF model. After scaling, the scaled LF model are pulled 

close to the 3 HF data points, with the scaling parameters estimated as 0 1
ˆ ˆ[ ]ρ ρ  = [0.1844 0.5371] 

based on Eq. (4.2). It should be noted that the values of 0 1
ˆ ˆ[ ]ρ ρ  change over different stages after 

more samples are added. 
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Figure 4.2 The HF model and LF model, with 3 initial HF samples (Example 1) 

 

Different from using a single fidelity model, in variable fidelity optimization, very few 

data from HF simulations are available, thus LF model may be used to capture the global trend of 

a HF model. We note in Figure 4.2 that the scaled LF model is fairly close to the HF model. The 

trend information provided by the scaled LF model is integrated into the Bayesian surrogate 

model to enhance the accuracy of prediction. 
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Figure 4.3 The plots of ˆ ( )sy x  with uncertainty quantification (95% PI) when 5 more 

sampling points are added 

 

Figure 4.3 shows the updated model with five (5) more sampling points collected. The 

95% prediction interval (PI) shows the uncertainty quantification of the updated model. As 

expected, the amount of model uncertainty is reduced when more sample points are added. 

4.4.2 Computer Model vs. Physical Experiment: Engine Piston Problem 

In this section, an Engine Piston Design problem (see Appendix and Jin et al. 2005 for 

more details) is studied to demonstrate the bias-correction of the computer model against 

physical experiment. The Noise, Vibration and Harshness (NVH) characteristic of the vehicle 

engine is one of the critical elements of customer dissatisfaction (Jin et al. 2005). The goal of the 

design is to optimize the geometry of the engine piston to obtain the minimal piston slap noise.  

To graphically illustrate the results and better explain the concepts of the proposed 

method, only one design variable is considered. The same approach can be applied to high-

dimensional problems. Previous results show that the skirt profile (SP) strongly affects the 
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response (slap noise), therefore SP is considered the design variable. Skirt profile is represented 

by characteristic ratios of the shape of an engine piston, ranging continuously from 1 to 3.  Piston 

slap noise is the engine noise resulting from piston secondary motion, which can be simulated 

using ADAMS/Flex, a finite element based multi-body dynamics code. All these data are 

provided in Tables 4.4 and 4.5, respectively. Note the design variable x = SP has been 

normalized to the unit interval [0, 1]. 

For simplicity, only one design variable (also assumed as a noise variable) is considered. 

Thirty-four (34) hypothetical physical experiments are considered. Ten (10) computer 

experiments are conducted using the finite element model (Figure 4.3). It should be pointed out 

that ten computer experiments are sufficient for this one-dimensional case, although typically 

computer outputs are expected to be more than physical observations. Based on the available 

data, the Bayesian approach described is implemented.  
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Figure 4.3 Physical and computer experiment data (circles: physical experiments; triangles: 

computer experiments) 
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Table 4.4 Thirty-four (34) physical experiments 

i 1 2 3 4 5 6 7 8 9 10 

ix eD∈  0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 

y
e
( ix ) 56.332 56.077 55.875 55.542 55.159 54.840 54.682 55.039 55.183 55.774 

i 11 12 13 14 15 16 17 18 19 20 

ix eD∈  1.000 0.500 0.540 0.580 0.620 0.660 0.700 0.740 0.780 0.000 

y
e
( ix ) 56.749 54.867 54.646 54.748 54.576 54.614 54.623 54.978 54.923 56.224 

i 21 22 23 24 25 26 27 28 29 30 

ix eD∈  0.070 0.140 0.210 0.280 0.350 0.420 0.490 0.560 0.630 0.700 

y
e
( ix ) 56.228 55.767 55.676 55.583 55.214 55.185 54.902 54.894 54.611 54.831 

i 31 32 33 34       

ix eD∈  0.770 0.840 0.910 0.980       

y
e
( ix ) 54.947 55.352 55.765 56.560  

     

 

Table 4.5 Ten (10) computer experiments 

i 1 2 3 4 5 6 7 8 9 10 

ix mD∈  0.050 0.150 0.250 0.350 0.450 0.550 0.650 0.750 0.850 0.950 

y
m
( ix ) 56.033 55.584 55.417 55.402 55.278 54.957 54.641 54.656 55.191 56.193 

 

Prediction and uncertainty quantification of ˆ ( )my x  

From the data shown in Tables 4.4 and 4.5, there is no overlap between eD  and mD , 

indicating the need to first calculate the posterior of computer model ˆ ( )my x . The Kriging  

metamodeling approach is used to predict the mean, variance and covariance of the posterior 

Gaussian process of ˆ ( )my x . The plot of the final prediction and 95% prediction interval of 

ˆ ( )my x  are shown in Figure 4.4. It is noted that ˆ ( )my x  passes all ten computer experiment points 

and there is no prediction uncertainty at each sampling site. Furthermore, owing to the smooth 

behavior of the computer model, ten sampling points are sufficient; hence the uncertainty due to 

the use of Gaussian process model replacing the computer model is small across the design range. 
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Figure 4.4 Prediction of ˆ ( )my x and 95% confidence interval 

 

Prediction and uncertainty quantification of ˆ( )δ x  

From Eq. (4.7), the prediction of ˆ( )δ x  and the associated uncertainty are characterized by 

the posterior of ( )δ x , if given δφ  and τ . Ten-fold cross validation is employed and the results 

show the optimal setting at τ =2, δφ =22. Figure 4.5 displays the prediction of ˆ( )δ x  and the 95% 

confidence interval. Note the sampling points illustrated in Figure 4.5 represent the discrepancy 

between the physical experiment points ( )ey x and the prediction of ˆ ( )my x , which correspond to 

the vertical line segments shown in Figure 4.4. ˆ( )δ x  has a relatively small variance in the region 

of [0 6 0.8]∈ . ,x  compared to [0 6 0.8]∉ . ,x , which can be explained by the fact that more physical 

observations are available for [0 6 0.8]∈ . ,x . 
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Figure 4.5 Prediction and 95% prediction interval (PI) of ˆ( )δ x  

Prediction and uncertainty quantification of ˆ ( )ry x  

Having ˆ ( )my x and ˆ( )δ x , the prediction of ˆ ( )ry x  could be obtained by Eqs. (4.14~4.15). 

The prediction and 95% confidence interval is illustrated in Figure 4.6. In the region 

of [0 6 0.8]∉ . ,x , where less sampling points are available for both physical and computer 

experiments, the uncertainty of ˆ ( )ry x is higher consequently.  
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Figure 4.6 Prediction and 95% prediction interval (PI) of ˆ ( )ry x  
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4.4.3 Accuracy Comparison of Different Model Fusion Approaches 

In our proposed model fusion approach as described in Section 4.3, the constrained linear 

scaling (CLS) method is applied first to correct (or scale) the LF model, before using a bias 

function that accounts for the remaining discrepancy based on Bayesian modeling. To show the 

effectiveness of the CLS method, comparative study of different approaches over several 

examples is conducted. In addition to the two examples (Sections 4.4.1 and 4.4.2) we used in this 

chapter, another example (a Modified Branin function, see details in Chapter 7) will be included.  

The comparative results are shown in Table 4.1. The Root Mean Square Error (RMSE, see 

Chapter 2 for definition) is utilized as the accuracy metric: the smaller RMSE the higher 

accuracy. Note that all the sampling points are created with a one-shot space-filling criterion 

(OLH), rather than using the sequential sampling. For the same problem with the same settings 

of sampling sizes, the RMSE values from three modeling approaches, namely, the ‘non-fusion’ 

approach, the ‘non-scaled’ approach, and the proposed CLS approach are compared. By ‘non-

fusion’, we mean that the information from the LF model is not considered at all for constructing 

the surrogate model. The only difference between the ‘non-scaled’ approach and the ‘CLS’ 

approach is that the former does not scale the LF model in model fusion. 
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Table 4.1 The accuracy (RMSE) comparison in three examples 

Example 1 (1-D) 

Sampling  size 5 6 7 8 10 

non-fusion 0.326 0.297 0.313 0.336 0.338 

non-scaled 0.221 0.114 0.060 0.044 0.003 

CLS 0.286 0.112 0.052 0.036 0.003 

Example 2 (Modified Branin function, 2-D) 

Sampling size 7 8 9 10 15 

non-fusion 85.450 92.829 79.249 91.675 82.18 

non-scaled 12.673 8.775 8.787 7.555 6.544 

CLS 8.939 7.074 9.186 7.358 2.350 

Example 3 (Engine Piston problem, 4-D) 

Sampling size 10 15 20 30 50 

non-fusion 55.475 55.365 55.406 55.409 55.415 

non-scaled 0.026 0.022 0.023 0.014 0.011 

CLS 0.024 0.036 0.022 0.020 0.011 

 
 

In Table 4.1, the best RMSE values are marked in bold. We note that the ‘non-fusion’ 

approach always ranks the worst among the three with remarkably large RMSE values, which 

implies that a surrogate model based on the fusion of LF and HF models is much superior over a 

surrogate model based on only HF model. Compared with the ‘non-scaled’ approaches, the CLS 

approach we propose yields higher accuracy in most of comparisons. 

4.5 Summary 

In this chapter, we investigated a predictive modeling approach based on bias-correction, 

which compensating the original computer model with a quantified bias function. This approach 

is applicable to two scenarios (1) when experimental data are composed of computer 
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experimental data of high fidelity and low fidelity, and (2) when experimental data are physical 

experiment data versus computer experimental data.  

In all bias correction approaches, it is critical to sufficiently quantify the uncertainty of 

bias function. In the proposed approaches, we employ Bayesian approach to determine the model 

parameters based on Gaussian process model. Such Bayesian inference approach offers much 

flexibility as additional design knowledge and information can be easily incorporated through 

prior distributions, and also possesses advantages in engineering applications where it is too 

expensive to obtain experimental data. It also offers rigorous methods for quantifying the model 

uncertainty in an intended design domain that may interpolate as well as extrapolate from a 

tested domain. With the Bayesian approach, uncertainty in prediction related to the lack of 

experiment data can be captured by the magnitude of uncertainty of the bias function. Since the 

analytical derivation is obtained for Bayesian model parameters, the approach is expected to be 

more accurate and economically sound compared to the conventional numerical approach to 

Bayesian analysis.  

The bias-correction based predictive modeling approach proposed in this chapter 

provides an effective means to capture systematic modeling error, as well as to capture 

uncertainties that impact the final predictive model as a result of bias-correction. Such a 

predictive modeling approach provides a mathematical foundation for the sequential chapters, in 

which the uncertainty quantification of prediction model will play an important role in aiding the 

design decision making and guiding the sequential experimentation.  
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Chapter 5. Better understanding of Model Updating Strategies in 

Validating Engineering Model 

Nomenclature 

x = 1 2{ , ,... }nx x x   n observable input variables 

θ = 1 2{ , ,..., }mθ θ θ   m uncontrollable input variables 

( )ey x   Physical experiments 

( )my x  or ( , )my x θ  Computer model 

( )δ x  Bias function 

ε  Experimental error 

'( , )my Θx   Updated model 

( )predy x  Predictive model 

Θ   Model updating parameters 

( )L Θ   Likelihood function 

( )e
i

e

iF y
x

 Cumulative distribution function (CDF) at e

iy  

5.1 Introduction 

 As presented in Chapter 1, an important component of the proposed predictive modeling 

framework is the step of model improvement that continues to improve the predictive capability 

of a model. Strategies for model improvement roughly fall into two categories: model refinement 

and model updating.  Model refinement involves changing the physical principles in modeling or 
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using other means to build a more sophisticated model that better represents the physics of the 

problem by, for example, using a non-linear finite element method to replace a linear method, 

correcting and refining boundary conditions, or introducing microscale modeling in addition to 

macroscale modeling, etc.  Model updating, on the other hand, utilizes mathematical means (e.g., 

calibrating model parameters and bias-correction) to match model predictions with the physical 

observations.  While model refinement is desirable for fundamentally improving the predictive 

capability, the practical feasibility of refinement is often restricted by available knowledge and 

computing resources. In contrast, model updating is a cheaper means that can be practical and 

useful if done correctly.  Here, predictive capability refers to the capability of making accurate 

predictions in domains (or locations) where no physical data are available. 

 While various model updating strategies (formulations and solution methods) exist, there 

is a lack of understanding of the effectiveness and efficiency of these methods.  It is our interest 

in this work to examine various model updating strategies to achieve a better understanding of 

their merits. We are particularly interested in the role that model updating plays in the process of 

model validation.  A detailed review is provided in Section 5.3. In summary, conventional 

calibration approaches (Leoni and Amon, 2000) assume calibration parameters are fixed and 

estimated, typically using least squares to match the model with the physical observations. This 

type of approach for model updating is inconsistent with the primary concerns of model 

validation in which various uncertainties should be accounted for either explicitly or implicitly. 

Examples of such uncertainties include experimental error, lack of data, uncertainty of the 

parameters (e.g. caused by the uncontrollable inputs), and model uncertainty (systematic model 

inadequacy). The more recent Bayesian style calibration, also named calibration under 

uncertainty (CUU) or stochastic calibration, treats calibration parameters as unknown entities 
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that are fixed over the course of the physical experiment. Initial lack of knowledge of the 

parameters is represented by assigning prior distributions to them, and, given the experimental 

data, this lack of knowledge is revised by updating their distributions (from priors to posteriors) 

based on the observed data through Bayesian analysis (Kennedy and O'Hagan, 2001). However, 

as we discuss in a more thorough examination in Section 5.3, several limitations of applying the 

Bayesian calibration approaches are identified. 

 One limitation of the aforementioned calibration approaches is that the calibration 

parameters are assumed to remain fixed over the entire course of the physical experiment and 

beyond. In contrast, it is frequently the case that some parameters vary randomly over the 

physical experiment, perhaps due to manufacturing variation, variation in raw materials, 

variation in environmental or usage conditions, etc.  This violates the assumptions under which 

the Bayesian or regression-based calibration analyses are derived. In this situation, rather than 

assuming fixed parameters and updating their posterior distributions to represent our lack of 

knowledge of them, it is more reasonable to treat them a randomly varying and estimate their 

distributional properties by integrating the physical data with the model. In essence, the 

distributional properties (e.g., the mean and variance of the randomly varying parameters) 

become the calibration parameters for the model, and the objective is to identify values for them 

that provide the best agreement with the observed distributional properties (e.g., the dispersion, 

see Romero 2007) of the physical experimental data.  In this paper, we present a maximum 

likelihood estimation (MLE) (Tamhane et al., 2000) approach for accomplishing this. The MLE 

method is used to estimate a set of unknown parameters (heretofore called model updating 

parameters) associated with several modeling updating formulations, which include the 

distributional properties of parameters that vary randomly over the experiment, as well as well as 
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more traditional fixed calibration parameters and quantities associated with bias correction and 

random experimental error. 

 The remainder of the chapter is organized as follows. In Section 5.2, we discuss the role 

that model updating plays versus model validation and prediction. In Section 5.3, the existing 

model updating formulations under two categories, namely, model bias-correction and 

calibration are examined. The Bayesian approach, a popular solution method is described and its 

limitations are highlighted.  In Section 5.4, the proposed MLE based model updating approach. 

In Section 5.5 we will discuss the prediction model based on the updated model. In Section 5.6, a 

benchmark thermal challenge problem adopted by the Sandia Validation workshop7, 8 is used as 

an example to illustrate the proposed approach, draw important conclusions, and portray these 

conclusions in relation to conclusions from prior studies. Section 5.7 is the closure with a 

summary of the features of the proposed method, the relative merits of different approaches, the 

insights gained, and the future research direction. 

5.2 Role of Model Updating in a Validation Procedure 

 In this work, model updating is viewed as a process that continuously improves a 

computer through mathematical means based on the results from newly added physical 

experiments, until the updated model satisfies the validation requirement or the resource is 

exhausted. Therefore, even though model updating is interrelated with model validation, it is 

viewed as a separate activity that occurs before “validation”.  As shown in Figure 5.1, the model 

updating procedure integrates the computer simulation model my  with the physical experiment 

data ey  to yield an updated model '( )my ⋅ . This updated model is then subject to a validation 

procedure that utilizes additional physical experiments ey  in the intended region of interest for 
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validation. As noted from this diagram, unlike many contemporary model validation works, 

model validation in this work is used to evaluate an evolved, updated model '( )my ⋅ , rather than 

the original computer model ( )my ⋅ . Besides, the updated model '( )my ⋅ is the one used for making 

future prediction ( )predy ⋅  with the consideration of various sources of uncertainties.  For 

implementing model updating and validation in a computationally efficient manner, it is 

indicated in Figure 5.1 that a metamodel (surrounded by a dashed box) may be used to substitute 

the original computer model if it is expensive to compute.  

