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ABSTRACT

Modeling, Motion Planning, and Feedback Control for Dynamic, Graspless, and Hybrid

Robotic Manipulation Tasks

J. Zachary Woodruff

This thesis presents methods to improve the manipulation capabilities of robots. People

and animals can effectively handle objects of many shapes, sizes, weights, and materials

using a variety of manipulation primitives such as grasping, pushing, sliding, tipping,

rolling, and throwing. In contrast, most robots manipulate objects by pick-and-place.

Restricting robots to only grasp objects artificially limits the set of tasks that they can

accomplish, and leveraging a larger set of manipulation primitives is crucial for robots

to reach their full potential in applications such as flexible manufacturing, agricultural

automation, service industries, and disaster response.

We first outline a high-level framework for planning and control for dynamic, graspless,

and hybrid manipulation tasks. “Dynamic” means that the momentum of the objects

cannot be ignored. “Graspless” means that the objects are not grasped in a traditional

sense, but rather manipulated with unilateral friction forces at the contacts. “Hybrid”

means that multiple manipulation primitives are used that each have their own constraints
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and dynamic equations. The main contributions of this work are the framework that

outlines specific subproblems to solve dynamic, graspless, and hybrid manipulation tasks

as well as an experimental implementation for an example task.

In the remaining chapters we focus specifically on modeling rolling contacts between

two smooth bodies, designing motion planners and feedback controllers for rolling manip-

ulation tasks, and testing them in simulation and experimentally. First-order kinematics

addresses the rolling problem where the relative contact velocities are given. The second-

order kinematics is a generalization of the first-order model where the relative accelera-

tions at the contact are specified. The evolution of dynamic rolling systems is governed

by forces and torques at the contact. We address both first- and second-order kinematics

and dynamic rolling in our work. The main contributions of the first-order rolling work

are a robust motion planner that can handle general smooth geometries, a method to test

the controllability of linearized rolling trajectories, and a method to stabilize trajectories

from initial state perturbations. The main contributions of the second-order rolling work

are corrections to previous work that derived the second-order kinematics equations. The

main contributions of the dynamic rolling work are that it is the first work we know of to

formulate the rolling dynamics of a rigid body rolling on a six degree-of-freedom motion-

controlled manipulator for general manipulator and object shapes, it provides a compact

form that outputs the dynamics and contact forces that can be used for trajectory opti-

mization, and the coordinate-based representation allows the dynamics to be linearized to

generate feedback controllers that stabilize planned trajectories. We apply the method to

model, plan, and stabilize dynamic, graspless, and hybrid rolling experiments that include

the first known implementation of the rolling pendulum swing up.
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CHAPTER 1

Introduction

People and animals can effectively handle objects of many shapes, sizes, weights, and

materials using a variety of manipulation primitives such as grasping, pushing, sliding,

tipping, rolling, and throwing. In contrast, most robots manipulate objects by pick-and-

place. There is good reason for this: once a firm grasp is established, the robot can reliably

control the motion of the part without needing to continuously sense the state of the part

or correct for modeling uncertainties. Most manipulation primitives mentioned above are

more sensitive to uncertainties in part state, geometry, mass, friction, and restitution, in

addition to the robot’s own control errors. Nonetheless, restricting robots to only grasp

objects artificially limits the set of tasks that they can accomplish. Leveraging a larger set

of manipulation primitives is crucial for robots to reach their full potential in applications

such as flexible manufacturing, agricultural automation, service industries, and disaster

response.

While manipulation primitives exist for manipulating several objects simultaneously,

we will focus on the case of a single rigid object. We define manipulation primitives

according to the number and types of contacts the object makes with a robot and its rigid

environment. Contacts are classified according to whether they are sliding (e.g., point-on-

surface or surface-on-surface), fixed (e.g., point-on-surface), or rolling (e.g., surface-on-

surface). Contacts with a robot are further classified according to the control law the robot
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implements at that contact (e.g., position control, force control, combined position/force

control, compliance control, etc.).

Consider the example in Figure 1.1 that outlines a dynamic, graspless, and hybrid

manipulation plan. A simple robot arm without a gripper is clearing the cluttered table,

and the current task is to move the orange, elliptical object into the bin. The goal is

outside of the robot’s workspace so the task cannot be completed quasistatically and will

have to include at least one “dynamic” primitive (free flight). The robot does not have a

fingered gripper so it cannot use pick-and-place. Instead the robot must use “graspless”

manipulation primitives that move the object without a force-closure grasp. Lastly, the

solution will require multiple contact modes between the object, the manipulator, and

the environment which we refer to as a “hybrid” plan. An example set of manipulation

primitives is shown that accomplish the desired task. The first motion is a “controlled

roll” where the manipulator uses friction forces at the fixed point contact to roll the object

on the table. This mode is controlled using compliant motion control, where the 2-DOF

motion of the robot’s endpoint is velocity controlled but with a finite stiffness. If we

abstract away the details of the robot’s control, this can be modeled using the kinematic

rolling work described in Chapter 3. The second motion is a “free roll” where the ma-

nipulator releases the object and remains stationary while the object’s momentum causes

it to roll on the table and up the arm. This is modeled as a single object-environment

rolling contact, followed by a single object-robot rolling contact with no robot control.

The final motion is a “controlled throw” where the system tracks the state of the object

and controls it to a desired release state which is addressed by our work in Chapter 5. The

final motion is “free flight” where there are no contacts and the object follows a parabolic
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initial state goal state

controlled roll free roll controlled throw free flight

Figure 1.1. An example of a manipulation task of picking a smooth object
up off a table and throwing it into a bin. This task involves multiple dynamic
and graspless primitives.

trajectory under gravity that brings it to the goal state. Without leveraging, dynamic,

graspless, and hybrid manipulation, the goal would not have been achievable, and this

thesis presents methods to improve the manipulation capabilities of robots to accomplish

such tasks.

1.1. Thesis Outline

Related work sections that summarize relevant research are included in each chapter.

In Chapter 2 we first present a high-level framework for planning and control for dynamic,

graspless (also called “nonprehensile”), and hybrid manipulation tasks. We outline five
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subproblems to address this: determining a set of manipulation primitives, choosing a

sequence of tasks, picking transition states, motion planning for each individual primitive,

and stabilizing each mode using feedback control. We apply the framework to plan a

sequence of motions for manipulating a block with a simple rectangular manipulator.

The main contributions of this work are the framework that outlines specific subproblems

to solve dynamic, graspless, and hybrid manipulation tasks, as well as an experimental

implementation for an example task. In the remaining chapters we focus specifically on

rolling contacts between two smooth bodies such as during the “free roll” and “controlled

throw” modes of the hybrid manipulation task in Figure 1.1. Chapter 3 examines the

problem of kinematic rolling where the relative velocities are directly controlled (first-order

kinematics). It demonstrates planning and stabilizing the trajectory of one smooth body

rolling on the surface of another. The main contributions of this work are a robust motion

planner that can handle general smooth geometries, a method to test the controllability

of linearized rolling trajectories, and a method to stabilize trajectories from initial state

perturbations. Chapter 4 outlines the equations for the second-order kinematics where the

relative accelerations are directly controlled. The main contributions of the second-order

rolling work are corrections to previous work that derived the second-order kinematics

equations. Chapter 5 address the problem of controlling the motion of objects that are

in rolling contact with a robot manipulator or “hand” in three dimensions. We directly

control the motion of the hand to indirectly control the motion of the rolling object.

Our approach to dynamic rolling manipulation can be split into four subproblems: 1)

calculating the first- and second-order rolling kinematic equations; 2) deriving the rolling

dynamics; 3) planning rolling motions that satisfy the dynamics; and 4) feedback control
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of rolling trajectories. The results are validated against examples with analytical solutions

in simulation, and tested experimentally. The main contributions of the dynamic rolling

work are that it is the first work we know of to formulate the rolling dynamics of a rigid

body rolling on a six-DoF motion-controlled manipulator for general manipulator and

object shapes, it provides a compact form that outputs the dynamics and contact forces

that can be used for trajectory optimization, and the coordinate-based representation

allows for the dynamics to be linearized to generate feedback controllers that stabilize

planned trajectories. We further apply the method to model, plan, and stabilize dynamic,

graspless, and hybrid rolling experiments that include the first-known implementation of

the rolling pendulum swing up. Chapter 6 summarizes the results and outlines areas for

future work. Appendix A includes detailed information about the experimental setup

developed for this work.

This thesis includes four separate subdocuments that have been published or submitted

to journals or conferences. Chapter 2 was presented at ICRA 2017 and published in the

proceedings [74]. Chapter 3 was published in IEEE Access [76]. Chapter 4 was published

in the Journal of Applied Mechanics [75]. Chapter 5 is being prepared for submission to

IEEE Transactions on Robotics (T-RO). We present the papers in their original form, so

notation is consistent within each chapter but not throughout the thesis.
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CHAPTER 2

Planning and Control for Dynamic, Nonprehensile, and Hybrid

Manipulation Tasks

2.1. Abstract

In this chapter we propose a method for motion planning and feedback control of

hybrid, dynamic, and nonprehensile (also called “graspless”) manipulation tasks. We

outline five subproblems to address this: determining a set of manipulation primitives,

choosing a sequence of tasks, picking transition states, motion planning for each individual

primitive, and stabilizing each mode using feedback control. We apply the framework to

plan a sequence of motions for manipulating a block with a planar 3R manipulator. We

demonstrate preliminary experimental results for a block resting on the manipulator with

a desired goal state on a ledge outside of the robot’s workspace. The planned primitives

reorient the block using a series of fixed, rolling, and sliding contact modes, and throw it

to the goal state.

The main contributions of this chapter are the framework that outlines specific sub-

problems to solve dynamic, graspless, and hybrid manipulation tasks as well as an exper-

imental implementation for an example task. This chapter was initially published in the

ICRA 2017 proceedings [74].
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2.2. Introduction

People and animals can effectively manipulate objects of many shapes, sizes, weights,

and materials using a variety of primitives such as grasping, pushing, sliding, tipping,

rolling, and throwing. In contrast, most robots manipulate objects by pick-and-place.

There is good reason for this: once a firm grasp is established, the robot can reliably

control the motion of the part without needing to continuously sense the state of the part

or correct for modeling uncertainties. Most manipulation primitives mentioned above are

more sensitive to uncertainties in part state, geometry, mass, friction, and restitution, and

to the robot’s own control errors. Nonetheless, restricting robots to only grasp objects

artificially limits the set of tasks that they can accomplish. Leveraging a larger set of

manipulation primitives is crucial for robots to reach their full potential in industrial

automation, exploration, home care, military, and space applications.

2.2.1. Background

While manipulation primitives exist for manipulating several objects simultaneously, for

simplicity we will focus on the case of a single rigid object. We define manipulation

primitives according to the number and types of contacts the object makes with a robot

and its (rigid) environment. Contacts are classified according to whether they are sliding

or fixed/rolling, and contacts with a robot are further classified according to the control

law the robot implements at that contact (e.g., position control, force control, hybrid

position/force control, compliance control, etc.).

Consider the planar example of a block and 3R manipulator shown in Figure 2.1. The

block is initially at rest on the table with a desired goal state in the bin to the right.
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Figure 2.1. An example of a manipulation task of picking up a block off
a table and throwing it into a bin. This task involves multiple dynamic
nonprehensile primitives.

Another object, which should not be disturbed, is between the block’s initial position and

the goal configuration. The figure illustrates one possible solution to the manipulation

task, consisting of a sequence of primitives. The controlled toppling primitive consists

of one-point rolling between the block and the table while the robot applies a hybrid

position-force controlled fixed contact to the top of the block, to control the internal force

toward the rolling contact while controlling the orthogonal velocity. Once the block passes

the unstable equilibrium point, the robot releases the block, letting it topple by gravity.

The robot quickly moves underneath the block and “catches” it. The next primitive is

a two-point, fixed-contact “dynamic grasp” carry, followed by a free-flight phase of the

block (a throw). After catching the object, the robot executes a dynamic grasp carry,
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followed by a phase where the object is in one-point rolling contact with the manipulator,

followed by a free flight phase.

In summary, the manipulation sequence consists of a set of primitives punctuated by

transitions:

controlled topple + free topple + catch + dynamic grasp + free flight + catch +

dynamic grasp + rolling (controlled)+ free flight.

Each unique primitive is assigned an index i, and the dynamics governing each prim-

itive are different, as the coupling of the manipulator controls to the object through

the contacts, and the possible contact forces applied by the environment, are different.

We define the manipulator controls to be u ∈ Rnu . In coordinate parameterizations of

the configurations of the object and the manipulator, the configuration of the object is

qobj ∈ Rnobj , and the configuration of the manipulator is qm ∈ Rnm . The total system

configuration is defined as q = [qT
m qT

obj]
T, and the state of the system as x = [qT q̇T]T.

The dynamics during each primitive can then be written

ẋ = fi(x,u).

In other words, manipulation is a hybrid system.

Each primitive i has a domain of applicability Di, i.e., a region in the state-control

space where the dynamics of that primitive describes the evolution of the system1. The

state-control space has (2nm + 2nobj + nu) = d dimensions, and this space is partitioned

by the different manipulation primitives. In the example in Figure 2.1, nm = nu = 3 and

1It is well known that problems in rigid-body frictional mechanics, such as those in this paper, are subject
to ambiguity issues, i.e., the same system state x and controls u can result in more than one possible ẋ.
In this paper, we set this possibility aside.
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nobj = 3, so the state-control space has d = 15 dimensions. A full-dimensional subset

of this state-control space corresponds to no contacts: the object is in free flight and

the manipulator moves freely. We could call this the “free flight” primitive, a primitive

that is always part of a throw. For other manipulation primitives, the state and control

constraints implied by active contacts reduce the dimension of the domain of applicability.

The “free topple” primitive in Figure 2.1 is twelve-dimensional assuming that the rolling

vertex on the block is prespecified. It can be parameterized by the nine robot states and

controls, the angle and rotational velocity of the block, and the position of the vertex on

the table. The “controlled topple” primitive is nine-dimensional assuming the endpoint

of the robot is in contact and that the rolling vertex is prespecified. This mode can be

parameterized by the three control freedoms, the internal configuration and velocity of

the robot, the angle and rotational velocity of the block, and the positions of the vertex on

the table and the robot on the object. Of course there are also inequality constraints on

the states and controls for each manipulation primitive, but they generally do not reduce

the dimension of the domain of applicability.

In theory, the entire state-control space could be partitioned into manipulation primi-

tives of different dimensions. Boundaries between these primitives, where a manipulation

plan can transition from one primitive to the other, are described by one or more equa-

tions that are simultaneously satisfied. For example, the boundary between the twelve-

dimensional “free topple” space and the nine-dimensional “controlled topple” space occurs

where the conditions of both primitives are simultaneously satisfied, i.e., the controlled

topple conditions are satisfied, but the contact force at the robot contact is zero.
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Thus we can think of manipulation planning as planning a sequence of manipulation

primitives, such that the initial state of the system is in the domain of applicability of the

first primitive and the goal state of the system is in the domain of applicability of the last

primitive. If the goal is given as m constraints on the final state of the object, then the

goal is specified by a (d − m)-dimensional subset of the state-control space, which may

span more than one manipulation primitive. The manipulation problem can be broken

into the following subproblems:

(1) Primitive characterization. Given descriptions of a robot, object, and the

environment, derive a set of contact modes and determine contact constraints,

dynamics, and the domain of applicability for each mode.

(2) Primitive sequence planning. Choose a sequence of N primitives to transi-

tion through such that the first primitive contains the initial state and the final

primitive contains the goal.

(3) Transition state planning. Choose a sequence of transition states {(xp,up) | p =

1 . . . (N − 1)}, such that each transition lies on the boundary of sequential prim-

itives.

(4) Planning the individual manipulation primitives. Derive N motion plans,

one for each primitive, so that they connect at their transitions in the state-

control space, and such that the first primitive begins at the initial state of the

system and the last primitive ends somewhere in the (d −m)-dimensional goal

region.

(5) Stabilizing the individual primitives. Derive feedback controllers to stabilize

the motion plans for different primitives.
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In practice, it is not possible to explicitly construct the full partitioning of the state-

control space. This problem is harder than explicitly calculating a mathematical repre-

sentation of configuration-space obstacles, a problem that researchers in motion planning

have purposely avoided for years. It may be possible, however, to define a (small) library

of manipulation primitives, their domains of applicability, and the state-control transition

equations between them, such that the domains of applicability cover a good percentage

of the state space of interest.

In this paper, we first develop a set of steps to address the subproblems above for

solving hybrid, dynamic, and nonprehensile manipulation problems. We begin to explore

this approach to manipulation planning using the example of a three-degree-of-freedom

manipulator and a planar block shown in Figure 5.11. This builds upon our past work

developing individual manipulation primitives such as rolling and pushing using 1-joint

dynamic robots [41]. We demonstrate the motion plans experimentally for a block resting

on the manipulator with a desired goal state on a ledge outside of the robot’s workspace.

The planned primitives shown in Figure 2.6 manipulate the block using a series of rolling

and sliding contacts and throw it to the goal state.

2.2.2. Paper Outline

Section 5.3 reviews related work on which this paper builds. Section 2.4 gives a general

outline to plan for dynamic, nonprehensile, and hybrid manipulation tasks, and Section 2.5

applies the framework to a specific example of flipping up a block at rest on a manipulator

and balancing it. Section 2.6 describes the experimental setup, and presents preliminary

results of planning and executing a block-manipulation task.
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Figure 2.2. Our experimental setup consists of an inclined air hockey table
with a planar 3R robot driven by brushed DC motors with harmonic drive
gearing, and an OptiTrack s250e 250 Hz camera. The angle of the table
allows 2D dynamic manipulation experiments in reduced gravity (0.4g), and
the camera system gives feedback on object positions.

2.3. Related Work

2.3.1. Hybrid Manipulation Planning

We use the classical hybrid automata formulation for modeling the manipulation prob-

lem. Goebel et al. [25] provide a tutorial on modeling hybrid system dynamics, analyzing

stability, and designing stabilizing controllers. Johnson et al. [30] present a hybrid dy-

namical system model that provides existence and uniqueness guarantees for systems with

common approximations such as rigid bodies and plastic impacts.

Motion planners for hybrid systems must reason about trajectories that pass through

different contact modes. Trinkle and Hunter [71] extend the dexterous manipulation



36

planning problem to consider rolling and slipping. Erdmann [20] analyzes the task of two

palms manipulating a part. Given information about the object, and a desired start and

end configuration, the planner determines a set of nonprehensile motions to reorient the

part to a goal position. The hybrid planning problem is further developed by Yashima [78]

and Miyazawa [48] using randomized motion planning to plan dexterous and graspless

manipulation tasks, respectively. Additionally Maeda [44] uses graph-based methods for

planning graspless manipulation.

Numerous works have addressed hybrid planning for dynamic manipulation tasks.

Furukawa et al. demonstrate dynamic, prehensile, robotic manipulation by tossing a

foam cylinder up and catching it [23]. Srinivasa et al. [67] address a dynamic flip-up

problem to find motions that tip a block while maintaining a rolling contact with a flat

manipulator that can move in a vertical plane. Pekarovskiy et al. [55] calculate optimal

batting trajectories for a planar object on an air table and deform them online to send

the object to desired goal states.

Some recent works have moved away from the hybrid automata model to formulations

that do not treat modes separately. Tassa and Todorov [69] use the method of stochastic

complementarity to smooth the discontinuous dynamics of hybrid systems allowing them

to be solved by more classical optimization methods. Posa et al. [56] use direct methods

and the complementarity formulation to plan motions for dynamic systems with impacts

and Coulomb friction.
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2.3.2. Trajectory Control

Trajectory control involves the design of feedback controllers to stabilize dynamic sys-

tems about desired trajectories. For linear systems this is often done with LQR control,

and many nonlinear systems are stabilized using a time varying LQR controller about

a linearized trajectory [4]. Cimen [17] surveys the State-Dependent Riccati Equation

(SDRE) control method which parameterizes nonlinear dynamics into a linear structure

with state-dependent coefficient matrices. Posa et al. [57] use sum-of-squares methods for

computing Lyapunov certificates to show stability and design controllers for rigid-body

systems with impacts and friction. Numerous methods and references for the control and

stabilization of hybrid systems can be found in [25]. Our hybrid formulation has simi-

larities to those in locomotion research, but we are not generally interested in periodic

trajectories (like gaits) which prevents us from achieving cycle-wise stability.

2.4. Hybrid Planning and Control Formulation

The following is an outline of the hybrid, dynamic manipulation problem we address

in this paper. We assume a manipulator and an object interacting in a 2D environment.

Given a description of a manipulator and an object, the initial state of the system xo,

and the desired final state xf, we find controls u(t) and stabilizing feedback controllers

ufbk,i(x, t) that bring the system to the desired final state through a set of N contact

modes {ip | ip ∈ I, p = 1 . . . N} and transition state-control pairs {(xp,up) | p = 1 . . . (N−

1)}, while satisfying system dynamics and contact constraints of each mode, transition

constraints between modes, and state/control inequality constraints.
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2.4.1. Primitive Characterization

The first step we take to solve the manipulation planning problem is to determine a set of

manipulation primitives. Rather than enumerating all possible contact modes, we choose

I desired contact modes from the full set of possible block/manipulator/environment

contacts, and then determine the necessary contact and transition constraints for planning

through and transitioning between them.

Each mode is defined by a set of contacts that either slide, roll, or remain fixed along

the surface of the object. The configuration constraints can be expressed by the function

φ(q) = 0, and the velocity constraints can be expressed as ci Pfaffian constraints of the

form Ai(q)q̇ = 0 where Ai(q) ∈ Rci×(nm+nobj). These constraint forces and the friction

properties determine the total force at the contact. The set of all mi constraints in each

mode i reduces the d dimensional state-control space to di = d−mi. The set of all state-

control pairs that satisfy the constraints for a given mode is the domain of applicability

Di.

Each contact mode i ∈ {1 . . . I} has a set of corresponding dynamics ẋ = fi(x,u).

We define the boundaries between modes by the guard sets Gjk(x,u) = 0 that represent

a transition from mode j to mode k. A guard set is empty if no feasible transitions exist

between modes (j, k) ∈ I×I. Transitions include a reset map x+ = (q, q̇+) = Rjk(q, q̇
−)

that maps the pre-transition state to the post-transition state. This reset map is the

identity function for transitions that do not involve impacts. For transitions with impacts,

it encodes the instantaneous velocity change.
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2.4.2. Primitive Sequence Planning

The purpose of the primitive sequence planner is to choose the contact mode order for

the motion plan. Given a mathematical description of a hybrid system, the initial state

xo, and desired final state xf (or m constraints on the goal region), determine the number

of contact modes N , and the mode order {ip | ip ∈ I, p = 1 . . . N} connecting the initial

and final states.

We first compile a transition map using the information about the hybrid system

derived in Section 2.4.1. This map represents the topology of the state-control space

with the I modes as the nodes, and the feasible transitions Gjk as the edges. The map

includes information on whether transitions are smooth or have impacts that cause state

discontinuities according to the reset map Rjk. It also has information on how many

additional constraints are gained or lost when a transition occurs which can give insight

into how robust a transition is to state uncertainty. An example of such a transition map

is shown in Figure 2.3 for the block-manipulator system analyzed in Section 2.5.

