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Abstract 

This dissertation focuses on the topic of pseudowords and how speakers pseudoword 

processing relates to that of real words. Three main lines of inquiry are pursued with respect to 

pseudowords and real words: mechanisms of gradient well-formedness, theories of 

morphological decomposition, and indexical associations for morphemes in complex words. It 

argues for an integrated model which considers real words and novel words using common 

mechanisms, and which takes into account both morphological structure and indexical 

information. 

Chapter 3 expands on studies of pseudoword wordlikeness by collecting wordlikeness 

judgments for a large corpus of pseudowords which comprehensively sample the space of 

phonotactic probability for pseudowords that are both short and long. The positive effect of 

phonotactic likelihood is replicated over the whole domain of likely and unlikely forms, and the 

realistic limitations of simple neighborhood density measures are shown. Post-hoc analysis also 

suggests that participants perceived apparent morphology in the pseudowords, and gave such 

items higher wordlikeness ratings. 

Chapter 4 demonstrates that participants also give gradient typicality judgments for real 

words, in contrast to the predictions of some traditional and current theories of well-formedness. 

In this new analysis of data from Bailey and Hahn (2001), significant variation is observed in the 

judgments of both real words and pseudowords, and this variation correlates with similar factors 

for both categories. 

Chapter 5 follows upon the morphological findings in Chapter 2 by eliciting explicit 

morphological decompositions from participants for complex real words and apparently-complex 
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pseudowords. While it is unclear in Chapter 2 whether participants are actually aware of 

morpheme strings per se in the pseudoword stimuli, it is shown in Chapter 4 that participant 

accuracy in decomposing real and pseudowords exceeds the baseline levels derived from chance 

or from morphologically-unaware phonotactic statistics. 

With previous chapters establishing that wordlikeness judgments are influenced by 

different aspects of similarity within the lexicon (i.e., phonotactic probability, neighborhood 

density, morphology), Chapter 5 investigates indexical effects of morphology on complex 

pseudowords. Much of lexical innovation in English involves morphology, and Chapter 5 finds 

that the gendered experience people have with morphemes influences their associations for novel 

words containing those morphemes. 

Chapter 6 summarizes the findings for real words and pseudowords, considers their 

relation to theories of lexical processing and morphological decomposition, discusses 

consequences for mechanisms of language change, and proposes steps for future research.  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1. Introduction 

This dissertation focuses on the topic of pseudowords and how speakers pseudoword 

processing relates to that of real words. Three main lines of inquiry are pursued with respect to 

pseudowords and real words: mechanisms of gradient well-formedness, theories of 

morphological decomposition, and indexical associations for morphemes in complex words. 

Gradient well-formedness has been previously demonstrated for pseudowords, though 

many experiment sets of pseudoword items are limited to short and even monosyllabic forms 

(e.g., Bailey & Hahn, 2001). In addition, these sets typically represent a small portion of the 

space of possible forms, with a bias toward the most wordlike pseudowords. This dissertation 

begins with the collection of wordlikeness judgments for a large set of pseudowords which 

systematically samples the full space of phonotactic probability for short and longer forms 

(Chapter 2). It then presents evidence for gradient typicality in morphologically simple real 

words, and reviews how models of wordlikeness can adequately capture the gradience seen for 

both real words and pseudowords (Chapter 3). 

Different models of morphological decomposition may require semantic transparency, 

exhaustive parsing, or only partial orthographic similarity (cf. Marslen-Wilson, Tyler, Waksler, & 

Older, 1994; Taft & Forster, 1975; Rastle, Davis, & New, 2004). Post-hoc analysis in Chapter 2 

suggests that participants recognized apparent morphemes in a large subset of the random-

generated pseudowords, and that their wordlikeness judgments were increased for those items; 

these findings raise the question of whether decomposition is involved in pseudowords 

processing. Chapter 4 uses a new experimental paradigm to demonstrate that participants are 
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highly successful in giving explicit decomposition responses for complex pseudowords partially 

constructed of real morphemes. 

If morphological decomposition influences pseudoword processing, there could be 

important consequences for models of lexical innovation. Chapter 5 builds on the experimental 

paradigm for decomposition to look for effects of indexical associations (here, gender 

associations) of known morphemes on pseudowords. Indexical associations have been widely 

documented for whole words (e.g., R. Lakoff, 1973) and for phonetic patterns (e.g., Labov, 2001; 

Eckert, 2008), but Chapter 5 provides evidence suggesting that similar effects are possible for 

derivational morphemes per se. 

Together, the results for gradient well-formedness, morphological decomposition, and 

indexical associations make important connections to models of linguistic change, and of 

language diversity within connected populations. First, they bridge studies of well-formedness 

and phonotactic learning with lexical processing and psycholinguistics. Second, they enhance 

our understanding morphological processing and the cognitive architecture underlying theories 

of morphological productivity. Third, they suggest new avenues for cognitive processing models 

of socio-indexical features. Finally, they suggest a unified idea of variation and change, in the 

perspective of lexical processing and psycholinguistics. Lexical processing and perception of 

words is a critical step in the cycle of language change: new words are created out of the space of 

possible words, and then these new words must be spread to other speakers; speakers perceive 

and adopt new words, according to their biases and experiences. In this way, models of lexical 

processing are the lynchpin to language change. For the improvement of those models, this 

dissertation identifies gaps between experimental results and existing theories, while also 
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suggesting aspects of these models which can be unified in ways that mutually benefit the 

understanding of those factors. 

1.1. Conventions of terminology 

This dissertation focuses on the question of phonotactic well-formedness, though the 

concept of well-formedness can be applied to many aspects of a word, and indeed to other levels 

of linguistic inquiry (e.g., to syntax). The term word is used to describe any isolated string of 

letters or phonemes, regardless of lexical semantics. When words are presented as examples 

here, they are styled in all capital letters (e.g., WORD). To make connections between 

approaches to well-formedness and lexical processing models, a clear discussion of the 

terminology for these concepts is required at the outset. The term well-formedness itself pertains 

to the characterization of possible words in a language: well-formed words are those which are 

acceptable to speakers, while any other words are ill-formed. Descriptions of well-formedness 

are grounded in empirical observation of acceptability. For example, analysis of corpora yields 

positive evidence about well-formedness because all attested words must be well-formed. 

However, the set of well-formed words is by no means limited to attested words. It is clear that 

this cannot be the case, because well-formedness knowledge is critical for language learning and 

language change. If speakers thought that only attested words were well-formed, no new words 

could arise, because they would be ill-formed and unacceptable; nor could a language learner, 

whose personal lexicon is limited, accept and learn any unknown words. 

In fact, experimental evidence shows that speakers can find both known and unknown 

words to be acceptable. Because the set of well-formed words includes both attested words and 

possible words that are not part of the lexicon, a three-way distinction in terms is used: real 
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words, pseudowords, and nonwords. Real words (e.g., PELT) are attested and acceptable. 

Pseudowords (e.g., PELP) are unattested, but possible and acceptable. Nonwords (e.g., BNICK) 

are impossible and unacceptable. More nuanced evidence of acceptability is shown by 

experimental judgments of wordlikeness for words; participants are asked to rate how much a 

word is like words of English, understanding that a pseudoword may be wordlike even though it 

is not a word they recognize. The task is to compare a word to all their knowledge of real words 

and judge its similarity. Previous studies have demonstrated that human judgments of 

wordlikeness for pseudowords are not limited to the binary distinction between well-formed and 

ill-formed, but are gradient on this continuum: the pseudoword GWAG might be less acceptable 

than PELP, even though neither is totally impossible. 

In order to characterize these gradient judgments of wordlikeness, studies have 

demonstrated a number of factors which correlate with observed wordlikeness. Two widespread 

approaches are phonotactic probability, and lexical neighborhood density. Though they use 

different perspectives, both of these can be considered as measures of overall lexical similarity 

based primarily on word type frequencies. Phonotactic probability methods induce a generative 

probabilistic grammar from the lexicon, which can generate all real words in the lexicon. The 

grammar can also generate pseudowords that are similar to the real words, and wordlikeness is a 

correlate of how likely a pseudoword is to be generated. For example, there are several words 

which contain PEL (as in the pseudoword PELP), but very few that contain GWA (as in GWAG), 

and none that contain BNI (as in the nonword BNICK). The grammar is more likely to generate 

PELP, which therefore is more wordlike than GWAG. In contrast, a simple lexical neighborhood 

density method predicts wordlikeness based on the number of real words that are very similar to 
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a given word (e.g., words which differ by a single change of a letter or phoneme). This means 

that the more wordlike PELP has several neighbors (HELP, KELP, PULP, PELT, PEEP, PEP), 

while the less wordlike GWAG has fewer (SWAG, WAG, GAG). 

Both phonotactic probability and lexical neighborhood density approaches to 

wordlikeness make gradient predictions for pseudowords, as exemplified above. In the same 

way, these models make gradient wordlikeness predictions for real words: real words may be 

more or less likely to be generated by a phonotactic grammar, and real words may have many or 

few neighbors. This reveals a terminological problem: if a participant is asked to judge how 

much a particular real word of English is like real words of English, they would probably 

respond that it is maximally wordlike—by definition. The concept more frequently used for real 

words is typicality: how typical of an English word is the stimulus? For the purposes of this 

dissertation, typicality is effectively equivalent to wordlikeness and the concept of overall lexical 

similarity, so these terms are used as appropriate for the experimental context. The studies in 

Chapters 2, 4, and 5 are concerned with pseudowords and use wordlikeness, while Chapter 3 

focuses on real words and uses typicality.  

The two models of word acceptability described above are quite parsimonious, primarily 

making use of type frequencies for real words. However, there are many other aspects of lexical 

information available to speakers. Some of this additional information is commonly used to 

elaborate both phonotactic probability and lexical neighborhood density models. For example, 

speakers are known to be sensitive to token frequency in addition to type frequency; people 

know that the word HELLO is much more common than DASTARDLY, and this knowledge 

could influence wordlikeness judgments. These models can incorporate this speaker knowledge 
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to improve their accuracy. Other aspects of speaker knowledge are less commonly used; a 

speaker is not limited to simply being aware of how often a given word is encountered, but 

experiences rich information about the linguistic context. Speakers know what kind of people 

often use the word, in what situations, in what locations, and so on. This contextual knowledge 

that relates to the social use of words is indexical information, because it can provide linguistic 

pointers to social identity; for example, it was once the case that using profanity like DAMN was 

stereotypically associated with men, while women were instead associated with euphemized 

variants like DARN. 

1.2. Outline of the dissertation 

The characterization of possible words in a language is central to the study of lexical 

processing, as well as of lexical innovation: new words must be former pseudowords, and 

speakers must be able to distinguish known words from merely plausible ones. Chapter 2 

expands on these studies by collecting wordlikeness judgments for a large corpus of 

pseudowords which comprehensively sample the space of phonotactic probability for 

pseudowords that are both short and long. The positive effect of phonotactic likelihood is 

replicated over the whole domain of likely and unlikely words, and the realistic limitations of 

simple neighborhood density measures are shown. Post-hoc analysis also suggests that 

participants perceived apparent morphology in the pseudowords, and gave such words higher 

wordlikeness ratings. 

Chapter 3 demonstrates that participants also give gradient typicality judgments for real 

words, in contrast to the predictions of some traditional and current theories of well-formedness. 

In this new analysis of data from Bailey and Hahn (2001), significant variation is observed in the 
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judgments of both real words and pseudowords, and this variation correlates with similar factors 

for both categories. 

Chapter 4 follows upon the morphological findings in Chapter 2 by eliciting explicit 

morphological decompositions from participants for complex real words and apparently-complex 

pseudowords. While it is unclear in Chapter 2 whether participants are actually aware of 

morpheme strings per se in the pseudoword stimuli, it is shown in Chapter 4 that participant 

accuracy in decomposing real and pseudowords exceeds the baseline levels derived from chance 

or from morphologically-unaware phonotactic statistics. 

With previous chapters establishing that wordlikeness judgments are influenced by 

different aspects of similarity within the lexicon (i.e., phonotactic probability, neighborhood 

density, morphology), Chapter 5 investigates indexical effects of morphology on complex 

pseudowords. Much of lexical innovation in English involves morphology, and Chapter 5 finds 

that the gendered experience people have with morphemes influences their associations for novel 

words containing those morphemes. 

Chapter 6 summarizes the findings for real words and pseudowords, considers their 

relation to theories of lexical processing and morphological decomposition, discusses 

consequences for mechanisms of language change, and proposes steps for future research.  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2. Shallow Morphological Processing in Pseudowords 

A central goal of phonology is to characterize the possible words of individual languages. 

In any language, the lexicon contains only a fraction of the phonologically possible wordforms. 

All other forms that are possible (but have no meaning) are pseudowords. The term nonwords is 

reserved here for strings that are phonologically impossible. The distinction between 

pseudowords and nonwords is a gradient one, as revealed in wordlikeness judgments. Some 

pseudowords are judged to be extremely typical for the target language; should a conventional 

meaning become associated with them, they would be strong contenders to be added to the 

vocabulary. Others are moderately or barely acceptable. The statistical prediction of the full 

range of such gradient wordlikeness judgments is a major research issue, which this paper 

addresses.  

Lexical innovation and encoding are key components in the process by which the lexicon 

grows and changes. Existing phonotactic and morphological patterns influence (and are 

influenced by) the encoding and adoption of new words in a feedback loop. In this study, we 

explore the role of partial and complete morphological decomposition in determining the 

acceptability of novel possible words (pseudowords). The influence of morphological 

decomposition in processing known words has been previously investigated via semantic 

priming. In a seminal priming study, Marslen-Wilson et al. (1994) show that transparently-

derived words prime embedded words, but words without transparent derivation do not: e.g., 

CLEANER primes CLEAN but TINSEL does not prime TIN. They also argue that semantically 

opaque complex words (such as DEPARTMENT) and pseudoaffixed words (such as CORNER 

and PIGMENT) are not decomposed. Their priming results point to a processing model in which 
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morphological decomposition involves deep semantic processing. Under such a model, no 

decomposition is predicted for pseudowords, which lack semantic information. 

However, further work has altered this perspective. Taft (2004) argues instead that 

morphological decomposition is obligatory when possible, with differences in processing 

deriving from relative frequencies of the base and affixes. Rastle et al. (2004) show no difference 

in priming between transparent words (CLEANER) and words with opaque or false derivation 

(DEPARTMENT or CORNER); and both of these produce more priming than words with only 

partial formal similarity (BROTHEL may slightly prime BROTH). In a study of the processing 

of ambiguous novel compounds, Libben, Derwing, and Almeida (1999) find evidence for a 

prelexical parser that makes all possible analyses available to the lexicon. In a related study using 

semantic ratings plus familiarity-decision and priming tasks, Libben, Gibson, Yoon, and Sandra 

(2003) show evidence for decomposition of semantically opaque compounds. Lehtonen, 

Monahan and Poeppel (2011) find MEG evidence for early decomposition of pseudoaffixed 

words, and Kuperman, Bertram, and Baayen (2008) report that information about both stems and 

suffixes within complex Finnish compounds is used immediately, before the full word has been 

accessed. While these results suggest that processing is only shallow (not reliant on semantics), 

recent work has argued that the deep and shallow processes operate in parallel, with evidence of 

morphosemantic effects from the very beginning of processing (Feldman, Milin, Cho, del Prado 

Martín, & O’Connor, 2015). Feldman et al. (2015) show graded priming effects across a range of 

lag times: relative to unrelated pairs, the most priming was shown for transparent pairs 

(TEACHER–TEACH), and moderate priming was shown for opaque, pseudoaffixed, or 

partially-decomposable pairs (CORNER–CORN, RATIFY–RAT, or CORNEA–CORN). Such 
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results suggest two processes: deep morphosemantic analysis of known words, as well as 

shallow, form-based decomposition. 

These findings offer only a little insight into the processing of novel words, which have 

no established meanings. It is known that phonotactic cues to morphology influence acceptability 

ratings of pseudowords: in their study of phonotactic effects on wordlikeness ratings, Hay, 

Pierrehumbert, and Beckman (2004) find that ratings are best predicted by the likelihood of the 

single best morphology-based parse; if the pseudoword contains a medial cluster that is more 

likely than not to span a morphological boundary, the word is evaluated as if it were 

morphologically complex. Since the stimuli in their experiment include no real English stems, 

this means that a bottom-up decomposition of the forms based on the phonotactics was involved. 

Analyzing rejection times in a lexical decision task, Taft and Forster (1975) find that prefixed 

pseudowords are analyzed into constituent morphemes before lexical access occurs. Deacon and 

Kirby (2004) report that general morphological awareness is a predictor of children’s success in 

reading novel or made-up words. In the current study, we investigate the potential role of such 

pseudomorphology in wordlikeness judgments using an analysis of the highly varied pseudo-

compounding and pseudo-suffixation that are exhibited in our phonotactically balanced set of 

short and long pseudowords. 

2.1. Predictors of Wordlikeness 

In order to test the effects of pseudomorphological parsing in our dataset, we establish a 

baseline to control for other known factors of wordlikeness. The wordlikeness of a pseudoword 

is influenced by two general factors. One is the overall constraints on combinations of 

phonological elements in the language (phonotactics). The other is the extent to which the word 
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is similar to, or reminds people of, specific words they already know. These influences are 

correlated, because a phonological combination has high probability if it is found in many words. 

However, the correlation is not perfect; the lexicon is composed of a haphazard subset of the 

allowable forms, and words that are similar to a pseudoword may or may not match the same 

parts of the pseudoword. Studies of speech processing have revealed that the two factors are 

dissociable (Storkel, Armbrüster, & Hogan, 2006), and so we consider them separately.  

2.1.1. Phonotactics  

Speaker knowledge of phonotactics is gradient and probabilistic, so that there is a full 

spectrum of acceptability for possible words. This range of phonotactic acceptability is derived 

from lexical statistics: items with common sound sequences are judged better than those with 

rarer ones (Coleman & Pierrehumbert, 1997; Vitevitch & Luce, 1999; Frisch, Large, & Pisoni, 

2000; Bailey & Hahn, 2001; Hay et al., 2004; Vitevitch & Luce, 2004). Note that phonotactic 

knowledge draws on lexical statistics over word types, not tokens (Frisch, Large, Zawaydeh, & 

Pisoni, 2001; Hay et al., 2004; Richtsmeier, 2011). Modeling phonotactic likelihood 

probabilistically is the most common type of generative-grammar approach to wordlikeness, 

operating at the level of phones. A probabilistic model describes the observed phone sequence 

patterns in the language, building on frequency statistics over the set of all words in the speaker’s 

experience. The resulting model describes the total space of possible phone sequences for that 

experience, so that it can parse or generate not only the input words, but a large set of unseen 

sequences. 

The size of sequences considered in phonotactic models varies. Biphone statistics are 

widely used, offering a major improvement over uniphone statistics by capturing the tendency of 
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consonants and vowels to alternate. But biphone statistics do not fully capture the syllable 

structure of languages such as English. Systematic effects at larger time scales include 

constraints on syllable contacts, distinctive patterns at word edges, and effects of word stress (see 

review in Pierrehumbert, 2003). In order to capture these effects, other approaches use larger 

units of analysis: triphones, onsets/rimes, syllables, etc. (Coleman & Pierrehumbert, 1997; Hay 

et al., 2004).  

Biphone and triphone models have a privileged status in phonotactics because they 

provide an efficient means for both word parsing (i.e., deciding if any given input string is licit, 

and calculating its probability) and word generation (Manning & Schütze, 1999). They perform 

well in comparison to a lexicon that merely lists encountered words, because of their capacity to 

accept new, out-of-vocabulary words, while also being able to reject very unlikely words (i.e., 

words with very low or zero phonotactic probability scores). Because these sequential models are 

the simplest learnable system, it is important to explore the limits of their performance; more 

elaborate methods must be justified by surpassing that performance. In addition, the probabilistic 

n-gram approach is pervasive in computational applications like phoneme to grapheme (P2G) 

conversion and automatic speech recognition (Martin & Jurafsky, 2000; Hahn, Vozila, & Bisani, 

2012).  

Segmental n-gram approaches such as the biphone and triphone models used here have 

important limitations. Evidence for n-grams becomes increasingly sparse as the n-gram size 

increases, and some attested word patterns are well-explained by more abstract phonological 

elements (e.g., features, syllable structures) (Pierrehumbert, 2003; Kager & Pater, 2012). For 

humans, sparseness may mean that triphone statistics are not generally learnable; but they are 
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potentially learnable for frequent triphones. Speakers may be able to make use of larger n-gram 

knowledge (e.g., triphones) when it is available, and ‘back off’ to their broader knowledge of 

biphone statistics otherwise. ‘Smoothing’ of n-gram statistics is also used to mitigate sparseness 

and sampling issues. In the analyses presented here, biphone and triphone phonotactics are 

treated as distinct factors, and their correlations with each other and with the wordlikeness 

ratings are assessed; simple smoothing is represented by the independent combination of the 

biphone and triphone factors within the linear mixed-effects regression (LMER) models. 