 As more details are provided in the remaining sections, model updating utilizes 

mathematical means (e.g., calibrating model parameters, bias-correction) to match model 

predictions with the physical observations.  Model updating provides not only the formulation of 

an updated model, but also the characterization of model updating parameters Θ , together with 

the associated assumptions. As noted, the model updating procedure, during which ( )my ⋅  is 

treated as a black-box, is largely driven by the observed experimental data.  It is our interest in 

this work to examine whether such a data-driven approach can improve the predictive capability 

of a computer model. As argued by Ferson et al. (2008), the extrapolation capability in using a 

model to make prediction should be carefully validated.  
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Figure 5.1 Relationship of model updating, model refinement, and model validation 

5.3 Examination of Existing Model Updating Methods 

 The existing model updating strategies differ in their formulations, the solution method 

used, and the physical interpretations.  In the following overview, two categories of 

formulations, namely, bias-correction and calibration will be first reviewed.  We then discuss the 

limitations of using the Bayesian approach as the solution method.  The physical interpretations 

are provided throughout the review and will be further expanded in Section 5.4.  

5.3.1 Model bias-correction approaches 

 Bias-correction is useful when accuracy improvement cannot be accomplished by 

calibrating model parameters (Easterling and Berger 2002, Hasselman et al. 2005). One widely 

accepted interpretation of the bias-correction approach (Kennedy and O'Hagan 2001) is that it 

captures the potential model or method error due to the use of incorrect modeling method (e.g., 

modeling a non-linear behavior with a linear model), which often cannot be compensated by 
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other means. There are various formulations of bias-correction seen in literature. In the Bayesian 

bias-correction model proposed by Chen et al. (2006) and Wang et al. (2008), a plain addictive 

bias-correction model is formulated as 

( ) ( ) ( )e my y δ ε= + +x x x ,                                              (5.1) 

where the bias function ( )δ x  is a direct measure of the difference between the computer model 

( )my x  and the physical process ( )ey x .  The bias function ( )δ x  is assumed to be a Gaussian 

Process model, the uncertainty of which reflects the uncertainty involved in a model updating 

process such as the experimental error, lack of data, etc. One advantage of using the above 

formulation is that the closed form Bayesian posterior of the Gaussian process model δ(x) can be 

derived.  In addition, the bias function ( )δ x  provides a direct measure of the assessed accuracy 

(or validity) of a computer model within a particular design region or at an application site 

(Wang et al., 2008). 

 In addition to using the addictive bias shown in Eq. (5.1), a bias correction approach may 

employ a combination of multiplicative bias and additive bias, as shown in the following 

formulation (Qian and Wu, 2005), 

( ) ( ) ( ) ( )e my yρ δ ε= + +x x x x ,                                           (5.2) 

where ( )ρ x is modeled as a simple linear regression model w.r.t. x, ε  is assumed to be a zero 

mean Gaussian random variable. The scaling function ( )ρ x  in Eq. (5.2) brings more flexibility 

to the constant adjustment parameter ρ  used in Kennedy and O’Hagan (2001). The maximum 

likelihood estimation (MLE) method is utilized in their work to estimate the regression 
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coefficients of ( )ρ x , while the closed forms Bayesian posteriors of the hyperparameters in the 

Gaussian Process ( )δ x  are derived for given prior distributions. 

 One inherent limitation of the bias-correction method is that it assumes all inputs (x) of 

both the computer model ( ( )my x ) and the physical process ( ( )ey x ) are observable and 

controllable. In practice, it often occurs that some of the model input parameters cannot be 

directly observed and measured in the physical experiments.  This limitation can be addressed 

using the model calibration approach introduced next. 

5.3.2 Model calibration approaches 

 With a typical model calibration approach, the inputs of a computer model and the 

physical process are divided into controllable inputs (x), and unobservable/uncontrollable 

parameters (θ ) that are assumed to be fixed over the experiment. Note that it is θ  that are to be 

calibrated or tuned. A computer model for the given input vector ( , )x θ  is denoted as ( , )my x θ , 

while the physical process is denoted to be ( )ey x  as a function of controllable inputs x only.  

 

Deterministic calibration approach 

 A conventional way to carry out a deterministic parameter calibration is to formulate the 

problem in a fashion similar to that of the nonlinear regression analysis (Romero 2007, Bates et 

al. 1988,  Trucano et al. 2006) through the following equation. 

( ) ( , )e my y e= +x x θ ,                                                    (5.3)  

where e  is the residual between the prediction from the calibrated computer model ( , )my x θ  and 

the experimental observation ( )ey x . The optimal values of the calibration parameters θ  are 
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found by minimizing the (weighted) sum of the squared error (SSE) between the model 

predictions and the physical experiments (Lindgren et al., 2003), i.e., 

Find θ  minimizing 2 2

1 1
SSE= [ ( , ) ( )]

N N m e

i i i i ii i
w e w y y

= =
= −∑ ∑ x θ x ,              (5.4) 

where xi = [xi1,xi2,…, xik]
T
 (i=1,2,..N) are sample points, iw  (i=1,2,..N) are the weights for 

different experimental observations reflecting the quality of experimental data, θ  = [θ 1, θ 2,…, 

θ m]
T
 are unknown physical constants, and k is the number of input variables. Although 

deterministic calibration approaches are generally plausible and easy to apply, the limitation is 

that they cannot account for uncertainties in both computer simulation and physical 

experimentation.  

 

Non-deterministic Bayesian calibration approach 

 Non-deterministic parameter calibration is also called calibration under uncertainty 

(CUU) (Bates and Watts, 1998). Kennedy and O’Hagan (2001) first developed a Bayesian 

approach to simultaneously calibrate the computer model and characterize the potential bias 

(discrepancy) between the model output and the physical experiments. Their method is based on 

the following relation, 

( ) ( , ) ( )e my yρ δ ε= ⋅ + +x x θ x ,                                             (5.5) 

where ρ  is an unknown regression parameter (an adjustment parameter), ( )δ x  is a bias 

(discrepancy) function assumed to be the realization of a Gaussian Process, ε  is the 

experimental error assumed to be a zero-mean Gaussian random variable. In essence, the 

formulation shown in Eq. (5.5) is a combination of both parameter calibration and bias 
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correction.  In Kennedy and O’Hagan’s work, the Bayesian analysis is performed to update the 

prior distributions of the calibration parameters θ and the hyperparameters underlying two 

separate Gaussian Process models: one for the bias function ( )δ x , and the other for replacing the 

original expensive computer model ( , )my x θ . In implementation, to manage the computational 

complexity, priors are often only specified for a very few calibration parameters θ  and a small 

set of  Gaussian Process model parameters, while the rest of Gaussian Process model parameters 

are assumed unknown but fixed. 

 Several variants and applications of the Bayesian calibration approach of Kennedy and 

O’Hagan (2001) exist in literature. In the Simulator Assessment and Validation Engine (SAVE) 

framework developed by Bayarri et al. (2002), followed by Higdon et al. (2004), and Liu et al. 

(2008), a formulation that is similar to the one used by Kennedy and O’Hagan is shown as 

follows with the regression parameter ρ  omitted.  

( ) ( , ) ( )e my y δ ε= + +x x θ x .                                             (5.6) 

In Liu et al. (2008), only one GP model is used to represent the bias function ( )δ x , while no GP 

model is used to replace the computational model ( , )my x θ  assuming it is computationally cheap 

to run. 

 It is worth noting that McFarland et al. (2007) developed a simplified Bayesian 

calibration approach in the form of 

( *) ( *, )e my y ε= +x x θ .                                                 (5.7) 

Their method does not consider the bias-correction, and poses the prior belief of the calibration 

parameters θ  as uniformly distributed. Unlike others, their calibration is only performed at one 



 

 

117 

particular site x*, based on the assumption that the results of calibration are identical at different 

input sites. However, such an assumption is questionable if the computer model is so wrong that 

the calibration at one single site could be heavily biased and is hard to be extrapolated to other 

sites. 

5.3.3 Limitations of Bayesian approaches 

 While the Bayesian approach is useful when the limited data are available, there are 

several common issues with the Bayesian approaches to both calibration and bias correction. 

First, as indicated in Trucano et al. (2006), the prior distributions of calibration parameters are 

often difficult to specify due to the lack of prior knowledge. Subjectively assigned prior 

distributions of calibration parameters may yield instable posterior distributions (Liu et al., 

2008), which undermines the advantage of Bayesian updating. Second, the Markov Chain Monte 

Carlo (MCMC) method used in most Bayesian calibration practices for obtaining the posterior 

distributions requires a significant amount of iterations, while the decision criterion for ceasing 

the Markov Chain growth is not established (Trucano et al. 2006).  

 Loeppky et al. (2006) examined a non-Bayesian version of the approach from Kennedy 

and O’Hagan (2001), but using the MLE to estimate the calibration parameters which are 

assumed deterministic. The issue of identifiability of model bias was addressed by examining the 

likelihood ratio of two model versions: one with the bias term, the other without. It was 

demonstrated that the MLE estimates of calibration parameters will asymptotically attain an 

unbiased computer model if such a model exists. However, their method provides deterministic 

MLE estimates without acknowledging the uncertainty of model input. 
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5.4 A Maximum Likelihood Estimation (MLE) Based Model Updating Methodology 

 We present an alternative model updating approach that differs from the existing 

Bayesian approach in both uncertainty treatment and computing model updating parameters, 

while using the similar model updating formulations reviewed in Section 5.3.  The basic 

principle of this proposed approach is to determine the model updating parameters with the 

MLE, so that the best agreement between the distribution of model outputs and the dispersion of 

the observed physical observations ey  can be achieved, while the experiment-to-experiment 

variation of calibration parameters is captured by the distribution of parameter distributions.  

5.4.1 Model updating formulations and parameters 

 As reviewed in Section 5.3, various formulations are available for constructing an 

updated model based on the original computer model ( , )my x θ . In our view, the choice of the 

updated formulation (denoted as '( , )my Θx ) and the model updating parameters Θ  are problem 

dependent and will require insight into the error sources. In Section 5.6, we will investigate four 

possible model updating formulations for the specific thermal challenge problem One typical 

formulation that combines both bias correction and parameter calibration is illustrated here in Eq. 

(5.8).` 

 

'( , ) ( , ) ( )m my y δ εΘ = + +x x θ x .                                          (5.8) 

In Eq. (5.8), x = 1 2{ , ,... }nx x x  are n observable/controllable input variables, which are always 

deterministic. θ = 1 2{ , ,..., }mθ θ θ  are m unobservable/uncontrollable input variables, assumed 

random to capture the experimental uncertainty associated with model input. The uncertainties of 
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θ are parameterized by distribution parameters 1 1{ , ,..., , }m mθ θ θ θµ σ µ σ , independent from model 

input x.  ε  is an unobservable/uncontrollable output variable, also assumed random, to capture 

the experimental uncertainty associated with a model output. Similar to θ , the distribution ofε  

is parameterized by { , }ε εµ σ . The bias function ( )δ x  is used to capture the model systematic 

bias, but not intended to account for the experimental uncertainty. ( )δ x  could be parameterized 

in various ways, for example, a regression model ( )δ x  = 0 1 1 ... n nx xδ δ δβ β β+ + +  parameterized 

by 0 1{ , ,..., }nδ δ δβ β β . Here the bias function ( )δ x  is treated to be a deterministic function that 

does not contribute to the model output uncertainty. Other possible choices could be using a 

constantδ , which is less flexible, or a more complicated Gaussian Process (GP) model, that 

provides more flexibility. Collectively, the model updating parameters for the above formulation 

are denoted as Θ  = 1 1 0 1{ , ,..., , ; , ,..., ; , }m m nθ θ θ θ δ δ δ ε εµ σ µ σ β β β µ σ .  Notice that in contrast to traditional 

calibration approaches, our model updating parameters Θ  do not directly include the parameters 

θ , because they are not assumed to be fixed. Rather, Θ  includes the means and variances of the 

parameters θ . Figure 5.2 shows the collection of model updating parameters in a formulation 

with two calibration parameters and two model inputs, i.e., x = 1 2{ , }x x and θ = 1 2{ , }θ θ .  Note that 

in the right hand side of Eq. (8), only θ and ε  are random quantities, as illustrated by the shaded 

vertical PDF profiles in Figure 2. Also note that we assume θ  and ε follow normal distribution, 

thus only two parameters are needed to determine the distribution of each calibration parameter. 

With the statistical moments defined for the calibration parameters, the various sources of 

uncertainties in a model updating process can be propagated to form the uncertainty of the 

updated model '( , )my Θx , as illustrated by the shaded horizontal PDF profile in Figure 5.2. 
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Figure 5.2 Model updating parameters Θ  in formulation '( , )my Θx  

5.4.2 Determining model updating parameters via MLE 

 To determine the deterministic values of all model updating parameters, the maximum 

likelihood estimation (MLE) method is adopted towards matching the output distribution of the 

updated model '( , )my Θx  with the dispersion observed in physical experiments ( )ey x .  

 To construct a likelihood function, the following equation relating data ( )ey x  with the 

probabilistic output from '( , )my Θx  is established, 

( )ey x = '( , )my Θx ,                                                       (5.9) 

based on the assumption that the experimental data ( )ey x can be hypothetically regenerated 

through the updated model '( , )my Θx . Therefore, the likelihood ( | )eL Θ y  as a function of Θ  

conditioned on all observations ey  is equal to the joint PDF of a e
N dimensional multivariate 

distribution of '( , )my Θx evaluated at ey . In this work, the e
N  observations are assumed 

independent, then the likelihood function is the multiplication of e
N separate PDF functions, i.e., 

1

( ) ( | ) ( | ) ( | )

e
N

e e e

i

i

L L p p y
=

Θ = Θ = Θ = Θ∏y y ,                                (5.10) 
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where Θ  are all model updating parameters to be estimated, ( | )e

ip y Θ  is the value of PDF 

yielded from '( , )my Θx  at ( , )e e

i ix y . Figure 5.3 depicts the plots of output distributions (the PDF 

of which are represented by shaded PDF profiles) of two '( , )my Θx  models. With the same 

experimental data (empty circles), the model of the left side figure, which corresponds to a larger 

likelihood function value, shows a better match between the two distributions.  

 

 

Figure 5.3. Likelihood value indicates the agreement between  

the output distribution of the updated model and the dispersion of physical experiments 

 

 To alleviate the computational burden associated with evaluating the PDF function in 

MLE, in our implementation, the output distribution of '( , )my Θx  is approximated with a 

Gaussian distribution by only characterizing its first two moments. As the result, the PDF 

function ( | )e

ip y Θ  in Eq. (5.10) for experiment e

iy  can be expressed through the Gaussian 

distribution, 

( )' '| { ( , )}, { ( , )}e m m

i i iy N E y Var yΘ ΘΘ Θ Θx x� .                                 (5.11) 
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To efficiently compute the mean '{ ( , )}m

iE yΘ Θx  and the variance '{ ( , )m

iVar yΘ Θx  in the above 

equation, the numerical integration approach based on the tensor-product quadrature rule 

(Abramowitz and Stegun, 1972, Lee et al., 2007) is adopted in this work. 

5.4.3 Comparison of the MLE based model updating with traditional Bayesian approach 

 To better reveal the features of the proposed MLE based model updating approach, 

several remarkable differences between this approach and the traditional Bayesian approach are 

highlighted. 

 With a traditional Bayesian calibration approach (Higdon et al., 2004) , for the model 

updating formulation shown in Eq. (5.6), the likelihood function ( , , ; , ; ; | )em

m m mL δ δ εσ µ σ σr r θ y  

can be obtained from the PDF function of a multivariate Gaussian distribution as follows
23

 

| , , ; , ; ; ( , )em em

m m m m emNδ δ εσ µ σ σ µ− Σy r r θ y 1� ,                              (5.12) 

with covariance matrix emΣ  expressed by 

2

2 2

0 0

0
em m m

δ δ ε

σ
σ σ

 
Σ = +  + 

R
R I

,                                           (5.13) 

where emy denotes the joint data ( , )e my y  of computer and physical experiments, , ,m m mσ µr  are 

the parameters of the GP model that replaces the expensive computer model ( , )my x θ  with mR  

being the correlation matrix; ,δ δσ r  are the parameters of the GP model for ( )δ x  with δR being 

the correlation matrix; εσ  is the standard deviation of the experimental error ε ; and I is the 

identity matrix of the same size of δR . It is noted from Eqs. (5.12) and (5.13) that the observed 

experimental uncertainty of ( )ey x using the Bayesian approach is essentially attributed to three 
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sources, namely, random variable ε , GP model of ( )δ x , and GP model of ( , )my x θ . The 

calibration parameters θ  are assumed to be fixed but unknown and do not contribute to the 

experimental uncertainty at all. Although the final inference of θ through Bayesian posterior has 

randomness, such randomness only reflects the lack of knowledge, but not the experimental 

uncertainty that might be contributed by the variability of parametersθ in experiment setup. 

