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ABSTRACT 

Conversation is an important part of human life. Given globalization and the numerous 

languages around the world, it is increasingly likely that we will be communicating with others 

speaking in their second language (L2) rather than their first language (L1). In these situations, 

communication may require more effort. However, people can become attuned to different 

speakers and understand others quite well, even in suboptimal listening environments. Previous 

research has shown that exposure to L2 speech from many talkers of one language background 

can give the listener experience with a variety of sounds to gain a more generalized 

understanding of speech sounds. This information allows listeners to better understand new 

talkers, even if they are of novel talkers from different language backgrounds. In Experiment 1, 

we explored how brief training in single- vs multiple-talker conditions affected later 

performance. We found that participants were able to improve with training and that this training 

allowed for later generalization to novel talkers when tested roughly 11 hours later. Interestingly, 

the ability to generalize to new talkers depended on individual speaker intelligibility as well as 

the number of talkers experienced during training. Experiment 2 built on these findings 

employing a technique known as targeted memory reactivation to explore the role of sleep in this 

generalization process after training on a low-intelligibility talker. Based on our results, we 

hypothesize that long and undisturbed sleep may support this type of generalization learning. 

Overall, this research adds to a growing literature on speech perception helping us better 

understand the nuances of human communication.      
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 Memory Consolidation During Sleep 

Humans learn many things each day and sleep each night. Although day and night are 

idiomatically as different as it gets, we now suspect that daily learning and sleep are not 

unconnected. How sleep contributes to the acquisition of new information is currently under 

active investigation. Indeed, the literature reviewed below shows that much progress has been 

made in addressing this question in recent years. 

Damage to the medial temporal region of the brain, and in particular to the hippocampus, 

results in serious memory impairments, especially for declarative or explicit memory which is 

broadly considered to support the recall of facts and events (Squire & Zola, 1996). Studies of the 

amnesia that results from such brain damage have been immensely informative for our 

understanding of human memory. These brain areas play a critical role for information to be 

stored as long-lasting memories (Eichenbaum, 2004; Squire & Wixted, 2011). Whereas patients 

with hippocampal damage have trouble forming new, long-term declarative memories, remote 

memory seems to be intact. This phenomenon is explained by the standard system consolidation 

model, which suggests that the hippocampus rapidly stores new information which is slowly, 

over time, stored in the neocortex (McClelland, McNaughton, & O'Reilly, 1995). In fact, the 

hippocampus is thought to guide the reorganization of memory to create a more stable 

representation in the neocortex (Squire, Genzel, Wixted, & Morris, 2015).  

Neural mechanisms underlying memory storage and consolidation have been studied 

extensively in animal models (O'keefe & Nadel, 1978).  A branch of research important for this 

was understanding the role of the hippocampus for navigation in rodents. In one experiment, 
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Pavlides and Winson (1989) found that cells in the hippocampus that fired during a wake 

navigation task exhibited increased firing during sleep compared to those cells that did not fire 

during wake learning. This experiment supported the idea that previously learned information is 

processed during sleep. It was not clear, however, whether the cells fired in an organized fashion. 

To examine this further, Wilson and McNaughton (1994) recorded place cells in the rodent 

hippocampus during a maze-learning task that was reinforced with a food reward. They were 

curious about whether the same neural ensembles that fired during wake were also active during 

sleep in a coherent fashion. They found that ensembles of cells that fired together as the rodents 

completed the spatial task also fired together during sleep. They hypothesized that this so-called 

hippocampal replay is a sign of memory consolidation and important for the process of memory 

transfer from the hippocampus to the neocortex.  

Memory consolidation during sleep has also been explored in humans. Although place-

cell replay has not been observed, other techniques have allowed memory researchers to explore 

the processes that occur during sleep to promote human memory. For example, Peigneux et al. 

(2004) explored hippocampal activation in humans and the effect of this activation on memory. 

Here, participants learned to navigate a virtual town. Cerebral blood flow was measured during 

learning and during subsequent sleep. Areas of the hippocampus that were active during learning 

were also more likely to be active during slow-wave sleep (SWS). Interestingly, more 

hippocampal activity during SWS tended to be linked with a greater memory improvement. The 

authors suggest that this activity during sleep is an indicator of offline memory processing 

(Peigneux et al., 2004). A later study combined EEG with fMRI while participants completed a 

visual perceptual learning task (texture discrimination task) to record sleep and brain activation 

(Yotsumoto et al., 2009). Areas of V1 that were active during the texture discrimination task 
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were examined during subsequent sleep and compared to areas that were inactive. It was 

determined that the region of V1 that was active during training was also active during non-REM 

(NREM) sleep. Importantly, improved performance after sleep was correlated with the amount of 

activation, suggesting that memory processing continues during sleep and affects later 

performance (Yotsumoto et al., 2009).  

As the literature has grown, sleep came to be considered a period important for the 

stability of memory (Stickgold, 2005). Memory consolidation during sleep has primarily been 

studied in deep sleep and is thought to be a result of endogenous memory reactivation (Ken A 

Paller, Creery, & Schechtman, 2021; K.A. Paller, Mayes, Antony, & Norman, 2020). For 

successful consolidation, hippocampal-neocortical interactions are believed to be strengthened 

during non-REM sleep resulting in better memory for reactivated episodes (Diekelmann & Born, 

2010).  In order to determine the underlying neural mechanisms that support memory 

consolidation, researchers have sought to determine whether memory improvements correlate 

with neural oscillations during sleep, as there are specific, neural signatures characteristic of each 

sleep stage (Berry et al., 2017). Non-REM (NREM) sleep is comprised of stage 1 (N1), stage 2 

(N2), and stage 3 (N3). N3 is also known as slow-wave sleep (SWS). Compared to drowsy 

wakefulness, N1 is marked by a decrease in alpha waves (8-12 Hz) and an increase in theta (4-8 

Hz) waves. N2 is marked by the appearance of 11-16 Hz thalamocortical spindles and an 

occasional K-complex (a high-amplitude waveform with a positive, sharp wave following a 

negative, sharp wave). SWS is comprised of neocortical slow oscillations (SOs), 0.5 to 2.0 Hz 

activity, with a peak-to-peak amplitude of >75µV for at least 6 seconds visible by scalp 

electroencephalography (EEG). A final signature that has been explored are hippocampal sharp-

wave ripples (150-250 Hz). Though not visible from the scalp, these SWRs are considered 
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important for memory consolidation during sleep, in combination with spindles and slow-

oscillations (Born, Rasch, & Gais, 2006; Staresina et al., 2015).  

Meier-Koll, Bussmann, Schmidt, and Neuschwander (1999) sought to determine whether 

sleep architecture changed as a function of learning. Participants in their experiment were faced 

with either a simple maze, a complex maze, or no maze. Interestingly, participants who 

navigated a maze before sleep had significantly more spindles than those who did not. Memory 

for a visuospatial task was also found to correlate with the number of spindles that occurred 

during subsequent sleep (Z Clemens, Fabo, & Halasz, 2005; Zsófia Clemens, Fabó, & Halász, 

2006). Finally, the number of spindles detected during overnight sleep correlated with 

performance on a verbal free recall task  (Z Clemens et al., 2005) as increased spindle activity 

measured overnight correlated with the number of words recalled during a word-pair association 

task (Schabus et al., 2004). Antony, Schönauer, Staresina, and Cairney (2019) proposed a 

framework to explain how sleep spindles may support memory. They hypothesized that sleep 

spindles are important for the reinstatement of memories while the refractory period allows for 

further processing.  

Another neural signal often implicated in memory consolidation are slow oscillations 

(SO’s) which occur primarily during N3 sleep. Huber, Felice Ghilardi, Massimini, and Tononi 

(2004) hypothesized that if slow-oscillations support memory, learning should increase slow-

wave activity (SWA). In their experiment, participants completed a version of a motor learning 

task that either elicited activation in right parietal areas or did not. High-density EEG was 

recorded for two hours following subsequent overnight sleep. Overall, local slow-wave power 

was indeed found to be greater for those who completed the task hypothesized to elicit 

activation. Importantly, performance after sleep was correlated with slow-wave activity (Huber 
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et al., 2004). In a follow-up study, other researchers set out to find a causal role for SWA through 

slow-wave deprivation (Crupi et al., 2009). Participants completed a motor learning task and 

during sleep, were exposed to tones timed to decrease SWA or to tones played during other 

stages of NREM sleep so as to not influence SWA. In accordance with the hypothesis, those in 

the control condition exhibited improved performance the following day while those in the slow-

wave deprivation condition did not (Crupi et al., 2009).  

Buzsaki (1998) suggested that information from the neocortex reaches the hippocampus 

during aroused states but that during sleep, memory is reestablished in the neocortex from the 

hippocampus via sharp-wave ripples (SWR’s) which occur mainly during N3 sleep. In one 

animal study, researchers were curious about whether SWR-events would occur more frequently 

if rodents learned an odor-reward association task (Eschenko, Ramadan, Mölle, Born, & Sara, 

2008). An examination of neural activity during subsequent sleep showed that learning produced 

an increase in the number of SWRs. This increase was only found, however, if the rodent learned 

the odor-reward association before sleep (Eschenko et al., 2008). Finally, as mentioned above, 

increased activity of the hippocampus during sleep, which corresponded to areas active during 

learning, correlated with improvement on a route-learning task (Peigneux et al., 2004). 

Overall, there is a rich literature that highlights the importance of slow-oscillations, sleep 

spindles, and sharp-wave ripples during sleep for memory consolidation and how these 

oscillations work in tandem to support memory consolidation. For example, Molle, Yeshenko, 

Marshall, Sara, and Born (2006) set out to determine how together, SWRs, and SOs promoted 

memory consolidation. From the rodent sleeping data, the researchers explored possible 

interactions between these two mechanisms and found that the up-state of neocortical SOs 

promoted hippocampal SWRs while the down-state hindered this SWR activity (Molle et al., 
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2006). Because spindles and SOs can be measured from the scalp, many experiments have found 

spindle-SO coupling events during sleep to be beneficial for memory (e.g., Hahn, Heib, Schabus, 

Hoedlmoser, & Helfrich, 2020; Mikutta et al., 2019; Muehlroth et al., 2019).   

Exploring these SWR-spindle-SO events in humans has since become a research area of 

interest. In one experiment, researchers tested whether this hierarchical nesting of oscillations 

could be observed during sleep using intracranial EEG recordings in patients with epilepsy 

(Staresina et al., 2015). They found that thalamocortical spindles were indeed influenced by SO 

phase; spindles tended to occur in the SO up-state. Further, hippocampal ripples were found to 

reside in the troughs of the spindles. This nesting was determined to be temporally organized in a 

top-down fashion as predicted, giving further credence to the idea that coupled SO, spindle, and 

SWR events function as a mechanism for hippocampal-neocortical interaction (Staresina et al., 

2015). Staresina and colleagues theorized that neocortical slow oscillations act to synchronize 

hippocampal reactivation, which coincides with hippocampal SWRs that are crucial for memory 

reactivation and consolidation. These SWRs nest within thalamocortical spindles, which are 

further nested within slow oscillations, providing a means for the hippocampal-neocortical 

dialogue that supports memory consolidation (Zsófia Clemens et al., 2007; B. Rasch & Born, 

2013). Overall, this literature supports the idea that non-REM sleep, and especially slow-wave 

sleep, is composed of three main neural oscillations which are temporally coupled and essential 

for successful memory consolidation. 

1.2 Targeted Memory Reactivation 

Given that memories are reactivated during slow-wave sleep, we may wonder whether we can 

reactivate specific memories in an attempt to further explore the neural underpinnings of 

memory consolidation and/or use this information to improve memory. Rasch, Büchel, Gais, and 
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Born (2007)  developed a new technique, now known as targeted memory reactivation (TMR), to 

explore whether the consolidation of newly acquired information can indeed be prioritized over 

other learned information. In this experiment, participants studied object locations on a grid and 

learned their spatial locations while simultaneously being exposed to an olfactory cue. 

Participants were then allowed to nap in the lab and were exposed to these olfactory cues during 

slow-wave sleep (SWS) as well as during other stages of sleep and during wake. They found that 

memory was better, meaning that less spatial information was forgotten compared to in control 

groups, if the relevant odor cue was presented during SWS. People in the control groups received 

the odor cue in rapid eye movement (REM) sleep instead of SWS, or they received the odor in 

SWS but not during initial learning. These findings highlight the importance of SWS for memory 

consolidation and demonstrate that spatial memory consolidation can be biased using this novel 

technique (Björn Rasch et al., 2007).  

 Rudoy, Voss, Westerberg, and Paller (2009) explored whether TMR would be successful 

with sound cues, which offer increased specificity relative to olfactory cues, for reactivated 

episodes as one sound can be associated with one learned item. Participants learned object 

locations and objects could appear anywhere on the screen. Each of 50 objects was paired with a 

distinct and ecologically relevant sound cues (e.g., teapot-whistle object-sound pairing). During a 

nap, half of the cues were presented during SWS. It was determined that participants were 

overall more accurate at placing objects that were cued during sleep compared to the objects 

which were not cued. This research further implicates SWS in memory consolidation and 

demonstrates that memory reactivation can be achieved by playing sound cues that are associated 

with a prior learning episode (Rudoy et al., 2009). The performance benefit as a consequence of 

targeted memory reactivation for a variety of tasks, including memory for spatial memories, 
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associative learning, and vocabulary learning, has been substantiated by the results of a recent 

meta-analysis (Hu, Cheng, Chiu, & Paller, 2020). This literature further implicates sleep for 

memory consolidation and introduces a technique that allows us to bias memory reactivation to 

specific items in a non-invasive manner.   

1.3 Memory Reactivation for Declarative and Nondeclarative Tasks 

It is widely accepted in memory research that long-term memory depends on two memory 

systems (Squire & Zola, 1996). The type of memory required for the recall and recognition for 

facts and events is known as declarative memory (or explicit memory); other types of memory 

are known as nondeclarative memory (or implicit memory). These memory systems are 

considered to function simultaneously and distinctly, as declarative memory is dependent on the 

hippocampus whereas nondeclarative memory is not (Squire, 2004; Squire & Zola, 1996).  As 

discussed above, memory reactivation is thought to facilitate hippocampal-neocortical 

communication through SWR-spindle-SO events (Zsófia Clemens et al., 2007; B. Rasch & Born, 

2013; Staresina et al., 2015). The hippocampus, however, is considered essential for declarative, 

but not nondeclarative memory (Squire & Zola, 1996).  The differential way in which TMR may 

support memory consolidation for declarative and non-declarative tasks remains under 

investigation.  

As stated above, targeted memory reactivation has been explored in a variety of tasks. 

Many of the tasks that have been studied in TMR paradigms are considered to be hippocampally 

dependent. One example is spatial memory for object-locations in which participants learn the 

placement of objects on a grid (Creery, Oudiette, Antony, & Paller, 2015; Eitan et al., 2021; 

Björn Rasch et al., 2007; Rudoy et al., 2009). Another common declarative memory task used to 

explore the effects of TMR include learning word-sound associations of foreign and non-foreign 
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words (Farthouat, Gilson, & Peigneux, 2017; Schreiner & Rasch, 2015, 2017; Tamminen, Ralph, 

& Lewis, 2017). Combined, this literature underscores TMR as a successful technique to 

enhance memory in a number of hippocampally dependent, declarative tasks (Hu et al., 2020).   