Reaching a transition point by moving along the state axis depends on the continuous

evolution of the system state, whereas transitions along the control axis can happen

instantaneously. For example, we cannot catch an object in free flight until the object and

manipulator are in contact, but we can instantaneously release a nonprehensile contact

by accelerating away from an object. We can therefore classify transitions as controlled,

partially controlled, or state determined, depending on the constraints that are active on

the guard set2.

2If control rate limits are applied to the manipulator, then all transitions must evolve over time, but we
assume direct acceleration control.
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Figure 2.3. Diagram showing the transition map for the block-manipulator
system in Figure 2.4. The map only considers two of the corners of the block
in contact with one surface of the manipulator. This results in 10 of the 25
total contact modes for the block with one edge of the manipulator. Each
node shows the mode name, the contact state at each of the two contacts,
the number of free dimensions, and the mode number i. The two letters
for each contact represent whether the left and right contact are fixed (F),
not in contact (N), sliding left (L), or sliding right (R). The total number
of dimensions are the six block states, six manipulator states, and the three
controls resulting in a fifteen-dimensional system. Free flight is the only
unconstrained mode, and all other modes must satisfy contact and velocity
constraints which reduce the dimension. The black dots on some edges
indicate that the transition requires an impact to occur.

To create the mode sequence, we first choose initial and final modes with domains of

applicability Di that contain the given initial and final states xo and xf. These modes

are not necessarily unique because a given state can be in more than one contact mode.

In the simplest case, the desired motion can be achieved within a single contact mode,
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and in that case N = 1 and the high-level mode planner is finished. For the more general

case, a motion-planning algorithm can be used to plan a sequence of modes through the

transition map that connects the initial and final states.

2.4.3. Transition-State Planning

Once a set of contact modes is chosen, the transition-state-control pairs between them

must be determined. Given the hybrid system description and the contact mode order

{ip | ip ∈ I, p = 1 . . . N}, pick transition states {(xp,up) | p = 1 . . . (N − 1)}, where

Gipip+1(xp,up) = 0. For p = N , no transition occurs, but we set the desired “transition

state” (xp,up) as the desired final state of the system (xf,uf).

Determining the transition state is difficult because the union of domains of applica-

bility is a lower-dimensional subspace of the full state-control space. Therefore we must

have a method to choose transitions that lie on the guard set Gjk(x,u). This problem is

related to sample-based motion planning for robots with pose constraints [9].

2.4.4. Single-Mode Motion Planning

With the transition points chosen, a motion planner determines a set of controls for each

mode that brings the object and manipulator from the initial state in that mode to the

desired transition state out of the mode. Given a hybrid system description, the mode

order, and transition states {(ip,xp,up) | p = {1 . . . N}}, the task is to find a time tp and

set of controls u(t) for {t | tp−1 ≤ t ≤ tp} that brings the system from (xp−1,up−1) to

(xp,up) while satisfying dynamics fip .
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Figure 2.4. Diagram showing the manipulator (blue) and the block (or-
ange), relevant measurements and parameters, and the world {W}, body
{B}, and manipulator {M} frames.

This can be done using a variety of motion planners such as direct and indirect opti-

mization or sample-based methods. The motion planner needs to account for the different

system dynamics in each of the modes, and ensure that the desired trajectory does not re-

sult in undesired mode transitions. Some modes are underactuated which raises important

issues in trajectory planning and control [39] [40].

The primitive-sequence planning, transition-state planning, and single-mode motion

planning can be implemented as an iterative process. If the planner fails at any point,

it can return to previous steps and calculate new transition states or mode sequences.

This could allow algorithms that are guaranteed to approximately search the space of all

possible solutions eventually, either for completeness or optimality. This iterative method
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can be further extended to reason about hybrid trajectories that are more robust to

uncertainty in system state, modeling parameters, and controls.

2.4.5. Primitive Stabilization

Once each of the individual mode plans has been determined, the output is a dynamically

feasible trajectory (x(t),u(t)) for {t | to ≤ t ≤ tN} from the initial state xo to the desired

final state xf. This trajectory passes through contact modes {ip | ip ∈ I, p = 1 . . . N}

and transition states {(xp,up) | p = 1 . . . (N − 1)}.

The final step is to develop a feedback controller ufbk,i(x, t) to stabilize the motion

plan about deviations from the trajectory in each mode. Some examples are receding-

horizon or direct-state-feedback controllers. The controller commands within each mode

ip must be consistent with the constraints of the current contact mode to avoid causing

an unwanted transition between modes. We define udes(t) = u(t) + ufbk(x, t) as the

desired control with feedback, and uproj(t) = Pi(x(t),udes(t)) as a projection that maps

the desired control back to the set of controls consistent with maintaining the current

contact mode i.

2.5. Block and Manipulator Example

The general hybrid planner and control system outlined in Section 2.4 will now be

applied to the problem of a rectangular block and manipulator in contact and moving in

a 2D plane. The block is initially at rest on the manipulator, and the desired final state

has the block resting on a ledge rotated 180 degrees. We use a set of five primitives to
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accomplish the goal and these are shown in Figure 2.6. We chose these primitives be-

cause they demonstrate controlled, partially controlled, and state-determined transitions

between multiple contact modes, as well as feedback control within the rolling balance

contact mode. We assume the manipulator’s acceleration is directly controlled.

The block-manipulator system is shown in Figure 2.4. The specific contact mode

in the figure is the block rolling about the left contact (mode i = 2), but the system

description is valid for all modes. All angles and positions are measured with respect to

the world frame {W} unless otherwise stated. A body frame {B} is attached to the center

of the object, and a manipulator frame {M} is attached to the center of the manipulator.

The manipulator’s pose is represented by qm = [xm, ym, θm]T, and the object’s pose is

represented by qo = [xo, yo, θo]T. The configuration and velocity of the system are denoted

as q = [qT
m,q

T
o ]T and q̇ = [q̇T

m, q̇
T
o ]T, respectively. The full state of the system is defined as

x = [qT, q̇T]T. The variable qrel = qo− qm describes the relative position and orientation

between the manipulator frame and the object frame. The variable θrel = θo − θm is the

relative orientation between the object and manipulator. The side lengths of the object

and manipulator are denoted by the half-widths and half-heights wo, ho, wm, and hm. We

assume a Coulomb friction cone model at each contact represented by f` and fr, with a

friction coefficient µ.

2.5.1. Primitive Characterization

In this section we derive some of the I possible contact modes for the block-manipulator

system, along with the mode dynamics and contact and transition constraints. Even for

this relatively simple system there are 25 contact modes considering only the block and
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one-point sliding
non-zero velocity of the contact point

with respect to the manipulator
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moving relative to the manipulator

two-point sliding
contact forces on the object are 

on the edges of the friction cones

rolling
contact point fixed relative
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Figure 2.5. Diagram showing the different classes of contact modes of the
block-manipulator system. The frictional forces are shown by solid arrows
and relative motion is shown by dashed arrows.

the top surface of the manipulator. There are many similar modes where relative motion

is in the opposite direction causing forces on the other edge of the friction cone, or the

corner(s) in contact are different, so we define five classes of contact modes which are

shown in Figure 2.5. A detailed transition map of the contact modes for two corners of

the block with one edge of the manipulator is shown in Figure 2.3. In our motion plan we

use dynamic grasp, sliding, free flight, and rolling primitives. For dynamic grasp (i = 1)

the block follows the manipulator as long as the forces that must be applied to the block

to have it follow the manipulator’s trajectory are inside the wrench cone available from

the contacts. For sliding regrasp (i = 5) the manipulator accelerates beyond this limit

to cause relative motion between the part and the object [66] which is the focus of our

previous work. Free flight dynamics (i = 3) involve no contact so the object follows a

parabolic trajectory. We derive the rolling mode (i = 2) constraints and dynamics below.
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We first define additional parameters shown in Figure 2.4 before deriving the con-

straints. We denote the contact location distance along the x direction of the manipulator

frame {M} as wc. The distance `o represents the diagonal length from the contact corner

of the object to its center, and θ`o is the angle between the base of the object and `o. The

following kinematic constraints keep the block and manipulator in contact.

xo − `o cos(θo + θ`o) = xm + wc cos(θm)− hm sin(θm)

yo − `o sin(θo + θ`o) = ym + wc sin(θm) + hm cos(θm).

(2.1)

Taking the derivative of these constraints yields the Pfaffian constraints A2(q)q̇ = 0,

where

(2.2) A2(q) =

 1 0 −hm cos(θm)− wc sin(θm) −1 0 −`o sin(θo + θ`o)

0 1 −hm sin(θm) + wc cos(θm) 0 −1 `o cos(θo + θ`o)


We assume that the manipulator is directly acceleration controlled so we can choose

desired u = [ẍm, ÿm, θ̈m]T. The motion of the manipulator results in frictional constraint

forces at the contact which we denote as f` and fr for the left and right edges of the

friction cone as shown in Figure 2.4. Due to the contact constraints and the given contact

location with the manipulator wc, the full fifteen-dimensional state-control space can be

represented by an eleven-dimensional subspace. We choose to represent the system as

xroll = [qT
roll, q̇

T
roll]

T, where qroll = [qT
o , θm]T. We then use the constraints in (2.2) to derive

expressions f` = g`(xroll,um) and fr = gr(xroll,um) which map given state-control pairs to

friction cone forces.
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We then change coordinates and assume we can directly apply the controls uroll =

[f`, fr, θ̈m]T which includes the two forces at the contact and the rotational acceleration

of the manipulator. Summing the forces and moments acting on the block from f` and fr

leads to the following control-affine dynamic equations for the object accelerations:

q̈o =


− cos(θµ−θm)

mo

cos(θµ+θm)

mo

sin(θµ−θm)

mo

sin(θµ+θm)

mo

`o sin(θm−ψ−θµ)

jo

`o sin(ψ−θm−θµ)

jo


f`
fr

+


0

g

0

 ,(2.3)

where θµ = arctan(µ) is the angle the friction cone makes with the contact normal,

ψ = θo + θ`o is the angle of the block centerline `o in the world frame, mo is the mass

of the object, jo is the rotational inertia of the object, and g is the gravity acting on the

block.

For rolling dynamics we have analyzed a subspace xroll of the total state-space x. As

long as the applied frictional forces at the contact [f`, fr]
T are greater than zero, the block

is neither slipping on the manipulator nor breaking contact.

2.5.2. Primitive Sequence Planning

We now plan the sequence of modes to move the block from its initial state on the

manipulator to the goal state on a ledge rotated 180 degrees. Because the ledge is outside

of the manipulator’s workspace it is clear that the plan will require a throw to get the

object to the desired goal state. A transition map between the various contact modes for

the block manipulator system is shown in Figure 2.3. We manually choose the following

mode sequence to achieve the goal:
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1. dynamic grasp 
to rolling

2. rolling balance 3. roll to 
dynamic grasp

4. sliding regrasp 5. dynamic grasp throw

Figure 2.6. Diagrams showing the five motion primitives planned and used
in the experiment. The figures are generated from experimental trajectories
of a block (orange) and manipulator (blue) transitioning through multiple
contact modes.

dynamic grasp + rolling (balance controller) + rolling (roll left controller) + catch +

sliding + catch + dynamic grasp + free flight.

In this paper the catch is not so much a primitive as it is a way to transition between

primitives while allowing some uncertainty. Although not necessary to achieve this spe-

cific goal, the balanced-rolling mode is included to demonstrate an example of real-time

feedback control during the motion.

2.5.3. Transition State Planning

The transition into rolling is chosen to have the block near its unstable equilibrium with

the manipulator at rest to increase the chance of a successful balance. The transition out

of the balance mode is chosen to have the block near the bottom of the workspace to allow

more distance to accelerate the block during the throw. The sliding transition is chosen

to quickly reposition the block on the manipulator, and the dynamic grasp to free flight

transition is chosen so the block will reach the goal state along its free-flight trajectory.
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2.5.4. Single-Mode Motion Planning

With the mode order and transition states chosen, the next step is to determine trajec-

tories in each mode that join the initial state, the (N − 1) transition points, and the final

state. In this paper we manually generated manipulator motions that followed fifth-order

polynomials, and used simulation to verify the block trajectory and check that the con-

tact constraints were not violated. To achieve the desired goal rotation of the object, we

first rotate the block by 90 degrees before throwing it. The initial dynamic grasp motion

rotates the block up to a goal angle for the rolling (balancing) mode. The rolling with

the balance controller brings the object to a new position, then accelerates to the right

causing the object to roll to the left. A catch allows the block to come to rest on the

manipulator before sliding along the surface of the object to reposition it. Another catch

allows the block to come to rest before using dynamic grasp and then free flight to throw

the block to the goal state. Diagrams of these motion plans generated from experimental

data are shown in Figure 2.6. We have implemented more automated planning methods

such as sequential quadratic programming for optimizing trajectories in different modes

but that method was not in the experiment in this paper.

2.5.5. Primitive Stabilization

Feedback can be used to account for sources of modeling error and increase the reliability

of motion plans. For dynamic-manipulation tasks the set of possible feedback methods is

constrained by computation time limitations. Control loops running at a high frequency

(1000 Hz in this case) provide only a small window to perform calculations and adjust

the open-loop motion plan based on system feedback. For this reason we chose to use a
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linearized LQR controller. The nonlinear dynamics for the block can be approximated as

a linear system in a small neighborhood of the trajectory. By linearizing the dynamics

about the desired trajectory calculated in Section 2.5.4, we can create a time-varying state-

feedback controller that stabilizes desired motion primitives about the nominal trajectory.

The output of the LQR feedback controller is a set of controls ufbk = [fl,fbk, fr,fbk, θ̈m,fbk]T.

The desired controls are then udes(t) = u(t) + ufbk(x, t). We use a projection method

uproj = Pi(x,udes) that maps invalid commands to controls that will not cause an un-

wanted mode transition. For rolling mode (i = 2), the projection maps negative contact

forces f`, fr less than zero to zero to satisfy unilateral contact constraints, and saturates

infeasible manipulator accelerations. If the nominal trajectory is far enough from the

boundary of feasible controls, then small perturbations about the trajectory will be re-

coverable with the LQR control output.

2.6. Block Manipulation Experiment

2.6.1. Experimental Setup

The experimental setup consists of a 3-DOF robot arm that moves in a plane parallel

to the surface of an inclined air hockey table. A diagram of the experimental setup is

shown in Figure 5.11. Experiments are conducted at 40% full gravity by inclining the

table at 24 degrees with respect to horizontal. Each link is actuated by a brushed DC

motor with harmonic-drive gearing and current controlled using Junus motor amplifiers.

The 1000 Hz motion controller runs on a PC104 embedded computer running the QNX

real-time operating system. Vision feedback is given by a 250 Hz IR Optitrack camera.
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Desired trajectories and experimental results are transmitted between the PC104 and a

PC running MATLAB using a TCP/IP connection.

2.6.2. Experiment

The block is initially at rest on the manipulator, and the desired final state has the block

resting on a ledge rotated 180 degrees. We use a set of five primitives to accomplish

the goal. The initial dynamic grasp motion rotates the block up to a goal angle for the

balancing mode. The controlled-rolling primitive brings the object to a new position then

accelerates to the right causing it to roll to the left. The manipulator then slides along

the surface of the object to reposition it and then throws it to the goal state. Diagrams

of these primitives generated from the actual experiment are shown in Figure 2.6. A set

of images from the experiment are shown in Figure 2.7 and a video is attached in the

supplemental media and at the following link: https://vimeo.com/206086422.

The experiment successfully uses different primitives to transition between contact

modes during nonprehensile and dynamic manipulation tasks. It also demonstrates the

use of a feedback controller during the manipulation task to stabilize the desired tra-

jectory. Most of the planned motions were reliable over multiple experiments, but the

basin of attraction of the balancing controller is relatively small. In the future we plan

to improve the reliability of the rolling-mode controller, develop feedback controllers for

additional modes, test the repeatability of the experimental results, and analyze tracking

performance in individual modes and at the transitions.

https://vimeo.com/206086422
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Figure 2.7. Images from the experiment showing the motion executions.
The video can be found at the following link: https://vimeo.com/

206086422

https://vimeo.com/206086422
https://vimeo.com/206086422
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2.7. Conclusions

In this paper we proposed a method for motion planning and feedback control of

hybrid, dynamic, and nonprehensile manipulation tasks. We outlined five subproblems—

primitive characterization, sequence planning, picking transition states, planning indi-

vidual motion primitives, and stabilizing individual modes—and then demonstrated the

framework by manually planning a sequence of motions for manipulating a block. The

motions were demonstrated experimentally with a planar 3R manipulator and block on

an inclined air hockey table. Future work will focus on automating the process of gener-

ating primitives, choosing mode sequences, planning within single modes, and stabilizing

them. We plan to implement additional real-time nonlinear feedback controllers such as

sequential action control [6] to improve the reliability of planned motions. For contact

modes where feedback control is impractical, we can develop methods to explicitly esti-

mate and manage uncertainty. Future experiments testing these plans will allow more

in-depth analysis of the framework.
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CHAPTER 3

Kinematic Motion Planning and Feedback Control of Rolling

Bodies

3.1. Abstract

We gave a high-level formulation in Chapter 2, and in the following chapters we focus

specifically on the rolling primitive. This chapter examines the problem of planning and

stabilizing the trajectory of one smooth body rolling on the surface of another. The two

control inputs are the angular velocity of the moving body about two orthogonal axes in

the contact tangent plane; spinning about the contact normal is not allowed. To achieve

robustness and computational efficiency, our approach to trajectory planning is based

on solving a series of optimization problems of increasing complexity. To stabilize the

trajectory in the face of perturbations, we use a linear quadratic regulator. We apply the

approach to examples of a sphere rolling on a sphere and an ellipsoid rolling on an ellipsoid.

Finally, we explore the robustness and performance of the motion planner. Although

the planner is based on non-convex optimization, in practice the planner finds solutions

to nearly all randomly-generated tasks, and the solution trajectories are smoother and

shorter than those found in previous work in the literature.

The main contributions of this chapter are a robust motion planner that can han-

dle general smooth geometries, a method to test the controllability of linearized rolling
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Figure 3.1. Examples of robot tasks that can be modeled as objects in
rolling contact. (a) A ball-type mobile robot on a smooth surface. (b)
Robot fingers rolling over a smooth object.

trajectories, and a method to stabilize trajectories from initial-state perturbations. This

chapter was published in IEEE Access [76]

3.2. Introduction

This paper examines the problem of planning and stabilizing the trajectory of one

smooth body rolling on the surface of another. This is relevant for systems such as a ball-

type mobile robot rolling over smooth terrain (Figure 3.1(a)) or a robot hand planning

multi-finger rolling motions to reorient an object (Figure 3.1(b)). Much research on rolling

motion planning has been limited to specialized geometries such as planes and spheres.

In this work we present a method to generate motion plans and stabilizing feedback

controllers for general, smooth, three-dimensional objects in rolling contact.
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Figure 3.2. Objects 1 and 2 contact at the origin of frames {c1} and {c2},
but are shown separated for clarity. Collectively, the contact configuration
is written q = (u1, v1, u2, v2, ψ). The surfaces of objects 1 and 2 are orthog-
onally parameterized by (u1, v1) and (u2, v2), respectively. At the point of
contact, the unit xi- and yi-axes of the coordinate frame {ci} are in the
direction of increasing ui (and constant vi) and increasing vi (and constant
ui), respectively, and the contact normal ni is the cross product xi×yi. Ro-
tating frame {c2} by ψ about the n1-axis of frame {c1} aligns the x2-axis of
frame {c2} and the x1-axis of frame {c1}. The controls for pure rolling (no
relative spin about the contact normal) are the relative angular velocities
Ω = (ωx, ωy) about the x2- and y2-axes of the contact frame {c2} [75].

The two rolling objects are modeled as a well-known nonholonomic system with five

degrees of freedom and two controls. Collectively the contact configuration is written

q = (u1, v1, u2, v2, ψ), which gives the contact location (u1, v1) on object 1, (u2, v2) on

object 2, and the angle of “spin” ψ between contact frames (Figure 5.2). The two control

inputs are the angular velocities Ω = (ωx, ωy) of the moving body about two orthogonal

axes in the contact tangent plane; spinning about the contact normal is not allowed. We

refer to the no-spin assumption as “pure rolling.” Since we assume the velocities are

directly controlled, we refer to the equations of motion as the “first-order kinematics.”
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Our approach to trajectory planning is based on solving a series of optimization prob-

lems of increasing complexity. We first solve a convex problem that uses the two rolling

velocity inputs to drive two of the five configuration variables directly to their desired val-

ues. This motion serves as the initial trajectory guess for direct-collocation constrained

optimization. Using this initial guess, the optimization solves the full five-dimensional

trajectory-planning problem. The optimization first solves for a trajectory history that

is represented coarsely, using a small number of state and control segments. The solved-

for controls are then simulated by a more accurate, higher-order numerical integration

method than the integrator implicit in the constraints in the nonlinear optimization. If

the simulated trajectory satisfies the error tolerances, the problem is solved. If not, the

previous solution is used as an initial guess, the number of state and control segments is

increased, and the optimization is called again.

The motion planner is structured this way to balance three goals: 1) increasing the

likelihood of finding a solution; 2) decreasing the computation time required to find a so-

lution; and 3) optimizing the quality of the solution, as measured by the trajectory length

and control cost. In our tests, an initial optimization with a fine control discretization

often takes an unnecessarily long time to converge or even fails to converge to a feasible

solution. The coarse initial guess followed by successive refinement yields higher-quality

solutions faster and more consistently. The iterative refinement process acts as a form of

regularization.

To stabilize a planned trajectory to small perturbations, we use linear feedback control

based on a linear quadratic regulator. For this to be successful, the linearized trajectory
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must be controllable, so we examine the controllability of rolling trajectories and provide

examples of uncontrollable trajectories.

Our primary contributions are a robust motion planner for generating rolling motions

of general smooth objects and an approach to stabilize those trajectories.

3.2.1. Paper Outline

Section 5.3 reviews previous work related to this paper. Section 3.4 summarizes the

rolling kinematics, and Section 4.3 formally states the problem we are solving. Section 3.6

outlines the design of the motion planner, and Section 3.7 analyzes the controllability of

rolling trajectories. Section 3.8 demonstrates planning for a sphere rolling on a sphere

and an ellipsoid on an ellipsoid, applying feedback controllers to stabilize the planned

trajectories from perturbations to the initial configurations. Section 3.9 analyzes the

robustness and performance of the planner for random goal states and different methods

of generating initial trajectory guesses. Section 5.10 summarizes the results and describes

planned future work. Some background on differential geometry and derivations of terms

used in the kinematics expressions are given in the Appendix.

3.3. Related Work

3.3.1. Modeling of Rolling Surfaces

First-order kinematics addresses the rolling problem where the relative contact velocities

are directly controlled. The second-order kinematics is a generalization of the first-order

model where the relative accelerations at the contact are controlled. Dynamic rolling

assumes that forces and torques are controlled.
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Cai and Roth derive the first- and second-order contact kinematic equations for two

objects in contact [13]. They focus on the special cases of pure translation and pure

rotation about the contact point. They only consider the four-dimensional evolution of

the contact points on the objects, not the full five-dimensional configuration.

Montana derives the first-order contact kinematics for two 3D objects in contact [49].

