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ABSTRACT 

Quantum-Chemical Screening of Redox-Active Metal–Organic Frameworks 

Andrew S. Rosen 

 

Metal–organic frameworks (MOFs) are a class of crystalline materials composed of metal 

nodes connected by organic linkers. Due to their high degree of synthetic tunability, MOFs have 

been considered for a wide range of applications, including many that rely on a change in oxidation 

state. While most MOFs are generally considered to be redox-inactive, a growing number of MOF 

structures have been synthesized that can support redox processes, oftentimes via the presence of 

open-shell transition metal cations and/or redox non-innocent linkers. These so-called redox-active 

MOFs have been investigated for challenging catalytic oxidation reactions, the selective 

adsorption of reducible gas species, and next-generation electronic devices. 

In this dissertation, a computational screening approach based on density functional theory 

calculations is used to gain insight into the reactive properties of redox-active MOFs for three main 

application areas. The first portion of this dissertation is focused on the catalytic oxidation of strong 

C–H bonds, such as those of light alkanes, via the formation of high-valent metal-oxo and metal-

oxyl species at the inorganic nodes of MOFs. Switching focus to adsorption processes, the second 

portion of this dissertation is centered around the design of MOFs with redox-active metal centers 

that can selectively bind O2 over N2 via charge transfer interactions. In the final portion of this 

dissertation, a high-throughput periodic DFT workflow is used to create the first large-scale 

quantum-mechanical property database for MOFs, which is then used to train machine learning 
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models that can guide the discovery of MOFs with targeted band gaps. Throughout this work, 

several methodological studies are also carried out to better understand the qualitative and 

quantitative shortcomings of different density functional approximations with the goal of making 

more actionable predictions in future computational screening efforts. Collectively, this 

dissertation demonstrates the ability to use high-throughput quantum-mechanical simulations to 

discover new structure–property relationships, identify promising MOFs for challenging oxidation 

reactions, and more efficiently explore the vast expanse of MOF chemical space. 
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Chapter 1: INTRODUCTION 

1.1 Metal–Organic Frameworks 

1.1.1 Overview 

Metal–organic frameworks (MOFs) are a class of highly tunable, extended solids composed of 

metal ions or clusters connected via organic ligands.1 The constituent inorganic nodes and organic 

linkers that make up a given MOF are known as secondary building units and dictate the resulting 

physical and chemical properties of the material. By considering different combinations of node 

and linker building blocks, as well as the network topology describing their connectivity,2 it is 

possible to design a MOF that is specifically tailored for an application of interest.3 In many ways, 

MOFs can be thought of as bringing the synthetic tunability of molecular systems to the solid state, 

bridging the gap between these two otherwise distinct classes of materials.4 

 MOFs have been studied for an enormous range of applications, including gas storage and 

separations,5,6 heterogeneous catalysis,7,8 energy storage and conversion,9 sensing,10 drug 

delivery,11 water purification,12 and much more.1 Beyond these many potential uses, MOFs are an 

important class of materials for gaining a greater fundamental understanding of a variety of 

chemical processes. For instance, in the area of heterogeneous catalysis, MOFs can be used to 

discover structure–reactivity relationships by systematically exchanging the metals at the nodes 

and/or functionalizing the linkers. The relatively uniform and spatially isolated nature of the metal 

sites in MOFs can also provide insight into the properties of proposed active site motifs and 

reaction intermediates that may be difficult to isolate in more conventional materials.13 
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1.1.2  Redox Activity 

Historically, most experimentally synthesized MOFs have metals that cannot readily undergo 

changes in formal oxidation state. In these scenarios, the MOF is said to be redox-inactive. With 

respect to the inorganic nodes, most MOFs are composed of metals that generally cannot be 

oxidized or reduced, such as Zn(II), Cd(II), Ag(I), Al(III), Mg(II), Zr(IV), Al(III), and Sc(III) (in 

order of decreasing frequency of occurrence14). MOFs composed of Cu(II) ions, which are the 

second most common metals in MOFs after Zn(II),14 are also rarely suitable for oxidation 

processes. For the purposes of charge transport, the commonly used carboxylate linkers often 

inhibit electron transfer between the metal nodes, and most experimentally synthesized MOFs are 

best-classified as electronic insulators with large band gaps.15,16 

Recently, there has been significant interest in the design of redox-active MOFs,15–19 as 

there are countless applications that are reliant on the transfer of electrons, such as the selective 

binding of reducible guest molecules, catalytic oxidation reactions, electrocatalysis, and energy 

storage processes. For reactions that involve a change in oxidation state at the metal center, MOFs 

with metals that have more easily accessible redox couples have been synthesized, including (but 

not limited to) MOFs with redox-active Ti(III), V(III), Cr(II), Mn(II), Fe(II), Co(II), Ni(II), and 

Cu(I) cations.20–27 In some cases, the linkers can exhibit redox non-innocent behavior and undergo 

a change in oxidation state, even if the reaction of interest takes place at the metal center.28 For 

(opto)electronic applications, MOFs have also been synthesized with redox-active linkers as well 

as guest molecules that can facilitate intraframework charge transport.16 
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1.2 High-Throughput Computational Screening 

With the development of robust computational screening workflows,29–32 high-throughput 

quantum-chemical calculations have been used to investigate the electronic, energetic, and 

structural properties of hundreds of thousands of materials over the last decade.33–39 Especially 

when coupled with recent advances in machine learning, high-throughput computational methods 

have made it possible to discover promising new materials in silico40–43 as an alternative to 

discovery based solely on intuition, trial-and-error, or serendipity. The need for a high-throughput 

approach to materials discovery is particularly paramount when the composition space is 

combinatorial in nature, as the number of unique materials to consider will often far exceed the 

number that can be studied via the more conventional hypothesis-synthesize-test cycle. 

 At the time of writing, tens of thousands of MOFs have been experimentally 

characterized,14,44 and virtually unlimited more can be proposed.45 Given the vast chemical space 

of MOF structures, high-throughput computational screening approaches have proven to be 

extremely useful for accelerating the discovery of promising new MOFs.46–52 Most studies in this 

area are based on classical simulations, most notably grand canonical Monte Carlo (GCMC) 

simulations that can be used to model gas adsorption in MOFs. High-throughput GCMC 

simulations have been successfully used to identify top-performing MOFs with respect to CH4 

storage capacity,53 CO2 capture,54 H2 storage,55 and O2 uptake,56 among several other 

applications.48 Extending high-throughput computational screening of MOFs to applications 

requiring quantum chemical calculations, however, remains a significant challenge and has been 

largely unexplored in comparison. 



35 

 

1.3 Density Functional Theory 

1.3.1 Hohenberg-Kohn Theorems and the Kohn-Sham Equations 

Currently, the most widely used computational method to predict the electronic and energetic 

properties of MOFs is density functional theory (DFT).57 In short, DFT is based on two key 

fundamental principles derived by Hohenberg and Kohn in 1964.58 The first Hohenberg-Kohn 

theorem states that the ground-state energy 𝐸 obtained from the Schrödinger equation is a unique 

functional of the system’s electron density 𝜌(𝐫), which itself encodes the probability that any of 

the 𝑁 electrons in the system are at a given position 𝐫. The second Hohenberg-Kohn theorem states 

that the ground-state electron density is the one that minimizes the aforementioned energy 

functional, 𝐸[𝜌(𝐫)]. Collectively, these two theorems imply that if one can compute the ground-

state electron density, then the energy – in addition to the wavefunction and all derivable quantum-

mechanical properties of the system – can also be readily obtained. 

 On their own, the Hohenberg-Kohn theorems do not provide an answer as to how the 

ground-state electron density can be computed. Within the framework of DFT, this can be directly 

addressed using the so-called Kohn-Sham equations,59 which transform the original many-body 

problem of electrons into one based on an artificial system of non-interacting electrons with the 

same density as the true system. In the Kohn-Sham formalism, the ground-state electron density 

is expressed in terms of an eigenvalue equation involving single-electron wavefunctions of non-

interacting electrons 𝜓𝑖(𝐫) and energies of the corresponding electron orbitals 휀𝑖, given by 

[−
ℏ2

2𝑚e
∇2 + 𝑉(𝐫) + 𝑉H(𝐫) + 𝑉XC(𝐫)] 𝜓𝑖(𝐫) = 휀𝑖𝜓𝑖(𝐫). (1.1) 
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The first term on the left-hand side represents the kinetic energy of the electron, where ℏ is the 

reduced Planck’s constant, 𝑚e is the mass of the electron, and ∇2 is the Laplacian operator. The 

second term, 𝑉(𝐫), represents the potential energy of the electron-nuclei interactions. The third 

term, known as the Hartree potential 𝑉H(𝐫), is given by 

𝑉H(𝐫) = 𝑒2 ∫
𝜌(𝐫′)

|𝐫 − 𝐫′|
𝑑𝐫′. (1.2) 

where 𝑒 is the elementary charge. The Hartree potential describes the repulsive Coulombic 

interaction between the electron and total electron density. The final term on the left-hand side of 

the Kohn-Sham equations is the exchange-correlation potential 𝑉XC(𝐫), which is given by   

𝑉XC(𝐫) ≡
𝛿𝐸XC[𝜌(𝐫)]

𝛿𝜌(𝐫)
(1.3) 

where 𝐸XC[𝜌(𝐫)] is the exchange–correlation energy functional. The exchange-correlation 

potential accounts for the quantum-mechanical factors not defined elsewhere in the Kohn-Sham 

equations and is the term needed to make the system of 𝑁 non-interacting electrons have the same 

electron density as 𝑁 interacting electrons. 

 In practice, the Kohn-Sham equations are solved using an iterative approach, typically 

referred to as converging the self-consistent field (SCF). In this multi-step approach, an initial 

guess for the electron density is defined, denoted 𝜌guess(𝐫). With this trial electron density, the 

single-particle wavefunctions 𝜓𝑖(𝐫) are computed using Equation 1.1, from which the electron 

density 𝜌(𝐫) is calculated as 

𝜌(𝐫) = 2 ∑ 𝜓𝑖
∗(𝐫)𝜓𝑖(𝐫)

𝑖

. (1.4) 
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If 𝜌(𝒓) ≠ 𝜌guess(𝐫), the procedure is repeated with a new trial electron density until the provided 

electron density and that computed from Equation 1.4 are equal (within some numerical tolerance). 

Once the SCF is considered converged, the electron density has been obtained. Returning to the 

many-body system of interest, the newly obtain electron density can be used to calculate the total 

energy and the resulting quantum-mechanical properties of interest. The total energy expression 

for the many-body system is given by 

𝐸[𝜌(𝐫)] = −
ℏ2

2𝑚e
∑ ∫ 𝜓𝑖

∗(𝐫) ∇2𝜓𝑖(𝒓)

𝑖

𝑑𝐫 + ∫ 𝑉(𝐫)𝜌(𝐫) 𝑑𝐫 +
𝑒2

2
∬

𝜌(𝐫)𝜌(𝐫′)

|𝐫 − 𝐫′|
𝑑𝐫𝑑𝐫′ + 𝐸XC[𝜌(𝐫)]. (1.5) 

1.3.2 Density Functional Approximations 

The key ingredient missing from the aforementioned discussion is the precise definition of the 

exchange-correlation functional, 𝐸XC[𝜌(𝐫)]. While the true exchange-correlation functional is 

unknown, various density functional approximations (DFAs) have been developed to solve the 

Kohn-Sham equations and make DFT a practical method for computing the electronic structure 

properties of a given chemical system.60,61 

At the time of writing, there are approximately 600 exchange-correlation functionals 

incorporated in the popular Libxc library,62 and many more are likely to be developed in the 

forthcoming years. The various density functionals are often classified by what factors they rely 

on in the calculation of 𝐸XC[𝜌(𝐫)]. In order of increasing computational cost, there is the local 

density approximation (LDA)58 that depends only on the local electron density 𝜌(𝐫); generalized 

gradient approximation (GGA) functionals63 that depend on the local density and its gradient 

∇𝜌(𝐫); meta-GGA functionals64 that depend on the density, its gradient, and its Laplacian ∇2𝜌(𝐫) 

(or the non-interacting kinetic energy density); and hybrid (meta-)GGA functionals,65 which 
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incorporate some fraction of exact-exchange from Hartree-Fock theory66,67 in addition to the 

factors described for GGA or meta-GGA functionals.60 Higher “rungs” of this ladder of density 

functionals are often associated with increasingly accurate quantum-mechanical simulations.61 In 

practice, however, there is rarely a clear consensus on the optimal density functional for a given 

application, and there are many factors to consider beyond a functional’s performance on a 

particular benchmark dataset.68 One the most important aspects to consider is that there is often a 

strong tradeoff between the computational cost and presumed accuracy of a given density 

functional. For instance, while hybrid meta-GGA functionals are routinely used in the study of 

organic molecules, they can often be computationally prohibitive for materials with many valence 

electrons, including some MOFs. 

1.3.3 Periodic and Cluster Calculations 

When using DFT to model the properties of MOFs, an important decision that must be made is 

whether to model the structure using its full crystalline structure or a molecular analogue.4 As with 

most aspects of computational chemistry, there are benefits and tradeoffs associated with both 

approaches. 

When modeling the full crystallographic unit cell with periodic boundary conditions, the 

simulated material often closely matches that being studied experimentally, excluding possible 

crystalline defects. Unfortunately, the relatively high computational cost associated with periodic 

DFT calculations of MOFs means that state-of-the-art density functionals, particularly those in the 

hybrid(-meta) GGA class, can be computationally intractable for frequent use. An alternative 

approach is to carve a representative molecular cluster from the crystalline structure that can be 

modeled with greater computational efficiency and permits the use of higher levels of theory.69 
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While not all properties can be appropriately modeled using a cluster model (e.g. the electronic 

band structure), there are many chemical phenomena that are local in nature and do not depend 

strongly on the behavior of atoms far away from the reactive site of interest.70 

For the purposes of high-throughput computational screening, it should nonetheless be noted 

that cluster calculations involve many human-guided decisions that are difficult to automate. Given 

an arbitrary MOF structure, there are no robust algorithms that can systematically carve an 

appropriately sized cluster model that does not neglect important medium-to-long range 

electrostatic interactions or van der Waals interactions, such as pore-based confinement effects. 

Similarly, it can often be ambiguous as to where to best terminate the cluster, how to cap the 

resulting dangling bonds, and which atoms should be kept rigid to appropriately mimic the bulk 

constraints of the crystalline framework. Regardless of the approach taken, it is always important 

to understand the model’s limitations to ensure that the reported trends and results can be used to 

make actionable suggestions for future experiments. 

1.4 Outline of Research 

1.4.1 Thesis Outline 

Broadly, this thesis can be broken down into three main topical areas: 1) structure–reactivity 

relationships to help guide the discovery of MOFs capable of catalytically oxidizing strong C–H 

bonds; 2) design principles for MOFs that can selectively bind O2 over N2; 3) a database of MOF 

electronic structure properties that can be used to train and benchmark machine learning models 

to circumvent computationally expensive DFT calculations. 

The original research portion of this thesis begins with Chapter 2, which lays out the 

computational framework for a fully automated, high-throughput periodic DFT screening 
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procedure tailored for MOF structures.32 As a proof-of-concept, this workflow is used to screen a 

database of experimentally synthesized MOFs for the catalytic oxidation of methane. This theme 

is revisited and refined in Chapter 3, where a curated dataset of MOFs with coordinatively 

unsaturated metal centers is studied for the oxidation of methane to methanol. The main result of 

Chapter 3 is that there is often an indirect relationship between the thermodynamic stability of the 

terminal metal-oxo active site and its reactivity towards cleaving the C–H bond of methane.71 The 

topic of C–H bond activation is continued in Chapter 4, which is focused on a highly tunable family 

of metal–triazolate frameworks (discussed again in Chapter 6 in the context of selective O2 

binding).72 Chapter 4 introduces the concept of antiferromagnetically enhanced reactivity, where 

the alignment of the unpaired electrons at the metal center and terminal oxo ligand can greatly 

impact the predicted reactivity towards strong C–H bonds. 

In Chapter 5, DFT-based computational screening is now used to study MOFs for the task 

of air separation via the selective binding of O2 or N2 at coordinatively unsaturated metal sites.73 

Through this systematic study, several design rules are uncovered. As one example, it is 

demonstrated both computationally and experimentally that exchanging the Cl- bridging ligands 

in a family of metal–triazolate frameworks with more basic OH- ligands can greatly increase the 

binding strength of O2 at the metal centers without a substantial increase in the binding strength of 

N2. Continuing on this topic, Chapter 6 takes a more methodological approach and is focused on 

comparing the behavior of common DFAs when studying redox-dependent adsorption of small 

molecules at the metal centers of MOFs.74 By comparing the results of GGA, meta-GGA, and 

GGA+U simulations, the effects of electron self-interaction error are uncovered. 
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 Up to this point, the aforementioned work has all involved small- to moderate-scale 

computational screening. In Chapter 7, a high-throughput DFT workflow is now used to develop 

a freely accessible, large-scale database of MOF electronic structure properties called the Quantum 

MOF (QMOF) Database.75 The data underlying the QMOF Database is then used to train and 

benchmark various machine learning models for the rapid prediction of MOF band gaps without 

the need to carry out computationally expensive DFT calculations. This theme is continued in 

Chapter 8, which describes an augmented QMOF Database with computed electronic structure 

properties at multiple levels of theory. This new data is then used to better understand the 

fundamental limitations of commonly employed DFAs and can, in the future, enable the prediction 

of high-fidelity electronic structure properties at a small fraction of the computational cost 

otherwise needed to carry out hybrid-level DFT calculations. 

 In Chapter 9, the themes discussed throughout this thesis are put in the context of the 

recently published literature to provide a forward-looking perspective on the many challenges and 

opportunities within the area of data-driven MOF catalyst design and discovery. In Chapter 10, the 

thesis concludes with a brief summary of the key takeaways from the presented work. 

 A list of the publications and manuscripts in preparation that make up the chapters of this 

theses is included below: 

• Chapter 2: A.S. Rosen, J.M. Notestein, R.Q. Snurr. “Identifying Promising Metal−Organic 

Frameworks for Heterogeneous Catalysis via High-Throughput Periodic Density 

Functional Theory.” J. Comput. Chem., 40, 1305–1318 (2019). 

• Chapter 3: A.S. Rosen, J.M. Notestein, R.Q. Snurr. “Structure−Activity Relationships that 

Identify Metal−Organic Framework Catalysts for Methane Activation.” ACS Catalysis, 9, 

3576–3587 (2019). 
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• Chapter 4: A.S. Rosen, J.M. Notestein, R.Q. Snurr. “High-Valent Metal-Oxo Species at 

the Nodes of Metal–Triazolate Frameworks: The Effects of Ligand Exchange and Two-

State Reactivity for C–H Bond Activation.” Angew. Chem. Int. Ed., 59, 19494–19502 

(2020). 

• Chapter 5: A.S. Rosen, M. Rasel Mian, T. Islamoglu, H. Chen, O.K. Farha, J.M. Notestein, 

R.Q. Snurr. “Tuning the Redox Activity of Metal−Organic Frameworks for Enhanced, 

Selective O2 Binding: Design Rules and Ambient Temperature O2 Chemisorption in a 

Cobalt−Triazolate Framework.” Journal of the American Chemical Society, 142, 4317–

4328 (2020). 

• Chapter 6: A.S. Rosen, J.M. Notestein, R.Q. Snurr. “Comparing GGA, GGA+U, and Meta-

GGA Functionals for Redox-Dependent Binding at Open Metal Sites in Metal–Organic 

Frameworks.” Journal of Chemical Physics, 152, 24101 (2020) 

• Chapter 7: A.S. Rosen, S.M. Iyer, D. Ray, Z. Yao, A. Aspuru-Guzik, L. Gagliardi, J.M. 

Notestein, R.Q. Snurr. “Machine Learning the Quantum-Chemical Properties of Metal–

Organic Frameworks for Accelerated Materials Discovery.” Matter, 4, 1578–1597 (2021) 

• Chapter 8: A.S. Rosen, J.M. Notestein, R.Q. Snurr. “Predicting the Electronic Properties 

of Metal–Organic Frameworks with Big Data: Probing the Limits of Density Functional 

Theory.” In preparation. 

• Chapter 9: A.S. Rosen, J.M. Notestein, R.Q. Snurr. “Realizing the Data-Driven, 

Computational Discovery of Metal–Organic Framework Catalysts.” In preparation. 

 

1.4.2 Other Projects 

In addition to the research outlined in Chapters 2–10, I have had the privilege to work on several 

other projects over the course of my graduate studies, which are briefly summarized below. 

 One of my first projects at Northwestern University was the use of ab initio free energy 

calculations to generate comprehensive phase diagrams of the catalytically relevant edge sites of 

MoS2.
76 I have also been involved with several collaborations. The first of these collaborations 

involved a DFT-based investigation of the plausible active site species in a SiO2-supported CuOx 

catalyst.77 In a separate collaboration, I used computational methods to help understand the 

packing structure of Ce-oxo clusters.78 Currently, I am also mentoring an undergraduate student, 
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Shaelyn Iyer, on a project involving high-throughput computational screening of monocopper 

transition metal complexes for their ability to form terminal metal-oxo/metal-oxyl sites. 

On the topic of MOFs, I helped develop the Python interface for the MOFid code, which 

can be used to provide a unique identifier for MOFs to aid search and cheminformatics analyses.79 

I have also used DFT calculations to better understand the relative energetic stabilities of various 

MOF polymorphs80 and to probe the reactivity of proposed active site motifs in Zr-MOFs for the 

dissociation of H2.
81 In an ongoing project not included in this thesis, I have explored the formation 

and reactivity of various bridging and terminal metal-oxo species in a family of metal–triazolate 

frameworks for the activation of strong C–H bonds. 

While not discussed in this thesis, the aforementioned papers and manuscripts in 

preparation are listed below for reference: 

• A.S. Rosen, J.M. Notestein, and R.Q. Snurr. “Comprehensive Phase Diagrams of MoS2 

Edge Sites Using Dispersion-Corrected DFT Free Energy Calculations.” Journal of 

Physical Chemistry C, 122, 15318–15329 (2018). 

• S.L. Nauert, A.S. Rosen, H. Kim, R.Q. Snurr, P.C. Stair, J.M. Notestein. “Evidence for 

Copper Dimers in Low-Loaded CuOx/SiO2 Catalysts for Cyclohexane Oxidative 

Dehydrogenation.”  ACS Catalysis, 87, 9775–9789 (2018). 

• B.J. Bucior, A.S. Rosen, M. Haranczyk, Z. Yao, M.E. Ziebel, O.K. Farha, J.T. Hupp, J.I. 

Siepmann, A. Aspuru-Guzik, R.Q. Snurr. “Identification Schemes for Metal−Organic 

Frameworks to Enable Rapid Search and Cheminformatics Analysis.” Crystal Growth and 

Design, 9, 6682–6697 (2019). 

• N.S. Bobbitt, A.S. Rosen, R.Q. Snurr. “Topological Effects on Separation of Alkane 

Isomers in Metal–Organic Frameworks.” Fluid Phase Equilibria, 519, 112642 (2020). 

• M.C. Wasson, X. Zhang, K. Otake, A.S. Rosen, S. Alayoglu, M.D. Krzyaniak, Z. Chen, 

L.R. Redfern, L. Robison, F.A. Son, Y. Chen, T. Islamoglu, J.M. Notestein, R.Q. Snurr, 

M.R. Wasielewski, O.K. Farha. “Supramolecular Porous Assemblies of Atomically Precise 

Catalytically Active Cerium-Based Clusters.” Chemistry of Materials, 32, 8522–8529 

(2020). 
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• K.E. Hicks, A.S. Rosen, Z.H. Syed, R.Q. Snurr, O.K. Farha, J.M. Notestein. “Zr6O8 Node-

Catalyzed Butene Hydrogenation and Isomerization in the Metal–Organic Framework NU-

1000.” ACS Catalysis, 10, 14959–14970 (2020). 

• A.S. Rosen, J.M. Notestein, R.Q. Snurr. “Investigating Redox-Active Metal–Organic 

Frameworks with Terminal and Bridging Metal-Oxo Species for the Activation of Strong 

C–H Bonds.” In preparation. 
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Chapter 2: A HIGH-THROUGHPUT PERIODIC DENSITY FUNCTIONAL 

THEORY WORKFLOW TO IDENTIFY PROMISING 

METAL−ORGANIC FRAMEWORKS 

This chapter describes the development of a fully automated, high-throughput periodic 

density functional theory (DFT) workflow for screening promising MOF candidates, with a 

specific focus on applications in catalysis. As a proof-of-concept, the high-throughput workflow 

is used to screen MOFs containing open metal sites from the Computation-Ready, Experimental 

MOF database for the oxidative C–H bond activation of methane. The results from the screening 

process suggest that, despite the strong C–H bond strength of methane, the main challenge is 

identifying MOFs with open metal sites that can be readily oxidized at moderate reaction 

conditions. 

This chapter is adapted from the following peer-reviewed article: A.S. Rosen, J.M. 

Notestein, R.Q. Snurr. “Identifying Promising Metal−Organic Frameworks for Heterogeneous 

Catalysis via High-Throughput Periodic Density Functional Theory.” J. Comput. Chem., 40, 

1305–1318 (2019). 
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2.1 Introduction 

With the advent of materials informatics toolkits and software enabling the development of high-

throughput (HT) screening workflows,31,82–87 HT periodic density functional theory (DFT) has 

been used to construct databases of electronic, energetic, and structural properties for hundreds of 

thousands of inorganic materials from first-principles calculations.29,30,33,35,38,40,88 Metal−organic 

frameworks (MOFs), a novel class of highly porous crystalline materials, are well-suited for 

computational screening studies due to the modular nature of their inorganic nodes and organic 

linkers.53 To date, there are tens of thousands of experimentally synthesized MOFs,44 and 

numerous crystal structure databases have been developed from both known14,44,89 and 

hypothetical53,90 MOF structures. 

HT screening of these databases is particularly appealing, as it allows for a greater number 

of MOFs to be investigated than would be possible experimentally. One of the main goals of HT 

screening of MOF crystal structure databases is to reduce the time-to-discovery of MOFs with 

desired chemical and physical properties. In the area of gas storage and separations, HT grand 

canonical Monte Carlo simulations using classical force fields have been successfully used to 

identify top-performing MOFs with respect to CH4 storage capacity,53 CO2 capture,54 H2 storage,55 

and O2 uptake.56 However, extending HT screening of MOFs to applications requiring quantum 

chemical calculations, such as catalysis, remains unexplored. 

Due in part to the large unit cells of many MOFs, the most common approach when 

modeling MOFs for any catalytic reaction is to crop and terminate the periodic structure to create 

a finite-sized cluster model of the proposed active site, often consisting of no more than a few 

dozen atoms.69 An appropriate choice of where to artificially terminate the MOF unit cell is often 
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not immediately obvious, and this approach is therefore not amenable to HT screening of MOFs 

with widely varying structures and topologies. Finite cluster models can also introduce artificial 

boundary effects that have the potential to influence charge delocalization17 and pore-based 

confinement effects.91,92 The use of periodic DFT to represent the full crystallographic unit cell 

naturally resolves these issues, and most implementations of periodic DFT are well-suited for 

highly parallel calculations that can be used to treat the larger number of atoms in each simulation. 

Nevertheless, to the best of our knowledge, there has never been a fully automated, HT periodic 

DFT screening study for any catalytic reaction using MOFs. 

In this work, we have developed a HT workflow based on periodic DFT to screen large 

numbers of MOFs for promising catalytic candidates. As a proof-of-concept, we use this HT 

workflow to screen MOFs with coordinatively unsaturated metal sites, also known as open metal 

sites (OMSs), for oxidative C–H bond activation. Due to the large economic demand for a catalyst 

that can directly convert methane to methanol93 and motivated by prior work involving MOFs for 

methane conversion,94–99 we specifically consider the partial oxidation of methane as the reaction 

of interest. In the process, we demonstrate the feasibility of a HT-DFT screening workflow for 

MOF catalysis and make several recommendations for future work involving HT-DFT screening 

studies of MOFs. 

2.2 Methods 

2.2.1 General Scheme 

Motivated by similar schemes for computational catalysis screening of bulk metals and 

alloys,100,101 the general approach for HT-DFT of MOF catalysts can be outlined as follows: 
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(1) Determine a set of catalytic descriptors that can be used to correlate catalytic activity with 

readily computed quantities, such as those based on adsorption energies, reaction energies, 

or electronic structure properties.102–107 

(2) Identify or construct a dataset of MOF crystal structures to study. Tools such as 

Pymatgen,82,108 Zeo++,109 and PoreBlazer110 can be used to select MOFs with specific 

metals, coordination environments, and pore sizes relevant to the given reaction of interest. 

(3) Using DFT, optimize the unit cell volume, unit cell shape, and atomic positions for each 

MOF. 

(4) Starting from the optimized MOF structures, initialize the positions of atomic and 

molecular adsorbates required to predict catalytic activity via (1). 

(5) Using DFT, relax the atomic positions of the structures generated via (4). 

(6) Compute the catalytic descriptors of interest to rank MOF candidates. 

(7) For promising MOF candidates, generate the potential energy landscape for the proposed 

mechanism and perform detailed electronic structure analyses to better understand the 

reaction profile. 

In the following sections, we describe how to fully automate this process when studying 

MOFs with spatially isolated active sites, given previously determined catalytic descriptors. We 

then apply this procedure to screen MOFs for the ability to oxidatively activate the C–H bond of 

methane. 

2.2.2 Catalytic Descriptors for Oxidation C–H Bond Activation 

 

When studying materials such as MOFs with spatially isolated active sites, the expected 

mechanism for the conversion of methane to methanol is the radical-rebound mechanism, as shown 
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in Figure 2.1.111 For HT screening purposes, we focus on the oxidation of the metal and H-

abstraction steps of this mechanism, as they dictate the overall conversion of methane by 

influencing the number of metal oxide active sites and the activity of each site, respectively. 

Recently, Nørskov and coworkers have proposed a universal transition state (TS) scaling 

relationship for the C–H bond activation of methane.105 This TS scaling relationship can be used 

to accurately predict the energy of the corresponding TS over a wide range of heterogeneous 

catalysts based on the strength that an H atom binds to the metal oxide active site, denoted 𝐸H. 

This H-affinity linear scaling relationship has been benchmarked for a wide range of materials, 

including cation-exchanged zeolites, bulk metal oxides, transition metal surfaces, and MOFs.105 

 
Figure 2.1. Radical-rebound mechanism for the oxidative C–H bond activation of methane at a 

coordinatively unsaturated metal site (M) using an N2O oxidant. The precise coordination 

environment and M–O bond order are dependent on the given MOF. In this work, we mainly focus 

on oxidation of the metal center and subsequent H-abstraction. 

 

Here, we define the H-affinity as 

𝐸H = 𝐸MOF−OH − 𝐸MOF−O −
1

2
𝐸H2

(2.1) 
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where 𝐸MOF−OH and 𝐸MOF−O are the electronic energies of the metal site with adsorbed OH and O 

species, respectively, and 𝐸H2
 is the electronic energy of H2. Note that unlike the original 

description of 𝐸H,105 Equation 2.1 uses H2 as the H-reference, as justified in the Appendix. With 

this, we can use the universal scaling relationship105 of 

𝐸TS,C−H
∗ = 0.75𝐸H + 1.96 eV (2.2) 

to predict the energy of the TS, 𝐸TS,C−H
∗ , with respect to the initial oxidized state, as schematically 

illustrated in Figure A.1. With Equations 2.1 and 2.2, the C–H bond activation barrier can then be 

readily computed via 

𝐸a,C−H
∗ = 𝐸TS,C−H

∗ − [𝐸MOF−O−CH4
− (𝐸MOF−O + 𝐸CH4

)] (2.3) 

where 𝐸MOF−O−CH4
 is the electronic energy of methane adsorbed to the metal oxide active site, and 

𝐸CH4
 is the electronic energy of gas-phase methane. The asterisks in Equations 2.2 and 2.3 are used 

to denote quantities obtained from a TS scaling relationship rather than directly computed using a 

TS finding algorithm; this difference is expected to be about ~10 kJ/mol, on average, based on the 

work of Nørskov and coworkers.105 

In contrast with the C–H bond activation step, there is currently no reported universal TS 

scaling relationship for the step in which the metal site is oxidized. Instead, we consider the 

extrinsic oxidation reaction energy using N2O as the proposed oxidant, defined as 

Δ𝐸ox = (𝐸MOF−O + 𝐸N2
) − (𝐸MOF + 𝐸N2O) (2.4) 

to determine the thermodynamic favorability of oxidation, as has been done in prior work.105,106 

Here, 𝐸MOF, 𝐸N2
, and 𝐸N2O are the electronic energies of the guest-free MOF, gas-phase N2, and 
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gas-phase N2O, respectively. We refer to Equation 2.4 as an “extrinsic” reaction energy, as the 

energies for N2 and N2O are for the isolated gas-phase species, not in the adsorbed state. 

2.2.3 Initial Dataset Construction 

The starting dataset considered in this work is an 838 MOF subset112 of the Computation-Ready, 

Experimental (CoRE) MOF database.89 The MOFs in this database were originally obtained from 

the Cambridge Structural Database (CSD) with free and bound solvents removed. The 838 MOFs 

in this database have previously been optimized at the PBE-D3(BJ) level of theory via the CP2K 

code,113 which uses mixed Gaussian and plane-wave basis sets.114 From this 838 MOF dataset, 168 

unique MOFs were selected for analysis based on a high likelihood of having OMSs following 

optimization and having pore-limiting diameters of at least 3.0 Å as determined by Zeo++109 (refer 

to the Appendix for additional details). 

2.2.4 Adsorbate Initialization 

One of the necessary aspects of any HT screening workflow is that the entire process should be 

fully automated with minimal user-intervention. For heterogeneous catalysis and other surface 

science applications, adsorption energies are commonly computed but typically involve the user 

manually specifying an initial guess for the location of the adsorbate that is later optimized using 

DFT. This inherently limits the number of materials that can be screened, especially since 

computational catalysis screening often involves the calculation of numerous adsorption energies 

per catalytic candidate. In addition, the choice of a good initial location for a given adsorbate can 

significantly reduce the length of the corresponding geometry optimization by ensuring the 

structure is relatively close to a minimum in the potential energy surface. We summarize methods 

to automate this adsorbate initialization process below. 
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An easy-to-implement set of geometrical rules, which we refer to as the vector-sum 

method, can be used to systematically locate physically relevant adsorption sites on 

undercoordinated atoms for the purposes of HT-DFT calculations. As an example, consider the 

chemisorption of a single O atom to an unsaturated Cu site at the node of the widely studied 

material HKUST-1115 (Figure 2.2a). For simplicity, we define the binding site (in this case, a Cu 

atom) as species 𝑖 = 0, and all atoms in the first coordination sphere are given indices 𝑖 = 1 

through 𝑛, where 𝑛 is the coordination number. The proposed metal binding site can be 

automatically determined using one of a variety of OMS detection algorithms.14,109,116 A distance 

vector, 𝒓0,𝑖, is then computed for each coordinating atom via 

𝒓0,𝑖 = 𝒑0 − 𝒑𝑖 (2.5) 

where 𝒑𝑖 is the position vector of atom 𝑖. Note that 𝒓0,𝑖 should be the minimum-image distance 

vector, taking into account the periodicity of the unit cell. 

 
Figure 2.2. (a) Initializing the position of adsorbates at undercoordinated atoms with planar 

coordination environments is done in the direction of the unit normal vector to the plane with the 

fewest neighbors, �̂�. (b) For non-planar coordination environments, the adsorbate is initialized in 

the direction resulting from the sum of the normalized distance vectors formed between the 

coordinating atoms and the central atom, 𝑹. 
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We then determine the planarity of the coordinating atoms via two metrics. The first 

method involves total least-squares regression of the positions of the coordinating atoms to the 

equation of a plane, 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0. As a second method, we calculate the sum of 

normalized distance vectors, 𝑹, as 

𝑹 = ∑
𝒓0,𝑖

||𝒓0,𝑖||

𝑛

𝑖=1

(2.6) 

We suggest using both metrics as measures of planarity and, through iterative testing, have found 

that a coordination environment is typically well-described as planar if the root mean square error 

in the planar fit is less than 0.25 Å or ||𝑹|| < 0.25 Å. 

If the coordination environment is planar, the adsorbate’s position 𝒑ads is given by 

𝒑ads = 𝒑0 ± 𝛼�̂� (2.7) 

where �̂� is the unit normal vector to the best-fit plane and 𝛼 is a bond distance scale-factor that is 

dependent on the proposed adsorbate. For instance, in this work we use 𝛼 = 2 Å for the 

chemisorption of an O atom to an OMS. To determine the sign in Equation 2.7, we calculate the 

number of neighbors within a cutoff distance 𝑟cut and choose the direction with fewer neighboring 

atoms. In this work, we use a value of 𝑟cut = 2.5 Å. The choice of sign is important for many 

MOFs, especially those with paddlewheel secondary building units such as HKUST-1.115 If the 

coordination environment is not planar, the desired adsorption site 𝑝ads is given by 

𝒑ads = 𝒑0 + 𝛼𝑹 (2.8) 
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Collectively, this approach attempts to maximize the symmetry of the molecular geometry, 

such as the formation of a trigonal bipyramidal geometry from the original seesaw structure shown 

in Figure 2.2b. Naturally, a modified approach is needed for coordination numbers of three or less, 

which we describe in the Appendix along with the method for determining the atoms within the 

first coordination sphere. While the example shown in Figure 2.2 is for a monatomic adsorbate, 

this procedure can be readily extended for the adsorption of small molecules as well.117 

To initialize the position of molecular adsorbates, a different method based on a molecular 

mechanics-based potential energy grid (PEG) generated for each MOF can be used to identify 

physically plausible adsorbate positions. In this work, we consider the adsorption of CH4 near the 

metal oxide active site of each MOF following oxidation of a single metal center. The PEG for 

each MOF is calculated using a single-site TraPPE118 CH4 probe in RASPA119 with a grid 

discretization of 0.1 Å in 𝑥, 𝑦, and 𝑧 (Figure 2.3). The lowest energy position within a cutoff 

distance 𝑟cut,PEG from the proposed active site is taken as the initial position for the adsorbate. 

Since we used a single-site CH4 probe, the central C atom was placed at the lowest energy site 

within 𝑟cut,PEG = 3.0 Å, and one of the four H atoms in CH4 was made colinear with the O atom 

at the active site and the central C atom of CH4. The remaining three H atoms are arranged to 

satisfy the tetrahedral geometry of CH4. 
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Figure 2.3. Potential energy grid obtained using a single-site CH4 probe in an example MOF with 

a hypothetical [NiO]2+ active site. The position of the CH4 molecule has been initialized in the 

low-energy adsorption site. The repulsive regions are colored in dark red, and the most 

energetically favorable region is shown in light green. Color key: Ni (green), O (red), N (blue), C 

(gray), H (white). 

 

2.2.5 Implementation of Methods 

Additional details regarding the implementation of the adsorbate initialization algorithms used in 

this study can be found in the Appendix. An open-source Python code referred to as the MOF 

Adsorbate Initializer (MAI) is made publicly available to readily perform fully automated 

adsorbate initialization workflows such as those described in this work.117 This code makes use of 

Pymatgen82 and the Atomic Simulation Environment (ASE)83 to carry out the adsorbate 

initialization process and has optional interfaces to Zeo++109 or Open Metal Detector14,120 for the 

automated detection of OMSs in MOFs. For PEG-based adsorbate initialization, the code is 

compatible with multiple volumetric data formats for the energy as a function of (𝑥, 𝑦, 𝑧) 

coordinates, including PEGs computed from RASPA119 or PorousMaterials.jl.121.a 

 
a A related code for larger adsorbates, deemed the MOF Big Adsorbate Initializer (MBAI),625 was developed by 

Haoyuan Chen and can be used for larger adsorbates than those studied in the present chapter 
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2.2.6 High-Throughput Density Functional Theory 

Given that the unit cells of MOFs can contain hundreds of atoms and that multiple reaction energies 

and kinetic barriers are needed to predict catalytic activity, it is essential that a robust and efficient 

HT-DFT workflow is established. In this section, we describe the multi-stage optimization scheme 

used to successfully perform the calculations in this work (~500 DFT calculations on materials 

with an average of ~200 atoms per Niggli-reduced unit cell). 

2.2.7 Constant Parameters 

All periodic DFT calculations are performed with the Vienna ab initio Simulation Package (VASP) 

v.5.4.1122,123 and the projector-augmented wave (PAW) pseudopotentials124 outlined in Table A.1 

of the Appendix. The electron exchange-correlation is described by the Perdew-Burke-Ernzerhof 

(PBE) functional,125 and Grimme’s D3 dispersion correction126 with Becke-Johnson (BJ) 

damping127 is used to account for van der Waals (vdW) dispersion interactions. We use the PBE 

functional as a reasonable balance between computational cost and accuracy for the purposes of 

HT screening.128,129 Due to the electronically insulating nature of most MOFs, Gaussian smearing 

of the band occupancies with a small smearing width of 𝜎 = 0.01 eV is used prior to extrapolation 

to the 0 K limit. Transition state calculations are done using an automated procedure involving the 

climbing image nudged elastic band method130 and the dimer method131 as described in the 

Appendix. 

2.2.8 Electronic Optimization 

The default electronic optimization algorithm used in this work is a preconditioned conjugate 

gradient (CG) algorithm (also referred to as the “all bands simultaneous update of orbitals” 

algorithm), which is suggested for both large and insulating materials.132,133 An additional benefit 

of this algorithm is that it is not heavily reliant on the choice of Pulay density mixing parameters,134 
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which are used to achieve convergence of the self-consistent field (SCF) but can be highly 

material-specific.29,33,122,135 This is in contrast with electronic optimization routines more 

commonly used for modeling metallic systems (e.g. blocked Davidson, RMM-DIIS),122 which 

generally require frequent monitoring of the SCF convergence and post hoc tweaking of the mixing 

parameters to resolve problematic convergence issues in a HT-DFT workflow.29,33 

2.2.9 Multi-Stage Geometry Optimization 

As is common in computational catalysis studies, the first step of the HT-DFT workflow involves 

optimizing the unit cell of each bare MOF, including the cell shape, cell volume, and all internal 

degrees of freedom. As shown in Figure 2.4, we performed a multi-step relaxation scheme inspired 

in part by the one used in constructing the Open Quantum Materials Database (OQMD).30 

 
Figure 2.4. Schematic summarizing the high-throughput periodic density functional theory 

workflow for performing volume relaxations (including the cell parameters, cell shape, and 

internal degrees of freedom) of bare MOFs. 

 

In the first step, a test single-point calculation is performed to confirm that there are no 

VASP-related errors. Any errors in this stage (e.g. too high a degree of parallelization requested 
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for a particularly small MOF) and throughout the workflow (e.g. convergence failures) are fixed 

on-the-fly using a procedure similar to the Custodian tool of the Materials Project.29,33 Following 

the test calculation, a preliminary low-accuracy structure relaxation is performed at fixed cell 

shape and volume, which is necessary for the efficient geometry optimization of most MOFs due 

to the large number of atoms per unit cell. The default maximum plane-wave energy cutoff 

specified by the pseudopotentials (generally 400 eV) and a 𝑘-point density (KPPA) of 100 𝑘-

points/number of atoms was used, as arranged using Pymatgen.82 

The initial relaxation of atomic positions is done in two main stages. In the first stage, we 

use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm with a line search mechanism that 

ensures the energy and absolute value of the force decrease monotonically. This algorithm is 

available in ASE83 and is used until the maximum force on all individual atoms is less than 5 eV/Å. 

Compared to the default CG or quasi-Newton (QN) algorithms in VASP, we found that the BFGS 

line search algorithm was able to resolve high forces without atoms in the MOF unit cell moving 

to unphysical locations far away from their starting positions. Once the 5 eV/Å threshold is 

reached, the CG algorithm in VASP is used until the maximum force is less than 0.05 eV/Å. 

Following the low-accuracy relaxation of atomic positions, a full volume relaxation (i.e. 

cell shape, cell volume, atomic positions) is performed at an initial low-accuracy setting. To 

prevent Pulay stresses,136 the plane-wave kinetic energy cutoff is raised to 520 eV. All other 

parameters are unchanged. In the subsequent high-accuracy volume relaxation, the density of the 

𝑘-point grid is increased from 100 KPPA to 1000 KPPA, and the force-tolerance is tightened to 

0.03 eV/Å. A 𝑘-point grid density of 1000 KPPA is also currently used in the Materials Project33 

and has been previously used to model MOFs.128 
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A final high-accuracy relaxation of atomic positions is performed after the high-accuracy 

volume relaxation to confirm that the atomic positions are fully converged when the cell shape is 

kept fixed, and then a single-point calculation is performed to store the final wavefunction and 

charge density. Starting from the converged high-spin structure, a low-spin spin-initialization is 

considered. If performed, the lowest energy structure from the two initialized spin states is used 

for further stages of the HT screening workflow. The key DFT parameters are summarized in Table 

2.1 (with all parameters listed in Table A.2). 

Table 2.1. Periodic DFT parameters used in the optimizing guest-free MOFs. ENCUT is the plane-

wave kinetic energy cutoff, KPPA is the 𝑘-point density (with the corresponding 𝑘-point grids 

generated using Pymatgen82), and 𝐹max is the force-convergence criterion. The “Volume?” and 

“Positions?” columns specify if the volume and/or atomic positions were allowed to change. 

Stage Volume? Positions? ENCUT (eV) KPPA 𝐹max (eV/Å) 

1: Atomic positions 

(low-accuracy) 

No No 400 100 0.05 

2: Volume (low-

accuracy) 

Yes Yes 520 100 0.05 

3: Volume (high-

accuracy) 

Yes Yes 520 1000 0.03 

4: Atomic positions 

(high-accuracy) 

No Yes 520 1000 0.03 

5: Single-point 

(high-accuracy) 

No No 520 1000 N/A 

 

The percent difference in computed cell volumes between the low-accuracy and high-

accuracy volume relaxations is shown in Figure 2.5a. For the vast majority of tested MOFs, the 

cell volume is nearly identical at the low- and high-accuracy settings. As shown in Figure 2.5b, 

the deviation in cell volumes is most pronounced for MOFs with a small number of atoms per unit 

cell. While 100 KPPA and 1000 KPPA corresponds to the same 𝑘-point grid (consisting of just 
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the Γ-point) for 33% of the MOFs in this analysis, 90% of MOFs had a volume change of less than 

±1% when going from the low- to high-accuracy settings. 

 
Figure 2.5. (a) Percent deviation in the cell volume, Δ𝑉, computed with low-accuracy settings 

(cutoff = 520 eV, KPPA = 100, 𝐹max < 0.05 eV/Å) compared to high-accuracy settings (cutoff = 

520 eV, KPPA = 1000, 𝐹max < 0.03 eV/Å), defined as Δ𝑉 = (𝑉high acc. − 𝑉low acc.)/𝑉low acc.. (b) 

Percent deviation in cell volumes as a function of the number of atoms per Niggli-reduced unit 

cell. Data shown in this figure is for the high-spin initialization cycle of the high-throughput 

workflow. 

 

 
Figure 2.6. Schematic summarizing the high-throughput periodic density functional theory 

workflow for performing structure relaxations of MOFs with adsorbates. 

 

The multi-stage optimization procedure for relaxing the atomic positions of MOFs with 

adsorbates (at fixed cell shape and volume) is summarized in Figure 2.6 and is similar to the 
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procedure for volume relaxations of the bare MOFs. At the medium-accuracy structure relaxation 

stage, the 𝑘-point density is increased from 100 KPPA to 1000 KPPA, but the default (400 eV) 

plane-wave kinetic energy cutoff is still used. For both the medium- and high-accuracy structure 

relaxations, the Fast Inertial Relaxation Engine (FIRE) algorithm137 as implemented in VTST 

Tools138 is used instead of the CG algorithm for relaxing the atomic positions. This was found to 

be necessary for optimizing the structures of MOFs with adsorbates, as the atoms far away from 

the adsorption site are already close to their optimized positions and the PES is very shallow, 

resulting in the CG algorithm failing to converge for nearly every MOF-adsorbate system studied 

in this work. The FIRE algorithm, which is a molecular dynamics method, was found to reach 

convergence in these otherwise problematic cases. This is consistent with the findings of Bitzek et 

al.137 who demonstrated that the FIRE algorithm is both more efficient and robust than the typical 

CG and QN schemes when the forces are sufficiently low. For this reason, we also switch to the 

FIRE algorithm in any other part of the HT-DFT workflow if the default CG algorithm fails. The 

key DFT parameters are summarized in Table 2.2. 

Table 2.2. Periodic DFT parameters used in the optimizing MOFs with adsorbates. ENCUT is the 

plane-wave kinetic energy cutoff, KPPA is 𝑘-point density (with the corresponding 𝑘-point grids 

generated using Pymatgen82), and 𝐹max is the force-convergence criterion. The “Volume?” and 

“Positions?” columns specify if the volume and/or atomic positions were allowed to change. 

Stage Volume? Positions? ENCUT (eV) KPPA 𝐹max (eV/Å) 

1: Low-accuracy No Yes 400 100 0.05 

2: Medium-accuracy No Yes 400 1000 0.05 

3: High-accuracy No Yes 520 1000 0.03 

4: Single-point No No 520 1000 N/A 

 

Figure 2.7a and Figure 2.7b emphasize the value in using a multi-stage workflow, as the 

lower accuracy runs often result in nearly converged geometries and therefore greatly accelerate 
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the HT-DFT workflow. Since energy differences are typically desired for catalytic applications, 

we also computed the H-affinity previously shown in Equation 2.1 at the low-, medium-, and high-

accuracy settings. Similar to what was shown in Figure 2.5, the results in Figure 2.7c emphasize 

the need to use 1000 KPPA over the much coarser 100 KPPA 𝑘-point density. However, as shown 

in Figure 2.7d, the increase in cutoff from 400 eV to 520 eV (and tighter force-convergence of 

0.03 eV/Å compared to 0.05 eV/Å) does not significantly change the computed H-affinity beyond 

1−2 kJ/mol on average, which is far below the expected accuracy from the choice of exchange-

correlation functional and any TS scaling relationships. That being said, due to the nearly 

converged geometry at the end of the medium-accuracy run, the high-accuracy calculations exhibit 

rapid convergence (particularly when starting from the previously converged wavefunctions), so 

we decided to still include this step in the workflow. 
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Figure 2.7. a) Deviation in the position of the O adsorbate, Δ𝑟O, for the formation of the active site 

between the low-accuracy and medium-accuracy run. b) Deviation in Δ𝑟O between the medium-

accuracy and high-accuracy run. c) Deviation in H-affinity, Δ𝐸H, computed with low-accuracy 

settings (cutoff = 400 eV, KPPA = 100, 𝐹max < 0.05 eV/Å) compared to medium-accuracy settings 

(cutoff = 400 eV, KPPA = 1000, 𝐹max < 0.05 eV/Å), defined as Δ𝐸H = 𝐸H,med acc. − 𝐸H,low acc.. d) 

Δ𝐸H computed with medium-accuracy settings and high-accuracy settings (cutoff = 520 eV, KPPA 

= 1000, 𝐹max < 0.03 eV/Å), defined as Δ𝐸H = 𝐸H,high acc. − 𝐸H,med acc.. 

 

2.2.10 Spin-Polarization 

To account for spin-polarization, both high-spin and low-spin initial magnetic moments are 

considered in a procedure motivated in part by the Materials Project29,33 and OQMD.30 In the high-

spin case, 𝑑-block elements (i.e. Sc−Cu, Y−Ag, Hf−Au) are initialized in a high-spin state of 5 𝜇B 

(Bohr magnetons), all 𝑓-block elements (i.e. La−Lu, Ac−Lr) are initialized with 7 𝜇B, all metals 
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and semi-metals in groups 12−17 are initialized with 0.1 𝜇B, and all 𝑠- and 𝑝-block metals are 

initialized with no spin. Once the high-spin run is completed, if the absolute values of the 

converged magnetic moment for each atom is less than 0.1 𝜇B (or if there were no 𝑑- or 𝑓-block 

metals in the MOF), a low-spin configuration is not performed. Otherwise, a low-spin initial 

configuration is applied to the converged structure from the high-spin initialization, and the 

structure is reoptimized. For the low-spin case, the only difference is that the 𝑑- and 𝑓-block 

elements are initialized with 0.1 𝜇B instead of 5 𝜇B and 7 𝜇B, respectively. If at the end of any step 

of the HT-DFT workflow the low-spin calculation converges to the magnetic moments that 

resulted from the high-spin calculation, the low-spin calculation is aborted. Two spin states are 

deemed to be equal if the converged magnetic moments are all within ±0.05 𝜇B. While the high-

spin initialization is sufficient for many of the MOFs studied in this work, the low-spin 

initialization can result in significantly more stable structures for select MOFs, as shown in Figure 

2.8. 