It is also important to explore the impact of TMR for nondeclarative memory. This is of 

interest not only because nondeclarative memory may function independently of the 

hippocampus, but because memories may change as they are stored to allow information to be 

used in new contexts. One promising line of work is the exploration of sleep-based consolidation 

for generalization learning (Batterink & Paller, 2017; Witkowski et al., 2021; Witkowski, 

Schechtman, & Paller, 2020). Generalization for our purposes is be defined as the ability to 

employ learned information in the face of new stimuli or contexts for resulting in performance 

that is better than expected without this prior learning experience. Witkowski et al. (2021) 

explored the effect of TMR on a generalization task. Here, participants learned painting styles of 

six artists. Paintings by each artist were paired with a sound. After viewing many paintings, 

participants were given 90-minutes to nap. When slow-wave sleep was detected, three of the 

sounds presented during learning were played to cue memory for the associated artists. To test 

generalization, participants were shown novel paintings by the six artists after sleep and asked to 

determine which artist had created the painting. It was determined that neither sleep nor TMR led 

to improved generalization (Witkowski et al., 2021). A meta-analysis, however, found that sleep 

studies testing generalization can have differing results based on the test. In particular, extracting 

hidden regularities tended to improve with sleep especially when there was an important 

temporal component (Lerner & Gluck, 2019). Following this, Witkowski et al. (2021) 

hypothesized that TMR may not have been found successful for this type of generalization as the 

task did not depend on successful rule abstraction. One example which follows from this 
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hypothesis is that of learning grammar of an artificial language (Batterink & Paller, 2017).  

Reactivation of phrases was found to improve generalization as a result of successful abstraction 

of grammatical rules (Batterink & Paller, 2017).   TMR has also been found successful in a 

variety of other implicit learning tasks including but not limited to grammar learning, procedural 

memory, and complex motor movements (Cheng, Che, Tomic, Slutzky, & Paller, 2021; Johnson, 

Scharf, & Westlake, 2018; Schönauer, Geisler, & Gais, 2014).  

1.4 Influence of Sleep and Sleep Manipulation on the Perception of Auditory Speech 

TMR has been studied in several experiments focused on hippocampal-dependent, declarative 

tasks. One avenue that has yet to be studied extensively is how sleep and sleep manipulation may 

affect the auditory perception of speech. A first step in this line of research is to understand how 

this information is learned and stored for later use. Xie and Myers (2017) explored how one 

might generalize information learned using a second-language (L2) English transcription 

paradigm. They found that participants have difficulty categorizing L2 talkers, even of the same 

language background. The authors argued this demonstrates that participants relied on bottom-up 

input, rather than top down categorization, to better understand novel talkers (Xie & Myers, 

2017). Based on these findings, it is likely that implicit memory systems are crucial for this type 

of generalization process. Though implicit memory systems are critical for learning the nuances 

of speech that are learned over time through exposure, the nature of sentence transcription also 

involves top-down processing. As each word in a sentence is revealed, the number of 

possibilities decreases. This knowledge interacts with the bottom-up signal, affecting 

transcription.  

Generalization of auditory, linguistic information is an interesting line of research as it is 

incredibly common that people learn to speak new languages in addition to their native language 
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(L1). It is also the case that if not learned before a critical period, among other factors, one’s first 

language (Patkowski, 1990) can affect the production of their second language resulting in what 

many refer to as “accented speech.” Large variations in the specifics of speech exist even for 

talkers operating in their first language. For example, people speak at different pitches and 

speeds. Further, idiosyncratic speech patterns or regional dialects require that a listener have 

some flexibility in identifying speech sounds. Despite these variations in spoken language, 

comprehending L1 and L2 speech is often successful, even in difficult listening environments. 

We also infer that this ability relies on memory as there is evidence that listeners can improve at 

this task over time (Baese-Berk, Bradlow, & Wright, 2013; Bradlow & Bent, 2008; Cooper & 

Bradlow, 2016; Xie, Earle, & Myers, 2018; Xie & Myers, 2017).  

As stated above, previous research has demonstrated the ability for humans to adapt to L2 

speech perception over time and that this knowledge is transferrable in different contexts. For 

example, Bradlow and Bent (2008) found that if asked to transcribe L2 speech from an L1 

Mandarin talker, participants improved, eventually achieving talker-dependent adaptation. 

Furthermore, when presented with many L1 Mandarin talkers, talker independent adaptation was 

achieved, meaning that listeners are better able to decipher speech from a new, L1 Mandarin 

talker (Bradlow & Bent, 2008). These studies demonstrate the ability for this process to be fixed 

or flexible depending on training which in turn affects following behavior. In a follow-up study, 

Baese-Berk et al. (2013) asked participants to transcribe L2 speech from five talkers, each with a 

different L1. Interestingly, training on these talkers allowed participants to recognize words not 

only from trained talkers, but from a novel talker of a novel language background. These 

findings suggest exposure to a variety of talkers allows for talker-independent adaptation. This 

generalization may rely on the extraction of an underlying structure present in L2 speech which 
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dictates the way L1 talkers produce words in English (Baese-Berk et al., 2013). Because 

adaptation to L2 speech can improve over time, we infer that there must be a specific learning 

process whereby humans adjust perceptual representations used for word recognition. Further, 

research demonstrating that exposure to talkers during training tasks can produce benefits when 

listeners are faced with novel talkers and language backgrounds further supports the hypothesis 

that implicit memory plays an important role in this generalization process due to explicit 

knowledge being extremely limited as participants were faced with new talkers of different 

language backgrounds.  

The ability to generalize learned acoustic information is thought to occur as existing 

linguistic representations are updated based on new information (Bent & Baese‐Berk, 2021). The 

literature on perceptual categorization, especially speech-categorization, provides useful insights 

into the mechanisms underlying the generalization of speech (Bradlow, Pisoni, Akahane-

Yamada, & Tohkura, 1997; Eisner & McQueen, 2006; Iverson, Hazan, & Bannister, 2005; T. 

Kraljic & Samuel, 2006; Tanya Kraljic & Samuel, 2007; Norris, McQueen, & Cutler, 2003). In 

tasks examining speech categorization, participants are typically asked to identify to which of 

two categories a stimulus belongs. For example, Norris et al. (2003) exposed participants to an 

ambiguous [f][s] fricative [?]. One group was trained to label this fricative as [f] while the other 

learned to labeled it as [s]. Later, when presented with ambiguous words, participants indeed 

labeled the sound in accordance with prior training. This demonstrates that this type of 

categorization can lead to the same ambiguous sound being perceived as different phonemes if it 

is mapped onto preexisting knowledge. Wright, Baese-Berk, Marrone, and Bradlow (2015) also 

explored this type of speech categorization, exposing participants to a non-native category 

boundary (“mba”-“ba”). Interestingly, passive exposure of auditory stimuli after training 
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produced the greatest improvement in the ability to distinguish the non-native sound from the 

native sound. Improvement from exposure was also found to improve the ability to correctly 

identify L2 Mandarin speech (Wright et al., 2015).  

A general principle in this sort of learning is that speech perception depends on knowing 

the category boundaries that define syllables and words. Because speech sounds vary on so many 

dimensions, especially across diverse talkers, the listener’s challenge is to analyze units of 

speech correctly based on category-relevant dimensions in the face of ample variability across all 

dimensions. Another aspect regarding second-language English is that of listener bias. Boduch‐

Grabka and Lev‐Ari (2021) found that exposure to second-language speech improved the ease of 

processing which in turn reduced bias. Overall, this research allows us to better understand 

perceptual adaptation which extends beyond basic science, providing information regarding the 

way humans interact.  

 In summary, successful word recognition depends on the listener’s ability to differentiate 

between sounds that are critical and sounds that may reflect idiosyncratic variability in speech 

that is not necessary to the formation of a word. Together, this research demonstrates that 

learning non-native speech sounds is facilitated both by exposure to the sounds and by practice. 

Understanding this process is important because improved speech recognition relates to 

improved speech comprehension as a sentence can be better understood once all words of a 

sentence are recognized. As stated above, this type of learning likely depends on both bottom-up 

and top-down processing.  We hypothesize that the bottom-up aspect of adaptation to L2 speech 

is supported by implicit memory systems. Listeners cannot explicitly state all of the information 

that allows them to tune into the important aspects of speech, though they learn to do so over 

time. Top-down expectations also play a role as a listener knows they are hearing a second-
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language speaker and may increase their attention and put more effort into processing speech. 

Further, a listener can begin to expect words as a sentence progresses meaning that all words are 

not equally likely depending on what was previously heard.  

Because it is thought that L2 English may have some systematic similarities, regardless 

of talker or language background (Baese-Berk et al., 2013), we hypothesized that most of the 

benefit that comes from exposure to L2 speech is that of implicit processing of speech sounds 

and the tuning of one’s perceptual space. It is also thought that TMR may aid in memory for 

implicit learning that relies on successful rule abstraction (Witkowski et al., 2020). By using 

TMR to probe the question of whether memory reactivation is helpful for this type of learning, 

we also can better understand the memory systems that support perceptual adaptation as well as 

what type of information is learned. 
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CHAPTER 2 

Experiment 1: Generalization of L2 Speech Following Single- or Multiple-Talker Training 

2.1 INTRODUCTION 

In this experiment we explored a specific type of generalization learning: adaptation to second-

language speech. Bradlow and Bent (2008) explored the ability for first-language talkers of 

English to improve at word recognition of L2 spoken English. It was first determined that 

participants were able to achieve talker-dependent adaptation after exposure to a Mandarin-

accented talker. In a second experiment, participants were exposed to many different Mandarin-

accented talkers. After exposure, participants were asked to transcribe sentences from one novel 

Mandarin-accented talker. Results showed that this type of high-variability training allowed 

listeners to achieve talker-independent adaptation for a talker of the same language background 

(Bradlow & Bent, 2008). Building on this research, Baese-Berk et al. (2013) explored high-

variability training in the context of many language backgrounds. To do so, participants were 

exposed to many talkers, each of a different language background. After training, participants 

were asked to transcribe sentences from a single test talker of a novel language background. It 

was determined that perceptual adaptation extended beyond one language background as 

participants were able to generalize what was learned during training and perform well when 

faced with the novel talker (Baese-Berk et al., 2013). The authors proposed that together, this 

research demonstrated that L2 English talkers produce variability in speech that is in some ways 

systematic. Efficiently processing speech in the face of this variability in speech can be learned, 

which can thereby improve recognition in novel situations.  

On the other hand, an alternative view is that multiple talkers are not necessarily helpful 

in perceptual adaptation to L2 speech (Xie & Myers, 2017). In an experiment designed to test 
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this idea, L1 English talkers were exposed to Mandarin-accented words. Importantly, training 

either consisted of exposure to a single talker or to multiple talkers. After exposure, participants 

were tested on their ability to transcribe novel words spoken by a novel Mandarin-accented 

talker. Interestingly, acoustic similarity between the exposure and test talkers, and not the 

number of exposure talkers, predicted greater generalization. These findings demonstrate that the 

systematic variation described by Baese-Berk et al. (2013) may not always be apparent. High-

variability training does, however, provide a large number of acoustic sounds for participants to 

sample from increasing the probability that phonetic overlap between exposure and test talkers 

will exist resulting in successful generalization (Xie & Myers, 2017).   

Experiment 1 combined what is known about generalization in language to understand 

how training on either single or multiple talkers affects performance before and after a wake 

delay. To do so, participants completed two sessions: one in the morning and one in the evening. 

Informed by the results collected in Experiment 1, in Experiment 2 we explored perceptual 

adaptation and generalization after learning. Experiment 2 also explored the possible effect of 

sleep and sleep reactivation in this learning and generalization process. 

 

2.2 METHODS 

2.2.1 Participants 

Participants were recruited through the online platform Prolific (except for 4 recruited on 

campus). A total of 365 potential participants attempted to complete the first session. Participants 

were excluded if they quit the training session early or did not complete the second session. Of 

these potential participants, 195 people completed both training and test sessions within the 

desired time frame and are included in the final analyses. Of these, there were 130 women, 64 
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men, and 1 participant who did not report gender. All participants registered with Prolific as 

first-language English talkers between the ages of 18-35 years [mean age = 26.87; standard 

deviation = 5.12]. Participants resided in the United States and reported no literacy challenges or 

hearing disabilities at the time of the experiment. Participants who completed the training 

session, which consisted of a 60-sentence auditory transcription task, were individually informed 

that the second session of the experiment would be available for completion in the evening. 

Participants were promptly paid for their time after each session.  

2.2.2 Stimuli 

Sentences were obtained from the ALLSSTAR corpus (Bradlow, n.d.), which contains 

recordings from many talkers of many languages. For the purposes of this study, sentences from 

four L2 English talkers were selected. Talkers were selected by the discretion of the research 

team in an attempt to include a range of language backgrounds and difficulty. All sentences were 

mono-clausal, with canonical declarative syntax (e.g., “They are running past the house”). The 

sentences were presented in speech-shaped noise with a 0 dB signal-to-noise ratio (SNR), which 

corresponds to listening in a moderately noisy environment.    

 Sentences were spoken by Turkish, Spanish, Farsi, and Brazilian Portuguese native 

talkers.  One-hundred and twenty sentences were divided into two sets of 60 to be transcribed. 

One set was used in a training phase and one in a test phase. The talkers for the training phase 

varied across the experimental conditions described below, but the same list of 60 sentences was 

used for all participants. The talkers for the test phase were the four listed above (15 sentences 

each), and for all participants the same 60 sentences were used in a random order. The two sets 

were arranged so as to minimize highly similar words from appearing at both the training and 
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test. In other words, we attempted to minimize the number of words that were heard during the 

training session that would be presented again at test. 

2.2.3 Behavioral Task 

Participants used their own computers to access a web page that hosted the entirety of each 

session. Data were stored on Google Firebase. After consenting to participate in the experiment, 

participants answered demographic questions. Participants were then directed to begin the 

experiment. Participants were instructed to wear headphones throughout the experiment and set 

the volume to a comfortable setting. First, two practice words, laugh and gas, were presented and 

participants were asked to transcribe them to ensure the audio was working properly before 

starting the experiment. The training portion of the experiment began following the audio test. 

Here, 60 sentences were presented one by one auditorily. Participants used a mouse to press a 

button labeled “Play” in order for each sentence to be presented. The participant was then 

prompted to type what they heard into a text box before advancing to the next sentence. Each 

sentence could only be heard once. The procedure was identical for the training and test session; 

each session lasted approximately 30 minutes.  

2.2.4 Experimental Design 

Training 

Participants were assigned to either high- or low-variability training conditions, which can also 

be considered multiple-talker (n = 84) and single-talker (n = 84) training, respectively. We also 

ran 27 participants who only completed the test phase to serve as a control group. Because we 

were interested in how performance changed from training to test after a wake delay, we 

arranged for training to occur in the morning. Because participants could be in any USA time 
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zone, the training session was made available for a long period (9 hours, from 4AM to 1PM 

CST) to cover morning periods across all USA time zones.  

The multiple-talker training group was trained on 20 English sentences spoken by three 

of four possible talkers with different language backgrounds. Each participant in the single-talker 

group trained on only one of the four mentioned talkers (Figure 2.1).  No feedback was provided.  