His method models the full five-dimensional configuration space, but it is not easily gener-

alized to second-order kinematics or dynamics. First- and second-order contact equations

were derived by Sarkar et al. in [61] and published again in later works [62,63]. Errors

in the published equations for second-order contact kinematics in [61–63] were addressed

and corrected in our recent work [75]. Each of [49,61–63,75] assumes an orthogonal pa-

rameterization, as shown in Figure 5.2. Chitour et al. survey results on the pure rolling

problem for surfaces represented as manifolds and analyzed using Riemannian geometry

and geometric control theory [15].

3.3.2. Motion Planning For Rolling Systems

First- and second-order roll-slide kinematics, as discussed above, allow sliding at the

contact, but we focus on planning for first-order systems in pure-rolling contact. This is a

well-known driftless nonholonomic system, where the rolling constraints do not necessarily

translate to constraints on the achievable relative configuration.

Lafferriere and Sussmann give a method for motion planning and feedback control

for nonholonomic systems without drift, and the methods are exact for systems with

nilpotent, or feedback-nilpotentizable, Lie algebras [34]. Murray provides a method of

finding a nilpotent basis for nonholonomic systems and shows how to generate plans for
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systems including a disk rolling on a plane [52]. The general pure-rolling problem does

not satisfy the nilpotent condition, so Oriolo and Vendittelli generalize the method and

present an algorithm based on nilpotent approximation and iterative steering to achieve

asymptotic stability for the plate-ball system [53].

Murray and Sastry outline a special class of nilpotentizable, nonholonomic systems

called chained-form systems. They introduce sufficient conditions to check if a system

can be converted to chained form, and they give a method to plan motions between

arbitrary states for these systems (e.g., a kinematic car or a car pulling a trailer) [51].

Fliess et al. outline methods to represent nonlinear systems as differentially flat [22]. Such

systems are amenable to simplified motion planning methods. Bicchi and Sorrentino show

that the rolling system cannot be put into chained form and is not differentially flat, so

those methods cannot be applied [10].

There are many works on motion planning for rolling systems that assume special ge-

ometries such as planes and spheres. Li and Canny derive the first-order contact equations

for rolling objects parameterized by orthogonal coordinate systems, analyze the control-

lability properties, and provide a geometric motion planning algorithm for a sphere on a

plane [36]. Marigo and Bicchi plan motions for general surfaces on a plane in the pres-

ence of obstacles using local approximations of Li and Canny’s method [46]. Alouges et

al. demonstrate the use of numerical continuation methods to generate open-loop motion

plans for a general surface rolling on a plane without slipping [2]. Rehan and Reyhanoglu

derive geometric planners for a sphere rolling on a smooth surface and demonstrate the

method for a sphere rolling on a plane and on another sphere [58].
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3.3.3. Rolling Controllability and Feedback

A pure-rolling system is locally controllable from a given initial configuration if the set

of locally reachable configurations, using only the two controls, is five dimensional. Li

and Canny study the controllability of rolling bodies by taking Lie brackets of the rolling

vector fields to generate higher-order vector fields [36]. They conclude that a sphere can

reach any contact configuration on the plane by pure rolling, and that a sphere can reach

any contact configuration by pure rolling on another sphere if their radii are different.

For more general body geometries, however, deriving symbolic Lie bracket vector fields is

cumbersome.

Marigo and Bicchi study the controllability of rolling bodies with regular surfaces,

derive admissibility conditions for rolling contacts, and define necessary conditions for

the reachability of rolling contacts [45]. They provide an in-depth analysis of the types

of surfaces and initial conditions that cause the reachable set to drop from five to two

dimensions. Agrachev and Sachkov (Section 24.4 of [1]) show that two objects in rolling

contact are controllable when their local Gaussian curvatures are not equal. When the

local Gaussian curvatures are equal, the three nonholonomic constraints become inte-

grable, reducing the reachable set to a two-dimensional subset of the full five-dimensional

configuration space. Krakowski et al. provide examples of when the rolling system fails

to be controllable [33]. Feedback stabilization of rolling is addressed by Walsh et al.,

who present a control law to exponentially stabilize linearized trajectories [72]; Sarkar et

al., who demonstrate the use of feedback linearization to control dynamic rolling motions

for two planes in contact with a sphere [63]; and Choudhury and Lynch, who stabilize
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the orientation of a ball rolling in an ellipsoidal dish actuated along a single degree of

freedom [16].

3.4. Rolling Kinematics

In this paper an object is a two-dimensional surface S embedded in 3D space. An

open, connected subset of a surface S is defined as Sk. For a given Sk, the surface is

parameterized by the coordinates (uk, vk) ∈ Uk ⊂ R2, and the shape is given by fk :

Uk → R3 : (uk, vk) 7→ (xk, yk, zk), where the (xk, yk, zk) coordinates are expressed in a

frame fixed to the body. The triplet (Sk, fk, Uk) is called a coordinate chart, and a set of

coordinate charts is called an atlas for S if the union of the Sk fully covers the surface S.

Throughout this paper we assume that rolling motion is confined to a single coordinate

chart of object 1, (S1, f1, U1), and a single coordinate chart of object 2, (S2, f2, U2).

An example coordinate chart for a sphere covers all points of the sphere except for the

poles, with

(3.1)
f : U → R3 : (u, v) 7→

(ρ sin(u) cos(v), ρ sin(u) sin(v), ρ cos(u)),

where ρ is the radius of the sphere, u satisfies 0 < u < π, and v satisfies −π < v < π.

It is assumed that f is continuous up to the second derivative (class C2) so that the

local contact geometries (contact frames and curvature associated with the first and second

derivatives of f , respectively) are uniquely defined. We also assume that coordinate charts

are orthogonal (∂f
∂u
· ∂f
∂v

= 0). Any smooth, regular surface can be locally represented this

way.
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The configuration space of objects in rolling contact (see Figure 5.2) can be param-

eterized by q = (u1, v1, u2, v2, ψ), where U1 = (u1, v1) describes the contact point on the

surface of object 1, U2 = (u2, v2) describes the contact point on the surface of object 2,

and ψ describes the angle of “spin” between contact frames {c1} and {c2} about their

common normal.

The linear velocity relating the relative motion between objects expressed in {c2} can

be written as V = (Vx, Vy, Vz). Similarly, the relative angular velocity at the contact

expressed in {c2} can be written as ω = (ωx, ωy, ωz). The controls for pure rolling are

the relative angular velocities Ω = (ωx, ωy) about the x- and y-axes of the contact frame

at object 2, which defines the contact tangent plane. We use the first-order kinematics

derived by Sarkar et al. in [61] with the pure-rolling assumptions applied (Vx = Vy =

Vz = ωz = 0). These are equivalent to the equations in [49] for the first-order analysis,

but are chosen to allow for direct extension to second-order planning in future work. The

pure-rolling kinematics reproduced from [61] are

(3.2)

U̇1 = (
√

G1)−1Rψ(H̃1 + H2)−1

−ωy
ωx

 ,

U̇2 = (
√

G2)−1(H̃1 + H2)−1

−ωy
ωx

 ,
ψ̇ = σ1Γ1U̇1 + σ2Γ2U̇2,
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where Gi is the metric tensor of object i, the 2× 2 rotation matrix Rψ is defined as

Rψ =

 cos(ψ) − sin(ψ)

− sin(ψ) − cos(ψ)

 ,
Hi is a 2×2 matrix that gives the curvature of the surface, H̃1 is defined as H̃1 = RψH1Rψ,

the scalar σi is defined as σi =
√
g22,i/g11,i where g11,i and g22,i are the diagonal entries

of the metric tensor Gi, and Γi is a 1× 2 matrix of the Christoffel symbols of the second

kind. Bold, capitalized letters indicate matrices, and derivations of these expressions are

given in the Appendix and in [61].

Eq. (3.2) can be expressed in control-affine form as:

(3.3) q̇ = F(q)Ω =


(
√

G1)−1Rψ

(
√

G2)−1

T1Rψ + T2

H−1
rel

0 −1

1 0

Ω,

where q = [u1 v1 u2 v2 ψ]T are the states, Ω = [ωx ωy]
T are the controls, Ti = σiΓi(

√
Gi)

−1,

and Hrel = (H̃1 + H2) represents the relative curvature at the contact.

An example of two spheres rolling with constant relative rotational velocity Ω =

(ωx, 0) = (4π
3
, 0) along their respective “equators” is shown in Figure 3.3. Figure 3.3(a)

shows a visualization of the spheres, the contact paths on the surface of each object Ui(t),

and the coordinate chart for object 2. Figure 3.3(b) shows the values of the contact

coordinates during the rolling motion.
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<

0

v2< 0
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(a)

(b)

Figure 3.3. Example of object 1, the blue sphere of radius ρ1 = 1, rolling
on the equator of object 2, the red sphere of radius ρ2 = 3. The coordinate
charts are given by Eq. (3.1), the initial conditions are q(0) = (π

2
, 0, π

2
, 0, 0),

and the constant relative rotational velocity is Ω = (ωx, 0) = (4π
3
, 0). A

visualization with the start and goal locations and the contact trajectories
Ui(t) is shown in (a). Note that the controls Ω are measured in the object
2 contact frame {c2} with the x2-axis pointing downwards and the contact
normal n2 pointing out of object 2. A plot of the contact coordinates is
shown in (b), with the desired goal states qgoal represented by stars. Note
that u1 and u2 are equal throughout the trajectory and therefore overlap.
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3.5. Problem Statement

The goal is to find a pure-rolling trajectory and a stabilizing feedback controller from

an initial state qstart to a goal state qgoal for two bodies in pure-rolling contact. We as-

sume that a path between qstart and qgoal exists within a single pair of coordinate charts

(f1 on object 1 and f2 on object 2). An “admissible” trajectory is defined as a set of

states and controls ξ(t) = (q(t),Ω(t)), from t = 0 to the final time t = T , that satisfies

the first-order pure-rolling kinematics in Eq. (3.3). A “valid” trajectory is defined as an

admissible trajectory that also satisfies qerror(T ) < η, where η is the tolerance on the final

state error and qerror(T ) = ||q(T ) − qgoal||, where || · || corresponds to a weighted norm

that puts contact parameter errors and spin angle errors in common units. (Throughout

the rest of this paper, we use the Euclidean norm.) A stabilizing state-feedback controller

about a trajectory is defined as Ωfbk(q, t). With these definitions, the problem can be

stated as follows:

Given: The surface parameterizations (f1, f2), the states (qstart, qgoal), and the rolling

time T ,

find: (1) a valid rolling trajectory ξsol(t) for t ∈ [0, T ] that brings the system from

q(0) = qstart to q(T ) = qgoal and (2) a feedback controller Ωfbk(q, t) that stabilizes that

trajectory.

In the following section we outline the multi-step process we developed to solve the

pure-rolling motion planning and control problem.
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3.6. Motion Planning

A multi-step algorithm is established to solve the motion planning problem presented

in Section 4.3. Given the model parameters, the start state qstart, and goal state qgoal, the

motion planner solves multiple problems of increasing complexity to find a valid trajectory.

The first step is a two-state control (TSC) method that solves a simplified motion plan-

ning problem that directly controls two of the five configuration variables. The output of

the TSC planner is the trajectory ξTSC(t) = (qTSC(t),ΩTSC(t)) consisting of the configura-

tions and controls as a function of time. The second step is the iterative direct collocation

(iDC) method that takes ξTSC as the initial trajectory guess and runs an optimization to

find a coarse rolling trajectory (large time steps, simple integration method) for the full

five-dimensional configuration. The control output from the optimization ΩiDC(t) is then

used to numerically integrate the first-order kinematics using a higher-order integrator

(MATLAB’s ode45), and the goal error qerror(T ) is calculated. If the trajectory is valid

(qerror(T ) < η), then the optimization is stopped and the trajectory is returned. If the

terminal condition is not satisfied, the previous trajectory serves as the initial trajectory

guess for a finer direct collocation optimization with twice as many collocation segments

(N → 2N). This is repeated until a valid trajectory is found, the maximum number of

iDC iterations is reached, or the optimization converges to an invalid point. A flowchart

of the algorithm is shown in Figure 3.4, and the details of the individual methods are

given below.
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1. Two-State
Control (TSC)

2. Iterative Direct 
Collocation (iDC)
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qerror(T ) η
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Linear Interpolation
from Start to Goal 
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ξ (t)iDC
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3. LQR
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q
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Figure 3.4. Flowchart of the multi-step motion planning algorithm and
stabilization method outlined in Sections 3.6 and 3.7, respectively. The
inputs are the start/goal states, the model, and the parameters. Two-
state control (see Section 3.6.1) is used to generate the initial trajectory
guess ξTSC(t) = (qTSC(t),ΩTSC(t)) for the iterative direct collocation, and
qdes(t) is the straight-line desired path for the cost function in Eq. (5.47).
Each output trajectory ξiDC(t) = (qiDC(t),ΩiDC(t)) is recalculated using a
higher-order integration method and the goal error tolerance is checked
(qerror(T ) < η). If the trajectory is not valid, it is used as the initial trajec-
tory guess for the next iteration of the direct-collocation method with twice
as many segments (N → 2N). This is repeated until a valid trajectory is
found, the maximum number of iDC iterations is reached, or the optimiza-
tion converges to an invalid point. The linear quadratic regulator (LQR)
step outputs a feedback control law Ωfbk(q, t) that stabilizes the solution
trajectory ξsol(t).
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3.6.1. Two-State Control (TSC)

The purpose of the two-state control method is to obtain the control input that moves

two states along the shortest path to the goal state. The choice of which coordinates

to control will bias the optimization solutions toward different paths in the state-space.

In this paper we choose to control the coordinates U2(t) = [u2(t) v2(t)]T. An analysis

of the planner performance for different initial trajectory guess methods is included in

Section 3.9.2.

We first linearly interpolate the object 2 coordinates from U2(0) to U2(T ). With the

trajectory U2(t) known, we calculate the control input Ω(t) from the second expression in

Eq. (3.2), which results in:

(3.4)

ωx(t)
ωy(t)

 =

 0 1

−1 0

 (H̃1(t) + H2(t))
√

G2(t)U̇2(t).

We then use qstart, Ω(t), and the other two kinematics expressions of Eq. (3.2) to calcu-

late the trajectories of the remaining three states u1(t), v1(t), and ψ(t). This method gen-

erates a trajectory ξTSC(t) = (qTSC(t),ΩTSC(t)) that tracks the straight-line path between

the start and goal contact locations on object 2. Examples are shown in Figures 3.3(b)

and 3.8(a).

3.6.2. Iterative Direct Collocation (iDC)

The initial trajectory ξTSC(t) is admissible, but only two of the five states reach the

desired goal states. We therefore perturb the input trajectory from the TSC method so
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that q(T ) = qgoal, and to do this we use direct collocation. We first describe the details

of the direct collocation method, and then outline our iterative version.

Direct collocation is a method for trajectory optimization that optimizes an objective

function J(ξ(t)) = J(q(t),Ω(t)) using polynomial spline approximations of the continuous

states and controls. We chose to use trapezoidal collocation where the control trajectory

Ω(t) is represented by piecewise-linear splines, the state trajectory q(t) is represented

by a quadratic spline, and the trapezoidal rule is used for integration. Higher-order

representations such as Hermite-Simpson collocation can also be used but with increased

computational cost [32]. We define the objective function J(q(t),Ω(t)) as the sum of the

terminal cost and the running cost and omit the dependence on t for clarity:

(3.5)

J(q,Ω) = m(q(T )) +

∫ T

0

l(q,Ω)dt,

m(q(T )) =
1

2
(q(T )− qgoal)

TP1(q(T )− qgoal),

l(q,Ω) =
1

2
(q − qdes)

TQ(q − qdes) +
1

2
ΩTRΩ,

where P1, Q, and R, penalize goal-state error, desired trajectory deviation, and control

cost respectively, and qdes(t) is a nominal trajectory. The path qdes(t) is chosen as the

linear interpolation from qstart to qgoal, which penalizes motions that do not move q towards

the goal. Note that qdes(t) is not admissible in general.

The collocation method divides the trajectory ξ(t) into N segments, and the N + 1

nodes at the ends of each segment are called collocation points. Each collocation point is

expressed as ξk(t) = (q(tk),Ω(tk)) for k ∈ [0, . . . , N ]. For systems with m state variables

and n control variables there are a total of (N + 1)(m + n) collocation points. The

dynamics between each pair of sequential collocation points are enforced by the following
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condition:

(3.6)
qk+1 − qk =

1

2
∆tk(F(qk+1)Ωk+1 + F(qk)Ωk),

k ∈ [0, . . . , N − 1],

where ∆tk = (tk+1 − tk) indicates the interval duration and F(q)Ω is the first-order

kinematics function from Eq. (3.3). Equation (5.48) is unique to the choice of trapezoidal

collocation, and other integration methods require a different constraint [32].

The optimal control problem can be represented as the following nonlinear program-

ming problem:

(3.7)

arg min
q(tk), Ω(tk)

m(q(T )) +
N∑
i=0

l(q(tk),Ω(tk))∆tk

such that h(q(t0) : q(tN); Ω(t0) : Ω(tN−1)) = 0,

g(q(t0) : q(tN); Ω(t0) : Ω(tN−1)) ≤ 0,

where h(·) gives the equality constraints q(0) = qstart and q(T ) = qgoal and enforces the

first-order kinematics in Eq. (5.48). The expression g(·) gives the inequality constraints

which constrain the controls (Ωmin ≤ Ω ≤ Ωmax) and enforces any constraints on the

configurations (e.g., due to singularities in the coordinate chart). Equation (5.49) is a

finite-dimensional nonlinear optimization problem, and a solution ξiDC(t) can be found

using nonlinear optimizers such as SNOPT, IPOPT, or MATLAB’s fmincon.

The integration error can be determined by comparing the trajectory qiDC(t) from the

direct collocation method with the trajectory qfine(t), where qfine(t) is obtained by inte-

grating the initial state over the interval t = [0, T ] using Eq. (3.3), the piecewise-linear
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output controls ΩiDC(t), and a higher-order integrator with small time steps (dt ≤ 0.001).

With fewer segments N , the integration error is larger, but there are fewer constraints for

the nonlinear solver. This means that the optimizer is more likely to find a solution, and

with less computational cost. The choice of N is therefore a trade-off between compu-

tational cost/optimizer convergence and integration error. We implemented the iterative

direct collocation (iDC) method to address this.

We first run the nonlinear optimization method using MATLAB’s fmincon for a small

number of segments (N = 25) to find a trajectory ξiDC(t). The recalculated path qfine(t)

is found using smaller integration timesteps and a higher-order integrator (ode45), and

the planner is terminated if the goal-state tolerance of the fine trajectory is satisfied

(qerror(T ) < η). If the goal-state error is too large, the previous output trajectory serves as

the initial trajectory guess for the next iteration with twice as many segments (N → 2N).

This is repeated until a valid trajectory ξsol(t) is found, the maximum number of iDC

iterations is reached, or the optimization converges to an invalid point. Small values of N

result in good solutions but may require many iDC iterations to converge to a solution,

and large values will increase N too quickly resulting in slower computation time and

convergence to invalid points. We chose to double the segments between each iteration

so the exact solution from the previous iteration could be used, but N could be increased

by a fixed value ∆N between each iteration to add an additional tuning parameter for

the planning method.
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3.7. Feedback Control of Rolling Surfaces

To stabilize the rolling trajectory to state disturbances, we construct a linear time-

varying feedback controller based on a linearization of the rolling kinematics about the

planned trajectory qsol(t). For this approach to be appropriate, the system should be

linearly controllable about the planned trajectory, which may not always be the case,

even if the system is nonlinearly controllable.

3.7.1. Linearization About a Trajectory

Given a nominal trajectory ξnom(t) = (qnom(t),Ωnom(t)), we define perturbations about

the trajectory as:

q̃(t) = q(t)− qnom(t),(3.8)

Ω̃(t) = Ω(t)− Ωnom(t).(3.9)

The perturbed version of the dynamics in Eq. (3.3) can be written using a first-order

Taylor expansion (and omitting the dependence on t) as:

q̇nom + ˙̃q = F(qnom)Ωnom+(3.10) [
∂(F(q)Ω)

∂q

]
nom

q̃ +

[
∂(F(q)Ω)

∂Ω

]
nom

Ω̃ + h.o.t.,

where [·]nom means the enclosed expressions are evaluated along the nominal trajectory,

and h.o.t. represents higher-order terms. Because q̇nom = F(qnom)Ωnom and h.o.t. are
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negligible for nearby trajectories, Eq. (3.10) simplifies to:

(3.11) ˙̃q =

[
∂(F(q)Ω)

∂q

]
nom︸ ︷︷ ︸

Ã(t)m×m

q̃ + [F(q)]nom︸ ︷︷ ︸
B̃(t)m×n

Ω̃,

where m is the number of state variables and n is the number of controls. We analyze

the controllability properties of the linear time-varying (LTV) system (Ã(t), B̃(t)) to

determine whether the nominal trajectory error (q̃(t), Ω̃(t)) can be stabilized to zero by

a simple linear controller.

3.7.2. Controllability of Linear Time-Varying (LTV) Systems

The controllability of an LTV system along a nominal trajectory can be checked using

the controllability gramian (e.g., Ch. 11.6 of [12]),

(3.12) Wc(t1, t0) =

∫ t1

t0

Φ(t1, τ)B̃(τ)B̃(τ)TΦ(t1, τ)Tdτ,

where the state-transition matrix1 Φ(t1, τ) and B̃ come from Eq. (3.11) and correspond

to the linearization about the nominal trajectory. If the square matrix Wc(t1, t0) is

non-singular on the interval t ∈ [t0, t1], then the linearized trajectory can be stabilized

by an appropriate controller. For a system with m state variables, any system with

rank(Wc(t1, t0)) < m is rank deficient, and therefore uncontrollable.

1The state-transition matrix Φ(t1, τ) can be calculated for the LTV system using methods in Section 9.5-
9.6 of [12] such as the the Peano-Baker Series or the fundamental solution matrix.
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3.7.3. Controllability of Rolling Trajectories

The state q and controls Ω for the rolling system are five-dimensional and two-dimensional,

respectively, so m = 5 and n = 2. Therefore Ã(t) is a 5×5 matrix, B̃(t) is a 5×2 matrix,

and full rank of the controllability gramian is 5.

While the linearized rolling dynamics of “generic” objects are controllable about

“generic” rolling trajectories, there are at least three degenerate situations where the

controllability gramian fails to achieve full rank, as outlined below.

3.7.3.1. Degenerate Geometry. An example of this case is two spheres of equal radius.

As shown by Li and Canny [36], the relative configuration of two spheres of equal radius

is uncontrollable by pure rolling, and therefore the linearization of the kinematics about

any rolling trajectory is also uncontrollable. This conclusion is independent of the initial

contact configuration of the bodies.

3.7.3.2. Degenerate Initial Configuration. In other cases, the relative configuration

of two objects may be controllable by rolling from most configurations but not from

others. An example is shown in Figure 3.5, where two identical ellipsoids, each with two

equal principal semi-axes and one longer principal semi-axis, make initial contact such

that the body geometries are symmetric about the contact tangent plane. Regardless of

the rolling motion chosen from this initial configuration, the system will be confined to a

lower-dimensional subset of its five-dimensional configuration space. More details can be

found in [45] and Section 24.4 of [1].