 Based on the above introduction of Bayesian approach, we generalize several major 

differences between the Bayesian approach and the MLE based model updating approach.  First, 

different types of experimental uncertainty are accounted for in different approaches. With the 

MLE based model updating approach, the experimental uncertainty is explicitly accounted for by 

both the random parameters θ  (for experiment-to-experiment variation) and the error termε . In 

Bayesian approach, θ is assumed fixed but unknown due to the lack of knowledge, while only 

one random parameter ε  accounts for the experimental uncertainty, which is caused by random 

measurement error. 

 The second difference is associated with the handling of the expensive original computer 

model.  In the traditional Bayesian calibration approaches, if an original computer model is 

expensive, a Gaussian Process model is used to replace it and the GP parameters are estimated 

using the Bayesian analysis together with other unknown model updating parameters. This adds 

much computational complexity to the Bayesian approach. With the MLE based model updating 

approach, a metamodel is first constructed to replace the expensive computer model even before 

the model updating procedure is initiated. It is then the metamodel, but not the original computer 

model, that is updated and used for prediction. 
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5.5 Prediction Using the Updated Model  

 Once an updated model ' ( , )my Θx  is determined, it is used to form a predictive model 

( )predy x  for prediction. In this research, we consider prediction uncertainty of the predictive 

model ( )predy x to be characterized by propagating the uncertainties defined by the model 

updating parameters Θ  through the updated model '( , )my Θx , which by itself has a deterministic 

form. The form of the ( )predy x  for prediction, i.e., 

 ( )predy x = '( , )my Θx .                                                  (5.14) 

Since the original expensive computer model ( , )my x θ  will be replaced by a metamodel using 

our approach, uncertainty propagation can be done in a rather efficient manner using a 

combination of Monte Carlo simulations and numerical methods, given the mean and standard 

deviation of θ . As a result, the prediction incorporates the uncertainties involved in a model 

updating and validation process.    

5.6 Case Study: Comparative Studies Using the Thermal Challenge Problem 

5.6.1 Problem description 

 The thermal challenge problem was developed by the Sandia National Laboratory 

(http://www.esc.sandia.gov/VCWwebsite/vcwhome.html) as a testbed for demonstrating various 

methods of prediction and validation (Dowding et al. 2008, Hills et al. 2008). The same problem 

is adopted as a numerical example in this work to demonstrate the features of our proposed 

model updating approach.  
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Figure 5.4 Schematic of thermal challenge problem 

 

 A schematic Figure of the thermal challenge problem is provided in Figure 4, in which 

the device is a material layer that is exposed to a constant heat flux. To predict the temperature 

m
T of a spot in the device at a specific location and time, an analytical computer model ( , )my x θ  

given in Eq. (5.15) was used as the original model. 

( , )my x θ = ( ), , , , ,m

lT q L x t κ ρ =  

2 2
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 
∑ ,          (5.15) 

where x=( , , ,lq L x t ) are controllable input variables, and θ =( ,κ ρ ) are uncontrollable input 

parameters for calibration. Among the controllable input variables, lx  is the distance from the 

surface to the point being measured, q  is the applied heat flux, L is the thickness, T0 is the initial 

temperature of the device at time zero, and t is time. Since T0 is fixed at 25
 o

C for all data and 

analyses, it is considered as a static model parameter instead of an input variable. Among the 

uncontrollable input parameters,κ  and ρ  stand for the thermal conductivity and the volumetric 

heat capacity, respectively; both κ  and ρ  are material properties vary from unit to unit due to 

manufacturing processes. The goal of this challenge problem is to assess if a regulatory 

,κ ρ

q
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L
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requirement is satisfied for a specified setting of model input, i.e., at an application site 

x*= ( *, *, *, *)lq L x t . To satisfy the regulatory requirement, the probability that the predicted 

temperature at a particular time not exceeding a threshold value 900
 o

C, should be less than the 

target probability limit (0.01), that is,  

{ }( * 3500, * 0.019, * 0, * 1000) 900 0.01pred

lP T q L x t= = = = > < .                       (5.16) 

 As described in the original problem statement, the prior knowledge about ,κ ρ  are given 

in the form of material property characterization (MPC) data, which is listed in Tables C.1 and 

C.2 in the Appendix.  Note that the measurements are collected under different temperatures T at 

the material subcomponent level rather than at the device level.  Therefore the information of 

MPC cannot be directly used for device level prediction. The first two moments of the 

distribution of the above two parameters are evaluated based on the MPC data are summarized in 

Table 5.1. An obvious linear dependency of κ  versus the temperature T can be observed (Figure 

5.5).  Since temperature T is also an output response of the device-level model (Eq. (5.16)), this 

creates a closed-loop situation where T is both an input and output of the model. 

 

Table 5.1 Statistics of the given material characterization (MPC) data 

κ  ρ  

κµ  κσ  ρµ  ρσ  

0.0628 0.0099 393900 36252 
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Figure 5.5 The dependency of thermal conductivity κ to temperature T 

 

 The full set of physical experiments consist of a subset of ‘ensemble’ (EN) data of 176, 

and a subset of ‘accreditation’ (AC) data of 126. The primary difference between the EN data 

and the AC data is that the former is gathered at model input sites far from the application site, 

while the latter is closer.  Both EN and AC data are collected at several configurations (different 

settings of x), and each configuration is a combination of model inputs ( , , )lq L x , while t varies 

at discrete time interval spot (11 spots for EN, 21 spots for AC) within the range 0~1000. For 

each configuration, data is collected respectively for 1~4 times. Table 5.2 lists the values of these 

configurations. The EN data and the AC data are selectively used at three levels of data 

sufficiency, namely, low, medium, and high. The sizes of EN data and AC data are considered at 

three different levels of sufficiency: 44+63 for low level, 88+63 for medium level, and 176+126 

for high level. In this work, EN and AC data are used at the high levels of sufficiency by default. 
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Table 5.2 Statistics of the given characterization data 

Data set Config # ( , , )lq L x  

Config 1 q=1000, L=1.27 

Config 2 q=1000, L=2.54 

Config 3 q=2000, L=1.27 

 

EN 

Config 4 

 

xl=0 

q=2000, L=2.54 

Config 5.1 xl=0 

Config 5.2 xl =L/2 

 

AC 

Config 5.3 xl=L 

 

q=3000, L=1.9 

5.6.2 Bayesian approaches to the thermal challenge problem 

 Several different approaches have been developed and presented in literature for the 

thermal challenge problem as the result of the Sandia Validation workshop 

(http://www.esc.sandia.gov/VCWwebsite/vcwhome.html). We find these methods differ in how 

they utilize three different data sources (MPC, EN and AC data), the model updating 

formulations (e.g., including bias or not), and the solution method (e.g., Bayesian or non-

Bayesian).  Additionally, some of these works focus on prediction (whether the regulatory 

requirement will be met), while some others also study the model validity (accuracy).  The 

readers should refer to Hills et al. (2008) for a complete summary of the existing approaches. 

 In terms of the solution method, the Bayesian calibration methodology of Kennedy and 

O’Hagan (2001) was followed by Higdon et al. (2008), Liu et al. (2008), McFarland and 

Mahadevan (2008) to calibrate κ and ρ  with the bias function included. In Liu et al.(2008) and 

Higdon et al. (2008), no formal model validation is considered, while in McFarland and 

Mahadevan (2008), model validation metrics based on the significance test are employed. These 

works use different prior specifications of Gaussian Process hyperparameters and assume 

different prior distributions for calibration parameters κ and ρ . The works of Liu et al.(2008)  

and Higdon et al. (2008) assign prior distributions for parameters κ and ρ based on either full or 
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partial MPC data. The work of McFarland and Mahadevan (2008) specifies vague priors 

forκ and ρ without using any MPC data.  By utilizing both the EN and AC data, the predicted 

failure probabilities are determined to be 0.03 for using all levels of data sufficiency in Higdon et 

al. (2008), and are determined to be 0.02 and 0.04 respectively for using the medium and high 

levels of data sufficiency in Liu et al. (2008). In McFarland and Mahadevan (2008), the failure 

probability is computed as 0.166 using the high level of data sufficiency. All studies indicate that 

the thermal device cannot meet the regulatory requirement (<0.01) as specified in Eq. (16). 

5.6.3 Three model updating formulations used for testing the MLE method 

 In this study, the proposed MLE based model updating approach is tested with three 

different model updating formulations. The formulations of the updated model '( , )my Θx and the 

corresponding model updating parameters Θ  adopted for the thermal challenge problem are 

listed in Table 5.3.  

 

Table 5.3. Model updating formulations and model updating parameters  

Model updating parameters Θ  Model  

form. # 

 
'( , )my Θx  for θ (i.e.,κ and ρ ) for ε  for ( )δ x  

(1) ( , )my ε+x θ  κµ , κσ , ρµ , ρσ ; ( 0)εµ = , εσ   

(2) ( , ) ( )my δ ε+ +x θ x  κµ , κσ , ρµ , ρσ  ( 0)εµ = , εσ  0 1 4, ,...,δ δ δβ β β  

(3) ( , ( )) ( )my δ ε+ +x θ x x  0κβ , 1κβ , κσ , ρµ , ρσ  ( 0)εµ = , εσ  0 1 4, ,...,δ δ δβ β β  

 

 In all formulations, we assume that the uncontrollable output variable  ε  is a zero-mean 

random variable ( εµ  =0).  Formulation (2) is exactly the one used in Eq. (5.8) to explain the 

MLE method in Section 5.4.  While Formulation (1) is the simplest updating formulation, the 
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bias function ( )δ x  is introduced in both Formulations (2) and (3), where a first order polynomial 

regression model, governed by parameters 0 1 4, ,...,δ δ δβ β β , is used to represent ( )δ x . To capture 

the linear dependency of κ  versus the temperature T observed from the MPC data (Figure 5.5), 

in Formulation (3), it is assumed that θ  is a function of x., i.e., θ = θ (x).  Given that the 

temperature field of the thermal device is primarily influenced by distance ( lx ) from the surface 

to the measured point, the function of ( )θ x  is further simplified, by modeling the mean of κ , 

namely κµ , as linearly dependent on lx  (rather than all x) through a linear model 0 1 lxκµ β β= + .   

5.6.4 Results of model updating parameters of different formulations 

 Using the MLE method described in Section 5.4, the model updating parameters for each 

formulation are obtained based on the selected data from the given data set EN and AC.  To 

study the extrapolation capability of the updated model, three scenarios are considered, each of 

which corresponds to a specific combination of EN and AC, as shown in Table 5.4. In searching 

for model updating parameters Θ via MLE optimization, the mean and variance values from the 

MPC information in Table 1 are utilized to provide search bounds. In this example, we use a 

relatively loose bounds by multiplying a factor 0.1 ~ 10. For example, based on κµ = 0.0628 and 

κσ =0.0099 in Table 1, the bounds applied in MLE optimization are 0.00628 ~0.628 for κµ and 

0.00099~0.099 for κσ . 

Table 5.4. Scenarios of using validation data (EN and AC) as model updating data  

 Data for model updating 

Scenario 1 EN 

Scenario 2 AC 

Scenario 3 EN + AC 
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 For the purpose of demonstration, we provide in Table 5.5 only the results of the model 

updating parameters under Scenario 1 with high level data sufficiency. These results provide 

statistical representations of model updating parameters, which will be used further to 

characterize the uncertainty of model response in both prediction and validation. 

 

Table 5.5. Estimated model updating parameters (Scenario 1) 

Mod

el # 
κ  ρ  ε  ( )δ x  

 
κµ  κσ  ρµ  ρσ  εσ  0 1 4, ,...,δ δ δβ β β  

(1) 0.0579 0.00099 387026 12266 9.8001 N/A 

(2) 0.0493 0.00099 399822 22210 5.2399 14.751,118.593, -0.010,-663.605,0 

 
0κβ  1κβ       

(3) 0.0508 0.025850 0.00110 391171 20549 5.4833 14.293,176.377,-0.010,-606.117,0 

 

5.6.5 Studying of the predictive capability of the updated models  

 We use the results from Formulation (2) as an example to demonstrate how the predictive 

capability of an updated model can be studied. As a reference, the results from the ‘Original’ 

model without model updating (Eq. 5.16) are first shown, but with the consideration of 

uncertainty of model parameters κ  and ρ  as observed from the MPC data.  Figure 5.7 shows 

the predicted response with uncertainty yielded by the ‘Original’ model at two selected 

configuration sites: Config 1 and Config 5.1 (Table 5.2).  Uncertainty of the prediction is 

represented by the 95% prediction intervals (PIs).  Also plotted in the Figures are the validation 

data collected (EN data for Config 1 in (a); AC data for Config 5.1 in (b)).  It is observed that for 

this particular problem, even without model updating, uncertainty predictions based on the MPC 



 

 

132 

data encompass the physical observations quite well. However, the magnitude of the prediction 

uncertainty at Config 5.1 (the accreditation site) appears to be much larger than the true 

dispersion observed from data. 
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(a) Config 1 
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(b) Config 5.1 

Figure 5.5 Prediction through the ‘Original’ model at Config 1 and Config 5.1 
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Figures 5.5 and 5.6 show the predictions using the updated model based on Formulation 

(2) under data Scenario 1 and Scenario 2, respectively.  Only data at Config 1 and Config 5.1 are 

shown. In Figure 5.6, the EN data is used for model updating while EN data (‘in-sample’ test) 

and AC data (‘out-sample’ test) are used separately to validate the updated model (Scenario 1).  
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(a) in-sample test 
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(b) out-sample test 

 

Figure 5.6 Prediction through Formulation (2) (Scenario 1) 
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In Figure 5.7, the AC data is used for model updating while EN (‘out-sample’ test) and 

AC (‘in-sample’ test) are used separately as validation data (Scenario 2). 
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(a) out-sample test 
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(b) in-sample test 

Figure 5.7 Prediction through Formulation (2) (Scenario 2) 

 

 In comparing Figure 5.6 (a) with Figure 5.5(a), and then Figure 5.7(b) with Figure 5.5(b), 

it is observed that after using our proposed MLE method for model updating, the predictions 
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with uncertainty quantification match much better with what observed in the physical data, i.e., 

the uncertainty bandwidth is significantly reduced to match with the dispersion of physical data.  

Such an improvement is accredited to using MLE as the optimization criterion for determining 

the model updating parameters.  Figure 5.6(b) and Figure 5.7(a) (both for out-sample test) show 

the predictive capability of the updated models.  It is found that the prediction in the out-sample 

tests is not as good as those in the in-sample tests, and somewhat worse than the prediction made 

by the ‘Original’ model (Figure 5.5). 

5.6.6 Model validation metrics 

 For comparing the validity (accuracy) and predictive capability of four different model 

updating formulations, the model validation results under three different scenarios outlined in 

Table 5.4 are provide in Tables 5.6~5.8, all with high data sufficiency level.  

 The ‘u-pooling’ metric (Chapter 2.6) is used for assessing the relative accuracy of 

multiple model updating formulations.  In addition, we also employ the Rooted Mean Square 

Error (RMSE) (Chapter 2.6), a traditional accuracy metric, to assess the goodness-of-fit in terms 

of the mean prediction. In calculating the RMSE, the residual error ie  is the difference between 

e

iy  and the mean of the updated model '( , )my Θx at e

ix , i.e., ' ( , )e m e

i i ie y E yΘ= − Θx . 

 Under Scenario 1 (Table 5.6) and Scenario 2 (Table 5.7), one set of data (either EN or 

AC) is used for model updating, called in-sample test; while the other set is used for verifying 

the predictive capability, called out-sample test.  Under Scenario 3 (Table 5.8), both EN and AC 

data are used in model updating.  Validation is performed over the joint data set, which is 

essentially an ‘in-sample’ test. For comparison, the metrics are evaluated for the original model, 

with the uncertainty of parameters κ  and ρ  characterized directly from the material property 
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characterization (MPC) data without updating the model itself. The results are summarized in the 

row marked with ‘Original’. 