The language backgrounds for L2 talkers were Brazilian Portuguese (PBR), Turkish 

(TUR), Farsi (FAR), and Spanish (SPA). We will refer to the single-talker groups as PBR, TUR, 

FAR, and SPA to denote which talker was heard. For the multiple-talker condition, we will refer 

to these multiple talker groups as noPBR, noTUR, noFAR, and noSPA to denote which talker 

was excluded at training. For example, the PBR talker was excluded from the multiple-talker 

group noPBR while the TUR, FAR, and SPA talkers were included. Participants were randomly 

assigned to one of eight training groups. All participants were exposed to the same sentences but 

with different talkers in each group. Sentence order was randomized for each participant.  

Test 

The test session was open for participants to complete for 9 hours in the evening. (4PM-1AM 

CST). The test took place approximately 11 hours after training [M= 10H 53M; SE=8M]. All 

participants completed a sound test, described above, and were then tested on 60 novel sentences 

spoken by each of the four talkers outlined above. It is important to note that the single-talker 

groups were exposed to three novel talkers at test while the multiple-talker groups were exposed 

to one novel talker at test.  
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2.2.5 Behavioral Analysis 

Scoring 

Participant responses were scored using an online, automatic scoring tool (Borrie, Barrett, & 

Yoho, 2019). The scoring tool calculated total number of words correctly transcribed on each 

trial for each participant. We allowed for all accepted exceptions in the automatic scoring tool. 

Response words were scored as correct if the entered word was: (1) a homophone or common 

misspelling, (2) included as a rootword, (3) omitting a double letter, (4) included “the” in place 

of “a” and vice versa, (5) was in the incorrect tense, or (6) was entered in either its plural or 

singular form. These exceptions were made so that scores reflected differences in word 

recognition rather than spelling or grammar. 

TRAINING TEST 

4AM – 1PM 4PM – 1AM 

Transcribe 60 Sentences Transcribe 60 Sentences 

Figure 2.1.  Participants transcribed 60 sentences during a 30-
minute training session. Participants were assigned to one of 
eight training conditions. Approximately 11 hours later, 
participants transcribed 60 novel sentences during a 30-minute 
test session that included familiar and unfamiliar talkers.  
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Behavioral Analysis 

Each participant contributed two behavioral scores. The training score was computed for the 

second half of training (30 sentences), as the mean number of words correct divided by the total 

number of words possible. The test score was computed for all test blocks (60 sentences) as the 

mean number of words correct divided by the total number of words possible. Behavioral 

analysis was conducted in R version 4.2.3.  

2.3 RESULTS 

2.3.1 Training 

Table 2.1 displays overall performance for all participants during training and test. We first 

examined transcription accuracy during the training phase to verify evidence of learning. The 

training results were split into 6 blocks with 10 sentences each. We first plotted performance on 

each of the blocks separately for the single-talker and multiple-talker training groups (Figure 2.2 

AB, respectively). We found that participants tended to improve over time with performance 

reaching a plateau toward the end of training. 

To test for evidence of learning, we compared performance on the first three blocks 

versus the last three blocks of training. Both groups performed significantly better during the 

second half compared to the first half [single-talker, t(83) = 6.60, p < .05; multiple-talker, t(83) = 

4.98, p < .05]. The average improvement across all eight groups was from 68% of words correct 

in the first half to 72% of words correct in the second half. 

Next, we visualized performance for each group separately. For single-talker training 

groups, as shown in Figure 2.2 C, the number of words correctly identified was largest for 

participants listening to the PBR talker [M=86%; SD=22%] and smallest for those listening to 

the TUR talker [M=45%; SD=35%]. That is, the TUR talker was the least-intelligible talker. We 
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also found that performance was superior for Multiple-Talker training group noTUR [M=76; 

SD=26], which excluded the least intelligible talker (Figure 2D).  

To further explore these differences in talkers, an ANOVA for both the single-talker and 

multiple-talker training groups was run with each of the four talkers predicting performance on 

the second half of training. We found a significant effect of talker for the single- and multiple-

talker groups [F(3,80)=37.43, p < .05, F(3,248)=49.11, p<.05], respectively. After a Bonferroni 

correction, we found significant differences between the TUR talker and all other talkers for both 

the single- and multiple-talker groups [p’s<.05] with performance being the lowest for the TUR 

talker. Interestingly, for the multiple-talker group we also found a significant difference between 

the FAR and PBR talkers [p<.05] with participants performing worse on the FAR talker. 

Finally, we tested whether the same level of accuracy was achieved in single- and 

multiple-talker groups during the last three blocks of training. We found a marginal difference 

between these two groups [75% of words correct for single-talker training; 70% words correct 

for multiple-talker training; t(146.64) = 1.95, p = .053].  Because performance appears to plateau 

at block 3 for all groups and was relatively matched, the average performance of blocks 4-6 was 

considered the appropriate representation of competency achieved after training and served as 

the comparison value for test performance values obtained after the 11-hour delay.   
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Table 2.1. Performance at training and/or test for all groups 

Training Performance Test Performance 

Blocks 1-6                                                            Blocks 4-6 All Sentences 

Single-Talker 

Training Group Average Correct (%) SD (%) Correct (%) SD (%) Correct (%) SD (%) 

FAR 77 28 79 26 76 31 

PBR 86 22 89 19 72 32 

SPA 80 26 82 25 72 32 

TUR 45 35 48 35 67 34 

Multiple-Talker 

noFAR 66 34 66 34 72 33 

noPBR 62 34 66 34 74 32 

noSPA 66 35 67 35 71 34 

noTUR 76 28 80 26 77 30 

Control Group 

Control NA NA NA NA 69 34 
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2.3.2 Training vs Test vs Control 

We next compared performance between training and test based on training group, with results 

collapsed across the four different talkers in each test (Figure 2.3; Table 2.2). There was a 

nonsignificant trend for poorer test performance after single-talker training [t(83) = 1.70, p = 

.09], with a significant improvement at test after multiple-talker training [t(83) = 3.37, p = <.05]. 

For the multiple-talker and single-talker groups, there was a 4% improvement and a 3% decline 

in performance, respectively. This difference as a function of type of training was substantiated 

 

 

 
 
Figure 2.2. Training-phase performance collapsed across single-talker training 
groups (A) and multiple-talker training groups (B). Performance for the four single-
talker training groups (C) and the four multiple-talker training groups (D). Error bars 
show standard errors of the mean.  
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by a significant group x test interaction [F(1, 166) = 9.64, p = .002] in a 2x2 ANOVA (Group: 

Multiple-talker, Single-Talker; Test: Training, Test). 

 One group of participants completed the Test phase without training and were considered 

the control group. At test, the single-talker, multiple-talker, and control group correctly identified 

72%, 74%, and 69% of words, respectively. We found no difference in scores for these three 

conditions [F(2,192) = 1.99, p = .14]; one-way ANOVA with three levels (Single-talker, 

Multiple-talker, Control). We also ran a t-test between those who received training and those 

who did not and found no difference [t(36.05), p = .10].  

 

 

 

 

Table 2.2. Test Performance for each talker 

Talker Average Correct (%) SD (%) 

FAR 74 31 

PBR 84 27 

SPA 73 31 

TUR 60 36 

 
Table 2.2. Overall performance on test for each talker. 
Participants tended to perform the best on the PBR talker 
and the worst on the TUR talker.   

 

Figure 2.3. Average proportion of words correctly identified at 
Training (final three blocks) and Test for both types of training 
group. Participants in the control group (grey) completed the test 
without a prior training session. 
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2.3.3 Generalization  

Performance for trained and novel talkers 

Even though all 60 sentences in the test session were novel, the four talkers were not equally 

familiar to participants; the design systematically manipulated whether sentences were read by 

the same person in the two sessions. One test-phase talker was familiar after single-talker 

training, whereas three test-phase talkers were familiar after multiple-talker training. Although 

training may lead to improvements for unfamiliar talkers (i.e., generalization), we expected 

transcription accuracy to be higher for familiar talkers. 

Figure 2.4 shows results for these conditions First, test-phase results were subjected to a 2 

(Group: Multiple-talker, Single-talker) x 2 (Talker: Familiar, Unfamiliar) mixed-effects 

ANOVA. The analysis revealed there was no main effect of Group [F(1, 166) = .51, p = .47], 

Talker [F(1, 166) = .23, p = .63], nor a Group vs Talker interaction [F(1, 166) = .43, p = .51]. It 

is possible, however, that exposure to a particular talker or set of talkers differentially impacts 

generalization, given the differences in intelligibility evident in the training phase.  

We next explored how each training group performed on familiar and unfamiliar talkers 

(Figure 2.5). We conducted a 2 (Talker type: Familiar vs Unfamiliar) x 8 (Training Group: FAR, 

PBR, SPA, TUR, noFAR, noPBR, noSPA, noTUR) mixed-effects ANOVA. Though there was 

no main effect of Talker [F(1, 160) = .69, p = .41], there was a main effect of Training Group 

[F(7, 160) = 2.58, p =.01], and a Talker x Training Group interaction [F(7, 160) = 58.08, p < 

.05]. To further understand these findings, we explored which groups contributed to the main 

effect of group by running pairwise comparisons of each training group at test. After a 

Bonferroni correction, taking speaker familiarity into account, we found significant differences 

between noPBR and TUR, FAR and TUR, and PBR and TUR [p’s < .05], all performing better 
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than TUR. Overall, all training groups tend to perform better than those who only trained on the 

TUR talker while noPBR, FAR, and PBR resulted in the most reliable differences (Table 2.3) 

This further supports the idea that this particular L1 Turkish talker is less intelligible and that 

training on this talker hindered generalization to novel talkers. Further, we found that those who 

trained on the PBR talker performed significantly better on this talker at test [M=84%; SD=25%) 

compared to the three novel talkers [M=68%; SD=33%) (FAR, TUR, and SPA). As PBR was 

identified as the most intelligible talker, it seems that exposure to a very intelligible talker may 

not provide the best learning conditions for generalization to novel talkers of different language 

backgrounds.    

 

 

 

 
 
Figure 2.4. Proportion of correctly transcribed words at the test for novel 
and previously trained talkers. Note that the single-talker group is tested on 
one trained talker and three novel talkers while the multiple-talker group is 
tested on three trained talkers and one novel talker. 
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Talker specific performance differences 

Here, we took a closer look to explore how training affected performance when faced with each 

unique talker at test and whether training groups differed in their performance for each talker at 

test by running a one-way ANOVA’s (Figure 2.6). We found that groups were similar in their 

performance for all talkers [p’s > .05] indicating that intelligibility effects were persistent 

regardless of training group. Next, we ran a 2 (Group: Single-talker, Multiple-talker) x 4 (Talker: 

SPA, TUR, FAR, PBR) mixed effects ANOVA. We found no effect of Group [F(1, 166) = .84, p 

= .36] and a marginal Group x Talker interaction [F(3, 498) = 2.43, p = .06]. There was, 

however, a main effect of talker [F(3, 498) = 377.88, p < .05]. By running pairwise comparisons, 

we found differences between all talkers except for SPA and FAR following a Bonferroni 

correction. 

 

Figure 2.5. Participant performance for all training groups for trained and 
novel talkers. Participants tended to perform similarly though there was a 
difference for the single-talker PBR group as they performed significantly 
worse for the novel speakers on average (FAR, TUR, SPA).   
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Finally, we explored whether training group affected performance on particular talkers at 

test by running a 4 (Talker: FAR, PBR, SPA, TUR) x 8 (Training Group: FAR, PBR, SPA, TUR, 

noFAR, noPBR, noSPA, noTUR) mixed effects ANOVA. We found no effect of group [F(1, 

160) = 1.10, p = .37) or Group x Talker interaction [F(21, 480) = 1.09, p = .35]. There was, 

however, a main effect of talker [F(3, 480) = 374.75, p < .05]. Pairwise comparisons again 

revealed similar results as we found differences between all talkers except for SPA and FAR 

(Table 2.3). 

 

 

 

 

Figure 2.6. Performance for all training groups on each of the four talkers. There 
were no significant differences in performance based on group for any of the four 
talkers.    
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Table 2.3 Significant pairwise comparisons at test  

Training Group 1 (M%; SD%) Training Group 2 (M%; SD%) p-adjusted (Bonferroni) 

FAR (76;31) TUR (67;34) .003 

PBR (72;32) TUR (67;34) .006 

noPBR (74;32) TUR (67;34) .0003 

 

2.4 DISCUSSION 

In this experiment, we tested how exposure to many talkers (high-variability training) or one 

talker (low-variability training) impacts word recognition when faced with both trained and 

novel talkers after a delay. Over time, both conditions showed evidence of learning performing 

significantly better during the second half than the first half. Increased task familiarity likely 

contributed to this improvement as participants adjusted to recognizing speech in noise from an 

L2 speaker. Once participants adjusted to the task, it likely that they learned to adapt to the 

talkers presented allowing them to recognize more words over time (Baese-Berk et al., 2013; 

Bradlow & Bent, 2008).   At training, participants were able to correctly identify more words 

spoken by the PBR talker and fewer words spoken by the TUR talker indicating the most and 

least intelligible talkers, respectively. It is important, however, to note that individual talkers 

speak with idiosyncrasies that affect intelligibility regardless of their L1. 

Though performance did not differ overall between training and test for either group, 

there was evidence that exposure to a specific talker, or set of talkers, affected test performance. 

As transcription scores were worse overall for the TUR talker, training on only this talker 

hindered performance at test while PBR proved to be the most intelligible talker. Further, those 

who trained on all talkers except TUR performed better than all other multiple-talker groups at 
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test. We did find an interaction between training type and test such that those in the multiple 

talker group improved from training to test while those in the single talker group showed a 

decline in performance. When looking at performance, it does not appear that the PBR and TUR 

talkers are responsible for driving this effect (Figure S1). Overall, performance was affected by 

the variability of exposure at training as well the intelligibility of the speakers. Xie and Myers 

(2017) determined that mere exposure to a number of talkers does not promote generalization to 

new talkers but that the similarity between talkers does. Our findings support this idea as 

different combinations of training group and talker affected test performance for novel and 

familiar talkers.  

On the other hand, based on Figure 2.6, it seems to be the case that participants perform 

similarly on each talker regardless of training group. It might be the case that all training groups 

provided participants with generalized knowledge that was used when transcribing sentences at 

test. This may explain why performance tended to be similar for all talkers at test. To explore 

this hypothesis, further testing on the linguistic properties of all speakers should be performed. In 

addition, follow-up studies on the way exposure to these different talkers affects later 

generalization should be explored.   

 One purpose of this experiment was to inform the design of a follow-up nap study which 

will be discussed in Chapter 3. Because the effects of sleep can be subtle, choosing a training 

paradigm in which participants have room for improvement on a sensitive measure allows for 

experimenters to pick up these effects. Here, we found that the TUR talker was the least 

intelligible indicating room for possible improvement. Based on these findings, we chose to 

pursue this single-talker training group for the follow-up nap study. Further, this group 
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demonstrated the most room for improvement from training to test making it possible for the 

benefits of memory consolidation during sleep to have a greater impact on performance. 
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Chapter 3 

Experiment 2 

3.1 INTRODUCTION 

People are able to adapt to a variety of second-language (L2) speakers of similar and even novel 

language backgrounds (Baese-Berk et al., 2013; Bradlow & Bent, 2008). This ability is thought 

to develop through repeated exposure, allowing us to update our existing representation of 

meaningful speech sounds (Bent & Baese‐Berk, 2021). As this process takes time, it likely 

depends on memory consolidation, including that which occurs during sleep, such that novel 

acoustic information becomes integrated into existing knowledge. 