Word length must also be considered in wordlikeness models. Our stimulus set 

systematically covers the space of possible forms with 4, 5, 6, and 7 phones. This provides items 

long enough for pseudomorphology to appear, and allows the statistical models to control for 

length. An important constraint on possible wordforms is that long words are dispreferred. 

Simply recombining phonological elements in valid strings of arbitrary length would produce an 

exponentially increasing distribution of overall word lengths. In fact, the distribution is close to 

log-normal (Limpert, Stahel, & Abbt, 2001). This result can be derived by imposing a cost for 

each additional unit (a mechanism stipulated in Daland, 2015). To approximate the cost of 

additional units, we provide unnormalized phonotactic scores. Because the log of a likelihood is 

negative, each additional units invariably lowers the score; but this approach is compatible with 

the finding that long words comprised of more probable parts are judged to have similar 

wordlikeness to short words made of less probable parts (Frisch et al., 2000). 

2.1.2. Similarities to Existing Words 

 In this study, we consider morphological decomposition as a relevant dimension of 

similarity between pseudowords and existing words. Another major approach to word similarity 
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is the lexical neighborhood. This method assumes that a form that differs from an existing word 

by exactly one phoneme counts as extremely similar to it. The set of such words–the lexical 

neighborhood of the target form–is the set of real words that can be formed by adding, deleting, 

or substituting a single phoneme (i.e., a phoneme edit distance of 1) (Coltheart, Davelaar, 

Jonasson, & Besner, 1977; Grainger, 1990; Luce, Pisoni, & Goldinger, 1990; Marian, Bartolotti, 

Chabal, & Shook, 2012). For real words, the effects of lexical neighborhood size on processing 

are dissociable from the phonotactics, and can vary depending on the task, either enhancing or 

degrading performance (e.g., accuracy or response time) (Vitevitch, Stamer, & Sereno, 2008; 

Heller, 2014). Short pseudowords, such as monosyllables and disyllables, are judged to be more 

wordlike if the lexical neighborhood is large than if it is small (Bailey & Hahn, 2001). This result 

is easily understood as indicating that similarity to many existing words makes a pseudoword 

seem more like a real word. 

The applicability of lexical neighborhoods for a general theory of wordlikeness is limited, 

however, by two properties of the way it is normally computed. First, nonwords such as SPT 

may be completely unpronounceable and yet have many neighbors (APT, OPT, SET, SAT, SPA, 

SPIT, etc.). Second, long wordforms often have no neighbors, even if they are highly acceptable. 

Because the chance that a phonologically legal sequence is an actual word decreases with word 

length, the chance that a pseudoword has a minimal pair also decreases. The standard lexical 

neighborhood calculation depends solely on the number of minimal pairs, ignoring long word 

pairs that may be highly similar to each other because of the many respects in which they match. 

‘See’ and ‘sue’ are lexical neighbors, although they differ in 50% of their length; ‘mediation’ and 

‘radiation’ are not, even though they match in a greater percentage of their length and might be 
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easily confused in noisy conditions. Luce and Pisoni (1998), Bailey and Hahn (2001), Hahn and 

Bailey (2005), and Kapatsinski (2006) advance proposals to mitigate these problems by various 

elaborations of the basic approach, including expanded neighborhood definitions, more nuanced 

edit distance calculations, and length-normalization. The cognitive status of these more complex 

models is unclear, and the simple form is still commonly used (Marian et al., 2012; Heller, 2014; 

Storkel, 2004).  

Further issues surrounding the lexical neighborhoods of long words are evident for 

languages in which words are normally longer than in English because of highly productive 

morphology. While neighborhood density interferes with the speed and accuracy of lexical 

processing in English, presumably due to the effects of lexical competition, it facilitates lexical 

processing in Spanish (Vitevitch & Rodríguez, 2005). This result may be due to the fact that 

lexical neighbors are much more likely to be morphological relatives in Spanish than in English. 

Given that two words share a morpheme by virtue of similarities in form and meaning, 

psycholinguistic research on morphological processing offers another window into how the 

similarities amongst words in the lexicon shape the wordlikeness of pseudowords. 

2.2. Importance of Pseudowords, Limitations of Pseudoword Sources 

For addressing gradient wordlikeness and for a wide variety of questions in linguistics 

and psycholinguistics, pseudowords are a critical resource. Judgments of pseudowords and 

nonwords shed light on the nature of phonological representations and abstractions (Coleman & 

Pierrehumbert, 1997; Frisch et al., 2000; Hayes, Zuraw, Siptár, & Londe, 2009; Hayes & White, 

2013). They are used to investigate word processing and the structure of the lexicon: as foils in 

lexical decision tasks (Meyer & Schaneveldt, 1971; Taft & Forster, 1975; Forster & Davis, 
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1984); in ‘wugs’ tasks to assess the productivity of morphological patterns in children (Berko, 

1958) and adults (Pierrehumbert, 2006b; Ernestus & Baayen, 2003; Zuraw, 2007). The novel 

status of pseudowords minimizes lexical frequency effects, and they lack the conventionalized 

semantic content that real words have (though similarities to real words may in some cases 

suggest semantic features). Researchers studying categorization and lexical semantics can 

instead impose semantics, by pairing the pseudowords with images or with discourse contexts 

that constrain the word meanings (as in Imai, Gentner, & Uchida, 1994; Alegre & Gordon, 

1999).  

As stimuli, pseudowords have the advantage over real words in that they can be selected 

to evenly occupy the space of possible words, a space which real words occupy only sparsely. 

Therefore, pseudowords are better suited to provide sufficient variety of experimental items, 

even with a several design constraints. For the same reason, pseudowords can better represent the 

full range of wordlikeness; real words are biased toward the high-probability end of the 

phonotactic space because they are shaping precisely the forces of wordlikeness being 

investigated. Pseudowords are also used for studies of encoding and memory during word 

learning, using measures such as word repetition accuracy (Edwards, Beckman, & Munson, 

2004), and lexical priming and cortical response changes (Davis & Gaskell, 2009). Finally, 

artificial language research necessarily uses pseudowords. For example, the artificial language 

experiment described in Schumacher, Pierrehumbert, and LaShell (2014) used non-English 

pseudowords generated with a Welsh phonotactic model in order to encourage participants to be 

open-minded about whether the language presented would or would not have English-like 

inflectional morphology. 
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Research explicitly eliciting Likert-scale wordlikeness ratings of pseudowords, such as 

the present project, uniformly find that wordlikeness is gradient. This result leads to the 

conclusion that the cognitive representation of wordlikeness is also gradient. Wordlikeness has 

also been shown to affect speed and accuracy in repetition and lexical decision tasks, and 

performance in implicit memory tasks (for examples, see Vitevitch, Luce, Charles-Luce, & 

Kemmerer, 1997; Frisch et al., 2000; Muncer, Knight, & Adams, 2014). To examine the gradient 

properties of wordlikeness, stimuli are needed which comprehensively cover the space of 

wordlikeness. However, current scored or normed pseudoword sources have important 

limitations in their coverage of the space of possible words, which are reviewed below. To 

address some of these limitations, we analyze a new dataset of 8400 pseudowords and nonwords, 

PseudoLex. In order to explore effects of morphology, PseudoLex systematically spans a broader 

range of phonotactic likelihood (including impossible nonwords) for monosyllabic and 

multisyllabic forms, for a broader range of pseudoword lengths (4 to 7 phones), normed by 

collecting 24 judgments per item. 

In order to investigate wordlikeness effects for longer or lower-probability pseudowords, 

PseudoLex addresses some specific limitations of existing pseudoword sources. These sources 

often have limited coverage of the space of possible words and phonotactic models. For example, 

pseudowords may be generated by starting from a real word and constructing a nonword 

neighborhood around it by inserting, removing, or substituting a single phoneme (e.g., Irvine 

Phonotactic Online Dictionary presented in Vaden, Halpin, & Hickok, 2009). This approach 

misses many possible forms, and does not control for overall phonotactic likelihood. Possible 

forms are also frequently missed when studies with pseudowords are forced to focus on very 
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short stimuli, often only monosyllables (e.g., ARC Nonword Database: Rastle, Harrington, & 

Coltheart, 2002). Some pseudoword sources use orthography only instead of a phonemic 

transcription. For languages with opaque spelling systems, this is a step removed from 

phonology. The resulting pseudowords are useful for reading research, but not necessarily for 

other types of research. 

More general pseudoword sources are often still limited to biphone phonotactic methods, 

which may fail to capture regularities over larger timescales (e.g., WordGen: Duyck, Desmet, 

Verbeke, & Brysbaert, 2004). These effects are important in many languages (e.g., English). For 

example, a biphone model is able to produce a pseudoword like STSTSTS (due to the existence 

of both ST and TS sequences, in words such as such PASTOR, STOP, CATSUP, PATSY, and 

CAHOOTS). A triphone model correctly avoids such a string. Other methods can also address 

the biphone limitations on capturing larger structures, such as the subsyllabic approach of the 

tool “Wuggy” (Keuleers & Brysbaert, 2010). The simple triphone model used in PseudoLex is 

able to supply the broad range of stimuli that span high and low acceptability that the current 

study requires. 

2.3. Construction of PseudoLex 

We developed a new, flexible pseudoword generator and used it to generate a set of 8400 

pseudowords: PseudoLex. PseudoLex was normed and validated through an experiment 

collecting wordlikeness judgments. Our generator was designed to address the limitations 

described above and thereby enable more comprehensive modeling of the relationship between 

wordlikeness and phonotactics.  

2.3.1. How PseudoLex Items are Generated 
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For PseudoLex, statistical phonotactic models are used to generate items. The models are 

trained on a monomorphemic subset of CELEX. Three models are trained: triphone, biphone, 

and uniphone. Word boundaries are encoded as null phones; no other positional information is 

included. The triphone and biphone models are stored in the form of n-gram transitional 

probabilities. The uniphone model is stored as a table of overall phone probabilities. The trained 

models are used to generate random pseudowords of 4, 5, 6, and 7 phones. The uniphone model 

is also used to generate nonwords, which serve as corpus-matched baseline items. The trained 

models are used to assign biphone and triphone scores to items generated with either grammar, 

and to ensure the nonwords are indeed illegal strings. Because the illegal baseline items contain 

sequences with transition probabilities of zero, these items do not have well-defined scores when 

scores are calculated in the standard manner using log probabilities.  

2.3.2. Phoneme to Grapheme Conversion Using Phonetisaurus  

For experiments presenting pseudowords visually, stimuli need to be represented 

orthographically. Phoneme-to-grapheme (P2G) conversion is required for our phonemically-

generated pseudowords. Phoneme-to-grapheme conversion is an issue for opaque spelling 

systems (e.g., that of English), in which the mappings between phonemes and graphemes 

(graphones) are frequently irregular or ambiguous. There is rarely a single correct orthographic 

rendering for a given phonemic pseudoword, and vice versa. Figure 1 gives an example of 

possible graphone mappings in the word ‘phoenix’.  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Figure 2-1. Example graphone mappings. 

Proficient speakers of a language are skilled at this process, but hand-coding items is both 

laborious and subject to bias. To address this problem, we used Phonetisaurus, a state-of-the-art 

computational tool for G2P conversion (Novak, Yang, Minematsu, & Hirose, 2011). In testing 

with other top G2P tools, Phonetisaurus has excellent accuracy (Hahn et al., 2012). Using a 

computer-based tool avoids the biases of hand-coding, and quickly handles the thousands of 

items required for this study. Detailed discussion of Phonetisaurus and our use of it is found in 

Appendix C. 

2.3.3. Wordlist 

We generated 8400 pseudowords with a CELEX-based corpus of 11382 monomorphemic 

words in phonemic representation (Baayen, Piepenbrock, & Gulikers, 1995). The input corpus 

was hand-edited to ensure that words were monomorphemic (Hay et al., 2004), to avoid 

capturing the boundary phonotactics of compound words (e.g., in the triphone /ɔtd/ from 

HOTDOG). Because some CELEX pronunciations come from a non-rhotic variety of English, 

pseudowords containing /r/-colored vowels or ‘linking /r/’ segments were excluded to make this 

stimulus set useful across a wider range of populations. The phonemically generated 

pseudowords were converted to orthographic representation for the visual wordlikeness task by 

the Phonetisaurus tool (also trained on a CELEX lexicon). We excluded items that: 1) failed the 



  !32
G2P mapping stability filter (see Appendix 3); 2) contained orthographic substring matches to a 

compiled ‘knockout’ list of 1042 vulgar or obscene terms; 3) were homophones of existing 

words in CELEX; or 4) were homographs of existing words. Homographs were detected using 

the Corpus of Contemporary American English (COCA) (Davies, 2008); COCA was used for 

this purpose because it is slightly larger than CELEX (100,803 versus 89,871 wordforms), and it 

has better coverage of American vernacular. Homophones and homographs were not common: 

for length 6 pseudoword candidates, 0.14% were excluded as homophones, and 0.28% of items 

were excluded as homographs. 

Biphone and triphone probability scores are calculated for each generated pseudoword. 

To ensure coverage of the full range of phonotactic likelihood, the stimulus set consisted of 1200 

items in each of 7 categories: items from the first, second, and third tertiles of triphone scores; 

the same distribution for biphone scores; and uniphone items illegal in the biphone and triphone 

grammars. For each category, 300 items were generated with 4, 5, 6, and 7 phones, to create 28 

cells (see Table 2-1). These lengths were chosen to include and extend on pseudoword stimuli 

used in previous studies. Random sampling of stimuli in each cell ensures that the full ranges of 

scores are evenly covered, and that neither the biphone nor triphone model is privileged. Biphone 

and triphone scores for each item are strongly correlated (r = 0.81), but this design means they 

have equal footing in our models. 
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Table 2-1. Example stimuli for the 28 cells of the current study. Each cell represents 300 stimuli. 

2.3.4. Morphological Decomposition 

To explore the role of morphological similarities to existing words, the stimuli were 

analyzed post hoc for suffixation and compounding patterns. Suffixation was determined using 

the standard Lancaster stemmer, as implemented in NLTK (Paice, 1990; Bird, Loper, & Klein, 

2009). Compound parses were found by substring matches to the CELEX English lexicon. 

Neither method uses syntactic or semantic analysis, and both are based on orthography. 

We define a full suffixation decomposition as occurring when the stemmer output is a 

real English word (CELEX English) (e.g., PUCK + ING). Note that no constraints on part-of-

speech have been imposed. A partial (pseudosuffixation) occurs when the output stem is a 

pseudoword (e.g. IOD + IUM, SURPIT + UAL ). The minimum suffix length is 1 letter, and the 

minimum length of the residue after suffix parsing is 2 letters. 

Similarly, a full compound analysis means that the pseudoword is a concatenation of two 

existing English words (e.g., HYPODECK, AFTERTOOK, SELLFILTH); the minimum length 

Item 
Length

Uniphone 
Generated

Biphone Generated Triphone Generated

Low 
Score

Med 
Score

High 
Score

Low 
Score

Med 
Score

High 
Score

4 phones ngiac 
kjkd

liku 
orphab

roiet 
emboy

hanch 
swong

jolsh 
ertav

focar 
theoroi

morbi 
lont

5 phones ccusfc 
ootplp

elvial 
thyroil

lemurch 
caread

pardos 
digot

ofluth 
jaystow

daporp 
biahaw

peleos 
sordna

6 phones tnjayout 
udgvtnm

auxald 
arthralm

eyprithy 
axallia

allownser 
phispath

odeckyo 
poutiki

eptuo 
whenmaph

pulview 
egugong

7 phones nftcngick 
dfpkeps

uccoirstoi 
thworbizar

totisual 
esierrian

fequoisa 
drublod

urialerau 
ogunkeb

loiterpum 
afrannoys

obversing 
doyenvom
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of subword is 3 letters, and the minimum length of residue after compound parsing is 2 letters. A 

partial (pseudocompound) analysis contains one English word, with the residue being a 

pseudoword. Examples of forms with a partial compound analysis include CHURCHAROU and 

AFFREAP. These compounds have no established meanings. Because no syntactic analysis is 

performed, they do not necessarily conform to productive compounding strategies for English. 

However, meanings for them can be imagined; if a pickpocket picks valuables from pockets, a 

sellfilth might sell unsanitary products, or filthy gossip for tabloids. Additional examples of 

decomposable stimuli are shown on Table 2-3 in section 2.6.1. 

The analyses generated by the Lancaster stemmer and the compounding analysis may 

include both spurious and missed decompositions. For example, the forms SNUFFY and 

CRASSY are not decomposed, because the stemmer recognizes the suffix -Y only after specific 

consonants. The form ERFLETUL is analyzed as containing the suffix -UL, which would not be 

familiar to most English speakers. These errors occur because the irregularities in English lead to 

a tradeoff between accuracy and precision in the rules. Note also that the Lancaster stemmer 

matches multiple suffixes in succession; e.g., in DUMPOUSER, both -ER and -OUS are 

matched (DUMP, OUS, ER). In our analyses, such cases are treated as if the decomposition 

yielded a single combined suffix (-OUSER). When affix combinations occur in the lexicon, it 

can be semantically and statistically justified to treat them as morphemes in their own right 

(Stump, 2017), but it is not clear if participants would obligatorily decompose all apparent 

suffixes in pseudowords. We did not wish to compromise the objectivity of our analysis by 

readjusting the rule set post hoc. We will return below to the consequences of this situation for 

the data analysis.  
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2.4. Data Collection 

The norming study used the PseudoLex stimuli in a visual wordlikeness task. In an online 

Amazon Mechanical Turk experiment, 1440 native US English speakers provided Likert-scale 

wordlikeness judgments of 140 pseudowords each, as well as completing a vocabulary 

assessment, and a rhyming task.  

2.4.1. Methods 

2.4.1.1. Participants. The study collected data from 1440 participants via Amazon 

Mechanical Turk (825 female, 608 male; 7 participants declined to provide gender information). 

All participants were English speakers (5 participants reported other “main” languages, but their 

performance passed the quality control standards of the experiment), and 1438 participants 

currently reside in the United States. Reported birth years range from 1945 to 1996 (26 

participants declined to answer). All participants completed the experiment between 2014-06-02 

and 2014-06-13. Participants were paid $3 for completing the task. 

Recruiting participants through AMT and other online sources is increasingly popular in 

psycholinguistics because it can efficiently provide large datasets of high quality (Snow, 

O’Connor, Jurafsky, & Ng, 2008; Warriner, Kuperman, & Brysbaert, 2013). Wurm, Cano, and 

Barenboym (2011) report higher item variability for an online versus an in-lab task. However, 

capturing such variability may be a useful step toward understanding the natural range in human 

cognition. Current lab studies are unduly reliant on Western college undergraduates as 

participants (Heinrich, Heine, & Norenzayan, 2010), and online data collection makes it possible 

to recruit a more diverse participant pool (Gosling, Sandy, John, & Potter, 2010). 
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2.4.1.2. Materials and Presentation. The 8400 pseudowords, as described above, were 

block-randomly distributed into 1440 experiment scripts of 140 stimuli each (5 stimuli for each 

of the 28 cells). The scripts are semi-overlapping, so the design gathered 24 ratings from 

different participants for each pseudoword. The experiment included 2 supplemental tasks: a 

word familiarity task to assess vocabulary level (based on Frisch & Brea-Spahn, 2010), and a 

rhyming task. The vocabulary task includes 70 items: 10 nonce words (e.g., IMPIROXIN), 10 

very common words (e.g., STATUE), and 50 test words of varying familiarity (e.g., TABBY). 

The 50-item rhyming task was developed to assess dialect differences. No significant effects of 

rhyming task performance were found, so the results are not included in the PseudoLex dataset. 

2.4.1.3. Procedure. Data were gathered online by recruiting participants through Amazon 

Mechanical Turk (AMT). Participants chose the experiment “human intelligence task” from the 

AMT interface and were directed to the web-based experiment. The experiment consisted of 

three tasks. The pseudoword rating task was first. Each participant was instructed to give each 

item a rating of how English-like it was on a 5-point Likert scale. Participants were told to 

pronounce each word aloud, and to base ratings on the sound, not the spelling, of the 

pseudowords. The experiment enforced a 600ms delay between the presentation of each 

pseudoword and the acceptance of a response. Each participant rated 140 pseudowords, 

composed of 5 items for each of the 28 cells in the design. After completing the pseudoword 

ratings, the participant performed the second task: 50 pairs of rhyming judgments. The third task 

was the vocabulary assessment. Participants were instructed to rate each word by how familiar it 

seemed on a 5-point Likert scale. The nonce words and highly familiar words in the test are used 

as baseline items to exclude participants who do not follow the instructions. The ratings of the 50 
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test words are used to calculate the vocabulary score, with all words weighted equally. The three 

tasks together took a maximum of 30 minutes. Instructions for each task are found in the 

appendices. 

2.4.2. Effects For Replication 

Prior to investigating the role of morphological decomposition in judgments of 

pseudowords, we first verify that the experiment replicates some important effects previously 

reported. In addition to pure replication, we are interested to see how these effects are shown for 

the PseudoLex stimuli, which are designed to be more varied than the pseudoword stimuli in 

many previous studies. 

