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ABSTRACT 

Physics-Informed Data-Driven Prediction and Design in Advanced Manufacturing 

Processes 

Mojtaba Mozaffar 

 

Manufacturing processes are known for their intricacies in changing material shapes and 

properties. New generations of manufacturing technologies, known as flexible manufacturing, are 

moving toward design freedom, which allows producing parts with optimized geometries and high 

customizations at an affordable cost even for low-volume productions. Two prominent flexible 

manufacturing processes that are of interest in this dissertation are additive manufacturing and 

incremental sheet forming. An important limiting factor in advancing current capabilities in such 

processes is the difficulty to reliably understand and control them due to the complex multi-physics 

and multi-scale nature of the processes. As the result, current practices are overly conservative, 

significantly limiting the vast potential of producing parts with customized material properties. 

At the same time, we observe a surge in the digitalization of manufacturing processes. Today, 

manufacturing facilities are more connected to data centers than ever, and various measurement 

methods are becoming standard components of modern manufacturing pipelines from controlling 

and monitoring the progress while manufacturing to testing and analysis after the part is built. 

Therefore, this dissertation is dedicated to developing computational methods to advance modeling 

and design capabilities with a focus on approaches to optimally use manufacturing data—an 

underutilized asset of manufacturing systems. My contributions in process characterization and 

design are organized into five research tasks and briefly discussed below. 
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Predicting the spatiotemporal behavior of manufacturing processes is challenging due to the long 

history-dependent correlations and complex unstructured geometric features common in 

manufacturing. Motivated by this challenge, my first research contribution introduces a data-driven 

methodology to learn material behaviors on unseen geometries over long simulation periods. My 

method efficiently combines a recurrent neural network to capture material evolution over time and a 

graph representation to flexibly extract geometric features. This methodology is demonstrated on 

thermal prediction of additive manufacturing processes and shows great generalizability across 

industrial-grade parts. 

Plasticity is one of the important pillars of computational mechanics. Conventional plasticity 

methods heavily rely on restrictive assumptions to reduce the dimensionality of the problem into so-

called “effective” parameters. In a first-of-a-kind research, my second contribution proposed a data-

driven approach to material constitutive modeling, where the material behavior under complex elasto-

plastic loading conditions can be learned from data. My work not only shows that data-driven 

constitutive modeling is accurate, but also it is computationally efficient and performs well across 

multiple material systems including composites and metal alloys. 

The large design spaces of flexible manufacturing such as the additive manufacturing process 

present a daunting optimization task, which limits the capabilities of producing highly customized 

parts. In the third contribution of my dissertation, I proposed a reward-driven solution to the toolpath 

design problem, where an agent is trained to explore the environment and develop strategies to collect 

maximum rewards. Four methods (three model-free and one model-based) varying in their exploration 

and decision-making formulations are developed and tested to design toolpaths for over 400 sections 

and the results show the effectiveness of this methodology especially in the presence of a dense reward 

structure. 
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In my fourth research contribution, I developed a differentiable manufacturing simulator that 

enables a seamless integration between physics-based and data-driven methods. I demonstrate that the 

gradients of a physics-based thermal simulation of the additive manufacturing process can be computed 

using automatic differentiation. Furthermore, this differentiable simulation is combined with neural 

networks to effectively optimize time-series process parameters and reach ideal thermal responses or 

melt pool behavior over hundreds of simulation time steps. 

The computational expense of physics-based manufacturing models is a limiting factor in the size 

of the problem that can be reasonably solved especially applications such as iterative design, model 

predictive control, and uncertainty quantification. In my fifth contribution, I investigated modern 

heterogeneous computational hardware to accelerate the simulation of additive manufacturing 

processes. Using the proposed matrix assembly and flux calculation strategies on graphical processing 

units, a speedup of 100 − 150𝑋 is achieved compared to an optimized CPU implementation. 
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CHAPTER 1  

Introduction 

 

1.1. Motivation 

Manufacturing is a major industrial sector accounting for 10-30% of the gross domestic 

product (GDP) in leading industrial countries (West et al. 2018). Historical examples show 

innovations in manufacturing nurture key advances in the automotive, aerospace, electronics, and 

biomedical industries. However, many manufacturing processes are known for their intricacies in 

prediction and control due to the extreme loading conditions and complex material flows. These 

complexities are often exacerbated in modern high-value-added processes, such as Additive 

Manufacturing (AM) and incremental sheet metal forming, as they are governed by hierarchical 

multi-scale and multi-physics behaviors.  

In recent years, Artificial Intelligence (AI) has become increasingly more capable of 

automating activities that we associate with human thinking, such as planning, decision making, 

and problem-solving. A nine-fold increase in the number of publications over the past 20 years 

(Shoham et al. 2018), 113% increase in start-ups from 2015 to 2018 (Shoham et al. 2018), and an 

estimated 15.7 trillion-dollar worth of economy in 2030 (PwC 2020) are only a few indications of 

the existing and future vast impact of AI in both academia and industry. Meanwhile, the recent 

trend of digitalization in the manufacturing community not only allows more precise control of 

processes, but also provides cost-efficient access to high-quality large scale data which can be used 

to achieve more efficient, agile, and innovative manufacturing solutions as a viable alternative to 

costly and time-consuming experimental approaches (Lee et al. 2015, Hermann et al. 2016).  
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1.2.  Need for Data-Driven Modeling and Design Tools 

The uncertainty in the prediction and control of the responses of manufacturing processes is 

one of the most critical challenges facing state-of-the-art practices. The underlying physics of the 

material response is challenging to understand and to predict since it involves multi-physics 

phenomena over a wide range of scales ranging from the micro-scale (such as the influence of a 

laser beam on powder particles) to the meso-scale (e.g., grain evolution and void generation) to 

the macro-scale (e.g., the thermal behavior of the material and its influence on an AM build’s 

fatigue life, anisotropic behavior, and strength, to name but a few). Many modern manufacturing 

processes involve a large set of interconnected process parameters including material properties, 

setup, environment, tools, and motion parameters, which makes it extremely difficult to establish 

the influence of process parameters on product properties.  

There are two common classes of approaches for characterizing manufacturing processes: (i) 

computational models, and (ii) experimental studies. Computational mechanics has been a popular 

method to characterize processes at the macro-scale (Parry et al. 2016, Schoinochoritis et al. 2017), 

meso-scale (Khairallah et al. 2016, Rai et al. 2016), and multi-scale domains (Wolff et al. 2017, 

Yan et al. 2018). The relationships between process, structure, property and performance can be 

individually examined and modeled. This approach, known as the PSPP framework, was initially 

popularized in the field of material science (Olson 1997) and later adopted to also characterize 

other manufacturing processes, e.g., connecting process parameters to thermal behavior, porosity, 

and mechanical behavior of an AM build (Wolff et al. 2017). In a noteworthy work, Yan et al. 

(Yan et al. 2018) developed a multi-physics model using the PSPP framework to achieve an in-
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depth understanding of the AM process. In their work, the Monte Carlo method is used to simulate 

an electron beam heat source at the micro-scale, a thermal-fluid flow model for simulating powder 

particle evolution at the meso-scale, and a macro-scale thermal analysis of the process by using 

the finite element method (FEM). They further simulated the microstructure evolution of the 

material using the cellular automata method and calculated its mechanical response using crystal 

plasticity. 

A crucial problem with the existing predictive methods for manufacturing processes is their 

enormous computational cost that might take weeks or months of simulation time (Francois et al. 

2017). Often, the computational models are orders of magnitude slower than the experiments, 

which makes them impossible to use in time-sensitive applications such as real-time control or 

optimization procedures. Moreover, the physics-based models can have significant discrepancies 

with experimental data due to simplifying assumptions or incomplete physics.  

On the other hand, many experimental studies have been conducted to analyze the influence 

of process parameters on microstructure and build properties for manufacturing processes 

(Shamsaei et al. 2015, Wang et al. 2016, Stevens et al. 2017, Fisher et al. 2018, Li et al. 2018). 

However, experiments are often expensive due to the cost of the required equipment, materials, 

and manpower. Additionally, the aforementioned experiment-based models use a limited number 

of experiments and are incapable of taking into consideration the complex inter-connectivity of 

parameters as well as high-dimensional inputs. Therefore, investigating novel methods to predict 

and control manufacturing behavior is vital for overcoming existing barriers and satisfying the 

ever-evolving requirements for modern processes, e.g., AM and incremental forming technologies.  
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1.2. Research Tasks and Accomplishments 

We hypothesize that AI-empowered approaches can address the shortcomings of state-of-the-

art methods described in the preceding section. This idea stems from the recent advancements in 

AI hardware and software capabilities, which offer high predictive power and computational 

efficiency, and allow leveraging digitalized manufacturing and large-scale data acquisition 

platforms. To this end, we develop various data-driven architectures and establish new 

methodologies for two tasks in enhancing (i) process characterization and modeling, and (ii) 

process design, as they collectively contribute to better manufacturing solutions. As depicted in 

Figure 1.1, my research encompasses several topics at the intersection of computational 

mechanics and artificial intelligence which I have pursed individually and through several 

collaborations. 
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Figure 1.1.  An overview of presetned research topics which lie at the intersection of 

computational mechanics and artificial inteligence. 
 

This dissertation presents five interconnected research tasks as depicted in Figure 1.2. We 

begin with the development of manufacturing process characterization methods with a special 

attention to improve their ability to generalize across process parameters, geometries, and 

materials. Later, we present an accelerated physics-based computing package—an essential tool 

for real-time control and large-scale database construction. Finally, we investigate AI-enabled 

methods to explore new design solutions for manufacturing processes to process complex 

unstructured data (e.g., unstructured geometries) as well as concurrent history-dependent 

parameters (e.g., toolpath and forces).  Each task is briefly described hereunder: 
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Figure 1.2.  Summary of research tasks in two categories of (i) manufactuirng modeling and (ii) 

process design. 
 

 Research Task 1: Data-Driven Spatiotemporal Manufacturing Process Modeling using 

Neural Networks. The focus of this task is on data-driven predictive models for 

manufacturing processes to capture the relationships between process parameters and 

material behavior under extreme conditions characterized by long history-dependent 

correlations and complex unstructured geometries. Our framework is demonstrated on 

the thermal analysis of AM processes. A recurrent neural network (RNN) architecture 

is proposed to predict the high-dimensional thermal history with variations in build 

dimensions, toolpath strategy, laser power and scan speed. Our results indicate that the 

model can accurately predict the thermal history of any given point of the AM build on 

a test-set database with limited training. The model’s ability to accurately predict 

thermal histories has been demonstrated through an overarching test conducted for long 

periods. In the second phase of this research task, we improve the capability of our 

data-driven approach to generalize across challenging industrial-grade geometries by 
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proposing a novel hybrid graph-based recurrent neural network, which maintains high 

accuracy on unseen geometries over long simulation periods.  

 

 Research Task 2: Data-Driven Constitutive Modeling for Computational Plasticity. In 

this task, a first-of-a-kind data-driven constitutive model is proposed to accurately 

capture path-dependent responses of material systems via deep learning. Two sources 

of complications in elasto-plastic constitutive modeling are identified as geometry-

induced and model-induced complexities and each source is thoroughly studied. A 

database with representative volume element samples of fiber-reinforced composites is 

developed which includes variations in microstructure descriptors (e.g., fiber volume 

fraction, fiber radius, fiber distances) and compound loading conditions. High-fidelity 

numerical simulations are utilized to analyze the stresses, plastic energy, and total 

energy of each sample. A novel recurrent neural network structure is proposed to 

efficiently combine temporal and non-temporal inputs of the constitutive model and 

accurately predict the elasto-plastic behavior of the composite. Our trained model 

conveniently achieves an under 0.5% scaled root-mean-square-error for training data 

as well as loading conditions outside of its training database. Moreover, we 

demonstrate that the model can implicitly capture yield surface evolution which shows 

that our approach automatically detects and learns hidden plasticity concepts. 

 

 Research Task 3: Toolpath Design using Deep Reinforcement Learning. Toolpath 

optimization in manufacturing processes is currently hampered by the high 
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dimensionality of its design space. In this task, a reinforcement learning platform is 

proposed that dynamically learns toolpath strategies to build an arbitrary part. To this 

end, three prominent model-free and one model-based reinforcement learning 

formulations are investigated to design AM process toolpaths and demonstrated for two 

cases of dense and sparse reward structures. The results indicate that this learning-based 

toolpath design approach achieves high scores, especially when a dense reward 

structure is present.  

 

 Research Task 4: High-Dimensional Manufacturing Process Design via Differentiable 

Simulations. This research task presents a novel computational paradigm for process 

design in manufacturing processes that incorporates simulation responses to optimize 

manufacturing process parameters in high-dimensional temporal and spatial design 

spaces. We developed a differentiable finite element analysis framework using 

automatic differentiation which allows accurate optimization of challenging process 

parameters such as time-series laser power. We demonstrate the capability of our 

proposed method through three illustrative case studies in AM for: (i) material and 

process parameter inference using partial observable data, (ii) controlling time-series 

thermal behavior, and (iii) stabilizing melt pool depth. This first-of-a-kind research task 

opens new avenues for high-dimensional manufacturing design using solid mechanics 

simulation tools such as finite element methods. 
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 Research Task 5: Acceleration Strategies for Finite Element Analysis of AM using 

Graphical Processing Units. In this task, a novel approach to accelerate the explicit 

finite element analysis of the transient heat transfer of AM processes is proposed using 

Graphical Processing Units (GPUs). The challenges associated with this approach are 

enumerated (e.g., matrix assembly and flux calculation bottlenecks) and multiple 

strategies to overcome each challenge are discussed. The performance of the proposed 

algorithms is evaluated on multiple test cases for directed energy deposition and 

selective laser melting processes. Speed-ups of about 100 − 150𝑋 compared to an 

optimized single CPU core implementation for the best strategy were achieved. 

 

1.4.  Dissertation Outline 

The aforementioned research tasks, collectively establish the scientific and technological 

foundations for “Physics-Informed Data-Driven Prediction and Design in Advanced 

Manufacturing Processes”. In the following chapter, the technical background on manufacturing 

processes, and physics-based and data-driven modeling methods are reviewed. Then, each research 

task is comprehensively discussed in Chapters 3-7. Each research task begins with the motivation 

behind it, continues with an in-depth discussion on methodology and results, and concludes with 

a summary of final remarks and future works. Chapter 8 summarizes the novelties and 

contributions of this research and presents guidelines for future research directions. References 

and supplemental materials can be found at the end of the dissertation. 
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CHAPTER 2  

Technical Background 

 

In this chapter, we introduce the recurring background concepts of the dissertation with the goal 

to establish common nomenclature and facilitate the reading experience for all. We start by 

discussing the two manufacturing processes of interest in the presented research (i.e., AM and 

forming processes). Later, the fundamentals of physics-based modeling and their established 

practices are reviewed, and lastly, we briefly introduce state-of-the-art data-driven modeling 

techniques and relevant formulations to this research. 

 

2.1.  Introduction to Flexible Manufacturing Processes 

Flexible manufacturing is a modern industrial paradigm in which manufacturing systems can 

adapt to changes in part design, material, and even the order of operations. This paradigm offers 

an alternative to traditional high-volume processes (such as casting and stamping) and shows 

superior cost and energy efficiency for low- and medium-volume products as they require low 

tooling and setup costs. Flexible manufacturing is an inevitable topic of today’s manufacturing as 

there is an increasing demand for one-of-a-kind parts across many industries (e.g., aerospace and 

biomedical). Given that, modern processes such as AM and incremental sheet forming (ISF) 

provide an exciting path toward advancing current manufacturing capabilities; in this dissertation, 

we developed tools involving both and, hence, provide an introduction to these processes and their 

variations. 
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2.1.1.  Additive Manufacturing Processes  

Additive manufacturing is a relatively new manufacturing process. The early concepts of AM 

can be traced back to two centuries ago in topography and photo-sculpture (Bourell et al. 2009), 

but the first AM technology with modern components was proposed by Swainson for plastic 

prototyping in 1977 (Swainson 1977). Since then, AM technologies have been increasingly 

offering new capabilities such as fast production, compatibility with complex geometries, support 

for various classes of materials, and low environmental imprint. These features led to the fast 

growth of AM in biomedical, aerospace, and automotive fields over the past decades. While 

developing new AM processes and enhancing existing ones is an active field of academic and 

industrial research, the ASTM standard recognizes seven families of AM processes including VAT 

photopolymerization, powder bed fusion, binder jetting, material jetting, sheet lamination, material 

extrusion, and directed energy deposition, each offering a unique set of features and capabilities 

(A. S. T. M. 2012). 

Metal powder-based AM processes are increasingly employed due to their advantages in 

producing functional parts with limited manufacturing time and cost. Nowadays, applications of 

metal powder-based AM processes go beyond just producing prototypes, but are also used for 

manufacturing products with complex geometries (Yang et al. 2012), varying alloy compositions 

(Guo et al. 2015, Wenjun et al. 2015), and locally-controlled microstructures (Dehoff et al. 2015, 

Tan et al. 2015). Our research effort in this dissertation is focused on two metal power-based AM 

processes, namely, Directed Energy Deposition (DED) and Powder Bed Fusion (PBF). Schematics 

of these two AM processes are demonstrated in Figure 2.1. DED is a class of AM processes that 

uses focused heat sources, usually an electron or laser beam, to melt the powders and 



30 

simultaneously delivers the powder to the focal point of the heat source as the powder delivery 

nozzle follows the toolpath derived from CAD geometries (Gibson et al. 2010, Gu et al. 2012). 

PBF is another category of AM processes in which a thin layer of powder is delivered to the base 

plate using a powder delivery system and then the laser is used to gradually melt and fuse the 

powder (King et al. 2015). 

 
Figure 2.1.  Schematic of two AM processes; (a) DED process with coaxial nozzle to deliver 

powder to the focal point of a laser and (b) PBF process that uses a roller to spread a thin layer of 
powder before melting the layer (Mozaffar et al. 2019). 

 

From various challenges that are currently facing AM technologies, the lack of established 

design principles and engineering practices requires immediate attention as it severely restricts the 

benefits and capabilities one can expect from AM processes. AM design and modeling involve 

simultaneous physical phenomena happening at different length scales and long time spans—

naturally leading to high-dimensional and computationally expensive problems. Current best 

practices to manufacture a successful part either entails expensive trial and errors or attempts to 

conservatively opt for safe parameters and design setting, both of which avoid pushing AM 

processes to their limit and unlock their full potential. 
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2.1.2.  Incremental Sheet Forming Processes  

Sheet metal forming processes play an important role in producing durable metallic goods. In 

contrast to traditional forming processes, such as stamping and deep drawing, where the part is 

built using costly part-specific tooling, ISF uses generic tooling and incrementally deforms sheet 

metals until the desired part is achieved (see Figure 2.2 for an example of ISF configuration). ISF 

not only saves the time and costs associated with designing, manufacturing, and maintaining tools, 

but also offers higher formability as it delays local necking and premature fracture in forming 

parts. Different configurations of ISF are available commercially and within the research 

community, such as single-point incremental forming (SPIF), two-point incremental forming 

(TPIF), double-sided incremental forming (DSIF), and accumulative DSIF which differ in terms 

of the contact and toolpath strategies used. For the sake of brevity, the interested readers are 

referred to (Moser 2019) for a detailed description and analysis of various ISF processes.  

While ISF shows great capabilities in low-volume productions, it also presents unique 

challenges in modeling and controlling the process compared to traditional approaches. One aspect 

of these challenges is due to the complex loading histories caused by ISF where the material 

experiences multiple non-proportional cycles of loading and unloading in different directions. 

Experimental studies show that these loading conditions cause advanced elasto-plastic behavior in 

many metallic materials such as the Bauschinger effect, transient hardening, permanent softening, 

hardening stagnation, and overshooting effect (Barlat et al. 2013, Bruschi et al. 2014).  
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Figure 2.2.  Schematic of the double-sided incremental forming process (DSIF). DSIF is a 
flexible, dieless sheet metal forming process, which incrementally accumulates localized 
deformations to form the final part. The figure is a courtesy of the AMPL research group. 

 
 

2.2.  An Overview on Physics-Based Modeling Techniques in Manufacturing Processes 

Modeling attempts to understand an observed phenomenon and to reproduce the event as close 

as possible. Therefore, modeling enhances our knowledge of the laws of the world around us, 

which by its own has been, and still is, an intrinsic value for many great scientists. Besides, 

modeling allows us to exploit physics laws to design better engineering solutions, making it a core 

pursuit in engineering practices and recently in many others such as animation production and 

virtual reality fields. The modern usage of models stems from the massive computational power 

available today that allows the simulation of extremely large systems. By utilizing realistic 

simulation tools, one can avoid costly experimental tests. A renowned example of such instances 

is the car crash test, where the destructive experiment is very expensive and most of such tests are 

replaced by simulation tools today. 

Using the underlying physics to simulate processes allows the capture of complex phenomena 

through relatively simple known laws of nature. They often lead to robust solutions and generalize 

well as long as similar physics is applicable. However, analytical physics-based solutions are rare 

in today’s engineering practices, because realistic problems operate on complex domains (e.g., 
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unstructured geometries) and boundary conditions. A popular physics-based approach with a wide 

range of applications in the design and development of engineering solutions is FEM. It is 

noteworthy that there are several alternatives to FEM for modeling physical phenomena over 

complex domains such as the finite difference method, finite volume method, and even meshless 

methods such as the material point method, but here we focus on FEM due to its extensive usage 

in manufacturing applications. FEM analysis starts with determining the applied physics and their 

deriving formula. For example, transient heat transfer and Navier-Stokes formulas are partial 

differential equations (PDE) commonly used for solving thermal and fluid simulations, 

respectively. The underlying PDE combined with the boundary conditions applied to the problem 

form a boundary value problem (BVP), which is also known as the strong form of an FEM 

formulation.  

The ultimate goal of FEM is to approximately solve the BVP over any given domain by 

converting the strong form into a system of equations. In FEM, one performs this task by first 

calculating the weak form of the BVP, which can be achieved by integrating the strong form with 

an arbitrary variation, known as the test function. The benefit of the weak form is that it can be 

integrated over each part of the domain independently, which is a key FEM concept allowing the 

discretization of the solutions. The FEM domain is broken down into numerous elements and the 

weak form is applied over each element. As it is difficult to represent and solve for an arbitrary 

function of the unknown field, 𝑢 , , the arbitrary function is redefined with a shape function, a 

known function of element shape 𝑁 , , and field values at nodal points 𝑢 . For instance, the field 

function of an 8-node hexahedron element would have 8 degrees of freedom as it is defined based 

on its 8 unknown nodal values. Therefore, by applying the weak form over all elements in the 
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simulation, a system of equations as a function of nodal values is obtained, which can be solved 

numerically using various solvers such as the Gauss-Jordan Elimination method. After the nodal 

values are known, one can calculate smooth fields for derived quantities (e.g., stresses and strains) 

using shape functions.  

When simulating time-dependent physics (i.e., when the effect of acceleration and motion 

cannot be neglected), we also need a time integration scheme to incrementally simulate consequent 

time steps. Implicit and explicit solutions are two popular approaches for time integration. In 

implicit solutions, every time step is solved through a backward Euler integration scheme, which 

ensures a stable and accurate solution, even with large time steps. However, this solution comes 

with a significant computational cost of large matrix inversions. Explicit solutions, on the other 

hand, use a forward Euler integration scheme avoiding iterative solvers; however, this method 

does not guarantee satisfying the weak form and small time steps are required to ensure the stability 

of the results. A more in-depth FEM formulation for transient heat transfer is provided in Chapter 

7.2.  

Without undermining the massive services physics-based modeling techniques (including 

FEM) have done to advance our lives over the past century, there is room for improvements in 

some aspects of such models. While each model has its own strength and weaknesses and needs 

to be evaluated individually, here we shortly discuss the common drawbacks of physics-based 

modeling. As a first argument, there are many instances that a known meaningful physics is not 

established, rather, practices rely on phenomenological laws based on limited observations, which 

makes them prone to inaccuracies. In addition, despite vast improvements in the availability and 

quality of computational resources, simulating the full physics can be too time-consuming and 
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infeasible for realistic applications. This is especially a key concern in flexible manufacturing 

processes, as they require long process time and simultaneously operate on length scales spanning 

2-3 different order of magnitude. Additionally, practical use of physics involves various 

assumptions from their core formulations (even most renowned physics are bounded by the scale 

they are valid in), to their implementations, and how they represent the reality of the phenomena. 

Using invalid assumptions or accumulation of assumption inaccuracies can easily jeopardize the 

quality of a seemingly perfect physical simulation. 

 

2.3.  An Overview on Data-Driven Modeling Techniques 

In recent years, we see a surge in the usage of data-driven modeling techniques as an alternative 

to physics-based approaches. Data-driven modeling is particularly a widespread topic in academic 

studies in fields where the physics is too complex to model (e.g., computer vision and natural 

language processing) or in dynamic decision-making scenarios (e.g., robotics). Today’s success 

stories of data-driven modeling are fueled by advancement in three pillars: (i) availability of high 

quality and quantity data as the result of widespread sensors, social media, and networking; (ii) 

improvements in computational hardware (e.g., CPUs and GPUs) and innovations in new 

specialized hardware (e.g., TPUs), and (iii) advent of algorithmic and engineering solutions to 

efficiently process data. In this subsection, we introduce prominent families of data-driven 

modeling. 
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2.3.1.  Machine Learning 

Machine learning (ML) is a collection of statistical concepts used for pattern recognition that 

allows computers to capture correlations in data and draw inferences (Samuel 1959). There are 

three main categories of ML solutions: supervised, unsupervised, and reinforcement learning. 

Supervised learning aims to find the unknown mapping between inputs and outputs given a 

database of such pairs. In most formulations, first, a model is trained on database instances, and 

one trained, it can be used to predict unseen cases. Linear regression and logistic regression are 

two classical supervised models with dense theoretical backbone and widespread industrial 

adoption as they lead to extraction of explainable features. Support Vector Machines (SVM) aims 

to find a hyperplane in parameter space that maximizes the decision boundary margin, often 

leading to robust solutions. Feature engineering is an important aspect of SVM models as they rely 

on linear feature correlations. Decision trees are another well-known supervised learning tool, 

where a tree data structure of conditional statements determines the model prediction. While 

decision trees provide powerful classifiers, they are prone to excessive overfitting and artificially 

orthogonal decision boundaries. Ensembled ML is an intriguing concept that argues that a 

combination of multiple models leads to an improved model as long as the sources of error in 

models are different. Popular examples of ensembled machine learning include random forest 

(ensembled decision trees trained on subsets of data), AdaBoost, Gradient Boosting, and stacking 

algorithms (Géron 2019). 

Unsupervised learning performs the task of finding patterns within unlabeled data. Many 

hypothesize that unsupervised learning is the future of learning algorithms as it relaxes the 

database requirements of supervised learning. Current prevalent applications of unsupervised 
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learning include clustering, dimensionality reduction, and feature extraction using techniques such 

as k-means clustering, principal component analysis, and t-SNE. Dimensionality reduction is by 

far the most utilized application of unsupervised learning in mechanics and allows the extraction 

of a dense representation of the input, discards irrelevant features and noises, speeds up the training 

process, and enables subsequent usage of computationally heavy algorithms such as Gaussian 

processes. 

Finally, reinforcement learning (RL) aims to maximize the reward that an agent can collects 

while interacting with an environment. As the agent collects its own data, in contrast to a stationary 

database for supervised learning, RL has known to be one of the most challenging aspects of AI 

technologies. Traditional RL approaches such as Markov Decision Process (MDP), Q-learning, 

and Monte Carlo Tree Search (MCTS) were originally limited to small state spaces; however, 

modern integrations of core RL theories with neural networks as a universal function 

approximation have led to multiple breakthroughs in this field over the past five years (Sutton et 

al. 2018). 