 In Tables 5.6 and 5.7, the best and the second best ‘u-pooling’ or RMSE values in any 

single column across different model formulations are marked out with ‘**’ and ‘*’ respectively. 

In Table 5.6, when the EN data is used for model updating, Formulation (2) is found to be the 

best in the in-sample test in terms of both ‘u-pooling’ and RMSE values. In the out-sample test, 

Formulation (2) ranks the second best under ‘u-pooling’ and the best under RMSE. This 

indicates that when the EN data is used for model updating, Formulation (2), which uses constant 

calibration parameter θθθθ and bias function ( )δ x , can best adapt to the data with acceptable 

extrapolation capability. In Table 5.7, when the AC data is used for model updating, Formulation 

(2) again wins over others in the in-sample test. However, in the out-sample test, no model 

updating formulation is superior to the ‘Original’ model, which indicates that, although an 

updated model favors the data it used, the extrapolation should treated with caution. In Table 5.8, 

where EN data and AC data are both incorporated in model updating, Formulation (2) is the best 

over other formulations and the ‘Original’ model.  Overall, Formulation (2) achieves the best 

performance over other formulations and the ‘Original’ model. One common observation in 

Tables 5.6~5.8 is that all four model updating formulations are better than the ‘Original’ in all in-

sample test columns. It is interesting to note that Formulation (3), in which one of the calibration 

parameter θ θ θ θ is considered as a function of model input lx , do not bring a significant benefit as is 

expected based on the physical principle. 
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Table 5.6 Summary of model validation metrics (Scenario 1) 

Validation data: EN 

(in-sample test) 

Validation data: AC 

(out-sample test) 

Model # 

u-pooling RMSE u-pooling RMSE 

Original 0.634 16.96 0.830** 29.13 

(1) 0.566 15.12* 1.138 33.36 

(2) 0.521** 15.07** 0.901* 19.43** 

(3) 0.579 15.16 1.041 31.39 

 

Table 5.7 Summary of model validation metrics (Scenario 2) 

Validation data: EN 

(out-sample test) 

Validation data: AC 

(in-sample test) 

Model #  

u-pooling RMSE u-pooling RMSE 

Original 0.634** 16.96** 0.830 29.13 

(1) 0.891 17.87* 0.540 11.27* 

(2) 0.813* 18.14 0.471* 11.24** 

(3) 1.002 19.53 0.463** 11.40 

 

Table 5.8 Summary of model validation metrics (Scenario 3) 

Validation data: EN + AC 

(in-sample test) 

Model #  

u-pooling RMSE 

Original 0.456 22.84 

(1) 0.420* 14.98 

(2) 0.388** 14.29** 

(3) 0.429 14.60* 

 

5.6.7 Comparison of regulatory test results 

 Based on the study of the predictive capability in previous sections and the fact that the 

application site x* is close to the domain of AC data, it is determined that both the EN and AC 

data sets should be used for updating the model (i.e., Scenario 3), which will be further used to 
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make the final prediction at x* in the regulatory test. All data in EN and AC (i.e., high level data 

sufficiency) is considered. The method introduced in Chapter 5.5 is used for predicting the 

regulatory requirement stated in Eq. (5.17). To assess the failure probability, 1000 Monte Carlo 

simulations are used for propagating the parameter uncertainty determined by the model 

updating parameters which are identified using the MLE approach. Table 5.9 shows the 

estimated failure probabilities using different model updating formulations including the 

‘Original’ model. The specified threshold value (0.01) is exceeded in all cases. 

 

Table 5.9 Summary of predicted failure probability (Scenario 3) 

Model #   

Original (1) (2) (3) (4) 

{ ( *) 900}predP T >x  0.26 0.060 0.028 0.088 0.092 

 

  It is found that our estimations of failure probabilities are consistent with the results 

reported in the other works (Liu et al. 2008, and Higdon et al. 2008) on the thermal challenge 

problem. Considering that Formulation (2) achieves the best overall accuracy over others, our 

best estimation of failure probability is 0.028. 

 

5.7 Summary 

 In this chapter, we examine various strategies for model updating and study its 

relationship with model validation activities. The maximum likelihood estimation (MLE) method 

is introduced as an alternative approach to the traditional Bayesian method to estimate the model 

updating parameters, so that it seeks optimal distribution parameters underlying model updating 
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parameters through MLE. Unlike the traditional Bayesian approach which treats calibration 

parameters as fixed but unknown due to lack of knowledge, the MLE based approach treats 

calibration parameters as intrinsic random to account for the uncertainty due to experiment-to-

experiment variability. Other differences of the two methods are summarized in Section 4.3 and 

will not be repeated here. 

 Through the thermal challenge example, it is demonstrated that model updating can be 

treated as an integral part of a model validation process which improves a model based on the 

physical observations gathered.  We illustrate that without running into numerical complexity, 

the model updating method proposed in this work is easier to implement and interpret compared 

to the existing Bayesian methods.  Using the newly developed u-pooling method by Ferson et al 

(2008), it is shown that the metric can be applied to both the original and the updated models to 

assess the accuracy and predictive capability of different model updating formulations. Through 

in-sample and out-sample tests based on different data sets, it is observed that the proposed 

model updating approach improves the agreement between the model and the physical 

experiment data. However, when applying the updated model at a region that is far from the 

domain of data used for model updating, the extrapolation capability of the updated model is not 

guaranteed. By comparing our approach to the existing works on the thermal challenge problem, 

the differences of various methods in utilizing available data, the model updating formulations 

adopted, and the solution method employed, are pointed out. Even though our method is 

different, it is found the conclusion reached on device failure probability is identical to other 

methods in literature. As for which model updating formulation is the most appropriate, unless it 

can be specified based on the pre-existing knowledge, we think it is problem dependent and 

should be selected by exercising the model validation metrics as demonstrated. While model 
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updating is shown to be useful for improving the accuracy of a model, as the process is fully 

data-driven, we believe the method should be used with caution when used for extrapolation. 
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Chapter 6. Design Driven Model Validation Metrics and Procedure 

Nomenclature 

( )
e

y x  physical experimental observation 

( )ε x  experimental error  

( )r
y x  true response outcome  

( )my x  outcome of computer model 

( )δ x  the bias (or error) of computer model  

( )f x  design objective function 

( )U x  design utility function 

( )Z x  difference function 

x  
1( )

T

px x= , ,x L , design in a p-dimensional space 

eD  
1{ }

ee nD = , ,x xL , for physical experiments 

m
D  1{ }

mnm
D = , ,′ ′x xL , for computer experiments 

m
n , e

n  size of 
m

D  / e
D , the number of computer / physical experiments 

2

εσ  variance parameter of ( )ε x  

2

δσ  variance parameter of the prior Gaussian process ( )δ x  
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δφ  correlation parameter of the prior Gaussian process ( )δ x  

τ  ratio of 2

εσ  to 2

δσ  

e m
nδ | ,  degree of freedom of t distribution 

( )
e mδµ | , x  noncentrality parameter of t distribution 

2 ( )
e mδσ | , x  scale parameter of t distribution 

( *)DM x  design validation metric 

H  design tolerance 

0X  indifferentiable region 

dΩ  set of feasible design alternatives 

K  number of design candidates or competing designs 

  

6.1 Introduction 

It was brought up in Chapter 1 that in the existing work on model validation, most 

approaches are primarily carried out from the perspective of model builders (or analysts) but not 

from that of designers (model users). On the other hand, most of the existing validation metrics 

are based on limited test points without considering the predictive capability at untested but 

potential design space and the various sources of uncertainties. Therefore, it is argued that the 

existing approaches for validating analysis models are not directly applicable for assessing the 

confidence of using predictive models in engineering design.  

In the engineering design research community, special attentions have been given to how 

models and information are used in design decision making (McAdams and Dym, 2004).  
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Preliminary efforts have been made on characterizing and assessing the validity of behavior 

models and their predictions in design (Malak and Paredis, 2004).  Hazelrigg (2003) brought up 

the notion that validation of a predictive model can be accomplished only in the context of a 

specific decision, and only in the context of subjective input from a decision maker, including 

preferences.  From model users’ (designers’) perspective, a good model should be considered as 

the one that can provide the discrimination (good resolution) between design candidates. As 

noted by Hazelrigg (2003), rather than the accuracy of a model, designers care more about the 

ability of models to discriminate between alternatives, namely the resolution of the model, for 

the decisions we have made. This concept could be illustrated by Figure 6.1, where two designs 

alternatives xA and xB are to be differentiated by a model f(x). When the model f(x) has model 

uncertainty, it is important to assess the probability of design xA to produce an outcome that is 

preferred to or indifferent to another alternative xB, i.e., ( )P ( ) ( )AB A BP f= <x x , assuming the 

smaller-the-better scenario. In Figure 6.1 (b), since the predictive model has a better capability of 

differentiating designs xA and xB than in (a), the resolution of (b) is higher than that of (a). 
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(a) Lower resolution                                                                 (b) Higher resolution     

Figure 6.1 Comparing two designs under model uncertainty: the concept of model 

‘resolution’ 

 

Although the need for validating models from the perspective of engineering design has 

been brought up (Malak and Paredis, 2004; Hazelrigg 2003), few have developed quantitative 

means to define and to assess model validity under model uncertainty, and many of them cannot 

provide stochastic measurements with regard to the confidence in using a model. Chen et al. 

(2004) and Buranathiti et al. (2004) developed an approach was developed to provide stochastic 

assessment of the validity of a model.  However, the approach is more useful for rejecting 

(invalidating) a model rather than accepting (validating) a model.  In the recent work of 

Mahadevan and Rebba (2005), a Bayes network approach is proposed for validating the 

reliability assessment made by computational models. In their work, validation was treated as a 

hypothesis testing problem.  However, the emphasis was on validating the modeling accuracy at 

tested design points, but not in the context of a new design.  

In most of the existing work, model validation is viewed as verifying the accuracy of a 

computer model, measured by the agreement between computational and experimental results.  

f
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One major limitation with this approach is that, practically speaking, physical data can be only 

collected at limited sites across a design space, often at locations far from the final design 

solution.  For this reason, none of the validation metrics that are based on accuracy measures 

from limited sample points provides a true representation of model validity at untested design 

points.  

In this work, we are motivated to investigate a new design oriented validation approach 

along with suitable validation metrics. The proposed validation procedure is aimed for yielding a 

predictive model that aids design decision making under model uncertainty. The proposed 

validation metric will be used to provide model users with confidence measures that a design 

being better than other design choices.  

In Chapter 4, we described a bias-correction based predictive modeling approach, which 

captures systematic modeling error as well as uncertainties that impact the final predictive model. 

With the quantified uncertainty of Bayesian predictive models, we further develop some decision 

validation metrics  to provide confidence measures of using Bayesian prediction in making a 

specific design choice for a given design objective. The implications of using such metrics are 

examined and the computational requirements are discussed for cases with either discrete or 

continuous design alternatives.  

 

6.2 A Proposed Design-Driven Model Validation Procedure 

Different from the current point of view in literature where model validation is viewed as 

the means to assess the accuracy of a computer model, model validation is viewed in this work as 

a process to provide designers with support on a set of decisions made using the improved 
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predictive model resulted from the validation process. The goal of model validation is not limited 

to validating (accepting) or invalidating (rejecting) the computer model, but to enhance the 

predicative capability of the predictive model ˆ( )y x  with uncertainty quantification for design 

decision making. The general framework of the proposed design-driven model validation process 

is depicted in Figure 6.4. Figures 6.3 and 6.4 provide a comparison between the traditional model 

validation and the proposed model validation procedures. 

 

Figure 6.3. Traditional Validation Approaches 
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Figure 6.4 Proposed Validation Approaches 

 

The proposed validation process starts with a given computer model, which is assumed to 

have passed the model verification test. By combining the results from computer experiments 

and physical experiments, a predictive model [represented by ( )y x )] with uncertainty 

quantification is obtained. It is noted that the predictive model here does not refer to the original 

computer model, rather, it is viewed as a corrected computer model by characterizing the bias 

between the computer model and the reality. The uncertainty of the predictive model is 

quantified by considering both the interpolation uncertainty due to the use of metamodel 

replacing the computer model and the random error of physical experiments. 

To rank-order different design alternatives, they are compared against each other based 

on a model of design utility [represented by ( ( ))U y x  or simply ( )U x ], which is a function of 

single or multiple responses y(x), and might have various forms from one design problem to the 
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other. When uncertainty of design variables/parameters (named as “other sources of uncertainty”) 

is considered, for example, in a typical robust design (Chen et al. 1996) problem, we view the 

utility function U, a function of both the mean yµ  and the standard deviation yσ  of performance, 

a complex design objective. The value of utility needs to be predicted by propagating other 

sources of uncertainty related to x through the predictive model ( )y x .  To quantify the 

uncertainty of ( )U x , statistical inference techniques must be developed to first quantify the 

uncertainty associated with the prediction of the response y(x) based on the results from both 

models and physical experiments.   

Based on the predicted utility model ˆ ( )U x , an optimal design (denoted as *x ) could be 

identified by maximizing the mean of ˆ ( )U x  w.r.t x . Two types of design scenarios are 

considered in this work, namely,  

1) discrete design space, in which a set (denoted as X) of finite design alternatives are 

considered, and  

2) continuous design space, in which an intended design region (denoted as dΩ ) is 

specified by the designer.  

Once the optimal design *x  is chosen, design validation metrics are used to assess the validity 

of using the predictive model for making this specific design choice. Corresponding to the above 

two design scenarios, different validation metrics are proposed, denoted respectively as 

ˆ( , *, )DM U Xx  and ˆ( , *, )D tM U Ωx , where tΩ  represents the tolerance zone specified by  

designer when a continuous design space is considered . 

As will be detailed in the later sections, the two proposed validation metrics essentially 

represent certain confidence levels of accepting a specific design *x  as an optimal solution. A 
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pre-specified confidence level (or a threshold, denoted as Pth, such as 95%, 99%) should be 

assigned. If DM  ≥  Pth, the optimal design *x  is concluded with the confidence level as high 

as DM . If DM  < Pth, it means that the utility model ˆ ( )U x  can not provide sufficient resolution to 

support the design decision *x  made, and more information needs be gathered through 

additional physical experiments to reduce the uncertainty of ˆ ( )U x , therefore, to improve the 

confidence level of accepting a design solution.  

To best exploit the information from physical experiments, sequential experiment design 

has to be carefully carried out. Where to put the next physical experiment considering the 

experiment restrictions is the question to be addressed in this work.  With the added experiments, 

the same model validation process is repeated until the validity requirement is satisfied. However, 

as will be disclosed in the later sections, with the accumulation of experiments, there may not be 

sufficient gain from collecting more physical experiments. Therefore, associated with the 

experiment design is the issue of resource analysis. In the case that the validity requirement 

continues to be unsatisfied, the resource analysis is essentially to decide at what point the whole 

validation process should be terminated when further expense of experiment is predicted not to 

bring enough information. 

6.3 Design-Driven Model Validation Metrics 

Different from the existing validation metrics that assess the predictive capability 

(accuracy) of a model, some design validation metrics (denoted as MD in general) are proposed, 

which provide a probabilistic measure of whether the real outcome of one candidate design is 

better than other design choices. Instead of the predictive model ˆ ( )ry x of performance, the 
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design objective function ˆ ( )f x  [or, more generally, the design utility function ˆ ( )U x ] is used to 

determine the optimal design. In design under uncertainty, the design utility function could be a 

complex design objective, such as the robust design objective which is a function of both the 

mean yµ  and the standard deviation yσ  of performance. However, due to the uncertainty of 

ˆ ( )ry x , ˆ ( )U x  is associated with uncertainty. Essentially, it is the uncertainty in design utility 

function ˆ ( )U x that influences the confidence in making design decisions. The uncertainty of 

ˆ ( )ry x  is reducible with more experiment data added; if uncertainty of ˆ ( )ry x is completely 

eliminated, ˆ ( )U x  reduces to a deterministic model. Complicated by the model uncertainty of 

ˆ ( )ry x , the uncertainty in design utility ˆ ( )U x  is difficult to be quantified. Apley et al. (2005) 

addressed the similar issue and developed an analytical approach to formulate the effect caused 

by the uncertainty of ˆ ( )ry x  (termed as the ‘interpolation uncertainty’ in their work) on a robust 

design objective. 

