

NORTHWESTERN UNIVERSITY

Physics-Informed Data-Driven Prediction and Design in Advanced Manufacturing Processes

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Mechanical Engineering

By

Mojtaba Mozaffar

EVANSTON, ILLINOIS

September 2021

2

ABSTRACT

Physics-Informed Data-Driven Prediction and Design in Advanced Manufacturing

Processes

Mojtaba Mozaffar

Manufacturing processes are known for their intricacies in changing material shapes and

properties. New generations of manufacturing technologies, known as flexible manufacturing, are

moving toward design freedom, which allows producing parts with optimized geometries and high

customizations at an affordable cost even for low-volume productions. Two prominent flexible

manufacturing processes that are of interest in this dissertation are additive manufacturing and

incremental sheet forming. An important limiting factor in advancing current capabilities in such

processes is the difficulty to reliably understand and control them due to the complex multi-physics

and multi-scale nature of the processes. As the result, current practices are overly conservative,

significantly limiting the vast potential of producing parts with customized material properties.

At the same time, we observe a surge in the digitalization of manufacturing processes. Today,

manufacturing facilities are more connected to data centers than ever, and various measurement

methods are becoming standard components of modern manufacturing pipelines from controlling

and monitoring the progress while manufacturing to testing and analysis after the part is built.

Therefore, this dissertation is dedicated to developing computational methods to advance modeling

and design capabilities with a focus on approaches to optimally use manufacturing data—an

underutilized asset of manufacturing systems. My contributions in process characterization and

design are organized into five research tasks and briefly discussed below.

3

Predicting the spatiotemporal behavior of manufacturing processes is challenging due to the long

history-dependent correlations and complex unstructured geometric features common in

manufacturing. Motivated by this challenge, my first research contribution introduces a data-driven

methodology to learn material behaviors on unseen geometries over long simulation periods. My

method efficiently combines a recurrent neural network to capture material evolution over time and a

graph representation to flexibly extract geometric features. This methodology is demonstrated on

thermal prediction of additive manufacturing processes and shows great generalizability across

industrial-grade parts.

Plasticity is one of the important pillars of computational mechanics. Conventional plasticity

methods heavily rely on restrictive assumptions to reduce the dimensionality of the problem into so-

called “effective” parameters. In a first-of-a-kind research, my second contribution proposed a data-

driven approach to material constitutive modeling, where the material behavior under complex elasto-

plastic loading conditions can be learned from data. My work not only shows that data-driven

constitutive modeling is accurate, but also it is computationally efficient and performs well across

multiple material systems including composites and metal alloys.

The large design spaces of flexible manufacturing such as the additive manufacturing process

present a daunting optimization task, which limits the capabilities of producing highly customized

parts. In the third contribution of my dissertation, I proposed a reward-driven solution to the toolpath

design problem, where an agent is trained to explore the environment and develop strategies to collect

maximum rewards. Four methods (three model-free and one model-based) varying in their exploration

and decision-making formulations are developed and tested to design toolpaths for over 400 sections

and the results show the effectiveness of this methodology especially in the presence of a dense reward

structure.

4

In my fourth research contribution, I developed a differentiable manufacturing simulator that

enables a seamless integration between physics-based and data-driven methods. I demonstrate that the

gradients of a physics-based thermal simulation of the additive manufacturing process can be computed

using automatic differentiation. Furthermore, this differentiable simulation is combined with neural

networks to effectively optimize time-series process parameters and reach ideal thermal responses or

melt pool behavior over hundreds of simulation time steps.

The computational expense of physics-based manufacturing models is a limiting factor in the size

of the problem that can be reasonably solved especially applications such as iterative design, model

predictive control, and uncertainty quantification. In my fifth contribution, I investigated modern

heterogeneous computational hardware to accelerate the simulation of additive manufacturing

processes. Using the proposed matrix assembly and flux calculation strategies on graphical processing

units, a speedup of 100 − 150𝑋 is achieved compared to an optimized CPU implementation.

5

ACKNOWLEDGMENTS

This research would not have been possible without the support of many. First and foremost, I

want to express my deepest gratitude to my advisors, Prof. Jian Cao and Prof. Kornel Ehmann,

who assisted me through the ups and downs of my Ph.D. life, gave me motivation and guidance to

find my career path, and helped me grow as a person. I also want to thank Prof. Gregory Wanger

who has been incredibly kind and helpful to me throughout the past five years in classes and

meetings. I am thankful to Prof. Aggelos Katsaggelos, who introduced me to the world of machine

learning and encouraged me to pursue this research.

I am indebted to a long list of colleagues, collaborators, and friends. I will always remember

the helps I received from Dr. Newell Moser, Dr. Marco Giovannini, Dr. Huaqing Ren, Mr. Dohyun

Leem, and Mr. Shuheng Liao. A big thanks to Dr. Ramin Bostanabad, Dr. Miguel Bessa, Dr.

Maysam Gorji, and Dr. Arindam Paul for making amazing collaborations possible.

Last but not least, I am eternally grateful to my family for their unlimited love--Abbas and

Narjes for their life-long sacrifices, Maryam and Mohammad for their constant support, and

especially Xiaolu for always being there for me.

6

LIST OF ABBREVIATIONS

AI Artificial Intelligence

AM Additive Manufacturing

ANN Artificial Neural Network

BVP Boundary Value Problem

CPP Coverage Path Planning

CPS Cyber-Physical System

DED Directed Energy Deposition

DFM Design For Manufacturing

DOE Design of Experiments

DQN Deep Q-Network

DSIF Double-Sided Incremental Forming

FCNN Fully Connected Neural Network

FEM Finite Element Method

GDP Gross Domestic Product

GNN Graph Neural Networks

GP Gaussian Process

GRU Gated Recurrent Unit

ISF Incremental Sheet Forming

LSTM Long Short-Term Memory

MCTS Monte Carlo Tree Search

7

MDP Markov Decision Process

ML Machine Learning

MSE Mean-Square-Error

NN Neural Network

PBF Powder Bed Fusion

PDE Partial Differential Equations

PPO Proximal Policy Optimization

PSPP Process, Structure, Property and Performance

RGNN Recurrent Graph Neural Network

RL Reinforcement Learning

RMSE Root Mean Squared Errors

RNN Recurrent Neural Network

SAC Soft Actor Critic

SPIF Single-Point Incremental Forming

SVM Support Vector Machines

TPIF Two-Point Incremental Forming

UCB Upper Confidence Bound

CPS Cyber-physical system

8

TABLE OF CONTENTS

Abstract ... 2

Acknowledgments... 5

List of Abbreviations .. 6

Table of Contents .. 8

List of Tables .. 12

List of Figures ... 13

Chapter 1: Introduction ... 19

1.1. Motivation .. 19

1.2. Need for Data-Driven Modeling and Design Tools .. 20

1.2. Research Tasks and Accomplishments .. 22

1.4. Dissertation Outline... 27

Chapter 2: Technical Background .. 28

2.1. Introduction to Flexible Manufacturing Processes.. 28

2.1.1. Additive Manufacturing Processes ... 29

2.1.2. Incremental Sheet Forming Processes .. 31

2.2. An Overview on Physics-Based Modeling Techniques in Manufacturing Processes 32

2.3. An Overview on Data-Driven Modeling Techniques ... 35

2.3.1. Machine Learning ... 36

2.3.2. Neural Networks ... 38

Chapter 3: Data-Driven Spatiotemporal Manufacturing Process Modeling using Neural Networks
... 41

3.1. Introduction ... 41

3.2. Temporal Data-Driven Modeling of Manufacturing Processes using Recurrent Neural
Networks ... 43

3.2.1. Introduction to Recurrent Neural Networks ... 45

3.2.2. Proposed Model Architecture ... 46

3.2.3. Database Development and Characteristics ... 47

3.2.4. Results and Discussion ... 48

9

3.3. Geometry-Agnostic Data-Driven Manufacturing Modeling using Graph Neural Networks
 ... 53

3.3.1. Introduction to Graph Neural Network .. 55

3.3.2. Proposed Network Architectures .. 58

3.3.3. Geometric Database Development and Characterization ... 60

3.3.4. Results and Discussion ... 62

3.4. Conclusions and Future Works ... 66

Chapter 4: Data-Driven Constitutive Modeling for Computational Plasticity 68

4.1. Introduction to Computational Plasticity .. 68

4.2. Theoretical Approach to Data-Driven Constitutive Modeling .. 71

4.2.1 Design of Experiments in Input Space ... 72

4.2.2 Database Assembly... 75

4.2.3 Machine Learning Approach .. 76

4.3. Plasticity Modeling Results ... 81

4.3.1 Case I: RVE with Curved Inclusion ... 81

4.3.2 Case II: RVE with Distributed Circular Inclusions .. 87

4.4. Network Analysis .. 90

4.4.1. RNN architecture analysis ... 90

4.4.2. RNN hyperparameter tests ... 92

4.4.3 Performance of proposed RNN architecture .. 93

4.5. Conclusions and Future Works ... 95

Chapter 5: Toolpath Design for Additive Manufacturing using Deep Reinforcement Learning . 97

5.1. Introduction .. 97

5.1.1 Introduction to Toolpath Design in Additive Manufacturing 98

5.1.2 Introduction to Reinforcement Learning .. 99

5.2. Reinforcement Learning Framework for Toolpath Design ... 102

5.2.1 Additive Manufacturing Virtual Environment ... 104

5.2.2 Analysis Cases .. 108

5.3. Model-Free Approach Towards Design .. 109

5.3.1 Model-Free Algorithms and Variations .. 109

5.3.2 Model-Free Results and Discussion ... 117

10

5.4. Model-Based Approach Towards Toolpath Design .. 120

5.4.1 Model-Based Algorithm ... 121

5.4.2 Model-Based Results and Discussion... 125

5.5. Conclusions and Future Work ... 129

Chapter 6: Additive Manufacturing Process Design via Differentiable Simulations 131

6.1. Introduction to Differentiable Simulations ... 131

6.2. Automatic Differentiation and Libraries ... 133

6.3. Proposed Methodology ... 137

6.4. Optimization Process and Results ... 142

6.4.1 Parameter inference based on partial data .. 143

6.4.2 High-Dimensional temporal design for thermal history behavior 146

6.4.3 High-Dimensional temporal design for melt pool behavior 149

6.5. Conclusions and Future Work ... 153

Chapter 7: Acceleration Strategies for Physics-based Modeling of Additive Manufacturing
Processes using Graphical Processing Units... 155

7.1. Introduction ... 155

7.2. Finite Element Formulation for Transient Heat Transfer.. 158

7.3. Massively Parallel Computing with CUDA: Execution and Memory Model 164

7.4. Acceleration Strategies .. 165

7.4.1 Assembly Strategy to Avoid Race Condition ... 167

7.4.2 Mitigating Warp Divergence .. 170

7.4.3 Further Optimization Considerations ... 172

7.5. Acceleration Results and Verification ... 176

7.6. Conclusions and Future Work ... 184

Chapter 8: Contributions and Future Directions ... 187

8.1. Contributions ... 188

8.1.1. Contributions in manufacturing process modeling .. 188

8.1.2. Contributions in manufacturing process design .. 190

8.2. Directions for Future Research ... 192

References ... 194

Appendix A ... 208

11

Appendix B ... 209

12

LIST OF TABLES

Table 3.1. Process and material properties for the generated database. 60

Table 4.1. Parameter ranges for RVE reconstruction and load-path design (Mozaffar et al.
2019). .. 73

Table 4.2. Matrix and fiber material properties for case 1(Mozaffar et al. 2019). 82

Table 4.3. Matrix and fiber material properties for case 2 (Mozaffar et al. 2019). 88

Table 4.4. Metrics comparison between trained RNN architectures after 500 epochs of training
(Mozaffar et al. 2019). .. 91

Table 5.1. Highest score of model-free algorithms for two reward structure cases. 119

Table 5.2. Comparison between model-based Muzero and model-free DQN methods. 127

Table 6.1. Backpropagation steps for gradient calculations. ... 136

Table 6.2. Performance comparison of prominent automatic differentiation libraries for
manufacturing simulations. ... 142

Table 7.1. Summary of simulation parameters for the test samples (Mozaffar et al. 2019). 177

Table 7.2. Accuracy of the GPU strategies with respect to the CPU calculations for the NU-
shape build (Mozaffar et al. 2019). ... 184

13

LIST OF FIGURES

Figure 1.1. An overview of presetned research topics which lie at the intersection of
computational mechanics and artificial inteligence. ... 23

Figure 1.2. Summary of research tasks in two categories of (i) manufactuirng modeling and (ii)
process design. .. 24

Figure 2.1. Schematic of two AM processes; (a) DED process with coaxial nozzle to deliver
powder to the focal point of a laser and (b) PBF process that uses a roller to spread a thin layer of
powder before melting the layer (Mozaffar et al. 2019). .. 30

Figure 2.2. Schematic of the double-sided incremental forming process (DSIF). DSIF is a
flexible, dieless sheet metal forming process, which incrementally accumulates localized
deformations to form the final part. The figure is a courtesy of the AMPL research group. 32

Figure 2.3. Architecture of a fully connected neural network. ... 39

Figure 3.1. Schematic of the many-to-many stacked RNN structure with GRU formulation in
relation with process inputs and thermal outputs; Green circles represent GRU units, blue
rectangles represent GRU cells, yellow boundaries represent stacked GRU wrappers, and blue
dashed lines within the GRU wrappers represent trainable parameters. The schematic and
formulation of GRU units are provided on the left based on the formulation given in (Cho et al.
2014, Olah 2015). ... 47

Figure 3.2. Evaluation of the stacked RNN model on the test dataset for two random points
over 20 s of the DED process; Comparison of the model prediction (black line) and the test-set
value (cyan dashed line) for the thermal history of a point in a thin-wall build with uni-
directional toolpath (left) and a cylindrical build circular toolpath (right). 49

Figure 3.3. Evaluation of the stacked RNN model on the test dataset for 100 s, while trained on
20 s (top) and 50 s (bottom) of the process; Comparison of the model prediction (black line) and
the test-set value (cyan dashed line) for the long-time span thermal history of a point in a cubic
build with zigzag toolpath. .. 51

Figure 3.4. Evaluating the trained model on a dissimilar geometry; The NU-shape build
geometry and the inspected point locations (a), comparative figures for the points 1, 2 and 3
between model prediction and the test-set (b), (c), and (d), respectively. The toolpath of this
build goes from the buttom left to the upper right side of the letter N and then moves from the
upper left to the upper right side of the letter U. ... 52

14

Figure 3.5. Schematic of a target node and its neighboring nodes within an element. Message
passing includes three fundamental steps: (i) message construction, (ii) message aggregations,
and (iii) and target update. .. 56

Figure 3.6. Schematics of the two architectures for spatiotemporal prediction of AM thermal
responses: (A) The GNN architecture predicts the single-time step update in each training
instance given the node and element features at the time-step; (B) The RGNN architecture
predicts and trains multi-time step interactions where at each time step the network receives a
temporal nodal-based encoded representation, a non-temporal element-based representation, and
the hidden state of the previous stacked GRU cell and outputs the thermal distribution over the
geometry. Both architectures can be recursively evaluated to produce thermal outputs of arbitrary
length... 57

Figure 3.7. Sample AM builds adapted from the ABC online repository (Koch et al. 2019) for
industrial-grade geometries. Geometries are oriented and placed on substrate plates to construct
the AM simulation database. Three geometries within the blue border are in our training dataset
while the geometry within the red border is used as one of the test samples. All geometries are
provided in the Appendix A - Figure A.1. .. 61

Figure 3.8. Training and evaluation results for the proposed GNN and RGNN formulations:
(A) The evolution of the train and test losses over training epochs is normalized per node per
time step; (B) An example simulation and the predicted thermal history at three points with the
location of points depicted on the top right and the comparison of histories between GNN,
RGNN and the ground truth on the lower right. Note that 𝑡 = 0 refers to the starting time of the
100 time-step test sample and not the entire build. ... 63

Figure 3.9. Evaluation of the trained models capability to produce long-term simulations. The
evolution of the thermal field on a sample simulation is depicted for the GNN and RGNN models
(A and B). The error propagation of the sample simulation and all database simulations for both
models are presented (C and D).. 65

Figure 4.1. Calculation scheme for a material’s constitutive model where the model receives the
previous stress and state variables as well as the current deformation and outputs the updated
stress and state variables at each time step. .. 69

Figure 4.2. Design of experiments with 5,000 points in the 3D space of 𝑣, 𝑟, 𝑐. 𝑣 is in percent
while 𝑟 and 𝑐 are in 𝜇𝑚 (Mozaffar et al. 2019). ... 74

Figure 4.3. Four sample RVEs. Side lengths are all 200 𝜇𝑚 and the triplet below each RVE
corresponds to 𝑣, 𝑟, 𝑐. 𝑣 is in percent while 𝑟 and 𝑐 are in 𝜇𝑚 (Mozaffar et al. 2019). 74

Figure 4.4. Sampling the temporally varying loads: (A) Three end-states are marked in the strain
space spanned by 𝑒11 and 𝑒22 (𝑒12 = 0 for clarity). For each end-state, two deformation paths
that connect it to the origin are illustrated. The grey area indicates the range of each strain
component. (B) Two examples indicating the temporal evolution of the three strain components

15

that, collectively, determine the deformation path to an end-state. The markers on each path
indicate the control points used in interpolation. Here, 𝑛𝑡𝑠 = 100, 𝑛𝑐𝑝 = 6, and the interpolator
is a zero-mean GP with power exponential kernel. Paths in (B) are not related to (A) (Mozaffar et
al. 2019). ... 75

Figure 4.5. Variation of RNN architecture to encapsulate temporal and non-temporal inputs; (A)
post-mixing non-temporal data through a dense network, (B) configuring non-temporal data as
initial hidden state value through a dense network, or (C) establishing a secondary non-temporal
hidden state in GRU formulation (Mozaffar et al. 2019). ... 78

Figure 4.6. (A) Undeformed configuration of RVE with curved ellipse and (B) von Mises stress
contour of the deformed periodic RVE in MPa for illustrative case 1(Mozaffar et al. 2019). 83

Figure 4.7. Evaluation results for the trained model in case 1. The top row demonstrates (A) the
applied average strains, (B) the predicted and database average stresses and (C) the predicted and
database plastic energies for a test set sample (unseen in training process). The bottom row
depicts the (D) average strains, (E) average stresses, and (F) plastic energies for the
unidirectional loading test (Mozaffar et al. 2019). ... 85

Figure 4.8. Yield surface evolution under different deformation conditions and paths. FEA-
based and RNN predicted yield surfaces are demonstrated in dotted lines and solid lines,
respectively, at the end of three different deformation paths as compared to the original yield
surface (purple) (Mozaffar et al. 2019). .. 87

Figure 4.9. (A) Undeformed configuration and (B) von Mises stress contour of a deformed
sample of periodic RVE with distributed circular fillers in MPa for illustrative case 2 (Mozaffar
et al. 2019). ... 88

Figure 4.10. Evaluation results for the trained model in case 2. The top row demonstrates the (A)
the applied average strains, (B) the predicted and database average stresses and (C) the predicted
and database plastic energies for a test set sample (unseen in training process). The bottom row
depicts the (D) average strains, (E) average stresses, and (F) plastic energies for the
unidirectional loading test (Mozaffar et al. 2019). ... 90

Figure 4.11. Cost function evolution as a function of training epochs for three different RNN
architectures (Mozaffar et al. 2019). ... 91

Figure 4.12. Hyperparameter analysis of the RNN model over 200 epochs of training for (A)
number of neurons in GRU cells and (B) number of stacked GRU layers (Mozaffar et al. 2019).
... 93

Figure 4.13. Convergence test for the RNN over 200 epochs of training (Mozaffar et al. 2019).
... 94

Figure 4.14. Demonstration of instability in RNN-FEM implmentation for multi-element
simulaitons in ABAQUS... 96

16

Figure 5.1. Schematics of the proposed toolpath design framework. In this framework, the agent
takes an action determining the toolpath in each time step. The action would be executed in an
AM (or equivalently virtual AM) environment. The resulting observation of the state and its
corresponding reward would be stored in a dynamic database, which will be later used to train
neural networks and achieve better planning for future iterations. ... 104

Figure 5.2. Sample CAD geometries (top row) and pixelized two-dimensional sections (bottom
row) for the AM virtual environment. .. 105

Figure 5.3. Schematic of the AM virtual environment including section (in blue), filled partition
(in green), and nozzle location and status. The red point indicates the location of the nozzle with
“on” status. Valid actions are shown with eight arrows for “on” (red) and “off” (brown) status
and four directions. ... 107

Figure 5.4. Learning curves of the toolpath design system with the three DQN, SAC, and PPO
algorithms for (A) dense and (B) sparse reward systems. The horizontal axes for the PPO results
are plotted at a different scale (shown on the top of each plot) from the DQN and SAC results
(shown at the bottom of each plot). As the manual zig-zag toolpath strategy is plotted as a
baseline for the dense reward system, such an engineered solution does not apply for the sparse
reward system. .. 118

Figure 5.5. Three samples of the designed toolpaths by the trained PPO algorithm for random
sections and starting locations. The section is depicted in light grey. The toolpath motion starts
from the blue diamond shape, following a color gradient ending in a pink arrow shape. 119

Figure 5.6. Schematics of the model-based toolpath design system which includes two major
parts, i.e., MCTS planning and model training. These two parts are performed iteratively until
reward convergence is achieved. .. 122

Figure 5.7. The evolution of reward score during training for Muzero and its comparison to
DQN and zig-zag toolpaths (A), and the evolution of losses for reward, value, and policy terms
during network training using the Muzero method (B). ... 126

Figure 5.8. Three samples of the toolpaths designed by the Muzero method, where the toolpath
starts from the blue diamond and ends in the pink arrow (top). A demonstration of generated
Monte Carlo Tree Search in the initial position of the section on the top right. The root is
highlighted in red and the optimal path from the root is highlighted in yellow (bottom). 128

Figure 6.1. Differentiable manufacturing process simulation capable of calculating the gradients
of performance loss with respect to workpiece, tool, and process parameters. 133

Figure 6.2. Schematic of a computational graph for computing the cost function (𝐶) in 𝐶 = 𝑌 −
tanh (𝑊. 𝑋 + 𝑏). This computational graph can be utilized the forward calculation of cost
function as well as backpropagation calculation of gradients. ... 135

17

Figure 6.3. Test case geometry and its cross-section view where red elements represent the build
and blue elements are the substrate (left) and toolpath pattern (right) for the differentiable AM.
thermal simulations test case. The red lines on toolpath plot indicate nozzle moves while laser is
on, while the blue lines indicate motion when laser is off. ... 138

Figure 6.4. Schematic of the first case study where the partially observable loss function based
on the thermal responses of top build layer at each time step is optimized. The optimization
paramters include heat capacity, conductivity, convection coefficient, static laser power, and
laser beam radius... 144

Figure 6.5. Evolution of the investigated process paramters over 60 iterations of optimization.
... 145

Figure 6.6. Schematics of the second case study. In this case, a neural network structure
determines the time-series laser power of the AM process, and it is optimized to produce an ideal
thermal behavior during part build. .. 147

Figure 6.7. Optimization results for the second case study. (A) evolution of the MSE loss
function over 300 optimization iterations. (B) evolution of time-series laser power with the initial
laser power plotted in red (see top row), five intermediate laser power patterns during the
training (see middle row), and the final pattern found by differentiable optimization after 300
iterations and its comparison with the true target (see bottom row). .. 148

Figure 6.8. Schematics of the third case study. In this case, we stabilize the melt pool depth
throughout the build time by adjusting time-series laser power. The laser power is determines
using a fully connected neural network as a universal function approximator and the parameters
of the network are tuned using a gradient-based optimization method. 149

Figure 6.9. Differentiable melt pool calculation scheme. (A) schematics of a 3 layer mesh
structure and the location of laser beam. (B) nodal temperature of nine neighboring nodes are
used to compute the temperature corresponding to laser location at each height. (C) a linear
pairwise solver is used to compute continuous melt pool depth at each time step. 150

Figure 6.10. Optimization results for the third case study. (A) the evolution of MSE loss
function between the desired melt pool depth and achieved depth. (B) the initial and final laser
power after 200 optimization iterations on neural network parameters. (C) the initial melt pool
depth, final depth after 200 optimization iterations, and target depth used in loss function
definition. .. 152

Figure 7.1. CUDA hierarchical memory model; Device (GPU) can communicate with host
(CPU) through global, constant, and texture memories, accessible to all threads. Registers and
shared memory are low latency memories exclusively visible to a thread and a block respectively
(Mozaffar et al. 2019). .. 165

18

Figure 7.2. Computational FEA framework for the thermal analysis of the DED process; the
routine includes preprocessor, domain initialization, solver, and outputting steps with the solver
step as the most computationally expensive one (Mozaffar et al. 2019). 167

Figure 7.3. Assembly strategies for global capacitance; (a) direct assembly to global capacitance
causes may cause a race condition, while (b) the node-element data structure considers separate
placeholders for contribution of each element to a node solves this issue (Mozaffar et al. 2019).
... 169

Figure 7.4. Global memory access pattern; (a) an uncoalesced access pattern is caused when
threads access memories of nodal data for different elements, and (b) a coalesced memory access
pattern achieved by rearranging data based on their kernel access (Mozaffar et al. 2019). 174

Figure 7.5. visualization of asynchronous kernel execution using NVIDIA Visual Profiler; rows
represent different CUDA streams and each color represent a kernel execution (Mozaffar et al.
2019). .. 176

Figure 7.6. Geometries and meshes of the test samples where blue meshes represent the
substrate and red meshes represent the build for a) LENS cubic, b) LEN cruciform, c) LENS
thin-wall, and d) SLM powder-bed geometries (Mozaffar et al. 2019). 177

Figure 7.7. Visualization of the test simulation outputs for a) LENS cubic, b) LENS cruciform,
c) LENS thin-wall, and d) SLM powder-bed builds (Mozaffar et al. 2019). 179

Figure 7.8. Acceleration results of the assembly strategies for test samples (Mozaffar et al.
2019). .. 180

Figure 7.9. Correlation between the number of nodes and the achieved speed-up in test samples
(Mozaffar et al. 2019). .. 181

Figure 7.10. Acceleration results of the flux calculation strategy for test samples (Mozaffar et al.
2019). .. 183

Figure 7.11. Validation of the accuracy of the GPU calculations; a) a demonstration of the test
geometry and a screenshop of its thermal profile during the build, where the yellow cross
represents the probe point, and b) the comparison between the GPU and CPU outputs for the
thermal hisotry of the prob point (Mozaffar et al. 2019). ... 184

 19

CHAPTER 1

Introduction

1.1. Motivation

Manufacturing is a major industrial sector accounting for 10-30% of the gross domestic

product (GDP) in leading industrial countries (West et al. 2018). Historical examples show

innovations in manufacturing nurture key advances in the automotive, aerospace, electronics, and

biomedical industries. However, many manufacturing processes are known for their intricacies in

prediction and control due to the extreme loading conditions and complex material flows. These

complexities are often exacerbated in modern high-value-added processes, such as Additive

Manufacturing (AM) and incremental sheet metal forming, as they are governed by hierarchical

multi-scale and multi-physics behaviors.

In recent years, Artificial Intelligence (AI) has become increasingly more capable of

automating activities that we associate with human thinking, such as planning, decision making,

and problem-solving. A nine-fold increase in the number of publications over the past 20 years

(Shoham et al. 2018), 113% increase in start-ups from 2015 to 2018 (Shoham et al. 2018), and an

estimated 15.7 trillion-dollar worth of economy in 2030 (PwC 2020) are only a few indications of

the existing and future vast impact of AI in both academia and industry. Meanwhile, the recent

trend of digitalization in the manufacturing community not only allows more precise control of

processes, but also provides cost-efficient access to high-quality large scale data which can be used

to achieve more efficient, agile, and innovative manufacturing solutions as a viable alternative to

costly and time-consuming experimental approaches (Lee et al. 2015, Hermann et al. 2016).

20

1.2. Need for Data-Driven Modeling and Design Tools

The uncertainty in the prediction and control of the responses of manufacturing processes is

one of the most critical challenges facing state-of-the-art practices. The underlying physics of the

material response is challenging to understand and to predict since it involves multi-physics

phenomena over a wide range of scales ranging from the micro-scale (such as the influence of a

laser beam on powder particles) to the meso-scale (e.g., grain evolution and void generation) to

the macro-scale (e.g., the thermal behavior of the material and its influence on an AM build’s

fatigue life, anisotropic behavior, and strength, to name but a few). Many modern manufacturing

processes involve a large set of interconnected process parameters including material properties,

setup, environment, tools, and motion parameters, which makes it extremely difficult to establish

the influence of process parameters on product properties.

There are two common classes of approaches for characterizing manufacturing processes: (i)

computational models, and (ii) experimental studies. Computational mechanics has been a popular

method to characterize processes at the macro-scale (Parry et al. 2016, Schoinochoritis et al. 2017),

meso-scale (Khairallah et al. 2016, Rai et al. 2016), and multi-scale domains (Wolff et al. 2017,

Yan et al. 2018). The relationships between process, structure, property and performance can be

individually examined and modeled. This approach, known as the PSPP framework, was initially

popularized in the field of material science (Olson 1997) and later adopted to also characterize

other manufacturing processes, e.g., connecting process parameters to thermal behavior, porosity,

and mechanical behavior of an AM build (Wolff et al. 2017). In a noteworthy work, Yan et al.

(Yan et al. 2018) developed a multi-physics model using the PSPP framework to achieve an in-

21

depth understanding of the AM process. In their work, the Monte Carlo method is used to simulate

an electron beam heat source at the micro-scale, a thermal-fluid flow model for simulating powder

particle evolution at the meso-scale, and a macro-scale thermal analysis of the process by using

the finite element method (FEM). They further simulated the microstructure evolution of the

material using the cellular automata method and calculated its mechanical response using crystal

plasticity.

A crucial problem with the existing predictive methods for manufacturing processes is their

enormous computational cost that might take weeks or months of simulation time (Francois et al.

2017). Often, the computational models are orders of magnitude slower than the experiments,

which makes them impossible to use in time-sensitive applications such as real-time control or

optimization procedures. Moreover, the physics-based models can have significant discrepancies

with experimental data due to simplifying assumptions or incomplete physics.

On the other hand, many experimental studies have been conducted to analyze the influence

of process parameters on microstructure and build properties for manufacturing processes

(Shamsaei et al. 2015, Wang et al. 2016, Stevens et al. 2017, Fisher et al. 2018, Li et al. 2018).

However, experiments are often expensive due to the cost of the required equipment, materials,

and manpower. Additionally, the aforementioned experiment-based models use a limited number

of experiments and are incapable of taking into consideration the complex inter-connectivity of

parameters as well as high-dimensional inputs. Therefore, investigating novel methods to predict

and control manufacturing behavior is vital for overcoming existing barriers and satisfying the

ever-evolving requirements for modern processes, e.g., AM and incremental forming technologies.

22

1.2. Research Tasks and Accomplishments

We hypothesize that AI-empowered approaches can address the shortcomings of state-of-the-

art methods described in the preceding section. This idea stems from the recent advancements in

AI hardware and software capabilities, which offer high predictive power and computational

efficiency, and allow leveraging digitalized manufacturing and large-scale data acquisition

platforms. To this end, we develop various data-driven architectures and establish new

methodologies for two tasks in enhancing (i) process characterization and modeling, and (ii)

process design, as they collectively contribute to better manufacturing solutions. As depicted in

Figure 1.1, my research encompasses several topics at the intersection of computational

mechanics and artificial intelligence which I have pursed individually and through several

collaborations.

23

Figure 1.1. An overview of presetned research topics which lie at the intersection of

computational mechanics and artificial inteligence.

This dissertation presents five interconnected research tasks as depicted in Figure 1.2. We

begin with the development of manufacturing process characterization methods with a special

attention to improve their ability to generalize across process parameters, geometries, and

materials. Later, we present an accelerated physics-based computing package—an essential tool

for real-time control and large-scale database construction. Finally, we investigate AI-enabled

methods to explore new design solutions for manufacturing processes to process complex

unstructured data (e.g., unstructured geometries) as well as concurrent history-dependent

parameters (e.g., toolpath and forces). Each task is briefly described hereunder:

24

Figure 1.2. Summary of research tasks in two categories of (i) manufactuirng modeling and (ii)

process design.

 Research Task 1: Data-Driven Spatiotemporal Manufacturing Process Modeling using

Neural Networks. The focus of this task is on data-driven predictive models for

manufacturing processes to capture the relationships between process parameters and

material behavior under extreme conditions characterized by long history-dependent

correlations and complex unstructured geometries. Our framework is demonstrated on

the thermal analysis of AM processes. A recurrent neural network (RNN) architecture

is proposed to predict the high-dimensional thermal history with variations in build

dimensions, toolpath strategy, laser power and scan speed. Our results indicate that the

model can accurately predict the thermal history of any given point of the AM build on

a test-set database with limited training. The model’s ability to accurately predict

thermal histories has been demonstrated through an overarching test conducted for long

periods. In the second phase of this research task, we improve the capability of our

data-driven approach to generalize across challenging industrial-grade geometries by

25

proposing a novel hybrid graph-based recurrent neural network, which maintains high

accuracy on unseen geometries over long simulation periods.