As one can see, there is a range of ML solutions, each suitable for different applications, data 

types, and sizes. However, common drawbacks of many traditional ML algorithms include the 

heavy reliance of carefully engineered features and the lack of scalability to large systems. As 

neural networks offer a great potential to overcome these two drawbacks, the research and many 

industrial communities have drastically shifted their attention to this class of ML, which is 

introduced in the following section. 
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2.3.2.  Neural Networks 

The concept of neural network (NN) as a model of how brain neurons work was first introduced 

by the neurophysiologist Warren McCulloch and the mathematician Walter Pitt in 1943 

(McCulloch et al. 1943). Over time, NNs proved to offer outstanding flexibility in approximating 

complex nonlinear functions once they are arranged in multiple connected layers, known as a deep 

neural network. Geoffrey Hinton et al. demonstrated the first successful implementation of deep 

neural networks to recognize handwritten digits with an impressive precision of over 98% (Hinton 

et al. 2006). 

Countless types of NN formulations and architectures are proposed for a variety of tasks and 

innovating new ones is a vibrant field of research to this day. Therefore, in this section, we only 

introduce the most fundamental formulation of NN (i.e., the fully connected neural network), and 

the details of each specialized NN used and developed in the dissertation are discussed in each 

research task. A fully connected neural network (FCNN) transforms multiple input signals (𝑥 ) of 

each neural to its output signal (𝑛 ): 

 𝑛 = 𝑓 𝑏 +  𝑤 , 𝑥  (2.1) 

 

where 𝑤 ,  refers to the weights for neuron 𝑖 in connection with input neuron 𝑗, 𝑏  is the bias for 

neuron 𝑖 and 𝑓 is a nonlinear activation function. An FCNN is formed by arranging neurons in 

layers where all neurons in one layer are connected to all neurons in their subsequent layer (see 

Figure 2.3). 
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Figure 2.3.  Architecture of a fully connected neural network. 

 

Given an input layer 𝑋, the FCNN network generates an output of 𝑌. In a supervised learning 

fashion, where pairs of correct input-outputs are available we can define a loss based on the 

difference between network prediction 𝑌 and database prediction 𝑌 (e.g., mean-squared-error) and 

optimize the weights and biases of the network to minimize the loss. While any optimization 

method can be potentially used to do such a task, gradient descent is by far the most popular 

optimization method for neural networks. This is because the gradient of the error with respect to 

weights and biases can be efficiently computed using backpropagation algorithm, which allows 

simultaneous optimization of large sets of parameters. Although gradient descent does not provide 

a theoretical guarantee of global optimality, empirically the iterative process of updating network 

parameters leads to close-to-optimal solutions given an appropriate initialization. 

Despite the vast successes in the development and deployment of NN structure over the past 

few years, many research questions are yet to be answered, especially with respect to its application 
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in manufacturing. Designing new NN structures that are compatible with evolving requirements 

of manufacturing modeling and design tools is a non-trivial task. A fascinating research problem 

is to find effective approaches to integrate known physics into data-driven modeling. In addition, 

advancing capabilities on two issues of generalizability and explainability is invaluable. This is 

especially vital in flexible manufacturing applications where one-of-a-kind designs are common 

(hence, models should generalize well to new samples) and modeling mistakes can lead to 

expensive damages (hence, models should be explainable so that one can verify its decisions). 

Finally, novel integrations of data-driven solutions within manufacturing systems are essential and 

present many research opportunities—some of which are addressed in the following research tasks. 
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CHAPTER 3  

Data-Driven Spatiotemporal Manufacturing Process Modeling using 

Neural Networks 

 

3.1.  Introduction 

Manufacturing processes manipulate material structures to achieve desired functional and 

geometrical requirements by adding, subtracting, or deforming the material. While some processes 

such as stamping rapidly transform the material, many other such as machining, AM, and ISF rely 

on aggregating small local changes to gradually build a part—a common theme in flexible 

manufacturing processes. In many of such processes, although the changes are applied locally, 

their effects expand beyond the immediate region of applied energy and globally influence major 

properties of the part. For example, in DED, a laser beam induces a local melt pool to absorb 

material particles in a small area; however, the generated heat can re-melt previously deposited 

layers and alter the residual stress, porosity, and material properties in significantly larger sections 

of the part. Similarly, in ISF, while the majority of deformation is targeted toward the area under 

the influence of the tool, local changes propagate stresses throughout the part causing global elastic 

and plastic deformations. Therefore, the final properties of the part in many flexible manufacturing 

processes are determined by long sequences of history-dependent influences of the tools as they 

change the geometric and material structures of the part. 

Modeling the spatiotemporal behaviors of manufacturing processes allows better 

understanding of the processes which can lead to an increase in their efficiency and capabilities 

and reduce defective parts. Physics-based modeling has been the standard practice for most 
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manufacturing modeling applications. Although, the strengths and weaknesses of each modeling 

approach need to be evaluated individually, broadly speaking, high-fidelity physics-based models 

(e.g., FEM and CFD) come with a cost of extreme computational requirements, low-fidelity and 

lack accuracy in complex settings (e.g., analytical, and phenomenological models). This is 

especially true in case of flexible manufacturing processes where simulations are long, and the 

involved physics operate on scales spanning over 2-3 orders of magnitude. 

In this chapter, we introduce data-driven modeling as an alternative to physics-based 

approaches with the goal to advance the discovery, diagnosis, and optimization of advanced 

manufacturing processes. It is noteworthy that we consider AM as the main process of interest as 

it provides many unique modeling challenges. Additionally, AM is one of the most digitalized and 

sensor intensive manufacturing processes, making it a prime candidate for data-driven modeling. 

However, the methodology offered here can be easily deployed in many other flexible 

manufacturing settings where high predictive power is required, and physics-based modeling does 

not provide a viable solution.  

In Chapter 3.2, we show that data-driven methods can accurately capture long history-

dependent features in manufacturing simulations. Recurrent neural network (RNN) based 

architectures are developed to predict the thermal history of any points in a part during AM 

processes. The effect of long history-dependent thermal states on future thermal responses is 

captured through an RNN cell of which the input variables include toolpath strategy, deposition 

time, boundary, laser state, laser intensity, and layer height. Temperature simulation results of 

different geometries built using varying process parameters are applied to train and test the 

proposed model, which presents great generalizability across process parameters. Later in Chapter 
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3.3, we propose a graph-based modeling approach to address one of the key shortcomings of data-

driven modeling techniques, i.e., generalizability across unseen complex geometries. Finally, we 

conclude this chapter by summarizing our findings and potential future research directions in this 

field in Section 3.4. 

 
 
3.2.  Temporal Data-Driven Modeling of Manufacturing Processes using Recurrent Neural 

Networks 

In many manufacturing processes, the final product is the result of accumulative work on the 

material over a potentially long process, which leads to challenging history-dependent features, 

i.e., some properties of the material are determined by history of the process and not solely by the 

time instant when it directly interacted with a tool. This is common theme that can be observed 

across a wide range of forming processes (e.g., ISF, rolling, drawing), welding processes, AM, 

hybrid processes, to name but a few. Here, we introduce our data-driven approach with the key 

focus on capturing high-dimensional time-series features of such processes.  

To showcase our approach, we chose AM as it involves notoriously challenging temporal 

features. As mentioned in Chapter 2.1.1, despite AM’s immense potential, its widespread adoption 

is hampered by current challenges in prediction and control such as quality variability and process 

inefficiencies. Experimental studies have been conducted to analyze the influence of process 

parameters on microstructure and build properties in (Shamsaei et al. 2015, Wang et al. 2016, 

Stevens et al. 2017, Fisher et al. 2018, Li et al. 2018). However, these models use a limited number 

of experiments and are incapable of taking into consideration the complex inter-connectivity of 

AM process parameters. Physics-based models were proposed to capture thermo-mechanical, 
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thermo-fluidic, and/or microstructural evolution of the process in (Chiumenti et al. 2017, Wang et 

al. 2017, Bostanabad et al. 2018). However, these models are not applicable in many cases because 

of their enormous computational cost that might take weeks or months of processing time, even 

on supercomputers (Francois et al. 2017), and their discrepancy with experimental results due to 

the simplifying assumptions made or incomplete physics. 

Current trends in manufacturing, such as Industry 4.0 (Zühlke 2013) and cyber-physical 

systems (Lee et al. 2015), increase the visibility and accessibility to information, which leads to 

extensive research in data-driven models in the manufacturing community (Lee et al. 2013, 

Bostanabad et al. 2016, Bessa et al. 2017, O'Donovan et al. 2018). The application of machine 

learning in a polymer powder bed fusion process was discussed in (Baturynska et al. 2018). A 

data-driven model for characterizing geometrical dimensions of trace products using dense neural 

networks was proposed by (Caiazzo et al. 2018). In (Kamath et al. 2017), the authors compared 

multiple regression models for developing a surrogate model for AM simulation. The self-

organizing map technique was used for quantifying the geometric accuracy of the Fused Filament 

Fabrication process in (Khanzadeh et al. 2018).  Wang et al. (Wang et al. 2020) developed a 

machine learning approach to predict tool wear in machining processes. The neural networks are 

used to predict the behavior of the materials in sheet forming processes (Gorji et al. 2019). 

Due to the limited number of samples and the omission of crucial time-series features of the 

process such as the toolpath, which directly affects thermal history and hierarchical microstructure 

in AM, most data-driven models fail to provide a profound understanding of this process. To 

address this gap, we propose a recurrent neural network structure for predicting the thermal history 

of any given point in an AM build in a many-to-many configuration. The proposed approach is 
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well-suited for AM processes since it can accurately calculate the high-dimensional thermal 

history of the builds in a computationally efficient manner. 

 

3.2.1.  Introduction to Recurrent Neural Networks 

A Recurrent Neural Network (RNN) is a special type of artificial neural network (ANN), 

designed with the idea that the outcome of each neuron is dependent on its input (like other types 

of ANN) and a history variable from past operations, which enables this structure to work with 

sequential data. In particular, the Long Short-Term Memory (LSTM) (Hochreiter et al. 1997) and 

the Gated Recurrent Unit (GRU) (Cho et al. 2014) are two successful formulations of RNN 

structures for training long sequences of data. The underlying concept of RNN structures, i.e., the 

use of information from previous steps combined with the current state of the system, is in line 

with differential equations. Thus, physics that can be formulated with ordinary or partial 

differential equations, such as the finite element method (FEM), are good applications for RNN 

models. RNNs allow for the temporal dependency in the input data to be learned without the need 

to specify a fixed set of lagged observations. Traditional time series analysis such as auto-

correlation requires the identification of seasonality and stationarity in a time series, which may 

change based on laser speed, size of the build, etc., and need to be explicitly adjusted for each 

simulation. Further, neural networks are robust to noise in input data and the output variables and 

can learn despite missing values. These properties of RNNs led to the hypothesis that the RNN 

structure can predict the temperature history in AM regardless of its highly nonlinear nature.  

For RNN formulation, the Gated Recurrent Unit (GRU) (Cho et al. 2014) is adopted in this 

work as follows: 
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 𝑟 =  𝑠𝑖𝑔(𝑊 . [ℎ , 𝑐 ] + 𝑏 ) (3.1) 

 𝑧 =  𝑠𝑖𝑔(𝑊 . [ℎ , 𝑐 ] + 𝑏 ) (3.2) 

 ℎ =  𝑡𝑎𝑛ℎ(𝑊. [𝑟 ×  ℎ  , 𝑐 ] + 𝑏) (3.3) 

 𝑂 =  ℎ = (1 − 𝑧 ) ×  ℎ + 𝑧 × ℎ  (3.4) 

 

Where the GRU cell takes a candidate update (𝑐 ) and the hidden state ℎ  as the input, and 

generates an output at the current time, 𝑂 . 𝑟  and 𝑧  represent the reset and update gates 

correspondingly where each uses separate sets of weights (𝑊), biases (𝑏), and a sigmoid activation 

function. The output (𝑂 ) is used as the hidden state for the next time step (ℎ ) and the hidden state 

is initialized with an initial field ℎ . 

 

3.2.2.  Proposed Model Architecture 

A stacked RNN structure with GRU formulation is considered in this research as depicted in 

Figure 3.1. Each GRU cell receives input features (𝑥 ) for that time step and a hidden state from 

the previous time step (ℎ ) and outputs a new hidden state (ℎ ). The number of units in each 

GRU cell represents the dimension of the hidden state, which is connected to other cells using 

weights and biases. Using multiple layers of the GRU structure enables the model to comprehend 

deeply hidden correlations in the data. Fully connected layers are considered to combine the 

outputs of the GRU units into a single time-series temperature output. 



47 

The stacked GRU model is developed using the Keras deep learning library (Chollet 2015) with 

the Adam (Kingma et al. 2014) optimization procedure and a mean-square-error (MSE) cost 

function between the model prediction and the database thermal history. 

 
Figure 3.1.  Schematic of the many-to-many stacked RNN structure with GRU formulation in 

relation with process inputs and thermal outputs; Green circles represent GRU units, blue 
rectangles represent GRU cells, yellow boundaries represent stacked GRU wrappers, and blue 

dashed lines within the GRU wrappers represent trainable parameters. The schematic and 
formulation of GRU units are provided on the left based on the formulation given in (Cho et al. 

2014, Olah 2015). 
 

 

3.2.3.  Database Development and Characteristics 

The database considered for training the model is built using an in-house finite element code, 

GAMMA, for transient thermal analysis using an explicit solver (Smith et al. 2016). This choice 

enables us to have access to high volumes of input data required for training the model to learn 
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about the phenomena occurring not only on the exterior of the AM build but also within its interior. 

A wide range of input parameters such as laser power (500-1,000 W), scan speed (5-30 mm/s), 

toolpath strategy (e.g., zigzag, unidirectional or circular motion), geometric size (5-40 mm), and 

shapes (e.g., cubic, cylindrical, thin wall) are used to generate over 250,000 training points for 

DED simulation of stainless steel 316L objects. 

The input features designed for each training point include toolpath feature (based on the 

distance between the coaxial powder nozzle outlet and the birthed element), the time of deposition, 

closest distance to the boundary of the build, layer height, laser intensity, and laser state (on or 

off). Input features are extracted as time series data from FEM output files and stored in a three-

dimensional tensor compatible with the RNN structure. To investigate the capability of the RNN 

structure to operate in noisy environments, an artificial noise with a standard deviation of 30 K is 

added to the thermal history in the database. All input features and thermal histories are normalized 

using a linear mapping from the minimum and maximum of each feature to the range of 0 to 1 in 

order to speed-up the optimization procedure. The model is trained over 80% of the database, while 

20% of the database is left out for testing. 

 

3.2.4.  Results and Discussion 

The RNN model is trained for different configurations such as number of RNN layers (1-5 

layers), GRU units (100-500 units), and fully connected layers (1-3 units). Even for configurations 

with a small number of layers and units the model reaches 1e-4 MSE after 100 epochs of training. 

An epoch is a complete pass of training through the database in batch mode. For a configuration 

of 3 stacked GRU layers with 500 units and 1 fully connected layer with 100 neurons, the model 



49 

reaches 3.210e-5 MSE on training data and 3.84e-5 on testing data with 100 epochs of training. 

The training process took approximately 40 hours on a Nvidia Quadro P5000. The prediction for 

two random points of a test-set over 20 s of the process is demonstrated in Figure 3.2. The 

smoothness of the predicted thermal histories and the similarity between the patterns of the applied 

noise and the prediction error (discrepancy between the noisy database and predicted thermal 

history) proves that the RNN structure can effectively avoid noise in the database and capture most 

of the critical features of the thermal history including sharp changes and flat regions that happen 

due to the phase transitions in the material. 

 

 
Figure 3.2.   Evaluation of the stacked RNN model on the test dataset for two random points 

over 20 s of the DED process; Comparison of the model prediction (black line) and the test-set 
value (cyan dashed line) for the thermal history of a point in a thin-wall build with uni-

directional toolpath (left) and a cylindrical build circular toolpath (right). 
 

One of the key features of RNN structures for this application is that it can predict any arbitrary 

number of time increments (0.1 s in this case). To assess the generality of the model, a trained 

model is used for predicting a longer time span than it has been trained for. Particularly, two 

stacked RNN models trained for 20 s and 50 s of the process are used for predicting 100 s of the 

thermal history. The model trained on 20 s (Figure 3.3 top) performs well for the training period 
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and continues to have a reasonable prediction for more than three times of the time span it has 

been trained on, to have an overall MSE of 7.05e-5 for 100 s of the process. The model trained on 

50 s (Figure 3.3 bottom) decreases the MSE to 3.17e-5 for 100 s of the prediction. This significant 

drop in the long-term error of the model comes with the cost of almost two times the required 

training time and resources. It is noteworthy that the sharp gradients, melting and re-melting of the 

material, which are the main targets of this work, happen in a few layers after material deposition 

and after that the temperature changes smoothly. Therefore, the stacked RNN is an effective model 

for predicting the most critical features of the thermal history, while the long-term predictions can 

be easily improved if necessary.  
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Figure 3.3.   Evaluation of the stacked RNN model on the test dataset for 100 s, while trained on 
20 s (top) and 50 s (bottom) of the process; Comparison of the model prediction (black line) and 
the test-set value (cyan dashed line) for the long-time span thermal history of a point in a cubic 

build with zigzag toolpath. 
 
 

The capability of the trained model is further investigated for predicting the behavior of a 

dissimilar geometry type from the training database. A new database with different geometric 

features is developed, and the trained model is used to predict the thermal history of three points 

of the build. As depicted in Figure 3.4, the model can accurately predict the behavior of points 1 

and 3. However, there is significant error in the model prediction for point 2, which is because the 

geometric feature and the state of the boundaries close to this point is unprecedented to the model. 

The results indicate that even with two hand-picked geometric features introduced in Section 3.2.3 

(i.e., closest distance to a boundary of the build and layer height features) the model can perform 
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reasonably well at material points of untrained builds with similar geometric features as the 

training database. However, to represent complex geometries, a more flexible geometric feature 

extraction methodology will be needed. 

 

 
Figure 3.4.   Evaluating the trained model on a dissimilar geometry; The NU-shape build 

geometry and the inspected point locations (a), comparative figures for the points 1, 2 and 3 
between model prediction and the test-set (b), (c), and (d), respectively. The toolpath of this 

build goes from the buttom left to the upper right side of the letter N and then moves from the 
upper left to the upper right side of the letter U. 
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3.3.  Geometry-Agnostic Data-Driven Manufacturing Modeling using Graph Neural 

Networks 

Generating accurate shapes is one of the most important aspects of a successful manufacturing 

process. Geometry is not just the output of a manufacturing process, but also a key factor in 

determining the appropriate materials and manufacturing processes. In fact, an entire sub-field of 

manufacturing, i.e., design for manufacturing (DFM), is dedicated to establishing best practices 

for designing geometric features that lead to favorable manufacturing outcomes. Therefore, 

considering that geometric features have significant effect on part properties, it is crucial for 

simulation tools to accurately model this relationship. Like the previous section, we demonstrate 

our methodology on AM processes, however, noting that the same approach can be utilized across 

many manufacturing processes. 

High-fidelity computational models can offer accurate representation and modeling of complex 

geometries; however, they require massive computational resources and time making them 

infeasible in time-sensitive applications. Therefore, many research attempts investigated 

alternative approaches. Empirical solutions based on experimental data are proposed to model 

manufacturing processes for real-time prediction and control systems (Song et al. 2012, Jin et al. 

2016). Yet, they offer low accuracy as they over-rely on limited experimental data and fail to 

capture interconnected dependencies in process parameters. Alternatively, many analytical and 

semi-analytical solutions are proposed to offer a trade-off between computation cost and accuracy 

of high-fidelity models. While early versions of such analytical solutions were only applicable to 

single-track scenarios, recent publications extend the capability of such models to multi-track and 

multi-layer cases (Huang et al. 2019, Ning et al. 2020, Sheng et al. 2020). Despite the recent 
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progress in the field, analytical solutions deviate from realistic responses even in moderately 

complex geometries as they include numerous simplifying assumptions. 

In the previous section, we showed that data-driven methods can predict long history dependent 

features of AM. Additionally, we demonstrated that our RNN architecture can predict the behavior 

of samples with similar classes of geometries to ones in training database with a scaled mean-

squared-error of 3𝑒 , however, the error can significantly increase in cases for unseen classes of 

geometries. A surrogate model was proposed by Roy et al. (Roy et al. 2020) to achieve real-time 

thermal history prediction. A set of input features (e.g., distance from moving heat distance and 

cooling surface) are carefully selected from the geometry representation using GCode to reduce 

the computational demands. Their method can be generalized to different sizes of the same 

geometry, various process parameters and different materials achieving a predictions accuracy of 

95%. Two machine learning-based models using extreme gradient boosting (XGBoost) and long 

short-term memory (LSTM) are proposed by Zhang et al. (Zhang et al. 2020) to predict thermal 

history using six input variables, including laser power, scan speed, layer index, time index, 

average height, and width. Models are trained and validated using real-time experimental 

measurements taken by IR thermal cameras under setups with varying process parameters. The 

authors reported a best runtime of 0.34 s for XGBoost, which is small enough for real-time 

prediction of data captured by IR cameras. In the study by  Haghighi  et al. (Haghighi et al. 2020), 

physics-based and data-driven models are combined to characterize filament bonding and porosity 

distribution in extrusion-based additive manufacturing for PLA material, which is a thermoplastic 

polyester. An analytical heat transfer model was applied for thermal profile characterization and 

an artificial neural network was adopted for filament deformation characterization. Their hybrid 
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model achieved an average accuracy of 95% and 94% in modeling inter-layer and intra-layer 

bonding, respectively. In summary, however, the aforementioned data-driven approaches 

demonstrate their results only for simple geometries, such as thin walls and cubic structures. 

As one can see, despite major achievements in data-driven modeling, state-of-the-art 

approaches fall short on a key issue—generalization across unseen geometries, which is crucial 

for AM modeling as AM is mostly used for producing one-of-a-kind and unstructured geometries. 

Given these limitations, the objective of this work is to introduce a novel physics-aware data-

driven predictive model that can benefit from the high predictive power and computational 

efficiency of AI-empowered models while drastically improving their ability to generalize across 

challenging geometries. Our approach captures the intricacies of the physics through a graph 

representation, which provides a flexible representation of complex unstructured geometries. 

Additionally, the approach follows the local contributions of each node to other nodes within an 

element (in our case, a hexahedron connecting 8 nodes) and provides fundamentally similar 

calculation pathways to primary physics-based approaches, i.e., FEM. 

 

3.3.1.  Introduction to Graph Neural Network 

Graph neural networks (GNN) are deep learning architectures that capture dependencies in 

unstructured graphs via message passing between neighboring nodes. Due to their flexibility, 

GNNs have rapidly gained popularity in social sciences (Wang et al. 2018), chemistry (Fout et al. 

2017), and image processing (Wang et al. 2018). The two major categories of GNN includes 

spectral-based and spatial-based methods. Spectral-based methods (e.g., GCN (Kipf et al. 2016), 

AGCN (Li et al. 2018), CHEBNET (Defferrard et al. 2016)) define a convolution operation based 
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on the Laplacian eigen-basis, which makes this class most applicable to problems with a static 

graph representation (Liu et al. 2020). In contrast, spatial-based GNNs define the convolution 

operation on the graph by aggregating the information from neighboring nodes and edges. Spatial-

based GNN formulations consist of three steps: (i) message creation and propagation at the starting 

nodes, (ii) message aggregation at the target nodes, and (iii) calculation update based on the 

aggregated message. Here, two nodes are neighbors if they belong to the same element. A 

schematic of our definition of neighboring nodes and the three message-passing steps are 

demonstrated in Figure 3.5. 

 
Figure 3.5.   Schematic of a target node and its neighboring nodes within an element. Message 
passing includes three fundamental steps: (i) message construction, (ii) message aggregations, 

and (iii) and target update. 
 

we hypothesize that the spatiotemporal dependencies in AM processes which are traditionally 

modeled via physics-based simulations, such as FEM, can be alternatively captured using graph 

neural networks. This hypothesis stems from the resemblance between finite element matrix 

assembly operations (which combine the local contributions of element interconnectivity) and 
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graph neural network message-passing formulations. To test this hypothesis, we developed a 

database of simulation-based thermal responses while building a variety of industrial-grade AM 

parts. We investigate two GNN architectures to reproduce AM responses. The schematics of the 

two architectures are depicted in Figure 3.6 and their details are elaborated upon in what follows. 

 
Figure 3.6.   Schematics of the two architectures for spatiotemporal prediction of AM thermal 

responses: (A) The GNN architecture predicts the single-time step update in each training 
instance given the node and element features at the time-step; (B) The RGNN architecture 

predicts and trains multi-time step interactions where at each time step the network receives a 
temporal nodal-based encoded representation, a non-temporal element-based representation, and 
the hidden state of the previous stacked GRU cell and outputs the thermal distribution over the 

geometry. Both architectures can be recursively evaluated to produce thermal outputs of arbitrary 
length. 
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3.3.2.  Proposed Network Architectures 

GNN Architecture 

As the first option, we devised a GNN-based architecture in which the network receives the 

thermal responses in the previous time step as well as process parameters at that time including 

nodal and element-based features (detailed in Section 3.3.3) and outputs the thermal responses in 

the current time step, as depicted in Figure 3.6A. In essence, the network is responsible for 

calculating thermal fluxes at each time step to properly update the thermal fields. In this network, 

each training or evaluation step predicts one forward time increment, however, by recursively 

providing the network output as the next time increment’s input we can produce time-series 

responses of arbitrary length. For the GNN cell formulations in Figure 3.6A, we found that 

DeeperGCN (Li et al. 2020) empirically leads to better results compared to existing alternatives, 

though it is noteworthy that in our experience the difference in performance has been insignificant. 

In the DeeperGCN formulation, ℎ  (node features for the 𝑙th layer) will be passed to a layer-

normalization layer, an activation layer with a rectified linear unit, and a drop-out layer for feature 

preprocessing. Subsequently, a spatial convolution is performed with the preprocessed features to 

update the features for the next layer. The spatial convolution operation is defined as (Li et al. 

2020): 

 ℎ
( )

= 𝑀𝐿𝑃 ℎ
( )

+ 𝐴𝐺𝐺 𝑅𝑒𝐿𝑈 ℎ
( )

+ 𝑒
( )

+ 𝜀 : 𝑢 ∈ 𝒩(𝑣) + ℎ
( ) (3.5) 

 

where 𝒩(𝑣) is the set of neighboring nodes of 𝑣, ℎ( ) are the neighbor node feature and 𝑒( ) are 

the features of edges connecting 𝑣 and 𝑢. 𝑅𝑒𝐿𝑈 is the rectified linear unit activation function and  
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𝐴𝐺𝐺 is the aggregation function, which is the SoftMax function in the current work. 𝑀𝐿𝑃 is a 

multi-layer perception and 𝜀 is a small positive constant to assure numerical stability. As shown 

in Eq. (3.5), the encoded neighboring node features ℎ( ) and edge features 𝑒( ) are first added and 

fed to an activation function to construct the message from each neighboring node. The message 

is aggregated and then combined with nodal features in an 𝑀𝐿𝑃  to calculate an update. Finally, 

the updates are added to the previous node to construct the output of the GNN layer. The last step 

provides the residual connection which not only facilitates the network training process, but also 

improves the interpretability of the models as it resembles thermal fluxes. 