For defining the validation metrics, two scenarios are considered separately, namely, 1) 

finite design candidates and 2) continuous design space. While both are possible scenarios in 

design practice, validation evaluation of the later scenario is more complicated than the former 

case. Even though the forms of these two types of validation metrics are slightly different, both 

types of MD are interpreted as essentially the confidence of the chosen optimal design x* being 

truly the optimal among a set of candidates or within a given design region. If large uncertainty 

remains in predicting a design outcome, e.g., because the design sites are far from the tested 

region of physical experiments, the achieved MD may be too low to meet the design validity 
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requirements, forcing designers to add new experiment(s) to reduce model uncertainty or to 

lower the validity requirement. 

 

(1) Validation toward Finite Design Candidates 

Based on the predictive model ˆ ( )ry x ,  when  design parameter uncertainty is present, 

design alternatives are compared against the utility ˆ ( )iU x  (assuming larger utility is preferred). 

With the consideration of model uncertainty, differentiating the predicted performance at ix  and 

jx is essentially to examine the probability of one design is better than the other. This is 

mathematically evaluated by the Probability Based Pair-wise Comparison between two random 

variables ˆ ( )iU x  and ˆ ( )jU x , i.e., 

ˆ ˆ( , ) { ( ) ( )}i j i jP P U U>x x x x� .                                            (6.1) 

The larger the probability ( , )i jP x x , the higher capability of utility model ˆ ( )iU x  in 

differentiating designs ix and jx . The Monte Carlo simulation method may be used to sample a 

relatively large number (e.g., Ns=1000) of two-dimensional points. The probability of ( , )i jP x x  

is calculated as 

( , )i jP x x = ˆ ˆ{ ( ) ( )}n i n jN U U>x x / Ns,                                     (6.2) 

where ˆ ˆ{ ( ) ( )}n i n jN U U>x x  represents the number of two-dimensional sampling points at which 

ˆ ( )n iU x  is larger than ˆ ( )n jU x .  
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Before introducing the design-driven validation metrics, three forms of point-wise 

metrics, namely, the Multiplicative Metric, the Average (Additive) Metric, and the Worst-Case 

Metric are defined as: 

1/( 1)

1,

ˆ ˆ( , ) { ( ) ( )}

K
K

Multip

i i j

j j i

M X P U U

−

= ≠

 
> 

 
∏x x x� ,                            (6.3) 

1,

1 ˆ ˆ( , ) { ( ) ( )}
1

K
Average

i i j

j j i

M X P U U
K = ≠

>
− ∑x x x� ,                             (6.4) 

  
1,..., ,

ˆ ˆ( , ) min { ( ) ( ))Worstcase

i i j
j K j i

M X P U U
= ≠

>x x x� ,                               (6.5) 

where ˆ ( )
i

U x  stands for the prediction of the utility function estimated at xi. ( , )
i

M Xx  metrics in 

Eqs. (6.3) and (6.4) provide an averaged measure of the probability that the real outcome of 
i

x  is 

better than or indifferent from other design choices, representing the confidence of using a 

predictive model to select 
i

x  as the optimal design choice. If ( , )
i

M Xx =1, it indicates that a 

designer should have full confidence in accepting 
i

x  as the optimal design. The ( , )
i

M Xx  metric 

in Eq. (6.5) stands for the worst case instead of the average.  

For a set of given design alternatives X ={
i

x | i=1,..,K}, the Validation Metric over the 

set X  is defined as 

ˆ( , *, ) ( *, )
D

M U X M X=x x ,                                           (6.6) 

where *x  is the optimal design among the design candidates identified from the utility model 

ˆ ( )
i

U x . 
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(2) Validation within Continuous Design Space 

For a given continuous design region, what is more relevant to designers is the 

confidence of an identified optimal design x* being truly the optimal one among other design 

points in the region. Distinguishing neighboring designs in a continuous design space with the 

consideration of model uncertainty is more challenging than separating discrete and distinctive 

design choices, because two designs might be hard to be differentiated if they are sufficiently 

close to each other. Hence, differentiating two closely adjacent designs is less meaningful 

because they can be viewed indifferent to each other.  

The basic idea of formulating the validation metric MD for a continuous case is to 

examine the neighboring points outside a small tolerance zone (denoted as 
t

Ω ) from the chosen 

optimal point x*: the higher the probability of x* being better than the other points outside the 

tolerance zone, the better resolution of the model. t
Ω  is the tolerable neighboring region around 

x* so that even if the chosen optimal design x* is not the “true” optimal, it is still tolerable 

because x* is indifferentiable from the true optimal design in this neighborhood. To perform the 

point-wise comparison between x* and all the points outside the tolerance zone is not feasible. 

Instead it is assumed, the points sitting on the boundary of the tolerance zone are the worst-case 

points. Average is taken over the boundary. Accordingly, the validation metric is defined as 

ˆ( , *, ) { ( *, )}
i c

D t i
X

M U average P
∈

Ω
x

x x x� ,                                     (6.7) 

where 
c

X is a set of points on the boundary of the tolerance zone 
t

Ω  centered on x*. Averaging 

over a set of points allows us to relate the validation metric for the continuous case to that of the 

discrete case. Eq. (3.32) could be written as  

ˆ ˆ( , *, ) { , *, }
D t D

M U M U XΩ =x x ,                                       (6.8) 
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where X = { *}
c

X∩x . 

 

6.4 Case Study: Engine Piston Design 

In this section, we continue with the Engine Piston Design problem used in Chapter 4 (Jin 

et al. 2005) to demonstrate the proposed validation framework with proposed model validation 

metrics. For the purpose of comparison, the predictive models are built in two stages. In the first 

stage, the first 19 points out of 34 physical experiment points in Table 6.1 are used. The 

remaining 15 points are added in the second stage. 

 

Table 6.1 First Stage (19) physical experiments 

i 1 2 3 4 5 6 7 8 9 10 

i
x

e
D∈  0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 

y
e
(

i
x ) 56.332 56.077 55.875 55.542 55.159 54.840 54.682 55.039 55.183 55.774 

i 11 12 13 14 15 16 17 18 19  

ix eD∈  1.000 0.500 0.540 0.580 0.620 0.660 0.700 0.740 0.780  

y
e
(

i
x ) 56.749 54.867 54.646 54.748 54.576 54.614 54.623 54.978 54.923  

 

 

 

 

Table 6.2 Second stage (15) physical experiments 

i 20 21 22 23 24 25 26 27 28 29 

i
x

e
D∈  0.000 0.070 0.140 0.210 0.280 0.350 0.420 0.490 0.560 0.630 

y
e
(

i
x ) 56.224 56.228 55.767 55.676 55.583 55.214 55.185 54.902 54.894 54.611 

i 30 31 32 33 34      

i
x

e
D∈  0.700 0.770 0.840 0.910 0.980      

y
e
(

i
x ) 54.831 54.947 55.352 55.765 56.560      
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Prediction and uncertainty quantification of ( )f x  

A robust design objective ( )f x  is consider, i.e., ( )f x = 1 2y yw wµ σ⋅ + ⋅  where yµ  and 

y
σ  are the mean and standard deviation of y (engine slap noise), and the weights 1w  and 2w  are 

set at 1w =1 and 2w =3. The robust design objective is utilized to reduce the impact of the 

uncertainty associated with the randomness of x . Note that ( )f x  is under the ‘smaller-is-better’ 

scenario. 

Although approximation of the mean and variance of ( )f x  analytically is proposed by 

Apley et al. (2005), Monte Carlo simulation is employed in this work for simplicity. Based on 

the mean, variance and covariance of ( )ry x  by Eqs. (6.24)~(6.26), one can simulate a large 

amount (e.g., 100) of realizations of the random process ˆ ( )ry x . For simplicity, only three of such 

realizations are selected and shown in Figures 6.5 and 6.6. Each single realization of ˆ ( )ry x  

determines the corresponding realization of ( )f x subject to the randomness of x . As a result, the 

prediction of ( )f x and its uncertainty is quantified, as shown in the bold lines in Figures 6.5 and 

6.6. Figures 6.5 and 6.6 show the results in the first stage and the second stage, respectively. 

With more physical experiment data, ( )f x  in (b) has a narrower 95% prediction interval, which 

indicates a more accurate model.  
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Figure 6.5 Prediction of ( )f x and 95% prediction interval in stage 1  

(19 physical experiments   ) 
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Figure 6.6 Prediction of ( )f x and 95% prediction interval in stage 2  

(19+15 physical experiments   ) 

 

Application of Design Validation Metrics 

Considering a discrete design scenario, the design validation metrics ˆ( , *, )
D

M U Xx  

proposed in Eq. (6.31) will be applied to ˆ ( )f x  with five design candidates that have been 
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identified as ={0.2, 04, 0.5, 0.65, 0.7}X . The points generated by Monte Carlo simulation of 

ˆ ( )f x  are illustrated in Figure 6.7. 
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Figure 6.7 Comparison between five design alternatives ( ˆ ( )f x is built with 19 physical 

experiments) 

 

Table 6.3  Three types of ( , )
i

M Xx  and validation metric 
D

M  

 (with 19 physical experiments) 
 i 1 2 3 4 5 

Type 1 ( , )Multip

i
M x X  0.0000 0.1057 0.3379 0.88700.88700.88700.8870=

D
M  0.6938 

Type 2 ( , )Average

i
M x X  0.0842 0.2715 0.4830 0.89570.89570.89570.8957= DM  0.7655 

Type 3 ( , )Worstcase

i
M x X  0.0000 0.0150 0.1010 0.69900.69900.69900.6990=

D
M  0.3010 

 

Table 6.4  Three types of ( , )iM Xx  and validation metric DM  

(with 19+15=34 physical experiments) 
 i 1 2 3 4 5 

Type 1 ( , )Multip

iM x X  0.0000 0.000 0.2137 0.90.90.90.9101101101101= DM  0.7170 

Type 2 ( , )Average

i
M x X  0.0160 0.2850 0.4807 0.0.0.0.9192919291929192=

D
M  0.7990 

Type 3 ( , )Worstcase

i
M x X  0.0000 0.000 0.0310 0.0.0.0.7080708070807080=

D
M  0.2920 
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In both the first stage and the second stage, x4 achieves the best value of the mean of 

ˆ ( )f x  , thus is chosen as the optimal design among the five candidates. Tables 6.3 and 6.4 

provide the calculated values of three types of ( , )
i

M Xx  by Eqs. (6.28~6.30) for each 
i

x  in the 

two stages. The value of validation metric ˆ( , *, )
D

M U Xx , which is equal to 4( , )M Xx , is also 

marked in the column of x4. It is noted that the values of all three types of ˆ( , *, )
D

M U Xx  in 

stage one are larger in stage two, indicating larger confidence in differentiating design 

alternatives. 

6.5 Summary 

In this chapter, a design-driven validation approach is proposed, built upon the Bayesian 

prediction procedure presented in Chapter 4 that provides quantitative assessments of model 

uncertainty.  Some decision validation metrics are proposed to provide probabilistic assessments 

of designer’s confidence in making a specific design choice.  Unlike most of the existing model 

validation works that focus on the assessment of model accuracy, model validation is viewed in 

this work as a process to improve designer’s confidence in making a design choice using the 

improved predictive model, which is an augmented model based on the original computer model 

as well as the estimated bias function. 

This work offers a new and improved way of viewing model validation by relating its 

definition to a specific design choice with a particular design objective. By providing direct 

estimations of the global impact of uncertainty sources on the confidence in a design decision, 

the approach overcomes the limitations of many existing model validation approaches  Our 

proposed decision validity metrics are generally applicable for both cases with either a discrete 



 

 

159 

or continuous set of design candidates, with the worst-case metric demonstrated to be the most 

appropriate.  As has been illustrated, besides the model itself, the validation result highly 

depends on subjective inputs from designers, such as the construction of the design objective 

function, and the specification of tolerance and confidence level in identifying the 

indifferentiable region. 

In this work, we treat model uncertainty separately from design variable/parameter 

uncertainty. The consideration of parameter uncertainty is embedded into the design objective 

formulation, such as the robust design objective as shown in one of the case studies, while the 

prediction uncertainty of a design objective is quantified with respect to only the model 

uncertainty. The way we separate model uncertainty from design variable/parameter uncertainty 

facilitates sampling in sequential experimentation, as its goal is to reduce model uncertainty.  

The topic of sequential experimentation will be further explored in Chapter 7. 

Even though the proposed approach is demonstrated for a simplified one dimensional 

engineering design problem for ease of visualization, the same approach can be applied to 

problems with multidimensional design inputs and the interest is always to provide the 

probabilistic assessment on whether the design objective value of one particular design is better 

than others.  Since the analytical derivation has been obtained for implementing the Bayesian 

approach, the proposed method can be easily extended to multidimensional problems. 
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Chapter 7. Objective Oriented Sequential Experimentation  

Nomenclature 

SLB Statistical Lower Bounding 

PSC periodical switching criteria 

DC Design confidence 

X
0
 indifferentiable region 

H design tolerance 

0
X

C  confidence level 

x
mc

 most competing (MC) design 

LF Low Fidelity 

HF High Fidelity 

d
Ω  intended design region 

n
Ω  forbidden region 

7.1 Introduction 

Sequential experimentation is an important research issue in predictive modeling in 

engineering design because it aims for obtaining the most amount of information out of a limited 

number of simulations sampled sequentially, especially when simulations are computationally 
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expensive or physical experiments are resource taking. In Chapter 2, a broad review on 

sequential sampling strategies for computer experiments was made, together with a summary of 

advantages of sequential sampling strategies in various aspects of engineering design. Among 

the two categories of sequential sampling, the category of objective-oriented sequential sampling 

approaches shows advantages over the category of space-filling based sequential approaches for 

global metamdoeling, because they are driven by the intended optimization objective in 

engineering design, and therefore are able to narrow the sampling space to the most promising 

design region in a more effective manner. 

In this chapter, we present a new objective oriented sequential sampling approach 

(Section 7.2)  for computer experiments, with a proposed periodical switching criterion which is 

shown to be effective in guiding the sequential sampling towards improving a design objective as 

well as reducing the interpolation uncertainty. A design confidence (DC) metric is proposed 

(Section 7.3) as the stopping criterion to facilitate design decision making against the 

interpolation uncertainty. In Section 7.4, we apply the proposed objective oriented sequential 

sampling approach to the variable fidelity optimization where both high-fidelity and low-fidelity 

simulations are integrated.  

In Section 7.5, we study two examples of variable fidelity optimization problems to 

demonstrate the effectiveness of the proposed sequential sampling approach. 

It should be noted that sequential sampling approaches used in computer simulation can 

be extended to sequential physical experiment designs. In Section 7.6 we describe a general 

framework that guides objective oriented sequential physical experimentation, considering the 

uncertainty of physical experimentation and restrictions on experimentation location. 

 Conclusion of this chapter will be made in Section 7.7. 
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7.2 A New Objective Oriented Sequential Sampling Approach 

In this work, we examine the use of the Statistical Lower Bounding (SLB) criterion for 

choosing the new sample in each stage of a sequential sampling process by considering the 

“interpolation uncertainty” of a surrogate model (Jones 2001, Cox et al. 1997). The SBL 

criterion has the following form: 

Minimize 1 1 1( ) ( ) ( )s sN N Ny y
SLB kµ σ+ + +≡ −x x x ,                               (7.1) 

where 1 1
ˆ( ) ( )s

s

N Ny
yµ + +=x x , 1/ 2

1 1( ) [ ( )]s

y N NVar yσ + +=x x , and k is a user-defined parameter. A 

larger k value implies the emphasis on reducing interpolation uncertainty or the need for global 

search. The SLB criterion is easier to control and interpret than the EI criterion. By assigning k 

=0 and k =+∞ , respectively, we get two extreme values of the SLB criterion: 

Maximize 2

1 1( ) ( )sN Ny
Var σ+ +≡x x (‘Max Var’),                                   (7.2) 

Minimize 1 1( ) ( )sN Ny
Mean µ+ +≡x x  (‘Min Mean’).                               (7.3) 

‘Max Var’ focuses on the aspect of exploring regions with large interpolation uncertainty; ‘Min 

Mean’ focuses on the aspect of locating local optima. In the work of Sasena (2002), it was 

proposed to alternate the two criteria under a subjective guideline. In the method described by 

Sekishiro et al. (2006), two sampling points, one based on ‘Max Var’ and the other on ‘Min 

Mean’, are used at each stage. One possible drawback common to these strategies is that 

consecutive sampling points may pile up at extremes, causing ill-conditioning when calculating 

the inverse of the covariance matrix used in Gaussian process modeling. 
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Figure 7.1 The proposed periodical switching criteria (PSC) strategy 

 

To overcome these difficulties, we propose a periodical switching criteria (PSC) strategy 

as depicted in Figure 7.1. The sequence of the periodical alternation of criteria begins with an 

extreme global search ‘Max Var’, and ends up with an extreme local search ‘Min Mean’, while 

using in-between several compromising searches with different k values. By applying the 

compromise strategy with ‘Min SLB’ in the middle, sampling points are far less likely to cluster 

around the local minimum. Due to such cyclic pattern, the algorithm will always give the 

algorithm a chance to explore those less explored regions, even when a local minimum seems to 

have been settled on. This strategy is applied repeatedly throughout the whole sequential 

sampling procedure until certain stopping criterion (introduced in next section) is satisfied. 