2.4.2.1. Phonotactic likelihood. Phonotactic likelihood has been shown to correlate with 

wordlikeness judgments in previous research, but previous studies have largely focused on 

shorter words. Here, we seek to replicate the correlation for the shorter items, and determine the 

extent to which it extends to longer items and to less-probable items. We evaluate both triphone 

and biphone models. Traditional biphone-only versions fails to capture some phonotactic 

constraints that are known to be psycholinguistically relevant, as discussed above. Triphone 

models can capture some of these effects, such as word-edge and syllable contact effects, as well 

as short morphemes. However, because there are many more possible triphones than biphones, 

triphone statistics cannot be estimated as reliably from a lexicon of realistic size; see further 

discussion in Pierrehumbert (2003). Here we ask whether triphone statistics can improve model 

predictions, in comparison to biphone statistics alone. Biphone and triphone phonotactic 

probability scores for each item are cumulative log transitional probabilities, centered in the 

LMER models. Nonword items do not have a well-defined log probability score and were 
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excluded from LMER analysis. These illegal items should be rated less wordlike than the 

pseudoword items. 

2.4.2.2. Orthotactics. PseudoLex was designed to minimize the effects of irregularities in 

the English spelling system. We verify this effort by asking whether orthotactics scores provide 

any additional predictive power beyond phonotactic scores. 

2.4.2.3. Vocabulary level. Frisch and Brea-Spahn (2010) found that participants with 

larger vocabularies judge items more favorably, suggesting that high-vocabulary participants are 

more familiar with rare phonotactic sequences. We seek to replicate this effect with the more 

varied set of pseudowords found in PseudoLex. Vocabulary level for each participant is a 

continuous integer measure from 50 to 250, the sum of the Likert ratings for the 50 test items (M 

= 168, s.d. = 32.32). This measure was centered in LMER models. 

2.4.2.4. Word length. Controlling for local phonotactic likelihood, longer items should 

have lower wordlikeness judgments (Frisch et al., 2000). A phonotactic likelihood score that is 

not normalized for item length predicts this effect qualitatively, because the overall score tends to 

decrease with each additional phone. PseudoLex includes a phonotactically balanced sample of 

words of four different lengths (4, 5, 6, and 7 phones). We ask whether there is a systematic 

decrease of rating for these pseudowords, which represent a more diverse set than those used in 

Frisch et al. (2000). 

2.4.2.5. Lexical neighborhood size. In previous studies of wordlikeness, an important 

predictor is lexical neighborhood size, defined as the number of words with a string-edit distance 

of 1 from the target word. This measure was developed for studies of monosyllabic 

pseudowords. We ask whether it is also relevant for the more comprehensive sampling of the 
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phonological space in PseudoLex. The orthographic neighborhood size for each pseudoword was 

calculated using CLEARPOND (Marian et al., 2012). The CLEARPOND lexicon is built from 

the SUBTLEX movie subtitle database, a more natural and current lexical inventory than the 

Hoosier Mental Lexicon used in earlier work. The measure ranges from 0 to 19 (M = 0.51, s.d. = 

1.46). The distribution is highly skewed (for 79% of items, the neighborhood size was 0), so 

neighborhood density was included in models as a Boolean factor (‘Does the item have 

neighbors?’: ‘True’ or ‘False’). 

2.5. Replication 

The phonotactic model of wordlikeness is validated by demonstrating the statistical 

significance of biphone and triphone scores, subject to relevant controls (described in the 

previous section). Figure 2-2 plots the relationship of biphone score and triphone score to 

wordlikeness judgments. The scores shown on the x-axis are cumulative log transitional 

probabilities for biphones and triphones. In both plots, the mean ratings for nonword items are 

much worse than the least likely pseudowords. Biphone and triphone scores appear strongly 

positively related to wordlikeness. 

Word scores decline systematically with word-length, as discussed above. Figure 2-3 

illustrates this pattern for the biphone and triphone scores. Ratings also decline systematically 

with length, although the within-length variation of ratings (relative to the difference in median 

between one length and the next) is greater than for the phonotactic scores. This indicates that 

additional factors besides biphone and triphone scores play a role in the participants’ judgments.  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Figure 2-2. Mean wordlikeness rating by log phonotactic probability scores. Bins contain equal 
observation counts, pooled over all lengths: a) biphone score, b) triphone score. The 
baseline items (labeled as “illegal” on the x-axis) are rated lower than the lowest-scored 
legal items. On the average, biphone and triphone scores both correlate positively with 
wordlikeness ratings.  
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Figure 2-3. Boxplots of phonotactic scores and wordlikeness ratings, separated by  
word length: a) biphone scores, b) triphone scores, c) wordlikeness ratings. 

The relationship of wordlikeness ratings to the replicated effects was evaluated using 

linear mixed-effects regression (LMER) implemented in R package ‘lme4’ (Bates, Maechler, 

Bolker, & Walker, 2015) in R (R Core Team, 2014). All models include random intercepts for 

subjects and items. All continuous measures were centered (i.e., biphone and triphone probability 

scores, vocabulary level). Because of the high correlation between word scores and length, we 

divided the analysis into 4 models by item length. This means that the relationship of length to 

wordlikeness judgments is not directly statistically evaluated here. The length factor appears to 

be related to multiple other factors affecting wordlikeness (e.g., morphological decomposition, 

discussed later), both positively and negatively, so isolating a possible effect of length per se will 

require further research to control for these length-related factors. 

For each length, a base model was defined to include all main effects (biphone and 

triphone score, vocabulary level, neighborhood density) and all 2-way interactions of the main 
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effects. These base models were pruned to yield the final models; during pruning, factors were 

removed if their inclusion could not be supported (i.e., caused failures of model convergence), or 

for insignificance (i.e., t-value < 2). To prevent unreasonable collinearity in the model, a criterion 

of kappa < 10 was imposed; all kappa values in the models presented are less than 7. The 

significance of all reported factors and interactions was confirmed using model comparison (p-

value < 0.05, 𝛸² method); these values are reported in Appendix 5. The four resulting models 

(‘Baseline’ models) are summarized in Table 2-2; information for factors excluded from a model 

is marked by ‘–’. Models in the ‘Baseline’ set are suffixed with ‘A’. 

Table 2-2. Model factors in Baseline models. 

2.5.1. Orthotactics. The 8400 pseudoword items in PseudoLex were designed to have a 

close correlation between phonotactic score and orthotactic score. This allows the items to be 

used in visual experiments with confidence that orthotactic effects are not being confused with 

phonotactic effects in participants’ ratings. In the subset of items with legal bigraph and trigraph 

Baseline
Model Factors

Length 4A Length 5A Length 6A Length 7A

β t β t β t β t

biphone 0.046 4.69 0.058 7.40 0.061 9.22 0.067 11.39

triphone 0.109 10.40 0.073 8.95 0.081 11.07 0.070 10.19

vocabulary 0.003 7.35 0.003 7.75 0.004 8.27 0.004 9.07

neighbors 0.564 16.23 0.559 13.97 0.811 9.57 0.693 2.43

neighbors:vocabulary -0.001 -3.24 – – – – – –

biphone:vocabulary – – – – – – 0.0001 2.49
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scores (5572 items), the correlation of orthotactic and phonotactic score is high: r = 0.84 for 

digrams, r = 0.82 for trigrams. This high correlation makes including all four factors in the same 

LMER models problematic. We instead compared the wordlikeness effects of orthotactics and 

phonotactics by running an additional set of LMER models using the 5572-item subset; these 

correspond to the Baseline models described on Table 2-2, in which bigraph and trigraph 

orthotactic score factors were substituted for the phonotactic score factors ‘biphone’ and 

‘triphone’. These equivalent models are similar overall; to the extent that they differ, the fit of the 

phonotactic versions is uniformly superior (though only slightly). The correlation of residuals 

between the phonotactic and orthographic models is > 0.999, indicating that the deviations of 

specific items from the overall trends in each model are similar.  

2.5.2. Phonotactic score. In the models for each length category, both biphone and 

triphone phonotactic scores were significant positive predictors of wordlikeness rating; increased 

phonotactic score was associated with increased wordlikeness ratings. Model comparison 

showed that both biphone and triphone factors significantly improved the model fits, and that 

removing the triphone score generally reduced model fit more than removing the biphone score: 

for Length 4A, the difference in 𝛸²(1) for dropping biphone vs. triphone is 21.91 vs. 105.05; for 

Length 5A, 53.99 vs. 78.28; for Length 6A, 83.04 vs. 118.52; and for Length 7A, 125.20 vs. 

100.89. The increased model fit from including the triphone score in the models may indicate 

that biphone-only scores fail to capture many aspects of English syllable structure and syllable 

contact constraints that are captured by triphone scores. Triphones may also capture some highly 

productive morphemes.  
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2.5.3. Vocabulary level. The participants’ vocabulary level is a significant positive 

predictor of wordlikeness ratings across item lengths; high-vocabulary participants show a 

general tendency to rate items higher. Factor estimates and t-values are reported in Table 2-2 as 

‘vocabulary’. Vocabulary level is also involved in significant interactions, reported below. 

2.5.4. Lexical neighborhood. The presence of one or more orthographic neighbors 

provides a significant positive influence on an item’s wordlikeness rating (see Table 2-2, 

‘neighbors’). This effect is present across all lengths, though the number of items with one or 

more neighbors falls sharply as item length increases: at length 4, there are 1067 such items (of 

the 1800 total items), while length 5, 6, and 7 have 352, 60, and 5, respectively. 

2.5.5. Factor interactions. As shown on Table 2-2, there are two significant interactions in 

this set of models. The Length 4A model contains an interaction of the neighborhood density 

factor with vocabulary level (‘neighbors:vocabulary’): the wordlikeness boost for having 

neighbors is larger for participants with lower vocabulary levels. The Length 7A model contains 

an interaction of biphone score with vocabulary level (‘biphone:vocabulary’): the positive effect 

of biphone score on rating is larger for participants with higher vocabulary levels. This effect is 

small and does not survive in any of the Decomposition models (in the follow-up analysis, 

below). 

2.6. Effects of Pseudomorphology 

The Baseline models presented on Table 2-2 provide a baseline for wordlikeness rating 

by controlling for the fixed effects in the models: biphone and triphone phonotactic scores, 

lexical neighborhood effects, and participant vocabulary levels. The models include random 

effects in the form of intercepts for each item and participant, which function as idiosyncratic 



  !45
adjustments to the predicted ratings; e.g., participant intercepts adjust for a specific participant’s 

tendency to rate items higher when controlling for other factors, and item intercepts adjust for a 

specific item’s tendency to be rated higher when controlling for other factors. Patterns in the item 

intercepts can provide a clue that the model is missing important factors affecting wordlikeness. 

We examined the items with high and low intercepts (i.e., items consistently rated more or less 

wordlike than predicted), and we noticed that high-intercept items often contained recognizable 

morphemes, whereas low-intercept items never did. In the following analysis, we demonstrate 

that items which may be parsed as containing at least one morpheme are rated significantly more 

wordlike than items lacking a morphological parse. 

2.6.1. Morphological decomposition.  

Two morphological processes were explored: suffixation and compounding. These are 

both highly productive in English, whereas prefixation is less productive. Items were coded as 

having a full suffixation parse, a partial suffixation parse, or no suffixation parse (‘suffix_real’, 

‘suffix_pseudo’, ‘suffix_none’); and as having a full compound parse, a partial compound parse, 

or no compound parse (‘compound_real’, ‘compound_pseudo’, ‘compound_none’); these 

categories are described in more detail above (section 2.3). Of items with any parse, 29% have 

both suffixation and compound parses. Our morphological analysis is conservative: we did not 

look for analyses involving prefixes, or words embedded in the middle of a pseudoword leaving 

unanalyzed material on both sides. We selected this method because it is highly replicable and 

minimizes the need for additional assumptions. Example decompositions are shown on Table 

2-3; note that some real stems may be unfamiliar to the participants, so some ‘real’ parses could 

function as ‘pseudo’ parses. 
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Table 2-3. Example decomposition outcomes for stimuli by length and parse type. Morpheme 

boundaries are marked with ‘+’, and ‘–’ indicates no examples exist. 

The effect of compound decomposition on the distribution of these intercepts is shown in 

Figure 2-4; items with a suffixation parse are excluded. Longer items are more likely to have a 

compound parse than shorter items; after length 4, presence of a parse is significantly more likely 

than no parse. We also see the positive effect of a compound parse on the intercept: in each case, 

the mass of the distribution for pseudocompound items is further towards the right (the items are 

more wordlike) than for noncompound items. The same relationship also holds for complete 

compound parses versus partial compound parses; however, such items are rare (less than 10% of 

all compounds parses). 

The pattern is similar for suffixation, though there are key differences. Figure 2-5 

displays the results of the suffixation analysis in the same format; items with a compound parse 

are excluded. Longer words are more likely to have a suffixation analysis than shorter words. 

Items with a partial suffixation analysis are generally rated higher than items with no suffixation 

analysis. The most notable difference between Figure 2-4 and Figure 2-5 is that suffixation 

Item Length
No Parse Suffixation Parse Compound Parse

None Pseudo Real Pseudo Real

4 phones peld 
shreath

lurp+ed 
onf+er hep+s ay+leach 

re+bay
boo+goo 
ark+off

5 phones snumph 
dovio

murph+al 
bluck+ed kilo+th push+el 

yo+down
bow+gush 
wool+pay

6 phones phanuct 
obstoon

roid+als 
phasan+ia burthen+th ang+stalk 

oro+fowl
dig+wick 

drown+joy

7 phones phalamang 
wodazook

cinct+ual 
sug+anian – cook+ivert 

fank+foil
face+dummy  
hypo+deck



  !48
analyses are less common than compound analyses for all pseudowords except those of length 4, 

where they are much more common. Similarly, full suffixation analyses are much less common 

than full compound analyses as length increases. 

!  
Figure 2-4. Effect of a compound parse on the distribution of wordlikeness intercepts, for 

pseudowords of length 4 to 7. Each panel shows superimposed histograms of the number 
of pseudowords having the indicated intercept value. The count of items in each category 
is given to the right. 
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Figure 2-5. Effect of a suffix parse on the distribution of wordlikeness intercepts, for 

pseudowords of length 4 to 7. Each panel shows superimposed histograms of the number 
of pseudowords having the indicated intercept value. The count of items in each category 
is given to the right. 

2.6.2. Modeling decomposition effects. A new set of mixed-effects models 

(‘Decomposition’) was generated by including both the suffixation and compounding factors as 

fixed effects; models in the Decomposition set are suffixed with ‘B’. As before, a base model 

was defined to include all main effects (biphone and triphone score, vocabulary level, 

neighborhood density, suffixation, and compounding) and all 2-way interactions of the main 

effects. These base models were pruned by removing insignificant factors to yield the final 
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models; see Table 2-4. Suffixation and compounding factors are combined in these models, 

meaning that a single item may simultaneously benefit from both parses; it is even possible that 

both methods result in the same parse. For example, DUMPOUSER is parsed as being the 

suffixation DUMP + OUSER, but also as a compound of the real stem DUMP with a pseudostem 

OUSER. 

In this augmented model set, the influence or significance of the previously-reported 

main effects (biphone and triphone score, vocabulary level, and neighborhood density) are 

similar to the Base models. The interaction of ‘neighbors:vocabulary’ in the Length 4A model is 

also nearly identical in 4B, but the interaction of biphone:vocabulary does not carry over. This 

stability indicates that the morphological factors are explaining additional variation in 

wordlikeness. However, the effects of morphological factors are complex, with effect directions 

and significance levels differing for items of different lengths. Some of the statistical interactions 

are interpretable, while others appear to arise as artifacts from the automated analysis.  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Table 2-4. Model factors in Decomposition models. 

For all lengths, the presence of a partial compound parse (‘compound_pseudo’) has a 

significant and positive effect on wordlikeness rating (see factor estimates and t-values on Table 

2-4). For all lengths except length 4, the presence of a complete compound parse 

Decomposition 
Model Factors

Length 4B Length 5B Length 6B Length 7B

β t β t β t β t

biphone 0.049 5.13 0.058 7.93 0.059 9.60 0.057 7.37

triphone 0.106 10.49 0.086 7.86 0.071 10.32 0.055 8.71

vocabulary 0.003 7.35 0.003 7.75 0.003 6.29 0.003 5.74

neighbors 0.617 18.20 0.688 12.96 0.745 9.32 0.748 2.87

compound_pseudo 0.404 11.12 0.312 9.62 0.279 9.51 0.345 12.07

compound_real 0.366 1.67 0.975 11.72 0.813 12.61 1.147 15.53

suffix_pseudo – – 0.212 7.11 0.243 8.50 0.245 8.75

suffix_real – – 0.521 7.87 0.320 2.81 0.354 1.60

neighbors:vocabulary -0.001 -3.25 – – – – – –

neighbors:compound_pseudo – – -0.272 -3.80 – – – –

neighbors:compound_real – – -0.555 -2.27 – – – –

biphone:suffix_pseudo – – – – – – 0.022 2.09

biphone:suffix_real – – – – – – 0.021 0.29

triphone:suffix_pseudo – – -0.032 -2.19 – – – –

triphone:suffix_real – – -0.092 -3.11 – – – –

vocabulary:compound_pseudo – – – – 0.001 3.31 0.001 3.90

vocabulary:compound_real – – – – 0.002 3.34 0.002 3.01

vocabulary:suffix_pseudo – – – – – – 0.001 2.26

vocabulary:suffix_real – – – – – – 0.003 1.63
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(‘compound_real’) yields a significant and larger positive effect on wordlikeness; because there 

are only 9 compound_real items at length 4, this gap may be due to insufficient power. In 

general, the wordlikeness increase from a compounding parse is larger than the increase from a 

suffixation parse. The compound effect may increase with item length, perhaps because of 

greater salience for embedded words that are longer. 

The compound parse factor also has 3 significant interactions across the model set. 

In the Length 6B and Length 7B models, compound parse interacts with vocabulary level 

(‘vocabulary:compound_pseudo’, ‘vocabulary:compound_real’): the positive effect of 

vocabulary level is significantly increased when a partial compound parse is present, and further 

increased when a complete compound parse is present. This interaction is illustrated for Length 7 

in Figure 2-6. 
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Figure 2-6. Interaction of vocabulary level with compound type as captured in Decomposition 
models, for pseudowords of length 7. Matches to existing words of English have a greater 
positive effect on ratings by people who know more words. 

Compound parsing also interacts with neighborhood density in the Length 5B model 

(‘neighbors:compound_pseudo’, ‘neighbors:compound_real’). The positive effect of lexical 

neighbors on wordlikeness rating is significantly reduced when a partial or real compound parse 

is present. Examination of the specific items that are responsible for this interaction suggests, 

however, that it is an artifact of unreliable morphological analysis for items of length 5. The 

difference between real compounds with and without lexical neighbors rests on only three items 

that are analyzed as real compounds and have lexical neighbors: CHIPPET, YONNET, and 

MODGEM. It is far from clear that the embedded words in these items are as psychologically 

salient as the corresponding real compounds without lexical neighbors, such as ARCTERM and 
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BOWGUSH. Amongst words with lexical neighbors, the distinction between pseudocompounds 

and non-compounds also appears to be unreliable for items of length 5. Some items with salient 

embedded words, such as LOYALK and MOISTO, are analyzed as non-compounds, whereas 

highly similar forms such as MORTARK are analyzed as pseudocompounds. The presence of 

MORTAR in MORTARK is probably more salient than the word ARK found by the algorithm. 

Such examples raise the possibility that the benefit of having a lexical neighbor might really be 

uniform across words of different morphological status. However, more detailed psycholinguistic 

studies of morphological decomposition would be a prerequisite to developing a more 

sophisticated parsing algorithm that could avoid idiosyncratic analyses like those just mentioned. 

The suffixation parse factor (labeled ‘suffix_real’ and ‘suffix_pseudo’) could not be 

included in the Length 4B model, because its inclusion made the model unstable. For the other 

lengths, the presence of a partial suffix parse (‘suffix_pseudo’) yields a significant positive effect 

on wordlikeness (see factor estimates and t-values on Table 2-4). The presence of a complete 

suffix parse (‘suffix_real’) has a significant and larger positive effect in the models for Length 

5B and Length 6B; note that the t-value of ‘suffix_real’ in Length 7B falls below our significance 

criterion (t = 1.60), though the suffix parse factor as a whole is significant. 

The suffixation factor has 3 significant interactions across the model set. In the Length 

7B model, suffixation interacts with vocabulary level (‘vocabulary:suffix_pseudo’) and with 

biphone probability (‘biphone:suffix_pseudo’); as with the suffix parse main effect, the specific 

factor level ‘biphone:suffix_real’ in this model falls below our significance criterion (t = 0.29). 

The positive effect of higher vocabulary is significantly higher when a partial suffix parse is 

present. This effect is analogous to the effect of a compound analysis, but is smaller, as shown in 
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Figure 2-7. The cross of the ‘real’ and ‘pseudo’ lines is unlikely to be consequential, because 

only a small minority of participants have such low vocabulary scores. 