The role of sleep in the adaptation to speech sounds has only recently been explored (Xie 

et al., 2018). Participants were exposed to two Mandarin-accented talkers who were not 

phonetically similar. This lack of phonetic similarity was shown, as exposure to one of the 

talkers showed little transfer to the untrained talker. In a second experiment, participants were 

trained on one of these talkers in either the morning or the evening. After a 12-hour delay, 

participants were tested on their ability to transcribe sentences spoken by both talkers. 

Interestingly, only the group that had intervening sleep showed increased ability to generalize to 

the untrained talker (Xie et al., 2018). The authors proposed that processes occurring during 

sleep facilitated generalization to the novel talker by allowing for listeners to abstract relevant, 

acoustic information learned during exposure. 

In Chapter 2, we explored how participants performed when faced with the task of 

transcribing L2 speakers and how this training affected their ability to generalize to novel talkers 

of different language backgrounds as well as novel sentences from the trained talker. We found 

that the TUR talker was the most difficult to transcribe but that participants also performed rather 
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well when faced with new talkers after an 11 hour wake delay (see Sections 2.3.1 and 2.3.2) In 

this experiment, we manipulated sleep so that we could better understand how this generalization 

process might be supported by memory consolidation. Because the effects of sleep can be subtle, 

choosing a training paradigm in which participants have room for improvement on a sensitive 

measure allows for experimenters to pick up these effects. As stated above, the TUR talker was 

the least intelligible. Participants could transcribe words from the TUR talker, but there was also 

room for improvement. Based on these findings, we chose to pursue this single-talker training 

group for the follow-up nap study.  

3.2 METHODS 

3.2.1 Participants 

We recruited participants via email. We included people who were interested in completing a 

nap study in our laboratory on Northwestern University’s campus. All participants were also 

first-language English speakers between the ages of 18-35 years [mean age (M) = 21.24; 

standard deviation (SD) =2.96]. All participants resided near the Evanston or Chicago Illinois 

area and reported no language or hearing disabilities at the time of the experiment. Fifty-five 

participants completed the experiment in its entirety. Of these, thirty-eight participants received a 

sufficient number of auditory cues during sleep for their data to be considered in the final 

analyses. Eighteen participants were included in the experimental group while twenty 

participants were included in the control group. Participants were paid for their time spent inside 

and outside of the lab. 
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3.2.2 Stimuli 

Sentences were obtained from the ALLSSTAR corpus (Bradlow, n.d.), which contains 

recordings from many talkers of many languages. For the purposes of this study, sentences from 

four L2 English talkers were selected. All sentences were mono-clausal, with canonical 

declarative syntax (e.g., “They are running past the house”). The sentences were presented in 

speech-shaped noise with a 0 dB signal-to-noise ratio (SNR), which corresponds to listening in a 

moderately noisy environment.    

 Sentences were spoken by Turkish, Spanish, Farsi, and Brazilian Portuguese native 

talkers.  One-hundred and twenty sentences were divided into two sets of 60 to be transcribed. 

One set was used in a training phase and one in a test phase. The talkers for the training phase 

varied across the experimental conditions described below, but the same list of 60 sentences was 

used for all participants. The talkers for the test phase were the four listed above (15 sentences 

each), and for all participants the same 60 sentences were used in a random order. The two sets 

were arranged so as to minimize highly similar words from appearing at both the training and 

test. In other words, we attempted to minimize the number of words that were heard during 

training session to be presented again at test. 

3.2.3 Behavioral Tasks 

We were interested in the way sleep and memory consolidation might affect performance for 

previously trained talkers as well as the ability to generalize to novel talkers. We employed a 

technique known as targeted memory reactivation (TMR) during which auditory cues are paired 

with a learning episode and later presented unobtrusively during sleep. This procedure allowed 

for us to track when memory reactivation might occur and explore brain physiology during this 
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period. In this experiment, participants completed an L2-English speech transcription task with 

sentences presented over speech-shaped noise and these same sentences (without noise) were 

presented during an afternoon nap. 

Often in TMR studies, auditory cues are linked with a distinct learning episode and the 

experiment can be completed using a within-subjects study design. We hypothesized, however, 

that accented speech cues may reactivate an entire learning episode rather than the memory for 

one specific sentence. If this were the case, it would be difficult to determine whether memory 

reactivation impacted participant performance. To avoid this possibility, participants also 

completed an implicit motor sequence control task in a between-subjects study design in which 

TMR cues were either from the L2-English transcription task or the implicit sequence control 

task. We reasoned that this design would control for generic effects of auditory cues during sleep 

while avoiding issues regarding cue specificity.  

Experimental task 

Training: All participants were asked to transcribe 60 sentences spoken by a native Turkish 

talker. The first 20 sentences were presented one by one through headphones, in the absence of 

noise, to allow participants to get used to the task and hear the talker clearly. The remaining 40 

sentences were presented in noise with a 0dB SNR. For all sentences, participants were asked to 

type what they heard using a keyboard. After, participants heard the sentence once more with 

orthographic feedback presented on the screen in the absence of noise. Participants were allowed 

to move at their own pace and could take a break before listening to the next sentence.  

Test: At test, participants transcribed 60 novel sentences presented in noise with an SNR of 0dB. 

The 60 sentences were split between four talkers such that each talker spoke 15 total sentences. 

Sentences were spoken by the familiar, native Turkish talker as well as three novel talkers from 
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three novel language backgrounds: Farsi, Spanish, and Portuguese. No feedback was given at 

test. As before, participants were allowed to move at their own pace and could take a break 

before listening to the next sentence presented through headphones. Participants could only listen 

to one sentence at a time and no sentence could be played more than once.  

The in-lab test was completed on a local desktop and headphones were worn throughout. 

The experiment was coded in Neurobehavioral Systems Presentation version 23.1. The remote 

follow-up test was administered either through Qualtrics or by accessing a webpage written in 

Java with data hosted by Google Firebase.  

Control task 

Participants completed an implicit learning task known as the Serial Interception Sequence 

Learning task. Here, participants completed a series of button presses which corresponded to a 

tone creating a melody. There was a repeating sequence embedded within the task which 

participants have been shown to learn implicitly through more accurate and quicker motor 

responses for learned compared to random sequences (Antony, Gobel, O'hare, Reber, & Paller, 

2012; Sanchez, Gobel, & Reber, 2010).The implicit sequence to be learned was presented 80% 

of the time. During this task, participants learned to map motor responses to four keyboard keys 

(D, F, J, or K) for an auditory stimulus. The task required timed keypresses in response to a 

simultaneous visual and auditory cue. Each 12-item sequence contained 36 tones (3 sequential 

repetitions of each tone per trial with 12 total trials). Three tones were played rather than one so 

that the participant could prepare a response. Participants were to press the correct button on the 

third repetition of the tone. The trial was set at an initial speed of three 100ms tones of the same 

frequency. Trials were considered correct if the proper key was pressed within 300ms of the third 

tone.  The speed of this task was adaptive in order to keep participants at a performance level of 
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~80% accuracy. The number of correct responses after six button presses was calculated. If all 

six responses were correct, speed would decrease (become faster) by ~5%. If fewer than six 

responses were correct, the speed would increase by 5%. Duration could not exceed ~3.5s/trial 

so that the in-lab session could be completed within four hours. Participants were able to take a 

break after every 360 trials. Headphones were worn throughout the task. Participants completed 

a JavaScript version of this task by accessing a webpage. Data were gathered online via 

HTML5/JavaScript code through web-based browsers.  

Training: Before coming to the lab, participants completed an online training session at home. 

This session consisted of an eight-trial demo with a fixed sequence (D, F, J, K, J, F, K, D). 

Participants then completed 720 trials in which the 12-item sequence was covertly presented. In 

the lab, participants completed another 720-trial training. Participants then completed three 360-

trial tests which included the trained and novel sound-key mappings. Trained and novel 

sequences were chosen randomly for each participant. Participants wore headphones during both 

training and test. 

Test: First, participants completed a 120-trial speed adjustment block which included ten novel 

12-item foil sequences so that participants could achieve an accuracy of 80% in the untrained 

sequence. Participants then completed two 360-trial tests in the trained and untrained sound-key 

mapping. Speed was not adaptive during this portion of the test so that we could accurately 

assess learning of the trained sequence.  Novel foils were used for the untrained sequences. 

Participants completed the same test with novel foils one week later. 

Scoring 

Participant responses for the transcription were scored using an online, automatic scoring tool 

(Borrie et al., 2019). The scoring tool calculated total number of words correctly transcribed on 
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each trial for each participant. We allowed for all accepted exceptions in the automatic scoring 

tool. Response words were scored as correct if the entered word was: (1) a homophone or 

common misspelling, (2) included as a rootword, (3) omitting a double letter, (4) included “the” 

in place of “a” and vice versa, (5) was in the incorrect tense, or (6) was entered in either it’s 

plural or singular form. These exceptions were made to allow the scores to reflect meaningful 

differences in language perception. 

3.2.4 Afternoon nap 

Participants were assigned to be in either the control condition or the experimental condition 

according to a counterbalancing order set ahead of time. Once participants reached SWS, 

indicated by at least 6 seconds of slow oscillations in a 30-s period, sound cues were presented. 

Slow oscillations are defined as having a frequency range of 0.5-4.5 Hz with a peak-to-peak 

amplitude of at least 75 µV, according to the American Academy of Sleep Medicine (Berry et 

al., 2017). Cues were stopped promptly upon signs of arousal. Pink noise was played during the 

entirety of the nap and volume was adjusted based on participant preference such that they could 

hear the pink noise but also fall asleep. Sound cues were presented at a sound intensity similar to 

that of the white noise with a sound pressure level of approximately 38 dB. The average SNR of 

sound cues to pink noise was .13dB. 

EEG recording 

After training, participants were fitted with an EEG cap. A Biosemi system was used to record 

electrical activity from 27 tin electrodes at standard scalp locations. In addition, we also recorded 

from five other electrodes on the head, including two electrooculogram (EOG) channels, one 

chin electromyogram (EMG) channel, and both the left and right mastoids. EEG was collected 
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with a sampling rate of 256 Hz. Once EEG recording began, participants were allowed 90 

minutes to nap.  

Experimental Group 

Eighteen participants were exposed to the same 60 spoken sentences, or cues, presented during 

training. Sentences were ~1.5s long. Sentences were presented during slow-wave sleep as 

indicated by polysomnography (PSG). An inclusion criterion was that a minimum of one round 

of cueing (60 total sentences) must have been presented in the nap. Participants received no more 

than three rounds of cueing. On average, participants were exposed to 124.05 cues. Nine 

participants were excluded because all 60 spoken sentences were unable to be presented within 

the 90-minute timeframe. These participants were exposed to an average of approximately 7 

words. A new sentence was presented every 5 seconds and sentences were played in the same 

order for each participant. There was an average of 5.31 words per sentence.  

Control Group 

Twenty participants were exposed during sleep to the same 12-tone sequence repeated 

throughout training. Following another similar study (Antony et al., 2012), the inclusion criterion 

was that at least 20 rounds of cues were presented during slow-wave sleep for a total of 240 cues. 

Sounds were presented once SWS began and stopped when signs of arousal became evident. 

Cues were presented with an ISI of 1.1 times the task speed. The average ISI was 1.02 seconds. 

On average, 254.74 cues were presented. Seven participants were excluded as they did not 

receive any cues and two participants were excluded hearing an average of 150 cues. 

3.2.5 Experimental design 

Participants completed wake behavioral tasks (Figure 3.1A) and were given 90 minutes to nap in 

the lab (Figure 3.1 B). The order of all behavioral tasks was counterbalanced across participants. 
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Here, participants were asked to complete a 30-minute initial test in their own home. This test 

was included to ensure that all participants could complete the control task in the lab given the 

allotted time slot (See section 3.2.3). Participants were then scheduled for a 4-hour in-lab 

session. 

 In the lab, participants consented to participate in the study. They next completed both 

the experimental and control tasks on a desktop computer (See section 3.2.3). Participants were 

then fitted with an EEG cap and allowed 90 minutes to nap on a futon in one of the laboratory’s 

sleep chambers. Participants were randomly assigned to either received control cues or 

experimental cues during SWS (See section 3.2.4).  Upon waking, participants were given time 

to use the restroom and wash their hair to mitigate the effects of sleep inertia. Finally, 

participants completed a post-nap test for the experimental and control tasks. One week later, 

participants were asked to complete the same tests remotely.  
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3.2.6 Behavioral analysis 

Scoring 

Participant responses were scored using an online, automatic scoring tool (Borrie et al., 2019). 

The scoring tool calculated total number of words correctly transcribed on each trial for each 

participant. We allowed for all accepted exceptions in the automatic scoring tool. Response 

words were scored as correct if the entered word was: (1) a homophone or common misspelling, 

(2) included as a rootword, (3) omitting a double letter, (4) included “the” in place of “a” and 

Training Training + 
Test 

Nap + TMR Test Test 

Control Experiment

Control 

Experiment

Control 

Experiment 

Control 

N3 
N2 
N1 

REM 
W 

One Sleep Cycle 

0 min 

Supplemen 90 min 

Supplemen

A

B 

Day 1 Day 2 Day 9 

Figure 3.1. Schematic of experimental design. Participants trained on the 
control task before coming into the lab. In the lab, participants trained on both 
tasks before being given 90 minutes to nap. Following the nap, participants 
completed a test on both tasks. One week after the in-lab session, participants 
completed a follow-up test online. Participants received auditory cues either 
related to the experimental task or control task during slow-wave sleep. 
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vice versa, (5) was in the incorrect tense, or (6) was entered in either it’s plural or singular form. 

These exceptions were made to allow the scores to reflect meaningful differences in language 

perception.  

Behavioral Analysis 

Each participant contributed three behavioral scores. The training score was computed as the 

mean number of words correct divided by the total number of words possible for training blocks 

4-6. Both follow-up test scores were computed by the mean number of words divided by the total 

number of words presented. Behavioral analysis was conducted in R version 4.2.3.  

3.2.7 EEG Recordings and analysis 

EEG analysis  

EEG data were filtered in ERPLAB v9.00, a plug in of EEGLAB v 2022.1. We first used a 

butterworth bandpass filter with a low pass of 30Hz and a high pass of .01Hz followed by a 60-

Hz notch filter. Noisy electrodes were interpolated using the spherical method in EEGLAB (less 

than 5% of all electrodes recorded required interpolation). EEG data were scored using the 

MATLAB (MATLAB, 2022) package sleepSMG (http://sleepsmg.sourceforge.net). Oscillatory 

patterns were identified using the MATLAB package CountingSheepPSG 

(https://sleepsmg.sourceforge.net) and analyzed in MATLAB version 2022b. 