Based on the research of Cox and John (1997), although an empirical selection of k value as 2 

was used, it was acknowledged that the best k value is problem dependent. According to the tests, 

we found that three compromising searches with k values 5.0, 3.0, and 1.0 (as displayed in the 

dashed box in Figure 7.1) work quite well in the tested examples in this work. A more adaptive 

criterion is worthy of investigating in the future. 

Max Var 

Min SLB (k=5.0) 

Min Mean 

Min SLB (k=3.0) 

Min SLB (k=1.0) 

Start 
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7.3 Stopping Criteria for Sequential Sampling 

The Design confidence (DC), described in Chapter 5 is defined as a probabilistic measure 

(Hazelrigg 2003) of a chosen optimal design being better than other design choices with the 

consideration of model uncertainty. In the proposed sequential sampling approach, design 

confidence ( *)DC x  is defined as the probability of whether an optimal design x* is the true 

optimum, in comparison with all designs outside the indifferentiable region X
0
, considering the 

interpolation uncertainty of using a surrogate model ( )sy x , i.e., 

{ } { }
0 0 *( *) min [ ( *) ( )] min [ ( ) 0]s s

X X
DC P y y P Z

∉ ∉
= < = >x

x x
x x x x ,                (7.4) 

where x* is identified by optimizing the predictor or the mean of ( )sy x , i.e,  

{ }ˆ* arg min ( )s
y=

x

x x .                                             (7.5) 

*( ) ( ) ( *)s s
Z y y= −x x x x  is assumed to follow the Gaussian distribution with mean 

*
ˆ ˆ( ) ( ) ( *)s s

Z y yµ = −
x

x x x ,                                            (7.6) 

and variance 

*

2 ( ) [ ( )] [ ( *)] [ ( ), ( *)]s s s s

Z Var y Var y Cov y yσ = + −
x

x x x x x .                   (7.7) 

Figure 3 shows an illustrative example of the uncertainty of y
s
(x) at three design points, 

namely, *x , ax , and bx , where x* is identified as the optimum based on the mean of prediction. 

Correspondingly, the mean and variance of *( )Zx x  at the same three points are illustrated in 

Figure 4, where the probabilistic distribution of *( )iZx x  ( *, , )i a band=x x x x is calculated from 

Eqs. (14) and (15). Note that *( )Zx x has zero mean and zero variance at x*. 
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The assessment of DC in Eq. (12) involves the evaluation of probability that x* is better 

than the most competing design x outside the indifferentiable region X
0
. The concept of 

indifferentiable region X
0
 is introduced because, with model uncertainty, designs with 

performance values close to x* should be considered as equally good. More strictly, X
0  

is 

defined as a region within which the design points are claimed indifferent to x*  for a given 

design tolerance H with a confidence level 0X
C =1-α (e.g. α =0.05 or 0.10), as follows, 

[ ]{ }0

* X0P | ( ) | C  X Z H≡ < >xx x .                                        (7.8) 

It is worth emphasizing that the values of design tolerance H and confidence level 0X
C are 

specified based on designer’s preference. Choosing a tolerance H expresses how close two 

design objective values can be deemed the same or indifferentiable. 

 

Figure 7.2 The uncertainty of y
s
(x) at x*, xa, and xb 

 

Figure 7.3 The uncertainty of zx*(x) at x*, xa, and xb 

 

x* xa xb 

x 

y
s
(x) 

ˆ ( *)s
y x  

*
( *) 0

xzµ =x  

zx*(x) 

x 

x* xa xb 

H

H

P{|zx*(x)|<H

P{ zx*(x)>0 

} 
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Note that X
0
 may include not only the close neighborhood of x*, but also regions not adjacent to 

x*. The evaluation of Eq. (12) requires the search of the most competing (MC) design x
mc

 w.r.t. 

the optimal design x*, though minimizing the probability P outside the indifferentiable region X
0
. 

The obtained x
mc

 is then used to calculate the design confidence of x* through 

*( *) [ ( ) 0]mc
DC P Z= >xx x .                                    (7.9) 

In the existing literature of global optimization, the commonly used stopping criteria are 

based on the convergence behavior in either design space of x, or performance space of y (Gano 

et al. 2004, Sekishiro et al. 2006). Although generally applicable, none of them provide 

probabilistic measure regarding the validity of an optimal design considering model uncertainty. 

In this work, we view the sequential sampling as a process of reducing the interpolation 

uncertainty of surrogate models, as well as improving the confidence in accepting a design 

solution. We propose a stopping criterion based on the design confidence values of any two 

consecutive stages. If any two consecutive design confidences DC(x*) meet (higher than) a 

desired confidence level (e.g., 90%, 95%) prescribed by designers, the sequential sampling 

process can then be terminated. Often times, due to the limited resources (time and cost, etc), 

designers have to determine whether the current best design is acceptable or not without 

additional simulation. The information of design confidence provides a base for designers to 

make such decisions. 
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7.4 Application of the Proposed Sequential Sampling Approach in Variable Fidelity 

Optimization 

7.4.1 Background of variable-fidelity optimization 

Computational models of varying fidelity have been widely applied in various 

engineering communities  In a broad sense, variable-fidelity models can be represented by data-

fitting approximations, variable-resolution models, variable-convergence models, or variable 

physical fidelity models (Alexandrov, et al. 2000).  Descriptions of variable fidelity and other 

model management methods can be found in a number of publications (Alexandrov et al. 1999; 

Gano et al., 2004; Marduel et al., 2004; Rodriguez, et al., 2001). As shown in Figure 7.4, with 

the classical variable fidelity optimization strategy, both LF and HF models are used directly in 

optimization for response evaluations.  Existing approaches tend to maximize the use of LF, 

cheaper models in iterative procedures to provide a descent direction through gradient 

evaluations with occasional, but systematic recourse to HF, more expensive models.  Different 

forms of scaling functions have been proposed to approximate the HF model using LF analyses, 

e.g., the first-order multiplicative and additive corrections (Alexandrov, et al. 1999) and the 

Kriging based scaling function (Gano et al. 2004).  
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Classical variable fidelity optimization emphasizes on convergence to a stationary point 

of the HF model, hence, the use of HF simulations is often excessive and even unaffordable.  The 

trust-region approach (Gano et al., 2004; Rodriguez et al. 2001) has been used to expedite the 

convergence, however, the algorithm has the tendency to converge to local optima, while 

possibly overlooking the global optimum.  Furthermore, one major limitation of the classical 

variable fidelity optimization methods is that they are not applicable for optimization under 

uncertainty, because it is not affordable to use directly the HF model for assessing the 

probabilistic behavior of a response. 

7.4.2 Sequential sampling based variable-fidelity optimization approach 

Based on the proposed objective oriented sequential sampling proposed in this work, a 

new variable-fidelity optimization framework can be depicted in Figure 7.5.  

High-fidelity analysis
Evaluate

new x

Update

approximations

Optimization

Low-fidelity analysis

Optimization using approximation

new x
)(),( xaxa
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Figure 7.4  Classical Variable Fidelity Optimization 

(Alexandrov, et al. 1999) 
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Figure 7.5 Objective Oriented Sequential Sampling Applied in Variable Fidelity 

Optimization 

As opposed to the classical variable fidelity optimization strategy shown in Figure 7.5, 

none of the LF and HF models is directly invoked during optimization. Instead, a model fusion 

technique is applied to combine information from both LF model y
l
(x) and HF simulations y

h
(xi) 

(i=1,…,N
h
) to yield a surrogate model y

s
(x) (as a substitute for HF y

h
(x)), over which 

optimization is performed. Details of constructing the surrogate model y
s
(x) with the proposed 

model fusion technique are elaborated in Chapter 4. The proposed model fusion approach 

follows a Bayesian modeling framework, in which the surrogate model is a combination of an 

augmented LF model with linear scaling plus a bias function that characterizes the remaining 

difference with the HF model. With the Bayesian approach, the uncertainty of y
s
(x) in predicting 

HF models can be quantified. As previously stated, such type of uncertainty is called the 

‘interpolation uncertainty’ due to the lack of sufficient HF simulations. When a LF simulation is 

expensive, the surrogate of LF model (dashed line box in Figure 7.5) could be used to replace the 

High fidelity model ( )h
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original LF model. Design optimization is performed using the predictor (or posterior mean) of 

the Bayesian surrogate model y
s
(x) obtained from model fusion. The design confidence (DC) of 

the newly identified optimum x* will then be assessed considering the interpolation uncertainty 

associated with y
s
(x). If the design confidence meets a satisfactory level, or when the computing 

resource has been exhausted, the sequential sampling process is terminated. Otherwise, an 

objective-oriented sequential sampling procedure will be applied to pick new sampling points of 

HF simulations. In the proposed framework, only one sampling point of HF simulation is added 

at each iteration or ‘stage’. 

 

7.5 Case Study 

In this section, we will go through two examples of variable fidelity optimization 

problems to illustrate the proposed objective oriented sequential experimentation approach. 

7.5.1 Computer Experiment: One Dimensional Problem 

We first look at a one dimensional problem, which was already used in Chapter 4. From 

Stages 1 to 5, additional 5 sampling points are sequentially collected following the PSC strategy 

we proposed in section 2.3. Using the Bayesian Gaussian process modeling approach described 

in Chapter 2, the posterior mean and the interpolation uncertainty (95% prediction interval (PI)) 

of ( )
s

y x  are shown in Figure 7.5, with all 5 sequential points annotated with the stage number 

besides. It is noted that although two local minimums exist in the HF model, only one of the 5 

samples is used to explore the secondary local minimum region, the other four are all located 

around the global minimum. Therefore the created surrogate model is much more accurate in the 
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neighborhood of the global minimum than that of the secondary local minimum. In Stages 4 and 

5, the sequential sampling points are very close to the global minimum. The sequential sampling 

process is objective-oriented, addressing both needs of global search and local search. 

In Figure 7.5, points in the local region (0.215~0.253) surrounding x* (=0.2330) is 

identified as indifferentiable to x* with certain design tolerance H (=0.023) and confidence 

0
X

C (=99%). The design point x=0.746, shown with large interpolation uncertainty, is identified 

as the most competing point x
mc

 (marked with triangle). The x
mc

 point is considered as the most 

competing point to x* among all design points outside the indifferentiable region X
0 

 because its 

lower bound of the prediction interval is very close to the performance at x*.  
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Figure 7.6 The plots of ˆ ( )sy x  and the HF samples (Stage 5) 

7.5.2 Computer Experiment: Two Dimensional Problem (the Modified Branin Function) 

This example was also used in Chapter 4. The effectiveness of the proposed sequential 

approach is demonstrated through a modified Branin function. Optimizing the Branin function 

(Leary et al. 2004) is challenging because it has three global minima with exactly equal 

performance values. The problem has been studied in literature for various purposes. In this work 
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we modified the original Branin function by adding an additional small ‘tip’ term so that it has 

only one global minimum, while the other two become local minima but stay competing to the 

global one. The modified Branin function is used as the HF model, while we hypothetically 

construct the LF model (see in Appendix for mathematical details). The 3-D plots of the HF and 

the LF models are shown in Figure 7.7, and the contour plot of the HF model with the global 

optimal point indicated as x*HF is shown in Figure 7.8, with the two local minima marked with * 

and the global minimum marked with a star. Note the ranges of x1 and x2 are normalized to 0~1. 
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Figure 7.7 The 3-D plots of HF and LF models 
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Figure 7.8 The contour plot of HF model marked with x*HF 

=[0.0912 0.9325], y
h
(x*HF)=-19.142. 

 

At the initial stage (Stage 0)(see Figure 7.9), only 5 sampling points are available which 

are generated with the Optimal Latin-Hypercube (OLH) algorithm (Jin et al. 2005). The contour 

plot of the obtained surrogate model at this stage is shown in Figure 7.9. It is clear that the 

optimal design (x*= [0.6094, 0.3012], marked with a square) from the surrogate model is very 

different from the true optimal design (x*HF= [0.0970, 0.9344], marked with a star). 
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Figure 7.9 The plot of ˆ ( )sy x at Stage 0 (5 points) with x*= [0.694, 0.001] 
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In order to demonstrate the effectiveness of the proposed PSC strategy in the sequential 

sampling, we compare the result from using the EI criterion with that from the PSC strategy 

using the same amount of sampling data. The plots of the resulted surrogate models from EI and 

PSC at Stage 10 (i.e., after 10 sequential points are added) are shown in Figure 7.10 and Figure 

7.11, respectively for comparison. 
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Figure 7.10 The plot of ˆ ( )sy x at Stage 10, with x*= [0.5276, 0.2132]: sequential sampling 

points generated by EI criterion 
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Figure 7.11 The plot of ˆ ( )sy x at Stage 10, with x*= [0.1011, 0.9156]: sequential sampling 

points generated by PSC strategy 
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In Figure 7.10, where the EI is applied, it is found that the optimal design x* (marked by 

square) is erroneously identified at a sub-optimal region. The number marked beside each 

sequential point indicates the stage they belong to. It is found that the sequential points via EI 

criterion (marked by solid circles) fails to discover the region sufficiently before it converges to 

the local minimum. Similar drawbacks of the EI criterion are also observed in Sasena (2002) and 

Sekishiro et al. (2006). 

In Figure 7.11, where the PSC is applied, x* (marked by square) is identified at [0.1011, 

0.9156], fairly close to x*HF. From the locations of the sequential points (marked by solid circles), 

it is found that most of the sampling points are placed in the local region around the global 

minimum, while the rest of them are placed elsewhere to reduce the interpolation uncertainty of 

the surrogate model. It is found that at the early stages when the uncertainty of the surrogate 

model is large, the sampling procedure explores the model space more rather than focusing on 

any local promising region. After sufficient samples have been accumulated and the uncertainty 

of a surrogate model is reduced, more samples are used for local refinement of the global 

surrogate model in the region that is in favor of the design objective. 

The most competing point (x
mc

) w.r.t. the optimal x* obtained from the surrogate model, 

is marked as a triangle in both plots in Figures 7.10 and 7.11, where the indifferentiable region 

X
0
 is depicted by a collection of ‘+’ markers. x

mc
 and X

0 
are determined based on the definitions 

given in the previous section. In essence, with the consideration of model uncertainty, the 

designs in the indifferentiable region are considered as equivalent to the optimal x* within 

certain tolerance. The design tolerance value H selected for this example is 12, which is about 

3% of the range of y. Note that in Figure 7.10, since the local sub-optimal regions have similar y 

values, the indifferentiable region X
0
 w.r.t. x* are located in both the neighborhood of x* and a 
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disjoint region centered around the other sub-optimal region extreme. In Figure 7.11, since x* is 

already correctly identified within the true global optimal region, X
0
 is a continuous region 

surrounding x*. The most competing point x
mc

 w.r.t. x* is marked with a triangle in both Figures 

7.10 and 7.11. It is noted that x
mc

 is always located outside of X
0
 and represents the most 

competing design w.r.t x*. The design confidence DC(x*) achieved using the EI criterion and the 

proposed PSC strategy is 87.12% and 99.99%, respectively. 
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Figure 7.12 The comparison of the history plots of y* 
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Figure 7.13 The comparison of the history plots of DC(x*) 

(H = 12 (3% of yrange) and 0
X

C  = 0.95) 
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Figures 7.12 and 7.13 show the history plots of the response value y* and design 

confidence value DC(x*) from the surrogate models at different stages. The results from using 

the EI criterion and the PSC strategy are compared in both Figures. It is observed that the DC 

level consistently increases with more sample points when using the PSC strategy which yields a 

high DC level (close to 100%) in Stages 9 and 10, much better than that (87.4%) from the EI 

with the same amount of sampling points. Besides, in terms of y*, from the true y*HF indicated 

by the horizontal dashed line in Figure 7.13, it is observed that the PSC generates a more 

accurate value than the EI. These facts imply that the proposed PSC strategy holds much 

advantage over the EI approach. 