The positive effect of biphone score on wordlikeness is significantly higher when a 

partial suffix parse is present for length 7. This effect presents an interesting contrast to the 

interaction between triphone score in the Length 5B model; here the positive effect of triphone 

score is significantly reduced when a partial suffix parse is present. These effects are contrasted 

in Figure 2-8. The category of ‘real’ suffixations is omitted from Figure 2-8a because there are 

only 4 such forms, of which two were probably mis-parsed. The category of ‘real’ suffixations is 

omitted from Figure 8b because all such items also had analyses as compounds, and as a result 

the effect size distinguishing the ‘pseudo’ items from the ‘real’ items is extremely small. Note 

that the lowest biphone scores for length 7 are lower than the lowest triphone scores for length 5, 

and the ratings reflect this fact.  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Figure 2-7. Interaction of vocabulary level with suffixation as captured in Decomposition models 
for length 7. Matches to real suffixes and words of English have a greater positive effect 
on ratings by people who know more words. 
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Figure 2-8. Interactions of phonotactic score with suffixation. (a) triphone scores for pseudo-
suffixed and non-suffixed items of length 5. (b) biphone scores for pseudo-suffixed and 
non-suffixed items of length 7. 

2.7. Discussion 

The wordlikeness results in the Baseline models replicate effects for biphone and 

triphone likelihood, vocabulary level, word length, and lexical neighborhood. In particular, 

biphone and triphone scores are effective for predicting wordlikeness judgments of English-

based pseudowords over the varying lengths and wide continuum of phonotactic probabilities 

provided in PseudoLex. These results suggest that speakers can make judgments using more 

detailed phonotactic knowledge (triphone statistics) when available, while also using more 
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abstract biphone knowledge as needed. In addition, when scores based on orthotactic 

probabilities were substituted for those based on phonotactic probabilities in the Baseline model, 

the orthotactic and phonotactic scores were shown to provide effectively identical information 

for the PseudoLex inventory.  

Statistical analysis of lexical similarity in the form of potential morphological 

decomposition reveals highly significant effects on wordlikeness. Because pseudowords have no 

established meanings, and because many of the decompositions do not conform to the syntactic 

and semantic constraints of English morphology, the benefit from such decompositions points to 

the existence of shallow morphological processing, as suggested by Taft and Forster (1975), 

Libben et al. (1999), Deacon and Kirby (2004), Hay et al. (2004), Rastle et al. (2004), and 

Lehtonen et al. (2011). We have shown that evidence of such processing exists even if 

phonotactic likelihood and other factors are controlled, and it is involved not only in the on-line 

processing tasks explored by previous researchers, but also in wordlikeness judgments. Deeper 

analysis of course becomes possible as words become well-learned and acquire fully elaborated 

representations. More generally, subword sequences that correspond to real morphemes improve 

wordlikeness because they suggest associations with real words that go beyond mere 

phonological resemblance. The fact that the benefit is greater for pseudocompounds than for 

pseudosuffixed forms follows from the fact that full word matches generally represent a more 

substantial degree of similarity than subword matches.  

While the contributions of phonotactic probabilities appear largely independent in our 

analysis, there were two significant interactions involving the suffixation factor. In the Length 7B 

model, higher biphone score increased the positive effect of having a suffix parse (see 
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‘biphone:suffix_pseudo’). This may indicate that it is difficult for a suffix alone to redeem the 

poor phonotactics of poor stem, particularly as the stem would be notably longer than the suffix 

for items of length 7. However, the Length 5B model shows the reverse pattern: higher triphone 

score reduced the positive effect of a suffix parse (see ‘triphone: suffix_pseudo’). It is possible 

that these opposite patterns come about because triphones are capturing many of the suffixes 

coded in this analysis, creating a redundancy. 

A traditional lexical neighborhood metric has limited efficacy in predicting wordlikeness 

in PseudoLex, due to the fact that most of the 8400 words have no lexical neighbors. While the 

presence of lexical neighbors was a significant factor across all lengths, it was necessary to rely 

on a Boolean version of the factor because only 21% of items had any neighbors at all. Although 

lexical neighborhood density is a strong predictor of wordlikeness for short words, 

pseudomorphology has also emerged from our study as a more powerful way of looking at 

resemblances to pre-existing words, when a more natural range of word lengths is considered. 

This means that these two approaches to lexical similarity, as implemented in the current 

analysis, are complementary. Both lexical neighborhood and morphological decomposition are 

significant, but the significance and effect sizes are different at different lengths. Lexical 

neighborhood effects are most useful for shorter words (those most likely to have neighbors), 

while decomposition is relatively more useful for longer words (those more likely to contain 

recognizable morphemes). 

In addition to properties intrinsic to the stimuli, individual participant differences are 

important in predicting wordlikeness ratings. The main effect of vocabulary level is a replication 

of Frisch and Brea-Spahn (2010). For items with the same phonotactic likelihood, participants 
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with higher vocabulary levels gave higher wordlikeness ratings. Vocabulary level was also 

shown to modulate other factors in the final set of models: lexical neighborhood, compound 

parsing, and suffix parsing. In both the Length 4A and 4B models, where the effect of lexical 

neighborhood is most important, the positive effect of lexical neighbors is relatively small for 

participants with larger vocabularies. This pattern may result from high-vocabulary individuals 

having access to a greater variety of wordlikeness factors (richer phonotactics, larger inventory 

of morphemes for decomposition), which could de-emphasize lexical neighborhood effects. In 

contrast, a larger vocabulary seems to enhance the ability to decompose potentially complex 

forms. For the longer words (in the Length 6B and Length 7B models), the positive effect of both 

compound decomposition (Length 6B and Length 7B) and suffix decomposition (Length 7B 

only) increase as vocabulary increases. We may see this pattern because having a larger 

vocabulary means more known morphemes for decomposition. The pattern could also occur 

because high-vocabulary individuals are skilled both at decomposing new words and at 

generalizing word formation patterns, creating a system of positive feedback. 

2.8. Conclusion 

This study provides evidence that people process novel words using their morphological 

knowledge, in addition to lexical and phonological statistics. The Baseline models replicate the 

wordlikeness effects of phonotactic likelihood, word length, lexical neighborhood, and subject 

vocabulary size, over broad ranges of these factors; and the Decomposition models demonstrate 

significant positive wordlikeness effects of suffixation and compounding parses beyond that 

baseline. Such effects imply shallow morphological decomposition of novel wordforms. The 
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parallel existence of shallow and deep processes has previously been shown for real words, and 

suggested in other linguistic domains as an efficient, flexible strategy for perception in noisy and 

variable contexts (Sanford & Graesser, 2006). The enhanced acceptability of parseable 

pseudowords should give them an advantage in being added to the lexicon over phonotactically 

legal words of comparable length. The lesser advantage for words with a partial parse suggests 

that pseudowords containing ‘cran-morphemes’, though viable, should be less readily assimilated 

than fully decomposable pseudowords. 
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3. Gradient Typicality Judgments of English Words 

3.1. Introduction 

The characterization of possible words in a language is a central goal of phonology, and 

is important to many lines of linguistic inquiry, including child language acquisition, studies of 

speech errors, and models of lexical innovation. This characterization is made on the basis of 

speakers’ judgments of what forms are acceptable and unacceptable in their language, along with 

statistical patterns in the lexicon and corpora. In addition to the categorical division between 

possible and impossible forms, we use the term typicality to make a gradient distinction between 

possible words that are highly typical words in the language, and possible words that are less 

typical. This gradient typicality is correlated with statistical lexical measures, which are in turn 

important predictors for speed and accuracy in lexical processing research. Two major 

approaches to modeling typicality are phonotactic probability and lexical neighborhood density. 

These two perspectives are often highly correlated, but have been shown to provide different and 

complementary cues to word typicality. Vitevitch and Luce (2016) survey studies showing that 

models of lexical neighborhood density are explanatory for a variety of experimental tasks, and 

that phonotactic probability information can provide additional predictive power, particularly for 

possible forms that are not words. 

However, these effects are not uniform across all tasks and contexts. Johnston and 

Kapatsinki (2011) show that word learning in adults is improved by a phonotactic novelty 

preference; i.e., a benefit from the presence of low-probability phonotactic patterns, rather than 

high-probability ones. This replicates a previous study in which Storkel et al. (2006) not only 

found the phonotactic novelty effect for adult word learners, but also the familiar pattern that 
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higher neighborhood density improved word learning. Because phonotactic probability and 

neighborhood density are correlated in the lexicon, the opposition of these two effects is 

particularly striking. It does not seem to be the case that the adoption of words into the lexicon is 

governed by this phonotactic novelty effect, though. Pierrehumbert (1994) used human 

experimental judgments and statistical analysis of triconsonantal clusters in English to argue that 

the lexicon was shaped by phonotactic pressures: there are thousands of possible triconsonantal 

clusters that could be formed by the probabilistic combination of attested bigrams, but nearly all 

attested trigrams ranked in top 200 most likely. In addition, only 50 of these likely trigrams were 

actually attested, implying that the lexicon was influenced by negative phonotactic constraints, 

such as widely-attested OCP constraints. The human judgments presented support the 

conclusions that speakers have and use phonotactic knowledge about the probability of these 

sequences, as well as knowledge of other phonotactic constraints. 

3.1.1. Typicality effects for pseudowords 

We use the terms pseudowords to describe forms that are possible in a language, but 

unattested; we reserve the term nonwords for forms that are impossible in a language. In their 

study of pseudowords, Bailey and Hahn (2001) note the issue that probability and neighborhood 

are correlated in previous work which showed effects of phonotactic probability and of 

neighborhood density on pseudowords; and that this correlation is found in the lexicon of real 

words. Bailey and Hahn collected typicality judgments in a set of experiments with pseudoword 

stimuli specifically designed to decorrelate these two factors. They find that probability and 

neighborhood density have separate positive gradient effects on typicality judgments. These 

findings are replicated by Needle, Pierrehumbert, and Hay (in review), who use a large set of 
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pseudoword stimuli which spans a wide range of phonotactic probability and item lengths. They 

show that gradient typicality judgments are partially explained by phonotactic probability, and 

that the lexical neighborhood density effect is also present for shorter items; the majority of 

longer items have no neighbors at all. They further find a positive correlation between typicality 

ratings and the presence of apparent morphology in the randomly-generated pseudowords. 

3.1.2. Typicality effects for real words 

Some phonological theories predict that real words would exhibit gradient well-

formedness, while others do not. Here, we consider the treatment of both morphologically 

complex and simple real words (or, more precisely, of attested forms). In traditional Optimality 

Theory (OT) accounts, words are categorized as ill-formed or well-formed by a ranking of 

constraints; real words cannot be ill-formed (Prince & Smolensky, 1993). Hayes (2000) provides 

a modification of OT to account for some gradience in situations where a given form is 

participating in variation. By allowing the constraint structure itself to vary in strictness and in 

constraint ranking, certain marginal parses are made possible, and well-formedness will 

correspond to a weighted combination of the possibilities for a given speaker. Morphological 

structure plays a central role in the variation Hayes describes, as in the example of the dark and 

light /l/ in GALE-Y vs GAI-LY. In such a case, Hayes assumes that “in judging a given form, a 

consultant will normally assign it the highest rating possible under the grammar”. We might then 

expect that there is no gradience in judgments when a form is not in variation, as in 

morphologically simple words. Sensitivity to morphological structure is similarly important for 

Ernestus and Baayen (2003), who are able to capture gradient acceptability judgments in 

complex Dutch forms. While a traditional OT approach consists of negative constraints, and 
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treats attested words as equally well-formed, Ernestus and Baayen construct a stochastic OT 

model using both positive and negative constraints in pairs (“mirror-constraints”) to allow 

gradience for attested and unattested phoneme sequences. Using a conceptually similar approach, 

Martin (2011) also predicts gradient well-formedness for attested phoneme sequences within and 

across morphemes in English. Martin’s model uses a Maximum Entropy grammar, which 

consists of a set of OT-like constraints in which each constraint is assigned a weight. Like 

Ernestus and Baayen’s mirror-constraint method, Martin uses a broad set of positive and negative 

constraints to yield gradience for attested and unattested forms. 

While these approaches succeed in predicting gradient well-formedness in cases where 

morphological complexity creates some degree of variation or uncertainty about the single best 

result, a comprehensive theory will also address simple real words. Hayes and Wilson (2008) use 

a Maximum Entropy model to determine the constraints on English onsets. The model is trained 

on a corpus of English onsets, so morphological structure is not involved. The set of constraints 

is pruned from a space of negative constraints, with preference given to more general and 

parsimonious constraints. The resulting model assigns gradient well-formedness scores to 

unattested onsets, but uniformly high scores for real onsets. In their comparison of different 

models of well-formedness of English onsets, Daland, Hayes, White, Garellek, Davis, and 

Norrmann (2011) point out that the models which best match human judgments for unattested 

onsets also perform the worst for attested ones. The Hayes and Wilson model is among these: it 

performs well for unattested onsets, but assigns all attested onsets the same high score instead of 

reflecting the gradience of the human judgments. Based on the evidence from Daland et al. 

(2011), it does not seem that gradient well-formedness is absent for simple words, and present 
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when morphological complexity intervenes. Instead, the Hayes and Wilson results may stem 

from the different constraint selection and pruning procedure for the Maximum Entropy model: 

unlike the positive and negative constraints used by Martin, and by Ernestus and Baayen, the 

constraints of Hayes and Wilson are only negative, and pruned with a preference for simple, 

general constraints. 

It makes sense that well-formedness theories might treat real words as extremely well-

formed. There are well-attested effects of being a known word over being a pseudoword, and of 

high versus low word frequency. This real-word advantage and frequency advantage may in fact 

be aspects of the same mechanism, given that all and only real words have non-zero frequency. 

For example, real words in English are often resistant to regularizing pressures within the 

lexicon; irregular past-tense forms such as DOVE persist despite regular competitors (DIVED). 

Indeed, it is precisely high-frequency real words which best resist such pressures (Bybee, 1995). 

Given this, we should ask whether the real-word and frequency advantages are absolute, or if 

real words show gradient typicality judgments, as pseudowords do. There is good reason to 

hypothesize that real words actually differ in typicality: real words, like pseudowords, do vary in 

phonotactic probability and in neighborhood density. These factors have been shown to affect 

language production and perception; for example, Vitevitch and Luce (2016) note that words 

with dense neighborhoods are processed more slowly and less accurately. Experimental evidence 

of gradient typicality for real words across these factors has been limited, as the use of real words 

can entail a number of additional experimental concerns: e.g., participant vocabulary, word 

frequency, age of acquisition, or emotional valence.  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3.1.3. The current study 

We present a extended post-hoc analysis of the data from Bailey and Hahn (2001). The 

original study analyzed typicality judgments for pseudoword stimuli, but the data gathered 

included judgments about the real-word items included as fillers. The current analysis combines 

the judgments for these real words with the pseudoword data to consider whether typicality is 

gradient for real words, and if that gradience is affected by the same factors as pseudowords. 

Mixed-effects regression allows real words and pseudowords to be compared across the same 

subjects; we consider the effects of phonotactic and orthotactic probability, phonological and 

orthographic neighborhood density, and word frequency. We find that phonotactic and orthotactic 

probabilities correlate positively with typicality judgments for pseudowords and real words. We 

also find that orthographic neighborhood density correlates positively with typicality, but 

phonological neighborhood density does not. For real words, word frequency also has a positive 

effect on typicality. 

3.2. Data and Methods 

3.2.1. Design and Stimuli 

In Bailey and Hahn (2001), 24 participants (17 female, 7 male) rated items for their 

typicality as words of English on a scale from 1 to 9. Stimuli were presented in orthographic 

visual form, and participants were instructed to focus on the sound of each item. The stimuli 

consist of 328 simple monosyllable items: 69 real words and 259 pseudowords, generated by a 

syllable-formation grammar. Of the 259 pseudowords, 22 are ‘isolate’ and 237 are ‘near miss’; 

isolate items have a string-edit distance of 2 from the nearest real word in the lexicon, and near 
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miss items are chosen such that they have a string-edit distance of 1 from both an isolate and 

some real word in the lexicon. 

3.2.2. Analysis 

For each item, we calculated orthotactic and phonotactic probability, orthographic and 

phonological neighborhood density, and log-transformed word frequency. The orthotactic and 

phonotactic probability values are smoothed trigram probabilities calculated using interpolated 

Witten-Bell smoothing in the SRI Language Modeling Toolkit (Stolcke, 2002). The orthographic 

and phonological neighborhood densities are calculated using the CLEARPOND tool (Marian et 

al., 2012) with CELEX data (Baayen et al., 1995). Word frequency data is from CELEX and log-

transformed. Because majority of the stimuli are pseudowords, which have no frequency, log 

word frequency is binned into 3 categories in the analysis: items with frequency of 0 (all of the 

pseudowords) are ‘unattested’, attested words falling under the midpoint of the log frequency 

range (log F < 4.75) are ‘low frequency’, and attested words above the middle of the frequency 

range are ‘high frequency’. In this post-hoc analysis, real words are only 21% of the stimuli; and 

unlike the pseudowords, the real words were not carefully constructed to limit the correlation 

between neighborhood density and phonotactic probability (see Table 3-1). 

Typicality judgments are modeled using linear mixed-effects regression (LMER) with the 

lme4 package (Bates et al., 2015) in the R software environment (R Core Team, 2014). The 

dependent variable is participant-rated typicality, scaled from 0 to 1. We included random 

intercepts for each item and participant. Models are selected by beginning with a maximal effects 

structure, then pruning insignificant effects beginning with the highest order effects. 
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Table 3-1. For real words, the correlation between phonotactic probability and phonemic 

neighborhood density are much higher than for the pseudowords. The correlation for 
orthographic measures are also higher for real words than for pseudowords. 

3.3. Results 

3.3.1. Regression results for pseudowords and real words combined 

After pruning the LMER model, no interactions remained (see Table 3-2). There are 

positive effects on typicality for both phonotactic and orthotactic probability: items are rated 

higher as their probabilities increase (see Figure 3-1a, 3-1b). There is a positive effect of 

orthographic neighborhood density, but not of phonological neighborhood density (see Figure 

3-1c, 1d); this difference may be due to the visual task, or to orthographic outliers in the stimuli. 

For word frequency, there are positive effects for items that are low frequency or high frequency, 

in comparison to the baseline value of unattested items (see Figure 3-2). The estimated effect 

size for high frequency items is larger than for low frequency, suggesting a frequency advantage 

for typicality within the subset of real words; this effect is examined in section 3.3.2. 

Correlation: Phonotactics vs.  
Phono Neighborhood

Orthotactics vs.  
Ortho Neighborhood

All items 0.56 0.74

Real words 0.63 0.71

Pseudowords 0.31 0.63
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Table 3-2. LMER model summary for all items. Significant effects are italicized. 

Estimate S.E. t

phonotactic 0.0149 0.0067 2.22

orthotactic 0.0405 0.0061 6.66

ortho_neighbors 0.0334 0.0102 3.29

phono_neighbors -0.0002 0.0058 -0.03

freq_category_low 0.1918 0.0200 9.58

freq_category_high 0.3289 0.0257 12.80
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Figure 3-1. Main effects in the LMER model (all items). (a) Effect of orthotactic probability; (b) 
effect of phonotactic probability; (c) effect of orthographic neighborhood size; (d) effect 
of phonemic neighborhood size. Points indicate mean typicality judgment per item. 
Distribution plots are superimposed with model fits: blue lines are linear effect estimates, 
and red bars show 95% confidence intervals across the domain. 
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Figure 3-2. Effect of item frequency. Distribution plots are superimposed with model fits: the 
blue lines is the linear effect estimate, with red bars showing 95% confidence intervals 
for each category. Mean typicality is lowest for unattested items, higher for low 
frequency items, and highest for high frequency items. 

3.3.2. Regression results for real words only. 

The subset of real words only was also analyzed, due to the possibility that the 

pseudowords could simply overshadow the real words in the model. This data subset is much 

smaller, and there are stronger correlations between factors (e.g., between phonotactic 

probability and phonemic neighborhood density). For real words only, we again see a significant 

positive effect of orthotactic probability: real words are rated as more typical when they have 

more probable sequences of letters (see Table 3-3). There is also a significant positive effect of 
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frequency: high frequency real words are rated more typical than low frequency words. The 

effect of high frequency is shown on Table 3-3, using low frequency words as the baseline. 

Table 3-3. LMER model summary for real words only. Significant effects are italicized. 

3.4. Discussion 

We observe gradient typicality in human judgments of both real words and pseudowords, 

but we also see an advantage for real words over pseudowords, and for high-frequency words 

over low-frequency words. Both real words and pseudowords show the positive effect of 

orthotactic probability. Neighborhood density has a positive effect for typicality of pseudowords, 

but this effect was not significant in the analysis of the real word subset. However, the post-hoc 

nature of the analysis limits our ability to estimate relative effects on real words only: not only is 

the number of real words small, but the words chosen do not reflect the efforts of Bailey and 

Hahn (2001) to decorrelate phonotactic probability from neighborhood density. Indeed, it is 

specifically the natural correlation of these factors that led Bailey and Hahn to use carefully-

selected pseudowords. 