 
Figure 2.8. Difference in energy between the converged high-spin and low-spin electronic 

energies, Δ𝐸spin = 𝐸high spin − 𝐸low spin, of MOFs where a full low-spin calculation was 

performed. 
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2.2.11 Implementation of Methods 

Additional details regarding the implementation of the periodic DFT screening workflow used in 

this study can be found in the Appendix. An open-source Python code referred to as PyMOFScreen 

is made publicly available to readily perform fully automated periodic DFT calculations of MOFs 

using the related workflows to those described in this work.139 As with the MOF Adsorbate 

Initializer, PyMOFScreen makes extensive use of Pymatgen82 and ASE83 to set up and carry out 

the DFT calculations. We note that analogous workflows could be readily constructed using the 

highly flexible Atomate package as well.85 

2.3 Results and Discussion 

With the developed HT screening workflow, we identified MOFs in an 838 MOF subset of the 

CoRE MOF database112 that contained OMSs, performed volume relaxations on each MOF, 

initialized the positions of relevant adsorbates, and performed structure relaxations on each MOF 

with bound adsorbates to calculate adsorption energies. The volume relaxation (i.e. 𝐸MOF) and 

three relaxations of just the atomic positions (i.e. 𝐸MOF−O, 𝐸MOF−OH, 𝐸MOF−O−CH4
) all achieved 

99−100% convergence of the screened MOFs in this work, indicative of the robustness of the 

developed HT-DFT workflow. With the DFT-computed adsorption energies, we subsequently 

used Equations 2.1−2.4 to calculate the catalytic descriptors of interest. The results of the catalytic 

screening for oxidative C–H bond activation of methane are discussed below. 

As shown in Figure 2.9a, the vast majority of screened MOFs have strongly endothermic 

oxidation reaction energies in the presence of an N2O oxidant. Thermodynamically, this suggests 

that there will only be a small (potentially negligible) population of metal-oxo active sites present 

at moderate reaction conditions. Kinetically, since the lower-bound for the activation barrier is set 
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by the reaction energy for endothermic reactions, this also implies that the rate of N2O activation 

is likely to be very low. As a result of this phenomenon, we expect that few MOFs in the 838 

CoRE MOF subset have accessible metal sites that can be readily oxidized using N2O. 

Nonetheless, it is clear from Figure 2.9b that if a metal-oxo active site can be formed, the 

barrier for C–H activation would likely be sufficiently low for the catalytic conversion of methane 

for most MOFs considered in this work, as every MOF tested in this study has a methane C–H 

activation barrier below 100 kJ/mol, comparable to many cation-exchanged zeolites that can 

activate methane.140 It is common in the computational catalysis literature to focus on the C–H 

activation step due to the large 440 kJ/mol bond dissociation energy of methane (when not in the 

presence of a catalyst).141 However, the results shown in Figure 2.9 suggest that the main challenge 

in terms of high-throughput screening is not identifying MOFs with low C–H activation barriers, 

but rather identifying MOFs with OMSs that can be readily oxidized. Indeed, despite the many 

thousands of MOFs that have been synthesized to date, there are relatively few that have been 

experimentally shown to exhibit redox-active OMSs for catalytic applications.17 

 
Figure 2.9. a) Reaction energy for N2O activation, Δ𝐸ox, defined in Equation 2.4. b) Methane C–

H activation barrier at metal oxide active site, 𝐸a,C−H
∗ , defined in Equation 2.3. 



67 

 

 

As one example from the HT-DFT analysis, consider Cu3(dmtrz)2(ox)2 (Hdmtrz = 3,5-

dimethyl-1H-1,2,4-triazole, ox = oxalate, CSD refcode = LIFWEE)142 shown in Figure 2.10. The 

structure of Cu3(dmtrz)2(ox)2 has mono(𝜇-aquo)dicopper(II,II) sites that can be desolvated around 

125 °C, leaving behind adjacent square-planar dicopper(II) sites.142 In principle, the dicopper(II) 

species can be oxidized to form mono(𝜇-oxo)dicopper(III) species. This mono(𝜇-

oxo)dicopper(III) species is extremely active toward the C–H activation of methane, with a 

predicted barrier of 𝐸a,C−H
∗ = 40 kJ/mol. Despite this high reactivity toward H-abstraction, it can 

be expected that Cu3(dmtrz)2(ox)2 would not be promising for oxidative C–H bond activation, as 

the computed reaction energy for formation of the mono(𝜇-oxo)dicopper(III) species is highly 

endothermic (Δ𝐸ox = 127 kJ/mol). 

 
Figure 2.10. Formation of the metal oxide active site and subsequent H-abstraction of methane 

with Cu3(dmtrz)2(ox)2. Color key: Cu (orange), C (gray), N (blue), O (red), H (white). Structures 

are DFT-optimized (only a representative portion of the unit cell is shown for clarity). 

 

One approach to increase the likelihood of accessing low C–H bond activation barriers 

with MOFs containing OMSs is to increase the temperature during the oxidation step. This is a 

common and often necessary approach in the Cu-exchanged zeolite literature, where a multi-step 

conversion process is performed with O2 or N2O activation around 450 °C and subsequent methane 
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activation around 125–200 °C.143–146 However, applying this approach to most MOFs is likely to 

be challenging, as the majority of MOFs are not capable of withstanding harsh thermal treatment 

without significant decomposition of the framework, especially in the presence of air or other 

oxidizing agents.147 One of the more thermally and chemically stable MOFs synthesized to date is 

Ni3(btp)2 (H3btp = 1,3,5-tris(1H-pyrazol-4-yl)benzene, CSD refcode = UTEWOG),148 which is 

stable in air up to 430 °C and is included in the database of MOFs screened in this work (its 

structure was previously shown in Figure 2.3). From the present work, we predict that 𝐸a,C−H
∗ = 

25 kJ/mol. However, we also predict that Δ𝐸ox = 119 kJ/mol, which is likely to prevent sufficient 

oxidation of the metal site even at elevated temperatures near the stability limit of Ni3(btp)2. 

Another general approach to increase the activity of MOFs for oxidative C–H bond 

activation when N2O activation is the rate-limiting step is to consider the use of a more reactive 

oxidizing agent. As one example, H2O2 could be used and would act as a greener oxidant since it 

only releases water as the byproduct. In addition to being more kinetically reactive than N2O, the 

standard enthalpy of reaction for MOF + H2O2 → MOF−O + H2O compared to MOF + N2O → 

MOF−O + N2 is more thermodynamically favorable by 82 kJ/mol at the PB3-D3(BJ) level of 

theory. H2O2 has recently been used as the oxidant in the conversion of methane to methanol with 

Fe-containing Al-MIL-5398,149 as well as graphene-confined single Fe atoms150 and multiple works 

involving cation-exchanged zeolites.92,151,152 The use of other strong oxidizing agents is also likely 

worth considering for the purposes of gaining experimental insight into oxidative C–H bond 

activation on MOF-supported metal-oxo species. For instance, the strong oxidant K2S2O8 has been 

used for the conversion of methane to acetic acid with V-containing MIL-47 and MOF-48 

catalysts.95 Although the most industrially desirable oxidant is air or O2, the use of strong oxidants 
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is expected to significantly aid experimental investigation of MOFs capable of activating the strong 

C–H bond of methane. 

While seven MOF structures were identified as having exothermic Δ𝐸ox values, they are 

unlikely to be experimentally realizable, as they have unexpected structural defects or solvents that 

are unlikely to be removed. These instances can often be traced back to challenges in 

experimentally resolving the positions of ligands or charge-balancing ions during X-ray diffraction 

studies and/or their removal in construction of the CoRE MOF database. As an example, we 

highlight one MOF with a predicted exothermic oxidation reaction energy but an ambiguous 

crystal structure. This MOF, referred to as Rh-BMOF-1 (B = 4,4’-bipyridine, CSD refcode = 

TERFUT), is a post-synthetically modified, cyclometalated MOF obtained from the reaction of a 

Rh(I) precursor and a 2-phenylpyridine-5,4’-dicarboxylic acid (dcppy) ligand.153 BMOF-1 and the 

related DMOF-1 (D =  DABCO = 1,4-diazabicyclo[2.2.2]octane) can be synthesized with Rh(I) 

or Ir(I) species anchored between a carbanion and a nitrogen atom of the nearby pyridine in the 

dcppy ligand.153 Rh-BMOF-1 is predicted to have Δ𝐸ox = −153 kJ/mol and 𝐸a,C−H
∗ = 91 kJ/mol 

when using the as-published crystal structure with two-coordinate Rh(I) cations. 

It is likely that the highly exothermic Δ𝐸ox value can be attributed to atypically 

undercoordinated Rh(I) sites. Since Rh(I) and Ir(I) are 𝑑8 metals, it is more likely that they form 

square-planar geometries via the coordination of two additional ligands, as has been found in a 

related Rh(I)-containing MOF by Sumby and coworkers.154 As an example, the presence of CO or 

CH3CN ligands greatly reduces the redox activity of the Rh(I) and Ir(I) sites, although the resulting 

C–H activation barrier is expected to be lower if the active site were to form (Figure 2.11). Since 

the exact nature of the bound ligands has not been experimentally determined due to low 
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occupancies of the cyclometalated species in the crystal structure,153 we focus on other screened 

MOFs for the remainder of the analysis. 

 
Figure 2.11. a) Rh(I) environment in cyclometalated DMOF-1 based on the structure from X-ray 

diffraction (XRD) (i.e. no additional ligands). The structure is DFT-optimized (only a 

representative portion of the unit cell is shown for clarity). Color key: Rh (teal), C (gray), N (blue), 

O (red), H (white). b) Extrinsic reaction energy for oxidation via N2O, Δ𝐸ox, defined in Equation 

2.4. c) Methane C–H activation barrier, 𝐸a,C−H
∗ , at metal oxide active sites, defined in Equation 

2.3. XRD, CH3CN, and CO refer to the two-coordinate metal, square-planar metal environment 

with two CH3CN ligands, and square-planar metal environment with two CO ligands. Energetics 

are identical for the interpenetrated BMOF-1. 

 

From the HT-DFT procedure, the MOF with the lowest oxidation reaction energy and a 

fully resolved crystal structure is Cu8I4(dmtrz)4 (CSD refcode = CUNFOH01), which contains 

Cu(I)–I cubane tetramers as well as two-coordinate Cu(I) cations,155 of which only the latter are 

expected to be readily accessible for oxidation by N2O. The HT-DFT analysis suggests that the 

two-coordinate Cu(I) sites in Cu8I4(dmtrz)4 have Δ𝐸ox = 103 kJ/mol and 𝐸a,C−H
∗ = 36 kJ/mol. With 

the goal of identifying Cu(I) cations that can be more easily oxidized, we screened the 2019 CoRE 

MOF database14 for MOFs with two-coordinate Cu(I) species, a PLD greater than 3.0 Å, and less 

than 400 atoms in the Niggli-reduced unit cell. From this procedure, we identified Cu2(tqpt) 

(H2tqpt = 6,6,14,14-tetramethyl-6,14-dihydroquin-oxalino-[2,3-b]phenazinebistriazole, CSD 
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refcode = URUWEL), also known as CFA-8,156 which has the topology shown in Figure 2.12a. 

CFA-8 contains two-coordinate (linear), three-coordinate (trigonal planar), and four-coordinate 

(tetrahedral) Cu(I) species in the framework. We will refer to these species as CuA, CuB, and CuC, 

respectively. 

 
Figure 2.12. a) Structure of CFA-8 with Cu(I) ions lining the pore along the 𝑐-axis. H atoms 

omitted for clarity. b) Ball-and-stick model of distinct Cu sites in CFA-8 and a proposed mono(𝜇-

oxo)dicopper(II) active site following activation of N2O. Color key: Cu (orange), C (gray), N 

(blue), O (red), H (white). Structures are DFT-optimized. 

 

Due to the close proximity of Cu(I) species in the framework, we hypothesized that the 

thermodynamics for oxidation via N2O could be significantly more favorable than that of 

Cu8I4(dmtrz)4 via the formation of a mono(𝜇-oxo) motif bridging two neighboring Cu(I) sites 

(Figure 2.12b). Based on the HT-DFT calculations, the extrinsic oxidation reaction energy is 

Δ𝐸ox = 47 kJ/mol, which is significantly more thermodynamically achievable than the other 

MOFs screened in this study. The proposed [Cu2O]2+ core of oxidized CFA-8 contains a bent 

geometry with a CuA–O–CuB bond angle of 103° and equal CuA–O and CuB–O bond lengths of 

1.88 Å. The CuA–CuB bond length decreases from 3.40 Å in the bare MOF to 2.96 Å in the oxidized 

state. 
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The potential energy diagram of the proposed mechanism for oxidative C–H bond 

activation of methane in this MOF is shown in Figure 2.13. For the proposed mono(𝜇-oxo) sites 

in CFA-8, we calculate that 𝐸a,C−H = 57 kJ/mol, which is essentially identical to the 

experimentally observed ~65 kJ/mol barrier attributed to similar mono(𝜇-oxo) dicopper(II) active 

sites in Cu-ZSM-5 that can catalytically convert methane to methanol.143 It is also predicted that 

methanol, the desired product, should readily desorb at ambient conditions, which is commonly 

problematic for cation-exchanged zeolites.157 We note that the barrier for N2O activation to form 

the [Cu2O]2+ site is relatively high with a predicted value of 152 kJ/mol, such that it still expected 

to dictate the overall reaction kinetics for this system. Improved catalytic performance can 

potentially be achieved by considering more reactive oxidants. Provided a transient mono(𝜇-oxo) 

active site can be formed, CFA-8 would likely be a promising candidate for oxidative C–H bond 

activation reactions. 

 
Figure 2.13. Potential energy diagram for oxidation of the metal centers via N2O, subsequent H-

abstraction of methane, and formation/desorption of methanol with CFA-8. (1) MOF + N2O (g) + 

CH4 (g); (2) N2O*; (3) transition state for N2O activation; (4) N2
#; (5) CH4

#; (6) transition state for 

H-abstraction; (7) CH3OH*; (8) MOF + CH3OH (g) + N2 (g). Here, * denotes adsorption at the 

metal center and # denotes adsorption at the metal-oxo site formed via oxidation. Since the barrier 

for the radical rebound of •CH3 is expected to be small compared to the other barriers, this step is 

omitted. 
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To obtain a better understanding of the proposed [Cu2O]2+ active site of CFA-8, we 

calculated the density-derived electrostatic and chemical (DDEC) partial atomic charges158 and 

Bader spin density159 for each atom. As shown in Table 2.3, the DDEC charges on the Cu(I) sites 

increase from 0.26 to 0.53–0.57 following N2O activation. The large increase and near-equal 

magnitude of the partial atomic charges on the Cu species is consistent with the oxidation of the 

Cu(I) sites to mono(𝜇-oxo)dicopper(II) species. At the TS for N2O activation, the DDEC analysis 

suggests that the CuB site is more easily oxidized than the CuA site, with the CuB site being almost 

entirely oxidized from Cu(I) to Cu(II) at the TS. 

Formally, the H-abstraction from methane should decrease the charge of the active site by 

one. Instead of equally reducing the charge on both Cu(II) sites, the DDEC analysis indicates that 

the CuA site is more significantly reduced, whereas the CuB retains most of its charge. The Bader 

spin densities provide additional insight into this phenomenon. Since it is expected that a Cu(I) 

species should have no net spin, the Bader spin densities suggest that the CuA and CuB sites are 

likely best described as being in the 1+ and 2+ oxidation state following H-abstraction, 

respectively. The Bader spin density analysis also highlights the radical-like character of the 

bridging oxo species prior to H-abstraction, which results in the low methane C–H activation 

barrier of 57 kJ/mol. Finally, the formation of methanol closes the catalytic cycle, with both the 

CuA and CuB sites returning to their original 1+ oxidation states. 

Table 2.3. DDEC6 partial atomic charges158 and Bader spin densitiy159 for the proposed active site 

of CFA-8 throughout the radical-rebound mechanism. CuA and CuB refer to the Cu sites shown in 

Figure 2.12b. 𝑆 = 1 and 𝑆 = 3 refer to the closed-shell singlet and open-shell triplet spin 

multiplicities, respectively. 𝑆 = 1∗ refers to an open-shell singlet state with an 

antiferromagnetically coupled methyl radical. 
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 Bare 

MOF 

TS for 

formation of 

[Cu2O]+ site 

Oxidized 

MOF 

TS for C–H 

activation 

of CH4 

MOF with 

adsorbed 

•CH3 

MOF with 

adsorbed 

CH3OH 

DDEC partial atomic charge 

CuA 0.26 0.34 0.53 0.40 0.36 0.27 

CuB 0.26 0.52 0.57 0.54 0.52 0.28 

O -- −0.50 −0.61 −0.65 −0.72 −0.45 

Magnitude of Bader spin density 

CuA   0.38 0.04 0.11  

CuB   0.48 0.33 0.40  

O   0.76 0.11 0.15  

Spin multiplicity 

 𝑆 = 1 𝑆 = 1 𝑆 = 3 𝑆 = 1∗ 𝑆 = 1∗ 𝑆 = 1 

 

2.4 Conclusion 

High-throughput periodic DFT is a promising method for accelerating the discovery of MOFs for 

various applications, but there are numerous technical challenges that must be addressed before it 

can be routinely used to design and/or discover MOF candidates. In this work, we have developed 

a robust and automated workflow for the high-throughput screening of MOFs using periodic DFT, 

specifically focusing on applications in heterogeneous catalysis. We describe appropriate choices 

for electronic and structural optimization algorithms, treatment of spin states, and methods for 

automating the calculation of adsorption energies at open metal sites. 

As a proof-of-concept, we applied this workflow to screen MOFs with open metal sites 

from an 838 MOF subset of the CoRE MOF database89,112 for the oxidative C–H bond activation 

of methane using an N2O oxidant. From this high-throughput procedure, it was found that 

oxidation of the metal – and not the C–H bond activation of methane – is the step with the largest 

barrier for the majority of screened MOFs in this work. Based on this finding, we expect that the 

development of new MOF datasets focused on low-valence, redox-active open metal sites will be 
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central to the discovery of MOF-based heterogeneous catalysts that can directly convert methane 

to methanol at ambient conditions as well as other oxidative C–H bond activation reactions. With 

the computational framework outlined in this work, we hope that high-throughput periodic density 

functional theory will become a more mainstream tool for designing and identifying MOFs with 

unique physicochemical properties.
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Chapter 3: STRUCTURE−ACTIVITY RELATIONSHIPS THAT IDENTIFY 

METAL−ORGANIC FRAMEWORK CATALYSTS FOR METHANE 

ACTIVATION 

In this chapter, computational screening based on periodic density functional theory (DFT) 

is used to study a diverse set of experimentally derived metal−organic frameworks (MOFs) with 

accessible metal sites for the oxidative activation of methane. We find that the thermodynamic 

favorability of forming the metal-oxo active site has a strong, inverse correlation with the reactivity 

toward C−H bond activation for a wide range of MOFs. This scaling relationship is found to hold 

over MOFs with varying coordination environments and metal compositions, provided the bonds 

of the framework atoms are conserved. The need to conserve bonds is an important constraint on 

the correlations but also demonstrates a route to intentionally break the scaling relationship to 

generate novel catalytic reactivity. Periodic trends are also observed across the dataset of screened 

MOFs, with later transition metals forming less stable but more reactive metal-oxo active sites. 

Collectively, the results in this work provide robust rules-of-thumb for choosing MOFs to 

investigate for the activation of methane at moderate reaction conditions. 

This chapter is adapted from the following peer-reviewed article: A.S. Rosen, J.M. 

Notestein, R.Q. Snurr. “Structure−Activity Relationships that Identify Metal−Organic Framework 

Catalysts for Methane Activation.” ACS Catalysis, 9, 3576–3587 (2019). This work was 

highlighted in C&EN.160 
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3.1 Introduction 

Globally, over ten billion cubic meters of natural gas are produced per day to meet ever-increasing 

energy demands.161 Depending on the source, natural gas can be composed of up to 96% methane 

by volume, with the remainder consisting mainly of other light alkanes.161 The current method to 

convert the methane found in natural gas into methanol, a liquid fuel and feedstock for valuable 

chemical derivatives, is via a multi-step industrial process that involves the intermediate 

production of synthesis gas and requires harsh operating conditions.162 Since this process is neither 

efficient nor economically viable for deployment at smaller scales, such as near natural gas 

extraction sites, a significant portion of the world’s supply of natural gas is wastefully flared.163 

This results in a multibillion dollar loss of value as well as a significant increase in the amount of 

greenhouse gases released into the atmosphere.163,164 The discovery of a catalyst that can directly 

convert methane (with its large C−H bond dissociation enthalpy of 4.55 eV at 298 K)165 into 

methanol at moderate temperatures and pressures is therefore extremely desirable, although such 

a catalyst has yet to be fully realized.157,166,167 

Recently, there have been numerous experimental studies on metal−organic frameworks 

(MOFs) for the catalytic upgrading of natural gas-derived light alkanes,95–99,168,169 due in part to 

their ability to support well-defined, spatially isolated metal sites.94,170 The high degree of chemical 

and topological tunability of MOFs, enabled by the vast library of inorganic nodes and organic 

linkers,171,172 also makes them particularly well-suited for high-throughput computational 

screening studies.46,53,173,174 Despite the promise of computationally guided catalyst design via 

high-throughput periodic density functional theory (DFT),40,101,175 modeling of MOFs for the 

partial oxidation of light alkanes has traditionally relied on small-scale, system-specific studies 
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often involving finite cluster models.107,176–179 Given the many thousands of MOFs that can be 

experimentally synthesized44,89 and the computational cost associated with modeling the large unit 

cells of most MOFs,69 there exists a significant need for robust and widely applicable design 

principles that would accelerate the process of discovering MOF catalysts that can activate the 

strong C−H bond of methane. 

One of the most crucial aspects of predictive catalyst design is the identification of readily 

computed descriptors, such as adsorption or reaction energies, that can be used for the efficient 

prediction of other key kinetic and thermodynamic parameters.101,104,180–184 For the partial 

oxidation of methane via the radical rebound mechanism (Figure 3.3a), Nørskov and coworkers 

have identified a universal relationship between the H-affinity, Δ𝐸H (Figure 3.1b, Equation 2.1), 

and the energy of the transition state (TS) for C−H bond activation, 𝐸TS,C−H (Figure 3.1c, Equation 

2.2).105 The linear relationship between Δ𝐸H and 𝐸TS,C−H has been benchmarked for a wide range 

of materials (i.e. cation-exchanged zeolites, bulk metal oxides, transition metal surfaces, metal 

nanoparticles, decorated graphene nanosheets, and MOFs) and has a low mean absolute error 

(MAE) of 0.11 eV such that the H-affinity can be interpreted as a robust measure of active site 

reactivity without the need to perform computationally prohibitive TS calculations.105 

Nonetheless, even with the H-affinity relationship or the related Brønsted-Evans-Polanyi (BEP) 

relationship,104 calculating the kinetic barrier for C−H activation, 𝐸a,C−H (Figure 3.1c, Equation 

2.6), as well as the thermodynamic favorability of forming the metal-oxo active site, Δ𝐸O (Figure 

3.1b, Equation 2.8), still requires many DFT calculations for each MOF, significantly limiting the 

number of MOFs that can be investigated. 
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Figure 3.1. a) Radical-rebound mechanism for the catalytic partial oxidation of methane to 

methanol. The specific coordination environment and M−O bond order are dependent on the MOF. 

b) Depiction of Δ𝐸O (active site formation energy using O2 as the reference) and Δ𝐸H (H-affinity 

using H2 as the reference). c) Depiction of Δ𝐸CH4 ads. (methane adsorption energy), 𝐸TS,C−H (energy 

of the transition state for methane C−H bond activation with respect to the energy of the M−O site 

and gas-phase CH4), and 𝐸a,C−H (barrier for the C−H bond activation of methane). 

  

In this work, we use high-throughput periodic DFT29,32,40 to efficiently screen a diverse set 

of 60 MOFs with accessible metal sites (Figure 3.2 and Appendix) for the catalytic activation of 

methane. As a result of this screening study, we show that a single parameter – the active site 

formation energy – can be used to predict both the reactivity toward C−H bond activation and the 

thermodynamic stability of the metal-oxo active site. We find this relationship to hold across all 

the MOFs screened in this work, regardless of coordination environment, metal type, and degree 
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of charge delocalization, so long as the bonds of the remaining framework atoms are conserved 

during the reaction. Periodic trends with regard to active site stability and reactivity are observed, 

with later transition metals forming less thermodynamically favored but more reactive metal-oxo 

active sites for C−H activation. As a result of this screening study, the binding strength of the oxo 

species appears to be a powerful descriptor for assessing the ability of isolated metal sites in MOFs 

to oxidatively activate strong C−H bonds, especially for the purposes of rapidly identifying 

promising MOF candidates for further investigation. 
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Figure 3.2. Overview of the 60 MOFs considered in this work. Additional details for each of the 

investigated MOFs can be found in the Appendix. Color key: transition metal cation (orange), N 

(blue), O (red), C (gray), S (yellow), Cl (green), I (purple), Zn (light blue). 
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3.2 Methods 

3.2.1 MOF Selection 

The MOF families M-BTC,115,185–191 M2Cl2(btdd),192,193 M2Cl2(bbta),193,194 M-MFU-4l,27 M-

BTT,22,195–198 M-BTP,148 M-MIL-88B,199,200 M-MOF-74,201,202 M2(m-dobdc),203 M2(dobpdc),204 

M2(dsbdc),205,206 M-MOF-5,207–210 and Co(L-RR)211 were chosen because at least one member of 

each family has been shown to support open metal sites that are redox-active25,168,207,212–214 and/or 

can chemisorb O2
20,22,24,27,185,215–217 (or is structurally similar to a MOF with such properties). Cu-

CFA-8,156 Cu8I4(dmtrz)4,
155 and Cu3(dmtrz)2(ox)2

142 were highlighted in prior work32 and are 

included here due to their unique active site structures (as discussed in the Appendix). Additional 

details regarding the motivation and pertinent modeling decisions for each of the MOFs considered 

in this study are included in the Appendix. 

3.2.2 Energetic Parameters 

For the radical-rebound mechanism shown in Figure 3.1a, Nørskov and coworkers have identified 

that the energy of the TS for methane C−H bond activation is directly related to the strength that 

an H atom binds to the active site, referred to as the H-affinity.105,111,140 Using H2 as the reference 

state, the H-affinity, Δ𝐸H, can be calculated as 

Δ𝐸H = 𝐸MOF−OH − 𝐸MOF−O −
1

2
𝐸H2

(3.1) 

here 𝐸MOF−OH and 𝐸MOF−O are the electronic energies of the metal site with adsorbed OH and O 

species, respectively, and 𝐸H2
 is the electronic energy of H2. With this definition, the H-affinity 

TS scaling relationship105 of 

𝐸TS,C−H = 0.75Δ𝐸H + 1.96 eV (3.2) 
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can be used to predict the energy of the TS for H-abstraction of methane, 𝐸TS,C−H. The value for 

𝐸TS,C−H is with respect to the infinitely separated M−O site and gas-phase CH4. Note that unlike 

the original definition of Δ𝐸H,105 Equation 3.2 has been modified to use H2 (rather than O2 and 

H2O) as the H-reference. It has been proposed that the relationship between Δ𝐸H and 𝐸TS,C−H of 

different light hydrocarbons are linearly offset by their C−H bond strengths,105,218 so the scaling 

relationships developed in this work can potentially be extended to species other than methane as 

well. 

Using Equations 3.1 and 3.2, the C−H bond activation barrier, 𝐸a,C−H, can be computed via 

𝐸a,C−H = 𝐸TS,C−H − Δ𝐸CH4 ads. (3.3) 

where 

Δ𝐸CH4 ads. = 𝐸MOF−O−CH4
− 𝐸MOF−O − 𝐸CH4

(3.4) 

and Δ𝐸CH4 ads. is the adsorption energy of CH4 at the metal-oxo active site. While a BEP 

relationship181 may result in an even more accurate prediction of 𝐸a,C−H when studying a closely 

related subset of catalytic candidates,219 the H-affinity relationship is the only approach that has 

been shown to hold over a diverse set of catalysts.105 

To account for the thermodynamic stability of the proposed metal-oxo active site, we 

compute the metal-oxo formation energy. As in prior literature,105–107,111,140 we present the metal-

oxo formation energy using O2 as the reference state, defined a 

Δ𝐸O = 𝐸MOF−O − 𝐸MOF −
1

2
𝐸O2

(3.5) 
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Here, 𝐸O2
 is the electronic energy of O2 corrected to account for limitations in the description of 

triplet O2 by common exchange-correlation functionals,220–222 as described in the Appendix. A 

variety of gas-phase energies are reported in Table B.6 to allow for direct comparison with prior 

work, regardless of the choice of reference state. While all trends discussed in this work are 

independent of the choice of reference state, the consideration of a different oxidant will naturally 

result in values for Δ𝐸O that are linearly offset by an additive constant. This also implies a shift in 

the boundaries shown in Figure 3.4 such that the choice of oxidant is another important design 

decision to consider when selecting promising MOFs for experimental investigation. 

To summarize, without structure−activity relationships beyond the H-affinity descriptor, 

computing Δ𝐸O and 𝐸a,C−H requires the energies associated with four DFT-optimized structures 

per MOF: 1) the bare MOF, 𝐸MOF; 2) the MOF with metal-oxo active site, 𝐸MOF−O; 3) the MOF 

with the partially reduced active site following H-abstraction, 𝐸MOF−OH; 4) the MOF with methane 

adsorbed at the active site, 𝐸MOF−O−CH4
. All of these computed energies are reported in Table B.1 

for ease of reference. 

In this work, we specifically focused on formation of the metal-oxo site, methane 

adsorption, and H-abstraction, as they dictate whether the catalyst can activate methane. Achieving 

high selectivity toward methanol is a separate but related problem223 that cannot be fully addressed 

without a greater understanding of how to successfully activate methane in the first place. We note 

that the kinetic barrier for the rebound of the methyl radical is often small compared to either the 

barrier for C−H activation or formation of the metal-oxo active site. In addition, both the rebound 

step and the thermodynamic barrier for methanol desorption provide insight into the selectivity 
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toward methanol, rather than the conversion of methane, the latter of which is the focus of the 

present study. 

3.2.3 Periodic Density Functional Theory 

All DFT calculations were performed with the Vienna ab initio Simulation Package (VASP) 

v.5.4.1122,123 and the VASP v.5.4 projector-augmented wave pseudopotentials.124 The electron 

exchange-correlation was described by the generalized gradient approximation (GGA) functional 

developed by Perdew, Burke, and Ernzerhof (PBE)125 with Grimme’s D3 dispersion correction 

scheme126 and Becke-Johnson (BJ) damping.224 Since periodic DFT was used for the 

computational screening procedure, the entire crystallographic unit cell of each MOF was included 

in all calculations. The cell volume, cell shape, and internal degrees of freedom were optimized 

for each MOF starting from the experimental crystal structure (when available) with all solvents 

removed. After the volume relaxation procedure, adsorbates were systematically added,32 and the 

atomic positions were optimized to a minimum in the potential energy surface (at a fixed cell 

volume). 

A 520 eV plane-wave kinetic energy cutoff and 𝑘-point grid225 consisting of 1000 𝑘-

points/number of atoms were used in the final stage of the high-throughput periodic DFT workflow 

for each MOF, as computed using Pymatgen82 and benchmarked previously.32 In addition, all 

forces were converged to within 0.03 eV/Å. A preconditioned conjugate gradient (CG) algorithm 

referred to as the “all bands simultaneous update of orbitals” algorithm132,133 was used to achieve 

convergence of the self-consistent field, and we employed Gaussian smearing of the band 

occupancies with a small smearing width of 𝜎 = 0.01 eV, followed by extrapolation of the 

electronic energy to the 𝑇 = 0 K limit. A combination of the CG and Fast Inertial Relaxation 
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Engine (FIRE)137 algorithms were used to achieve convergence for geometry optimizations.32 

Spin-polarization was considered for all MOFs, as discussed in the Appendix. 

In general, it is often found that GGA-level functionals disfavor high spin states, whereas 

many hybrid-level functionals artificially stabilize high spin states.226–229 While ~80% of the bare 

MOFs in this work with 𝑑3 to 𝑑8 transition metals were predicted to have high spin ground states, 

we note this is one possible limitation of the PBE exchange-correlation functional. Nonetheless, 

the PBE-D3(BJ) level of theory was chosen due to its ability to reasonably describe adsorption at 

transition metal sites at a modest computational cost,222 which is essential for carrying out the large 

number of structural relaxations in the present study. Including the full crystallographic unit cell 

via periodic DFT calculations avoids the possibility of artificial boundary effects associated with 

smaller unit cells and allows for a more rapid and automated screening process than could be 

achieved using finite cluster models.32 The PBE functional with dispersion corrections is also 

known to accurately capture the structures of MOFs.128,129 

Partial atomic charges, spin densities, and effective bond orders were computed using the 

DDEC6 method,158,230–232 which has been shown to give physically reasonable results for porous 

solids, including MOFs.231,233,234 The open-source, Python-based high-throughput periodic DFT 

screening workflow139 makes use of the Atomic Simulation Environment (ASE)83 and Pymatgen82 

for automating the VASP calculations.32 As described in prior work,32 the MOF Adsorbate 

Initializer (MAI)117 was used to automatically initialize the positions of adsorbates at the open 

metal sites,32 and RASPA119 was used to compute the potential energy grids required to initialize 

the structures for methane adsorption. Additional computational details can be found in the 

Appendix, including Tables B.4−B.7. 



87 

 

3.2.4 Data Availability 

The data that support the findings of this study (including DFT-optimized structures, energies, and 

computed physicochemical properties) are publicly available via Zenodo with the identifier 

doi:10.5281/zenodo.1734640.235 Relevant energetic quantities are also tabulated in the Appendix 

for ease of reference. The codes used to carry out the DFT screening in VASP and to initialize the 

positions of adsorbates are publicly available.117,139 

3.3 Results and Discussion 

3.3.1 Active Site Formation Energy as a Unifying Descriptor 

Given the previously determined robust linear relationship between the H-affinity, Δ𝐸H, and the 

TS energy for methane C−H activation, 𝐸TS,C−H,105 we set out to calculate Δ𝐸H as a measure of 

active site reactivity and Δ𝐸O as a measure of the thermodynamic favorability of forming the active 

site for the MOFs in Figure 3.2. We emphasize that both the active site stability and reactivity 

toward C−H activation are necessary to consider when evaluating a series of MOF candidates, as 

methane conversion cannot be achieved without both criteria being satisfied.32 

As shown in Figure 3.3, we identify a general trend that less stable metal-oxo active sites 

(i.e. more endothermic Δ𝐸O values) are associated with higher reactivities toward H-abstraction 

(i.e. more exothermic Δ𝐸H values and lower TS energies for C−H bond activation). Specifically, 

we observe that a single scaling line given by 

Δ𝐸H = −0.43Δ𝐸O − 1.92 eV (3.6) 

can be used to directly relate the active site formation energy to the H-affinity. The correlation 

between these two parameters is substantial, with 𝑟2 = 0.94 and a MAE of only 0.12 eV, well 

within expected errors from DFT. Since the linear energy relationship in Figure 3.3 holds over the 
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wide variety of MOFs screened in this work, this implies that active site stability can be used as a 

reliable descriptor for predicting the reactivity toward C−H bond activation for MOFs containing 

accessible, spatially isolated metal sites. 

 
Figure 3.3. H-affinity, Δ𝐸H, as a function of the active site formation energy, Δ𝐸O, for the screened 

MOFs. The best-fit line, Δ𝐸H = −0.43Δ𝐸O − 1.92 eV, has 𝑟2 = 0.94 and a mean absolute error 

(MAE) of 0.12 eV. The energy of the transition state (TS) for methane C−H activation is computed 

from Δ𝐸H via the H-affinity TS scaling relationship. Symbol color refers to the metal group 

number. Symbol shape indicates the formal oxidation state of the metal site prior to oxidation as 

1+ (▲), 2+ (●), or 3+ (■). 

  

While Equation 3.6 enables the prediction of Δ𝐸H, and by extension 𝐸TS,C−H, the more 

useful kinetic parameter is 𝐸a,C−H. Since the activation energy and TS energy differ by the energy 

of methane adsorption (Figure 3.1c, Equation 3.3), the methane binding strength for each catalytic 

candidate is needed. For adsorption at the metal-oxo active sites in MOFs, however, we find that 

the methane adsorption energy is effectively constant, as demonstrated in Figure B.1. The average 

methane adsorption energy for the screened MOFs is predicted to be −0.18 eV, as evident from 

the best-fit line given by 
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𝐸a,C−H = 0.99𝐸TS,C−H + 0.18 eV (3.7) 

which has 𝑟2 = 0.99 and a MAE of 0.03 eV (Figure B.1a). The consistently small value for the 

methane adsorption energy (Figure B.1b) suggests that the process is mainly governed by 

dispersive interactions consistent with weak physisorption, similar to what has been predicted for 

various trinuclear motifs in the zeolite ZSM-5.219 The MOF with the largest deviation from the 

average −0.18 eV adsorption energy is Co(L-RR) (L-RR = (R,R)-thiazolidine-2,4-

dicarboxylate),211 which is predicted to have a methane adsorption energy of −0.28 eV due to 

increased van der Waals interactions as a result of its particularly small pore size211,215 (Figure 

B.2). This suggests that even MOFs with pores approaching the kinetic diameter of methane are 

reasonably well-described by Equation 3.7, especially for screening purposes. 

The near-constant methane adsorption energy makes it possible to predict the barrier for 

C−H bond activation, instead of just the TS energy, from the active site formation energy. This is 

illustrated in Figure 3.4, with the modified scaling relationship of 

𝐸a,C−H = −0.32Δ𝐸O + 0.69 eV (3.8) 

which has 𝑟2 = 0.94 and a small MAE of 0.09 eV. Note that since the near-constant methane 

adsorption energy was not known in advance, we did not assume it was a constant value in 

proposing the scaling relationship given by Equation 3.8. Nonetheless, it is only possible to express 

the stability−reactivity linear scaling relationship in terms of 𝐸a,C−H if 𝐸TS,C−H is directly 

proportional to 𝐸a,C−H, as shown in Figure B.1a. The main benefit of the widely applicable scaling 

relationship given by Equation 3.8 is that only the active site formation energy is required to predict 

both the stability of the active site and the C−H bond activation barrier. This implies that both the 
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active site stability and reactivity can be reliably determined from just two straightforward energy 

calculations (i.e. that of the bare and oxidized MOF), without having to directly calculate the H-

affinity or methane adsorption energy. 

 
Figure 3.4. Predicted barrier for the C−H bond activation of methane, 𝐸a,C−H, as a function of the 

metal-oxo formation energy, Δ𝐸O. The best-fit line, 𝐸a,C−H = −0.32Δ𝐸O + 0.69 eV, has 𝑟2 =
0.94 and a mean absolute error (MAE) of 0.09 eV. As a visual aid, we classify MOFs with 

𝐸a,C−H < 1 eV as being reactive toward C−H bond activation and MOFs with Δ𝐸O < 0 as having 

thermodynamically favored active sites when using O2 as the reference state. Symbol color refers 

to the group number of the metal in the periodic table. Symbol shape indicates the formal oxidation 

state of the metal site prior to oxidation as 1+ (▲), 2+ (●), or 3+ (■). 

  

Consistent with the Sabatier principle,182 the ideal catalyst is likely one with an active site 

formation energy that is not so exothermic that the C−H activation barrier is too high but also not 

so endothermic that the population of active sites is too low to achieve sufficient methane 

conversion. As shown in Figure 3.4, the scaling line does indeed cross through the desirable 

“stable, reactive” region, providing support that it is feasible to synthesize MOFs that can form 

metal-oxo active sites for the activation of methane. For reference, our calculations indicate that 

Fe-MOF-74 is in the “stable, unreactive” region with Δ𝐸O = −1.16 eV and 𝐸a,C−H = 1.11 eV. This 

is consistent with the fact that Fe-MOF-74 can oxidize ethane to ethanol but has not been shown 
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to activate the stronger C−H bond of methane.168 Reassuringly, the present work suggests that 

there is significant improvement that can be gained over Fe-MOF-74 in terms of catalytic 

performance. It is notable that many of the MOFs with Fe2+ or Cu+ cations, which are commonly 

investigated for the activation of strong C−H bonds, are along the “unreactive/reactive” and 

“stable/unstable” boundaries, respectively. Based on this finding, the design of MOFs with more 

reactive Fe(IV)-oxo species or more thermodynamically favored Cu(III)-oxo motifs are promising 

areas for future research.b 

3.3.2 Periodic Stability and Reactivity Trends 

The color gradient in Figure 3.4 reveals that the thermodynamic favorability for forming the metal-

oxo active site generally decreases with increasing group number, with reaction energies ranging 

from approximately −4 eV to +2 eV depending on the identity of the metal species (and oxidation 

state). As shown in Figure 3.5a, MOFs with accessible V2+ (group 5) or Cr2+ (group 6) cations are 

predicted to form thermodynamically favored metal-oxo active sites, whereas MOFs containing 

late transition metals such as Ni2+ (group 10) are harder to oxidize. An analogous manifestation of 

this trend is apparent when considering the ligand field diagrams for terminal metal-oxo transition 

metal complexes, which tend to have an increased occupation of antibonding molecular orbitals at 

higher 𝑑 electron counts (the so-called “oxo wall” separating stable, terminal metal-oxo complexes 

composed of early transition metals from those containing late transition metals),236 thereby 

reducing the M−O bond order and active site stability. 

 
b Following the publication of this work, it was shown that MIL-100(Fe) – a structural analogue of Fe-MIL-88B 

(which resides in the “stable, reactive” region of Figure 3.4) – can selectively oxidize methane to methanol in the 

presence of N2O.626,627 
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Figure 3.5. a) Active site formation energy, Δ𝐸O, and b) barrier for methane C−H activation, 

𝐸a,C−H, as a function of group number for the screened MOFs containing transition metals in the 

2+ state prior to oxidation. The mean value for each group number is represented by a white “x”. 

  

While transition metals with higher 𝑑 electron counts are less likely to form a stable metal-

oxo species, they also tend to be more reactive toward activating the C−H bond of methane (Figure 

3.5b). In the extreme limit, such as for purely hypothetical [ZnO]2+ (group 12) active sites, the 

metal-oxyl radical is so reactive that the C−H bond activation of methane is likely to be nearly 

barrierless. However, such sites are not expected to be catalytically relevant at moderate reaction 

conditions because they are unlikely to form. Since a highly endothermic formation energy for the 

metal-oxo active site necessarily implies that there is also a high kinetic barrier to formation, both 

the kinetic and thermodynamic feasibility of active site formation are expected to be poor for cases 

where the C−H bond activation of methane is extremely low. Similarly, readily oxidized MOFs, 

such as those with exposed V2+ sites that can form [VO]2+ species, are also unlikely to be ideal 
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candidates due to relatively low reactivities toward C−H bond activation. This design principle 

can be used as a robust rule-of-thumb for identifying plausible experimental targets. For instance, 

Ti-MIL-101 is known from experiments to strongly and irreversibly chemisorb O2,
20 but for this 

reason it can be immediately assumed to be unreactive toward the C−H bond activation of 

methane. Indeed, for the closely related Ti-MIL-88B (which has analogous trimetallic nodes and 

terephthalate linkers) included in our screening study, we predict that 𝐸a,C−H is 1.74 eV. 

3.3.3 Additional Physicochemical Descriptors 

While there is a strong correlation between Δ𝐸O and Δ𝐸H, it is important to identify which factors 

contribute to these binding energies. Spin density on the abstracting oxygen atom, 𝜌O, is one 

property commonly thought to affect the reactivity toward C−H activation, although the generality 

of this effect has been a topic of significant debate.237–239 As shown in Figure 3.6a, we find a 

qualitative correlation between the DDEC-computed158 𝜌O and Δ𝐸H, and MOFs with low barriers 

for C−H activation tend to have some degree of radical-like character on the oxo species. 

Nonetheless, the linearity of this relationship is relatively weak (𝑟2 = 0.73) for the wide range of 

MOF structures in this work. As one example, Ni2Cl2(btdd) is predicted to have a lower barrier 

toward H-abstraction than Cu-MFU-4l (𝐸a,C−H = 0.35 eV and 0.53 eV, respectively), yet 

Ni2Cl2(btdd) is predicted to have nearly two times less spin density on the oxo ligand than Cu-

MFU-4l (𝜌O = 0.46 and 0.87, respectively). Similar behavior to that shown in Figure 3.6a is 

observed when computing 𝜌O via a Bader partitioning scheme159 (Figure B.3a). 
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Figure 3.6. a) Active site formation energy, Δ𝐸O, and H-affinity, Δ𝐸H, as a function of the absolute 

spin density on the oxo ligand computed via the DDEC6158 method, 𝜌O. b) Δ𝐸O and Δ𝐸H as a 

function of the M−O distance. The gray shaded area refers to the “stable, reactive” region in Figure 

3.4 (i.e. Δ𝐸O < 0 eV and Δ𝐸H < −1.51 eV, the latter of which corresponds to approximately 𝐸a,C−H 

< 1 eV). Both 𝜌O and 𝑑M−O are computed for the oxidized state of the MOF. Symbol color refers 

to the group number of the metal in the periodic table. Symbol shape indicates the formal oxidation 

state of the metal site prior to oxidation as 1+ (▲), 2+ (●), or 3+ (■). 

  

The results in Figure 3.6a illustrate that 𝜌O plays an important role, but it is certainly not 

the only factor that should be considered and does not entirely dictate the reactivity of the 

abstracting oxo species. Even so, the value of 𝜌O can potentially be used as a rough guideline for 

catalyst design purposes. If the goal is to design a MOF that can readily form a metal-oxo active 

site and activate methane, we predict that 𝜌O should ideally be ~0.5 to increase the likelihood of 

having a C−H activation barrier less than 1 eV but an exothermic active site formation energy. The 
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ideal M−O bond distance appears to be ~1.65−1.7 Å based on an analogous argument (Figure 

3.6b). 

Within the framework of the metal-oxo wall theory,236 periodic trends in the stability of 

terminal metal-oxo complexes can be directly related to the M−O bond order, which as a result 

may impact the reactivity toward C−H activation. To probe this behavior, we computed effective 

bond orders based on the DDEC method231 and observed that lower DDEC-based M−O bond 

orders are qualitatively correlated with reduced active site stabilities and increased reactivities 

toward C−H activation (Figure B.3b). The spin density on the oxo ligand is inversely correlated 

with the M−O bond order (Figure B.4), which is consistent with the fact that DDEC bond orders 

are computed based on partitions of the electron and spin magnetization densities.231 It has also 

previously been proposed that the spin multiplicity can be a major factor governing C−H activation 

processes, such as via the exchange-enhanced reactivity model;240,241 however, we find no strong 

relationships between spin state (or spin density on the metal) and reactivity, likely due to the 

diverse geometries, coordination environments, ligands, metals, and resulting electronic structures 

present in the investigated MOF dataset. Additional correlations can be found in Figure B.5. 

3.4 Breaking the Scaling Relationship 

The presence of a single active site stability−reactivity scaling line and the effectively constant 

methane physisorption energy can be used to significantly accelerate the MOF screening process, 

but these results also imply that possible values for the active site stability and reactivity are limited 

to those along the scaling line. In general, attempts to identify cases where a material class “breaks” 

from a given scaling relationship are highly sought after for catalyst design purposes and to better 

understand otherwise anomalous behavior.106,242–244 We hypothesize that one approach to break 
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from the proposed scaling relationship is by coupling the formation of the active site with a 

separate bond-breaking or bond-making event, as this process may change Δ𝐸O without 

significantly altering the reactivity of the metal-oxo species compared to that predicted from the 

scaling line. 

 
Figure 3.7. a) Increase in the metal-metal distance (and subsequent decrease in metal-metal bond 

order) in Cr-BTC and Mo-BTC following formation of a [MO]2+ active site. A representative 

portion of the unit cell is shown for Cr-BTC. Color key: Cr (light blue), O (red), C (grey), H 

(white). b) H-affinity, Δ𝐸H, as a function of the active site formation energy, Δ𝐸O, for Cr-BTC 

(blue, ◄) and Mo-BTC (red, ►), which significantly deviate from the scaling relationship of 

Δ𝐸H = −0.43Δ𝐸O − 1.92 eV (black solid line). For reference, the grey dashed lines represent 

three standard deviations from the scaling line. 

 

For example, it has previously been suggested that Cr-BTC and Mo-BTC (BTC3- = 1,3,5-

benzenetricarboxylate) exhibit metal-metal bonding interactions.185,189 As depicted in Figure 3.7a, 

we predict that the M−M distance in Cr-BTC will increase from 1.90 Å to 2.85 Å, while that in 

Mo-BTC will increase from 2.11 Å to 2.68 Å upon formation of a metal-oxo active site. These 

increases correspond to a significant reduction in the M−M bonding interaction, with a decrease 

in the DFT-computed M−M bond order of 0.80 and 0.92 for Cr-BTC and Mo-BTC, respectively, 
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based on the DDEC method.231 These calculations are also consistent with prior experimental 

observations of bond lengths in these materials.185,189 

For Cr-BTC and Mo-BTC, we find that the DFT-calculated H-affinities are 0.63 eV and 

0.66 eV more endothermic than those predicted by the scaling relationship using the computed 

Δ𝐸O values (Figure 3.7b). We attribute this to the breaking of a metal-metal bond upon formation 

of the metal-oxo active site. While not to the same degree as with Cr-BTC and Mo-BTC, many of 

the other MOFs that deviate most from the scaling line exhibit changes in coordination geometry 

(e.g. cation-substituted MOF-5,207 as shown in Figure B.6). Related to the concept of concerted 

bond-breaking or bond-making events, oxidation reactions with mechanisms that involve 

reversible linker displacement245–247 may result in situations where the MOF breaks from the 

proposed linear scaling relationship. In addition to the energetics associated with breaking the 

metal-linker bond, this process can potentially lead to positive or negative deviations from the 

scaling line by introducing changes to the coordination number, coordination geometry, and/or 

oxidation state of the metal. One could also envision a scenario where noncovalent interactions 

(e.g. H-bonding) would stabilize the metal-oxo species without significantly altering the reactivity 

of the metal-oxo species toward C−H activation (Figure B.7).c 

In prior work, it was proposed that materials that more effectively delocalize changes in 

charge upon formation of the metal-oxo active site exist on a less reactive scaling line (i.e. more 

endothermic Δ𝐸H for a given Δ𝐸O) than materials that are more electronically insulating.105 To 

address this, we computed the degree of charge delocalization (Equation B.1) for each MOF and 

 
c Following publication of this work, Sours and Patel et al.424 demonstrated a similar idea for electrocatalytic oxygen 

reduction with MOFs. 
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found that the MOFs considered in this work have ligands ranging from nearly redox-innocent to 

highly redox non-innocent when the proposed metal-oxo active site is formed (Figure B.8, Table 

B.3). We conclude that the degree of charge delocalization does not result in distinct scaling 

relationships for the MOFs analyzed in this work. In fact, if charge delocalization can help stabilize 

otherwise reactive metal-oxo species,248 then we anticipate that Δ𝐸O can be greatly improved 

without causing the MOF to shift to a significantly less reactive scaling line. As a result, we would 

recommend deliberate incorporation of redox non-innocent ligands in MOFs28,249 to increase the 

likelihood of designing MOFs for oxidative C−H bond activation reactions in cases where 

formation of the active site is the rate-limiting step. 