 Research Task 2: Data-Driven Constitutive Modeling for Computational Plasticity. In

this task, a first-of-a-kind data-driven constitutive model is proposed to accurately

capture path-dependent responses of material systems via deep learning. Two sources

of complications in elasto-plastic constitutive modeling are identified as geometry-

induced and model-induced complexities and each source is thoroughly studied. A

database with representative volume element samples of fiber-reinforced composites is

developed which includes variations in microstructure descriptors (e.g., fiber volume

fraction, fiber radius, fiber distances) and compound loading conditions. High-fidelity

numerical simulations are utilized to analyze the stresses, plastic energy, and total

energy of each sample. A novel recurrent neural network structure is proposed to

efficiently combine temporal and non-temporal inputs of the constitutive model and

accurately predict the elasto-plastic behavior of the composite. Our trained model

conveniently achieves an under 0.5% scaled root-mean-square-error for training data

as well as loading conditions outside of its training database. Moreover, we

demonstrate that the model can implicitly capture yield surface evolution which shows

that our approach automatically detects and learns hidden plasticity concepts.

 Research Task 3: Toolpath Design using Deep Reinforcement Learning. Toolpath

optimization in manufacturing processes is currently hampered by the high

26

dimensionality of its design space. In this task, a reinforcement learning platform is

proposed that dynamically learns toolpath strategies to build an arbitrary part. To this

end, three prominent model-free and one model-based reinforcement learning

formulations are investigated to design AM process toolpaths and demonstrated for two

cases of dense and sparse reward structures. The results indicate that this learning-based

toolpath design approach achieves high scores, especially when a dense reward

structure is present.

 Research Task 4: High-Dimensional Manufacturing Process Design via Differentiable

Simulations. This research task presents a novel computational paradigm for process

design in manufacturing processes that incorporates simulation responses to optimize

manufacturing process parameters in high-dimensional temporal and spatial design

spaces. We developed a differentiable finite element analysis framework using

automatic differentiation which allows accurate optimization of challenging process

parameters such as time-series laser power. We demonstrate the capability of our

proposed method through three illustrative case studies in AM for: (i) material and

process parameter inference using partial observable data, (ii) controlling time-series

thermal behavior, and (iii) stabilizing melt pool depth. This first-of-a-kind research task

opens new avenues for high-dimensional manufacturing design using solid mechanics

simulation tools such as finite element methods.

27

 Research Task 5: Acceleration Strategies for Finite Element Analysis of AM using

Graphical Processing Units. In this task, a novel approach to accelerate the explicit

finite element analysis of the transient heat transfer of AM processes is proposed using

Graphical Processing Units (GPUs). The challenges associated with this approach are

enumerated (e.g., matrix assembly and flux calculation bottlenecks) and multiple

strategies to overcome each challenge are discussed. The performance of the proposed

algorithms is evaluated on multiple test cases for directed energy deposition and

selective laser melting processes. Speed-ups of about 100 − 150𝑋 compared to an

optimized single CPU core implementation for the best strategy were achieved.

1.4. Dissertation Outline

The aforementioned research tasks, collectively establish the scientific and technological

foundations for “Physics-Informed Data-Driven Prediction and Design in Advanced

Manufacturing Processes”. In the following chapter, the technical background on manufacturing

processes, and physics-based and data-driven modeling methods are reviewed. Then, each research

task is comprehensively discussed in Chapters 3-7. Each research task begins with the motivation

behind it, continues with an in-depth discussion on methodology and results, and concludes with

a summary of final remarks and future works. Chapter 8 summarizes the novelties and

contributions of this research and presents guidelines for future research directions. References

and supplemental materials can be found at the end of the dissertation.

28

CHAPTER 2

Technical Background

In this chapter, we introduce the recurring background concepts of the dissertation with the goal

to establish common nomenclature and facilitate the reading experience for all. We start by

discussing the two manufacturing processes of interest in the presented research (i.e., AM and

forming processes). Later, the fundamentals of physics-based modeling and their established

practices are reviewed, and lastly, we briefly introduce state-of-the-art data-driven modeling

techniques and relevant formulations to this research.

2.1. Introduction to Flexible Manufacturing Processes

Flexible manufacturing is a modern industrial paradigm in which manufacturing systems can

adapt to changes in part design, material, and even the order of operations. This paradigm offers

an alternative to traditional high-volume processes (such as casting and stamping) and shows

superior cost and energy efficiency for low- and medium-volume products as they require low

tooling and setup costs. Flexible manufacturing is an inevitable topic of today’s manufacturing as

there is an increasing demand for one-of-a-kind parts across many industries (e.g., aerospace and

biomedical). Given that, modern processes such as AM and incremental sheet forming (ISF)

provide an exciting path toward advancing current manufacturing capabilities; in this dissertation,

we developed tools involving both and, hence, provide an introduction to these processes and their

variations.

29

2.1.1. Additive Manufacturing Processes

Additive manufacturing is a relatively new manufacturing process. The early concepts of AM

can be traced back to two centuries ago in topography and photo-sculpture (Bourell et al. 2009),

but the first AM technology with modern components was proposed by Swainson for plastic

prototyping in 1977 (Swainson 1977). Since then, AM technologies have been increasingly

offering new capabilities such as fast production, compatibility with complex geometries, support

for various classes of materials, and low environmental imprint. These features led to the fast

growth of AM in biomedical, aerospace, and automotive fields over the past decades. While

developing new AM processes and enhancing existing ones is an active field of academic and

industrial research, the ASTM standard recognizes seven families of AM processes including VAT

photopolymerization, powder bed fusion, binder jetting, material jetting, sheet lamination, material

extrusion, and directed energy deposition, each offering a unique set of features and capabilities

(A. S. T. M. 2012).

Metal powder-based AM processes are increasingly employed due to their advantages in

producing functional parts with limited manufacturing time and cost. Nowadays, applications of

metal powder-based AM processes go beyond just producing prototypes, but are also used for

manufacturing products with complex geometries (Yang et al. 2012), varying alloy compositions

(Guo et al. 2015, Wenjun et al. 2015), and locally-controlled microstructures (Dehoff et al. 2015,

Tan et al. 2015). Our research effort in this dissertation is focused on two metal power-based AM

processes, namely, Directed Energy Deposition (DED) and Powder Bed Fusion (PBF). Schematics

of these two AM processes are demonstrated in Figure 2.1. DED is a class of AM processes that

uses focused heat sources, usually an electron or laser beam, to melt the powders and

30

simultaneously delivers the powder to the focal point of the heat source as the powder delivery

nozzle follows the toolpath derived from CAD geometries (Gibson et al. 2010, Gu et al. 2012).

PBF is another category of AM processes in which a thin layer of powder is delivered to the base

plate using a powder delivery system and then the laser is used to gradually melt and fuse the

powder (King et al. 2015).

Figure 2.1. Schematic of two AM processes; (a) DED process with coaxial nozzle to deliver

powder to the focal point of a laser and (b) PBF process that uses a roller to spread a thin layer of
powder before melting the layer (Mozaffar et al. 2019).

From various challenges that are currently facing AM technologies, the lack of established

design principles and engineering practices requires immediate attention as it severely restricts the

benefits and capabilities one can expect from AM processes. AM design and modeling involve

simultaneous physical phenomena happening at different length scales and long time spans—

naturally leading to high-dimensional and computationally expensive problems. Current best

practices to manufacture a successful part either entails expensive trial and errors or attempts to

conservatively opt for safe parameters and design setting, both of which avoid pushing AM

processes to their limit and unlock their full potential.

31

2.1.2. Incremental Sheet Forming Processes

Sheet metal forming processes play an important role in producing durable metallic goods. In

contrast to traditional forming processes, such as stamping and deep drawing, where the part is

built using costly part-specific tooling, ISF uses generic tooling and incrementally deforms sheet

metals until the desired part is achieved (see Figure 2.2 for an example of ISF configuration). ISF

not only saves the time and costs associated with designing, manufacturing, and maintaining tools,

but also offers higher formability as it delays local necking and premature fracture in forming

parts. Different configurations of ISF are available commercially and within the research

community, such as single-point incremental forming (SPIF), two-point incremental forming

(TPIF), double-sided incremental forming (DSIF), and accumulative DSIF which differ in terms

of the contact and toolpath strategies used. For the sake of brevity, the interested readers are

referred to (Moser 2019) for a detailed description and analysis of various ISF processes.

While ISF shows great capabilities in low-volume productions, it also presents unique

challenges in modeling and controlling the process compared to traditional approaches. One aspect

of these challenges is due to the complex loading histories caused by ISF where the material

experiences multiple non-proportional cycles of loading and unloading in different directions.

Experimental studies show that these loading conditions cause advanced elasto-plastic behavior in

many metallic materials such as the Bauschinger effect, transient hardening, permanent softening,

hardening stagnation, and overshooting effect (Barlat et al. 2013, Bruschi et al. 2014).

32

Figure 2.2. Schematic of the double-sided incremental forming process (DSIF). DSIF is a
flexible, dieless sheet metal forming process, which incrementally accumulates localized
deformations to form the final part. The figure is a courtesy of the AMPL research group.

2.2. An Overview on Physics-Based Modeling Techniques in Manufacturing Processes

Modeling attempts to understand an observed phenomenon and to reproduce the event as close

as possible. Therefore, modeling enhances our knowledge of the laws of the world around us,

which by its own has been, and still is, an intrinsic value for many great scientists. Besides,

modeling allows us to exploit physics laws to design better engineering solutions, making it a core

pursuit in engineering practices and recently in many others such as animation production and

virtual reality fields. The modern usage of models stems from the massive computational power

available today that allows the simulation of extremely large systems. By utilizing realistic

simulation tools, one can avoid costly experimental tests. A renowned example of such instances

is the car crash test, where the destructive experiment is very expensive and most of such tests are

replaced by simulation tools today.

Using the underlying physics to simulate processes allows the capture of complex phenomena

through relatively simple known laws of nature. They often lead to robust solutions and generalize

well as long as similar physics is applicable. However, analytical physics-based solutions are rare

in today’s engineering practices, because realistic problems operate on complex domains (e.g.,

33

unstructured geometries) and boundary conditions. A popular physics-based approach with a wide

range of applications in the design and development of engineering solutions is FEM. It is

noteworthy that there are several alternatives to FEM for modeling physical phenomena over

complex domains such as the finite difference method, finite volume method, and even meshless

methods such as the material point method, but here we focus on FEM due to its extensive usage

in manufacturing applications. FEM analysis starts with determining the applied physics and their

deriving formula. For example, transient heat transfer and Navier-Stokes formulas are partial

differential equations (PDE) commonly used for solving thermal and fluid simulations,

respectively. The underlying PDE combined with the boundary conditions applied to the problem

form a boundary value problem (BVP), which is also known as the strong form of an FEM

formulation.

The ultimate goal of FEM is to approximately solve the BVP over any given domain by

converting the strong form into a system of equations. In FEM, one performs this task by first

calculating the weak form of the BVP, which can be achieved by integrating the strong form with

an arbitrary variation, known as the test function. The benefit of the weak form is that it can be

integrated over each part of the domain independently, which is a key FEM concept allowing the

discretization of the solutions. The FEM domain is broken down into numerous elements and the

weak form is applied over each element. As it is difficult to represent and solve for an arbitrary

function of the unknown field, 𝑢 , , the arbitrary function is redefined with a shape function, a

known function of element shape 𝑁 , , and field values at nodal points 𝑢 . For instance, the field

function of an 8-node hexahedron element would have 8 degrees of freedom as it is defined based

on its 8 unknown nodal values. Therefore, by applying the weak form over all elements in the

34

simulation, a system of equations as a function of nodal values is obtained, which can be solved

numerically using various solvers such as the Gauss-Jordan Elimination method. After the nodal

values are known, one can calculate smooth fields for derived quantities (e.g., stresses and strains)

using shape functions.

When simulating time-dependent physics (i.e., when the effect of acceleration and motion

cannot be neglected), we also need a time integration scheme to incrementally simulate consequent

time steps. Implicit and explicit solutions are two popular approaches for time integration. In

implicit solutions, every time step is solved through a backward Euler integration scheme, which

ensures a stable and accurate solution, even with large time steps. However, this solution comes

with a significant computational cost of large matrix inversions. Explicit solutions, on the other

hand, use a forward Euler integration scheme avoiding iterative solvers; however, this method

does not guarantee satisfying the weak form and small time steps are required to ensure the stability

of the results. A more in-depth FEM formulation for transient heat transfer is provided in Chapter

7.2.

Without undermining the massive services physics-based modeling techniques (including

FEM) have done to advance our lives over the past century, there is room for improvements in

some aspects of such models. While each model has its own strength and weaknesses and needs

to be evaluated individually, here we shortly discuss the common drawbacks of physics-based

modeling. As a first argument, there are many instances that a known meaningful physics is not

established, rather, practices rely on phenomenological laws based on limited observations, which

makes them prone to inaccuracies. In addition, despite vast improvements in the availability and

quality of computational resources, simulating the full physics can be too time-consuming and

35

infeasible for realistic applications. This is especially a key concern in flexible manufacturing

processes, as they require long process time and simultaneously operate on length scales spanning

2-3 different order of magnitude. Additionally, practical use of physics involves various

assumptions from their core formulations (even most renowned physics are bounded by the scale

they are valid in), to their implementations, and how they represent the reality of the phenomena.

Using invalid assumptions or accumulation of assumption inaccuracies can easily jeopardize the

quality of a seemingly perfect physical simulation.

2.3. An Overview on Data-Driven Modeling Techniques

In recent years, we see a surge in the usage of data-driven modeling techniques as an alternative

to physics-based approaches. Data-driven modeling is particularly a widespread topic in academic

studies in fields where the physics is too complex to model (e.g., computer vision and natural

language processing) or in dynamic decision-making scenarios (e.g., robotics). Today’s success

stories of data-driven modeling are fueled by advancement in three pillars: (i) availability of high

quality and quantity data as the result of widespread sensors, social media, and networking; (ii)

improvements in computational hardware (e.g., CPUs and GPUs) and innovations in new

specialized hardware (e.g., TPUs), and (iii) advent of algorithmic and engineering solutions to

efficiently process data. In this subsection, we introduce prominent families of data-driven

modeling.

36

2.3.1. Machine Learning

Machine learning (ML) is a collection of statistical concepts used for pattern recognition that

allows computers to capture correlations in data and draw inferences (Samuel 1959). There are

three main categories of ML solutions: supervised, unsupervised, and reinforcement learning.

Supervised learning aims to find the unknown mapping between inputs and outputs given a

database of such pairs. In most formulations, first, a model is trained on database instances, and

one trained, it can be used to predict unseen cases. Linear regression and logistic regression are

two classical supervised models with dense theoretical backbone and widespread industrial

adoption as they lead to extraction of explainable features. Support Vector Machines (SVM) aims

to find a hyperplane in parameter space that maximizes the decision boundary margin, often

leading to robust solutions. Feature engineering is an important aspect of SVM models as they rely

on linear feature correlations. Decision trees are another well-known supervised learning tool,

where a tree data structure of conditional statements determines the model prediction. While

decision trees provide powerful classifiers, they are prone to excessive overfitting and artificially

orthogonal decision boundaries. Ensembled ML is an intriguing concept that argues that a

combination of multiple models leads to an improved model as long as the sources of error in

models are different. Popular examples of ensembled machine learning include random forest

(ensembled decision trees trained on subsets of data), AdaBoost, Gradient Boosting, and stacking

algorithms (Géron 2019).

Unsupervised learning performs the task of finding patterns within unlabeled data. Many

hypothesize that unsupervised learning is the future of learning algorithms as it relaxes the

database requirements of supervised learning. Current prevalent applications of unsupervised

37

learning include clustering, dimensionality reduction, and feature extraction using techniques such

as k-means clustering, principal component analysis, and t-SNE. Dimensionality reduction is by

far the most utilized application of unsupervised learning in mechanics and allows the extraction

of a dense representation of the input, discards irrelevant features and noises, speeds up the training

process, and enables subsequent usage of computationally heavy algorithms such as Gaussian

processes.

Finally, reinforcement learning (RL) aims to maximize the reward that an agent can collects

while interacting with an environment. As the agent collects its own data, in contrast to a stationary

database for supervised learning, RL has known to be one of the most challenging aspects of AI

technologies. Traditional RL approaches such as Markov Decision Process (MDP), Q-learning,

and Monte Carlo Tree Search (MCTS) were originally limited to small state spaces; however,

modern integrations of core RL theories with neural networks as a universal function

approximation have led to multiple breakthroughs in this field over the past five years (Sutton et

al. 2018).

As one can see, there is a range of ML solutions, each suitable for different applications, data

types, and sizes. However, common drawbacks of many traditional ML algorithms include the

heavy reliance of carefully engineered features and the lack of scalability to large systems. As

neural networks offer a great potential to overcome these two drawbacks, the research and many

industrial communities have drastically shifted their attention to this class of ML, which is

introduced in the following section.

38

2.3.2. Neural Networks

The concept of neural network (NN) as a model of how brain neurons work was first introduced

by the neurophysiologist Warren McCulloch and the mathematician Walter Pitt in 1943

(McCulloch et al. 1943). Over time, NNs proved to offer outstanding flexibility in approximating

complex nonlinear functions once they are arranged in multiple connected layers, known as a deep

neural network. Geoffrey Hinton et al. demonstrated the first successful implementation of deep

neural networks to recognize handwritten digits with an impressive precision of over 98% (Hinton

et al. 2006).

Countless types of NN formulations and architectures are proposed for a variety of tasks and

innovating new ones is a vibrant field of research to this day. Therefore, in this section, we only

introduce the most fundamental formulation of NN (i.e., the fully connected neural network), and

the details of each specialized NN used and developed in the dissertation are discussed in each

research task. A fully connected neural network (FCNN) transforms multiple input signals (𝑥) of

each neural to its output signal (𝑛):

 𝑛 = 𝑓 𝑏 + 𝑤 , 𝑥 (2.1)

where 𝑤 , refers to the weights for neuron 𝑖 in connection with input neuron 𝑗, 𝑏 is the bias for

neuron 𝑖 and 𝑓 is a nonlinear activation function. An FCNN is formed by arranging neurons in

layers where all neurons in one layer are connected to all neurons in their subsequent layer (see

Figure 2.3).

39

Figure 2.3. Architecture of a fully connected neural network.

Given an input layer 𝑋, the FCNN network generates an output of 𝑌. In a supervised learning

fashion, where pairs of correct input-outputs are available we can define a loss based on the

difference between network prediction 𝑌 and database prediction 𝑌 (e.g., mean-squared-error) and

optimize the weights and biases of the network to minimize the loss. While any optimization

method can be potentially used to do such a task, gradient descent is by far the most popular

optimization method for neural networks. This is because the gradient of the error with respect to

weights and biases can be efficiently computed using backpropagation algorithm, which allows

simultaneous optimization of large sets of parameters. Although gradient descent does not provide

a theoretical guarantee of global optimality, empirically the iterative process of updating network

parameters leads to close-to-optimal solutions given an appropriate initialization.

Despite the vast successes in the development and deployment of NN structure over the past

few years, many research questions are yet to be answered, especially with respect to its application

40

in manufacturing. Designing new NN structures that are compatible with evolving requirements

of manufacturing modeling and design tools is a non-trivial task. A fascinating research problem

is to find effective approaches to integrate known physics into data-driven modeling. In addition,

advancing capabilities on two issues of generalizability and explainability is invaluable. This is

especially vital in flexible manufacturing applications where one-of-a-kind designs are common

(hence, models should generalize well to new samples) and modeling mistakes can lead to

expensive damages (hence, models should be explainable so that one can verify its decisions).

Finally, novel integrations of data-driven solutions within manufacturing systems are essential and

present many research opportunities—some of which are addressed in the following research tasks.

41

CHAPTER 3

Data-Driven Spatiotemporal Manufacturing Process Modeling using

Neural Networks

3.1. Introduction

Manufacturing processes manipulate material structures to achieve desired functional and

geometrical requirements by adding, subtracting, or deforming the material. While some processes

such as stamping rapidly transform the material, many other such as machining, AM, and ISF rely

on aggregating small local changes to gradually build a part—a common theme in flexible

manufacturing processes. In many of such processes, although the changes are applied locally,

their effects expand beyond the immediate region of applied energy and globally influence major

properties of the part. For example, in DED, a laser beam induces a local melt pool to absorb

material particles in a small area; however, the generated heat can re-melt previously deposited

layers and alter the residual stress, porosity, and material properties in significantly larger sections

of the part. Similarly, in ISF, while the majority of deformation is targeted toward the area under

the influence of the tool, local changes propagate stresses throughout the part causing global elastic

and plastic deformations. Therefore, the final properties of the part in many flexible manufacturing

processes are determined by long sequences of history-dependent influences of the tools as they

change the geometric and material structures of the part.

Modeling the spatiotemporal behaviors of manufacturing processes allows better

understanding of the processes which can lead to an increase in their efficiency and capabilities

and reduce defective parts. Physics-based modeling has been the standard practice for most

42

manufacturing modeling applications. Although, the strengths and weaknesses of each modeling

approach need to be evaluated individually, broadly speaking, high-fidelity physics-based models

(e.g., FEM and CFD) come with a cost of extreme computational requirements, low-fidelity and

lack accuracy in complex settings (e.g., analytical, and phenomenological models). This is

especially true in case of flexible manufacturing processes where simulations are long, and the

involved physics operate on scales spanning over 2-3 orders of magnitude.

In this chapter, we introduce data-driven modeling as an alternative to physics-based

approaches with the goal to advance the discovery, diagnosis, and optimization of advanced

manufacturing processes. It is noteworthy that we consider AM as the main process of interest as

it provides many unique modeling challenges. Additionally, AM is one of the most digitalized and

sensor intensive manufacturing processes, making it a prime candidate for data-driven modeling.

However, the methodology offered here can be easily deployed in many other flexible

manufacturing settings where high predictive power is required, and physics-based modeling does

not provide a viable solution.

In Chapter 3.2, we show that data-driven methods can accurately capture long history-

dependent features in manufacturing simulations. Recurrent neural network (RNN) based

architectures are developed to predict the thermal history of any points in a part during AM

processes. The effect of long history-dependent thermal states on future thermal responses is

captured through an RNN cell of which the input variables include toolpath strategy, deposition

time, boundary, laser state, laser intensity, and layer height. Temperature simulation results of

different geometries built using varying process parameters are applied to train and test the

proposed model, which presents great generalizability across process parameters. Later in Chapter

43

3.3, we propose a graph-based modeling approach to address one of the key shortcomings of data-

driven modeling techniques, i.e., generalizability across unseen complex geometries. Finally, we

conclude this chapter by summarizing our findings and potential future research directions in this

field in Section 3.4.

3.2. Temporal Data-Driven Modeling of Manufacturing Processes using Recurrent Neural

Networks

In many manufacturing processes, the final product is the result of accumulative work on the

material over a potentially long process, which leads to challenging history-dependent features,

i.e., some properties of the material are determined by history of the process and not solely by the

time instant when it directly interacted with a tool. This is common theme that can be observed

across a wide range of forming processes (e.g., ISF, rolling, drawing), welding processes, AM,

hybrid processes, to name but a few. Here, we introduce our data-driven approach with the key

focus on capturing high-dimensional time-series features of such processes.

To showcase our approach, we chose AM as it involves notoriously challenging temporal

features. As mentioned in Chapter 2.1.1, despite AM’s immense potential, its widespread adoption

is hampered by current challenges in prediction and control such as quality variability and process

inefficiencies. Experimental studies have been conducted to analyze the influence of process

parameters on microstructure and build properties in (Shamsaei et al. 2015, Wang et al. 2016,

Stevens et al. 2017, Fisher et al. 2018, Li et al. 2018). However, these models use a limited number

of experiments and are incapable of taking into consideration the complex inter-connectivity of

AM process parameters. Physics-based models were proposed to capture thermo-mechanical,

44

thermo-fluidic, and/or microstructural evolution of the process in (Chiumenti et al. 2017, Wang et

al. 2017, Bostanabad et al. 2018). However, these models are not applicable in many cases because

of their enormous computational cost that might take weeks or months of processing time, even

on supercomputers (Francois et al. 2017), and their discrepancy with experimental results due to

the simplifying assumptions made or incomplete physics.

Current trends in manufacturing, such as Industry 4.0 (Zühlke 2013) and cyber-physical

systems (Lee et al. 2015), increase the visibility and accessibility to information, which leads to

extensive research in data-driven models in the manufacturing community (Lee et al. 2013,

Bostanabad et al. 2016, Bessa et al. 2017, O'Donovan et al. 2018). The application of machine

learning in a polymer powder bed fusion process was discussed in (Baturynska et al. 2018). A

data-driven model for characterizing geometrical dimensions of trace products using dense neural

networks was proposed by (Caiazzo et al. 2018). In (Kamath et al. 2017), the authors compared

multiple regression models for developing a surrogate model for AM simulation. The self-

organizing map technique was used for quantifying the geometric accuracy of the Fused Filament

Fabrication process in (Khanzadeh et al. 2018). Wang et al. (Wang et al. 2020) developed a

machine learning approach to predict tool wear in machining processes. The neural networks are

used to predict the behavior of the materials in sheet forming processes (Gorji et al. 2019).

Due to the limited number of samples and the omission of crucial time-series features of the

process such as the toolpath, which directly affects thermal history and hierarchical microstructure

in AM, most data-driven models fail to provide a profound understanding of this process. To

address this gap, we propose a recurrent neural network structure for predicting the thermal history

of any given point in an AM build in a many-to-many configuration. The proposed approach is

45

well-suited for AM processes since it can accurately calculate the high-dimensional thermal

history of the builds in a computationally efficient manner.

3.2.1. Introduction to Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a special type of artificial neural network (ANN),

designed with the idea that the outcome of each neuron is dependent on its input (like other types

of ANN) and a history variable from past operations, which enables this structure to work with

sequential data. In particular, the Long Short-Term Memory (LSTM) (Hochreiter et al. 1997) and

the Gated Recurrent Unit (GRU) (Cho et al. 2014) are two successful formulations of RNN

structures for training long sequences of data. The underlying concept of RNN structures, i.e., the

use of information from previous steps combined with the current state of the system, is in line

with differential equations. Thus, physics that can be formulated with ordinary or partial

differential equations, such as the finite element method (FEM), are good applications for RNN

models. RNNs allow for the temporal dependency in the input data to be learned without the need

to specify a fixed set of lagged observations. Traditional time series analysis such as auto-

correlation requires the identification of seasonality and stationarity in a time series, which may

change based on laser speed, size of the build, etc., and need to be explicitly adjusted for each

simulation. Further, neural networks are robust to noise in input data and the output variables and

can learn despite missing values. These properties of RNNs led to the hypothesis that the RNN

structure can predict the temperature history in AM regardless of its highly nonlinear nature.

For RNN formulation, the Gated Recurrent Unit (GRU) (Cho et al. 2014) is adopted in this

work as follows:

46

 𝑟 = 𝑠𝑖𝑔(𝑊 . [ℎ , 𝑐] + 𝑏) (3.1)

 𝑧 = 𝑠𝑖𝑔(𝑊 . [ℎ , 𝑐] + 𝑏) (3.2)

 ℎ = 𝑡𝑎𝑛ℎ(𝑊. [𝑟 × ℎ , 𝑐] + 𝑏) (3.3)

 𝑂 = ℎ = (1 − 𝑧) × ℎ + 𝑧 × ℎ (3.4)

Where the GRU cell takes a candidate update (𝑐) and the hidden state ℎ as the input, and

generates an output at the current time, 𝑂 . 𝑟 and 𝑧 represent the reset and update gates

correspondingly where each uses separate sets of weights (𝑊), biases (𝑏), and a sigmoid activation

function. The output (𝑂) is used as the hidden state for the next time step (ℎ) and the hidden state

is initialized with an initial field ℎ .

3.2.2. Proposed Model Architecture

A stacked RNN structure with GRU formulation is considered in this research as depicted in

Figure 3.1. Each GRU cell receives input features (𝑥) for that time step and a hidden state from

the previous time step (ℎ) and outputs a new hidden state (ℎ). The number of units in each

GRU cell represents the dimension of the hidden state, which is connected to other cells using

weights and biases. Using multiple layers of the GRU structure enables the model to comprehend

deeply hidden correlations in the data. Fully connected layers are considered to combine the

outputs of the GRU units into a single time-series temperature output.

47

The stacked GRU model is developed using the Keras deep learning library (Chollet 2015) with

the Adam (Kingma et al. 2014) optimization procedure and a mean-square-error (MSE) cost

function between the model prediction and the database thermal history.

Figure 3.1. Schematic of the many-to-many stacked RNN structure with GRU formulation in

relation with process inputs and thermal outputs; Green circles represent GRU units, blue
rectangles represent GRU cells, yellow boundaries represent stacked GRU wrappers, and blue

dashed lines within the GRU wrappers represent trainable parameters. The schematic and
formulation of GRU units are provided on the left based on the formulation given in (Cho et al.

2014, Olah 2015).

3.2.3. Database Development and Characteristics

The database considered for training the model is built using an in-house finite element code,

GAMMA, for transient thermal analysis using an explicit solver (Smith et al. 2016). This choice

enables us to have access to high volumes of input data required for training the model to learn

48

about the phenomena occurring not only on the exterior of the AM build but also within its interior.

A wide range of input parameters such as laser power (500-1,000 W), scan speed (5-30 mm/s),

toolpath strategy (e.g., zigzag, unidirectional or circular motion), geometric size (5-40 mm), and

shapes (e.g., cubic, cylindrical, thin wall) are used to generate over 250,000 training points for

DED simulation of stainless steel 316L objects.

The input features designed for each training point include toolpath feature (based on the

distance between the coaxial powder nozzle outlet and the birthed element), the time of deposition,

closest distance to the boundary of the build, layer height, laser intensity, and laser state (on or

off). Input features are extracted as time series data from FEM output files and stored in a three-

dimensional tensor compatible with the RNN structure. To investigate the capability of the RNN

structure to operate in noisy environments, an artificial noise with a standard deviation of 30 K is

added to the thermal history in the database. All input features and thermal histories are normalized

using a linear mapping from the minimum and maximum of each feature to the range of 0 to 1 in

order to speed-up the optimization procedure. The model is trained over 80% of the database, while

20% of the database is left out for testing.

3.2.4. Results and Discussion

The RNN model is trained for different configurations such as number of RNN layers (1-5

layers), GRU units (100-500 units), and fully connected layers (1-3 units). Even for configurations

with a small number of layers and units the model reaches 1e-4 MSE after 100 epochs of training.

An epoch is a complete pass of training through the database in batch mode. For a configuration

of 3 stacked GRU layers with 500 units and 1 fully connected layer with 100 neurons, the model

49

reaches 3.210e-5 MSE on training data and 3.84e-5 on testing data with 100 epochs of training.

The training process took approximately 40 hours on a Nvidia Quadro P5000. The prediction for

two random points of a test-set over 20 s of the process is demonstrated in Figure 3.2. The

smoothness of the predicted thermal histories and the similarity between the patterns of the applied

noise and the prediction error (discrepancy between the noisy database and predicted thermal

history) proves that the RNN structure can effectively avoid noise in the database and capture most

of the critical features of the thermal history including sharp changes and flat regions that happen

due to the phase transitions in the material.

Figure 3.2. Evaluation of the stacked RNN model on the test dataset for two random points

over 20 s of the DED process; Comparison of the model prediction (black line) and the test-set
value (cyan dashed line) for the thermal history of a point in a thin-wall build with uni-

directional toolpath (left) and a cylindrical build circular toolpath (right).

One of the key features of RNN structures for this application is that it can predict any arbitrary

number of time increments (0.1 s in this case). To assess the generality of the model, a trained

model is used for predicting a longer time span than it has been trained for. Particularly, two

stacked RNN models trained for 20 s and 50 s of the process are used for predicting 100 s of the

thermal history. The model trained on 20 s (Figure 3.3 top) performs well for the training period

50

and continues to have a reasonable prediction for more than three times of the time span it has

been trained on, to have an overall MSE of 7.05e-5 for 100 s of the process. The model trained on

50 s (Figure 3.3 bottom) decreases the MSE to 3.17e-5 for 100 s of the prediction. This significant

drop in the long-term error of the model comes with the cost of almost two times the required

training time and resources. It is noteworthy that the sharp gradients, melting and re-melting of the

material, which are the main targets of this work, happen in a few layers after material deposition

and after that the temperature changes smoothly. Therefore, the stacked RNN is an effective model

for predicting the most critical features of the thermal history, while the long-term predictions can

be easily improved if necessary.

51

Figure 3.3. Evaluation of the stacked RNN model on the test dataset for 100 s, while trained on
20 s (top) and 50 s (bottom) of the process; Comparison of the model prediction (black line) and
the test-set value (cyan dashed line) for the long-time span thermal history of a point in a cubic

build with zigzag toolpath.

The capability of the trained model is further investigated for predicting the behavior of a

dissimilar geometry type from the training database. A new database with different geometric

features is developed, and the trained model is used to predict the thermal history of three points

of the build. As depicted in Figure 3.4, the model can accurately predict the behavior of points 1

and 3. However, there is significant error in the model prediction for point 2, which is because the

geometric feature and the state of the boundaries close to this point is unprecedented to the model.

The results indicate that even with two hand-picked geometric features introduced in Section 3.2.3

(i.e., closest distance to a boundary of the build and layer height features) the model can perform

52

reasonably well at material points of untrained builds with similar geometric features as the

training database. However, to represent complex geometries, a more flexible geometric feature

extraction methodology will be needed.