3.7.3.3. Degenerate Trajectory. Finally, even if the two bodies are not geometrically

degenerate and their initial configuration is not degenerate, a rolling trajectory may be

chosen such that the rank of the controllability gramian of the linearized dynamics about
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Figure 3.5. Example of uncontrollable initial condition for two identical ellipsoids.

the rolling trajectory never exceeds four. A trivial example is a stationary trajectory. For

stationary trajectories (q̇(t) = 0 ∀ t ∈ [0, T ]), the matrix Ã(t) is zero and the matrix

B̃(t) = B̃(t0) is constant. B̃(t0) is always full rank because rolling is allowed in two

directions, so the controllability gramian is rank two for all stationary trajectories. The

linearized rolling system is not controllable about stationary trajectories.

Another example is shown in the sphere-on-sphere trajectory of Figure 3.3. This

trajectory illustrates constant Ω, u1, u2, and ψ. The linearized dynamics are governed by
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the linear time invariant (LTI) matrices Ã and B̃:

(3.13) Ã =



0 0 0 0 π

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−π 0 π
3

0 0


, B̃ =



0 3
4

3
4

0

0 1
4

−1
4

0

0 0


.

The Kalman controllability matrix [B̃ ÃB̃ Ã2B̃ Ã3B̃ Ã4B̃] is only rank four.

Even a trajectory about which the linearized system is controllable can be problem-

atic to stabilize if the controllability gramian is ill-conditioned; large controls may be

required to recover from small errors in certain state directions. Various metrics on

the controllability gramian can be used to quantify controllability, such as the minimum

eigenvalue (λmin(Wc(t1, t0))), the trace of the inverse, (tr(Wc
−1(t1, t0))), and the determi-

nant (det(Wc(t1, t0))) [50,54]. One of these measures could be included in the objective

function in Eq. (5.47) to bias the trajectory optimization away from nearly-degenerate

trajectories.

3.7.4. Stabilization of Rolling Trajectories

We use the linear quadratic regulator (LQR) to stabilize the linearized dynamics in

Eq. (3.11). LQR computes a time-varying gain matrix K(t) that optimally reduces the

total cost for small perturbations about the nominal trajectory. LQR requires a cost

function, and we use the one given in Eq. (5.47). We solve the matrix Riccati equation
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to find the time varying feedback control matrix K(t) (see Section 2.3 of [4]).

(3.14)

− Ṗ(t) = P(t)Ã(t) + Ã(t)TP(t)−

P(t)B̃(t)R−1
LQRB̃(t)TP(t) + QLQR,

P(T ) = P1,LQR

K(t) = R−1
LQRB̃(t)TP(t).

The matrix K(t) is then used in the feedback control law

(3.15) Ωfbk(q, t) = Ωnom(t)−K(t)(q(t)− qnom(t))

to stabilize the nominal trajectory. The performance of this feedback controller depends

on the controllability properties of the linearized dynamics.

3.8. Simulation Examples

We now demonstrate the motion planning and feedback control method for a sphere

rolling on a sphere and an ellipsoid rolling on an ellipsoid. The sphere example demon-

strates the ability to generate shorter paths for nontrivial trajectories when compared to

the recent geometric planner for a sphere rolling on a sphere in [58]. The ellipsoid exam-

ple demonstrates motion planning and feedback control for shapes with spatially-varying

curvature.

We use the SQP algorithm of MATLAB’s fmincon as our nonlinear optimization

solver, and a list of the parameters used is included in Table 3.1. The code was run on

an i7-4700MQ CPU @ 2.40 GHz with 16 GB of RAM. For each example we present the
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Table 3.1. Parameters used in Section 3.8 for the iterative direct colloca-
tion algorithm.

Description Value
Trajectory execution time T 1 s
Initial # of segments N 25 (∆t = 0.04 s)
Goal error tolerance η 0.01
Max iDC iterations 4
Max fmincon func evals/iteration 25,000
Control limits ||ωx|| ≤ 30, ||ωy|| ≤ 30
Constraint integration method trapezoidal
P1 (terminal state weight) diag(100, 100, 100, 100, 100)
Q (tracking weight) diag(1, 1, 1, 1, 1)
R (control weight) diag(0.1, 0.1)

number of iDC iterations, computation time, final state error (qerror(T ) = ||q(T )− qgoal||),

and trajectory cost from the cost function in Eq. (5.47).

3.8.1. Sphere on Sphere

We compare the results of our planner to a geometric trajectory planner for a sphere

rolling on a sphere presented in Section 4.2 of [58]. Geometric trajectory planners use

properties of the surface geometries to derive analytic expressions for the motion plans

between start and goal states. While they are guaranteed to find exact solutions, such

approaches are limited to specific geometries and solution paths are often unnecessarily

long. Convergence is not guaranteed for our method, but in practice it works well and

finds shorter paths.

Eq. (3.1) gives the parametric model of the spheres, and their radii are ρ1 = 2 and

ρ2 = 10. The start and goal states are chosen as qstart = (π
2
, π

4
, π

2
, 0, 0) and qgoal =

(2.19, −3π
4
, 0.96, π

4
, 0) to match the sphere-on-sphere example in Section 4.2 of [58].
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Figure 3.6. The sphere-on-sphere solution trajectory from Section 3.8.1.
The smaller blue object 1 is rolling from bottom left to top right on the
larger red object 2, and is shown at times t = (0, T

3
, 2T

3
, T ). The contact

path U1(t) is shown on the object at t = T , and the contact path U2(t) is
shown on object 2. The initial and goal states were chosen to compare to
the results from Rehan et al. [58], and our planned path U2(t) on object 2
is approximately three times shorter than the solution from the geometric
planning method in that paper.

A solution was found after four iterations of the iDC method, with a total computation

time of 47 seconds, a final state error of qerror(T ) = 0.002, and a trajectory cost of 5.3.

A visualization of the resulting motion plan is shown in Figure 3.6. The length of the

path U2(t) (the path on the larger sphere) is approximately three times shorter than the

solution presented in [58]. An animation of the initial guess and final trajectory is in the

attached supplemental media.
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3.8.2. Ellipsoid on Ellipsoid

We now demonstrate the planner on the more complex example of an ellipsoid rolling on

an ellipsoid. Eq. (3.16) gives the parametric model of the ellipsoids

(3.16)
fi : Ui → R3 : (ui, vi) 7→

(ρia sin(ui) cos(vi), ρib sin(ui) sin(vi), ρic cos(ui)),

where ui satisfies 0 < ui < π, vi satisfies −π < vi < π, and the principal semi-axes are

chosen as (ρ1a, ρ1b, ρ1c) = (1, 1, 1.5) and (ρ2a, ρ2b, ρ2c) = (3, 3, 5). The coordinate systems

are orthogonal because ρ1a = ρ1b and ρ2a = ρ2b. The start and goal states are chosen

as qstart = (π
2
, 0, π

2
, 0, 0) and qgoal = (π

2
, 0, π

4
,−π

2
,−π

4
). A solution was found after four

iterations of the iDC method, with a total computation time of 61 seconds, a final state

error of qerror(T ) = 0.003, and a trajectory cost of 12.8. The resulting path is shown in

Figure 3.7. The contact coordinates and controls for the initial trajectory guesses, the

results from the first iDC iteration, and the final trajectory are shown in Figure 3.8. An

animation of the initial guess and final trajectory is in the attached supplemental media.

3.8.3. Feedback Control

This section demonstrates the performance of the LQR controller in stabilizing trajec-

tories with initial state perturbations. The weighting parameters for the LQR feedback

controller are given in Table 3.2. The weights QLQR and P1,LQR were both increased from

the direct collocation optimization weights to improve tracking performance and decrease

the final state error.
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Figure 3.7. Ellipsoid-on-ellipsoid visualization for the motion plan in Sec-
tion 3.8.2 and Figure 3.8. The smaller blue object 1 rolls from bottom right
to top left on the larger red object 2, and is shown at times t = (0, T

3
, 2T

3
, T ).

The contact path U1(t) is shown on object 1 at t = T , and the contact path
U2(t) is shown on object 2. The U1(t) and U2(t) trajectories are shown in
Figure 3.8 (c).

Table 3.2. Parameters used in Section 3.8.3 for the LQR feedback control
of rolling trajectories.

Description Value
P1,LQR (terminal state weight) diag(1e5, 1e5, 1e5, 1e5, 1e5)
QLQR (tracking weight) diag(100, 100, 100, 100, 100)
RLQR (control weight) diag(0.1, 0.1)
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Figure 3.8. Contact coordinate plots and control plots for the ellipsoid-on-
ellipsoid rolling plan in Figure 3.7. Column one shows the initial trajectory
guess from the two-state control method, column two shows the output
trajectory from the first iteration of the iterative direct-collocation method
(which fails to satisfy the tolerance criterion after accurate simulation), and
column three shows the solution trajectory. The stars in (a)-(c) show the
desired goal states qgoal.

3.8.3.1. Sphere-on-Sphere. We first demonstrate feedback control on the simple sphere-

on-sphere equator trajectory in Figure 3.3 with an initial state perturbation of ε(q(0)) =

(0.1, 0.05,−0.05,−0.1, 0), where ε(q(t)) is the difference between the current and nominal
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reference trajectory and is defined as ε(q(t)) = q(t)− qnom(t). We set the nominal trajec-

tory to ξnom(t) = ξsol(t), and as mentioned in Section 3.7.3, the linearized dynamics are

not controllable about this degenerate trajectory.

Figure 3.9(a) shows the individual and total coordinate error over time. The norm

of the initial state error is ||ε(q(0))|| = 0.16 and the norm of the final state error is

||ε(q(T ))|| = 0.08. LQR is ineffective at eliminating the error because the linearized

dynamics are uncontrollable about the nominal trajectory. Animations of the open- and

closed-loop performance for the perturbed sphere-on-sphere trajectories in Figures 3.3 and

3.6 can be seen in the supplemental media. The controllability gramian of the linearized

dynamics about the sphere-on-sphere trajectory in Figure 3.6 is full rank, and therefore

LQR eliminates the state error.

3.8.3.2. Ellipsoid-on-Ellipsoid. Figure 3.9(b) shows the individual and total coordi-

nate error over time for the nominal trajectory of Figure 3.7 and an initial perturbation

ε(q(0)) = (0.1, 0.05,−0.05,−0.1, 0). The norm of the initial state error is ||ε(q(0))|| = 0.16

and the norm of the final state error is ||ε(q(T ))|| = 0.0004. We see that the feedback

controller effectively recovers from the initial error. An animation of the open and closed-

loop performance for the perturbed ellipsoid-on-ellipsoid trajectory can be seen in the

supplemental media.

3.9. Discussion

3.9.1. Robustness

To test the robustness of the proposed planner, we generated 100 random trajectory

planning tasks for the sphere-on-sphere and ellipsoid-on-ellipsoid. The initial state was
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Figure 3.9. Error recovery of sphere-on-sphere (a) and ellipsoid-on-
ellipsoid (b) under feedback control with an initial state perturbation of
ε(q(0)) = (0.1, 0.05,−0.05,−0.1, 0). The function ε(·) calculates the differ-
ence between input coordinate(s) and the reference coordinate(s) in qnom(t),
and ||ε(q)|| is the norm of the total coordinate error. The sphere trajectory
in (a) is the equator example given in Figure 3.3, where the controllability
gramian is not full rank, and therefore LQR cannot eliminate the state er-
ror. The ellipsoid trajectory in (b) is for the ellipsoid example in Figure 3.7.
The controllability gramian for this trajectory is full rank and therefore the
controller is able to reduce the error to zero.

fixed at qstart = (π
2
, 0, π

2
, 0, 0) and goal states were chosen in the range (0,−π, 0,−π,−π) <

qgoal < π. The results are shown in Table 3.3. The planner used the parameters in

Table 3.1, other than maximum fmincon function evaluations set to 15,000 and η set to

0.1 to decrease computation time.

These results demonstrate the ability of the planner to reliably find solutions for

random goal states. While the method is not guaranteed to find a solution, it works well

in practice.
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Table 3.3. Testing the planning method on 100 random goal states for
sphere-on-sphere and ellipsoid-on-ellipsoid rolling. Results are given as
mean (standard deviation).

Planning
Geometry time (s) qerror(T ) Cost % Success
Spheres 16 (9) 0.045 (0.027) 13 (6) 99
Ellipsoids 17 (8) 0.04 (0.028) 12 (5.7) 99

3.9.2. Effect of the Initial Trajectory Guess

The initial trajectory guess to the iDC optimization is “two-state control,” which drives

the contact coordinates of object 2 directly to their desired final value. This trajectory is

admissible, i.e., it satisfies the rolling conditions. Other initial trajectory guesses could be

used, like two-state control for the contact coordinates of object 1, which is admissible;

linear interpolation (q(t) = qdes(t), Ω(t) = 0), which is inadmissible; and the stationary

trajectory (q̇(t) = 0, Ω(t) = 0), which is admissible. While all types of initial trajectory

guesses led to solutions in most cases, the two-state control on object 2 performed the

best with the shortest planning times, lowest costs, smallest errors, and highest success

rate for random planning problems for the ellipsoid-on-ellipsoid (Table 3.4). The size

difference between the objects could explain the difference between the performance of

TSC on objects 1 and 2. Because object 1 is smaller than object 2, TSC1 generates

short contact paths on object 2, so the initial guess for TSC1 more closely resembles the

stationary initial guess.

3.9.3. Computation Time

The direct-collocation method in fmincon has stop conditions based on different tolerances

(optimality, function, step, constraint), and the maximum number of times the objective
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Table 3.4. Comparing the effect of the initial trajectory guess method for
100 random goal states for ellipsoid-on-ellipsoid rolling. The different initial
guess methods were two-state control on object 1, two-state control on
object 2, linear interpolation (q(t) = qdes, Ω(t) = 0), and stationary (q̇(t) =
0, Ω(t) = 0). Results are given as mean (standard deviation).

Planning
Geometry time (s) qerror(T ) Cost % Success
TSC Object 1 17 (13) 0.059 (0.18) 13.6 (17) 99
TSC Object 2 17 (8) 0.04 (0.028) 12 (5.7) 99
Linear Interp. 31 (54) 0.24 (0.65) 33 (96) 88
Stationary 26 (29) 0.21 (0.59) 30 (85) 91

function is called. We analyzed the effect that the max objective function evaluations

has on the quality of the output trajectories and the computation time. For each step

of fmincon, the cost function is called (N + 1)(m + n) times, where N is the number of

collocation segments, m is the number of states, and n is the number of controls. The

solver can take a long time to converge to a solution, and the marginal improvement of

each step decreases over time. These small improvements have a negligible effect when

the solution is used as the initial guess for another optimization problem. We therefore

tested how limiting the number of function evaluations changes the computation time and

effects the results of the planner. This allows us to terminate the optimizations sooner to

save unnecessary computation time.

Table 3.5 demonstrates the results of planning for ten random goal states, for N = 20,

and with six different limits on the number of function evaluations. Our system has

m = 5 states and n = 2 controls, so the number of function evaluations per fmincon step

is (N + 1)(m+ n) = (20 + 1)(5 + 2) = 147.



88

Table 3.5. Testing the equation function count limit for ten random
goal states each for an ellipsoid on an ellipsoid. results are given as
mean(standard deviation)

Max Evaluations t (s) Cost qerror(T )
5,000 10(4) 13.4(7.5) 0.032(0.024)
15,000 22(10) 11.3(5.8) 0.028(0.013)
25,000 36(12) 10.9(5.3) 0.036(0.026)
50,000 60(25) 10.2(5.1) 0.030(0.020)
100,000 95(50) 10.1(5.0) 0.029(0.019)
200,000 114(81) 10.1(5.0) 0.026(0.022)

As expected, the results show a trend of increasing computation time and lower cost

for more function evaluations. For our simulations we chose to set the limit at 15,000

evaluations because the speed increase justified the loss of accuracy.

3.10. Conclusions and Future Work

This paper presents a motion planner and feedback controller for pure-rolling motions

between general smooth rigid bodies. The methods were demonstrated for a sphere rolling

on a sphere and an ellipsoid rolling on an ellipsoid. Future work includes extending

motion planning and control to second-order kinematic and dynamic rolling. We are

also interested in methods that allow planning for more general object parameterizations

(non-orthogonal) or smooth approximations of general surfaces represented by meshes.

3.11. Appendix: Local Geometry of Smooth Bodies

Below are some expressions for the geometry of a surface that are used to define the

first-order kinematics in Section 3.4. References and derivations of these expressions can

be found in [61].
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We represent the surface of each body in contact as a mapping fi : (ui, vi) 7→ (xi, yi, zi)

for objects i ∈ [1, 2] (see Section 3.4). It is assumed that fi is continuous up to the second

derivative (class C2) so that the local contact geometries (contact frames and curvature

associated with the first and second derivatives of fi, respectively) are uniquely defined.

The natural bases at a point on a body are given as xi = ∂fi/∂ui and yi = ∂fi/∂vi. We

also assume that coordinate charts are orthogonal (xi · yi = 0), and note that xi and yi

are not necessarily unit vectors. The normal is given as ni = (xi × yi)/||xi × yi||.

The normalized Gauss frame at a point Ui on object i is defined as the coordinate

frame {ci} with origin at fi(Ui) and coordinate axes given by

(3.17) Roici =

[
xi
||xi||

,
yi
||yi||

, ni

]
,

where Roici expresses the Gauss frame in the object i frame {oi}. The metric tensor Gi

is a 2× 2 positive-definite matrix defined as

(3.18) Gi =

xi · xi xi · yi

yi · xi yi · yi

 .
The coefficients gjk,i reference the indices of matrix Gi, and Gi is diagonal (g12,i = g21,i =

0) when the coordinate chart fi is orthogonal. The 2× 2 matrix Li is the second funda-

mental form given by the expression

(3.19) Li =

 ∂2fi
∂u2i
· ni ∂2fi

∂ui∂vi
· ni

∂2fi
∂vi∂ui

· ni ∂2fi
∂v2i
· ni

 .
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Hi combines the metric tensor Gi with the second fundamental form Li and is given by,

(3.20) Hi = (
√

Gi)
−1Li(

√
Gi)

−1.

The 1× 2 array Γi is given by the expression

(3.21) Γi =
[
Γ2

11,i Γ2
12,i

]
,

where Γ2
11,i and Γ2

12,i are christoffel symbols of the second kind given by

(3.22)

Γ2
11,i =

(
∂xi
∂ui
· xi
)
g12
i +

(
∂xi
∂ui
· yi
)
g22
i ,

Γ2
12,i =

(
∂xi
∂vi
· xi
)
g12
i +

(
∂xi
∂vi
· yi
)
g22
i ,

where gjki are entries (j, k) of the metric tensor inverse (Gi)
−1.
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CHAPTER 4

Second-Order Contact Kinematics Between Three-Dimensional

Rigid Bodies

4.1. Abstract

Chapter 3 focused on first-order kinematics, and we now focus on the more general

second-order kinematics where the relative accelerations at the contact are given. In this

chapter, we provide corrections to the second-order kinematic equations describing contact

between three-dimensional rigid bodies, originally published in Sarkar et al. (1996) [“Ve-

locity and Acceleration Analysis of Contact Between Three-Dimensional Rigid Bodies,”

ASME J. Appl. Mech., 63(4), pp. 974-984]. [DOI: 10.1115/1.4043547]

The main contributions of this chapter are the corrections to the second-order kine-

matics equations that are used to derive the rolling dynamics in Chapter 5. This chapter

was published in the Journal of Applied Mechanics [75]

4.2. Introduction

When a three-dimensional rigid body (object 1) is in single-point contact with another

rigid body (object 2), the configuration of object 1 relative to object 2 is five dimensional:

the six degrees of freedom of object 1 subject to the single constraint that the distance to

object 2 is zero. This five-dimensional configuration space can be parametrized by the two

coordinates U1 = (u1, v1) describing the contact location on the surface of object 1, the
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x2

x1

x2

n

{2}{1}

x1

n

ψ

u2

u1

v2

v1

increasing
increasing

increasing increasing

object 1 object 2

Figure 4.1. Objects 1 and 2 are in contact, but they are shown separated
for clarity. The surfaces of objects 1 and 2 are parametrized by (u1, v1) and
(u2, v2), respectively. At the point of contact, the unit x1- and x2-axes of
the coordinate frame {i} are in the direction of increasing ui (and constant
vi) and increasing vi (and constant ui), respectively, and the contact normal
n is the cross product of x1 and x2. Rotating frame {2} by ψ about the
n-axis of frame {1} brings the x1-axes of the frames {1} and {2} into align-
ment.

two coordinates U2 = (u2, v2) describing the contact location on the surface of object 2,

and one coordinate ψ describing the angle of “spin” between frames fixed to each body at

the contact point. Collectively the contact configuration is written q = (u1, v1, u2, v2, ψ).

See Fig. 5.2.

“Contact kinematics” refers to equations relating the relative motion between the

objects to the evolution of q. The velocity of one object relative to the other can be written

in terms of the linear velocity V = (Vx, Vy, Vz) and the angular velocity ω = (ωx, ωy, ωz) at

a frame at the current contact, where Vz = 0 is required to maintain contact. The “first-

order” contact equations relate (V, ω) (where Vz = 0) to q̇. The “second-order” contact

equations express q̈ in terms of the relative linear and angular accelerations (a, α), given
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an initial state where the first-order contact condition Vz = 0 is satisfied and a choice of

a in the two-dimensional space of linear accelerations that maintain the contact.

These first- and second-order contact kinematics are fundamental to planning and con-

trol of robot motions in contact. Such motions are sometimes called “roll-slide” motions.

The specialization of these equations to the case of no sliding is useful for manipulation

tasks involving rolling.

Second-order contact equations were first published in [61], based on the work in

Sarkar’s PhD thesis [60]. These equations generalized Montana’s first-order contact kine-

matics [49] and the partial results on second-order contact kinematics in [13]. Sarkar et

al. then restated the second-order contact kinematics in [62, 63], where they were used

in the context of robotic manipulation.

Each of the statements of the second-order contact kinematics in [60–63] is slightly

different, but each contains errors, including sign inversions. Other than a journal type-

setting error, the most correct version of the equations is in [61], which contains only the

sign inversions. Given the importance of these equations to robot motion planning and

manipulation (the papers [60–63] have been cited hundreds of times according to Google

Scholar) and our own work, we present the corrected equations.

4.3. Problem Statement

The contact coordinates for each object i ∈ {1, 2} are parametrized by fi : Ui →

R3 : (ui, vi) 7→ (xi, yi, zi) expressed in a frame fixed to the body. It is assumed that fi

is continuous up to the third derivative (class C3), so that the local contact geometry

(contact frames associated with the first derivative of fi, curvature associated with the
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second derivative, and derivative of the curvature associated with the third derivative) is

uniquely defined. For details on other definitions, see [61].

With these definitions, the problem can be stated as the following: given the current

state (the relative configurations of the objects and their relative velocity (V, ω) satisfy-

ing the first-order contact condition) and their relative acceleration (a, α) satisfying the

second-order contact condition, find the contact accelerations q̈ = (ü1, v̈1, ü2, v̈2, ψ̈).

4.4. Second-Order Contact Kinematics Derivation

Equations (4.1), (4.2), and (4.3) below correspond to Eqns. (39), (41), and (42),

respectively, in [61]. We have rederived and verified these equations, which represent five

equality constraints relating the evolution of q̈ and (a, α) when a satisfies the second-order

condition for rolling given by Eqn. (60) in [61].