3.5 Conclusion 

By using periodic density functional theory to screen 60 MOF structures with a wide range of 

metal sites and coordination environments for the oxidative C−H bond activation of methane, we 

observe a clear tradeoff between the thermodynamics of forming the metal-oxo active site, Δ𝐸O, 

and reactivity of the active site toward C−H activation. We propose a linear scaling relationship 

relating the active site formation energy and the H-affinity, Δ𝐸H, that is generally applicable to 

MOFs with spatially isolated open metal sites. Through the scaling relationship between Δ𝐸O and 

Δ𝐸H, the consistent methane physisorption energy among MOFs with accessible metal-oxo sites, 

and the universal H-affinity scaling relationship,105 it is possible to predict both active site stability 

and the barrier for methane C−H activation from just Δ𝐸O, reducing the computational burden 

from at least four DFT calculations per MOF to only two. This has significant implications for the 

predictive design of MOF catalysts from first-principles calculations and provides a robust rule-

of-thumb for choosing which MOFs to investigate experimentally. We also show that it is possible 
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to design materials that significantly break from the proposed scaling line by coupling oxidation 

of the metal center with changes in bonding behavior of the remaining framework atoms. As a 

whole, we anticipate that the structure−activity relationships developed in this work will enable 

greatly accelerated computational screening and provide a set of promising catalyst design criteria 

for MOFs that can directly activate methane at moderate reaction conditions. 
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Chapter 4: THE EFFECTS OF LIGAND-EXCHANGE AND TWO-STATE 

REACTIVITY FOR C–H BOND ACTIVATION 

In this chapter, quantum-chemical calculations are used to investigate a family of 

metal−organic frameworks (MOFs) containing triazolate linkers, M2X2(bbta) (M = metal, X = 

bridging anion, H2bbta = 1H,5H-benzo(1,2-d:4,5-d′)bistriazole), for their ability to form terminal 

metal-oxo sites and subsequently activate the C−H bond of methane. By varying the metal and 

bridging anion in the framework, we show how to significantly tune the reactivity of this series of 

MOFs. The electronic structure of the metal-oxo active site is analyzed for each combination of 

metal and bridging ligand, and we find that significant spin density localized on the oxo ligand (at 

stationary points along the reaction coordinate) is not necessarily the primary driving force behind 

low predicted C−H activation barriers. Nonetheless, the important role that the spin density can 

have on the reactivity of individual spin channels is discussed. For the Mn- and Fe-containing 

frameworks in particular, the high reactivity can be attributed to the formation of 

antiferromagnetically coupled spin density on the metal binding site and the abstracting O atom at 

the transition state for C−H bond activation, which is not necessarily present in the initial [MO]2+ 

state. In cases where there is a ferromagnetic to antiferromagnetic transition en route to the 

transition state, this is an example of two-state reactivity, albeit one with a fixed spin multiplicity. 

This chapter is adapted from the following peer-reviewed article: A.S. Rosen, J.M. 

Notestein, R.Q. Snurr. “High-Valent Metal-Oxo Species at the Nodes of Metal–Triazolate 

Frameworks: The Effects of Ligand Exchange and Two-State Reactivity for C–H Bond 

Activation.” Angew. Chem. Int. Ed., 59, 19494–19502 (2020). 
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4.1 Introduction 

High-valent transition metal-oxo species have been invoked as reactive intermediates for a wide 

range of oxidation reactions with both enzymatic and synthetic catalysts.250–252 Many terminal oxo 

complexes are powerful oxidants and serve as promising active site motifs for the activation of 

strong C−H bonds, such as those of light alkanes, at moderate reaction conditions.250–254 However, 

terminal oxo complexes are often difficult to isolate and probe experimentally as a direct 

consequence of their inherent reactivity, especially those containing mid-to-late transition 

metals.236,255–257 In the synthesis of molecular metal-oxo complexes, sterically bulky ligands are 

typically employed to protect highly reactive metal-oxo units, as it can be difficult to prevent them 

from dimerizing or deactivating in solution.258 A different strategy is to leverage the well-defined 

metal sites incorporated within the inorganic nodes of metal−organic frameworks (MOFs) to 

support reactive metal-oxo species in a heterogeneous catalyst.94 This approach takes advantage 

of the site isolation, uniformity, and periodicity of metal sites when present as part of the secondary 

building units of MOFs.259 Enabled by the vast library of inorganic nodes and organic linkers, the 

highly tunable nature of MOFs also makes it possible to design active sites with tailored 

coordination environments for a given reaction of interest.171,172 

Despite the many thousands of MOFs that have been synthesized to date,14,44 the structural 

diversity of MOFs has hardly been explored for this challenging class of reactions. As a result, 

relatively little is known about how to enhance the reactive properties of these materials despite 

the modular nature of the underlying secondary building units.3 To date, nearly all MOFs studied 

for their potential ability to support terminal metal-oxo species contain metals connected to one 
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another with carboxylate linkers that yield an all-oxido coordination environment, as is the case 

for the metal sites of Fe-MOF-74 (and its structural analogues),168,177,178,260,261 Mn-exchanged 

MOF-5,262 M3(btc)2 (M = Cr, Fe, Co, Ni, Cu, Zn; H3BTC = 1,3,5-benzenetricarboxylic acid),263 

FeM2-PCN-250 (M = Fe, Mn, Co, Ni; PCN = Porous Coordination Network),264 and Fe-MIL-100 

(MIL = Materials Institut Lavoisier).179,265 Fe-BTT (H3BTT = 1,3,5-benzenetristetrazolate), which 

has tetrazolate linkers, is one exception; however, it is believed that framework defects (rather than 

the computationally investigated, crystallographic framework sites) are responsible for the 

material’s reactivity toward ethane in the presence of N2O.116 

Metal−triazolate frameworks represent one family of MOFs that have not yet been widely 

explored for activating the strong C−H bonds of light alkanes. Like many metal−azolate 

frameworks (MAFs),266 metal−triazolate frameworks with open metal sites often contain anionic 

ligands within the first coordination sphere of the metal, which can typically be post-synthetically 

exchanged.267 This represents a promising route to alter the reactivity of a given framework, 

beyond the more common design handles of metal identity and linker functionalization. This is 

further motivated by prior studies of transition metal-oxo complexes, which have shown that the 

presence and identity of coordinating, anionic ligands can greatly enhance rates of hydrogen atom 

transfer reactions.254,268,269 Of the previously synthesized MAFs containing open metal sites, M-

BTT,195 M-BTTri (H3BTTri = 1,3,5-tri(1H-1,2,3-triazol-5-yl)benzene),216,270 and M-BDTriP 

(H3BDTriP = 5,5′-(5-(1H-pyrazol-4-yl)-1,3-phenylene)bis(1H-1,2,3-triazole))216 all have μ4-Cl- 

ligands, M2Cl2(bbta) (H2bbta = 1H,5H-benzo(1,2-d:4,5-d′)bistriazole)271 and M2Cl2(btdd) (H2btdd 

= bis(1H-1,2,3-triazolo[4,5-b],[4′,5′-i])dibenzo[1,4]dioxin))192 have μ-Cl- ligands, and M-MFU-4l 
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(MFU = Metal−Organic Framework Ulm) has terminal Cl- ligands212,272 that can potentially be 

exchanged. Post-synthetic ligand-exchange in the aforementioned materials has led to the 

discovery of MOFs with enhanced water uptake,273 O2 binding strengths,73 hydrogen storage 

properties,274 and turnover frequencies for CO2 reduction275 among several other applications. 

MOFs with triazolate linkers may also be promising for stabilizing reactive metal-oxo 

active sites given that triazolate  groups are stronger donors than the more widely used carboxylate 

linkers.276 In the context of one-electron oxidation reactions and experiments involving the 

chemisorption of O2 at open metal sites, increasing the basicity of the linker – a proxy for its donor 

strength – has been shown to increase the redox activity of the framework.73,216,276 Separate studies 

have also shown that this often serves to increase the framework’s chemical stability.276 The 

greater redox activity of the framework is particularly relevant, as mechanistic studies based on 

density functional theory (DFT) calculations frequently indicate that the reactivity of MOFs with 

open metal sites are limited by their ability to form high-valent metal-oxo active species.32,264,265 

In the present study, we focus on the family of metal−triazolate frameworks with the 

general formula M2X2(bbta) (M = divalent metal, X = monovalent bridging anion). M2X2(bbta) is 

topologically analogous to the MOF-74 family, containing a high density of coordinatively 

unsaturated metal sites with square pyramidal coordination geometries and a honeycomb-like 

crystal structure (Figure 4.1). Many members of the M2X2(bbta) family are relatively stable, 

maintaining their crystallinity up to 400 °C in a N2 atmosphere and withstanding exposure to H2O2, 

Cl2, Br2, NH3, and other reactive gases.25,192,194 Perhaps most notably, like several of the 

aforementioned MAFs, the M2X2(bbta) family is highly tunable, both with regards to the metal 
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identity as well as the bridging monovalent anions connecting each metal center. To date, 

M2Cl2(bbta) (M = Mn, Fe, Co, Ni),d M2(OH)2(bbta) (M = Co, Ni), Ni2F2(bbta), Ni2Br2(bbta), and 

the large-pore analogues Cu2Cl2(btdd) and V2Cl2.8(btdd) have all been experimentally 

synthesized.193,194,271,273,275,277–279 For reference, the pores of these materials are quite large, with 

diameters of approximately 13 Å and 23 Å for M2X2(bbta) and M2X2(btdd), respectively.280 

 
Figure 4.1. Structure of the honeycomb-like M2X2(bbta) framework and the corresponding Mg-

diluted finite cluster model, denoted M-BBTA-X, used in this work. We consider M-BBTA-X 

frameworks composed of M = {V, Cr, Mn, Fe, Co, Ni, Cu} and X = {F, Cl, Br, OH, SH, SeH}. 

 

Using DFT, we investigate the effects of exchanging the metal cation (M = V, Cr, Mn, Fe, 

Co, Ni, Cu) and bridging ligand (X = F, Cl, Br, OH, SH, SeH) on the framework’s ability to form 

reactive metal-oxo motifs for the oxyfunctionalization of strong C−H bonds. While some of these 

combinations of metals and ligands have not yet been synthesized or may not yield frameworks 

capable of forming (meta-)stable metal-oxo motifs, we include a wide range of metals and ligands 

for the purposes of identifying overarching structure−reactivity relationships across this family of 

 
d Since publication of this work, Cu2Cl2(bbta) has also been experimentally synthesized.628 
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tunable materials. As a result of this study, we show how the choice of linker and anions within 

the first coordination sphere can be used to increase the stability of high-valent metal-oxo sites 

that are reactive toward strong C−H bonds in the M2X2(bbta) family of metal−triazolate 

frameworks. We also use the M2X2(bbta) family to demonstrate the important role of electron spin 

for C−H bond activation via terminal metal-oxo species, while simultaneously clarifying several 

misconceptions about the radical-like character of the metal-oxo motif. 

4.2 Methods 

Charge-neutral finite cluster models containing 75 atoms (X = F, Cl, Br) or 79 atoms (X = OH, 

SH, SeH) were carved from periodic structures, as depicted in Figure 4.1. As done in several prior 

studies,281 the clusters were diluted with Mg2+ cations to reduce the computational complexity, 

particularly with regards to converging to the ground state spin states. We refer to the Mg-diluted 

models as M-BBTA-X. We consider M-BBTA-X frameworks composed of M = {V, Cr, Mn, Fe, 

Co, Ni, Cu} and X = {F, Cl, Br, OH, SH, SeH}. For the purposes of identifying structure−property 

relations, all structures were assumed to have the square pyramidal coordination environment of 

the experimentally synthesized Mn, Fe, Co, and Ni bbta-based frameworks. Periodic DFT 

calculations in VASP122,123 indicate that the cluster models are accurate representations of the 

larger periodic frameworks (Figure C.7). 

Finite cluster DFT calculations were carried out via the Gaussian 16, Rev. A03 program282 

using the hybrid-level B3LYP exchange−correlation functional,283–285 Grimme’s D3 dispersion 

correction126 with Becke-Johnson (BJ) damping,127 and the def2-TZVP286 basis set. Oxidation 

reactions are known to suffer from significant self-interaction error without Hartree-Fock 
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exchange, so the use of a hybrid functional is expected to be important for accurately describing 

the thermodynamics of metal-oxo formation. For comparison purposes, select calculations were 

also carried out using the M06-L functional,287 as shown in Figure C.8. However, we note that 

using the M06-L and M06288 functionals leads to significant difficulties in converging the self-

consistent field (particularly for X = OH, SH, SeH) regardless of the electronic optimization 

algorithm, which prevents their widespread use throughout this screening study. As described in 

the “Model Assumptions” section in the Appendix, while the B3LYP functional has previously 

been shown to over-stabilize high-spin states in several cases,228,229 the B3LYP-D3(BJ) and M06-

L functionals predict the same ground state spin state for every M-BBTA-X (X = F, Cl, Br) cluster 

model studied in this work, both in the guest-free and oxidized states. 

An “ultrafine” integration consisting of 99 radial shells and 590 angular points per shell 

was used for all calculations, and symmetry constraints were disabled. Partially constrained 

geometry optimizations were carried out to approximate the rigidity of the framework such that 

only the framework atoms within the first and second coordination spheres of the transition metal 

binding site were allowed to relax (in addition to any guest molecules). As is common for first-

row transition metals, there are several physically plausible spin states for each structure reported 

in this work. Generally, results presented in the main text correspond to a predicted high-spin 

ground state, with a few exceptions (such as for the intermediate-spin [CoO]2+ sites). Full details 

regarding the spin state analysis can be found in Figures C.1−C.6 and Tables C.1−C.15. Partial 

atomic charges were evaluated using the Charge Model 5 (CM5) method289 and spin densities were 

calculated using a Hirshfeld population analysis.290 Wiberg bond orders were computed in the 
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natural atomic orbital basis via the natural bonding orbital (NBO) method implemented in the NBO 

v.7.0.2 code.291,292 

Thermochemical corrections were applied using the ideal gas, harmonic oscillator, rigid 

rotor, and particle-in-a-box approximations293 with analytically computed vibrational frequencies. 

As implemented in GoodVibes v.3.0.1,294 quasi-harmonic corrections to the enthalpy were applied 

with a vibrational frequency cutoff of 50 cm-1.295 A frequency scaling factor of 0.985 was applied 

for the thermochemical corrections.296 All thermochemical quantities were computed at 298.15 K. 

Automatic density fitting of the Coulomb integrals was used to increase the computational 

efficiency of the M06-L/def2-TZVP calculations. For the B3LYP-D3(BJ)/def2-TZVP 

calculations, the spin states in Table C.1 were confirmed to be local minima or transition states 

based on the lack or presence of one imaginary vibrational mode, respectively. Vibrational 

analyses were not carried out for the less stable spin states (except where thermochemical 

corrections were computed, such as in Figure 4.7) due to the high computational cost of these 

calculations and the large number of investigated spin states. Additional computational details can 

be found in the Appendix. 

4.3 Results and Discussion 

Throughout this work, we primarily focus on two key reactivity parameters: the thermodynamic 

favorability of forming a terminal metal-oxo site and the subsequent barrier for C−H activation. 

The enthalpy of metal-oxo formation, Δ𝐻O, can be described by 
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Δ𝐻O = 𝐻MOF−O − 𝐻MOF − 0.5𝐻O2
(1)

where 𝐻MOF−O, 𝐻MOF, and 𝐻O2
 represent the enthalpies of the oxidized MOF, adsorbate-free 

MOF, and gas-phase O2, respectively (Figure 4.2a). While O2 is a natural choice for the gaseous 

reference state, this decision is in principle arbitrary, and all Δ𝐻O values would simply be linearly 

offset if another molecule (e.g. N2O, H2O2) were used as the reference state. As a probe for each 

MOF’s ability to activate strong C−H bonds, we computed the barrier for the H-abstraction of 

methane (Figure 4.2b). Methane was chosen due to the societal need for a catalyst that can directly 

convert methane to methanol at moderate reaction conditions157,166,167 and its small size that 

permits the computational investigation of many catalyst structures. The trends in this work are 

expected to be generalizable to light hydrocarbons beyond methane, as C−H activation barriers 

tend to scale with the bond dissociation enthalpies.297 The apparent activation enthalpy for 

breaking the C−H bond of methane is given by 

Δ𝐻a,C−H
app.

= 𝐻C−H
‡ − 𝐻MOF−O − 𝐻CH4

(2)

where 𝐻C−H
‡

 is the enthalpy of the transition state for H-abstraction, and 𝐻CH4
 is the enthalpy of 

gas-phase CH4. The apparent and intrinsic activation enthalpy, Δ𝐻a,C−H, are related to one another 

via

Δ𝐻a,C−H = Δ𝐻a,C−H
app

+ |Δ𝐻CH4 ads.| (3) 

where Δ𝐸CH4 ads. is the enthalpy of methane adsorption at the metal-oxo site in the MOF. Prior 

work has shown that, assuming no significant variations in the degree of confinement, the 

adsorption energy of methane at isolated metal-oxo sites in MOFs (and cation-exchanged 
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zeolites219) is effectively constant with a value of approximately 17 kJ/mol, consistent with weak 

physisorption.71 As described in detail in the Appendix (Tables C.1−C.15 and Figures C.1−C.6), 

we considered multiple plausible spin states for each DFT calculation and report results for the 

low-energy spin states in most cases. 

 
Figure 4.2. a) Depiction of the metal-oxo formation enthalpy, Δ𝐻O. b) Depiction of the apparent, 

Δ𝐻a,C−H
app

, and intrinsic, Δ𝐻a,C−H, activation enthalpies for cleaving the C−H bond of methane as 

they relate to the transition state energy, 𝐻C−H
‡

, and methane adsorption energy, Δ𝐻CH4 ads.. 

 

The thermodynamic feasibility of forming the metal-oxo active site as a function of both 

metal and bridging ligand identity in the M-BBTA-X series of MOFs is shown in Figure 4.2a. As 

found in prior studies,71,264 there are clear periodic trends such that later transition metals are more 

difficult to oxidize than earlier transition metals. This is to be expected, given that higher 𝑑 electron 

counts will lead to a greater occupation of 𝜋-antibonding molecular orbitals that weaken the metal-

oxo bond.236 One notable exception is for the Mn-containing frameworks, which have comparable 



110 

 

 

(if not more endothermic) metal-oxo formation enthalpies than the Fe-containing frameworks for 

all bridging ligands except μ-OH-. From the perspective of forming a terminal metal-oxo site, these 

results suggest that there is not always a thermodynamic benefit in using Mn over Fe in this family 

of materials. Many of the Mn- and Fe-containing frameworks are also close to thermoneutral with 

regards to the Δ𝐻O value, whereas the Cr- and Co-containing frameworks have highly exothermic 

and endothermic [MO]2+ formation enthalpies, respectively, when using an O2 reference state. We 

note that this does not necessarily imply [MO]2+ active sites in Co-containing frameworks would 

be impossible to generate. Rather, if formed, the population of these sites would be expected to be 

low since recombination to yield gas-phase O2 would be thermodynamically preferable. 

The identity of the bridging ligand can also greatly influence the thermodynamic feasibility 

of forming a metal-oxo species. In general, the use of OH (and to a lesser extent, SH or SeH) 

bridging ligands rather than the halides is recommended for the purposes of forming metal-oxo 

active sites (Figure 4.2a). After clustering the results by X = {F, Cl, Br} or X = {OH, SH, SeH}, 

more basic bridging ligands tend to yield metal centers with more exothermic Δ𝐻O values (e.g. 

Δ𝐻O,M−bbta−F < Δ𝐻O,M−bbta−Cl < Δ𝐻O,M−bbta−Br) for the early transition metals. This is 

analogous to the predicted trends for O2 adsorption at the open metal sites of the M2X2(bbta) 

family,73 wherein more basic bridging ligands resulted in a greater degree of electron-donation to 

the metal center, increasing the thermodynamic favorability of the O2 binding process. 

Nonetheless, this behavior becomes less pronounced as one goes across the periodic table (Figure 

4.2b and Figure 4.2c), with an eventual switch for the late transition metal cations (i.e. M = Co, 

Ni, Cu) for which more basic ligands tend to yield less thermodynamically stable metal-oxo sites 
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(e.g. Δ𝐻O,M−bbta−Br < Δ𝐻O,M−bbta−Cl < Δ𝐻O,M−bbta−F). We attribute this phenomenon to a 

tradeoff between the basicity of the bridging ligand (which increases as Br- < Cl- < F-) and the 

partial charge on the metal (which increases as F- < Cl- < Br- based on electronegativity trends). 

For the early transition metals that can readily form the hypothesized [MO]2+ site, a ligand with a 

greater basicity is expected to better stabilize the increased charge on the metal. However, for the 

later transition metals where little or no change in charge on the metal occurs (Figure C.9), the 

basicity of the ligand has less of an influence than its electronegativity. 

 
Figure 4.3. a) Enthalpy of metal-oxo formation, Δ𝐻O, in M-BBTA-X as a function of metal binding 

site and bridging ligand identity. (b, c) Relative change in Δ𝐻O, denoted ΔΔ𝐻O, as a function of 

bridging ligand with respect to X = F (b, circles) and X = OH (c, triangles) for a given transition 

metal. The sign convention is such that a positive value of ΔΔ𝐻O indicates a more endothermic 

value of Δ𝐻O compared to the reference and vice versa. Results are at the B3LYP-D3(BJ)/def2-

TZVP level of theory. 
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Beyond the choice of anionic bridging ligands, the donor strength of the organic linker is 

also likely to influence the redox activity of the framework in cases where an [MO]2+ site can form. 

To test this, we compared the M−O formation enthalpies of the Fe-BBTA-X cluster models with 

those of Fe0.1Mg1.9(dobdc) (H4dobdc = 2,5-dihydroxybenzene-1,4-dicarboxylic acid) and Fe3(μ3-

O)(HCOO)6 (Figure C.10), the latter of which is representative of the node in the Fe-MIL-100/101 

(and Fe-PCN-250) series. These MOFs were chosen as points of comparison, as they have been 

shown to activate strong C−H bonds via a presumed Fe(IV)-oxo intermediate168,264,265 and have 

carboxylate linkers, which are weaker donors than the triazolate linkers of the M2X2(bbta) series.276 

At the B3LYP-D3(BJ)/def2-TZVP level of theory,126,127,283–286 Δ𝐻O is predicted to be +24 

kJ/mol for Fe0.1Mg1.9(dobdc) and +35 kJ/mol for Fe3(μ3-O)(HCOO)6. While Fe-BBTA-Br has a 

Δ𝐻O value nearly equivalent to that of Fe0.1Mg1.9(dobdc), all other members of the Fe-BBTA-X 

series have more favorable Fe(IV)-oxo formation enthalpies, with Fe-BBTA-X (X = OH, SH, SeH) 

having Δ𝐻O values that are ~34 kJ/mol more exothermic than Fe0.1Mg1.9(dobdc) and ~45 kJ/mol 

more exothermic than Fe-MIL-100/Fe-MIL-101/Fe-PCN-250 (Table C.16). This supports the 

hypothesis that the N donors of the more strongly donating triazolate linker is better stabilizing the 

oxidized state of the metal center than the more weakly donating – but commonly studied –

carboxylate linkers. Although the donor strength of the linker is not the only factor that can 

influence the metal-oxo formation enthalpy (other properties, such as coordination number and 

spin state are expected to play a role), the use of triazolate linkers, in comparison to the widely 

used carboxylate linkers, is one route to increase the thermodynamic favorability of forming 

terminal metal-oxo sites in MOFs with open metal sites. 
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Up to this point, we have simply referred to the [MO]2+ sites as “metal-oxo” species in line 

with formal oxidation state counting rules. However, the true electronic structure of these [MO]2+ 

sites is expected to exist on a spectrum with a varying degree of oxo and oxyl character (Figure 

4.4a).252 Several complementary methods can be used to assign a “best” resonance structure. Here, 

we use the partial atomic charge on the O atom, 𝑞O, the spin density on the O atom, 𝜌O, and the 

computed M−O bond order to probe the properties of the [MO]2+ site. The partial atomic charge 

is not the same as the expected oxidation state,298 so we have computed the partial charge on the 

O atoms of H2O and H2O2 as reference points for O2- and O- oxidation states, respectively. 

 
Figure 4.4. a) Schematic of several different resonance structures associated with the [MO]2+ motif, 

showing the range of bond orders, oxidation states, and unpaired electrons. The rightmost structure 

is an extreme hypothetical case with no formal bond between the metal and O atom. b) Metal-oxo 

formation enthalpy, Δ𝐻O, as a function of the CM5 partial atomic charge on the O atom, 𝑞O. c) 

Hirshfeld spin density on the O atom of the [MO]2+ site, 𝜌O, as a function of 𝑞O. d) Wiberg M−O 

bond order in the natural atomic orbital basis, BOM−O, as a function of 𝑞O. For all subplots, a 

negative 𝜌O value represents an antiferromagnetic alignment with the spin density on the metal 

center. Reference 𝑞O values for H2O and H2O2 are shown as dashed vertical lines, which 
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correspond to O formal oxidation states of −2 and −1, respectively. Results are at the B3LYP-

D3(BJ)/def2-TZVP level of theory. 

 

As shown in Figure 4.4b, the oxo/oxyl ligand exhibits a wide range of partial charges. In 

addition, the thermodynamic feasibility of forming the [MO]2+ site is correlated with the degree of 

charge transfer for a given metal identity. Based on the partial charge and spin density analysis 

(Figure 4.4c), the V-, Cr-, Mn-, and Fe-containing MAFs can be best described as having at least 

some degree of oxo-like character. The Co-, Ni-, and Cu-containing frameworks, however, are 

best described as having predominantly oxyl character. The computed M−O bond orders (Figure 

4.4d) are in agreement with this electronic structure assignment, albeit with a clearer divide 

between the Co-containing MAFs and the Ni- or Cu-containing MAFs. The computed bond orders 

are qualitatively consistent with what would be expected on the basis of the “oxo wall” principle.236  

With a more thorough understanding of the [MO]2+ sites in the M-BBTA-X materials, we 

shift our focus to their reactivity, specifically with regards to activating the strong C−H bond of 

methane, which has a bond dissociation enthalpy of 439 kJ/mol at 298 K.165 Excluding the V-

BBTA-X series, the metal-oxo site in every MOF studied in this work has an apparent C−H 

activation enthalpy less than 100 kJ/mol, with many having an apparent activation enthalpy around 

50 kJ/mol or less (Figure 4.4). In contrast with what is typically assumed,299 we emphasize that 

activating the C−H bond of methane is predicted to be relatively easy in general, and efforts should 

instead be focused on forming the [MO]2+ active site. Importantly, the low activation enthalpies 

for breaking the C−H bond of methane are not restricted to late transition metals, some of which 

(particularly the Ni- and Cu-containing frameworks) would be unlikely to form the pre-requisite 
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[MO]2+ sites. Unlike the metal-oxo formation enthalpies in Figure 4.2, the differences in reactivity 

as a function of bridging ligands are less consistent, not showing any widespread trends except 

that the X = {OH, SH, SeH} bridging ligands in the Mn-BBTA-X series have significantly higher 

C−H activation barriers than the halide bridging ligands. 

 
Figure 4.5. Apparent enthalpic barrier for C−H activation of methane, Δ𝐻a,C−H

app.
, in M-BBTA-X as 

a function of metal binding site and bridging ligand identity. Results are at the B3LYP-

D3(BJ)/def2-TZVP level of theory. 

 

There has been significant debate in the literature regarding the effect of spin density on 

the reactivity of metal-oxo complexes.237,238,300 Some have claimed that localized spin density on 

the oxo ligand is a necessary condition for them to be reactive,237 whereas others claim that this is 

not necessarily the case.238 On the basis of the apparent C−H activation barriers in Figure 4.5, we 

can conclude that significant spin density on the oxo ligand is not always required, as the Cr-

BBTA-X series and several members of the Mn-BBTA-X series have a very low degree of spin 

density (Figure 4.4c) yet are highly reactive. Significant spin density on the oxo ligand at the 

transition state is also not always necessary, as exemplified with the Fe-BBTA-X series, which has 

negligible spin density (Figure 4.4a) but an apparent activation enthalpy of ~50 kJ/mol (Figure 

4.5). These conclusions are in agreement with the perspective of Saouma and Mayer, where the 
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authors state that, while spin density on the oxo ligand can influence the reactivity, it is not an 

inherent requirement.238,239 Indeed, prior work has shown that there is often,71,176 but not always,219 

an inverse correlation between spin density on the abstracting atom and the barrier for C−H 

activation of the substrate. For the metal−triazolate frameworks studied here, there is not always 

strong correlation between the spin density on the oxo ligand and the C−H activation barrier 

(Figure C.13). 

 
Figure 4.6. a) Hirshfeld spin density on the O atom of the metal-oxo site at the transition state (TS) 

for C−H activation, 𝜌O,TS. b) Hirshfeld spin density on the C atom of the methane molecule at the 

TS, 𝜌C,TS. For both subplots, a negative value for ρ represents an antiferromagnetic alignment with 

the spin density on the metal center. Horizontal jitter is added to distinguish overlapping points. 

Results are at the B3LYP-D3(BJ)/def2-TZVP level of theory. 

 

One important subtlety is the sign of the spin density on the oxo ligand with respect to the 

unpaired electron density on the metal. In this work, we have defined the metal as having a positive 

(i.e. spin up) spin density. Therefore, if 𝜌O < 0, the oxo ligand is antiferromagnetically aligned 

with any spin density on the metal (i.e. it is a broken-symmetry state), whereas 𝜌O > 0 indicates a 

ferromagnetic alignment. As shown in Figure 4.6a, the V-, Cr-, Mn-, and Fe-containing MAFs all 
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have an antiferromagnetically stabilized metal-oxo bond at the transition state for C–H activation, 

whereas the later transition metals have a ferromagnetically aligned metal-oxo (or, more likely, 

metal-oxyl) bond. Similar behavior is observed with regards to the spin density on the methyl 

radical (Figure 4.6b), which adopts the same spin orientation as the oxo ligand. 

 
Figure 4.7. Comparison of the Hirshfeld spin density on the O atom of the metal–oxo site (before 

C−H activation), 𝜌O, and the Hirshfeld spin density of the three-center C−H−O radical at the 

transition state (TS) for C−H activation, 𝜌CHO,TS. A negative value for 𝜌 represents an 

antiferromagnetic alignment with the spin density on the metal center. Mn and Fe are highlighted 

via larger triangle symbols. Results are at the B3LYP-D3(BJ)/def2-TZVP level of theory. 

 

By comparing the spin density analysis before and at the transition state for C−H activation, 

there are several catalytic candidates where the initial [MO]2+ state has a ferromagnetically aligned 

ground state, but a spin flip must occur as the transition state is approached (Figure 4.7). This 

appears unique to the Mn- and Fe-containing frameworks (although the ferromagnetic and 

antiferromagnetic states for the [MnO]2+ species are often close in energy, as shown in Table C.11). 
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The relative enthalpies of various spin states for two representative MOFs, Mn-BBTA-F and Fe-

BBTA-F, are illustrated in Figure 4.7 and indicate that this change from a parallel alignment of 

spins (red) to antiparallel alignment (blue) occurs in both frameworks without a change in the 

overall spin multiplicity of the system. We note that an antiferromagnetically aligned iron-oxo 

complex could only be isolated computationally if a constrained geometry optimization was 

performed with the Fe−O bond artificially stretched beyond that of the initial state, mimicking the 

increase in bond length associated with the transition state. Therefore, this spin state appears to 

only form along the C−H activation reaction coordinate. This type of spin state behavior has 

previously been predicted in an [FeO]2+ complex, where it was concluded that a spin-coupled 

electron pair must form as the Fe−O bond elongates to form a reactive oxyl radical en route to the 

transition state.301,302 

 
Figure 4.8. Apparent C−H activation enthalpies at the terminal metal-oxo sites of a) Mn-BBTA-F 

and b) Fe-BBTA-F for different spin states. A spin state labeled “FM” (ferromagnetic) or “AFM” 

(antiferromagnetic) refers to the alignment of the metal spin density and the spin density on the 

oxo ligand (or three-center C−H−O radical at the transition state). Representative portions of the 
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lowest energy structures are shown. Atom color key: Mn (purple), Fe (orange), O (red), Cl (green), 

N (blue), C (black), H (white). Results are at the B3LYP-D3(BJ)/def2-TZVP level of theory. 

 

The apparent change from ferromagnetic to antiferromagnetic coupling represents a 

pronounced example of two-state reactivity (TSR),303,304 except unlike most TSR scenarios where 

there is a spin crossing between two different spin multiplicities, here the spin transition occurs 

between two arrangements of spins for a fixed spin multiplicity. Comparing the C−H activation 

barriers for Mn-BBTA-F along several relevant spin channels as one example, the pathway 

involving antiferromagnetic coupling of the unpaired electrons on the metal and the three-center 

C−H−O radical (Figure 4.8a, blue) reduces the activation enthalpy by 92 kJ/mol with respect to 

the ferromagnetically aligned transition state (Figure 4.8a, red). A similarly large activation 

enthalpy difference of 87 kJ/mol is observed for Mn-BBTA-Br (Table C.18). This phenomenon is 

also present for the Fe-containing frameworks, as has been noted previously by Neese and 

coworkers.301,302,305 For Fe-BBTA-F, the antiferromagnetically aligned transition state (Figure 

4.8b, blue) reduces the barrier for C−H activation by 51 kJ/mol with respect to the 

ferromagnetically coupled transition state (Figure 4.8b, red). A similar 39 kJ/mol enhancement is 

seen for Fe-BBTA-Br (Table C.19). 

A population analysis at the transition state indicates that the magnitude of the spin density 

on the abstracting O atom is approximately equal in the ferromagnetic and antiferromagnetic high-

spin states for Mn-BBTA-F (Table 4.1). Instead of the degree of radical-like character, this drastic 

difference in activation enthalpies is better explained within the context of exchange-enhanced 

reactivity.240,241,306,307 Exchange-enhanced reactivity implies that an increase in the number of 
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identical-spin electrons on the transition metal center can stabilize the transition state via a greater 

number of exchange interactions, provided this exchange stabilization is greater than the energy 

required to place the electron in an otherwise vacant orbital. In the case of methane activation, this 

electron comes from the cleavage of the C−H bond and can either be added to an empty 3𝑑 orbital 

on the metal or paired up with an electron of the opposite spin in a singly occupied molecular 

orbital.240 As shown in Table 4.1, for both Mn-BBTA-F and Fe-BBTA-F, the pathway that 

increases the spin density (i.e. increases the spin-identical electrons and thereby exchange 

interactions) on the metal center is the one with the greatly reduced C−H activation barrier. Most 

often, exchange-enhanced reactivity is used to rationalize an increase in the spin multiplicity at the 

transition state for C−H activation. Here, however, the spin multiplicity is constant because the 

electron is added to the metal in combination with a spin-flip on the abstracting O atom that forms 

the three-center C−H−O radical. 

Table 4.1. Hirshfeld spin density, 𝜌, for the metal (M) and oxo ligand (O) in the [MO]2+ initial 

state and at the transition state (TS) for the C−H activation of methane for various spin states of 

Mn-BBTA-F and Fe-BBTA-F. The spin density on the C atom of methane at the TS is also shown. 

The spin state containing dashed lines could not be isolated computationally. Bolded values 

correspond to the lowest energy structure. Results are at the B3LYP-D3(BJ)/def2-TZVP level of 

theory. 

MOF 𝑆 𝜌M,[MO]2+ 𝜌O,[MO]2+ 𝜌M,TS 𝜌O,TS 𝜌C,TS 

Mn-BBTA-

F 

3/2 (AFM) 3.53 −0.76 3.65 −0.38 −0.41 

3/2 (FM) 2.44 0.46 1.99 0.37 0.43 

1/2 (FM) 0.66 0.34 0.05 0.41 0.43 

Fe-BBTA-F 

3 (FM) 4.13 1.25 4.14 0.85 0.36 

2 (AFM) --- --- 4.04 −0.09 −0.34 

2 (FM) 3.19 0.49 2.88 0.36 0.42 

1 (FM) 1.27 0.74 0.96 0.50 0.43 
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Finally, returning to the concept of spin density on the oxo ligand, it is worth noting that if 

one focuses on a single spin channel in the examples shown in Figure 4.8, the lowest barrier 

corresponds to the active site with the most radical-like character on the abstracting O atom (i.e. 𝑆 

= 3/2 (AFM) for Mn-BBTA-F and 𝑆 = 3 (FM) for Fe-BBTA-F, as shown in Table 4.1). This 

suggests that when attempting to rationalize the barrier heights of individual spin channels for a 

single catalytic candidate, spin density on the oxo ligand can be illustrative. However, the 

possibility of a spin transition during the C−H activation process is one factor that prevents a direct 

relationship between the radical-like character on the oxo ligand and the activation enthalpy of the 

process when calculated by comparing the enthalpies of the most stable initial state and transition 

state. 

4.4 Conclusion 

Significant attention in recent years has been focused on using MOFs with coordinatively 

unsaturated metal sites for the purposes of oxidation catalysis. In MOFs where a terminal metal-

oxo species is the proposed active site, one of the known challenges is stabilizing the fleeting 

nature of the metal-oxo complex, if it can even be formed at all. In this work, we studied a highly 

tunable family of metal−triazolate frameworks with the general formula M2X2(bbta) (M = divalent 

metal, X = monovalent bridging anion, H2bbta = 1H,5H-benzo(1,2-d:4,5-d′)bistriazole). The 

results of the quantum-chemical investigation highlight how anion-exchange of the bridging 

ligands can be used to tune the reactivity of MOFs for oxidation catalysis. In particular, MOFs 

with μ-OH-, μ-SH-, and μ-SeH- ligands tend to be better at stabilizing the metal-oxo species than 

μ-F-, μ-Cl-, and μ-Br- ligands. The basicity of the bridging ligand is also qualitatively correlated 
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with the thermodynamic favorability of forming the [MO]2+
 site, with trends that are a function of 

metal identity. With regards to the reactivity of the hypothesized metal-oxo sites, relatively low 

(i.e. < 75 kJ/mol) apparent C−H activation barriers are predicted for all the frameworks in this 

work except those containing V2+ cations. These results suggest that future efforts should primarily 

be focused on stabilizing the [MO]2+ site rather than on improving their ability to activate strong 

C−H bonds. 

For the Mn- and Fe-containing frameworks in particular, the high reactivity can be attributed 

to the formation of antiferromagnetically coupled spin density on the metal binding site and the 

abstracting O atom at the transition state for C−H bond activation, which is not necessarily present 

in the initial [MO]2+ state. In cases where there is a ferromagnetic to antiferromagnetic transition 

en route to the transition state, this is an example of two-state reactivity, albeit one with a fixed 

spin multiplicity. The more reactive pathway is the one that increases the spin density on the metal 

center, consistent with the concept of exchange-enhanced reactivity. In addition, we note that the 

presence of significant spin density on the abstracting O atom at either the initial [MO]2+ state or 

the C−H activation transition state is not always directly related to low C−H activation barriers. 

We expect that these trends are not restricted to the M2X2(bbta) family of materials and may be 

used to rationalize the reactivities of other inorganic, bioinorganic, and enzymatic catalysts 

wherein terminal metal-oxo species are believed to carry out the oxidation of strong C−H bonds. 
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Chapter 5: TUNING THE REDOX ACTIVITY OF METAL–ORGANIC 

FRAMEWORKS FOR ENHANCED, SELECTIVE O2 BINDING 

This chapter describes the use of computational screening methods based on periodic 

density functional theory to investigate O2 and N2 adsorption at the coordinatively unsaturated 

metal sites of several MOF families. A variety of design handles are identified that can be used to 

modify the redox activity of the metal centers, including changing the functionalization of the 

linkers, anion exchange of bridging ligands, and altering the formal oxidation state of the metal. 

As a result, we show that it is possible to tune the O2 affinity at the open metal sites of MOFs for 

applications involving the strong and/or selective binding of O2. In contrast with O2 adsorption, 

N2 adsorption at open metal sites is predicted to be relatively weak across the MOF dataset, with 

the exception of MOFs containing synthetically elusive V2+ open metal sites. As one example from 

the screening study, we predicted that exchanging the μ-Cl- ligands of M2Cl2(bbta) (H2bbta = 

1H,5H-benzo(1,2-d:4,5-d′)bistriazole) with μ-OH- groups would significantly enhance the strength 

of O2 adsorption at the open metal sites without a corresponding increase in the N2 affinity. 

Experimental investigation of Co2Cl2(bbta) and Co2(OH)2(bbta) confirms that the former exhibits 

weak physisorption of both N2 and O2, whereas the latter is capable of chemisorbing O2 at room 

temperature in a highly selective manner. The O2 chemisorption behavior is attributed to the 

greater electron-donating character of the μ-OH-
 ligands and the presence of H-bonding 

interactions between the μ-OH- bridging ligands and the reduced O2 adsorbate. 

 All the density functional theory (DFT) calculations in this work were carried out by A.S. 

Rosen. M. Rasel Mian and T. Islamoglu synthesized, characterized, and tested the O2 adsorption 
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behavior of Co2X2(bbta) (X = Cl, OH). H. Chen carried out the grand canonical Monte Carlo 

simulations and helped calculate the O2/N2 selectivity. All authors provided feedback on the 

manuscript. 

This chapter is adapted from the following peer-reviewed article: A.S. Rosen, M. Rasel 

Mian, T. Islamoglu, H. Chen, O.K. Farha, J.M. Notestein, R.Q. Snurr. “Tuning the Redox Activity 

of Metal−Organic Frameworks for Enhanced, Selective O2 Binding: Design Rules and Ambient 

Temperature O2 Chemisorption in a Cobalt−Triazolate Framework.” Journal of the American 

Chemical Society, 142, 4317–4328 (2020). 
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5.1 Introduction 

Since the discovery and characterization of hemoglobin in the 1800s, significant effort has been 

focused on designing synthetic transition metal complexes that can bind O2 for a diverse range of 

applications, including oxidation catalysis, electrocatalytic oxygen reduction, and the separation 

of oxygen from air.308–311 Over the last several decades, metal−dinitrogen complexes have also 

been actively investigated, with much attention focused on catalytic nitrogen activation, the 

separation of nitrogen from methane-rich natural gas, and the purification of N2 from air.310,312–314 

For each of these purposes, the binding strength of O2 and/or N2 has a significant influence on the 

performance of the investigated material. This is especially true for the design of an adsorbent that 

can separate O2 from N2, as the material must be able to selectively bind one molecule over the 

other at ambient temperatures and to do so reversibly.309 An adsorbent that could perform this 

separation at moderate conditions with high selectivity would be desirable for industrial and 

medical processes that require purified O2,
315 as the conventional method to separate O2 from air 

at a large scale involves cryogenic distillation, an energy-intensive and expensive process.316 

While cation-exchanged zeolites are currently used as adsorbents for air separation purposes,315 

they typically favor the adsorption of N2 over O2 and are inefficient compared to O2-selective 

materials for the production of O2 via air separation. 

Metal−organic frameworks (MOFs) have been widely studied for applications involving 

the binding of small molecules due to their well-defined structures and high degree of tunability 

made possible by modifying the inorganic nodes and organic linkers that compose each 

material.171,172,317–320 MOFs with coordinatively unsaturated metal sites, also known as open metal 



126 

 

sites, are of particular interest for the selective binding of O2 or N2 due to the possibility of charge 

transfer between the adsorbate and exposed metal cations.321 

Despite active research in this area,22,24,185,216,322–325 significant improvements are still 

needed to achieve a greater O2/N2 selectivity at near-ambient conditions before MOFs with open 

metal sites can be used for the purification of O2 from air. Several MOFs with Cr(II) open metal 

sites, including Cr3(btc)2 (H3btc = benzene-1,3,5-tricarboxylic acid) and Cr-BTT 

(Cr3[(Cr4Cl)3(BTT)8]2, H3BTT = benzene-1,3,5-tris(1H-tetrazole)),22,185 show strong and selective 

binding of O2 over N2 but exhibit a loss in capacity with multiple cycles. Oftentimes, MOFs with 

open metal sites exhibit only weak physisorption of O2 and N2, especially at near-ambient 

temperatures.324,326 On both ends of this spectrum, Fe2(dobdc) (H4dobdc = 2,5-dihydroxybenzene-

1,4-dicarboxylic acid) reversibly binds O2 over N2 at low temperatures, but temperatures above 

226 K result in the formation of superoxo species that irreversibly oxidize the framework.24 Among 

the more promising MOFs investigated for O2/N2 separation, Co-BTTri (Co3[(Co4Cl)3(BTTri)8]2, 

H3BTTri = 1,3,5-tri(1H-1,2,3-triazol-5-yl)benzene) and Co-BDTriP (Co3[(Co4Cl)3(BDTriP)8]2, 

H3BDTriP = 5,5′-(5-(1H-pyrazol-4-yl)-1,3-phenylene)bis(1H-1,2,3-triazole)) can reversibly bind 

O2 over N2, although their selectivity towards O2 is significantly reduced at temperatures above 

195 K.216 

Given the enormous library of inorganic nodes and organic linkers44,89 and the significant 

time involved in synthesizing, characterizing, and testing new MOFs for O2/N2 separation, there 

is a need for design rules that can be used to predictively tune the O2 and N2 affinities at the open 

metal sites of MOFs. Computational screening methods based on first-principles calculations are 

appealing avenues to achieve this goal, as multiple distinct MOF families can be studied in a 
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systematic fashion and on a much larger number of materials than would be feasible 

experimentally. However, much of the prior computational work has been carried out on a small 

scale, often focusing on MOFs directly motivated by experiments217,327,328 or on the prototypical 

(yet structurally unrelated) M2(dobdc) and M3(btc)2 MOF families.326–331 This has limited the 

identification of broadly generalizable principles that can be used to identify and predictively 

design new MOFs for applications involving the adsorption of O2 or N2 at redox-active open metal 

sites. Nonetheless, for these systems, theory-driven studies have proven quite useful for 

understanding the effect of metal identity,330 preferred gas binding geometries,328,330 electronic 

structure of the [M−O2]
2+ species,327 and dynamics of competitive gas adsorption.329 Prior work 

has also shown that the O2/N2 selectivity can be correlated with the difference in computed binding 

energies,330 although the ambient temperature O2/N2 selectivity is often significantly lower than 

that at cryogenic conditions.216,324 The discovery of MOFs that selectively bind O2 over N2 at room 

temperature remains a significant challenge. 

In the present study, we leverage a high-throughput periodic density functional theory 

(DFT) workflow32 to investigate O2 and N2 adsorption at the open metal sites of several MOF 

families (Figure 5.1). We have specifically chosen structurally related pairs of MOFs to aid in 

identifying structure−property relationships that can be used to guide the design of MOFs with 

enhanced affinities for O2 and/or N2 at open metal sites, primarily (albeit not exclusively) for air 

separation applications. These MOF families include M(II)2(dobdc),201,202,332 M(II)2(dsbdc) 

(H4dsbdc = 2,5-disulfhydrylbenzene-1,4-dicarboxylic acid),205,206 M(II)2Cl2(bbta) (H2bbta = 

1H,5H-benzo(1,2-d:4,5-d′)bistriazole),193,194,271 M(II)2(OH)2(bbta),273,275,277 M(II)M(III)2(μ3-

O)(bdc)3 (H2bdc = benzene-1,4-dicarboxylic acid),199,200 and M(III)3(μ3-O)(bdc)3OH,199,200 which 
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were selected due to their ability to support several coordinatively unsaturated, first row transition 

metal cations as well as their structural tunability. 

 
Figure 5.1. MOF families that are the primary focus of this work, with each row representing a 

pair of structurally related materials. The inorganic nodes, organic linkers, and crystal structures 

are highlighted for each MOF family. Color key: M (orange), O (red), S (yellow), N (blue), Cl 

(green), C (gray), H (white). 

 

As a result of our computational screening workflow and the design rules established in 

this work, we predict that exchanging the μ-Cl- ligands of Co2Cl2(bbta) with μ-OH- ligands to form 

the isostructural framework Co2(OH)2(bbta) should significantly enhance the O2 affinity at the 

open Co(II) sites without strengthening their interaction with N2. This prediction is further 

validated experimentally, providing support that MOFs with open metal sites that are otherwise 

redox-inactive can be made to chemisorb O2 by means of post-synthetic ligand-exchange, 
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particularly when using basic bridging ligands that also enable H-bonding interactions with the 

reduced O2 adsorbate. 

5.2 Methods 

5.2.1 Constructing Initial Model Structures 

To aid in the identification of structure−property relationships, the members of each MOF family 

were modeled as being in an isostructural series using the coordination geometries shown in Figure 

5.1. For brevity, we will often refer to these MOFs as MOF-74 or MOF-74-S, MAF-X (MAF = 

Metal−Azolate Framework, X = bridging anion), and MIL-88B (MIL = Materials Institut 

Lavoisier) or MIL-88B-OH, as shown in Figure 5.1. We considered the presence of V2+, Cr2+, 

Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+ cations for MOFs with M2+ binding sites and Sc3+, Ti3+, 

V3+, Cr3+, Mn3+, Fe3+, Co3+, and Ni3+ cations for MOFs with M3+ binding sites. The MOF-74, 

MOF-74-S, and MAF-X families support divalent metal cations, whereas the MIL-88B family can 

support formally trivalent (in the case of MIL-88B-OH) or mixed divalent/trivalent (in the case of 

MIL-88B) cations depending on the presence of terminal OH groups, as depicted in Figure D.1.  

Some of the metal cations considered in this work have yet to be experimentally 

incorporated in the investigated MOF families; nonetheless, a wide range of 3𝑑 metals were 

considered for the purposes of identifying trends related to O2 and N2 adsorption at open metal 

sites in MOFs. As adopted in prior computational studies of MOFs,281 only a single 3𝑑 metal 

cation was included per primitive simulation unit cell during the screening process to reduce the 

computational expense and prevent challenges associated with accurately identifying complex 

ground state spin orderings. The remaining metal species were exchanged with closed-shell 

cations, namely Mg2+ or Al3+ depending on the formal oxidation state of the metal in the as-
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synthesized state (Figure D.1). Similar structures have been achieved experimentally for a variety 

of MOFs, such as Mg1.9Fe0.1(dobdc)168 and Fe-doped Al-MIL-53.98 Various mixed-metal motifs 

have also been incorporated in the trimetallic nodes of the PCN-250 (PCN = Porous Coordination 

Network) and MIL-88 families.200,333 

Adsorbates were systematically added to the open metal sites in an automated fashion using 

the MOF Adsorbate Initializer (MAI) program.32,117 O2 conventionally adsorbs to mononuclear 

transition metal complexes in either a bent, end-on (𝜂1) mode or a side-on (𝜂2) mode, whereas 

stable M−N2 complexes are generally only found with near-linear, end-on (𝜂1) adsorption 

modes.310,334 The initialized structures generated using MAI were constructed accordingly. For O2, 

an 𝜂1 mode with an M−O−O bond angle of 120° and an 𝜂2 mode with an M−OMP−O bond angle 

of 90° were constructed, where M is the metal binding site and OMP represents the midpoint 

between the two O atoms in molecular oxygen. For N2, an 𝜂1 mode with an M−N−N bond angle 

of 180° was constructed. In all cases, a single guest molecule was introduced to the Niggli-reduced 

unit cell, and the lowest energy conformations resulting from the DFT optimization of these initial 

structures were considered for further analysis. The CrystalNN bonding topology algorithm335,336 

implemented in Pymatgen82 was used to categorize if the lowest energy adsorbate configuration 

exhibits an 𝜂1 or 𝜂2 adsorption mode (or approximately no binding at all, which we denote 𝜂0) 

following structural optimization. 

5.2.2 Quantum-Chemical Calculations 

For the DFT screening procedure, adsorption energies were evaluated using the Vienna ab initio 

Simulation Package (VASP) v.5.4.1122,123 with v.5.4 of the VASP-recommended337 projector-

augmented wave (PAW) pseudopotentials.124 The unit cell shapes and volumes for the diluted 
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MOFs were optimized using the PBE-D3(BJ) level of theory,125–127 as PBE with dispersion 

corrections has been shown to accurately capture the lattice constants of a variety of MOFs.128,129 

Following this, the lattice constants were kept fixed and the atomic positions refined using the 

M06-L meta-generalized gradient approximation (GGA) exchange-correlation functional.287 All 

subsequent calculations involving the adsorption of any guest molecules were carried out at the 

M06-L level of theory with a fixed simulation unit cell. While hybrid-level functionals would be 

expected to reduce the tendency to overbind O2,
326 their high computational cost precludes their 

use when screening a large number of MOF−adsorbate systems, each with several possible spin 

states and adsorption modes. O2 and N2 adsorption energies computed using GGA and GGA+U 

approaches will be reported in forthcoming work and show similar structure−property 

relationships to those reported here.74 

As benchmarked and described in detail previously,32 a multi-stage automated workflow 

built upon the Atomic Simulation Environment83 was used to robustly and efficiently carry out the 

periodic DFT calculations in this work. The final high-accuracy settings used in the optimization 

workflow include a 520 eV plane-wave kinetic energy cutoff, 𝑘-point density of approximately 

1000/number of atoms (as computed using Pymatgen’s automatic 𝑘-point density generator82), and 

a force-convergence criterion of 0.03 eV/Å.32 Spin-polarization was considered for each MOF, as 

summarized in Table D.1. The properties of the lowest energy spin state found from this procedure 

are reported in all analyses. The preconditioned conjugate gradient “all bands simultaneous update 

of orbitals” algorithm132,133,338 was used to converge the self-consistent field (SCF), and Gaussian 

smearing of the band occupancies with a smearing width of 0.01 eV was employed (with electronic 

energies extrapolated back to the 0 K limit). The SCF was considered converged when the change 
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in electronic energy was less than 10-6 eV. The accurate-precision keyword was enabled in VASP, 

and all symmetry operations were disabled. Isolated gas-phase species were modeled in the center 

of a periodic box with 10 Å of vacuum space on each side of the molecule and 𝑘-point sampling 

at the Γ-point only. 