Figure 3.4. Evaluating the trained model on a dissimilar geometry; The NU-shape build

geometry and the inspected point locations (a), comparative figures for the points 1, 2 and 3
between model prediction and the test-set (b), (c), and (d), respectively. The toolpath of this

build goes from the buttom left to the upper right side of the letter N and then moves from the
upper left to the upper right side of the letter U.

53

3.3. Geometry-Agnostic Data-Driven Manufacturing Modeling using Graph Neural

Networks

Generating accurate shapes is one of the most important aspects of a successful manufacturing

process. Geometry is not just the output of a manufacturing process, but also a key factor in

determining the appropriate materials and manufacturing processes. In fact, an entire sub-field of

manufacturing, i.e., design for manufacturing (DFM), is dedicated to establishing best practices

for designing geometric features that lead to favorable manufacturing outcomes. Therefore,

considering that geometric features have significant effect on part properties, it is crucial for

simulation tools to accurately model this relationship. Like the previous section, we demonstrate

our methodology on AM processes, however, noting that the same approach can be utilized across

many manufacturing processes.

High-fidelity computational models can offer accurate representation and modeling of complex

geometries; however, they require massive computational resources and time making them

infeasible in time-sensitive applications. Therefore, many research attempts investigated

alternative approaches. Empirical solutions based on experimental data are proposed to model

manufacturing processes for real-time prediction and control systems (Song et al. 2012, Jin et al.

2016). Yet, they offer low accuracy as they over-rely on limited experimental data and fail to

capture interconnected dependencies in process parameters. Alternatively, many analytical and

semi-analytical solutions are proposed to offer a trade-off between computation cost and accuracy

of high-fidelity models. While early versions of such analytical solutions were only applicable to

single-track scenarios, recent publications extend the capability of such models to multi-track and

multi-layer cases (Huang et al. 2019, Ning et al. 2020, Sheng et al. 2020). Despite the recent

54

progress in the field, analytical solutions deviate from realistic responses even in moderately

complex geometries as they include numerous simplifying assumptions.

In the previous section, we showed that data-driven methods can predict long history dependent

features of AM. Additionally, we demonstrated that our RNN architecture can predict the behavior

of samples with similar classes of geometries to ones in training database with a scaled mean-

squared-error of 3𝑒 , however, the error can significantly increase in cases for unseen classes of

geometries. A surrogate model was proposed by Roy et al. (Roy et al. 2020) to achieve real-time

thermal history prediction. A set of input features (e.g., distance from moving heat distance and

cooling surface) are carefully selected from the geometry representation using GCode to reduce

the computational demands. Their method can be generalized to different sizes of the same

geometry, various process parameters and different materials achieving a predictions accuracy of

95%. Two machine learning-based models using extreme gradient boosting (XGBoost) and long

short-term memory (LSTM) are proposed by Zhang et al. (Zhang et al. 2020) to predict thermal

history using six input variables, including laser power, scan speed, layer index, time index,

average height, and width. Models are trained and validated using real-time experimental

measurements taken by IR thermal cameras under setups with varying process parameters. The

authors reported a best runtime of 0.34 s for XGBoost, which is small enough for real-time

prediction of data captured by IR cameras. In the study by Haghighi et al. (Haghighi et al. 2020),

physics-based and data-driven models are combined to characterize filament bonding and porosity

distribution in extrusion-based additive manufacturing for PLA material, which is a thermoplastic

polyester. An analytical heat transfer model was applied for thermal profile characterization and

an artificial neural network was adopted for filament deformation characterization. Their hybrid

55

model achieved an average accuracy of 95% and 94% in modeling inter-layer and intra-layer

bonding, respectively. In summary, however, the aforementioned data-driven approaches

demonstrate their results only for simple geometries, such as thin walls and cubic structures.

As one can see, despite major achievements in data-driven modeling, state-of-the-art

approaches fall short on a key issue—generalization across unseen geometries, which is crucial

for AM modeling as AM is mostly used for producing one-of-a-kind and unstructured geometries.

Given these limitations, the objective of this work is to introduce a novel physics-aware data-

driven predictive model that can benefit from the high predictive power and computational

efficiency of AI-empowered models while drastically improving their ability to generalize across

challenging geometries. Our approach captures the intricacies of the physics through a graph

representation, which provides a flexible representation of complex unstructured geometries.

Additionally, the approach follows the local contributions of each node to other nodes within an

element (in our case, a hexahedron connecting 8 nodes) and provides fundamentally similar

calculation pathways to primary physics-based approaches, i.e., FEM.

3.3.1. Introduction to Graph Neural Network

Graph neural networks (GNN) are deep learning architectures that capture dependencies in

unstructured graphs via message passing between neighboring nodes. Due to their flexibility,

GNNs have rapidly gained popularity in social sciences (Wang et al. 2018), chemistry (Fout et al.

2017), and image processing (Wang et al. 2018). The two major categories of GNN includes

spectral-based and spatial-based methods. Spectral-based methods (e.g., GCN (Kipf et al. 2016),

AGCN (Li et al. 2018), CHEBNET (Defferrard et al. 2016)) define a convolution operation based

56

on the Laplacian eigen-basis, which makes this class most applicable to problems with a static

graph representation (Liu et al. 2020). In contrast, spatial-based GNNs define the convolution

operation on the graph by aggregating the information from neighboring nodes and edges. Spatial-

based GNN formulations consist of three steps: (i) message creation and propagation at the starting

nodes, (ii) message aggregation at the target nodes, and (iii) calculation update based on the

aggregated message. Here, two nodes are neighbors if they belong to the same element. A

schematic of our definition of neighboring nodes and the three message-passing steps are

demonstrated in Figure 3.5.

Figure 3.5. Schematic of a target node and its neighboring nodes within an element. Message
passing includes three fundamental steps: (i) message construction, (ii) message aggregations,

and (iii) and target update.

we hypothesize that the spatiotemporal dependencies in AM processes which are traditionally

modeled via physics-based simulations, such as FEM, can be alternatively captured using graph

neural networks. This hypothesis stems from the resemblance between finite element matrix

assembly operations (which combine the local contributions of element interconnectivity) and

57

graph neural network message-passing formulations. To test this hypothesis, we developed a

database of simulation-based thermal responses while building a variety of industrial-grade AM

parts. We investigate two GNN architectures to reproduce AM responses. The schematics of the

two architectures are depicted in Figure 3.6 and their details are elaborated upon in what follows.

Figure 3.6. Schematics of the two architectures for spatiotemporal prediction of AM thermal

responses: (A) The GNN architecture predicts the single-time step update in each training
instance given the node and element features at the time-step; (B) The RGNN architecture

predicts and trains multi-time step interactions where at each time step the network receives a
temporal nodal-based encoded representation, a non-temporal element-based representation, and
the hidden state of the previous stacked GRU cell and outputs the thermal distribution over the

geometry. Both architectures can be recursively evaluated to produce thermal outputs of arbitrary
length.

58

3.3.2. Proposed Network Architectures

GNN Architecture

As the first option, we devised a GNN-based architecture in which the network receives the

thermal responses in the previous time step as well as process parameters at that time including

nodal and element-based features (detailed in Section 3.3.3) and outputs the thermal responses in

the current time step, as depicted in Figure 3.6A. In essence, the network is responsible for

calculating thermal fluxes at each time step to properly update the thermal fields. In this network,

each training or evaluation step predicts one forward time increment, however, by recursively

providing the network output as the next time increment’s input we can produce time-series

responses of arbitrary length. For the GNN cell formulations in Figure 3.6A, we found that

DeeperGCN (Li et al. 2020) empirically leads to better results compared to existing alternatives,

though it is noteworthy that in our experience the difference in performance has been insignificant.

In the DeeperGCN formulation, ℎ (node features for the 𝑙th layer) will be passed to a layer-

normalization layer, an activation layer with a rectified linear unit, and a drop-out layer for feature

preprocessing. Subsequently, a spatial convolution is performed with the preprocessed features to

update the features for the next layer. The spatial convolution operation is defined as (Li et al.

2020):

 ℎ
()

= 𝑀𝐿𝑃 ℎ
()

+ 𝐴𝐺𝐺 𝑅𝑒𝐿𝑈 ℎ
()

+ 𝑒
()

+ 𝜀 : 𝑢 ∈ 𝒩(𝑣) + ℎ
() (3.5)

where 𝒩(𝑣) is the set of neighboring nodes of 𝑣, ℎ() are the neighbor node feature and 𝑒() are

the features of edges connecting 𝑣 and 𝑢. 𝑅𝑒𝐿𝑈 is the rectified linear unit activation function and

59

𝐴𝐺𝐺 is the aggregation function, which is the SoftMax function in the current work. 𝑀𝐿𝑃 is a

multi-layer perception and 𝜀 is a small positive constant to assure numerical stability. As shown

in Eq. (3.5), the encoded neighboring node features ℎ() and edge features 𝑒() are first added and

fed to an activation function to construct the message from each neighboring node. The message

is aggregated and then combined with nodal features in an 𝑀𝐿𝑃 to calculate an update. Finally,

the updates are added to the previous node to construct the output of the GNN layer. The last step

provides the residual connection which not only facilitates the network training process, but also

improves the interpretability of the models as it resembles thermal fluxes.

RGNN Architecture

As an alternative architecture, to potentially better model long temporal dependencies of the

thermal system, we developed a Recurrent Graph Neural Network (RGNN) architecture as

depicted in Figure 3.6B. In this architecture, the network takes the time-series nodal features and

edge features as the input and directly generates time-series thermal responses over an arbitrary

number of time steps. At each time step, a GNN cell is used to capture local interactions between

nodes and elements using their corresponding features. By concatenating the candidate updates

generated by the GNN cells with shared parameters, a time-series candidate update (𝑐) is

assembled, which feeds into a stacked RNN layer. For the RNN formulation, the Gated Recurrent

Unit (GRU) (Cho et al. 2014) is adopted in this work (see Eq. 3.1-3.4). In our implementation, the

GRU cell takes a candidate update (𝑐) and the hidden state 𝑠 as the input, and outputs the

60

temperature field at the current time, 𝑇 . The output (𝑇) is used as the hidden state for the next

time step (𝑠) and the hidden state is initialized with the initial temperature field 𝑇 .

3.3.3. Geometric Database Development and Characterization

We developed a database based on high-fidelity finite element simulations, which has allowed

us to have access to the thermal histories of all geometric points. An explicit in-house AM

simulation package, GAMMA (Smith et al. 2016, Mozaffar et al. 2019), is used to solve the

transient heat transfer equations while we gradually activate elements as the toolpath passes over

an predefined mesh. Heat conduction, convection, radiation, and external heat flux as the result

of the laser beam are modeled in our simulations, while stainless steel 316L is used as the material.

Key process and material properties are reported in Table 3.1.

Table 3.1. Process and material properties for the generated database.
Material Properties (SS316L) Process and Environmental Properties

Density 8,000 Kg/m3 Ambient Temperature 300 K
Heat Capacity 0.5 J/g∙K Laser Power 1 KW
Latent Heat 272.5 J∙g Laser Diameter 2 mm
Conductivity Coefficient 21.4 W/m K Report time step 0.1 s
Solidus/Liquids 1,648.15/ 1673.15

K
 Scan speed 10 mm/s

To ensure that we train and test the proposed models on diverse geometries, we selected 45

different industrial-grade geometries from the ABC database (Koch et al. 2019), where 40 of them

are used for training and 5 geometries are randomly separated for testing. Four samples of the

61

geometries are shown in Figure 3.7, while the complete set of geometries is provided in Appendix

A - Figure A.1. The selected geometries vary in their size, number of layers, shapes, and geometric

features (e.g., wall thickness) to capture a wide range of AM builds. CAD geometries are scaled

and placed on a substrate of 20 mm height and 100 mm diameter to make them suitable for sample

DED manufacturing. All the geometries are meshed using ABAQUS with 8-node hexahedron

elements, where each element has an approximate edge size of 5 mm for the substrate and 1 mm

for the part, resulting in about 10k - 50k elements in the meshes. To incentivize the network to

generalize across different toolpaths, a Python script is developed to automatically generate DED

layer-by-layer toolpaths for arbitrary geometries where the contour patterns are randomly selected

from 9 toolpath strategies varying in their motion directions, patterns (zigzag versus spiral) and

starting positions.

Figure 3.7. Sample AM builds adapted from the ABC online repository (Koch et al. 2019) for
industrial-grade geometries. Geometries are oriented and placed on substrate plates to construct
the AM simulation database. Three geometries within the blue border are in our training dataset
while the geometry within the red border is used as one of the test samples. All geometries are

provided in the Appendix A - Figure A.1.

We create the database using graph representations, where the graph typology is constructed

based on the meshed geometry, i.e., every node of the mesh is defined as a node of the graph, and

the edge is defined with a connectivity matrix that indicates which nodes are within a common

62

element. Each node of the graph is embedded with three features: (i) birth flag (indicating whether

a node is active at that time step), (ii) layer height, and (iii) laser distance feature defined as the

inverse of the distance between each node and the laser beam at each time step. In addition to

matrix connectivity, we consider an element-based distance feature indicating the distances

between any two nodes of an element. As element connectivity and feature are constant in time,

we implement them as static inputs to the model across all time steps, whereas nodal features are

provided as time-series inputs (see Figure 3.6B). The two networks require different sampling

methods. For the GNN architecture, we randomly sample pairs of inputs (process features and

thermal responses at time 𝑛) and outputs (thermal responses at time 𝑛 + 1) at different times of

the simulations. In contrast, the RGNN model receives time series inputs and outputs of 50

consequent time steps (equivalent to 50 mm of deposition), where the starting times are sampled

from the length of the simulations. To provide a fair comparison between the performances of the

two networks, they train over the same amount of data collected from the same simulations,

separated into training and test sets. All inputs and outputs of the models are normalized to values

between 0 − 1 to assist the optimization process.

3.3.4. Results and Discussion

We implemented the two architectures using the Pytorch deep learning library (Paszke et al.

2019) and Pytroch Geometric package (Fey et al. 2019) in Python. The models are trained on their

corresponding training sets, while the test sets are only deployed for evaluation without

contributing to backpropagation. Each training epoch consists of a complete pass on training

samples in which we update model parameters and simultaneously calculate a mean squared error

63

(MSE) of the predictions versus database ideal responses. After each epoch, all test samples are

evaluated and their MSE errors are stored. We stop each training process when no improvements

in the MSE of the test samples are seen. The training process takes approximately 2 and 4 weeks

on an Nvidia RTX 8000 GPU for the GNN and RGNN, respectively.

Figure 3.8. Training and evaluation results for the proposed GNN and RGNN formulations:
(A) The evolution of the train and test losses over training epochs is normalized per node per

time step; (B) An example simulation and the predicted thermal history at three points with the
location of points depicted on the top right and the comparison of histories between GNN,

RGNN and the ground truth on the lower right. Note that 𝑡 = 0 refers to the starting time of the
100 time-step test sample and not the entire build.

Our results, depicted in Figure 3.8, indicate that the GNN architecture rapidly captures

important correlations in data and reaches a satisfactory error of 2.36𝑒 MSE on the training set

and 3.24𝑒 MSE on the test set in just 40 training epochs. The GRNN architecture requires 5𝑋

more epochs to stabilize on the test set MSE with an error of 2.19𝑒 MSE on the training set and

2.20𝑒 MSE on the test set. However, note that the RGNN model attempts to predict 50 steps

64

into the future—a drastically more difficult task compared to the single time step prediction.

Therefore, a higher error is reasonable and expected for the RGNN model. We further demonstrate

the output of the developed data-driven models for a sample case in the test set (see Figure 3.8B).

The output of each trained model is compared to the ground truth simulation results for three

randomly selected points on the geometry surface for 100 time-steps. This is possible because

both GNN and RGNN models, although being trained on a fixed number of time steps (1 and 50

respectively), can be recursively evaluated for any arbitrary length of time. The GNN model results

in 6.07𝑒 MSE and RGNN model in 3.28𝑒 MSE averaged over all nodes of the simulation.

Qualitatively, the results show a good agreement between both models and the ground truth,

however, the GNN model captures the thermal stagnation around solidification better while the

RGNN model predicts the pick temperatures more accurately.

To further investigate the stability and capability of the model for long simulations, we evaluate

the models on 45 samples (40 for training and 5 for test sets) over 1,000 time steps, which is

1,000𝑋 and 20𝑋 the training span of the GNN and RGNN models, respectively (see Figure 3.9).

Often, such intense extrapolations fail in machine learning; however, we see that both models are

capable of reasonable predictions over long periods of time and their errors, although raising over

time, remain stable. In Figure 3.9A-3.9C, we demonstrate a sample case study for both GNN and

RGNN models over 1,000 time steps including their thermal contours as well as root mean squared

errors (RMSE) for all material points in each data-driven simulation. While starting similarly, the

RGNN model significantly outperforms the GNN model after about 100 time steps, showing a

superior capability to capture long interactions. A similar conclusion can be drawn by observing

the RMSE evolution over all training and test samples as shown in Figure 3.9D where the GNN

65

model results in a RMSE of 0.0313 for the training set and 0.0383 for the test set, while the RGNN

model shows a negligible error propagation with a RMSE of 0.0161 on the training set and 0.0152

on the test set. Impressively, both models result in close performance between the training sets and

test sets (the RGNN model even shows a slightly better accuracy on the test set), which shows that

they can generalize well across completely unseen geometries for long simulations. Additionally,

the RGNN model also shows a better performance in long-term predictions, effectively

demonstrating a saturation of error propagation.

Figure 3.9. Evaluation of the trained models capability to produce long-term simulations. The

evolution of the thermal field on a sample simulation is depicted for the GNN and RGNN models
(A and B). The error propagation of the sample simulation and all database simulations for both

models are presented (C and D).

66

3.4. Conclusions and Future Works

Recent advancements in high-throughput computing combined with the popularity of data-

sharing protocols and cyber-physical systems create a unique opportunity to develop data-driven

models for heterogeneous materials and challenging manufacturing processes. In this research

task, we presented a stacked RNN structure with a GRU formulation of time-series modeling of

manufacturing processes and demonstrated that it accurately predicts thermal histories in AM

builds. Our results show that the model reaches an MSE of 2.97e-5 on a test dataset after a 100

epoch training. Additionally, two overarching tests for predicting the thermal history over a longer

time span and non-trained geometries were also examined, showing the potential of RNN models

to predict complex behaviors in AM processes. The accuracy of the model can be further improved

by increasing training epochs.

A key gap in the capability of state-of-the-art data-driven models related to their poor

generalizability across geometries was also addressed. We demonstrated that our proposed RGNN

architecture can effectively capture local intricacies of the process through a graph representation

and long-term temporal correlations via a recurrent network structure to achieve unprecedented

generalizability over unseen geometries and maintain it through 1,000 time steps, which is over

20𝑋 of its training span. Our codes and data are made available for the research community at

https://github.com/AMPL-NU/Graph_AM_Modeling, to further explore its general applicability

in other manufacturing processes.

Further improvement can be achieved by expanding on both key elements of the data-driven

models: database and network. As the model heavily depends on the size and quality of the

database, an improvement avenue is to broaden the database to different process parameters,

67

materials, and geometries. Similarly, one can improve the network by deploying larger networks

(as we do not observe overfitting in our models) and training over longer time step periods to

further reduce the errors. While the presented work trains on simulation data, this framework can

also be directly deployed on experimental data as high-quality shared repositories for

manufacturing processes are growing. We believe that our approach opens the path for new

generations of physics-informed data-driven modeling in manufacturing processes with the

flexibility to go beyond thermal responses for predicting more challenging aspects of a wide range

of manufacturing processes.

68

CHAPTER 4

Data-Driven Constitutive Modeling for Computational Plasticity

4.1. Introduction to Computational Plasticity

Understanding the deformation of materials under different loadings is a core concept in design

and manufacturing. Since accurate measurements of the stresses is infeasible in most applications,

numerical simulations, such as FEM, are commonly used to quantify the material states over

complex geometries. However, solving the FEM formulation requires establishing the relationship

between the stress and strain components for each material point. This relationship is untrivial and,

as one can imagine, it varies widely between metals, rubber, and composites, to name but a few.

In essence, a material’s constitutive model, based on the previous state of the material including

the applied stresses (𝝈) and other internal variables, known as state variables (𝒒), attempts to

update the two variables (i.e., stress and state variables) for the current time step given the current

deformation (∆𝜺), as depicted in Figure 4.1. Without loss of generality, we focus this

discussion on elasto-plastic behavior as they occur in most metals.

69

Figure 4.1. Calculation scheme for a material’s constitutive model where the model receives the

previous stress and state variables as well as the current deformation and outputs the updated
stress and state variables at each time step.

 ∆𝜺 = ∆𝜺 + ∆𝜺 (4.1)

 ∆𝝈 = ℂ ∶ ∆𝜺 (4.2)

 ∆𝜺 = ∆𝜆𝒓 , Δ𝒒 = ∆𝜆𝒉 (4.3)

 ∆𝜆 Φ(𝝈, 𝒒) = 0 (4.4)

In classical plasticity, the key to compute the material response is to correctly decompose the

deformation into elastic and plastic components (Eq. 4.1), which is unknown at each time step. To

solve for these components, a number of additional equations are required to account for the

number of unknowns in the system. Some of the relationships stem from the definition of the

variables; for example, the elastic strain increments are linearly correlated with stress increments

through the known matrix of elastic stiffness (ℂ) according to the definition of the elastic strain

(Eq. 4.2). Other equations are established based on theoretical assumptions (e.g., plastic flow rule

70

determining the evolution of the plastic strain, Eq. 4.3, and the definition of effective stress and

strain) or phenomenological laws developed mainly based on experimental observations (e.g.,

yield criteria, Φ(𝝈, 𝒒), determining when deformation is plastic and hardening laws defining the

evolution of the yield surface). A summary of these equations that need to be solved

simultaneously is provided by Eqs. 4.1 - 4.4, where ∆𝜆 denotes the plastic multiplier increment, 𝒓

is the normal direction to the yield surface at yield position, and 𝒉 defines the evolution of the state

variables, which is often determined by the hardening law.

To guarantee the consistency condition (Eq. 4.4) an iterative Newton-Raphson method is

commonly used in practice, where one first assumes that all deformation increments are elastic

and later solves for the current ∆𝜆 iteratively until a predefined numerical accuracy is achieved.

The outstanding progress of the computational plasticity field to establish the stress-strain

relationship stems from reducing 3-dimensional plastic behavior into so-called “effective”

phenomenological laws that can be calibrated using a minimal number of experiments. This

process introduces various assumptions including yield criteria formulation, flow rule, and

effective stress-strain definitions. In addition, solving the plasticity system of equations becomes

more computationally demanding and unstable as one tries to predict more complicated

phenomena such as the Bauschinger effect (Armstrong et al. 1966, Leem et al. 2019), ratcheting

(Chaboche 1991, Ohno et al. 1993), anisotropy (Hill 1990, Barlat et al. 1991), viscoplasticity

(Chaboche 1989), permanent softening (Geng et al. 2002, Lee et al. 2007), and distortional

hardening (François 2001, Feigenbaum et al. 2007, Barlat et al. 2011).

71

In this work, we aim to introduce a first-of-a-kind data-driven constitutive modeling approach

and show that it can directly provide a closed-loop mapping between meterial deformation and

stresses in their original 3-dimensional spaces. Our appraoch resolves the need for numerous

theoritical assumptions introducing a more flexible and general constitutive model for

unconventioal mateirals. Furthermore, as a data-driven model does not require iterative solutions,

it opens a new avenue for drastic improvments in the efficiency of computational plasticity

methods.

In this chapter, we first introduce the main steps in our approach to data-driven constitutive

modeling in Section Chapter 4.2. Two case studies are elaborated upon in Section 4.3 and a

detailed network analysis is presented in Section 4.4. Finally, the conclusions and future research

directions are enumerated in Section 4.5.

4.2. Theoretical Approach to Data-Driven Constitutive Modeling

We follow a three-step framework to create data-driven constitutive models. First, samples of

input space are extracted using a design of experiments technique. As the model solely relies on

the data to interpret the constitutive relationships, it is crucial that the samples sufficiently

represent the distribution of input conditions in which the data-driven model is expected to

perform. Second, we create a database of material responses corresponding to the input samples.

While in principle, any reliable source would suffice, we pursue computational analysis to create

a database of ground-truth input-output pairs. Finally, we propose a novel machine learning

approach to learn the material plasticity as it trains over thousands of material response samples

captured in the database.

72

4.2.1 Design of Experiments in Input Space

To capture the behavior of a general constitutive model, we consider three key types of variables

in our design input space: (i) microstructure descriptors (e.g., volume fraction, inclusion

geometries), (ii) material properties for each microstructural phase (e.g., elastic moduli, yield

behavior), and (iii) loading conditions (e.g., deformation range and patterns). For the temporally

fix features (e.g., microstructure and material descriptors), a space-filling design of experiment

technique is deployed to maximally encompass information on the entire valid range of variables.

Here, we build an RVE database using a variant of the descriptor-based approach (Xu et al. 2014)

as it enables establishing physically interpretable links between microstructural descriptors and

material properties. First, we identify key microstructural descriptors that characterize the RVE

and conduct design of experiments (DOE) with Sobol sequence technique. Then, we reconstruct

the RVEs corresponding to the DOE points. Finally, we post-process the generated RVEs to extract

more microstructural descriptors that are not used in stage one. In the case of fibrous composites

where the fibers of an RVE are equally-sized and randomly dispersed within the matrix (an

example is given in Section 4.3.2), we choose the following three descriptors to characterize the

morphology: fiber volume (or area) fraction (𝑣), fiber radius (𝑟), and minimum allowable center-

to-center distance between any two fibers (𝑐). The first two descriptors are known to affect the

material properties in fiber composites (Bessa et al. 2017). The third descriptor is used to set a

minimum distance between any two fibers to avoid overlaps, facilitate FEA, and partially control

the spatial distribution of fibers within the matrix. Given the 3D input space of [𝑣, 𝑟, 𝑐], we generate

73

a DOE of size 5,000 where the range of each parameter is selected sufficiently large (see Table

4.1) to reconstruct a wide range of RVEs.

Table 4.1. Parameter ranges for RVE reconstruction and load-path design (Mozaffar et al.
2019).

 𝒗 (%) 𝒓 (𝝁𝒎) 𝒄 (𝝁𝒎) 𝑬 = [𝒆𝟏𝟏, 𝒆𝟐𝟐, 𝒆𝟏𝟐]

Min 5 3 8 [−0.02, −0.02, −0.02

Max 40 10 20 [0.02, 0.02, 0.02]

To reconstruct the RVE corresponding to the 𝑖 DOE point (i.e., given [𝑣 , 𝑟 , 𝑐]), we first

randomly place 𝑛 =
∗ ∗

 fibers of radius 𝑟 in a square RVE of side length 𝐿 = 200 𝜇𝑚. Then,

we iteratively perturb the fiber locations until their spatial distribution satisfies 𝑐 . It is noted that

some combinations of [𝑣, 𝑟, 𝑐] might correspond to infeasible RVEs or our iterative perturbation

might stop before 𝑐 is satisfied. The 3D input space of [𝑣, 𝑟, 𝑐] along with the feasible DOE points

are visualized in Figure 4.2 where it can be observed that some regions of the [𝑣, 𝑟, 𝑐] space do

not correspond to realizable RVEs. Figure 4.3 also shows four sample RVEs for easier

interpretation of microstructural differences. Note that the triplets [𝑣, 𝑟, 𝑐] cannot uniquely

characterize a microstructure with randomly dispersed equally-sized fibers. Hence, we post-

process the reconstructed RVEs to extract four more morphological features that quantify the

spatial distribution of fibers. These features are the minimum, maximum, mean, and standard

74

deviation of nearest neighbor distances across the fibers: 𝒏𝒏 = [𝑛𝑛 , 𝑛𝑛 , 𝑛𝑛 , 𝑛𝑛]. That is, for

the 𝑖 RVE, we calculate the nearest neighbor of all the fibers (center-to-center distance) and then

calculate the abovementioned statistics. These seven non-temporal features (along with the

deformation path) are employed in our deep learning task as inputs.

Figure 4.2. Design of experiments with 5,000 points in the 3D space of [𝑣, 𝑟, 𝑐]. 𝑣 is in percent

while 𝑟 and 𝑐 are in 𝜇𝑚 (Mozaffar et al. 2019).

Figure 4.3. Four sample RVEs. Side lengths are all 200 𝜇𝑚 and the triplet below each RVE

corresponds to [𝑣, 𝑟, 𝑐]. 𝑣 is in percent while 𝑟 and 𝑐 are in 𝜇𝑚 (Mozaffar et al. 2019).

Sampling temporally varying features such as deformation path is more intricate as it involves

generating a sequence of points (rather than a single point) for each sample path, see Figure 4.4A.

To address this issue, we assume that any dynamic feature evolves to its end-state in 𝑛 time steps

75

of size Δ𝑡. From these time steps, we then choose 𝑛 equally spaced ones as control points and

assign them random deformations which are uniformly drawn from the feature’s range. Finally,

we realize a path of dynamic deformations by connecting the feature values of these control points

via an interpolator. We have considered two different interpolators: Gaussian process (GP) and

polynomial regression, see Figure 4.4B and C. For multi-dimensional features such as strain, we

generate paths along each dimension independently.

Figure 4.4. Sampling the temporally varying loads: (A) Three end-states are marked in the strain

space spanned by 𝑒 and 𝑒 (𝑒 = 0 for clarity). For each end-state, two deformation paths
that connect it to the origin are illustrated. The grey area indicates the range of each strain

component. (B) Two examples indicating the temporal evolution of the three strain components
that, collectively, determine the deformation path to an end-state. The markers on each path

indicate the control points used in interpolation. Here, 𝑛 = 100, 𝑛 = 6, and the interpolator
is a zero-mean GP with power exponential kernel. Paths in (B) are not related to (A) (Mozaffar et

al. 2019).

4.2.2 Database Assembly

We simulate the behavior of the constructed RVEs under complex loading conditions using

high-fidelity finite element analysis (FEA). A MATLAB code developed by Bessa et al. (Bessa et

al. 2017) creates the scripts that interact with the finite element software ABAQUS® to preprocess,

execute and postprocess all the simulations automatically for the two-dimensional RVEs using an

76

implicit static solver. The analysis begins with generating the material and boundary condition

files. The MATLAB script parses the geometry descriptors for each RVE in the database and

generates python scripts which creates the geometry, meshes it with a predetermined mesh size

(1.5 𝜇𝑚), and assigns the materials to corresponding sections. We apply periodic boundary

conditions to the edges of RVEs as it better estimates the overall performance of the composite.

Temporal strain components 𝑒 (𝑡), 𝑒 (𝑡), and 𝑒 (𝑡) are defined as displacement boundary

conditions on the RVEs. Next, The MATLAB script generates the simulation files and executes

ABAQUS® using them. Finally, the outputs of each simulation is postprocessed to extract three

engineering stresses 𝜎 (𝑡), 𝜎 (𝑡) and 𝜎 (𝑡) as well as the plastic energy 𝑈 (𝑡). Note that the

computational analysis is completely automated to produce large databases without manual input.

4.2.3 Machine Learning Approach

Once the input space is sampled and the corresponding output database is created, an RNN is

fitted to learn the plasticity constitutive law by relating stresses and plastic energy to

microstructure descriptors and loading conditions. RNNs describe plasticity as a map including

time evolution of the different variables:

 σ = f(e : , m, p, t) (4.5)

where 𝒎 and 𝒑 describe the microstructure descriptors and the properties of the phases, 𝒆 : is the

history of spatially averaged strains applied to the RVEs from the first to current (𝑡) deformation

increment, and 𝝈 is the spatially averaged stress at the current deformation increment.

77

RNNs are an extension of neural networks designed to handle sequential data, i.e., they can

learn events happening along different time sequences that can be captured with a different number

of snapshots. RNNs use history-dependent hidden states 𝑠 (𝑥 , 𝑠) to compute the outputs

𝑜 (𝑥 , 𝑠) which enables them to carry information of previous inputs for future predictions, where

𝑥 is the input feature at increment 𝑡. This unique feature of RNNs combined with the flexibility

of their model architecture has proven to be greatly beneficial on tasks such as machine translation,

natural language processing and voice recognition, among others (Mozaffar et al. 2018, Young et

al. 2018). Early formulations of RNNs suffer from a phenomenon known as vanishing/exploding

gradients, first noticed in (Hochreiter 1991), which hinders the backpropagation-based training

process of the networks for long sequences. Long Short-Term Memory (LSTM) (Hochreiter et al.

1997) was proposed to avoid vanishing gradients by using multiple data gate mechanisms which

control the flow of storing or forgetting information in hidden states and outputs. Gated Recurrent

Unit (GRU) (Cho et al. 2014) uses a similar concept as LSTM while using a simplified formulation.

Although LSTMs and GRUs have shown to have close performance in many cases (Chung et al.

2014), GRUs formulation is less prone to overfitting and allows faster training due to the smaller

number of trainable parameters. Stacking multiple RNN units enables the model to predict higher-

level nonlinearities and interactions between features. A major challenge in predicting plasticity

constitutive laws for material systems is that the model should effectively correlate temporal

loading inputs with non-temporal RVE design features (e.g., volume fraction, fiber radius, or

elastic moduli). Three variations of RNN architecture are considered to address this challenge as

depicted in Figure 4.5A to C.