 

RGNN Architecture 

As an alternative architecture, to potentially better model long temporal dependencies of the 

thermal system, we developed a Recurrent Graph Neural Network (RGNN) architecture as 

depicted in Figure 3.6B. In this architecture, the network takes the time-series nodal features and 

edge features as the input and directly generates time-series thermal responses over an arbitrary 

number of time steps. At each time step, a GNN cell is used to capture local interactions between 

nodes and elements using their corresponding features. By concatenating the candidate updates 

generated by the GNN cells with shared parameters, a time-series candidate update (𝑐 ) is 

assembled, which feeds into a stacked RNN layer. For the RNN formulation, the Gated Recurrent 

Unit (GRU) (Cho et al. 2014) is adopted in this work (see Eq. 3.1-3.4). In our implementation, the 

GRU cell takes a candidate update (𝑐 ) and the hidden state 𝑠  as the input, and outputs the 
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temperature field at the current time, 𝑇 . The output (𝑇 ) is used as the hidden state for the next 

time step (𝑠 ) and the hidden state is initialized with the initial temperature field 𝑇 . 

 

3.3.3.  Geometric Database Development and Characterization 

We developed a database based on high-fidelity finite element simulations, which has allowed 

us to have access to the thermal histories of all geometric points. An explicit in-house AM 

simulation package, GAMMA (Smith et al. 2016, Mozaffar et al. 2019), is used to solve the 

transient heat transfer equations while we gradually activate elements as the toolpath passes over 

an predefined  mesh. Heat conduction, convection, radiation, and external heat flux as the result 

of the laser beam are modeled in our simulations, while stainless steel 316L is used as the material. 

Key process and material properties are reported in Table 3.1. 

 

Table 3.1.  Process and material properties for the generated database. 
Material Properties (SS316L)  Process and Environmental Properties 

Density 8,000 Kg/m3  Ambient Temperature 300 K 
Heat Capacity 0.5 J/g∙K  Laser Power 1 KW 
Latent Heat 272.5 J∙g  Laser Diameter 2 mm 
Conductivity Coefficient 21.4 W/m K  Report time step 0.1 s 
Solidus/Liquids 1,648.15/ 1673.15 

K 
 Scan speed 10 mm/s 

 
 

To ensure that we train and test the proposed models on diverse geometries, we selected 45 

different industrial-grade geometries from the ABC database (Koch et al. 2019), where 40 of them 

are used for training and 5 geometries are randomly separated for testing. Four samples of the 
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geometries are shown in Figure 3.7, while the complete set of geometries is provided in Appendix 

A - Figure A.1. The selected geometries vary in their size, number of layers, shapes, and geometric 

features (e.g., wall thickness) to capture a wide range of AM builds. CAD geometries are scaled 

and placed on a substrate of 20 mm height and 100 mm diameter to make them suitable for sample 

DED manufacturing. All the geometries are meshed using ABAQUS with 8-node hexahedron 

elements, where each element has an approximate edge size of 5 mm for the substrate and 1 mm 

for the part, resulting in about 10k - 50k elements in the meshes. To incentivize the network to 

generalize across different toolpaths, a Python script is developed to automatically generate DED 

layer-by-layer toolpaths for arbitrary geometries where the contour patterns are randomly selected 

from 9 toolpath strategies varying in their motion directions, patterns (zigzag versus spiral) and 

starting positions. 

 

Figure 3.7.   Sample AM builds adapted from the ABC online repository (Koch et al. 2019) for 
industrial-grade geometries. Geometries are oriented and placed on substrate plates to construct 
the AM simulation database. Three geometries within the blue border are in our training dataset 
while the geometry within the red border is used as one of the test samples. All geometries are 

provided in the Appendix A - Figure A.1. 
 

We create the database using graph representations, where the graph typology is constructed 

based on the meshed geometry, i.e., every node of the mesh is defined as a node of the graph, and 

the edge is defined with a connectivity matrix that indicates which nodes are within a common 
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element. Each node of the graph is embedded with three features: (i) birth flag (indicating whether 

a node is active at that time step), (ii) layer height, and (iii) laser distance feature defined as the 

inverse of the distance between each node and the laser beam at each time step. In addition to 

matrix connectivity, we consider an element-based distance feature indicating the distances 

between any two nodes of an element. As element connectivity and feature are constant in time, 

we implement them as static inputs to the model across all time steps, whereas nodal features are 

provided as time-series inputs (see Figure 3.6B). The two networks require different sampling 

methods. For the GNN architecture, we randomly sample pairs of inputs (process features and 

thermal responses at time 𝑛) and outputs (thermal responses at time 𝑛 + 1) at different times of 

the simulations. In contrast, the RGNN model receives time series inputs and outputs of 50 

consequent time steps (equivalent to 50 mm of deposition), where the starting times are sampled 

from the length of the simulations. To provide a fair comparison between the performances of the 

two networks, they train over the same amount of data collected from the same simulations, 

separated into training and test sets. All inputs and outputs of the models are normalized to values 

between 0 − 1 to assist the optimization process.  

 

3.3.4.  Results and Discussion 

We implemented the two architectures using the Pytorch deep learning library (Paszke et al. 

2019) and Pytroch Geometric package (Fey et al. 2019) in Python. The models are trained on their 

corresponding training sets, while the test sets are only deployed for evaluation without 

contributing to backpropagation. Each training epoch consists of a complete pass on training 

samples in which we update model parameters and simultaneously calculate a mean squared error 
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(MSE) of the predictions versus database ideal responses. After each epoch, all test samples are 

evaluated and their MSE errors are stored. We stop each training process when no improvements 

in the MSE of the test samples are seen. The training process takes approximately 2 and 4 weeks 

on an Nvidia RTX 8000 GPU for the GNN and RGNN, respectively.  

 

 
Figure 3.8.   Training and evaluation results for the proposed GNN and RGNN formulations: 
(A) The evolution of the train and test losses over training epochs is normalized per node per 

time step; (B) An example simulation and the predicted thermal history at three points with the 
location of points depicted on the top right and the comparison of histories between GNN, 

RGNN and the ground truth on the lower right. Note that 𝑡 = 0 refers to the starting time of the 
100 time-step test sample and not the entire build. 

 

Our results, depicted in Figure 3.8, indicate that the GNN architecture rapidly captures 

important correlations in data and reaches a satisfactory error of 2.36𝑒  MSE on the training set 

and 3.24𝑒  MSE on the test set in just 40 training epochs. The GRNN architecture requires 5𝑋 

more epochs to stabilize on the test set MSE with an error of 2.19𝑒  MSE on the training set and 

2.20𝑒  MSE on the test set. However, note that the RGNN model attempts to predict 50 steps 
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into the future—a drastically more difficult task compared to the single time step prediction. 

Therefore, a higher error is reasonable and expected for the RGNN model. We further demonstrate 

the output of the developed data-driven models for a sample case in the test set (see Figure 3.8B). 

The output of each trained model is compared to the ground truth simulation results for three 

randomly selected points on the geometry surface for 100 time-steps. This is possible because 

both GNN and RGNN models, although being trained on a fixed number of time steps (1 and 50 

respectively), can be recursively evaluated for any arbitrary length of time. The GNN model results 

in 6.07𝑒  MSE and RGNN model in 3.28𝑒  MSE averaged over all nodes of the simulation.  

Qualitatively, the results show a good agreement between both models and the ground truth, 

however, the GNN model captures the thermal stagnation around solidification better while the 

RGNN model predicts the pick temperatures more accurately. 

To further investigate the stability and capability of the model for long simulations, we evaluate 

the models on 45 samples (40 for training and 5 for test sets) over 1,000 time steps, which is 

1,000𝑋 and 20𝑋 the training span of the GNN and RGNN models, respectively (see Figure 3.9). 

Often, such intense extrapolations fail in machine learning; however, we see that both models are 

capable of reasonable predictions over long periods of time and their errors, although raising over 

time, remain stable. In Figure 3.9A-3.9C, we demonstrate a sample case study for both GNN and 

RGNN models over 1,000 time steps including their thermal contours as well as root mean squared 

errors (RMSE) for all material points in each data-driven simulation. While starting similarly, the 

RGNN model significantly outperforms the GNN model after about 100 time steps, showing a 

superior capability to capture long interactions. A similar conclusion can be drawn by observing 

the RMSE evolution over all training and test samples as shown in Figure 3.9D where the GNN 
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model results in a RMSE of 0.0313 for the training set and 0.0383 for the test set, while the RGNN 

model shows a negligible error propagation with a RMSE of 0.0161 on the training set and 0.0152 

on the test set. Impressively, both models result in close performance between the training sets and 

test sets (the RGNN model even shows a slightly better accuracy on the test set), which shows that 

they can generalize well across completely unseen geometries for long simulations. Additionally, 

the RGNN model also shows a better performance in long-term predictions, effectively 

demonstrating a saturation of error propagation. 

 

 
Figure 3.9.   Evaluation of the trained models capability to produce long-term simulations. The 

evolution of the thermal field on a sample simulation is depicted for the GNN and RGNN models 
(A and B). The error propagation of the sample simulation and all database simulations for both 

models are presented (C and D). 
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3.4.  Conclusions and Future Works 

Recent advancements in high-throughput computing combined with the popularity of data-

sharing protocols and cyber-physical systems create a unique opportunity to develop data-driven 

models for heterogeneous materials and challenging manufacturing processes. In this research 

task, we presented a stacked RNN structure with a GRU formulation of time-series modeling of 

manufacturing processes and demonstrated that it accurately predicts thermal histories in AM 

builds. Our results show that the model reaches an MSE of 2.97e-5 on a test dataset after a 100 

epoch training. Additionally, two overarching tests for predicting the thermal history over a longer 

time span and non-trained geometries were also examined, showing the potential of RNN models 

to predict complex behaviors in AM processes. The accuracy of the model can be further improved 

by increasing training epochs.  

A key gap in the capability of state-of-the-art data-driven models related to their poor 

generalizability across geometries was also addressed.  We demonstrated that our proposed RGNN 

architecture can effectively capture local intricacies of the process through a graph representation 

and long-term temporal correlations via a recurrent network structure to achieve unprecedented 

generalizability over unseen geometries and maintain it through 1,000 time steps, which is over 

20𝑋 of its training span. Our codes and data are made available for the research community at 

https://github.com/AMPL-NU/Graph_AM_Modeling, to further explore its general applicability 

in other manufacturing processes. 

Further improvement can be achieved by expanding on both key elements of the data-driven 

models: database and network. As the model heavily depends on the size and quality of the 

database, an improvement avenue is to broaden the database to different process parameters, 
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materials, and geometries. Similarly, one can improve the network by deploying larger networks 

(as we do not observe overfitting in our models) and training over longer time step periods to 

further reduce the errors. While the presented work trains on simulation data, this framework can 

also be directly deployed on experimental data as high-quality shared repositories for 

manufacturing processes are growing. We believe that our approach opens the path for new 

generations of physics-informed data-driven modeling in manufacturing processes with the 

flexibility to go beyond thermal responses for predicting more challenging aspects of a wide range 

of manufacturing processes. 
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CHAPTER 4  

Data-Driven Constitutive Modeling for Computational Plasticity 

 

4.1.  Introduction to Computational Plasticity 

Understanding the deformation of materials under different loadings is a core concept in design 

and manufacturing. Since accurate measurements of the stresses is infeasible in most applications, 

numerical simulations, such as FEM, are commonly used to quantify the material states over 

complex geometries. However, solving the FEM formulation requires establishing the relationship 

between the stress and strain components for each material point. This relationship is untrivial and, 

as one can imagine, it varies widely between metals, rubber, and composites, to name but a few. 

In essence, a material’s constitutive model, based on the previous state of the material including 

the applied stresses (𝝈 ) and other internal variables, known as state variables (𝒒 ), attempts to 

update the two variables (i.e., stress and state variables) for the current time step given the current 

deformation (∆𝜺 ), as depicted in Figure 4.1. Without loss of generality, we focus this 

discussion on elasto-plastic behavior as they occur in most metals. 
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Figure 4.1. Calculation scheme for a material’s constitutive model where the model receives the 

previous stress and state variables as well as the current deformation and outputs the updated 
stress and state variables at each time step. 

 

 ∆𝜺 =  ∆𝜺 + ∆𝜺   (4.1) 
 

 ∆𝝈 =  ℂ ∶  ∆𝜺  (4.2) 
 

 ∆𝜺  = ∆𝜆𝒓 , Δ𝒒 = ∆𝜆𝒉  (4.3) 
 

 ∆𝜆 Φ(𝝈, 𝒒) = 0  (4.4) 
 

 

In classical plasticity, the key to compute the material response is to correctly decompose the 

deformation into elastic and plastic components (Eq. 4.1), which is unknown at each time step. To 

solve for these components, a number of additional equations are required to account for the 

number of unknowns in the system. Some of the relationships stem from the definition of the 

variables; for example, the elastic strain increments are linearly correlated with stress increments 

through the known matrix of elastic stiffness (ℂ) according to the definition of the elastic strain 

(Eq. 4.2). Other equations are established based on theoretical assumptions (e.g., plastic flow rule 
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determining the evolution of the plastic strain, Eq. 4.3, and the definition of effective stress and 

strain) or phenomenological laws developed mainly based on experimental observations (e.g., 

yield criteria, Φ(𝝈, 𝒒), determining when deformation is plastic and hardening laws defining the 

evolution of the yield surface). A summary of these equations that need to be solved 

simultaneously is provided by Eqs. 4.1 - 4.4, where ∆𝜆 denotes the plastic multiplier increment, 𝒓 

is the normal direction to the yield surface at yield position, and 𝒉 defines the evolution of the state 

variables, which is often determined by the hardening law. 

 

To guarantee the consistency condition (Eq. 4.4) an iterative Newton-Raphson method is 

commonly used in practice, where one first assumes that all deformation increments are elastic 

and later solves for the current ∆𝜆 iteratively until a predefined numerical accuracy is achieved.  

The outstanding progress of the computational plasticity field to establish the stress-strain 

relationship stems from reducing 3-dimensional plastic behavior into so-called “effective” 

phenomenological laws that can be calibrated using a minimal number of experiments. This 

process introduces various assumptions including yield criteria formulation, flow rule, and 

effective stress-strain definitions. In addition, solving the plasticity system of equations becomes 

more computationally demanding and unstable as one tries to predict more complicated 

phenomena such as the Bauschinger effect (Armstrong et al. 1966, Leem et al. 2019), ratcheting 

(Chaboche 1991, Ohno et al. 1993), anisotropy (Hill 1990, Barlat et al. 1991), viscoplasticity 

(Chaboche 1989), permanent softening (Geng et al. 2002, Lee et al. 2007), and distortional 

hardening (François 2001, Feigenbaum et al. 2007, Barlat et al. 2011). 
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In this work, we aim to introduce a first-of-a-kind data-driven constitutive modeling approach 

and show that it can directly provide a closed-loop mapping between meterial deformation and 

stresses in their original 3-dimensional spaces. Our appraoch resolves the need for numerous 

theoritical assumptions introducing a more flexible and general constitutive model for 

unconventioal mateirals. Furthermore, as a data-driven model does not require iterative solutions, 

it opens a new avenue for drastic improvments in the efficiency of computational plasticity 

methods. 

In this chapter, we first introduce the main steps in our approach to data-driven constitutive 

modeling in Section Chapter 4.2. Two case studies are elaborated upon in Section 4.3 and a 

detailed network analysis is presented in Section 4.4.  Finally, the conclusions and future research 

directions are enumerated in Section 4.5. 

 

4.2.  Theoretical Approach to Data-Driven Constitutive Modeling 

We follow a three-step framework to create data-driven constitutive models. First, samples of 

input space are extracted using a design of experiments technique. As the model solely relies on 

the data to interpret the constitutive relationships, it is crucial that the samples sufficiently 

represent  the distribution of input conditions in which the data-driven model is expected to 

perform. Second, we create a database of material responses corresponding to the input samples. 

While in principle, any reliable source would suffice, we pursue computational analysis to create 

a database of ground-truth input-output pairs. Finally, we propose a novel machine learning 

approach to learn the material plasticity as it trains over thousands of material response samples 

captured in the database. 
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4.2.1 Design of Experiments in Input Space 

To capture the behavior of a general constitutive model, we consider three key types of variables 

in our design input space: (i) microstructure descriptors (e.g., volume fraction, inclusion 

geometries), (ii) material properties for each microstructural phase (e.g., elastic moduli, yield 

behavior), and (iii) loading conditions (e.g., deformation range and patterns). For the temporally 

fix features (e.g., microstructure and material descriptors), a space-filling design of experiment 

technique is deployed to maximally encompass information on the entire valid range of variables. 

Here, we build an RVE database using a variant of the descriptor-based approach (Xu et al. 2014) 

as it enables establishing physically interpretable links between microstructural descriptors and 

material properties. First, we identify key microstructural descriptors that characterize the RVE 

and conduct design of experiments (DOE) with Sobol sequence technique. Then, we reconstruct 

the RVEs corresponding to the DOE points. Finally, we post-process the generated RVEs to extract 

more microstructural descriptors that are not used in stage one. In the case of fibrous composites 

where the fibers of an RVE are equally-sized and randomly dispersed within the matrix (an 

example is given in Section 4.3.2), we choose the following three descriptors to characterize the 

morphology: fiber volume (or area) fraction (𝑣), fiber radius (𝑟), and minimum allowable center-

to-center distance between any two fibers (𝑐). The first two descriptors are known to affect the 

material properties in fiber composites (Bessa et al. 2017). The third descriptor is used to set a 

minimum distance between any two fibers to avoid overlaps, facilitate FEA, and partially control 

the spatial distribution of fibers within the matrix. Given the 3D input space of [𝑣, 𝑟, 𝑐], we generate 
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a DOE of size 5,000 where the range of each parameter is selected sufficiently large (see Table 

4.1) to reconstruct a wide range of RVEs. 

 

Table 4.1.  Parameter ranges for RVE reconstruction and load-path design (Mozaffar et al. 
2019). 

 
 𝒗 (%) 𝒓 (𝝁𝒎) 𝒄 (𝝁𝒎) 𝑬 = [𝒆𝟏𝟏, 𝒆𝟐𝟐, 𝒆𝟏𝟐] 

Min 5 3 8 [−0.02, −0.02, −0.02

Max 40 10 20 [0.02, 0.02, 0.02] 

 

To reconstruct the RVE corresponding to the 𝑖  DOE point (i.e., given [𝑣 , 𝑟 , 𝑐 ]), we first 

randomly place 𝑛 =
∗ ∗

 fibers of radius 𝑟  in a square RVE of side length 𝐿 = 200 𝜇𝑚. Then, 

we iteratively perturb the fiber locations until their spatial distribution satisfies 𝑐 . It is noted that 

some combinations of [𝑣, 𝑟, 𝑐] might correspond to infeasible RVEs or our iterative perturbation 

might stop before 𝑐  is satisfied. The 3D input space of [𝑣, 𝑟, 𝑐] along with the feasible DOE points 

are visualized in Figure 4.2 where it can be observed that some regions of the [𝑣, 𝑟, 𝑐] space do 

not correspond to realizable RVEs. Figure 4.3 also shows four sample RVEs for easier 

interpretation of microstructural differences. Note that the triplets [𝑣, 𝑟, 𝑐] cannot uniquely 

characterize a microstructure with randomly dispersed equally-sized fibers. Hence, we post-

process the reconstructed RVEs to extract four more morphological features that quantify the 

spatial distribution of fibers. These features are the minimum, maximum, mean, and standard 
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deviation of nearest neighbor distances across the fibers: 𝒏𝒏 = [𝑛𝑛 , 𝑛𝑛 , 𝑛𝑛 , 𝑛𝑛 ]. That is, for 

the 𝑖  RVE, we calculate the nearest neighbor of all the fibers (center-to-center distance) and then 

calculate the abovementioned statistics. These seven non-temporal features (along with the 

deformation path) are employed in our deep learning task as inputs.  

 
Figure 4.2. Design of experiments with 5,000 points in the 3D space of [𝑣, 𝑟, 𝑐]. 𝑣 is in percent 

while 𝑟 and 𝑐 are in 𝜇𝑚 (Mozaffar et al. 2019). 
 
 

 
Figure 4.3. Four sample RVEs. Side lengths are all 200 𝜇𝑚 and the triplet below each RVE 

corresponds to [𝑣, 𝑟, 𝑐]. 𝑣 is in percent while 𝑟 and 𝑐 are in 𝜇𝑚 (Mozaffar et al. 2019). 
 

Sampling temporally varying features such as deformation path is more intricate as it involves 

generating a sequence of points (rather than a single point) for each sample path, see Figure 4.4A. 

To address this issue, we assume that any dynamic feature evolves to its end-state in 𝑛  time steps 



75 

of size Δ𝑡. From these time steps, we then choose 𝑛  equally spaced ones as control points and 

assign them random deformations which are uniformly drawn from the feature’s range. Finally, 

we realize a path of dynamic deformations by connecting the feature values of these control points 

via an interpolator. We have considered two different interpolators: Gaussian process (GP) and 

polynomial regression, see Figure 4.4B and C. For multi-dimensional features such as strain, we 

generate paths along each dimension independently. 

 

 
Figure 4.4. Sampling the temporally varying loads: (A) Three end-states are marked in the strain 

space spanned by 𝑒  and 𝑒  (𝑒 = 0 for clarity). For each end-state, two deformation paths 
that connect it to the origin are illustrated. The grey area indicates the range of each strain 

component. (B) Two examples indicating the temporal evolution of the three strain components 
that, collectively, determine the deformation path to an end-state. The markers on each path 

indicate the control points used in interpolation. Here, 𝑛 = 100, 𝑛 = 6, and the interpolator 
is a zero-mean GP with power exponential kernel. Paths in (B) are not related to (A) (Mozaffar et 

al. 2019). 
 

 

4.2.2 Database Assembly 

We simulate the behavior of the constructed RVEs under complex loading conditions using 

high-fidelity finite element analysis (FEA). A MATLAB code developed by Bessa et al. (Bessa et 

al. 2017) creates the scripts that interact with the finite element software ABAQUS® to preprocess, 

execute and postprocess all the simulations automatically for the two-dimensional RVEs using an 
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implicit static solver. The analysis begins with generating the material and boundary condition 

files. The MATLAB script parses the geometry descriptors for each RVE in the database and 

generates python scripts which creates the geometry, meshes it with a predetermined mesh size 

(1.5 𝜇𝑚 ), and assigns the materials to corresponding sections. We apply periodic boundary 

conditions to the edges of RVEs as it better estimates the overall performance of the composite. 

Temporal strain components 𝑒 (𝑡), 𝑒 (𝑡), and 𝑒 (𝑡) are defined as displacement boundary 

conditions on the RVEs. Next, The MATLAB script generates the simulation files and executes 

ABAQUS® using them. Finally, the outputs of each simulation is postprocessed to extract three 

engineering stresses 𝜎 (𝑡), 𝜎 (𝑡) and 𝜎 (𝑡) as well as the plastic energy 𝑈 (𝑡). Note that the 

computational analysis is completely automated to produce large databases without manual input. 

 

4.2.3 Machine Learning Approach 

Once the input space is sampled and the corresponding output database is created, an RNN is 

fitted to learn the plasticity constitutive law by relating stresses and plastic energy to 

microstructure descriptors and loading conditions. RNNs describe plasticity as a map including 

time evolution of the different variables: 

 σ  = f(e : , m, p, t)  (4.5) 
 

where 𝒎 and 𝒑 describe the microstructure descriptors and the properties of the phases, 𝒆 :  is the 

history of spatially averaged strains applied to the RVEs from the first to current (𝑡) deformation 

increment, and 𝝈  is the spatially averaged stress at the current deformation increment. 
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RNNs are an extension of neural networks designed to handle sequential data, i.e., they can 

learn events happening along different time sequences that can be captured with a different number 

of snapshots. RNNs use history-dependent hidden states 𝑠 (𝑥 , 𝑠 ) to compute the outputs  

𝑜 (𝑥 , 𝑠 ) which enables them to carry information of previous inputs for future predictions, where 

𝑥  is the input feature at increment 𝑡. This unique feature of RNNs combined with the flexibility 

of their model architecture has proven to be greatly beneficial on tasks such as machine translation, 

natural language processing and voice recognition, among others (Mozaffar et al. 2018, Young et 

al. 2018). Early formulations of RNNs suffer from a phenomenon known as vanishing/exploding 

gradients, first noticed in (Hochreiter 1991), which hinders the backpropagation-based training 

process of the networks for long sequences. Long Short-Term Memory (LSTM) (Hochreiter et al. 

1997) was proposed to avoid vanishing gradients by using multiple data gate mechanisms which 

control the flow of storing or forgetting information in hidden states and outputs. Gated Recurrent 

Unit (GRU) (Cho et al. 2014) uses a similar concept as LSTM while using a simplified formulation. 

Although LSTMs and GRUs have shown to have close performance in many cases (Chung et al. 

2014), GRUs formulation is less prone to overfitting and allows faster training due to the smaller 

number of trainable parameters. Stacking multiple RNN units enables the model to predict higher-

level nonlinearities and interactions between features. A major challenge in predicting plasticity 

constitutive laws for material systems is that the model should effectively correlate temporal 

loading inputs with non-temporal RVE design features (e.g., volume fraction, fiber radius, or 

elastic moduli). Three variations of RNN architecture are considered to address this challenge as 

depicted in Figure 4.5A to C. 

 



78 

 
Figure 4.5. Variation of RNN architecture to encapsulate temporal and non-temporal inputs; (A) 
post-mixing non-temporal data through a dense network, (B) configuring non-temporal data as 

initial hidden state value through a dense network, or (C) establishing a secondary non-temporal 
hidden state in GRU formulation (Mozaffar et al. 2019). 

 
 

First, non-temporal features can be merged with temporal RNN outputs using fully connected 

neural network (FCNN) layers to form a hybrid deep learning architecture (Figure 4.5A). While 

this approach is plausible for applications with fixed output length at the final time-step, its 

structure does not provide a natural fit for constitutive law discovery of material systems as it 

restrains the temporal prediction of the model to a fixed length and offers limited correlation 

between temporal and non-temporal features.  

As a second approach, the non-temporal features can be integrated into the RNN formulation 

as the initial value for hidden states (Figure 4.5B). As the dimensionality of non-temporal inputs 

and hidden states are often different, a dense network can be used to perform this mapping. 

Although this approach has shown promising results for image processing tasks (Karpathy et al. 

2015, Vinyals et al. 2015), it is not the most effective architecture for constitute laws because all 
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information in the hidden states are subject to change as they pass through GRU cells. That is, 

non-temporal inputs can get corrupted with other hidden features which makes it excessively 

difficult for GRU cells to access them at downstream time steps. 