O2 and N2 adsorption energies were computed as 

Δ𝐸O2
= 𝐸MOF−O2

− 𝐸MOF − 𝐸O2
(5.1) 

Δ𝐸N2
= 𝐸MOF−N2

− 𝐸MOF − 𝐸N2
(5.2) 

where 𝐸MOF−O2
 and 𝐸MOF−N2

 are the electronic energies of the MOF with an O2 or N2 guest species 

at the open metal site, 𝐸MOF is the electronic energy of the bare MOF, and 𝐸O2
 and 𝐸N2

 are the 

electronic energies of isolated O2 and N2, respectively. All computed physicochemical properties 

(e.g. optimized structures, spin states, binding modes, partial charges, spin densities), and 

additional methodological details can be found in the Appendix. 

Periodic DFT calculations of the non-diluted Co2(OH)2(bbta) and Co2Cl2(bbta) 

frameworks were carried out at the PBE-D3(BJ) level of theory with a Hubbard U correction339 of 

3.3 eV on the d levels of the Co sites chosen because of its ability to reproduce oxidation energies 

in cobalt oxides.340 This level of theory accurately reproduces both the lattice constants and O2 

adsorption energy in the structurally similar Co-BTTri framework (Table D.7). Additional 

computational details, such as the most stable spin states, can be found in the Appendix, with all 

computational results hosted at the Zenodo repository with DOI: 10.5281/zenodo.2652475. 
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5.2.3 Experimental Methods 

Co2Cl2(bbta) and Co2(OH)2(bbta) were synthesized, characterized, and investigated for their O2 

and N2 uptake. The MOFs were synthesized based on previously reported procedures,194,277,280 with 

Co2(OH)2(bbta) prepared by soaking 50 mg of the parent Co2Cl2(bbta) framework overnight in 25 

mL of 1 M KOH solution at room temperature. Powder X-ray diffraction (PXRD), N2 

physisorption surface area using the Brunauer–Emmett–Teller (BET) method, X-ray photoelectron 

spectroscopy (XPS), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) 

were carried out to characterize the materials and to confirm the full exchange of μ-Cl- ligands 

with μ-OH- in synthesizing Co2(OH)2(bbta). Additional details regarding the experimental 

methods can be found in the Appendix. 

5.3 Results and Discussion 

5.3.1 Overview of Screening Results and Periodic Trends 

Using a high-throughput periodic DFT workflow,32 we screened the MOFs shown in Figure 5.1 

for the adsorption of O2 and N2. As summarized in Figure 5.2, a wide spread of O2 and N2 

adsorption energies are observed across the MOF dataset. Nonetheless, the range in O2 binding 

energies is approximately three times larger than that of the N2 binding energies, suggesting that 

the chemisorption of O2 is more common than that of N2 at the MOF open metal sites. There are 

also broad periodic trends in the O2 affinity at the open metal sites in MOFs, with early transition 

metals generally resulting in significantly more exothermic adsorption energies than later 

transition metals for a given MOF family and oxidation state (Figure 5.2a). This is consistent with 

the fact that 𝑑 orbital energies tend to decrease (i.e. become more stable) with increasing 𝑑 electron 

count, which reduces the degree of electron density transferred from the metal to the O2 

adsorbate.310 
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Figure 5.2. a) O2 adsorption energy, Δ𝐸O2

, and b) N2 adsorption energy, Δ𝐸N2
, at the M06-L/PAW 

level of theory for each MOF shown in Figure 5.1. For each metal, the MOFs are organized from 

strongest to weakest binding of the guest molecule. 

 

Depending on the interaction between the metal center and O2 adsorbate, the 

metal−dioxygen complex can take on one of several possible electronic states that exist on the 

spectrum of M(II)−O2 ↔ M(III)−O2
- ↔ M(IV)−O2

2-. By comparing the sum of Bader partial 

atomic charges on the O2 adsorbate with the sum of Bader partial charges on the O atoms of 

gaseous H2O2, HO2, and O2, it is possible to evaluate the degree of O2 reduction for each MOF. 

As shown in Figure 5.3a, the exothermicity of O2 adsorption is correlated with the degree of charge 

transfer to the O2 adsorbate, implying that redox-active open metal sites are needed for strong O2 

chemisorption. In addition, the results in Figure 5.3a indicate that the reduction levels of O2 are 

best thought of as continuous, in contrast with the quantized perspective often invoked in the 

literature.310 
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Figure 5.3. a) Relationship between the O2 adsorption energy, 𝛥𝐸𝑂2

, and sum of Bader partial 

atomic charges on the O2 adsorbate, 𝑞Bader,O2
, at the M06-L/PAW level of theory categorized by 

negligible (𝜂0, squares), end-on (𝜂1, circles) and side-on (𝜂2, triangles) binding modes. The dashed 

vertical lines indicate reference 𝑞Bader,O2
 values for free H2O2 (i.e. O2

2-), HO2 (i.e. O2
-), and O2 

(neutral molecule). b) Example DFT-optimized geometries at the M06-L/PAW level of theory 

(only a representative portion of the binding site is shown). Color key: V (silver), Mn (purple), Fe 

(orange), Cu (brown), O (red), S (yellow), N (blue), Cl (green), H (white). 

 

DFT-computed stretching frequencies, bond distances, spin densities, and partial atomic 

charges of the O2 and N2 guest molecules collectively indicate that the MOFs in this work support 

dioxygen-, superoxo-, and peroxo-like binding of O2, whereas the triple bond of N2 stays largely 

intact for most of the MOFs (Figure D.2). In terms of the most favorable O2 binding modes for the 

MOFs in Figure 5.1, side-on adsorption was observed at all the Ti3+, V2+, V3+, Cr3+, and Fe2+ sites, 

whereas a bent, end-on mode occurred for the remaining transition metals (excluding those with 

negligible binding, such as the Sc3+, Cu2+, and Zn2+ sites), as shown in Table D.1. In most cases, 

the side-on binding modes are associated with a greater degree of superoxo character than the end-

on binding mode (Figure 5.3a). Select MOFs are shown in Figure 5.3b to highlight the different 

O2 adsorption behavior across the MOF dataset. 
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The binding of N2 typically involves 𝜋-backbonding interactions from the metal 𝑑 orbitals 

into the 𝜋∗ orbitals of N2, and the extent of 𝜋-backbonding is expected to be greater in low-valent, 

relatively electropositive transition metals.310 As such, one would expect qualitatively similar 

periodic trends for both the O2 and N2 binding energies, with stronger binding for the divalent, 

early transition metals. While MOFs with V2+ sites tend to adsorb N2 much more than strongly 

than all divalent cations with higher 𝑑 electron counts, this periodic trend appears to be less 

pronounced than that for O2 binding (Figure 5.2). The MOF with the largest N2 binding energy at 

the M06-L/PAW level of theory is V-MOF-74, which was previously predicted to be a promising 

candidate for the separation of N2 from CH4 via strong 𝜋-backbonding interactions between the 

V2+ cations and N2, although its synthesis has yet to be realized.341 Based on the results in Figure 

5.2, it appears that this behavior is not unique to V-MOF-74 and that several other MOFs with V2+ 

open metal sites, such as the yet-to-be-synthesized V-MAF-OH, would have similarly strong 

bonding interactions with N2 (Figure 5.2b, Figure D.4).e However, the even stronger and highly 

exothermic adsorption of O2 in these materials points to their likely instability in air. 

For a given oxidation state, open metal sites composed of early transition metals are more 

likely to selectively bind O2 over N2 (Figure D.5), as has been noted previously.330 Despite this, 

we caution against the design of MOFs with readily oxidized early transition metals for this 

application, as the highly exothermic O2 adsorption energies are likely to result in irreversible 

chemisorption or, potentially, decomposition of the framework. This behavior has caused several 

previously investigated MOFs with early transition metals, such as M-MIL-101 (M = Ti, V),20,217 

 
e Following the publication of this work, V2Cl2.8(btdd) was experimentally synthesized and shown to selectively adsorb 

N2 at the V(II) sites.279 
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to be unsuitable for applications where reversible O2 adsorption is necessary. Additionally, MOFs 

with exposed, low-valent early transition metals (particularly V2+ and Cr2+) have not been widely 

synthesized to date.22,185,207,342,343 At the other end of the first row of transition metals, MOFs with 

Ni, Cu, and Zn cations are unlikely to result in high O2/N2 selectivities, as they are not predicted 

to strongly adsorb O2 at the metal centers. We instead recommend the identification and design of 

MOFs with redox-active Mn2+, Fe2+, or Co2+ sites that can be made to strongly favor the adsorption 

of O2 over N2 without forming metal−peroxo complexes that are often associated with irreversible 

O2 binding in MOFs.20,24,344 

5.3.2 Trends Between Related MOF Families 

By examining the results for structurally related MOF families, it is possible to discern how subtle 

changes to the linkers and nodes of MOFs can be used to significantly modify the O2 and N2 

binding strengths. Starting with the MOF-74 and MOF-74-S families, Figure 5.4 shows that the 

presence of thiophenoxide groups in MOF-74-S results in weaker adsorption of O2 than the 

phenoxide groups of MOF-74, a trend that holds for all the metal cations considered in this work. 

The O2 adsorption energy trend is the opposite of what might be predicted solely on the basis of 

electronegativity differences between O and S. Even though the metal centers of MOF-74 have 

higher partial atomic charges than their corresponding MOF-74-S analogues (Table D.2), the 

former still binds O2 more strongly. Although likely not the sole factor, as noted in prior work for 

a series of ketoiminato/thioiminato Co(II) complexes,345 these trends can be attributed in part to 

the greater donating character of the oxido (as opposed to sulfido) bridges. Figure 5.4 also shows 

that MOF-74 tends to bind N2 more strongly than MOF-74-S. We note that the experimentally 

synthesized Mn-MOF-74-S structure is known to have seesaw-like open metal sites (Figure D.6), 
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in contrast with the M-MOF-74 family and Fe-MOF-74-S.206 This seesaw structure for Mn-MOF-

74-S is also predicted to have a lower affinity for O2 and N2 than its Mn-MOF-74 counterpart 

(Table D.3).  

 
Figure 5.4. O2 adsorption energy (red) and N2 adsorption energy (blue) at the M06-L/PAW level 

of theory for MOF-74 (no hatch, left bars) and MOF-74-S (diagonal hatch, right bars) as a function 

of atomic number of the open metal site. 

 

Significant differences in the O2 binding strength are also found between the MAF-Cl and 

MAF-OH families, which have identical triazolate linkers but different bridging anions connecting 

the extended chain of metals. Based on the periodic DFT calculations, we predict that the triazolate 

MOFs with μ-OH- species generally bind O2 more strongly than their analogues with μ-Cl- species 

(Figure 5.5). The only exception is for the Cu- and Zn-containing MOFs, where changing the 

bridging ligands does not greatly influence the O2 binding affinity since neither Cu2+ nor Zn2+ are 

expected to be oxidized by O2. 
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Figure 5.5. O2 adsorption energy (red) and N2 adsorption energy (blue) at the M06-L/PAW level 

of theory for MAF-OH (no hatch, left bars) and MAF-Cl (diagonal hatch, right bars) as a function 

of atomic number of the open metal site. 

 

Based on the DFT-optimized structures, we predict that the MAF-OH family allows for H-

bonding between the bridging μ-OH- species and the O2 species bound to the metal sites (Figure 

D.7), provided the O2 molecule has been partially reduced. The presence of H-bonding is believed 

to stabilize metal−dioxygen species in enzymatic systems, such as hemoglobin,346,347 and can be 

used to provide further control over the O2 adsorption energy in MOFs where this functionality is 

possible. In addition, the μ-Cl- ligands and μ-OH-
 ligands have notably different basicities. Several 

correlations have been noted in prior work that relate greater basicities of the coordinating ligands 

to stronger O2 affinities,344,348 as is predicted here for MAF-OH. In these cases, the basicity of the 

ligand acts as a proxy for its donating ability, which serves to stabilize the oxidized state of the 

metal site. With the exception of proposed V2+ open metal sites as previously discussed, both the 

MAF-Cl and MAF-OH families are predicted to weakly physisorb N2 (i.e. |Δ𝐸N2
| < 23 kJ/mol). 

They also show weaker affinities for N2 than the analogous members of the M-MOF-74 series. We 
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note that the substitutions invoked for both the MOF-74/MOF-74-S and MAF-OH/MAF-Cl 

families are with respect to the equatorial ligands. If the modified ligands were in the axial position, 

the adsorption process can also be influenced by structural trans effects, which may need to be 

considered.349–352 

To further emphasize the degree of control over the O2 adsorption energies that is possible 

via this anion exchange approach, the equatorial bridging anions in MAF-Cl were exchanged with 

a wider range of species. Varying both the metal and bridging anion, we considered M = V2+−Ni2+ 

and bridging ligands of (in order of increasing p𝐾a of the parent acid)353,354 μ-Br-, μ-Cl-, μ-F-, μ-

SH-, and μ-OH-. As shown in Figure 5.6, there is a qualitative trend in the O2 adsorption energy as 

a function of the bridging ligand, with stronger O2 binding found in MOFs that have more basic 

ligands. In addition, the ionic radius of the bridging ligand may play a complementary role in this 

family of MOFs, as smaller bridging anions allow for closer contact between the metals and their 

coordinating, equatorial donor ligands (Table D.4). Based on the results in Figure 5.6, it is clear 

that the reactivity of the metal site can be finely tuned via judicious selection of the metal and 

bridging ligand. Nonetheless, of the Mn-, Co-, and Ni-containing MOFs in Figure 5.6, only Co-

MAF-F, Co-MAF-SH, and Co-MAF-OH are predicted to bind O2 more strongly than their M-

MOF-74 counterpart – an important comparison given that M-MOF-74 (M = Mn, Co, Ni) does not 

chemisorb O2 at room temperature.28,326 All members of the Co-MAF-X series investigated in this 

work are predicted to have weak interactions with N2 (Table D.5). 
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Figure 5.6. O2 adsorption energy as a function of the bridging anion, X, for several M-MAF-X 

structures at the M06-L/PAW level of theory. For a given metal, the adsorption energies are 

relative to X = Br. The bridging anions are listed as a function of their basicity, as measured by 

the 𝑝𝐾a of the conjugate acid in water, 𝑝𝐾aH. 

 

In addition to altering the atomic number of the metal or the basicity of the ligands, one 

can also consider modifying the oxidation state of the binding site. This is exemplified with the 

MIL-100 and MIL-101 families, where the presence or lack of charge-balancing OH- anions at the 

trimetallic nodes can be used to tune the formal oxidation state of the metal (Figure D.1, Table 

D.6).355,356 Since the MIL-100 and MIL-101 series have over one thousand atoms per unit cell, we 

chose to study the MIL-88B family, which has the same trimetallic node and terephthalic acid 

linkers as MIL-101 but is more computationally tractable due to its smaller unit cell size. For this 

family of MOFs, the formally trivalent transition metals exhibit significantly weaker adsorption of 

O2 than the lower valent analogues (Figure 5.7), as higher oxidation states reduce the ability of the 

metal site to transfer electron density to the O2 adsorbate. A similar trend is observed for N2 

adsorption, although both Cr3+ and Co3+ sites of MIL-88B-OH are predicted to adsorb N2 at least 

as strong (if not stronger) than their MIL-88B counterparts. In agreement with prior experiments 
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that have shown trimetallic nodes of Cr-MIL-100 and Cr-MIL-101 selectively adsorb N2 over 

O2,
357 the closely related Cr-MIL-88B-OH with Cr3+ open metal sites is predicted to adsorb N2 

more strongly than O2 by approximately 20 kJ/mol. Given these results, we would not suggest 

MOFs with trivalent cations for the selective binding of O2 over N2, although they may be of 

interest for selective N2 binding. 

 
Figure 5.7. O2 adsorption energy (red) and N2 adsorption energy (blue) at the M06-L/PAW level 

of theory for MIL-88B (no hatch, left bars) and MIL-88B-OH (diagonal hatch, right bars) as a 

function of atomic number of the open metal site. 

 

5.3.3 Enhanced, Selective Binding of O2 in Co2(OH)2(bbta) 

Of the MOFs screened in this work, we chose to investigate Co-MAF-OH , as its O2 adsorption 

energy far exceeds that of Co-MAF-Cl and all other cobalt-containing MOFs considered in this 

study (Figure 5.2a and Figure 5.6). When combined with the fact that N2 is predicted to weakly 

physisorb at the open metal sites (Figure 5.2b), Co-MAF-OH is predicted to have the largest 

difference in O2 and N2 binding energies of all the Mn-, Fe-, Co-, Ni-, Cu-, and Zn-containing 

MOFs studied in this work (Figure D.5). Perhaps most importantly, Co-MAF-OH serves as a clear 

example to highlight the effect of bridging ligand identity on the thermodynamic favorability of 

O2 binding; of all the tested transition metals, it is predicted to have the greatest difference in O2 
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binding energy when the μ-Cl- ligands of the parent M-MAF-Cl framework are exchanged with μ-

OH- ligands (Figure 5.6). The corresponding non-diluted structure with all cobalt cations at the 

nodes is known to be stable when exposed to air as well as water, and it is thermally stable up to 

~400 °C in a N2 environment.275,277 For clarity, we will refer to the non-diluted variants of Co-

MAF-OH and Co-MAF-Cl as Co2(OH)2(bbta) and Co2Cl2(bbta), respectively. 

We predict that the most energetically favored adsorption mode for O2 bound at the 

coordinatively unsaturated cobalt sites of Co2(OH)2(bbta) is a bent, end-on mode with a Co−O−O 

angle of 116° and a relatively short Co−O2 bond distance of 1.88 Å. The distance between the 

distal O atom of the O2 adsorbate and the H atom of the nearby μ-OH- group is 2.02 Å, such that 

there are stabilizing H-bonding interactions. Based on an analysis of the Charge Model 5 (CM5) 

partial atomic charges,289 Bader spin densities,159 O−O distance, and O−O stretching frequency, 

the thermodynamically favored [CoO2]
2+ complex in Co2(OH)2(bbta) can be best characterized as 

a low-spin (𝑆 = 1/2) cobalt−superoxo species (Tables D.10 and D.15). The [CoO2]
2+ site of 

Co2Cl2(bbta) is, instead, best described as an antiferromagnetically aligned, Co(II)−dioxygen 

complex (Table D.11). The charge density difference upon O2 adsorption indicates that there is 

significant electron transfer from both the metal center and the adjacent ligands of Co2(OH)2(bbta) 

(Figure 5.8a), in contrast with Co2Cl2(bbta) where little reduction of the O2 molecule occurs 

(Figure 5.8b). The H-bonding interaction between the μ-OH- group of Co2(OH)2(bbta) and the 

distal atom of the O2 adsorbate is also readily observed (Figure 5.8a). 

At the PBE-D3(BJ)+U/PAW level of theory – chosen to enable direct comparison with the 

experimentally determined O2 binding enthalpy in Co-BTTri (Table D.7) – the enthalpy of O2 

adsorption in Co2(OH)2(bbta) is predicted to be Δ𝐻O2
 = −45 kJ/mol in the low-coverage limit 
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compared to Δ𝐻O2
 = −19 kJ/mol for Co2Cl2(bbta) at the same level of theory. In contrast, N2 

adsorption at the open Co(II) sites of Co2(OH)2(bbta) is predicted to be very weak, with Δ𝐻N2
 = 

−14 kJ/mol. The predicted O2 adsorption enthalpy with Co2(OH)2(bbta) is stronger than that of the 

triazolate-bound Co(II) sites of Co-BTTri (𝑄st = −34 kJ/mol) and comparable to that of the 

pyrazolate-bound Co(II) sites in the mixed triazolate/pyrazolate framework Co-BDTriP (𝑄st = −47 

kJ/mol at low-loadings), with similarly weak N2 adsorption.216 

 
Figure 5.8. Charge density difference upon O2 adsorption in a) Co2(OH)2(bbta) and b) Co2Cl2(bbta) 

at the PBE-D3(BJ)+U/PAW level of theory. The yellow and cyan surfaces represent a gain or loss 

of electron density, respectively (isovalue = 0.005 e-/bohr3). Only a representative portion of the 

periodic structure is shown. Color key: Co (dark blue), O (red), N (light blue), C (brown), H 

(white). 

 

Assuming the presence of high-spin Co(II) species, as predicted at the PBE-D3(BJ)+U/PAW level 

of theory (Table D.9), the Co−ligand bond distances decrease by upwards of ~0.1 Å upon 

formation of a low-spin [CoO2]
2+ site (Table D.16). This atypical strengthening of the bonding 

interactions between the coordinating ligands and the cobalt center upon O2 adsorption is due to 

the smaller ionic radius of low-spin Co(III) compared to high-spin Co(II)358 and further stabilizes 
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the [CoO2]
2+ complex. As might be expected based on spin-crossover behavior in several 

previously synthesized metal−azolate frameworks,193,216,267,270 the spin states of the Co(II) sites in 

Co2(OH)2(bbta) are relatively close in energy (Table D.9). The adsorption energies and charge 

density difference plot for hypothetical low-spin Co(II) sites are reported in the Appendix (Figure 

D.9, Tables D.19−D.23) and indicate that O2 chemisorption should occur regardless of the spin 

state of the binding sites. 

Based on our predictions, we chose to experimentally investigate Co2Cl2(bbta) and 

Co2(OH)2(bbta) to support the hypothesis that exchanging the μ-Cl- ligands of Co2Cl2(bbta) with 

μ-OH- ligands would increase the O2 affinity of the Co(II) open metal sites. The PXRD patterns 

are consistent with those that would be expected for Co2Cl2(bbta) and Co2(OH)2(bbta) based on 

prior reports of their crystal structures (Figure D.11).277 The IR spectra, via the presence of an 

O−H stretch at 3650 cm-1 for Co2(OH)2(bbta) but not for Co2Cl2(bbta), and the XPS spectra, via 

the presence of a broad 197.8 eV peak in the Cl 2p core level spectrum of Co2Cl2(bbta) but not 

Co2(OH)2(bbta), both indicate that the chloride anions have been exchanged with hydroxide anions 

in the Co2(OH)2(bbta) material (Figures D.13−D.16). 

The O2 and N2 isotherms at 298 K for Co2Cl2(bbta) and Co2(OH)2(bbta) are shown in 

Figure 5.9. There is a sharp rise in the O2 adsorption isotherm at low pressures for Co2(OH)2(bbta), 

indicative of chemisorption. This is accompanied by a large hysteresis in the O2 adsorption and 

desorption branches, which suggests O2 is chemically bound to the open metal sites. In stark 

contrast, the 298 K O2 isotherm for Co2Cl2(bbta) shows a much shallower rise in the O2 uptake at 

low pressures without any signs of chemisorption. Collectively, these results are consistent with 

an increased O2 affinity enabled by post-synthetically exchanging the μ-Cl- ligands with μ-OH- 
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ligands, as predicted by DFT. Grand canonical Monte Carlo (GCMC) simulations further 

corroborate the finding that Co2Cl2(bbta) solely exhibits O2 physisorption, whereas O2 

chemisorption is present for Co2(OH)2(bbta) (Figure D.21).   

 
Figure 5.9. Experimentally measured O2 (red) and N2 (blue) isotherms for Co2(OH)2(bbta) (circles) 

and Co2Cl2(bbta) (triangles) at 298 K. The O2 adsorption and desorption branches for 

Co2(OH)2(bbta) are shown as closed and open symbols, respectively. 

 

As expected on the basis of the DFT calculations, the N2 isotherms at 298 K for 

Co2Cl2(bbta) and Co2(OH)2(bbta) are both consistent with weak physisorption and are similar for 

both materials (Figure 5.9). As a result of the large difference in O2 and N2 binding in 

Co2(OH)2(bbta), ideal adsorbed solution theory359,360 predicts an O2/N2 selectivity of 49 at 298 K, 

0.21 bar O2, and 0.79 bar N2  (Figure D.17), which is particularly high compared to that of most 

other MOFs reported in the literature for air separation applications.24,185,216,323,324,361–363 For 

reference, Co-BTTri has a selectivity of 41 at 195 K, but this greatly decreases to only 13 at 243 

K; Co-BDTriP has a selectivity of 40 at 243 K, with a significantly lower selectivity expected at 

298 K.216 
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The binding energies resulting from the DFT screening procedure describe the 

thermodynamic favorability of O2 and N2 adsorption, making it possible to gain fundamental 

insights and identify promising MOF candidates to investigate in greater detail. While the binding 

strengths of O2 and N2 are perhaps the most important properties to compute, they are not the only 

factors to consider once MOF promising candidates are identified. In the case of Co2(OH)2(bbta), 

a significantly longer time is needed for the O2 uptake to reach equilibrium than for Co2Cl2(bbta) 

(Figure D.18). Co2(OH)2(bbta) is predicted to undergo an 𝑆 = 5/2 to 𝑆 = 1/2 transition (i.e. 4Co(II) 

+ 3O2 → 2[CoO2]
2+), and large differences in the net spin multiplicity often result in slow 

kinetics.364 In this scenario, the rate of room temperature O2 adsorption could likely be increased 

by stabilizing low-spin Co(II) sites (Δ𝑆 = −1) or by considering metals that remain high-spin upon 

O2 adsorption, as is predicted for Fe2(OH)2(bbta) (Δ𝑆 = 0) and Mn2(OH)2(bbta) (Δ𝑆 = −2) (Table 

D.1), both of which have not yet been synthesized. 

Overall, the ability of Co2(OH)2(bbta) to strongly bind O2 suggests that this and related 

MOFs may be of interest for oxidation reactions and other processes involving the presence of 

redox-active open metal sites, especially when compared to the Cl-containing analogue. Based on 

the pronounced difference in O2 affinities for Co2Cl2(bbta) and Co2(OH)2(bbta), post-synthetic 

ligand-exchange is likely to serve as a promising and accessible route to control the O2 binding 

affinity in a wide range of MOFs.  

5.4 Conclusion 

Through the use of periodic density functional theory, we modeled the adsorption of O2 and N2 at 

the open metal sites of several pairs of structurally related MOF families. A comparison of the 

M(II)2(dobdc) and M(II)2(dsbdc) frameworks suggests that oxido bridges are preferable to sulfido 
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bridges with regards to the adsorption of both O2 and N2. Investigation of a topologically similar 

framework with triazolate (rather than carboxylate) linkers, M(II)2X2(bbta) (X = F, Cl, Br, OH, 

SH), indicates that the choice of equatorial, bridging anions in this material can be used to greatly 

alter the O2 binding affinity without significantly changing the N2 binding affinity. We show that 

there is a qualitative correlation between the p𝐾a of the bridging anion and the strength of O2 

adsorption at the open metal sites, with more basic bridging ligands resulting in more redox-active 

metal centers. In general, we find that the strength of O2 binding is a strong function of the degree 

of charge transfer. Consistent with this, early transition metals in low-valence states strongly bind 

O2 due to the presence of readily oxidized metal centers. With regards to N2 binding, most of the 

MOFs in this work are not capable of significantly reducing the N2 molecule, with the primary 

exception being MOFs that contain synthetically elusive V2+ sites, regardless of the coordination 

environment of the binding site. 

As a result of the quantum-chemical screening process and the trends described in this 

work, we predicted that exchanging the μ-Cl- ligands of Co2Cl2(bbta) with more basic μ-OH- 

groups to form Co2(OH)2(bbta) would significantly increase the O2 affinity of the Co(II) open 

metal sites without strengthening their interaction with N2. The strong affinity for O2 at the Co(II) 

centers is associated with a significant degree of charge transfer that enables the formation of 

thermodynamically favored cobalt−superoxo species with the possibility of H-bonding 

interactions between the O2 adsorbate and μ-OH- groups. Experimentally determined adsorption 

isotherms at room temperature support the DFT predictions that Co2(OH)2(bbta) chemisorbs O2, 

whereas O2 weakly physisorbs at the open metal sites of Co2Cl2(bbta). Weak interactions with N2 

occur in both materials. More generally, we have demonstrated that anion exchange can serve as 
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a simple route to tune the redox activity of coordinatively unsaturated metal sites incorporated 

within the inorganic nodes of MOFs, enabling the strong and selective room temperature binding 

of O2 in an otherwise unreactive framework.
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Chapter 6: COMPARING DENSITY FUNCTIONAL APPROXIMATIONS 

FOR REDOX-DEPENDENT BINDING AT OPEN METAL SITES IN 

METAL–ORGANIC FRAMEWORKS 

In this chapter, we compare commonly used generalized gradient approximation (GGA), 

GGA+U, and meta-GGA exchange-correlation functionals in modeling redox-dependent binding 

at open metal sites in MOFs, using O2 and N2 as representative small molecules. We find that the 

self-interaction error inherent to the widely used PBE GGA predicts metal sites that are artificially 

redox-active, as evidenced by their strong binding affinities, short metal−adsorbate bond distances, 

and large degree of charge transfer. The incorporation of metal-specific, empirical Hubbard U 

corrections based on the transition metal oxide literature systematically reduces the redox activity 

of the open metal sites, often improving agreement with experiment. Additionally, the binding 

behavior shifts from strong chemisorption to weaker physisorption as a function of U. The M06-

L meta-GGA typically predicts binding energies between those of PBE-D3(BJ) and PBE-

D3(BJ)+U when using empirically derived U values from the transition metal oxide literature. 

Despite the strong sensitivity of the binding affinities toward a given DFA, the GGA, GGA+U, 

and meta-GGA approaches often yield similar qualitative trends and structure−property 

relationships. 

This chapter is adapted from the following peer-reviewed article: A.S. Rosen, J.M. 

Notestein, R.Q. Snurr. “Comparing GGA, GGA+U, and Meta-GGA Functionals for Redox-

Dependent Binding at Open Metal Sites in Metal–Organic Frameworks.” Journal of Chemical 

Physics, 152, 24101 (2020). 
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6.1 Introduction 

Metal−organic frameworks (MOFs) are a class of highly porous, crystalline materials that have 

been widely considered for applications in heterogeneous catalysis, gas storage, separations, and 

several other areas of research.171 MOFs with coordinatively unsaturated metal sites, particularly 

those that are redox-active,17 are of significant interest due to their ability to strongly and/or 

selectively bind small molecules via a judicious choice of inorganic nodes and organic linkers.365 

With the thousands of MOFs that have been synthesized to date44 and the many more that can 

potentially be synthesized,53,90 quantum-chemical screening approaches are essential for the 

efficient exploration of the vast chemical space of possible MOF structures for redox-dependent 

adsorption applications. 

In plane-wave, periodic density functional theory (DFT) studies, the most commonly used 

exchange-correlation functional is that of Perdew, Burke, and Ernzerhof (PBE),125 due in part to 

its relatively modest computational cost.366 This is especially the case when modeling the large 

unit cells of most MOFs, where hybrid functionals are often computationally prohibitive. 

However, generalized gradient approximation (GGA) functionals such as PBE are known to 

exhibit many-electron self-interaction error (SIE), in which each electron interacts with the total 

electron density, including its own.367 The many-electron SIE in density functional approximations 

(DFAs) tends to overly delocalize electrons where they should otherwise be well-localized.368 As 

has been emphasized for transition metal oxides, this delocalization error can greatly influence 

reaction energies when a change in redox state of the metal occurs.340 By analogy, one might expect 

that redox-dependent adsorption of small molecules at the open metal sites of MOFs would be 
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highly influenced by the SIE as well. The investigation of this phenomenon is the focus of the 

present study. 

Despite the wide variety of MOFs with open metal sites that have been synthesized to date, 

prior studies comparing GGA and GGA+U methods for small molecule binding at open metal sites 

in MOFs have almost entirely focused on the MOF family M2(dobdc) (H4dobdc = 2,5-

dihydroxybenzene-1,4-dicarboxylic acid) and adsorbates, such as CO2, that bind mainly via 

electrostatic and dispersive interactions rather than charge transfer with the metal site.369–371 To 

address this gap in the literature and test the generality of structure−property trends, we have 

studied several MOF families with open metal sites using first-row transition metals from V to Cu. 

These MOFs include M2(dobdc),201,202,372 M2(dsbdc) (H4dsbdc = 2,5-disulfhydrylbenzene-1,4-

dicarboxylic acid),205,206 M2Cl2(bbta) (H2bbta = 1H,5H-benzo(1,2-d:4,5-d′)bistriazole),193,194,271 

M2(OH)2(bbta),275,277 and M-MIL-88B (MIL = Materials Institut Lavoisier),199,200 as shown in 

Figure 6.1. The first four MOF families have formally divalent open metal sites, whereas M-MIL-

88B can have divalent or trivalent open metal sites depending on the presence of charge-balancing 

anions, which we will distinguish from one another as MIL-88B (with the formula 

M(II)M(III)2(μ3-O)(bdc)3 (H2BDC = benzene-1,4-dicarboxylic acid)) and MIL-88B-OH (with the 

formula M(III)3(μ3-O)(bdc)3(OH), respectively. 
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Figure 6.1. Summary of the 41 MOFs that are the primary focus of this work. The simulation unit 

cells are shown as dashed black lines. Color key: M (gold), O (red), N (blue), S (yellow), Cl 

(green), C (brown), H (white). 

 

To investigate the effect of the DFA on redox-dependent adsorption in the MOFs shown 

in Figure 6.1, we focus on the adsorption of O2 and N2, as these molecules can access a variety of 

possible redox states depending on the metal−guest bond strength310 and are relevant for 

applications in both catalysis (e.g. oxidation reactions) and gas separations (e.g. separation of O2 

from air). To evaluate the influence of the many-electron SIE, we directly compare the PBE GGA 

functional with and without a DFT+U treatment, as the incorporation of Hubbard U corrections 

can address the problem of electron over-delocalization.373 The physicochemical properties 

computed at the GGA and GGA+U levels of theory are then compared with those from the meta-

GGA M06-L functional,287,288 which has been widely adopted by computational chemists studying 

3𝑑 transition metal complexes.281 In carrying out this study, we demonstrate how the SIE present 

with the commonly used PBE GGA functional can greatly influence the redox-dependent 
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adsorption of small molecules and how PBE+U (and to a lesser extent, M06-L) addresses these 

limitations. Notably, despite the large differences between the three DFAs, all three tend to yield 

similar structure−property relationships. The implications for future computational screening 

studies are discussed. 

6.2 Methods 

DFT calculations were carried out using the Vienna ab initio Simulation Package (VASP) 

v.5.4.1122,123 with the entire crystallographic unit cell considered in all calculations. As previously 

mentioned, calculations were performed at three different levels of theory representing GGA, 

GGA+U, and meta-GGA DFAs. The PBE exchange-correlation functional125 was used in the GGA 

(denoted PBE-D) and GGA+U (denoted PBE-D+U) treatments, with the inclusion of dispersion 

corrections via Grimme’s D3 scheme126 and Becke−Johnson (BJ) damping.127 Since M06-L 

implicitly accounts for medium-range dispersion forces, the M06-L calculations did not include 

additive dispersion corrections. 

For the PBE-D+U calculations, the approach by Dudarev and coworkers339 was employed 

such that an effective U value is the only required input parameter. Unless otherwise stated, the 

Hubbard U values were taken as V: 3.1 eV, Cr: 3.5 eV, Mn: 3.8 eV, Fe: 4.0 eV, Co: 3.3 eV, Ni: 

6.4 eV, and Cu: 4.0 eV applied to the metal 3d sites, motivated by prior work of Ceder and 

coworkers who fit them to reproduce experimental oxidation energies of transition metal oxides.340 

While Hubbard U values can be determined ab initio via linear response theory,369 this procedure 

is less practical when studying a diverse set of materials and does not necessarily result in the 

empirically best U values to reproduce experimentally determined adsorption energies.  
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We have adopted the same computational workflow as in our prior work,71,73 which we 

summarize as follows. A multi-stage automated periodic DFT screening workflow32 based on the 

Atomic Simulation Environment (ASE) 3.18.083 was used to efficiently carry out the structural 

optimizations and energy evaluations in this work. The final high-accuracy settings used in the 

optimization procedure include a 520 eV plane-wave kinetic energy cutoff, 𝑘-point density of 

approximately 1000/number of atoms (as computed and arranged using the automatic 𝑘-point 

density generator in Pymatgen 2019.9.1682), and a force-convergence criterion of 0.03 eV/Å. The 

VASP-recommended v.5.4 projector-augmented wave (PAW) pseudopotentials124 were used for 

all calculations. Spin-polarization was considered for each MOF using both a high- and low-spin 

initialization (refer to Table E.1 for more details). The preconditioned conjugate gradient “all band 

simultaneous update of orbitals” algorithm132,133,338 was used to converge the self-consistent field 

(SCF), and Gaussian smearing of the band occupancies with a smearing width of 0.01 eV was 

employed (with electronic energies extrapolated back to the 0 K limit). The SCF was considered 

converged when the change in electronic energy was less than 10-6 eV. The accurate-precision 

keyword was enabled in VASP, and all symmetry operations were disabled. Aspherical 

contributions to the gradient corrections inside the PAW spheres were included for meta-GGA and 

GGA+U calculations. 

The primitive unit cell was taken for each MOF and was diluted with closed-shell Mg2+ or 

Al3+ species such that only a single 3𝑑 transition metal cation remained. This was done to reduce 

the computational cost and make it easier to identify the ground state spin state, as done in prior 

computational studies of MOFs.281 The DFT-computed properties at the M06-L level of theory 

were obtained from our prior work.73 Since PBE with dispersion corrections has been shown to 



156 

 

accurately capture the lattice parameters of MOFs,128,129 the cell shapes and volumes of the diluted 

MOFs were relaxed with the PBE-D functional. Subsequent calculations were carried out at the 

specified level of theory with a fixed simulation unit cell but allowing the atomic positions to 

change. Adsorbates were systematically added to the 3𝑑 transition metal sites using the MOF 

Adsorbate Initializer (MAI) program v.1.1,32,117 considering 𝜂1−O2, 𝜂2−O2, and 𝜂1−N2 adsorption 

modes (Figure 6.2), as described previously.73 The lowest energy structures at the PBE-D level of 

theory were adopted as initial guesses for the PBE-D+U calculations. All DFT-computed 

properties presented in this work are for the lowest energy spin state (Table E.1) and adsorption 

mode (Table E.2) unless otherwise noted. 

 
Figure 6.2. Depiction of the 𝜂1–O2, 𝜂2–O2, and 𝜂1–N2 binding modes considered in this work. 

Bold lines are drawn for the O–O and N–N bonds, as the bond order will vary depending on the 

metal binding site. 

 

Adsorption energies were calculated as 

Δ𝐸O2
= 𝐸MOF−O2 − 𝐸MOF − 𝐸O2

(1) 

and 

Δ𝐸N2
= 𝐸MOF−N2

− 𝐸MOF − 𝐸N2
(2) 
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where 𝐸MOF−O2
 and 𝐸MOF−N2

 are the electronic energies of the MOF with a single adsorbed O2 or 

N2 guest molecule per unit cell, 𝐸MOF is the electronic energy of the bare MOF, and 𝐸O2
 and 𝐸N2

 

are the electronic energies of gas-phase O2 and N2. Partial atomic charges and spin densities 

reported in the main text were computed via a Bader analysis159 using v.1.03 of the Bader code by 

the Henkelman group.138  DDEC6158,230 partial atomic charges and spin densities (reported in the 

supplementary dataset) were computed using Chargemol v.09-26-2017.374 All data used to produce 

the figures in this work, including DFT-optimized structures, energies, and several other properties 

can be found at the Zenodo repository with DOI: 10.5281/zenodo.3817991.375 

6.3 Results and Discussion 

6.3.1 Charge and Spin Density of the Bare MOFs 

We start by analyzing the MOFs at the PBE-D, M06-L, and PBE-D+U levels of theory prior to the 

adsorption of any guest molecules. As shown in Table 6.1, the partial atomic charges of the 

coordinatively unsaturated transition metals vary slightly depending on the density functional. In 

most cases, the computed partial atomic charges are the lowest at the PBE-D level of theory. When 

comparing the PBE-D and PBE-D+U simulations directly, all but eight of the 41 MOFs studied in 

this work exhibited an increase in charge on the transition metal when Hubbard U corrections were 

applied. The exceptions are the five V2+-containing MOFs, Cr-MIL-88B, Fe-MIL-88B, and 

Fe2(OH)2(bbta). When compared to the PBE-D simulations, all MOFs optimized with the M06-L 

functional had an increase in charge on the transition metal binding site with the exception of Cr-

MIL-88B. Collectively, these results suggest that one shortcoming of the PBE exchange-

correlation functional is that there is too much electron density on the open metal site, which is 

shifted to the surrounding framework atoms with the PBE-D+U and M06-L functionals. The 

observation that the partial charge on the metal often, but not always, increases when Hubbard U 
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corrections are applied has also been noted by Zhao and Kulik for various open-framework 

transition metal solids.376 

Table 6.1. Median values of the Bader charge, 𝑞M,Bader, and (absolute) Bader spin density, 

|𝜌M,Bader|, on the coordinatively unsaturated metal site for each transition metal and level of theory 

for the MOFs shown in Figure 6.1. 
 median(𝑞M,Bader) median(|𝜌M,Bader|) 

Metal PBE-D M06-L PBE-D+U PBE-D M06-L PBE-D+U 

V 1.63 1.65 1.55 2.31 2.53 2.65 

Cr 1.40 1.45 1.42 3.57 3.70 3.77 

Mn 1.44 1.50 1.48 4.52 4.62 4.69 

Fe 1.36 1.43 1.37 3.62 3.74 3.73 

Co 1.16 1.33 1.27 0.99 2.66 2.68 

Ni 1.08 1.26 1.23 1.10 1.67 1.76 

Cu 1.04 1.16 1.07 0.53 0.62 0.61 
 

The (absolute) spin density on the transition metal binding site was also computed at each 

of the three levels of theory. In general, the spin density of the binding site tends to increase as 

PBE-D < M06-L < PBE-D+U (Table 6.1). For every MOF considered in this work, the spin density 

predicted at the PBE-D level of theory was the lowest of the three DFAs. Notably, the Co- and Ni-

containing MOFs appear to have the largest change in spin density when going from the PBE-D 

functional to M06-L or PBE-D+U. This is a direct consequence of the PBE exchange-correlation 

functional artificially disfavoring high-spin states.228,229 Out of the 41 MOFs investigated in this 

work, six had a different spin state depending on the employed functional, and all had either Co or 

Ni sites. Five of these MOFs contain formally divalent metal cations. In each case, these five MOFs 

were predicted to have low-spin ground-states at the PBE-D level of theory but high-spin ground-

states at the M06-L and PBE-D+U levels of theory (Table 6.2). For reference, prior experimental 

and theoretical work has shown that both Ni2(dobdc) and Co2Cl2(btdd) (H2btdd = bis(1H-1,2,3-

triazolo[4,5-b],[4',5'-i])dibenzo[1,4]dioxin)), the large-pore analogue of Co2Cl2(bbta), exhibit 
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high-spin ground-states,25,377 in contrast with the low-spin results from PBE-D. This suggests that 

both the M06-L and PBE-D+U approaches correct for the erroneous favoring of low-spin states 

associated with the PBE-D level of theory. One MOF with formally trivalent Co sites (i.e. Co-

MIL-88B-OH) also had a different ground state spin state depending on the employed functional 

(Table E.1). 

Table 6.2. The five MOFs in this study with divalent open metal sites that had different ground-

state spin-states depending on the employed density functional approximation. The difference in 

energy between the high- and low-spin state, Δ𝐸HS−LS, is shown. Negatives values correspond to 

a high-spin ground-state and vice versa. 
 Δ𝐸HS−LS (kJ/mol) 

MOF PBE-D M06-L PBE-D+U 

Co2(dsbdc) +18 −4 −28 

Co2Cl2(bbta) +17 −11 −32 

Co2(OH)2(bbta) +18 −3 −25 

Ni2(dobdc) +12 −33 −47 

Ni2(dsbdc) +24 −26 −43 

6.3.2 O2 and N2 Adsorption Energies 

With an understanding of how the three DFAs influence the properties of the bare metal sites, we 

now consider the adsorption of O2 for the various MOFs in this work. The distribution of O2 

binding energies for each level of theory is shown in Figure 6.3a. By identifying the extrema, 

medians, and peaks in the binding energy distributions, it becomes apparent that the PBE-D 

functional results in the most exothermic adsorption energies among the three levels of theory, 

whereas the PBE-D+U functional results in the least exothermic adsorption energies. In fact, the 

inclusion of the Hubbard U correction weakens the degree of O2 binding with the metal site for 

every investigated MOF (Figure 6.3b). This is consistent with prior GGA+U studies of transition 

metal oxides, where the SIE associated with GGA functionals results in an overestimation of the 

oxidation energies by favoring the oxidized state over the reduced state.340 Similar behavior has 

also been observed when modeling O2 binding to iron heme complexes.378 
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Figure 6.3. a) Violin plot representing the distribution of O2 binding energies, Δ𝐸O2

. The extrema 

and median are marked by horizontal lines, and the mean is marked by an X. b) Comparison of O2 

binding energies computed using the PBE-D+U and PBE-D functionals. c) Comparison of O2 

binding energies computed using the PBE-D+U and M06-L functionals. The dashed lines represent 

perfect agreement between the two levels of theory. 

 

Despite the range of metal elements and empirically-derived U values, the difference in O2 

adsorption energies at the PBE-D and PBE-D+U levels of theory are systematically offset from 
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one another, particularly for Δ𝐸O2,PBE−D < −50 kJ/mol. Analogous trends are found with the M06-

L functional, which predicts O2 binding strengths between PBE-D and PBE-D+U (Figure 6.3c). 

The approximately linear relationships between the various DFAs tends to level off at small 

binding energies (e.g. Δ𝐸O2,PBE−D > −50 kJ/mol), which can be attributed to a switch between 

chemisorption and physisorption of the O2 guest molecule. For instance, MOFs with open metal 

sites that cannot be readily oxidized (e.g. Cu2+) are not expected to significantly reduce the O2 

molecule, and inclusion of a Hubbard U correction therefore has only a minor impact on Δ𝐸O2
 for 

these systems. 

Both GGA+U and hybrid functionals are designed to reduce electron−electron SIEs and so 

numerous parallels inevitably emerge between the two approaches.376,379,380 When modeling O2 

adsorption at coordinatively unsaturated metal sites of inorganometallic complexes, it has been 

shown that the incorporation of Hartree-Fock exchange leads to more endothermic Δ𝐸O2
 values 

compared to pure GGA functionals.326,364,381,382 Since the use of hybrid functionals in plane-wave, 

periodic DFT studies of MOFs is rarely computationally tractable, it is promising that the inclusion 

of a Hubbard U correction mimics the more endothermic binding strengths often found with the 

more expensive (and typically more accurate) hybrid functionals. It is also reassuring that the M06-

L functional shifts the binding energies to be more endothermic than those at the PBE-D level of 

theory despite not including Hartree-Fock exchange to correct for the electron SIE. 
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Figure 6.4. a) Violin plot representing the distribution of N2 binding energies, Δ𝐸N2

. The extrema 

and median are marked by horizontal lines, and the mean is marked by an X. b) Comparison of N2 

binding energies computed using the PBE-D+U and PBE-D functionals. c) Comparison of N2 

binding energies computed using the PBE-D+U and M06-L functionals. The dashed lines represent 

perfect agreement between the two levels of theory. 

 

With regards to N2 binding, on average, the U correction tends to weaken the M−N2 

interaction compared to U = 0 eV (Figure 6.4a) but does so less consistently than for the M−O2 
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interactions (Figure 6.4b). Similar to what was discussed for O2 adsorption, if Δ𝐸N2,PBE−D is fairly 

weak (e.g. Δ𝐸N2,PBE−D > −30 kJ/mol), the PBE-D and PBE-D+U calculations give roughly the 

same N2 binding strengths due to weak interactions between the N2 guest and the metal sites. For 

Δ𝐸N2,PBE−D values between −70 and −30 kJ/mol, the corresponding PBE-D+U binding strengths 

are all −30 to −15 kJ/mol and are mostly not correlated with the PBE-D binding strengths. 

Compared with the PBE-D functional, this creates a clearer division between MOFs that strongly 

bind N2 (i.e. the V2+-containing MOFs) and the remainder that do not. Similar behavior was 

observed in the range of weak O2 adsorption (note the flat region at the top-right of Figure 6.3b) 

but is less pronounced due to the wider range of O2 adsorption energies. The N2 binding strengths 

at the M06-L level of theory are, overall, quite similar to those computed at the PBE-D+U level of 

theory, particularly for the weaker adsorption region of Δ𝐸N2
 > −50 kJ/mol. 

The difference in binding energies between the PBE-D and PBE-D+U levels of theory can 

be quite large for many of the MOFs investigated in this work. For certain MOFs, the differences 

in Δ𝐸O2
 can be as large as ~100 kJ/mol and the differences in Δ𝐸N2

 can be as large as ~50 kJ/mol. 

The significant weakening of the metal−guest bond for chemisorbed O2 and N2 species suggests 

that the delocalization error present with the PBE-D functional can have a profound impact on the 

predicted energetics. This is in contrast with many prior GGA+U adsorption studies of MOFs that 

have mainly focused on the binding of small molecules that are highly stabilized by electrostatic 

interactions rather than charge transfer from the metal to the guest species. For instance, prior 

studies on M2(dobdc) have shown that the inclusion of a Hubbard U correction can change CO2 

binding energies by up to 8.5 kJ/mol depending on the transition metal and U value.369,370 Since 

the chemisorption of O2 and N2 are redox processes that alter the oxidation states of the metal and 
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guest molecule,310 it is expected that there is significantly less cancellation of the SIE between the 

bare MOFs and MOF−adsorbate complexes, resulting in the large differences in binding energies 

observed in the present study. 

While the results in Figure 6.3 and Figure 6.4 highlight the sensitivity of the O2 and N2 

adsorption energies, it is worth investigating if important qualitative trends hold regardless of the 

DFA. To test this, the O2 and N2 binding strengths for each MOF and at each level of theory are 

shown in Figure 6.5. For determining structure−property relationships between related MOF 

families, it appears that PBE-D, M06-L, and PBE-D+U generally yield the same overall 

conclusions. For instance, M2(dobdc) is found to bind O2 stronger than its S-containing analogue 

M2(dsbdc), M2(OH)2(bbta) is found to bind O2 stronger than the closely related M2Cl2(bbta), the 

metal cations of MIL-88B bind O2 stronger than their higher valent MIL-88B-OH analogues, and 

early transition metals tend to bind O2 stronger than late transition metals for a given isostructural 

series of MOFs (as discussed in greater detail in prior work73). Since the majority of the MOFs 

studied in this work do not strongly bind N2, there are fewer trends to compare with regards to N2 

binding, but for all three levels of theory, the V2+-containing MOFs exhibit the most exothermic 

N2 adsorption energies. 
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Figure 6.5. Absolute binding energy of O2 (top bars, red) and N2 (bottom bars, blue) for each MOF 

considered in this work at the PBE-D (left bars, no hatch), M06-L (middle bars, diagonal hatch), 

and PBE-D+U (right bars, cross hatch) levels of theory. For visual clarity, the binding strengths of 
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O2 are displayed above the horizontal dashed line, whereas the binding strengths of N2 are 

displayed below the horizontal dashed line; however, adsorption is exothermic in all cases. 

 

Qualitative trends related to relative binding energies, however, are more sensitive to the 

level of theory, particularly when identifying MOFs that can selectively adsorb N2 over O2. As one 

example, Cr-MIL-88B-OH is predicted to preferentially adsorb N2 over O2 with PBE-D+U and 

M06-L but not PBE-D (for reference, the closely related MOF Cr-MIL-100 is known357 to 

preferentially adsorb N2 over O2). Regardless of the choice of DFA, the large sensitivity of the O2 

(and occasionally N2) binding energies suggests that numerous levels of theory should be 

compared when suggesting a particularly promising MOFs for applications involving the selective 

binding of O2 or N2. 