Estimate S.E. t

phonotactic -0.0021 0.0233 -0.09

orthotactic 0.0967 0.0252 3.84

ortho_neighbors -0.0344 0.0325 -1.06

phono_neighbors 0.0266 0.0273 0.97

freq_category_high 0.1283 0.0373 3.44
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An adequate theory of well-formedness must include both mechanisms of similarity (e.g., 

probability, neighborhood density, analogy, or morphological analysis), as well as the real-word 

and frequency advantages. The observation of gradient typicality judgments for real words in 

addition to pseudowords provides support for linguistic theories in which real words may vary in 

typicality, such as the probabilistic generative grammars described by Coleman and 

Pierrehumbert (1997), and as elaborated by Hay et al. (2004). Gradient judgments for real words 

are also compatible with the constraint-based approach in the Maximum Entropy method used by 

Martin (2011). These data do not accord with the predictions of Optimality Theory, nor with 

Hayes and Wilson’s (2008) implementation of their Maximum Entropy phonotactic learner. OT 

accounts of gradient typicality for real words are limited to cases of morphological alternation, 

but there is not such alternation in the current data. The Maximum Entropy phonotactic learner 

simply does not predict gradient typicality for attested forms. 

The primary observation that typicality judgments are gradient for real words makes an 

important connection with psycholinguistic theories of lexical processing. The importance of 

frequency, likelihood, and neighborhood density has been demonstrated in a variety of 

behavioral tasks (see Vitevitch and Luce, 2016), and these same factors are shown to affect 

typicality judgments in our analysis. This suggests that typicality judgments are part of a single 

connected system of lexical processing, along with other tasks of interest to psycholinguistics, 

such as lexical decision, identification, and naming. This connection brings the study of 

typicality and well-formedness into mutually beneficial exchange with studies of lexical 

processing and other areas of psycholinguistics. 
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4. Explicit Morphological Decomposition of Complex English Pseudowords 

4.1. Introduction 

In the study of lexical processing, a large body of previous work has shown a variety of 

factors are involved when a person considers a word, including whether the word is known or 

familiar, the similarity of the word to the mental lexicon of known words, or morphological 

decompositions of the word. In particular, Needle et al. (in review) showed that the presence of 

an apparent morphological parse in pseudowords was associated with higher wordlikeness 

judgements. In that study, the apparent morphology was determined by automatic dictionary 

methods. This raises the question of whether the apparent morphology is actually recognized by 

speakers, and whether they are able to decompose both real words and pseudowords. Though 

Needle et al. controlled for lexical neighborhood density and phonotactic probability, increased 

wordlikeness for apparent morphology could be the result of other kinds of broad lexical 

similarity within the mental lexicon. The task of explicit decomposition instead requires 

morphological knowledge. The current study addresses the question of whether participants are 

able to perceive and identify morphemes within both words and pseudowords. This study 

investigates the ability of speakers of US English to explicitly decompose familiar complex 

words, and novel pseudowords containing real morpheme endings. We find that participants are 

highly accurate in decomposing the complex real words, and they are also successful for 

complex pseudowords. Performance in both of these conditions exceeds baseline levels that 

could be achieved by chance, or by an optimal phonotactics-only strategy. 

4.1.1. Morphological decomposition models 
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Previous findings on the morphological processing of words have been variable. Marslen-

Wilson et al. (1994) use priming evidence to show that pseudoaffixed words (such as BOOTY 

and CORNER) and semantically opaque complex words (such as DEPARTMENT) are not 

decomposed; they suggest that semantic processing is a required component of decomposition. 

This conclusion is challenged by subsequent work: Libben et al. (1999) find evidence that all 

morphological analyses are made available by a pre-lexical parsing process, and indeed, Libben 

et al. (2003) show that semantically opaque compounds were decomposed. It was also shown by 

Rastle et al. (2004) that words like CORNER are decomposed. These results suggest that the 

morphological processing of real words involves shallow, pre-lexical analysis in addition to the 

more in-depth semantic analysis suggested in Marslen-Wilson et al. The discrepancy between the 

findings of Marslen-Wilson et al. and the other decomposition studies mentioned may derive 

from paradigm differences: while the experiments in Libben et al. (1999), Libben et al. (2003), 

and Rastle et al. (2004) involve some similar mechanisms of priming and lexical decision for 

complex words, they are all visual tasks. The experiments reported by Marslen-Wilson et al. use 

a cross-modal lexical decision paradigm, in which the participant hears a spoken prime at the 

same time as they see a visual target word. This design is motivated by the timing differences 

between the modalities: an auditory word unfolds in time, while a visual word is perceived all at 

once. Differences in linguistic modalities must be considered, but it may also be the case that real 

morphological effects from the auditory prime are blocked or attenuated due to the change in 

modality. There is also evidence to suggest that pseudowords are processed similarly to real 

words: Taft and Forster (1975) find that prefixed pseudowords are decomposed before lexical 
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access occurs, and Deacon and Kirby (2004) show that children’s success in reading novel or 

made-up words is predicted by their general morphological awareness. 

4.2. Methods and Data 

4.2.1. Experimental paradigm 

The study uses a new online experimental paradigm in which participants are shown a 

series of words and pseudowords, one at a time. This paradigm is used to gather explicit 

morphological decomposition responses for simple and complex items, as well as familiarity 

ratings for each item. Each word is presented with a user interface that allows a single marker to 

be placed between the letters of the word, indicating a decomposition boundary; and a set of 

buttons to give a Likert-scale rating of familiarity with the word. For each item, the participant 

responds to two tasks: a) “Split the word into two meaningful parts, if possible.” and b) “Rate 

how familiar you are with this word.”. The participant indicates a single position to split the item 

by clicking between the letters displayed to move the decomposition marker. To give the 

familiarity response, they click on the Likert scale below the item; see Figure 4-1 for images of 

example trials. These two tasks may be completed in either order, prior to clicking the ‘Next’ 

button to move to the next trial. 
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Figure 4-1. Example experiment trials, with decomposition and familiarity response. The left 
panel shows a decomposition placed and familiarity response of 3. The right panel shows 
a ‘no decomposition’ response. 

4.2.2. Stimuli 

Item stimuli consist of simple real words, complex real words, and complex 

pseudowords. Target morphemes include both compounding elements and suffixes. The complex 

pseudowords, designed to be comparable to the real complex words, consist of a pseudo-stem 

and a real morpheme ending. The stems for these pseudowords were drawn from amongst the 

8400 pseudowords that were generated for the norming study presented in Needle et al. (in 

review). These vary in length and have statistical wordlikeness scores as determined by 

smoothed phonotactic and orthotactic scores. The stems selected for the present study all had 

above-median scores. In addition, stems with low ratings (regardless of score) were excluded. 

Thus, they were all of good phonotactic quality. Three additional criteria were imposed. The 

length distribution fell in the middle of that for real stems in the study. Stems were selected to 

have a phonotactically legal transition to the suffix, defined as having a digram probability 

within the range for the complex real words. Combinations with unanticipated word embeddings 

were eliminated by hand; for example, EGAUSSAGE was not used as an example of a word 
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with the suffix -AGE because it contains the words GAUSS and SAGE. The complex real words 

use different morphemes from the pseudowords, and their stems are always able to stand alone 

(e.g., GRASS in GRASSLAND). 

The experiment has 288 items: 108 complex real words, 108 complex pseudowords, and 

72 simple real words. Pseudowords have three examples each of 36 morphemes. Complex real 

items have three examples each of 36 morphemes. During item selection, frequent morphemes 

and words were preferred. The morphemes used include both suffixes and compounding endings. 

For suffix-type morphemes, 24 are consonant-initial and 24 are vowel-initial. For compound-

type morphemes, all 24 are consonant-initial. It was not possible to find 24 vowel-initial words 

that satisfied the selection criteria for this experiment and the planned followup related to author 

gender. The morphemes vary in productivity, and both morphemes and whole words vary in 

length and frequency. For examples of experiment items, see Table 4-1. Summary statistics on 

frequency for the items are provided in Table 4-2. 

Table 4-1. Example stimuli by category, including compounds and suffixations. 

Simple 
Real

Complex Real Complex Pseudo

-ful +light -ium +case

tennis graceful firelight balnium snoshcase

straight lawful searchlight vodepium clumcase

porcelain handful daylight thrafium pelpcase

72 items 108 items, 36 real endings 108 items, 36 real endings
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Table 4-2. Summary statistics for frequency of real word stimuli. 

4.2.3. Participants 

The study collected data from 216 participants via Amazon Mechanical Turk (94 women, 

120 men; two participants declined to provide gender information). All participants reported 

being English speakers currently residing in the United States. Reported birth years range from 

1943 to 1995 (one participant declined to answer). All participants completed the experiment 

between 2017-6-7 and 2017-6-9. Participants were paid $3 for completing the task, which took 

up to 30 minutes. Six participants were excluded for insufficient decomposition performance on 

simple and complex real words combined (d' < 1) (see Figure 4-2). 

Log Frequency

Min Max Median SD

All real words 0 8.8 4.4 1.65

Simple reals 3.9 8.1 5.0 1.01

Complex reals 0 8.8 3.6 1.74
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Figure 4-2. Decomposition accuracy for participants. Each participant’s performance is a black 
point. The x-axis shows the relative rate of False Alarms (incorrectly parsing a simple 
real word), and the y-axis shows the relative rate of Hits (correctly parsing a complex real 
word). The blue line shows the exclusion criterion of d-prime greater than 1. 

4.3. Results  

All real words were rated as highly familiar (for complex real words, M = 4.6, SD = 0.47; 

for simple real words, M = 4.8, SD = 0.13), and all pseudowords were rated as highly unfamiliar 

(M = 1.3, SD = 0.11). Participants were quite accurate in the decomposition task: the average 

accuracy for decomposition responses was 96% for simple real words, 88% for complex real 

words, and 65% for complex pseudowords. The decomposition assumed in constructing the 

stimuli is treated as the only correct response. This accuracy is impossible by chance, and it is 

also beyond the performance of an optimal strategy using phonotactic cues to the presence of a 
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word boundary (see 4.3.1). We argue that the accuracy rates observed are the result of 

participants recognizing morphemes in the complex stimuli. 

4.3.1. Decomposition mechanisms 

We suggest that our decomposition accuracy results are best explained by a word-

matching mechanism in which participants recognize known words and morphemes embedded in 

the stimuli. The word-matching mechanism is tested by Brent and Cartwright (1996) in a 

computer simulation of their model of infant and child learning for speech segmentation: they 

show effective segmentation is achieved by a combination of leveraging known words, with 

distributional knowledge of probabilistic phonotactic constraints on words. Brent and Cartwright 

suggest that adults, who have much larger vocabularies, make complete use of the word-

matching mechanism in speech segmentation. The use of known words to gain word boundary 

information is also effectively used by Daland & Pierrehumbert (2011) as part of the array of 

segmentation learning models they test. These results imply that participants in the current study 

are not relying solely on phonotactic knowledge, but making considerable use of their 

morphological and lexical knowledge. 

A mechanism of finding known words within complex pseudowords yields the expected 

decomposition for all compound-type pseudowords (e.g., CASE in PELPCASE) and 24 of the 72 

suffixation-type pseudowords (in which the intended suffix matches a real word; e.g., 

SPURLGATE, SNOFFWORTHY). Our classification of these morphemes as either 

compounding or suffixing elements is taken from the hierarchical decompositions given in 

CELEX, but participants may decompose pseudowords without strong ideas about the type of 

morpheme they perceive. In 56% of the pseudoword stimuli, embedded morphemes match 
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common real words. We suggest that participants are making use of this mechanism, and 

additionally that it operates over both known words and affixes (e.g., -ER in LONTER). The 

inclusion of affixes may help explain the high mean accuracy participants showed for the 

suffixed real-word stimuli, of which only 33% contained real embedded words.  

We compare participant performance against a phonotactic boundary strategy to test the 

hypothesis that participants succeed in the explicit decomposition task using morphological 

knowledge. For both phonemic and orthographic bigrams at the location of the expected 

decomposition, we compared the likelihood of a boundary being present versus absent (taking 

the ratio of the log likelihoods) (cf. Daland & Pierrehumbert, 2011). The boundary likelihood 

ratio is derived from orthographic and phonemic bigram statistics in the 10931 CELEX 

monomorphemes, a list made as discussed in Hay et al. (2004) by hand-checking the lexical 

entries in the CELEX lexicon (Baayen et al., 1995). Monomorphemes are used so that the bigram 

statistics accurately reflect words without internal boundaries. Boundary likelihood ratio is 

defined as the probability that a boundary is present, divided by the probability that a boundary is 

not present. To estimate the probabilities for bigrams with boundaries, we make the simplifying 

assumption that words can combine freely. 

The orthotactic version of the baseline strategy had similar overall performance to the 

phonemic version (37% versus 35%), so we present only the orthotactic results here. For the 

complex real words, the expected accuracy of the orthotactic strategy is 42%, less than half of 

the observed accuracy rate (88%). This discrepancy is overwhelming, and it is also possible that 

participants simply have explicit morphological knowledge for these known words, so we focus 

on the pseudoword results. For complex pseudowords, the orthotactic strategy correctly suggests 



  !85
parsing for 32 out of 100 items (32% accuracy); 8 of the 108 items are excluded because the 

boundary bigram statistics were unavailable. As for the complex real words, this rate is less than 

half of the average observed accuracy for pseudowords (M = 65%, SD = 27%). The distribution 

of individual performance on pseudowords has a strong negative skew, with 85% of participants 

exceeding the orthotactic strategy (see Figure 4-3). 

Though participants are not relying solely on orthotactic information, there is some 

evidence that this factor does contribute to decomposition accuracy, as described in Brent and 

Cartwright’s combined model. Perception of embedded morphemes should be easier when the 

morpheme boundary is more likely (i.e., when a matching cue is present). Participants were more 

likely than average to correctly parse items when the orthotactic strategy would be correct (M = 

76%, SD = 10%); and the reverse is true for incorrectly-predicted items (M = 58%, SD = 19%). 

This pattern suggests that participants are sensitive to the presence or absence of the orthotactic 

cue. The effect of a negative orthotactic prediction must be of limited strength, however, because 

participants agreed with the orthotactic strategy’s ‘no parse’ response only 33% of the time, and 

we may assume that some of those could be explained by participants deliberately choosing to 

ignore a perceived morpheme because of how they understand the semantic aspect of the task 

instructions (see section 4.4). 



  !86

!  

Figure 4-3. Histogram of participant accuracy rates for pseudoword items. The red dashed line 
marks the 32% accuracy predicted by the orthotactic cue baseline. 

4.3.2. Automatic suffix recognition 

Needle et al. (in review) used automatic methods to predict the morphemes participants 

might have been perceiving in their set of 8400 pseudowords: compound items were predicted by 

a word-matching dictionary method, and suffixed items were predicted using the standard 

Lancaster stemmer. However, they raised questions about the accuracy of the Lancaster stemmer 

in predicting realistic suffix parses, and suggested that it most likely underestimated the extent of 

suffixations that participants would recognize for these items. We show that the Lancaster 

stemmer has low accuracy for the suffixed pseudowords in this study: the stemmer produces the 

expected parse for only 20 of the 72 suffixed pseudowords (28%). Participants performed more 

than twice as well on these items (M = 60%, SD = 27%). In addition, the incorrect stemmer 
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outputs are not reasonable alternatives to the expected decomposition, even though this was often 

the case for human errors. For example, participants often produced reasonable parses such as 

PSYCHO- and -LOGY for PSYCHOLOGY, where -OLOGY was expected. The stemmer 

frequently recognized no suffix, or a trivial suffix that a human would not find reasonable (e.g., -

E, -TE); in other cases, the stemmer suggested a shorter real suffix embedded in the expected 

suffix (e.g., -ILE in -MOBILE). For example stemmer errors, see Table 4-3. 

Table 4-3. Example performance of the Lancaster stemmer on pseudowords. 

Pseudoword Expected Suffix Stemmer Suffix Accuracy

bloudage age age

Correct

kliftarian arian arian

lonter er er

blouchify ify ify

skirking ing ing

balnium ium ium

sporchling ling ing

Incorrect (too short)flugmobile mobile ile

spurlgate gate ate

lemphitis itis is

Incorrect (trivial)drenlike like e

glumphette ette te

gloffless less —

Incorrect (none)
droofoid oid —

scloinosis osis —

snoffworthy worthy —
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4.4. Discussion 

We find that people are able to accurately decompose complex real words and 

pseudowords. The real word stimuli were highly familiar, so it is likely that participants knew 

their meanings; participants were also aware that the pseudowords were highly unfamiliar, and 

lacked meaning in the lexicon. Despite the unfamiliar and meaningless status of the 

pseudowords, most participants were able to provide accurate morphological decompositions for 

them. In fact, feedback comments show that some participants deliberately chose not to 

decompose pseudowords because of the mention of meaning in the experiment’s instructions, 

implying that the decomposition performance results are conservative. This finding contrasts 

with the results of Marslen-Wilson et al. (1994), instead providing additional support for models 

of lexical processing which are not exclusively semantic (Libben et al., 1999; Libben et al., 

2003; Rastle et al., 2004), and do not require exhaustive morphological matching (Taft & Forster, 

1975).  

This finding is relevant for theories of lexical processing and language change: we show 

that people are sensitive to morphology in novel or unknown words. This is a good processing 

strategy for English, in which morphologically complex words are common. Morphological 

productivity is a dominant process in lexical innovation, for old and new endings: we see many 

words with new and reanalyzed morphemes like -HOLIC, -CATION, CYBER-, -PEDIA, or 

SMART-; and established morphemes as in BLOATWARE, BLUEJACK, CLICKBAIT, 

BOTNET, and HUMBLEBRAG. If people perceive and process morphemes in pseudowords, 

their previous experience with those morphemes may influence their processing in other ways. 
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Specifically, indexical associations with morphemes may extend to novel words with those 

morphemes, affecting the uptake and spread of new words. We test for the effects of morpheme-

mediated gender associations in a followup study (see Chapter 5). 
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5. Gendered Associations of English Morphology 

5.1. Introduction 

Morphological systems arise from experience with words as encoded in the lexicon. Both 

statistical and episodic information about words leave traces in mental representations (see 

reviews in Pierrehumbert, 2006a and 2016). Lexical statistics are known to be important in 

morphological learning, and learning in turn relates to change over time (Bybee, 1995; Bybee & 

Thompson, 1997; Komarova & Nowak, 2001; Daland, Sims & Pierrehumbert, 2007). However, 

there remains much unexplained variability in how people acquire and extend morphological 

patterns. In particular, lexical statistics alone fail to predict why some rare patterns become much 

more prevalent over time (Bauer, 2001). A factor that may contribute to this variability is social-

indexical information. In the domain of allophonic variation, some variants become 

conventionally associated with different social characteristics. People can provide cues to their 

social identities and personae when they chose to produce these variants (see review in Eckert, 

2008). This process provides an avenue for innovations to take hold, as people imitate people 

they admire or identify with (Labov 2001). Indexical associations have been documented for 

whole words (R. Lakoff, 1973) and for morphosyntactic patterns such as number and tense 

marking (Rickford & Rickford, 2000). The extent of such associations for derivational 

morphemes and compounding elements is less clear. These could in principle be excellent 

vehicles for social-indexical information, because they encompass a large number of different 

forms with rather unrestricted semantics. One can easily imagine that semantically similar 

affixes, such as -ITY versus -NESS, might be used preferentially by different groups. Some 

groups might use an affix where others use a compound or periphrastic (as in ROOMETTE 
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versus SLEEPING COMPARTMENT). Here, we present a quantitative experimental study on 

the relationship of speaker gender to derivational morphology and compounding patterns. 

Speaker gender is a highly salient aspect of the linguistic context that has played a central role in 

sociolinguistic theory. We show that people have significant success in associating English words 

with speaker gender. Their implicit knowledge generalizes to gender associations of novel words 

(pseudowords), such as THRAFIUM and PELPCASE, that appear to be morphologically 

complex but have no established meaning. Our experimental protocol combines a morphological 

decomposition task with a social judgment task. By analyzing the combined results, we are also 

able to shed light on the cognitive architecture that is responsible for the generalization of gender 

associations to novel complex word forms.  