3.3 RESULTS 

3.3.1 Training 

Experiment 2 

We first explored how participants performed during training. Because of a computer 

malfunction, two participants were not able to complete the entirety of block 1 or block 2; their 

data were not included in the first look at training. We saw that participants tended to improve 

http://sleepsmg.sourceforge.net/
https://sleepsmg.sourceforge.net/
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over the training period (Figure 3.2). As in Chapter 2 Experiment 1, average performance on the 

final three blocks served as a pre-nap score. A t-test revealed that for blocks 4-6, performance 

was similar for the experimental [M=56%; 33%] and control [M=62%; SD = 31%] conditions 

[t(25.221) = 1.77, p = .09]. Results were very similar when the two participants mentioned above 

were included in the data set [t(26.96) = 1.69, p = .10]. Because the addition of these two 

participants does not affect what we consider pre-nap performance, these participants were 

included in the remainder of the analyses.  

 

 

 

 

 

 

 

Figure 3.2. Training performance for n = 36 participants who 
completed the entirety of training. Speech was presented in noise for 
Blocks 4-6. Performance for the control and cued conditions were 
nearly matched for blocks 4-6 and will be considered the pre-nap 
score for each participant. 

 No Noise            Noise 
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Experiment 1 and Experiment 2 

In Experiment 1, all 60 training blocks consisted of transcription of speech in noise. In 

Experiment 2, transcription of the 20 initial sentences did not include noise. We also included 

orthographic and auditory feedback in an attempt to improve training scores. To see how these 

changes affected performance, we compared training and test data from the TUR single talker 

group from both experiments. We found that for blocks 4-6, participants correctly identified 

fewer words for Experiment 1 than Experiment 2, 48% correct and 59% correct, respectively 

[t(24.97 = 2.22, p = .04]. At test, participants correctly recognized 69% of words for Experiment 

1 and 71% % correct for Experiment 2. Test performance for Experiment 1 and 2 was not 

significantly different [p>.05]. Interestingly, the adjustments made to training at Experiment 2 

improved training performance such that training was better than Experiment 1, but this 

improvement did not persist into the test. It is possible that there were differences between test 

sentences that may have affected recognition. It is also possible that the design changes led to 

improvements that were not long lasting and therefore could not be detected at test.    

3.3.2 Training vs Test 

To get an overall picture of the way TMR may have affected the ability to recognize words, we 

first conducted a 2 (Test: Training, Test) x 2 (Nap condition: Cued, Uncued) mixed effects 

ANOVA. Performance at training and test are represented below (Figure 3.3 A; Table 3.1).  

Word recognition was lower in the cued group [M=62%; SD=13%] than in the uncued 

group [M=68;SD=10%], as confirmed by the significant main effect of group [F(1,36)=4.52, p = 

.04]. Also, word recognition was generally better after the nap [test M=71%] compared to before 

the nap [training M=59%], as confirmed by the significant main effect of test [F(1,36)=120.79, p 

< .01], but the group by test interaction was nonsignificant [F(1,36)=.63, p = .43]. 
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The absence of an interaction effect suggests that the lower performance for the cued 

group compared to the uncued group was evident to an equivalent extent both before and after 

the nap. That is, the group differences cannot be attributed to TMR or any other sleep-related 

factors. Accordingly, we ran another analysis on the pre-nap versus post-nap differences scores 

(test phase minus training phase). Difference scores showed that the cued group improved by 

12% and the uncued group improved by 13%. This group contrast was nonsignificant [t(35.14) = 

.81, p=.43 (Figure 3.3 B). 

 

 

Table 3.1 Performance for both groups with SD in parentheses 

Group Training 

(SD) % 

Test 

(SD)% 

Difference 

scores (SD %) 

t (df) p 

Cued 56.2 (2.9) 67.6 (34) 11.4 (1.4) 8.23(17) <.01* 

Control 61.8 (1.6) 75.1 (30) 13.3 (1.7) 7.68(19) <.05* 
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3.3.3 Generalization 

We next explored how participants performed when faced with novel talkers (Table 3.2). First, 

we ran a 2 (Group: Cued, Uncued) x 2 (Match: Trained, Novel) mixed ANOVA and found a 

marginal effect of group [F(1, 36)=4.49, p = .04] and a significant effect of match [F(1, 36) = 

136.92), p < .01]. Interestingly, we found that participants tended to perform better on novel 

talkers [M=75%; SD=31%] than trained talkers [M=59%; SD=34%]. Though we must keep in 

mind that the trained talker (TUR) was shown to be the least intelligible. There was no main 

effect of group x match [F(1,36)=.03, p = .86]. When examining group further, pairwise t-tests 

revealed that the control group performed better than the cued group after a Bonferroni 

correction [p = .02].  

 

 

 
 
 
Figure 3.3. Performance for both the cued and uncued groups at training and test (A). 
Difference scores (test – training) are shown on the right (B). Individual subjects are 
represented by black circles (control) and black triangles (cued).  
 

A B 
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To explore the way groups performed based on talker, we ran a 2(Group: Cued, Control) 

x 4 (Talker: Far, PBR, SPA, TUR) mixed group ANOVA. There was a main effect of both group 

[F(1,36) = 5.09, p = .03] and talker [F(3, 108) = 92.19, p < .01] but no group x talker interaction 

[F(3,108)=.01, p = 1.0]. As in Experiment 1 Chapter 2, pairwise t-tests revealed significant 

differences in performance between all talkers [p’s < .01] except for SPA and FAR after a 

Bonferroni correction. The control group again performed better than the cued group [p = .001]. 

Supplemental Figure 1 displays test performance for all training groups separated by speaker. 

 

Table 3.2 Test Performance and SD for each talker at test 

Talker Total  

Mean Correct (%) ± SD (%) 

Cued Group  

M (%) ± SD (%) 

Control Group  

M (%) ± SD (%) 

FAR 70 ± 31 66 ± 34 74 ± 29 

PBR 84 ± 26 80 ± 30 88 ± 22 

SPA 71 ± 33 67 ± 35 75 ± 30 

TUR 60 ± 34 56 ± 34 63 ± 34 
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Figure 3.4. Mean performance for participants depending on group and 
talker. The control and cued group differed for the FAR and PBR talkers. 
Pairwise t-tests reveal significant difference in performance based on talker 
for all groups except PBR and SPA. 

 

 

Figure 3.5. Average performance for participants who completed all three 
tests. 
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3.3.4 Delayed test 

Finally, we explored how participants performed on the follow-up test that took place one week 

after the in-lab nap session (Figure 3.5). Due to platform issues data was compromised as 

participants were able to hear sentences multiple times before transcription. Because of this 

problem, usable data from 9 participants was analyzed. Because all 9 of the participants were in 

the cued group, combined with the limited amount of data, 2-sample pairwise t-tests were 

conducted. There was not a significant difference between training [M=68%; SD=34] and the 

follow-up test [M=73%; SD=32%), t(8)=1.18, p = 0.27]. A paired t-test also showed no change 

in performance from the immediate test to the delayed test [t(8)=.47), p = .65]. 

3.3.5 Describing sleep 

All participants were allowed 90 minutes to nap and received auditory cueing related to either 

the speech transcription task or the control task. Total time asleep was similar in the uncued and 

the cued groups [M=74.7 (19.0) and M=73.7 (18.4), respectively; t(35.79) = .16, p = .87]. All 

other stages of sleep and two measures of sleep physiology were not significantly different 

between groups (Table 3.3).  

We next explored differences in auditory cues for the two groups (Table 3.4). The control 

group was exposed to a series of 3 tones for each note of the 12-item sequence which served as 

one round of cueing. Though 36 tones were actually played per round, we considered one cue to 

be 3 tones of the same frequency rather than 3 separate cues, making the total number of cues per 

round 12 tones. The experimental group heard 60 sentences per round. Because of this, there was 

a significant difference between the number of cues presented [t(29.70) = 26.69, p <.01] for the 

control group [M=732.0;SD=89.1] and experimental group [M=120.0;SD=47.8]. Further, cues 

for the control group were presented at the speed of training each participant achieved. The 
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experimental group heard each sentence with an ISI of 5s. Due to this, there were also 

differences in the duration of cueing with the control group hearing cues for an average of 3.98 

min [SD=1.17] and the experimental group hearing cues for an average of 10.1 min [SD=3.99), 

t(19.64) = 6.24, p < .05]. Due to the differences in cueing, we also compared the percentage of 

cues presented during each stage as this seemed to be a fairer assessment. We found no 

difference between groups (p’s >.05) (Table 3.4).  

 

Table 3.3 Sleep Measures and Statistics Between Groups 

 Cued (M ± SD) Control (M ± SD) p-value 

Wake 20.6 ± 13.1 22.4 ± 21.4 .76 

N1 24.8 ± 12.7 23.1 ± 13.8 .69 

N2 28.0 ± 15.3 26.8 ± 8.97 .76 

N3 19.8 ± 15.1 20.2 ± 13.1 .92 

Delta power (Fz) 427.0 ± 1.55x103 3.15x106 ± 1.40x107 .33 

Sigma power (Cz) 1.58 ± 3.24 47.70 ± 211 .34 

Slow oscillations (count) 465 ± 544 788 ± 828 .16 

Spindles (count) 454 ± 152 402 ± 164 .32 
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3.3.6 Effect of sleep on performance 

Between group comparisons 

To explore the effects of sleep on performance, participants were split into two groups: Cued and 

control. A difference score was created by subtracting the average training score from the 

average test score such that a positive number indicates improvement from pre-sleep to post-

sleep. After calculating this improvement score, a series of Pearson correlations were run to 

Table 3.4 Between group statistics 

Raw number Cued  
(M ± SD) 

Control  
(M ± SD) 

p 

Cues in Wake  
(#) 

.67 ± 1.71 1.30 ± 3.19 .15 

Cues in N1 
(#) 

.61 ± 1.91 .87 ± 2.7 .31 

Cues in N2  
(#) 

15.8 ± 15.7 55.8 ± 68.5 .004* 

Cues in N3  
(#) 

103.0 ± 56.90 186.0 ± 70.9 <.001* 

Total Cues  
(#) 

120.0 ± 47.80 244.0 ± 29.70 <.001* 

TMR duration  
(min) 

10.10 ± 3.99 3.98 ± 1.17 <.001* 

Percentage Cued: % total cues  
(M ± SD) 

Control: % total cues  
(M ± SD) 

p 

Cues in wake  
 

.86 ± 2.24 .52 ± 1.26 .58 

Cues in N1 
 

.78 ± 2.54 .33 ± 1.06 .49 

Cues in N2  18.40 ± 7.20 22.50 ± 26.60 .61 

Cues in N3  
 

79.90 ± 23.4 76.70 ± 27.4 .69 

Total cues  
 

NA NA NA 

TMR duration  
(min) 

NA NA NA 
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explore the effects of different sleep measures considered to play a role in memory consolidation 

(Table 3.5). When looking at all participants, neither time spent in N3, total time asleep, delta 

power measured at electrode Fz, nor sigma power measured at electrode Cz correlated with 

improvement on the speech transcription task [p’s > .05]. We did find a significant effect of N2 

[r(36)=.37, p = .02]. It appeared that this finding was driven by the control group, [(p = .18) for 

the cued group and (p=.02) for the control group]. We also explored the relationship between 

TMR duration and improvement. We did not find a correlation between the duration of TMR and 

improvement scores [for all participants (p=.44), the control group (p=.91), or the cued group 

(p=.69)]. 

 

 

 

 

 

Table 3.5 Correlation of sleep measures on improvement for all participants  

Measure r p-value 

N2 min .37 .02* 

N3 min .23 .17 

Time asleep  .21 .20 

Delta power (Fz) .01 .94 

Sigma power (Cz) .04 .83 
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Cued group  

Because of the differences in cueing between the cued and control group, outlined above, 

we next ran a series of Pearson correlations to explore how EEG measures and memory 

reactivation affected performance for only the cued group (Table 3.6). Neither time in N2, time 

in N3, delta power measured at electrode Fz, sigma measured at electrode Cz, nor the total 

number of cues or cueing duration were correlated with the memory improvement score. There 

was a significant effect of total time asleep such that more time asleep correlated with a greater 

improvement from training to test [p = .047] (Figure 3.6A). Time asleep was not correlated with 

improvement for those who received the control cues [p = .86].  

Recent research has also shown that auditory cues may disrupt sleep and negatively affect 

the memory consolidation process, correlating with a decrease in performance (Whitmore, 

 

 
 
Figure 3.6 TMR duration by improvement (A). Number of cues presented 
during the nap by Improvement (B). The control cued participants are shown 
in black, and the task cued participants are shown in red. 
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Bassard, & Paller, 2021; Whitmore & Paller, 2023). For the cued group, each auditory cue was 

presented 5s apart. The sleep disruption score was measured as the absolute change in the power 

spectrum 3s before cue onset compared to 5s post cue. There was a marginal effect of sleep 

disruption for the participants cued with spoken sentences such that a greater change in the EEG 

power spectrum after cue presentation compared to before cue presentation was marginally 

correlated with a decline in performance from training to test. [p = .06] (Table 3.6; Figure 3.6B), 

though there was one participant who experienced much more sleep disruption than the others. 

We cannot be sure whether sleep disruption played a role in poorer improvement or if this 

participant would have scored low on L2-English transcription more generally.  

Time asleep and sleep disruption were not correlated [p=.10]. Because the control and cued 

group spent a similar time in each stage of sleep (Table 3.3), it may be that task relevant cues in 

addition to longer and less disrupted sleep play a role in successful generalization. 

Table 3.6 Correlation of sleep measures on improvement for cued participants 

Measure  r p-value 

N2 .33 .18 

N3 .25 .32 

Time asleep .47 .05* 

Total number cues .10 .69 

Cueing Duration .10 .69 

Sleep disruption .45 .06 

Delta (Fz) .08 .74 

Sigma (Cz) .05 .83 
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3.4 DISCUSSION 

It is very common for us to converse with people who may have a different first-language (L1). 

This may affect one’s production of a second language (L2). Though it may be difficult to 

understand a new L2 speaker, we adapt relatively quickly though factors such as a noisy 

environment and the idiosyncratic ways in which a person speaks can prolong this process. What 

we are learning and how this information is transformed during sleep is not well understood. One 

way to study this type of learning is by asking L1-English participants to transcribe L2-English 

in noise and see how they perform over time (Strori, Bradlow, & Souza, 2020).  

In Chapter 2, we found that participants who were exposed to a native Turkish talker 

improved at transcription for this talker as well as talkers of other language backgrounds. In this 

 

Figure 3.7. Pearson correlations predicting improvement by total time asleep (A) and 
sleep disruption (B). Individual participant data are shown as red dots.   
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experiment, we explored the effect of sleep and memory reactivation for an L2-English 

transcription task in which English dominant speakers were only exposed to the same Turkish 

talker as in Experiment 1 (Chapter 2). Participants also completed a finger tapping sequence 

control task. During a 90-minute nap, participants were exposed to the auditory cues during 

learning of either the transcription task or the control task. The between-subjects design was 

chosen based on the nature of the transcription task. Because we felt it was likely that one cued 

sentence, or even a single word from that sentence may have reactivated the entire task, therefore 

activating the perceptual process of L2 word recognition. The between-subjects design helped to 

mitigate these possible “bleed-over” effects. It is a possibility, however, that the mere 

presentation of auditory cues could affect post-nap behavior. Including the control task in the 

design made it possible for all participants to receive a task-related cue. Although there were 

differences in cues — for example one group heard sentences while the other heard tones — this 

design allowed for auditory cues during sleep to be distinct but also present.   