We propose a GRU formulation in which a secondary hidden state is used to carry non-temporal 

inputs through the GRU cells which allows nonlinear correlations between temporal and non-

temporal input features while providing each GRU cell direct access to temporal inputs, non-

temporal inputs, and history-dependent hidden states (Figure 4.5C).  The altered formulation of a 

GRU unit (Cho et al. 2014) used in this work is as follows: 

𝑟 =  𝑠𝑖𝑔 𝑊 . ℎ , 𝑥 , ℎ  + 𝑏 (2) 

𝑧 =  𝑠𝑖𝑔 𝑊 . ℎ , 𝑥 , ℎ + 𝑏  (3) 

ℎ = tanh (𝑊. 𝑟 × ℎ , 𝑥 , ℎ + 𝑏) (4) 

𝑜 =  ℎ = (1 − 𝑧 ) × ℎ + 𝑧 × ℎ  (5) 

where 𝑠𝑖𝑔 is the sigmoid function. The reset gate (𝑟 ) determines the combination of inputs (𝑥 ), 

previous hidden states (ℎ ), and the secondary hidden state (ℎ ) to build a candidate hidden state 

(ℎ ), and the update gate (𝑧 ) controls the influence of candidate hidden state to the unit output 

(𝑜 ), which is also used as the new hidden state (ℎ ). Using this variation of GRU formulation non-

temporal features are protected from corruption by 𝑟 , the reset gate. Although this approach adds 

additional weights and biases to the GRU, increasing model complexity and training time, it 

enables GRU cells to capture intricate interactions between input features throughout the entire 

temporal states. 
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The proposed neural network models based on the architectures demonstrated in Figure 4.5 is 

developed using the Keras library (Chollet 2015). The model includes RNN cells to detect history-

dependent features and combines with one or more time-distributed dense layers (Keras) to 

transform high-dimensional outputs of RNN cells into the desired 4 outputs (three engineering 

stresses and plastic energy) of the RVEs over time. A cost function of the mean absolute error 

between the output values in the developed database and the predictions are defined and the 

training process is performed using Adam optimization method (Kingma et al. 2014). The inputs 

(i.e., microstructure descriptors and deformation paths) and outputs (i.e., stresses and energies) of 

the database are normalized to a range between 0 and 1 to expedite the training process by reducing 

narrow valleys in trainable parameter space. 

We use the scaled mean absolute error (SMAE) metric to evaluate the results of the model. This 

enables us to have a fair error measure with the same dimensions as the original outputs which is 

independent of the data magnitude as it is scaled over the range of data. Although the plastic energy 

should not decrease over time according to the second law of thermodynamics, it is noteworthy 

that small decreases in the plastic energy can be seen even in the FEA results. However, to quantify 

if the plastic energy is predicted with an acceptable range of error, we define a second metric as 

the accumulated plastic energy deviation from monotonic increase averaged over test set samples, 

which is named as scaled mean plastic energy decrease (SMPED).  

The developed model is trained on 80% of the database while the rest is used as test set for 

validation. The train set SMAE decreases consistently as we increase the number of RNN layers, 

RNN units, or time-distributed layers due to the computational complexity the models. However, 

using excessively complex configurations causes the model to overfit the train set samples. Also, 
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our results indicate that adding extra time-distributed layers adversely affect the test set SMPED, 

which is another form of undesirable overfitting.  

 

4.3.  Plasticity Modeling Results 

Our analysis shows the architecture depicted in Figure 4.5C leads to the best results (details 

presented in Section 4.4.1). Based on this architecture, we consider two examples to illustrate the 

capabilities of sequence learning in finding plasticity constitutive laws. The first example focuses 

on a single RVE with a curved inclusion which imposes significant distortional hardening. The 

second example pertains to a class of RVEs with distributed circular inclusions. This later example 

demonstrates that our approach allows to systematically formulate microstructural information in 

plasticity constitutive laws while classic constitutive modeling lacks such generality. 

 

4.3.1 Case I: RVE with Curved Inclusion 

Even simple heterogeneous materials can undergo complex history-dependent plastic 

deformation. An illustrative example is devised by considering a periodic microstructure of a 

material composed of distorted elliptical fillers as shown in Figure 4.6A. Without loss of 

generality, consider the matrix material to be an aluminum alloy (AA6061) described by a von 

Mises isotropic hardening model, and the rubber fillers described by an Arruda–Boyce hyperelastic 

material model (Arruda et al. 1993). The material properties of the models are provided in Table 

4.2.  
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Table 4.2.  Matrix and fiber material properties for case 1(Mozaffar et al. 2019). 
 

Matrix density (𝝆𝒎) 𝟐. 𝟕 𝐠/𝐜𝐦𝟑 

Matrix Young’s Modulus (𝑬𝒎) 68.9 GPa 

Matrix Poisson’s ratio (𝝂𝒎) 0.33 

Matrix Voce isotropic hardening 

𝝈𝒊𝒔𝒐,𝒎 = 𝑩 − (𝑩 − 𝑨) 𝐞𝐱𝐩(−𝒏𝝐) 

A =  74.4 MPa 

B =  144.98 MPa 
𝑛 =  7.25 

Fiber density (𝝆𝒇) 1.0 g/cm3 

Fiber Arruda shear coefficient (𝝁𝒇) 166 MPa 

Fiber Arruda locking stretch (𝝀𝒇) 2.8 

 

The combination of a ductile matrix and a hyperelastic filler with non-symmetric geometry 

results in a compound elasto-plastic behavior where the matrix deforms plastically while the fillers 

can store a significant amount of elastic energy. Although the constituents are isotropic, the filler 

geometry induces significant anisotropic behavior and distorts the yield surface obtained for the 

macroscopic heterogeneous material as it undergoes different deformation paths. The macroscopic 

constitutive behavior of the heterogeneous material results from relating the applied average strain 

components 𝑒 (𝑡), 𝑒 (𝑡), and 𝑒 (𝑡) at time step t to average stresses 𝜎 (𝑡), 𝜎 (𝑡), 𝜎 (𝑡) and 

plastic energy 𝑈 (𝑡). The average stresses are computed via homogenization of the RVE, while 

the average strains are converted into a periodic boundary value problem (Bessa et al. 2017). Note 

that each stress state of the RVE depends on the deformation path towards getting there. 
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Figure 4.6. (A) Undeformed configuration of RVE with curved ellipse and (B) von Mises stress 

contour of the deformed periodic RVE in MPa for illustrative case 1(Mozaffar et al. 2019). 
 

Once the RVE in Figure 4.6A is simulated via FEA under 15,000 different deformation paths, 

a database with the average stresses and plastic energy for each deformation path is generated (100 

deformation states per deformation path). Using this dataset (created in 2 weeks using 48 cores of 

a high performance computing cluster), we train an RNN with an architecture illustrated in Figure 

4.5C whose parameters are trained on 80% of the database. We assess the predictive power and 

data sufficiency by the unseen 20% portion of data. We use a scaled mean absolute error (SMAE) 

metric to evaluate the results of the model and a second metric for the plastic energy, called scaled 

mean plastic energy decrease (SMPED), to quantify a possible decrease in plastic energy as this 

should not happen since plasticity is an irreversible form of deformation (second law of 

thermodynamics). The designed model consists of 3 stacked layers of 500 RNN units followed by 

a single time-distributed dense layer, which corresponds to around 3 million trainable parameters. 

Finally, a leaky rectified linear unit (Xu et al. 2015) activation functions is used to impose 

nonlinearity into the neural network model. We trained the model for 200 epochs which resulted 
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in 0.00281 training set SMAE, 0.00355 test set SMAE, 0.000181 training set SMPED and 

0.000186 test set SMPED.  

Figure 4.7 presents results for two different validation deformation paths: one deformation path 

of the test set that was not used in training (Figure 4.7A to C); and a linear unidirectional loading 

and unloading deformation path for validation purposes that is not present in either of those sets 

(Figure 4.7D to F). As observed in Figure 4.7B and Figure 4.7C, the RNN is predictive along 

deformation paths of the test set (unseen data) for both quantities of interest. In addition, we also 

created validation cases of deformation paths that were not present in either the training or test 

sets. Figure 4.7D shows a linear unidirectional strain path which stretches the RVE in the 

𝑒  direction to 0.1 engineering strain and then in the opposite direction to −0.1 engineering strain 

while 𝑒  and 𝑒  are kept at zero. Note that the training set does not include any linear strain path, 

rather it is constructed via a Gaussian process which results in fluctuating paths. Figure 4.7E and 

F demonstrate that our RNN model is also able to predict these average stress states and plastic 

energy. We note that the model can also effectively predict the Poisson’s ratio effect between 𝜎  

and 𝜎 . The Supporting Information includes details on the RNN architecture analysis, as well as 

convergence studies and error metrics used to assess the predictions. In addition, accuracy of the 

predictions can be easily improved by increasing the size of the training dataset, but these results 

indicate that the model can generalize well to loading conditions outside this dataset. 
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Figure 4.7. Evaluation results for the trained model in case 1. The top row demonstrates (A) the 

applied average strains, (B) the predicted and database average stresses and (C) the predicted and 
database plastic energies for a test set sample (unseen in training process). The bottom row 

depicts the (D) average strains, (E) average stresses, and (F) plastic energies for the 
unidirectional loading test (Mozaffar et al. 2019). 

 

We further explore the predictive capabilities of our model by evaluating the yield surface 

evolution as the RVE experiences different loading conditions. Figure 4.8 shows the yield surface 

at the onset of plasticity in purple, and the yield surface obtained at the end of three deformation 

paths. We define plastic deformation to start when the plastic energy increases by the threshold of 

1 𝑚𝐽. Alternatively, the average equivalent plastic strain of the matrix could be used.  We construct 

the yield surface by loading the RVE from its current stress state to 40 deformation paths in 

different directions (details are provided in Appendix B). The principal stresses of the RVE (i.e., 

eigenvalues of the stress tensor) are calculated when the RVE is plastically deformed above the 

mentioned threshold and the stress state is stored in order to reconstruct the yield surface. Details 

of yield surface construction are provided in Supporting Information. Each of the four yield 

surfaces shown in Figure 4.8 includes the result obtained directly from FEA in dotted lines, the 
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prediction from RNN in solid lines and the applied deformation before yield surface construction 

with respective colors. The yield surface at the onset of plasticity (purple) resembles the elliptical 

shape of von Mises yield surface which is in-line with the behavior of the matrix. However, as 

seen at the end of the three deformation paths, the yield surface is distorted, shrinks/expands and 

rotates for different deformation histories. Remarkably, the RNN can track the complete yielding 

behavior accurately, including the anisotropic and distortional yield behavior. Therefore, using 

sequence learning for finding plasticity laws of general RVEs is demonstrated to be possible, 

laying the foundations for a new modeling route for plasticity that learns the compound correlation 

of yield surface and hardening laws without any explicit guide or definition of classical plasticity 

terms such as effective plastic strain and effective stress. 
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Figure 4.8. Yield surface evolution under different deformation conditions and paths. FEA-

based and RNN predicted yield surfaces are demonstrated in dotted lines and solid lines, 
respectively, at the end of three different deformation paths as compared to the original yield 

surface (purple) (Mozaffar et al. 2019). 
 

4.3.2 Case II: RVE with Distributed Circular Inclusions 

To explore the flexibility of the proposed framework, we study a second case which differs 

from the previous case in two major aspects. First, we consider periodic microstructures with 

distributions of circular fibers, where each sample in the database varies in terms of their fiber 

volume (area) fraction, fiber radius, and distance. We consider epoxy with combined isotropic and 

kinematic hardening and carbon with elastic behavior as the matrix and fiber material models, 

respectively. Details of material properties are provided in Table 4.3. Second, we considered 
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polynomial deformation paths with maximum strain of 2% in this case. These two design choices 

give us a compound elasto-plastic behavior for the RVE as the matrix deforms plastically while 

fibers can store a significant amount of elastic energy, whereas the behavior of the first case was 

mostly dominated by plastic deformation.  

 

 
Figure 4.9. (A) Undeformed configuration and (B) von Mises stress contour of a deformed 

sample of periodic RVE with distributed circular fillers in MPa for illustrative case 2 (Mozaffar 
et al. 2019). 

 
 

Table 4.3.  Matrix and fiber material properties for case 2 (Mozaffar et al. 2019). 
 

Matrix Young’s Modulus (𝑬𝒎) 𝟒. 𝟎𝟕 𝐆𝐏𝐚 

Matrix Poisson’s ratio (𝝂𝒎) 0.34 

Matrix Voce isotropic hardening 

 𝝈𝒊𝒔𝒐,𝒎 = 𝑩 − (𝑩 − 𝑨) 𝐞𝐱𝐩(−𝒏𝝐) 

A =  16.44 MPa 
B =  77.5 MPa 

𝑛 =  746.2 

Matrix kinematic back-stresses (𝒏𝒌𝒊𝒏,𝒎) 2 
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Fiber density (𝝆𝒇) 1.8 g/cm3 

 Fiber Young’s Modulus (𝑬𝒇) 15 GPa 

Fiber Poisson’s ratio (𝝂𝒇) 0.2 

 
 
 

The inputs to the RNN model are the non-temporal microstructure descriptors as well as the 

temporal deformation paths and the outputs are temporal stresses and plastic energy over 100 

increments for each RVE. Similar to the previous case, two validation tests are presented and 

neither of which is used in the training process. A database with 5000 samples is used in this case, 

80% of which used for training. A model with architecture shown in  Figure 4.5C and similar 

configuration as the previous case is trained for 500 epochs resulting in 0.00242 and 

0.00257 SMAE on training set and test set correspondingly, while the model error for the SMPED 

metric is 0.00104 on both datasets. Figure 4.10A to C demonstrate the comparison of our model 

prediction with the ground truth FEA for a polynomial deformation path outside of the training 

samples. The results indicate that the model can accurately predict both stress and energy responses 

of the RVE. The results of linear unidirectional loading test (depicted in Figure 4.10D to F) show 

that the model is accurately predictive for stress and most regions of plastic energy. The small 

noise in the plastic energy prediction is caused by the sharp change in deformation path, which 

was not observed when the deformation paths were sampled with GP regression due to its 

smoothness.  
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Figure 4.10. Evaluation results for the trained model in case 2. The top row demonstrates the (A) 
the applied average strains, (B) the predicted and database average stresses and (C) the predicted 
and database plastic energies for a test set sample (unseen in training process). The bottom row 

depicts the (D) average strains, (E) average stresses, and (F) plastic energies for the 
unidirectional loading test (Mozaffar et al. 2019). 

 
 

4.4.  Network Analysis 

4.4.1. RNN architecture analysis 

The three RNN architectures introduced in Figure 4.5 to combine temporal and non-temporal 

features are extensively tested and their training result are presented in Figure 4.11 and Table 4.4 

after 500 epochs of training. The hybrid architecture, which combines temporal GRU outputs with 

non-temporal FCNN features (Figure 4.5A) cannot achieve accurate prediction on training set and 

suffers from extreme overfitting. While the architecture with hidden state initialization (Figure 

4.5B) performs moderately, the proposed architecture with a secondary hidden state (Figure 4.5C) 

achieves significantly better accuracy consistently across different epochs and metrics. 

 



91 

 
Figure 4.11. Cost function evolution as a function of training epochs for three different RNN 

architectures (Mozaffar et al. 2019). 
 

Table 4.4.  Metrics comparison between trained RNN architectures after 500 epochs of training 
(Mozaffar et al. 2019). 

 
 

RNN architecture Train set SMAE Test set SMAE Train set SMPED Test set SMPED 

Configuration A – hybrid 

mix 

0.00557 0.00888 0.00233 0.00243 

Configuration B – 

hidden state 

initialization 

0.00345 0.00367 0.00130 0.00144 

Configuration C – 

secondary hidden state 

0.00242 0.00256 0.00104 0.00104 
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4.4.2. RNN hyperparameter tests 

The hyperparameters and configurations of the presented RNN models are studied and 

optimized in this work. This analysis includes but is not limited to activation functions, 

optimization algorithms, cost functions, dropout layers, normalization process, and addition of 

time-series dense layers. Figure 4.12A depicts the results achieved by varying number of neurons 

in each GRU cells. It can be seen that 100 neurons cannot provide enough computational 

complexity to the model. While the model with 1000 neurons result in lower SAME on training 

set compared to the model with 500 neurons, the models perform closely on the test set. 

Considering that the model with 1000 neurons require more computational resources and training 

time and overfits on the training set, RNNs with 500 neurons are used in this work. Similarly, 

Figure 4.12B suggests that a model with 3 layers of stacked GRU layers achieves the best result 

with required least computational resources compared to models with 1 or 5 layers. 
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Figure 4.12. Hyperparameter analysis of the RNN model over 200 epochs of training for (A) 

number of neurons in GRU cells and (B) number of stacked GRU layers (Mozaffar et al. 2019). 
 

4.4.3 Performance of proposed RNN architecture 

We analyze the performance of the model with different sizes of training set to study the 

required database for achieving certain error metrics, which is demonstrated in Figure 4.13. As 

we increase the size of the training set, the model with 3 layers of 500 neurons performs better in 

both training set and test set; however, larger databases lead to an expected improvement of 

performance. Ultimately, the require size of database is dictated by the complexity of the behavior 

of the RVE and the required accuracy. In this work, we demonstrate that one can achieve predictive 

deep learning models for advanced plasticity behavior with databases that are computationally (or 

experimentally) built in a feasible time frame. 
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Figure 4.13. Convergence test for the RNN over 200 epochs of training (Mozaffar et al. 2019). 

 

Note that once trained, our data-driven constitutive model performs far faster than the finite 

element method. As an example, the developed data-driven model predicts the behavior of one 

RVE in the second case study in 0.108 seconds on a Nvidia Titan black GPU while it takes 7.48 

minutes on four cores of Intel Xeon CPU E5-2687 for the finite element method to complete the 

simulation. While the exact number highly depends on the hardware and simulated physics, it can 

be confidently stated that the data-driven approach offers orders of magnitude faster evaluation. 

This has important implications on multi-scale simulations where the constitutive laws at each 

point of the macro-scale material can be given by RNN models, instead of expensive RVE 

analyses. Furthermore, we note that the two approaches scale differently, given the type of 

hardware they require and application. For instance, calculating the response of 100 different RVE 

cases via the data-driven approach using the same hardware takes only 0.547 seconds, which is 

due to the batch processing capability of GPUs. Finite element methods, on the other hand, scale 

by distributing sub-domains over multiple CPUs to obtain performance gains through parallel 
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computing. These gains often saturate due to the communication overhead between processing 

units. 

 

4.5.  Conclusions and Future Works 

In this work, we show a first-of-a-kind data-driven approach to constitutive modeling that 

enables capturing the complex behavior of general materials including elasto-plastic deformation, 

energy absorption, and yield surface evolution. Our results indicate that the trained model can 

comfortably reach under 0.5% SMAE error, while being fast to evaluate (a fraction of a second) 

because there is no need for iterative solution schemes such as the Newton-Raphson, typical in 

classical plasticity. While we showcased this idea in heterogenous material settings, the same 

concept applies for homogenous materials as well. As in (Gorji et al. 2020), we used a similar 

RNN-based constitutive model to accurately capture the challenging behavior of metal alloys 

under forming processes such as the Bauschinger effect and hardening stagnation.  

A natural next step for this research path is to implement data-driven models inside FEM 

packages and investigate their potential in different applications and optimize their performance 

in different hardware settings (e.g., parallel execution on CPU, GPU, and TPUs). Since the RNN 

formulation is end-to-end differentiable, it enables efficient computation of consistent tangents 

(the partial derivative of stresses with respect to strains). Therefore, implicit FEM solutions, which 

require a consistent tangent, seems most compatible with our proposed data-driven model as it 

simultaneously solves the constitutive relationship for all elements in FEM simulations and 

guarantees convergence. For explicit solutions, however, our preliminary experimentations shows 

that incremental stress propagation between elements can generate severe instability for the 
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simulation. The implementation of data-driven constitutive model for explicit solutions in 

ABAQUS is demonstrated in Figure 4.14. These results do not show instability for single element 

cases. The fully connected neural network stays stable for multi-element tests despite having larger 

prediction error; however, the recurrent network grows unstable. I hypothesize this issue can be 

mitigated by using better temporal discretization schemes or imposing restrictions on the recurrent 

state characteristics. To best of our knowledge, this is an unaddressed gap in current state of data-

driven constitutive modeling and can be a key topic in the future research. 

 
Figure 4.14. Demonstration of instability in RNN-FEM implmentation for multi-element 

simulaitons in ABAQUS. 
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CHAPTER 5  

Toolpath Design for Additive Manufacturing using Deep Reinforcement 

Learning 

 

5.1. Introduction 

The performance of metal-based AM is currently hampered by the lack of robust design and 

prediction tools. Industrial AM practices often need series of trials and errors to produce parts to 

ensure that the geometric and mechanical requirements are satisfied. This is because AM involves 

multiple physics spanning over length scales that are orders of magnitude different. Therefore, AM 

modeling involves computationally expensive multi-scale methods with significant uncertainties 

in the process, which subsequently makes optimization-based design methods infeasible in the 

space. While the influence of some process parameters such as laser power, powder parameters 

and scan speed on the microstructure and final properties of the AM build are extensively studied 

in the literature, the influence of toolpath strategies and, more importantly, approaches for toolpath 

design yet to be thoroughly investigated. Designing toolpaths is particularly a challenging task as 

the large number of possibilities and the high-dimensional nature of the problem exacerbates 

optimization conditions. 

In this chapter, we aim to address the toolpath design task by introducing a reinforcement 

learning (RL) platform that dynamically learns toolpath strategies to build any geometry with 

optimized performance. To this end, we investigate prominent model-free and model-based 

reinforcement learning methods to design AM toolpaths in two design cases. 
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In what follows, we discuss the importance of toolpath design methods and current practices in 

Section 5.1.1. We establish the fundamental formulation and definition of RL in Section 5.1.2. 

Later in Section 5.2 we provide details of our envisioned RL framework for toolpath design, 

introducing the environment and analysis cases in Section 5.2.1 and 5.2.2 respectively. We discuss 

our methodology and results for model-free methods in Section 5.3. Next, the implementation 

details and results of a model-based approach is presented in Section 5.4. Finally, we conclude this 

chapter by discussing the impact of our findings and future directions in Section 5.5. 

 

5.1.1 Introduction to Toolpath Design in Additive Manufacturing 

The process of toolpath generation usually starts from a CAD geometry. A slicing algorithm 

produces parallel sections of the CAD at different heights corresponding to deposition layer 

heights. Later, the area encapsulated by the boundaries of each section is filled with 2D patterns, 

often in the form of boundary contour passes or raster patterns. While planar coverage path 

planning (CPP) can be applied to toolpath design (Weiss-Cohen et al. 2008, Zuo et al. 2010, Zhou 

et al. 2012, Chaari et al. 2014, Zhou et al. 2014, Pratama et al. 2015), current literature suggests 

that these methods do not scale to large input spaces common in AM processes due to NP-complete 

complexity of the solution. Furthermore, cost structure design is an untrivial aspect of CPP 

solutions which greatly limits the potential of this methodology to purposefully design the 

mechanical behavior of the parts. 

There are several publications that show that the choice of the toolpath significantly influences 

many aspects of metal-based AM. Steuben et al. (Steuben et al. 2016) considered three different 

toolpath patterns for building a part using a fused deposition modeling (FDM) process and 
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demonstrated that the pattern has a significant effect on the ultimate stress and elastic modulus of 

the build. Akram et al. (Akram et al. 2018) formulated a microstructure model using a Cellular 

Automata (CA) and demonstrated a strong correlation between the toolpath pattern (i.e., 

unidirectional and bi-directional) and the grain orientations. In (Bhardwaj et al. 2018), the authors 

considered bi-directional and cross-directional toolpath strategies to manufacture cubic parts with 

a Direct Metal Laser Sintering (DMLS) process and studied the surface finish, residual stress and 

mechanical properties of the parts. Their study indicates that the parts built with cross-directional 

strategy display better mechanical properties, which is due to their desirable structure of columnar 

cells. Similarly, the experimental study, done by Sebelle et al. (Sabelle et al. 2018), concluded that 

even the angle of a parallel toolpath greatly influences properties such as porosity, ultimate tensile 

and thickness in the Selective Laser Sintering (SLS) process. 

From the above-mentioned research, it can be evidently seen that the choice of the toolpath is 

important as it opens a new avenue to customize material behavior. However, existing research 

does not offer a robust solution for the analysis of this influence nor tools to prudently design 

toolpaths. In this work, we present a novel way to represent the toolpath and learn design strategies 

that lead to optimal performance.  

 

5.1.2 Introduction to Reinforcement Learning 

Toolpath design is proposed to be modeled as a RL problem in which an agent learns to design 

optimal toolpaths as it dynamically interacts and collects data from an AM environment. In the RL 

schema, the agent is responsible for determining the actions at each time step (𝑎 ), which 

influences the environment causing it to move from its current state (𝑠 ) to a new state (𝑠 ) and 
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generates a reward feedback (𝑟 ) for the agent. Here, “state” refers to the representation of the 

environment that is visible to the agent. The agent learns to maximize the long-term rewards that 

it receives in its lifespan by attempting more of the strategies that lead to the most favorable 

rewards. 

Most modern RL algorithms can be categorized into three main classes:  

1. Policy optimization methods parameterize the policy, 𝜋 (𝑎|𝑠), and optimize 𝜃 to 

maximize the expected reward. Policy gradient methods estimate the gradient using the 

policy gradient theorem (Sutton et al. 2018) while evolutionary methods, such as cross-

entropy methods (Salimans et al. 2017), perform the optimization without gradient 

estimation. Policy optimization methods suffer from poor sample efficiency, requiring 

millions of samples. Furthermore, for most policy optimization algorithms, all samples 

should be generated using the agent’s policy at each training step, which exacerbates 

the sample efficiency of these methods as historic data cannot be used in the training 

process.  

2. Value function optimization methods (also called Q-learning) do not optimize the policy 

directly. Rather, they aim to find the optimal action-value function 𝑄∗(𝑠, 𝑎), as defined 

in Eq. 5.1, to represent the maximum discounted reward the agent can collect from any 

state. Following the actions that lead to maximum optimal action-values, 𝑎∗ =

𝑎𝑟𝑔𝑚𝑎𝑥 𝑄∗(𝑠, 𝑎), guides the agent to maximize its reward. 

 
𝑄∗(𝑠, 𝑎) =  𝑚𝑎𝑥 𝔼 𝛾 𝑟(𝑠 , 𝑎 , 𝑠 )|𝜋, 𝑠 = 𝑠 , 𝑎 = 𝑎  (5.1) 
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In Eq. 5.1, 𝜋 represents the policy, 𝐻 represents the environment horizon and 𝛾 is the 

discount factor—a positive value smaller than one. Discounting the future rewards 

encourages the agent to collect immediate rewards, bounds the accumulated rewards, 

and reduces the variance of the expectation since we often are progressively more 

uncertain about future rewards. The action-value function can be obtained using the 

Bellman equation (Eq. 5.2) with guaranteed convergence in tabular cases. By exploiting 

the self-consistency of the problem structure through the Bellman equation, action-value 

function optimization methods can learn the optimal action-value function and 

implicitly determine the policy with fewer samples. However, Q-learning lacks the 

stability of policy optimization methods. 

 𝑄∗(𝑠 , 𝑎 ) = 𝑟(𝑠 , 𝑎 ) + 𝛾 𝑚𝑎𝑥 𝑄∗(𝑠 , 𝑎 ) (5.2) 

 

3. Model-based RL algorithms, unlike the first two categories (known as model-free RL), 

attempt to learn an explicit model of the underlying dynamics of the environment. The 

model is further used for look-ahead planning or as a virtual sample generator. This 

class of solutions can offer a great sample efficiency with orders of magnitude less 

required data in published researches (Chebotar et al. 2017, Finn et al. 2017). However, 

the quality of the RL agent heavily depends on the accuracy of the dynamics model. 

Therefore, while there are many successful examples of this approach for robotics and 

games with perfect environments such as chess, many state-of-the-art algorithms in this 

class fail in high-dimensional spaces (e.g., pixel-level visual inputs) and uncertain 

environments. 
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Note that these categories are not mutually exclusive. In fact, many of the successful existing 

examples in the literature use a combination of these approaches. Most famously, actor-critic 

methods simultaneously parametrize and train both policy and value functions.  For example, A2C 

(Mnih et al. 2016) follows the policy gradient theorem while using the value function to reduce 

the variance of gradient estimation and provides a stable solution for continuous action spaces. 