√
G2(Ü2 + Γ̄2W2) = Rψ

√
G1(Ü1 + Γ̄1W1)

+2ωzE1Rψ

√
G1U̇1 +

[
ax
ay

]
,

(4.1)

RψE1(
√
G1)−1( ¯̄L1W1 − L1Ü1)−Rψ(

√
G1)−1L1U̇1ωz

+σ1Γ1U̇1

[
−ωy
ωx

]
+

[
αx
αy

]
= (
√
G2)−1L2U̇2ψ̇

+E1(
√
G2)−1( ¯̄L2W2 − L2Ü2),

(4.2)

(4.3)
−σ1(Γ1Ü1 + ¯̄Γ1W1)−

[
−ωy
ωx

]T
RψE1(

√
G1)−1L1U̇1 + αz

= −ψ̈ + σ2(Γ2Ü2 + ¯̄Γ2W2).
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In these equations, Gi is the metric tensor of object i, σi =
√
g22,i/g11,i where g11,i

and g22,i are the diagonal entries of Gi, and Wi comprises the velocity product terms

[u̇2
i , u̇iv̇i, v̇

2
i ]
T . The matrices Γi, Li, Γ̄i, L̄i,

¯̄Γi, and ¯̄Li describe the local contact geometry

as derived from fi in [61], and the matrices E1 and Rψ are defined as

E1 =

 0 −1

1 0

 , Rψ =

 cosψ − sinψ

− sinψ − cosψ

 .
The corrected derivation of the contact kinematics begins here. Rearranging Eqns. (4.1)

and (4.2) yields

Rψ

√
G1Ü1 −

√
G2Ü2 =

√
G2Γ̄2W2 −Rψ

√
G1Γ̄1W1

−2ωzE1Rψ

√
G1U̇1 −

 ax

ay

,(4.4)

RψE1(
√
G1)−1L1Ü1 − E1(

√
G2)−1L2Ü2 =

RψE1(
√
G1)−1 ¯̄L1W1 −Rψ(

√
G1)−1L1U̇1ωz

+σ1Γ1U̇1

 −ωy
ωx

+

 αx

αy

− (
√
G2)−1L2U̇2ψ̇

−E1(
√
G2)−1 ¯̄L2W2.

(4.5)
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Combining Eqns. (4.4) and (4.5) into a single equation yields Rψ

√
G1 −√G2

RψE1(
√
G1)−1L1 −E1(

√
G2)−1L2


 Ü1

Ü2

 =

 −Rψ

√
G1Γ̄1

RψE1(
√
G1)−1 ¯̄L1

W1 +


√
G2Γ̄2

−E1(
√
G2)−1 ¯̄L2

W2

+

 −2ωzE1Rψ

√
G1 0

−ωzRψ(
√
G1)−1L1 −(

√
G2)−1L2ψ̇


 U̇1

U̇2



−


02×1

σ1Γ1U̇1

 ωy

−ωx



+


02×1αx

αy



−


 ax

ay


02×1

.

(4.6)
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Following [61], we define Hi = (
√
Gi)

−1Li(
√
Gi)

−1, substitute into (4.6), and rearrange

to get

 Ü1

Ü2

 =

 Rψ

√
G1 −√G2

RψE1H1

√
G1 −E1H2

√
G2


−1

{ −Rψ

√
G1Γ̄1

RψE1(
√
G1)−1 ¯̄L1

W1 +


√
G2Γ̄2

−E1(
√
G2)−1 ¯̄L2

W2

+

−2ωzE1Rψ

√
G1 0

−ωzRψH1

√
G1 −ψ̇H2

√
G2


 U̇1

U̇2



−


02×1

σ1Γ1U̇1

 ωy

−ωx



+


02×1αx

αy



−


 ax

ay


02×1


}
.

(4.7)

This is equivalent to Eqn. (43) of [61] except the two boxed terms in red are preceded by

a minus sign in the corrected equations. The fifth equation for ψ̈ is derived by rearranging

Eqn. (4.3),

ψ̈ = −

 ωy

−ωx


T

RψE1(
√
G1)−1L1U̇1 − αz

+ σ1(Γ1Ü1 + ¯̄Γ1W1) + σ2(Γ2Ü2 + ¯̄Γ2W2),(4.8)

where the minus sign on the left of the boxed red term did not appear in Eqn. (44) in [61].
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4.5. Example: A Sphere Rolling on a Sphere

Consider the example of a small sphere (object 1) rolling without sliding on a larger

sphere (object 2), as shown in Fig. 4.2. The spheres i ∈ {1, 2} are parameterized by

fi : Ui → R3 : (ui, vi) 7→

(ρi sin(ui) cos(vi), ρi sin(ui) sin(vi), ρi cos(ui)),

(4.9)

where the “latitude” ui satisfies 0 < ui < π and the “longitude” vi satisfies −π < vi < π.

Object 2 (the large red sphere) remains fixed in space while object 1 (the small blue

sphere) rolls on it. To ensure rolling, the relative linear velocity at the contact satisfies

V = 0 and the linear acceleration a satisfies the three constraints given in Eqn. (60)

of [61]: one constraint to maintain contact and two constraints that prevent slip.

Object 1 is made to roll at a constant speed along the “equator” of object 2 by choosing

(ωx, ωy, ωz) = (ω, 0, 0): object 1 always rotates about the downward-pointing x1-axis of

frame {2} in the tangent plane of the contact.

4.5.1. Instantaneous Solution

Consider the case where the initial configuration is q0 = (π/2, 0, π/2, 0, 0) as shown in

Fig 4.2(a). From the first-order kinematics in [61] we can solve for the initial contact

velocities

(4.10) q̇0 = (0, ρ2ωk1, 0,−ρ1ωk1, 0),
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where k1 = 1/(ρ1 + ρ2). Using the initial contact state (q0, q̇0), the controls (αx, αy, αz) =

(0, 0, 0), and the rolling assumptions (vx, vy, vz) = (0, 0, 0), we solve for (ax, ay, az) to sat-

isfy the second-order rolling conditions (Eqn. (60) of [61]) and the coordinate acceleration

q̈0. For the original equations (43) and (44) in [61] and the corrected equations (5.38)

and (4.8), we get

q̈0 = (ü1, v̈1, ü2, v̈2, ψ̈) = (0, 0, 0, 0, 0).(4.11)

The v1 and v2 coordinates change linearly with time while all other contact coordinates

remain constant, as would be expected for rolling along the equators. The original contact

kinematic equations give correct answers when the boxed terms in Eqns. (5.38) and (4.8)

are zero.

For the initial configuration in Fig. 4.2(b), however, everything is the same except

object 1 is tilted by π/4, i.e., the initial configuration is q0 = (π/4, 0, π/2, 0, 0). According

to the first-order kinematics in [61],

q̇0 = (0,
√

2ρ2ωk1, 0,−ρ1ωk1, ρ2ωk1),(4.12)

where k1 = 1/(ρ1 + ρ2). Solving the corrected equations (5.38) and (4.8) we obtain

(ü1, v̈1, ü2, v̈2, ψ̈) = (k2, 0, 0, 0, 0),(4.13)

where k2 =
ρ22ω

2

(ρ1+ρ2)2
. As expected, u2 remains constant (contact remains on the “equator”

of object 2) as v2 (the “longitude”) changes with time. On the other hand, Eqns. (43)
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and (44) in [61] yield

(ü1, v̈1, ü2, v̈2, ψ̈) =((
1− 2ρ1

ρ1 + ρ2

)
k2, 0,

(
2ρ1

ρ1 + ρ2

)
k2, 0, 0

)
.

(4.14)

The nonzero value of ü2 shows that the contact point incorrectly accelerates away from

the equator of object 2.

4.5.2. Simulation

The errors in the original equations are clearly demonstrated by simulation. Figure 4.3

shows the results of numerical simulations of the original second-order kinematics from [61]

and the corrected equations in this paper for ω = 2.5, sphere radii ρ1 = 2 and ρ2 = 3,

and the initial configurations shown in Fig. 4.2. A video of these simulations is available

at https://youtu.be/HlMitXg09rg.

4.6. Conclusions

This paper presents a corrected version of the second-order contact kinematics for

two smooth, rigid bodies in point contact initially derived in [60], and later published

in [61–63]. The corrected equations derived in Eqns. (5.38) and (4.8) allow for the

accurate simulation of second-order motion of two bodies in contact.

https://youtu.be/HlMitXg09rg
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ω

object 1
object 2

u2

v2< 0

(a) Initial configuration qo = (π/2, 0, π/2, 0, 0).
The (u2, v2) representation of an example point
on the surface of object 2 is shown.

ω

(b) Initial configuration q0 = (π/4, 0, π/2, 0, 0).

Figure 4.2. Small blue sphere: the rolling object 1. Large red sphere:
the stationary object 2. From both initial configurations, the blue sphere
is made to roll on the equator of the red sphere by rotating about the
downward-pointing axis in the contact tangent plane at all times.
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(a) Simulation starting from qo = (π/2, 0, π/2, 0, 0).
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(b) Simulation starting from q0 = (π/4, 0, π/2, 0, 0).

Figure 4.3. Simulated second-order rolling trajectories with the original
kinematics [61] shown by the dotted lines and the corrected kinematics
by the solid lines. Note that u2 and v̇2 should be constant for both (a)
and (b). The original and corrected kinematics yield the same results in
(a) because the incorrect terms in the original kinematics are zero, just as
they are in the corrected kinematics. The errors in the original kinematics
become clear in the simulation in (b).
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CHAPTER 5

Robotic Contact Juggling

5.1. Abstract

Chapter 4 focused on second-order kinematics, and we now focus on the more general

dynamic rolling. We define “robotic contact juggling” to be the purposeful control of the

motion of a three-dimensional smooth object as it rolls freely on a motion-controlled robot

manipulator, or “hand.” While specific examples of robotic contact juggling have been

studied before, in this paper we provide the first general formulation and solution method

for the case of an arbitrary smooth object in single-point rolling contact on an arbitrary

smooth hand. Our formulation splits the problem into four subproblems: (1) deriving the

second-order rolling kinematics; (2) deriving the three-dimensional rolling dynamics; (3)

planning rolling motions that satisfy the rolling dynamics; and (4) feedback stabilization

of planned rolling trajectories. The theoretical results are demonstrated in simulation and

experiment using feedback from a high-speed vision system.

The main contributions of this chapter are that it is the first work we know of to

formulate the rolling dynamics of a rigid body rolling on a six-DoF motion-controlled

manipulator for general manipulator and object shapes, it provides a compact form that

outputs the dynamics and contact wrench that can be used for trajectory optimization,

and the coordinate-based representation allows for the dynamics to be linearized to gener-

ate feedback controllers that stabilize planned trajectories. We also apply the method to
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model, plan, and stabilize dynamic, graspless, and hybrid rolling experiments that include

the first known implementation of the rolling pendulum swing up.

5.2. Introduction

Contact juggling is a form of object manipulation where the juggler controls the motion

of an object, often a crystal ball, as it rolls on the juggler’s arms, hands, torso, or even

shaved head. The manipulation is typically nonprehensile (no form- or force-closure grasp)

and dynamic, i.e., momentum plays a crucial role. An example is shown in Figure 5.1. This

is a variation of a contact juggling skill called “the butterfly,” and robotic implementations

of the butterfly have been described in [14,43,68]. The object (typically a ball) is initially

at rest on the palm, and the goal state is rest on the back of the hand. The hand is

accelerated to cause the object to roll up and over the fingers to the other side of the

hand.

We define “robotic contact juggling” to be the purposeful control of the motion of a

three-dimensional smooth object as it rolls freely on a motion-controlled robot manipu-

lator, or “hand.” Specific examples of robotic contact juggling have been studied before,

such as the butterfly example mentioned above and specific geometries such as a sphere

rolling on a motion-controlled flat plate. This paper extends previous work by providing

the first general formulation and solution method for the case of an arbitrary smooth ob-

ject in single-point rolling contact on an arbitrary smooth hand. Our formulation splits

the problem into four subproblems: (1) deriving the second-order rolling kinematics; (2)

deriving the three-dimensional rolling dynamics; (3) planning rolling motions that satisfy

the rolling dynamics and achieve the desired goal state; and (4) feedback stabilization of
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t = tft = 0
End

Start

Figure 5.1. Example of a dynamic rolling manipulation task known as “the
butterfly”. A smooth object is initially at rest in the palm of the hand, and
is regrasped to the back of the hand using dynamic rolling without slip or
breaking contact.

planned rolling trajectories. The theoretical results are demonstrated in simulation and

experiment using feedback from a high-speed vision system.

5.2.1. Background

When a three-dimensional rigid body (the object) is in single-point contact with another

rigid body (the hand), the configuration of the object relative to the hand is five dimen-

sional: the six degrees of freedom of the object subject to the single constraint that the

distance to the hand is zero. This five-dimensional configuration space can be parame-

terized by two coordinates uo = (uo, vo) describing the contact location on the surface

of the object, two coordinates uh = (uh, vh) describing the contact location on the sur-

face of the hand, and one coordinate ψ describing the angle of “spin” between frames

fixed to each body at the contact point. Collectively the contact configuration is written

q = (uo, vo, uh, vh, ψ) (Figure 5.2).
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Rolling contact is maintained when there is no relative linear velocity at the contact

vrel = (vx, vy, vz) = 0 (i.e. no slipping or separation). For rolling bodies modeled with

a point contact, no torques are transmitted through the contact, and relative spin about

the contact normal is allowed. We refer to this as “rolling.” For rolling bodies modeled

with a soft contact, torques can be transmitted and no relative spin about the contact

normal is allowed (ωrel,z = ωz = 0). We refer to this as “pure rolling.”

5.2.2. Paper Outline

As mentioned above, our approach to contact juggling divides the problem into four

subproblems: (1) calculating the second-order rolling kinematics; (2) deriving the rolling

dynamics; (3) planning rolling motions that satisfy the dynamics; and (4) feedback control

of rolling trajectories. An outline of each subproblem is given below.

5.2.2.1. Rolling Kinematics. First-order kinematics models the evolution of contact

coordinates q between two rigid bodies when the relative contact velocities are directly

controlled. The second-order kinematics is a generalization of the first-order model where

the relative accelerations at the contact are controlled. These models are used in our

derivation of the rolling dynamics to describe the evolution of the contact coordinates

during rolling motions. In Section 5.5 we outline the first- and second-order kinematics

which follows from work by Sarkar. et al. [61], but we also derive a new expression for

the acceleration constraints at the contact that enforce pure rolling.

5.2.2.2. Rolling Dynamics. The rolling dynamics equations give the accelerations of

the object, and contact wrench that results from known accelerations of the manipulator.

In Section 5.6 we define a state representation for the dynamic-rolling system and combine
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the rolling kinematics with the Newton-Euler dynamics equations to derive an expression

for the rolling dynamics. This formulation also characterizes the forces and torques at

the contact which allows the tangential and rotational friction limits and normal force

constraints to be checked. We validate the simulation of rolling dynamics with an example

of a sphere rolling on a rotating plate which has an analytical solution.

5.2.2.3. Rolling Motion Planning. In Section 5.7 we use direct collocation methods

and the rolling dynamics equations to plan dynamic rolling motions for an object rolling

on a manipulator. Given an initial state, we find a set of manipulator controls that brings

the system to the goal state.

5.2.2.4. Feedback Control. In Section 5.8 we demonstrate the use of a Linear Qua-

dratic Regulator (LQR) feedback controller to stabilize a nominal rolling trajectory.

The motion planning and feedback control are validated experimentally in Section 5.9.

5.2.3. Statement of Contributions

To our knowledge this is the first paper to formulate the rolling dynamics of a rigid body

rolling on a six-DoF motion-controlled manipulator for general manipulator and object

shapes. Our derivation of the rolling dynamics provides a compact form for the rolling

equations and contact wrench constraints which can be used in open-loop simulations or

nonlinear-constrained trajectory optimization. The coordinate-based representation also

allows for the dynamics to be linearized to generate feedback controllers that stabilize

planned trajectories. We apply the method to model, plan, and stabilize dynamic, gras-

pless, and hybrid rolling experiments that include the first known implementation of the

rolling pendulum swing up.
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Figure 5.2. The object and hand are in contact at the origin of frames
{co} and {ch}, but are shown separated for clarity. Two coincident contact
frames {pi} and {ci} for i ∈ [o, h] are given for each body at the contact,
where {pi} is fixed to the object and {ci} is fixed in the inertial frame {s}.
The surfaces of the object and hand are orthogonally parameterized by
(uo, vo) and (uh, vh), respectively. At the point of contact, the xci- and yci-
axes of the coordinate frames ({ci},{pi}) are in the direction of increasing
ui (and constant vi) and increasing vi (and constant ui), respectively, and
the contact normal nci is in the direction xci ×yci . Rotating frame {ch} by
ψ about the nco-axis of frame {co} aligns the xch-axis of frame {ch} and the
xco-axis of frame {co}.

5.3. Related Work

5.3.1. Kinematic Rolling

The rolling-kinematics equations describe the evolution of the contact coordinates during

rolling motions. First-order kinematics addresses the rolling problem where the relative

contact velocities are given. The second-order kinematics is a generalization of the first-

order model where the relative accelerations at the contact are specified.

Montana derives the first-order contact kinematics for two 3D objects in contact [49].

His method models the full five-dimensional configuration space, but it is not easily gen-

eralized to second-order kinematics. Harada et al. define the concept of neighborhood

equilibrium to perform quasistatic regrasps of an object rolling on a flat manipulator
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using Montana’s kinematics equations [26]. First- and second-order contact equations

were derived by Sarkar et al. in [61] and republished in later works [62, 63]. Errors in

the published equations for second-order contact kinematics in [61–63] were corrected in

our recent work [75]. Another of our recent works covers motion planning and feedback

control for first-order-kinematic rolling between two surfaces [76].

Each of [26,49,61–63,75,76] assumes an orthogonal parameterization, as shown in

Figure 5.2. Recent work by Xiao and Ding derives the second order kinematics equations

for non-orthogonal surface parameterizations [77].

5.3.2. Dynamic Rolling

The evolution of dynamic rolling systems is governed by forces and torques at the contact.

We review planar and spatial rolling for two- and three-dimensional models. Planar rolling

is holonomic whereas spatial rolling is nonholonomic, but both have interesting motion

planning and control results, and spatial rolling problems can be locally modeled using

planar assumptions.

5.3.2.1. Planar Rolling. The butterfly example shown in Figure 5.1 was first intro-

duced by Lynch et al. in [43]. Cefalo et al. demonstrate energy-based control of the

butterfly robot to move a ball to an unstable equilibrium and stabilize it using a lin-

ear approximation of the system. Surov et al. plan and stabilize rolling motions for

the butterfly robot using virtual-holonomic-constraints-based planning and transverse-

linearization-based orbital stabilization [68].

Taylor and Rodriguez perform shape optimization of manipulators and motion plan-

ning for dynamic planar manipulation tasks [70]. Ryu and Lynch derive a feedback
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controller that enables a planar, disk-shaped manipulator to balance a disk while track-

ing trajectories [59]. Erumalla et al. perform throwing, catching, and balancing for an

experimental setup of a disk on a disk-shaped manipulator [21]. Lippiello et al. develop

a control framework for nonprehensile planar rolling dynamic manipulation and validate

it experimentally for a disk on a rotating disk [37]. Serra et al. apply a passivity-based

approach to the same problem in [65].

5.3.2.2. General Spatial Rolling. General methods exist for simulating rigid bodies

in contact, some of which explicitly handle rolling contacts. Anitescu et al. develop a

general method for contact dynamic simulations [5]. It uses a complementary formulation

that allows simulation of multiple rigid bodies, and uses the first-order-rolling equations

from Montana [49] to solve for contact constraints. Liu and Wang develop a time-stepping

method for rigid-body dynamics that specifically addresses rolling contacts [38]. Duindam

et al. model the kinematics and dynamics of compliant contact between bodies moving

in Euclidean space [19]. There are many software packages for performing dynamic simu-

lations [28], and a subset of those can explicitly handle rolling constraints. Because each

object state is represented as an independent six-DoF rigid body, these methods allow for

non-zero contact distances (separation or penetration) and are less focused on modeling

the rolling interaction between objects.

5.3.2.3. Prehensile Spatial Rolling. There are many works that address prehensile

motion planning for a ball (sphere) that is in contact with a stationary plate but actuated

by a second plate [8, 18, 27, 31, 53]. Sarkar et al. expand the second-order kinematics

equations to generate a dynamic model for an object caged between two surfaces [63].
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They use feedback linearization to control dynamic rolling motions for two planes in

contact with a sphere.

5.3.2.4. Nonprehensile Spatial Rolling. Jia and Erdmann derive dynamic equations

and show the observability of an object with an orthogonal parameterization on a flat

plate equipped with a contact position sensor [29]. Choudhury and Lynch build off of

this work and stabilize the orientation of a ball rolling in an ellipsoidal dish actuated

along a single degree of freedom [16]. Both these works assume no rotational motion of

the hand which simplifies the modeling and control problem.

Gahleitner models a sphere with three rotation inputs balancing another sphere, de-

signs a stabilizing controller, and validates the results experimentally [24]. Additionally

there are numerous papers on control for an object in nonprehensile contact with a plate

that control the contact location on the hand but do not consider the orientation of the

object [7,35]. To the extent of my knowledge, only one paper does dynamic, nonprehensile

planning for a ball on a plate while considering the full position and pose of the ball [64].

Works by Milne (part III.XV of [47]) and Weltner [73] derive analytical solutions for a

sphere rolling on a rotating plate with a constant angular velocity that we use to validate

our rolling dynamics equations in Section 5.6.

As mentioned in Section 5.2.3, to our knowledge this paper is the first to formulate

the rolling dynamics of a rigid body rolling on a six-DoF motion-controlled manipulator

for general manipulator and object shapes.
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5.4. Notation

For general variables, matrices and vectors are bold uppercase and bold lowercase

letters respectively. Scalars are non-bold italic, and coordinate frames are expressed

as lowercase letters in curly brackets. Notations for variables and operators (mappings

between spaces) are shown in Table 5.1, and selected operator expressions are given in

Appendix 5.11.

The space frame (i.e., inertial reference) is defined as {s}, and the hand frame is define

as {h}. The object frame {o} is located at its center of mass and aligned with the principal

axes. Two coincident contact frames {pi} and {ci} for i ∈ [o, h] are given for each body

at the contact, where {pi} is fixed to the body and {ci} is fixed in {s} (see Figure 5.2).