We determined that the cued and control conditions were statistically matched for 

performance at training. Though this was the case, we must acknowledge that the cued group did 

start at a slight disadvantage, transcribing 6% fewer words than the control group (See section 

3.3.1). Group was counter-balanced across participants and would likely have appeared more 

equal with a greater number of participants in each group. 

 Though both groups were able to correctly identify more words at the post-nap test 

compared to the pre-nap test, TMR did not improve performance for the cued group compared to 

the control group. Though it is not easy to identify one clear reason, there are hypotheses as to 

why TMR was unsuccessful in improving performance on this task. First, it is possible that the 

cues were not presented at a volume loud enough to be processed by the brain during sleep. 
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Because speech sentences are more complex than tone cues, our aim was for the sentences to be 

played loud enough such that individual words could be processed but that they were not loud 

enough to wake the participant. Though we increased the volume after each round was presented, 

it is still possible that our cues were not loud enough to be processed. Similarly, it may be the 

case that spoken sentences are not as clear as auditory cues, such as tones or characteristic 

sounds which are often used, and failed to elicit memory reactivation. Aside from TMR, it is 

possible that this type of learning may improve with wake practice and not during sleep. For 

example, one could imagine that learning a new language is strengthened while you are sleeping 

but that the largest benefits come from conversing with others in the language. Though this may 

be the case, we might consider changes to this protocol so that researchers can use this technique 

to study how sleep physiology may help us understand how neural processes may play a role in 

auditory perception. 

 Another reason may be the nap design. It has been hypothesized that REM sleep is 

helpful for integration and generalization (Sterpenich et al., 2014; Tamminen et al., 2017; 

Witkowski et al., 2020). Because our participants did not have sustained REM, as it is more 

prevalent in the second half of the night, it is possible the afternoon nap design hindered this 

generalization process. When looking at the sleep data, we found that the control and cued group 

spent a similar amount of time in all sleep stages of sleep and had a similar total time asleep. 

Many of these measures did not correlate with change in performance from pre-nap to post-nap, 

though we did find a positive correlation between time spent in N2 and improvement from pre-

nap to post-nap for all participants., During N2 sleep, there is an abundance of thalamic spindles. 

It is possible that sleep spindles played a role in this time of memory consolidation as 

improvement did not correlate with other stages of sleep. While the effect may have been driven 
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by the control group a positive correlation seemed to emerge (r = .33).  A more sensitive 

measure of N2, such as the number of sleep spindles , and their relation to improvement after 

sleep should be explored. Because we found no TMR effect, we explored sleep measures within 

the cued group to better understand why this may have been the case. First, we found that the 

total time asleep was correlated with participants’ improvement score such that those participants 

who spent more total time asleep correctly identified more words on average at post-test 

compared to pre-test.  

Next, we explored sleep disruption as it has been hypothesized that disruptions during 

sleep following cue presentation may negatively affect memory (Whitmore et al., 2021; 

Whitmore & Paller, 2023). Here, sleep disruption was considered a change in the power 

spectrum before and after cue presentation. We found that sleep disruption was marginally, 

negatively correlated with improvement where participants with more sleep disruption improved 

the least from pre-test to post-test. When presenting auditory cues during a nap, one goal is to do 

so without waking the participant which explains why most participants scored relatively low on 

this measure of sleep disruption. Though we cannot describe the change in performance on this 

task for those with moderate sleep disruption, this result follows the literature on sleep disruption 

as it was negatively associated with behavioral performance. When looking at the plot, however, 

one participant had much greater sleep disruption than the others and also performed the worst 

which influenced the results (Figure 3.6). It is possible that this participant had an overall lower 

performance due to other reasons that cannot be attributed to sleep disruption which could have 

led to a spurious finding. 

In summary, we found that participants could improve on the TUR talker despite it being 

the least intelligible. We also found that the PBR and TUR talkers were the most similar as there 
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were no significant differences in performance. We did not, however, find a performance effect 

of task-relevant cues. The possible explanations above may explain this finding. We did find an 

effect of the total time asleep such that more time asleep correlated with an improvement in the 

L2-English transcription task and not the control task. A more fine-grained measure of sleep, 

such as the number of sleep spindles and slow oscillations, should be explored. Finally, we did 

find an effect of sleep disruption as disruption in relation to the cues correlated with worse 

performance suggesting that more quality sleep may be important for generalization. 

Overall, interesting interactions between performance on this task for different speakers 

and TMR groups seemed to emerge. This experiment adds to the literature by exploring 

generalization of L2 speech and exploring sleep physiology to better understand this process. 

Participants in Experiment 1 and Experiment 2 completed very similar tasks with the exception 

of the type of training and the inclusion of a nap between the training and test (see Sections 2.2.3 

and 3.2.3 for task descriptions of Experiment 1 and 2, respectively).  
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Chapter 4 

In-Depth Statistical Analysis 

4.1 INTRODUCTION 

Chapter 2 and Chapter 3 of this dissertation detailed a second-language (L2) English 

transcription task by either first-language English and/or English dominant listeners. The task 

included one native Farsi (FAR), Brazilian Portuguese (PBR), Spanish (SPA), and Turkish 

(TUR) talker for a total of four talkers. In Experiment 1 (Chapter 2), We were interested in 

testing whether exposure to multiple talkers or a single talker affected performance on familiar 

and novel talkers after a delay. Here, 168 participants transcribed 60 sentences spoken by either 

3 or 1 of the mentioned talkers. During this initial training session, participants completed one of 

two training types: multiple-talker and single-talker where groups were exposed to three or one 

talker, respectively. Approximately 11 hours later, participants completed a test which involved 

the transcription of sixty novel sentences spoken by all four talkers.  

In Experiment 2 (Chapter 3), we tested whether sleep as well as targeted memory 

reactivation (TMR) a technique in which auditory stimuli paired with a leanring episode are 

presented unobtrusively during slow-wave sleep (SWS). Thirty-eight participants completed the 

same general task; however they were only exposed to the TUR talker at training. At test, all 

talkers were included. This time, training and test were separated by a 90-minute nap during 

which auditory cues were presented in SWS. During sleep, participants were either exposed to 

the L2 English sentences heard during the transcription task or auditory cues paired with a 

control task which tested implicit learning of a motor sequence task. Each participants 

transcribed the same sentences, presented in a random order, at training and test. Data from 

Experiment 1 was collected from the online platform Prolific while data from Experiment 2 was 
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collected in the laboratory. Although there are design differences between the two studies, here, 

we pooled and analyzed the data collected from both in order to further assess previous findings 

and explore relationships between variables. We did so by employing a mathematical modeling 

approach known as multi-level modelling (MLM).  

Regardless of design differences stated above, data collected from both experiments can 

provide valuable insights related to L2-English transcription. In Chapters 2 and 3, we thoroughly 

analyzed the data using standard techniques which are popular in the psychology field, 

particularly with ANOVA and t-tests. These analyses allowed us to directly compare differences 

in groups based on training type as well as individual training group, speaker transcribed, and 

whether or not participants received task-relevant cues. However, it becomes difficult to consider 

these many things in one model. Often, one may run an ANCOVA or ANOVA. Follow-up t-tests 

may then be necessary to explore where the significant difference in groups lie. Further one must 

decide which correction will be used to account for the multiple comparisons.  

Multi-level models, also referred to as hierarchical linear models (HLM), have often been 

used to assess data that have a natural, hierarchical structure (J. Hox, 1998; Stephen & Anthony, 

2002). MLM has also been used to combine data for the purpose of meta-analyses. Though a 

hierarchical structure may not be as apparent as the previous example, participant data collected 

can be considered to be nested within conditions which are further nested within studies 

(Fernández-Castilla et al., 2020). We chose MLM to assess our data as it accounts for variance 

by incorporating how the higher levels of hierarchy affect the dependent variable (Steenbergen & 

Jones, 2002). MLM also allows for results that can be more easily generalized. Because of the 

grouping factors present in both experiments, with MLM we can incorporate these differences 

into the model by incorporating them as a level when possible. Finally, MLM is able to do so 
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within one concise model (Steenbergen & Jones, 2002). Due to the potential advantages of 

MLM, in this chapter, we explored the use of this statistical tool in psychology.  

There are decision points which must be considered when building a multi-level model. 

One is the way you will categorize the predictors. There are two options: fixed or random effects. 

A fixed effect is considered to have a constant relationship with the response variable. A fixed 

effects model is a linear regression of y on x. MLM computes an estimate, often based on 

maximum likelihood estimation, for each fixed effect in relation to y, controlling for all other 

included predictors, is computed (Clark & Linzer, 2015; Hayes, 2006). In other words, a fixed-

effect coefficient estimates how a change in the predictor will affect the dependent variable. 

Random effects are considered those which vary in their relationship to y. Here, rather than 

directly calculating coefficients, such as in fixed effects, they are assumed to follow a normal 

distribution where the mean and standard deviation of the normal distribution are used as 

estimators (Clark & Linzer, 2015). Generally, random effects provide information regarding the 

variance of the dependent variable at different levels.  

Here, we used the mixed-models approach, which includes both fixed and random 

variables, to explore data collected from Experiment 1 and Experiment 2. We did so to explore 

the use of MLM to analyze data which is typically analyzed with ANOVA and t-tests. Doing so 

also allowed us to compare findings from this approach with the more typical approaches. We 

also pooled the data from Experiment 1 and Experiment 2 together to build one final model. 

Doing so allowed us to compare data from both experiments in one model. It also accounted for 

the differences in each experiment that may affect the findings, as they could be included as 

levels in the hierarchy. 
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4.2 METHOD 

4.2.1 Data 

Data: Scoring 

Participant responses were scored using an online, automatic scoring tool (Borrie et al., 2019). 

The scoring tool calculated total number of words correctly transcribed on each trial for each 

participant. We allowed for all accepted exceptions in the automatic scoring tool. Response 

words were scored as correct if the entered word was: (1) a homophone or common misspelling, 

(2) included as a rootword, (3) omitting a double letter, (4) included “the” in place of “a” and 

vice versa, (5) was in the incorrect tense, or (6) was entered in either it’s plural or singular form. 

These exceptions were made to allow the scores to reflect meaningful differences in language 

perception.  

Behavioral Analysis 

Each participant contributed three behavioral scores. The training score was computed as the 

mean number of words correct divided by the total number of words possible for training blocks 

4-6 (30 total sentences). Both follow-up test scores were computed by the mean number of words 

divided by the total number of words presented.  Behavioral analysis was conducted in R version 

4.2.1.  

4.2.2 Model building 

Variables 

The variables for possible inclusion consisted of participant ID, proportion correct (proportion of 

words correctly identified variable), format in which the test was completed (online, in-lab), 

session (training, test), speaker transcribed (FAR, TUR, PBR, SPA), type of training (single-

talker, multiple-talker), and TMR group (cued, control). The variable, proportion correct, served 
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as the response variable (Table 4.1). The intercept and participant ID were included as random 

variables. The rest of the variables included in all models were considered fixed effects which 

allowed us to meaningfully estimate the effect of each predictor variable and interaction term on 

performance.  

Running the models 

The model was created using R version 4.2.3 using the “nlme” package. Because of the nature of 

the data, a mixed effects model, consisting of both random and fixed variables, were used. A 

mixed model follows the equation: 

𝑦ij = 	𝛽! +	𝛽"𝑥#$ +	𝑢# +⋯+	𝑒#$ 

Where y is the response variable, 𝛽! is the intercept, 𝛽" is the coefficient of the first fixed effect 

term, and i is an individual observation for each level, j. u is a random-effect, and e is an error 

term.  

 To compare the models, the Akaike information criterion (AIC) and Bayesian 

information criterion (BIC) were used. While there is no set number that is considered a good 

indicator of fit, a lower AIC and BIC indicate a better model fit. ANOVA was used to compare 

models one by one. Due to our relatively small sample size, restricted maximum likelihood 

estimates (REML) were used (McNeish, 2017). 
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Table 4.1. All possible variables  

Variable Name Variable Type 

ID Random 

Proportion Correct Response 

Format Fixed 

Test Fixed 

Type Fixed 

Speaker Fixed 

Cueing  Fixed 

 

Hierarchy 

Chapter 2: Experiment 1 Online Data 

The data collected online from Experiment 1 were separated into three levels, represented in 

Figure 4.1. Participant ID was included as a random effect as we expected performance to vary 

across participants in no particular pattern. From lowest to highest, the hierarchy for Experiment 

1 data included, the four transcribed talkers, the session, training group, and the type of training 

one received (single-talker or multiple-talker. 
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Chapter 3: Experiment 2 In-lab Data 

Data from Experiment 3 was separated into two levels represented in Figure 4.2. Level 2 was 

separated by those who received cues related to the second-language English transcription task 

and those who received control cues. Data was then further grouped by session: training and test 

(level 1). Participant ID was included as a random variable. 
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Experiment 1 and 2 Combined Data 

For the combined data, the broadest level was separated by format: In-lab and online data (level 

3). Data was then further separated into training and test data (level 2). Talker was also included 

as a level one fixed variable. All levels are shown in Figure 4.3. Due to the single-talker in-lab 

study design, talkers PBR, SPA, and FAR were only included at test. Due to this, we only 

interpreted coefficients of talker at test to try and better understand the effect of talker for the in-

lab and online studies. It is also important to keep in mind that any effects related to the three 

mentioned talkers are only relevant for the test session. 

 

 

 

 

Figure 4.2. Hierarchy of Experiment 2 variables. Level 1 is the session, 
which is nested within level 2, the cueing format. 

 
Experiment 2 

 
Task Cues Control Cues 

Training Test Training Test 

TUR 

TUR 

PBR 

SPA 

FAR TUR 

TUR 

PBR 

SPA 

FAR
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4.3 RESULTS 

4.3.1 Chapter 2: Experiment 1 online model 

To fit these data, we first created a simple regression model including participant ID as a random 

effect at the intercept level to predict the response variable proportion correct.  We first ran an 

intercept only model including ID to predict performance. This was compared with a model 

which also included the type of training (multiple-talker or single-talker) as a level one fixed 

effect with no changes to the random effect. There was no difference between these two models 

[p=.70]. Next, we included test type (training and test) as a level two fixed effect (model 3) 

though including test at level two did not improve the model [p = .74]. However, including test, 

type, and a test by type interaction term only as fixed effects did improve the model [p < .05]. 

We then compared this model with one that included talker as a level three fixed effect which 

 
Experiment 1 & Experiment2 

 

In-lab Online 

Training Test Training Test 

FAR 

TUR 

PBR 

SPA TUR 

PBR 

SPA TUR 

PBR 

SPA TUR 

PBR 

SPA 

FARFAR FAR 

Figure 4.3 Hierarchy of experiment 1 and 2 combined data. Level 1 includes 
speaker. Level 2 includes the session which is nested within the format in which one 
completed the task. FAR, PBR, and SPA are represented in grey as these speakers 
were not included in the in-lab training session. 
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significantly accounted for more error [p<.05]. Finally, we determined whether including two- 

and three-way interactions between type, test, and talker improved the model. This was included 

following the a priori hypothesis that the type of training one receives, the session, and the 

speaker heard would interact in a way that affected performance. This proved to be the best 

performing model as it accounted for the most overall error (Table 4.2, Model 6).  