In this work, we investigate a number of leading model-free and model-based algorithms that 

show promising results in challenging high-dimensional domains such as Atari games. Our 

toolpath design system allows exploring an unknown dynamic physics through virtual experiments 

in a reward driven manner.  

 

5.2.  Reinforcement Learning Framework for Toolpath Design 

In this chapter, we propose toolpath design by formulating the problem in a RL framework. We 

design an agent to dynamically design toolpaths and iteratively learn the strategies that lead to 

favorable toolpaths. The reward-driven nature of this methodology provides massive flexibility in 

the toolpath design task as the reward can be based on a geometric feature (e.g., to finish the section 

as fast as possible), simulation-based mechanical performance, or in-situ experimental signals. 

RL is a subfield of artificial intelligence which focuses on training agents that can interact with 

an environment and maximize the rewards that the agent collects through this interaction. The field 

of RL have experienced major breakthroughs since Mnih et al. (Mnih et al. 2013) showed that AI 

can achieve superhuman capability in playing Atari games. Later, several successful innovations 
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advanced the field in game environments such as Chess and Go as well as in robotic tasks (Silver 

et al. 2014, Silver et al. 2016). 

In an RL schema, the agent is responsible for determining the actions at each time step (𝑎 ), 

which influence the environment causing it to move from its current state (𝑠 ) to a new state (𝑠 ). 

In this context, state refers to any representation of the environment that is visible to the agent. 

The reward (𝑟 ) that the agent receives encourage or discourage the agent from exploring certain 

state and action spaces through the training process and try to maximize the long-term reward that 

the agent receives in its lifespan. The overall schematic of our envisioned framework is depicted 

in Figure 5.1, where an agent designs the toolpath, which is later executed on the environment, 

and the resulting data is stored in a dynamic replay buffer to further improve the agent. This process 

is repeated until favorable strategies are found, or the agent stops progressing. 
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Figure 5.1. Schematics of the proposed toolpath design framework. In this framework, the agent 
takes an action determining the toolpath in each time step. The action would be executed in an 
AM (or equivalently virtual AM) environment. The resulting observation of the state and its 

corresponding reward would be stored in a dynamic database, which will be later used to train 
neural networks and achieve better planning for future iterations. 

 

 

5.2.1 Additive Manufacturing Virtual Environment 

We develop a virtual environment of an AM process, resembling Directed Energy Deposition 

(DED) processes, to collect data and perform the training process. The virtual environment 

considers two-dimensional sections on which materials need to be deposited. As we want the 

strategies learned by the RL agent to be geometry-agnostic, we develop a database of CAD 
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geometries representing a wide range of spatial structures. The CAD geometries are then processed 

into multiple sections by cutting them at different heights and converted into over 400 two-

dimensional sections with 32x32 pixels, which are used to train the agent. A sample of considered 

CAD geometries acquired from Thingiverse online repository (Thingiverse) and one of their 

corresponding sections are demonstrated in Figure 5.2. 

 

 
 
Figure 5.2. Sample CAD geometries (top row) and pixelized two-dimensional sections (bottom 

row) for the AM virtual environment. 
 

 

While evaluating the virtual environment, one section is randomly selected and the RL agent is 

asked to design the toolpath for it one action at a time. Eight actions are available for the agent to 

explore, including four directions of motion each with two deposition states (on/off). Here, the 

policy distribution determines the probability of each of the eight actions to be executed. The 
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environment keeps track of the desired section, filled section, and the location and status of the 

nozzle. A representation of the environment state space (s_t) is accessible to the agent at each time 

step. A schematic of the environment is depicted in Figure 5.3. Once the agent finishes its assigned 

task for a section (e.g., depositing material on all pixels of the desired section), a new section is 

randomly selected, and the agent is asked to start over. To avoid excessively long episodes of 

training on one section, a maximum of 400 actions are selected for each section. 

As can be seen from Figure 5.3, we assume a pixelized section representation and discrete 

action spaces. These two assumptions are not inherently restrictive for the proposed methodology 

as the representation of the section can be replaced with other continuous or discrete heuristics and 

the action space can be easily extended to a higher number of options (e.g., 8 or 16 directions) or 

continuous action spaces with minimal change to the algorithm. 
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Figure 5.3. Schematic of the AM virtual environment including section (in blue), filled partition 
(in green), and nozzle location and status. The red point indicates the location of the nozzle with 
“on” status. Valid actions are shown with eight arrows for “on” (red) and “off” (brown) status 

and four directions. 
 

We design the state representation (𝑠 ) as a single-channel two-dimensional image with a shape 

of [32, 32, 1], where the unfilled section has a value of 1.0 and the rest of the pixels are zero. 

Additionally, we provide the network with a one-hot encoded list of 10 most recent action 

histories. The image is first processed through three layers of a convolutional neural network, then 

concatenated with the action history input, followed by two fully connected neural network layers 

for policy and value networks in each algorithm. 
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5.2.2 Analysis Cases 

We consider two scenarios for the tasks and their corresponding reward systems in this study: 

1. Dense reward system. In this analysis, we consider a scenario in which a reward can be 

assigned based on the interaction of agents and environments at each time step. 

Designing a toolpath that deposits material in all desirable locations of the section in 

optimal time is an example of a dense reward system. In this case, we assign a reward 

of 1.0 to any desirable material deposition, −1.0 to material deposition in incorrect 

locations, and −0.5 to motions without deposition to provide an incentive to finish the 

toolpath in optimal time. It is noteworthy that dense reward structures are not limited to 

static properties of the environment, such as finishing the toolpath. Other examples of 

dense reward structures include rewards that are assigned based on the meltpool size or 

shape from an online thermal imaging system. 

2. Sparse reward system. As many interesting properties of AM processes can be only 

measured and evaluated after the part is made, a reward can only be assigned to the 

completed toolpath at the last time step of the episode, which results in a sparse reward 

system. To simulate this scenario in the developed virtual environment, we consider the 

sequence of ordered actions (up, up, right, down, and down in this order) as a potential 

desirable pattern and assign a reward at the end of each episode of the simulation based 

on the similarity of the toolpath generated by the agent with the selected pattern. Note 

that this pattern is completely hidden from the agent, i.e., the agent can only interpret 

the pattern through the sparse reward it receives at the end of each episode. The 

similarity between the toolpath and the hidden pattern is measured by counting the 
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occurrence of the completed or partially completed (with a minimum of three 

consecutive actions) hidden patterns in the toolpath history. To encourage the agent to 

finish the toolpath while learning the hidden pattern, a dense reward of 0.1 and −0.1 is 

assigned for correct and incorrect material deposition respectively. While this specific 

sequence is selected as a demonstration in this work, the formulation does not depend 

on it, and the reward structure can be based on any unknown physics of the environment, 

e.g., continual deposition status, behavior on the boundaries of section. 

 

5.3.  Model-Free Approach Towards Design 

In this section, we first introduce our proposed variations of three state-of-the-art model-free 

RL algorithms to design AM toolpaths. Model-free methods are interesting as they are 

computationally efficient (compared to their model-based counter parts) and do not rely on a 

known physics, which is difficult to obtain in the toolpath design application. Later, we discuss 

our results for two cases of dense and sparse reward structures and compare the performance of 

each method. 

 

5.3.1 Model-Free Algorithms and Variations 

We investigate three model-free RL methods, namely, deep Q-network, proximal policy 

optimization, and soft actor-critic. The underlying formulation, proposed variation, and 

algorithmic structure of each method is discussed hereunder: 
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1. Deep Q-network (DQN) (Mnih et al. 2015) is a Q-learning approach that parametrizes  

action-value function, 𝑄(𝑠, 𝑎), using a neural network and iteratively solves the 

Bellman equation (Eq. 5.2) while using a number of numerical techniques to overcome 

problems associated with training the neural networks in RL non-stationary settings. As 

neural networks generalize, the Bellman equation (Eq. 5.2) tails a dynamic target (i.e., 

both 𝑄∗(𝑠 , 𝑎 ) and 𝑄∗(𝑠 , 𝑎 ) change while training), which impedes the training 

process. DQN uses an additional neural network as a target network to estimate the 

action-value for future states 𝑄∗(𝑠 , 𝑎 ) and solve the Bellman equation in a more 

supervised fashion. While the neural network training theories stand on the assumption 

of independent and identically distributed (i.i.d.) data, the successive data collected in 

RL settings are greatly correlated. To overcome this issue, DQN uses a replay buffer 

that stores all transactions of the environment and randomly draws samples from them 

during the training process. To induce exploration of the environment into the agent, 

DQN uses the epsilon-greedy strategy. In this algorithm, a probability for exploration 

(ε) is initialized. A random number between zero and one is generated at each time step. 

If the randomly generated number is less than ε, the agent explores (i.e., a random action 

will be chosen), otherwise the best predicted action so far (𝑎𝑟𝑔𝑚𝑎𝑥  𝑄(𝑠, 𝑎)) will be 

considered. By annealing ε from one to zero over the training process, the agent acts 

more according to its predicted model while keep exploring new solutions.  

In this work, we consider a variation of the original DQN paper that empirically showed 

enhanced performance for this application. A corrected replay buffer, as proposed in 

(Zhang et al. 2017), is used where the last added sample into the replay buffer will be 
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added to the randomly selected batch to eliminate the need for an excessively large 

replay buffer. To reduce the overestimation bias of the Q value caused by the 

maximizing operation in Eq. 5.2, action selection and action-value estimation are 

performed using two separate neural networks, as proposed by (Van Hasselt et al. 2016). 

The gradient of the neural network is clipped at each training step to a value of 0.5 to 

avoid harmful oscillations of the neural network parameters. Finally, the hard copy 

operation in the original DQN paper is replaced by a moving average copy to smoothen 

the training process. It is noteworthy that a number of other DQN improvements in the 

literature, such as dueling networks (Wang et al. 2015), noisy network (Fortunato et al. 

2017), prioritized experience replay (Schaul et al. 2015), are investigated but since they 

provided small to no improvement on the results they are not reported here. The 

algorithm of the implemented DQN is presented in Algorithm 5.1. 

 

Algorithm 5.1: DQN algorithm for AM virtual environment 
1. Initialize AM virtual environment with random sections 𝑒𝑛𝑣, replay buffer 𝐷, action-value 

model 𝑄 and target action-value model 𝑄  
2. Initialize evolving parameters including 𝜀 for epsilon-greedy, learning rate, and clipping 

range 
3. Copy parameters of 𝑄 into 𝑄  
4. Reset 𝑒𝑛𝑣 with random section and observe 𝑠  
5. For iteration = 1, max number of iterations 

a. Generate a random value 𝑟𝑎𝑛𝑑 between 0 and 1 
b. If  𝑟𝑎𝑛𝑑 <  𝜀 then 𝑎 = random selection between all feasible actions else 𝑎 = 

𝑎𝑟𝑔𝑚𝑎𝑥  𝑄(𝑠 , 𝑎) 
c. Execute the action on 𝑒𝑛𝑣 and store (𝑠 , 𝑎 , 𝑠 , 𝑟 , 𝑑 ) in 𝐷 
d. Sample a 𝑏𝑎𝑡𝑐ℎ − 1 samples uniformly from 𝐷 and concatenate it with the last 

stored sample in 𝐷 to generate a corrected batch sample 𝐵 
e. For epoch = 1, number of epochs 

i. 𝑟𝑒𝑡𝑢𝑟𝑛 =  𝑟 + (1 − 𝑑)𝛾𝑄 𝑠 , 𝑎𝑟𝑔𝑚𝑎𝑥 ́  𝑄(𝑠 , �́�)  
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ii. 𝑙𝑜𝑠𝑠 = ℎ𝑢𝑏𝑒𝑟 𝑙𝑜𝑠𝑠(𝑄(𝑠 , 𝑎 ), 𝑟𝑒𝑡𝑢𝑟𝑛) 
iii. Take one optimization step to minimize 𝑙𝑜𝑠𝑠 using 𝐴𝑑𝑎𝑚 optimizer with 

clipped gradients 
f. End for 
g. Soft update of 𝑄  toward 𝑄 
h. Reset 𝑒𝑛𝑣 with a random section if 𝑑  is 𝑇𝑟𝑢𝑒, otherwise 𝑠 = 𝑠  

6. End for 
2. Proximal policy optimization (PPO) (Schulman et al. 2017) is a widely successful 

actor-critic method that builds on top of the policy gradient formulation to update its 

stochastic policy (𝜋 ): 

 
𝐿 = 𝔼

𝜋 (𝑎 |𝑠 )

𝜋 (𝑎 |𝑠 )
𝐴  (5.3) 

 

where 𝐴  is the advantage function and represents the difference between the value 

function of the selected action, 𝑄(𝑠 , 𝑎 ), and the average value function for that state 

over actions. Intuitively, maximizing Eq. 5.3 encourages the policy to increase the 

probability of action if the selected action performed better than average (i.e., the 

advantage is positive) and decreases the probability of relatively worse actions. 

However, this vanilla formulation tends to collapse the training process as taking large 

steps can easily move the policy into unrecoverable bad parameter spaces. To solve this 

issue, PPO restricts the ratio between current policy and previous policy by 

pessimistically clipping its value according to Eq. 5.4: 

 𝐿
,

= 𝔼 min 𝑟 (𝜃)𝐴 , 𝑐𝑙𝑖𝑝(𝑟 (𝜃), 1 − 𝜖, 1 + 𝜖)  

𝑟 =  
𝜋 (𝑎 |𝑠 )

𝜋 (𝑎 |𝑠 )
 

(5.4) 
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where 𝜖 determines the clipping range. Furthermore, PPO loss (Eq. 5.5) has two 

additional terms to train the advantage value 𝐴  using the generalized advantage 

estimation method (𝐿 ) (Schulman et al. 2015) and to maximize the entropy (𝐿 ) of 

the policy to encourage exploration. 

 𝐿 =  𝔼 𝐿
,

+ 𝑐 𝐿 + 𝑐 𝐿  
(5.5) 

 

PPO can only be trained using samples generated from its current policy (i.e., on-policy 

algorithm). This characteristic of PPO causes this algorithm to require a larger number 

of samples compared to off-policy algorithms where historic data can be reused for 

training the agent through the use of a replay buffer. Empirically, the effectiveness of 

the PPO algorithm relies on collecting independent samples from multiple streams of 

environments often performed in parallel virtual environments. We implemented PPO 

according to the presented algorithm in Algorithm 5.2. 

 

Algorithm 5.2: PPO algorithm for AM virtual environment 

1. Initialize policy 𝜋  and value function 𝑉  networks 
2. Initialize 𝑁 parallel AM virtual environments with synchronized random sections 𝑒𝑛𝑣,  
3. For iteration = 1, max number of iterations 

a. Execute 𝑀 action steps for 𝑁 𝑒𝑛𝑣 workers according to current stochastic policy 𝜋  
and record rewards 𝑟 , , actions 𝑎 , , terminal states 𝑑 , , states 𝑠 , , values 𝑣 , , 
log probability of actions log_𝑝𝑖 ,  for each 𝑛, 𝑚 in 𝑁, 𝑀 accordingly 

b. Calculate advantages 𝐴  given values 𝑣 , , rewards 𝑟 ,  and terminal states 𝑑 ,  
using generalized advantage estimation (Schulman et al. 2015) 

c. For epoch = 1, number of epochs 
i. Create mini-batches states 𝑠 , actions 𝑎 , advantages 𝑎𝑑𝑣 , 

values 𝑣 , and log probabilities log_𝑝𝑖  
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ii. 𝑟 = exp (log_𝑝𝑖 𝜋 (𝑎 ) − log_𝑝𝑖 ) 

iii. 𝐿
,

= 𝔼 min 𝑟 (𝜃)𝐴 , 𝑐𝑙𝑖𝑝(𝑟 (𝜃), 1 − 𝜖, 1 + 𝜖)  
iv. 𝐿 = 𝑟𝑒𝑑𝑢𝑐𝑒 [ ]( )  

v. 𝑟𝑒𝑡𝑢𝑟𝑛 =  𝑣 +  𝑎𝑑𝑣  
vi. 𝑣 = 𝑣(𝑠 ) + 𝑐𝑙𝑖𝑝 𝑣(𝑠 ) −  𝑣 , −𝑐𝑙𝑖𝑝 , 𝑐𝑙𝑖𝑝  

vii. 𝐿 = 𝑟𝑒𝑑𝑢𝑐𝑒
( ( ) ) ,  

 

viii. Maximize the global loss function 𝐿 =  𝔼[𝐿
,

+ 𝑐 𝐿 + 𝑐 𝐿 ] with 
respect to 𝜃 using 𝐴𝑑𝑎𝑚 optimizer with clipped gradients 

d. End for 
4. End for 

 

3. Soft actor critic (SAC) (Haarnoja et al. 2018) is an off-policy actor-critic method that 

aims to maximize an alternate action-value function, called soft action-value, that 

considers not only the accumulative reward but also the entropy of its stochastic policy. 

Theoretically, soft action-value formulation encourages the agent to explore states with 

uncertain results. The soft action-value loss is presented in Eq. 5.6.  

 
𝐿 =  𝔼 , , , , ~ min , 𝑄 (𝑠 , 𝑎 ) − 𝑟

+ 𝛾(1 − 𝑑 ) min , 𝑄 (𝑠 , 𝑎 )

− 𝛼 log 𝜋 (𝑎 |𝑠 )  

(5.6) 

 

where 𝜃, �̅� and 𝜙 indicate the neural network parameters for the online action-value 

function, the target action-value function, and the policy, respectively. The temperature 

parameter, 𝛼, determines the importance of the entropy. SAC compensates for the 
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overestimation of action-value functions by training two independent neural networks 

and taking the minimum of the two for loss calculations. 

As it is proven that the optimal policy can be approximated by the softmax of action-

value function (Nachum et al. 2017),  the policy loss is defined as the KL-divergence 

between the current policy and action-value softmax. To calculate the gradients of 

parameters through the stochastic node of policy sampling, the reparameterization trick 

is used. While the SAC only applies to environments with continuous action spaces, we 

developed a modified version of this algorithm that uses Gumble-softmax (Jang et al. 

2016) to perform the reparameterization for categorical action spaces (Eq. 5.7):  

 𝐿 =  − 𝔼 ~ , ~ min , 𝑄 𝑠 , 𝑎 (𝑠 , 𝜉)

− 𝛼 log 𝜋 𝑎 (𝑠 , 𝜉) 𝑠  
(5.7) 

 

where 𝜉 is an independent noise sampled from a Gumble-softmax distribution and 𝑎  

is the reparametrized action. While the temperature parameter 𝛼 can be potentially kept 

as constant, the SAC authors devise a formulation to simultaneously train this 

parameter in order to constrain it to a minimum target entropy 𝐻 (Eq. 5.8). The full 

algorithm for our SAC implementation is provided in Algorithm 5.3. 

 𝐿 =  𝔼 ~ , ~ −𝛼 log 𝜋 (𝑎 |𝑠 ) − 𝛼𝐻  
(5.8) 
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Algorithm 5.3: SAC algorithm for AM virtual environment 

1. Initialize policy 𝜋 , two action-value 𝑄
,

 and two target action-value 𝑄
,

 networks 

2. Initialize AM virtual environment with random sections 𝑒𝑛𝑣 and replay buffer 𝐷  
3. Copy parameters of 𝑄 into 𝑄  
4. Reset 𝑒𝑛𝑣 with random section and observe 𝑠  
5. For iteration = 1, max number of iterations 

a. Generate a action using current policy 𝜋 (𝑠 ) 
b. Execute the action on 𝑒𝑛𝑣 and store (𝑠 , 𝑎 , 𝑠 , 𝑟 , 𝑑 ) in 𝐷 
c. Sample a 𝑏𝑎𝑡𝑐ℎ − 1 samples uniformly from 𝐷 and concatenate it with the last 

stored sample in 𝐷 to generate a corrected batch sample 𝐵 
d. For epoch = 1, number of epochs 

i. Calculate 𝑎 , , log_𝑝𝑖 ,  using  𝜋 (𝑠 , ) 

ii. 𝑟𝑒𝑡𝑢𝑟𝑛 =  𝑟 , + 𝛾 1 − 𝑑 , min , 𝑄 𝑠 , , 𝑎 , −

𝛼 log_𝑝𝑖 ,  

iii. 𝐿
,

= 𝑚𝑒𝑎𝑛( 𝑄 𝑠 , , 𝑎 , − 𝑟𝑒𝑡𝑢𝑟𝑛 ) 

iv. Calculate 𝑎
,

 and log_𝑝𝑖
,

 by reparametrizing 𝜋 (𝑠 , ) 

v. 𝐿 =  𝑚𝑒𝑎𝑛 min , 𝑄 𝑠 , , 𝑎
,

 − 𝛼log_𝑝𝑖
,

 

vi. 𝐿 =  𝑚𝑒𝑎𝑛 −𝛼 log_𝑝𝑖
,

−𝛼𝐻  

vii. Take one optimization step to minimize 𝐿
,

,𝐿 , 𝐿  with respect to 𝜃 , , 

𝜙 and 𝛼 respectively using 𝐴𝑑𝑎𝑚 optimizer  
e. End for 
f. Soft update of target action values �̅� , =  𝜌�̅� , + (1 − 𝜌)𝜃 ,  
g. Reset 𝑒𝑛𝑣 with a random section if 𝑑  is 𝑇𝑟𝑢𝑒, otherwise 𝑠 = 𝑠  

6. End for 
 

Although the above-mentioned algorithms have inherent differences, we attempted to keep the 

hyperparameters of the algorithms as consistent as possible. The rest of the hyperparameters of 

each algorithm is individually tuned to maximize the achieved scores. 
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5.3.2 Model-Free Results and Discussion 

We implemented the three discussed model-free algorithms with the proposed modifications 

using Tensorflow deep learning library. Each algorithm is trained to design the toolpath in two 

cases of dense and sparse reward structures as detailed in Section 5.2.2. The learning curve of each 

algorithm is demonstrated in Figure 5.4A and B for a dense and sparse reward structure 

respectively. The reported score averages resulted scores for all training geometries from random 

initial nozzle location. Since the on-policy nature of the PPO algorithm requires far more episodes 

of toolpath generation than the two off-policy algorithms, the PPO results are plotted on a different 

horizontal scale for the number of training episodes. 

As can be seen from Figure 5.4A while the three algorithms gradually learn to improve their 

toolpath designs, SAC achieves a notably inferior performance. DQN and PPO reach a close 

performance easily surpassing a manually coded zig-zag toolpath. While the final performance of 

the PPO algorithm is 3 scores higher than DQN, DQN reaches a stable solution using 10 times 

fewer samples. 
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Figure 5.4. Learning curves of the toolpath design system with the three DQN, SAC, and PPO 
algorithms for (A) dense and (B) sparse reward systems. The horizontal axes for the PPO results 

are plotted at a different scale (shown on the top of each plot) from the DQN and SAC results 
(shown at the bottom of each plot). As the manual zig-zag toolpath strategy is plotted as a 

baseline for the dense reward system, such an engineered solution does not apply for the sparse 
reward system. 

 

For the sparse case (see Figure 5.4B), the score achieved by the PPO algorithm surpasses the 

two other algorithms, and similar to the previous case, SAC results in the worst performance. The 
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highest score of the algorithms for the two cases is reported in Table 5.1 and three samples of the 

designed toolpaths with the trained PPO algorithm is demonstrated in Figure 5.5. 

 

Table 5.1.  Highest score of model-free algorithms for two reward structure cases. 
 

Algorithm Dense reward Sparse reward 

DQN 59.31 28.83 

SAC 38.71 5.11 

PPO 62.98 40.54 

 

 

 
 

Figure 5.5. Three samples of the designed toolpaths by the trained PPO algorithm for random 
sections and starting locations. The section is depicted in light grey. The toolpath motion starts 

from the blue diamond shape, following a color gradient ending in a pink arrow shape. 
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Our results show that model-free reinforcement learning is a feasible approach for high-

dimensional manufacturing design systems, such as toolpath design tools, especially if a dense 

reward system exists or it is feasible to engineer such a feature by breaking the task into meaningful 

step-by-step reward increments. DQN-based algorithms show great potential in this realm as they 

offer decent accuracy and sample efficiency. Although the SAC algorithm is reported to produce 

state-of-the-art benchmarks in many robotics tasks (Haarnoja et al. 2018), it is incapable of 

handling the intricacies of toolpath design. We believe this is because the maximizing entropy 

formulation used in the SAC algorithm incentivizes destructive averaging of the value function 

that prevents the algorithm from learning delicate features in high-dimensional environments. 

In the case of a sparse reward structure, the investigated model-free approaches struggle to 

optimize the toolpath. PPO learns the only acceptable solution; however, its excessive on-policy 

sample requirement makes this algorithm only applicable to cases where a robust simulation of the 

physics exists. 

 

5.4.  Model-Based Approach Towards Toolpath Design 

In this section, we introduce a model-based RL method for toolpath design. Model-based 

approaches explicitly learn the dynamics of the environment and utilize the dynamics for long-

term planning through future look-ahead. The model-based method presented here offers unique 

advantages compared to its model-free counterparts. For instance, we expect it to better generalize 

to a wide range of environments due to the extracted model and to be less dependent on random 

exploration, which is an important feature when exploration is challenging, or meaningful rewards 

are sparse. However, both of these advantages heavily rely on the quality of the learned dynamic 



121 

model. Here, we first discuss the developed model-based formulation in Section 5.4.1 and later 

present the respective results in Section 5.4.2. 

 

5.4.1 Model-Based Algorithm 

Our implementation of the model-based toolpath design system is inspired by Muzero 

(Schrittwieser et al. 2020), which introduces an RL method to plan in Chess and Go games. Muzero 

includes two major parts: (i) planning through future look-ahead, and (ii) training neural networks. 

In the planning phase, we execute rollouts of the simulation, where at each step the result of a 

search determines the best action to take. The results of the simulation rollouts are stored in a 

dynamic replay buffer. In the training phase, we produce batches of observations and targets from 

the rollouts in the replay buffer and train a data-driven network to accurately model the 

environment and its dynamics. These two phases are executed iteratively, where the current model 

is used for better planning, and the result of the planning is used to train a better model. This 

process is repeated until we capture a precise model of relevant environment features that allows 

effective planning for hundreds of time steps in the toolpath design process. To reduce the 

computational time of model-based RL, both planning and training steps are heavily parallelized, 

where multiple agents generate and save rollouts of the simulations, and at the same time, the 

batching and training processes are performed asynchronously. Note that here the model-based 

method is trained in a purely data-driven fashion. 

The planning starts from the current state observable to the agent. Here, we use a representation 

network to convert the state into a denser encoded state. This allows us to process information that 

is more relevant to the planning task and avoid the computational costs of directly working in the 
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state space. Then, a Monte Carlo Tree Search (MCTS) is performed in the encodes state space, 

where we look ahead for a number of simulation steps and based on the deduced results select the 

best action at each time step. To perform MCTS, at each simulation step, we select the node with 

the maximum upper confidence bound (UCB) score, which establishes a balance between 

exploring nodes with high value estimations and nodes with high uncertainties. The policy 

distribution resulted from the UCB is used to draw an action and expand the node. Finally, we 

predict a value estimation for the newly expanded node and backpropagate the value estimation 

and visit counts of all nodes in the tree. Repeating the mentioned MTCS process for a number of 

simulation steps results in a decision tree where the action corresponding to the most root child 

visits is selected as the best action. A schematic of this process is depicted in Figure 5.6. 

 

 
 

Figure 5.6. Schematics of the model-based toolpath design system which includes two major 
parts, i.e., MCTS planning and model training. These two parts are performed iteratively until 

reward convergence is achieved. 
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In principle, MTCS with a correct process simulator and adequate simulation steps converges 

to the optimal solution. However, future look-ahead for several hundreds of time steps in AM 

toolpath environment is computationally infeasible due to exponential growth of possibilities. 