Double subscripts indicate a comparison between two frames expressed in the frame of

the first subscript. For example, Rso gives the rotation matrix relating frame {o} relative

to frame {s} expressed in {s}, and Vsh gives the twist of the hand relative to the space

frame {s} expressed in {s}. In deriving the kinematics and dynamics equations, we often

compare the relative velocities between different frames expressed in a specific frame which

we denote with a preceding superscript. For example, chVphpo gives the twist of frame {po}

relative to {ph} expressed in the {ch} frame and is equivalent to [AdTchs
](Vspo − Vsph),

where [AdT] is the adjoint map operator associated with the transformation matrix T

that maps variables between coordinate frames. “Body twists” are defined as iVsi, and

represent the twists of the body relative to the space frame, expressed in its own coordinate

frame {i}. Variables must be expressed in the same frame to compare, and we resolve the

kinematics and dynamics expressions in the contact frame of the hand {ch}.
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Table 5.1. Notation

Variable Description Dimensions

{ · } Coordinate frame -
r Position vector r = (x, y, z) 3× 1

Φ xyz Euler angles Φ = (θ, β, γ) 3× 1

R Rotation matrix R ∈ SO(3) 3× 3

T Transformation matrix T ∈ SE(3) 4× 4

ω Rotational velocity ω = (ωx, ωy, ωz) 3× 1

v Linear velocity v = (vx, vy, vz) 3× 1

V Twist V = (ω,v) 6× 1

α Rotational acceleration α = ω̇ = (αx, αy, αz) 3× 1

a Linear acceleration a = v̇ = (ax, ay, az) 3× 1

V̇ Change in twist V̇ = (α, a) 6× 1

q Contact coordinates q = (uo, vo, uh, vh, ψ) 5× 1

G Spatial inertia matrix 6× 6

F Wrench F = (τx, τy, τz, fx, fy, fz) 6× 1

s Dynamic rolling states 22× 1

ξ State and control pair (s, hV̇sh) 28× 1

Operator Description (expressions in Appendix 5.11) Mapping

[ · ] Vector to skew-symmetric form R3 7→ so(3)
[AdT] Adjoint map associated with T SE(3) 7→ R6×6

[adV ] Lie bracket matrix form of V R6 7→ R6×6

F(u) Surface parameterization (u, v) 7→ (x, y, z)

The surface of each body is represented by an orthogonal parameterization: Fi : ui →

R3 : (ui, vi) 7→ (xi, yi, zi), where the coordinates (xi, yi, zi) are expressed in the {i} frame.

We assume that Fi is continuous up to the third derivative (class C3), so that the local

contact geometry (contact frames associated with the first derivative of Fi, curvature

associated with the second derivative, and derivative of the curvature associated with the

third derivative) are uniquely defined. Standard expressions for the local geometry of

smooth bodies are given in Appendix 5.12.1.
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5.5. Rolling Kinematics

5.5.1. First-Order-Rolling Kinematics

The contact configuration of two bodies in rolling contact can be parameterized by q =

(uo, vo, uh, vh, ψ) (see Figure 5.2). First-order kinematics models the evolution of contact

coordinates between two rigid bodies when the relative contact velocities are known. The

relative twist at the contact in {ch} is given by chVphpo = Vrel = [ωx ωy ωz vx vy vz]
T. To

maintain contact, the non-separation constraint vz = 0 must be satisfied. Enforcing the

constraints vx = vy = 0 ensures rolling without linear slip in the contact tangent plane

(rolling). Further, enforcing the constraint ωz = 0 ensures no relative spinning about the

contact normal (pure rolling). We refer to these as the first-order-rolling and first-order-

pure-rolling constraints respectively. The first-order-rolling kinematics (vx = vy = vz = 0)

from [61] can be expressed in matrix form as:

(5.1) q̇ = K1(q)ωrel,

where ωrel = chωphpo = [ωx ωy ωz]
T is the relative rotational velocity at the contact

expressed in {ch}. The matrix K1(q), given in Appendix 5.12.2, maps the relative rota-

tional velocity at the contact to the change in contact coordinates q̇. The dimension of

valid contact velocities for rolling and pure rolling are three and two respectively, so the

five-dimensional q̇ is subject to constraints given at the end of Appendix 5.12.2.

An expression for the body twist of the object given the body twist of the hand hVsh

and the relative twist at the contact Vrel is used in the dynamics derivation in Section 5.6.
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The equation is defined as:

(5.2) oVso = [AdToh ]hVsh + [AdToch
]Vrel,

where Vrel = chVphpo , and [AdT] is the adjoint map associated with the transformation

matrix T.

5.5.2. Second-Order-Rolling Kinematics

The general form of the second-order kinematics gives q̈ as a function of the current state

and V̇rel = chV̇phpo = [αx αy αz ax ay az]
T (the derivative of the relative twist at the

contact expressed in {ch}). This expression includes the relative rotational accelerations

αrel = [αx αy αz]
T and the relative linear accelerations arel = [ax ay az]

T. The second-order

kinematics from [61] can be expressed in matrix form as:

(5.3) q̈ = K2(q, ωrel) + K3(q)V̇rel,

where the terms K2(q, ωrel) and K3(q) are given in Appendix 5.12.3.

This general form allows relative sliding at the contact. To maintain rolling, V̇rel must

lie in a three-dimensional subspace satisfying

(5.4) arel = aroll = [ax ay az]
T
roll = −ωrel × chvcoo,

as derived in Eq. (60) of [61]. To maintain pure rolling, V̇rel must lie in a two-dimensional

subspace additionally satisfying the constraint αz = αz,pr, which is different from the

result found in [61], and is derived for the first time in Appendix 5.12.3.1. For the case of
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Figure 5.3. Rolling rigid bodies in space. The contact cordinate frames
{co, po} and {ch, ph} are shown by solid and dotted coordinate axes respec-
tively. The box shows a zoomed view of the frames at the contact and the
relative rotational and linear velocity directions.

pure rolling ωz = 0, and the relative linear acceleration constraints [ax ay]
T
roll in Eq. (5.4)

simplify to 0.

An expression for the body accelerations of the object oV̇so as a function of the hand

accelerations hV̇sh and the relative accelerations V̇rel is used in the dynamics derivation

in Section 5.6. Taking the derivative of Eq. (5.2) in frame {ch} (following the derivative

rule for expressions in different frames from Appendix 5.11.2) gives:

(5.5)

oV̇so =[AdToh ]hV̇sh + [AdToch
]V̇rel

+ K4(q, ωrel,
hωsh),

where K4(q, ωrel,
hωsh) contains the velocity-product terms and is given in Appendix 5.12.3.2.
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5.6. Rolling Dynamics

A diagram of the object and hand in rolling contact is shown in Figure 5.3. The full

six-dimensional orientation and position of each body i ∈ [o, h] is expressed by the trans-

formation matrix Tsi ∈ SE(3) that consists of the rotation matrix Rsi ∈ SO(3) and vector

rsi = (xsi, ysi, zsi) that give the orientation and position of {i} relative to the space frame

{s}. The orientation of each body can be minimally represented by the roll-pitch-yaw Eu-

ler angles Φsi = (θi, βi, γi). These map to a rotation matrix by combining rotations about

the x-, y-, and z-axes of the space frame: Rsi(Φsi) = Rot(zs, γi)Rot(ys, βi)Rot(xs, θi),

where Rot(zs, γi) is the rotation matrix representing a rotation of angle γi about the axis

zs. The six-dimensional velocity vector for each body is represented by the body twist

iVsi = (iωsi,
ivsi) expressed in the {i} frame for i ∈ [o, h].

The combined configurations of the object and hand are 12-dimensional, subject to one

constraint that the distance between the two bodies is zero. The velocities of the object

and hand are 12-dimensional, with three velocity constraints for rolling (vx = vy = vz = 0),

and four velocity constraints for pure rolling (vx = vy = vz = ωz = 0). A minimal

representation of the state of the system therefore requires 20 states for rolling, or 19

states for pure rolling. The configuration of the hand can be minimally represented by

the pair (Φsh, rsh), and therefore Tso, the configuration of the object, is fully specified

by the hand configuration (Φsh, rsh) and the contact configuration variables q. The body

twist of the hand is represented by hVsh, and the body twist of the object oVso is fully

specified by Eq. (5.2) using the state of the hand (Φsh, rsh,
hVsh), the contact configuration

q, and the relative rolling velocity ωrel. We represent the relative rolling velocity as the

five-dimensional vector q̇ from Eq. (5.1) instead of the three-dimensional ωrel. This adds
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two variables to the state representation, but allows the evolution of the contact velocities

to be integrated using Eq. (5.3). We therefore define the state of the dynamic rolling

system as s = (Φsh, rsh,q,
hVsh, q̇) ∈ R22 with two constraints on q̇ for rolling, and three

constraints on q̇ for pure rolling given in Appendix 5.12.2.

We assume that the hand is directly controlled by acceleration inputs hV̇sh. The

model parameters include contact friction model (rolling vs. pure rolling) and friction

coefficient(s), the surface parameterizations Fi(ui), and the spatial inertia matrix of the

object: Go = blockdiag(Jo,moI3), where Jo is the rotational inertia matrix for the object,

mo is the mass of the object, and I3 is the 3×3 identity matrix. We then solve for dynamic

equations describing the motion of the object as follows:

Given:

(1) Model parameters Fi(ui), Go, and friction parameters

(2) States: s = (Φsh, rsh,q,
hVsh, q̇)

(3) Acceleration of the hand: hV̇sh = (hαsh,
hash)

Find:

(1) Relative rotational accelerations at the contact: αrel

(2) Contact wrench chFcontact (to test friction limits)

5.6.1. Rolling Dynamics Derivation

The six body accelerations of the object oV̇so are governed by the Newton-Euler equations

(see Ch. 8.2 of [42]) and can be expressed as:

(5.6) GooV̇so = [adoVso ]
T GooVso + oFgo + oFcontact,
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where Go is the body inertia matrix of the object, and oFgo is the gravitational wrench on

the object. The contact wrench oFcontact is given by oFcontact = [AdTcho
]TchFcontact, where

chFcontact = [0 0 0 fx fy fz]
T for rolling and chFcontact = [0 0 τz fx fy fz]

T for pure rolling.

Eq. (5.5) can be substituted into Eq. (5.6) to obtain:

(5.7)

[AdToch
]V̇rel − Go−1[AdTcho

]TchFcontact =

Go−1([adoVso ]
T GooVso + oFgo)

−K4(q, ωrel,
hωsh)− [AdToh ]hV̇sh,

where the only unknowns are in V̇rel and chFcontact. We substitute the second-order-rolling

constraints arel = aroll in Eq. (5.4) for rolling, and the additional constraint αz = αz,pr in

Eq. (5.43) for pure rolling. Rearranging gives us the following forms for rolling and pure

rolling, respectively:

K5(s)[αx αy αz fx fy fz]
T = K6(s)− [AdToh ]hV̇sh,(5.8)

K5pr(s)[αx αy τz fx fy fz]
T = K6pr(s)− [AdToh ]hV̇sh.(5.9)

The expressions for K5(s), K6(s), K5pr(s), K6pr(s) are omitted for brevity, but are the

result of straightforward linear algebra on equation (5.7). An example derivation can be

found in the supplemental code. For the rolling assumption, Eq. (5.8) can be solved to

find the relative rotational acceleration at the contact αrel = [αx αy αz]. For the pure-

rolling assumption, Eq. (5.9) can be solved for [αx αy] and combined with the pure-rolling

constraint on αz from Eq. (5.43) to find αrel.
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The contact wrenches for rolling and pure rolling can be extracted from Eq. (5.8) and

Eq. (5.9) respectively:

chFcontact,roll = [0 0 0 fx fy fz]
T,(5.10)

chFcontact,pr = [0 0 τz fx fy fz]
T.(5.11)

The dynamics equations allow positive and negative normal force and infinite tangential

force at the contact (and spinning torque for pure rolling). The contact wrench expressions

can be used to define nonlinear constraints that enforce non-negative normal force and

bounded contact wrenches. Positive normal force is enforced by fz ≥ 0, and the tangential

friction force constraint can be expressed as [f 2
x f

2
y ]T ≤ f 2

zµs, where µs is the coefficient

of static friction. For pure rolling, the rotational torque constraint can be additionally

enforced as τ 2
z ≤ f 2

zµspin, where µspin is the coefficient of spinning friction at the contact.

These constraints can be used during nonlinear trajectory optimization to enforce the

friction limits.

5.6.2. Simulating the Rolling Dynamics

The state of the dynamic rolling system is defined as s = (Φsh, rsh,q,
hVsh, q̇) ∈ R22.

The state evolution of the hand is directly controlled by the change in body twist hV̇sh.

The state of the object is represented by the state of the hand, the contact coordinates

q, and coordinate velocities q̇. The contact coordinate accelerations q̈ are needed to

integrate the contact coordinates over time. An expression for q̈ is given by the second-

order kinematics in Eq. (5.3), which takes the relative rotational accelerations αrel as an

input. The expression for αrel is found by solving Eq. (5.8) and Eq. (5.9) for rolling and
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pure rolling respectively. For both rolling and pure rolling the dynamics equations can be

rearranged into control-affine form:

(5.12) ṡ = K7(s) + K8(s)hV̇sh,

where the expressions for K7(s) and K8(s) are large symbolic expressions that are omitted

for brevity (an example derivation can be found in the supplemental code). The evolution

of the state s can be simulated using a numerical integrator such as MATLAB’s ode45.

In implementation one can avoid large, symbolic matrix inversions needed to solve for

Eq. (5.12) by numerically evaluating K5 and K6 from Eq. (5.8) for rolling or K5pr and

K6pr from Eq. (5.9) for pure rolling at each time step, solving for αrel, and then solving

Eq. (5.3) numerically for q̈. The state s, controls hV̇sh, and q̈ can then be combined into

the vector ṡ from Eq. (5.12).

5.6.3. Example: Ball on a Rotating Plate

To validate our dynamic equations (Eq. (5.12)) we consider a solid, homogeneous sphere

rolling without slipping on a plate spinning at a constant speed about an axis perpendicu-

lar to the plate. The plate may be perpendicular to gravity (horizontal) or inclined. This

is a well-studied problem (see [73] and Part III.XV of [47]) with analytical solutions for

the motion of the sphere. For a horizontal plate, the contact point of the ball rolls in a

circular orbit on the plate (Figure 5.4(a)), and if the plate is inclined in gravity, the motion

is the circular orbit plus a constant drift in a direction perpendicular to the gravitational

component in the plane of the plate (Figure 5.4(b)). The circle radius and center point

are determined analytically from the initial conditions of the ball. Simulations of the
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Figure 5.4. The x- and y-axes shown are fixed in the inertial frame and
aligned with the plate. The plate spins about the z-axis at an angular
velocity ωplate. A sphere is initially in contact at the origin and rolling in
the −y direction without slipping. In (a) the plane of the plate is in the
x-y plane of the inertial frame and gravity acts in the −z direction. The
contact point of the sphere follows a circular orbit. In (b) the plate is tilted
by angle θ about the x-axis of the inertial frame, so has a component g sin θ
in the −y direction. The contact point motion is the sum of the circular
orbit and a constant drift in the +x direction.

dynamic rolling equations from Section 5.6.1 are consistent with the analytical solutions,

as demonstrated in the following two examples.

5.6.3.1. Horizontal Rotating Plate. Consider a horizontal plate coincident with the

origin of the inertial frame with a constant rotational velocity about its z-axis, hωsh,z =

ωplate (Figure 5.4(a)). A ball with radius ρo is initially in contact with the plate at hrhch(0),

where {ch} is the contact frame on the plate. The ball has an initial linear velocity hvho

and no rotational velocity. From [73], the ball follows a circular trajectory with the

following properties:
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ωc =
2

7
ωplate,(5.13)

hrhc = hrhch(0)− hvho × [0 0 1/ωc]
T,(5.14)

ρc = ||hrhch(0)− hrhc||,(5.15)

where hrhc and ρc are the center and radius of the circle trajectory, respectively, and ωc

is the angular velocity of the contact point about the center of the circle.

For this validation, we choose the following parameters and initial conditions for a

ball in contact at the origin that is initially rolling without slipping in the −y direction:

ωplate = 7 rad/s, ρo = 2 m, hrhch(0) = [0 0 0]T m, hvho = [0 − 2 0]T m/s. Evaluating at

the initial conditions gives ωc = 2 rad/s, hrhc = [1 0 0]T m, and ρc = 1 m.

We now simulate the rolling sphere using the dynamic rolling method derived in Sec-

tion 5.6.1. The surface of the ball is parameterized by the sphere equation Fo : uo →

R3 : (uo, vo) 7→ (ρo sin(uo) cos(vo), ρo sin(uo) sin(vo), ρo cos(uo)), where the “latitude” uo

satisfies 0 < uo < π. The plate is parameterized as a plane Fh : uh → R3 : (uh, vh) 7→

(uh, vh, 0). The spatial inertia matrix for the sphere is given by Go = blockdiag(Jo, moI3),

where Jo = 2
5
moρ

2
oI3, mo = 1 kg, and I3 is the 3× 3 identity matrix. The friction model

is rolling (relative spin at the contact allowed), and the static friction µs is large enough

so slip does not occur.

The state of the sphere-on-plane system can be represented by the state vector s =

(Φsh, rsh,q,
hVsh, ωrel), where Φsh(0) = (0, 0, 0), rsh(0) = (0, 0, 0), q(0) = (π/2, 0, 0, 0, 0),
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hVsh(0) = (0, 0, 7, 0, 0, 0), ωrel(0) = (1, 0,−7) gives q̇ = (0, 1, 0,−2,−7) from Eq. (5.1),

and the control input is given as hV̇sh(t) = (0, 0, 0, 0, 0, 0).

The first- and second-order kinematics equations for the sphere-on-plane system are

found using the expressions in Appendix 5.12. The state of the system is then simulated

using the kinematics equations and the rolling dynamics in Eq. (5.12). The simulated

rolling trajectory matches the analytical solution by tracing a circular trajectory on the

plane of radius ρc = 1 m, centered at hrhc = [1 0 0]T m, and in tf = π (ωc = 2 rad/s).

A visualization of the trajectory is shown in Figure 5.5(a) and a 10 second video of the

simulation is included here: https://youtu.be/EZggYdh3F2M. We tested the numerical

accuracy of our method by simulating the system for 120 seconds. The divergence of the

radius from the analytical circular trajectory was less than 0.01%.

To compare the accuracy of our approach to a commonly used physics simulator

we implemented the rolling example using Bullet Physics C++ version 2.89, and found

comparable results except that the object diverged from the circular trajectory over time

as shown in Figure 5.6. A video of the bullet simulation is included here: https://youtu.

be/1eovapg_Ako. This method had much larger errors, and the divergence of the radius

from the analytical circular trajectory was 40% after only 10 seconds.

5.6.3.2. Tilted Rotating Plate. The motion of a ball on a tilted plate with a constant

rotational velocity is a cycloidal orbit with the same rotational velocity ωc from the

previous section but with an additional uniform linear drift velocity perpendicular to the

force of gravity given by:

(5.16) vdrift =
5

2

g

ωplate

sin θ,

https://youtu.be/EZggYdh3F2M
https://youtu.be/1eovapg_Ako
https://youtu.be/1eovapg_Ako
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(a) Horizontal

(b) Tilted

Figure 5.5. Visualizations of the sphere-on-plane rolling trajectories for a
plane with a constant rotational body velocity hωsh,z = ωplate = 7 rad/s.
The paths are shown by the black, dotted lines for (a) a horizontal plane
and (b) a plane tilted by 0.1 rad about the x-axis of the inertial frame (see
Figure 5.4(b)). The spheres move in a counter-clockwise motion along the
trajectories with a period of π seconds, and (b) drifts in the x direction at a
velocity given by Eq. (5.16). These results are consistent with the analytical
solutions shown in Figure 5.4 and derived in [73].

where g is gravity, ωplate = hωsh,z is the rotational velocity of the plate about its z-axis

and θ is the tilt of the plate creating a gravitational component in the −y direction (see

Figure 5.4(b)).

We simulate the system for 10 seconds using the same initial conditions and controls

for the horizontal case except except with a tilt of 0.1 rad about the x-axis of the inertial
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Figure 5.6. Comparison of the horizontal rolling trajectory using our
method (blue) and using the Bullet physics simulator (red) with the same
initial conditions and simulated for 10 s. Our method matches the circular
analytical trajectory of radius 1 m centered at (1,0). The Bullet simulation
has the same initial conditions but drifts from of the circular trajectory.

frame Φsh(0) = (0.1, 0, 0) rad. The sphere follows a circular motion of period π seconds

combined with a constant drift velocity of 0.35 m/s which is consistent with Eq. (5.16).

A visualization of the rolling trajectory is shown in Figure 5.5(b) and a video of the

simulation is included here: https://youtu.be/O72dWKWqFh0.

5.6.4. Open Loop 3D-Rolling Example

Our dynamics formulation applies to arbitrary smooth geometries of the object and

hand, unlike previous work restricted to specific geometries (e.g., a sphere on a plane) or

the approximations built into standard physics engine simulations (e.g., Bullet) of rolling

contact. As one example, Figure 5.7 illustrates an ellipsoid rolling in an ellipsoidal shaped

bowl. Videos of dynamic simulations with the rolling and pure-rolling friction assumptions

applied can be seen in the supplemental media and at the following links: dynamic rolling

https://youtu.be/O72dWKWqFh0
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Figure 5.7. Dynamic rolling example of an ellipsoid rolling in an ellipsoidal
dish. Videos of open loop dynamic simulations with the rolling and pure-
rolling friction assumptions applied can be seen in the supplemental media
and at the following links: dynamic rolling (rigid contact): https://youtu.
be/zroDTij17JU, dynamic pure-rolling (soft contact): https://youtu.be/
wV4II7uxtMk.

(rigid contact): https://youtu.be/zroDTij17JU, dynamic pure-rolling (soft contact):

https://youtu.be/wV4II7uxtMk.

5.7. Contact Juggling Motion Planning

In this section the rolling dynamics equations are used to plan rolling motions that

bring the hand and object from an initial state sstart to a goal state sgoal. This builds on our

previous work in [76] where we demonstrate an iterative planning method for kinematic

rolling between smooth objects (the relative rolling velocities are directly controlled). The

two primary differences in this implementation are: (1) we replace the kinematic equa-

tions of motion with the higher-dimensional dynamic-rolling equations; (2) we incorporate

nonlinear constraints to enforce positive normal forces and bounded frictional wrenches.

An “admissible” trajectory is defined as a set of states and controls ξ(t) = (s(t), hV̇sh(t)),

from t = 0 to the final time t = tf , that satisfies the rolling dynamics equation in Eq. (5.12)

and the contact wrench limits. A “valid” trajectory is defined as an admissible trajectory

that also satisfies serror(tf ) < η, where η is the tolerance on the final state error and

https://youtu.be/zroDTij17JU
https://youtu.be/zroDTij17JU
https://youtu.be/wV4II7uxtMk
https://youtu.be/wV4II7uxtMk
https://youtu.be/zroDTij17JU
https://youtu.be/wV4II7uxtMk
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serror(tf ) = ||s(tf ) − sgoal||, where || · || corresponds to a weighted norm that puts state

errors in common units. (Throughout the rest of this paper, we use the Euclidean norm.)

The motion-planning problem can be stated as:

Given: The rolling dynamics equations and contact wrench expressions from Section 5.6,

the states (sstart, sgoal), and the rolling time tf ,

find: a valid rolling trajectory ξ(t) = (s(t), hV̇sh(t)) for t ∈ [0, tf ] that brings the system

from s(0) = sstart to s(tf ) = sgoal.

We plan rolling motions using an iterative direct collocation (iDC) nonlinear opti-

mization method described in our recent work [76]. The optimization first solves for a

trajectory history that is represented coarsely, using a small number of state and control

segments. The solved-for controls are then simulated by a more accurate, higher-order

numerical integration method than the integrator implicit in the constraints in the non-

linear optimization. If the simulated trajectory satisfies the error tolerances, the problem

is solved. If not, the previous solution is used as an initial guess, the number of state

and control segments is increased, and the optimization is called again. This is repeated

until a valid trajectory is found, the maximum number of iDC iterations is reached, or the

optimization converges to an invalid point. The details are included in Appendix 5.13.