From the history plot of y* in Figure 7.13, it is found that y* from both EI and PSC 

appears to be stabilized after a few stages. However, only examining the history of y* is not 

sufficient in determining if the sequential process should be terminated, because the DC level 

could still be low like the case with using the EI method. This implies that the use of the design 

confidence (DC) as a termination criterion is more effective which offers more information for 

design decision making than simply examining the convergence behavior of y*. 
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Figure 7.14 The plots of ˆ ( )sy x  with x*= [1.0000, 0.2103] 

(One-shot sampling of 5+10=15 points) 

 

To demonstrate the advantage of using sequential sampling over a one-shot (single stage) 

sampling, we generate the same amount of data (5+10=15 points) using the space-filling 

criterion (OLH) as a comparison to the sequential sampling above. Figure 7.14 shows the 

settings of the evenly-spaced 15 points and the contour plot of the surrogate model ˆ ( )sy x  built 

using the HF data. Even though this surrogate model might be more accurate in a global sense 

than those built based on sequential sampling, the model fails to capture the local details of the 

three local minimum regions, and the optimal design x*=[1.000, 0.2103] (marked by square) is 

erroneously identified at the local minimum region far away from the true global minimum. It is 

found that DC(x*) (=72.81%) achieved by the one-shot sampling is lower than the sequential 

sampling by both the EI criterion and the PSC strategy. 
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7.6 A Framework of Sequential Physical Experimentation 

When combing the computer simulations with physical experiments for model updating, 

the accuracy of a predictive model is generally expected to be improved by adding more  

physical experiments, as well as more computer experiments (in the case that the computer 

model ˆ ( )my x is approximated based on computer experiments). Since the cost of computer 

experiments is relatively much cheaper compared to that of physical experiments, the interest in 

this work is to develop appropriate strategies for guiding physical experiments. 

Despite the difference between physical experiments and computer experiments, the 

strategy of sequential physical experimentation may share some similarities with that of 

sequential computer experimentation. In a design-driven model validation framework, the design 

of sequential physical experiments should be objective-oriented, instead of uniformly distributed. 

Three objectives for selecting the new experiment point(s) are identified in this work as follows: 

Objective A, to improve the design objective; 

Objective B, to improve the accuracy of a model and explore potential design space; 

Objective C, to improve the confidence level of claiming the optimal solution  

  (measured by the proposed MD metrics). 

In the approach by Jones et al. (1998), the formulation of maximizing the Expected 

Improvement essentially embodies the objectives A and B. It should be noted that using Object 

A alone is not sufficient because the optimal design location is identified based on the predictive 

model with error and uncertainty. Object B is applied to select points in those regions with large 

prediction uncertainty to the accuracy of a predictive model, which potentially may lead to a 

better design solution. In Apley et al. (2005), the prediction interval plot is applied to narrow 
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down the potential design region for further sequential experiments, excluding an inferior design 

region with certain confidence. Similar to Jones’ approach, the concept of inferior region implies 

the balance between Objectives A and B. Note that the two approaches are both under the 

computer experiment scenario. 

It should be noted that, unlike computer experiments, the design of physical experiments 

has some restrictions on the location of experimentation, e.g., certain regions in a design space 

cannot be considered due to the physical restrictions or unaffordable cost associated with them. 

In summary, the question of the sequential physical experiments considered in this work is where 

to conduct the next one site or group of physical experiment(s) subject to certain constraints 

towards simultaneously achieving the objectives A, B, and C. Some strategies are proposed next. 

These strategies are intended to accommodate both scenarios, namely, 1) finite design 

alternatives, and 2) continuous design space. 

  

Strategy A. Locate the Next Site for a Single Experiment 

Unlike computer experiments, it is much more practical to sequentially add one 

experiment at a time due to the high cost of physical experiments. Although multiple sample 

points might be applicable in some cases, one could extend the single-point method to a 

multiple-point method by repeating the former. 

To find the next one site of experiment, an optimization problem is defined as 

                                                  Find 1N+x , 

 Maximize 
1

1[ | ]e

N
D Ny

E M
+

+x ,                                          (7.10) 

                                         Subject to 1N d+ ∈Ωx , 
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                                                          1N n+ ∉Ωx  .          

where dΩ  denotes the intended (given) design region; nΩ denotes the forbidden region(s) in 

which physical experiments are not allowed. The objective is to find the optimal location of the 

next experiment point 1N+x , to maximize the confidence level ( DM ) when the new experimental 

data y
e
( 1N+x ) is included in the model. However, the future observation of y

e
( 1N+x ) is never 

known unless the experiment has been done. 1|D NM +x is uncertain as a result of the uncertainty 

of 1
ˆ ( )e

Ny +x . Expectation of 1|D NM +x  w.r.t. 1
ˆ ( )e

Ny +x , denoted as 
1

1[ | ]e

N
D Ny

E M
+

+x , referred to as 

the ‘Expected MD’, is used as an objective in Eq. (7.10). Recall the basic model  

( ) ( ) ( )e ry y ε= +x x x ,   

from which y
e
( 1N+x ) could be predicted upon the predictive model ˆ ( )ry x  plus an additional ε  

term representing the experiment error (Figure 7.15). The variance of ε  [assumed as 

2(0, )NID εε σ� ] could be calculated by 2 2ˆ ˆ ˆε δσ τ σ= ⋅ . Therefore, assumed as following Gaussian, 

1
ˆ ( )e

Ny +x  is characterized by 

2

1
ˆ ˆ( ) ~ { [ ( )], [ ( )] )e r r

Ny N E y Var y εσ+ +x x x . 

Monte Carlo simulation can be applied to sample the distribution of 1
ˆ ( )e

NY +x  to evaluate the 

Expected MD. 
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Figure 7.15 The distribution of ˆ ( )ry x  and future experiment  1
ˆ ( )e

Ny +x  

 

Since the physical experiment set {y
e
(xi)|i=1,…, N} (assuming N>>1) is augmented by 

adding a single new observation y
e
(xN+1), it can be reasonably assumed that all the unknown 

parameters (i.e., m kφ , , kδφ , , andτ ) underlying the Bayesian model will not change. Therefore 

there is no need to re-estimate all these parameters to include y
e
(xN+1) into the Bayesian model in 

each iteration of the optimization. 

One challenge for solving the above optimization lies in the high dimension, for which 

the search region for 1N+x  could be large. One feasible simplification could be to discretizie the 

region by grid points or DOE techniques, or ruling out the inferior region, which is introduced 

next. 

It is noted that the strategy proposed above is driven by the Objective C (and partially 

Objective A), because the objective function posed in Eq. (7.10) only considers the 

improvement of MD. For discrete design space scenario, where only finite design alternatives are 

considered, there is no need to explore potential design region. In such scenario, the strategy is 

deemed sufficient for guiding the sequential experiment. However, for the scenario of continuous 

x 

( )Y x

 ˆ ( )r
y x  

xN+1 

1
ˆ ( )e

Ny +x  y 
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design space, Objective B needs to be considered as well. In such scenario, the strategy may not 

provide an effective guidance to explore potential design region. To solve this problem, 

strategies similar to Jones’ need be considered together with the proposed strategy. Two possible 

ways are proposed in this work: 1) to apply different strategies towards different objectives in a 

hybrid or stepwise manner; 2) to formulate a multiobjective optimization problem, which 

incorporates the objectives A, B and C. 

Strategy B. Region Ruling-Out 

An indifferentiable design region w.r.t. optimal design *x can be conceptually be 

formulated as the collection of design x  such that 

{ }*ˆ ˆ| { ( ) ( )}ind P U U CΩ = > <x x x ,                                 (7.11) 

where indΩ  denotes the indifferentiable design region under certain desired confidence level 

represented by C. Two types of methods could be used to identify indΩ , namely, the space grid 

point method in Figure 7.16 (a), and the coordinate intervals method in Figure 7.16 (b). For the 

former method, the boundary could be represented using classical classification method, based 

on the binary training data (Hastie et al., 2001). For the latter method, the boundary is 

constructed as a hyper-rectangle. 
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(a) Space grid point method             (b) Coordinate intervals method 

Figure 7.16 Region ruling-out strategy: identifying indifferentiable 

region indΩ w.r.t. the optimal deign x* 

 

The indifferentiable design region indΩ  may suggest one way of guiding the sequential 

physical experiment design. Because one has at least 95% confidence to claim that the points 

outside indΩ is differentiated with the optimal deign x*, there is no need to add physical 

experiments outside indΩ , in other words, regions that exclude indΩ  are ruled out. To add 

additional points to the identified region indΩ , certain criteria can be applied, such as the space-

filling criterion. 

Another application of the region ruling-out strategy could be to substitute the design 

region dΩ  for indΩ in the first constraint of the optimization problem defined by Eq. (7.10), thus 

the updated constraint is 1N ind+ ∈Ωx . Such treatment facilitates the optimization, because the 

search region is largely reduced from the design region dΩ to a smaller region indΩ . 

 

x* 
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7.7 Summary 

In this chapter, we developed a new objective oriented sequential sampling approach for 

computer experiment, with a proposed periodical switching criteria which is shown to be 

effective in guiding the sequential sampling towards improving a design objective as well as 

reducing the interpolation uncertainty. A design confidence (DC) metric is proposed as the 

stopping criterion to facilitate design decision making against the interpolation uncertainty. As a 

demonstration of the proposed sequential sampling approach, we investigate the application of 

the method to variable fidelity optimization, which are further illustrated with two example 

problems. 

For design optimization, an objective-oriented sequential sampling strategy is 

investigated. A periodical switching criterion (PSC) is employed to balance the search of 

optimum solution based on the current surrogate model and the exploration of regions with large 

interpolation uncertainty.  Our empirical studies with the example problems show that this 

strategy is more effective compared to the expected improvement (EI) approach. We also 

propose to use design confidence (DC), a probabilistic measure of the confidence in employing 

the surrogate model for making a specific design choice, as the stopping criterion for the 

proposed framework. This proposed approach effectively facilitates decision making in 

engineering design, by taking into account the uncertainty associated with the use of surrogate 

models. Through a variable fidelity optimization example, we show that designers’ preference 

has an impact on the decision of whether a solution can be accepted with sufficient confidence. 

Based on the principles of our approach to sequential computer experiments, we also 

proposed a general framework that guides objective oriented sequential physical experimentation, 
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considering the uncertainty of physical experimentation and possible restrictions on 

experimentation settings. 
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Chapter 8. Conclusion 

 

8.1 Contribution 

The research presented in this dissertation represents efforts to develop methods, 

formulations, and solution strategies in metamodeling, uncertainty quantification, and model 

validation that are critical to the use of predictive models in engineering design. The overall 

contribution of this dissertation is the development of new approaches that facilitate the use of 

predictive models in engineering design to help designers make informed decisions while 

acknowledging uncertainties associated with the use of predictive models. The contributions are 

reflected in the following aspects: 

(1) A new Kriging method with non-stationary covariance structure is developed. While 

most of the prior work in non-stationary covariance modeling has focused on low-dimensionality 

and is limited to physical experimental data, the proposed approach can be applied to computer 

experiments in high dimensionality. The proposed Kriging modeling not only captures the 

changing smoothness behavior of a response, but also provides more accurate qualifications of 

prediction uncertainty. Through testing multiple functions under different sampling situations, 

the robustness of the proposed non-stationary Kriging method was clearly demonstrated.  

(2) A bias-correction approach that compensates the original computer model with a 

quantified bias function based on Bayesian analysis is investigated for updating a predictive 

model. This approach can be applicable to two scenarios, i.e., bias-correction of computer model 

against physical experiment data, and bias-correction of a low fidelity computer model against a 

high fidelity computer model. By using the Bayesian approach, the method offers much 
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flexibility as additional design knowledge and information can be easily incorporated through 

prior distributions, and also possesses advantages in engineering applications where it is too 

expensive to obtain experimental data. With the derived closed form posterior distribution of 

parameters, the approach is expected to be more accurate and economically sound compared to 

the conventional numerical approach to Bayesian analysis. 

(3) A better understanding of the various model updating strategies is achieved by 

examining different model updating formulations, e.g., calibration and bias-correction, as well as 

different solution methods. Traditional approaches to calibration treat certain computer model 

parameters as fixed over the physical experiment, but unknown, and the objective is to infer 

values for the so-called calibration parameters that provide a better match between the physical 

and computer data. In many practical applications, however, certain computer model parameters 

vary from trial to trial over the physical experiment, in which case there is no single calibrated 

value for a parameter. We pay particular attention to this situation and develop a maximum 

likelihood estimation (MLE) approach for estimating the distributional properties of the 

randomly varying parameters which, in a sense, calibrates them to provide the best agreement 

between physical and computer observations.  

(4) A design driven model validation procedure is developed for the purpose of using 

predictive models in engineering design. With the quantified uncertainty of Bayesian prediction 

models, decision validation metrics are developed to provide confidence measures in making a 

design choice for a given design objective. The implications of using such metrics are examined 

and the computational requirements are discussed for cases with either discrete or continuous 

design alternatives.  
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(5) A new objective oriented sequential sampling approach is developed for sampling 

computer experiments in the process of using predictive models for design optimization. The 

proposed approach employs a periodical switching criterion for balancing the needs of 

optimizing a design objective versus reducing interpolation uncertainty. A design confidence 

metric is proposed as the stopping criterion to facilitate design decision making. The approach is 

demonstrated through the variable fidelity optimization problem in which both high-fidelity and 

low-fidelity simulations are integrated.   

8.2 Future work 

In Chapter 3, we demonstrated that the proposed non-stationary covariance function 

employs as few hyperparameters as possible, the total size of hyperparameters could still be large 

when the problem dimension is high or larger degree of freedom (d.o.f.) is desired. In the tested 

example problems, density functions with smaller d.o.f. are used to limit the total number of 

hyperparameters. Further efforts are needed in identifying the critical dimension where larger 

d.o.f. is desired and developing more efficient optimization strategies for estimating the 

hyperparameters to allow for larger d.o.f.  

One problem associated with the Bayesian approach for bias correction (Chapter 4) is the 

numerical difficulty in estimating the unknown parameters. In current implementations, the 

maximum likelihood estimation (MLE) and the cross validation method (CV) are the two major 

methods utilized for estimating these unknown parameters. It is found that in some cases these 

approaches fail to yield reasonable estimations. Therefore, future effort is needed to research 

approaches that could provide reasonable and stable estimations for parameters, especially by 

examining a few typical patterns of model error. 
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Another future research opportunity lied in the verification of the validity of uncertainty 

estimation by the Bayesian approach developed in this work against the conventional Kriging 

approach. Although it is argued in this work that, in lack of sampling data the proposed Bayesian 

approach can better quantify the parameter uncertainty of the underlying Gaussian process model 

and therefore better quantify the overall surrogate model uncertainty, how sensitive the 

posteriors is to the prior specification is worth further investigation.  

In Chapter 5, we proposed a theoretically sound model updating approach that account 

for the experimental uncertainty with model parameter uncertainty through MLE estimation. 

However, due to the nature of the MLE method, its effectiveness and accuracy may be 

downgraded when the data amount is extremely small. In our test with the ‘low level’ data 

sufficiency for the thermal challenge problem, it is found that the bandwidth of the prediction 

uncertainty could be degenerated to fairly small values. To mitigate this problem, prior 

knowledge may be used to specify more conservative bounds of model updating parameters to 

prevent them from running into ‘absurd’ values. Future research is to investigate how we may 

quantify the impact of lack of data in the model updating formulation, by separating the 

uncertainty caused by lack of data with the experimental uncertainty. This will not only benefit 

the modeling accuracy in terms of the prediction and uncertainty quantification, but also will 

help decision support to resource allocation in planning physical experiments. 

Another potential weakness of the MLE based model updating approach might be 

associated with the numerical instability when optimizing the likelihood function, especially 

when a complex model updating formulation that involves many parameters is considered. To 

mitigate this issue, sensitivity analysis could be performed prior to MLE optimization to leave 

out parameters that are insensitive to model output and the likelihood function. 
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In Chapter 6, we developed a design driven model validation framework together with 

decision validation metrics and procedures. Future research is planned for particularizing the 

proposed Bayesian procedure and statistical inferences for specific engineering applications 

where the natures of available experimental and computational data vary. Methods for 

incorporating designers’ belief into Bayesian modeling based on prior knowledge and experience 

will be further examined.  The role of decision validation metrics in engineering design will be 

further extended by introducing not only product design decisions but also decisions in allocating 

the resources for physical and computer experiments. This will require the incorporation of 

decision analysis techniques to study the tradeoffs involved in model refinement and uncertainty 

reduction. 