78

Figure 4.5. Variation of RNN architecture to encapsulate temporal and non-temporal inputs; (A)
post-mixing non-temporal data through a dense network, (B) configuring non-temporal data as

initial hidden state value through a dense network, or (C) establishing a secondary non-temporal
hidden state in GRU formulation (Mozaffar et al. 2019).

First, non-temporal features can be merged with temporal RNN outputs using fully connected

neural network (FCNN) layers to form a hybrid deep learning architecture (Figure 4.5A). While

this approach is plausible for applications with fixed output length at the final time-step, its

structure does not provide a natural fit for constitutive law discovery of material systems as it

restrains the temporal prediction of the model to a fixed length and offers limited correlation

between temporal and non-temporal features.

As a second approach, the non-temporal features can be integrated into the RNN formulation

as the initial value for hidden states (Figure 4.5B). As the dimensionality of non-temporal inputs

and hidden states are often different, a dense network can be used to perform this mapping.

Although this approach has shown promising results for image processing tasks (Karpathy et al.

2015, Vinyals et al. 2015), it is not the most effective architecture for constitute laws because all

79

information in the hidden states are subject to change as they pass through GRU cells. That is,

non-temporal inputs can get corrupted with other hidden features which makes it excessively

difficult for GRU cells to access them at downstream time steps.

We propose a GRU formulation in which a secondary hidden state is used to carry non-temporal

inputs through the GRU cells which allows nonlinear correlations between temporal and non-

temporal input features while providing each GRU cell direct access to temporal inputs, non-

temporal inputs, and history-dependent hidden states (Figure 4.5C). The altered formulation of a

GRU unit (Cho et al. 2014) used in this work is as follows:

𝑟 = 𝑠𝑖𝑔 𝑊 . ℎ , 𝑥 , ℎ + 𝑏 (2)

𝑧 = 𝑠𝑖𝑔 𝑊 . ℎ , 𝑥 , ℎ + 𝑏 (3)

ℎ = tanh (𝑊. 𝑟 × ℎ , 𝑥 , ℎ + 𝑏) (4)

𝑜 = ℎ = (1 − 𝑧) × ℎ + 𝑧 × ℎ (5)

where 𝑠𝑖𝑔 is the sigmoid function. The reset gate (𝑟) determines the combination of inputs (𝑥),

previous hidden states (ℎ), and the secondary hidden state (ℎ) to build a candidate hidden state

(ℎ), and the update gate (𝑧) controls the influence of candidate hidden state to the unit output

(𝑜), which is also used as the new hidden state (ℎ). Using this variation of GRU formulation non-

temporal features are protected from corruption by 𝑟 , the reset gate. Although this approach adds

additional weights and biases to the GRU, increasing model complexity and training time, it

enables GRU cells to capture intricate interactions between input features throughout the entire

temporal states.

80

The proposed neural network models based on the architectures demonstrated in Figure 4.5 is

developed using the Keras library (Chollet 2015). The model includes RNN cells to detect history-

dependent features and combines with one or more time-distributed dense layers (Keras) to

transform high-dimensional outputs of RNN cells into the desired 4 outputs (three engineering

stresses and plastic energy) of the RVEs over time. A cost function of the mean absolute error

between the output values in the developed database and the predictions are defined and the

training process is performed using Adam optimization method (Kingma et al. 2014). The inputs

(i.e., microstructure descriptors and deformation paths) and outputs (i.e., stresses and energies) of

the database are normalized to a range between 0 and 1 to expedite the training process by reducing

narrow valleys in trainable parameter space.

We use the scaled mean absolute error (SMAE) metric to evaluate the results of the model. This

enables us to have a fair error measure with the same dimensions as the original outputs which is

independent of the data magnitude as it is scaled over the range of data. Although the plastic energy

should not decrease over time according to the second law of thermodynamics, it is noteworthy

that small decreases in the plastic energy can be seen even in the FEA results. However, to quantify

if the plastic energy is predicted with an acceptable range of error, we define a second metric as

the accumulated plastic energy deviation from monotonic increase averaged over test set samples,

which is named as scaled mean plastic energy decrease (SMPED).

The developed model is trained on 80% of the database while the rest is used as test set for

validation. The train set SMAE decreases consistently as we increase the number of RNN layers,

RNN units, or time-distributed layers due to the computational complexity the models. However,

using excessively complex configurations causes the model to overfit the train set samples. Also,

81

our results indicate that adding extra time-distributed layers adversely affect the test set SMPED,

which is another form of undesirable overfitting.

4.3. Plasticity Modeling Results

Our analysis shows the architecture depicted in Figure 4.5C leads to the best results (details

presented in Section 4.4.1). Based on this architecture, we consider two examples to illustrate the

capabilities of sequence learning in finding plasticity constitutive laws. The first example focuses

on a single RVE with a curved inclusion which imposes significant distortional hardening. The

second example pertains to a class of RVEs with distributed circular inclusions. This later example

demonstrates that our approach allows to systematically formulate microstructural information in

plasticity constitutive laws while classic constitutive modeling lacks such generality.

4.3.1 Case I: RVE with Curved Inclusion

Even simple heterogeneous materials can undergo complex history-dependent plastic

deformation. An illustrative example is devised by considering a periodic microstructure of a

material composed of distorted elliptical fillers as shown in Figure 4.6A. Without loss of

generality, consider the matrix material to be an aluminum alloy (AA6061) described by a von

Mises isotropic hardening model, and the rubber fillers described by an Arruda–Boyce hyperelastic

material model (Arruda et al. 1993). The material properties of the models are provided in Table

4.2.

82

Table 4.2. Matrix and fiber material properties for case 1(Mozaffar et al. 2019).

Matrix density (𝝆𝒎) 𝟐. 𝟕 𝐠/𝐜𝐦𝟑

Matrix Young’s Modulus (𝑬𝒎) 68.9 GPa

Matrix Poisson’s ratio (𝝂𝒎) 0.33

Matrix Voce isotropic hardening

𝝈𝒊𝒔𝒐,𝒎 = 𝑩 − (𝑩 − 𝑨) 𝐞𝐱𝐩(−𝒏𝝐)

A = 74.4 MPa

B = 144.98 MPa
𝑛 = 7.25

Fiber density (𝝆𝒇) 1.0 g/cm3

Fiber Arruda shear coefficient (𝝁𝒇) 166 MPa

Fiber Arruda locking stretch (𝝀𝒇) 2.8

The combination of a ductile matrix and a hyperelastic filler with non-symmetric geometry

results in a compound elasto-plastic behavior where the matrix deforms plastically while the fillers

can store a significant amount of elastic energy. Although the constituents are isotropic, the filler

geometry induces significant anisotropic behavior and distorts the yield surface obtained for the

macroscopic heterogeneous material as it undergoes different deformation paths. The macroscopic

constitutive behavior of the heterogeneous material results from relating the applied average strain

components 𝑒 (𝑡), 𝑒 (𝑡), and 𝑒 (𝑡) at time step t to average stresses 𝜎 (𝑡), 𝜎 (𝑡), 𝜎 (𝑡) and

plastic energy 𝑈 (𝑡). The average stresses are computed via homogenization of the RVE, while

the average strains are converted into a periodic boundary value problem (Bessa et al. 2017). Note

that each stress state of the RVE depends on the deformation path towards getting there.

83

Figure 4.6. (A) Undeformed configuration of RVE with curved ellipse and (B) von Mises stress

contour of the deformed periodic RVE in MPa for illustrative case 1(Mozaffar et al. 2019).

Once the RVE in Figure 4.6A is simulated via FEA under 15,000 different deformation paths,

a database with the average stresses and plastic energy for each deformation path is generated (100

deformation states per deformation path). Using this dataset (created in 2 weeks using 48 cores of

a high performance computing cluster), we train an RNN with an architecture illustrated in Figure

4.5C whose parameters are trained on 80% of the database. We assess the predictive power and

data sufficiency by the unseen 20% portion of data. We use a scaled mean absolute error (SMAE)

metric to evaluate the results of the model and a second metric for the plastic energy, called scaled

mean plastic energy decrease (SMPED), to quantify a possible decrease in plastic energy as this

should not happen since plasticity is an irreversible form of deformation (second law of

thermodynamics). The designed model consists of 3 stacked layers of 500 RNN units followed by

a single time-distributed dense layer, which corresponds to around 3 million trainable parameters.

Finally, a leaky rectified linear unit (Xu et al. 2015) activation functions is used to impose

nonlinearity into the neural network model. We trained the model for 200 epochs which resulted

84

in 0.00281 training set SMAE, 0.00355 test set SMAE, 0.000181 training set SMPED and

0.000186 test set SMPED.

Figure 4.7 presents results for two different validation deformation paths: one deformation path

of the test set that was not used in training (Figure 4.7A to C); and a linear unidirectional loading

and unloading deformation path for validation purposes that is not present in either of those sets

(Figure 4.7D to F). As observed in Figure 4.7B and Figure 4.7C, the RNN is predictive along

deformation paths of the test set (unseen data) for both quantities of interest. In addition, we also

created validation cases of deformation paths that were not present in either the training or test

sets. Figure 4.7D shows a linear unidirectional strain path which stretches the RVE in the

𝑒 direction to 0.1 engineering strain and then in the opposite direction to −0.1 engineering strain

while 𝑒 and 𝑒 are kept at zero. Note that the training set does not include any linear strain path,

rather it is constructed via a Gaussian process which results in fluctuating paths. Figure 4.7E and

F demonstrate that our RNN model is also able to predict these average stress states and plastic

energy. We note that the model can also effectively predict the Poisson’s ratio effect between 𝜎

and 𝜎 . The Supporting Information includes details on the RNN architecture analysis, as well as

convergence studies and error metrics used to assess the predictions. In addition, accuracy of the

predictions can be easily improved by increasing the size of the training dataset, but these results

indicate that the model can generalize well to loading conditions outside this dataset.

85

Figure 4.7. Evaluation results for the trained model in case 1. The top row demonstrates (A) the

applied average strains, (B) the predicted and database average stresses and (C) the predicted and
database plastic energies for a test set sample (unseen in training process). The bottom row

depicts the (D) average strains, (E) average stresses, and (F) plastic energies for the
unidirectional loading test (Mozaffar et al. 2019).

We further explore the predictive capabilities of our model by evaluating the yield surface

evolution as the RVE experiences different loading conditions. Figure 4.8 shows the yield surface

at the onset of plasticity in purple, and the yield surface obtained at the end of three deformation

paths. We define plastic deformation to start when the plastic energy increases by the threshold of

1 𝑚𝐽. Alternatively, the average equivalent plastic strain of the matrix could be used. We construct

the yield surface by loading the RVE from its current stress state to 40 deformation paths in

different directions (details are provided in Appendix B). The principal stresses of the RVE (i.e.,

eigenvalues of the stress tensor) are calculated when the RVE is plastically deformed above the

mentioned threshold and the stress state is stored in order to reconstruct the yield surface. Details

of yield surface construction are provided in Supporting Information. Each of the four yield

surfaces shown in Figure 4.8 includes the result obtained directly from FEA in dotted lines, the

86

prediction from RNN in solid lines and the applied deformation before yield surface construction

with respective colors. The yield surface at the onset of plasticity (purple) resembles the elliptical

shape of von Mises yield surface which is in-line with the behavior of the matrix. However, as

seen at the end of the three deformation paths, the yield surface is distorted, shrinks/expands and

rotates for different deformation histories. Remarkably, the RNN can track the complete yielding

behavior accurately, including the anisotropic and distortional yield behavior. Therefore, using

sequence learning for finding plasticity laws of general RVEs is demonstrated to be possible,

laying the foundations for a new modeling route for plasticity that learns the compound correlation

of yield surface and hardening laws without any explicit guide or definition of classical plasticity

terms such as effective plastic strain and effective stress.

87

Figure 4.8. Yield surface evolution under different deformation conditions and paths. FEA-

based and RNN predicted yield surfaces are demonstrated in dotted lines and solid lines,
respectively, at the end of three different deformation paths as compared to the original yield

surface (purple) (Mozaffar et al. 2019).

4.3.2 Case II: RVE with Distributed Circular Inclusions

To explore the flexibility of the proposed framework, we study a second case which differs

from the previous case in two major aspects. First, we consider periodic microstructures with

distributions of circular fibers, where each sample in the database varies in terms of their fiber

volume (area) fraction, fiber radius, and distance. We consider epoxy with combined isotropic and

kinematic hardening and carbon with elastic behavior as the matrix and fiber material models,

respectively. Details of material properties are provided in Table 4.3. Second, we considered

88

polynomial deformation paths with maximum strain of 2% in this case. These two design choices

give us a compound elasto-plastic behavior for the RVE as the matrix deforms plastically while

fibers can store a significant amount of elastic energy, whereas the behavior of the first case was

mostly dominated by plastic deformation.

Figure 4.9. (A) Undeformed configuration and (B) von Mises stress contour of a deformed

sample of periodic RVE with distributed circular fillers in MPa for illustrative case 2 (Mozaffar
et al. 2019).

Table 4.3. Matrix and fiber material properties for case 2 (Mozaffar et al. 2019).

Matrix Young’s Modulus (𝑬𝒎) 𝟒. 𝟎𝟕 𝐆𝐏𝐚

Matrix Poisson’s ratio (𝝂𝒎) 0.34

Matrix Voce isotropic hardening

 𝝈𝒊𝒔𝒐,𝒎 = 𝑩 − (𝑩 − 𝑨) 𝐞𝐱𝐩(−𝒏𝝐)

A = 16.44 MPa
B = 77.5 MPa

𝑛 = 746.2

Matrix kinematic back-stresses (𝒏𝒌𝒊𝒏,𝒎) 2

89

Fiber density (𝝆𝒇) 1.8 g/cm3

 Fiber Young’s Modulus (𝑬𝒇) 15 GPa

Fiber Poisson’s ratio (𝝂𝒇) 0.2

The inputs to the RNN model are the non-temporal microstructure descriptors as well as the

temporal deformation paths and the outputs are temporal stresses and plastic energy over 100

increments for each RVE. Similar to the previous case, two validation tests are presented and

neither of which is used in the training process. A database with 5000 samples is used in this case,

80% of which used for training. A model with architecture shown in Figure 4.5C and similar

configuration as the previous case is trained for 500 epochs resulting in 0.00242 and

0.00257 SMAE on training set and test set correspondingly, while the model error for the SMPED

metric is 0.00104 on both datasets. Figure 4.10A to C demonstrate the comparison of our model

prediction with the ground truth FEA for a polynomial deformation path outside of the training

samples. The results indicate that the model can accurately predict both stress and energy responses

of the RVE. The results of linear unidirectional loading test (depicted in Figure 4.10D to F) show

that the model is accurately predictive for stress and most regions of plastic energy. The small

noise in the plastic energy prediction is caused by the sharp change in deformation path, which

was not observed when the deformation paths were sampled with GP regression due to its

smoothness.

90

Figure 4.10. Evaluation results for the trained model in case 2. The top row demonstrates the (A)
the applied average strains, (B) the predicted and database average stresses and (C) the predicted
and database plastic energies for a test set sample (unseen in training process). The bottom row

depicts the (D) average strains, (E) average stresses, and (F) plastic energies for the
unidirectional loading test (Mozaffar et al. 2019).

4.4. Network Analysis

4.4.1. RNN architecture analysis

The three RNN architectures introduced in Figure 4.5 to combine temporal and non-temporal

features are extensively tested and their training result are presented in Figure 4.11 and Table 4.4

after 500 epochs of training. The hybrid architecture, which combines temporal GRU outputs with

non-temporal FCNN features (Figure 4.5A) cannot achieve accurate prediction on training set and

suffers from extreme overfitting. While the architecture with hidden state initialization (Figure

4.5B) performs moderately, the proposed architecture with a secondary hidden state (Figure 4.5C)

achieves significantly better accuracy consistently across different epochs and metrics.

91

Figure 4.11. Cost function evolution as a function of training epochs for three different RNN

architectures (Mozaffar et al. 2019).

Table 4.4. Metrics comparison between trained RNN architectures after 500 epochs of training
(Mozaffar et al. 2019).

RNN architecture Train set SMAE Test set SMAE Train set SMPED Test set SMPED

Configuration A – hybrid

mix

0.00557 0.00888 0.00233 0.00243

Configuration B –

hidden state

initialization

0.00345 0.00367 0.00130 0.00144

Configuration C –

secondary hidden state

0.00242 0.00256 0.00104 0.00104

92

4.4.2. RNN hyperparameter tests

The hyperparameters and configurations of the presented RNN models are studied and

optimized in this work. This analysis includes but is not limited to activation functions,

optimization algorithms, cost functions, dropout layers, normalization process, and addition of

time-series dense layers. Figure 4.12A depicts the results achieved by varying number of neurons

in each GRU cells. It can be seen that 100 neurons cannot provide enough computational

complexity to the model. While the model with 1000 neurons result in lower SAME on training

set compared to the model with 500 neurons, the models perform closely on the test set.

Considering that the model with 1000 neurons require more computational resources and training

time and overfits on the training set, RNNs with 500 neurons are used in this work. Similarly,

Figure 4.12B suggests that a model with 3 layers of stacked GRU layers achieves the best result

with required least computational resources compared to models with 1 or 5 layers.

93

Figure 4.12. Hyperparameter analysis of the RNN model over 200 epochs of training for (A)

number of neurons in GRU cells and (B) number of stacked GRU layers (Mozaffar et al. 2019).

4.4.3 Performance of proposed RNN architecture

We analyze the performance of the model with different sizes of training set to study the

required database for achieving certain error metrics, which is demonstrated in Figure 4.13. As

we increase the size of the training set, the model with 3 layers of 500 neurons performs better in

both training set and test set; however, larger databases lead to an expected improvement of

performance. Ultimately, the require size of database is dictated by the complexity of the behavior

of the RVE and the required accuracy. In this work, we demonstrate that one can achieve predictive

deep learning models for advanced plasticity behavior with databases that are computationally (or

experimentally) built in a feasible time frame.

94

Figure 4.13. Convergence test for the RNN over 200 epochs of training (Mozaffar et al. 2019).

Note that once trained, our data-driven constitutive model performs far faster than the finite

element method. As an example, the developed data-driven model predicts the behavior of one

RVE in the second case study in 0.108 seconds on a Nvidia Titan black GPU while it takes 7.48

minutes on four cores of Intel Xeon CPU E5-2687 for the finite element method to complete the

simulation. While the exact number highly depends on the hardware and simulated physics, it can

be confidently stated that the data-driven approach offers orders of magnitude faster evaluation.

This has important implications on multi-scale simulations where the constitutive laws at each

point of the macro-scale material can be given by RNN models, instead of expensive RVE

analyses. Furthermore, we note that the two approaches scale differently, given the type of

hardware they require and application. For instance, calculating the response of 100 different RVE

cases via the data-driven approach using the same hardware takes only 0.547 seconds, which is

due to the batch processing capability of GPUs. Finite element methods, on the other hand, scale

by distributing sub-domains over multiple CPUs to obtain performance gains through parallel

95

computing. These gains often saturate due to the communication overhead between processing

units.

4.5. Conclusions and Future Works

In this work, we show a first-of-a-kind data-driven approach to constitutive modeling that

enables capturing the complex behavior of general materials including elasto-plastic deformation,

energy absorption, and yield surface evolution. Our results indicate that the trained model can

comfortably reach under 0.5% SMAE error, while being fast to evaluate (a fraction of a second)

because there is no need for iterative solution schemes such as the Newton-Raphson, typical in

classical plasticity. While we showcased this idea in heterogenous material settings, the same

concept applies for homogenous materials as well. As in (Gorji et al. 2020), we used a similar

RNN-based constitutive model to accurately capture the challenging behavior of metal alloys

under forming processes such as the Bauschinger effect and hardening stagnation.

A natural next step for this research path is to implement data-driven models inside FEM

packages and investigate their potential in different applications and optimize their performance

in different hardware settings (e.g., parallel execution on CPU, GPU, and TPUs). Since the RNN

formulation is end-to-end differentiable, it enables efficient computation of consistent tangents

(the partial derivative of stresses with respect to strains). Therefore, implicit FEM solutions, which

require a consistent tangent, seems most compatible with our proposed data-driven model as it

simultaneously solves the constitutive relationship for all elements in FEM simulations and

guarantees convergence. For explicit solutions, however, our preliminary experimentations shows

that incremental stress propagation between elements can generate severe instability for the

96

simulation. The implementation of data-driven constitutive model for explicit solutions in

ABAQUS is demonstrated in Figure 4.14. These results do not show instability for single element

cases. The fully connected neural network stays stable for multi-element tests despite having larger

prediction error; however, the recurrent network grows unstable. I hypothesize this issue can be

mitigated by using better temporal discretization schemes or imposing restrictions on the recurrent

state characteristics. To best of our knowledge, this is an unaddressed gap in current state of data-

driven constitutive modeling and can be a key topic in the future research.

Figure 4.14. Demonstration of instability in RNN-FEM implmentation for multi-element

simulaitons in ABAQUS.

97

CHAPTER 5

Toolpath Design for Additive Manufacturing using Deep Reinforcement

Learning

5.1. Introduction

The performance of metal-based AM is currently hampered by the lack of robust design and

prediction tools. Industrial AM practices often need series of trials and errors to produce parts to

ensure that the geometric and mechanical requirements are satisfied. This is because AM involves

multiple physics spanning over length scales that are orders of magnitude different. Therefore, AM

modeling involves computationally expensive multi-scale methods with significant uncertainties

in the process, which subsequently makes optimization-based design methods infeasible in the

space. While the influence of some process parameters such as laser power, powder parameters

and scan speed on the microstructure and final properties of the AM build are extensively studied

in the literature, the influence of toolpath strategies and, more importantly, approaches for toolpath

design yet to be thoroughly investigated. Designing toolpaths is particularly a challenging task as

the large number of possibilities and the high-dimensional nature of the problem exacerbates

optimization conditions.

In this chapter, we aim to address the toolpath design task by introducing a reinforcement

learning (RL) platform that dynamically learns toolpath strategies to build any geometry with

optimized performance. To this end, we investigate prominent model-free and model-based

reinforcement learning methods to design AM toolpaths in two design cases.

98

In what follows, we discuss the importance of toolpath design methods and current practices in

Section 5.1.1. We establish the fundamental formulation and definition of RL in Section 5.1.2.

Later in Section 5.2 we provide details of our envisioned RL framework for toolpath design,

introducing the environment and analysis cases in Section 5.2.1 and 5.2.2 respectively. We discuss

our methodology and results for model-free methods in Section 5.3. Next, the implementation

details and results of a model-based approach is presented in Section 5.4. Finally, we conclude this

chapter by discussing the impact of our findings and future directions in Section 5.5.

5.1.1 Introduction to Toolpath Design in Additive Manufacturing

The process of toolpath generation usually starts from a CAD geometry. A slicing algorithm

produces parallel sections of the CAD at different heights corresponding to deposition layer

heights. Later, the area encapsulated by the boundaries of each section is filled with 2D patterns,

often in the form of boundary contour passes or raster patterns. While planar coverage path

planning (CPP) can be applied to toolpath design (Weiss-Cohen et al. 2008, Zuo et al. 2010, Zhou

et al. 2012, Chaari et al. 2014, Zhou et al. 2014, Pratama et al. 2015), current literature suggests

that these methods do not scale to large input spaces common in AM processes due to NP-complete

complexity of the solution. Furthermore, cost structure design is an untrivial aspect of CPP

solutions which greatly limits the potential of this methodology to purposefully design the

mechanical behavior of the parts.

There are several publications that show that the choice of the toolpath significantly influences

many aspects of metal-based AM. Steuben et al. (Steuben et al. 2016) considered three different

toolpath patterns for building a part using a fused deposition modeling (FDM) process and

99

demonstrated that the pattern has a significant effect on the ultimate stress and elastic modulus of

the build. Akram et al. (Akram et al. 2018) formulated a microstructure model using a Cellular

Automata (CA) and demonstrated a strong correlation between the toolpath pattern (i.e.,

unidirectional and bi-directional) and the grain orientations. In (Bhardwaj et al. 2018), the authors

considered bi-directional and cross-directional toolpath strategies to manufacture cubic parts with

a Direct Metal Laser Sintering (DMLS) process and studied the surface finish, residual stress and

mechanical properties of the parts. Their study indicates that the parts built with cross-directional

strategy display better mechanical properties, which is due to their desirable structure of columnar

cells. Similarly, the experimental study, done by Sebelle et al. (Sabelle et al. 2018), concluded that

even the angle of a parallel toolpath greatly influences properties such as porosity, ultimate tensile

and thickness in the Selective Laser Sintering (SLS) process.

From the above-mentioned research, it can be evidently seen that the choice of the toolpath is

important as it opens a new avenue to customize material behavior. However, existing research

does not offer a robust solution for the analysis of this influence nor tools to prudently design

toolpaths. In this work, we present a novel way to represent the toolpath and learn design strategies

that lead to optimal performance.

5.1.2 Introduction to Reinforcement Learning

Toolpath design is proposed to be modeled as a RL problem in which an agent learns to design

optimal toolpaths as it dynamically interacts and collects data from an AM environment. In the RL

schema, the agent is responsible for determining the actions at each time step (𝑎), which

influences the environment causing it to move from its current state (𝑠) to a new state (𝑠) and

100

generates a reward feedback (𝑟) for the agent. Here, “state” refers to the representation of the

environment that is visible to the agent. The agent learns to maximize the long-term rewards that

it receives in its lifespan by attempting more of the strategies that lead to the most favorable

rewards.

Most modern RL algorithms can be categorized into three main classes:

1. Policy optimization methods parameterize the policy, 𝜋 (𝑎|𝑠), and optimize 𝜃 to

maximize the expected reward. Policy gradient methods estimate the gradient using the

policy gradient theorem (Sutton et al. 2018) while evolutionary methods, such as cross-

entropy methods (Salimans et al. 2017), perform the optimization without gradient

estimation. Policy optimization methods suffer from poor sample efficiency, requiring

millions of samples. Furthermore, for most policy optimization algorithms, all samples

should be generated using the agent’s policy at each training step, which exacerbates

the sample efficiency of these methods as historic data cannot be used in the training

process.

2. Value function optimization methods (also called Q-learning) do not optimize the policy

directly. Rather, they aim to find the optimal action-value function 𝑄∗(𝑠, 𝑎), as defined

in Eq. 5.1, to represent the maximum discounted reward the agent can collect from any

state. Following the actions that lead to maximum optimal action-values, 𝑎∗ =

𝑎𝑟𝑔𝑚𝑎𝑥 𝑄∗(𝑠, 𝑎), guides the agent to maximize its reward.

𝑄∗(𝑠, 𝑎) = 𝑚𝑎𝑥 𝔼 𝛾 𝑟(𝑠 , 𝑎 , 𝑠)|𝜋, 𝑠 = 𝑠 , 𝑎 = 𝑎 (5.1)

101

In Eq. 5.1, 𝜋 represents the policy, 𝐻 represents the environment horizon and 𝛾 is the

discount factor—a positive value smaller than one. Discounting the future rewards

encourages the agent to collect immediate rewards, bounds the accumulated rewards,

and reduces the variance of the expectation since we often are progressively more

uncertain about future rewards. The action-value function can be obtained using the

Bellman equation (Eq. 5.2) with guaranteed convergence in tabular cases. By exploiting

the self-consistency of the problem structure through the Bellman equation, action-value

function optimization methods can learn the optimal action-value function and

implicitly determine the policy with fewer samples. However, Q-learning lacks the

stability of policy optimization methods.

 𝑄∗(𝑠 , 𝑎) = 𝑟(𝑠 , 𝑎) + 𝛾 𝑚𝑎𝑥 𝑄∗(𝑠 , 𝑎) (5.2)

3. Model-based RL algorithms, unlike the first two categories (known as model-free RL),

attempt to learn an explicit model of the underlying dynamics of the environment. The

model is further used for look-ahead planning or as a virtual sample generator. This

class of solutions can offer a great sample efficiency with orders of magnitude less

required data in published researches (Chebotar et al. 2017, Finn et al. 2017). However,

the quality of the RL agent heavily depends on the accuracy of the dynamics model.

Therefore, while there are many successful examples of this approach for robotics and

games with perfect environments such as chess, many state-of-the-art algorithms in this

class fail in high-dimensional spaces (e.g., pixel-level visual inputs) and uncertain

environments.

102

Note that these categories are not mutually exclusive. In fact, many of the successful existing

examples in the literature use a combination of these approaches. Most famously, actor-critic

methods simultaneously parametrize and train both policy and value functions. For example, A2C

(Mnih et al. 2016) follows the policy gradient theorem while using the value function to reduce

the variance of gradient estimation and provides a stable solution for continuous action spaces.

In this work, we investigate a number of leading model-free and model-based algorithms that

show promising results in challenging high-dimensional domains such as Atari games. Our

toolpath design system allows exploring an unknown dynamic physics through virtual experiments

in a reward driven manner.

5.2. Reinforcement Learning Framework for Toolpath Design

In this chapter, we propose toolpath design by formulating the problem in a RL framework. We

design an agent to dynamically design toolpaths and iteratively learn the strategies that lead to

favorable toolpaths. The reward-driven nature of this methodology provides massive flexibility in

the toolpath design task as the reward can be based on a geometric feature (e.g., to finish the section

as fast as possible), simulation-based mechanical performance, or in-situ experimental signals.

RL is a subfield of artificial intelligence which focuses on training agents that can interact with

an environment and maximize the rewards that the agent collects through this interaction. The field

of RL have experienced major breakthroughs since Mnih et al. (Mnih et al. 2013) showed that AI

can achieve superhuman capability in playing Atari games. Later, several successful innovations

103

advanced the field in game environments such as Chess and Go as well as in robotic tasks (Silver

et al. 2014, Silver et al. 2016).

In an RL schema, the agent is responsible for determining the actions at each time step (𝑎),

which influence the environment causing it to move from its current state (𝑠) to a new state (𝑠).

In this context, state refers to any representation of the environment that is visible to the agent.

The reward (𝑟) that the agent receives encourage or discourage the agent from exploring certain

state and action spaces through the training process and try to maximize the long-term reward that

the agent receives in its lifespan. The overall schematic of our envisioned framework is depicted

in Figure 5.1, where an agent designs the toolpath, which is later executed on the environment,

and the resulting data is stored in a dynamic replay buffer to further improve the agent. This process

is repeated until favorable strategies are found, or the agent stops progressing.

104

Figure 5.1. Schematics of the proposed toolpath design framework. In this framework, the agent
takes an action determining the toolpath in each time step. The action would be executed in an
AM (or equivalently virtual AM) environment. The resulting observation of the state and its

corresponding reward would be stored in a dynamic database, which will be later used to train
neural networks and achieve better planning for future iterations.

5.2.1 Additive Manufacturing Virtual Environment

We develop a virtual environment of an AM process, resembling Directed Energy Deposition

(DED) processes, to collect data and perform the training process. The virtual environment

considers two-dimensional sections on which materials need to be deposited. As we want the

strategies learned by the RL agent to be geometry-agnostic, we develop a database of CAD

105

geometries representing a wide range of spatial structures. The CAD geometries are then processed

into multiple sections by cutting them at different heights and converted into over 400 two-

dimensional sections with 32x32 pixels, which are used to train the agent. A sample of considered

CAD geometries acquired from Thingiverse online repository (Thingiverse) and one of their

corresponding sections are demonstrated in Figure 5.2.

Figure 5.2. Sample CAD geometries (top row) and pixelized two-dimensional sections (bottom

row) for the AM virtual environment.

While evaluating the virtual environment, one section is randomly selected and the RL agent is

asked to design the toolpath for it one action at a time. Eight actions are available for the agent to

explore, including four directions of motion each with two deposition states (on/off). Here, the

policy distribution determines the probability of each of the eight actions to be executed. The

106

environment keeps track of the desired section, filled section, and the location and status of the

nozzle. A representation of the environment state space (s_t) is accessible to the agent at each time

step. A schematic of the environment is depicted in Figure 5.3. Once the agent finishes its assigned

task for a section (e.g., depositing material on all pixels of the desired section), a new section is

randomly selected, and the agent is asked to start over. To avoid excessively long episodes of

training on one section, a maximum of 400 actions are selected for each section.

As can be seen from Figure 5.3, we assume a pixelized section representation and discrete

action spaces. These two assumptions are not inherently restrictive for the proposed methodology

as the representation of the section can be replaced with other continuous or discrete heuristics and

the action space can be easily extended to a higher number of options (e.g., 8 or 16 directions) or

continuous action spaces with minimal change to the algorithm.

107

Figure 5.3. Schematic of the AM virtual environment including section (in blue), filled partition
(in green), and nozzle location and status. The red point indicates the location of the nozzle with
“on” status. Valid actions are shown with eight arrows for “on” (red) and “off” (brown) status

and four directions.

We design the state representation (𝑠) as a single-channel two-dimensional image with a shape

of [32, 32, 1], where the unfilled section has a value of 1.0 and the rest of the pixels are zero.

Additionally, we provide the network with a one-hot encoded list of 10 most recent action

histories. The image is first processed through three layers of a convolutional neural network, then

concatenated with the action history input, followed by two fully connected neural network layers

for policy and value networks in each algorithm.