We focus on plans for cases where the object and hand are stationary at sstart. We

refer to plans where sgoal is also stationary as “stationary-to-stationary” motions. We

refer to plans where sgoal is moving as “stationary-to-rolling” motions, with the special

case “stationary-to-freeflight” when the object and hand separate (fz = 0, az,rel > az,roll)
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at the final time tf . The planning problem can also consider “full control” of all six hand

accelerations hV̇sh(t), or subsets such as “rotational control” of the rotational accelerations

hαsh, or “linear control” of the linear accelerations hash.

5.7.1. Planning for a Ball on Plate Reconfiguration

Recent work by [64] addresses planning and control for dynamic, nonprehensile repo-

sitioning and reorientation for a ball on a horizontal plate (the z-axis is aligned with

gravity). The ball is initially at rest on the plate, and a goal position and orientation for

the ball is given. The controls are the two rotations about the x- and y-axes of the plate.

The desired path is generated by time-scaling a geometric planning method from [8], and

then tracked using a feedback controller. An example from the paper is reproduced in

Figure 5.8; The stationary initial and goal configurations for the sphere on the plate are

shown in Figure 5.8(a) and (b), respectively. Visualizations of the contact locations on

the hand for the geometric solution are shown by the dashed black lines in Figure 5.8(c)

and (d).

Our method for trajectory planning utilizes the iterative direct collocation method

detailed in Appendix 5.13. To match the method above we constrain the hand to have

two rotational degrees of freedom which decreases the number of controls from six to two.

We then simplify the dynamics equation from Eq. (5.12) by substituting the constant

values rsh = hvsh = hash = 0, and the constraint on the hand accelerations expressed in

the world frame sαsh,z = 0. The number of states is therefore decreased from 22 to 16.

We initialize the planner with a stationary trajectory where the ball stays in place

and no controls are applied. The iDC algorithm was then run using the parameters given
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π/2 rad

0.033 m

(a) Start (b) Goal

(c) (d)

Figure 5.8. Initial and goal states for reorienting a sphere on a plate are
shown in (a) and (b) respectively. The goal state is 0.033 m from the
start state in the -y direction, with the object rotated π/2 rad about the
x-axis. A visualization of the sphere rolling trajectory from the geometric
plan from [64] is shown by the black dashed lines in (c) and (d), and the
optimized plan from the iterative direct collection method is shown by the
solid blue lines. The start position is shown by the “×”, and the goal
position is shown by the “◦” An animation of the optimized solution can
be seen in the supplemental media.

in Table 5.2. The weight Q was reduced to zero after the first iteration because the

inadmissible straight-line trajectory is no longer needed to bias the trajectory towards a

solution.
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Table 5.2. Trajectory optimization parameters for ball-on-plate example

Description Value
Trajectory time tf 2 s
Initial # of segments N 50 (∆t = 0.04 s)
Goal error tolerance η 0.1
Max iDC iterations 4
Max fmincon func evals/iter 105

Control limits ||αx|| ≤ 50, ||αy|| ≤ 50
Constraint integration method trapezoidal
Initial guess stationary
P1 (terminal state weight) blkdiag(I3, 10I2, 1000I2, 10, I3, 10I5)1000
Q (tracking weight) blkdiag(I3, 10I2, 1000I2, 10, I3, 10I5)/100
R (control weight) diag(0.001, 0.001)

A valid trajectory was found after three iterations of (50, 100, 200) segments with

planning times (171 s, 346 s, 946 s) for a total planning time of 24 minutes (run on

an i7-4700MQ CPU @ 2.40 GHz with 16 GB of RAM). A visualization and plot of the

optimized trajectory are shown in Figure 5.8 (c) and (d) respectively. A comparison

of the two trajectories is shown in Table 5.3. The optimized trajectory is preferable

because it has a shorter path length, and a smaller bounding box around the contact

trajectory. The planning method can also be generalized to objects besides spheres on

plates. The geometric method, however, guarantees completeness assuming the plate is

large enough, has no final state error, and the trajectory is generated by simple algebraic

expressions which makes the computation time negligible compared to the finite planning

time for the iDC method. A video of the simulation is included here: https://youtu.

be/WAX76SR8UOo

https://youtu.be/WAX76SR8UOo
https://youtu.be/WAX76SR8UOo
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Table 5.3. Comparison of the geometric and optimization motion planning
results for reorienting a sphere on a plate

Geometric [64] Optimized (Sec. 5.7)
Path length on hand 0.60 m 0.24 m
Bounding box area on hand 0.039 m2 0.0037 m2

Final state error: serror(tf ) 0.0 0.07
Handles general shapes? sphere-plane only yes
Planning time Negligible 24 minutes
Completeness Complete No guarantees

5.8. Feedback Control for Dynamic Rolling

We apply the same feedback controller outlined in our recent work [76] to stabilize

the rolling trajectories. The method uses a linear quadratic regulator (LQR) to stabilize

the linearized dynamics along a known trajectory. LQR computes a time-varying gain

matrix KLQR(t) that optimally reduces the total cost for small perturbations about the

nominal trajectory. LQR requires a cost function, and we use the one given in Eq. (5.47),

where sdes(t) is set to the nominal trajectory we are tracking snom(t). We solve the matrix

Riccati equation to find the time varying feedback control matrix KLQR(t) (see Section 2.3

of [3]).

(5.17)

− Ṗ(t) = P(t)Ã(t) + Ã(t)TP(t)−

P(t)B̃(t)R−1
LQRB̃(t)TP(t) + QLQR,

P(tf ) = P1,LQR

KLQR(t) = R−1
LQRB̃(t)TP(t).

The time-varying matrices Ã(t) and B̃(t) come from linearizing about the nominal tra-

jectory snom(t) (see [76]), and P1,LQR, QLQR, and RLQR are the controller gain matrices
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weighting the goal-state error, desired trajectory deviation, and control cost respectively.

The time-varying gain matrix KLQR(t) from Eq. (5.17) can be expressed as the function:

(5.18) KLQR(t) = K(snom(t),P1,LQR,QLQR,RLQR).

The matrix KLQR(t) is then used in the feedback control law

(5.19) hV̇sh,fbk(s, t) = hV̇sh,nom(t)−KLQR(t)(s(t)− snom(t))

to stabilize the nominal trajectory. The linearized dynamics are controllable about almost

all trajectories (i.e., generic trajectories). Specially chosen trajectories can be uncontrol-

lable such as those with symmetry properties as demonstrated for kinematic rolling in [76].

5.8.1. Feedback Control Example

Consider the optimized open loop rolling trajectory shown in Fig. 5.8 (c) and (d). The

feedback controller in Eq. (5.19) can be used to recover from: (1) initial state error;

(2) perturbations along the trajectory; and (3) error due to planning rolling motions

using a coarse approximation of the dynamics. In this example we demonstrate how the

feedback controller can be used to decrease error from the the third source, the coarse

approximation of the dynamics.

As discussed in Section 5.7, the optimization first solves for a trajectory history that

is represented coarsely, using a small number of state and control segments. The solved-

for controls are then simulated by a more accurate, higher-order numerical integration

method than the integrator implicit in the constraints in the nonlinear optimization. If

the final state error in the fine trajectory is too large (i.e., greater than the goal error
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tolerance η), we perform another iteration of the motion plan with additional state and

control segments. The goal error tolerance for this motion plan was given by η = 0.1

from Table 5.2. To further decrease this error, we stabilize the planned trajectory with a

feedback controller.

We generate the time-varying gain matrix KLQR(t) by plugging the planned trajectory

and gain matrices into Eq. (5.18), and then stabilize the trajectory using the feedback

control law from Eq. (5.19). The open-loop simulation using the higher-order numerical

integration method (MATLAB’s ode45) gives us the state trajectory sfine(t). The closed-

loop simulation gives us the state trajectory sfbk(t). Plots of the distance errors between

the output trajectories and the nominal trajectory snom(t) are shown in Figure 5.9. The

final state error (serror(tf )) for the open-loop solution is 0.07, while the final state error

for the closed-loop solution is 0.002.

5.9. Experiments

This section outlines a series of experiments in planning and feedback control for

rolling manipulation tasks. The experiments are in two dimensions, but the model is a

full three dimensional model as shown in Figure 5.10.

5.9.1. Experimental Setup

The experimental setup consists of a 3-DOF robot arm that moves in a plane parallel

to the surface of an inclined air table. A diagram of the experimental setup is shown in

Figure 5.11. Each link is actuated by a brushed DC motor with harmonic drive gearing

and current controlled using Junus motor amplifiers. The 1000 Hz motion controller runs
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Figure 5.9. Comparison of trajectory error over time for open-loop and
closed-loop trajectories. The open loop trajectory uses the coarse set of
controls found by the trajectory optimization method which leads to error
during the simulation with the finer integration method. The closed-loop
trajectory stabilizes the state to the planned trajectory. The final state
error (serror(tf )) for the open-loop solution is 0.07, while the final state error
for the closed-loop solution is 0.002. The two spikes occur at the corners
of the trajectory where the ball changes direction because the system is
more sensitive to integration errors at these points. The feedback method
is weighted to stabilize the trajectory to the goal state which is why some
error is not eliminated in the middle of the trajectory.

on a PC104 embedded computer running the QNX real-time operating system. Vision

feedback is given by a 250 Hz IR Optitrack camera and reflective markers attached to the

object. The manipulator is a flat plate of width 0.375 m, and the object is an ellipse of

mass 0.0553 kg, and major and minor axes given by 0.0754 m and 0.0504 m, respectively.

Experiments are conducted at 40% full gravity by inclining the table at 24 degrees with

respect to horizontal.



136

(a)

(b)

Figure 5.10. The full three-dimensional model used for planning rolling mo-
tions is shown in (a) and the 2D projection is shown in (b).

g gperp

gred

Side View

gred

Top View

high-speed camera

manipulator

object

Harmonic Drive
DC motors

Figure 5.11. Diagram of the experimental setup

5.9.2. 2D Rolling Model

We model the system in full 3D, but restrict object and hand motions to the xz-plane so

all the motion is planar. All rotations occur about the y-axis, and the full system state s =

(Φsh, rsh,q,
hVsh, q̇) ∈ R22 simplifies to s2D = (βsh, xsh, zsh, uo, uh, ωsh,y, vsh,x, vsh,y, u̇o, u̇h) ∈
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R10 and all other states are zero. The controls are also limited to rotational accelerations

about the y-axis, and linear accelerations in the xz-plane.

Knowledge of the system states is necessary to run feedback controllers based on

our rolling dynamics equations. The six hand states (βsh, xsh, zsh, ωsh,y, vsh,x, vsh,y) can

be determined by the robot encoders, and the object states are estimated using the IR

camera that tracks reflective markers on the object. We use the object and hand states to

estimate the contact coordinates and velocities on the object and hand (uo, uh, u̇o, u̇h). We

analytically solve for the closest points on the object and plate using equations defining

the ellipse and a line. The method would need to be generalized for other shapes, but

works well for our implementation.

5.9.3. Rolling Damping Controller

The first experiment demonstrates a damping controller that stabilizes an ellipse in rolling

contact with a plate in a neighborhood of the stable equilibrium s2D = (0, 0, 0, π/2, 0, 0, 0, 0, 0, 0)

shown in Figure 5.10(b). Perturbations of the object cause it to wobble back and forth

until dissipation brings it back to rest. We generate the time-varying gain matrix KLQR(t)

by plugging the constant nominal trajectory s2D(t) = (0, 0, 0, π/2, 0, 0, 0, 0, 0, 0) and gain

matrices into Eq. (5.18), and then stabilize the object using the feedback control law

from Eq. (5.19). We then demonstrate the performance by perturbing the ellipse with

and without the controller enabled. The object has large rotational motions with the

controller off, but barely rotates with the controller enabled. A video of the experiment

is shown in the supplemental media and here: https://youtu.be/HXDRVQUnDw8

https://youtu.be/HXDRVQUnDw8
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5.9.4. Flip Up to Balance

The second experiment is a rolling version of the classic inverted pendulum swing-up to

balance problem. We use the rolling dynamics to plan a flip-up motion, and derive a sta-

bilizing feedback controller about the trajectory. The workflow is as follows: (1) given the

initial state and goal state (balanced on end point), plan rotations of the manipulator that

flip the object up to balance using iterative direct collocation outlined in Appendix 5.13,

(2) stabilize the trajectory using a linearized LQR controller outlined in Section 5.8, (3)

stabilize the final state using the same method, (4) test experimentally.

All of the initial conditions are zero except that uo = π/2 and uh = −cellipse/4 where

cellipse is the circumference of the ellipse, and the goal state is all zero except uo = π.

The goal state is a singularity of the surface parameterization, so we switch to a different

coordinate chart to derive the balancing controller.

The contact location and velocity on the object for the planned, open-loop and closed-

loop trajectories is shown in Figure 5.12. The open-loop execution of the planned tra-

jectories consistently overshot the goal and the object rolled off the edge of the ma-

nipulator. The closed-loop execution was able to stabilize the trajectory and success-

fully balance the object in 12/12 trials. Snapshots from a successful closed-loop trial

are shown in Figure 5.13, and a video of the 12 closed-loop trials can be seen here:

https://youtu.be/9NSYPrjQbXk

5.9.5. Throwing and Catch

We now demonstrate a motion planner for throwing and catching an object in rolling

contact with a manipulator. The planner is a shooting method trajectory optimizer that

https://youtu.be/9NSYPrjQbXk
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Figure 5.12. A plot showing the object angle in the world frame during
the flip-up motion. It includes open and closed-loop results, with +/- two
standard deviations of the 12 trials shown by the shaded region surrounding
the lines. All closed-loop trials successfully flipped up the object to the
balance position and kept it balanced until shutting off at seven seconds.
Snapshots from one trial are shown in Figure 5.13.

Figure 5.13. Demonstration of the closed-loop flip up to balance with LQR
stabilization about the trajectory with snapshots taken every 0.5 seconds.

chooses a low-dimensional representation of hand accelerations at each iteration and then

simulates the object using the rolling dynamics. The method finds a set of accelerations

that satisfy release constraints that define a successful throw. We used this planner

rather than the general iDC method outlined in Section 5.7 because the low-dimensional

representation resulted in smoother throwing motions and the optimizer converged in
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seconds rather than minutes/hours. The steps to generate a throwing trajectory are as

follows:

(1) Give the initial equilibrium state with the object resting on the hand

(2) Give a desired x and z location for the impact with a stationary, flat hand after

the throw

(3) A nonlinear optimization finds a time tthrow, and trapezoidal acceleration profile

for ash,x and αsh,y that when integrated bring the object to a release state at tthrow

that causes it to rotate in the air and impact the hand at the desired location

(4) At the release time the hand accelerates away from the object and moves to the

impact location

(5) The trajectory is then tested on the experimental setup

We plan a throwing motion for the object initially at rest on the manipulator with

contact coordinates uo = π/2 and uh = −0.1 m. The goal impact configuration has the

object rotated by π radians at the same x and z location, and the trajectory optimizer suc-

cessfully converged to a solution. We tested the planned throwing motion experimentally,

and the object over rotates but still settles in roughly the desired location. We set the

feedback control gains to zero for the stabilizing controller because the short throw gave

little time to recover from error, and the impact location and post-impact stabilization

can be used to account for error in the throw. The start and goal positions are the same

besides a π rad offset, and ten consecutive throws were completed successfully without

manually repositioning the object. Snapshots of the experiment are shown in Figure 5.14,

and a video of the ten throws can be found here: https://youtu.be/9xkVWfB2Q8c

https://youtu.be/9xkVWfB2Q8c
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Figure 5.14. Snapshots from an experimental rolling throw that flips the
object 180 degrees and catches it in the same position.

In the previous example we chose a catch location with a flat, stationary hand and

horizontal object, but catch locations can also be chosen that meet specific properties.

Brescianini et al. demonstrated quadcopters throwing, catching, and balancing a pole

[11]. Assuming a stationary catch with high-friction, inelastic impact, they derived an

expression for object states that would map to a post impact velocity with just enough

kinetic energy to bring the pole up to balance with zero final velocity.

We demonstrate this on our system by planning a throw, choosing a catch location

that satisfies the impact to balance constraint, and balancing the object after the catch.

We rederived Eq. (42) from [11] using the moment of inertia of the ellipsoid and the con-

tact location between the rotating ellipse and a flat hand. Because of the error between

the planned and actual free-flight trajectories, we chose a catch location using the exper-

imental data from the previous experiment. After the impact, the system waited until

the object was near the balance point and initiated an LQR-based balancing controller.

Snapshots from a successful throw, catch, and balance are shown in Figure 5.15, and a
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Figure 5.15. Snapshots from an experimental rolling throw that flips the
object, moves to a catch position where an inelastic, high-friction impact
would result in a post-impact velocity that brings the object upright (see
[11]), and then balances it about the unstable equilibrium.

video can be found here: https://youtu.be/BMkrikiaLGU. Future versions could use

feedback during the throwing and/or catching phases to improve robustness to control

and modeling errors.

5.10. Conclusions

This paper demonstrates modeling, motion planning, and feedback control for robotic

contact juggling. We first derived the rolling dynamics equations and friction constraints,

then validated the results in simulation against known analytical solutions. We then used

direct collocation methods and the rolling dynamics equations to plan robotic contact

juggling motions, and demonstrated the use of an LQR feedback controller to stabilize

planned trajectories. The three-dimensional rolling model was then used to plan and

execute tasks with feedback control for a 2D ellipse in contact with a flat hand of a planar

3R robot.

https://youtu.be/BMkrikiaLGU
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5.10.1. Future Work

There are many interesting areas for future work that extend this paper.

5.10.1.1. Surface Parameterization. This paper requires orthogonal parameteriza-

tions of surfaces, and while any smooth surface can be locally represented as such, the

ability to use non-orthogonal parameterizations would improve the utility of this method.

We have used non-orthogonal parameterizations for simulating the second-order kinemat-

ics by defining local orthogonal frames at each point on the surface, but the dynamics

derivation in Section 5.6 would need to be modified to relax the orthogonality assumption.

Moving beyond explicit parameterizations would also improve the scope of this work

such as using smooth objects represented by point clouds. There is some relevant work

in the computer graphics field that uses conformal (angle-preserving) mappings to map

smooth objects to a sphere, and it could be interesting to explore how that could be

applied to rolling manipulation.

Future research could process an object defined by a point-cloud, automatically gen-

erate an atlas of orthogonal coordinate charts that cover the surface, and plan motions

with stabilizing feedback controllers through multiple coordinate charts.

5.10.1.2. Feedback Control. We showed one example of feedback control but there

are many areas for extending feedback control for rolling objects. Our method utilizes a

linearized LQR controller to stabilize planned trajectories and balance states which results

in a simple feedback law given by Eq. (5.19) that can easily run at high speeds (1000 Hz in

our implementation). This method requires knowledge of the contact coordinates which

are difficult to estimate for general, 3D rolling motions. Hardware such as manipulators

equipped with contact location sensing could help address this, especially if combined
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with an observability model such as the one developed in [29]. Other feedback methods

such as energy-based feedback controllers could be used to stabilize trajectories as well,

and may avoid the need for estimating specific contact states [14].

5.10.1.3. Hybrid Rolling, Sliding, and Free Flight Dynamics. This work derives

dynamics for rolling and pure-rolling but does not consider roll-slide dynamics where

there is relative linear velocity at the contact. This would allow more general modeling

where the contact mode is determined based on the state and contact constraints, and the

appropriate dynamics equations are applied. This is then a hybrid dynamics problem,

where the state evolves within a single contact mode until a mode transition occurs.

Our past work [74] outlines a framework for hybrid manipulation planning and there are

many interesting applications of dynamic manipulation that combine contact modes such

as rolling, pure-rolling, rolling + sliding, and free flight.

5.11. Appendix A: Background

5.11.1. Operator Definitions

The skew-symmetric matrix form of a vector ω ∈ R3 is given by

(5.20) [ω] =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 .

The operator [AdT] is the adjoint map associated with T = (R, r), where

(5.21) [AdT] =

 R 0

[r]R R

 .
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The operator [adV ] is the matrix form of a Lie bracket. The Lie bracket of two twists V1

and V2 can be represented as [adV1 ]V2, where

(5.22) [adV ] =

[ω] 0

[v] [ω]

 .

5.11.2. Derivatives of expressions in multiple frames

The forumula for the derivative in frame {ph} of an expression represented in frame {o}

is:

(5.23) phd/dt(ovso) = oaso + oωpho × ovso

5.12. Appendix B: Kinematics Expressions

5.12.1. Local Geometry of Smooth Bodies

Below are some standard expressions for the geometry of a surface that are used to define

the first- and second-order kinematics in the following sections. References and derivations

of these expressions can be found in [61].

The surface of each rigid body is represented by an orthogonal parameterization:

Fi : ui → R3 : (ui, vi) 7→ (xi, yi, zi) for i ∈ [o, h], where the coordinates (xi, yi, zi) are

expressed in the {i} frame. It is assumed that Fi is continuous up to the third derivative

(class C3), so that the local contact geometry (contact frames associated with the first

derivative of Fi, curvature associated with the second derivative, and derivative of the

curvature associated with the third derivative) are uniquely defined.
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The natural bases at a point on a body are given as xci = ∂Fi/∂ui and yci = ∂Fi/∂vi.

We also assume that coordinate charts are orthogonal (xci ·yci = 0), and note that xci and

yci are not necessarily unit vectors. The unit normal is given as nci = (xci × yci)/||xci ×

yci||.

The normalized Gauss frame at a point ui on body i is defined as the coordinate frame

{ci} with origin at Fi(ui) and coordinate axes given by

(5.24) Rici =

[
xci
||xci ||

,
yci
||yci||

,nci

]
,

where Rici expresses the Gauss frame in the object or hand frame {i}. The metric tensor

Gi is a 2× 2 positive-definite matrix defined as

(5.25) Gi =

xci · xci xci · yci
yci · xci yci · yci

 .
The coefficients gjk,i reference the indices of matrix Gi, and Gi is diagonal (g12,i = g21,i =

0) when the coordinate chart Fi is orthogonal. The 2× 2 matrix Li is the second funda-

mental form given by the expression

(5.26) Li =

 ∂2Fi
∂u2i
· nci ∂2Fi

∂ui∂vi
· nci

∂2Fi
∂vi∂ui

· nci ∂2Fi
∂v2i
· nci

 .
Hi combines the metric tensor Gi with the second fundamental form Li and is given by,

(5.27) Hi = (
√

Gi)
−1Li(

√
Gi)

−1.
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The 1× 2 array Γi is given by the expression

(5.28) Γi =
[
Γ2

11,i Γ2
12,i

]
,

where Γljk,i are christoffel symbols of the second kind given by:

(5.29) Γljk,i =
2∑

n=1

(
∂(χi)j
∂(ui)k

)T

(χi)ng
nl
i

where (χi)j is the jth vector in the list χi = (xci ,yci), (ui)k is the kth variable in the list

ui = (ui, vi), and gnli are the entries (n, l) of the metric tensor inverse (Gi)
−1. This gives

Γ2
11,i and Γ2

12,i as

(5.30)

Γ2
11,i =

(
∂xci
∂ui

)T

xcig
12
i +

(
∂xci
∂ui

)T

ycig
22
i ,

Γ2
12,i =

(
∂xci
∂vi

)T

xcig
12
i +

(
∂xci
∂vi

)T

ycig
22
i .