The results in Figure 6.5 also reinforce the observation that, for chemisorbed O2 species, 

the magnitude of the binding strengths often decreases as PBE-D > M06-L > PBE-D+U. However, 

this trend appears to break down in select cases, mainly when there are errors present in both the 

redox activity and the spin states. For example, the Δ𝐸O2,PBE−D and Δ𝐸O2,PBE−D+𝑈 values are 

similar for both Ni2(dobdc) and Ni2(dsbdc), but this is merely due to anomalous error cancellation 

in the PBE-D level of theory due to an artificial stabilization of low-spin Ni(II) centers, as was 

shown in Table 2. For the Fe-containing MOFs, Δ𝐸O2,PBE−D tends to be less exothermic than 

Δ𝐸O2,M06−L, in contrast with the trends observed for the other metals considered in this work. This 

can also be attributed to an over-stabilization of the low-spin states at the PBE-D level of theory, 

which reduces the thermodynamic favorability of O2 adsorption in an unphysical manner (Table 

E.3). 
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6.3.3 Degree of Charge Transfer and Geometrical Properties 

 
Figure 6.6. a) Mean signed difference (MSD) in the O−O distance of the O2 guest molecule with 

respect to free O2, Δ𝑑O−O, for a given metal. b) Average sum of Bader charges on the O2 guest 

molecule, 𝑞O2
, for a given metal. c) MSD in the N−N distance of the N2 guest molecule with 

respect to free N2, Δ𝑑N−N, for a given metal. d) Average sum of Bader charges on the N2 guest 

molecule, 𝑞N2
, for a given metal. Positive values for Δ𝑑O−O and Δ𝑑N−N indicate larger bond 

distances than the free adsorbate and vice versa. The left (no hatch), middle (diagonal hatch), and 

right (cross hatch) set of bars represent the PBE-D, M06-L, and PBE-D+𝑈 levels of theory, 

respectively. 

 

To further rationalize the changes in adsorption energies with the three DFAs considered 

in this work, we also investigated the redox states of the bound adsorbates, using the PBE-D 

calculations as a baseline. We determined the redox state of the adsorbate via two readily computed 

metrics. The first is a measure of how stretched the O−O and N−N bonds are compared to the gas-

phase values for a given level of theory. The second is the sum of partial atomic charges on the 

adsorbate. As shown in Figure 6.6a, while the O−O distance generally increases upon adsorption, 

the adsorbed O2 species at the M06-L and PBE-D+U levels of theory have O−O bond distances 
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closer to that of free O2, with the PBE-D+U level of theory resulting in the least stretched O−O 

bonds. Furthermore, for a given transition metal, the magnitude of the partial charge of the O2 

adsorbate generally decreases as PBE-D > M06-L > PBE-D+U (Figure 6.6b). Both of these 

observations are fully consistent with the adsorption energy trends previously shown in Figure 

6.3a and indicate that the O2 molecule is most significantly reduced at the PBE-D level of theory, 

followed by M06-L and PBE-D+U. Analogous trends are observed for N2 adsorption at the open 

metal sites of MOFs (Figure 6.6c and Figure 6.6d). 

In prior work by Neaton and coworkers, it was found that increasing U from 0 to 5.3 eV 

caused the CO2 binding energy at the open metal sites of Co2(dobdc) to change from approximately 

−32 kJ/mol to −36 kJ/mol.369 This strengthened interaction between the metal site and the guest 

molecule was attributed to more spatially localized 𝑑 states with the inclusion of a Hubbard U 

correction, which allowed the CO2 molecule to adsorb closer to the Co2+ open metal site, increasing 

the electrostatic contribution to the binding energy.369 Motivated by this observation, we computed 

the M−O and M−N distances for each MOF and with each DFA (Figure 6.7). In contrast with the 

aforementioned CO2 example, the inclusion of the Hubbard U correction increases the M−O and 

M−N distance for the majority of MOFs in this work. This finding is a consequence of weaker 

binding strengths when U > 0 eV and suggests that, even if the 𝑑 states are more localized, the 

reduced degree of charge transfer is significantly more important than any changes to the 

electrostatic and dispersive interactions for these systems. Consistent with the trends in adsorption 

energies (Figure 6.3a and Figure 6.4a), the M−O and M−N distances tend to increase as PBE-D < 

M06-L < PBE-D+𝑈. 
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Figure 6.7. Violin plots of the distance between a) the metal binding site and the closest O atom 

of the O2 guest, 𝑑M−O, and b) the metal binding site and the closest N atom of the N2 guest, 𝑑M−N, 

at the PBE-D, M06-L, and PBE-D+U levels of theory. The extrema and median are marked by 

horizontal lines, and the mean is marked by an X. 

 

6.3.4 Determining Empirically Ideal U Values 

The previous sections have highlighted how the redox-dependent binding of O2 and N2 are 

influenced by common GGA, meta-GGA, and GGA+U approaches. Here, we solely focus on the 

GGA+U approach and consider the impact that variations in U have on the predicted O2 adsorption 

energies (i.e. considering a range of U values beyond the empirically selected values based on the 

work of Ceder and coworkers340). We chose to investigate five MOFs with a wide range of 

experimentally determined isosteric heats of O2 adsorption: M2(dobdc) (M = Fe, Co, Ni),24,326 Co-

BTTri (H3BTTri = 1,3,5-tri(1H-1,2,3-triazol-5-yl)benzene),216 and Cr-BTT (H3BTT = benzene-

1,3,5-tris(1H-tetrazole)).22 The structures of Co-BTTri and Cr-BTT are shown in Figure 6.8. Of 
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these MOFs, Cr-BTT and Fe2(dobdc) are known to chemisorb O2 via partial oxidation of the metal 

sites,22,24 Co-BTTri can bind O2 but does so with a relatively small degree of charge transfer,216 

and M2(dobdc) (M = Co, Ni) exhibit only physisorption of O2 at room temperature.326 The MOFs 

were not diluted with Mg2+ cations for this analysis in order to aid direct comparison with 

experiments. Additional methodological details can be found in the Appendix. 

 
Figure 6.8. Structures of a) Cr-BTT and b) Co-BTTri. Aside from the different metals, the MOFs 

differ in the number of N atoms per linker. The simulation unit cells are shown as dashed black 

lines. Color key: Cr (maroon), Co (dark blue), Cl (green), N (light blue), C (brown), H (white). 

 

As shown in Figure 6.9a, the O2 adsorption energies change monotonically with U, which 

is consistent with adsorption behavior modeled in several prior GGA+U studies.369,378,383 In 

particular, we observe that larger U values result in weaker binding of O2 to the metal centers of 

each of the investigated MOFs. For highly exothermic O2 binding, increasing U results in an 

approximately linear decrease in the strength of O2 adsorption. However, the change in Δ𝐸O2
 as a 

function of U begins to plateau as the O2 adsorption behavior switches from chemisorption (with 

oxidation of the metal center) to physisorption (with the adsorbate largely stabilized by 

electrostatic and dispersive interactions). This transition point is different depending on the MOF 

but is generally in the range of −40 to −20 kJ/mol. 
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Figure 6.9. a) O2 adsorption energy, Δ𝐸O2

, with the PBE-D functional and U = 1 – 7 eV for 

Ni2(dobdc), Co2(dobdc), Co-BTTri, Fe2(dobdc), and Cr-BTT. The Δ𝐸O2
 values corresponding to 

the U values from Ceder and coworkers340 are marked with open symbols for ease-of-reference. 

b) O2 adsorption enthalpies at the PBE-D level of theory using U = {Ni: 6.4 eV, Co: 3.3 eV, Fe: 

4.0 eV, Cr: 3.5 eV}, Δ𝐻O2,PBE-D+𝑈, alongside the corresponding experimentally determined (low-

loading) isosteric heats of O2 adsorption, 𝑄st,O2
. Unit cell shapes and volumes of the guest-free 

structures were relaxed for each U value. 

 

It is also worth comparing the predicted O2 adsorption enthalpies with the experimentally 

measured (low loading) isosteric heats. For the MOFs where O2 is known to chemisorb to the metal 

sites via charge-transfer interactions (i.e. Co-BTTri, Fe2(dobdc), and Cr-BTT), the metal oxide-

based U values yield adsorption enthalpies that are within 20 kJ/mol (and more often 10 kJ/mol) 

of the experimentally determined isosteric heats of O2 adsorption as shown in Figure 6.9b. 

Although by no means perfect, these U values represent a vast improvement over the exclusion of 

Hubbard U corrections altogether. This is reassuring given that the U values of Ceder and 

coworkers are based solely on reproducing the oxidation energies of transition metal oxides,340 

which have very different electronic structure environments than those of isolated metal sites 
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incorporated within the nodes of MOFs. For the MOFs where it is known that O2 is physisorbed 

at the metal centers (i.e. Co2(dobdc), Ni2(dobdc)), the inclusion of a Hubbard U correction does 

not necessarily reduce the O2 binding affinity to the experimental isosteric heats even at large 

values of U, indicating that this is a fundamental limitation of the PBE exchange-correlation 

functional. The U values for M2(dobdc) (M = Fe, Co, Ni) calculated via linear response theory (i.e. 

𝑈 = 6.5 eV, 5.3 eV, and 6.7 eV for Fe2(dobdc), Co2(dobdc), and Ni2(dobdc), respectively),369 while 

derived from first-principles, also do not result in strong agreement with experiment. In the case 

of Fe2(dobdc), for instance, the transition metal oxide U value of 4.0 eV already significantly 

underpredicts the magnitude of the O2 adsorption enthalpy. A value of U = 6.5 eV would lead to 

essentially no binding at all based on the results in Figure 6.9a. 

 

6.4 Conclusion 

Using periodic DFT, we investigated the adsorption of O2 and N2 at the open metal sites of 41 

MOFs at three different levels of theory, including PBE with dispersion corrections (PBE-D), 

PBE-D with empirical Hubbard U corrections that reproduce oxidation energies in transition metal 

oxides340 (PBE-D+U), and the M06-L functional. For the bare MOFs (i.e. prior to the adsorption 

of any guest molecules), the PBE-D functional erroneously disfavors high-spin states, which is 

corrected by the M06-L and PBE-D+U functionals. This is also reflected in the absolute spin 

density on the metal site, which tends to increase as PBE-D < M06-L < PBE-D+U. With regards 

to the partial atomic charge on the metal site, PBE-D tends to result in the lowest (i.e. least positive) 

charge for most MOFs. The inclusion of Hubbard U corrections often increases the partial charge 

on the metal, except for the V2+ open metal sites, in which it decreases. 
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By directly comparing the PBE-D and PBE-D+U levels of theory, it is apparent that the 

many-electron SIE associated with the PBE functional often leads to overly exothermic O2 

adsorption energies, which are always made less exothermic with the inclusion of a Hubbard U 

correction. The M06-L functional, despite not explicitly correcting for the many-electron SIE, 

generally improves on the PBE-D functional by decreasing the magnitude of the adsorption 

energies so that they are between PBE-D and PBE-D+U. For N2 adsorption, the U correction also 

reduces the binding strength on average. However, since few MOFs in this study were found to 

strongly bind N2 and there is less charge transfer associated with weakly physisorbed species, this 

weakening effect is less consistent for N2 adsorption. The M06-L and PBE-D+U functionals 

predict similar N2 adsorption energies, with the M06-L functional resulting in slightly stronger 

binding than PBE-D+U on average. 

Clear trends are observed with regards to the redox state and bond distances associated 

with the O2 and N2 guest molecules. The negative charge on the adsorbates increased in magnitude 

in the order PBE-D+U < M06-L < PBE-D, indicating that the weaker adsorption energies are 

associated with a reduced degree of electron transfer to the bound guest molecules. Analogous 

behavior was observed for the O−O and N−N bond distances, with PBE-D resulting in the longest 

(i.e. weakest) bonds. Despite the GGA+U method resulting in more highly localized 3𝑑 orbitals, 

the inclusion of a +U correction increased the M−O2 and M−N2 distances, once again consistent 

with the significantly weaker adsorption energies when correcting for the GGA-related 

delocalization error.  

Although the qualitative trends between related MOF families are predicted to be the same 

in most cases, we recommend against using the PBE-D functional for redox-dependent adsorption 
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processes given its artificial disfavoring of high-spin states and tendency to yield overly 

exothermic binding strengths. The inclusion of empirical Hubbard U corrections is a 

computationally efficient way of addressing many of the errors associated with the PBE-D 

functional and is arguably the better option when studying a large number of MOFs for 

applications involving redox-dependent binding at open metal sites. The M06-L functional serves 

as a middle-ground between PBE-D and PBE-D+U in many cases (except for O2 adsorption in 

MOFs with Fe2+ sites) and has the advantage that it does not rely on a user-specified and (in 

principle) material-specific U value, although the O2 binding strengths are likely to still be 

overestimated compared to experiments and the computational cost is greater than that of PBE-

D+U. 

Finally, we emphasize that the quantitative values for the O2 and N2 adsorption energies 

are highly sensitive to the delocalization error, especially when the adsorption is relatively strong 

(i.e. when charge transfer is present). Given the nearly unlimited number of MOFs that can 

potentially be realized, there is a significant need for the development of computationally 

inexpensive methods to reliably predict redox-dependent adsorption energies at open metal sites 

in MOFs, such as further validation of U values that are tailored for 3𝑑 transition metal sites 

incorporated at the nodes of MOFs. The development of such methods would greatly accelerate 

the design of promising MOFs for catalysis, gas separations, and related applications where the 

redox-dependent binding of small molecules governs the success of a given material candidate.
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Chapter 7: MACHINE LEARNING THE QUANTUM-CHEMICAL 

PROPERTIES OF METAL–ORGANIC FRAMEWORKS FOR 

ACCELERATED MATERIALS DISCOVERY 

In this chapter, we introduce the QMOF Database – a publicly available database of 

computed quantum-chemical properties for 14,000+ experimentally synthesized MOFs. 

Throughout this study, we demonstrate how machine learning models trained on the QMOF 

Database can be used to rapidly discover MOFs with targeted electronic structure properties, using 

the prediction of DFT-computed band gaps as a representative example. We conclude by 

highlighting several MOFs predicted to have low band gaps, a challenging task given the 

electronically insulating nature of most MOFs. 

This chapter is adapted from the following peer-reviewed article: A.S. Rosen, S.M. Iyer, 

D. Ray, Z. Yao, A. Aspuru-Guzik, L. Gagliardi, J.M. Notestein, R.Q. Snurr. “Machine Learning 

the Quantum-Chemical Properties of Metal–Organic Frameworks for Accelerated Materials 

Discovery.” Matter, 4, 1578–1597 (2021). This work was featured on the cover of Matter, in 

Northwestern Engineering News, and previewed in the journal Patterns.384 A.S. Rosen designed 

the project and carried out the bulk of the work presented in this chapter. S.M. Iyer helped 

benchmark and test the various machine learning models. D. Ray assisted in interpreting the 

density of states plots. Z. Yao provided feedback on the motivation and machine learning. All 

authors provided feedback on the manuscript. 
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7.1 Introduction 

Over the last several years, significant attention has been focused on the design of novel 

metal−organic frameworks (MOFs), a class of materials composed of discrete inorganic nodes 

connected to one another via organic linkers. One of the main advantages of MOFs is that they 

often have predictable and atomically defined structures with properties that are directly related to 

the choice of underlying metal and organic building blocks.1 In this way, it becomes possible to 

impart physical and chemical functionality specifically tailored for a given application.3 To date, 

tens of thousands of MOFs have been synthesized,14,44 and a nearly unlimited number can be 

proposed53,90,385 by considering different combinations of constituent building blocks. Due to the 

enormous set of possible framework compositions, structures, and resulting properties,386 it 

remains difficult to discover truly top-performing MOFs for a particular application based solely 

on chemical intuition, conventional trial-and-error experimental testing, or serendipity alone. 

High-throughput computational screening approaches based on classical simulations have 

proven extremely useful for more efficiently exploring the vast combinatorial space of MOF 

structures.46,48 Recently, the large quantities of data generated during these computational 

screening studies have led to the development of machine learning (ML) models387 that can 

accelerate the MOF design and discovery process even further. ML-assisted screening studies have 

been successfully applied to the discovery of MOFs suitable for H2 storage,388–390 CO2 

separation/capture,391–393 and numerous other applications predominantly (although not 

exclusively394,395) in the area of gas storage and separations.48,50,396 Nonetheless, similar efforts 

remain almost entirely unexplored for the many applications where the properties of interest are 

best described by quantum mechanical models,4 such as those based on the electronic, optical, 
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magnetic, and/or catalytic properties of MOFs. Beyond the sheer number of possible MOFs that 

can be realized, the large number of atoms in MOF crystal structures often makes it 

computationally demanding to carry out even moderate-scale quantum-chemical screening studies, 

further magnifying the need for ML approaches in this area. 

To date, the most relevant studies focused on training ML models to predict the quantum-

chemical properties of MOFs are those of Raza et al.,397 Korolev et al.,398 and Kancharlapalli et 

al.399 who developed ML models that can predict the partial atomic charges of MOFs in the 

Computation-Ready, Experimental (CoRE) MOF database.89,234 Beyond these fundamental studies 

on partial charge prediction, however, there remains a significant gap in the literature, particularly 

for the discovery of MOFs with desired electronic structure properties. To the best of our 

knowledge, the only prior work in this area is that of He et al.400 who trained binary classification 

models to predict whether inorganic solids in the Open Quantum Materials Database (OQMD)30,34 

are metallic or nonmetallic. Without retraining on MOF data, a multi-model voting procedure was 

then used to predict the metallic or nonmetallic behavior of 2932 MOFs in the CoRE MOF 

database,89 which do not have computed band gaps. Of the six identified materials with near-zero 

band gap at the PBE level of theory,125 all are best-described as metal–cyanide/thiocyanate cluster 

complexes and none have H atoms in the structure. This is likely due in large part to the extreme 

differences between the OQMD, which consists almost entirely of inorganic compounds, and the 

CoRE MOF database. Furthermore, the fidelity of the metallic materials was not considered, 

leading to highlighted structures such as [CdC4]n that should actually be [Cd(CN)2]n.
401 

In the present study, we leverage a recently developed high-throughput periodic DFT 

workflow tailored for MOF structures32 to construct a large-scale database of MOF quantum 
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mechanical properties. This publicly available dataset – the Quantum MOF (QMOF) database402 

– contains computed properties for 15,713 experimentally characterized MOFs after structure 

relaxation via DFT, including but not limited to optimized geometries, energies, band gaps, charge 

densities, density of states, partial charges, spin densities, and bond orders. We anticipate that the 

QMOF Database will serve two primary purposes: 1) materials discovery using the as-deposited 

data; 2) the evaluation and development of novel ML algorithms to reduce, or circumvent 

altogether, the need for otherwise expensive DFT calculations. 

To demonstrate the utility of the data generated via the high-throughput DFT workflow, 

we use the QMOF Database to develop several ML models for the prediction of MOF band gaps 

from nothing more than an encoding of the experimental (i.e. unrelaxed) crystal structures, 

drastically decreasing the number of computationally demanding quantum mechanical simulations 

that would need to be carried out in future screening studies. Beyond serving as a proof-of-concept, 

an ML model that can predict MOF band gaps is particularly desirable, as most MOFs are known 

to be electronically insulating,16 which limits their potential use in electrocatalysis, sensing, energy 

storage, and other applications where some degree of electrical conductivity is necessary.16,17,403–

405 We identify a top-performing band gap regression model based on a crystal graph convolutional 

neural network406 and show how dimensionality reduction techniques can be used to discover 

overarching structure–property relationships for the identification of MOFs with targeted 

electronic structure properties. We conclude by highlighting several iron MOFs with low band 

gaps identified for the first time in this work. 
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7.2 Results and Discussion 

7.2.1 Generation and Overview of the QMOF Database 

Prior to carrying out any periodic DFT calculations, a dataset of starting structures must be 

assembled. There are several databases of MOF structures that have been published to 

date.14,44,53,89,90,112 However, it is imperative to note that existing databases of synthesized MOFs 

cannot be used as-is for quantum-chemical screening purposes. If even a single atom is missing or 

duplicated in a MOF crystal structure, the resulting DFT calculations are unlikely to be physically 

meaningful. Put another way, the simulation unit cell is expected to be charge-neutral unless 

otherwise specified; any additional or missing electron in the system ruins the integrity of the 

resulting charge density and, therefore, all the quantum-chemical properties derived from it. These 

situations can arise as a result of deficiencies in the deposited experimental crystal structure and/or 

in the dataset curation process when generating a database of MOF crystal structures. Therefore, 

in this work we aim to start with a comparatively “clean” dataset of crystal structures for high-

throughput computational investigation, one we will refer to as a suitably “DFT-ready” dataset of 

MOFs. 

We considered the list of materials identified as MOFs from both the Cambridge Structural 

Database (CSD) MOF subset44 and the 2019 Computation-Ready, Experimental (CoRE) MOF 

database,14 the latter of which contains a relatively small number of MOFs not present in the 

former. All starting structures were taken directly from the CSD by querying the corresponding 

CSD reference code (“refcode”), and free (i.e. unbound) solvents were automatically removed 

from the frameworks. We chose to take the initial structures directly from the CSD as a matter of 

consistency and so that we could make use of valuable CSD meta-data407 (e.g. unresolved atoms, 

charged structures) associated with each crystal structure. From this set of experimental crystal 
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structures, we constructed a smaller DFT-ready subset of 42,349 non-disordered MOF structures 

(“QMOF-42349”) after an extensive suite of automated fidelity checks, as summarized in Figure 

F.1. This process serves to filter out many problematic MOFs with omitted H atoms, fractional 

occupancies, deleted framework atoms, lone (i.e. unbonded) atoms, overlapping atoms, an 

improper number of charge-balancing ions, and other structural issues that have been discussed in 

several recent studies.79,407–412 Of these 42,349 experimental crystal structures, a subset of 

materials with 300 atoms or fewer per primitive cell was considered such that high-throughput 

DFT calculations could be carried out in an efficient manner. Full structure relaxations (including 

cell volume and atomic positions) were carried out via a multi-stage workflow32 (Table F.2) at the 

PBE-D3(BJ)125–127 level of theory with the Vienna ab initio Simulation Package (VASP).122,123 

Additional methodological details regarding the dataset construction, DFT calculations, and ML 

methods can be found in the Supplemental Information. 

The high-throughput periodic DFT workflow was successfully completed for 15,713 

MOFs, and several DFT-computed properties were tabulated following the structure relaxation 

process, a selection of which are listed in Figure 7.1.f Of these, band gaps are likely to be of interest 

for electronic and optical properties, especially in the search for (semi)conducting MOFs16–18,413 

or screening for photocatalytic materials.414 Electronic energies, particularly if converted to 

formation energies, may provide insight into the relative stability of MOFs.415 Machine learning 

the charge density416 is a potential way to bypass a large portion of the calculations performed with 

 
f Following publication of this work, ~2600 unique MOFs were added to the QMOF Database, including ~1200 MOFs 

taken from the CSD MOF Subset, ~1200 hypothetical MOFs taken from the Boyd & Woo dataset,629 ~150 MOF-74 

and MOF-5 analogues,630,631 and ~50 hypothetical Zr MOFs made using ToBaCCo.90,621,632 Additional MOF structures 

are planned for forthcoming releases, including more hypothetical MOFs and a curated set399 of experimental MOFs 

from the 2019 CoRE MOF Database.14 The maximum number of atoms per cell was raised to 500. 
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Kohn-Sham DFT.417–419 Both the charge density and density of states can provide insight into the 

electronic structure in addition to serving as promising features to predict a variety of other 

quantum-chemical properties.420,421 Partial atomic charges,158,230,232,289 bond orders,231 and spin 

densities158,230 have a wide range of potential use-cases, from describing electrostatic interactions 

in classical simulations of MOFs234,422 to serving as descriptors to better understand trends in 

catalytic reactions71,423,424 and small molecule binding.73 Furthermore, the DFT-optimized 

structures can be used as starting points for further quantum-chemical calculations and for 

analyzing geometric properties of MOFs. In addition to the curated data mentioned in Figure 7.1, 

all output data from the DFT calculations are made publicly available so that other properties of 

interest can be readily investigated. 

 
Figure 7.1. Selected DFT-computed properties for the structurally relaxed MOFs made available 

in the QMOF Database. 

 

Prior to highlighting how this data can be used in practice, we first investigated several 

properties of the QMOF Database. As shown in Figure 7.2A, the QMOF Database contains MOFs 

with chemical elements that span nearly the entire periodic table, which is beneficial for the 

development of transferable ML models. As anticipated, there is also a large number of MOFs in 

the QMOF Database containing Cu, Zn, and Cd, which compose the three most common types of 

inorganic nodes in the MOF literature.79 Nonetheless, we note that some types of MOF families 

are likely underrepresented in the QMOF Database due in part to the dataset curation process, 
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which filters out any MOFs with missing atomic coordinates or partial occupancies. These 

situations are likely to arise in MOFs with complex proton topologies that cannot be resolved from 

X-ray diffraction alone (e.g. Zr- and Hf-based MOFs425,426),g MOFs with defects in the crystal 

structure,427 and MOFs that have undergone post-synthetic modification.428,429 

 
Figure 7.2. A) Number of MOFs in the QMOF Database containing a given element. All elements 

that occur in greater than 800 structures are capped at 800 for ease of visualization. These include: 

C (15,713), H (15,713), N (12,892), O (12,821), Cu (2,882), S (2,684), Zn (2,665), Cd (2,538), Cl 

(1,687), and Ag (1,213). Elements in gray are not present in any structure. B) Histogram of the 

fractional change in cell volume before (𝑉𝑖) and after (𝑉𝑓) structure relaxation at the PBE-D3(BJ) 

level of theory for the MOFs in the QMOF Database. C) Violin plots of the DFT-computed band 

gaps, 𝐸𝑔,𝐷𝐹𝑇, at the PBE-D3(BJ) level of theory for the MOFs in the QMOF Database. Separate 

distributions are shown for the entire dataset (15,713 entries), the closed-shell MOFs (12,169 

entries), and the open-shell MOFs (3,544 entries). Open-shell character is defined here as having 

 
g Since the original publication of this work, a dataset of Zr- and Hf-containing MOFs has been added to the QMOF 

Database. 
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a DDEC6 atomic spin density with a magnitude greater than 0.1. A box plot, showing the extrema 

and interquartile range, is included in each violin with the median marked by a white dot. 

 

When looking at the geometries before and after structure relaxation, we find that 96.6% 

of the DFT-optimized MOFs had a change in cell volume less than 10% (Figure 7.2B), suggesting 

that the removal of free solvent does not drastically alter the structural properties for most of the 

MOFs in this work. In the case of flexible MOFs, multiple conformations are often included in the 

QMOF Database, which is important since they may exhibit different electronic structure 

properties.430 As depicted in Figure F.3, three distinct conformations of the flexible MOF Fe(bdp) 

(H2bdp = 1,4-benzenedipyrazole)431 are included in the QMOF Database (refcodes: QUPZIM, 

QUPZIM01, QUPZIM02), one of which is on the extreme end of the distribution shown in Figure 

7.2A (Table F.5). This is not surprising given that high pressures of CH4 are needed to stabilize 

the given open-pore configuration of Fe(bdp).431 

The distribution of DFT-computed band gaps for the fully optimized structures at the PBE-

D3(BJ) level of theory is shown in Figure 7.2C and indicates that there is a wide spread of values 

from nearly 0 eV to 6.45 eV. The band gaps are not normally distributed and instead are bimodal, 

with peaks centered around 0.9 eV and 2.9 eV. This can be attributed to different distributions 

associated with closed- and open-shell materials in the QMOF Database (Figure 7.2C), the latter 

of which have significantly lower band gaps at the PBE-D3(BJ) level of theory on average. With 

regards to partial atomic charges, a wide spread of values is also obtained (Figure F.5A). In 

comparing the partial atomic charges before and after structure relaxation, we find that 92.4% of 

the ~1.2 million data points have an absolute difference less than 0.05 𝑞𝑒, and 98.9% of the points 

have an absolute difference less than 0.1 𝑞𝑒 (Figure F.5B). As has been observed on a smaller scale 
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in prior work,112,234 it can be safely assumed that the partial charges remain essentially unchanged 

upon structure relaxation in most cases. 

As a brief demonstration for how the data generated via the high-throughput DFT workflow 

could be used directly, we identified any porous framework materials with high-spin Fe species 

following the high-throughput DFT workflow. High-spin Fe complexes are known to be promising 

for oxidation catalysis, in particular for the activation of strong C–H bonds, and recent work has 

focused on stabilizing such motifs in MOFs for this purpose.98,116,168 This query of the QMOF 

Database resulted in six unique MOFs, as shown in Figure F.6. Providing validation of this 

screening approach, two of the six MOFs – Fe2(dobdc) (H4dobdc = 2,5-dihydroxybenzene-1,4-

dicarboxylic acid) (refcode: COKNOH)432 and Fe2(dobpdc) (H4dobpdc = 4,4′-dihydroxy-(1,1′-

biphenyl)-3,3′-dicarboxylic acid) (refcode: MALSIE)204 – have already been shown to oxidize 

strong C–H bonds.168,177,433 Another two of the six MOFs – Fe2Cl2(bbta) (H2bbta = 1H,5H-

benzo(1,2-d:4,5-d′)bistriazole) (refcode: HAYYUE)193 and Fe2Cl2(btdd) (H2btdd = bis(1H-1,2,3-

triazolo[4,5-b],[4′,5′-i])dibenzo[1,4]dioxin) (refcode: HAYZAL)193 – have been computationally 

investigated for their use in oxidation reactions.71,72,74 Prior experimental studies suggest that the 

aforementioned MOFs exhibit high-spin Fe sites.168,193,433 

7.2.2 Machine Learning Models for Band Gap Prediction 

Beyond analyzing the DFT-computed properties directly, the QMOF Database now makes it 

possible to train a wide range of ML models specifically tailored for MOFs, which are likely to 

have their own distinct feature space compared to isolated molecules and inorganic solids. This 

serves two primary purposes. The first is more theoretical: featurization methods (i.e. how each 

MOF structure is numerically encoded) and ML algorithms that are well-suited for other materials 
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may not be equally suitable for MOFs, so this database of quantum-chemical properties can serve 

as a testing ground to benchmark new ML methods.h The Materials Project33 and OQMD30,34 in 

particular have accelerated this research direction for inorganic solids, and the QM9 dataset434,435 

(as one example) has done the same for small molecule chemistry. The second purpose of this new 

database is to apply these rapid yet accurate ML models to accelerate the materials discovery 

process, now with the ability to train these models directly on properties computed for MOFs. 

In this work, we have chosen to develop an ML regression model that can rapidly predict 

the DFT-computed band gaps of MOFs. Specifically, we aim to predict the computed band gaps 

of the DFT-optimized structures from the un-optimized, experimentally resolved MOF crystal 

structures such that no quantum-chemical calculations need to be carried out. To achieve this, all 

ML models are trained on the band gaps of the DFT-optimized structures but take representations 

of the corresponding unrelaxed experimental structures as the input. Since the development of an 

ML regression model that can predict the band gaps of MOF crystal structures has not been 

achieved before, we trained several ML models using a variety of common featurization methods 

to benchmark each approach. These featurization methods are graphically summarized in Figure 

7.3 for a representative material IRMOF-1 (IRMOF = isoreticular MOF),210 also known as MOF-

5 (Figure 7.3A). For the purposes of training ML models throughout this work, we specifically 

focus on a de-duplicated subset of 14,482 materials in the QMOF Database (“QMOF-14482”) that 

have gone through the full periodic DFT volume relaxation process. 

 
h Following publication of this work, a paper was published using the QMOF Database to benchmark various graph 

neural network models.499 



186 

 

 
Figure 7.3. A) IRMOF-1 structure. B) Examples of composition-based features. C) Sine Coulomb 

matrix showing the interaction values between each pair of atoms. D) Orbital field matrix showing 

the average interaction value between each pair of orbital- or period-based features. Only non-zero 

values are shown. E) Averaged SOAP fingerprint of IRMOF-1 compared to IRMOF-2 and ZIF-8. 

Taking the dot product of any two vectors yields an unnormalized similarity score. F) Schematic 

of a crystal graph with example node (circle) and edge (line) embeddings (only a representative 

portion is shown for clarity). 

 

The simplest featurization methods considered in this work are the feature sets of He et 

al.400 (with 45 statistical attributes of elemental properties, denoted “Stoichiometric-45”) and 

Meredig and Agrawal et al.436 (with 103 attributes describing the elemental fractions from H–Lr 

and 17 statistical attributes of elemental properties, denoted “Stoichiometric-120”), which rely 

solely on the chemical composition of each material (Figure 7.3B). In addition, we consider several 

structure-sensitive featurization approaches, including the sine Coulomb matrix437 that encodes 

pairwise electrostatic interactions between nuclei in a material (Figure 7.3C, Equation F.4) and the 

orbital field matrix438 that encodes the distribution of valence electrons in each coordination 
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environment of a material (Figure 7.3D). The smooth overlap of atomic positions (SOAP)439,440 is 

another structure-sensitive descriptor considered in this work, which can be used to compute the 

similarity between a pair of local atomic environments – and, by extension, a pair of structures – 

by representing the atoms as Gaussians (i.e. “smoothed positions”) and comparing the spatial 

overlap in the resulting atomic density fields (Figure F.2 and Equations F.5–F.9). In all of the 

aforementioned examples, these features are used to develop a kernel ridge regression441 (KRR) 

model (Equations F.1–F.3). Motivated by prior work on inorganic solids, we also investigated the 

use of a crystal graph convolutional neural network (CGCNN),406 wherein an approximate crystal 

graph is generated for each MOF, with each node in the graph representing an atom and each edge 

representing the bonds that connect the atoms (Figure 7.3F). More detailed descriptions and full 

methodological details for each featurization method and ML model architecture can be found in 

the Supplemental Information. 

As shown in Table 7.1, the KRR models trained on composition-based features (i.e. 

Stoichiometric-45 and Stoichiometric-120) are able to capture some of the band gap trends with 

mean absolute errors (MAEs) of 0.43 – 0.44 eV (with respect to the DFT-computed values) on the 

out-of-sample testing set. Nonetheless, these methods are still quite limited for regression purposes 

given that they do not encode any information about the structural properties of the MOF. In terms 

of structure-sensitive methods, taking an eigenvalue spectrum of the sine Coulomb matrix fares 

worse than the stoichiometry-based features, yielding a testing set MAE of 0.53 eV (Table 7.1). 

This can likely be traced back to the required use of zero-padding in the sine Coulomb matrix to 

ensure constant-length feature vectors between MOFs with different numbers of atoms per unit 

cell. The KRR model using a flattened orbital field matrix as the feature set is more accurate than 



188 

 

the model based on the sine Coulomb matrix but shows only a minor improvement over the 

stoichiometry-based features. Overall, SOAP performs the best of all tested KRR descriptor sets, 

with an MAE of 0.36 eV and 𝑅2 = 0.82 on the testing set. The marked improvement in 

performance with SOAP is especially clear when comparing the parity plots of the different KRR 

models (Figure F.7). 

Table 7.1. Summary of the testing set mean absolute error (MAE), coefficient of determination 

(𝑅2), and Spearman rank-order correlation coefficient (𝜌) for several machine learning methods 

to predict the computed band gaps of MOFs from their deposited crystal structures with free 

solvent removed. Kernel ridge regression was used for all featurization methods except for the 

crystal graphs of CGCNN, for which a convolutional neural network was constructed. The testing 

set statistics are shown, averaged over five runs (using different random seeds for data splitting) 

with ±1 standard deviation shown. For all models, 80% of the QMOF-14482 dataset was used for 

training. The MAE for a dummy model that predicts the mean band gap (2.220 eV) for all the 

MOFs is shown for reference. 

ML Method MAE (eV) 𝑅2 𝜌 

Constant mean model 0.973 — — 

Sine Coulomb matrix 0.529 ± 0.008 0.643 ± 0.012 0.787 ± 0.008 

Stoichiometric-45 0.437 ± 0.004 0.743 ± 0.006 0.842 ± 0.004 

Stoichiometric-120 0.433 ± 0.010 0.750 ± 0.009 0.847 ± 0.005 

Orbital field matrix 0.417 ± 0.008 0.763 ± 0.010 0.863 ± 0.003 

SOAP 0.357 ± 0.008 0.822 ± 0.010 0.910 ± 0.003 

CGCNN 0.274 ± 0.008 0.876 ± 0.011 0.932 ± 0.005 

 

Notably, CGCNN significantly outperforms all the aforementioned KRR models, 

achieving an MAE of 0.27 eV and 𝑅2 = 0.88 (Table 7.1). As a point of reference, a trivial model 

that simply predicts the mean band gap for every MOF would have an MAE of 0.97 eV, suggesting 

that CGCNN captures much of the underlying chemistry. The performance of the CGCNN model 

for MOF band gaps is comparable, if not slightly better, than state-of-the-art ML band gap models 

trained on inorganic solids from the OQMD and Materials Project as well as the organic crystals 

from the Organic Materials Database (OMDB).37,406,442,443 It is also worth noting that the 
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experimentally measured band gaps of MOFs can vary by several tenths of an eV depending on 

the synthesis and post-treatment conditions.444 As such, an MAE less than 0.3 eV is promising for 

the identification of structure–property trends and for sorting material candidates by band gap, the 

latter of which is further justified by the CGCNN’s high Spearman rank-order correlation 

coefficient of 𝜌 = 0.93. For context, it took ~8 minutes (7 minutes for a one-time encoding of the 

crystal graphs and 1 minute to evaluate the neural network) on a modern laptop computer to predict 

the band gaps of all 14,482 MOFs in the QMOF-14482 set using the CGCNN model. In stark 

contrast, it took over 1.5 million hours (~170 years) of computing time on the Stampede2 

supercomputer445,446 to carry out the structure relaxations and compute the band gaps via DFT. 

The learning curves for each of the six models are shown in Figure 7.4A, highlighting the 

testing set MAE as a function of the training set size. Of all the individual models, CGCNN has 

the lowest MAE regardless of training set size. While SOAP has a worse testing set MAE 

compared to the simpler stoichiometric models when trained on fewer than 1000 MOFs, SOAP 

has a significantly higher learning rate such that it performs much better for larger training set 

sizes (although still underperforms compared to CGCNN). Reassuringly, the MAEs of the top-

performing CGCNN and SOAP methods have not plateaued with respect to the training set size 

over the range of values considered in this work (i.e. up to ~104 training points). This indicates 

that both CGCNN and SOAP are capable of encoding the MOF crystal structures with sufficient 

uniqueness between structures and that the performance of the ML algorithms could be further 

improved if a greater number of training examples were provided. The testing set parity plot for 

the CGCNN trained on 80% of the QMOF-14482 MOF dataset is shown in Figure 7.4B. As one 
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would expect based on the relatively low MAE and high 𝑅2, the agreement with the DFT 

predictions is quite strong, and this is true across a wide range of band gap values. 

 
Figure 7.4. A) Mean absolute error (MAE) for band gap predictions on the testing set as a function 

of training set size for various machine learning methods. Each point represents the average MAE 

over five runs with different random seeds for data splitting, and the shaded region represents ±1 

standard deviation. The data are shown on log–log axes. B) Testing set parity plot for the CGCNN 

model with hexagonal binning, comparing the machine learning band gaps, 𝐸g,ML, to the PBE-

D3(BJ) band gaps of the DFT-optimized structures, 𝐸g,DFT. The color bar indicates the number of 

MOFs in each bin, and the line of parity is shown as a dashed line. Histograms summarizing the 

distribution of 𝐸g,DFT and 𝐸g,ML data are displayed parallel to the 𝑥- and 𝑦-axes, respectively. 

 

7.2.3 Dimensionality Reduction for Structure–Property Analysis 

While the kernel-based methods have a higher MAE than CGCNN when predicting MOF band 

gaps, the underlying descriptors can be readily used for dimensionality reduction – an 

unsupervised learning task that can cluster structurally similar MOFs in feature space for the 

purposes of identifying interpretable structure–property relationships. Using the uniform manifold 

approximation and projection (UMAP) algorithm to carry out the dimensionality reduction,447,448 

the distance between each MOF in the reduced space can be related to the distance in feature space, 

such that clusters of points tend to have similar structures (Equation F.10). By overlaying the DFT-
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computed band gaps over the UMAP, regions of low and high band gap can emerge, making it 

possible to identify otherwise subtle structure–property trends. 

As an example, selecting several MOFs in region A of the SOAP-based UMAP (Figure 

7.5) yields materials with long, linear alkane-based linkers (e.g. refcode: NEZMEM449), which 

consistently have high band gaps regardless of the coordinating metal. The low band gap MOFs 

are more scattered throughout the reduced feature space, but as one example, region B of Figure 

7.5 contains framework materials with linkers consisting of various TCNQ (TCNQ = 7,7,8,8-

tetracyano-quinodimethane) derivatives, with several of these materials previously shown to have 

high electrical conductivities (e.g. BISVUW450, FAFJAZ451). The projection in Figure 7.5 can be 

used to find MOFs that are structurally similar to a given material of interest as well. For instance, 

Cu[Ni(pdt)2]⋅C2H2 (pdt2– = 2,3-pyrazinedithiolate) (refcode: HIVPOU452) is in the QMOF-14482 

dataset, and it is known to be one of the rare examples of a three-dimensional, porous framework 

that exhibits room temperature electrical conductivity.452 Perhaps unsurprisingly, one of the closest 

points to Cu[Ni(pdt)2]⋅C2H2 is the isostructural framework Cu[Cu(pdt)2]⋅C2H2 (refcode: 

WIHQEM453) (region C), which has also been studied for its conductive properties.454,455 In 

general, we find that the SOAP-based UMAP places greater emphasis on the similarity of the 

organic linkers rather than the metal identity, likely due to the averaging scheme used in the 

generation of the similarity kernel (Table F.6). Modifications to the SOAP encoding that better 

account for the discrete building block nature of MOFs, such as variations on the recently 

developed coarse-grained SOAP (cg-SOAP) method,456 may yield improvements in the future. 
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Figure 7.5. Unsupervised structural dimensionality reduction performed using UMAP, with a 

distance matrix obtained from the SOAP average similarity kernel of the unrelaxed structures in 

the QMOF-14482 dataset. The PBE-D3(BJ) band gaps of the DFT-optimized structures, 𝐸𝑔,𝐷𝐹𝑇, 

are overlaid on the UMAP. Selected MOFs in the projection are highlighted. 

 

Similar to what has been done in prior work with revised autocorrelation functions,457 we 

can use the SOAP similarity kernel to understand the diversity of structures in the QMOF-14482 

dataset and identify structural outliers. The most apparent example is the isolated cluster of points 

in region D of Figure 7.5. Investigation of these crystal structures indicates that they are 

predominantly frameworks with high fluorine content, such as MOFs with fluorinated linkers (e.g. 

MUQCEH458, HADMOR459) or metal–fluoride species (e.g. EMEJAJ460), which leads to a large 

difference in the average SOAP fingerprint compared to most other MOFs in the dataset. The 

isolated region E of Figure 7.5 where there is a low band gap cluster contains polyoxovanadate-

based MOFs, some of which have already been investigated for their conductive and 

electrocatalytic properties (e.g. FEYCOE461, XEHYEP462). 
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While the SOAP-based UMAP is useful for identifying local trends in feature space, 

significantly greater clustering is observed when using the Stoichiometric-120 encoding. As is 

evident in Figure 7.6A, the UMAP based on the Stoichiometric-120 encoding largely partitions 

the MOF chemical space by the maximum atomic number in each chemical formula. The 

variations within a given cluster are due to more subtle differences in the elemental fractions and 

compositional features that compose the Stoichiometric-120 descriptor. Notably, the band gaps are 

well-separated between and within each cluster in the reduced space (Figure 7.6B). For these 

reasons, the Stoichiometric-120 UMAP is one useful way to obtain a global view of the QMOF 

Database. For instance, we find that the QMOF-14482 dataset closely overlaps with both the larger 

QMOF-42349 dataset it was drawn from and the separate CoRE MOF 2019 database14 based on 

the reduced space of Stoichiometric-120 features (Figures F.8 and F.9). The band gap data in 

Figure 7.6B also emphasizes how the Zn-containing MOFs (east cluster, max(𝑍) = 30) tend to 

have lower band gaps than MOFs with first-row transition metals (south-east cluster, max(𝑍) = 

23 – 29) at the PBE-D3(BJ) level of theory. To enable additional data exploration, interactive 

versions of the UMAPs are available in the supporting dataset.402 
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Figure 7.6. Unsupervised dimensionality reduction performed using UMAP, with a distance matrix 

obtained using a Euclidean distance metric of the Stoichiometric-120 encodings for the structures 

in the QMOF-14482 dataset. The a) maximum atomic number in each structure, 𝑚𝑎𝑥(𝑍), and b) 

PBE-D3(BJ) band gaps for the corresponding DFT-optimized structures, 𝐸𝑔,𝐷𝐹𝑇, are overlaid on 

the UMAPs. 

 

7.2.4 Highlighting Notable Low Band Gap MOFs 

We conclude by highlighting several framework materials identified in this work that have low 

band gaps, motivated in part by the search for a greater number of (semi)conducting MOFs. It 

should be noted that while the PBE-D3(BJ) level of theory makes it possible to generate a 

sufficiently large database for the purposes of ML model development and to identify structure–

property relationships, it is known to underestimate band gaps like essentially all generalized 

gradient approximation functionals.463,464 As such, we carried out full structure relaxations and 

corresponding band gap calculations using the hybrid-level HSE06-D3(BJ) functional465–467 on 

select materials to generate more accurate band gap predictions. As a point of reference, materials 

with band gaps in excess of ~4 eV are often classified as electronic insulators, including many of 

the most commonly studied MOFs (e.g. MOF-5,444 UiO-66 (UiO = Universitetet i Oslo),468 ZIF-8 
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(ZIF = zeolitic imidazolate framework)469).16,463 Generally, lower band gaps are necessary to 

support electrical conductivity (although it is not the sole factor required for achieving high 

electrical conductivities16). 

When the CGCNN model is used to predict the band gaps of all 42,349 structures that 

compose the QMOF-42349 dataset, one of the lowest band gap material is predicted to be 

Ag(DCl)2 (DCl = 2,5-Cl,Cl-N,N′-dicyanoquinone diamine) (refcode: OTARUX470), which is 

known from experiments to exhibit metallic character via organic radicals that connect the Ag(I) 

cations.470 The introduction of radical or redox-active linking units is a well-established strategy 

to increase the electrical conductivity of framework materials.16 Although Ag(DCl)2 is arguably 

best described as a coordination polymer, one notable MOF in the QMOF-42349 dataset with a 

low predicted band gap and a radical-containing linker is (TTF)[{Rh2(CH3CO2)4}2TCNQ] (TTF = 

tetrathiafulvalene) (refcode: WAQMEJ471) – a pillared layer framework material built from Rh(II) 

paddlewheels and a TTF–TCNQ charge-transfer salt (Figure 7.7A). The HSE06-D3(BJ) band gap 

for this material is found to be particularly small with a value of 0.71 eV, which can be directly 

attributed to a reduced conduction band minimum (CBM) from the TTF and TCNQ components 

(Figure 7.7D). Furthermore, the valence band maximum (VBM) also exhibits hybridization 

between the 4d orbitals of Rh and 2p orbitals of C and N atoms belonging to the radical TCNQ 

linker, which is important for applications involving electron transport. In contrast, one of the most 

electronically insulating structures in the QMOF-42349 dataset based on CGCNN-predicted band 

gap is the non-porous coordination polymer Sr[C2H4(SO3)2] (refcode: GUTYAW472), which has 

an HSE06-D3(BJ) band gap of 8.36 eV (Figure F.12). 
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Figure 7.7. Structures of A) (TTF)[{Rh2(CH3CO2)4}2TCNQ], B) Fe(sq)(bpee)(H2O)2, and C) 

Fe(bipytz)(Au(CN)2)2. Total and projected density of states (DOS) at the HSE06-D3(BJ) level of 
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theory for D) (TTF)[{Rh2(CH3CO2)4}2TCNQ], E) Fe(sq)(bpee)(H2O)2, F) Fe(bipytz)(Au(CN)2)2 

(high spin), and G) Fe(bipytz)(Au(CN)2)2 (low spin). The energy, 𝐸, in eV is shown with respect 

to the Fermi level, 𝐸𝑓. For MOFs with magnetic character, DOS values above and below the 

horizontal zero line refer to the spin-up and spin-down channels, respectively. 

 

Consistent with prior experimental work,473 we also find several Fe-containing materials 

in the QMOF-42349 dataset with low band gaps, many of which have not yet been studied for their 

electronic properties. One representative example is Fe(sq)(bpee)(H2O)2 (bpee = 1,2-bis(4-

pyridyl)ethylene; sq = squarate) (refcode: RAXNEK474), shown in Figure 7.7B, which has a band 

gap of 1.06 eV at the HSE06-D3(BJ) level of theory. The high-spin Fe(II) species in an octahedral 

crystal field with t2g
4eg

2 electron configuration dominate the VBM in this material, whereas the 

bpee linker (as opposed to the bridging sq species or inorganic node) make up the conduction band 

edge (Figure 7.7E). 

Another noteworthy example is the three-dimensional porous framework material 

Fe(bipytz)(Au(CN)2)2 (bipytz = 3,6-bis(4-pyridyl)-1,2,4,5-tetrazine) (refcode: LOJLAZ475), 

shown in Figure 7.7C. At the HSE06-D3(BJ) level of theory, we find that the high spin state 

exhibits a band gap of 1.17 eV (Figure 7.7F) – similar to that of Fe(sq)(bpee)(H2O)2. The projected 

density of states indicates that the Au(I) species are unrelated to the relatively low band gap; 

instead, the low band gap can be attributed to the combination of Fe(II) and bipytz linker. 

Fe(bipytz)(Au(CN)2)2 is known to be a spin-crossover framework (with a sharp spin transition 

around 290 K),475 and we find the low spin HSE06-D3(BJ) band gap to be 1.95 eV (Figure 7.7G), 

suggesting that the material may have tunable electronic properties as a function of temperature. 

For the low spin case, the VBM is composed of Fe 3d orbitals and the CBM is composed of N 2p 

orbitals. The reduction in band gap from low spin to high spin state can be rationalized on the basis 
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of crystal field theory. In the high spin state, the Fe(II) centers have a t2g
4eg

2 electronic 

configuration, whereas in the low spin state they have a t2g
6eg

0 electron configuration. This 

occupation of the eg orbitals in the high spin state is directly related to the predicted ~0.8 eV 

reduction in the band gap compared to the low spin state. For both highlighted Fe-containing 

frameworks, the band gaps are lower – or comparable in the low spin state for 

Fe(bipytz)(Au(CN)2)2 – to those of several iron-containing MOFs that have been studied for their 

conductive properties, such as Fe2(dobdc), Fe2(dsbdc) (H4dsbdc = 2,5-disulfhydrylbenzene-1,4-

dicarboxylic acid), and Fe(bpz).473,476 Collectively, these findings demonstrate the practical utility 

of the QMOF Database for identifying MOFs with targeted quantum-chemical properties. 

7.3 Conclusion 

In this work, we have developed a database of quantum-chemical properties for over 14,000 MOF 

structures (the “QMOF Database”)402 via a high-throughput periodic DFT workflow.32 DFT-

computed geometries, energies, band gaps, density of states, partial charges, spin densities, bond 

orders, and related electronic structure properties are made publicly available.402 We highlight how 

this database can be used to identify MOFs with targeted electronic structure properties and then 

develop several ML models to predict the DFT-computed band gaps using descriptors derived 

from the un-optimized MOF crystal structures. A crystal graph convolutional neural network 

(CGCNN)406 is found to achieve high predictive performance for this task, making it possible to 

circumvent large numbers of computationally expensive DFT calculations in future studies. While 

not as accurate as CGCNN for regression purposes, we show that both the smooth overlap of 

atomic positions (SOAP)439,440 and composition-based features436 can be used to discover 

otherwise subtle structure–property relationships in the QMOF Database via unsupervised 
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dimensionality reduction techniques. Finally, we show how top-performing ML models generated 

from the database of DFT-computed properties can be used to aid in the discovery of MOFs with 

desired quantum-chemical properties – in this case, discovering MOFs with low band gaps that 

could be suitable candidates to consider further for applications where electrical conductivity is 

necessary. 