Instead, we use the policy distribution, represented by a neural network, to prune the decision tree. 

Furthermore, we stop future look ahead with a significantly smaller depth (tens of steps instead of 

hundreds) and use the value to estimate potential future reward collections. Given these 

modifications to MTCS using a dynamically trained model, we achieve a tractable decision tree 

search to determine the best action at each time step. The selected action is executed in the virtual 

AM environment and the results of the interaction are saved in a replay buffer. 

Four networks are needed in the previously discussed MCTS: a representation network, a policy 

network, a value network, and a dynamics network. Each network is constructed with a 

combination of residual, convolutional, and fully connected layers. A schematic of the network 

architectures is presented in Figure 5.6. The representation network converts the observation to 

the encoded state. The policy and value networks predict policy distribution and value estimations 

respectively, given an encoded state. The dynamics network predicts the next encoded state and 

the reward generated from this transition given the current encoded state and an action.  

During each training iteration, we compute a batch of unrolled targets and simultaneously train 

the four networks. The target of the reward and value estimations are generated from the rollouts 

of simulations in the replay buffer using temporal-difference formulation. The target of the policy 

network is set to the output of the MCTS, and the dynamics network is implicitly trained to 
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subsequent rewards, values, and policies. Our implementation of Muzero algorithm is summarized 

in Algorithm 5.4. 

Algorithm 5.4: SAC algorithm for AM virtual environment 

1. Initialize networks, including representation network ℎ, value network 𝑣, policy network 𝑝, 
and dynamic network 𝑔.   

2. Initialize AM virtual environment with random sections 𝑒𝑛𝑣 and replay buffer 𝐷  
3. For iteration = 1, max number of iterations 

a. Synchronize networks and make it available to CPU 
b. Update the temperature parameter, determining the randomness is drawing actions 

from policy distribution 
c. Execute environment rollouts in parallel 

i. Create a new virtual environment with random section 
ii. Create a new container object to hold environment history 

iii. While environment is not finish or maximum action does not pass 
1. Create a Monte Carlo Tree Search 

a. Store the root node 
b. Use networks to calculate 𝑠 , 𝑣, 𝑝 
c. Expand root and add Dirichlet noise to 𝑝 
d. For 𝑛𝑢𝑚_𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 

i. Add root to the search path and set to current node 
ii. While node expanded, select a child using UCB, 

replace current node, and add to the search path 
iii. Use networks to calculate 𝑠 , , 𝑣, 𝑝, 𝑟 
iv. Expand node 
v. Backpropagate value and visit count 

2. Draw an action from distribution of actions weighted by the visit 
count of corresponding child nodes 

3. Execute action in the environment and store the observation, action, 
and reward 

d. Execute test rollouts in parallel (similar to part c while eliminating exploration noise) 
e. Store container rollouts in replay buffer 𝐷 
f. Generate training batches including observations, actions, values, rewards, and 

policies for 𝑛_𝑢𝑛𝑟𝑜𝑙𝑙 steps 
g. Train network with batches 

i. Update the learning rate 
ii. Transfer batches to GPU 

iii. Generate a computational graph using networks for predicting values, 
rewards, and policies for 𝑛_𝑢𝑛𝑟𝑜𝑙𝑙 steps 

iv. Compute a Huber loss (Girshick 2015) for value and cross entropy losses for 
reward and policy distributions 

v. Take an optimizer step for all networks using Adam optimizer 
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h. Save statistics and report reward collection progress 
4. End for 

 

5.4.2 Model-Based Results and Discussion 

We implemented the model-based RL algorithm for toolpath design according to Algorithm 

5.4 using the PyTorch library and trained the model for a dense reward structure proposed in 

Section 5.2.2. The result of the training is demonstrated in Figure 5.7 and shows that the Muzero 

method initially lags behind model-free methods such as DQN. This is due to the fact that the 

performance of the Muzero method heavily depends on the quality of the neural network model 

and capturing meaningful and generalizable dynamics requires sufficient environment samples. 

However, once the models are adequately trained the performance of the Muzero method reaches 

72.24 dense scores surpassing DQN and PPO best scores at 59.31 and 62.98 respectively (see 

Figure 5.7A). The comparison between DQN and Muzero is summarized in Table 5.2. 

Additionally, we demonstrate the evolution of the loss components in Figure 5.7B during the 

training process which resulted in a reward accuracy of 99.75%, a cross-entropy policy loss of 

11.95, and a mean-squared-error value loss of 34.13. This result shows that the model is 

sufficiently capable of unrolling hypothetical dynamics of toolpaths during MCTS for 

approximately 20-30 steps into the future. 
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Figure 5.7. The evolution of reward score during training for Muzero and its comparison to 
DQN and zig-zag toolpaths (A), and the evolution of losses for reward, value, and policy terms 

during network training using the Muzero method (B). 
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Table 5.2.  Comparison between model-based Muzero and model-free DQN methods. 
 

Algorithm Score Computational cost Interaction 
episodes  

Muzero 72.24 ~5 days 3,500 

DQN 59.31 ~18 hours 3,500 

 

 

The resulting toolpaths for three representative sections are demonstrated in Figure 5.8, where 

each toolpath starts from the blue diamond and ends in the pink arrow. Our model-based method 

can effectively navigate both hollow and filled geometries starting from a random initial position. 

Furthermore, the tree search generated for the initial position of the section on the top right of  

Figure 5.8, is also depicted in this figure. This figure shows how the MCTS selectively branches 

out and explores different toolpath possibilities and eventually finds the optimal path by looking 

at 28 steps into the future. 

 



128 

 
 
Figure 5.8. Three samples of the toolpaths designed by the Muzero method, where the toolpath 

starts from the blue diamond and ends in the pink arrow (top). A demonstration of generated 
Monte Carlo Tree Search in the initial position of the section on the top right. The root is 
highlighted in red and the optimal path from the root is highlighted in yellow (bottom). 

 

Our results indicate that model-based RL methods can be deployed in design solutions of 

manufacturing processes as they offer unique capabilities to step beyond purely explorative 

methods and effectively utilize planning methods even in large design spaces. However, these 
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methods require a careful design and training process as they are prone to early saturation or 

deterioration. The dynamical database for training the models can impose many challenges that 

prevent us from reaching the necessary accuracy for proper planning. For example, the database is 

initially heavily biased toward samples with low reward and values, which generates a negative 

bias during network training. If left unhandled this bias severely limits the agent’s explorations, as 

many possibilities are wrongly estimated as unfavorable. In our experience, generating a positive 

bias for reward and value by customizing the corresponding loss functions during the early stages 

of training can be an effective strategy to mitigate this issue. Additionally, model-based methods 

are significantly more computationally expensive as they require additional training operations to 

learn the dynamics of the environment. 

 

5.5.  Conclusions and Future Work 

In conclusion, we proposed a new framework for the toolpath design of metal-based additive 

manufacturing processes by formulating a reinforcement learning problem. Modified versions of 

three state-of-the-art model-free and one model-based RL algorithms are used to develop toolpaths 

in a virtual additive manufacturing environment. Our results indicate that model-free RL methods 

such as DQN and PPO achieve high scores especially when a dense reward structure exists. 

However, achieving the highest benchmarks using on-policy methods, such as PPO, requires large 

sample sizes, which can be restrictive. Model-based methods, such as Muzero, offer an exciting 

alternative whereby learning a model of the dynamics of the environment we can deploy planning 

into the design problem and surpass model-free scores while using a few thousand samples. 
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I believe there are many interesting aspects of RL in mechanics that are unexplored and require 

future research directions. The first aspect is to expand the current capabilities toward more sparse 

structures as our results show that this is an area that results in poor performance. Another vital 

aspect of RL is to move toward using reducing sample requirements to enable these methods to go 

beyond virtual environments and interact with experimental setups. We envision that 

advancements in these two areas will enable RL to be deployed not only in AM but also in a variety 

of design and decision-making problems in the manufacturing field. 
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CHAPTER 6  

Additive Manufacturing Process Design via Differentiable Simulations 

 

6.1.  Introduction to Differentiable Simulations 

While pure data-driven modeling approaches can offer computational efficiency and flexibility 

in many applications, they often introduce errors in predicting challenging scenarios outside of 

their training domain. On contrary, physics-based modeling can conserve known physical laws 

over arbitrary domains. Due to the difference in weaknesses and strengths of these two approaches, 

one can imagine that a combination of the two, i.e., a physic-informed data-driven model, can lead 

to superior performance. One way to achieve such a hybrid model is to decompose the simulation 

into subtasks, some of which are solved using physics-based simulations while using a data-driven 

approach for others. For example, a physics-based model can be deployed when a subtask of 

simulation involves a trustworthy known physics with affordable computational cost exists, 

whereas parts with unreliable physics or conventionally expensive simulations can be replaced 

with data-driven modeling. As most modern data-driven approaches involve gradient-based 

optimization, to optimize hybrid simulations both physics- and data-driven-based tasks need to be 

differentiable, i.e., allow calculation of the gradient of their outputs with respect to their inputs and 

internal variables. In addition to that, differentiable physics-based simulations have many stand-

alone applications in scientific computing as they provide instantaneous access to high-

dimensional gradients which are necessary for most solvers and optimizers. 

In recent years, differentiable simulations are increasingly used in robotics to advance the 

modeling and control capabilities. Hu et al. (Hu et al. 2019) used a differentiable kinematic model 
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in a model-based reinforcement learning setting for soft robots. Heiden et al. (Heiden et al. 2019) 

devised a differentiable simulation of robotic rigid body motion which led to an accurate system 

identification model with visual inputs. Other noteworthy publications in this field include (Liang 

et al. 2019, Holl et al. 2020, Qiao et al. 2020); however, the state-of-the-art studies are limited to 

robotics and particle-based systems. 

In this chapter, we present a differentiable computational paradigm for process design in 

manufacturing processes that incorporates differentiable physics-based simulation and data-driven 

responses to optimize manufacturing process parameters in high-dimensional temporal and spatial 

design spaces. In particular, we aim to answer two key questions: (i) can the gradients of desired 

build performance be efficiently computed in manufacturing processes, and (ii) would gradient-

based optimization provide an effective tool to optimize manufacturing processes in challenging 

environments. In a general manufacturing process, the simulation tool determines the interaction 

of a set of workpieces (including start and target geometry, material, etc.) and manufacturing tools 

as demonstrated in Figure 6.1. Given the initial process parameters, one can compute the 

performance of the physics-based simulation model by going through a forward pass (green arrows 

in Figure 6.1) of the computational scheme. Using a differentiable simulation, the gradients of a 

loss function (defined based on the desired performance) with respect to any of the workpiece, 

tools, or process parameters can be computed (red arrows in Figure 6.1), which can be used in an 

optimization setting to design manufacturing inputs. 

In what follows, we first introduce the background on automatic differentiable in Section 6.2. 

We provide details of our methodology for differentiable finite element simulations in Section 6.3 

and demonstrate the capability of our proposed approach through three illustrative case studies in 
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Section 6.4. Finally, we conclude this chapter by summarizing our findings and laying down our 

vision for future research topics in Section 6.5. 

 

 
 
Figure 6.1. Differentiable manufacturing process simulation capable of calculating the gradients 

of performance loss with respect to workpiece, tool, and process parameters. 
 

 

6.2.  Automatic Differentiation and Libraries 

The surge in the field of artificial intelligence and neural network predictive modeling is 

partially due to heterogeneous high-performance computing capabilities and graph-based 

automatic differentiation, which enables us to calculate the gradients of an arbitrary loss function 

with respect to any of the internal weights in a neural network and, therefore, efficiently navigate 

through high-dimensional weight spaces. A core idea in this research is to develop the 

computational graph for a physics-based simulation of manufacturing and utilize the gradients of 

various high-dimensional process parameters with respect to the desired performance to come up 

with novel design solutions. 
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In an automatic differentiation scheme, we construct the computational process as a 

composition of operations, where the gradient of each operation is known. Each operation 

represents a directed node in the computational graph. The forward pass computes the outputs of 

the simulation given the inputs while storing intermediate results. The backward pass starts from 

the output node and recursively computes the gradient of parameters by multiplying the incoming 

gradient from the next node and the partial derivation of the node evaluated at the current value. 

More generally, the gradient between any two parameters on the same computational graphs can 

be calculated by (1) finding a computational path between parameters and (2) multiplying the 

gradient contribution of each operation along the way. Note that such a computational path is 

unique by construction. 

As a simple example, consider the computation of the loss function in a regression task with 

the following formula:  

 𝐶 = 𝑌 − tanh (𝑊. 𝑋 + 𝑏) (6.1) 
 

where 𝑋 is the input, 𝑊 and 𝑏 are trainable weight and bias parameters, 𝑡𝑎𝑛ℎ is the hyperbolic 

tangent function, and 𝑌 is the true label. A computational graph of this computation can be 

constructed as demonstrated in Figure 6.2, where operations stem from input nodes in blue and 

gradually build toward the cost function. 
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Figure 6.2. Schematic of a computational graph for computing the cost function (𝐶) in  
𝐶 = 𝑌 − tanh (𝑊. 𝑋 + 𝑏). This computational graph can be utilized the forward calculation of 

cost function as well as backpropagation calculation of gradients. 
 

Assuming initial values of 𝑋 = 1, 𝑊 = 2, 𝑏 = 3, and 𝑌 = 6, we can sequentially compute and 

store the intermediate variables and the cost as 𝑤 = 2, 𝑤 = 5, 𝑤 = 5, 𝑤 = 1, and 𝐶 = 1. For 

computing the gradients of the cost with respect to the weight, 𝜕𝐶
𝜕𝑊, we can find a path between 

these two graph nodes. Starting from the last node (𝐶), we can compute the gradient of the cost 

with respect to all the nodes on the path. Performing this operation in the reverse orders allows 

effective use of dynamic programming where the gradient of each node only depends on the 

upstream gradient (which is readily available due to the reverse order of calculations) and local 

gradient of that node (which only depends on a known partial derivative function and the value of 

the node calculated during the forward path). Thus, the gradients can be computed as shown in 

Table 6.1. 
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Table 6.1.  Backpropagation steps for gradient calculations. 
 

𝜕𝐶
𝜕𝑤 = 1 

𝜕𝐶
𝜕𝑤 = 𝜕𝐶

𝜕𝑤 × 
𝜕𝑤

𝜕𝑤 = 1 ×  −1 =  −1 

𝜕𝐶
𝜕𝑤 = 𝜕𝐶

𝜕𝑤 × 
𝜕𝑤

𝜕𝑤 = −1 ×  1 =  −1 

𝜕𝐶
𝜕𝑤 = 𝜕𝐶

𝜕𝑤 × 
𝜕𝑤

𝜕𝑤 = −1 ×  1 =  −1 

𝜕𝐶
𝜕𝑊 = 𝜕𝐶

𝜕𝑤 × 
𝜕𝑤

𝜕𝑊 = −1 ×  𝑋 =  −1 

 

Several libraries efficiently construct and compute computational graphs for automatic 

differentiation in both forward and backward passes, such as Theano (Bastien et al. 2012), Torch 

(Collobert et al. 2011), TensorFlow (Abadi et al. 2016), PyTorch (Paszke et al. 2017), JAX 

(Bradbury et al. 2020), and Taichi (Hu et al. 2019). Each of these libraries offers different 

architecture choices, capabilities, compatibility ecosystem, and performance in different 

applications. 
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6.3.  Proposed Methodology 

As a representative manufacturing process physics-based simulation, we select AM thermal 

simulation to investigate the capabilities, flexibility, and limitations of differentiable simulations 

for manufacturing design. As mentioned before, the thermal profile of AM processes is a pivotal 

characteristic of this class of manufacturing processes as it determines microstructural evolution 

and geometric accuracy. We use a finite element formulation to solve transient heat transfer 

equations over the simulation domain. 

In this analysis, we first define the geometry through CAD software and produce hexagonal 

unstructured meshes. While we implemented this method for hexagonal mesh structures, this is 

merely an implementation choice, and the formulation is capable of capturing other mesh 

structures such as tetrahedral and higher-order approximations as well. After the mesh, to generate 

the toolpath, we developed a Python script that slices the CAD geometry at predefined intervals in 

the vertical direction and produces a toolpath for each 2-dimensional section using a handful of 

hard-coded strategies, e.g., moving inward from boundaries, zig-zag strategy. We considered an 

hourglass part as a testbed for this chapter. You can see the geometry and generated toolpath for it 

in Figure 6.3. We process the geometry and toolpath to generate an element birth file which 

indicates the time at which each element would be born in the simulation. These three files (mesh, 

toolpath, and element birth), along with process parameters including laser characteristics, material 

properties, and simulation time step will be passed to a differentiable finite element simulation to 

determine the thermal responses of the AM process. 
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Figure 6.3. Test case geometry and its cross-section view where red elements represent the build 
and blue elements are the substrate (left) and toolpath pattern (right) for the differentiable AM. 

thermal simulations test case. The red lines on toolpath plot indicate nozzle moves while laser is 
on, while the blue lines indicate motion when laser is off. 

 

In the finite element formulation, we aim to solve the partial differential equation (PDE) for 

transient heat transfer and the boundary conditions over the discretized geometry domain. The heat 

transfer equations and considered boundary conditions including fixed temperature boundary (i.e., 

Dirichlet boundary condition), radiation, convection, and laser power flux are provided in Eqs. 

6.2-6.6. 

 

 
𝜌𝑐

𝜕𝑇

𝜕𝑡
− 𝛻 ∙ (𝑘 ∙ 𝛻𝑇) − 𝑠 = 0 

(6.2) 

 

 

 (1) Dirichlet 𝑇 = 𝑇 (𝑥, 𝑦, 𝑧) on Γ  

 

(6.3) 
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 (2) Neumann 𝑞 =  −𝑞  on Γ  

 

(6.4) 

 

 (3) Convection 𝑞 =  −ℎ(𝑇 − 𝑇 ) on Γ  

 

(6.5) 

 

 (4) Radiation 𝑞 = −𝜀𝜎(𝑇 − 𝑇 ) on Γ  

 

(6.6) 

 

where 𝜌 is the material density, 𝑐  is the specific heat capacity, 𝑇 is temperature, 𝑡 is time, 𝑘 is the 

material conductivity, and 𝑠 is the heat generate rate per unit volume. 𝑞  is the external heat flux, 

ℎ is the convection coefficient, 𝑇  is the ambient temperature, 𝜀 is the surface emissivity 

constant, 𝜎 is the Stefan-Boltzmann constant, and Γ , Γ , Γ  and Γ  are sets of surfaces that each of 

these boundary conditions are applied on. Using the aforementioned PDE and the boundary 

conditions, we drive the finite element weak form and discretize it for each element using shape 

function (𝑁 ) and the derivative of the shape function (𝐵 ). Finally, the forward time integration 

of thermal response can be derived as  

{𝑇 } = {𝑇 } + Δ𝑡[M] [{R } − {R } − {R } − {R } − [K]{𝑇 }] (6.7) 
 

where [M] is the capacitance matrix, [K] is the conduction matrix, {R } is the internal heat vector, 

{R } is the external flux vector, {R }  is the convection vector, and {R }  is the radiation vector. 

Δ𝑡 is the time step and {𝑇 } and {𝑇 } are nodal temperatures at time steps 𝑛 + 1 and 𝑛, 

respectively. Each of these global matrix and vectors can be computed by assembling the local 
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contributions of each element to them individually. Interested readers can find a more in-depth 

derivation of the finite element formulation in Section 7.2 of this thesis. To simulate AM processes, 

we need to dynamically keep track of active elements and surfaces at each time step and the local 

contributions of only active objects will be assembled in global matrices. 

To use gradient-based optimization methods, it is ideal for all operations to be continuous and 

differentiable. In addition to that, a careful design is needed when working with operations that 

can eliminate and saturate the gradient propagation. For instance, a step function stops the 

propagation of the gradients from a smooth function as its local gradients are zero in all continuous 

points. As another example, functions such as sigmoid and hyperbolic tangent although generate 

valid and smooth gradients, if called recursively in the form of 𝑓(… 𝑓(𝑓(𝑥))) become gradually 

closer to a step function where they produce gradients very close to zero for all inputs except for 

a very narrow region where their gradients are very large. This phenomenon is known as the 

vanishing/exploding gradients and prevents effective optimization using gradient signals. Many 

sources of discontinuities exist in thermal analysis of AM processes, especially due to the 

discontinuous nature of material deposition in a meshed domain. Here, we hypothesize that by 

fixing the geometric and boundary-related discontinuities in the simulation, the main derive behind 

thermal responses would be the continuous material and process parameters which can be 

optimized using a differentiable simulation. 

As mentioned before, in recent years, many libraries have been developed to create 

computational graphs and differentiable numerical solutions using automatic differentiation, most 

of which are focused on the operations common in deep learning such as convolution and various 

matrix operations. Physics-based simulations inherently require a more diverse set of operations 
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such as random indexing and large-scale atomic operations. Therefore, there is a need to 

investigate the performance and capability of the existing libraries to perform thermal simulations 

in a dynamic domain of AM processes. 

In this research, we developed four implementations of AM simulators for PyTorch, 

TensorFlow, JAX, and Taichi libraries and optimized each implementation according to each 

library’s guidelines. The result of this analysis is summarized in Table 6.2. To the best of our 

knowledge, TensorFlow version 2.1 lacks the flexible indexing capability required to perform 

assembly operations in FEM, and therefore, we were not able to develop a successful 

implementation of differentiable AM simulation using this library. While the other three libraries 

showed adequate capabilities to build and differentiate through the simulation stack, we observed 

a substantial gap in the memory consumption and processing time between these three libraries. 

On a benchmark task, PyTorch used an unreasonable amount of memory (127 GB), JAX operation 

time is unacceptable with one simulation taking over 10 hours. This is because these libraries offer 

highly optimized high-level operations in computer vision and natural language processing 

applications, but large-scale usage of low-level operations, which are ubiquitous in AM 

simulations, leads to inefficient buffer allocations and GPU kernel launches and severely hurts the 

overall performance. These performance issues prevent these implementations to be realistically 

used in even moderately large simulation scenarios.  In our investigation, Taichi library showed a 

favorable performance with 2X smaller memory usage and 8X smaller processing time compared 

to the best performance of other libraries as they provide efficient support for GPU mega-kernels, 

flexible indexing, and atomic operations. Therefore, the Taichi library is used to perform automatic 

differentiation in the rest of this chapter. 
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Table 6.2.  Performance comparison of prominent automatic differentiation libraries for 
manufacturing simulations. 

 

Automatic Differentiation 

Libraries 

Calculation 
Capability Support 

for Operations 
Needed in FEM 

Memory Usage 

Calculation Time 
for One 

Optimization 
Iteration 

PyTorch 
Yes 127 G 40 mins 

TensorFlow Lack of support for 
matrix assembly --- --- 

JAX 
Yes 2 G 10 hours 

Taichi 
Yes 1 G 5 mins 

 

 

6.4.  Optimization Process and Results 

Here, we investigate the capability of the developed differentiable AM simulation to optimize 

various process parameters and material properties of the process in three case studies. In the first 

case study, we test our framework to optimize static parameters with partially observable data. The 

second case study optimizes the entire thermal history of the build by manipulating time-series 

laser power during the build. Finally, the third case study investigates the capability of our 

framework to stabilize the melt pool depth as a derived feature from the thermal response by 

optimizing time-series laser power. The details of case studies and their results are elaborated in 

the following subsections: 
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6.4.1 Parameter inference based on partial data 

We devised a case study where we optimize a set of static parameters including material 

properties and process parameters to obtain a predefined thermal behavior using the build process. 

The properties investigated in this case include heat capacity, conductivity, convection coefficient, 

static laser power, and laser beam radius. We initialize the investigated parameters using a uniform 

distribution over a reasonable range of each parameter. Then, the differentiable simulation 

generates the output thermal history corresponding to the current parameter set. The loss value is 

then calculated based on the mean-squared-error (MSE) difference between the target and current 

responses of the nodes on the top layer of the build at each time step. Finally, the gradient of the 

loss function with respect to all investigated parameters is calculated using automatic 

differentiation and the gradient is used to update each parameter using the Adam optimization 

method (Kingma et al. 2014). This process is repeated for a set number of iterations, also known 

as epochs, until we observe a good match between the target and current thermal responses. A 

schematic of this case study is demonstrated in Figure 6.4. 

The goal of this analysis is two-fold. First, this case is intended to resemble a model calibration 

with experimental data, where only part of the build is observable through sensory data such as an 

IR camera. Therefore, this framework allows us to infer material and process parameters from the 

process thermal response. Second, the selected set of parameter covers a wide range of operations 

in FEM analysis, and therefore, this task demonstrates the capability of automatic differentiation 

to handle many critical operations throughout the constructed computational graph including 

matrix operations, assembly, lumping, distribution calculation, temporal mapping, to name a few. 
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Figure 6.4. Schematic of the first case study where the partially observable loss function based 

on the thermal responses of top build layer at each time step is optimized. The optimization 
paramters include heat capacity, conductivity, convection coefficient, static laser power, and 

laser beam radius. 
 

 

The optimization results show that by performing 60 optimization iteration, we reach an error 

of 1e-3 MSE on the partially observable loss. Moreover, as shown in Figure 6.5, each parameter 

effectively converges to (or at least moves in the direction of) the parameters that generated the 

target in the loss function. Note that the target parameters in Figure 6.5 are solely provided as 

verification of gradient directions and the optimization method does not have access to them; 

rather, it interprets them using the target thermal response. Overall, this result shows the proposed 

differentiable method can infer various simulation parameters even when given access to a fraction 

of simulation responses and elucidates the high potential of differentiable finite element 

simulations for describing unknown process and simulation parameters. While more optimization 

steps would bring parameters such as heat capacity closer to their target values, we do not expect 

it to converge to the exact target as the interaction between optimization parameters and the 

thermal response is highly coupled. For instance, a similar thermal response can be achieved by 

underestimating the heat capacity and over-estimating the laser input. Therefore, we believe the 
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fact that all parameters move in the correct direction to collectively reduce the loss to close to zero 

is a more important result than tuning the optimization steps in a way that each individual 

parameter reaches its target. 

 

 
 

Figure 6.5. Evolution of the investigated process paramters over 60 iterations of optimization. 
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6.4.2 High-Dimensional temporal design for thermal history behavior 

In the second case study, we explore the capability of differentiable simulation to design high 

dimensional temporal aspects of the additive manufacturing processes. We use a fully connected 

neural network architecture to represent the time-series laser power. The neural network receives 

the time at each time step and outputs the laser power for that time step using two hidden layers of 

50 neurons with hyperbolic tangent as the nonlinear activation function to map the output to a 

range of 0 − 1,000 W. 

We selected this network setting as it allows generating sufficiently complex behavior of laser 

power over approximately 20,000 time steps of the simulation. Note that these hyperparameters 

can be adjusted according to the desired nonlinearity in the response. Using this approach, the 

neural network controls the temporal evolution of the laser power. The computed laser power is 

then fed into the differentiable simulation and an MSE loss function is defined between the current 

thermal response and an ideal predefined thermal response. In this case, the ideal thermal profile 

is developed by simulating the process with a complex laser power pattern. This laser power 

pattern is not used in the optimization process and is only later used to validate the answer found 

by differentiable optimization. The optimization task entails computing the gradient of the loss 

function with respect to weights and biases of neural network and iteratively updating these 

parameters to minimize the loss. Stainless steel material properties are assigned to the simulation 

in this case study and unlike the previous case study, they are kept constant during the optimization 

process. A schematic of this case study is provided in Figure 6.6. 
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Figure 6.6. Schematics of the second case study. In this case, a neural network structure 
determines the time-series laser power of the AM process, and it is optimized to produce an ideal 

thermal behavior during part build. 
 