5.12.2. First-Order Kinematics

This form of the first-order kinematics was initially derived in [61]. We reproduce it in

matrix form with rolling constraints (vx = vy = vz = 0) in Eq. (5.1) as

q̇ = K1(q)ωrel,
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with ωrel = chωphpo = [ωx ωy ωz]
T and K1(q) defined as:

(5.31)

K1(q) =


K1o(q) 02×1

K1h(q) 02×1

σoΓoK1o(q) + σhΓhK1h(q) −1

 ,

K1o(q) = (
√

Go)
−1Rψ(H̃o + Hh)

−1E1,

K1h(q) = (
√

Gh)
−1(H̃o + Hh)

−1E1,

where Gi is the metric tensor of body i ∈ [o, h] from Eq. (5.25), the 2× 2 rotation matrix

Rψ and E1 are defined as

Rψ =

 cos(ψ) − sin(ψ)

− sin(ψ) − cos(ψ)

 , E1 =

0 −1

1 0

 ,
Hi is a 2× 2 matrix that gives the curvature of the surface from Eq. (5.27), H̃o is defined

as H̃o = RψHoRψ, the scalar σi is defined as σi =
√
g22,i/g11,i where g11,i and g22,i are

the diagonal entries of the metric tensor Gi, and Γi is a 1 × 2 matrix of the Christoffel

symbols of the second kind from Eq. (5.28).

We use a five-dimensional representation q̇ for the relative rolling velocity at the

contact, but these are subject to two constraints for rolling and pure rolling. The two

rolling constraints are given by:

K1o(q)−1u̇o = K1h(q))−1u̇h.(5.32)
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Pure rolling is subject to the constraint above as well as the no-spin constraint ωz = 0.

From Eq. (5.31) this gives us:

ψ̇ = [σoΓoK1o(q) + σhΓhK1h(q)]

ωx
ωy

 .(5.33)

5.12.3. Second-Order Kinematics

Second-order contact equations were derived by Sarkar et al. in [61] and published again in

later works [62,63]. Errors in the published equations for second-order contact kinematics

in [61–63] were corrected in our recent work [75]. We first define some additional higher-

order local contact geometry expressions used in the second-order kinematics first defined

in [61], and then provide the corrected second-order-kinematics equations in a newly

derived matrix form.

The first order kinematics includes expressions for Γi (1× 2) and Li (2× 2). We now

give four additional expressions for Γ̄i (2× 3), L̄i (1× 3), ¯̄Γi (1× 3), and ¯̄Li (2× 3):

(5.34) Γ̄i =

Γ1
11,i 2Γ1

12,i Γ1
22,i

Γ2
11,i 2Γ2

12,i Γ2
22,i

 ,

(5.35) L̄i =

[
L11,i 2L12,i L22,i

]
,

where Γljk,i is the Christoffel symbol of the second kind defined in Eq. (5.29), and Ljk,i

refers to the entry (j, k) of matrix Li in Eq. (5.26). The final two expressions for ¯̄Γi (1×3)
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and ¯̄Li (2× 3) are given as:

¯̄Γi =
(Γ2

21,i − Γ1
11,i)Γ

2
11,i +

∂Γ2
11,i

∂ui

(Γ2
21,i − Γ1

11,i)Γ
2
12,i + (Γ2

22,i − Γ1
12,i)Γ

2
11,i +

∂Γ2
12,i

∂ui
+

∂Γ2
11,i

∂vi

(Γ2
22,i − Γ1

12,i)Γ
2
12,i +

∂Γ2
12,i

∂vi


T

,
(5.36)

¯̄Li =


Γ1

11,iL11,i − ∂L11,i

∂ui

Γ1
11,iL12,i + Γ1

12,iL11,i − ∂L12,i

∂ui
− ∂L11,i

∂vi

Γ1
12,iL12,i − ∂L12,i

∂vi


T


Γ2

21,iL21,i − ∂L21,i

∂ui

Γ2
21,iL22,i + Γ2

22,iL21,i − ∂L22,i

∂ui
− ∂L21,i

∂vi

Γ2
22,iL22,i − ∂L22,i

∂vi


T



.(5.37)

The second-order kinematics expression can therefore be expressed as:
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 üo

üh

 =

 Rψ

√
Go −√Gh

RψE1Ho

√
Go −E1Hh

√
Gh


−1

{ −Rψ

√
GoΓ̄o

RψE1(
√

Go)
−1 ¯̄Lo

wo +

 √
GhΓ̄h

−E1(
√

Gh)
−1 ¯̄Lh

wh

+

−2ωzE1Rψ

√
Go 02×2

−ωzRψHo

√
Go −ψ̇Hh

√
Gh


 u̇o

u̇h



−


02×1

σoΓou̇o

 ωy

−ωx


+


02×1

αx

αy

−


ax

ay

02×1


}
,

ψ̈ = −

 ωy

−ωx


T

RψE1(
√

Go)
−1Lou̇o − αz

+ σo(Γoüo + ¯̄Γowo) + σh(Γhüh + ¯̄Γhwh),

(5.38)

where ωrel = chωphpo = [ωx ωy ωz]
T, V̇rel = chV̇phpo = [αx αy αz ax ay az]

T, and wi comprises

the velocity product terms [u̇2
i u̇iv̇i v̇

2
i ]

T.

The second order kinematics expression in Eq. (5.38) can be expressed in the form of

Eq. (5.3)

q̈ = K2(q, ωrel) + K3(q)V̇rel,
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which separates the velocity and acceleration components. The velocity terms are given

by the matrix K2(q, ωrel) defined as:

K2(q, ωrel) =

K2a

K2b

 ,

K2a =

 Rψ

√
Go −√Gh

RψE1Ho

√
Go−E1Hh

√
Gh


−1

{ −Rψ

√
GoΓ̄o

RψE1(
√

Go)
−1 ¯̄Lo

wo +

 √
GhΓ̄h

−E1(
√

Gh)
−1 ¯̄Lh

wh

+

−2ωzE1Rψ

√
Go 02×2

−ωzRψHo

√
Go−ψ̇Hh

√
Gh


u̇o

u̇h



−


02×1

σoΓou̇o

 ωy

−ωx



}
,

K2b = −

 ωy

−ωx


T

RψE1(
√

Go)
−1Lou̇o

+ σo
¯̄Γowo + σh

¯̄Γhwh + [σoΓo σhΓh]K2a.

(5.39)

The matrix that operates on the acceleration terms of the second-order kinematics is

given by K3(q):

(5.40) K3(q) =

 I4×4 04×1

[σoΓo σhΓh] −1

K3a(q),
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where

K3a(q) =


 Rψ

√
Go −√Gh

RψE1Ho

√
Go −E1Hh

√
Gh


−1

04×1

01×4 1

E2,

E2 =



0 0 0 −1 0 0

0 0 0 0 −1 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


.

5.12.3.1. Second-Order Rolling and Pure-Rolling Constraints. The relative lin-

ear accelerations arel = chaphpo are constrained by the second-order rolling constraints

arel = aroll. These were derived in Eq. (60) of [61]. The general version is given in

Eq. (5.4) and the full form is reproduced below:

(5.41) aroll =


ax

ay

az


roll

=


−ωzE1 ωy

−ωx


T

Rψ

√
Gou̇o.

The relative rotational acceleration αz is constrained by the second-order-pure-rolling

constraints αz = αz,pr. This was given in [61] as αz,pr = 0. We found this to be valid

for simple geometries such as sphere-on-sphere, sphere-on-plane, and ellipsoid-on-plane,

but for more complex geometries such as ellipsoid-on-ellipsoid and sphere-on-ellipsoid,

αz,pr = 0 did not enforce the no-spin constraint.
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To derive the rolling constraint we set the derivative of the expression for ωz from the

first-order kinematics equal to zero:

(5.42)

d

dt
ωz =

d

dt
(σoΓou̇o + σhΓhu̇h − ψ̇),

= 0.

From Eq. (5.42) and the second-order kinematics in Eq. (5.39) we solved for an expresion

of the form:

(5.43) αz,pr = d1(q, ωrel) + d2(q)

 αx

αy

.
For the ellipsoid-on-ellipsoid, and ellipsoid-on-sphere models we tested, Eq. (5.43) simpli-

fied to:

(5.44) αz,pr = (ωrel × chωoco)
Tnh,

where nh is the unit contact normal of {ch}. This expression is equivalent to the following

term from the ψ̈ expression in the second-order kinematics in Eq (5.38):

(5.45) αz,pr = −

 ωy

−ωx


T

RψE1(
√

Go)
−1Lou̇o.

5.12.3.2. Relative Acceleration Expression. Eq. (5.5) gives an expression for the

body acceleration of the object given the body acceleration of the hand and the relative
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acceleration at the contact, and is reproduced below:

oV̇so =[AdToh ]hV̇sh + [AdToch
]V̇rel

+ K4(q, ωrel,
hωsh).

The following expression for K4 contains the velocity product terms:

(5.46)

K4(q, ωrel,
hωsh) =[AdToh ]

 03×1

[hωsh]([
hωsh]

hrhph)



−[AdToch
]

[ωrel](Rcho
oωso)

03×1



−

 03×1

[oωso]([
oωso]

oropo)

 ,
where oωso comes from Eq (5.2), and the [AdT], r, and R expressions can be derived from

the contact configuration q.

5.13. Appendix C: Iterative Direct Collocation

We first describe the details of the direct collocation method, and then outline our

iterative version.

Direct collocation is a method for trajectory optimization that optimizes an objective

function J (ξ(t)) = J (s(t), hV̇sh(t)) using polynomial spline approximations of the con-

tinuous states and controls. We chose to use trapezoidal collocation where the control

trajectory hV̇sh(t) is represented by piecewise-linear splines, the state trajectory s(t) is
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represented by quadratic splines, and the trapezoidal rule is used for integration. Higher-

order representations such as Hermite-Simpson collocation can also be used but with

increased computational cost [32]. We define the objective function J (s(t), hV̇sh(t)) as

the sum of the terminal cost and the running cost and omit the dependence on t for

clarity:

(5.47)

J (s, hV̇sh) =M(s(tf )) +

∫ tf

0

L(s, hV̇sh)dt,

M(s(tf )) =
1

2
(s(tf )− sgoal)

TP1(s(tf )− sgoal),

L(s, hV̇sh) =
1

2
(s− sdes)

TQ(s− sdes) +
1

2
hV̇sh

T
RhV̇sh,

where P1, Q, and R, penalize goal-state error, desired trajectory deviation, and control

cost respectively, and sdes(t) is a desired trajectory. The path sdes(t) is chosen as the linear

interpolation from sstart to sgoal, which penalizes motions that do not move s towards the

goal. Note that sdes(t) is not admissible in general (i.e. the states and controls do not

satisfy the rolling dynamics equations).

The collocation method divides the trajectory ξ(t) into N segments, and the N + 1

nodes at the ends of each segment are called collocation points. Each collocation point

is expressed as ξk(t) = (s(tk),
hV̇sh(tk)) for k ∈ [0, . . . , N ]. For systems with m state

variables and n control variables there are a total of (N + 1)(m + n) collocation points.

The dynamics between each pair of sequential collocation points are enforced by the

following condition:

(5.48)
sk+1 − sk =

1

2
∆tk(F(sk+1,

hV̇shk+1) + F(sk,
hV̇shk)),

k ∈ [0, . . . , N − 1],
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where ∆tk = (tk+1−tk) indicates the interval duration and F(s, hV̇sh) = K7(s)+K8(s)hV̇sh

is the rolling dynamics function from Eq. (5.12). Equation (5.48) is unique to the choice of

trapezoidal collocation, and other integration methods require a different constraint [32].

The optimal control problem can be represented as the following nonlinear program-

ming problem:

(5.49)

arg min
s(tk), hV̇sh(tk)

M(s(tf )) +
N∑
i=0

L(s(tk),
hV̇sh(tk))∆tk

such that H(s(t0) : s(tN); hV̇sh(t0) : hV̇sh(tN−1)) = 0,

I(s(t0) : s(tN); hV̇sh(t0) : hV̇sh(tN−1)) ≤ 0,

where H(·) enforces the rolling dynamics in Eq. (5.48), and gives the equality constraints

s(0) = sstart (and optionally s(tf ) = sgoal which can be relaxed by replacing with a high

weighting matrix on the goal state P1). The expression I(·) includes the contact wrench

inequality constraints on Eq. (5.10), the controls limits (hV̇shmin ≤ hV̇sh ≤ hV̇shmax), and

enforces any constraints on the configurations (e.g., due to singularities in the coordinate

chart). Equation (5.49) is a finite-dimensional nonlinear optimization problem, and a

solution ξiDC(t) can be found using nonlinear optimizers such as SNOPT, IPOPT, or

MATLAB’s fmincon.

The integration error can be determined by comparing the trajectory siDC(t) from

the direct collocation method with the trajectory sfine(t), where sfine(t) is obtained by

integrating the initial state over the interval t = [0, tf ] using Eq. (5.12), the piecewise-

linear output controls hV̇shiDC(t), and a higher-order integrator with small time steps

(e.g. dt ≤ 0.001). With fewer segments N , the integration error is larger, but there
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are fewer constraints for the nonlinear solver. This means that the optimizer is more

likely to find a solution, and with less computational cost. The choice of N is therefore

a trade-off between computational cost/optimizer convergence and integration error. We

implemented the iterative direct collocation (iDC) method to address this.

We first run the nonlinear optimization method using MATLAB’s fmincon for a small

number of segments (e.g. N = 25) to find a trajectory ξiDC(t). The recalculated path

sfine(t) is found using smaller integration timesteps and a higher-order integrator (ode45),

and the planner is terminated if the goal-state tolerance of the fine trajectory is satisfied

(serror(tf ) < η). If the goal-state error is too large, the previous output trajectory serves as

the initial trajectory guess for the next iteration with twice as many segments (N → 2N)

(N could also be increased by a fixed value ∆N between each iteration to add an additional

tuning parameter for the planning method). This is repeated until a valid trajectory ξsol(t)

is found, the maximum number of iDC iterations is reached, or the optimization converges

to an invalid point.

In our tests, an initial optimization with a fine control discretization often takes an

unnecessarily long time to converge or even fails to converge to a feasible solution. The

coarse initial guess followed by successive refinement yields higher-quality solutions faster

and more consistently. The iterative refinement process acts as a form of regularization.

Additional methods can improve the planning success such as ignoring the friction

inequality constraints for the initial iteration(s), and decreasing/zeroing the weight Q

that penalizes trajectories that do not track a straight-line trajectory to the goal state.
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CHAPTER 6

Conclusion

This thesis presents methods of modeling, motion planning, and feedback control for

hybrid, dynamic, and nonprehensile manipulation.

Chapter 2 outlined five subproblems to address such manipulation tasks: determining

a set of manipulation primitives, choosing a sequence of tasks, picking transition states,

motion planning for each individual primitive, and stabilizing each mode using feedback

control. We apply the framework to plan a sequence of motions for manipulating a

block with a planar 3R manipulator. We demonstrate preliminary experimental results

for a block resting on the manipulator with a desired goal state on a ledge outside of

the robot’s workspace. The planned primitives reorient the block using a series of fixed,

rolling, and sliding contact modes, and throw it to the goal state. This work provides a

high-level framework to formulate these complex manipulation problems, and the specific

subproblems can be built upon to further improve robotic manipulation capabilities.

Chapter 3 examines the problem of planning and stabilizing the trajectory of one

smooth body rolling on the surface of another. The two control inputs are the angular

velocity of the moving body about two orthogonal axes in the contact tangent plane; spin-

ning about the contact normal is not allowed. To achieve robustness and computational

efficiency, our approach to trajectory planning is based on solving a series of optimization

problems of increasing complexity. To stabilize the trajectory in the face of perturbations,
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we use a linear quadratic regulator. We apply the approach to examples of a sphere rolling

on a sphere and an ellipsoid rolling on an ellipsoid.

Chapter 4 presents corrections to the second-order kinematics equations first derived

by Sarkar et al. in [61] and sets up the work on dynamic manipulation. Chapter 5

presents methods to control the motion of objects that are in rolling contact with a robot

manipulator or “hand” in three dimensions. We directly control the motion of the hand

to indirectly control the motion of the rolling object. Our approach to dynamic rolling

manipulation can be split into four subproblems: 1) calculating the first- and second-

order rolling kinematic equations; 2) deriving the rolling dynamics; 3) planning rolling

motions that satisfy the dynamics; and 4) feedback control of rolling trajectories. The

results are validated against examples with analytical solutions in simulation, and tested

experimentally.

6.1. Future Work

6.1.1. Hybrid Manipulation

Chapter 2 provides a high-level framework to address complex manipulation problems,

and the specific subproblems can be built upon to further improve robotic manipulation

capabilities. Future work will focus on automating the process of generating primitives,

choosing mode sequences, picking transition states, planning within single modes, and

stabilizing them.

6.1.1.1. Determining Manipulation Primitives. The primitives are defined by the

location, types, and number of contacts between the object, manipulator, and the envi-

ronment, as well as the control mode at each contact (such as position or force control).
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These are the building blocks of the hybrid manipulation plans, and each additional

primitive increases the manipulation capabilities of a robot. Future work will focus on

automatically generating primitives and dynamic equations from information such as 3D

models and vision data.

6.1.1.2. Choosing a Sequence of Tasks. Hybrid manipulation moves through mul-

tiple contact modes that connect the initial state to the goal state. Automating this

selection is crucial for making hybrid manipulation tasks solvable in unstructured en-

vironments. Mode sequences can be weighted by desired properties such as minimum

number of contact modes or penalizing uncertain transitions such as those that include

impacts.

6.1.1.3. Picking Transition States. Understanding the boundaries between different

contact modes is crucial for hybrid manipulation. There are often many choices of transi-

tions (such as when to release an object before a throw), so defining desired properties of

a transition state and choosing one is a complex problem. Deriving representations of the

intermode constraints will allow us to analyze the local topology of the state-control space

and plan mode transitions. Understanding belief propagation during mode transitions can

also lead to more robust transitions.

6.1.1.4. Motion Planning Within Individual Primitives. Motion planning work

in the literature often focuses on a single set of dynamic equations, so future work in

intramode planning can borrow heavily from this research. The most interesting future

work in this area for hybrid planning will involve the beginning and end of a single mode

plan. The trajectory must avoid unwanted transitions and ensure a successful transition

at the end.
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6.1.1.5. Feedback Control Within Modes. The majority of manipulation tasks are

done without state feedback on the object, and this is a necessary addition to making

manipulation primitives reliable. Some potential methods for feedback include the ap-

plication of linear controllers to linearized versions of the dynamics, receding horizon

controllers, adaptive controllers, and hybrid force/motion controllers. We want to ensure

smoothness when transitioning between control laws, and we will apply techniques such

as sum of squares to estimate the local basins-of-attraction of each controller to know how

robust they are to error. For contact modes where feedback control is impractical we will

develop methods to explicitly estimate and manage uncertainty.

An important subproblem for this work will be the development of projection methods

that prevent the controls from causing undesired mode transitions. Projection methods

raise questions such as whether projected controls maintain their stability properties and

whether extra degrees of freedoms at contacts can be used to increase the control authority

of a contact. These will have to be addressed in future work to ensure the chosen control

methods will still be applicable to the constraints of a given primitive.

6.1.2. Rolling Manipulation

There are many interesting areas for future work that extend the work on rolling manip-

ulation outlined in Chapters 3, 4, and 5.

6.1.2.1. Surface Parameterization. The work in this thesis requires orthogonal pa-

rameterizations of surfaces, and while any smooth surface can be locally represented as

such, the ability to use non-orthogonal parameterizations would improve the utility of
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this method. We have used non-orthogonal parameterizations for simulating the second-

order kinematics by defining local orthogonal frames at each point on the surface, but the

dynamics derivation in Section 5.6 would need to be modified to relax the orthogonality

assumption.

Moving beyond explicit parameterizations would also improve the scope of this work

such as using smooth objects represented by point clouds. There is some relevant work

in the computer graphics field that uses conformal (angle-preserving) mappings to map

smooth objects to a sphere, and it could be interesting to explore how that could be

applied to rolling manipulation.

Future research could process an object defined by a point-cloud, automatically gen-

erate an atlas of orthogonal coordinate charts that cover the surface, and plan motions

with stabilizing feedback controllers through multiple coordinate charts.

6.1.2.2. Feedback Control. We showed one example of feedback control but there

are many areas for extending feedback control for rolling objects. Our method utilizes a

linearized LQR controller to stabilize planned trajectories and balance states which results

in a simple feedback law given by Eq. (5.19) that can easily run at high speeds (1000 Hz in

our implementation). This method requires knowledge of the contact coordinates which

are difficult to estimate for general, 3D rolling motions. Hardware such as manipulators

equipped with contact location sensing could help address this, especially if combined

with an observability model such as the one developed in [29]. Other feedback methods

such as energy-based feedback controllers could be used to stabilize trajectories [14] as

well, and may avoid the need for estimating specific contact states.
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6.1.2.3. Hybrid Rolling, Sliding, and Free-Flight Dynamics. This work derives

dynamics for rolling and pure-rolling but does not consider roll-slide dynamics where

there is relative linear velocity at the contact. This would allow more general modeling

where the contact mode is determined based on the state and contact constraints, and the

appropriate dynamics equations are applied. This is then a hybrid dynamics problem,

where the state evolves within a single contact mode until a mode transition occurs.

Chapter 2 outlines a framework for hybrid manipulation planning and there are many

interesting applications of dynamic manipulation that combine contact modes such as

rolling, pure-rolling, rolling + sliding, and free flight.
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APPENDIX A

Design and Control of 3-DOF Planar Robot

This chapter outlines details of the experimental setup used in this thesis

A.1. Experimental setup description

A diagram of the experimental setup is shown in Figure A.1, and a picture of the ex-

perimental setup is shown in Figure A.2. Experiments are conducted at 40% full gravity

by inclining the table at 24 degrees with respect to horizontal. Each link is actuated by

a DC Harmonic Drive motor, current controlled using Junus motor amplifiers. The 1000

Hz motion controller runs on a PC104 embedded computer running the QNX real-time

operating system. Vision feedback is given by a 250 Hz IR Optitrack camera. Desired tra-

jectories and experimental results are transmitted between the PC104 and a PC running

MATLAB using a TCP/IP connection.

The interface between different components of the setup is shown in Figure A.3.

A.2. Workflow description

There are two main software components for the setup. The first is the multi-threaded

control loop running on the PC104, and the second is the trajectory generation/data

analysis software written in MATLAB and running on the PC.

The controller for the arm is written in c, and runs on the PC104 QNX RTOS.

There are three threads running, the highest priority 1000 Hz control thread, the medium
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Figure A.1. Our experimental setup consists of an inclined air hockey table
with a planar 3R robot driven by Harmonic Drive DC motors, and an
OptiTrack s250e 250 Hz camera. The angle of the table allows 2D dynamic
manipulation experiments in reduced gravity (0.4g shown here), and the
camera system gives feedback on object positions.

Figure A.2. A picture of the experimental setup.
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Figure A.3. Interface between different components of the experimental setup.

priority vision thread, and the lowest priority communication thread. To run a trajectory,

the PC104 code initializes motors, the vision system, and parameters, and then receives

desired trajectories from the PC along with the desired control mode. Depending on

the control mode, the trajectories can be task/joint space trajectories for the arm, or

desired positions of the object for manipulation tasks that include feedback control such

as balancing. Once the trajectory is ready, it is run from MATLAB and the data is sent

back to MATLAB, and stored in a time-stamped trajectory data-log. Desired data can

then be plotted and simulated from this log to see how well the system performed.
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