108

5.2.2 Analysis Cases

We consider two scenarios for the tasks and their corresponding reward systems in this study:

1. Dense reward system. In this analysis, we consider a scenario in which a reward can be

assigned based on the interaction of agents and environments at each time step.

Designing a toolpath that deposits material in all desirable locations of the section in

optimal time is an example of a dense reward system. In this case, we assign a reward

of 1.0 to any desirable material deposition, −1.0 to material deposition in incorrect

locations, and −0.5 to motions without deposition to provide an incentive to finish the

toolpath in optimal time. It is noteworthy that dense reward structures are not limited to

static properties of the environment, such as finishing the toolpath. Other examples of

dense reward structures include rewards that are assigned based on the meltpool size or

shape from an online thermal imaging system.

2. Sparse reward system. As many interesting properties of AM processes can be only

measured and evaluated after the part is made, a reward can only be assigned to the

completed toolpath at the last time step of the episode, which results in a sparse reward

system. To simulate this scenario in the developed virtual environment, we consider the

sequence of ordered actions (up, up, right, down, and down in this order) as a potential

desirable pattern and assign a reward at the end of each episode of the simulation based

on the similarity of the toolpath generated by the agent with the selected pattern. Note

that this pattern is completely hidden from the agent, i.e., the agent can only interpret

the pattern through the sparse reward it receives at the end of each episode. The

similarity between the toolpath and the hidden pattern is measured by counting the

109

occurrence of the completed or partially completed (with a minimum of three

consecutive actions) hidden patterns in the toolpath history. To encourage the agent to

finish the toolpath while learning the hidden pattern, a dense reward of 0.1 and −0.1 is

assigned for correct and incorrect material deposition respectively. While this specific

sequence is selected as a demonstration in this work, the formulation does not depend

on it, and the reward structure can be based on any unknown physics of the environment,

e.g., continual deposition status, behavior on the boundaries of section.

5.3. Model-Free Approach Towards Design

In this section, we first introduce our proposed variations of three state-of-the-art model-free

RL algorithms to design AM toolpaths. Model-free methods are interesting as they are

computationally efficient (compared to their model-based counter parts) and do not rely on a

known physics, which is difficult to obtain in the toolpath design application. Later, we discuss

our results for two cases of dense and sparse reward structures and compare the performance of

each method.

5.3.1 Model-Free Algorithms and Variations

We investigate three model-free RL methods, namely, deep Q-network, proximal policy

optimization, and soft actor-critic. The underlying formulation, proposed variation, and

algorithmic structure of each method is discussed hereunder:

110

1. Deep Q-network (DQN) (Mnih et al. 2015) is a Q-learning approach that parametrizes

action-value function, 𝑄(𝑠, 𝑎), using a neural network and iteratively solves the

Bellman equation (Eq. 5.2) while using a number of numerical techniques to overcome

problems associated with training the neural networks in RL non-stationary settings. As

neural networks generalize, the Bellman equation (Eq. 5.2) tails a dynamic target (i.e.,

both 𝑄∗(𝑠 , 𝑎) and 𝑄∗(𝑠 , 𝑎) change while training), which impedes the training

process. DQN uses an additional neural network as a target network to estimate the

action-value for future states 𝑄∗(𝑠 , 𝑎) and solve the Bellman equation in a more

supervised fashion. While the neural network training theories stand on the assumption

of independent and identically distributed (i.i.d.) data, the successive data collected in

RL settings are greatly correlated. To overcome this issue, DQN uses a replay buffer

that stores all transactions of the environment and randomly draws samples from them

during the training process. To induce exploration of the environment into the agent,

DQN uses the epsilon-greedy strategy. In this algorithm, a probability for exploration

(ε) is initialized. A random number between zero and one is generated at each time step.

If the randomly generated number is less than ε, the agent explores (i.e., a random action

will be chosen), otherwise the best predicted action so far (𝑎𝑟𝑔𝑚𝑎𝑥 𝑄(𝑠, 𝑎)) will be

considered. By annealing ε from one to zero over the training process, the agent acts

more according to its predicted model while keep exploring new solutions.

In this work, we consider a variation of the original DQN paper that empirically showed

enhanced performance for this application. A corrected replay buffer, as proposed in

(Zhang et al. 2017), is used where the last added sample into the replay buffer will be

111

added to the randomly selected batch to eliminate the need for an excessively large

replay buffer. To reduce the overestimation bias of the Q value caused by the

maximizing operation in Eq. 5.2, action selection and action-value estimation are

performed using two separate neural networks, as proposed by (Van Hasselt et al. 2016).

The gradient of the neural network is clipped at each training step to a value of 0.5 to

avoid harmful oscillations of the neural network parameters. Finally, the hard copy

operation in the original DQN paper is replaced by a moving average copy to smoothen

the training process. It is noteworthy that a number of other DQN improvements in the

literature, such as dueling networks (Wang et al. 2015), noisy network (Fortunato et al.

2017), prioritized experience replay (Schaul et al. 2015), are investigated but since they

provided small to no improvement on the results they are not reported here. The

algorithm of the implemented DQN is presented in Algorithm 5.1.

Algorithm 5.1: DQN algorithm for AM virtual environment
1. Initialize AM virtual environment with random sections 𝑒𝑛𝑣, replay buffer 𝐷, action-value

model 𝑄 and target action-value model 𝑄
2. Initialize evolving parameters including 𝜀 for epsilon-greedy, learning rate, and clipping

range
3. Copy parameters of 𝑄 into 𝑄
4. Reset 𝑒𝑛𝑣 with random section and observe 𝑠
5. For iteration = 1, max number of iterations

a. Generate a random value 𝑟𝑎𝑛𝑑 between 0 and 1
b. If 𝑟𝑎𝑛𝑑 < 𝜀 then 𝑎 = random selection between all feasible actions else 𝑎 =

𝑎𝑟𝑔𝑚𝑎𝑥 𝑄(𝑠 , 𝑎)
c. Execute the action on 𝑒𝑛𝑣 and store (𝑠 , 𝑎 , 𝑠 , 𝑟 , 𝑑) in 𝐷
d. Sample a 𝑏𝑎𝑡𝑐ℎ − 1 samples uniformly from 𝐷 and concatenate it with the last

stored sample in 𝐷 to generate a corrected batch sample 𝐵
e. For epoch = 1, number of epochs

i. 𝑟𝑒𝑡𝑢𝑟𝑛 = 𝑟 + (1 − 𝑑)𝛾𝑄 𝑠 , 𝑎𝑟𝑔𝑚𝑎𝑥 ́ 𝑄(𝑠 , �́�)

112

ii. 𝑙𝑜𝑠𝑠 = ℎ𝑢𝑏𝑒𝑟 𝑙𝑜𝑠𝑠(𝑄(𝑠 , 𝑎), 𝑟𝑒𝑡𝑢𝑟𝑛)
iii. Take one optimization step to minimize 𝑙𝑜𝑠𝑠 using 𝐴𝑑𝑎𝑚 optimizer with

clipped gradients
f. End for
g. Soft update of 𝑄 toward 𝑄
h. Reset 𝑒𝑛𝑣 with a random section if 𝑑 is 𝑇𝑟𝑢𝑒, otherwise 𝑠 = 𝑠

6. End for
2. Proximal policy optimization (PPO) (Schulman et al. 2017) is a widely successful

actor-critic method that builds on top of the policy gradient formulation to update its

stochastic policy (𝜋):

𝐿 = 𝔼

𝜋 (𝑎 |𝑠)

𝜋 (𝑎 |𝑠)
𝐴 (5.3)

where 𝐴 is the advantage function and represents the difference between the value

function of the selected action, 𝑄(𝑠 , 𝑎), and the average value function for that state

over actions. Intuitively, maximizing Eq. 5.3 encourages the policy to increase the

probability of action if the selected action performed better than average (i.e., the

advantage is positive) and decreases the probability of relatively worse actions.

However, this vanilla formulation tends to collapse the training process as taking large

steps can easily move the policy into unrecoverable bad parameter spaces. To solve this

issue, PPO restricts the ratio between current policy and previous policy by

pessimistically clipping its value according to Eq. 5.4:

 𝐿
,

= 𝔼 min 𝑟 (𝜃)𝐴 , 𝑐𝑙𝑖𝑝(𝑟 (𝜃), 1 − 𝜖, 1 + 𝜖)

𝑟 =
𝜋 (𝑎 |𝑠)

𝜋 (𝑎 |𝑠)

(5.4)

113

where 𝜖 determines the clipping range. Furthermore, PPO loss (Eq. 5.5) has two

additional terms to train the advantage value 𝐴 using the generalized advantage

estimation method (𝐿) (Schulman et al. 2015) and to maximize the entropy (𝐿) of

the policy to encourage exploration.

 𝐿 = 𝔼 𝐿
,

+ 𝑐 𝐿 + 𝑐 𝐿
(5.5)

PPO can only be trained using samples generated from its current policy (i.e., on-policy

algorithm). This characteristic of PPO causes this algorithm to require a larger number

of samples compared to off-policy algorithms where historic data can be reused for

training the agent through the use of a replay buffer. Empirically, the effectiveness of

the PPO algorithm relies on collecting independent samples from multiple streams of

environments often performed in parallel virtual environments. We implemented PPO

according to the presented algorithm in Algorithm 5.2.

Algorithm 5.2: PPO algorithm for AM virtual environment

1. Initialize policy 𝜋 and value function 𝑉 networks
2. Initialize 𝑁 parallel AM virtual environments with synchronized random sections 𝑒𝑛𝑣,
3. For iteration = 1, max number of iterations

a. Execute 𝑀 action steps for 𝑁 𝑒𝑛𝑣 workers according to current stochastic policy 𝜋
and record rewards 𝑟 , , actions 𝑎 , , terminal states 𝑑 , , states 𝑠 , , values 𝑣 , ,
log probability of actions log_𝑝𝑖 , for each 𝑛, 𝑚 in 𝑁, 𝑀 accordingly

b. Calculate advantages 𝐴 given values 𝑣 , , rewards 𝑟 , and terminal states 𝑑 ,
using generalized advantage estimation (Schulman et al. 2015)

c. For epoch = 1, number of epochs
i. Create mini-batches states 𝑠 , actions 𝑎 , advantages 𝑎𝑑𝑣 ,

values 𝑣 , and log probabilities log_𝑝𝑖

114

ii. 𝑟 = exp (log_𝑝𝑖 𝜋 (𝑎) − log_𝑝𝑖)

iii. 𝐿
,

= 𝔼 min 𝑟 (𝜃)𝐴 , 𝑐𝑙𝑖𝑝(𝑟 (𝜃), 1 − 𝜖, 1 + 𝜖)
iv. 𝐿 = 𝑟𝑒𝑑𝑢𝑐𝑒 []()

v. 𝑟𝑒𝑡𝑢𝑟𝑛 = 𝑣 + 𝑎𝑑𝑣
vi. 𝑣 = 𝑣(𝑠) + 𝑐𝑙𝑖𝑝 𝑣(𝑠) − 𝑣 , −𝑐𝑙𝑖𝑝 , 𝑐𝑙𝑖𝑝

vii. 𝐿 = 𝑟𝑒𝑑𝑢𝑐𝑒
(()) ,

viii. Maximize the global loss function 𝐿 = 𝔼[𝐿
,

+ 𝑐 𝐿 + 𝑐 𝐿] with
respect to 𝜃 using 𝐴𝑑𝑎𝑚 optimizer with clipped gradients

d. End for
4. End for

3. Soft actor critic (SAC) (Haarnoja et al. 2018) is an off-policy actor-critic method that

aims to maximize an alternate action-value function, called soft action-value, that

considers not only the accumulative reward but also the entropy of its stochastic policy.

Theoretically, soft action-value formulation encourages the agent to explore states with

uncertain results. The soft action-value loss is presented in Eq. 5.6.

𝐿 = 𝔼 , , , , ~ min , 𝑄 (𝑠 , 𝑎) − 𝑟

+ 𝛾(1 − 𝑑) min , 𝑄 (𝑠 , 𝑎)

− 𝛼 log 𝜋 (𝑎 |𝑠)

(5.6)

where 𝜃, �̅� and 𝜙 indicate the neural network parameters for the online action-value

function, the target action-value function, and the policy, respectively. The temperature

parameter, 𝛼, determines the importance of the entropy. SAC compensates for the

115

overestimation of action-value functions by training two independent neural networks

and taking the minimum of the two for loss calculations.

As it is proven that the optimal policy can be approximated by the softmax of action-

value function (Nachum et al. 2017), the policy loss is defined as the KL-divergence

between the current policy and action-value softmax. To calculate the gradients of

parameters through the stochastic node of policy sampling, the reparameterization trick

is used. While the SAC only applies to environments with continuous action spaces, we

developed a modified version of this algorithm that uses Gumble-softmax (Jang et al.

2016) to perform the reparameterization for categorical action spaces (Eq. 5.7):

 𝐿 = − 𝔼 ~ , ~ min , 𝑄 𝑠 , 𝑎 (𝑠 , 𝜉)

− 𝛼 log 𝜋 𝑎 (𝑠 , 𝜉) 𝑠
(5.7)

where 𝜉 is an independent noise sampled from a Gumble-softmax distribution and 𝑎

is the reparametrized action. While the temperature parameter 𝛼 can be potentially kept

as constant, the SAC authors devise a formulation to simultaneously train this

parameter in order to constrain it to a minimum target entropy 𝐻 (Eq. 5.8). The full

algorithm for our SAC implementation is provided in Algorithm 5.3.

 𝐿 = 𝔼 ~ , ~ −𝛼 log 𝜋 (𝑎 |𝑠) − 𝛼𝐻
(5.8)

116

Algorithm 5.3: SAC algorithm for AM virtual environment

1. Initialize policy 𝜋 , two action-value 𝑄
,

 and two target action-value 𝑄
,

 networks

2. Initialize AM virtual environment with random sections 𝑒𝑛𝑣 and replay buffer 𝐷
3. Copy parameters of 𝑄 into 𝑄
4. Reset 𝑒𝑛𝑣 with random section and observe 𝑠
5. For iteration = 1, max number of iterations

a. Generate a action using current policy 𝜋 (𝑠)
b. Execute the action on 𝑒𝑛𝑣 and store (𝑠 , 𝑎 , 𝑠 , 𝑟 , 𝑑) in 𝐷
c. Sample a 𝑏𝑎𝑡𝑐ℎ − 1 samples uniformly from 𝐷 and concatenate it with the last

stored sample in 𝐷 to generate a corrected batch sample 𝐵
d. For epoch = 1, number of epochs

i. Calculate 𝑎 , , log_𝑝𝑖 , using 𝜋 (𝑠 ,)

ii. 𝑟𝑒𝑡𝑢𝑟𝑛 = 𝑟 , + 𝛾 1 − 𝑑 , min , 𝑄 𝑠 , , 𝑎 , −

𝛼 log_𝑝𝑖 ,

iii. 𝐿
,

= 𝑚𝑒𝑎𝑛(𝑄 𝑠 , , 𝑎 , − 𝑟𝑒𝑡𝑢𝑟𝑛)

iv. Calculate 𝑎
,

 and log_𝑝𝑖
,

 by reparametrizing 𝜋 (𝑠 ,)

v. 𝐿 = 𝑚𝑒𝑎𝑛 min , 𝑄 𝑠 , , 𝑎
,

 − 𝛼log_𝑝𝑖
,

vi. 𝐿 = 𝑚𝑒𝑎𝑛 −𝛼 log_𝑝𝑖
,

−𝛼𝐻

vii. Take one optimization step to minimize 𝐿
,

,𝐿 , 𝐿 with respect to 𝜃 , ,

𝜙 and 𝛼 respectively using 𝐴𝑑𝑎𝑚 optimizer
e. End for
f. Soft update of target action values �̅� , = 𝜌�̅� , + (1 − 𝜌)𝜃 ,
g. Reset 𝑒𝑛𝑣 with a random section if 𝑑 is 𝑇𝑟𝑢𝑒, otherwise 𝑠 = 𝑠

6. End for

Although the above-mentioned algorithms have inherent differences, we attempted to keep the

hyperparameters of the algorithms as consistent as possible. The rest of the hyperparameters of

each algorithm is individually tuned to maximize the achieved scores.

 117

5.3.2 Model-Free Results and Discussion

We implemented the three discussed model-free algorithms with the proposed modifications

using Tensorflow deep learning library. Each algorithm is trained to design the toolpath in two

cases of dense and sparse reward structures as detailed in Section 5.2.2. The learning curve of each

algorithm is demonstrated in Figure 5.4A and B for a dense and sparse reward structure

respectively. The reported score averages resulted scores for all training geometries from random

initial nozzle location. Since the on-policy nature of the PPO algorithm requires far more episodes

of toolpath generation than the two off-policy algorithms, the PPO results are plotted on a different

horizontal scale for the number of training episodes.

As can be seen from Figure 5.4A while the three algorithms gradually learn to improve their

toolpath designs, SAC achieves a notably inferior performance. DQN and PPO reach a close

performance easily surpassing a manually coded zig-zag toolpath. While the final performance of

the PPO algorithm is 3 scores higher than DQN, DQN reaches a stable solution using 10 times

fewer samples.

118

Figure 5.4. Learning curves of the toolpath design system with the three DQN, SAC, and PPO
algorithms for (A) dense and (B) sparse reward systems. The horizontal axes for the PPO results

are plotted at a different scale (shown on the top of each plot) from the DQN and SAC results
(shown at the bottom of each plot). As the manual zig-zag toolpath strategy is plotted as a

baseline for the dense reward system, such an engineered solution does not apply for the sparse
reward system.

For the sparse case (see Figure 5.4B), the score achieved by the PPO algorithm surpasses the

two other algorithms, and similar to the previous case, SAC results in the worst performance. The

119

highest score of the algorithms for the two cases is reported in Table 5.1 and three samples of the

designed toolpaths with the trained PPO algorithm is demonstrated in Figure 5.5.

Table 5.1. Highest score of model-free algorithms for two reward structure cases.

Algorithm Dense reward Sparse reward

DQN 59.31 28.83

SAC 38.71 5.11

PPO 62.98 40.54

Figure 5.5. Three samples of the designed toolpaths by the trained PPO algorithm for random
sections and starting locations. The section is depicted in light grey. The toolpath motion starts

from the blue diamond shape, following a color gradient ending in a pink arrow shape.

120

Our results show that model-free reinforcement learning is a feasible approach for high-

dimensional manufacturing design systems, such as toolpath design tools, especially if a dense

reward system exists or it is feasible to engineer such a feature by breaking the task into meaningful

step-by-step reward increments. DQN-based algorithms show great potential in this realm as they

offer decent accuracy and sample efficiency. Although the SAC algorithm is reported to produce

state-of-the-art benchmarks in many robotics tasks (Haarnoja et al. 2018), it is incapable of

handling the intricacies of toolpath design. We believe this is because the maximizing entropy

formulation used in the SAC algorithm incentivizes destructive averaging of the value function

that prevents the algorithm from learning delicate features in high-dimensional environments.

In the case of a sparse reward structure, the investigated model-free approaches struggle to

optimize the toolpath. PPO learns the only acceptable solution; however, its excessive on-policy

sample requirement makes this algorithm only applicable to cases where a robust simulation of the

physics exists.

5.4. Model-Based Approach Towards Toolpath Design

In this section, we introduce a model-based RL method for toolpath design. Model-based

approaches explicitly learn the dynamics of the environment and utilize the dynamics for long-

term planning through future look-ahead. The model-based method presented here offers unique

advantages compared to its model-free counterparts. For instance, we expect it to better generalize

to a wide range of environments due to the extracted model and to be less dependent on random

exploration, which is an important feature when exploration is challenging, or meaningful rewards

are sparse. However, both of these advantages heavily rely on the quality of the learned dynamic

121

model. Here, we first discuss the developed model-based formulation in Section 5.4.1 and later

present the respective results in Section 5.4.2.

5.4.1 Model-Based Algorithm

Our implementation of the model-based toolpath design system is inspired by Muzero

(Schrittwieser et al. 2020), which introduces an RL method to plan in Chess and Go games. Muzero

includes two major parts: (i) planning through future look-ahead, and (ii) training neural networks.

In the planning phase, we execute rollouts of the simulation, where at each step the result of a

search determines the best action to take. The results of the simulation rollouts are stored in a

dynamic replay buffer. In the training phase, we produce batches of observations and targets from

the rollouts in the replay buffer and train a data-driven network to accurately model the

environment and its dynamics. These two phases are executed iteratively, where the current model

is used for better planning, and the result of the planning is used to train a better model. This

process is repeated until we capture a precise model of relevant environment features that allows

effective planning for hundreds of time steps in the toolpath design process. To reduce the

computational time of model-based RL, both planning and training steps are heavily parallelized,

where multiple agents generate and save rollouts of the simulations, and at the same time, the

batching and training processes are performed asynchronously. Note that here the model-based

method is trained in a purely data-driven fashion.

The planning starts from the current state observable to the agent. Here, we use a representation

network to convert the state into a denser encoded state. This allows us to process information that

is more relevant to the planning task and avoid the computational costs of directly working in the

122

state space. Then, a Monte Carlo Tree Search (MCTS) is performed in the encodes state space,

where we look ahead for a number of simulation steps and based on the deduced results select the

best action at each time step. To perform MCTS, at each simulation step, we select the node with

the maximum upper confidence bound (UCB) score, which establishes a balance between

exploring nodes with high value estimations and nodes with high uncertainties. The policy

distribution resulted from the UCB is used to draw an action and expand the node. Finally, we

predict a value estimation for the newly expanded node and backpropagate the value estimation

and visit counts of all nodes in the tree. Repeating the mentioned MTCS process for a number of

simulation steps results in a decision tree where the action corresponding to the most root child

visits is selected as the best action. A schematic of this process is depicted in Figure 5.6.

Figure 5.6. Schematics of the model-based toolpath design system which includes two major
parts, i.e., MCTS planning and model training. These two parts are performed iteratively until

reward convergence is achieved.

123

In principle, MTCS with a correct process simulator and adequate simulation steps converges

to the optimal solution. However, future look-ahead for several hundreds of time steps in AM

toolpath environment is computationally infeasible due to exponential growth of possibilities.

Instead, we use the policy distribution, represented by a neural network, to prune the decision tree.

Furthermore, we stop future look ahead with a significantly smaller depth (tens of steps instead of

hundreds) and use the value to estimate potential future reward collections. Given these

modifications to MTCS using a dynamically trained model, we achieve a tractable decision tree

search to determine the best action at each time step. The selected action is executed in the virtual

AM environment and the results of the interaction are saved in a replay buffer.

Four networks are needed in the previously discussed MCTS: a representation network, a policy

network, a value network, and a dynamics network. Each network is constructed with a

combination of residual, convolutional, and fully connected layers. A schematic of the network

architectures is presented in Figure 5.6. The representation network converts the observation to

the encoded state. The policy and value networks predict policy distribution and value estimations

respectively, given an encoded state. The dynamics network predicts the next encoded state and

the reward generated from this transition given the current encoded state and an action.

During each training iteration, we compute a batch of unrolled targets and simultaneously train

the four networks. The target of the reward and value estimations are generated from the rollouts

of simulations in the replay buffer using temporal-difference formulation. The target of the policy

network is set to the output of the MCTS, and the dynamics network is implicitly trained to

124

subsequent rewards, values, and policies. Our implementation of Muzero algorithm is summarized

in Algorithm 5.4.

Algorithm 5.4: SAC algorithm for AM virtual environment

1. Initialize networks, including representation network ℎ, value network 𝑣, policy network 𝑝,
and dynamic network 𝑔.

2. Initialize AM virtual environment with random sections 𝑒𝑛𝑣 and replay buffer 𝐷
3. For iteration = 1, max number of iterations

a. Synchronize networks and make it available to CPU
b. Update the temperature parameter, determining the randomness is drawing actions

from policy distribution
c. Execute environment rollouts in parallel

i. Create a new virtual environment with random section
ii. Create a new container object to hold environment history

iii. While environment is not finish or maximum action does not pass
1. Create a Monte Carlo Tree Search

a. Store the root node
b. Use networks to calculate 𝑠 , 𝑣, 𝑝
c. Expand root and add Dirichlet noise to 𝑝
d. For 𝑛𝑢𝑚_𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠

i. Add root to the search path and set to current node
ii. While node expanded, select a child using UCB,

replace current node, and add to the search path
iii. Use networks to calculate 𝑠 , , 𝑣, 𝑝, 𝑟
iv. Expand node
v. Backpropagate value and visit count

2. Draw an action from distribution of actions weighted by the visit
count of corresponding child nodes

3. Execute action in the environment and store the observation, action,
and reward

d. Execute test rollouts in parallel (similar to part c while eliminating exploration noise)
e. Store container rollouts in replay buffer 𝐷
f. Generate training batches including observations, actions, values, rewards, and

policies for 𝑛_𝑢𝑛𝑟𝑜𝑙𝑙 steps
g. Train network with batches

i. Update the learning rate
ii. Transfer batches to GPU

iii. Generate a computational graph using networks for predicting values,
rewards, and policies for 𝑛_𝑢𝑛𝑟𝑜𝑙𝑙 steps

iv. Compute a Huber loss (Girshick 2015) for value and cross entropy losses for
reward and policy distributions

v. Take an optimizer step for all networks using Adam optimizer

125

h. Save statistics and report reward collection progress
4. End for

5.4.2 Model-Based Results and Discussion

We implemented the model-based RL algorithm for toolpath design according to Algorithm

5.4 using the PyTorch library and trained the model for a dense reward structure proposed in

Section 5.2.2. The result of the training is demonstrated in Figure 5.7 and shows that the Muzero

method initially lags behind model-free methods such as DQN. This is due to the fact that the

performance of the Muzero method heavily depends on the quality of the neural network model

and capturing meaningful and generalizable dynamics requires sufficient environment samples.

However, once the models are adequately trained the performance of the Muzero method reaches

72.24 dense scores surpassing DQN and PPO best scores at 59.31 and 62.98 respectively (see

Figure 5.7A). The comparison between DQN and Muzero is summarized in Table 5.2.

Additionally, we demonstrate the evolution of the loss components in Figure 5.7B during the

training process which resulted in a reward accuracy of 99.75%, a cross-entropy policy loss of

11.95, and a mean-squared-error value loss of 34.13. This result shows that the model is

sufficiently capable of unrolling hypothetical dynamics of toolpaths during MCTS for

approximately 20-30 steps into the future.

126

Figure 5.7. The evolution of reward score during training for Muzero and its comparison to
DQN and zig-zag toolpaths (A), and the evolution of losses for reward, value, and policy terms

during network training using the Muzero method (B).

127

Table 5.2. Comparison between model-based Muzero and model-free DQN methods.

Algorithm Score Computational cost Interaction
episodes

Muzero 72.24 ~5 days 3,500

DQN 59.31 ~18 hours 3,500

The resulting toolpaths for three representative sections are demonstrated in Figure 5.8, where

each toolpath starts from the blue diamond and ends in the pink arrow. Our model-based method

can effectively navigate both hollow and filled geometries starting from a random initial position.

Furthermore, the tree search generated for the initial position of the section on the top right of

Figure 5.8, is also depicted in this figure. This figure shows how the MCTS selectively branches

out and explores different toolpath possibilities and eventually finds the optimal path by looking

at 28 steps into the future.

128

Figure 5.8. Three samples of the toolpaths designed by the Muzero method, where the toolpath

starts from the blue diamond and ends in the pink arrow (top). A demonstration of generated
Monte Carlo Tree Search in the initial position of the section on the top right. The root is
highlighted in red and the optimal path from the root is highlighted in yellow (bottom).

Our results indicate that model-based RL methods can be deployed in design solutions of

manufacturing processes as they offer unique capabilities to step beyond purely explorative

methods and effectively utilize planning methods even in large design spaces. However, these

129

methods require a careful design and training process as they are prone to early saturation or

deterioration. The dynamical database for training the models can impose many challenges that

prevent us from reaching the necessary accuracy for proper planning. For example, the database is

initially heavily biased toward samples with low reward and values, which generates a negative

bias during network training. If left unhandled this bias severely limits the agent’s explorations, as

many possibilities are wrongly estimated as unfavorable. In our experience, generating a positive

bias for reward and value by customizing the corresponding loss functions during the early stages

of training can be an effective strategy to mitigate this issue. Additionally, model-based methods

are significantly more computationally expensive as they require additional training operations to

learn the dynamics of the environment.

5.5. Conclusions and Future Work

In conclusion, we proposed a new framework for the toolpath design of metal-based additive

manufacturing processes by formulating a reinforcement learning problem. Modified versions of

three state-of-the-art model-free and one model-based RL algorithms are used to develop toolpaths

in a virtual additive manufacturing environment. Our results indicate that model-free RL methods

such as DQN and PPO achieve high scores especially when a dense reward structure exists.

However, achieving the highest benchmarks using on-policy methods, such as PPO, requires large

sample sizes, which can be restrictive. Model-based methods, such as Muzero, offer an exciting

alternative whereby learning a model of the dynamics of the environment we can deploy planning

into the design problem and surpass model-free scores while using a few thousand samples.

130

I believe there are many interesting aspects of RL in mechanics that are unexplored and require

future research directions. The first aspect is to expand the current capabilities toward more sparse

structures as our results show that this is an area that results in poor performance. Another vital

aspect of RL is to move toward using reducing sample requirements to enable these methods to go

beyond virtual environments and interact with experimental setups. We envision that

advancements in these two areas will enable RL to be deployed not only in AM but also in a variety

of design and decision-making problems in the manufacturing field.

 131

CHAPTER 6

Additive Manufacturing Process Design via Differentiable Simulations

6.1. Introduction to Differentiable Simulations

While pure data-driven modeling approaches can offer computational efficiency and flexibility

in many applications, they often introduce errors in predicting challenging scenarios outside of

their training domain. On contrary, physics-based modeling can conserve known physical laws

over arbitrary domains. Due to the difference in weaknesses and strengths of these two approaches,

one can imagine that a combination of the two, i.e., a physic-informed data-driven model, can lead

to superior performance. One way to achieve such a hybrid model is to decompose the simulation

into subtasks, some of which are solved using physics-based simulations while using a data-driven

approach for others. For example, a physics-based model can be deployed when a subtask of

simulation involves a trustworthy known physics with affordable computational cost exists,

whereas parts with unreliable physics or conventionally expensive simulations can be replaced

with data-driven modeling. As most modern data-driven approaches involve gradient-based

optimization, to optimize hybrid simulations both physics- and data-driven-based tasks need to be

differentiable, i.e., allow calculation of the gradient of their outputs with respect to their inputs and

internal variables. In addition to that, differentiable physics-based simulations have many stand-

alone applications in scientific computing as they provide instantaneous access to high-

dimensional gradients which are necessary for most solvers and optimizers.

In recent years, differentiable simulations are increasingly used in robotics to advance the

modeling and control capabilities. Hu et al. (Hu et al. 2019) used a differentiable kinematic model

132

in a model-based reinforcement learning setting for soft robots. Heiden et al. (Heiden et al. 2019)

devised a differentiable simulation of robotic rigid body motion which led to an accurate system

identification model with visual inputs. Other noteworthy publications in this field include (Liang

et al. 2019, Holl et al. 2020, Qiao et al. 2020); however, the state-of-the-art studies are limited to

robotics and particle-based systems.

In this chapter, we present a differentiable computational paradigm for process design in

manufacturing processes that incorporates differentiable physics-based simulation and data-driven

responses to optimize manufacturing process parameters in high-dimensional temporal and spatial

design spaces. In particular, we aim to answer two key questions: (i) can the gradients of desired

build performance be efficiently computed in manufacturing processes, and (ii) would gradient-

based optimization provide an effective tool to optimize manufacturing processes in challenging

environments. In a general manufacturing process, the simulation tool determines the interaction

of a set of workpieces (including start and target geometry, material, etc.) and manufacturing tools

as demonstrated in Figure 6.1. Given the initial process parameters, one can compute the

performance of the physics-based simulation model by going through a forward pass (green arrows

in Figure 6.1) of the computational scheme. Using a differentiable simulation, the gradients of a

loss function (defined based on the desired performance) with respect to any of the workpiece,

tools, or process parameters can be computed (red arrows in Figure 6.1), which can be used in an

optimization setting to design manufacturing inputs.

In what follows, we first introduce the background on automatic differentiable in Section 6.2.

We provide details of our methodology for differentiable finite element simulations in Section 6.3

and demonstrate the capability of our proposed approach through three illustrative case studies in

133

Section 6.4. Finally, we conclude this chapter by summarizing our findings and laying down our

vision for future research topics in Section 6.5.

Figure 6.1. Differentiable manufacturing process simulation capable of calculating the gradients

of performance loss with respect to workpiece, tool, and process parameters.

6.2. Automatic Differentiation and Libraries

The surge in the field of artificial intelligence and neural network predictive modeling is

partially due to heterogeneous high-performance computing capabilities and graph-based

automatic differentiation, which enables us to calculate the gradients of an arbitrary loss function

with respect to any of the internal weights in a neural network and, therefore, efficiently navigate

through high-dimensional weight spaces. A core idea in this research is to develop the

computational graph for a physics-based simulation of manufacturing and utilize the gradients of

various high-dimensional process parameters with respect to the desired performance to come up

with novel design solutions.