5.1.1. Social-indexical information  

Sociolinguistic variation arises in language when groups within a linguistic community 

develop different patterns of expression. Simple differences in linguistic experience can go 

towards explaining why people in one group may speak differently from people in another, but it 

does not provide the full story. Some—but not all—aspects of sociolinguistic variation enter 

general awareness, and are conventionally associated with groups of people, or with the 

stereotypical attributes of these groups (e.g., with attributes such as coolness, toughness, or 

sensitivity). When this happen, the variation has become indexical. It can be used by speakers to 

convey social information concurrently with their propositional message. Indexicalization thus 

requires the variation not merely to exist, but also to be represented in the cognitive systems of 

speakers and listeners.  
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Social-indexical variation in the domain of phonetic variation has been intensively 

studied. Building on the findings of sociolinguistic fieldwork, cognitive encoding of such 

variation has been revealed in a variety of experimental tasks. Purnell, Idsardi, & Baugh (1999) 

find that listeners are quite successful in identifying standard, African-American, and Chicano 

dialects of American English based on variation in the form of the word HELLO. Clopper & 

Pisoni (2004b) find that listeners are able to classify speakers into regional dialect groups. Hay, 

Warren & Drager (2006) find that the apparent social class of the speaker influences the 

perception of words that are phonetically ambiguous in the context of a merger in progress. Hay 

& Drager (2010) show that phonetic category boundaries are impacted by subtle priming of the 

Australian versus New Zealand dialects. Other studies have shown that lexical encoding and 

memory are compromised for dialects that are low-status or non-standard, even when word 

recognition has not been affected (Sumner & Samuel, 2009; Clopper, Tamati, & Pierrehumbert, 

2016). Turning to production, German, Carlson, and Pierrehumbert (2013) describe an imitation 

experiment in which American English speakers learning the allophones of /t/ and /r/ of a 

Glaswegian English speaker generalize the target patterns to other words. They retain the ability 

to generalize the pattern a week later when their knowledge of Glaswegian dialect is re-activated 

by hearing speech recordings that do not contain any examples of the target patterns. This 

behavior clearly involves a cognitive association between the Glaswegian speaker or dialect, and 

the allophonic pattern. Gender is one of the most salient types of social-indexical information. 

Gendered associations for phonetic patterns are widely documented, affecting both perception 

(Johnson, 2006) and production (Foulkes & Docherty, 2006). Gender is of particular interest in 

models of language variation and change, because women often demonstrate earlier participation 
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in emerging sound changes, at least in English, which is the most studied language (Eckert, 

1989; 2008).  

The observation that men and women differ in general patterns of word use goes back to 

R. Lakoff (1973). Large-scale quantitative studies supporting this observation include Boulis and 

Ostendorf (2005), which analyzed telephone conversations, online forum postings, and web 

pages; and Mihalcea and Garimella (2016), which analyzed a blog posts. In a historical corpus 

study, Nevalainen, Raumolin-Brunberg, & Mannila (2011) report gendered associations for 

whole words (YE vs. YOU), syntactic patterns (-ING OF vs. -ING), and also for affixes (-TH vs. 

-S). Because people tend to associate with others who share their interests, status, and expertise, 

such gender differences are correlated with differences in register and topic. In a study of 

different registers, Plag, Dalton-Puffer, & Baayen (1999) find that some affixes (e.g., -ITY, -

NESS, -ION, -IZE) are more productive in writing than in speech; Bucholtz (1999; 2001) in turn 

discusses Greco-Latinate forms as part of a constellation of language variables used by the 

“nerd” community of practice at Bay City High School, a social label that reflects not only 

intellectual interests, but also gender and race.  

For gendered social meanings to exist, gender differences in observed usage must be 

present. However, the presence of these usage differences is itself not sufficient to imply 

gendered social meanings. Therefore, observing gendered differences in morphemes may not 

mean that these morphemes are being used to carry social meanings. Indeed, Nevalainen et al. 

(2011), suggest that gendered differences may be explained by strong social divisions, not by 

gendered social meanings per se: “Women tended to lead vernacular changes, whereas men were 

the leaders of processes related to educated and professional written usage” (p. 4). Citing Labov 
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(2001), they suggest that abstract features like morphemes (in contrast to whole words and 

phonetic features) may be unlikely to be strongly associated with social meanings. Two recent 

experiments, however, provide indirect evidence that this skepticism may not be entirely 

justified. Using the Asch “social pressure” paradigm, Beckner, Rácz, Hay, Brandstetter, and 

Bartneck (2016) show that in a past tense formation task, people are influenced by other people 

but not by humanoid robots, indicating that social judgment acts a filter in morphological 

processing. Using an artificial language paradigm, Rácz, Hay, & Pierrehumbert (2017) 

investigate the learnability of interlocutor gender as determinant of variability in the form of the 

diminutive affix, finding that this contextual condition is as learnable as a phonological 

condition. Such reflexes of social factors in cognition for morphology put us one step further 

towards uncovering social-indexical meanings for morphological patterns. Adopting the 

methodology of socio-phonetics, we here address the issue more directly. First, we use corpus 

statistics to identify differences between men and women in the usage of words and morphemes. 

Then, we carry out a gender identification experiment using male-dominated, female-dominated, 

and gender-neutral forms. In a novel protocol, the identification task is combined with an explicit 

morphological decomposition task. The results have important consequences for the influence of 

social information on word formation and change in the lexicon. 

5.1.2. Structure of the mental lexicon 

This investigation into the relationship between social-indexical information and 

morphemes takes place in the context of active debate over the nature of the mental lexicon and 

morphological systems which derive from it. If our goal is to determine at what levels and to 

what units indexical information may attach, then competing ideas about the lexicon impose 
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different constraints. Under ‘multiple-route’ models (e.g., in Hay & Baayen, 2005), morphemes, 

simple words, and complex words are all reified as lexical entries. Lexical entries for complex 

words may be accessed either directly or through the morphemes that comprise them. 

Phonotactic cues, frequency relationships, and semantic transparency all affect which route is 

more likely to succeed first, and the strength of the morphological boundary in a complex word 

is a gradient function of the access history. In fully analogical models, both simple and complex 

words are stored in the mental lexicon, and novel complex words are generated or parsed on-

demand based on similarities amongst known words (Daelemans, Zavrel, Van der Sloot, & Van 

den Bosch, 2010; Dawdy-Hesterberg & Pierrehumbert, 2014; Rácz, Pierrehumbert, Hay, & Papp, 

2015). Words and morphemes may also be undifferentiated, as in the NDL (Naïve Discriminative 

Learner) model of Baayen, Hendrix, and Ramscar (2013). In this model, the concepts for affixes 

and roots have the same status, and letter sequences (e.g., trigrams) are linked directly to these 

concepts. This means that the meaning of the phrase A BRITISH PROVINCIAL CITY is 

encoded as a set of concepts (A, BRITAIN, ISH, PROVINCE, IAL, CITY). In the NDL, 

complex words are epiphenomenal results of patterns of association between phonological 

material and categories of meaning. In the Item-and-Process approach (Haspelmath & Sims, 

2013), morphologically complex words are created by rules that add or modify simpler word 

forms. This is the standard approach in generative phonology, receiving a statistical 

implementation in the MGL (Minimum Generalization Learner) developed by Albright and 

Hayes (2003).  

 All these models would need to be augmented in some manner to support social-indexical 

associations. In interpreting our results, we will discuss simple model extensions, in which 
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anything that appears in the ontology for a model is a potential host for a social-indexical 

association. For example, both morphemes and words in the multiple-route model might 

potentially host associations. In the MGL model, both stems and rules might be associated with 

social factors. It exceeds the scope of the present paper to consider more complex extensions that 

might potentially obtain social-indexical effects indirectly.  

5.1.3. Morphological decomposition 

 In classical linguistic theory, the morpheme is the minimal unit of association between 

form and meaning, and complex words can be decomposed into two or more morphemes. A 

confluence of findings, reviewed in Hay & Baayen (2005), come together to indicate that the 

classic theory is oversimplified, and that the decomposability of complex words is variable and 

gradient. But decomposability remains consequential. Hay & Baayen (2001) address the 

observation that the type frequency of a morpheme is a surprisingly poor predictor of its 

productivity, showing that the prediction can be improved by assuming that complex words that 

are more frequent than their stems (such as STAIRS and GOVERNMENT) are accessed as 

wholes, and therefore do not contribute to the effective type frequency for the suffixes they 

exhibit. Hay (2002) shows that English suffixes are generally ordered with more decomposable 

suffixes outside of less decomposable ones. Hay et al. (2004) show that participants make use of 

statistical word-boundary parsing in order to make wellformedness judgments of pseudowords. 

The judgement is based on the best available parse. People respond as if an internal word 

boundary is present in pseudowords that contain consonantal sequences that are unattested or 

rare within monomorphemic words. However, it does not automatically follow from such results 

that morphological decomposition plays a role in social-indexical processing of speech. Insofar 
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as real words have social associations, the extent to which social associations also accrue for 

their morphological components is not known. It is also not known whether social associations 

of known words generalize to novel words, and still less whether any such generalization occurs 

through overall similarities in word form, or through more structured morphological parsing.  

The current study is a step toward untangling these questions. It answers the call of both 

Pierrehumbert (2006a) and Foulkes & Docherty (2006) to improve on traditional statistical 

models of language by incorporating social effects. Factors that need to be incorporated include 

intra- and interspeaker variability, social interpretation, and the cognitive mechanisms that 

connect these aspects. The study considers the gender association effects of whole words and 

morphemes, for simple real words, complex real words, and complex pseudowords. To evaluate 

the gender associations of morphemes, it focuses on a set of derivational suffixes and 

compounding elements that differ (according to a corpus study) in their rates of use by men 

versus women. Indexicality is evaluated by asking participants to perform a judgment task in 

which they associate word forms with faces of men and women. Participants also give an explicit 

decomposition for each word (or respond that no decomposition is needed), alongside the gender 

association response. Our analyses consider gender responses in conjunction with both the 

accuracy of morphological decomposition, and the objectively available support for 

morphological decomposition. 

5.2. Methods 

5.2.1 Corpus statistics 

We selected the British National Corpus to survey gender bias for words and suffixes. It 

includes material from a variety of different genres for which the gender of the author can be 
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determined. For this study, we used the written portion of the British National Corpus, and 

included only those documents that could be attributed to men or women authors. The British 

National Corpus written subset contains 3,141 documents, for a total of 87,953,932 words; after 

filtering for author gender, there are 378 documents from women (13,451,416 words) and 844 

documents from men (28,659,100 words). We note that the corpus has more material written by 

men authors than by women authors. This may have improved the statistical estimates for man-

biased forms. In addition, information currently available in the British National Corpus limits us 

to considering gender in terms of a man–woman binary. In this corpus, as in everyday life, author 

gender is correlated with the topic of discussion. More than half of the ‘imaginative’ content 

domain is written by women, making their relative representation over twice that of men. 

However, men are overrepresented in the other 9 content domains, especially ‘natural 

science’ (2300%) and ‘commerce’ (500%). In this study, we lack the information to tease apart 

these variables. 

Following Mihalcea and Garimella (2016), we calculate the gender bias of each word as 

the ratio of use frequency by women versus men authors. This is expressed below as a log ratio. 

Negative values mean that the word is man-biased; women use the word less than men. Positive 

values mean than the word is woman-biased. The results broadly replicate Mihalcea and 

Garimella (2016) in finding that a large number of words display little gender bias, but a certain 

number are used much more by one gender than by the other. These provide targets for the 

experimental stimuli. Morpheme gender bias values were calculated as the ratio of grouped use 

frequencies for complex words sharing the final morpheme as determined from CELEX 

decompositions; e.g., the calculation for -LAND includes GRASSLAND, DREAMLAND, and 
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so on. For compounds, the value is determined solely from appearances of the compounding 

element as the second element in a compound word, because some frequent compounding 

elements have diverged semantically from their meanings as isolated words. It may not be 

surprising that gender bias was present for a variety of compounding elements, and it also proved 

to be present for a variety of suffixes. 

5.2.2. Presentation 

The study uses a new online experimental paradigm in which participants are shown a 

series of words and pseudowords, one at a time. Each word is presented with a user interface to 

allow a single marker to be placed between the letters of the word, indicating a decomposition 

boundary; and accompanied by a pair of named face images. For each item, the participant 

responds to two tasks: a) “Split the word into two meaningful parts, if possible.” and b) “Which 

author most likely used this word?”. The participant indicates a single position to split the item 

by clicking between the letters displayed to move the decomposition marker. To give the gender 

response, they click directly on the face of either the man or the woman shown above the item; 

see Figure 5-1 for images of example trials. 

!   !  

Figure 5-1. Example experiment trials, with gendered faces and decomposition responses. The 
left panel shows the left face selected and a decomposition placed. The right panel shows 
a ‘no decomposition’ response, with a face not yet selected. 
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This paradigm is used to gather explicit morphological decomposition responses for 

simple and complex items, as well as the implicit gender associations for each item. These two 

tasks may be completed in either order, prior to clicking the ‘Next’ button to move to the next 

trial. The explicit decomposition paradigm was previously validated using a baseline experiment 

(216 participants, 288 items each), in which participants gave morphological decomposition 

responses in addition to Likert ratings for item familiarity. The items in the baseline experiment 

are the same as those in the current study. All real words were rated as highly familiar, and all 

pseudowords were rated as unfamiliar. In the baseline experiment, the average accuracy for 

decomposition responses was 96% for simple real words, 88% for complex real words, and 65% 

for complex pseudowords (taking the “correct” decomposition to be the one assumed in 

constructing the stimuli). Accuracy is similar for the current experiment: 96% for simple real 

words, 86% for complex real words, and 65% for complex pseudowords (for full analysis of 

parsing, see 5.3.1.). 

5.2.3. Stimuli  

5.2.3.1. Author faces. Author faces were created using public domain images of 6 women 

and 6 men. This experiment used only faces appearing to be white adults between 25 and 40 

years old (see Figure 5-2). Each of the 12 images was assigned a name based on the most 

popular names by gender in the United States since 1917 (Social Security Administration, 2016). 

We consider these names to have stable gender associations and familiarity for participants of 

varying ages. Each name is among the 10 most popular names for the 100 year interval, and all 

names are in the top 200 most popular for Americans born in the 1980s (which corresponds to 
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the face age range). None have ambiguous gender. Names for each image are held consistent 

across all subjects. All different-gender pairs of men and women were used to make 36 distinct 

pairings, and were presented in 2 orders (man–woman, woman–man) for a total of 72 face pair 

orderings. 

!  

Figure 5-2. Gendered faces of 6 women and 6 men. 

5.2.3.2. Items and script design. Item stimuli consist of simple real words, complex real 

words, and complex pseudowords. Each real word has a whole-word gender bias value. In each 

complex word, the second morpheme has a morpheme gender bias value. Target morphemes 

include both compounding elements and suffixes. The complex pseudowords, designed to be 

comparable to the real complex words, consist of a pseudo-stem and a real morpheme ending. 

The stems for these pseudowords were drawn from amongst the 8400 pseudowords that were 
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generated for the norming study presented in Needle et al. (in review). These vary in length and 

have statistical wordlikeness scores as determined by smoothed phonotactic and orthotactic 

scores. The stems selected for the present study all had above-median scores. In addition, stems 

with low ratings (regardless of score) were excluded. Thus, they were all of good phonotactic 

quality. Three additional criteria were imposed. The length distribution fell in the middle of that 

for real stems in the study. Stems were selected to have a phonotactically legal transition to the 

suffix, defined as having a digram probability within the range for the complex real words. 

Combinations with unanticipated word embeddings were eliminated by hand. For example, 

EGAUSSAGE was not used as an example of a word with the suffix -AGE because it contains 

the words GAUSS and SAGE. The complex real words use different morphemes from the 

pseudowords, and their stems are always able to stand alone (e.g., GRASS in GRASSLAND). 

The experiment has 288 items: 108 complex real words, 108 complex pseudowords, and 

72 simple real words. Simple real words are balanced by whole-word gender bias: 24 woman-

biased, 24 neutral, and 24 man-biased. Pseudowords are balanced by morpheme gender bias, 

with three examples each of 36 morphemes: 12 woman-biased, 12 neutral, and 12 man-biased. 

Complex real items are balanced for both whole-word gender bias and morpheme gender bias: 

12 woman-biased, 12 neutral, and 12 man-biased morphemes; within each morpheme, there is 

one woman-biased, one neutral, and one man-biased whole-word example. During item 

selection, frequent morphemes and words were preferred. The morphemes used include both 

suffixes and compounding endings. For suffix-type morphemes, 24 are consonant-initial and 24 

are vowel-initial. For compound-type morphemes, all 24 are consonant-initial. It was not 

possible to find 24 vowel-initial words that both occur frequently in compounds and exhibit 
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strong gender bias. The morphemes vary in productivity, and both morphemes and whole words 

vary in length and frequency. For the Complex Real condition, it was necessary to reach farther 

down the word frequency scale than for the Simple Real condition to obtain enough items with 

strong gender biases. For examples of experiment items, see Table 5-1. Summary statistics on 

characteristics of the items are provided in Table 5-2. 

Table 5-1. Example stimuli by category, including compounds and suffixations. 

Table 5-2. Summary statistics for real word stimuli: whole-word gender bias and frequency. 

5.2.4. Participants 

The study collected data from 216 participants via Amazon Mechanical Turk (111 

women, 101 men; four participants declined to provide gender information). All participants 

Simple 
Real

Complex Real Complex Pseudo

-ful +light -ium +case

tennis graceful firelight balnium snoshcase

straight lawful searchlight vodepium clumcase

porcelain handful daylight thrafium pelpcase

72 items 108 items, 36 real endings 108 items, 36 real endings

Gender Bias Log Frequency

Min Max Median SD Min Max Median SD

All real words -4.3 2.4 -0.03 1.25 0 8.8 4.4 1.65

Simple reals -2.1 2.3 -0.1 0.99 3.9 8.1 5.0 1.01

Complex reals -4.3 2.4 -0.03 1.0 0 8.8 3.6 1.74
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reported being English speakers currently residing in the United States. Reported birth years 

range from 1948 to 1996 (three participants declined to answer). All participants completed the 

experiment between 2017-5-1 and 2017-6-1. Participants were paid $3 for completing the task, 

which took up to 30 minutes. Six participants were excluded for insufficient decomposition 

performance on simple and complex real words combined (d' < 1). 

5.3. Results 

We first evaluate gender associations of whole-word and morpheme gender bias for 

simple real words, complex real words, and complex pseudowords (Regression Models 1, 2, and 

3). Then, we consider the role of explicit morphological decomposition: does explicit parse 

accuracy necessarily imply morpheme awareness, or could performance instead be explained by 

phonotactic or orthotactic cues (Model 4)? Do participants need to correctly parse morphemes to 

be influenced by the gender associations of those morphemes (Model 5)? Finally, if explicit 

parsing is not required, does it nonetheless improve gender response accuracy? 

The effect of word and morpheme bias on gender responses was analyzed using logistic 

mixed-effects regression with the function glmer implemented in R package lme4 (Bates et al., 

2015) in R (R Core Team, 2014). For all regression models reported here, each continuous 

measure is centered in the models: whole-word gender bias, morpheme gender bias, and log 

word frequency. Final models are pruned: for each model, analysis begins by including all 

relevant fixed effects and their interactions, as well as slopes and intercepts for each random 

effect. None of the models converged properly with random slopes included, so the first step of 

pruning in each case was to remove random slopes (leaving random intercepts only). 
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Insignificant terms are removed from the models one by one, with higher-order (interaction) 

terms removed first. Details of model pruning are described for each model, below. 

It is necessary to split the gender response analysis into 3 models: simple real words have 

whole-word bias values only (Model 1), complex real words have both whole-word and 

morpheme bias values (Model 2), and pseudowords have morpheme bias values only (Model 3). 

For whole-word and morpheme gender bias values, woman-biased values are greater than 0, and 

man-biased values are less than 0. The response variable for Models 1, 2, and 3 is gender 

response, in terms of log-odds. Summaries for Models 1, 2, and 3 are given on Table 5-3. In 

figures showing effects from these models, log-odds estimates are transformed and shown in 

terms of probability of women responses chosen, from never (0) to always (1). 

The model for simple real items (Model 1) contains a fixed effect for whole-word gender 

bias, and random intercepts for each participant, item, and face image. No interactions were 

pruned from the final model. There is a significant effect of whole-word gender bias (β = 0.42, 

SE = 0.076, z = 5.5, p < 0.0001). Participants are more likely to choose woman responses as the 

item becomes more woman-biased (see Figure 5-3a).  For complex real items (Model 2), the 

model contains fixed effects for whole-word gender bias, morpheme gender bias, and log word 

frequency; interaction terms for word gender bias with morpheme gender bias, and for word 

gender bias with log word frequency; and random intercepts for each participant, morpheme, 

item, and face. During pruning, the three-way interaction between word gender bias, morpheme 

gender bias, and log word frequency was removed first; then, the two-way interaction between 

morpheme gender bias and log word frequency was removed. Word frequency is taken from the 

COBUILD corpus via CELEX. There is a significant positive effect of word gender bias (β = 
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0.31, SE = 0.041, z = 7.5, p < 0.001). Model 2 shows the same pattern for whole words as Model 

1 (see Figure 5-3b): responses for real words reflect their gendered statistics, with people more 

likely to choose woman responses as the complex real items become more woman-biased. There 

is also a significant positive effect of word frequency (β = 0.092, SE = 0.031, z = 3.0, p = 

0.0027), meaning that higher-frequency words are associated more with women. The main effect 

of morpheme gender bias is not significant (β = 0.031, SE = 0.12, z = 0.26, p = 0.79).  