 For those who completed the experiment online, performance was greatest for the PBR 

and SPA talkers compared to other talkers [participants performed an average of 12% better 

(t(168) = 13.66, p < .05) for the PBR talkers and 5% better for the SPA talker (t(168) = 3.05, p < 

.05)  controlling for other variables and interaction terms]. At test, however, participants tended 

to perform worse (-4%) on the SPA talker [t[168] = 2.68, p = .007] compared to other talkers. 

Data for these models are displayed in Table 4.3 The intraclass correlation (ICC) represents how 

much of the variance can be attributed to between subjects rather than within-subjects. The ICC 

for the best performing model was 12% which indicated that most of the variance (88%) came 

from within participants.  

 Though findings were significant, it is important to take into consideration the degree to 

which a predictor affects the outcome variable, measured by the estimate, and the degree to 

which this finding is reliable based on the confidence interval. There were 627 total words which 

contributed to the score with 310 at training and 317 at test. Because participants were split into 

eight groups with the number of speakers changing, we can estimate that each speaker spoke 

roughly a quarter (157) of all total words. Considering this, we expect an improvement of 8 

words on average for the SPA talker and an increase of 19 words on average for the PBR talker. 

Further, we would expect a decrease of 3 words at test for the SPA talker. Overall, the largest 

beta estimate is that of the PBR talker as nearly 19 more words (12%) were estimated to be 
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transcribed with a rather narrow 95% confidence interval [10%, 14%]. This finding indicated 

that this speaker may indeed be the most intelligible out of the four included.  

 

Table 4.2. Models tested to fit Experiment 1 data 

Model Variable(s) Included AIC BIC Comparison p-value 

1 ID 7277.11 7300.00 NA NA 

2 ID, Speaker 5687.7 5733 1 vs 2 <.05 

3 ID, Speaker + Test 5689.40 5742.80 2 vs 3 .59 

4 ID, Speaker + Test + Group 5691.10 5797.80 4 vs 2 .12 

5 ID, Speaker + Test + Group + 

Type 

5691.10 5797.80 5 vs 2 .12 

6 ID, Speaker * Test 5622.60 5698.00 6 vs 2 <.05 

7 ID, Speaker * Test * Group 5607.4 5988.60 7 vs 6 <.01* 

8 ID, Speaker * Test * Group * 

Type 

5607.4 5988.60 8 vs 7 NA 
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Table 4.3 Significant statistics from best fitting model for Experiment 1 Data  

Predictor Estimate (𝜷) (%) 95% CI (%) t p 

Intercept 72 70-75 54.45 <.001 

PBR 12 10-14 13.66 <.001 

SPA 5 2-8 3.05 .002 

SPA * Test -4 -1 - -7 2.68 .007 

𝜎% =	 .08 

ICC=.11 

n = 168 

    

    

Figure 4.3 Data representing performance at test and 
training for each of the four speakers. 
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4.3.2 Chapter 3: Experiment 2 in-lab model 

 For the data collected from Experiment 2, we first compared a model including a fixed effect of 

test with an intercept only model which performed significantly better (p<.01). The addition of 

Speaker, however, improved the model even further (p <.01). Interestingly, the inclusion of the 

test or the interaction between TMR group and Test was not significant (p’s > .05) indicating that 

the increased complexity did not account for any additional variance (Table 4.4). Based on the 

best performing model, we found that participants speaker accounted for the majority of the error 

with participants performing the best on the PBR group (14%) and worse on the TUR group by 

11% (p’s<.01) (Table 4.5) controlling for all talkers. Grouped data is represented in Figure 4.4. 

The ICC indicated that 90% of the variance is attributable to within-person performance.  

 There was a total of 607 words transcribed with 290 at training and 317 at test. Given this 

information, one would expect an additional 44 (14%) words to be transcribed at the test session 

on average controlling for all other talkers.  We would also expect 44 fewer words to be correctly 

transcribed on average for the TUR talker between both the training and test sessions.  

Table 4.4 Models tested to fit Experiment 2 data 

Model Variable(s) Included AIC BIC Comparison p-value 

1 ID 1852.80 1871.10  NA NA 

2 ID, Speaker 1565.60 1602.3 1 vs 2 <.01 

3 ID, Speaker + Test 1567.40 1610.20 2 vs 3 .66 

4 ID, Speaker + Test + TMR group 1564.60 1613.50 2 vs 3 .08 

5 ID, Speaker * Test 1567.40 1610.20 2 vs 5 .66 

6 ID, Speaker * Test * TMR group 1571.90 1645.30 6 vs 2 .46 
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Table 4.5 Significant statistics from best fitting model for Experiment 2 data 

Predictor Estimate (𝜷)(%) 95% CI t p-value 

Intercept 70 66-74 35.04 <.001 

PBR 14 10-17 7.69 <.001 

TUR -11 -14 - -8 7.51 <.001 

𝜎% =	 .09 

ICC=.09 

n= 38 

    

 

 

4.3.3 Experiment 1 and 2 combined data model 

In this analysis datasets from both experiments were included. We explored a simple model, 

including ID as a random effect, with one that included speaker as a fixed effect. The latter 

Figure 4.4 Performance for the training and test sessions for 
each speaker. 
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model was significantly better (p<.05). The addition of both test and format also improved the 

model. Finally, the inclusion of all interaction terms significantly accounted for the greatest 

amount of error (p<.05) (Table 4.6 Model 5).   

Performance was calculated as the number of words correctly identified divided by the 

total number of words presented. There were 627 words in Experiment 1 and 607 words for 

Experiment 2. For this analysis we will consider there to be a total of 617 words (average 

number of words in Experiment 1 and Experiment 2) with each talker speaking roughly 154 

words.  Overall, we found that participants performed better at test and for the PBR and SPA 

talkers [PBR performance was greater by 13% and the SPA talker by 3%]. Performance at test 

for the in-lab participants was significantly worse in general [-1%; p<.01] and when faced with 

the SPA talker [-3%; p <.05]. Finally, participants who completed the test in-lab were worse for 

the FAR talker [-1%; p<.05] and at test [-1%; p<.05]. Statistics for all predictors are displayed in 

Table 4.7 and represented visually in Figure 4.5. The majority of the variation was attributable to 

within person differences (88%). 

We found that the greatest predictor affecting performance is that of the PBR talker with 

a 13% increase, which translates to roughly 20 words, in performance. The narrow confidence 

interval [12%, 14%] suggests this was an accurate estimate. The remaining estimates fell 

between 1% and 3%, or roughly 3 to 9 words, respectively. Though these estimates had a less 

substantial impact on improvement of performance, they are still reliable in their prediction of 

performance outcomes based on confidence intervals (Table 4.7) 

Table 4.6 Models tested to fit Experiment 1 and 2 data 

Model Variable(s) Included AIC BIC Comparison p-value 
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1 ID 9139.70 9163.20 NA NA 

2 ID, Speaker 7274.70 7321.60 2 vs 1 <.05 

3 ID, Speaker + Test 7276.4 7331.2 3 vs 2 .60 

4 ID, Speaker + Test + Format 7278.30 7340.90 4 vs 2 .82 

5 ID, Speaker * Test 7229.9 7308.10 5 vs 2 <.05 

6 ID, Speaker * Test * Format 7199.2 7316.5 6 vs 5 <.05* 

Table 4.7 Significant statistics from best fitting model for Experiment 1 and 2 data 

Predictor Estimate (𝜷) 

(%) 

95% CI 

(%) 

t p-value 

Intercept 73 71-75 70.33 <.001 

PBR 13 12-14 19.86 <.001 

SPA 3 2-4 4.86 <.001 

Test -1 -2-0 2.91 .004 

SPA * Test -3 -4 - -2 6.47 <.001 

FAR * In-

lab 

-1 -2 – 0 2.14 .033 

Test * In-lab -2 -2 - -1 3.28 .001 

𝜎% =	 .08 

ICC=.12 

n = 206 
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4.3.4 Testing model assumptions  

There are assumptions that MLM makes which should be checked in order to have confidence in 

estimates and interpretation. First, we explored the assumption of linearity. To check this 

assumption, we plotted the residuals of the best fitting model for each dataset, looking for no 

clear pattern between the residuals and outcome variable. Fox (2008) argues that visual 

inspection is sufficient to test for linearity. We next test for the assumption of homoscedasticity, 

or an equal variance in the residuals. To do so, we ran an ANOVA on the square of the residuals. 

A nonsignificant result indicates that the assumption of homoscedasticity is met. If this 

assumption is not met, a transformation may be required. We also tested that the residuals of the 

model were normally distributed by visually assessing a plot of standardized quantiles by 

standardized residuals, looking for a near perfect correlation. Finally, we checked for 

multicollinearity amongst predictors to see whether there was a difference in performance that 

 

 Figure 4.5 Performance for data collected both in-lab and online at 
each session. Change in performance from speaker to test is also 
represented where applicable.  
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could be attributed to a correlation amongst predictors.  Because all of the predictors were 

categorical variables, we ran a Chi-squared test on the relationship between each of the 

predictors with the dependent variable. A nonsignificant difference indicates that 

multicollinearity is not an issue in any given model.  

Experiment 1: Online data 

Linearity of variance 

To check for linearity of variance, we plotted the residuals of the best fitting model against the 

true value, the proportion of words correctly identified. This indicates that unexplained variance 

is correlated with the proportion correct which indicates that this model violates the assumption. 

Violations of the assumptions tend to happen in collected data. It has been argued that mixed-

effects models tend to be robust, though we should still be aware that model estimates may be 

less accurate (Schielzeth et al., 2020).  

 

 

Homogeneity of variance 

Figure 4.6 Residuals of the best fitting model plotted against 
the true values. Individual data points are represented by 
black circles.  
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One assumption of multilevel models is that of homoscedasticity. An ANOVA was run to test 

whether the variance of the residuals was equal. We found that the assumption was met as there 

was not a significant difference in variance at the individual level [F(1,15118) = .83, p=.36]. 

Figure 4.7 is a visual representation. Our data was centered around the zero line, however, 

indicating an even spread in the residuals.  

 

 

Normally distributed residuals 

We explored normality based on a visual inspection of the relationship between standardized 

quantiles and residuals (Figure 4.8A). We noticed slight deviation near (-2, -2) and tried a 

logarithmic transformation on the data to explore whether or not this would improve our findings 

(Figure 4.8B). We found that the log transformation caused the residuals to appear less Normal. 

Figure 4.7 Plot of estimates by residuals. Individual data 
points are represented by black circles.  
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Because the standard plot (Figure 4.8A) appears to be generally Normal, we concluded that the 

assumption of normality was met.  

 

 

Multicollinearity 

Finally, we tested for existing collinearity amongst predictors on the dependent variable. After 

running a Chi-squared test, we found no evidence of multicollinearity [𝒳%(3013) = 2980.10, p = 

.66], indicating that the variables chosen were appropriate predictors for our multi-level 

modeling analysis. 

Experiment 2: In-lab data 

Linearity of variance 

Figure 4.8 Plot of standardized quantiles by standardized residuals 
for data collected from Experiment 1. Individual observations are 
represented by blue circles. 
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For Experiment 2, we also found that the assumption of linearity was violated. As explained 

above, mixed-effects models may be robust, but consideration should be taken into account when 

interpreting results of the model. 

 

Homogeneity of variance 

We ran an ANOVA to test whether homoscedasticity was met. We found that the assumption 

was not met as there was not a significant difference in variance at the individual level 

[F(1,3353) = 10.34, p=.001]. This is likely, in part, due to our linearity violation. We did, 

however, find that the data were mostly centered around the zero line. 

 

 

 

 

 

 

Figure 4.9 Residuals of the best fitting model plotted 
against the true values. Individual data points are 
represented by black circles.  
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Normally distributed residuals 

We first examined the relationship between standardized quantiles and standardized residuals. 

Based on visual inspection, the residuals appeared to be relatively, normally distributed though 

there was slight variation (Figure 4.11A). A logarithmic base 10 transformation was performed 

on the data to see whether this would improve our findings (Figure 4.11B). We found that this 

did, though transformations make interpreting the outcomes more difficult. It has been argued, 

however, that violations of normality may have little impact (Schielzeth et al., 2020). Because 

the data seemed generally Normal, the logarithmic transformation may not have provided 

additional value given the challenges in interpretation. 

 

Figure 4.10 Plot of estimates and residuals. 
Individual observations are represented by blue 
circles. 
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Multicollinearity: Finally, we tested for any existing collinearity amongst predictors and the 

dependent variable. Using a Chi-squared test, we found no evidence of multicollinearity [𝒳%(52) 

= 56, p = .33], indicating that the variables chosen were appropriate predictors for our multi-level 

modeling analysis. 

Experiment 2 and 3: Combined dataset 

Linearity of variance 

Figure 4.11 Plot of standardized quantiles and residuals before (A) 
and after (B) a logarithmic transformation. Individual observations 
are represented by blue circles. 
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As this data is a combination of data collected from the prior two experiments, it was expected 

that the linearity assumption was violated (4.12). As stated, we should remain cautious when 

interpreting the output. 

 

Homogeneity of variance 

We ran an ANOVA to test whether homoscedasticity was met. We found that the assumption 

was not met as there was not a significant difference in variance at the individual level 

[F(1,18473) = 4.49 p=.03]. Visual inspection showed that, similar to the in-lab data assessment, 

the violation in linearity of residuals likely affected the results (Figure 4.13). Similarly to the 

plots above, the data were centered around zero indicating equal spread in the variance. 

Figure 4.13 Plot of estimates by residuals. 
Individual data points are represented by blue 
circles.  
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Normally distributed residuals 

Visual inspection of the relationship between standardized quantiles and residuals revealed a 

generally Normal distribution (Figure 4.14A). Though variation at the tails is common, we 

explored whether a logarithmic transformation would improve the data (Figure 4.14B). We 

found, however, that the relationship between standardized quantiles and residuals appeared less 

Normal than before. Therefore, we concluded that the data did not require a transformation and 

that the normality assumption was met.  

Figure 4.12 Residuals of the best fitting model plotted 
against the true values. Individual data points are 
represented by black circles.  
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Multicollinearity 

Finally, we tested for any existing collinearity amongst predictors and the dependent variable. 

Using a Chi-squared test, we found no evidence of multicollinearity [𝒳%(3013) = 2980.10, p = 

.66]. 

4.4 DISCUSSION 

In contemporary studies exploring sleep and memory reactivation, ANOVA is most often used. 

Replication allows psychologists to have confidence in findings, although in some cases we may 

want to pool data from similar studies to explore broad effects. This approach was used recently 

in a meta-analysis of targeted memory reactivation studies (Hu et al., 2020). 

In this dissertation, data were collected from participants in two separate experiments. 

Though the two experiments differed in format and study design, there were also similarities as 

both explored how participants performed on a second-language English transcription task 

Figure 4.14 Plot of standardized quantiles by standardized 
residuals for data collected from Experiment 2. Individual 
observations are represented by blue circles. 
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before and after a delay. In Chapters 2 and 3, data were analyzed for the online Prolific 

experiment and the in-lab nap experiment using mixed effects ANOVA and Pearson correlations. 