 In Chapter 7, a new objective oriented sequential sampling approach is developed. 

However, it is noted that the approach is limited to unconstrained optimization, in other words, 

the constraint functions need to be first converted into the objective function before this approach 

can be applied.  On future research topic is to treat the constraint responses and the objective 

response separately in the sequentially sampling approach.  In design under uncertainty, 

sampling strategies that treat design variables differently from noise variables are worth further 

investigation. In this work, we only provided a general framework of sequential physical 

experimentation without providing specific examples. Future research effort should be taken in 

developing practical examples to demonstrate the allocation of resources in sequential physical 

experimentation. 

 Physics-based predictive models are playing an increasingly important role in designing 

complex “engineered” systems.  This research represents an attempt of providing the theoretical 
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framework and developing practical mathematical techniques for combining data from different 

sources and enhancing the confidence of using predictive models in engineering design.  
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Appendix 

Appendix A. Example and Tested Functions used in Non-stationary Kriging methods 

(Chapter 3) 

Function 1 

4

1 2( , ) sin(30( 0.9) ) cos(2( 0.9)) ( 0.9) / 2f x x x x x= − − + −     
1 2, [0,1]x x ∈                                (A1)      

Function 2 (‘Mystery Function’, Sasena, 2002) 

2 2 2

1 2 2 1 1 2 1 1 2( , ) 2 0.01( ) (1 ) 2(2 ) 7sin(0.5 )sin(0.7 )f x x x x x x x x x= + − + − + − +    
1 2, [0,1]x x ∈     (A2) 

Function 3 (Paciorek, 2003) 

1 2 1 2( , ) sin(1/( * ))f x x x x=     
1 2, [0.3,1]x x ∈                                                                          (A3)                                                      

Function 4 

2 2

1 2 1 1 2( , ) exp( )f x x x x x= − −     
1 2, [ 2.5, 2.5]x x ∈ −                 (A4)                                                         

Function 5 (Jin, et al., 2002) 

1 2 1 1 1

1 2

( , ) cos(6( 0.5)) 3.1| 0.7 | 2( 0.5)

7sin(1/(| 0.5 | 0.31)) 0.5

f x x x x x

x x

= − + − + −

+ − + +
     

1 2, [0,1]x x ∈                                   (A5) 

Function 6 

1 2 1 2 1 2( , ) cos(5( 0.5)) 3.1| 0.7 | 2( 0.5) 7sin(1/ | 0.5 0.31|)f x x x x x x= − + − + − + +    
1 2, [0,1]x x ∈  (A6) 

Function 7 (Paciorek, 2003) 

2

1 2 1 1 2 2( , ) 1.9(1.35 exp( )sin(13( 0.6) ) exp( )sin(7 ))f x x x x x x= + − −     
1 2, [0,1]x x ∈                     (A7)                            

Function 8 (‘Six-hump Function’, Sasena, 2002) 

2 4 2 2 2

1 1 1 1 2 2 2(4 2.1 / 3) ( 1 4 )y x x x x x x x= − + + + − +     
1 [ 2, 2]x ∈ −  

2 [ 1,1]x ∈ −                              (A8) 

Function 9 (‘Branin Function’, Jin et al, 2002) 
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2 2 2

1 1 1( 2 5.1 /(4 ) 5 / 6) 10(1 1/(8 )) cos( ) 10y x x x xπ π π= − + − + − +    
1 [ 5,10]x ∈ −  

2 [0,15]x ∈      (A9) 

Function 10 (‘Goldstein-Price Function’, Jin et al, 2002) 

2 2 2

1 2 1 1 2 1 2 2

2 2 2

1 2 1 1 2 1 2 2

[1 ( 1) (19 14 3 14 6 3 )]

[30 (2 3 ) (18 32 12 48 36 27 )]

y x x x x x x x x

x x x x x x x x

= + + + − + − + + ⋅

+ − − + + − +
   

1 2, [ 2, 2]x x ∈ −                         (A10) 

Function 11 

4( ) sin(30( 0.9) )cos(2( 0.9)) ( 0.9) / 2f x x x x= − − + −     [0,1]x∈                                          (A11) 

  

      (a) Function 1                      (b) Function 2                        (c) Function 3 

 

(d) Function 4                      (e) Function 5 

 

      (f) Function 6                      (g) Function 7                        (h) Function 8 
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(i) Function 9                      (j) Function 10 

Figure A1 The 3-D plots of Function 1 ~ Function 10 

(a~e: there are obvious non-stationary behavior;  

f~j: there are no obvious non-stationary behavior) 
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Appendix B. Derivations of Eqs. (4.7-4.13) (Chapter 4, see also in Wang et al. 2008) 

 

(1) The Posteriors of δβ  and 2

δσ  

The posteriors of δβ  and 2

δσ  are  

2 2 2

( ) ( )
e

e m e m

n N
δδ β δ δ δ ε δ δ δ δβ θ β σ φ σ σ−| , , = | , , , , ,y y y y A v A�  

and  

2

2 2

( ) e

e m e m

n
δ δ

δ δ δβ σ
σ θ σ φ τ

− ,
| , , = | , , ,y y y y  

1 11
( ( ) ( ) ( ) )

2 2 e e e

e m T e m Te
n n n

n
IG δ δ δ δ δ δ δ δ δα γ τ − −

 
 

+ , + − + − + − ,y y R I y y b V b v A v�  

where   
1 1 1( )

e

T

nδ δ δ δ δτ− − −= + + ,A F R I F V  

1 1( ) ( )
e e

T e m

n nδ δ δ δ δτ − −= + − + ,v F R I y y V b  

2 2

ε δτ σ σ= / . 

and I
en
 is an 

e e
n n×  identity matrix.  

 

(2) The posterior of ( )δ x  

 

It can be shown that 

1 2 1

( )

( ( ) ( )( ) ( ) 1 ( )( ) ( ) )
e e e

e m

T T e m T

n n n
N δ δ δ δ δ δ δ δ δ δ

δ θ

β τ β σ τ− −

| , ,

 + + − − , − + , 

x y y

f x r x R I y y F r x R I r x�
 

and the posterior of ( )δ x  given δφ  and τ  is  

2

2 2 2

( ( ) )

( ( ) ) ( ) ( ) d d
e e

e m

e m e m e m

n n

p

p p p
δ δ

δ

δ δ δ δ δ δ δβ σ

δ φ τ

δ θ β σ φ τ σ φ τ β σ
,

| , , ,

= | , , ⋅ | , , , , ⋅ | , , ,∫∫
x y y

x y y y y y y
 

where 

1
2

2

2

2
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( ( ) ) ( ) exp
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e

T e m T
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T
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δ
δ δ δ

δ β
δ σ

σ
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| ⋅ ∝ ⋅ − , 
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x r x B y y h
x

r x Br x
 

1

2

1
2

2

( ) ( )
( ) ( ) exp

2

p
T
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β σ
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−
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2

11
212 2
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ne
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γ
σ σ
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where 1( )
enδ τ −= +B R I , and ( ) ( )T

δ δ δ= −h f x F Br x . Collecting all terms involving δβ  together 

gives  

1

2

1
exp

2

T T

δ δ δ
δ

β β β
σ

 
 −  
    
  

− + ,A v  

where  

1 1

1 ( ) ( )

T

Tδ
δ δ

− −= + ,
−

hh
A A

r x Br x
 

( ) ( ) ( )

1 ( ) ( )

e

T e m

n

T

δ
δ

δ δ

δ − −
= + ⋅ .

−

x r x B y y
v v h

r x Br x
 

Hence,  

1

21 2

2 2

1
exp d ( ) exp

2 2

p
T

T T

δ
δ δ δ δ δβ

δ δ

β β β β σ
σ σ

+
 
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  

 
− + ∝ ⋅ . 
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∫

v Av
A v  

Collecting all terms involving 2

δσ  gives  

1
2 2

12

2
( ) exp

ne
δα

δ
δ

γ
σ

σ
− − − −  

⋅ − , 
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where  
2
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ee e

T e me m T e m T
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γ γ
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Performing the integration over 2

δσ  yields  

1 21
2 2 2

2

12 2

2
( ) exp( ) d

n ne eαδ
δ

δ

α
δ δσ

δ

γ
σ σ γ

σ

+ +− − − − −− ∝ .∫  

Therefore,  
1 2

2( ( ) )
ne

e mp
αδ

δ γ
+ +−| , ∝ .x y y  

If we can write γ  in the form of  
2

,

2

,
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e m

e e m

C
n

δ

δ δ

δ µ
γ

α σ
|

|

−
= ⋅ + ⋅ ,

+

x x

x
 

where C  is any constant, then  

1 2

2

2

,

2

,

( ( ) ( ))1
( ( ) ) (1 )

2 ( )

nee me m

e e m

p
n

αδδ

δ δ

δ µ
δ

α σ

+ +−|

|

−
| , ∝ + ⋅ ,

+

x x
x y y

x
 

which implies that ( ) e mδ | ,x y y  has a noncentral t  distribution with degree of freedom 2
e

nδα + , 

noncentrality parameter , ( )
e mδµ | x , and scale parameter , ( )

e mδσ | x .  

Expanding γ  gives  
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1

2 2

2

2 2

1
( ) ( )

2

( ) 2 ( ) ( ) ( ) [ ( ) ( )]

2[1 ( ) ( )]

( ) ( )( )

2[1 ( ) ( )] 1 ( ) ( ) [1 ( ) ( )]

e e

e e

e

e m T e m

n n

T e m T e m

n n

T

T T e mTT
n

T T T

δ δ δ δ

δ δ

δ δ

δδ

δ δ δ δ δ δ

γ γ

δ δ

δ

 −
 
 

= + − − +

− − ⋅ + −
+

−

 ⋅ −⋅
− − −

− − −

y y B y y b V b

x r x B y y x r x B y y

r x Br x

h Ah r x B y yh Avh Ah x

r x Br x r x Br x r x Br x

2

2

( )

[ ( ) ( )] ( ) ( )

2 2[1 ( ) ( )] 1 ( ) ( )

e e

T T e m T T e mT
n n

T T

δ δ δδ δ

δ δ δ δ

δ




⋅ − ⋅ −
− − + .

− −

x

h Ah r x B y y h Av r x B y yv Av

r x Br x r x Br x

 

As  

1 ( ) ( )

T

T T

δ δ
δ

δ δ δ

= − ,
+ −
A hh A

A A
h A h r x Br x

 

1 ( ) ( )

1 ( ) ( )

T
T T

T T

δ δ
δ

δ δ δ

−
= ⋅ ,

+ −
r x Br x

h Ah h A h
h A h r x Br x

 

1 ( ) ( )

1 ( ) ( )

T
T T

T T

δ δ
δ δ δ

δ δ δ

−
= ⋅ ,

+ −
r x Br x

h Av h A v
h A h r x Br x

 

2( )

1 ( ) ( )

T
T T

T T

δ δ
δ δ δ δ δ

δ δ δ

= − ,
+ −
h A v

v Av v A v
h A h r x Br x

 

we have  

1

2

1
( ) ( )

2

[ ( ) ( ) ( )]1

2 1 ( ) ( )

e e

e

e m T e m T

n n

T T e m

n

T T

δ δ δ δ δ δ δ

δ δ δ

δ δ δ

γ γ

δ

 −
 
 

= + − − + −

+ − −
+ ⋅ .

+ −

y y B y y b V b v A v

h A v r x B y y x

h A h r x Br x

 

Therefore,  

, ( ) ( ) ( )
e

T T e m

e m nδ δ δ δµ | = + −x h A v r x B y y  

2
2

, ( ) [ 1 ( ) ( )]
2

T T

e m

e

Q

n

δ
δ δ δ δ

δ

σ
α| = ⋅ + −

+
x h A h r x Br x  

where  
2 12 ( ) ( )

e e

e m T e m T

n nQδ δ δ δ δ δ δ δγ −= + − − + −y y B y y b V b v A v  

Substituting B  and h  into above equations for ,e mδµ |  and 2

,e mδσ | , we have  

1

, ( ) ( ) ( )( ) ( )
e e

T T e m

e m n nδ δ δ δ δ δ δ δ δµ τ −
| = + + − −x f x A v r x R I y y F A v  

1
12

2

,

( ) ( )
( ) (1 )

( ) ( )2
e

T
T

e m

ne

Q

n

δ δδ δδ
δ

δ δδ δδ

σ
τα

 
 
 
 
 
 
 
 

−−

|

−   
= ⋅ −    ++    

V Ff x f x
x

F R Ir x r x
 

where  
2 1 12 ( ) ( ) ( )

e e e

e m T e m T

n n nQδ δ δ δ δ δ δ δ δγ τ − −= + − + − + −y y R I y y b V b v A v . 
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Appendix C. Material characterization data of the Thermal Challenge problem (Chapter 

5) 

Table C.1 Prior Material characterization data of κ  

20
o
C 250

o
C 500

o
C 750

o
C 1000

o
C 

0.0496 

0.0530 

0.0493 

0.0455 

0.0483 

0.0490 

0.0628 

0.0620 

0.0537 

0.0561 

0.0563 

0.0622 

0.0602 

0.0546 

0.0638 

0.0614 

0.0643 

0.0714 

0.0657 

0.0713 

0.0694 

0.0732 

0.0684 

0.0662 

0.0631 

0.0796 

0.0692 

0.0739 

0.0806 

0.0811 

 

Table C.2 Prior Material characterization data of ρ  

20
o
C 250

o
C 500

o
C 750

o
C 1000

o
C 

3.76E+05  

3.38E+05  

3.50E+05  

4.13E+05  

4.02E+05  

3.53E+05 

3.87E+05 

4.69E+05 

4.19E+05 

4.28E+05 

3.37E+05 

3.77E+05 

4.52E+05 

4.10E+05 

4.02E+05 

3.94E+05 

3.73E+05 

3.69E+05 

4.68E+05 

4.24E+05 

3.72E+05 

3.46E+05 

4.07E+05 

3.99E+05 

4.19E+05 

4.38E+05 

3.45E+05 

3.95E+05 

3.78E+05 

3.77E+05 
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Appendix D. High Fidelity and Low Fidelity models (Chapter 4 and Chapter 7) 

Example 1: 

HF Model 

2

1 ( ) 0.5sin[4 sin( 0.5)] ( 0.5) / 3h
y x x xπ= + + + ,  

[0,1]x∈ . 

LF Model 

2

1 ( ) 0.5sin[4 sin(1.1 0.4)] (1.1 0.4) / 3 0.2l
y x x xπ= + + + − , 

[0,1]x∈ . 

Example 2: (Modified Branin Function) 

HF Model 

2 1 2 1 2 2( , ) ( , ) 22.5h

braniny x x y x x x= − ,  

1 [ 5,10]x ∈ −  2 [0,15]x ∈ . 

LF Model 

3

2 1 2 1 2 2 1( , ) (0.7 ,0.7 ) 15.75 20 (0.8 ) 50l

braniny x x y x x x x= − + ⋅ + − ,  

1 [ 5,10]x ∈ −  2 [0,15]x ∈ . 

where 

2 2 2

1 2 2 1 1( , ) 10 [ 5.1 /(4 ) 5 /( ) 6]braniny x x x x xπ π= + − + − 110cos( )[1 1/(8 )]x π+ − . 
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Appendix E. Engine Piston Design (Chapter 4 and Chapter 7) 
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Figure E.1 Engine Piston Design: Piston Secondary Motion and Piston In-Cylinder 

Forces 

 

 

Table E.1 Design Variables in Engine Piston Design 

 
Variable Description Nominal Value Lower Bound Upper Bound Unit 

SL Skirt Length 23.07 21 25 millimeter 

SP Skirt Profile 3 1 3 / 

SO Skirt Ovality 2 1 3 / 

PO Pin Offset 0.9 0.5 1.3 millimeter 

 

Table E.2 Noise Variables in Engine Piston Design 

 
Variable Description Distribution Mean STD Unit 

CL Piston-to-bore Clearance Normal 50 11 micrometer 

LP 
Location of Combustion 

Peak Pressure 
Normal 14.5 1 degree 
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