There are two significant interactions affecting word gender bias. The interaction of word 

gender bias with word frequency is significant (β = 0.086, SE = 0.027, z = 3.2, p = 0.0016), such 

that the effect of word gender bias on gender response is weaker as frequency decreases. 

Experience with a word is needed for a gender association effect to obtain, and more experience 

supports better learning of the association. The interaction of word gender bias with morpheme 

gender bias is also significant (β = 0.20, SE = 0.080, z = 2.5, p = 0.013): the influence of word 

gender bias increases as morphemes are more woman-biased (see Figure 5-5). That is, amongst 

words containing more woman-biased morphemes, the man-biased whole words were judged to 

be more man-biased, and the woman-biased words were judged to be more woman-biased. We 

view this interaction with considerable caution, because it does not arise naturally in any current 

model of the mental lexicon. Insofar as the effect proves to be reliable, we speculate that it might 

arise indirectly from the correlation of gender bias with register and topic in the experimental 

stimuli. Overall, the man-biased morphemes are more typical of formal prose and the woman-

biased morphemes are more typical of colloquial language. The gender association of a whole 

word might be more salient—and thus easier to learn—in conversational contexts than in formal 

prose. 
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The model for complex pseudowords (Model 3) contains a fixed effect for morpheme 

gender bias, and random intercepts for each participant, morpheme, item, and face image. 

Complex pseudowords were significantly more likely to be associated with women faces when 

the morpheme group was more woman-biased (β = 0.22, SE = 0.06, z = 3.5, p < 0.001). Figure 

5-4 compares the morpheme gender bias effect for complex pseudowords versus complex real 

words. 

!  
Figure 5-3. Probability of woman gender response correlates with whole-word gender bias for: 

(a) simple real words (Model 1) and (b) complex real words (Model 2). Shaded regions 
indicate pointwise 95% confidence intervals for normal distributions. 

!  
Figure 5-4. Probability of woman gender response correlates with morpheme gender bias for (a) 

complex pseudowords (Model 3); not for (b) complex real words (Model 2). 
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!  
Figure 5-5. Interaction of morpheme gender bias with word gender bias for gender response 

(Model 2). The word gender effect is stronger for more woman-biased morphemes. 

Table 5-3. Regression model summaries for Models 1, 2, and 3. 

Model 1: 
gender_response ~ word_gender + (1|workerId) + (1|item) + (1|face_1) + (1|face_2)

Estimate Std. Error z-value p(>|z|)

word_gender 0.42 0.076 5.5 < 0.001

Model 2: 
gender_response ~ word_gender + morph_gender + log_freq + word_gender:morph_gender + 
word_gender:log_freq + (1|workerId) + (1|morph) + (1|morph:item) + (1|face_1) + (1|face_2)

word_gender 0.31 0.041 7.5 < 0.001

morph_gender 0.031 0.12 0.26 0.79

log_freq 0.092 0.031 3.0 0.0027

word_gender:morph_gender 0.20 0.080 2.5 0.013

word_gender:log_freq 0.086 0.027 3.2 0.0016

Model 3: 
gender_response ~ morph_gender + (1|workerId) + (1|morph) + (1|morph:item) + (1|face_1) + (1|
face_2)

morph_gender 0.22 0.063 3.5 < 0.001
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5.3.1. Decomposition accuracy 

We now turn to the accuracy of decomposition responses, as a prerequisite to considering 

the role played by explicit morphological decomposition in the gender associations. A 

decomposition is judged accurate for complex items if it exactly parses the intended morpheme, 

and for simple items if the response is ‘no decomposition’. As in the baseline experiment to used 

validate the paradigm, decomposition accuracy rates are above chance for simple real words, 

complex real words, and complex pseudowords. Performance on complex words also exceeds a 

baseline using phonotactic boundary statistics (described below). 

Using logistic mixed-effects regression, we evaluate the contribution of phonological 

information to decomposition accuracy; specifically, we test the possibility that participants are 

parsing items based on the statistical cues to the presence of a word boundary, without any 

perception of morphemes. For both phonemic and orthographic bigrams at the location of the 

expected decomposition, we compared the likelihood of a boundary being present versus absent 

(taking the ratio of the log likelihoods) (cf. Daland & Pierrehumbert, 2011). The boundary 

likelihood ratio is derived from orthographic and phonemic bigram statistics in the 10931 

CELEX monomorphemes, a list made as discussed in Hay et al. (2004) by hand-checking the 

lexical entries in the CELEX lexicon (Baayen et al., 1995). Monomorphemes are used so that the 

bigram statistics accurate reflect words without internal boundaries. Boundary likelihood ratio is 

defined as the probability that a boundary is present, divided by the probability that a boundary is 

not present. To estimate the probabilities for bigrams with boundaries, we make the simplifying 

assumption that words can combine freely. 



  !110
For morphological decomposition accuracy, Model 4 contains fixed effects for 

orthographic boundary likelihood ratio, phonemic boundary likelihood ratio, and for lexicality 

(real word or pseudoword); and random intercepts for each participant, morpheme, and item (see 

Table 5-4). Model 4 includes response data for complex real words and complex pseudowords 

only; 7% of pseudoword data and 8% of complex real word data are excluded because boundary 

ratio statistics are not available for the expected boundary. In Model 4, there is a significant 

positive effect of lexicality: participants parse pseudowords less accurately than complex real 

words overall (β = 2.1, SE = 0.34, z = 6.2, p < 0.0001) (see Figure 5-6c). This lexicality effect 

may mean that participants gain a boost from recognizing two morphemes (the stem and the 

affix) instead of only the affix; or that they have explicit morphological knowledge of the 

familiar real words. The strength of the orthographic cue is significantly associated with 

decomposition accuracy (β = 0.41, SE = 0.093, z = 4.4, p < 0.0001) (see Figure 5-6a). 

Participants parse complex pseudowords more accurately when the expected boundary is 

orthographically likely. The effect of phonemic boundary cue is not significant (β = 0.11, SE = 

0.083, z = 1.3, p = 0.21) (see Figure 5-6b). 

The usefulness of boundary likelihood is limited: the orthographic boundary cue leads to 

a correct parse in only 37% of complex items (42% for complex real words, 32% for complex 

pseudowords), but participants gave correct parses for 88% of the complex real words and 65% 

of the complex pseudowords. This discrepancy means that participants are making significant 

use of other information for morphological decomposition, such as recognition of morphemes 

per se.  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!  
Figure 5-6. Effects of boundary cue and lexicality on decomposition accuracy (Model 4).  (a) 

Probability of morphological parse accuracy correlates with orthographic boundary cue. 
(b) Phonemic boundary cue is not significant. (c) Accuracy is higher and less variable for 
complex real words. 

Table 5-4. Regression model summary for Model 4. 

Model 4: 
accurate ~ boundary_ortho + boundary_phono + lexicality + (1|workerId) + (1|morph) +  
(1|morph:item)

Estimate Std. Error z-value p(>|z|)

boundary_ortho 0.41 0.093 4.4 < 0.001
boundary_phono 0.11 0.083 1.3 0.21
lexicality = ‘real’ 2.1 0.34 6.2 < 0.001
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5.3.2. Gender accuracy in relation to decomposition of pseudowords 

As shown in Models 2 and 3, the morpheme gender bias had a significant effect only for 

pseudowords. How did this effect come about? The decomposition analysis shows that people 

have moderate success in decomposing pseudowords, and it suggests that they are using both 

morphological awareness and orthotactic cues. We can now ask whether morphological parsing 

influences whether participants give the expected gender response. Is gender response accuracy 

higher when participants made accurate decompositions? Is it higher for word forms that 

objectively contained stronger cues for the decomposition? Applying to pseudowords only, 

Model 5 predicts gender response accuracy as a function of relevant stimulus and 

decomposition-response effects (Table 5-5): fixed effects are included for orthographic boundary 

cue, phonemic boundary cue, morpheme gender bias magnitude (the absolute value of morpheme 

gender bias), and parse accuracy (true or false); and random intercepts for participant, item, 

morpheme, and face image. Actual parse accuracy as well as both boundary cues are included to 

cover the possible case that participants had poor awareness of morphological parsing 

information that nonetheless implicitly affected their gender responses. All three cues can be 

included in a single model because they are not excessively correlated. 

There is no significant effect of orthographic boundary cue (β = 0.026, SE = 0.043, z = 

0.60, p = 0.40) (Figure 5-7a), phonemic boundary cue (β = 0.028, SE = 0.050, z = 0.57, p = 

0.57), or parse accuracy (β = -0.035, SE = 0.042, z = -0.84, p = 0.40). These results suggest that 

participants’ gender response accuracy is not affected by whether they decomposed the items, 

whether consciously or implicitly. In contrast, the magnitude of morpheme gender bias is a 

highly significant predictor of gender response accuracy (β = 0.57, SE = 0.13, z = 4.5, p < 
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0.0001) (Figure 5-7b); participants are more likely to choose the gender face that matches the 

expected morpheme gender as the gender bias increases. Figure 5-8 displays this effect for the 

specific morphemes in the experiment. The figure also allows us to consider direct sound 

symbolism for gender as a factor in Model 5. In previous studies, some gender associations have 

been reported for specific phones, including high/front vowels with feminine and low/back 

vowels with masculine (Babel & McGuire, 2012; Wu, Klink, & Guo, 2013). Such associations 

are not apparent in the figure, and a more detailed statistical analysis (for which we omit the 

details) did not yield any significant results. 

!  
Figure 5-7. Gender accuracy effects of orthographic boundary cue and morpheme gender bias. 

More extreme morpheme bias increases gender accuracy, but orthographic boundary cue 
has no effect. 
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Table 5-5. Regression model summary for Model 5. 

Model 5: 
gender_accurate ~ accurate + boundary_ortho + boundary_phono + abs(morph_gender) + (1 | 
workerId) + (1 | morph) + (1 | morph:item)

Estimate Std. Error z-value p(>|z|)

accurate = ‘TRUE’ -0.035 0.042 -0.84 0.40

boundary_ortho 0.026 0.043 0.60 0.55

boundary_phono 0.028 0.050 0.57 0.57

abs(morph_gender) 0.58 0.13 4.6 < 0.001
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Figure 5-8. Gender accuracy effect of morpheme bias; accuracy is higher for morphemes that 

have more extreme bias toward either men (values less than zero) or women (values 
greater than zero). The LOESS fit with 95% confidence interval is shown by the blue 
dashed line and grey shading.  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5.4. Discussion 

We found that that speakers have social-indexical associations between words and 

gender. The effect of word gender bias on gender responses is influenced by two relevant 

interactions: with word frequency, and with morpheme gender bias. We also found gender 

associations for morphemes within pseudowords, but not for real words. Our results for whole 

words extend related findings such as Quina, Wingard, & Bates (1987) and Bucholtz (1999; 

2001). For both simple and complex real words, participants reliably matched the gender bias of 

the whole word as estimated from corpus statistics, suggesting that their intuitions are the result 

of gendered experience with these words. The interaction of word frequency with gender 

association for complex words supports this hypothesis: even though all of the real words in this 

study were rated as highly familiar in the baseline study, the gender association is strongest for 

the most frequent words, and disappears for the rarest words. This result is reminiscent of the 

pattern found by Clopper and Pisoni (2004a) for dialectal experience: their listeners were better 

able to associate speakers with regional dialects when they had more exposure to relevant speech 

variation. The effect of word frequency on gender association was not significant for the simple 

word model, which may be explained by the different frequency ranges for simple and complex 

real words: at 150, the median simple word frequency is higher than 75% of complex real words 

(for which the median is 37). Additional work with rarer simple word stimuli might show the 

same disappearance of the gender association effect.  

We did not see an effect of morpheme gender bias for complex real word stimuli. Instead, 

we understand the significant interaction between morpheme gender bias and word gender bias 

from the perspective of the word gender bias main effect: the effects of word gender bias are 
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more polarized in words containing more woman-biased morphemes. This means that the effect 

of morpheme gender is not cumulative with the effect of word gender, but enhances the word 

gender effect. We view this interaction with extreme caution due to both the size and the nature 

of the effect, which is not predicted by any of the morphological theories considered. We 

suggested that this pattern, if it is a real one, might arise as an artifact of the different 

communicative situations in which the various words in our study are encountered: formal and 

textual, versus casual and face to face. 

For the pseudoword stimuli, where whole word knowledge does not exist, we see a main 

effect of morpheme gender bias on gender responses. Our results show that participants 

significantly associated pseudowords with gendered faces that matched the gendered corpus 

statistics for their component morphemes. In addition, participants more frequently matched the 

predicted gender bias when that bias was stronger. The morpheme gender association effect 

obtains regardless of participants’ accuracy in explicitly parsing the pseudowords, or of the 

presence of partially useful orthotactic cues to the presence of an internal word boundary. That is, 

the ability to identify the morpheme itself does not change the gender association effect. These 

results indicate that people are influenced implicitly by the presence of real morphemes in 

unknown words. They contrast with the outcomes observed for real words, in which gender 

associations of morphemes were not significant as a main effect.  

Our results present us with questions about the role of knowledge about whole words in 

contrast to knowledge of word parts. For real words, whole-word knowledge affects gender 

responses, to the exclusion of word-part knowledge. For pseudowords, only word-part 

knowledge is available, and it affects gender responses. However, explicit decomposition results 
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do not control or influence this effect, so word-part knowledge appears unrelated to 

decomposition responses in these tasks. In section 1.2, we summarized four different current 

theories about morphological representation and processing in the mental lexicon: models related 

to multiple-route, general analogy, probabilistic rule application, and the NDL. In light of the 

results presented, we can engage more deeply with these theories and consider how readily they 

can be extended to encompass the socio-indexical patterns that we found. 

We can consider the multiple-route approach as a more sophisticated successor to a 

simple always-decompose model. An always-decompose model is consistent with the pattern of 

results The pattern of results is not consistent with such a model, in which people are always 

recognizing the morphemes per se and retrieving stored gender information about each 

morpheme. Under such a model, we would have expected judgments of complex real words to 

reflect the gender associations of the parts (even if gender associations of the whole word also 

play a role in the people’s judgments). We might also have expected the morpheme effect to be 

stronger when the whole word frequency is low (that is, too low for a whole-word gender 

association to obtain). However, there was no significant effect of morpheme gender bias for 

complex real items, regardless of whether the whole word frequency was high or low. Under this 

decomposition theory, we would further have expected that morphological decomposition would 

feed into gender judgments for pseudowords: the association with gender would be stronger 

when the gendered morpheme was identified in the parse. However, this expectation is not 

fulfilled. A multiple-route approach offers a better, though not complete, explanation of our 

results. The phonological or orthographic representations of words are recognized either as 

wholes, or by decomposition into constituent morphemes. Both routes lead to activating the 
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meaning of the whole word, and the question of which route wins is subject to concerns such as 

the relative frequencies of the whole word and its morphemes. Both whole words and 

morphemes are present in the mental lexicon, with their own associated information. This 

information includes the gender-biased experience assumed in the current study: both 

morphemes and whole words can have gendered associations. If we assume that activation of 

morphemes should be reflected in the gender response task, it predicts a pattern of results in 

which pseudowords reflect morpheme gender bias because they are decomposed and processed 

by parts, as no whole-word option is available. A morpheme gender effect could be observed for 

the highly-decomposable complex real word stimuli; specifically, those words with lower whole-

word frequency and high-frequency morphemes would be decomposed and processed by parts. 

In contrast, for real words accessed by the whole-word route, the associations of the morphemes 

would not be activated. However, this prediction depends on the assumption that complex 

pseudowords are aggressively decomposed, and that many complex real words are not 

decomposed during lexical access. These assumptions are not well supported by our 

decomposition results. Our real words were highly decomposable, and people did decompose 

them (with parsing accuracy above 85%). The pseudowords were less reliably decomposed and 

the decomposition was not predictive of gender responses. The lack of morpheme gender 

influence for real words might be explained by the nature of the gender response task, which can 

be considered to be a slow or high-level task. This means that participants have plenty of time to 

activate the relevant meaning representation for complex real words, regardless of the route used, 

so their gender responses reflect only knowledge about that meaning representation. This view is 

compatible with our pseudoword gender results, though it may require a considerable disconnect 
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between the implicit process of morphological decomposition during lexical access, and the 

information about morphological decomposability collected with our protocol. 

General analogy models as presented in Nosofsky (1988, 1990), Daelemans et al. (2010) 

and Dawdy-Hesterberg and Pierrehumbert (2014) readily capture our results, with the proviso 

that analogical forces determine judgments about unknown words, but have only a weak 

influence on judgments for known words (as claimed in Daland et al., 2007). The mechanism for 

pseudowords to have apparent gender associations under such an approach is comparable to that 

proposed in Johnson (2006) for social identity correlates of allophonic variation to emerge. If the 

gender effect for pseudowords does not come from explicit gender information known about the 

morphemes themselves, general analogy provides an alternative mechanism: pseudowords 

inherit the implicit associations of similar real words. In this case, similarity derives in part from 

sharing a morpheme: the unknown word GLONITIS would be similar to BRONCHITIS, 

ARTHRITIS, etc., so it would get the gender association of the overall group. This mechanism 

depends on whole word gender associations, which have been demonstrated previously and 

which this study replicated. This mechanism is reminiscent of results in Nation and Cocksey’s 

(2009) study on semantic interference. They found semantic interference from sub-word 

orthographic matches (e.g., HIP in SHIP) when the sub-word took beginning, middle, or final 

position in the word, or even when the sub-word involved phonological mismatches to the target 

(e.g., for the letter ‘H’ in HIP and SHIP). The semantic associations in that experiment clearly 

result from overall word similarities and not from morphological decomposition. 

The Albright and Hayes (2003) MDL model could capture gendered associations of 

morphemes by probabilistically associating gender with morphological rules, effectively 
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capturing the results for pseudowords that were actually decomposed. For real complex words, it 

would be necessary to add the proviso that knowledge about the whole word takes priority over 

predictions from the rule system. While this proviso is not clearly stated in Albright and Hayes 

(2003), it is independently necessary to explain why real words have highly stable inflectional 

morphology even if they belong to groups of word forms whose morphology varies. For 

example, the past tense of KEEP is KEPT and the past tense of BEEP is BEEPED; only a novel 

word such as FLEEP exhibits instability (e.g., FLEEPED, FLEPT). The challenge for this model 

would be to explain why the gendered associations for pseudowords were found to be unrelated 

to the decomposition judgments, or to the cues for decomposition. 

The NDL model of Baayen et al. (2013) is very different from the other approaches 

presented. Under this theory, there are no lexicon representations for whole words or morphemes 

at the orthographic or phonological level, but only at a semantic level. Instead, phonological 

sequences (e.g., triphones) are probabilistically associated with meanings. In his study of 

semantic effects in English compounds, Kuperman (2013) argues that only the fullest form (i.e., 

the whole word) matters in such a model, so that any semantic influence of the parts is 

suppressed or not accessed. This account correctly predicts that the gender responses for the 

simple and complex real word stimuli will reflect only the gender bias of the whole word. It 

follows that, for pseudowords, the fullest available form is the morpheme, so the gender response 

would reflect the morpheme, as in our results. In addition, the NDL explains the gender effect for 

pseudowords without recourse to decomposition, which means that it accords with our results 

showing no link between explicit decomposition and morpheme gender bias effects. 
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To summarize, modifying any current model of the lexicon to capture our results involves 

ensuring that knowledge about whole words takes priority over a compositional analysis, to the 

extent that such knowledge is available: not only is whole-word knowledge stronger than word-

part knowledge, but word-part knowledge is suppressed when whole-word knowledge is 

available. Given this proviso, which is often motivated independently by the existence of 

irregular morphological forms, the results are most readily captured by assuming that social-

indexical effects in morphology operate through a general analogical mechanism. While 

morphological parsing is known to be relevant within the phonology and morpho-syntax, such 

structured processing may be confined to these parts of the linguistic system. These findings 

leave several avenues to explore: attention should be paid to rarer real words, to more lower-

level or faster experimental tasks, and to pseudowords made of only real morphemes. The 

interaction between word bias and morpheme bias points toward a new stimulus set that controls 

for word register and socioloinguistic context, with the exciting possibility that communication 

mode plays an important role in the encoding and association of indexical information with 

whole words and morphemes. 
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6. Conclusions 

In order to integrate the findings presented in Chapters 2, 3, 4, and 5, we begin here with 

a brief summary of the results of these studies. The results in Chapter 2 replicate the finding that 

pseudowords are not categorically atypical (i.e., not wordlike) as words, and instead show 

gradient typicality ratings for pseudowords which extend beyond simple and monosyllable 

stimuli, to longer items which may show apparent morphological complexity. When this broad 

range of pseudowords is considered, we found that the well-known factors of phonotactic 

probability and lexical neighborhood density have significant, separate contributions to 

typicality. In addition, the presence of apparent morphemes in these meaningless stimuli had an 

additional, separate contribution to typicality. These results support theories of morphological 

processing in which decomposition is not limited to attested or semantically-transparent words. 

Below, we will consider how these three factors might be treated as different approaches to the 

broad concept of lexical similarity, and ask if stronger integration of these mechanisms is 

possible. 