134

In an automatic differentiation scheme, we construct the computational process as a

composition of operations, where the gradient of each operation is known. Each operation

represents a directed node in the computational graph. The forward pass computes the outputs of

the simulation given the inputs while storing intermediate results. The backward pass starts from

the output node and recursively computes the gradient of parameters by multiplying the incoming

gradient from the next node and the partial derivation of the node evaluated at the current value.

More generally, the gradient between any two parameters on the same computational graphs can

be calculated by (1) finding a computational path between parameters and (2) multiplying the

gradient contribution of each operation along the way. Note that such a computational path is

unique by construction.

As a simple example, consider the computation of the loss function in a regression task with

the following formula:

 𝐶 = 𝑌 − tanh (𝑊. 𝑋 + 𝑏) (6.1)

where 𝑋 is the input, 𝑊 and 𝑏 are trainable weight and bias parameters, 𝑡𝑎𝑛ℎ is the hyperbolic

tangent function, and 𝑌 is the true label. A computational graph of this computation can be

constructed as demonstrated in Figure 6.2, where operations stem from input nodes in blue and

gradually build toward the cost function.

135

Figure 6.2. Schematic of a computational graph for computing the cost function (𝐶) in
𝐶 = 𝑌 − tanh (𝑊. 𝑋 + 𝑏). This computational graph can be utilized the forward calculation of

cost function as well as backpropagation calculation of gradients.

Assuming initial values of 𝑋 = 1, 𝑊 = 2, 𝑏 = 3, and 𝑌 = 6, we can sequentially compute and

store the intermediate variables and the cost as 𝑤 = 2, 𝑤 = 5, 𝑤 = 5, 𝑤 = 1, and 𝐶 = 1. For

computing the gradients of the cost with respect to the weight, 𝜕𝐶
𝜕𝑊, we can find a path between

these two graph nodes. Starting from the last node (𝐶), we can compute the gradient of the cost

with respect to all the nodes on the path. Performing this operation in the reverse orders allows

effective use of dynamic programming where the gradient of each node only depends on the

upstream gradient (which is readily available due to the reverse order of calculations) and local

gradient of that node (which only depends on a known partial derivative function and the value of

the node calculated during the forward path). Thus, the gradients can be computed as shown in

Table 6.1.

136

Table 6.1. Backpropagation steps for gradient calculations.

𝜕𝐶
𝜕𝑤 = 1

𝜕𝐶
𝜕𝑤 = 𝜕𝐶

𝜕𝑤 ×
𝜕𝑤

𝜕𝑤 = 1 × −1 = −1

𝜕𝐶
𝜕𝑤 = 𝜕𝐶

𝜕𝑤 ×
𝜕𝑤

𝜕𝑤 = −1 × 1 = −1

𝜕𝐶
𝜕𝑤 = 𝜕𝐶

𝜕𝑤 ×
𝜕𝑤

𝜕𝑤 = −1 × 1 = −1

𝜕𝐶
𝜕𝑊 = 𝜕𝐶

𝜕𝑤 ×
𝜕𝑤

𝜕𝑊 = −1 × 𝑋 = −1

Several libraries efficiently construct and compute computational graphs for automatic

differentiation in both forward and backward passes, such as Theano (Bastien et al. 2012), Torch

(Collobert et al. 2011), TensorFlow (Abadi et al. 2016), PyTorch (Paszke et al. 2017), JAX

(Bradbury et al. 2020), and Taichi (Hu et al. 2019). Each of these libraries offers different

architecture choices, capabilities, compatibility ecosystem, and performance in different

applications.

137

6.3. Proposed Methodology

As a representative manufacturing process physics-based simulation, we select AM thermal

simulation to investigate the capabilities, flexibility, and limitations of differentiable simulations

for manufacturing design. As mentioned before, the thermal profile of AM processes is a pivotal

characteristic of this class of manufacturing processes as it determines microstructural evolution

and geometric accuracy. We use a finite element formulation to solve transient heat transfer

equations over the simulation domain.

In this analysis, we first define the geometry through CAD software and produce hexagonal

unstructured meshes. While we implemented this method for hexagonal mesh structures, this is

merely an implementation choice, and the formulation is capable of capturing other mesh

structures such as tetrahedral and higher-order approximations as well. After the mesh, to generate

the toolpath, we developed a Python script that slices the CAD geometry at predefined intervals in

the vertical direction and produces a toolpath for each 2-dimensional section using a handful of

hard-coded strategies, e.g., moving inward from boundaries, zig-zag strategy. We considered an

hourglass part as a testbed for this chapter. You can see the geometry and generated toolpath for it

in Figure 6.3. We process the geometry and toolpath to generate an element birth file which

indicates the time at which each element would be born in the simulation. These three files (mesh,

toolpath, and element birth), along with process parameters including laser characteristics, material

properties, and simulation time step will be passed to a differentiable finite element simulation to

determine the thermal responses of the AM process.

138

Figure 6.3. Test case geometry and its cross-section view where red elements represent the build
and blue elements are the substrate (left) and toolpath pattern (right) for the differentiable AM.

thermal simulations test case. The red lines on toolpath plot indicate nozzle moves while laser is
on, while the blue lines indicate motion when laser is off.

In the finite element formulation, we aim to solve the partial differential equation (PDE) for

transient heat transfer and the boundary conditions over the discretized geometry domain. The heat

transfer equations and considered boundary conditions including fixed temperature boundary (i.e.,

Dirichlet boundary condition), radiation, convection, and laser power flux are provided in Eqs.

6.2-6.6.

𝜌𝑐

𝜕𝑇

𝜕𝑡
− 𝛻 ∙ (𝑘 ∙ 𝛻𝑇) − 𝑠 = 0

(6.2)

 (1) Dirichlet 𝑇 = 𝑇 (𝑥, 𝑦, 𝑧) on Γ

(6.3)

139

 (2) Neumann 𝑞 = −𝑞 on Γ

(6.4)

 (3) Convection 𝑞 = −ℎ(𝑇 − 𝑇) on Γ

(6.5)

 (4) Radiation 𝑞 = −𝜀𝜎(𝑇 − 𝑇) on Γ

(6.6)

where 𝜌 is the material density, 𝑐 is the specific heat capacity, 𝑇 is temperature, 𝑡 is time, 𝑘 is the

material conductivity, and 𝑠 is the heat generate rate per unit volume. 𝑞 is the external heat flux,

ℎ is the convection coefficient, 𝑇 is the ambient temperature, 𝜀 is the surface emissivity

constant, 𝜎 is the Stefan-Boltzmann constant, and Γ , Γ , Γ and Γ are sets of surfaces that each of

these boundary conditions are applied on. Using the aforementioned PDE and the boundary

conditions, we drive the finite element weak form and discretize it for each element using shape

function (𝑁) and the derivative of the shape function (𝐵). Finally, the forward time integration

of thermal response can be derived as

{𝑇 } = {𝑇 } + Δ𝑡[M] [{R } − {R } − {R } − {R } − [K]{𝑇 }] (6.7)

where [M] is the capacitance matrix, [K] is the conduction matrix, {R } is the internal heat vector,

{R } is the external flux vector, {R } is the convection vector, and {R } is the radiation vector.

Δ𝑡 is the time step and {𝑇 } and {𝑇 } are nodal temperatures at time steps 𝑛 + 1 and 𝑛,

respectively. Each of these global matrix and vectors can be computed by assembling the local

140

contributions of each element to them individually. Interested readers can find a more in-depth

derivation of the finite element formulation in Section 7.2 of this thesis. To simulate AM processes,

we need to dynamically keep track of active elements and surfaces at each time step and the local

contributions of only active objects will be assembled in global matrices.

To use gradient-based optimization methods, it is ideal for all operations to be continuous and

differentiable. In addition to that, a careful design is needed when working with operations that

can eliminate and saturate the gradient propagation. For instance, a step function stops the

propagation of the gradients from a smooth function as its local gradients are zero in all continuous

points. As another example, functions such as sigmoid and hyperbolic tangent although generate

valid and smooth gradients, if called recursively in the form of 𝑓(… 𝑓(𝑓(𝑥))) become gradually

closer to a step function where they produce gradients very close to zero for all inputs except for

a very narrow region where their gradients are very large. This phenomenon is known as the

vanishing/exploding gradients and prevents effective optimization using gradient signals. Many

sources of discontinuities exist in thermal analysis of AM processes, especially due to the

discontinuous nature of material deposition in a meshed domain. Here, we hypothesize that by

fixing the geometric and boundary-related discontinuities in the simulation, the main derive behind

thermal responses would be the continuous material and process parameters which can be

optimized using a differentiable simulation.

As mentioned before, in recent years, many libraries have been developed to create

computational graphs and differentiable numerical solutions using automatic differentiation, most

of which are focused on the operations common in deep learning such as convolution and various

matrix operations. Physics-based simulations inherently require a more diverse set of operations

141

such as random indexing and large-scale atomic operations. Therefore, there is a need to

investigate the performance and capability of the existing libraries to perform thermal simulations

in a dynamic domain of AM processes.

In this research, we developed four implementations of AM simulators for PyTorch,

TensorFlow, JAX, and Taichi libraries and optimized each implementation according to each

library’s guidelines. The result of this analysis is summarized in Table 6.2. To the best of our

knowledge, TensorFlow version 2.1 lacks the flexible indexing capability required to perform

assembly operations in FEM, and therefore, we were not able to develop a successful

implementation of differentiable AM simulation using this library. While the other three libraries

showed adequate capabilities to build and differentiate through the simulation stack, we observed

a substantial gap in the memory consumption and processing time between these three libraries.

On a benchmark task, PyTorch used an unreasonable amount of memory (127 GB), JAX operation

time is unacceptable with one simulation taking over 10 hours. This is because these libraries offer

highly optimized high-level operations in computer vision and natural language processing

applications, but large-scale usage of low-level operations, which are ubiquitous in AM

simulations, leads to inefficient buffer allocations and GPU kernel launches and severely hurts the

overall performance. These performance issues prevent these implementations to be realistically

used in even moderately large simulation scenarios. In our investigation, Taichi library showed a

favorable performance with 2X smaller memory usage and 8X smaller processing time compared

to the best performance of other libraries as they provide efficient support for GPU mega-kernels,

flexible indexing, and atomic operations. Therefore, the Taichi library is used to perform automatic

differentiation in the rest of this chapter.

142

Table 6.2. Performance comparison of prominent automatic differentiation libraries for
manufacturing simulations.

Automatic Differentiation

Libraries

Calculation
Capability Support

for Operations
Needed in FEM

Memory Usage

Calculation Time
for One

Optimization
Iteration

PyTorch
Yes 127 G 40 mins

TensorFlow Lack of support for
matrix assembly --- ---

JAX
Yes 2 G 10 hours

Taichi
Yes 1 G 5 mins

6.4. Optimization Process and Results

Here, we investigate the capability of the developed differentiable AM simulation to optimize

various process parameters and material properties of the process in three case studies. In the first

case study, we test our framework to optimize static parameters with partially observable data. The

second case study optimizes the entire thermal history of the build by manipulating time-series

laser power during the build. Finally, the third case study investigates the capability of our

framework to stabilize the melt pool depth as a derived feature from the thermal response by

optimizing time-series laser power. The details of case studies and their results are elaborated in

the following subsections:

143

6.4.1 Parameter inference based on partial data

We devised a case study where we optimize a set of static parameters including material

properties and process parameters to obtain a predefined thermal behavior using the build process.

The properties investigated in this case include heat capacity, conductivity, convection coefficient,

static laser power, and laser beam radius. We initialize the investigated parameters using a uniform

distribution over a reasonable range of each parameter. Then, the differentiable simulation

generates the output thermal history corresponding to the current parameter set. The loss value is

then calculated based on the mean-squared-error (MSE) difference between the target and current

responses of the nodes on the top layer of the build at each time step. Finally, the gradient of the

loss function with respect to all investigated parameters is calculated using automatic

differentiation and the gradient is used to update each parameter using the Adam optimization

method (Kingma et al. 2014). This process is repeated for a set number of iterations, also known

as epochs, until we observe a good match between the target and current thermal responses. A

schematic of this case study is demonstrated in Figure 6.4.

The goal of this analysis is two-fold. First, this case is intended to resemble a model calibration

with experimental data, where only part of the build is observable through sensory data such as an

IR camera. Therefore, this framework allows us to infer material and process parameters from the

process thermal response. Second, the selected set of parameter covers a wide range of operations

in FEM analysis, and therefore, this task demonstrates the capability of automatic differentiation

to handle many critical operations throughout the constructed computational graph including

matrix operations, assembly, lumping, distribution calculation, temporal mapping, to name a few.

144

Figure 6.4. Schematic of the first case study where the partially observable loss function based

on the thermal responses of top build layer at each time step is optimized. The optimization
paramters include heat capacity, conductivity, convection coefficient, static laser power, and

laser beam radius.

The optimization results show that by performing 60 optimization iteration, we reach an error

of 1e-3 MSE on the partially observable loss. Moreover, as shown in Figure 6.5, each parameter

effectively converges to (or at least moves in the direction of) the parameters that generated the

target in the loss function. Note that the target parameters in Figure 6.5 are solely provided as

verification of gradient directions and the optimization method does not have access to them;

rather, it interprets them using the target thermal response. Overall, this result shows the proposed

differentiable method can infer various simulation parameters even when given access to a fraction

of simulation responses and elucidates the high potential of differentiable finite element

simulations for describing unknown process and simulation parameters. While more optimization

steps would bring parameters such as heat capacity closer to their target values, we do not expect

it to converge to the exact target as the interaction between optimization parameters and the

thermal response is highly coupled. For instance, a similar thermal response can be achieved by

underestimating the heat capacity and over-estimating the laser input. Therefore, we believe the

145

fact that all parameters move in the correct direction to collectively reduce the loss to close to zero

is a more important result than tuning the optimization steps in a way that each individual

parameter reaches its target.

Figure 6.5. Evolution of the investigated process paramters over 60 iterations of optimization.

146

6.4.2 High-Dimensional temporal design for thermal history behavior

In the second case study, we explore the capability of differentiable simulation to design high

dimensional temporal aspects of the additive manufacturing processes. We use a fully connected

neural network architecture to represent the time-series laser power. The neural network receives

the time at each time step and outputs the laser power for that time step using two hidden layers of

50 neurons with hyperbolic tangent as the nonlinear activation function to map the output to a

range of 0 − 1,000 W.

We selected this network setting as it allows generating sufficiently complex behavior of laser

power over approximately 20,000 time steps of the simulation. Note that these hyperparameters

can be adjusted according to the desired nonlinearity in the response. Using this approach, the

neural network controls the temporal evolution of the laser power. The computed laser power is

then fed into the differentiable simulation and an MSE loss function is defined between the current

thermal response and an ideal predefined thermal response. In this case, the ideal thermal profile

is developed by simulating the process with a complex laser power pattern. This laser power

pattern is not used in the optimization process and is only later used to validate the answer found

by differentiable optimization. The optimization task entails computing the gradient of the loss

function with respect to weights and biases of neural network and iteratively updating these

parameters to minimize the loss. Stainless steel material properties are assigned to the simulation

in this case study and unlike the previous case study, they are kept constant during the optimization

process. A schematic of this case study is provided in Figure 6.6.

147

Figure 6.6. Schematics of the second case study. In this case, a neural network structure
determines the time-series laser power of the AM process, and it is optimized to produce an ideal

thermal behavior during part build.

Similar to the previous case, the Adam (Kingma et al. 2014) algorithm is used to optimize the

loss. The evolution of MSE loss over 300 iterations is demonstrated in Figure 6.7A which shows

the loss decreases about 3 orders of magnitude as the result of optimization. We observe a

favorable optimization behavior with the loss function rapidly declining and minimal loss jumps,

which shows the suitability of gradient-based methods (albeit with momentum and learning rate

scaling) for optimizing time-series parameters in the AM simulation. The evolution of time-series

laser power is depicted in Figure 6.7B where the true laser power target used to produce the ideal

thermal history in the loss function is plotted in black line. This true laser power target is

intentionally designed to show sharp changes and complex evolution during the build time. The

evolution of the output of the neural network including the initial state, five intermediate states,

and the final state after 300 optimization iterations are plotted on the top, middle, and bottom

subplots of Figure 6.7B correspondingly.

These results indicate that our proposed approach can optimize the time-series values with high

accuracy to match an arbitrary target, which is a unique feature of differentiable simulation as it

can access accurate gradients of high-dimensional spaces. Additionally, this result exhibits the

148

natural integration of differentiable physics-driven manufacturing simulation with powerful data-

driven modeling techniques as another impactful benefit of this approach for the development of

physics-informed data-driven methods.

Figure 6.7. Optimization results for the second case study. (A) evolution of the MSE loss
function over 300 optimization iterations. (B) evolution of time-series laser power with the initial

laser power plotted in red (see top row), five intermediate laser power patterns during the
training (see middle row), and the final pattern found by differentiable optimization after 300

iterations and its comparison with the true target (see bottom row).

149

6.4.3 High-Dimensional temporal design for melt pool behavior

In the last two cases, we demonstrated that thermal history can be used as a target for process

optimization; however, our proposed computational design approach can be extended to any

derivative feature of thermal history that can be computed through a differentiable formulation. In

this case, we aim to achieve a target melt pool depth by manipulating time-series laser power.

Similar to the second study, we utilize a fully connected neural network to produce time-series

laser power that is parameterized by neural network weights and biases. As can be seen from the

schematics in Figure 6.8, the produced laser power is used in the differentiable AM thermal

simulation. Later, the thermal responses are used to calculate the melt pool depth at each time step

and an MSE loss function is defined that penalizes the melt pool depth deviations from a predefined

depth throughout the build. As melt pool characteristics significantly affect the geometric accuracy

of AM processes, investigating systematic solutions to design melt pool features is an important

step toward AM parts with customized properties.

Figure 6.8. Schematics of the third case study. In this case, we stabilize the melt pool depth
throughout the build time by adjusting time-series laser power. The laser power is determines

using a fully connected neural network as a universal function approximator and the parameters
of the network are tuned using a gradient-based optimization method.

150

The key to performing this task is to develop a mapping between thermal features and melt pool

depth in a way that produces meaningful gradients. For example, calculating the melt pool solely

based on the deepest node with a temperature higher than melting temperature although

differentiable, does not lead to a helpful optimization method. This is because using the previously

mentioned method depth changes similar to a step function which produces zero gradients at each

continuous point and therefore stales the gradient-based optimization process. Instead, to compute

the continuous representation of the melt pool depth, we dynamically find nine nearest neighboring

nodes to the laser location at four height levels starting from the top build layer. At each height

level, we interpolate the temperature in the location below the laser beam by solving a ninth-degree

system of equations (see Figure 6.9B). The temperature bellow laser at each height is then used

to compute the continuous melt pool depth using a pairwise linear solver (see Figure 6.9C).

Figure 6.9. Differentiable melt pool calculation scheme. (A) schematics of a 3 layer mesh
structure and the location of laser beam. (B) nodal temperature of nine neighboring nodes are
used to compute the temperature corresponding to laser location at each height. (C) a linear

pairwise solver is used to compute continuous melt pool depth at each time step.

151

Our results shown in Figure 6.10 indicate that starting from a randomly initialized laser power

pattern, we can learn a high-dimensional time-series laser power to control melt pool depth over

thousands of FEM time steps. The evolution of MSE loss between desired and predicted melt pool

depth is plotted in Figure 6.10A. Without optimization, we see a rapid increase in melt pool depth

due to the heat accumulation especially halfway during the simulation as the laser builds the

bottleneck of the hourglass geometry (see the blue curve in Figure 6.10C). However, after

optimization, the laser power sharply decreases after the first few lasers to keep melt pool depth

close to the target depth and gradually increases it toward the end of the build to account for

additional material deposition of the top layers of the hourglass geometry (see the red curves in

Figure 6.10B-C).

152

Figure 6.10. Optimization results for the third case study. (A) the evolution of MSE loss
function between the desired melt pool depth and achieved depth. (B) the initial and final laser
power after 200 optimization iterations on neural network parameters. (C) the initial melt pool

depth, final depth after 200 optimization iterations, and target depth used in loss function
definition.

153

6.5. Conclusions and Future Work

In this chapter, we laid out our vision on differentiable physics-based simulation in

manufacturing processes and particularly in AM. We demonstrated the capability of differentiable

simulations to design and optimize the various process and material properties of the process in

three representative case studies for (i) inferring static material and process parameters from

partially observable data, (ii) designing time-series laser input to obtain a predefined thermal

response, and (iii) designing time-series laser input to stabilize melt pool depth during the build.

In all three cases, we showed that one can calculate the gradients using automatic differentiation

and the gradients do not suffer from saturation or corruption even over tens of thousands of time

steps. Therefore, the gradients can be effectively used in gradient-based optimization methods,

such as Adam, to obtain favorable responses and eliminates the need for approximated ad-hoc

solutions. This approach is particularly helpful in designing high-dimensional parameters, such as

time-series parameters, where other optimization methods fail to provide a viable solution.

While we believe this approach shows great promise, many research avenues require further

investigation. The first issue with the widespread application of differentiable simulations is that

not all operations are inherently differentiable. For instance, we found it difficult to establish

differentiable operations to perform a search and find the last time that a material undergoes the

melting process. Note that one can pre-compute the step that the remelting happens and hard-code

this information into a differentiable solution; however, developing a differentiable system to

dynamically find this solution remains unsolved. Therefore, a main future research direction

involves developing differentiable alternatives for many discontinuous algorithms and

formulations in scientific computing. Finally, as differentiable simulation and optimization rely on

154

local gradients, it is prone to stagnation in locally optimal solutions, and it can be heavily

influenced by the initialization. Moreover, as in all general non-convex optimization methods, the

solution is not unique. Therefore, careful design of the optimization process and initialization

method is often needed to ensure satisfactory results.

155

CHAPTER 7

Acceleration Strategies for Physics-based Modeling of Additive

Manufacturing Processes using Graphical Processing Units

7.1. Introduction

As mentioned in Chapter 1, the uncertainty in predicting the final properties of the products is

one of the most critical challenges of AM technologies. Many computational methods have been

proposed to address this issue using macro-scale (Parry et al. 2016, Schoinochoritis et al. 2017),

meso-scale (Khairallah et al. 2016, Rai et al. 2016) or multi-scale modeling (Wolff et al. 2017,

Yan et al. 2018). The finite element method (FEM) is a key component in most physics-based

based predictive models for AM, which can be used for predicting the thermal history of the

process (Schoinochoritis et al. 2017), residual stresses (Zaeh et al. 2010), distortions (Neugebauer

et al. 2014), and porosity (Yin et al. 2012), to name but a few. However, a common problem with

the existing predictive methods for AM is their enormous computational cost that might take weeks

or months of simulation time (Francois et al. 2017), which makes these computational models

orders of magnitude slower than the experiment itself and impossible to use in any time-sensitive

application such as real-time control or optimization procedures. Therefore, investigating methods

to accelerate AM predictive models is vital for overcoming existing barriers and achieve wider

application of AM technologies in the industry.

One approach to overcome this hurdle is by accelerating the AM prediction computations using

parallelization practices on computer clusters or more recently Graphical Processing Units

156

(GPUs). GPUs are traditionally designed to handle computer graphics and their hardware is

designed to perform optimally for that task. With the emergence of the General-Purpose GPU

(GPGPU) concept, the application of GPUs extended to many science fields and revolutionized

computations in finance, bioinformatics, machine learning and computer vision (NVIDIA 2016).

FEM calculations consist of two major tasks: (i) creating a large system of equations based on

the physics-based partial differential equations on a discretized domain and (ii) solving the system

of equations. GPUs can be used to accelerate the process of solving FEA systems of equations.

Efficient GPU-accelerated libraries such as THRUST exist that handle the iterative procedure of

solving matrix-based equations. Solving sparse systems of equations on GPUs is extensively

investigated (Bolz et al. 2003) and well-developed libraries are publicly available such as

cuSPARSE. Recently, commercial FEM software such as ABAQUS, COMSOL, etc. use this

technique to boost the performance for their analysis. A benchmark of the acceleration

performance of different matrix solvers for the simulation of polymer actuator’s electromechanical

response is developed in (Price 2013). An implicit simulation of the automobile battery thermal

runaway is accelerated using THRUST and PARALUTION libraries as equation solvers in

(Pichler et al. 2017).

A more effective strategy would be do both creating the FEM systems of equation and solving

them on the GPU. A fundamental investigation of this method is presented in (Cecka et al. 2011)

for the simulation of steady heat equation. They considered different work distributions and

memory arrangements for the implementation which resulted in 30 times speed-up (depends on

the element order and simulation size). A high-level domain-specific language was developed for

implementation of FEM simulation on both CPUs and GPUs in (Markall et al. 2010, Markall et al.

157

2013). Using the developed platform, called Unified Form Language (UFL), they investigated the

memory storage and access patterns that led to optimal performances in CPU and GPU

implementations. Further, they introduced the Local Matrix Approach (LMA) as an alternative

assembly algorithm to eliminate the necessity for atomic operations. In (Dziekonski et al. 2011,

Dziekonski et al. 2012, Dziekonski et al. 2016) the matrix generation method is divided into three

consequent tasks of: (i) numerical integration, (ii) assembly is COO format and (iii) conversion

into CRS format. They used GPU computing for simulating 9-pole microwave electromagnetic

responses by distributing the GPU work based on each FEM integration point. The performance

of the sparse systems of equation solver is improved using the Conjugate Gradient Method (CGM)

and preconditioners, which lead to 81 times speed-up of the simulation. Global memory accesses

and calculations are interleaved to achieve 100 billion floating-point operations per second in

(Knepley et al. 2013, Knepley et al. 2016). They also proposed a mapping between elements and

integration points to eliminate the reduction operations. Georgescu et al. (Georgescu et al. 2013)

discussed the existing works and potentials of the GPU computing for the structural analysis

components including model conversion, meshing operation, solver, and visualizers.

As it can be seen from the presented literature review, most existing studies are focused on the

steady state or implicit solutions of FEM and there is a gap in the knowledge for acceleration

strategies that lead to optimal performance for explicit simulation. Further, the investigated FEM

problems often have relatively simple boundary conditions. In this research, we investigate the

strategies and data structures that can lead to an optimal acceleration of the thermal analysis of the

DED processes, which has complex boundary conditions due to the dynamic element and surface

158

creations and destructions. An explicit solution is considered for this problem because of its

superior convergence characteristics and compatibility with nonlinear boundary conditions.

In this chapter, a summary of the finite element formulations for transient heat transfer is

presented in Section 7.2 while an overview of the GPU execution and its hierarchical memory

model is discussed in Section 7.3. Acceleration strategies to overcome challenges associated with

explicit FEA and boundary conditions are discussed in Section 7.4. The results of the acceleration

on multiple test cases and verification of the calculations are presented in Section 7.5 and the future

path for this research is discussed in Section 7.6.

7.2. Finite Element Formulation for Transient Heat Transfer

In this section, a summary of the underlying FEA formulation for thermal analysis of AM is

presented. First, the weak form of the transient heat equation will be derived from the governing

equation and the boundary conditions. This weak form will then be discretized using the Galerkin

method for each element. Then the Gauss quadrature and explicit time integration schemes will be

used to solve the global system of equations assembled from the local system of each element.

Here, only the key formulations are highlighted while the detailed mathematical steps can be found

in (Fish et al. 2007, Belytschko et al. 2013).

The governing equation for the transient heat transfer that is to be solved can be written as:

𝜌𝑐

𝜕𝑇

𝜕𝑡
− 𝛻 ∙ (𝑘 ∙ 𝛻𝑇) − 𝑠 = 0

(7.1)

159

where 𝜌 is the material density, 𝑐 is the specific heat capacity, 𝑇 is temperature, 𝑡 is time, 𝑘 is

the material conductivity, and 𝑠 is the heat generate rate per unit volume. The following boundary

conditions are considered in this work:

 (1) Dirichlet 𝑇 = 𝑇 (𝑥, 𝑦, 𝑧) on Γ

(7.2)

 (2) Neumann 𝑞 = −𝑞 on Γ

(7.3)

 (3) Convection 𝑞 = −ℎ(𝑇 − 𝑇) on Γ

(7.4)

 (4) Radiation 𝑞 = −𝜀𝜎(𝑇 − 𝑇) on Γ

(7.5)

where 𝑞 is the external heat flux, ℎ is the convection coefficient, 𝑇 is the ambient

temperature, 𝜀 is the surface emissivity constant, 𝜎 is the Stefan-Boltzamann constant, andΓ , Γ ,

Γ and Γ are sets of surfaces that each of these boundary conditions are applied on.

By multiplying Eq. (7.1) by a differentiable weight function 𝜔(𝑥) with 𝜔(𝑥) = 0 on Γ and

using the chain rule and divergence theorem, the weak form of the transient heat transfer is

obtained as follows:

160

𝜌𝑐

𝜕𝑇

𝜕𝑡
𝜔 𝑑𝑉 + (∇𝜔) ∙ (𝑘 ∇𝑇)𝑑𝑉 − 𝑠𝜔 𝑑𝑉 − (𝑞 ∙ 𝑛)𝜔 𝑑𝐴

+ ℎ(𝑇 − 𝑇)𝜔 𝑑𝐴 + 𝜀𝜎(𝑇 − 𝑇)𝜔 𝑑𝐴 = 0

∀𝜔(𝑥) 𝑤𝑖𝑡ℎ 𝜔(𝑥) = 0 𝑜𝑛 Γ

(7.6)

where 𝑇 = 𝑇 (𝑥, 𝑦, 𝑧) on Γ .

To discretize the domain into elements, shape functions and their derivatives are used on

temperature 𝑇 and weight function 𝜔(𝑥), which result in:

 𝑇 = [𝑁][𝐿]{𝑇}, 𝜔 = [𝑁][𝐿]{𝜔} (7.7)

 𝑇 = [𝑁][𝐿]{𝑇}, 𝜔 = [𝑁][𝐿]{𝜔} (7.8)

where [𝑁] is the matrix of shape function, [𝐵] is its derivative for each element, [𝐿] is the

gather matrix, {𝑇} is the vector of temperatures at the nodes, and {𝜔} is the vector of weight

function values. The discretized form of Eq. (7.6) can be written as:

161

[𝐿] 𝜌 𝑐 [𝑁] [𝑁] 𝑑𝑉

[𝐌𝐞]

[𝐿]

[𝐌]

𝜕{𝑇}

𝜕𝑡

+ [𝐿] (𝑘 [𝐵] [𝐵])𝑑𝑉

[𝐊𝐞]

[𝐿]

[𝐊]

{𝑇}

− [𝐿] (𝑠 [𝑁])𝑑𝑉

𝐑𝐆
𝐞

{𝐑𝐆}

+ [𝐿] (𝑞 [𝑁])𝑑𝐴

𝐑𝐅
𝐞

{𝐑𝐅}

+ [𝐿] ℎ [𝑁] ([𝑁][𝐿]{𝑇} − {𝑇 }) 𝑑𝐴

𝐑𝐂
𝐞

{𝐑𝐂}

+ [𝐿] 𝜀𝜎[𝑁] (([𝑁][𝐿]{𝑇})° − {𝑇 }°) 𝑑𝐴

𝐑𝐑
𝐞

{𝐑𝐑}

= 0

(7.9)

where 𝑛 is the number of elements in the domain, superscript ‘𝑒’ indicates the parameter is

associated with element 𝑒, ° is the element-wise product operation, [M] is the capacitance matrix,

[K] is the conduction matrix, {R } is the internal heat vector, {R } is the external flux vector, {R }

is the convection vector, and {R } is the radiation vector. This equation shows that FEA matrices

and vectors can be calculated separately for each element and then assembled into global variables

for solving the weak form equation.

162

The Gauss quadrature method (Golub et al. 1969) is used to simplify the numerical evaluation

of integrals in Eq. (7.9). To do so, elements need to be transformed into an isoparametric coordinate

system, then the integrals can be calculated by summing up each integrand over the integration

points. By applying this transformation, the elemental matrices and vectors defined in Eq. (7.9)

can be reformulated as:

 [M] = 𝜌𝑐 [𝑁] [𝑁]𝜔 |𝐽 | (7.10)

 [K] = (𝑘[𝐵] [𝐵]𝜔 |𝐽 |) (7.11)

 {R } = (𝑠[𝑁] 𝜔 |𝐽 |) (7.12)

 {R } = (𝑞 [𝑁] 𝜔 |𝐽 |) (7.13)

 {R } = (ℎ[𝑁] ([𝑁]{𝑇 } − {𝑇 })𝜔 |𝐽 |) (7.14)

 {R } = 𝜀𝜎[𝑁] [𝑁]{𝑇 }
°

− {𝑇 }° 𝜔 |𝐽 | (7.15)

163

where 𝑛 = 8 and 𝑛 = 4 are the number of Gauss quadrature integration points for 8-node

hexahedron elements used in this work, 𝜔 = 𝜔 = 1 are the weights of integration points and [𝑁]

and [𝐵] are the shape function and its derivative for 8-node elements in isoparametric coordinate

system, |𝐽 | is the determinant of Jacobian matrix for the transformation from the Cartesian to the

isoparametric coordinate system for 8-node elements. [𝑁] and |𝐽 | are the isoparametric shape

functions and the determinant of the Jacobian matrix for 4-node surfaces.