Importantly, the QMOF Database now makes it possible to pursue several important 

research directions that are reliant on a large database of quantum-chemical properties for MOFs 

beyond those directly discussed in this work. For instance, with the success of transfer 

learning,442,477 multi-task learning,478 and Δ-ML479 methods in materials research, the QMOF 

Database can serve as a valuable resource to increase the accuracy – and reduce the required 

training set size – for ML models tasked with the prediction of new MOF properties not present in 

the QMOF Database. Since the output of any ML models will depend on the chosen density 

functional approximation, related transfer learning approaches may also prove useful in 

generalizing ML model predictions to other levels of theory using the PBE-D3(BJ) data as a 

starting point. Instead of relying on representation approaches that were originally designed for 

inorganic solids or small molecules, the QMOF Database can also be used to develop better 

methods for the encoding of MOF structures in ML models. Even outside the areas of high-

throughput DFT screening, data mining, and ML, there are countless possible use-cases for the 

QMOF Database. As just one example, the DFT-generated properties in the QMOF Database could 

be used to develop and/or benchmark (semi-)empirical methods (e.g. tight binding approaches480 

or molecular mechanics force fields481) with the hopes of achieving high accuracies for MOF 

structures. 
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We conclude by noting that the QMOF Database should be considered a living resource; 

several updates to the QMOF Database are planned for the future, and we welcome the 

development of subsets, modifications, and supplements to the database that suit the diverse needs 

of the MOF community. With all this in mind, we anticipate that the QMOF Database will 

accelerate the material design and discovery process while being specifically tailored for the 

chemical space of experimentally realized MOF structures.
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Chapter 8: PROBING THE LIMITS OF DENSITY FUNCTIONAL THEORY 

IN PREDICTING THE ELECTRONIC STRUCTURE PROPERTIES OF 

METAL–ORGANIC FRAMEWORKS: A BIG DATA APPROACH 

In this chapter, we expand upon the QMOF Database to include computed electronic 

structure properties at levels of theory beyond the widely used generalized gradient approximation 

(GGA) functional PBE. With this new data, we obtain a better understanding of the limitations of 

commonly used GGA functionals and how different density functional approximations influence 

the prediction of computed MOF electronic structure properties, with a specific focus on band gaps 

and partial atomic charges. By changing the fraction of Hartree-Fock exchange, we find that there 

are both quantitative and qualitative differences in the computed band gaps across the different 

levels of theory. Furthermore, the presence of magnetic character results in unusually large 

differences in band gaps between the (meta-)GGA functionals and screened hybrid functionals. 

With regards to partial charges, we find that both the tested meta-GGA and screened hybrid 

functionals shift electron density away from the metal center and onto the ligand atoms with 

respect to the PBE reference. Nonetheless, the magnitude of these changes in partial charge is 

found to be much smaller than the differences observed when using an alternate charge partitioning 

scheme.  
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8.1 Introduction 

Metal–organic frameworks (MOFs) have been widely studied over the last two decades due to 

their high degree of synthetic tunability, which makes it possible to tailor their physical and 

chemical properties for a given application of interest.1 While much attention has been focused on 

the use of MOFs for industrial gas storage and separations, the design of MOFs with targeted 

electronic properties has become a topic of recent interest as well.16,482 Through a judicious 

selection of inorganic node and organic linker, MOFs have been proposed for novel 

(opto)electronic devices, electrocatalysts, photocatalysts, sensors, and energy storage devices, 

among many other applications.16 However, with tens of thousands of MOFs that have been 

experimentally synthesized44 and virtually unlimited more that can be proposed,53 it is often 

difficult to identify promising MOF candidates with the ideal set of electronic properties.  

 The advent of machine learning (ML) and related big data approaches have made it possible 

to more efficiently search through MOF chemical space, and high-throughput computational 

screening in general can often provide insight into previously unknown structure–function 

relationships.46–51,396,483 In recent work, a high-throughput density functional theory (DFT) 

workflow32 was used to construct a database of quantum-chemical properties for thousands of 

MOFs (and coordination polymers), known as the QMOF Database.402 Like many databases of 

material properties generated from high-throughput periodic DFT calculations,30,33,35,37,484 the 

electronic structure properties within the QMOF Database were computed with the relatively 

inexpensive PBE125 exchange-correlation functional, including dispersion corrections. While PBE 

is particularly useful for generating the large quantities of material property data at a relatively 

modest computational cost, the electron self-interaction error of generalized gradient 
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approximation (GGA) functionals like PBE is known to greatly influence the predicted electronic 

properties.367 Most infamously, PBE is known to severely underpredict band gaps,464 and the 

degree to which there may be qualitative (as opposed to merely quantitative) errors is not well-

established. This inherently limits the practical utility of high-throughput computational screening 

approaches for the accelerated design and discovery of MOFs with desired electronic structure 

properties. 

For relatively simple inorganic compounds, several approaches have been taken in prior 

studies to increase the accuracy of ML-predicted band gaps trained on high-throughput DFT 

calculations in a computationally tractable manner. Arguably, the most intuitive route is to train 

ML models on experimental band gap data485 or an ensemble of both theoretical and experimental 

band gap data.486 Unfortunately, this a challenging task for MOFs, as there remain relatively few 

reports of experimentally measured MOF band gaps, and reported values can vary by several tenths 

of an eV depending on the synthesis conditions and crystallinity of the material.16 A separate 

approach is to carry out higher accuracy DFT calculations on a subset of materials with the hope 

of training a ML model that can make more actionable predictions. Recently, databases of 

computed band gaps at higher levels of theory have been published for inorganic compounds with 

this goal in mind,487,488 although no such resource currently exists for MOFs. 

In the present work, we complement the existing dataset of PBE-quality electronic structure 

properties in the QMOF Database with analogous data computed using the HLE17489 (meta-GGA) 

and HSE06465,466 (screened hybrid) functionals. By analyzing the electronic structure properties 

calculated at these levels of theory, we uncover severe theoretical limitations associated with the 

more computationally efficient (meta-)GGA density functionals that prevent them from achieving 
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quantitatively – and sometimes qualitatively – accurate band gap predictions for MOFs and related 

structures with respect to hybrid functionals. Since it is well-established that different density 

functional approximations (DFAs) can alter the underlying charge density, we also investigated 

trends related to the computed partial atomic charges. In general, we find that the different levels 

of theory predict similar partial charge values; however, the meta-GGA and screened hybrids tend 

to shift electron density away from the metal centers and onto the ligand environments compared 

to the PBE point of reference. We anticipate that the computational data and trends presented in 

this work will make it possible to achieve both rapid and highly accurate predictions of MOF band 

gaps that can greatly accelerate the materials design and discovery process. 

8.2 Methods 

All plane-wave, periodic DFT calculations were carried out using the Vienna ab initio Simulation 

Package (VASP)122,123 5.4.4 and the Atomic Simulation Environment (ASE)83 3.20.0b1. DFT-

optimized structures at the PBE-D3(BJ)125–127 level of theory were obtained from the QMOF 

Database.75 With these structures, static (i.e. single-point) HLE17489 and HSE06465,466 calculations 

were performed. HSE06 calculations were carried out with 10% Hartree-Fock (HF) exchange in 

addition to the default 25% HF exchange. For brevity, we will refer to the PBE-D3(BJ), 

HLE17//PBE-D3(BJ), HSE06 (10% HF exchange)//PBE-D3(BJ), and HSE06 (25% HF 

exchange)//PBE-D3(BJ) calculations as PBE, HLE17, HSE06*, and HSE06, respectively. 

HLE17 was selected because prior benchmarking studies463,489 suggest that it can greatly 

improve the prediction of semiconductor band gaps without the need for computationally 

expensive hybrid functionals or system-specific parameters, as is the case with the commonly 

employed GGA+U approach.373 HSE06 was selected because it is currently considered the gold-



205 

 

standard for predicting the electronic properties of MOFs with DFT,4,463 although it can be 

computationally prohibitive for many larger MOF structures. For HSE06, we consider the standard 

25% HF exchange as well as 10% HF exchange since, for some materials, 25% HF exchange can 

overcorrect the band gap underprediction problem of PBE.490,491 

For materials without magnetic character, the band gap is defined as the energy difference 

between the conduction band minimum (CBM) and valence band maximum (VBM). For materials 

with magnetic character, there are potentially multiple possible band gaps that can be 

considered.492 Unless otherwise stated, we define the band gap for spin-polarized systems as 

min(CBM↑, CBM↓) − max(VBM↑, VBM↓), where ↑ and ↓ refer to the spin-up and spin-down 

channels, respectively. Nonetheless, we note that the aforementioned definition can occasionally 

result in a band gap that is associated with a formally spin-forbidden transition, as depicted in 

Figure G.4. Using the band gap defined by min(CBM↑ − VBM↑, CBM↓ − VBM↓) avoids the 

possibility of a spin-forbidden process. Regardless of which band gap definition is employed, the 

trends and conclusions reported throughout this work remain unchanged (Figure G.5).  

Additional methodological details regarding the DFT calculations and dataset curation can 

be found in the Appendix. 

8.3 Results and Discussion 

8.3.1 Band Gap Comparison 

In order to develop ML-guided models that can directly guide future experimental efforts, it is 

essential to understand the behavior and potential limitations of various levels of theory when 

predicting MOF electronic structure properties. As such, we begin by comparing the DFT-

predicted band gaps for 11,122 structures in the QMOF Database with the PBE (GGA: 0% HF 
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exchange), HLE17 (meta-GGA: 0% HF exchange), HSE06* (screened hybrid: 10% HF exchange), 

and HSE06 (screened hybrid: 25% HF exchange) functionals. 

As shown in Figure 8.1, we observe pronounced differences amongst the various DFAs. 

Starting with the box plots, we find that of the four levels of theory tested in this work, PBE 

predicts the lowest band gaps in general. Including HF exchange — as with HSE06* and HSE06 

— tends to increase the predicted band gap values, with the relative increase depending on the 

fraction of HF exchange in the selected functional. Qualitatively, the HSE06* and HSE06 results 

are more reflective of prior experimental studies,16 which suggest that the vast majority of MOFs 

are electronically insulating and that relatively few exhibit semi-conducting or metallic character. 

Switching focus to the HLE17 meta-GGA, we find that the median band gap value is within 0.10 

eV of the HSE06* calculations, suggesting that the parameterization of this functional can partially 

improve upon the band gap underprediction problem of PBE despite not incorporating HF 

exchange. 

 
Figure 8.1. Raincloud plots (i.e. combined violin plot, box plot, and strip plot) for the DFT-

computed band gaps, 𝐸g, of 11,122 structures in the QMOF Database at the PBE, HLE17, HSE06*, 

and HSE06 levels of theory. The strip plots show all the data at that level of theory (jittered 

horizontally for ease-of-visualization). The box plots show the extrema (whisker tails), 
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interquartile range (box boundaries), and median (horizontal line). The violin plots show the 

probability density of the data. 

 

The aforementioned summary statistics, however, only tell part of the story. When 

comparing the violin plots in Figure 8.1, it is immediately clear that the shape of the band gap 

distribution can vary significantly depending on the DFA. As noted in prior work on the QMOF 

Database,75 the PBE-computed band gap data exhibits two separate distributions with peaks around 

0.90 eV and 2.93 eV (Figure 8.1). A qualitatively similar distribution of band gaps is obtained with 

the HLE17 functional but not for the HSE06* and HSE06 functionals. In fact, at the HSE06 level 

of theory, the data is reasonably well-described by a single Gaussian distribution with a peak 

around 3.81 eV (Figure 8.1). 

The two distinct distributions in the PBE band gap data can be attributed to closed-shell 

and open-shell materials, with the latter exhibiting lower band gaps on average (Figure 8.2a). 

When including 10% HF exchange with HSE06*, the degree of overlap between the closed-shell 

and open-shell band gap distributions is partway between that of PBE and HSE06 (Figure 8.2a). 

Taking the hybrid-quality calculations as the more accurate reference point,463 these findings 

suggest that the PBE functional exhibits severe quantitative and qualitative shortcomings when 

applied to a wide range of MOF structures. Although HLE17 increases the median band gap of the 

dataset, it does not drastically change the bimodal nature of the band gap distribution found with 

PBE. Instead, HLE17 primarily increases the band gaps of the closed-shell frameworks (Figure 

8.2a). When directly comparing the median predicted band gaps for the PBE, HSE06*, and HSE06 

calculations, we find that there is a linear correlation with the fraction of HF exchange (Figure 

8.2b) within the range of 0 – 25% HF exchange considered in this work. Assuming linear behavior 

in this region, it can be concluded that the median band gap across the dataset changes by ~0.05 
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eV per percent of HF exchange for the closed-shell frameworks and ~0.10 eV per percent of HF 

exchange for the open-shell frameworks. 

 
Figure 8.2. a) Violin plots of the predicted band gaps, 𝐸g, for 11,122 structures in the QMOF 

Database at the PBE, HLE17, HSE06*, and HSE06 levels of theory. The left and right sides of 

each violin plot include structures with closed-shell (8970 structures) and open-shell (2152 

structures) character, respectively. A box plot is included inside each violin, highlighting the 

extrema (whisker edges), interquartile range (box boundaries), and median (white dot) of the band 

gap data at the specified level of theory. b) Median band gap as a function of the fraction of 

Hartree-Fock (HF) exchange where 0% = PBE, 10% = HSE06*, and 25% = HSE06. The blue 

triangles and orange circles are the median band gaps for the closed-shell and open-shell structures, 

respectively. The solid lines display the linear best-fit equations. 

 

While Figure 8.1 and Figure 8.2 show how the entire dataset changes with different density 

functionals, it is also important to investigate the degree of correlation between the various levels 

of theory. As shown in the parity plots in Figure 8.3, nearly every MOF has a larger predicted band 

gap at the HSE06* (Figure 8.3b) and HSE06 (Figure 8.3c) levels of theory than with PBE. This is 

also the case for most of the closed-shell MOFs at the HLE17 level of theory, particularly when 

𝐸g,PBE is above ~1 eV (Figure 8.3a). For the closed-shell frameworks (Figure G.6), there is a linear 

correlation between the computationally inexpensive PBE-quality band gaps and those calculated 

with the more accurate HSE06* and HSE06 functionals (as well as the HLE17 functional). As 
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shown in Figure G.6c, a simple linear equation of the form 1.09𝐸g,PBE + 1.04 eV can predict 

HSE06 band gaps with an 𝑅2 value of 0.92, provided the frameworks do not exhibit magnetic 

character and are not classified as metallic. Similar linear equations can be obtained for HLE17 

and HSE06* for the closed-shell structures (Figure G.6a and Figure G.6b). The correlation between 

PBE and the hybrid functionals is weaker for MOFs with magnetic character, hence the larger 

degree of scatter in the low 𝐸g,PBE range of Figure 8.3b and Figure 8.3c. 

 
Figure 8.3. Parity plots of the computed band gaps, 𝐸g, for 11,122 structures in the QMOF 

Database at various levels of theory. a) HLE17 vs. PBE; b) HSE06* vs. PBE; c) HSE06 vs. PBE. 

Given the large dataset size, the parity plots are shown as 2D histograms with the color bar 

reflecting the frequency of points in each bin. The line of parity is shown as a diagonal line. 
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8.3.2 Partial Charge Comparison 

Beyond band gaps, it is well-established that different DFAs can change how the charge density 

is distributed in a given material.493 This is particularly important because all the derivable 

quantum-mechanical properties are obtained from the underlying electron density. Furthermore, 

partial atomic charges (which are often computed directly from the underlying charge density) are 

widely used in molecular simulations of MOFs and can be used to interpret trends when modeling 

redox processes and chemical reactions.234,494 With this in mind, we compared ~960,000 partial 

atomic charges calculated using the sixth-generation Density Derived Electrostatic and Chemical 

(DDEC6) partitioning scheme158,230,231 at the PBE, HLE17, HSE06*, and HSE06 levels of theory. 

 
Figure 8.4. Parity plots of the DDEC6 partial atomic charges, 𝑞DDEC6, for 958,465 atoms based on 

charge densities at various levels of theory: a) HLE17 vs. PBE; b) HSE06* vs. PBE; c) HSE06 vs. 
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PBE. Given the large dataset size, each parity plot is a 2D histogram with the logarithmic color 

bar reflecting the frequency of points in each bin. The line of parity is shown as a dashed diagonal 

line. d) A histogram of the change in DDEC6 charges between the PBE and HSE06 levels of theory 

for the (semi-)metals and ligand atoms within the first coordination sphere. 

 

As shown in Figure 8.4a, the HLE17- and PBE-quality DDEC6 partial atomic charges are 

highly correlated across the entire dataset, with most points falling within 0.04 charge units from 

the line of parity. When investigating the computed partial charges at the HSE06* level of theory, 

we find that the values are closer to the PBE reference than for HLE17 (Figure 8.4b), suggesting 

that 10% HF exchange does not have a large role on the underlying charge density. However, when 

increasing the HF exchange to 25% with HSE06, a slightly larger difference can be observed 

(Figure 8.4c). By focusing solely on the (semi-)metal elements and the atoms within their first 

coordination spheres, we find that – compared to the PBE reference – there is often a loss of 

electron density at the metal and corresponding gain of electron on the surrounding ligands when 

using the HSE06 functional (Figure 8.4d). These trends are consistent with previous partial charge 

analyses carried out on transition metal complexes and open-framework solids.376,380,495 Given the 

large partial charge dataset in the present work, we can conclude that this shifting of electron 

density occurs for an enormously diverse range of metal–ligand environments and can be taken as 

a rule-of-thumb in most cases. While there are differences in the partial atomic charges between 

the different levels of theory, they are relatively minor deviations in general. The overall strong 

agreement suggests that the less expensive PBE-quality charges are likely suitable when carrying 

out high-throughput computational screening studies of MOFs. 

On a related note, it is worth comparing the effect of different charge partitioning schemes 

for a given level of theory. As shown in Figure 8.5, the differences between Bader,159,496 

DDEC6,158,230,232 and Charge Model 5 (CM5)289 partial atomic charges (at the PBE level of theory) 
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tend to be far larger than any differences observed when changing the DFA, similar to what was 

observed for several inorganic solids by Choudhuri and Truhlar.497 For instance, large deviations 

are often observed for the S and P atoms of SO4
2- and PO4

2- groups, which have partial atomic 

charges upwards of ~2.4 charge units higher with the Bader method than the DDEC6 method 

(Figure G.9). For applications where a given charge partitioning scheme has not been thoroughly 

benchmarked, we therefore recommend comparing several types of partial charges and further 

investigating any substantial differences. 

 
Figure 8.5. a) Parity plot of the partial atomic charges, 𝑞, for 882,682 atoms computed using the 

Bader and DDEC6 charge partitioning schemes at the PBE level of theory. b) Parity plot of the 

partial atomic charges, 𝑞, for 1,789,278 atoms computed using the CM5 and DDEC6 charge 

partitioning schemes at the PBE level of theory. Given the large dataset size, the parity plots are 

shown as 2D histograms with the logarithmic color bar reflecting the frequency of points in each 

bin. The line of parity is shown as a dashed diagonal line. 

 

8.4 Future Work 

This project is currently ongoing, and several additions are planned prior to its eventual 

publication. Currently, I am collaborating with members of the Persson group at the University of 

California, Berkeley and Lawrence Berkeley National Laboratory to host the QMOF Database – 

including the results at these new levels of theory – as a custom application on the Materials 
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Project.33 This will help ensure that the QMOF Database is aligned with the findable, accessible, 

interoperable, and reusable (FAIR)498 guiding principles of data-driven research. I am also 

currently collaborating with Dr. Victor Fung at Oak Ridge National Laboratory – who has 

developed the graph convolutional network (GCN) benchmarking program MatDeepLearn499 – to 

construct ML band gap models tailored for this new HLE17, HSE06*, and HSE06 data (for ML-

based partial charge prediction, we refer the reader to several ML models397–399 that have been 

shown to accurately predict DDEC6 and CM5 charges for MOFs, an example of which is shown 

in Figure G.10). The current plan is to train multi-task500 and/or multi-fidelity501,502 GCN models 

on the new dataset of MOF band gaps. With the multi-task learning approach, the GCN can 

simultaneously predict PBE, HLE17, HSE06*, and HSE06 band gaps given a graph-based 

encoding of a MOF structure. With the multi-fidelity learning approach, the larger amounts of low-

fidelity PBE data can potentially be used to increase the learning rate of a GCN trained on higher 

fidelity HLE17/HSE06*/HSE06 data, which has fewer data points. With these new ML models, I 

also plan to carry out a dimensionality reduction on the trained GCN embeddings to visualize what 

the GCN is learning and to aid in the identification of otherwise difficult to discern structure–

property trends. 

8.5 Conclusion 

With a newly generated dataset of electronic structure properties for ~11,000 MOFs (and 

coordination polymer) in the QMOF Database,75 we compare the performance of different density 

functional approximations for the prediction of band gaps and partial atomic charges. When 

comparing DFT-computed band gaps with the commonly used PBE functional against those that 

incorporate some fraction of Hartree-Fock exchange, we observe that PBE almost universally 
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results in a lower band gap prediction. This difference is largely systematic for MOFs without 

magnetic character and can be empirically corrected through a simple linear relationship for 

structures that are semi-conductors or insulators. For MOFs with some degree of magnetic 

character, an even larger – and slightly less predictable – disparity between band gap predictions 

is observed as a function of the fraction of Hartree-Fock exchange. With respect to the PBE results, 

the meta-GGA HLE17 is found to increase the band gaps of the MOFs without magnetic character 

such that they are roughly similar to values predicted using the HSE06 screened hybrid functional 

with 10% Hartree-Fock exchange. However, HLE17 does not significantly alter the behavior of 

the MOFs with magnetic character. 

 When investigating the partial atomic charges, which are reflective of the underlying 

charge density for a given density functional approximation, we find that there are slight systematic 

differences amongst the different levels of theory. For both the HLE17 meta-GGA and screened 

hybrid functionals, electron density localized on the (semi-)metals is lower than with PBE, and the 

opposite is true for the coordinating ligand atoms. Nonetheless, these changes in the partial atomic 

charges are relatively minor compared to the differences arising from using different charge 

partitioning schemes.
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Chapter 9: REALIZING THE DATA-DRIVEN, COMPUTATIONAL 

DISCOVERY OF METAL–ORGANIC FRAMEWORK CATALYSTS 

Metal–organic frameworks (MOFs) have been widely investigated for challenging 

catalytic transformations due to their well-defined structures and high degree of synthetic 

tunability. These features, at least in principle, make MOFs ideally suited for a computational 

approach towards catalyst design and discovery. Nonetheless, the widespread use of data science 

and machine learning to accelerate the discovery of MOF catalysts has yet to be substantially 

realized. In this chapter, we provide an overview of recent work that sets the stage for future high-

throughput computational screening and machine learning studies involving MOF catalysts. This 

is followed by a discussion of several challenges currently facing the broad adoption of data-centric 

approaches in MOF computational catalysis, and we share possible solutions that can help propel 

the field forward.  
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9.1 Introduction 

Metal–organic frameworks (MOFs) are a class of porous solids composed of metal ions or clusters 

connected by organic ligands. Due to their high degree of crystallinity and synthetic tunability, 

MOFs have been widely studied as novel catalytic materials for a variety of chemical 

transformations.8 The atomically precise structures of most MOFs is particularly advantageous for 

heterogeneous catalysis, as it makes it possible — at least in principle — to achieve fine-tuned 

control of the active site environment in ways that are typically reserved for molecular transition 

metal complexes. 

Through different combinations of inorganic and organic building blocks, thousands of 

MOFs have been experimentally synthesized, and virtually unlimited more can be proposed. As 

such, the traditional hypothesis-driven approach to materials discovery is inherently limited in its 

ability to identify the optimal MOF for a given catalytic reaction. Recent advances in data science, 

high-throughput computational screening, and machine learning (ML) represent a complimentary 

route and can be used to rapidly identify promising MOFs from the vast combinatorial space of 

inorganic nodes, organic linkers, and topologies. Data-driven materials discovery, particularly 

based on high-throughput computational screening, has been used to discover top-performing 

MOFs for numerous gas storage and separation processes.48 Despite these successes — and the 

increasingly widespread use of data science techniques in the field of heterogeneous catalysis503 

— there remain extraordinarily few large-scale, data-driven studies of MOF-based catalysts. 

In this review, we first provide a brief overview of some recent studies that lay the 

groundwork for future big data and ML studies on MOF catalysts. We then discuss several 

challenges that must be overcome in order to fully enable a computational materials discovery 
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pipeline for MOF catalysts. Drawing inspiration from successful uses of ML and materials 

informatics in adjacent application areas, we also highlight multiple opportunities to address the 

challenges currently facing data-driven MOF catalysis. Several of these themes are displayed in 

Figure 9.1. 

 
Figure 9.1. The enormous combinatorial space of inorganic nodes, organic linkers, and topologies 

results in vast array of plausible MOF structures to consider for a given catalytic transformation. 

Several of the key components for a successful data-driven catalyst discovery approach are listed 

alongside some of the challenges currently facing the MOF computational catalysis community. 

 

9.2 Laying the Groundwork 

In this section, we provide an overview of recent work involving high-throughput screening 

methods, MOF databases, and ML to predictively identify promising MOF catalysts and uncover 

important structure–property relationships. While high-throughput methods can refer to 

experiments or simulations, we will focus predominantly on the latter given the state of the 

published catalysis literature. High-throughput catalytic experiments with MOFs are uncommon 

at the time of writing, with an important exception of several prior studies by Cohen and 

coworkers504,505 who used high-throughput assays to identify promising MOF catalysts for nerve 

agent degradation. For a detailed review on high-throughput synthesis, characterization, and 

experimental testing of MOFs, we refer the reader to an article by Clayson and coworkers.506 
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9.2.1 Small-to-Moderate-Scale Computational Screening 

Truly large-scale, high-throughput screening studies remain rare for MOF catalysts; nonetheless, 

several small-to-moderate-scale computational screening studies have been used to identify 

promising MOFs for ethylene dimerization,507 light alkane oxidation,71,508,509 nerve agent 

hydrolysis,510 CO2 fixation to epoxides,511 electrocatalytic CO2 reduction,512 oxygen 

electrochemistry,424 and alcohol dehydrogenation,513 among other reactions.514 A common theme 

amongst these studies is the use of density functional theory (DFT) calculations to predict 

catalytically relevant reaction energies and activation energies across a curated set of MOF 

families. Brønsted–Evans–Polanyi relationships, linear scaling relationships, and various 

structure–property relationships are then developed to gain chemical insight into the predicted 

reactivity trends.514 As one example, Sours and Patel et al.424 used DFT calculations to study ~30 

porphyrin-based MOFs with different transition metal (TM) cations for the oxygen reduction 

reaction. The authors found that the presence of an oxophilic spectator (in this case, a nearby TM–

OH group) could stabilize adsorbed *OOH species via H-bonding interactions without 

substantially altering the corresponding *OH and *O binding energies, potentially improving the 

overall electrocatalytic performance.514 Although the relatively small datasets in the 

aforementioned work preclude the use of modern data science techniques, these studies 

demonstrate the ability of computational methods to guide future experimental efforts. 

9.2.2 Approaching High-Throughput Computational Screening 

One of the first database-driven computational screening studies of MOF catalytic candidates was 

that of Vogiatzis et al.116 who focused on the identification of MOFs that can activate N2O for the 

purpose of selectively oxidizing light alkanes. Starting from a dataset of 5000 experimentally 

determined MOF crystal structures, the authors algorithmically identified MOFs with 
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coordinatively unsaturated Fe sites, which are often studied for oxidation catalysis. Quantum-

mechanical simulations based on DFT were then carried out in a conventional low-throughput 

mode to investigate the catalytic properties for seven candidates of interest. Scaling up this 

approach further, Rosen et al.32 developed a fully automated computational workflow that 

initializes the positions of small molecule adsorbates and then carries out the necessary structure 

relaxations with periodic DFT to systematically identify promising MOF catalysts. The authors 

then used this platform to screen a dataset of 60 MOF structures with a variety of inorganic nodes, 

organic linkers, and topologies to identify structure–reactivity relationships that can guide the 

discovery of MOFs for the catalytic activation of methane.71 

Aside from thermal catalysis and electrocatalysis, MOFs have been widely investigated for 

their potential photocatalytic properties.515 Arguably the most important properties of a MOF 

photocatalyst are its band gap and the energies of the corresponding band edges, which dictate the 

energy of light that can be absorbed and the redox properties, respectively. The energies of the 

valence band maximum and conduction band minimum must be aligned to a common reference, 

which can be done in an automated fashion by using the point in the MOF pore with the smallest 

variation in the electrostatic potential (i.e. the one closest to vacuum level).516 With this protocol, 

Fumanal et al.516 developed energy-based descriptors that allow for a high-throughput 

determination of the UV-vis absorption capabilities and photo-redox properties of a dataset of 

MOFs. In a separate study by Fumanal et al.,517 the authors developed a computational workflow 

to predict the charge separation and charge mobility properties of MOFs in a high-throughput 

manner. These methodological advances pave the way for future computational screening studies 

of MOF photocatalysts. 
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9.2.3 Machine Learning 

With regards to the use of ML for MOF catalyst discovery, there are currently few examples in the 

published literature. Arguably the closest study is that of Schweitzer and Archuleta et al.,518 who 

constructed an ML model to determine the most important features dictating the DFT-computed 

binding energy of various atomic and small molecule adsorbates on simplified model systems of 

MOF-encapsulated nanoparticles. Li et al.519 used experimentally reported turnover frequencies 

(TOFs) from 106 published experiments to train binary classification models that can predict 

whether a MOF might be active for carbon dioxide fixation; however, the low frequency of many 

of the one-hot encoded features (i.e. metals and linkers that appear only once in the dataset) and 

differences in how the TOFs are reported likely limits the predictive capabilities of the developed 

models. Although the number of ML studies specifically focused on MOF catalysis is limited, it 

should be noted that data-driven approaches in other application areas can likely be of significant 

value for catalyst discovery. For instance, ML models have been developed to predict the thermal, 

mechanical, and hydrolytic stability of MOFs from structural features,394,520,521 the crystal 

morphology of MOFs from synthesis parameters,522 and the geometry of bound adsorbates directly 

from X-ray absorption near-edge structure spectra,523 all of which can potentially aid the design of 

promising MOF catalysts. 

9.3 Challenges and Opportunities 

Perhaps unsurprisingly, the primary factor currently holding back data-driven MOF catalysis is a 

lack of structured data from which to construct robust and generalizable models. While automated 

synthesis, characterization, and catalytic testing efforts have occasionally been undertaken,506 the 

data (especially those involving “failed” experiments) are rarely made publicly available in a 

machine-readable format, and the total number of data points is often too small to build transferable 
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ML models. From a computational perspective, high-throughput DFT calculations represent a 

natural way to generate large amounts of catalytically relevant data. In this section, we highlight 

some of the most important challenges facing data-driven computational catalysis with MOFs and 

suggest several ways that they can be addressed in future work. 

9.3.1 High-Throughput DFT Property Databases for MOF Catalysis 

For catalytic reactions taking place on inorganic surfaces, there are multiple databases of DFT-

computed adsorption energies (and occasionally, barrier heights) that can be used to develop data-

driven models.36,524 However, no such resource currently exists for MOFs. The closest analogue 

in the MOF field is that of the Quantum MOF (QMOF) Database,75 which contains DFT-computed 

geometric and electronic structure properties for 18,000+ MOFs and coordination polymers in 

their as-synthesized states. With algorithms to automatically position adsorbates at the metal sites 

of MOFs,32 one can envision constructing a database of DFT-computed adsorption energies, 

particularly if the guest species are small and unlikely to induce complicated changes in spin state. 

Until such a resource becomes available, ML models based on transfer learning525 may be able to 

take advantage of the large amounts of data available for other material classes (e.g. inorganic 

surfaces, transition metal complexes) to accurately predict MOF catalytic properties with a 

comparatively small amount of MOF-specific training data. 

9.3.2 Computational Screening of Atomically Imprecise MOFs 

High-throughput computational screening of MOFs is also inherently tied to the quality of the 

underlying crystal structures being modeled. Unfortunately, due to the presence of crystallographic 

disorder as well as the difficulty in resolving hydrogen atoms and charge-balancing ions, databases 

of experimentally synthesized MOF structures can rarely be screened without correcting or 
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filtering out potentially problematic structures — a task that is far from trivial to automate. 

Fortunately, several approaches can be taken to increase the structural fidelity of a given MOF 

dataset. In addition to simple geometric heuristics that check for mis-bonded atoms and unlikely 

coordination environments, it may be possible to use one of several ML models that can rapidly 

predict partial atomic charges in MOFs397–399 to identify potential anomalies in a MOF crystal 

structure database. Jablonka et al.526 demonstrated a similar concept with their ML-guided 

oxidation state prediction model, which was trained on user-reported data in the Cambridge 

Structural Database and was accurate enough to identify MOFs with erroneous oxidation state 

assignments. If developed, an ML model that could predict bond orders would also be able to 

efficiently flag structures with erroneously over- or under-coordinated framework atoms, similar 

to what has been achieved with DFT-computed effective bond orders.412 

Similarly, while MOFs are often touted as having atomically precise structures, many of 

the most promising MOF catalysts in the published literature have undergone post-synthetic 

modifications (e.g. metal- or linker-exchange, linker functionalization, atomic layer deposition) 

that introduce uncertainty in the active site structure.429 Many MOFs are also known to exhibit 

defects in the crystal structure (e.g. missing nodes or linkers), which may greatly influence the 

catalytic properties of a given MOF but can be difficult to identify for the purposes of 

computational modeling. As one example, in the aforementioned screening study by Vogiatzis et 

al.,116 Fe-BTT (BTT3– = 1,3,5-benzenetristetrazolate) was computationally identified as a 

promising MOF for oxidation catalysis when using N2O as an oxidant. Although the material was 

able to convert ethane to ethanol in experiments, spectroscopic measurements and catalyst cycling 

experiments led the authors to conclude that unidentified framework defects were likely 
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responsible for the catalytic activity.116 For large-scale computational screening studies that are 

likely to emerge in the future, it may prove beneficial to deliberately introduce carefully selected 

defects in databases of otherwise “pristine” MOF structures to help ensure that the resulting  data-

driven models can accurately capture the complexities of experimentally synthesized MOF 

catalysts. 

9.3.3 Ensuring a Diverse MOF Dataset 

An alternate route to maximize the structural fidelity of a given MOF dataset is to use one of 

several hypothetical MOF construction tools45,90,385,527 to computationally construct MOFs from a 

curated set of inorganic and organic building blocks. One cautionary aspect of this approach, 

however, is that databases of hypothetical MOFs can cover different regions of chemical space 

and/or lack the chemical diversity of experimentally synthesized MOF structures. Using an 

unsupervised dimensionality reduction technique, Moosavi et al.457 demonstrated that hypothetical 

MOF databases often lack significant diversity with regards to the inorganic nodes, which are of 

crucial importance for heterogeneous catalysis. Many of the hypothetical MOF databases that have 

been published to date are also tailored to gas storage and separation processes, where variations 

in pore geometry and linker length are likely to play a larger role than in many catalytic reactions, 

particularly those involving small molecules. To address potential issues related to structural 

diversity, a judicious selection of building blocks must be chosen, preferably before any 

computational catalyst screening studies are even carried out. This may be made easier with 

dimensionality reduction approaches like those of Moosavi et al.457 as well as larger databases of 

MOF building blocks, like that of Lee et al.45 who amassed a dataset of over several hundred 
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inorganic and organic building blocks, most of which are derived from experimentally reported 

MOF crystal structures. 

9.3.4 Automated Construction of Representative Cluster Models 

When carrying out any theoretical study of MOF catalytic candidates, an important methodological 

decision is whether the system should be modeled as a crystalline lattice or as a truncated cluster 

model.4 The former approach more closely resembles the true MOF structure, but the larger model 

system often limits the use of more accurate levels of theory. Carving a representative cluster 

model from the crystalline lattice takes advantage of the local nature of many catalytic reactions 

and results in a smaller model system that can be studied with more expensive computational 

methods. However, there are no automated approaches to determine the ideal size of the cluster 

model, where to terminate the cluster, how to cap the resulting dangling bonds, and which atoms 

should be kept rigid to appropriately mimic the bulk constraints of the crystalline framework. For 

high-throughput computational screening studies that involve a diverse range of MOF catalysts, 

the fully periodic approach is often the only tractable option. Recently developed MOF 

deconstruction codes that can split up a MOF into its constituent building blocks45,79,457 represent 

a first step towards automating the construction of MOF cluster models for high-throughput 

computational catalysis. 

9.3.5 Accelerated Identification of Ground State Magnetic Orderings 

The automated identification of ground state spin states for MOFs where open-shell character is 

possible, as is the case for most MOFs with 3d transition metal cations,4 represents yet another 

challenge for high-throughput computational MOF catalysis. The choice of spin state can 

drastically change the predicted reaction energies and barrier heights, and a separate DFT 
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calculation must be carried out for each plausible spin state to determine the lowest energy electron 

configuration. Even enumerating the different spin states can be a challenge in a high-throughput 

setting, particularly for MOFs that exhibit antiferromagnetism4 or in cases where the metal 

oxidation state is not known a priori. Reassuringly, ML models may be able to ease the 

computational burden of screening MOFs with magnetic character. As one example, the 

aforementioned ML model by Jablonka et al.526 can be used to accurately assign oxidation states 

for each metal center in a MOF, which can then help narrow down the list of possible spin 

multiplicities. There are also many recent studies to draw inspiration from the homogeneous 

catalysis literature, such as the ML models developed by Taylor et al.528 to predict the ground state 

spin states of transition metal complexes. High-throughput workflows have been developed to 

accurately and efficiently identify the ground state magnetic ordering in inorganic solids, which 

may be extensible to MOFs as well.529 

9.4 Outlook 

Looking into the future when automated theoretical calculations and experiments are likely to be 

more widespread in the field of MOF catalysis, an integrated materials discovery platform 

augmented by machine learning and data science can be envisioned. This concept has been referred 

to as “digital reticular chemistry”530 and has the potential to revolutionize the MOF design and 

discovery process, including for the accelerated design of MOF catalysts tailored for challenging 

chemical transformations. In addition to the continued development of high-throughput 

methods,506 we stress that it is essential for openly accessible data repositories to be developed in 

the area of MOF catalysis for this digital reticular chemistry future to be realized. Ideally, these 

MOF property databases should have standardized data formats and rich metadata,531 in addition 
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to abiding by the so-called FAIR guiding principles498 (i.e. that the data is findable, accessible, 

interoperable, and reusable). 

 Collectively, the last several years have resulted in a gradual shift towards data-driven 

MOF catalysis, with several examples of small-to-moderate-scale screening studies published in 

the literature. Although a relative lack of carefully curated, catalytically relevant data currently 

limits the widespread adoption of ML in MOF catalysis research, we anticipate that this will 

rapidly change as recent advances in high-throughput screening approaches — both computational 

and experimental — become more widely adopted.
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Chapter 10: CONCLUDING THOUGHTS 

10.1 Summary 

In this dissertation, density functional theory (DFT) calculations were used to explore the 

properties and reactivity of redox-active MOFs. In Chapter 2, a high-throughput periodic DFT 

workflow was developed to study large numbers of MOF catalysts in an automated fashion. This 

approach was then used to study experimentally realized MOFs with coordinatively unsaturated 

metal sites for the catalytic oxidation of methane via a terminal metal-oxo site. The main result of 

this screening effort was that blind, brute-force screening of a MOF database is unlikely to be 

fruitful when it comes to oxidation reactions. Most MOFs are redox-inactive and, therefore, are 

unlikely to have thermodynamically favored formation of a terminal metal-oxo species. 

Nonetheless, such sites – if they could be formed – are generally quite reactive towards methane 

activation. This finding was used to carry out a separate computational screening study in Chapter 

3, now with a manually curated set of MOFs largely drawn from a set of structures that have been 

experimentally shown to exhibit some degree of redox activity. The main conclusion from this 

refined DFT screening effort was that there is an inverse, linear correlation between the metal-oxo 

formation energy and the barrier for C–H activation among the frameworks investigated in this 

work. Put another way, there is an inherent tradeoff between active site stability and reactivity that 

must be considered, which can serve as a guiding principle for future studies. In Chapter 4, a family 

of metal–triazolate frameworks with exchangeable metals and equatorial ligands was studied for 

methane activation via a terminal metal-oxo site. In this smaller scale DFT screening study, it was 

shown that the presence of ferromagnetic or antiferromagnetic coupling between the unpaired 
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electrons on the metal center and bound oxo/oxyl ligand can play a large role in the predicted 

barrier for methane activation. 

 Switching focus to the adsorption of O2 and N2 at the coordinatively unsaturated metal sites 

of MOFs, in Chapter 5 we took several of the MOF families originally studied in Chapter 3 and 

used DFT to determine which might be able to strongly bind O2 and/or N2. From this analysis, a 

series of design principles emerged. In general, few MOFs were found to strongly chemisorb N2 

with the exception of V(II)-containing frameworks. For O2 chemisorption, earlier transition metals 

were found to have a greater affinity for O2 binding (for a fixed oxidation state), as they are more 

likely to support electron transfer from the metal to the O2 species. When comparing related MOF 

families with different ligand environments, it was shown that the more basic bridging ligands 

tended to increase the redox activity of the framework. In a particularly pronounced example of 

this phenomenon, DFT calculations at several levels of theory suggested that exchanging the 

bridging Cl-
 anions of Co2Cl2(bbta) with OH-

 anions to yield the isostructural framework 

Co2(OH)2(bbta) would greatly enhance the O2 binding affinity at the Co(II) centers without 

significantly increasing the N2 binding affinity. Experimentally obtained adsorption isotherms 

supported this theoretical finding. In Chapter 6, the problem of O2 and N2 adsorption was revisited, 

now with the goal of comparing various density functional approximations. As a result of this 

theory-focused analysis, it was found that different levels of theory can predict drastically different 

O2 and N2 adsorption energies, that the meta-GGA M06-L partially corrects for the overly 

exothermic adsorption energies of PBE, and that a GGA+U approach can substantially improve 

the accuracy of the predicted adsorption processes. 
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 In Chapter 7, a high-throughput periodic DFT workflow was used to construct the QMOF 

Database, the first large-scale database of quantum-mechanical properties for MOFs. This database 

can be used as a platform to train and benchmark machine learning models to rapidly predict MOF 

electronic structure properties. As a proof-of-concept, a convolutional neural network was used to 

predict MOF band gaps at the PBE level of theory from a graph representation of the 

experimentally synthesized MOF crystal structure. In Chapter 8, the QMOF Database was updated 

to include computed properties using the HLE17 meta-GGA functional and the screened-hybrid 

HSE06 functional with 10% and 25% Hartree-Fock exchange. By comparing the predicted band 

gaps against those computed using the PBE GGA functional, it was found that the different density 

functional approximations exhibit quantitatively and qualitatively different predictions for the 

band gap. In general, the HLE17 functional increases the computed band gap compared to PBE 

but mainly for MOFs without magnetic character. For HSE06, the predicted band gaps are highly 

sensitive to the fraction of Hartree-Fock exchange, but MOFs with and without magnetic character 

tend to exhibit larger band gaps than the GGA and meta-GGA functionals. 

 In Chapter 9, an outlook on the use of data-driven methods to design and discovery MOF 

catalysts is provided, highlighting both the challenges that need to be overcome and the many 

opportunities that await. In summary, this dissertation represents the first steps towards using high-

throughput DFT to study the catalytic and electronic properties of redox-active MOFs. Through 

this theory-guided approach, new trends were discovered that can guide the design of MOFs for 

oxidation catalysis, selective O2 adsorption, and applications that benefit from an ability to tailor 

MOF electronic structure properties. 
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10.2 Recommendations for Future Research 

10.2.1 C–H Bond Activation 

There are several avenues for future research on MOFs that can catalytically oxidize strong C–H 

bonds. One of the more difficult but potentially most rewarding routes is to leverage the tunable 

nature of MOFs to mimic the proposed active sites of enzymes that are known to activate strong 

C–H bonds. For instance, both the particulate methane monooxygenase (pMMO) enzyme532,533 

and lytic polysaccharide monooxygenase (LPMO) enzymes,534 which can oxidize the C–H bonds 

of methane and polysaccharides, respectively, share an active site motif known as the copper 

histidine brace.534 This mononuclear copper species is bound to N-donor ligands, two of which 

come from a histidine residue and the remainder of which come from one or two separate imidazole 

groups.534 A preliminary ConQuest535 search of the Cambridge Structural Database MOF Subset44 

suggests that there is at least one family of MOFs with a histidine-bound Cu cation in an all-N 

ligand environment.536 Furthermore, it may be possible to design new biologically inspired 

MOFs537 with this functionality in mind. It should be noted, however, that for the MOF to be truly 

biomimetic, it is likely that functionality must be introduced “beyond the active site.” In the 

enzymatic systems, it is known that there are nearby glutamate residues, which are likely involved 

in the pre-requisite O2 activation process.538–541 Fortunately, given the tunability of MOF structures 

and the ability to introduce post-synthetic functionalities, it may be possible to design a true 

biomimetic analogue of pMMO or LMPO. 

 On the topic of converting methane to methanol, one of the main challenges within the 

field as a whole is the ability to design a catalyst that is both active and selective towards methanol 

formation (rather than overoxidation products).157,299 The main reason for this difficulty is that if 

an active site is reactive enough to cleave the C–H bond of methane, it is almost certainly capable 
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of cleaving the weaker C–H bonds of methanol and its derivatives. Several creative strategies have 

been proposed in the literature to increase methanol yields, including the use of a multi-functional 

material that has active sites capable of oxidizing methane and separate sites with a strong 

methanol adsorption potential that can “collect” the methanol product, which can then be released 

upon temperature cycling.223 A MOF with multiple types of inorganic nodes may be able to achieve 

this goal. Regardless, using MOFs to address the selectivity problem in ways that are not possible 

with inorganic solids and zeolites would be an important advance for this area of research. 

10.2.2 O2 and N2 Binding 

When considering the design of MOFs for air separation, there are numerous research areas that 

have yet to be substantially investigated that would be worth considering in future work. For 

instance, while there have been multiple studies focused on understanding the thermodynamics of 

O2 adsorption,73,74,330 relatively little is known about the kinetics for this process, especially when 

changes in the spin multiplicity are involved. If MOFs are to be used as adsorbents for industrial-

scale air separation, it will be essential to understand the phenomena governing both the O2/N2 

selectivity and the rate of O2 uptake. Separately, it would be important to know how strong is too 

strong when it comes to O2 binding; at sufficiently exothermic O2 adsorption energies, one would 

expect that the framework is likely to decompose. A combination of DFT calculations – like those 

used to model the decomposition of MOFs in the presence of water542 – and ab initio molecular 

dynamics simulations may be able to provide answers to this question. 

10.2.3 Quantum-Mechanical Property Databases 

The QMOF Database presented in Chapter 7 represents just an initial glimpse of how high-

throughput DFT and machine learning might guide the MOF design and discovery process. A 
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natural extension to the band gap prediction aspect of the QMOF Database would be to predict the 

electrical conductivity. This would require knowledge of the band structure, which is not currently 

part of the QMOF Database but could be readily generated from a separate static calculation 

carried out on the DFT-optimized geometries. If properly aligned,516,543 the valence band maxima 

and conduction band minima in the QMOF Database could also be used to identify promising 

MOF photocatalysts, such as materials suitable for H2 evolution and CO2 reduction. The DFT-

optimized structures in the QMOF Database can also be used to benchmark and potentially 

improve upon the accuracy of (semi-)empirical methods, such as Grimme’s tight-binding code 

xTB480,544,545 or the GFN-FF force-field.481 

 While certainly a large undertaking, an important and major update to the QMOF Database 

would be one that includes DFT-computed properties for MOFs with various adsorbates, such as 

CO, CO2, CH4, H2, and H2O. These example adsorbates were suggested because they are relatively 

small and do not typically involve a change in the oxidation state of the metal center, making high-

throughput screening an easier task; furthermore, these adsorbates can all be readily added to MOF 

structures using the MOF Adsorbate Initializer32 described in Chapter 2. With a large enough 

database of MOF–adsorbate systems, it may be possible to discover new structure–property 

relationships and develop machine learning models that can predict adsorption energies given a 

new set of MOFs or even a new set of related small molecule adsorbates.
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(166)  Olivos-Suarez, A. I.; Szécsényi, A.; Hensen, E. J. M.; Ruiz-Martinez, J.; Pidko, E. A.; 

Gascon, J. Strategies for the Direct Catalytic Valorization of Methane Using Heterogeneous 

Catalysis: Challenges and Opportunities. ACS Catal. 2016, 6 (5), 2965–2981. 

(167)  Ravi, M.; Ranocchiari, M.; van Bokhoven, J. A. The Direct Catalytic Oxidation of Methane 

to Methanol — A Critical Assessment. Angew. Chemie Int. Ed. 2017, 56 (52), 16464–

16483. 

(168)  Xiao, D. J.; Bloch, E. D.; Mason, J. A.; Queen, W. L.; Hudson, M. R.; Planas, N.; Borycz, 

J.; Dzubak, A. L.; Verma, P.; Lee, K.; Bonino, F.; Crocellà, V.; Yano, J.; Bordiga, S.; 

Truhlar, D. G.; Gagliardi, L.; Brown, C. M.; Long, J. R. Oxidation of Ethane to Ethanol by 

N2O in a Metal−Organic Framework with Coordinatively Unsaturated Iron(II) Sites. Nat. 

Chem. 2014, 6 (7), 590–595. 

(169)  Li, Z.; Peters, A. W.; Bernales, V.; Ortuño, M. A.; Schweitzer, N. M.; DeStefano, M. R.; 

Gallington, L. C.; Platero-Prats, A. E.; Chapman, K. W.; Cramer, C. J.; Gagliardi, L.; Hupp, 

J. T.; Farha, O. K. Metal−Organic Framework Supported Cobalt Catalysts for the Oxidative 

Dehydrogenation of Propane at Low Temperature. ACS Cent. Sci. 2016, 3 (1), 31–38. 

(170)  Wang, C.; An, B.; Lin, W. Metal–Organic Frameworks in Solid–Gas Phase Catalysis. ACS 



244 

 

Catal. 2019, 9 (1), 130–146. 

(171)  Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and Applications 

of Metal−Organic Frameworks. Science 2013, 341 (6149), 1230444. 

(172)  Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular 

Synthesis and the Design of New Materials. Nature 2003, 423 (6941), 705–714. 

(173)  Boyd, P. G.; Lee, Y.; Smit, B. Computational Development of the Nanoporous Materials 

Genome. Nat. Rev. Mater. 2017, 2 (8), 17037. 

(174)  Coudert, F.-X.; Fuchs, A. H. Computational Characterization and Prediction of 

Metal−Organic Framework Properties. Coord. Chem. Rev. 2016, 307, 211–236. 

(175)  Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational 

High-Throughput Screening of Electrocatalytic Materials for Hydrogen Evolution. Nat. 

Mater. 2006, 5, 909. 

(176)  Pahls, D. R.; Ortuño, M. A.; Winegar, P. H.; Cramer, C. J.; Gagliardi, L. Computational 

Screening of Bimetal-Functionalized Zr6O8 MOF Nodes for Methane C-H Bond 

Activation. Inorg. Chem. 2017, 56 (15), 8739–8743. 

(177)  Verma, P.; Vogiatzis, K. D.; Planas, N.; Borycz, J.; Xiao, D. J.; Long, J. R.; Gagliardi, L.; 

Truhlar, D. G. Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)-Oxo Sites in 

Magnesium-Diluted Fe2(DOBDC). J. Am. Chem. Soc. 2015, 137 (17), 5770–5781. 

(178)  Suh, B. L.; Kim, J. Ligand Insertion in MOF-74 as Effective Design for Oxidation of Ethane 

to Ethanol. J. Phys. Chem. C 2018, 122 (40), 23078–23083. 

(179)  Vitillo, J. G.; Bhan, A.; Cramer, C. J.; Lu, C. C.; Gagliardi, L. Quantum Chemical 

Characterization of Structural Single Fe(II) Sites in MIL-Type Metal Organic Frameworks 

for Oxidation of Methane to Methanol and Ethane to Ethanol. ACS Catal. 2019, 9, 2870–

2879. 

(180)  Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Bahn, S.; Hansen, L. B.; Bollinger, M.; 

Bengaard, H.; Hammer, B.; Sljivancanin, Z.; Mavrikakis, M.; Xu, Y.; Dahl, S.; Jacobsen, 

C. J. H. Universality in Heterogeneous Catalysis. J. Catal. 2002, 209 (2), 275–278. 

(181)  Bligaard, T.; Nørskov, J. K.; Dahl, S.; Matthiesen, J.; Christensen, C. H.; Sehested, J. The 

Brønsted–Evans–Polanyi Relation and the Volcano Curve in Heterogeneous Catalysis. J. 