In Chapter 3, we found that real words are not categorically typical, in the same way that 

Chapter 2 replicated the finding that pseudowords are not categorically atypical. We found 

gradient typicality judgments for real worlds as well as pseudowords in this study, and that 

typicality judgments for both real words and pseudowords are affected in similar ways by similar 

factors: phonotactic probability and lexical neighborhood density. There also appeared to be a 

strong lexicality bias: real words are judged more typical than similar pseudowords. This bias 

might be explained in terms of lexical frequency, such that high frequency words receive near-

ceiling mean ratings, while the pattern for low frequency words suggests that typicality trends 
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down as frequency approaches zero. This pattern suggests that the same mechanisms are 

involved for typicality judgments for both real words and pseudowords. 

The explicit decomposition experiment in Chapter 4 provided evidence that people are 

very successful at decomposing complex real words and complex pseudowords, with 

performance that far exceeds what is predicted by a phonotactic baseline. This finding provides a 

possible mechanism for the morphological effect on pseudoword typicality described in Chapter 

2. We suggest that the strong performance observed, even for meaningless pseudowords, implies 

that people are applying morphological knowledge through a process of morpheme-spotting. 

Familiarity judgments gathered during the same trials show that this decomposition was not 

affected by the fact that people almost unanimously understood that the real words were highly 

familiar, but the pseudowords were highly unfamiliar. We might take this result in comparison to 

Chapter 2 to suggest that people are correctly differentiating the tasks of judging typicality 

versus familiarity: they are able to recognize the constituent morpheme, and understand that this 

makes the word more typical, but not more familiar. 

While Chapter 4 showed that people have morphological knowledge and use it for 

unfamiliar pseudowords, the study in Chapter 5 built on the decomposition results to demonstrate 

that people also have indexical knowledge related to morphological units. The gender association 

results in Chapter 5 replicated the finding that people have such associations for whole real 

words, and presented the new finding that people have gender associations for complex 

pseudowords, based on their real constituent morphemes. In addition, gender associations for 

complex real words were not affected by their constituent morphemes, which requires our 
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morphological models to explain the dominance of whole-word knowledge over word-part 

knowledge in this task. 

Together, these findings contribute to three major points of discussion: the connection 

between typicality judgments and lexical processing effects for real words and pseudowords; the 

various measures for the concept of lexical similarity; and the way indexical knowledge is 

perceived, encoded, and accessed. We also connect these findings to consequences for language 

innovation and change. 

6.1. Tasks, typicality, and lexical processing 

Based on the results presented in the preceding chapters, we argue for the useful 

connection between high-level tasks (e.g., typicality judgments) and the low-level tasks 

commonly used to study lexical processing (e.g., accuracy and latency in lexical decision, 

naming, shadowing, priming, etc.). These tasks are generally called low-level because they 

happen over short time-scales, often below the level of consciousness. In contrast, the tasks in 

Chapters 2 and 3 are high-level because the participants are not under time pressure, and are 

conscious of what they are doing. We have shown that both of these approaches depend on 

similar measures, especially frequency, phonotactic probability, lexical neighborhood density, 

and morphological complexity. However, lexical processing research is nearly synonymous with 

the kind of low-level tasks mentioned (see Vitevitch & Luce, 2016), and the study of well-

formedness is more often concerned with typicality judgments of the kind presented here. 

Focusing as they do on similar underlying measures, these separate threads could each benefit 

from their apparently separate methods: gradient typicality reflects the influence of frequency 

and similarity on perception, and low-level responses can be used to inform models of well-
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formedness in fine detail. In a similar way, we argue that an integrated treatment of real words 

and pseudowords is fruitful for understanding both. Both categories are subject to gradient 

typicality, affected by similar factors. Chapter 3 discusses how theories of gradient well-

formedness are improved by addressing gradience for both real words and pseudowords. The 

results presented in Chapter 3 remind us that words have no a priori status as real words or 

pseudowords; instead, the results suggest a continuum running from high frequency words, to 

low frequency, to zero frequency (unknown words or pseudowords). This is an important 

consideration in light of the fact that individuals vary widely in the size and contents of their 

personal vocabulary (for words and for morphemes). At the same time, lexical processing studies 

already recognize the ways that both real words and pseudowords show gradience in accuracy 

and latency for a variety of tasks. Indeed, the gradience in processing results for real words was 

noted as part of the motivation for the study in Chapter 3, providing an example for the mutual 

relevance of typicality and lexical processing studies. 

The relevance of task differences is clear for both practical and theoretical concerns. 

Practically, low-level tasks may require specialized equipment and careful control of the 

experimental environment, while high-level tasks can be more robust to larger studies with 

noisier conditions. One trade-off for this is that low-level tasks can reveal fine-grained responses 

(especially in terms of time-course) that are not apparent in high-level tasks. For example, the 

pattern of gender association results in Chapter 5 can be compatible with a multiple-route model 

if activation of morphemes for real complex words simply is not reflected in the high-level 

gender response task; in this situation, the gender response is based on the whole-word 

semantics, and the route to activate that representation does not affect the response. In this case, 
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the morpheme may be activated, but the details of the task mean that this activation is not 

reflected in the response. Kuperman (2013) makes a similar point when he notes that morphemes 

with negative emotional valence increase response latency (in a low-level task), but those 

morphemes do not influence a high-level task like asking for the denotation of the whole word. 

6.2. Lexical similarity 

Many of the presented findings can be tied to the fundamental concept of typicality as 

lexical similarity, but doing so leaves many loose threads, as this simple idea has been 

operationalized in a variety of ways. Evidence shows that typicality is affected by phonotactic 

probability, lexical neighborhood density, and morphological complexity. Lexical frequency also 

plays a role in typicality, though the distinction between token frequency and type frequency 

must be included, as it is in some generalized similarity models (e.g., the Generalized 

Neighborhood Model in Bailey & Hahn, 2001). The issue is that, while these measures are often 

correlated, they operate over different time-scales for the words. Simple neighborhood 

approaches are strongly dependent on length, so that short words have many neighbors (even if 

they differ by a large proportion of phonemes or letters), while longer words may have no 

neighbors at all; in addition, phonotactically impossible words can have many neighbors. 

Phonotactic measures are based on short sub-word scales, but they also compare words to the 

lexicon as a whole; unlike a neighborhood approach, phonotactics cannot capture the similarity 

relationship between, e.g., BUFFING and BLUFFING. As we see in Chapters 2, 4, and 5, 

morphological analysis brings a different though still incomplete perspective, operating over 

potentially long sub-word scales: BLACKBIRD, BLUEBIRD, and MOCKINGBIRD are similar 
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for people by virtue of their shared morpheme, but they differ in terms of neighbors and 

phonotactic probability. 

This set of related but different similarity approaches suggests that a suitably 

sophisticated integrative model might be superior, jointly considering the empirical similarity 

effects of these factors. However, this task is outside the scope of this dissertation, and appears to 

be a difficult one. There are independent motivations for the separate operation of the different 

factors mentioned, suggesting that integration is not straightforward. Phonotactic effects, which 

imply knowledge that is abstracted from the lexicon as a whole, are important in studies of many 

aspects of perception and production, including second language acquisition, speech errors, and 

accentedness. In fact, phonotactic information might be considered to precede the lexicon itself, 

in phonotactic models of infant learning that make early use of phrase boundary phonotactics 

(Daland & Pierrehumbert, 2011); and phonotactic accounts of segmentation are not explicitly 

related to lexical similarity. Neighborhood and word-network competition effects provide unique 

explanations for patterns in phonological and semantic processing, and the results in Chapters 4 

and 5 seem to be best explained by morphological knowledge. The decomposition results in 

Chapters 4 and 5 show that people are very capable of recognizing morphemes (even in 

pseudowords) while still correctly ignoring spurious form-only matches in real words, but the 

disconnect between decomposition and gender association in Chapter 5 suggests that the gender 

effect could be based on pseudoword similarity to morpheme-based clusters of real words by an 

analogical process. A combined system would need to satisfy many observed patterns, such as 

the tight relationship between morpheme-based clusters (e.g., BLACKBIRD, BLUEBIRD, and 

MOCKINGBIRD), but also the typicality ‘veto power’ shown for rare and impossible 
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phonotactic units (e.g., for BNICK). At this point, similarity between words appears to operate 

over distinct types of links (phonological, morphological, semantic, indexical), and similarity 

over the lexicon as a whole is best captured by phonotactic approaches. 

6.3. Indexical information and the lexicon 

The results in Chapter 5 show that indexical information (specifically, gender association) 

is present within the lexicon. The discussion in Chapter 5 considers some possible structures that 

can explain the pattern of results reported: while it seems clear that gender information is stored 

with whole words, there are different ways to derive the morpheme gender bias effect observed 

for pseudowords. One way is that gender information is stored directly with morphemes, as for 

whole words. If this is the case, such information is suppressed when whole-word gender 

information is available, and people must be perceiving morphemes even when their explicit 

decomposition responses do not reflect this. These requirements are not so far-fetched, given the 

many things that might happen during processing that are not always reflected in high-level 

tasks. Alternatively, it could be that morphemes do not have such information directly associated 

with them. Instead, the pseudoword morpheme effect could result from the influence of a cluster 

of real words sharing the same morpheme (so that the morpheme effectively carries the average 

gender bias of the whole cluster). This mechanism requires that information from morpheme-

related clusters are available during processing. Regardless of the mechanism by which the 

whole-word and morpheme gender effects arise, these results show that gender information is 

present. This leads us to the question of how gender information got there. 

Information about gender associations might be stored within the lexicon in various 

ways, but this information comes from experience. Language is a primarily social phenomenon, 
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so indexical information is often salient in language use. In face to face interactions, it can be 

impossible to avoid making guesses about the gender, race, class, or age of interlocutors (even if 

these guesses may be inaccurate), just as it can be difficult to ignore other aspects of the 

interactional context (e.g., location, activities, nearby objects). We need not even assume that 

these contextual details are highly salient to influence language in use: Hay and Drager (2010) 

showed that the mere presence of community-associated stuffed toys influenced accent 

perception. This sets a low bar for socially-relevant contextual information to be perceived and 

integrated into linguistic processing. At the same time, we can draw on the suggestion from 

Kuperman (2013) that attentional focus is subject to strong influences from socially-relevant 

information; Kuperman raises the argument that emotionally-negative morphemes capture 

attention during lexical processing because of their general psychological importance. The 

sociolinguistic literature makes it clear that social concerns (e.g., gender) are of great 

psychological importance, and indeed are directly relevant to language use. Sociolinguistic 

lexical processing studies show significant social effects of accent, dialect, and identity; these 

factors matter in low-level tasks, while still being tightly linked to semantic and indexical 

considerations. For example, a conversation between a parent, their child, and an adult friend 

would involve very different lexical and phonetic considerations than a conversation between 

only the parent and adult friend. Some of the results in Chapter 5 suggest that modality also plays 

an important role in the perception and encoding of indexical information: we proposed that 

words which most often appear in formal texts (instead of informal face to face conversations) 

have weaker gender associations. This might be because textual language experience lacks much 

of the context discussed above: visual and aural cues to gender (as well as race, class, age, etc.). 
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6.4. Language innovation and change 

In the natural social use of language, high-level and low-level tasks proceed in 

continuous parallel functioning, as people are not only recognizing words in sentences, but also 

attending to meaning, indexical information, and ad hoc language innovation. At any moment, a 

person might be confronted with an unknown word, which they need to consider in terms of 

typicality (including morphology, phonotactics, etc.), but also within the social and 

environmental context (who is speaking, to whom, where, etc.). This is the context in which 

language innovation and language change occurs, so all of the factors mentioned must be jointly 

considered. We can consider a minimal model of language innovation, in which new words must 

be created, shared, and perceived, starting a cycle of adoption and transmission between 

language speaker-listeners. The mechanism depends on the crucial step when a listener is 

perceiving and judging a novel word. This lexical processing is known to be affected by factors 

such as phonotactic probability and lexical neighborhood density, which are correlated with 

gradient typicality. These factors of typicality are based on the listener’s lexical knowledge as 

derived from linguistic experience. Experience also gives speaker-listeners rich contextual 

knowledge, including indexical information about the social context words are used in. This 

indexical knowledge in turn induces social associations for potential new words. Chapter 5 

showed that the processing of pseudowords is affected by indexical associations in morphology, 

in addition to formal similarity as measured by phonotactic probability or neighborhood density. 

This suggests that is necessary to integrate knowledge from the sociolinguistic literature, 

recognizing that lexical processing takes place within the daily social lives of individual speaker-

listeners. The single axis of acceptability may instead be complicated into a set of socially-
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contextualized judgments: is a given potential word typical in conjunction with the observation 

that the speaker is a woman, and a member of a specific community? Does a listener consider an 

encountered word typical given that the tone of the discourse is erudite jargon, or fashionable 

slang? It may be impossible to abstract away from these concerns; instead, they provide 

opportunities for richer understanding of linguistic cognition. Experimental work is needed to 

explore the effects of other aspects of speaker-listeners’ indexical information, including 

categories well-known to sociolinguistics: age, class, community membership, professional 

sphere, and other factors of identity. At the same time, the findings presented in this dissertation 

must be tested with more complex statistical models, in conjunction with other experimental 

tasks. In particular, integration requires that the results presented be verified in those paradigms 

commonly used for lexical processing.  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Appendix 1: Nonword Instructions 

You will be shown a series of made-up words, one at a time. Pronounce each word you see out 

loud, as best you can. 

Your task is to rate each word for how ‘English-like’ it is: how much it sounds like a normal 

word of English that you simply never learned before. 

Focus on how the word sounds, not on the spelling. 

Using the five labeled buttons below the word, you will give each word a rating from 1 to 5: 

(5) means the word is a perfectly good, normal-sounding English word; 

(1) means the word is awful or impossible-sounding as a word of English. 

Here is an example: 

!  

After you’ve rated the word, press the ‘Next’ button to continue. You will be told when you’ve 

finished. When you finish rating all the made-up words, there will be new instructions for 

the next part of the HIT. 

To take this HIT, you have to be a native speaker of English, 18 years or older. 

Please be aware that some of our tasks are incompatible with earlier ones. If you have completed 

a previous task that this one is incompatible with, you will not be able to take this HIT. 

We monitor our results to make sure that participants are attentive. If you do not give the task 

enough attention, you risk being excluded from taking any of our future HITs. 
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You may review these instructions. When you are ready, please press the ‘Next’ button to begin. 
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Appendix 2: Vocabulary Instructions 

In the last part of this task, you will see seventy ‘words’, one after the other. Some are real words 

of English, while some are made-up nonwords. 

Your task is to indicate your familiarity with each word on a 1-5 scale. 

The scale is from least familiar (1) to most familiar (5), and should be applied as follows: 

1 = totally unknown; I have never seen or heard this word. 

2 = unfamiliar; I may have seen or heard this word, but I don’t know what it means, and I would 

not use this word. 

3 = somewhat familiar; I have seen or heard this word, I have some idea of what it means but I 

am not completely sure, and I would probably not use this word. 

4 = familiar; I have definitely seen or heard this word, I think I know what it means, and I would 

use this word. 

5 = very familiar; I have definitely seen or heard this word, I am sure that I know what it means, 

and I would be very comfortable using the word myself. 

Please be as honest as you can in your responses. 

Work as quickly as you can without sacrificing accuracy. 

Here is the first Example Question:  

!  

This is a very familiar real word of English, so the correct choice is (5). 
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When you are ready, click the (Next) button to continue.” 

Here is the second Example Question:  

!  

This is a made-up nonword, so the correct choice is (1). 

When you are ready, click the (Next) button to begin. 



  !152
Appendix 3: Phonetisaurus Description 

Phonetisaurus uses WFSTs (weighted finite state transducers) in a modified EM-driven 

alignment algorithm (Novak, Minematsu, Hirose, 2012). This approach finds the optimal set of 

correspondences between strings of letters and phonemes. Phonetisaurus takes a user-supplied 

pronunciation dictionary input (i.e., a word list in paired phonemic and orthographic forms). This 

list is used to fit an optimal model of G2P mappings. Like other high-performance G2P tools, 

Phonetisaurus makes use of joint n-gram “graphone” units, which define mappings between 

orthographic n-grams and phonemic n-grams (e.g., grapheme ‘ee’ maps to phoneme /i/). Note 

that the graphone approach is inherently bidirectional, so it can be used for both G2P and P2G. 

Graphone mappings may be simple (e.g., in /kæt/ ‘cat’, an orthographic 1-gram ‘t’ is mapped to a 

phonemic 1-gram /t/), or complex, with the graphones consisting of different size n-grams (in 

‘tax’, ‘x’ –> /ks/, or in ‘fish’, ‘sh’ –> /ʃ/). 

Mappings are frequently not unique, so that either a grapheme or a phoneme may 

correspond to multiple different counterparts, depending on context and variation. For example, 

given ‘cat’ (/kæt/) and ‘kit’ (/kɪt/), /k/ –> ‘c’ or ‘k’; given ‘cats’ and ‘dogs’, ‘s’ –> /s/ or /z/. In the 

probabilistic Phonetisaurus graphone model, these multiple mappings are weighted based on the 

input corpus. Graphone mappings may be ambiguous in a given word; e.g., a null mapping so 

that a grapheme can be silent (in ‘knight’, ‘k’ –> null), could also be learned as the mapping ‘kn’ 

–> /n/. Phonetisaurus considers these alternatives to build an optimal model for the input corpus 

overall. The n-gram representational structure used is context-sensitive, in the same way that 

phonotactic triphones capture additional structure over biphones. Phonetisaurus uses a multiple 
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n-gram model (up to 8-grams), to capture idiosyncratic spellings for longer strings and 

(pseudo)morphemes (e.g., ‘-tion’ in ‘nation’, or ‘-tuous’ in ‘fatuous’). 

The Phonetisaurus output is a ranked set of candidates: e.g., /tæks/ might yield in 

descending order ‘tacks’, ‘tax’, ‘taks’, ‘tacs’. Note the two worst examples are not matches to 

real words, but they are pronounceable and encode the intended phonemes. It is possible for the 

orthographic representations to be ambiguous in pronunciation. This ambiguity, which is 

unavoidable for a natural language like English, is particularly dangerous for pseudowords; by 

definition, subjects will have no previous experience with these exact words to guide their 

pronunciation. This presents a problem for linguistic experiments depending on the control of 

specific phonological characteristics in the stimuli. To address this issue, the orthographic 

representations of pseudoword items were converted back to phonemic representation using the 

same trained Phonetisaurus model. Any items for which the resulting phonemic output did not 

match the original phonemic input were excluded from use. This can occur both due to spelling 

system ambiguity, and P2G system errors; instability is particularly expected for the 

unpronounceable nonwords. This mapping stability filter gives confidence that the intended 

pronunciation for stimuli is the most likely one for the orthographic form presented. Appendix 4 

provides examples of errors that the stability filter removes. In an initial batch of 120000 

candidate items, 38073 items passed the filter (32%).  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Appendix 4: Examples of P2G/G2P instability results. 

Phonemic Input Graphemic Form Phonemic Output

/ɛvrəʤuɚ/ evrdu /vdu/

/dɛljuɚs/ deuous /fjuɚs/

/hɔdɛld/ hordeld /hɔd/

/ɔɪŋkɔps/ oincorps /ɔɪnkɔ/

/jjnkɔR/ jaruk /ʤɑruk/
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Appendix 5: Extended Model Comparison Statistics 

Drop-1 model comparison statistics for Baseline models. Unavailable comparisons indicated by 
‘-’. 

Baseline
Model Factors

Length 4A Length 5A Length 6A Length 7A

𝛸² p 𝛸² p 𝛸² p 𝛸² p

biphone 21.9 <0.001 54.0 <0.001 83.0 <0.001 125.2 <0.001

triphone 105.1 <0.001 78.3 <0.001 118.5 <0.001 100.9 <0.001

vocabulary 53.6 <0.001 58.8 <0.001 66.9 <0.001 80.0 <0.001

neighbors 245.9 <0.001 185.4 <0.001 89.2 <0.001 5.9 0.015

neighbors:vocabulary 10.5 0.001 - - - - - -

biphone:vocabulary - - - - - - 6.2 0.013
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Appendix 6: List of experiment stimuli, “baseline_appendix_6.txt”. 

 The file contains the complete list of stimuli for this study. The format is tab-delimited  

plain text, with columns for: item (“item”), morpheme group (“morph”), real or pseudoword 

status (“lexicality”), simple or complex item (“complexity”), compound or suffixation 

(“structure”), and orthographic boundary ratio (“boundary_cue_ortho”).  
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Appendix 7: List of experiment stimuli, “gender_appendix_7.txt”. 

The file contains the complete list of stimuli for this study. The format is tab-delimited 

plain text, with columns for: item (“item”), morpheme group (“morph”), real or pseudoword 

status (“lexicality”), simple or complex item (“complexity”), compound or suffixation 

(“structure”), morpheme gender bias category (“morph_gender”), whole word gender bias 

category (“token_gender”), and orthographic boundary ratio (“boundary_cue_ortho”).