A forward time integration scheme is used to approximate the temperature derivative as

presented hereunder:

[M]
1

Δ𝑡
({𝑇 } − {𝑇 }) = {R } − {R } − {R } − {R } − [K]{𝑇 }

{𝑇 } = {𝑇 } + Δ𝑡[M] [{R } − {R } − {R } − {R } − [K]{𝑇 }]

(7.16)

where Δ𝑡 is the time step and {𝑇 } and {𝑇 } are nodal temperatures at time step 𝑛 + 1 and 𝑛

respectively. The summation of {R }, {R }, and {R } is called the external flux and [K]{𝑇 } is

called the conduction flux. Further, {R } = 0 for DED processes since elements do not generate

internal heat.

A common approach to solve Eq. (7.16) more efficiently is to convert [M] into a diagonal

matrix. This can be done by considering the summation of each row as the diagonal value (Zhu

2013). This operation, also called lumping, not only will eliminate the need to calculate the inverse

164

of a large matrix, but also makes the calculations for the temperature of each node independent

from other nodes.

7.3. Massively Parallel Computing with CUDA: Execution and Memory Model

While CPUs consist of a few processing cores that have been optimized for sequential and

complex processing, GPUs consist of thousands of smaller cores designed for highly parallel tasks.

CUDA is an API provided by NVIDIA that enables developers manage devices and memories on

both CPUs and GPUs to solve complicated problems efficiently. CUDA can be used through

compiler directions, CUDA-enabled libraries, and multiple programming languages such as

Fortran, Python, C, C++. The present work is developed with CUDA C/C++ compiler which is

included in the NVIDIA CUDA Development Kit 9.

GPUs are mainly made from multiple Streaming Multiprocessors (SMs) with the key

components of computing cores, logical and memory operational units, scheduler, and on-chip

memories. Each SM can execute hundreds of threads at the same time based on the resources

available to them. Kernels are launched in a user-defined grid of thread blocks, where each block

can be up to 1024 threads in recent GPUs. Once a kernel is launched, its thread blocks will be

schedules to be run on different SMs and will remain on the SM scheduler until its execution

completes. SMs execute thread blocks in groups of 32 threads called warps. Ideally, all the threads

in a warp execute memory and logical operations concurrently, which would lead to the most

efficient utilization of GPU resources (Cheng et al. 2014).

GPUs use a programmable hierarchical memory structure that allows developers to optimize

the performance of memory operations using multiple types of memories with different capacity,

165

latency, and bandwidth. The main memory types in order of decreasing bandwidth are: registers,

shared memory, texture memory, local memory, constant memory, and global memory (see Figure

7.1).

Figure 7.1. CUDA hierarchical memory model; Device (GPU) can communicate with host

(CPU) through global, constant, and texture memories, accessible to all threads. Registers and
shared memory are low latency memories exclusively visible to a thread and a block respectively

(Mozaffar et al. 2019).

7.4. Acceleration Strategies

As seen in Section 7.2, the FEA formulation for the thermal analysis of DED processes

discretizes the domain into a large number of elements and performs very similar calculations on

them, which makes this routine well-matched with the massively parallel architecture of GPUs.

However, some operations for this formulation are not inherently parallel and different calculations

need to be done on subsets of elements, nodes, and surfaces, especially considering the dynamic

nature of this simulation including birth and death of entities and its advanced boundary conditions,

166

which impose serious disadvantages for GPU computing. In the following sections, first the

computational framework for the thermal analysis of DED processes are introduced and then the

challenges associated with the GPU acceleration of DED processes are discussed and acceleration

strategies for work distribution, memory management, and optimized data-structures are presented

to avoid or mitigate the mentioned challenges.

The overall routine for the thermal analysis of DED processes is demonstrated in Figure 7.2,

including preprocessing, domain initialization, solver, and outputting steps. The analysis starts

with preprocessing the mesh and toolpath files to determine the birth time for each element in the

mesh file. Domain initialization creates element, node and surface classes and fills them with

information such as element/node IDs, positions, birth and death time, material properties

associated with them, and so on. This step is also responsible for assigning the aforementioned

boundary conditions to different sections of the mesh and calculating the critical explicit time step

to ensure the stability of the simulation. The explicit time stepping is done during the solver step.

In this step, the capacitance matrix, the conduction flux, and the external flux are calculated for

each element separated and assembled into global matrixes and vectors. In the next time step

temperatures for all the nodes are calculated as formulated in Eq. (7.16). Finally, it is necessary to

frequently save the results of the simulation into files on the disk.

167

Figure 7.2. Computational FEA framework for the thermal analysis of the DED process; the

routine includes preprocessor, domain initialization, solver, and outputting steps with the solver
step as the most computationally expensive one (Mozaffar et al. 2019).

Although there is a potential in accelerating the preprocessing and the domain initialization

steps, these steps run only once for each simulation and their execution time is relatively negligible

compared to the time needed for calculation of the solver steps which repeat for all time steps of

the simulation. Therefore, in this work the preprocessing and domain initialization steps are

executed on a CPU and the focus of the GPU acceleration is put on the solver step and its efficient

interaction with the outputting step.

7.4.1 Assembly Strategy to Avoid Race Condition

168

An important part of calculating capacitance, conductivity, and flux matrices is assembling,

where the contribution of all elements connected to a node should be calculated and summed up

to its global variable. However, considering that these elemental calculations are done

concurrently, it is possible that multiple elements access the global variable of a shared node

between them at the same time and cause a race condition. Race conditions occur when more than

one thread attempts to write to a memory location at the same time, in which the output is

undetermined. Three assembly strategies similar to the concepts proposed by Cecka et al. (Cecka

et al. 2011) and Markall et al. (Markall et al. 2013) are considered in this work. This investigation

is unique because of the dynamic nature of FEA analysis of DED processes and the recent advances

in both hardware and software capabilities of GPU computing, which makes the conclusions drawn

from the literature not reliable for this application.

As the first strategy, the data structure shown in Figure 7.3 is considered in this work that

assigns a separate memory location for each element connected to a node. Using this data structure,

each element will write its contribution to a unique memory and avoid the race condition. The

assignment of this unique location is done using Algorithm 7.1 and stored in global memory. A

separate kernel is used for reducing node-element data structure by assigning the work of summing

all contributions associates with each node to a thread.

As it can be seen from Figure 7.3B, the node-element structure contains unused spaces, which

may cause inefficient use of global memory especially if the mesh structure contains nodes that

are connected to a large number of elements. This problem associated with unequal connected

elements can be solved by packing the subarrays for each global node into rows, or bins, of another

array using a bin packing algorithm (Lee et al. 1985), or a more efficient packing algorithm such

169

as the Largest-Processing-Time (LPT) (Graham 1969). However, since the current work is focused

on the acceleration of the process, this inefficiency in global memory storage is not investigated.

Figure 7.3. Assembly strategies for global capacitance; (a) direct assembly to global capacitance
causes may cause a race condition, while (b) the node-element data structure considers separate
placeholders for contribution of each element to a node solves this issue (Mozaffar et al. 2019).

Algorithm 7.5: Arrange unique ID for node-element data structure

5. Initialize 𝐴(𝑛 , 𝑛) to a zero matrix, where 𝑛 and 𝑛 are the number of elements and nodes
in an element respectively and 𝐴 is the matrix containing the node-element unique IDs

6. Initialize 𝐼(𝑛) to a zero matrix, where 𝑛 is the number of global nodes
7. Loop over all the elements 𝑒

a. nodes ← get nodes in the element 𝑒
b. Loop over the nodes 𝑛

i. 𝑗 ← get the global index of the node 𝑛
ii. 𝐴(𝑒, 𝑛) = 𝐼(𝑗)

iii. Increment 𝐼(𝑗) by one to generate a unique ID next time an element accesses
this node

c. End loop over the nodes
8. End loop over the elements

For the second assembly strategy, the global matrices calculations are divided into smaller

subtasks, where each subtask is responsible for the calculations of a predefined group of elements.

By choosing the predefined groups in a way that no two elements in the same group have any

shared nodes and performing the calculations for each group sequentially, one ensures that

170

contributions of the elements to any node are written to their allocated memories at different times

and, therefore, avoid the racing condition. This strategy is known as coloring the mesh as one can

arrange the groups by assigning different color codes to the elements in a way that no two adjacent

elements have the same color. A disadvantage of this approach is that arranging the colors adds a

significant overhead to the domain initialization step of the analysis.

The third approach is to use Atomic operations to perform the assembly. Atomic operations are

special types of read-modify-write actions that allows memory addresses to be accessed by only

one thread at a time (NVIDIA 2008). In the literature, the other alternatives provide better

acceleration than Atomic operations because of the steep performance cost associated with them.

However, recent advances in GPUs with compute capability of 3X or higher improved the

performance of Atomic operations. Thus, it is important to reinvestigate the use of Atomic

operations for the assembly.

7.4.2 Mitigating Warp Divergence

Another issue that might severely affect the performance of explicit FEA for DED processes is

warp divergence. Unlike CPUs that use complex branch prediction, GPUs have a simpler flow

control mechanism that tries to execute the exact same instructions for all threads in a warp

simultaneously. Executing instructions such as an if-else condition causes the if block and the else

block to be performed in sequence instead in parallel, which adversely affects computational

performance.

Explicit FEA for DED processes inherently causes such conditional statements. One major

source of the conditional statements is the fact that elements and surfaces might get born or die as

171

the time of the simulation goes on due to the nature of the process that deposits new elements while

building the part. To mitigate this issue, both elements are surfaces are sorted based on their birth

time in the domain initialization step and by adjusting kernel execution boundaries one can control

the range of birth time associated with elements and surfaces that are accessible by each kernel.

Considering that the elements stay activated after their birth time, the kernel execution boundaries

are dynamically updated in each time step to only perform the kernels on the active elements. The

kernel boundary update is implemented using a binary search to efficiently locate the last active

element for any time step.

Surfaces can die after their birth time in the FEA for DED processes because an active surface

for flux calculations should be on the exterior of the build and the exterior changes dynamically in

the building process. Therefore, the boundary update of kernels associated with surfaces is not

enough to exclusively select active surfaces. However, the boundary update can bound the kernel

execution range from all surfaces to the surfaces with passed birth time. Thus, the surface flux

calculations are performed on all surfaces within the boundary of the kernels.

Two strategies are considered to be combined with the dynamic boundary update for surface

flux calculations. The first strategy is to minimize the branch divergence by executing the flux

calculations on all the surfaces in the execution boundary and canceling the effect of inactive

surfaces on {R }, {R } and {R } in Eq. (7.16) using a switch. The switch is an integer variable

which has the value of 1 for active surfaces and 0 for inactive ones. Using a switch limits the warp

branching to only a single operation. The second strategy is to prevent the GPU from performing

the calculations for inactive surfaces by using a conditional statement in the beginning of the

172

kernel. This strategy would result in less computations while inducing a severe branch divergence

to warps.

Another source of warp divergence ae the different boundary conditions associated with

different subsets of the domain. While the Dirichlet boundary condition is usually applied after

calculation of temperatures as shown in Figure 7.2, surface flux boundary conditions (i.e., external

laser flux, convection and radiation) can be applied on different sets of surfaces. Considering that

the majority of the flux operations, such as Jacobian and shape function calculations, are similar

for the three types, fluxes are calculated in active surfaces for all three types of boundary conditions

and the effect of each boundary condition is controlled by using precomputed switches to avoid

warp divergence.

7.4.3 Further Optimization Considerations

Further optimizations applied to this work will be discussed in this section. Most of the device

data reside in the global memory and an efficient access to this memory is essential for achieving

high bandwidth in data transactions and proper kernel performance. In the CUDA execution

model, memory operations are issued per warp. The most efficient access pattern to the global

memory of GPUs is aligned coalesced access. In this access pattern, 32 threads in a warp access a

contiguous section of memory starting from an even multiple of the cache size (Cheng et al. 2014).

In this case, a single memory load/write operation is needed for all the threads in a warp, which

will cause 100 percent of bus utilization. Using uncoalesced or non-aligned data structures would

cause the same memory load/write to be done with multiple separate operations.

173

The data associated with different nodes of an element are normally stored next to each other

as demonstrated in Figure 7.4A. While executing kernels on elements, the GPU warp scheduler

will try to execute a single task, for example, calculating the capacitance matrix, for hundreds of

elements at the same time. Therefore, all threads in a warp will run memory access for the same

index node of all the elements together. This access pattern will cause a significant efficiency

penalty due to uncoalesced access.

To maximize the efficiency of global memory reads and writes, data is rearranged in the domain

initialization step to access elemental matrices and vectors in a coalesced manner as depicted in

Figure 7.4B. A similar rearrangement is applied for all element, node, and surface global variables

such as the nodal coordinates, the connectivity matrices, the element capacitance and conductivity

matrices, and nodal temperatures to ensure efficient global memory transactions. While using the

coloring assembly strategy this rearrangement should be done for each color separately.

174

Figure 7.4. Global memory access pattern; (a) an uncoalesced access pattern is caused when

threads access memories of nodal data for different elements, and (b) a coalesced memory access
pattern achieved by rearranging data based on their kernel access (Mozaffar et al. 2019).

Efficient use of memory hierarchy in GPUs increases computation performance by maximum

low-latency, high-bandwidth memory usage. Specifically, constant memory and shared memory

are used in the present work to decrease the number of registers used in each kernel and avoid

spilling registers into local memory, which has a high latency. Constant memory is used for

accessing material properties such as density, solidus and liquidus temperatures, specific heat, etc.

Since all the threads will load these variables together, the constant memory will broadcast the

corresponding values to all the threads at the same time and cause a desirable access pattern.

175

Shared memory is used for calculating the shape function and the Jacobean of each element. This

is because these variables are called many times inside the kernels and having them in the lowest

latency memories are essential while keeping them in registers will use too many registers in each

block and limit the number of warps that can be executed in each block.

Another major acceleration consideration implemented in this work is to asynchronously lunch

kernels using CUDA streams to overlap calculations done on the CPU and GPU, overlap data

transfer and kernel execution, and concurrent execution of GPU kernels. As mentioned before,

kernel execution boundaries need to be calculated before execution of each kernel on the CPU. By

overlapping these calculations with previous kernel execution both the CPU and GPU can work at

the same time to completely hide the time needed for CPU calculation. Overlapping data transfer

with kernel execution can decrease the time needed for saving the simulation outputs by

concurrently copying data from GPU global memory to CPU accessible memory (RAM) while

continuing the calculation of the next time step. Finally, concurrent execution of GPU kernels will

increase the device occupancy by increasing the number of warps scheduled to be run. The

asynchronous execution of kernels on different CUDA streams and the overlap between data

transfer and device calculations is demonstrated in Figure 7.5, which is the output of the NVIDA

Visual Profiler tool.

As shown in Figure 7.5, the data transfer between the GPU and CPU memories is performed

concurrently with initialization of the FEA matrices, which means that this data transfer does not

add significant overhead to the simulation time and can be performed as frequently as desired and

other calculations can be carried on the data on the CPU side. This is particularly useful for

176

calculations that are inherently conditional or not suitable to be performed on the GPU such as

computing cooling rates.

Figure 7.5. visualization of asynchronous kernel execution using NVIDIA Visual Profiler; rows
represent different CUDA streams and each color represent a kernel execution (Mozaffar et al.

2019).

7.5. Acceleration Results and Verification

To test the acceleration strategies discussed previously, four samples of DED processes are

investigated. The samples include three LENS builds of a cubic, a cruciform, and a thin-wall and

a powder-bed SLM build. The mesh and geometry of the samples are demonstrated in Figure 7.6,

where the blue meshes represent the substrate and the red meshes represent the build. The

difference between the simulation setup of the SLM process and LENS processes is that for SLM,

an entire layer of elements is born at the same time, while for LENS, the elements are born

gradually following the laser focal point.

177

Figure 7.6. Geometries and meshes of the test samples where blue meshes represent the

substrate and red meshes represent the build for a) LENS cubic, b) LEN cruciform, c) LENS
thin-wall, and d) SLM powder-bed geometries (Mozaffar et al. 2019).

The simulation parameters of the samples considered to verify the proposed algorithms include

the number of elements in the range of around 80,000 to 400,000 elements, simulation time in the

range of 42 to 3,007 seconds, and the stainless steel 316L and Titanium alloy Ti-6Al-4V materials

as provided in Table 7.1.

Table 7.1. Summary of simulation parameters for the test samples (Mozaffar et al. 2019).

Cubic Cruciform Thin-Wall Powder-Bed

Number of Elements
84,346 205,618 193,944 384,000

Number of Nodes
93,748 232,447 210,000 400,221

178

Minimum Time Step
9.78e-4 s 1.96e-3 s 1.69e-2 s 1.38e-3 s

Simulation Time
1,195s 3,007s 2,741s 42s

Material
SS316L SS316L Ti-6Al-4V SS316L

Laser Power
1,050 W 1,050 W 1,500 W 120 W

Hatch Spacing
1.1 mm 1.1 mm 1.9 mm 0.5 mm

To determine the effect of assembly strategy on acceleration, the three mentioned GPU

assembly approaches are used to simulate each sample and they are compared with an optimized

single CPU implementation of the same calculations. The optimized CPU implementation

considers elements as non-deformable and material properties as fixed values. Using these

simplifying assumptions, the CPU implementation calculates element and surface Jacobians as

well as the element local conduction matrices only once and uses the stored values at each time-

step. This implementation is used to be able to simulate the samples in a feasible time frame since

the version without simplification is an order of magnitude more computationally expensive.

However, all GPU implementations perfume these calculations at each time-step which makes

them suitable for simulation with deformable elements and temperature dependent material

properties.

The node-element data structure GPU implementation output for the temperature field of the

samples during the build is visualized in Figure 7.7, in which the range of color bars is set from

179

300 K to the liquidus temperature of the material; therefore, the red color region represents the

melt pool.

Figure 7.7. Visualization of the test simulation outputs for a) LENS cubic, b) LENS cruciform,

c) LENS thin-wall, and d) SLM powder-bed builds (Mozaffar et al. 2019).

The result of the simulation for the optimized single CPU and GPU enabled implementations

for the assembly strategies is provided in Figure 7.8. The results are produced using the NVIDIA

GeForce GTX TITAN Black graphics card, which has 2880 CUDA cores, bus support of PCI

Express 3.0, 6 GB of global memory, and compute capability of 3.5. The CPU used for this work

is an Intel(R) Xeon(R) CPU E5-2687W with the clock speed of 3.10 GHz.

180

Figure 7.8. Acceleration results of the assembly strategies for test samples (Mozaffar et al.

2019).

Although many factors can affect the speed-up of a simulation such as the frequency of

outputting, the distribution of boundary conditions between surfaces, and the birth strategy of the

build, these results indicate a correlation between the size of the simulations, which can be

represented by the number of elements or nodes, and the speed-up, which is demonstrated in

Figure 7.9. This is because the more elements and nodes the model has, the more parallel works

exist for the GPU and the overall simulation becomes more suitable for the massively parallel

architecture of the GPU.

The thin wall and cruciform builds have a similar number of nodes, but there is a significant

difference between their speed-ups. As it can be seen in Figure 7.6, a larger portion of the total

nodes of the geometry is associated with the build in the thin-wall simulation with respect to the

cruciform simulation. Considering that the simulation works on active elements and nodes during

each time step, the effective size of the simulation for the thin-wall is significantly smaller than

181

for the cruciform build at the beginning time steps, which is one reason for the better performance

of the cruciform build.

Figure 7.9. Correlation between the number of nodes and the achieved speed-up in test samples

(Mozaffar et al. 2019).

The assembly strategy using coloring leads to the worst performance between the investigated

approaches. This is because the kernel execution is done on each color separately and the size of

the domain visible to the kernel is only a fraction of it. As already seen, this reduction in the domain

size severely affects the performance, especially considering that only a portion of the domain is

born at any time step. Also, the calculations of the dynamic boundary conditions need to be

performed for each color. The strategy using the node-element data structure out-performs the

coloring approach. However, since this strategy needs to access and store data structures with

multiple sizes of the assembled vector, the calculations are significantly bounded by the memory

access operations to global memory. Further, this strategy requires an additional reduction kernel

that increases the execution time. The strategy using Atomic operations consistently provides the

best performance for all the samples. This is because racing condition does not happen in the

182

assembly procedure for all the nodes since the physical execution of warps can happen at separate

times. Using the Atomic operations allows the GPU to halt only the memory operations with racing

conditions and avoid costly explicit synchronization. This capability is particularly improved in

recent GPUs with compute capability of 3 or higher. The Atomic strategy not only has lower

execution time with respect to the other strategies, it also requires the least amount of preprocessing

and global memory storage.

The results of the flux calculation strategies are provided in Figure 7.10 using the Atomic

assembly strategy. The results show that for the LENS test samples using the least kernel

computation strategy would lead to a significant increase in the performance with respect to the

least warp divergence strategy, while the two strategies perform almost identically for the SLM

test sample. This is because that gradual generation of elements from the laser focal point, for

LENS processes, generates more external surfaces to be born and die during the simulation than

the generation of a whole layer of elements together, for the SLM process. This result indicates

that in the case of powder-bed simulations the cost associated with warp divergence and redundant

kernel computations are balanced. However, in the case of LENS processes which have more

dynamic surfaces the cost of excessive redundant calculations exceeds the warp divergence

penalty. Therefore, considering the large number of surface births and deaths in DED processes,

it is beneficial to use conditional statements to avoid redundant calculations for inactive surfaces.

This benefit is more important in LENS processes due to the greater number of intermediate

surfaces.

183

Figure 7.10. Acceleration results of the flux calculation strategy for test samples (Mozaffar et al.

2019).

The accuracy of the results is validated by comparing the temperature outputs for the GPU

implementations and the CPU one. This validation is demonstrated on a NU-shape build with

nearly 200,000 nodes and 150 s of the simulation time as depicted in Figure 7.11A, where the

yellow cross represents the probe point. A comparative figure for the output temperature of the

prob point calculated on the CPU and the GPU implementation with Atomic operation and the

least kernel computation strategies as shown in Figure 7.11B, which verifies the accuracy of the

GPU calculations. The mean absolute error of different strategies is summarized in Table 7.2 for

the NU-shaped sample, which indicates the correctness of the calculations presented in this work

considering that operations are done on 32 bits floating point numbers with 6 significant decimal

digits.

184

Figure 7.11. Validation of the accuracy of the GPU calculations; a) a demonstration of the test

geometry and a screenshop of its thermal profile during the build, where the yellow cross
represents the probe point, and b) the comparison between the GPU and CPU outputs for the

thermal hisotry of the prob point (Mozaffar et al. 2019).

Table 7.2. Accuracy of the GPU strategies with respect to the CPU calculations for the NU-
shape build (Mozaffar et al. 2019).

Strategy Node-element
structure and least

divergence

Atomic and least
divergence

Coloring and least
divergence

Atomic and least
computation

Mean Absolute Error
8.538e-6 7.088e-6 9.360e-6 7.096e-6

7.6. Conclusions and Future Work

In conclusion, this research presents a methodology for accelerating the FEA calculations for

explicit thermal analysis of DED processes. Different strategies to avoid race conditions and warp

divergence and maximize memory access efficiency are discussed and their advantages and

disadvantages for complex boundary conditions in DED processes investigated. Further, memory

hierarchy and host-device concurrency are used to optimize the use of GPU resources. The

185

implementations are tested on multiple DED processes which led to speed-ups of about 98-147 X

with respect to an optimized CPU implementation for the strategy of assembling by using Atomic

operations and flux calculations using the least kernel computation approach along with the

proposed optimization.

The developed FEM simulation can partially model the physics involved in the AM process. In

the future, more attempts will be dedicated to adding multi-physics formulations into the GPU

accelerated FEM model. In particular, an important coupled physics with the thermal analysis of

the AM process is the thermoelastic behavior of the material that generates deformation and

residual stresses. Developing thermo-mechanical modeling using explicit and implicit FEM will

be investigated. Implicit solutions can be interesting in this case because the critical time-step of

the explicit solution can become problematic in multi-physics problems. The thermo-mechanical

FEM model of the AM processes can be formulated as a semi-coupled simulation where the

displacement field is coupled with the temperature while the temperature field is independent.

Furthermore, we will attempt to calibrate the two proposed physics-based models using

experimental data from the DED setups mentioned in the previous tasks.

The scalability of the developed FEM package on multi-GPU clusters is another interesting

subject that needs further investigation. Considering that GPU clusters are becoming increasingly

popular, the scalability performance of the model is critical to problems that require large memory

or computational power. There are many communication protocols and memory copy operations

(e.g., host side communications, uniformed virtual addressing, peer-to-peer memory copy, etc.)

that can be used for sharing and transmitting data between GPU nodes. The algorithms and

strategies to obtain optimal performance on such clusters and the trade-off between internal

186

calculation and data transition are important subjects that need to be studies before these

algorithms can be widely used in industry.

 187

CHAPTER 8

Contributions and Future Directions

Manufacturing sciences has experienced significant innovations over the past decades that have

enabled massive design freedom even for low-volume productions such as AM and ISF. This

flexibility comes with a cost of more complex material behavior and accumulative multi-scale

responses as the result of the highly localized interaction between tooling and materials. In the

meanwhile, advances in machine learning, data acquisition systems, and networking platforms

created an opportunity to utilize the data from manufacturing processes and drastically improve

our understanding of the behavior of advanced materials, the influence of manufacturing

operations on them, and computational design methods to fully exploit manufacturing capabilities.

However, these tasks necessitate intricate developments of computational methods that can (i)

integrate knowledge from various sources including theory, experimental, and simulation data, (ii)

handle the dynamical, noisy, and unstructured nature of manufacturing data, (iii) scale to high-

dimensional spaces with large design spaces, and (iv) mitigate the computational costs and

numerical problems associated with computational mechanics.

Motivated by the above-listed challenges, my Ph.D. thesis was devoted to investigating physics-

informed artificial intelligence-based predictive models, design tools, and accelerated analysis of

metal-based additive manufacturing and forming processes. The research involved several

interdisciplinary areas including multi-scale and multi-physics computational modeling, data-

driven supervised, unsupervised, and reinforcement learning, high-performance computing, and

188

cyber-physical systems. In this Chapter, I discuss my novel contributions to the field and elaborate

on my insights on impactful future research directions.

8.1. Contributions

Several novel contributions are introduced to the research field as the result of my dissertation

study. I developed several methods that utilize artificial intelligence and computational mechanics

to enhance current manufacturing capabilities. My major research accomplishments are

summarized in the following subsections in two areas, namely, predictive modeling and design

methods. I hope that my research presents a significant step forward towards smart and agile

manufacturing systems.

8.1.1. Contributions in manufacturing process modeling

 Data-driven modeling of thermal responses using recurrent cells (Chapter 3): The

thermal response of AM is a pivotal characteristic of this process and involves complex

spatio-temporal patterns. My work shows that a data-driven recurrent structure can

effectively learn an update parameter for the temperature of each nodal point given

process parameters, such as laser power, boundary conditions, and geometric features.

The data-driven model can roll out simulation results for an arbitrary number of time

steps and shows a limited error propagation over time. On the contrary, in my

experience, extracting geometric features based on manual feature engineering leads to

limited generalizability of the data-driven solution when facing complex parts.

189

 Geometry-Agnostic thermal predictive modeling using graph networks (Chapter 3):

Extracting meaningful geometric features from a freeform shape is an unsolved problem

where current solutions do not scale to the complexity of geometries in AM. To address

this issue, I integrated a graph-based feature extraction network with a recurrent neural

network structure. In this approach, an end-to-end differentiable model is trained where

a graph network, generated from the mesh, extracts neighboring correlations based on

the nodal values and their distance while a recurrent structure predicts long-term time-

series correlations. My results indicate that this approach leads to an order of magnitude

smaller error propagation compared to alternative methods while showing an excellent

generalization behavior to unseen industrial-grade geometries.

 Constitutive modeling of material elasto-plastic behavior under arbitrary loading

(Chapter 4): Conventional plasticity involves reducing the stress and strain behavior of

materials to effective parameters and utilizing a combination of phenomenological laws

and theory-driven formulations to solve for stress updates as the result of loading. In my

work, I show that this relationship can be captured by a data-driven method in an

accurate and computationally efficient manner. Particularly, I address two critical

questions in plasticity data-driven modeling for (i) predicting history-dependent plastic

behavior and (ii) capturing nonlinear correlations between material microstructural

descriptors and strain paths by proposing a customized recurrent neural network

structure. Interestingly, it was shown that this approach is robust enough to track the

yield surface evolution without being explicitly trained for. While the initial focus was

on composite materials, later, in a collaborative work, it was demonstrated that this

190

methodology can be expanded to metal alloys especially in sheet metal forming

processes. Therefore, this approach works across a wide range of material models and

can be used as a unifying interface for material development.

 GPU accelerated finite element computing in AM (Chapter 7): The computational cost

of manufacturing simulations is a key limiting factor in the development and utilization

of such technologies. Therefore, developing new methods using heterogeneous

computing hardware such as GPUs and TPUs to accelerate computations is an impactful

step toward advancing current capabilities. In my research, I developed a GPU

accelerated method for finite element analysis of AM processes including DED and

SLM. My study shows that the strategy based on atomic operations for matrix assembly

and minimum wrap divergence leads to better results compared to previously proposed

methods, leading to 100 − 150X speedup compared to an optimized implementation

on CPU.

8.1.2. Contributions in manufacturing process design

 Model-free reinforcement learning framework for toolpath design in AM (Chapter

5): Toolpath strategies in AM processes can significantly affect the microstructural and

mechanical behavior of the builds. However, in current industrial practices, simple

toolpaths such as raster or boundary contours are deployed. My research proposed a

new vision in which the toolpath can be used as a source of design customization. I

formulated the toolpath design problem as a reinforcement learning method and

investigated the effectiveness of model-free methods to design toolpaths under two

cases of available dense and sparse reward structures. This research shows that model-

191

free methods with the proposed modifications can design compelling geometry-agnostic

toolpaths in the presence of dense reward structures.

 Model-based reinforcement learning method for toolpath design in AM (Chapter 5):

As an alternative approach, I investigated a model-based reinforcement learning method

for the toolpath design task. The model-based method based on the Muzero algorithm

shows unique advantages to its model-free counterparts such as model reusability and

sample efficiency. In this approach, several neural networks are trained for estimating

value, reward, policy, and dynamics which enable one to construct and prune a Monte

Carlo Tree Search at each step of the simulation and select the best actions by looking

into tens of steps of future possibilities. The results show that the performance of the

model-free methods can be surpassed with close to 3,000 simulation episodes.

 Differentiable simulation tools for design in manufacturing (Chapter 6): Integrating

physics-based and data-driven methods have been an increasingly popular scientific

pursuit. I developed a differentiable physics-based manufacturing simulation tool and

seamlessly integrated it with data-driven methods (i.e., neural networks). Using this

method, one can optimize high-dimensional process parameters of manufacturing

processes using gradient-based optimizers. Particularly, I show that this method is

effective in the design of time-series laser inputs for achieving an arbitrary thermal

profile and melt pool depth during AM processes.

 192

8.2. Directions for Future Research

In this final section, I describe my vision of interesting future directions in the field of data-

driven methods in the prediction and design of manufacturing processes. I believe many critical

manufacturing challenges in quality variability, process efficiency, and high-dimensional design

for tailored materials and geometric properties can greatly benefit from recent advances in machine

learning and high-performance computing with the potential to drastically alter the capabilities of

multi-billion-dollar industries.

 Hierarchical physics-aware data-driven modeling in manufacturing: While we

observe an increasing role of data-driven modeling in manufacturing, current methods

are limited to single and often straightforward aspects of the processes. To advance these

technologies further, we need new frameworks and algorithms to process the data we

collect from manufacturing along with the prior knowledge and known physics of the

process. In particular, building hierarchical methods to detect and connect material

evolution at different length scales would enable a deeper understanding of the process

and unlock unprecedented design capabilities. However, there are many fundamental

questions from theoretical to applied topics yet to be answered. Developing new

variations of methods that combine data-driven and theory-driven approaches is an

active research area. It is important to develop frameworks that transfer information

across different scales. Stability issues in dynamical systems, when combined with

using data-driven methods, need to be resolved. Successful platforms to increase the

explainability of such models would significantly impact their industrial adoption.

193

 Design in sparse settings: Many of current manufacturing solutions stem from rules of

thumb and legacy practices, which create a substantial opportunity for optimization in

the field. This is especially pronounced in many flexible manufacturing processes with

many degrees of freedom in time and space to control the material deformation, flow,

thermal properties, etc. However, meaningful signals to guide this optimization problem

are often few and far between, which makes conventional methods ineffective. I believe

advancements in explorations and planning methods to tackle sparse design signals are

the necessary steps for moving forward. Furthermore, robust frameworks for knowledge

distillation are needed to increase the sample efficiency of the current methods.

 Integrated experimental and simulation platforms: As most AI methods are

extensively data-intensive, developing useful models based on experimental data is not

feasible in most manufacturing applications. Furthermore, controlling the distribution

of experimental data is expensive and, in some cases, unrealistic, which can cause

problematic bias in the model. Combining experimental and simulation data is an

exciting way to resolve these issues. The data-driven methodology is a great platform

for developing such integrated systems because it allows one to complement the

information from different sources. For example, simulation data can be used in places

where experimental data is unavailable. One interesting aspect of integrated platforms

is that they allow designing robust systems, where the outliers and special cases are

over-represented using high-performance simulation tools. As an example, we can over-

represent rare keyhole formation patterns to ensure the integrated system is properly

informed about them.