Similar to the previous case, the Adam (Kingma et al. 2014) algorithm is used to optimize the 

loss. The evolution of MSE loss over 300 iterations is demonstrated in Figure 6.7A which shows 

the loss decreases about 3 orders of magnitude as the result of optimization. We observe a 

favorable optimization behavior with the loss function rapidly declining and minimal loss jumps, 

which shows the suitability of gradient-based methods (albeit with momentum and learning rate 

scaling) for optimizing time-series parameters in the AM simulation. The evolution of time-series 

laser power is depicted in Figure 6.7B where the true laser power target used to produce the ideal 

thermal history in the loss function is plotted in black line. This true laser power target is 

intentionally designed to show sharp changes and complex evolution during the build time. The 

evolution of the output of the neural network including the initial state, five intermediate states, 

and the final state after 300 optimization iterations are plotted on the top, middle, and bottom 

subplots of Figure 6.7B correspondingly. 

These results indicate that our proposed approach can optimize the time-series values with high 

accuracy to match an arbitrary target, which is a unique feature of differentiable simulation as it 

can access accurate gradients of high-dimensional spaces. Additionally, this result exhibits the 
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natural integration of differentiable physics-driven manufacturing simulation with powerful data-

driven modeling techniques as another impactful benefit of this approach for the development of 

physics-informed data-driven methods. 

 

 
 

Figure 6.7. Optimization results for the second case study. (A) evolution of the MSE loss 
function over 300 optimization iterations. (B) evolution of time-series laser power with the initial 

laser power plotted in red (see top row), five intermediate laser power patterns during the 
training (see middle row), and the final pattern found by differentiable optimization after 300 

iterations and its comparison with the true target (see bottom row). 
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6.4.3 High-Dimensional temporal design for melt pool behavior 

In the last two cases, we demonstrated that thermal history can be used as a target for process 

optimization; however, our proposed computational design approach can be extended to any 

derivative feature of thermal history that can be computed through a differentiable formulation. In 

this case, we aim to achieve a target melt pool depth by manipulating time-series laser power. 

Similar to the second study, we utilize a fully connected neural network to produce time-series 

laser power that is parameterized by neural network weights and biases. As can be seen from the 

schematics in Figure 6.8, the produced laser power is used in the differentiable AM thermal 

simulation. Later, the thermal responses are used to calculate the melt pool depth at each time step 

and an MSE loss function is defined that penalizes the melt pool depth deviations from a predefined 

depth throughout the build. As melt pool characteristics significantly affect the geometric accuracy 

of AM processes, investigating systematic solutions to design melt pool features is an important 

step toward AM parts with customized properties. 

 

 
 

Figure 6.8. Schematics of the third case study. In this case, we stabilize the melt pool depth 
throughout the build time by adjusting time-series laser power. The laser power is determines 

using a fully connected neural network as a universal function approximator and the parameters 
of the network are tuned using a gradient-based optimization method. 
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The key to performing this task is to develop a mapping between thermal features and melt pool 

depth in a way that produces meaningful gradients. For example, calculating the melt pool solely 

based on the deepest node with a temperature higher than melting temperature although 

differentiable, does not lead to a helpful optimization method. This is because using the previously 

mentioned method depth changes similar to a step function which produces zero gradients at each 

continuous point and therefore stales the gradient-based optimization process. Instead, to compute 

the continuous representation of the melt pool depth, we dynamically find nine nearest neighboring 

nodes to the laser location at four height levels starting from the top build layer. At each height 

level, we interpolate the temperature in the location below the laser beam by solving a ninth-degree 

system of equations (see Figure 6.9B). The temperature bellow laser at each height is then used 

to compute the continuous melt pool depth using a pairwise linear solver (see Figure 6.9C). 

 

 
 

Figure 6.9. Differentiable melt pool calculation scheme. (A) schematics of a 3 layer mesh 
structure and the location of laser beam. (B) nodal temperature of nine neighboring nodes are 
used to compute the temperature corresponding to laser location at each height. (C) a linear 

pairwise solver is used to compute continuous melt pool depth at each time step. 
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Our results shown in Figure 6.10 indicate that starting from a randomly initialized laser power 

pattern, we can learn a high-dimensional time-series laser power to control melt pool depth over 

thousands of FEM time steps. The evolution of MSE loss between desired and predicted melt pool 

depth is plotted in  Figure 6.10A. Without optimization, we see a rapid increase in melt pool depth 

due to the heat accumulation especially halfway during the simulation as the laser builds the 

bottleneck of the hourglass geometry (see the blue curve in Figure 6.10C). However, after 

optimization, the laser power sharply decreases after the first few lasers to keep melt pool depth 

close to the target depth and gradually increases it toward the end of the build to account for 

additional material deposition of the top layers of the hourglass geometry (see the red curves in 

Figure 6.10B-C). 
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Figure 6.10. Optimization results for the third case study. (A) the evolution of MSE loss 
function between the desired melt pool depth and achieved depth. (B) the initial and final laser 
power after 200 optimization iterations on neural network parameters. (C) the initial melt pool 

depth, final depth after 200 optimization iterations, and target depth used in loss function 
definition. 
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6.5.  Conclusions and Future Work 

In this chapter, we laid out our vision on differentiable physics-based simulation in 

manufacturing processes and particularly in AM. We demonstrated the capability of differentiable 

simulations to design and optimize the various process and material properties of the process in 

three representative case studies for (i) inferring static material and process parameters from 

partially observable data, (ii) designing time-series laser input to obtain a predefined thermal 

response, and (iii) designing time-series laser input to stabilize melt pool depth during the build. 

In all three cases, we showed that one can calculate the gradients using automatic differentiation 

and the gradients do not suffer from saturation or corruption even over tens of thousands of time 

steps. Therefore, the gradients can be effectively used in gradient-based optimization methods, 

such as Adam, to obtain favorable responses and eliminates the need for approximated ad-hoc 

solutions. This approach is particularly helpful in designing high-dimensional parameters, such as 

time-series parameters, where other optimization methods fail to provide a viable solution. 

While we believe this approach shows great promise, many research avenues require further 

investigation. The first issue with the widespread application of differentiable simulations is that 

not all operations are inherently differentiable. For instance, we found it difficult to establish 

differentiable operations to perform a search and find the last time that a material undergoes the 

melting process. Note that one can pre-compute the step that the remelting happens and hard-code 

this information into a differentiable solution; however, developing a differentiable system to 

dynamically find this solution remains unsolved. Therefore, a main future research direction 

involves developing differentiable alternatives for many discontinuous algorithms and 

formulations in scientific computing. Finally, as differentiable simulation and optimization rely on 
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local gradients, it is prone to stagnation in locally optimal solutions, and it can be heavily 

influenced by the initialization. Moreover, as in all general non-convex optimization methods, the 

solution is not unique. Therefore, careful design of the optimization process and initialization 

method is often needed to ensure satisfactory results. 
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CHAPTER 7  

Acceleration Strategies for Physics-based Modeling of Additive 

Manufacturing Processes using Graphical Processing Units 

 

 

7.1.  Introduction 

As mentioned in Chapter 1, the uncertainty in predicting the final properties of the products is 

one of the most critical challenges of AM technologies. Many computational methods have been 

proposed to address this issue using macro-scale (Parry et al. 2016, Schoinochoritis et al. 2017), 

meso-scale (Khairallah et al. 2016, Rai et al. 2016) or multi-scale modeling (Wolff et al. 2017, 

Yan et al. 2018). The finite element method (FEM) is a key component in most physics-based 

based predictive models for AM, which can be used for predicting the thermal history of the 

process (Schoinochoritis et al. 2017), residual stresses (Zaeh et al. 2010), distortions (Neugebauer 

et al. 2014), and porosity (Yin et al. 2012), to name but a few. However, a common problem with 

the existing predictive methods for AM is their enormous computational cost that might take weeks 

or months of simulation time (Francois et al. 2017), which makes these computational models 

orders of magnitude slower than the experiment itself and impossible to use in any time-sensitive 

application such as real-time control or optimization procedures. Therefore, investigating methods 

to accelerate AM predictive models is vital for overcoming existing barriers and achieve wider 

application of AM technologies in the industry.  

One approach to overcome this hurdle is by accelerating the AM prediction computations using 

parallelization practices on computer clusters or more recently Graphical Processing Units 
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(GPUs). GPUs are traditionally designed to handle computer graphics and their hardware is 

designed to perform optimally for that task. With the emergence of the General-Purpose GPU 

(GPGPU) concept, the application of GPUs extended to many science fields and revolutionized 

computations in finance, bioinformatics, machine learning and computer vision (NVIDIA 2016).  

FEM calculations consist of two major tasks: (i) creating a large system of equations based on 

the physics-based partial differential equations on a discretized domain and (ii) solving the system 

of equations. GPUs can be used to accelerate the process of solving FEA systems of equations. 

Efficient GPU-accelerated libraries such as THRUST exist that handle the iterative procedure of 

solving matrix-based equations. Solving sparse systems of equations on GPUs is extensively 

investigated (Bolz et al. 2003) and well-developed libraries are publicly available such as 

cuSPARSE. Recently, commercial FEM software such as ABAQUS, COMSOL, etc. use this 

technique to boost the performance for their analysis. A benchmark of the acceleration 

performance of different matrix solvers for the simulation of polymer actuator’s electromechanical 

response is developed in (Price 2013). An implicit simulation of the automobile battery thermal 

runaway is accelerated using THRUST and PARALUTION libraries as equation solvers in 

(Pichler et al. 2017). 

A more effective strategy would be do both creating the FEM systems of equation and solving 

them on the GPU. A fundamental investigation of this method is presented in (Cecka et al. 2011) 

for the simulation of steady heat equation. They considered different work distributions and 

memory arrangements for the implementation which resulted in 30 times speed-up (depends on 

the element order and simulation size). A high-level domain-specific language was developed for 

implementation of FEM simulation on both CPUs and GPUs in (Markall et al. 2010, Markall et al. 
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2013). Using the developed platform, called Unified Form Language (UFL), they investigated the 

memory storage and access patterns that led to optimal performances in CPU and GPU 

implementations. Further, they introduced the Local Matrix Approach (LMA) as an alternative 

assembly algorithm to eliminate the necessity for atomic operations. In (Dziekonski et al. 2011, 

Dziekonski et al. 2012, Dziekonski et al. 2016) the matrix generation method is divided into three 

consequent tasks of: (i) numerical integration, (ii) assembly is COO format and (iii) conversion 

into CRS format. They used GPU computing for simulating 9-pole microwave electromagnetic 

responses by distributing the GPU work based on each FEM integration point. The performance 

of the sparse systems of equation solver is improved using the Conjugate Gradient Method (CGM) 

and preconditioners, which lead to 81 times speed-up of the simulation. Global memory accesses 

and calculations are interleaved to achieve 100 billion floating-point operations per second in 

(Knepley et al. 2013, Knepley et al. 2016). They also proposed a mapping between elements and 

integration points to eliminate the reduction operations. Georgescu et al. (Georgescu et al. 2013) 

discussed the existing works and potentials of the GPU computing for the structural analysis 

components including model conversion, meshing operation, solver, and visualizers. 

As it can be seen from the presented literature review, most existing studies are focused on the 

steady state or implicit solutions of FEM and there is a gap in the knowledge for acceleration 

strategies that lead to optimal performance for explicit simulation. Further, the investigated FEM 

problems often have relatively simple boundary conditions. In this research, we investigate the 

strategies and data structures that can lead to an optimal acceleration of the thermal analysis of the 

DED processes, which has complex boundary conditions due to the dynamic element and surface 
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creations and destructions. An explicit solution is considered for this problem because of its 

superior convergence characteristics and compatibility with nonlinear boundary conditions.  

In this chapter, a summary of the finite element formulations for transient heat transfer is 

presented in Section 7.2 while an overview of the GPU execution and its hierarchical memory 

model is discussed in Section 7.3. Acceleration strategies to overcome challenges associated with 

explicit FEA and boundary conditions are discussed in Section 7.4. The results of the acceleration 

on multiple test cases and verification of the calculations are presented in Section 7.5 and the future 

path for this research is discussed in Section 7.6. 

 

7.2.  Finite Element Formulation for Transient Heat Transfer 

In this section, a summary of the underlying FEA formulation for thermal analysis of AM is 

presented. First, the weak form of the transient heat equation will be derived from the governing 

equation and the boundary conditions. This weak form will then be discretized using the Galerkin 

method for each element. Then the Gauss quadrature and explicit time integration schemes will be 

used to solve the global system of equations assembled from the local system of each element. 

Here, only the key formulations are highlighted while the detailed mathematical steps can be found 

in (Fish et al. 2007, Belytschko et al. 2013). 

The governing equation for the transient heat transfer that is to be solved can be written as: 

 
𝜌𝑐

𝜕𝑇

𝜕𝑡
− 𝛻 ∙ (𝑘 ∙ 𝛻𝑇) − 𝑠 = 0 

(7.1) 
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where 𝜌 is the material density, 𝑐  is the specific heat capacity, 𝑇 is temperature, 𝑡 is time, 𝑘 is 

the material conductivity, and 𝑠 is the heat generate rate per unit volume. The following boundary 

conditions are considered in this work: 

 (1) Dirichlet 𝑇 = 𝑇 (𝑥, 𝑦, 𝑧) on Γ  

 

(7.2) 

 

 (2) Neumann 𝑞 =  −𝑞  on Γ  

 

(7.3) 

 

 (3) Convection 𝑞 =  −ℎ(𝑇 − 𝑇 ) on Γ  

 

(7.4) 

 

 (4) Radiation 𝑞 = −𝜀𝜎(𝑇 − 𝑇 ) on Γ  

 

(7.5) 

 

where 𝑞  is the external heat flux, ℎ is the convection coefficient, 𝑇  is the ambient 

temperature, 𝜀 is the surface emissivity constant, 𝜎 is the Stefan-Boltzamann constant, andΓ , Γ , 

Γ  and Γ  are sets of surfaces that each of these boundary conditions are applied on. 

By multiplying Eq. (7.1) by a differentiable weight function 𝜔(𝑥) with 𝜔(𝑥) = 0 on Γ  and 

using the chain rule and divergence theorem, the weak form of the transient heat transfer is 

obtained as follows: 
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𝜌𝑐

𝜕𝑇

𝜕𝑡
𝜔 𝑑𝑉 + (∇𝜔) ∙ (𝑘 ∇𝑇)𝑑𝑉 −  𝑠𝜔 𝑑𝑉 − (𝑞 ∙ 𝑛)𝜔 𝑑𝐴

+  ℎ(𝑇 − 𝑇 )𝜔 𝑑𝐴 + 𝜀𝜎(𝑇 − 𝑇 )𝜔 𝑑𝐴 = 0  

∀𝜔(𝑥) 𝑤𝑖𝑡ℎ 𝜔(𝑥) = 0 𝑜𝑛 Γ  

(7.6) 

 

where 𝑇 = 𝑇 (𝑥, 𝑦, 𝑧) on Γ . 

To discretize the domain into elements, shape functions and their derivatives are used on 

temperature 𝑇 and weight function 𝜔(𝑥), which result in:  

 𝑇 = [𝑁 ][𝐿 ]{𝑇}, 𝜔 = [𝑁 ][𝐿 ]{𝜔} (7.7) 
 

 𝑇 = [𝑁 ][𝐿 ]{𝑇}, 𝜔 = [𝑁 ][𝐿 ]{𝜔} (7.8) 
 

where [𝑁 ] is the matrix of shape function, [𝐵 ] is its derivative for each element, [𝐿 ] is the 

gather matrix, {𝑇} is the vector of temperatures at the nodes, and {𝜔} is the vector of weight 

function values. The discretized form of Eq. (7.6) can be written as: 
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[𝐿 ] 𝜌 𝑐  [𝑁 ] [𝑁 ] 𝑑𝑉

[𝐌𝐞]

[𝐿 ]

[𝐌]

𝜕{𝑇}

𝜕𝑡

+ [𝐿 ] (𝑘  [𝐵 ] [𝐵 ])𝑑𝑉

[𝐊𝐞]

[𝐿 ]

[𝐊]

{𝑇}

− [𝐿 ] (𝑠  [𝑁 ] )𝑑𝑉

𝐑𝐆
𝐞

{𝐑𝐆}

+ [𝐿 ] (𝑞 [𝑁 ] )𝑑𝐴

𝐑𝐅
𝐞

{𝐑𝐅}

+ [𝐿 ] ℎ [𝑁 ] ([𝑁 ][𝐿 ]{𝑇} − {𝑇 }) 𝑑𝐴

𝐑𝐂
𝐞

{𝐑𝐂}

+ [𝐿 ] 𝜀𝜎[𝑁 ] (([𝑁 ][𝐿 ]{𝑇})° − {𝑇 }° ) 𝑑𝐴

𝐑𝐑
𝐞

{𝐑𝐑}

= 0 

(7.9) 

 

where 𝑛  is the number of elements in the domain, superscript ‘𝑒’ indicates the parameter is 

associated with element 𝑒, ° is the element-wise product operation, [M] is the capacitance matrix, 

[K] is the conduction matrix, {R } is the internal heat vector, {R } is the external flux vector, {R }  

is the convection vector, and {R }  is the radiation vector. This equation shows that FEA matrices 

and vectors can be calculated separately for each element and then assembled into global variables 

for solving the weak form equation. 
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The Gauss quadrature method (Golub et al. 1969) is used to simplify the numerical evaluation 

of integrals in Eq. (7.9). To do so, elements need to be transformed into an isoparametric coordinate 

system, then the integrals can be calculated by summing up each integrand over the integration 

points. By applying this transformation, the elemental matrices and vectors defined in Eq. (7.9) 

can be reformulated as: 

 [M ] = 𝜌𝑐 [𝑁 ] [𝑁 ]𝜔 |𝐽 |  (7.10) 

 

 [K ] = (𝑘[𝐵 ] [𝐵 ]𝜔 |𝐽 |) (7.11) 

 

 {R } = (𝑠[𝑁 ] 𝜔 |𝐽 |) (7.12) 

 

 {R } = (𝑞 [𝑁 ] 𝜔 |𝐽 |) (7.13) 

 

 {R } = (ℎ[𝑁 ] ([𝑁 ]{𝑇 } − {𝑇 })𝜔 |𝐽 |) (7.14) 

 

 {R } = 𝜀𝜎[𝑁 ] [𝑁 ]{𝑇 }
°

− {𝑇 }° 𝜔 |𝐽 |  (7.15) 
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where 𝑛  = 8 and 𝑛  = 4 are the number of Gauss quadrature integration points for 8-node 

hexahedron elements used in this work, 𝜔 = 𝜔 = 1 are the weights of integration points and [𝑁 ] 

and [𝐵 ] are the shape function and its derivative for 8-node elements in isoparametric coordinate 

system, |𝐽 | is the determinant of Jacobian matrix for the transformation from the Cartesian to the 

isoparametric coordinate system for 8-node elements. [𝑁 ] and |𝐽 | are the isoparametric shape 

functions and the determinant of the Jacobian matrix for 4-node surfaces. 

A forward time integration scheme is used to approximate the temperature derivative as 

presented hereunder: 

 

[M]
1

Δ𝑡
({𝑇 } − {𝑇 }) = {R } − {R } − {R } − {R } − [K]{𝑇 } 

{𝑇 } = {𝑇 } + Δ𝑡[M] [{R } − {R } − {R } − {R } − [K]{𝑇 }] 

(7.16) 

 

where Δ𝑡 is the time step and {𝑇 } and {𝑇 } are nodal temperatures at time step 𝑛 + 1 and 𝑛 

respectively. The summation of {R }, {R }, and {R } is called the external flux and [K]{𝑇 } is 

called the conduction flux. Further, {R } = 0 for DED processes since elements do not generate 

internal heat. 

A common approach to solve Eq. (7.16) more efficiently is to convert [M] into a diagonal 

matrix. This can be done by considering the summation of each row as the diagonal value (Zhu 

2013). This operation, also called lumping, not only will eliminate the need to calculate the inverse 
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of a large matrix, but also makes the calculations for the temperature of each node independent 

from other nodes. 

 

7.3.  Massively Parallel Computing with CUDA: Execution and Memory Model 

While CPUs consist of a few processing cores that have been optimized for sequential and 

complex processing, GPUs consist of thousands of smaller cores designed for highly parallel tasks. 

CUDA is an API provided by NVIDIA that enables developers manage devices and memories on 

both CPUs and GPUs to solve complicated problems efficiently. CUDA can be used through 

compiler directions, CUDA-enabled libraries, and multiple programming languages such as 

Fortran, Python, C, C++. The present work is developed with CUDA C/C++ compiler which is 

included in the NVIDIA CUDA Development Kit 9. 

GPUs are mainly made from multiple Streaming Multiprocessors (SMs) with the key 

components of computing cores, logical and memory operational units, scheduler, and on-chip 

memories. Each SM can execute hundreds of threads at the same time based on the resources 

available to them. Kernels are launched in a user-defined grid of thread blocks, where each block 

can be up to 1024 threads in recent GPUs. Once a kernel is launched, its thread blocks will be 

schedules to be run on different SMs and will remain on the SM scheduler until its execution 

completes. SMs execute thread blocks in groups of 32 threads called warps. Ideally, all the threads 

in a warp execute memory and logical operations concurrently, which would lead to the most 

efficient utilization of GPU resources (Cheng et al. 2014). 

GPUs use a programmable hierarchical memory structure that allows developers to optimize 

the performance of memory operations using multiple types of memories with different capacity, 
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latency, and bandwidth. The main memory types in order of decreasing bandwidth are: registers, 

shared memory, texture memory, local memory, constant memory, and global memory (see Figure 

7.1).  

 
Figure 7.1. CUDA hierarchical memory model; Device (GPU) can communicate with host 

(CPU) through global, constant, and texture memories, accessible to all threads. Registers and 
shared memory are low latency memories exclusively visible to a thread and a block respectively 

(Mozaffar et al. 2019).  
 
 

7.4.  Acceleration Strategies 

As seen in Section 7.2, the FEA formulation for the thermal analysis of DED processes 

discretizes the domain into a large number of elements and performs very similar calculations on 

them, which makes this routine well-matched with the massively parallel architecture of GPUs. 

However, some operations for this formulation are not inherently parallel and different calculations 

need to be done on subsets of elements, nodes, and surfaces, especially considering the dynamic 

nature of this simulation including birth and death of entities and its advanced boundary conditions, 
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which impose serious disadvantages for GPU computing. In the following sections, first the 

computational framework for the thermal analysis of DED processes are introduced and then the 

challenges associated with the GPU acceleration of DED processes are discussed and acceleration 

strategies for work distribution, memory management, and optimized data-structures are presented 

to avoid or mitigate the mentioned challenges. 

The overall routine for the thermal analysis of DED processes is demonstrated in Figure 7.2, 

including preprocessing, domain initialization, solver, and outputting steps. The analysis starts 

with preprocessing the mesh and toolpath files to determine the birth time for each element in the 

mesh file. Domain initialization creates element, node and surface classes and fills them with 

information such as element/node IDs, positions, birth and death time, material properties 

associated with them, and so on. This step is also responsible for assigning the aforementioned 

boundary conditions to different sections of the mesh and calculating the critical explicit time step 

to ensure the stability of the simulation. The explicit time stepping is done during the solver step. 

In this step, the capacitance matrix, the conduction flux, and the external flux are calculated for 

each element separated and assembled into global matrixes and vectors. In the next time step 

temperatures for all the nodes are calculated as formulated in Eq. (7.16). Finally, it is necessary to 

frequently save the results of the simulation into files on the disk. 
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Figure 7.2. Computational FEA framework for the thermal analysis of the DED process; the 

routine includes preprocessor, domain initialization, solver, and outputting steps with the solver 
step as the most computationally expensive one (Mozaffar et al. 2019).  

 

Although there is a potential in accelerating the preprocessing and the domain initialization 

steps, these steps run only once for each simulation and their execution time is relatively negligible 

compared to the time needed for calculation of the solver steps which repeat for all time steps of 

the simulation. Therefore, in this work the preprocessing and domain initialization steps are 

executed on a CPU and the focus of the GPU acceleration is put on the solver step and its efficient 

interaction with the outputting step.  

 

7.4.1 Assembly Strategy to Avoid Race Condition 
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An important part of calculating capacitance, conductivity, and flux matrices is assembling, 

where the contribution of all elements connected to a node should be calculated and summed up 

to its global variable. However, considering that these elemental calculations are done 

concurrently, it is possible that multiple elements access the global variable of a shared node 

between them at the same time and cause a race condition. Race conditions occur when more than 

one thread attempts to write to a memory location at the same time, in which the output is 

undetermined. Three assembly strategies similar to the concepts proposed by Cecka et al. (Cecka 

et al. 2011) and Markall et al. (Markall et al. 2013) are considered in this work. This investigation 

is unique because of the dynamic nature of FEA analysis of DED processes and the recent advances 

in both hardware and software capabilities of GPU computing, which makes the conclusions drawn 

from the literature not reliable for this application. 

As the first strategy, the data structure shown in Figure 7.3 is considered in this work that 

assigns a separate memory location for each element connected to a node. Using this data structure, 

each element will write its contribution to a unique memory and avoid the race condition. The 

assignment of this unique location is done using Algorithm 7.1 and stored in global memory. A 

separate kernel is used for reducing node-element data structure by assigning the work of summing 

all contributions associates with each node to a thread. 

As it can be seen from Figure 7.3B, the node-element structure contains unused spaces, which 

may cause inefficient use of global memory especially if the mesh structure contains nodes that 

are connected to a large number of elements. This problem associated with unequal connected 

elements can be solved by packing the subarrays for each global node into rows, or bins, of another 

array using a bin packing algorithm (Lee et al. 1985), or a more efficient packing algorithm such 
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as the Largest-Processing-Time (LPT) (Graham 1969). However, since the current work is focused 

on the acceleration of the process, this inefficiency in global memory storage is not investigated. 

 
Figure 7.3. Assembly strategies for global capacitance; (a) direct assembly to global capacitance 
causes may cause a race condition, while (b) the node-element data structure considers separate 
placeholders for contribution of each element to a node solves this issue (Mozaffar et al. 2019).  

 

Algorithm 7.5: Arrange unique ID for node-element data structure 

5. Initialize 𝐴(𝑛 , 𝑛 ) to a zero matrix, where 𝑛  and 𝑛  are the number of elements and nodes 
in an element respectively and 𝐴 is the matrix containing the node-element unique IDs 

6. Initialize 𝐼(𝑛 ) to a zero matrix, where 𝑛  is the number of global nodes 
7. Loop over all the elements 𝑒 

a. nodes ← get nodes in the element 𝑒 
b. Loop over the nodes 𝑛 

i. 𝑗 ← get the global index of the node 𝑛 
ii. 𝐴(𝑒, 𝑛) =  𝐼(𝑗) 

iii. Increment  𝐼(𝑗) by one to generate a unique ID next time an element accesses 
this node  

c. End loop over the nodes 
8. End loop over the elements 

 

For the second assembly strategy, the global matrices calculations are divided into smaller 

subtasks, where each subtask is responsible for the calculations of a predefined group of elements. 

By choosing the predefined groups in a way that no two elements in the same group have any 

shared nodes and performing the calculations for each group sequentially, one ensures that 
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contributions of the elements to any node are written to their allocated memories at different times 

and, therefore, avoid the racing condition. This strategy is known as coloring the mesh as one can 

arrange the groups by assigning different color codes to the elements in a way that no two adjacent 

elements have the same color. A disadvantage of this approach is that arranging the colors adds a 

significant overhead to the domain initialization step of the analysis. 