Here, we analyzed data from each experiment separately using MLM. We also pooled data and 

explored broader effects while also accounting for differences in study design. This provided 

information which would not be possible with a more standard ANOVA analysis.  

 We found results that supported our previous findings such as the PBR talker being the 

most intelligible of the four included speakers. In Chapter 2 (Experiment 1), we found differing 

results from training to test based on training group. In Chapter 3 (Experiment 2), we found that 

speaker alone was sufficient in accounting for the majority of the error in the model, allowing us 

to predict performance in this specific design from speaker alone. From our combined model, 

however, we saw that test and training sentences were more similarly matched than we may have 

thought as we would expect participants to score 1% worse than the training condition. 

 It is important to note, however, that the assumption of homogeneity and linearity of 

variance were violated in many of the models. We speculate that this is due to the nature of the 

intelligibility of each speaker. Each predictor added to the multi-level models was categorical. 

Furthermore, speaker type was shown to greatly affect performance regardless of training type 

(Figure 2.6). Because there was a clear order of intelligibility of speakers which affected 

performance, this likely affected the variance such that it was much more structured than 

anticipated. Violating these assumptions affects our ability to interpret the data accurately though 

it may be the case that the fixed effects were more resilient to these effects (Schielzeth et al., 

2020). Nevertheless, we should be cautious when interpreting these findings.  

Overall, the MLM model was conducive to exploring performance differences based on 

format. For example, we found participants who completed the in-lab study, exposure to only the 
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native Turkish speaker may have hindered performance for the FAR speaker (Table 4.7), though 

by what may be considered a small amount. Regardless, this finding may, indicate that speakers 

might be learning to generalize information that only applies to certain speakers. Further 

linguistic analyses on these two speakers compared to the others are needed to determine 

whether an explanation might help explain this effect. We also found that participants tended to 

perform a bit worse (1%) in the lab for the test compared to online session controlling for 

speaker and session. Our in-lab participants, however, also slept in between the training session 

and test session which may have affected their performance compared to the online participants. 

Though these analyses led to interesting findings, there were also limitations in our 

approach. First, because of the differences in Experiment 1 and Experiment 2, our abilities to 

nest data and develop a hierarchy were hindered. Incomplete groups due to experimental design, 

along with a relatively small sample size at the individual and especially group level, and a low 

intraclass correlation greatly affected the robustness of our findings (J. J. Hox & Maas, 2001).  

An increase in sample size at each level and more similarity in study design should be explored. 

It is also apparent that the estimates and ICC’s tend to be quite small. It may be possible that this 

task and/or study design is not sensitive enough for this type of model especially when it comes 

to slight differences in performance based on speaker or memory reactivation.   

Despite these limitations, MLM provides an added benefit as we could combine data and 

support existing findings while also highlighting novel avenues for exploration. Though we 

could have attempted to combine data using ANOVA and t-tests, MLM depends on a 

hierarchical structure of predictors. This structure considers the differences in study design, 

explained above, and groups data to better estimate effects at distinct, nested levels. In the future, 

we should explore how increasing sample size or more similarity in experimental design may 
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affect findings. We should also explore other, novel, approaches to better understand our data. 

Overall, throughout this chapter we able to analyze our data in a novel way, highlighting points 

for future exploration.       

  

 

 

 

  



 
 

99 

Chapter 5 

General Discussion 

5.1 THESIS OVERVIEW AND FINDINGS 

Introduction 

In today’s technical and interconnected world, it is not unlikely for a conversation to occur where 

one person is functioning in their first language (L1) while the other is functioning in their 

second language (L2). Understanding any talker may be difficult until the listener learns to adapt 

to the particular speaker, especially in difficult listening conditions. To better understand how 

this process occurs, researchers have recreated this situation in a laboratory setting by having 

participants transcribe L2 speech in noise. Previously, it has been shown that listeners can 

improve in their ability to recognize words after training on the same talker, or many talkers of 

the same language background (Bradlow & Bent, 2008). Further, exposure to a variety of 

different L2 talkers of different language backgrounds has been found support the ability to 

generalize to talkers from novel language backgrounds which is thought to indicate there may 

exist systematic properties of L2 English that listeners can learn overtime (Baese-Berk et al., 

2013). It has been found that participants have difficulty categorizing the language background 

of L2 as they rely on bottom-up rather than top-down information for successful transcription 

(Xie & Myers, 2017). The authors suggest this finding demonstrates that explicit categorization 

or clustering of speakers based on L1is not a strategy listeners rely on. Based on these findings, it 

is likely that implicit memory systems are crucial for this type of generalization process. There 

has also been evidence that sleep may play an important role in the ability to generalize to new 

talkers (Xie et al., 2018).  



 
 

100 

 To explore the role of sleep in perceptual generalization of speech, we used a technique 

known as targeted memory reactivation (TMR). TMR relies on the pairing of external stimuli 

with learning episodes that are played unobtrusively, in an attempt to reactivate and strengthen 

memory (Rasch et al., 2007; Rudoy et al., 2009). TMR has been shown successful for both 

implicit and explicit memory tasks (Hu et al., 2020). 

Experiment 1 

To inform the sleep study, we first wanted to explore how participants performed on trained and 

novel talkers before and after a delay based on the variability of incoming speech sounds. In 

Experiment 1, L1-English listeners completed an L2-English transcription task (Figure 2.1). The 

four talkers included in the experiment had one of four L1 backgrounds: Brazilian Portuguese 

(PBR), Spanish (SPA, Farsi (FAR), or Turkish (TUR). All sentences were spoken in English and 

the number of words correctly transcribed per session divided by the total number of words 

presented served as the participant score (Section 4.2.1 Scoring). During the initial session, they 

were exposed to either one talker (low variability) or three talkers (high variability), termed 

single and multiple talker groups, respectively. Roughly 11 hours later, participants transcribed 

60 novel sentences split between each of the four mentioned speakers. The single talker group 

heard the trained talker and three novel talkers while the multiple talker group heard three trained 

talkers and one familiar talker.  

 We first found that at training, participants in the single talker group transcribed more 

words correctly than the multiple-talker group. This follows as the multiple talker group was 

exposed to many talkers while the single talker group had an opportunity to achieve speaker-

dependent adaptation (Bradlow & Bent, 2008). We also found that both groups performed 

similarly at the test (Table 2.1; Figure 2.2; Figure 2.3). The most glaring difference regarding 
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speakers was between two particular talkers: PBR and TUR. We found that participants 

performed significantly better on the PBR talker and significantly worse on the TUR talker. 

When looking at all four multiple-talker training groups, we also saw that those who were not 

exposed to TUR (noTUR) tended to perform worse on the novel talker (TUR) than the other 

multiple-talker training groups did when faced with a novel talker (Figure 2.5). Though the TUR 

talker was less intelligible, we found that those who were only exposed to this speaker improved 

the most from training to test (Table 2.1). It is likely, however, that being exposed to more 

intelligible speakers at the test session contributed to this finding. Interestingly, the multiple-

talker groups performed better on the TUR talker than the single-talker groups on average, 

indicating that exposure to a variety of talkers was aided in generalization for the most difficult 

talker (Table S1).  For Experiment 2, we focused on this single-talker training group to explore 

whether sleep and memory reactivation could lead to improvements in word recognition.  

Experiment 2  

For Experiment 2, we ran a similar experiment in which participants transcribed 60 sentences 

spoken by the TUR talker at training and 60 sentences at test split evenly amongst the PBR, 

FAR, SPA, and TUR talker (Figure 3.1). Participants also completed a control task during which 

they pressed keys in response to visual and auditory cues. A repeating sequence was embedded 

within the task. Previous literature has shown that TMR during sleep has proven to improve 

participant performance on the repeating sequence measured by increased speed and accuracy 

(Antony et al., 2012). Between the training and test session, participants were given 90-minutes 

to nap during which they received auditory cues either of the repeating sequence from the control 

task or the spoken words transcribed during training. Cues were presented during slow-wave 

sleep (SWS) and paused during signs of arousal.  
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 Here, we found that at training, participants improved over time, performing better than 

the TUR group from Experiment 2. After calculating the final training score, we did find a 

marginal effect that emerged between the cued and control group. This effect has no clear 

explanation as participants were randomly assigned to groups and tasks were counterbalanced 

across participants, so it is likely that this is a spurious finding. At test, both groups improved by 

a similar degree (Table 3.1; Figure 3.3). When looking at the performance at test for the novel 

and learned talkers, the control group tended to perform better for all speakers (Table 3.2).   

When exploring the various sleep measures, we found that both groups of participants 

were matched (Table 3.3; Table 3.4). Time spent in N2 positively correlated with improvement 

for both groups. We, however, wanted to explore how sleep may have affected performance, 

particularly for the cued group. For these participants, total time spent asleep correlated with a 

greater degree of improvement. We also found that improvement was negatively correlated with 

a greater amount of sleep disruption. The majority of participants had very little sleep disruption 

our goal was to present the sounds so as not to wake participants and disrupt their sleep. 

Considering the sleep results, it may be the case that total time asleep and sleep disruption, 

combined with the fact that the cued and control groups were not equal at training may have 

contributed to our finding that TMR did not improve performance in this task.  

Finally, we also tested multi-level models (MLM) to explore how this mathematical tool 

might improve our understanding of the data collected. Though there were a number of 

significant findings (see Chapter 4), a few stood out as being particularly impactful. For the data 

from Experiment 1, we found that participants performed well on the SPA talker and 

exceptionally well on the PBR talker compared to other talkers. For Experiment 2, we found that 

performance was significantly better at test than at training. Finally, by comparing all of the data, 
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we found that participants performed much better on the PBR talker compared to all other 

talkers.  

Overall, we found that multiple-talker training tended to support generalization while 

single-talker training did not. There is complexity in this finding, however, as the PBR and TUR 

talkers greatly affected performance as they were the most and least intelligible talkers, 

respectively. However, it appears that performance on these two talkers did not drive this finding 

as performance is similar across talkers regardless of training group (Table S1). This indicates 

that there may indeed have been a base of generalized knowledge that allowed participants in the 

multiple-talker group to improve at training.  

We also found that neither sleep nor memory reactivation improved generalization. There 

are a couple of potential explanations for this finding. First, despite randomization, participants 

in the control and cued groups were significantly different at training. Further, when looking at 

sleep measures, a decline in performance was significantly correlated with sleep disruption 

related to the cues. These two factors likely contributed to the null effect of TMR. It may also be 

the case that sleep and/or TMR may not be helpful for this type of task though we cannot be 

confident in this conclusion based on the other factors explained above.  

Limitations 

In Experiment 1, there were limitations that may have affected our results. First, the experiment 

was run online. Because of this, it’s possible that participants may not have followed instructions 

as precisely as if they were in the lab. For example, they may not have worn headphones or may 

have completed the task in a noisy environment. We also did not know what participants may 

have done during the day that could have affected their performance at either the training or nap 

session. Further, because we did not have access to a participant’s location, we cannot be sure of 
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the exact time zone during which the experiment was completed. To account for this issue, we 

opened the experiment for 6 hours to account for a number of time zones across the United 

States. Finally, we were able to select for L1 English speakers between the ages of 18-35 who 

experienced no hearing difficulties. Though running participants outside of the lab makes it more 

difficult to control for external variables, participants from the online platform, Prolific, have 

been shown to provide useful data for L2 language experiments (Strori et al., 2020).  

 There were also limitations that affected Experiment 2. First, because it is common that 

people learn more than one language, finding L1 English speakers was difficult. Due to this, we 

limited our participants to those who considered themselves to be English dominant. We believe, 

however, that participants who functioned mainly in English had a perceptual space that was 

attuned to English sounds to limit the effect this had on performance. Along these lines, though a 

participant may have considered themselves to be English dominant, it is possible that they often 

heard L2 English speakers on any given day which may have affected performance.  

When looking at the description of sleep, none of our participants achieved REM. This is 

not surprising as reaching REM during a 90-minute nap in a new space may be difficult. It has 

been hypothesized, however, that REM may play an important role in the ability to use learned 

information in a more generalized context (Sterpenich et al., 2014; Tamminen et al., 2017). 

Because Experiment 2 was a nap design, we cannot know whether REM sleep may have 

supported generalization for this task. Finally, it is difficult to assess whether the auditory cues 

were processed during sleep. To address this possibility, speakers were set to a volume that each 

participant considered to be optimal for sleep based on pink noise. We presented sounds at this 

volume while increasing the volume by .1-.2dB for each round of auditory cues presented, 

stopping upon signs of arousal.  
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 In Chapter 4, we tested multi-level models to determine which best fit data from 

Experiment 1, Experiment 2, and both Experiment 1 and 2 combined. Although we were able to 

gather useful information, the assumptions of linearity and homogeneity of variance were not 

met. Further, because these experiments were not originally designed to be analyzed with HLM, 

there are likely design choices that, if changed, would allow for a better assessment of the data.  

5.2 FUTURE DIRECTIONS 

Given the interesting interaction of performance based on training group and the speaker 

transcribed, future research should explore the similarities and differences in these speakers, and 

in other speakers to explore the necessary requirements for successful generalization. Further, a 

similar study should be conducted using an overnight study design to determine whether REM 

plays an important role in the generalization of L2 English speech. Doing so will provide insight 

into the way the brain might support the integration of information and how this information 

might be used based on differences and similarities in the speakers heard at training and test.   

5.3 CONCLUSION 

This dissertation was focused on better understanding human communication. Experiment 1 and 

2 allowed us to explore the effect of exposure to variability, how intelligibility may affect our 

ability to understand novel talkers, and the way sleep may support this type of learning. This this 

research also focuses on L2-English transcription which contributes to a body of work that 

rebalances the communicative burden of talkers by exploring communication from the 

perspective of the listener (Bent & Baese‐Berk, 2021). Researchers should continue to explore 

the perception of L2 speech so that we might (1) better understand how the brain supports this 

process and (2) learn how we can become better listeners. 
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Chapter 5 

Supplemental Materials 

 

Table S1. Experiment 1 test performance for each training group by speaker  

Single Talker Multiple Talker 

Group Talker Average % ± SD % Group Talker Average % ± SD % 

FAR FAR 78 ± 29 noFAR FAR 75 ± 31 

FAR PBR 89 ± 23 noFAR PBR 83 ± 29 

FAR SPA 77 ± 30 noFAR SPA 71 ± 33 

FAR TUR 60 ± 35 noFAR TUR 61 ± 36 

PBR FAR 72 ± 31 noPBR FAR 74 ± 30 

PBR PBR 84 ± 35 noPBR PBR 85 ± 26 

PBR SPA 73 ± 31 noPBR SPA 73 ± 32 

PBR TUR 57 ± 35 noPBR TUR 63 ± 34 

SPA FAR 72 ± 33 noSPA FAR 74 ± 30 

SPA PBR 85 ± 25 noSPA PBR 82 ± 30 

SPA SPA 72 ± 32 noSPA SPA 73 ± 31 

SPA TUR 58 ± 37 noSPA TUR 57 ± 37 

TUR FAR 67 ± 34 noTUR FAR 79 ± 27 

TUR PBR 79 ± 30 noTUR PBR 88 ± 23 

TUR SPA 71 ± 32 noTUR SPA 78 ± 30 

TUR TUR 56 ± 36 noTUR TUR 62 ± 31 

 