194

REFERENCES

A. S. T. M. (2012). Standard terminology for additive manufacturing technologies. ASTM
International F2792-12a.

Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J.
Dean and M. Devin (2016). "Tensorflow: Large-scale machine learning on heterogeneous
distributed systems." arXiv preprint arXiv:1603.04467.

Akram, J., P. Chalavadi, D. Pal and B. Stucker (2018). "Understanding grain evolution in
additive manufacturing through modeling." Additive Manufacturing 21: 255-268.

Armstrong, P. J. and C. O. Frederick (1966). A mathematical representation of the multiaxial
Bauschinger effect, Central Electricity Generating Board [and] Berkeley Nuclear
Laboratories~….

Arruda, E. M. and M. C. Boyce (1993). "A three-dimensional constitutive model for the large
stretch behavior of rubber elastic materials." Journal of the Mechanics and Physics of Solids
41(2): 389-412.

Barlat, F., J. J. Gracio, M.-G. Lee, E. F. Rauch and G. Vincze (2011). "An alternative to
kinematic hardening in classical plasticity." International Journal of Plasticity 27(9): 1309-1327.

Barlat, F., J. Ha, J. J. Grácio, M.-G. Lee, E. F. Rauch and G. Vincze (2013). "Extension of
homogeneous anisotropic hardening model to cross-loading with latent effects." International
Journal of Plasticity 46: 130-142.

Barlat, F., D. J. Lege and J. C. Brem (1991). "A six-component yield function for anisotropic
materials." International Journal of Plasticity 7(7): 693-712.

Bastien, F., P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D.
Warde-Farley and Y. Bengio (2012). "Theano: new features and speed improvements." arXiv
preprint arXiv:1211.5590.

Baturynska, I., O. Semeniuta and K. Martinsen (2018). "Optimization of Process Parameters for
Powder Bed Fusion Additive Manufacturing by Combination of Machine Learning and Finite
Element Method: A Conceptual Framework." Procedia CIRP 67(1): 227-232.

Belytschko, T., W. K. Liu, B. Moran and K. Elkhodary (2013). Nonlinear finite elements for
continua and structures, John wiley & sons.

Bessa, M., R. Bostanabad, Z. Liu, A. Hu, D. W. Apley, C. Brinson, W. Chen and W. K. Liu
(2017). "A framework for data-driven analysis of materials under uncertainty: Countering the
curse of dimensionality." Computer Methods in Applied Mechanics and Engineering 320: 633-
667.

195

Bessa, M., R. Bostanabad, Z. Liu, A. Hu, D. W. Apley, C. Brinson, W. Chen, W. K. J. C. M. i.
A. M. Liu and Engineering (2017). "A framework for data-driven analysis of materials under
uncertainty: Countering the curse of dimensionality." 320: 633-667.

Bhardwaj, T. and M. Shukla (2018). "Effect of laser scanning strategies on texture, physical and
mechanical properties of laser sintered maraging steel." Materials Science and Engineering: A
734: 102-109.

Bolz, J., I. Farmer, E. Grinspun and P. Schröoder (2003). Sparse matrix solvers on the GPU:
conjugate gradients and multigrid. ACM transactions on graphics (TOG), ACM.

Bostanabad, R., A. T. Bui, W. Xie, D. W. Apley and W. Chen (2016). "Stochastic microstructure
characterization and reconstruction via supervised learning." Acta Materialia 103: 89-102.

Bostanabad, R., Y. Zhang, X. Li, T. Kearney, L. C. Brinson, D. W. Apley, W. K. Liu and W.
Chen (2018). "Computational microstructure characterization and reconstruction: Review of the
state-of-the-art techniques." Progress in Materials Science.

Bourell, D. L., J. J. Beaman, M. C. Leu and D. W. Rosen (2009). "A brief history of additive
manufacturing and the 2009 roadmap for additive manufacturing: looking back and looking
ahead." Proceedings of RapidTech: 24-25.

Bradbury, J., R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin and S. Wanderman-
Milne (2020). "JAX: composable transformations of Python+ NumPy programs, 2018." URL
http://github. com/google/jax 4: 16.

Bruschi, S., T. Altan, D. Banabic, P. Bariani, A. Brosius, J. Cao, A. Ghiotti, M. Khraisheh, M.
Merklein and A. Tekkaya (2014). "Testing and modelling of material behaviour and formability
in sheet metal forming." CIRP Annals 63(2): 727-749.

Caiazzo, F. and A. Caggiano (2018). "Laser Direct Metal Deposition of 2024 Al Alloy: Trace
Geometry Prediction via Machine Learning." Materials 11(3): 444.

Cecka, C., A. J. Lew and E. Darve (2011). "Assembly of finite element methods on graphics
processors." International journal for numerical methods in engineering 85(5): 640-669.

Chaari, I., A. Koubâa, S. Trigui, H. Bennaceur, A. Ammar and K. Al-Shalfan (2014).
"SmartPATH: An efficient hybrid ACO-GA algorithm for solving the global path planning
problem of mobile robots." International Journal of Advanced Robotic Systems 11(7): 94.

Chaboche, J. L. (1989). "Constitutive equations for cyclic plasticity and cyclic viscoplasticity."
International Journal of Plasticity 5(3): 247-302.

Chaboche, J. L. (1991). "On some modifications of kinematic hardening to improve the
description of ratchetting effects." International Journal of Plasticity 7(7): 661-678.

196

Chebotar, Y., K. Hausman, M. Zhang, G. Sukhatme, S. Schaal and S. Levine (2017). Combining
model-based and model-free updates for trajectory-centric reinforcement learning. Proceedings
of the 34th International Conference on Machine Learning-Volume 70, JMLR. org.

Cheng, J., M. Grossman and T. McKercher (2014). Professional Cuda C Programming, John
Wiley & Sons.

Chiumenti, M., X. Lin, M. Cervera, W. Lei, Y. Zheng and W. Huang (2017). "Numerical
simulation and experimental calibration of Additive Manufacturing by blown powder
technology. Part I: thermal analysis." Rapid Prototyping Journal 23(2): 448-463.

Cho, K., B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk and Y.
Bengio (2014). "Learning phrase representations using RNN encoder-decoder for statistical
machine translation." arXiv preprint arXiv:1406.1078.

Cho, K., B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk and Y. J. a.
p. a. Bengio (2014). "Learning phrase representations using RNN encoder-decoder for statistical
machine translation."

Chollet, F. (2015). Keras.

Chung, J., C. Gulcehre, K. Cho and Y. J. a. p. a. Bengio (2014). "Empirical evaluation of gated
recurrent neural networks on sequence modeling."

Collobert, R., K. Kavukcuoglu and C. Farabet (2011). Torch7: A matlab-like environment for
machine learning. BigLearn, NIPS workshop.

Defferrard, M., X. Bresson and P. Vandergheynst (2016). "Convolutional neural networks on
graphs with fast localized spectral filtering." Advances in neural information processing systems
29: 3844-3852.

Dehoff, R., M. Kirka, W. Sames, H. Bilheux, A. Tremsin, L. Lowe and S. Babu (2015). "Site
specific control of crystallographic grain orientation through electron beam additive
manufacturing." Materials Science and Technology 31(8): 931-938.

Dziekonski, A., A. Lamecki and M. Mrozowski (2011). "A memory efficient and fast sparse
matrix vector product on a GPU." Progress In Electromagnetics Research 116: 49-63.

Dziekonski, A., A. Lamecki and M. Mrozowski (2016). GPU-accelerated finite element method.
Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 2016 IEEE
MTT-S International Conference on, IEEE.

Dziekonski, A., P. Sypek, A. Lamecki and M. Mrozowski (2012). "Finite element matrix
generation on a GPU." Progress In Electromagnetics Research 128: 249-265.

197

Feigenbaum, H. P. and Y. F. Dafalias (2007). "Directional distortional hardening in metal
plasticity within thermodynamics." International Journal of Solids and Structures 44(22): 7526-
7542.

Fey, M. and J. E. Lenssen (2019). "Fast graph representation learning with PyTorch Geometric."
arXiv preprint arXiv:1903.02428.

Finn, C. and S. Levine (2017). Deep visual foresight for planning robot motion. 2017 IEEE
International Conference on Robotics and Automation (ICRA), IEEE.

Fish, J. and T. Belytschko (2007). "A first course in finite elements."

Fisher, B. A., B. Lane, H. Yeung and J. Beuth (2018). "Toward determining melt pool quality
metrics via coaxial monitoring in laser powder bed fusion." Manufacturing Letters.

Fisher, B. A., B. Lane, H. Yeung and J. Beuth (2018). "Toward determining melt pool quality
metrics via coaxial monitoring in laser powder bed fusion." Manufacturing letters 15: 119-121.

Fortunato, M., M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih, R. Munos, D.
Hassabis and O. Pietquin (2017). "Noisy networks for exploration." arXiv preprint
arXiv:1706.10295.

Fout, A., J. Byrd, B. Shariat and A. Ben-Hur (2017). Protein interface prediction using graph
convolutional networks. Advances in neural information processing systems.

François, M. (2001). "A plasticity model with yield surface distortion for non proportional
loading." International Journal of Plasticity 17(5): 703-717.

Francois, M. M., A. Sun, W. E. King, N. J. Henson, D. Tourret, C. A. Bronkhorst, N. N. Carlson,
C. K. Newman, T. Haut and J. Bakosi (2017). "Modeling of additive manufacturing processes
for metals: Challenges and opportunities." Current Opinion in Solid State and Materials Science
21(LA-UR-16-24513).

Francois, M. M., A. Sun, W. E. King, N. J. Henson, D. Tourret, C. A. Bronkhorst, N. N. Carlson,
C. K. Newman, T. S. Haut and J. Bakosi (2017). "Modeling of additive manufacturing processes
for metals: Challenges and opportunities." Current Opinion in Solid State and Materials Science
21(LA-UR-16-24513).

Geng, L. and R. H. Wagoner (2002). "Role of plastic anisotropy and its evolution on
springback." International Journal of Mechanical Sciences 44(1): 123-148.

Georgescu, S., P. Chow and H. Okuda (2013). "GPU acceleration for FEM-based structural
analysis." Archives of Computational Methods in Engineering 20(2): 111-121.

Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, tools, and techniques to build intelligent systems, O'Reilly Media.

198

Gibson, I., D. W. Rosen and B. Stucker (2010). Sheet Lamination Processes. Additive
Manufacturing Technologies, Springer: 223-252.

Girshick, R. (2015). Fast r-cnn. Proceedings of the IEEE international conference on computer
vision.

Golub, G. H. and J. H. Welsch (1969). "Calculation of Gauss quadrature rules." Mathematics of
computation 23(106): 221-230.

Gorji, M. B. and D. Mohr (2019). "A Basic Neural Network Model Describing the Plasticity of
Sheet Metal." submitted to Numiform.

Gorji, M. B., M. Mozaffar, J. N. Heidenreich, J. Cao and D. Mohr (2020). "On the potential of
recurrent neural networks for modeling path dependent plasticity." Journal of the Mechanics and
Physics of Solids: 103972.

Graham, R. L. (1969). "Bounds on multiprocessing timing anomalies." SIAM journal on Applied
Mathematics 17(2): 416-429.

Gu, D., W. Meiners, K. Wissenbach and R. Poprawe (2012). "Laser additive manufacturing of
metallic components: materials, processes and mechanisms." International materials reviews
57(3): 133-164.

Guo, C., W. Ge and F. Lin (2015). "Dual-material electron beam selective melting: hardware
development and validation studies." Engineering 1(1): 124-130.

Haarnoja, T., A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta
and P. Abbeel (2018). "Soft actor-critic algorithms and applications." arXiv preprint
arXiv:1812.05905.

Haghighi, A. and L. Li (2020). "A hybrid physics-based and data-driven approach for
characterizing porosity variation and filament bonding in extrusion-based additive
manufacturing." Additive Manufacturing 36: 101399.

Heiden, E., D. Millard, H. Zhang and G. S. Sukhatme (2019). "Interactive differentiable
simulation." arXiv preprint arXiv:1905.10706.

Hermann, M., T. Pentek and B. Otto (2016). Design principles for industrie 4.0 scenarios.
System Sciences (HICSS), 2016 49th Hawaii International Conference on, IEEE.

Hill, R. (1990). "Constitutive modelling of orthotropic plasticity in sheet metals." Journal of the
Mechanics and Physics of Solids 38(3): 405-417.

Hinton, G. E., S. Osindero and Y.-W. Teh (2006). "A fast learning algorithm for deep belief
nets." Neural computation 18(7): 1527-1554.

199

Hochreiter, S. (1991). "Untersuchungen zu dynamischen neuronalen Netzen." Diploma,
Technische Universität München 91(1).

Hochreiter, S. and J. Schmidhuber (1997). "Long short-term memory." Neural computation 9(8):
1735-1780.

Hochreiter, S. and J. J. N. c. Schmidhuber (1997). "Long short-term memory." 9(8): 1735-1780.

Holl, P., V. Koltun and N. Thuerey (2020). "Learning to control pdes with differentiable
physics." arXiv preprint arXiv:2001.07457.

Hu, Y., L. Anderson, T.-M. Li, Q. Sun, N. Carr, J. Ragan-Kelley and F. Durand (2019).
"Difftaichi: Differentiable programming for physical simulation." arXiv preprint
arXiv:1910.00935.

Hu, Y., J. Liu, A. Spielberg, J. B. Tenenbaum, W. T. Freeman, J. Wu, D. Rus and W. Matusik
(2019). Chainqueen: A real-time differentiable physical simulator for soft robotics. 2019
International conference on robotics and automation (ICRA), IEEE.

Huang, Y., M. B. Khamesee and E. Toyserkani (2019). "A new physics-based model for laser
directed energy deposition (powder-fed additive manufacturing): From single-track to multi-
track and multi-layer." Optics & Laser Technology 109: 584-599.

Jang, E., S. Gu and B. Poole (2016). "Categorical reparameterization with gumbel-softmax."
arXiv preprint arXiv:1611.01144.

Jin, Y., S. Joe Qin and Q. Huang (2016). "Offline predictive control of out-of-plane shape
deformation for additive manufacturing." Journal of Manufacturing Science and Engineering
138(12).

Kamath, C. and Y. J. Fan (2017). "Regression with small data sets: a case study using code
surrogates in additive manufacturing." Knowledge and Information Systems: 1-19.

Karpathy, A. and L. Fei-Fei (2015). Deep visual-semantic alignments for generating image
descriptions. Proceedings of the IEEE conference on computer vision and pattern recognition.

Keras. Retrieved 3/5/2019, from https://github.com/keras-
team/keras/blob/master/keras/layers/wrappers.py#L114.

Khairallah, S. A., A. T. Anderson, A. Rubenchik and W. E. King (2016). "Laser powder-bed
fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of
pores, spatter, and denudation zones." Acta Materialia 108: 36-45.

Khanzadeh, M., P. Rao, R. Jafari-Marandi, B. K. Smith, M. A. Tschopp and L. Bian (2018).
"Quantifying Geometric Accuracy With Unsupervised Machine Learning: Using Self-

200

Organizing Map on Fused Filament Fabrication Additive Manufacturing Parts." Journal of
Manufacturing Science and Engineering 140(3): 031011.

King, W., A. Anderson, R. Ferencz, N. Hodge, C. Kamath, S. Khairallah and A. Rubenchik
(2015). "Laser powder bed fusion additive manufacturing of metals; physics, computational, and
materials challenges." Applied Physics Reviews 2(4): 041304.

Kingma, D. P. and J. Ba (2014). "Adam: A method for stochastic optimization." arXiv preprint
arXiv:1412.6980.

Kingma, D. P. and J. J. a. p. a. Ba (2014). "Adam: A method for stochastic optimization."

Kipf, T. N. and M. Welling (2016). "Semi-supervised classification with graph convolutional
networks." arXiv preprint arXiv:1609.02907.

Knepley, M. G., K. Rupp and A. R. Terrel (2016). "Finite Element Integration with Quadrature
on the GPU." arXiv preprint arXiv:1607.04245.

Knepley, M. G. and A. R. Terrel (2013). "Finite element integration on GPUs." ACM
Transactions on Mathematical Software (TOMS) 39(2): 10.

Koch, S., A. Matveev, Z. Jiang, F. Williams, A. Artemov, E. Burnaev, M. Alexa, D. Zorin and
D. Panozzo (2019). Abc: A big cad model dataset for geometric deep learning. Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Lee, C.-C. and D.-T. Lee (1985). "A simple on-line bin-packing algorithm." Journal of the ACM
(JACM) 32(3): 562-572.

Lee, J., B. Bagheri and H.-A. Kao (2015). "A cyber-physical systems architecture for industry
4.0-based manufacturing systems." Manufacturing Letters 3: 18-23.

Lee, J., E. Lapira, B. Bagheri and H.-a. Kao (2013). "Recent advances and trends in predictive
manufacturing systems in big data environment." Manufacturing Letters 1(1): 38-41.

Lee, M.-G., D. Kim, C. Kim, M. L. Wenner, R. H. Wagoner and K. Chung (2007). "A practical
two-surface plasticity model and its application to spring-back prediction." International Journal
of Plasticity 23(7): 1189-1212.

Leem, D., N. Moser, H. Ren, M. Mozaffar, K. F. Ehmann and J. Cao (2019). "Improving the
accuracy of double-sided incremental forming simulations by considering kinematic hardening
and machine compliance." Procedia Manufacturing 29: 88-95.

Li, G., C. Xiong, A. Thabet and B. Ghanem (2020). "Deepergcn: All you need to train deeper
gcns." arXiv preprint arXiv:2006.07739.

201

Li, H., M. Ramezani, M. Li, C. Ma and J. Wang (2018). "Effect of process parameters on
tribological performance of 316L stainless steel parts fabricated by selective laser melting."
Manufacturing Letters.

Li, H., M. Ramezani, M. Li, C. Ma and J. Wang (2018). "Effect of process parameters on
tribological performance of 316L stainless steel parts fabricated by selective laser melting."
Manufacturing letters 16: 36-39.

Liang, J., M. Lin and V. Koltun (2019). "Differentiable cloth simulation for inverse problems."

Liu, Z. and J. Zhou (2020). "Introduction to Graph Neural Networks." Synthesis Lectures on
Artificial Intelligence and Machine Learning 14(2): 1-127.

Markall, G., A. Slemmer, D. Ham, P. Kelly, C. Cantwell and S. Sherwin (2013). "Finite element
assembly strategies on multi‐core and many‐core architectures." International Journal for
Numerical Methods in Fluids 71(1): 80-97.

Markall, G. R., D. A. Ham and P. H. Kelly (2010). "Towards generating optimised finite element
solvers for GPUs from high-level specifications." Procedia Computer Science 1(1): 1815-1823.

McCulloch, W. S. and W. Pitts (1943). "A logical calculus of the ideas immanent in nervous
activity." The bulletin of mathematical biophysics 5(4): 115-133.

Mnih, V., A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver and K.
Kavukcuoglu (2016). Asynchronous methods for deep reinforcement learning. International
conference on machine learning.

Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra and M. Riedmiller
(2013). "Playing atari with deep reinforcement learning." arXiv preprint arXiv:1312.5602.

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M.
Riedmiller, A. K. Fidjeland and G. Ostrovski (2015). "Human-level control through deep
reinforcement learning." Nature 518(7540): 529.

Moser, N. H. (2019). Deformation Mechanisms and Process Planning in Double-Sided
Incremental Forming, Northwestern University.

Mozaffar, M., R. Bostanabad, W. Chen, K. Ehmann, J. Cao and M. Bessa (2019). "Deep learning
predicts path-dependent plasticity." Proceedings of the National Academy of Sciences 116(52):
26414-26420.

Mozaffar, M., E. Ndip-Agbor, S. Lin, G. J. Wagner, K. Ehmann and J. Cao (2019).
"Acceleration strategies for explicit finite element analysis of metal powder-based additive
manufacturing processes using graphical processing units." Computational Mechanics 64(3):
879-894.

202

Mozaffar, M., A. Paul, R. Al-Bahrani, S. Wolff, A. Choudhary, A. Agrawal, K. Ehmann and J.
Cao (2018). "Data-driven prediction of the high-dimensional thermal history in directed energy
deposition processes via recurrent neural networks." Manufacturing letters 18: 35-39.

Nachum, O., M. Norouzi, K. Xu and D. Schuurmans (2017). Bridging the gap between value and
policy based reinforcement learning. Advances in Neural Information Processing Systems.

Neugebauer, F., N. Keller, H. Xu, C. Kober and V. Ploshikhin (2014). Simulation of selective
laser melting using process specific layer based meshing. Proc. Fraunhofer Direct Digital
Manufacturing Conf.(DDMC 2014), Axel Demmer, Aachen, Germany.

Ning, J., W. Wang, X. Ning, D. E. Sievers, H. Garmestani and S. Y. Liang (2020). "Analytical
thermal modeling of powder bed metal additive manufacturing considering powder size variation
and packing." Materials 13(8): 1988.

NVIDIA (2008). "NVIDIA CUDA C Programming Guide." 1-261.

NVIDIA (2016). NVIDIA GPU Accelerated Applications Catalog.

O'Donovan, P., C. Gallagher, K. Bruton and D. T. O'Sullivan (2018). "A fog computing
industrial cyber-physical system for embedded low-latency machine learning Industry 4.0
applications." Manufacturing Letters.

Ohno, N. and J. D. Wang (1993). "Kinematic hardening rules with critical state of dynamic
recovery, part I: formulation and basic features for ratchetting behavior." International Journal of
Plasticity 9(3): 375-390.

Olah, C. (2015). "Understanding LSTM Networks." 2018, from
http://colah.github.io/posts/2015-08-Understanding-LSTMs/.

Olson, G. B. (1997). "Computational design of hierarchically structured materials." Science
277(5330): 1237-1242.

Parry, L., I. Ashcroft and R. D. Wildman (2016). "Understanding the effect of laser scan strategy
on residual stress in selective laser melting through thermo-mechanical simulation." Additive
Manufacturing 12: 1-15.

Paszke, A., S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L.
Antiga and A. Lerer (2017). "Automatic differentiation in pytorch."

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.
Gimelshein and L. Antiga (2019). Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems.

203

Pichler, F. and G. Haase (2017). "Finite element method completely implemented for graphic
processor units using parallel algorithm libraries." The International Journal of High
Performance Computing Applications: 1094342017694703.

Pratama, P. S., J.-W. Kim, H.-K. Kim, S.-M. Yoon, T.-K. Yeu, S. Hong, S.-J. Oh and S.-B. Kim
(2015). Path planning algorithm to minimize an overlapped path and turning number for an
underwater mining robot. 2015 15th International Conference on Control, Automation and
Systems (ICCAS), IEEE.

Price, A. D. (2013). "Multi-GPU Computing with Abaqus: Benchmarking and scaling for
multiphysics applications in mechatronics."

PwC. (2020). "https://www.pwc.com/gx/en/issues/data-and-analytics/publications/artificial-
intelligence-study.html." from https://www.pwc.com/gx/en/issues/data-and-
analytics/publications/artificial-intelligence-study.html.

Qiao, Y.-L., J. Liang, V. Koltun and M. C. Lin (2020). "Scalable differentiable physics for
learning and control." arXiv preprint arXiv:2007.02168.

Rai, A., M. Markl and C. Körner (2016). "A coupled Cellular Automaton–Lattice Boltzmann
model for grain structure simulation during additive manufacturing." Computational Materials
Science 124: 37-48.

Roy, M. and O. Wodo (2020). "Data-driven modeling of thermal history in additive
manufacturing." Additive Manufacturing 32: 101017.

Sabelle, M., M. Walczak and J. Ramos-Grez (2018). "Scanning pattern angle effect on the
resulting properties of selective laser sintered monolayers of Cu-Sn-Ni powder." Optics and
Lasers in Engineering 100: 1-8.

Salimans, T., J. Ho, X. Chen, S. Sidor and I. Sutskever (2017). "Evolution strategies as a scalable
alternative to reinforcement learning." arXiv preprint arXiv:1703.03864.

Samuel, A. L. (1959). "Some studies in machine learning using the game of checkers." IBM
Journal of research and development 3(3): 210-229.

Schaul, T., J. Quan, I. Antonoglou and D. Silver (2015). "Prioritized experience replay." arXiv
preprint arXiv:1511.05952.

Schoinochoritis, B., D. Chantzis and K. Salonitis (2017). "Simulation of metallic powder bed
additive manufacturing processes with the finite element method: A critical review." Proceedings
of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 231(1):
96-117.

204

Schrittwieser, J., I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E.
Lockhart, D. Hassabis and T. Graepel (2020). "Mastering atari, go, chess and shogi by planning
with a learned model." Nature 588(7839): 604-609.

Schulman, J., P. Moritz, S. Levine, M. Jordan and P. Abbeel (2015). "High-dimensional
continuous control using generalized advantage estimation." arXiv preprint arXiv:1506.02438.

Schulman, J., F. Wolski, P. Dhariwal, A. Radford and O. Klimov (2017). "Proximal policy
optimization algorithms." arXiv preprint arXiv:1707.06347.

Shamsaei, N., A. Yadollahi, L. Bian and S. M. Thompson (2015). "An overview of Direct Laser
Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter
optimization and control." Additive Manufacturing 8: 12-35.

Sheng, X., X. Lu, J. Zhang and Y. Lu (2020). "An analytical solution to temperature field
distribution in a thick rod subjected to periodic-motion heat sources and application in ball
screws." Engineering Optimization: 1-20.

Shoham, Y., R. Perrault, E. Brynjolfsson, J. Clark, J. Manyika, J. C. Niebles, T. Lyons, J.
Etchemendy and Z. Bauer (2018). "The AI Index 2018 Annual Report." AI Index Steering
Committee, Human-Centered AI Initiative, Stanford University. Available at http://cdn. aiindex.
org/2018/AI% 20Index 202018.

Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam and M. Lanctot (2016). "Mastering the game of Go with deep
neural networks and tree search." nature 529(7587): 484.

Silver, D., G. Lever, N. Heess, T. Degris, D. Wierstra and M. Riedmiller (2014). Deterministic
policy gradient algorithms.

Smith, J., W. Xiong, J. Cao and W. K. Liu (2016). "Thermodynamically consistent
microstructure prediction of additively manufactured materials." Computational mechanics
57(3): 359-370.

Song, L., V. Bagavath-Singh, B. Dutta and J. Mazumder (2012). "Control of melt pool
temperature and deposition height during direct metal deposition process." The International
Journal of Advanced Manufacturing Technology 58(1): 247-256.

Steuben, J. C., A. P. Iliopoulos and J. G. Michopoulos (2016). "Implicit slicing for functionally
tailored additive manufacturing." Computer-Aided Design 77: 107-119.

Stevens, E. L., J. Toman, A. C. To and M. Chmielus (2017). "Variation of hardness,
microstructure, and Laves phase distribution in direct laser deposited alloy 718 cuboids."
Materials & design 119: 188-198.

Sutton, R. S. and A. G. Barto (2018). Reinforcement learning: An introduction, MIT press.

205

Swainson, W. K. (1977). Method, medium and apparatus for producing three-dimensional figure
product, Google Patents.

Tan, X., Y. Kok, Y. J. Tan, M. Descoins, D. Mangelinck, S. B. Tor, K. F. Leong and C. K. Chua
(2015). "Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V
via electron beam melting." Acta Materialia 97: 1-16.

Thingiverse. "https://www.thingiverse.com/about/." Retrieved 11/10/2019, 2019.

Van Hasselt, H., A. Guez and D. Silver (2016). Deep reinforcement learning with double q-
learning. Thirtieth AAAI conference on artificial intelligence.

Vinyals, O., A. Toshev, S. Bengio and D. Erhan (2015). Show and tell: A neural image caption
generator. Proceedings of the IEEE conference on computer vision and pattern recognition.

Wang, J., Y. Li, R. Zhao and R. X. Gao (2020). "Physics guided neural network for machining
tool wear prediction." Journal of Manufacturing Systems 57: 298-310.

Wang, X., Y. Ye and A. Gupta (2018). Zero-shot recognition via semantic embeddings and
knowledge graphs. Proceedings of the IEEE conference on computer vision and pattern
recognition.

Wang, Z. and A. M. Beese (2017). "Effect of chemistry on martensitic phase transformation
kinetics and resulting properties of additively manufactured stainless steel." Acta Materialia 131:
410-422.

Wang, Z., T. Chen, J. Ren, W. Yu, H. Cheng and L. Lin (2018). "Deep reasoning with
knowledge graph for social relationship understanding." arXiv preprint arXiv:1807.00504.

Wang, Z., T. A. Palmer and A. M. Beese (2016). "Effect of processing parameters on
microstructure and tensile properties of austenitic stainless steel 304L made by directed energy
deposition additive manufacturing." Acta Materialia 110: 226-235.

Wang, Z., T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot and N. De Freitas (2015). "Dueling
network architectures for deep reinforcement learning." arXiv preprint arXiv:1511.06581.

Weiss-Cohen, M., I. Sirotin and E. Rave (2008). Lawn mowing system for known areas. 2008
International Conference on Computational Intelligence for Modelling Control & Automation,
IEEE.

Wenjun, G., G. Chao and L. Feng (2015). "Microstructures of components synthesized via
electron beam selective melting using blended pre-alloyed powders of Ti6Al4V and
Ti45Al7Nb." Rare Metal Materials and Engineering 44(11): 2623-2627.

West, D. and C. Lansang (2018). "Global manufacturing scorecard: How the US compares to 18
other nations." Brookings, July 10.

206

Wolff, S. J., S. Lin, E. J. Faierson, W. K. Liu, G. J. Wagner and J. Cao (2017). "A framework to
link localized cooling and properties of directed energy deposition (DED)-processed Ti-6Al-4V."
Acta Materialia 132: 106-117.

Xu, B., N. Wang, T. Chen and M. J. a. p. a. Li (2015). "Empirical evaluation of rectified
activations in convolutional network."

Xu, H. Y., Y. Li, C. Brinson and W. Chen (2014). "A Descriptor-Based Design Methodology for
Developing Heterogeneous Microstructural Materials System." Journal of Mechanical Design
136(5): 051007.

Yan, W., S. Lin, O. L. Kafka, Y. Lian, C. Yu, Z. Liu, J. Yan, S. Wolff, H. Wu and E. Ndip-
Agbor (2018). "Data-driven multi-scale multi-physics models to derive process–structure–
property relationships for additive manufacturing." Computational Mechanics: 1-21.

Yang, L., O. Harrysson, H. West and D. Cormier (2012). "Compressive properties of Ti–6Al–4V
auxetic mesh structures made by electron beam melting." Acta Materialia 60(8): 3370-3379.

Yin, J., H. Zhu, L. Ke, W. Lei, C. Dai and D. Zuo (2012). "Simulation of temperature
distribution in single metallic powder layer for laser micro-sintering." Computational Materials
Science 53(1): 333-339.

Young, T., D. Hazarika, S. Poria and E. Cambria (2018). "Recent trends in deep learning based
natural language processing." ieee Computational intelligenCe magazine 13(3): 55-75.

Zaeh, M. F. and G. Branner (2010). "Investigations on residual stresses and deformations in
selective laser melting." Production Engineering 4(1): 35-45.

Zhang, S. and R. S. Sutton (2017). "A Deeper Look at Experience Replay." arXiv preprint
arXiv:1712.01275.

Zhang, Z., Z. Liu and D. Wu (2020). "Prediction of melt pool temperature in directed energy
deposition using machine learning." Additive Manufacturing: 101692.

Zhou, K., A. L. Jensen, C. Sørensen, P. Busato and D. Bothtis (2014). "Agricultural operations
planning in fields with multiple obstacle areas." Computers and electronics in agriculture 109:
12-22.

Zhou, P., Z.-m. Wang, Z.-n. Li and Y. Li (2012). Complete coverage path planning of mobile
robot based on dynamic programming algorithm. 2nd International Conference on Electronic &
Mechanical Engineering and Information Technology, Atlantis Press.

Zhu, J. (2013). The finite element method: its basis and fundamentals, Elsevier.

Zühlke, D. (2013). Industrie 4.0: From Vision to Reality, tech. report, SmartFactory KL.

207

Zuo, G., P. Zhang and J. Qiao (2010). Path planning algorithm based on sub-region for
agricultural robot. 2010 2nd International Asia Conference on Informatics in Control,
Automation and Robotics (CAR 2010), IEEE.

 208

APPENDIX A

Figure A.1. List of geometries used to produce training and test sets.

209

APPENDIX B

Yield surface construction for data-driven constitutive modeling

The yield surfaces presented in Figure 4.8 are constructed by applying 40 linear strain paths,

which are uniformly distributed in strain space starting from the initial strain condition. To

construct the original yield surface (Figure A.2A), strain paths start from the unloaded condition

and experience elastic and plastic deformation is different directions. We record the stress state in

which each linear path exceeds a plastic energy threshold of 1 𝑚𝐽, which constructs the yield

surface. The yield surface of an RVE after it undergoes a certain loading (Figure A.2B) is

constructed by initially applying the main load (blue solid line in Figure A.2B) for all 40 linear

strain paths and then loading the RVE in different directions where we detect the stress state when

they reach the plastic energy threshold. Note that although all the applied loadings for yield surface

constructions are linear and uniform in strain space, the stress responses are neither linear nor

uniform which is due to the plasticity of the RVE.

210

Figure A.2. Yield surface construction process for (A) original yield surface and (B) yield

surface after loading.