Catal. 2004, 224 (1), 206–217. 

(182)  Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; 

Bligaard, T.; Nilsson, A.; Nørskov, J. K. From the Sabatier Principle to a Predictive Theory 

of Transition-Metal Heterogeneous Catalysis. J. Catal. 2015, 328, 36–42. 

(183)  Montemore, M. M.; Medlin, J. W. Scaling Relations between Adsorption Energies for 

Computational Screening and Design of Catalysts. Catal. Sci. Technol. 2014, 4 (11), 3748–

3761. 

(184)  Greeley, J. Theoretical Heterogeneous Catalysis: Scaling Relationships and Computational 

Catalyst Design. Annu. Rev. Chem. Biomol. Eng. 2016, 7 (1), 605–635. 
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Appendix A. APPENDIX FOR CHAPTER 2. 

A.1 VASP Parameters 

A.1.1 VASP PBE Pseudopotentials 

The VASP 5.4 pseudopotentials used in this work are listed in Table A.1. The only element that is 

not treated using the VASP-recommended projector-augmented wave (PAW) potentials is Li. The 

VASP-recommended Li_sv PAW potential has a default maximum energy cutoff (“ENMAX”) of 

499 eV, whereas all other elements have a default ENMAX cutoff of 400 eV or lower. Therefore, 

the standard Li PAW potential with ENMAX of 140 eV is used instead. This is especially 

important because it is generally recommended to use a plane-wave kinetic energy cutoff at least 

1.3 times the largest ENMAX of all elements in the given structure to prevent Pulay stresses during 

volume relaxations.136 With the PAW potentials listed in Table A.1, no material requires a cutoff 

greater than 520 eV when the cell volume or shape is changed. 

Table A.1. VASP 5.4 recommended PAW PBE potentials. All elements not listed here used the 

standard (no suffix) PAW potentials. Note that not all of the elements shown in Table A.1 are 

included in the MOFs screened in this work. 

Element PAW potential suffix 

Na pv 

K sv 

Ca sv 

Sc sv 

Ti sv 

V sv 

Cr pv 

Mn pv 

Ga d 

Ge d 

Rb sv 

Sr sv 

Y sv 

Zr sv 

Nb sv 

Mo sv 
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Tc pv 

Ru pv 

Rh pv 

In d 

Sn d 

Cs sv 

Ba sv 

Pr 3 

Nd 3 

Pm 3 

Sm 3 

Eu 2 

Gd 3 

Tb 3 

Dy 3 

Ho 3 

Er 3 

Tm 3 

Yb 2 

Lu 3 

Hf pv 

Ta pv 

W sv 

Tl d 

Pb d 

Bi d 

Po d 

At d 

Fr sv 

Ra sv 

A.1.2 Transition State Calculations in VASP 

For transition states (TSs) computed in VASP, a two-step procedure is performed. First, the 

climbing image nudged elastic band (CI-NEB) method130 is used to roughly map out the minimum 

energy pathway (MEP) and to get a reasonable estimate of the TS geometry. Then, a series of 

increasingly accurate dimer131 calculations are performed until the TS is found. 

In the initial CI-NEB step, we use the limited-memory Broyden-Fletcher-Goldfarb-Shanno 

(L-BFGS) optimization algorithm, a force-convergence criterion of |𝐹max| < 1 eV/Å, the default 

400 eV plane-wave kinetic energy cutoff, and 𝑘-point density (KPPA) of 100/number of atoms for 
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rapid convergence. Four images were generally used in the initial CI-NEB attempt, but 

occasionally additional images were required in the case of poor convergence. 

Following this initial CI-NEB calculation, a low-accuracy dimer calculation is done 

starting from the interpolated maximum of the MEP from the CI-NEB calculation. In this step, we 

use the following settings: a force-convergence criterion of |𝐹max| < 0.075 eV/Å, the Fast Inertial 

Relaxation Engine (FIRE)137 optimization algorithm, default 400 eV plane-wave kinetic energy 

cutoff, and 100 KPPA. Following the convergence of the low-accuracy dimer calculation, a 

medium-accuracy dimer calculation is performed with the same parameters but an increased 𝑘-

point density of 1000 KPPA. Finally, a high-accuracy dimer calculation with a force-convergence 

criterion of 𝐹max < 0.03 eV/Å, 520 eV kinetic energy cutoff, and 1000 KPPA 𝑘-point grid is 

performed. The VTST package138 v.3.2 is used to carry out the CI-NEB and dimer calculations. 

A.1.3 Multi-Stage Optimization 

The VASP-specific parameters used to implement the multi-stage optimization workflow shown 

in Figure 2.4 and Figure 2.6 are listed in Table A.2 for clarity. In addition to the parameters 

described in the main text, symmetry operations are disabled and the accurate-precision keyword 

in VASP is enabled. The choice of whether the 𝑘-point grid should be Γ-centered or not is 

determined based on how close the unit cell is to being hexagonal, as determined by Pymatgen.82 

After the test single-point calculation in the workflow, it is also determined if projection operators 

should be evaluated in reciprocal space or in real space based on the VASP log file. Evaluation in 

real space greatly reduces the calculation time but can occasionally influence the accuracy of the 

computed energies, so if projection operators are chosen to be evaluated in real space, the 

calculation will switch back to reciprocal space in the last stage of the relaxation. 
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Table A.2. Default VASP 5.4.1 parameters (using the corresponding ASE 3.16.2 keywords) 

implemented at each stage of the workflow. 

Optimization Stage VASP/ASE parameters Notes 

Test calculation xc = 'PBE', setups = 

{'base':'recommended','Li':''}, ivdw = 12, 

prec = 'Accurate', algo = 'All', ediff = 1e-4, 

nelm = 150, nelmin = 6, lreal = False, 

ismear = 0, sigma = 0.01, lcharg = False, 

lwave = True, lorbit = 11, isym = 0, 

symprec = 1e-8, nsw = 0, istart = 0 

 

 

Atomic positions (low-accuracy; 

phase 1) 

xc = 'PBE', setups = 

{'base':'recommended','Li':''}, ivdw = 12, 

prec = 'Accurate', algo = 'All', ediff = 1e-4, 

nelm = 150, nelmin = 6, lreal = {False or 

'Auto'}, ismear = 0, sigma = 0.01, lcharg = 

False, lwave = True, lorbit = 11, isym = 0, 

symprec = 1e-8. 

ASE: BFGSLineSearch, fmax = 5 

 

𝑘-point grid has a density of 

100 KPPA. gamma and lreal 

determined dynamically. 

Atomic positions (low-accuracy; 

phase 2) 

xc = 'PBE', setups = 

{'base':'recommended','Li':''}, ivdw = 12, 

prec = 'Accurate', algo = 'All', ediff = 1e-4, 

nelm = 150, nelmin = 6, lreal = {False or 

'Auto'}, ismear = 0, sigma = 0.01, lcharg = 

False, lwave = True, ibrion = 2, isif = 2, 

nsw = 250, ediffg = -0.05, lorbit = 11, 

isym = 0, symprec = 1e-8 

 

𝑘-point grid has a density of 

100 KPPA. gamma and lreal 

determined dynamically. 

Atomic positions (medium-

accuracy) 

xc = 'PBE', setups = 

{'base':'recommended','Li':''}, ivdw = 12, 

prec = 'Accurate', algo = 'All', ediff = 1e-6, 

nelm = 150, nelmin = 8, lreal = {False or 

'Auto'}, ismear = 0, sigma = 0.01, lcharg = 

False, lwave = True, ibrion = 3, iopt = 7, 

potim = 0, isif = 2, nsw = 500, ediffg = -

0.05, lorbit = 11, isym = 0, symprec = 1e-8 

 

𝑘-point grid has a density of 

1000 KPPA. gamma and 

lreal determined 

dynamically. 

Atomic positions (high-accuracy) xc = 'PBE', setups = 

{'base':'recommended','Li':''}, encut = 520, 

ivdw = 12, prec = 'Accurate', algo = 'All', 

ediff = 1e-6, nelm = 150, nelmin = 8, lreal 

= {False or 'Auto'}, ismear = 0, sigma = 

0.01, lcharg = False, lwave = True, ibrion 

= 3, iopt = 7, potim = 0, isif = 2, nsw = 

500, ediffg = -0.03, lorbit = 11, isym = 0, 

symprec = 1e-8 

 

𝑘-point grid has a density of 

1000 KPPA. gamma and 

lreal determined 

dynamically. 

Volume relaxation (low-accuracy) xc = 'PBE', setups = 

{'base':'recommended','Li':''}, encut = 520, 

ivdw = 12, prec = 'Accurate', algo = 'All', 

ediff = 1e-6, nelm = 150, nelmin = 6, lreal 

𝑘-point grid has a density of 

100 KPPA. gamma and lreal 

determined dynamically. nsw 

is set to 30 but relaxation 
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= {False or 'Auto'}, ismear = 0, sigma = 

0.01, lcharg = False, lwave = True, ibrion 

= 2, isif = 3, nsw = 30, ediffg = -0.03, 

lorbit = 11, isym = 0, symprec = 1e-8 

 

repeats until force 

convergence. 

Volume relaxation (high-accuracy) xc = 'PBE', setups = 

{'base':'recommended','Li':''}, encut = 520, 

ivdw = 12, prec = 'Accurate', algo = 'All', 

ediff = 1e-6, nelm = 150, nelmin = 6, lreal 

= {False or 'Auto'}, ismear = 0, sigma = 

0.01, lcharg = False, lwave = True, ibrion 

= 2, isif = 3, nsw = 30, ediffg = -0.03, 

lorbit = 11, isym = 0, symprec = 1e-8 

 

𝑘-point grid has a density of 

1000 KPPA. nsw is set to 30 

but relaxation repeats until 

force and volume 

convergence. 

Final single-point calculation xc = 'PBE', setups = 

{'base':'recommended','Li':''}, encut = 520, 

ivdw = 12, prec = 'Accurate', algo = 'All', 

ediff = 1e-6, nelm = 150, nelmin = 6, lreal 

= False, ismear = 0, sigma = 0.01, lcharg = 

True, lwave = True, laechg = True, lorbit = 

11, isym = 0, symprec = 1e-8, nsw = 0 

𝑘-point grid has a density of 

1000 KPPA. 

 

A.1.4 Spin-Polarization 

We note that it is still possible that the automated spin-state routine may occasionally not capture 

particularly complex ground-state magnetic orderings, especially those involving 

antiferromagnetism. We have found through regular use that the HT-DFT workflow occasionally 

– but not always – converges to a ground-state antiferromagnetic solution. For instance, Cu3(btc)2 

has 12 Cu atoms per unit cell and is predicted to have a net magnetic moment of 2 𝜇B via the HT-

DFT workflow, whereas manual testing of all possible spin-states suggests an antiferromagnetic 

singlet state. Closer inspection of the individual magnetic moments shows that the HT-DFT 

workflow successfully resulted in antiferromagnetic alignment of 10 out of 12 of the Cu(II) species 

in the Niggli-reduced cell (the remaining two Cu atoms have 1 unpaired electron each, resulting 

in the 2 unpaired electrons per unit cell). This resulted in a higher energy structure by 7 kJ/mol 

(per unit cell). We therefore emphasize that, while the automated spin-treatment is quite robust for 

screening purposes, it is worth confirming the energetic ordering of neighboring spin-states in 
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more detail for top-performing candidates. Nonetheless, the impact on the predicted energies is 

likely to be relatively small in many cases, especially for screening purposes. 

Another subtlety of any automated spin-polarization treatment with MOFs is that it is not 

uncommon for there to be multiple nearly isoenergetic spin-states. For instance, the predicted 

ground-state spin-state for YEGYIU with adsorbed methane (i.e. MOF−O+CH4
*) is 0 𝜇B whereas 

the same structure without adsorbed methane has a predicted ground-state with a net magnetic 

moment of 2 𝜇B. This is unusual, as the physisorption of CH4 should not drastically change the 

predicted spin of the oxidized complex. However, it was found that a net magnetic moment of 0 

𝜇B is 6 kJ/mol (per unit cell) less favorable than a net magnetic moment of 2 𝜇B, likely due to 

extremely minor differences in the geometry with the adsorbed CH4. These small energetic 

differences are not a major issue for the purposes of qualitatively ranking catalytic candidates but 

should be kept in mind when analyzing the resulting spin states from a HT-DFT study of MOFs. 

If converging to the true ground-state spin state is a concern, one method to minimize spin-related 

errors is to dope the given MOF with a metal cation that is known to have no unpaired electrons. 

For instance, if studying Fe-MOF-74, one could dope the MOF with Mg2+, leaving only a single 

Fe2+ site for the oxidation catalysis.177 

A.2 Automated Adsorption Energies 

A.2.1 Coordination Numbers of Three or Less 

For sites with a coordination number of three, the coordination environment is, by definition, 

planar. Some molecular geometries, such as T-shaped, have multiple geometrically plausible 

adsorption sites.546 As such, for coordination numbers of three, Equations 2.7 and 2.8 in the main 

text are used to generate two initial adsorbate positions, and the site with the fewest neighboring 
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atoms within 𝑟cut = 2.5 Å is retained. For sites with a coordination number of two, the concept of 

planarity is undefined, and the two coordinating atoms are, by definition, linear. As such, the 

direction perpendicular to the line connecting the two coordinating atoms is computed, and trial 

positions are considered in 10° rotations about this axis. Once again, the site with the fewest 

neighboring atoms within 𝑟cut = 2.5 Å is retained.  For sites with a coordination number of one, a 

linear initial geometry is assumed between the coordinating atom, metal center, and adsorbate. In 

the current work, this is only used for the addition of H atoms to mononuclear metal-oxo active 

sites, which are initialized with 𝛼 = 1 Å from the adsorbed O species. 

A.2.2 Bonding Topology 

The vector-sum algorithm requires the coordinates of the open metal site (OMS) and all 

coordinating atoms. For the purposes of HT screening, the open-source code Zeo++109 was used 

to identify the presence of OMSs and their locations within the unit cell. The positions of the 

coordinating atoms can be determined using one of a variety of nearest neighbor (NN) algorithms, 

such as those implemented in Pymatgen82 for determining local bonding topology.108 In this work, 

we used Zeo++’s Voronoi network analysis109 for calculating the coordination environment of 

OMSs and Pymatgen’s valence ionic radius evaluator (VIRE) algorithm108 for all other 

calculations of bonding topology. Based on preliminary testing, future studies may benefit from 

Pymatgen’s CrystalNN algorithm, which was developed during the preparation of this manuscript. 

A.2.3 Initializing Adsorbate Positions 

For each MOF, the vector-sum algorithm is used to identify the potential O adsorption site at every 

OMS in the unit cell, and the one with the fewest neighbors within 2.5 Å is deemed ideal. In the 

case of multiple sites with the same number of neighboring atoms, the distance from the adsorption 
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site to the nearest atom is used as a tiebreaker, with larger distances (i.e. more vacant space) being 

more favorable. In the final step, it is confirmed that the O atom is at least 1.3 Å away from all 

other atoms in the unit cell. This eliminates MOFs with OMSs that do not have sufficient room for 

an O adsorbate, let alone an adsorbed CH4 molecule. In the H addition step, an analogous 

procedure is performed except that the H atom is added to the chemisorbed O site instead of to an 

OMS, and an overlap tolerance of 0.75 Å is used instead of 1.3 Å. 

A.3 Transition State Scaling Relationship 

The universal TS scaling relationship reported in the work of Nørskov and coworkers105 for the 

C–H bond activation of CH4 is given as 𝐸TS
∗  = 0.75𝐸H + 1.09 eV. In the aforementioned work, the 

descriptor 𝐸H is defined based on formation energies that are referenced to gas-phase H2O and O2 

(Equation A.1) at the BEEF-vdW547 level of theory. 

𝐸H,H2O ref = 𝐸MOF−OH − 𝐸MOF−O −
1

2
𝐸H2O +

1

4
𝐸O2

(A. 1) 

While the choice of reference state is in principle arbitrary, this choice can impact the accuracy of 

subsequent studies that use different levels of theory if one of the reference species is not properly 

described by DFT. This is the case for the definition of 𝐸H, as O2 is poorly described by standard 

generalized gradient approximation (GGA) density functionals220,221 and is particularly relevant in 

the present study because PBE-D3(BJ) predicts that −
1

2
𝐸H2O +

1

4
𝐸O2

 is equal to 4.65 eV, whereas 

BEEF-vdW predicts that the same term is 4.75 eV. To circumvent this issue, we use H2 as the H-

source instead of H2O such that 

𝐸H = 𝐸MOF−OH − 𝐸MOF−O −
1

2
𝐸H2

(A. 2) 
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The modified TS scaling relationship is then given as 𝐸TS
∗ = 0.75𝐸H + 1.96 eV, where 𝐸H is now 

in terms of H2. The potential energy diagram in Figure A.1 shows the relationship between 𝐸TS 

and the activation energy 𝐸a for C–H activation.104 For three MOFs specifically highlighted in this 

work, we directly computed the C–H activation barrier and compared it against the value predicted 

via the universal TS scaling relationship proposed by Nørskov and coworkers.105 As shown in 

Table A.3, the results are in reasonable agreement with the expected 11 kJ/mol mean absolute 

error.105 

 
Figure A.1. The definition of 𝐸𝑇𝑆 for C–H activation is the energy of the transition state relative 

to the oxidized state. The activation energy, 𝐸𝑎, can be readily computed from 𝐸𝑇𝑆 if the adsorption 

energy of CH4 is also known. 

 

Table A.3. Comparison of methane C–H activation barrier predicted via the universal transition 

state scaling relationship, 𝐸a,C−H
∗ , and that computed directly in VASP, 𝐸a,C−H. 

MOF 𝐸a.C−H
∗  (kJ/mol) 𝐸a,C−H (kJ/mol) 

Cu8I4(dmtrz)4 36 37 

CFA-8 68 57 

Rh-DMOF-1 89 79 

 

A.4 MOF Dataset 

The list of MOFs considered at each stage of the workflow (including the initial dataset 

construction process and subsequent DFT screening) is summarized in the “datasets.xlsx” Excel 



284 

 

workbook included with the optimized structures hosted on Zenodo.548 The relevant details are 

described below. 

A.4.1 Initial Dataset Construction 

In the initial data cleansing step of the 838 CP2K-optimized CoRE MOFs, we removed 7 crystal 

structures that do not contain any carbon atoms as well as 12 additional MOFs with known 

erroneous structures.409 Of the 819 pre-processed MOFs, 149 were identified as having at least 1 

OMS as determined by a Voronoi network analysis performed using Zeo++.109 There are an 

additional 92/820 MOFs that had at least 1 OMS in the original, unoptimized CoRE MOF 

database89 that we include in the analysis as well, resulting in a total of 241 MOFs. 

All 241 MOFs were converted to their Niggli-reduced cells to reduce the computational 

cost of the HT-DFT calculations. To remove potential duplicate structures, MOFs were flagged as 

duplicates if their root-mean-square deviation of atomic positions was less than 0.1 Å after the 

Niggli-reduced cells were scaled to have equivalent volumes.82 A total of 22 duplicates were found 

using this algorithm, and an additional 2 were separately identified as duplicates by Smit and 

coworkers.409 Finally, 49 MOFs had pore-limiting diameters less than 3.0 Å, as determined via 

Zeo++,109 which we excluded from the dataset as well. This process therefore resulted in 168 

unique MOFs with OMSs (prior to optimization in VASP) for HT-DFT screening. Despite the fact 

that the structures were previously converged using the PB3-D3(BJ) functional in CP2K, many of 

the structures were originally far from converged within VASP during the volume relaxation stage. 

This can potentially be attributed to the mixed Gaussian and plane-wave method in CP2K113,114 

compared to the all plane-wave approach in VASP,122,123 although a number of MOFs started out 

with bond distances that were much smaller than would be expected at the PBE-D3(BJ) level of 
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theory. Inevitably, some additional MOFs in the CoRE MOF database have incomplete structural 

information, such as a lack of charge-balancing ions due to experimental difficulty in resolving 

their crystallographic positions. As such, we confirmed the validity of the structures for the most 

promising candidates. 

A.4.2 Unique Open Metal Sites 

Following the HT volume relaxation, 88/167 MOFs were found to have OMSs as detected via 

Zeo++. Since some MOFs may have multiple chemically distinct OMSs that can exhibit drastically 

different chemical reactivity, we considered oxidative C–H bond activation at each unique OMS 

separately. We defined a unique OMS as having a chemically unique coordination environment 

(defined as the chemical formula consisting of the atoms in the first coordination sphere and metal 

center), which resulted in 97 unique OMSs from 88 individual MOFs. Of these 97 unique OMSs, 

88 could support an O adsorbate using the previously described adsorbate initialization workflow.  

A.4.3 Validation of Converged Structures 

Inevitably, some MOFs will not support an O, OH, or CH4 adsorbate near the OMS following 

geometry optimization. For instance, the O adsorbate may instead bind to the linker or the O 

adsorbate may be so weakly bound to the metal center that the formation of an OH group results 

in the formation of a mobile OH radical. As such, a series of checks are performed at each stage 

of the HT-DFT workflow following the DFT calculations. For the O addition step, the VIRE 

algorithm108 was used to confirm that the O adsorbate was bound to at least one atom and that the 

closest atom is a metal. This eliminates MOFs where the O adsorbate preferentially binds to the 

organic linker instead of the OMS following the geometry optimization. For the H addition step, 

the VIRE algorithm was used to confirm that the closest atom bound to the H adsorbate is the 
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expected O atom and was confirmed that the O adsorbate was still bound to the metal center. As a 

final check, the VIRE algorithm was used to confirm that the active site does not change its 

coordination environment after each step of the workflow, except for the adsorbate added to the 

system. At the end of the HT-DFT structure relaxations, 1 MOF did not reach convergence in a 

reasonable time frame, and 19 MOFs had potentially problematic structures following adsorption 

as determined using the aforementioned system of checks. This resulted in 68 unique OMS 

environments that could be analyzed for both oxidation and C–H activation. The MOFs with 

potentially problematic structures were excluded from the data analysis shown in the main text. 
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Appendix B. APPENDIX FOR CHAPTER 3 

B.1 Additional Methods 

B.1.1 MOF Dataset 

In the following section, we describe the 60 MOFs considered in this work, why they were selected 

for investigation, and any pertinent modeling decisions for each MOF. For each MOF, a single 

metal site was considered for oxidation and subsequent C−H activation. Each of the 60 MOFs 

described below are included in all the correlations computed in this work, with the exception of 

Cr-BTC and Mo-BTC, which are only included in Figure 3.7. 

M-MFU-4l (M = Cu+). We studied MFU-4l (MFU = Metal−Organic Framework Ulm, l = large) 

with Zn(II)-Cl species post-synthetically exchanged with Cu(I) species since this MOF has been 

shown to chemisorb O2.
27 MFU-4l is constructed from btdd (btdd2- = bis(1H‐1,2,3‐triazolo[4,5‐

b],[4′,5′‐i])dibenzo[1,4]dioxin) linkers and has a cubic topology. On average, up to two Cu species 

can be exchanged per pentametallic node,27 so we studied both Cu1:Zn4 and Cu2:Zn3 per node. We 

also considered a mixed-metal Cu1:Co3:Zn1 pentametallic node, as it is possible to exchange up to 

four of the Zn(II)-Cl species with Co(II)-Cl species.212,549 

M2Cl2(btdd) (M = Mn2+, Fe2+, Co2+, Ni2+). M2Cl2(btdd)192,193, also occasionally referred to as 

MAF-Xnl-Cl (MAF = Metal−Azolate Framework; n = 25 for M = Mn and n = 27 for M = Co),275 

was studied in this work due to the fact that Co2Cl2(btdd) can be reversibly oxidized by Cl2 and 

Br2.
25 M2Cl2(btdd) has the same linker as MFU-4l but a different coordination environment around 

each metal site and has a hexagonal – instead of cubic – topology. 
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M2Cl2(bbta) (M = Mn2+, Fe2+, Co2+, Ni2+). M2Cl2(bbta) (bbta2- =  1H,5H-benzo(1,2-d:4,5-

d′)bistriazole),193,194 also occasionally referred to as MAF-Xn-Cl (n = 25 for M = Mn and n = 27 

for M = Co),194 was studied in this work due to its structural similarity with M2Cl2(btdd). 

M(L-RR) (M = Co2+). We studied Co(L-RR) (L-RR = (R,R)-thiazolidine-2,4-dicarboxylate)211 

since it has been experimentally shown to chemisorb O2.
215 

M-BTT (M = Cr2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Cd2+). We studied M-BTT (BTT3- = 1,3,5-

tris(1H-1,2,3-triazol-5-yl)benzene)22,195–198 since Cr-BTT and the closely related MOFs Co-BTTri 

and Co-BTTriP can chemisorb O2.
22,216 We included three Na+ cations per unit cell in the pores of 

M-BTT to balance the charge, as in prior work.550 In addition, all but one metal per unit cell was 

modeled as Mg2+ to simplify convergence to the ground-state spin state. 

M-BTP (M = Ni2+, Cu2+). We studied M-BTP (BTP3- = 1,3,5-tri(1H-pyrazol-4-yl)benzene)148 due 

to its structural similarity with M-BTT. Unlike M-BTT, M-BTP does not require charge-balancing 

ions. To compare with M-BTT, we modeled all but one metal per unit cell as Mg2+. For comparison 

purposes, we also modeled Ni-BTP with all Ni2+ cations in the unit cell. The energy differences 

were found to be small between Ni-BTP and its Mg-diluted analogue. 

M2(dobdc) (M = Mn2+, Fe2+, Co2+, Ni2+). M2(dobdc) (dobdc4- = 2,5-dioxido,1,4-

benzenedicarboxylate),168,201,202 also referred to as MOF-74 or CPO-27 (CPO = Coordination 

Polymer of Oslo), was studied in this work, as Fe-MOF-74 shows selective chemisorption of O2 

and can oxidize ethane to ethanol in the presence of N2O. 
24,168 Mg-diluted Fe-MOF-74 has also 

been shown to oxidize ethane to ethanol with higher selectivity to ethanol than Fe-MOF-74168 and 

is therefore included in the present work as well (with a Mg:Fe ratio of 17:1). 



289 

 

M2(m-dobdc) (M = Mn2+, Fe2+, Co2+, Ni2+, Zn2+). M2(m-dobdc) (m-dobdc4- = 4,6-dioxido-1,3-

benzenedicarboxylate)203 was studied in this work due to its structural similarity with M2(dobdc). 

The metal sites in M2(m-dobdc) are expected to have an increased charge density compared to 

those in M2(dobdc).203 

M2(dobpdc) (M = Mn2+, Fe2+, Co2+, Ni2+). M2(dobpdc) (dobpdc4- = 4,4’-dioxidobiphenyl-3,3’-

dicarboxylate)204 was studied in this work due to its structural similarity with M2(dobdc). 

M2(dsbdc) (M = Mn2+, Fe2+). M2(dsbdc) (dsbdc4- = 2,5-disulfidobenzene-1,4,-

dicarboxylate)205,206,551 was studied in this work due to its structural similarity with M2(dobdc). 

Unlike M2(dobdc), there are bridging S atoms connecting the metal sites in M2(dsbdc). The 

coordination geometry of Mn2(dsbdc) differs from Fe2(dsbdc) and MOF-74.206 

M-MIL-88B (M = Sc3+, Ti3+, Mg2+/V3+, Cr2+/3+, Fe2+/3+). M-MIL-88B (MIL = Materials of Institut 

Lavoisier),199 which has 1,4-benzenedicarboxylate (bdc) linkers, was studied in this work as a 

more computationally tractable alternative to MIL-100/101.20,552,553 Both Fe-MIL-100/101 and Cr-

MIL-100/101 have been shown to be active for oxidation catalysis.213,214 In addition, Ti-MIL-101, 

V-MIL-100, V-MIL-101 can strongly chemisorb O2.
20,217 While as-synthesized Fe- and Cr-MIL-

100 have transition metals in the 3+ oxidation state, it is possible to reduce one of the Cr(III) or 

Fe(III) sites per node to Cr(II) or Fe(II) via removal of the charge-balancing anion.356,553 We 

modeled the Fe- and Cr-containing systems with one M(II) site per unit cell. In contrast, for the 

Sc(III)- and Ti(III)-containing systems, the formal oxidation state of each metal species is kept at 

the as-synthesized 3+ state in the bare MOF. Inspired by the synthesis of a MIL-88 type structure 

with Mg2V heterometallic nodes,200 we also considered the analogous Mg2V MIL-88B structure. 

This MOF has two Mg(II) cations and one V(III) cation per node, with a 𝜇3-OH- group to balance 
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the charge (instead of a 𝜇3-O2- species).  Formation of the metal-oxo site is modeled as occurring 

at the formally Cr(II), Fe(II), Sc(III), Ti(III), or V(III) sites. 

M3(btc)2 (M = Cr2+, Co2+, Ni2+, Cu2+, Zn2+, Mo2+, Ru2+/3+, Pd2+). M3(btc)2 (BTC-3 = 1,3,5-

benzenetricarboxylate)115,185–191, referred to as simply M-BTC, was studied in this work due to the 

fact that Cr-BTC can strongly chemisorb O2.
185 Since the Ru cations in Ru-BTC are known to exist 

in a mixed 2+/3+ valence state,190 we modeled Ru-BTC with half Ru(II) species and the other half 

Ru(III)-Cl species, the former of which are considered for oxidation. Fe-BTC was excluded from 

this work since its structure is not fully understood.554 Due to anomalous bond-breaking events 

discussed in the main text, Cr-BTC and Mo-BTC are excluded from all analyses and models 

developed in this work except where specifically highlighted. 

M-MOF-5 (M = V2+, Cr2+, Mn2+, Fe2+, Co2+, Ni2+). Cation-exchanged MOF-5,207–210 also referred 

to as IRMOF-1 (IRMOF = IsoReticular MOF), was studied in this work, as Cr(II)-MOF-5 and 

Fe(II)-MOF-5 have been shown to be accessible to inner- and outer-sphere oxidants, 

respectively.207 The MOFs were modeled with M1:Zn3 per node based on prior experimental 

characterization.207 

Cu3(dmtrz)2(ox)2, Cu8I4(dmtrz)4, Cu-CFA-8. These three MOFs were highlighted in prior 

work32 and are included in the present study to further test the general applicability of the proposed 

scaling relationship. Cu3(dmtrz)2(ox)2 (dmtrz- = 3,5-dimethyl-1H-1,2,4-triazole, ox = oxalate) has 

mono(𝜇-aquo)Cu(II) dimers that can be desolvated to leave behind adjacent square-planar Cu(II) 

sites.142 Cu8I4(dmtrz)4 contains exposed, two-coordinate Cu(I) cations.155 Cu-CFA-8 (CFA = 

Coordination Framework Augsburg), with the formula Cu2(TQPT) (TQPT2- = 6,6,14,14-

tetramethyl-6,14-dihydroquin-oxalino-[2,3-b]phenazinebistriazole), has two-coordinate, three-
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coordinate, and four-coordinate Cu(I) species, from which we modeled a mono(𝜇-oxo) motif 

between the first two Cu(I) species.156 While all the other MOFs in this work have mononuclear 

metal-oxo active sites, Cu3(dmtrz)2(ox)2 and Cu-CFA-8 are modeled as having binuclear motifs. 

In addition, Cu8I4(dmtrz)4 is the only MOF studied in this work where we modeled oxidation at a 

two-coordinate transition metal cation. Despite these unique differences, the three MOFs appear 

to follow the proposed scaling relationship. Due to the binuclear motifs in Cu3(dmtrz)2(ox)2 and 

Cu-CFA-8, physicochemical properties such as DDEC6 charges and magnetic moments on the 

two Cu atoms are averaged, and the M−O bond order is the sum of the bond orders for the O 

adsorbate with the two Cu sites. 

B.1.2 DFT Screening Procedure 

The full details of the periodic DFT workflow are reported and benchmarked in prior work.32 

Below, we summarize the essential details not already mentioned in the Methods section. 

A multi-stage optimization procedure is performed for both volume and ionic relaxations, 

as summarized in Tables B.4 and B.5. For all elements in this work, we used the VASP-

recommended 5.4 projector-augmented wave (PAW) PBE potentials.32,337 

Table B.1. Periodic DFT parameters used in optimizing the bare MOFs. ENCUT is the plane-wave 

kinetic energy cutoff, KPPA is the 𝑘-point density (with the corresponding 𝑘-point grids generated 

using Pymatgen82), and 𝐹max is the force-convergence criterion. 

Stage ENCUT (eV) KPPA 𝐹max (eV/Å) 

1: Atomic positions 

(low-accuracy) 

400 100 0.05 

2: Volume relaxation 

(low-accuracy) 

520 100 0.05 

3: Volume relaxation 
(high-accuracy) 

520 1000 0.03 

4: Atomic positions 

(high-accuracy) 

520 1000 0.03 

5: Single-point 520 1000 N/A 
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(high-accuracy) 

 

Table B.2. Periodic DFT parameters used in optimizing MOFs with adsorbates. ENCUT is the 

plane-wave kinetic energy cutoff, KPPA is the 𝑘-point density (with the corresponding 𝑘-point 

grids generated using Pymatgen82), and 𝐹max is the force-convergence criterion. 

Stage ENCUT (eV) KPPA 𝐹max (eV/Å) 

1: Atomic positions 

(low-accuracy) 

400 100 0.05 

2: Atomic positions 

(medium-accuracy) 

400 1000 0.05 

3: Atomic positions 

(high-accuracy) 

520 1000 0.03 

4: Single-point 

(high-accuracy) 

520 1000 N/A 

 

As described in detail in prior work,32 we considered both a high-spin (5 𝜇B per metal 

cation) and low-spin (0.1 𝜇B per metal cation) initialization of magnetic moments, which were 

then optimized within VASP to find a local minimum energy spin state and structure. In addition, 

we explicitly considered the antiferromagnetic singlet spin state for MOFs where this is plausible. 

We found that M2Cl2(btdd) (M = Mn, Co), M2Cl2(bbta) (M = Mn, Co), M2(dobdc) (M = Mn, Ni, 

Cu), Mn2(m-dobdc), Mn2(dobpdc), Mn2(dsbdc), and M3(btc)2 (M = Cr, Cu) had antiferromagnetic 

singlet ground states, some of which have been previously confirmed experimentally.28,473 The 

structure with the lowest energy following structural relaxation was used for computing the 

energetic quantities and physicochemical properties. 

For honeycomb-shaped MOFs that exhibit antiferromagnetism, we used a unit cell slightly 

larger than the Niggli-reduced unit cell to ensure that an even number of atoms could be 

antiferromagnetically aligned along the infinite 1D chain of metal cations. All other MOFs were 

modeled using the Niggli-reduced unit cell as computed using Pymatgen.82 If an antiferromagnetic 
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state was found to be isoenergetic (i.e. energy differences on the order of ~1 kJ/mol or less) with 

the ferromagnetic state, we considered the ferromagnetic state for computational simplicity. 

To confirm that the change in spin states did not vary in unphysical ways throughout the 

reaction mechanism, we identified any MOFs where the net spin had a large change between 

reaction steps and subsequently considered all relevant spin states. Specifically, we analyzed any 

MOFs where the net magnetic moment changed by greater than two between the bare MOF and 

the oxidized state, greater than one between the oxidized and reduced active site, and greater than 

zero between the oxidized state and the state with adsorbed methane. If a lower energy spin state 

was found, this was adopted as the ground state. In many cases, the anticipated spin state was often 

isoenergetic with another spin state. The converged spin states in addition to the individual 

magnetic moments for each MOF are reported in the supporting data.235 

The electronic energies for gas-phase species considered in this work as well as the energies 

of other relevant gas-phase oxidants are listed in Table B.6.  Energies for the gas-phase species 

were computed by centering a single molecule in a simulation unit cell with 20 Å of vacuum space 

in all dimensions, a 650 eV cutoff, a 𝑘-point grid consisting of just the Γ-point, and Gaussian 

smearing with a smearing width of 0.001 eV. The vibrational frequency analyses were carried out 

using a central finite difference approximation of the Hessian matrix with displacements of ±0.01 

Å in 𝑥, 𝑦, and 𝑧 and a tight electronic energy convergence criterion of 10-8 eV to ensure accurate 

forces. The use of a 650 eV (as opposed to 520 eV) cutoff has a negligible effect on the gas-phase 

energies but was required to achieve more tightly converged vibrational frequencies. 

Since triplet O2 is poorly described by standard generalized gradient approximation 

(GGA)-level density functionals,220–222 we correct for the value of 𝐸O2
 by ensuring that the reaction 
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H2 (g) + ½ O2 (g) → H2O (g) has a standard enthalpy of reaction of −2.5061 eV at 298.15 K, as 

determined from experiment141 and analogous to what has been done in numerous prior 

computational catalysis studies.555–558 Based on a previous benchmarking study, this procedure is 

expected to greatly increase the accuracy of the PBE-D3(BJ) functional in describing 

chemisorption energies.222 The vibrational frequencies of the gas-phase species at the PBE-D3(BJ) 

level of theory that were used in computing the corrected electronic energy for O2 based on ideal 

gas statistical mechanics293 are listed in Table B.7. 

We also note that because of the challenge in describing the ground state energy of O2, we 

use H2 as the reference state for Δ𝐸H instead of H2O and O2, which is why we use the modified 

universal H-affinity scaling relationship of 𝐸TS,C−H = 0.75Δ𝐸H + 1.96 eV instead of 𝐸TS,C−H =

0.75Δ𝐸H + 1.09 eV as in the original work by Nørskov and coworkers.105 The former equation is 

obtained by taking the latter and changing the reference state to the more reliably computed value 

based on gas-phase H2 (at the same level of theory used in the original work by Nørskov and 

coworkers105). By avoiding the use of O2 in the reference state for Δ𝐸H, this makes the scaling 

relationships more transferable for use with other density functionals that may treat triplet O2 

differently.222 

Table B.3. Electronic energies of relevant gas-phase species at the PBE-D3(BJ) level of theory. 

The enthalpies at 298.15 K used to compute the O2 correction are also shown. 

Species 𝐸 (eV) 𝐻298.15 K (eV) 

CH4 −24.07 --- 

O2 [uncorrected] −9.87 −9.69 

O2 [corrected] −9.48 −9.29 

H2O −14.24 −13.57 

H2 −6.78 −6.42 

H2O2 −18.17 --- 

N2O −21.44 --- 
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N2 −16.66 --- 
 

Table B.4. DFT-computed vibrational frequencies of gas-phase species considered in this work 

computed at the PBE-D3(BJ) level of theory. 

Species Frequencies (cm-1) 

O2 1566.2 

H2O 1579.4, 3720.6, 3832.7 

H2 4318.5 

 

While Nørskov and coworkers have previously shown that the universal H-affinity scaling 

relationship is an accurate descriptor for predicting 𝐸TS,C−H for a wide range of materials,105 we 

confirmed the accuracy of the scaling relationship for select MOFs chosen to represent a range of 

𝐸a,C−H values and structures. Transition state calculations were performed in a multi-stage 

workflow, starting with a climbing image nudged elastic band (CI-NEB)130 calculation followed 

by a series of dimer131 calculations starting from  the predicted maximum of the minimum energy 

pathway.32 The settings for the high-accuracy dimer calculation are the same as the high-accuracy 

ionic relaxation shown in Table B.5. As expected from the findings of Nørskov and coworkers, we 

observe that the computed transition state energies are all in good agreement with those predicted 

from the H-affinity scaling relationship (Table B.8). For reference, Nørskov and coworkers found 

the MAE in the H-affinity scaling relationship to be approximately 0.11 eV,105 which is consistent 

with the findings in Table B.8. 

Table B.5. Comparison of methane C−H activation barrier predicted via the universal transition 

state scaling relationship, 𝐸a,C−H, and that computed directly in VASP, 𝐸a,C−H−VASP. 

MOF 𝐸a,C−H (kJ/mol) 𝐸a,C−H−VASP (kJ/mol) Absolute deviation (eV) 

Ni2Cl2(btdd) 0.35 0.24 0.11 

Cu8I8(dmtrz)4 0.37 0.38 0.01 

Cu1:Zn4-MFU-4l 0.53 0.57 0.04 
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Cu-CFA-8 0.71 0.59 0.12 

Mo-BTC 1.34 1.40 0.06 

Cr-BTC 1.49 1.52 0.03 

 

All structural visualizations were generated using Virtual NanoLab,559 except for Figure 

B.7, which was made using VESTA.560 The Matplotlib,561 NumPy,562 Pandas,563 and 

Statsmodels564 Python libraries were used for data visualizations and data analysis. Chargemol374 

was used to compute the DDEC6 charges, spin densities, and bond orders.158,231 VASP was 

compiled with VTST138 to perform geometry optimizations with the Fast Inertial Relaxation 

Engine (FIRE) algorithm137 and to perform transition state calculations. The VTST package was 

also used to compute Bader159 charges and spin densities.



297 

 

B.2 Summarized DFT Screening Results 

For a list of all the computed energies and physicochemical properties for each MOF, please refer 

to the “energies.csv” file uploaded with the supporting data.235 For ease of reference, we also show 

the key energies for each MOF screened in this work in Table B.1. 

Table B.6. Tabulated results from the periodic DFT screening process of 60 MOFs. 

MOF Δ𝐸O (eV) Δ𝐸H (eV) 𝐸TS,C−H (eV) Δ𝐸CH4 ads (eV) 𝐸a,C−H (eV) 

Cd-BTT 1.93 -2.81 -0.15 -0.21 0.06 
Co-BTC 0.03 -1.91 0.53 -0.17 0.70 
Co-BTT 0.25 -2.16 0.34 -0.21 0.55 

Co(L-RR) -0.64 -1.54 0.81 -0.29 1.09 
Co-MOF-5 -0.16 -1.49 0.84 -0.15 0.99 

Co-MOF-74 -0.72 -1.43 0.88 -0.16 1.05 
Co2(dobpdc) -0.69 -1.47 0.86 -0.18 1.04 

Co2(m-dobdc) -0.61 -1.72 0.67 -0.22 0.89 
Co2Cl2-BBTA -0.79 -1.71 0.68 -0.20 0.88 
Co2Cl2-btdd -0.85 -1.67 0.71 -0.18 0.89 

Cr-BTT -2.08 -0.96 1.24 -0.17 1.41 
Cr-MIL-88B -1.70 -1.09 1.14 -0.13 1.27 
Cr-MOF-5 -2.37 -1.13 1.11 -0.13 1.25 
Cu-BTC 1.82 -2.45 0.12 -0.20 0.32 
Cu-BTP 1.63 -2.62 -0.01 -0.14 0.13 
Cu-BTT 2.04 -2.65 -0.03 -0.14 0.11 

Cu-CFA-8 0.44 -1.96 0.49 -0.21 0.71 
Cu8I4(dmtrz)4 1.03 -2.37 0.18 -0.19 0.37 

Cu3(dmtrz)2(OX)2 1.27 -2.41 0.15 -0.26 0.41 

Cu1:Zn4-MFU-4l 0.07 -2.08 0.40 -0.13 0.53 
Cu2:Zn3-MFU-4l 0.08 -2.07 0.41 -0.11 0.52 

Cu2:Co2:Zn1-MFU-4l 0.05 -2.08 0.40 -0.12 0.52 
Fe-BTT -1.05 -1.72 0.67 -0.16 0.84 

Fe-MIL-88B -0.50 -1.46 0.87 -0.13 1.00 
Fe-MOF-5 -1.06 -1.24 1.03 -0.14 1.17 

Fe-MOF-74 -1.16 -1.37 0.93 -0.17 1.11 
Fe/Mg-MOF-74 -1.32 -1.42 0.89 -0.19 1.08 

Fe2(dobpdc) -1.31 -1.39 0.92 -0.18 1.10 
Fe2(dsbdc) -1.09 -1.24 1.03 -0.17 1.20 

Fe2(m-dobdc) -1.42 -1.45 0.87 -0.17 1.04 
Fe2Cl2-BBTA -1.19 -1.28 1.00 -0.18 1.17 
Fe2Cl2-btdd -1.28 -1.28 1.00 -0.18 1.18 

Mn-BTT -1.25 -1.46 0.87 -0.16 1.03 
Mn-MOF-5 -0.91 -1.49 0.84 -0.12 0.97 

Mn-MOF-74 -1.20 -1.54 0.81 -0.18 0.99 
Mn2(dobpdc) -1.18 -1.55 0.80 -0.18 0.98 
Mn2(dsbdc) -1.02 -1.57 0.79 -0.16 0.94 
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Mn2(m-dobdc) -1.17 -1.51 0.83 -0.22 1.05 
Mn2Cl2-BBTA -1.08 -1.53 0.81 -0.18 0.99 
Mn2Cl2-btdd -1.10 -1.54 0.80 -0.20 1.00 

Ni-BTC 0.40 -2.04 0.43 -0.19 0.63 
Ni-BTP 1.19 -2.45 0.12 -0.12 0.24 

Ni/Mg-BTP 1.11 -2.43 0.14 -0.15 0.29 
Ni-BTT 1.42 -2.27 0.26 -0.16 0.41 

Ni-MOF-5 0.48 -2.20 0.31 -0.10 0.40 
Ni-MOF-74 0.25 -2.22 0.30 -0.22 0.51 
Ni2(dobpdc) 0.41 -2.09 0.39 -0.22 0.61 

Ni2(m-dobdc) 0.29 -2.26 0.26 -0.17 0.43 
Ni2Cl2-BBTA 0.53 -2.38 0.18 -0.19 0.36 
Ni2Cl2-btdd 0.50 -2.40 0.16 -0.18 0.35 

Pd-BTC 1.21 -2.34 0.21 -0.18 0.38 
Ru-BTC 0.03 -1.90 0.53 -0.18 0.71 

Sc-MIL-88B 2.06 -2.75 -0.10 -0.14 0.04 
Ti-MIL-88B -3.45 -0.52 1.57 -0.15 1.72 
V-MIL-88B -2.89 -0.49 1.59 -0.12 1.71 

V-MOF-5 -3.69 -0.13 1.86 -0.14 2.00 
Zn-BTC 1.69 -2.75 -0.10 -0.19 0.09 

Zn2(m-dobdc) 1.79 -2.77 -0.12 -0.20 0.08 
Cr-BTC -1.03 -0.85 1.32 -0.17 1.49 

Mo-BTC -0.48 -1.05 1.17 -0.17 1.34 
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B.3 Supporting Figures 

B.3.1 Methane Adsorption 

The barrier for methane C−H activation, 𝐸a,C−H, as a function of the energy of the transition state 

(TS) for C−H activation, 𝐸TS,C−H, is shown in Figure B.1. Based on the definition of these energetic 

parameters (Figure 3.1c), the near-unity slope with 𝑟2 = 0.99 indicates that the energy of methane 

adsorption at the metal-oxo species of each MOF is nearly constant. The methane adsorption 

energies for each MOF are summarized in the histogram in Figure B.1b. As expected from the 

intercept of the best-fit line in Figure B.1a, the average methane adsorption energy is −0.18 eV, 

with relatively small deviations from this value. A near-constant methane adsorption energy was 

previously observed for trinuclear motifs in ZSM-5 with an average value of approximately −0.24 

eV (also using the PBE-D3(BJ) functional).219 The slightly more exothermic methane adsorption 

energies in this case can be attributed to the small micropores of the zeolite. In the present work, 

Co(L-RR), shown in Figure B.2, has a methane adsorption energy of −0.28 eV due to its small pore 

size. Based on the experimental crystal structure, this MOF has a pore-limiting diameter of 3.96 

Å.211,215 

 
Figure B.1. a) Predicted barrier for C−H bond activation of methane, 𝐸𝑎,𝐶−𝐻, as a function of the 

corresponding energy of the transition state, 𝐸𝑇𝑆,𝐶−𝐻. The best-fit line, 𝐸𝑎,𝐶−𝐻 = 0.99𝐸𝑇𝑆,𝐶−𝐻 +

0.18 𝑒𝑉, has 𝑟2 = 0.99 and a mean absolute error (MAE) of 0.03 eV. The barrier for C−H 
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activation is computed from Equation 3.2. Symbol color refers to the metal group number. Symbol 

shape indicates the formal oxidation state of the metal site prior to oxidation as 1+ (▲), 2+ (●), or 

3+ (■). b) Histogram of methane adsorption energies at the metal-oxo active sites of the screened 

MOFs. 

 

 
Figure B.2. 3 × 3 × 3 supercell of Co(L-RR)215 with adsorbed methane, highlighting the small 

pores around the proposed [CoO]2+ active site. Color key: Co (pink), O (red), N (blue), S (yellow), 

C (gray), H (white). 

 

B.3.2 Additional Physicochemical Descriptors 

As shown in Figure 3.6a, Δ𝐸H and Δ𝐸O are moderately correlated with the spin density on the O 

species, 𝜌O. Figure B.3a plots the same data but using a Bader partitioning159 of the spin density, 

rather than the DDEC method. Because the Bader and DDEC spin densities are correlated to one 

another, analogous behavior is observed, although the correlation between Bader spin density and 

Δ𝐸H is slightly weaker than with spin densities computed from the DDEC method (𝑟2 = 0.69 

compared to 𝑟2 = 0.73). Since 𝜌O is inversely correlated with the M−O bond order computed via 

the DDEC method (Figure B.4), we find that the results in Figure 3.6a are qualitatively similar to 

the bond order trends in Figure B.3b. A correlation matrix relating many of the computed 

physicochemical properties is shown in Figure B.5.  
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Figure B.3. a) Active site formation energy, 𝛥𝐸𝑂, and H-affinity, 𝛥𝐸𝐻, as a function of the absolute 

spin density on the oxo ligand computed via the Bader partitioning method,159 𝜌𝑂,𝐵𝑎𝑑𝑒𝑟. b) 𝛥𝐸𝑂 

and 𝛥𝐸𝐻 as a function of the (total) bond order between the metal binding site(s) and oxo ligand 

computed via the DDEC6 method.231 The gray shaded area refers to the “stable, reactive” region 

in Figure 3.4 (i.e. 𝛥𝐸𝑂 < 0 eV and 𝛥𝐸𝐻 < −1.51 eV, the latter of which corresponds to 

approximately 𝐸𝑎,𝐶−𝐻 < 1 eV). Both 𝜌𝑂,𝐵𝑎𝑑𝑒𝑟 and the M−O bond order are computed for the 

oxidized state of the MOF. Symbol color refers to the group number of the metal in the periodic 

table. Symbol shape indicates the formal oxidation state of the metal site prior to oxidation as 1+ 

(▲), 2+ (●), or 3+ (■). 
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Figure B.4. Absolute value of the DDEC6 spin density on the oxo species of the M−O active site, 

𝜌𝑂,𝐷𝐷𝐸𝐶, as a function of the DDEC6 M−O bond order. 

 
Figure B.5. Pearson correlation coefficients of the computed physicochemical properties for the 

screened MOFs. The definitions for each property can be found in the “README.txt” file 

uploaded with the supporting data. 

 

B.3.3 M-MOF-5 

As previously mentioned, we studied M-MOF-5 (M = V2+, Cr2+, Mn2+, Fe2+, Co2+, Ni2+) for the 

oxidative C−H bond activation of methane. Four of the six MOF-5 variants (M = Co, Cr, Fe, V) 

exhibit deviations in Δ𝐸H of greater than ±0.20 eV from the scaling line shown in Figure 3.3, with 
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Co-MOF-5 having the largest deviation of all MOFs screened in this work (aside from Cr-BTC 

and Mo-BTC) with a deviation of +0.36 eV. Consistent with prior work by Dincă and 

coworkers,207 we found significant structural distortion in the first coordination sphere of the metal 

site upon oxidation (Figure B.6). It is possible that the change from tetrahedral to a highly distorted 

square pyramidal-like geometry upon activation of the oxidant may cause greater than average 

deviations from the scaling line, depending on the energetics associated with the structural 

rearrangement. Nonetheless, despite these drastic structural changes in the MOF-5 family, the 

departures from the scaling line are not nearly as significant as those for Cr-BTC and Mo-BTC, 

whch are proposed to break from the scaling relationship with deviations in Δ𝐸H greater than +0.6 

eV. 

 
Figure B.6. DFT-optimized structure of Fe-MOF-5 before a) and after b) oxidation of the open 

metal site. Other M-MOF-5 variants exhibit analogous changes to the first coordination sphere. 

Color key: Fe (orange), Zn (purple), O (red), C (gray), H (white). Representative portions of the 

unit cells are shown. 