The third approach is to use Atomic operations to perform the assembly. Atomic operations are 

special types of read-modify-write actions that allows memory addresses to be accessed by only 

one thread at a time (NVIDIA 2008). In the literature, the other alternatives provide better 

acceleration than Atomic operations because of the steep performance cost associated with them. 

However, recent advances in GPUs with compute capability of 3X or higher improved the 

performance of Atomic operations. Thus, it is important to reinvestigate the use of Atomic 

operations for the assembly. 

 

7.4.2 Mitigating Warp Divergence 

Another issue that might severely affect the performance of explicit FEA for DED processes is 

warp divergence. Unlike CPUs that use complex branch prediction, GPUs have a simpler flow 

control mechanism that tries to execute the exact same instructions for all threads in a warp 

simultaneously. Executing instructions such as an if-else condition causes the if block and the else 

block to be performed in sequence instead in parallel, which adversely affects computational 

performance. 

Explicit FEA for DED processes inherently causes such conditional statements. One major 

source of the conditional statements is the fact that elements and surfaces might get born or die as 
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the time of the simulation goes on due to the nature of the process that deposits new elements while 

building the part. To mitigate this issue, both elements are surfaces are sorted based on their birth 

time in the domain initialization step and by adjusting kernel execution boundaries one can control 

the range of birth time associated with elements and surfaces that are accessible by each kernel. 

Considering that the elements stay activated after their birth time, the kernel execution boundaries 

are dynamically updated in each time step to only perform the kernels on the active elements. The 

kernel boundary update is implemented using a binary search to efficiently locate the last active 

element for any time step.  

Surfaces can die after their birth time in the FEA for DED processes because an active surface 

for flux calculations should be on the exterior of the build and the exterior changes dynamically in 

the building process. Therefore, the boundary update of kernels associated with surfaces is not 

enough to exclusively select active surfaces. However, the boundary update can bound the kernel 

execution range from all surfaces to the surfaces with passed birth time. Thus, the surface flux 

calculations are performed on all surfaces within the boundary of the kernels. 

Two strategies are considered to be combined with the dynamic boundary update for surface 

flux calculations. The first strategy is to minimize the branch divergence by executing the flux 

calculations on all the surfaces in the execution boundary and canceling the effect of inactive 

surfaces on {R },  {R } and {R } in Eq. (7.16) using a switch. The switch is an integer variable 

which has the value of 1 for active surfaces and 0 for inactive ones. Using a switch limits the warp 

branching to only a single operation. The second strategy is to prevent the GPU from performing 

the calculations for inactive surfaces by using a conditional statement in the beginning of the 
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kernel. This strategy would result in less computations while inducing a severe branch divergence 

to warps. 

Another source of warp divergence ae the different boundary conditions associated with 

different subsets of the domain. While the Dirichlet boundary condition is usually applied after 

calculation of temperatures as shown in Figure 7.2, surface flux boundary conditions (i.e., external 

laser flux, convection and radiation) can be applied on different sets of surfaces. Considering that 

the majority of the flux operations, such as Jacobian and shape function calculations, are similar 

for the three types, fluxes are calculated in active surfaces for all three types of boundary conditions 

and the effect of each boundary condition is controlled by using precomputed switches to avoid 

warp divergence.  

 

7.4.3 Further Optimization Considerations 

Further optimizations applied to this work will be discussed in this section. Most of the device 

data reside in the global memory and an efficient access to this memory is essential for achieving 

high bandwidth in data transactions and proper kernel performance. In the CUDA execution 

model, memory operations are issued per warp. The most efficient access pattern to the global 

memory of GPUs is aligned coalesced access. In this access pattern, 32 threads in a warp access a 

contiguous section of memory starting from an even multiple of the cache size (Cheng et al. 2014). 

In this case, a single memory load/write operation is needed for all the threads in a warp, which 

will cause 100 percent of bus utilization. Using uncoalesced or non-aligned data structures would 

cause the same memory load/write to be done with multiple separate operations. 
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The data associated with different nodes of an element are normally stored next to each other 

as demonstrated in Figure 7.4A. While executing kernels on elements, the GPU warp scheduler 

will try to execute a single task, for example, calculating the capacitance matrix, for hundreds of 

elements at the same time. Therefore, all threads in a warp will run memory access for the same 

index node of all the elements together. This access pattern will cause a significant efficiency 

penalty due to uncoalesced access. 

To maximize the efficiency of global memory reads and writes, data is rearranged in the domain 

initialization step to access elemental matrices and vectors in a coalesced manner as depicted in 

Figure 7.4B. A similar rearrangement is applied for all element, node, and surface global variables 

such as the nodal coordinates, the connectivity matrices, the element capacitance and conductivity 

matrices, and nodal temperatures to ensure efficient global memory transactions. While using the 

coloring assembly strategy this rearrangement should be done for each color separately. 
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Figure 7.4. Global memory access pattern; (a) an uncoalesced access pattern is caused when 

threads access memories of nodal data for different elements, and (b) a coalesced memory access 
pattern achieved by rearranging data based on their kernel access (Mozaffar et al. 2019).  

 

Efficient use of memory hierarchy in GPUs increases computation performance by maximum 

low-latency, high-bandwidth memory usage. Specifically, constant memory and shared memory 

are used in the present work to decrease the number of registers used in each kernel and avoid 

spilling registers into local memory, which has a high latency. Constant memory is used for 

accessing material properties such as density, solidus and liquidus temperatures, specific heat, etc. 

Since all the threads will load these variables together, the constant memory will broadcast the 

corresponding values to all the threads at the same time and cause a desirable access pattern. 
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Shared memory is used for calculating the shape function and the Jacobean of each element. This 

is because these variables are called many times inside the kernels and having them in the lowest 

latency memories are essential while keeping them in registers will use too many registers in each 

block and limit the number of warps that can be executed in each block. 

Another major acceleration consideration implemented in this work is to asynchronously lunch 

kernels using CUDA streams to overlap calculations done on the CPU and GPU, overlap data 

transfer and kernel execution, and concurrent execution of GPU kernels. As mentioned before, 

kernel execution boundaries need to be calculated before execution of each kernel on the CPU. By 

overlapping these calculations with previous kernel execution both the CPU and GPU can work at 

the same time to completely hide the time needed for CPU calculation. Overlapping data transfer 

with kernel execution can decrease the time needed for saving the simulation outputs by 

concurrently copying data from GPU global memory to CPU accessible memory (RAM) while 

continuing the calculation of the next time step. Finally, concurrent execution of GPU kernels will 

increase the device occupancy by increasing the number of warps scheduled to be run. The 

asynchronous execution of kernels on different CUDA streams and the overlap between data 

transfer and device calculations is demonstrated in Figure 7.5, which is the output of the NVIDA 

Visual Profiler tool.  

As shown in Figure 7.5, the data transfer between the GPU and CPU memories is performed 

concurrently with initialization of the FEA matrices, which means that this data transfer does not 

add significant overhead to the simulation time and can be performed as frequently as desired and 

other calculations can be carried on the data on the CPU side. This is particularly useful for 
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calculations that are inherently conditional or not suitable to be performed on the GPU such as 

computing cooling rates. 

 
Figure 7.5. visualization of asynchronous kernel execution using NVIDIA Visual Profiler; rows 
represent different CUDA streams and each color represent a kernel execution (Mozaffar et al. 

2019).  
 

7.5.  Acceleration Results and Verification 

To test the acceleration strategies discussed previously, four samples of DED processes are 

investigated. The samples include three LENS builds of a cubic, a cruciform, and a thin-wall and 

a powder-bed SLM build. The mesh and geometry of the samples are demonstrated in Figure 7.6, 

where the blue meshes represent the substrate and the red meshes represent the build. The 

difference between the simulation setup of the SLM process and LENS processes is that for SLM, 

an entire layer of elements is born at the same time, while for LENS, the elements are born 

gradually following the laser focal point. 
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Figure 7.6. Geometries and meshes of the test samples where blue meshes represent the 

substrate and red meshes represent the build for a) LENS cubic, b) LEN cruciform, c) LENS 
thin-wall, and d) SLM powder-bed geometries (Mozaffar et al. 2019).  

 

The simulation parameters of the samples considered to verify the proposed algorithms include 

the number of elements in the range of around 80,000 to 400,000 elements, simulation time in the 

range of 42 to 3,007 seconds, and the stainless steel 316L and Titanium alloy Ti-6Al-4V materials 

as provided in Table 7.1.  

 

Table 7.1.  Summary of simulation parameters for the test samples (Mozaffar et al. 2019). 

 
Cubic Cruciform Thin-Wall Powder-Bed 

Number of Elements 
84,346 205,618 193,944 384,000 

Number of Nodes 
93,748 232,447 210,000 400,221 
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Minimum Time Step 
9.78e-4 s 1.96e-3 s 1.69e-2 s 1.38e-3 s 

Simulation Time 
1,195s 3,007s 2,741s 42s 

Material 
SS316L SS316L Ti-6Al-4V SS316L 

Laser Power 
1,050 W 1,050 W 1,500 W 120 W 

Hatch Spacing 
1.1 mm 1.1 mm 1.9 mm 0.5 mm 

 

To determine the effect of assembly strategy on acceleration, the three mentioned GPU 

assembly approaches are used to simulate each sample and they are compared with an optimized 

single CPU implementation of the same calculations. The optimized CPU implementation 

considers elements as non-deformable and material properties as fixed values. Using these 

simplifying assumptions, the CPU implementation calculates element and surface Jacobians as 

well as the element local conduction matrices only once and uses the stored values at each time-

step. This implementation is used to be able to simulate the samples in a feasible time frame since 

the version without simplification is an order of magnitude more computationally expensive. 

However, all GPU implementations perfume these calculations at each time-step which makes 

them suitable for simulation with deformable elements and temperature dependent material 

properties.  

The node-element data structure GPU implementation output for the temperature field of the 

samples during the build is visualized in Figure 7.7, in which the range of color bars is set from 
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300 K to the liquidus temperature of the material; therefore, the red color region represents the 

melt pool. 

 
Figure 7.7. Visualization of the test simulation outputs for a) LENS cubic, b) LENS cruciform, 

c) LENS thin-wall, and d) SLM powder-bed builds (Mozaffar et al. 2019).  
 

The result of the simulation for the optimized single CPU and GPU enabled implementations 

for the assembly strategies is provided in Figure 7.8. The results are produced using the NVIDIA 

GeForce GTX TITAN Black graphics card, which has 2880 CUDA cores, bus support of PCI 

Express 3.0, 6 GB of global memory, and compute capability of 3.5. The CPU used for this work 

is an Intel(R) Xeon(R) CPU E5-2687W with the clock speed of 3.10 GHz. 
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Figure 7.8. Acceleration results of the assembly strategies for test samples (Mozaffar et al. 

2019).  
 

Although many factors can affect the speed-up of a simulation such as the frequency of 

outputting, the distribution of boundary conditions between surfaces, and the birth strategy of the 

build, these results indicate a correlation between the size of the simulations, which can be 

represented by the number of elements or nodes, and the speed-up, which is demonstrated in 

Figure 7.9. This is because the more elements and nodes the model has, the more parallel works 

exist for the GPU and the overall simulation becomes more suitable for the massively parallel 

architecture of the GPU. 

The thin wall and cruciform builds have a similar number of nodes, but there is a significant 

difference between their speed-ups. As it can be seen in Figure 7.6, a larger portion of the total 

nodes of the geometry is associated with the build in the thin-wall simulation with respect to the 

cruciform simulation. Considering that the simulation works on active elements and nodes during 

each time step, the effective size of the simulation for the thin-wall is significantly smaller than 
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for the cruciform build at the beginning time steps, which is one reason for the better performance 

of the cruciform build. 

 
Figure 7.9. Correlation between the number of nodes and the achieved speed-up in test samples 

(Mozaffar et al. 2019).  
 

The assembly strategy using coloring leads to the worst performance between the investigated 

approaches. This is because the kernel execution is done on each color separately and the size of 

the domain visible to the kernel is only a fraction of it. As already seen, this reduction in the domain 

size severely affects the performance, especially considering that only a portion of the domain is 

born at any time step. Also, the calculations of the dynamic boundary conditions need to be 

performed for each color. The strategy using the node-element data structure out-performs the 

coloring approach. However, since this strategy needs to access and store data structures with 

multiple sizes of the assembled vector, the calculations are significantly bounded by the memory 

access operations to global memory. Further, this strategy requires an additional reduction kernel 

that increases the execution time. The strategy using Atomic operations consistently provides the 

best performance for all the samples. This is because racing condition does not happen in the 
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assembly procedure for all the nodes since the physical execution of warps can happen at separate 

times. Using the Atomic operations allows the GPU to halt only the memory operations with racing 

conditions and avoid costly explicit synchronization. This capability is particularly improved in 

recent GPUs with compute capability of 3 or higher. The Atomic strategy not only has lower 

execution time with respect to the other strategies, it also requires the least amount of preprocessing 

and global memory storage. 

The results of the flux calculation strategies are provided in Figure 7.10 using the Atomic 

assembly strategy. The results show that for the LENS test samples using the least kernel 

computation strategy would lead to a significant increase in the performance with respect to the 

least warp divergence strategy, while the two strategies perform almost identically for the SLM 

test sample. This is because that gradual generation of elements from the laser focal point, for 

LENS processes, generates more external surfaces to be born and die during the simulation than 

the generation of a whole layer of elements together, for the SLM process. This result indicates 

that in the case of powder-bed simulations the cost associated with warp divergence and redundant 

kernel computations are balanced. However, in the case of LENS processes which have more 

dynamic surfaces the cost of excessive redundant calculations exceeds the warp divergence 

penalty. Therefore, considering the large number of surface births and deaths in DED processes, 

it is beneficial to use conditional statements to avoid redundant calculations for inactive surfaces. 

This benefit is more important in LENS processes due to the greater number of intermediate 

surfaces. 
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Figure 7.10. Acceleration results of the flux calculation strategy for test samples (Mozaffar et al. 

2019).  
 

The accuracy of the results is validated by comparing the temperature outputs for the GPU 

implementations and the CPU one. This validation is demonstrated on a NU-shape build with 

nearly 200,000 nodes and 150 s of the simulation time as depicted in Figure 7.11A, where the 

yellow cross represents the probe point. A comparative figure for the output temperature of the 

prob point calculated on the CPU and the GPU implementation with Atomic operation and the 

least kernel computation strategies as shown in Figure 7.11B, which verifies the accuracy of the 

GPU calculations. The mean absolute error of different strategies is summarized in Table 7.2 for 

the NU-shaped sample, which indicates the correctness of the calculations presented in this work 

considering that operations are done on 32 bits floating point numbers with 6 significant decimal 

digits. 
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Figure 7.11. Validation of the accuracy of the GPU calculations; a) a demonstration of the test 

geometry and a screenshop of its thermal profile during the build, where the yellow cross 
represents the probe point, and b) the comparison between the GPU and CPU outputs for the 

thermal hisotry of the prob point (Mozaffar et al. 2019).  
 

Table 7.2.  Accuracy of the GPU strategies with respect to the CPU calculations for the NU-
shape build (Mozaffar et al. 2019). 

Strategy Node-element 
structure and least 

divergence 

Atomic and least 
divergence 

Coloring and least 
divergence 

Atomic and least 
computation 

Mean Absolute Error 
8.538e-6 7.088e-6 9.360e-6 7.096e-6 

 

 

7.6.  Conclusions and Future Work 

 

In conclusion, this research presents a methodology for accelerating the FEA calculations for 

explicit thermal analysis of DED processes. Different strategies to avoid race conditions and warp 

divergence and maximize memory access efficiency are discussed and their advantages and 

disadvantages for complex boundary conditions in DED processes investigated. Further, memory 

hierarchy and host-device concurrency are used to optimize the use of GPU resources. The 
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implementations are tested on multiple DED processes which led to speed-ups of about 98-147 X 

with respect to an optimized CPU implementation for the strategy of assembling by using Atomic 

operations and flux calculations using the least kernel computation approach along with the 

proposed optimization. 

The developed FEM simulation can partially model the physics involved in the AM process. In 

the future, more attempts will be dedicated to adding multi-physics formulations into the GPU 

accelerated FEM model. In particular, an important coupled physics with the thermal analysis of 

the AM process is the thermoelastic behavior of the material that generates deformation and 

residual stresses. Developing thermo-mechanical modeling using explicit and implicit FEM will 

be investigated. Implicit solutions can be interesting in this case because the critical time-step of 

the explicit solution can become problematic in multi-physics problems. The thermo-mechanical 

FEM model of the AM processes can be formulated as a semi-coupled simulation where the 

displacement field is coupled with the temperature while the temperature field is independent. 

Furthermore, we will attempt to calibrate the two proposed physics-based models using 

experimental data from the DED setups mentioned in the previous tasks. 

The scalability of the developed FEM package on multi-GPU clusters is another interesting 

subject that needs further investigation. Considering that GPU clusters are becoming increasingly 

popular, the scalability performance of the model is critical to problems that require large memory 

or computational power. There are many communication protocols and memory copy operations 

(e.g., host side communications, uniformed virtual addressing, peer-to-peer memory copy, etc.) 

that can be used for sharing and transmitting data between GPU nodes. The algorithms and 

strategies to obtain optimal performance on such clusters and the trade-off between internal 
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calculation and data transition are important subjects that need to be studies before these 

algorithms can be widely used in industry. 
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CHAPTER 8  

Contributions and Future Directions 

 

Manufacturing sciences has experienced significant innovations over the past decades that have 

enabled massive design freedom even for low-volume productions such as AM and ISF. This 

flexibility comes with a cost of more complex material behavior and accumulative multi-scale 

responses as the result of the highly localized interaction between tooling and materials. In the 

meanwhile, advances in machine learning, data acquisition systems, and networking platforms 

created an opportunity to utilize the data from manufacturing processes and drastically improve 

our understanding of the behavior of advanced materials, the influence of manufacturing 

operations on them, and computational design methods to fully exploit manufacturing capabilities. 

However, these tasks necessitate intricate developments of computational methods that can (i) 

integrate knowledge from various sources including theory, experimental, and simulation data, (ii) 

handle the dynamical, noisy, and unstructured nature of manufacturing data, (iii) scale to high-

dimensional spaces with large design spaces, and (iv) mitigate the computational costs and 

numerical problems associated with computational mechanics. 

Motivated by the above-listed challenges, my Ph.D. thesis was devoted to investigating physics-

informed artificial intelligence-based predictive models, design tools, and accelerated analysis of 

metal-based additive manufacturing and forming processes. The research involved several 

interdisciplinary areas including multi-scale and multi-physics computational modeling, data-

driven supervised, unsupervised, and reinforcement learning, high-performance computing, and 
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cyber-physical systems. In this Chapter, I discuss my novel contributions to the field and elaborate 

on my insights on impactful future research directions. 

 

8.1.  Contributions 

Several novel contributions are introduced to the research field as the result of my dissertation 

study. I developed several methods that utilize artificial intelligence and computational mechanics 

to enhance current manufacturing capabilities. My major research accomplishments are 

summarized in the following subsections in two areas, namely, predictive modeling and design 

methods. I hope that my research presents a significant step forward towards smart and agile 

manufacturing systems. 

8.1.1. Contributions in manufacturing process modeling 

 Data-driven modeling of thermal responses using recurrent cells (Chapter 3): The 

thermal response of AM is a pivotal characteristic of this process and involves complex 

spatio-temporal patterns. My work shows that a data-driven recurrent structure can 

effectively learn an update parameter for the temperature of each nodal point given 

process parameters, such as laser power, boundary conditions, and geometric features. 

The data-driven model can roll out simulation results for an arbitrary number of time 

steps and shows a limited error propagation over time. On the contrary, in my 

experience, extracting geometric features based on manual feature engineering leads to 

limited generalizability of the data-driven solution when facing complex parts. 
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 Geometry-Agnostic thermal predictive modeling using graph networks (Chapter 3): 

Extracting meaningful geometric features from a freeform shape is an unsolved problem 

where current solutions do not scale to the complexity of geometries in AM. To address 

this issue, I integrated a graph-based feature extraction network with a recurrent neural 

network structure. In this approach, an end-to-end differentiable model is trained where 

a graph network, generated from the mesh, extracts neighboring correlations based on 

the nodal values and their distance while a recurrent structure predicts long-term time-

series correlations. My results indicate that this approach leads to an order of magnitude 

smaller error propagation compared to alternative methods while showing an excellent 

generalization behavior to unseen industrial-grade geometries. 

 Constitutive modeling of material elasto-plastic behavior under arbitrary loading 

(Chapter 4): Conventional plasticity involves reducing the stress and strain behavior of 

materials to effective parameters and utilizing a combination of phenomenological laws 

and theory-driven formulations to solve for stress updates as the result of loading. In my 

work, I show that this relationship can be captured by a data-driven method in an 

accurate and computationally efficient manner. Particularly, I address two critical 

questions in plasticity data-driven modeling for (i) predicting history-dependent plastic 

behavior and (ii) capturing nonlinear correlations between material microstructural 

descriptors and strain paths by proposing a customized recurrent neural network 

structure. Interestingly, it was shown that this approach is robust enough to track the 

yield surface evolution without being explicitly trained for. While the initial focus was 

on composite materials, later, in a collaborative work, it was demonstrated that this 
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methodology can be expanded to metal alloys especially in sheet metal forming 

processes. Therefore, this approach works across a wide range of material models and 

can be used as a unifying interface for material development. 

 GPU accelerated finite element computing in AM (Chapter 7): The computational cost 

of manufacturing simulations is a key limiting factor in the development and utilization 

of such technologies. Therefore, developing new methods using heterogeneous 

computing hardware such as GPUs and TPUs to accelerate computations is an impactful 

step toward advancing current capabilities. In my research, I developed a GPU 

accelerated method for finite element analysis of AM processes including DED and 

SLM. My study shows that the strategy based on atomic operations for matrix assembly 

and minimum wrap divergence leads to better results compared to previously proposed 

methods, leading to 100 − 150X speedup compared to an optimized implementation 

on CPU. 

8.1.2. Contributions in manufacturing process design 

 Model-free reinforcement learning framework for toolpath design in AM (Chapter 

5): Toolpath strategies in AM processes can significantly affect the microstructural and 

mechanical behavior of the builds. However, in current industrial practices, simple 

toolpaths such as raster or boundary contours are deployed. My research proposed a 

new vision in which the toolpath can be used as a source of design customization. I 

formulated the toolpath design problem as a reinforcement learning method and 

investigated the effectiveness of model-free methods to design toolpaths under two 

cases of available dense and sparse reward structures. This research shows that model-
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free methods with the proposed modifications can design compelling geometry-agnostic 

toolpaths in the presence of dense reward structures. 

 Model-based reinforcement learning method for toolpath design in AM (Chapter 5): 

As an alternative approach, I investigated a model-based reinforcement learning method 

for the toolpath design task. The model-based method based on the Muzero algorithm 

shows unique advantages to its model-free counterparts such as model reusability and 

sample efficiency. In this approach, several neural networks are trained for estimating 

value, reward, policy, and dynamics which enable one to construct and prune a Monte 

Carlo Tree Search at each step of the simulation and select the best actions by looking 

into tens of steps of future possibilities. The results show that the performance of the 

model-free methods can be surpassed with close to 3,000 simulation episodes. 

 Differentiable simulation tools for design in manufacturing (Chapter 6): Integrating 

physics-based and data-driven methods have been an increasingly popular scientific 

pursuit. I developed a differentiable physics-based manufacturing simulation tool and 

seamlessly integrated it with data-driven methods (i.e., neural networks). Using this 

method, one can optimize high-dimensional process parameters of manufacturing 

processes using gradient-based optimizers. Particularly, I show that this method is 

effective in the design of time-series laser inputs for achieving an arbitrary thermal 

profile and melt pool depth during AM processes. 

 



 192 

8.2.  Directions for Future Research 

In this final section, I describe my vision of interesting future directions in the field of data-

driven methods in the prediction and design of manufacturing processes. I believe many critical 

manufacturing challenges in quality variability, process efficiency, and high-dimensional design 

for tailored materials and geometric properties can greatly benefit from recent advances in machine 

learning and high-performance computing with the potential to drastically alter the capabilities of 

multi-billion-dollar industries. 

 Hierarchical physics-aware data-driven modeling in manufacturing: While we 

observe an increasing role of data-driven modeling in manufacturing, current methods 

are limited to single and often straightforward aspects of the processes. To advance these 

technologies further, we need new frameworks and algorithms to process the data we 

collect from manufacturing along with the prior knowledge and known physics of the 

process. In particular, building hierarchical methods to detect and connect material 

evolution at different length scales would enable a deeper understanding of the process 

and unlock unprecedented design capabilities. However, there are many fundamental 

questions from theoretical to applied topics yet to be answered.  Developing new 

variations of methods that combine data-driven and theory-driven approaches is an 

active research area. It is important to develop frameworks that transfer information 

across different scales. Stability issues in dynamical systems, when combined with 

using data-driven methods, need to be resolved. Successful platforms to increase the 

explainability of such models would significantly impact their industrial adoption. 
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 Design in sparse settings: Many of current manufacturing solutions stem from rules of 

thumb and legacy practices, which create a substantial opportunity for optimization in 

the field. This is especially pronounced in many flexible manufacturing processes with 

many degrees of freedom in time and space to control the material deformation, flow, 

thermal properties, etc. However, meaningful signals to guide this optimization problem 

are often few and far between, which makes conventional methods ineffective. I believe 

advancements in explorations and planning methods to tackle sparse design signals are 

the necessary steps for moving forward. Furthermore, robust frameworks for knowledge 

distillation are needed to increase the sample efficiency of the current methods.  

 Integrated experimental and simulation platforms: As most AI methods are 

extensively data-intensive, developing useful models based on experimental data is not 

feasible in most manufacturing applications. Furthermore, controlling the distribution 

of experimental data is expensive and, in some cases, unrealistic, which can cause 

problematic bias in the model. Combining experimental and simulation data is an 

exciting way to resolve these issues. The data-driven methodology is a great platform 

for developing such integrated systems because it allows one to complement the 

information from different sources. For example, simulation data can be used in places 

where experimental data is unavailable. One interesting aspect of integrated platforms 

is that they allow designing robust systems, where the outliers and special cases are 

over-represented using high-performance simulation tools. As an example, we can over-

represent rare keyhole formation patterns to ensure the integrated system is properly 

informed about them. 
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APPENDIX A 

 
Figure A.1. List of geometries used to produce training and test sets. 
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APPENDIX B 

 
Yield surface construction for data-driven constitutive modeling 
 

The yield surfaces presented in Figure 4.8 are constructed by applying 40 linear strain paths, 

which are uniformly distributed in strain space starting from the initial strain condition. To 

construct the original yield surface (Figure A.2A), strain paths start from the unloaded condition 

and experience elastic and plastic deformation is different directions. We record the stress state in 

which each linear path exceeds a plastic energy threshold of 1 𝑚𝐽, which constructs the yield 

surface. The yield surface of an RVE after it undergoes a certain loading (Figure A.2B) is 

constructed by initially applying the main load (blue solid line in Figure A.2B) for all 40 linear 

strain paths and then loading the RVE in different directions where we detect the stress state when 

they reach the plastic energy threshold. Note that although all the applied loadings for yield surface 

constructions are linear and uniform in strain space, the stress responses are neither linear nor 

uniform which is due to the plasticity of the RVE.  
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Figure A.2. Yield surface construction process for (A) original yield surface and (B) yield 

surface after loading.  