 

B.3.4 Noncovalent Interactions 

As discussed in the main text, it can be expected that changes in the bonding of framework atoms 

during the oxidation process could cause MOFs to significantly deviate from the scaling 
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relationship shown in Figure 3.3. In addition to the metal-metal bond-breaking behavior associated 

with Cr-BTC and Mo-BTC upon oxidation of the metal center (Figure 3.7), one could envision 

that noncovalent interactions may stabilize the metal-oxo intermediate (i.e. making Δ𝐸O more 

exothermic) without greatly altering the reactivity toward C−H activation (i.e. with negligible 

changes in Δ𝐸H). We tested this scenario with a MOF known as CFA-1,565 which has metal cations 

of neighboring inorganic nodes separated by ~7.7 Å such that it can support inter-node hydrogen-

bonding interactions,566 depending on the ligands bound to the metal species. 

For this example, we started with the DFT-optimized structure of CFA-1 with a 

combination of OH- ligands and HCO3
- ligands (such as that resulting from the reversible capture 

of CO2).
566 One [ZnOH]+ species per unit cell was then exchanged with a Cu+ species, analogous 

to what has been done with Cu-MFU-4l.27 As shown in Figure B.7a, the close distance between 

the [CuO]+ intermediate and HCO3
- ligand on a neighboring inorganic node permits H-bonding 

interactions. By replacing the HCO3
- ligand with a smaller OH- group (Figure B.7b), it is possible 

to evaluate the influence of H-bonding on the [CuO]+ active site. For both scenarios, Δ𝐸H is 

predicted to be nearly identical, suggesting that the H-bonding interaction does not influence the 

reactivity of the [CuO]+ site toward C−H activation since the Cu−O bond order is essentially 

unchanged (Table B.2). In contrast, the Δ𝐸O value for the H-bonding scenario is 0.18 eV more 

exothermic than without H-bonding behavior. 

The slope of the scaling line relating Δ𝐸H to Δ𝐸O is −0.43. As such, a difference in Δ𝐸O by 

0.18 eV would cause a 0.08 eV difference in the Δ𝐸H value predicted from the scaling line. In this 

example, the H-bonding interaction stabilizes the [CuO]+ site but not enough to cause a particularly 

pronounced deviation from the proposed scaling relationship, especially compared with breaking 
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(or making) covalent bonds like with Cr-BTC and Mo-BTC. Nonetheless, one could achieve larger 

deviations from the scaling relationship with particularly strong H-bonds567 or a more extensive 

H-bonding network. Even for MOFs where significant deviations from the scaling relationship are 

not present, moderately strong noncovalent interactions would likely be beneficial from a catalyst 

design standpoint, as they can stabilize otherwise fleeting active site species.534 

 
Figure B.7. a) DFT-optimized structure of CFA-1 with an HCO3

- ligand exhibiting H-bonding with 

the [CuO]+ active site. The distance between the O atom of the [CuO]+ site and the H atom of the 

HCO3
- ligand is 1.64 Å. b) DFT-optimized structure of CFA-1 with the HCO3

- ligand replaced by 

an OH- group. Color key: Cu (dark blue), Zn (gray), O (red), N (light blue), C (brown), H (white). 

Representative portions of the unit cells are shown. 

 

Table B.7. Computed energies and DDEC6231 Cu−O bond order for the MOFs shown in Figure 

B.7. 

Scenario Δ𝐸O (eV) Δ𝐸H (eV) Cu−O bond order 

H-bonding, Fig. S7a −0.15 −2.09 0.96 

No H-bonding, Fig. S7b +0.03 −2.11 1.02 

 

B.3.5 Charge Delocalization 

It has been suggested that the degree of charge delocalization upon formation of the metal-oxo 

active site may cause multiple distinct scaling lines,105 with higher degrees of charge delocalization 

resulting in the catalyst being constrained to a less reactive scaling line (i.e. one with a more 

endothermic Δ𝐸H and higher 𝐸TS,C−H for a given Δ𝐸O). To test this hypothesis in the context of the 
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present study, we have computed the fractional degree of charge delocalization upon formation of 

the metal-oxo species for each MOF. 

We define the fractional degree of charge delocalization following the chemisorption of a 

single O atom, 𝜒ox, as 

𝜒ox = 1 −
Δ𝑞M

|𝑞O|
(B. 1) 

where Δ𝑞M is the change in partial atomic charge on the metal cation at the active site following 

activation of the oxidant and 𝑞O is the partial atomic charge on the O adsorbate. With this 

definition, 𝜒ox = 0 implies that oxidation of the metal center occurs without any charge 

delocalization because Δ𝑞M = |𝑞O|. In contrast, 𝜒ox = 1 implies that the increase in positive 

charge induced by the oxidant to maintain charge neutrality has been fully delocalized away from 

the metal center to surrounding atoms in the framework because Δ𝑞M = 0. Inherent to Equation 

B.1 are the assumptions that Δ𝑞M ≥ 0 and 𝑞O < 0, consistent with what would be expected for an 

oxidation reaction. We found that the MOFs studied in this work exhibit the full range of 𝜒ox 

values, with some MOFs exhibiting purely metal-centered oxidation and others exhibiting 

significant charge delocalization to the surrounding ligands upon activation of the oxidant. Given 

the predictive accuracy of the single scaling line in Figure 3.3, this suggests that charge 

delocalization does not contribute to the presence of multiple distinct scaling lines, at least for the 

MOFs screened in this work. 
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Figure B.8. Change in DDEC6 partial atomic charge upon oxidation, 𝛥𝑞, for the metal (M) at the 

metal-oxo active site, the O species of the metal-oxo active site (O*), and across all the remaining 

frameworks atoms for Mn-MOF-74 and Co2Cl2(btdd). The inset shows the H-affinity, 𝛥𝐸𝐻, as a 

function of the active site formation energy, 𝛥𝐸𝑂, for the screened MOFs from Figure 3.3, 

specifically highlighting Mn-MOF-74 and Co2Cl2(btdd). Color key: Mn-MOF-74 (blue), 

Co2Cl2(btdd) (red). 

 

As an example, we specifically highlight Mn2(dobdc), also known as Mn-MOF-74, and 

Co2Cl2(btdd).25,28 Mn-MOF-74 is one of the few MOFs that has been experimentally shown to 

exhibit ligand redox non-innocence upon oxidation, with the Mn(II) cations retaining their formal 

oxidation state of 2+ in the presence of a one-electron iodobenzene dichloride oxidant.28 In 

contrast, Dincă and coworkers have shown that the oxidation of Co2Cl2(btdd) in the presence of 

Cl2 and Br2 occurs at the Co(II) centers such that the ligands can be best characterized as redox 

innocent.25 Qualitatively consistent with the aforementioned experiments, we predict Mn-MOF-

74 and Co2Cl2(btdd) to have 65% and 11% charge delocalization upon formation of the terminal 

metal-oxo species, respectively, yet both MOFs clearly fall on the same scaling line (Figure B.8).  

Given the vast number of MOFs synthesized to date, there are surprisingly few that have 

been shown to have redox non-innocent ligands.28,249 Since high values of 𝜒ox indicate high 

degrees of charge delocalization that may be attributed to redox non-innocent behavior, it is worth 

investigating MOFs with high 𝜒ox values in greater detail. The MOFs with the top 10 highest 
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values for 𝜒ox are reported in Table B.3 along with their Δ𝐸O values. For reference, Mn-MOF-74 

is predicted to have 𝜒ox = 0.65 (using both the DDEC6158,233 and Bader159 methods) and has been 

experimentally shown28 to exhibit redox non-innocent behavior in the presence of iodobenzene 

dichloride.  

As shown in Table B.3, some of the MOFs with high 𝜒ox values (e.g. Zn-BTC, Cd-BTT, 

Sc-MIL-88B, Zn2(m-dobdc)) are those that are not expected to readily form a metal-oxo active site 

due to highly endothermic active site formation energies. Since the transition metals in these 

systems are not expected to be readily oxidized (e.g. Zn2+ is unlikely to form a formally Zn(IV)-

oxo species), changes in charge are distributed over the surrounding framework atoms in order to 

maintain charge neutrality. Many of the other MOFs with high 𝜒ox values are those containing Mn 

or Fe sites. The MOF with the highest degree of charge delocalization and an experimentally 

plausible metal-oxo active site motif is Fe-MIL-88B. 

Table B.8. Active site formation energies, Δ𝐸O, and degree of charge delocalization based on the 

DDEC6 method, 𝜒ox,DDEC, and the Bader159 method, 𝜒ox,Bader. The MOFs with the ten highest 

𝜒ox,DDEC values are shown. 

MOF Δ𝐸O (eV) 𝜒ox.DDEC 𝜒ox,Bader 

Zn-BTC 1.69 1.37 0.89 

Cd-BTT 1.93 1.29 0.93 

Sc-MIL-88B 2.06 1.28 0.88 

Fe-MIL-88B −0.50 1.25 0.94 

Zn2(m-dobdc) 1.79 1.13 0.98 

Mn-BTT −1.25 1.09 0.77 

Ti-MIL-88B 2.06 0.83 0.87 

Mn2Cl2(btdd) −1.08 0.78 0.75 

Mn2Cl2(bbta) −1.10 0.78 0.77 

Fe2(dobpdc) −1.31 0.76 0.82 

As previously mentioned, we computed the degree of charge delocalization, 𝜒ox, for each MOF 

in this work. Typically, the chemisorption of an O species to the metal site would be expected to 
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increase the partial atomic charge on the metal (with potentially some of the charge difference 

being distributed to the surrounding ligands). In other words, it is typically the case that |Δ𝑞M| ≤

|𝑞O|. However, this was not found to be the case for Ni-BTT, which based on the DFT calculations 

in this work has Δ𝑞M,DDEC = 0.38 and 𝑞O,DDEC = −0.18 (Δ𝑞M,Bader = 0.91, 𝑞O,Bader = −0.34), 

indicating that the net charge on the remaining framework atoms decreased compared to that in 

the bare, reduced MOF. This anomalous behavior in the charge may explain the relatively large 

deviation of +0.26 eV in Δ𝐸H compared to the scaling line.



310 

 

Appendix C. APPENDIX FOR CHAPTER 4 

C.1 Publicly Available Data 

All computational results, including XYZ coordinates, energies, vibrational frequencies, partial 

charges, spin densities, bond orders, and more can be found at the Zenodo repository with DOI: 

10.5281/zenodo.3554807. 

C.2 Methods: Density Functional Theory Calculations 

C.2.1 Methods: Periodic DFT 

Periodic DFT calculations were carried out using VASP v.5.4.1122,123 with v.5.4 of the VASP-

recommended337 projector-augmented wave (PAW) pseudopotentials.124 As benchmarked in prior 

work,32 the lattice constants and atomic positions of the guest-free MOFs were relaxed with a 520 

eV plane-wave energy cutoff and Γ-centered 3 × 2 × 2 𝑘-point grid using the Niggli-reduced 

primitive unit cell. All forces were converged to within 0.03 eV/Å. Each self-consistent field (SCF) 

loop was considered converged if the change in energy was less than 10-6 eV, and Gaussian 

smearing of the band occupancies was applied with a smearing width of 0.01 eV prior to 

extrapolation back to the 0 K limit. The accurate precision keyword was enabled in VASP, and 

symmetry constraints were disabled. Calculations involving the M06-L functional in VASP 

included non-spherical contributions from the gradient corrections inside the PAW spheres. The 

Atomic Simulation Environment (ASE)83 v.3.18.0 was used to carry out the VASP calculations. 

C.2.2 Methods: Creating the Finite Cluster Models 

The M-BBTA-X finite cluster models were carved from periodic, all-Mg analogues of M2X2(bbta) 

(X = F, Cl, Br, OH, SH, SeH) optimized in VASP. To optimize the Mg-containing model systems, 

the PBE-D3(BJ) level of theory125–127 was used due to the functional’s ability to accurately 
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reproduce the lattice constants of MOFs with closed-shell metals.128,129 Both the atomic positions 

and unit cell shape/volume were relaxed. The finite cluster models carved from the VASP-

optimized, periodic structures contain 75−79 atoms and are based on widely adopted cluster 

models for the structurally related M2(dobdc) family568 and a previously adopted cluster model for 

MFU-4l (Metal−Organic Framework Ulm).364 To balance the charge on the cluster models, three 

protons were added to undercoordinated nitrogen atoms. The central Mg2+ site was then exchanged 

with each of the transition metals considered in this work (M = V, Cr, Mn, Fe, Co, Ni, or Cu) for 

the finite cluster DFT calculations. The resulting cluster models therefore contain two Mg2+ cations 

and one central transition metal cation, as depicted in Figure 4.1. In prior work, we have shown 

that the H atoms of the μ-OH- groups can exist in one of several possible orientations, all of which 

have roughly similar energies in the guest-free structure.73 For consistency, in all OH-, SH-, and 

SeH-containing cluster models, we oriented the H atoms in opposite directions around the central 

metal binding site. The only exception was for the Mn-BBTA-OH cluster with the [MnO]2+ site 

(and at the transition state for C−H activation), for which the only stationary point that could be 

found was one in which the H atoms were both aligned parallel to the Mn−O bond. 

C.2.3 Treatment of Spin States 

Low-spin, intermediate-spin, and high-spin multiplicities were considered (where applicable) for 

the M2+ complexes, the [MO]2+ complexes, and the transition state for C−H activation. Restricted 

Kohn-Sham DFT was adopted for the singlet states, and unrestricted Kohn-Sham DFT was 

adopted for all higher spin multiplicities. Significant spin-contamination for the open-shell singlet 

states prevented their investigation throughout this work; for instance, open-shell singlet 
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calculations for the Ni-BBTA-X frameworks would often converge to a state with ⟨𝑆2⟩ of ~2 

(instead of 0.75) following annihilation of the spin contamination. 

As a result of the spin state analysis and as a matter of consistency, all physicochemical 

properties (e.g. energies, spin densities, bond distances, partial charges) are reported for the spin 

states listed in Table C.1 unless otherwise stated. For the vast majority of MOFs, the spin states 

listed in Table C.1 are the lowest energy spin state. The computed properties for other spin states 

can be found in the Zenodo repository.  

Table C.1. Spin multiplicities adopted for the trends reported in this work, unless otherwise 

specified. AFM and FM refer to antiferromagnetic (AFM) and ferromagnetic (FM) coupling 

between the metal and oxo/oxyl species (for the [MO]2+ state) or the three-center C–H–O radical 

(at the TS). 

MOF M2+ [MO]2+ TS 

V-BBTA-X 4 2-AFM 2-AFM 

Cr-BBTA-X 5 3-AFM 3-AFM 

Mn-BBTA-X 6 4-FM 4-AFM 

Fe-BBTA-X 5 5-FM 5-AFM 

Co-BBTA-X 4 4-FM 4-FM 

Ni-BBTA-X 3 5-FM 3-FM 

Cu-BBTA-X 2 4-FM 4-FM 

 

The relative spin state energies for the M2+ and [MO]2+ complexes are shown in Figures 

C.1−C.6, and the relative spin state energies for various transition state structures are shown in 

Tables C.2−C.15. Due to the computational expense in calculating transition states, only select 

calculations are reported below (primarily those that successfully converged using our automated 

workflow). For the full list of atomic spin densities for a given spin multiplicity, please refer to the 

supporting dataset on Zenodo. Note that additional spin states have been tested and included below 

since the original publication of this work. 
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Figure C.1. Relative electronic energy of the considered spin multiplicities of V-BBTA-X. 

 

 
Figure C.2. Relative electronic energy of the considered spin multiplicities of Cr-BBTA-X. 
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Figure C.3. Relative electronic energy of the considered spin multiplicities of Mn-BBTA-X. 

 

 
Figure C.4. Relative electronic energy of the considered spin multiplicities of Fe-BBTA-X. 
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Figure C.5. Relative electronic energy of the considered spin multiplicities of Co-BBTA-X. 

 

 
Figure C.6. Relative electronic energy of the considered spin multiplicities of Ni-BBTA-X. 

 

Table C.2. Relative electronic energy of the considered spin states for the [VO]2+ site of V-BBTA-

X. AFM indicates antiferromagnetic coupling between the metal and terminal oxo/oxyl ligand. 

Note that the doublet state is the only physically plausible spin multiplicity, but a quartet state was 

investigated anyway. 

 Δ𝐸 (kJ/mol) 

2𝑆 + 1 V-BBTA-Cl 

2 (AFM) 0 

4 (AFM) 281 

 



316 

 

Table C.3. Relative electronic energy of the considered spin states for the [CrO]2+ site of Cr-

BBTA-X. AFM indicates antiferromagnetic coupling between the metal and terminal oxo/oxyl 

ligand. 

 Δ𝐸 (kJ/mol) 
2𝑆 + 1 Cr-BBTA-Cl Cr-BBTA-F Cr-BBTA-Br Cr-BBTA-OH Cr-BBTA-SH Cr-BBTA-SeH 

1* 19 38 22 45 23 25 

3 (AFM) 0 0 0 0 0 0 
*Closed-shell singlet state. 

Table C.4. Relative electronic energy of the considered spin states for the [MnO]2+ site of Mn-

BBTA-X. Entries marked by dashes were not computed. AFM indicates antiferromagnetic 

coupling between the metal and terminal oxo/oxyl ligand, whereas FM indicates ferromagnetic 

coupling. 

 Δ𝐸 (kJ/mol) 
2𝑆 + 1 Mn-BBTA-Cl Mn-BBTA-F Mn-BBTA-Br Mn-BBTA-OH Mn-BBTA-SH Mn-BBTA-SeH 

2 (AFM) 43 --- 48 --- --- --- 

2 (FM) --- 36 --- 50 35 37 

4 (FM) 0 11 0 --- 0 --- 

4 (AFM) 0 0 1 0 0 0 

6 (FM) 47 53 --- --- --- --- 

 

Table C.5. Relative electronic energy of the considered spin states for the [FeO]2+ site of Fe-

BBTA-X. AFM indicates antiferromagnetic coupling between the metal and terminal oxo/oxyl 

ligand, whereas FM indicates ferromagnetic coupling. 

 Δ𝐸 (kJ/mol) 
2𝑆 + 1 Fe-BBTA-Cl Fe-BBTA-F Fe-BBTA-Br Fe-BBTA-OH Fe-BBTA-SH Fe-BBTA-SeH 

1* 154 154 172 117 105 100 

3 (FM) 56 32 34 18 3 0 

5 (FM) 0 0 0 0 0 3 
*Closed-shell singlet state. 

Table C.6. Relative electronic energy of the considered spin states for the [CoO]2+ site of Co-

BBTA-X. AFM indicates antiferromagnetic coupling between the metal and terminal oxo/oxyl 

ligand, whereas FM indicates ferromagnetic coupling. 

 Δ𝐸 (kJ/mol) 
2𝑆 + 1 Co-BBTA-Cl Co-BBTA-F Co-BBTA-Br Co-BBTA-OH Co-BBTA-SH Co-BBTA-SeH 

2 (FM) 39 43 37 15 11 14 

4 (FM) 0 0 0 0 0 0 

6 (FM) 44 28 43 21 33 0* 

*The axial Co–N bond distance is significantly larger for Co-BBTA-SeH than for the other 

structures. 
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Table C.7. Relative electronic energy of the considered spin states for the [NiO]2+ site of Ni-

BBTA-X. FM indicates ferromagnetic coupling between the metal and oxo/oxyl ligand. 

 Δ𝐸 (kJ/mol) 
2𝑆 + 1 Ni-BBTA-Cl Ni-BBTA-F Ni-BBTA-Br Ni-BBTA-OH Ni-BBTA-SH Ni-BBTA-SeH 

1* 126 ** 118 82 93 103 

3 (FM) 7 10 6 0 1 9 

5 (FM) 0 0 0 6 0 0 
*Closed-shell singlet state. 
**The geometry for the singlet state of Ni-BBTA-F with an [NiO]2+ site could not be successfully 

converged without one of the triazolate linkers dissociating from the Ni center. Based on the 

remaining Ni MOFs, this spin state is unlikely to be mechanistically relevant. 

 

 

Table C.8. Relative electronic energy of the considered spin states for the [CuO]2+ site of CuO-

BBTA-X. Entries marked by dashes were not computed. AFM indicates antiferromagnetic 

coupling between the metal and terminal oxo/oxyl ligand, whereas FM indicates ferromagnetic 

coupling. 

 Δ𝐸 (kJ/mol) 
2𝑆 + 1 Co-BBTA-Cl Co-BBTA-F Co-BBTA-Br Co-BBTA-OH Co-BBTA-SH Co-BBTA-SeH 

2 (FM) 7 14 4 17 11 --- 

2 (AFM) --- --- --- --- -- 21 

4 (FM) 0 0 0 0 0 0 

 

 

Table C.9. Relative electronic energy of the considered spin states for V-BBTA-Cl at the transition 

state for C−H activation. AFM indicates antiferromagnetic coupling between the metal and the 

three-center C–H–O radical, whereas FM indicates ferromagnetic coupling. 

 Δ𝐸 (kJ/mol) 

2𝑆 + 1 V-BBTA-Cl 

2 (AFM) 0 

4 (FM) 56 

 

Table C.10. Relative electronic energy of the considered spin states for Cr-BBTA-X at the 

transition state for C−H activation. AFM indicates antiferromagnetic coupling between the metal 

and the three-center C–H–O radical, whereas FM indicates ferromagnetic coupling. 

 Δ𝐸 (kJ/mol) 

2𝑆 + 1 Cr-BBTA-Cl Cr-BBTA-Br Cr-BBTA-SH Cr-BBTA-SeH 

3 (AFM) 0 0 0 0 

5 (FM) 27 28 29 29 
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Table C.11. Relative electronic energy of the considered spin states for Mn-BBTA-X at the 

transition state for C−H activation. Entries marked by dashes were not computed. AFM indicates 

antiferromagnetic coupling between the metal and the three-center C–H–O radical, whereas FM 

indicates ferromagnetic coupling. 

 

 Δ𝐸 (kJ/mol) 

2𝑆 + 1 Mn-BBTA-Cl Mn-BBTA-F Mn-BBTA-Br Mn-BBTA-SH Mn-BBTA-SeH 

2 (FM) --- 126 --- --- --- 

2 (AFM) 71 88 --- 38 38 

4 (FM) --- 91 88 48 47 

4 (AFM) 0 0 0 0 0 

6 (FM) --- --- --- 24 --- 

 

Table C.12. Relative electronic energy of the considered spin states for Fe-BBTA-X at the 

transition state for C−H activation. Entries marked by dashes were not computed. AFM indicates 

antiferromagnetic coupling between the metal and the three-center C–H–O radical, whereas FM 

indicates ferromagnetic coupling. 

 Δ𝐸 (kJ/mol) 

2𝑆 + 1 Fe-BBTA-Cl Fe-BBTA-F Fe-BBTA-Br Fe-BBTA-OH 

3 (FM) --- 84 70 59 

3 (AFM) 45 --- --- --- 

5 (FM) 36 48 38 53 

5 (AFM) 0 0 0 0 

7 (FM) --- 14 --- --- 

 

Table C.13. Relative electronic energy of the considered spin states for Co-BBTA-X at the 

transition state for C−H activation. Entries marked by dashes were not computed. AFM indicates 

antiferromagnetic coupling between the metal and the three-center C–H–O radical, whereas FM 

indicates ferromagnetic coupling. 

 Δ𝐸 (kJ/mol) 
2𝑆 + 1 Co-BBTA-Cl Co-BBTA-F Co-BBTA-Br Co-BBTA-OH Co-BBTA-SH Co-BBTA-SeH 

2 (FM) 16 19 22 0 0 0 

2 (AFM) 13 9 --- --- --- --- 

4 (FM) 0 0 0 21 18 6 

6 (FM) 15 2 14 22 --- --- 

 

 

Table C.14. Relative electronic energy of the considered spin states for Ni-BBTA-X at the 

transition state for C−H activation. Entries marked by dashes were not computed. AFM indicates 

antiferromagnetic coupling between the metal and the three-center C–H–O radical, whereas FM 

indicates ferromagnetic coupling. 
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 Δ𝐸 (kJ/mol) 

2𝑆 + 1 Ni-BBTA-Cl Ni-BBTA-F Ni-BBTA-Br Ni-BBTA-OH Ni-BBTA-SH 

1 (FM) 118 --- --- --- -- 

3 (FM) 0 0 0 0 0 

3 (Alt)* --- --- --- 29 --- 

5 (FM) 5 3 3 16 6 
*In this case, although an AFM state was provided as the initial guess, the terminal oxo ligand has 

negligible spin density; the methyl radical has spin density with an opposite sign compared to the 

metal. 

 

 

Table C.15. Relative electronic energy of the considered spin states for Cu-BBTA-X at the 

transition state for C−H activation. Entries marked by dashes were not computed. AFM indicates 

antiferromagnetic coupling between the metal and the three-center C–H–O radical, whereas FM 

indicates ferromagnetic coupling. 

 Δ𝐸 (kJ/mol) 

2𝑆 + 1 Cu-BBTA-Cl Cu-BBTA-F Cu-BBTA-OH Cu-BBTA-SH Cu-BBTA-SeH 

2 (FM) 2 --- 21 --- --- 

2 (AFM) --- 15 --- 9 8 

4 (FM) 0 0 0 0 0 

 

C.2.4 Model Assumptions 

The need to carry out a large number of computationally expensive DFT calculations requires a 

few assumptions with regards to the reactivity of the M2X2(bbta) family of materials. These are 

discussed below. 

 To confirm that the cluster size and modeling choices regarding the M-BBTA-X cluster 

models are representative of the larger periodic structure, we compared the metal-oxo formation 

energies for the M-BBTA-X (X = F, Cl, Br) cluster models at the M06-L/def2-TZVP level of 

theory with the metal-oxo formation energies computed in VASP using the fully periodic 

structures at the M06-L/PAW level of theory. For these VASP calculations, the unit cell contains 

one transition metal cation per Niggli-reduced primitive cell, mimicking the cluster models. For 

the guest-free periodic structures, the atomic positions and cell shape/volume were allowed to 
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relax. For the periodic DFT calculations involving the [MO]2+ site, the unit cell was kept fixed at 

the DFT-optimized guest-free structure, and all atomic positions were allowed to relax. Unlike the 

cluster models, no constraints were applied for the VASP calculations. As shown in Figure C.8, 

there is strong agreement between the M06-L/def2-TZVP (i.e. cluster) calculations and the M06-

L/PAW (i.e. periodic) calculations, supporting the choice of model system. For reference, a best-

fit line of 𝑦 = 1.04𝑥 − 7.18 kJ/mol with 𝑟2 = 0.996 is obtained. Even if the cluster model is 

highly representative of the larger periodic structure, slight deviations between the periodic and 

cluster calculations are to be expected, as the basis sets are not identical between VASP and 

Gaussian. We acknowledge that effects such as strain or pore-based confinement could influence 

the quantitative values of the reactivities reported in this work.106,569 Nonetheless, the fidelity of 

the cluster model demonstrated in Figure C.8, the success of the analogous M2(dobdc) cluster 

models,177,568 and the large pores of the M2X2(bbta) framework provide support that the M-BBTA-

X clusters are capable of accurately modeling the periodic structures in this work.  

 
Figure C.7. Metal-oxo formation energy, Δ𝐸O, at the M06-L/PAW level of theory (periodic 

calculations) compared against the M06-L/def2-TZVP level of theory (cluster calculations). The 
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dashed line indicates perfect agreement between the two methods. Symbols: X = F (circle), X = 

Cl (square), X = Br (triangle). 

 

Prior studies have also shown that the 20% Hartree-Fock exchange of B3LYP can over-

stabilize high-spin states in several cases,228,229 and it is well-established that it can be difficult for 

DFT to calculate accurate spin splitting energies.570 As a point of comparison, we used the M06-

L/def2-TZVP level of theory to identify the ground state spin state in the M-BBTA-X (M = {V, 

Cr, Mn, Fe, Co, Cu}; X = {F, Cl, Br}) cluster models in both the adsorbate-free (i.e. M2+) and 

metal-oxo (i.e. [MO]2+) states. We found that for every structure, the B3LYP-D3(BJ)/def2-TZVP 

and M06-L/def2-TZVP levels of theory predict the same ground state spin multiplicity. Similarly, 

all the B3LYP-D3(BJ)/def2-TZVP ground state spin multiplicities were the same as the M06-

L/PAW calculations of the fully periodic structures, with the exception of Mg-diluted 

Co2Cl2(bbta), which has a low-spin ground state at the M06-L/PAW level of theory but a high-

spin ground state at the B3LYP-D3(BJ)/def2-TZVP and M06-L/def2-TZVP levels of theory. It is 

known from prior experiments that this framework has a high-spin ground state.25 Finally, several 

metal−azolate frameworks with open-shell 3𝑑 transition metal cations have been shown to exhibit 

spin-crossover as a function of temperature, pressure, and other external stimuli.193,270 While we 

account for the possibility of spin transitions throughout the metal-oxo formation and C−H 

activation processes, spin-crossover behavior due to external stimuli is not considered. 

C.2.5 Metal-Oxo Formation Energies at the M06-L/def2-TZVP Level of Theory 

In addition to the B3LYP-D3(BJ)/def2-TZVP results presented in the main text, we computed the 

metal-oxo formation energy for M-BBTA-X (X = F, Cl, Br) using the M06-L/def2-TZVP level of 

theory. As expected based on prior work,364 the M06-L functional results in more exothermic 

oxidation energies than the B3LYP functional due to a lack of Hartree-Fock exchange, but they 
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are generally close in value (Figure C.9). For those who may be interested in modeling these 

systems with other exchange-correlation functionals, we note that significant difficulty was found 

when attempting to converge the SCF with the M06-L functional, particularly for X = {OH, SH, 

SeH} and for transition state calculations, which is why the only M06-L cluster calculations carried 

out are those in Figure C.9. Test calculations indicate that the SCF convergence problem also exists 

with the M06 functional288 but is resolved with the newer (but less widely tested) MN-15L571 and 

MN-15572 functionals, suggesting that the inclusion of the smoothness constraint in the latter two 

functionals greatly improves the ease of SCF convergence for these highly parametrized meta(-

hybrid) generalized gradient approximation (GGA) functionals. 

 
Figure C.8. Metal-oxo formation energy, Δ𝐸O, at the M06-L/def2-TZVP and B3LYP-

D3(BJ)/def2-TZVP levels of theory. The dashed line indicates perfect agreement between the two 

methods. Symbols: X = F (circle), X = Cl (square), X = Br (triangle). 

 

C.3 Supplementary Results 

C.3.1 Partial Charges on the Metals 

As shown in Figure C.10a and S10b, the partial charge on the metal decreases as F- > Cl- > Br- and 

OH- > SH- > SeH-, in agreement with what would be expected based on the relative 
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electronegativity of these species. Note that ordering the ligands based on their donating strength 

yields the opposite order. The results in Figure C.10c and C.10d serve to highlight the decreasing 

degree to which the metal site is oxidized going from V to Cu across the first-row transition metals. 

 
Figure C.9. CM5 partial atomic charge on the M(II) binding site, 𝑞M, as a function of (a) X = {F, 

Cl, Br} and (b) X = {OH, SH, SeH}. Change in CM5 partial atomic charge on the metal binding, 

Δ𝑞M, site upon formation of the [MO]2+ site as a function of (c) X = {F, Cl, Br} and (d) X = {OH, 

SH, SeH}. The sign convention is such that a positive value of Δ𝑞M indicates an increase in charge 

on the metal. Results are at the B3LYP-D3(BJ)/def2-TZVP level of theory. 
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C.3.2 Comparing Metal-Oxo Formation Enthalpies 

Initial configurations for the oxidized Fe0.1Mg1.9(dobdc)  and Fe3(μ3-O)(HCOO)6 models were 

adopted from prior work.177,264 For Fe0.1Mg1.9(dobdc), a constrained optimization was performed, 

as described in prior work.177 The high-spin Fe2+ and [FeO]2+ states were adopted for these 

materials, as justified in the original studies on these materials.177,264 The unpaired electrons for 

the iron cations in Fe3(μ3-O)(HCOO)6 were antiferromagnetically aligned, as described 

previously.179 The structures for the [FeO]2+ sites for these materials are shown in Figure C.11. 

(a) 

 

(b) 

 

 

Figure C.10. (a) Fe0.1Mg1.9(dobdc) and (b) Fe3(μ3-O)(HCOO)6 with an [FeO]2+ site. Color key: Fe 

(orange), Mg (purple), O (red), C (black), H (white). 

 

Table C.16. Metal-oxo formation enthalpies for the Fe-BBTA-X series compared to 

Fe0.1Mg1.9(dobdc) and the Fe3(μ3-O)(HCOO)6 motif representative of Fe-MIL-100/Fe-MIL-

101/Fe-PCN-250. Results are at the B3LYP-D3(BJ)/def2-TZVP level of theory. 

MOF Δ𝐻O (kJ/mol) 

Fe-BBTA-OH −10 

Fe-BBTA-SH −10 

Fe-BBTA-SeH −9 

Fe-BBTA-F 10 

Fe-BBTA-Cl 18 

Fe-BBTA-Br 23 

Fe0.1Mg1.9(dobdc) 24 

Fe3(μ3-O)(HCOO)6 35 
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C.3.3 Comparing the M−O Interaction with Isolable References 

To put the geometric and electronic structure properties of the proposed [MO]2+ sites in context, 

we compared the M−O bond distance, spin density on the O atom, and M−O bond order for the 

M-BBTA-X (M = Mn, Fe, Co) series with those of [MnO(Bn-TPEN)]2+ (Bn-TPEN = N-benzyl-

N,N′,N′-tris(2-pyridylmethyl)-1,2-diaminoethane), [FeO(TMG3tren)]2+ (TMG3tren = 1,1,1‐tris{2‐

[N2‐(1,1,3,3‐tetramethylguanidino)]ethyl}amine), and [CoO(13-TMC)]2+ (13-TMC = 1,4,7,10-

tetramethyl-1,4,7,10-tetraazcyclotridecane), which we selected as three representative examples 

of complexes with experimentally characterized, non-heme, terminal M(IV)-oxo species.573–576 In 

addition, these three [MO]2+ species have the same ground state spin states as the investigated M-

BBTA-X analogues (namely, high-spin [MnO]2+, high-spin [FeO]2+, and intermediate spin 

[CoO]2+), which enables a more direct comparison. If the properties of the proposed metal-oxo 

sites in the M2X2(bbta) family are comparable to those of these isolable metal-oxo complexes, then 

this would suggest that the lifetimes of the metal-oxo sites in the M2X2(bbta) family would likely 

be experimentally realizable. 

The [MnO(Bn-TPEN)]2+, [FeO(TMG3tren)]2+, and [CoO(13-TMC)]2+ reference structures 

are shown in Figure C.12. The initial structures were adopted from prior work.573–576 All three 

complexes were modeled with a net charge of +2. It has previously been shown that significant 

self-interaction error can be present when modeling charged metal-oxo complexes.577 As done 

elsewhere,578 we modeled the three transition metal complexes in the presence of a continuum 

solvent model579,580 of acetonitrile to reduce the self-interaction error. The Mn2+, [MnO]2+, Fe2+, 

[FeO]2+, Co2+ sites were modeled as being in the high-spin state.573–576 The [CoO]2+ site was 

modeled in the intermediate spin state.576  
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As shown in Figure C.13, the Mn-BBTA-X, Co-BBTA-X, and Fe-BBTA-X frameworks 

are predicted to have stronger M−O bonding interactions than the experimentally isolable 

reference complexes for nearly every bridging ligand considered in this work, as evidenced by the 

shorter M−O bond distances, smaller amount of spin density, and greater M−O bond orders. 

Unexpectedly, the results in Figure C.13 indicate that the thermodynamic trends do not necessarily 

correlate with the electronic structure of the metal-oxo site. For instance, despite resulting in more 

endothermic Δ𝐻O values, the halide bridging ligands have larger M−O bond orders than the X = 

{OH, SH, SeH} ligands for many of the Mn-, Fe-, and Co-containing frameworks. The 

thermodynamic favorability of forming the [MO]2+ sites for the Mn-BBTA-X and Co-BBTA-X 

frameworks are also comparable (and in some cases more favorable, depending on the ligand) to 

the experimentally isolable transition metal-oxo complexes (Table C.10). However, we note that 

the Fe-BBTA-X frameworks studied in this work have less thermodynamically favored Fe(IV)-

oxo sites than [FeO(TMG3tren)]2+ (Table C.10). 

(a) 

 

(b) 

 

(c) 

 

Figure C.11. (a) [MnO(Bn-TPEN)]2+, (b) [FeO(TMG3tren)]2+, and (c) [CoO(13-TMC)]2+. Color 

key: Mn (purple), Fe (orange), Co (pink), O (red), N (blue), C (black), H (white). 
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Figure C.12. Computed properties of proposed metal-oxo species with respect to [MnO(Bn-

TPEN)]2+, [FeO(TMG3tren)]2+, and [CoO(13-TMC)]2+. (a) Relative M−O bond distance, Δ𝑑M−O. 

(b) Relative absolute Hirshfeld spin density on the O moiety, Δ|𝜌O|. (c) Relative Wiberg M−O 

bond order in the natural atomic orbital basis, ΔBOM−O. For all subplots, the sign convention is 

such that a negative Δ value indicates a smaller value for the M-BBTA-X framework than for the 

reference transition metal complex. The Mn, Fe, and Co reference values of [𝑑M−O; |𝜌O|; BOM−O] 

are [1.658 Å; 0.582; 1.619], [1.629 Å; 0.598; 1.524], and [1.681 Å; 1.177; 1.308], respectively. 

Note that the Δ|𝜌O| values for Mn-BBTA-X (X = Cl, Br) and the ΔBOM−O value for Mn-BBTA-

OH are approximately zero. Results are at the B3LYP-D3(BJ)/def2-TZVP level of theory. 

 

Table C.17. Metal-oxo formation enthalpies for [MnO(Bn-TPEN)]2+, [FeO(TMG3tren)]2+, and 

[CoO(13-TMC)]2+ compared to the most exothermic and endothermic M-BBTA-X (M = Mn, Fe, 
Co) metal-oxo formation enthalpies. Results are at the B3LYP-D3(BJ)/def2-TZVP level of theory. 

Complex 
Δ𝐻O 

(kJ/mol) 
MOF 

Δ𝐻O 

(kJ/mol) 
MOF Δ𝐻O (kJ/mol) 

[MnO(Bn-TPEN)]2+ 19 Mn-BBTA-OH −32 Mn-BBTA-Br 48 

[FeO(TMG3tren)]2+ −62 
Fe-BBTA-X (X 

= OH, SH) 
−7 Fe-BBTA-Br 23 

[CoO(13-TMC)]2+ 59 Co-BBTA-SeH 53 Co-BBTA-F 75 

 

C.3.4 Radical-Like Character and Reactivity 

The spin density on the abstracting O atom in the [MO]2+ state is shown in Figure C.13. The 

apparent activation enthalpy for breaking the C−H bonds of methane as a function of the (absolute) 

spin density on the abstracting O atom is also shown in Figure C.14, highlighting the relatively 

weak correlation between these two parameters. 
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Figure C.13. Apparent enthalpic barrier for C−H activation as a function of the absolute Hirshfeld 

spin density on the abstracting O atom of the [MO]2+ site. Results are at the B3LYP-D3(BJ)/def2-

TZVP level of theory. 

 

C.3.5 Antiferromagnetically Enhanced Reactivity 

The enthalpy difference between the antiferromagnetically coupled and ferromagnetically coupled 

spin states at the transition state for C−H activation are shown in Table C.11 and Table C.12. For 

both the Mn- and Fe-containing frameworks, the antiferromagnetically coupled metal site and 

three-center C−H−O radical is the most stable state and leads to a significantly reduced activation 

enthalpy. 

For the Fe-containing frameworks, the initial [FeO]2+ state could only be isolated with 

ferromagnetic coupling between the iron binding site and oxo ligand. For the Mn-containing 

frameworks, both the ferromagnetically aligned and antiferromagnetically aligned [MnO]2+
 initial 

states could be isolated and are generally close in energy (Table C.13). For consistency, the 

properties of the structure with ferromagnetically aligned spin density are used for the [MnO]2+ 

sites in this work unless otherwise noted. 

Table C.18. Enthalpy difference, Δ𝐻4,FM−AFM
‡

, between the ferromagnetically coupled and 

antiferromagnetically coupled quartet states for several of the [MnO]2+ complexes investigated 
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throughout this work at the transition state for C−H activation. The sign convention is such that a 

positive value of Δ𝐻4,FM−AFM indicates the antiferromagnetically coupled state is more stable. 

Results are at the B3LYP-D3(BJ)/def2-TZVP level of theory. 

MOF State Δ𝐻4,FM−AFM
‡

 (kJ/mol) 

Mn-BBTA-Br TS 87 

Mn-BBTA-F TS 92 

Mn-BBTA-SH TS 49 

 

Table C.19. Enthalpy difference, Δ𝐻5,FM−AFM
‡

, between the ferromagnetically coupled and 

antiferromagnetically coupled quintet states for several of the [FeO]2+ complexes investigated 

throughout this work at the transition state for C−H activation. The sign convention is such that a 

positive value of Δ𝐻5,FM−AFM
‡

 indicates the antiferromagnetically coupled state is more stable. 

Results are at the B3LYP-D3(BJ)/def2-TZVP level of theory. 

MOF State Δ𝐻5,FM−AFM
‡

 (kJ/mol) 

Fe-BBTA-Br TS 39 

Fe-BBTA-Cl TS 37 

Fe-BBTA-F TS 51 
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Appendix D. APPENDIX FOR CHAPTER 5 

D.1 Supplemental Data 

All supplementary data, including but not limited to DFT-optimized structures (for both periodic 

and cluster models), tabulated results, converged magnetic moments, partial charges, spin 

densities, bond orders, and energies are made publicly available at the following Zenodo DOI: 

10.5281/zenodo.2652475. 

D.2 Additional Computational Details 

D.2.1 Simulation Unit Cells 

a) 

 

b) 

 

c) 

 

d) 
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(e) 

 

(f) 

 

Figure D.1. Mg2+- and Al3+-diluted model systems for a) MOF-74, b) MOF-74-S, c) MAF-Cl, d) 

MAF-OH, (e) MIL-88B, and (f) MIL-88B-OH. The formal oxidation states of all the metals are 

2+ in Figure D.1a−D.1d, a mix of 2+/3+ in Figure D.1e, and 3+ in Figure D.1f. O2 and N2 

adsorption was investigated at the M (purple) sites. Color key: M (purple), Mg (orange), Al (light 

blue), O (red), N (blue), S (yellow), Cl (green), C (brown), H (white). 

 

Examples of the diluted MOF structures considered during the periodic DFT screening process are 

shown in Figure D.1. The metal cations for the MOF-74, MOF-74-S, MAF-Cl, and MAF-OH 

families are divalent. The formal oxidation state of the metal sites in the trimetallic nodes of the 

MIL-88B family depends on the presence or lack of a terminal OH group. We consider a 

framework with the [M(II)M(III)2(μ3-O)(CH3COO)6] motif (Figure D.1e) that has been shown in 

PCN-250,333 in addition to the [M(III)3(OH)(μ3-O)(CH3COO)6] motif (Figure D.1f) of MIL-

100/MIL-101.355
 

D.2.2 Ground State Spin States and Predicted O2 Binding Modes 

Table D.1. Total number of unpaired electrons per simulation unit cell (|𝑛α − 𝑛β|) for each 

calculation carried out at the M06-L/PAW level of theory in this work. Refer to the supporting 

dataset for the magnetic moments of the metal binding site and adsorbate atoms. The right-most 

column shows the predicted binding mode of O2 at the M06-L/PAW level of theory. A value of 0, 

1, or 2 refers to no interaction, end-on binding, and side-on binding, respectively, as determined 

from Pymatgen’s CrystalNN bonding topology algorithm.82,335 The dashed lines correspond to 

structures not calculated in this work. 

 |𝑛α − 𝑛β|  

MOF Guest-free MOF MOF−O2 MOF−N2 M−O2 denticity 

Co-MAF-Br 3 1 3 1 

Co-MAF-Cl 3 1 3 1 
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Co-MAF-F 3 1 3 1 

Co-MAF-OH 3 1 3 1 

Co-MAF-SH 1 1 1 1 

Co-MOF-74-S 3 1 3 1 

Co-MIL-88B 3 1 3 1 

Co-MIL-88B-OH 0 2 0 1 

Co-MOF-74 3 1 3 1 

Cr-MAF-Br 4 2 --- 1 

Cr-MAF-Cl 4 2 4 1 

Cr-MAF-F 4 2 --- 1 

Cr-MAF-OH 4 2 4 1 

Cr-MAF-SH 4 2 --- 2 

Cr-MOF-74-S 4 2 4 1 

Cr-MIL-88B 4 2 2 1 

Cr-MIL-88B-OH 3 1 3 2 

Cr-MOF-74 4 2 4 1 

Cu-MAF-Cl 1 3 1 1 

Cu-MAF-OH 1 3 1 1 

Cu-MOF-74-S 1 1 1 0 

Cu-MIL-88B 1 3 1 1 

Cu-MOF-74 1 3 1 1 

Fe-MAF-Br 4 6 --- 2 

Fe-MAF-Cl 4 6 4 2 

Fe-MAF-F 4 6 --- 2 

Fe-MAF-OH 4 6 4 2 

Fe-MAF-SH 4 6 --- 2 

Fe-MOF-74-S 4 6 4 2 

Fe-MIL-88B 4 6 4 2 

Fe-MIL-88B-OH 5 3 5 1 

Fe-MOF-74 4 6 4 2 

Mn-MAF-Br 5 3 --- 1 

Mn-MAF-Cl 5 3 5 1 

Mn-MAF-F 5 3 --- 1 

Mn-MAF-OH 5 3 5 1 

Mn-MAF-SH 5 3 --- 1 

Mn-MOF-74-S 5 3 5 1 

Mn-MOF-74-S 

(seesaw) 5 3 5 2 

Mn-MIL-88B 5 3 5 1 

Mn-MIL-88B-OH 4 2 4 1 

Mn-MOF-74 5 3 5 1 

Ni-MAF-Br 2 0 --- 1 

Ni-MAF-Cl 2 0 2 1 

Ni-MAF-F 2 0 --- 1 
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Ni-MAF-OH 2 0 2 1 

Ni-MAF-SH 2 0 --- 1 

Ni-MOF-74-S 2 0 2 1 

Ni-MIL-88B 2 0 2 1 

Ni-MIL-88B-OH 1 1 1 1 

Ni-MOF-74 2 0 2 1 

Sc-MIL-88B-OH 0 2 0 1 

Ti-MIL-88B-OH 1 1 1 2 

V-MAF-Br 3 1 --- 2 

V-MAF-Cl 3 1 3 2 

V-MAF-F 3 1 --- 2 

V-MAF-OH 3 1 3 2 

V-MAF-SH 3 1 --- 2 

V-MOF-74-S 3 1 3 2 

V-MIL-88B 3 1 3 2 

V-MIL-88B-OH 2 0 2 2 

V-MOF-74 3 1 3 2 

Zn-MAF-Cl 0 2 0 0 

Zn-MAF-OH 0 2 0 0 

Zn-MOF-74-S 0 2 0 0 

Zn-MIL-88B 0 2 0 1 

Zn-MOF-74 0 2 0 1 

 

D.2.3 Additional VASP Details 

Aspherical contributions to the gradient corrections inside the PAW spheres were included for all 

meta-GGA and GGA+U calculations, as recommended in the VASP manual.581 Vibrational modes 

were computed via central finite difference approximations of the Hessian matrix by displacing 

the relevant atoms 0.01 Å in the ±𝑥, ±𝑦, and ±𝑧 dimensions. To ensure precise evaluation of the 

forces, the SCF convergence was set to 10-8 eV during all vibrational analyses. Thermochemical 

corrections for O2 and N2 adsorption in Co2Cl2(bbta) and Co2(OH)2(bbta) were calculated at 

298.15 K using the Atomic Simulation Environment.83 Ideal gas statistical mechanics was used to 

describe the enthalpy of free O2 and N2. As a simplifying assumption, translational or rotational 

contributions to the enthalpy from the MOF and bound adsorbate complex were neglected. The 

harmonic approximation was invoked to evaluate the vibrational contribution to the enthalpy upon 
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O2 or N2 adsorption. For the vibrational contribution to the enthalpy of O2 and N2 adsorption in 

Co2(OH)2(bbta), the cobalt binding site, adsorbate, equatorial N atoms, axial N atom, and 

equatorial OH groups were displaced (i.e. it is assumed that the enthalpic contribution from any 

changes in the vibrational modes of the remaining atoms is small). Similarly, for the vibrational 

contribution to the enthalpy of O2 and N2 adsorption in Co2Cl2(bbta), the cobalt binding site, 

adsorbate, equatorial N atoms, axial N atom, and equatorial Cl groups were displaced. Vibrational 

frequencies smaller than 50 cm-1 were scaled up to this value. When computing the stretching 

frequencies of the O2 and N2 adsorbates in Figure D.2, only the atoms of the diatomic adsorbate 

were allowed to vibrate for computational simplicity. Bader charges and spin densities159 were 

calculated using VTST Tools.138 DDEC6158,230 partial charges, spin densities, and bond orders as 

well as Charge Model 5 (CM5) charges were computed using Chargemol.374 VESTA,560 

ChemCraft,582 and Virtual NanoLab559 were used to visualize the structures presented in this work. 

LOBSTER583 was used to perform crystal orbital Hamilton population analyses584–586 with the 

pbeVaspFit2015 basis set. Charge density difference plots were made using VESTA.560 

D.2.4 Finite Cluster Calculations 

For DFT calculations involving finite cluster models, we used the Gaussian 16, Rev. A.03 

program.282 All Gaussian calculations were performed with an “ultrafine” integration grid 

consisting of 99 radial shells and 590 angular points per shell with symmetry conditions disabled. 

Partially constrained optimizations were performed with only the positions of atoms in the first 

and second coordination spheres of the central metal binding site allowed to relax (in addition to 

the guest molecule, if present) to reduce the computational cost and mimic the rigidity of the 

periodic framework. Vibrational frequencies were computed analytically, considering the 
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vibrational modes of all unconstrained atoms in the cluster model. All optimized structures were 

confirmed to have no imaginary vibrational modes. When used, thermochemical corrections were 

calculated using the ideal gas, harmonic oscillator, rigid rotor, and particle in a box 

approximations.293 Thermochemical corrections were calculated at 298.15 K. Density fitting of the 

Coulomb integrals was used to accelerate the M06-L/def2-TZVP calculations. The most favorable 

adsorption modes and spin states determined from the periodic DFT calculations were used to 

calculate the adsorption energies with the cluster models unless otherwise specified. 

D.2.5 Mg/Al-Dilution 

As discussed in the Methods section, unless otherwise stated, the periodic models were modified 

by introducing closed-shell Mg2+ and/or Al3+ cations to reduce the computational cost and simplify 

the spin state analysis (Figure D.1). Changes in the O2 or N2 binding behavior as a result of this 

simplification are not expected to influence the structure−property relationships identified in this 

work. As shown in the “Comparing Mg-Diluted and Non-Diluted Co2(OH)2(bbta) Models” 

subsection, O2 adsorption in the Mg-diluted Co2(OH)2(bbta) model (used for the screening aspect 

of this study) is 8 kJ/mol less exothermic in the non-diluted model (used for the more detailed 

investigation of this material). Prior work on Fe2(dobdc) shows a similar 8 kJ/mol more exothermic 

O2 binding energy in the non-diluted case.328 This is within the expected error from the 

approximations involved in selecting an exchange-correlation functional for this problem. 

Generally, as was the case in the aforementioned examples, the Mg2+/Al3+-diluted models are 

likely to have slightly less exothermic binding energies because partial charge transfer cannot 

occur to neighboring metal sites when they are Mg2+ or Al3+ cations. 
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While the Mg/Al-dilution process is not expected to alter the trends discussed throughout 

this study, we note that there are select cases where − at least experimentally − this metal-doping 

can potentially have a more pronounced influence. The most apparent example is Fe2(dobdc), 

which at low temperatures binds O2 in an Fe(III)−O2
- fashion.24 While not readily captured in prior 

theoretical models,327 it has been proposed based on spectroscopic measurements24 that at elevated 

temperatures, a peroxo adduct can form with the additional electron coming from an adjacent iron 

cation. In this case, Mg-dilution would be expected to prevent this adjacent charge transfer, should 

it indeed occur. 

D.3 Experimental Methods 

D.3.1 Chemicals 

All chemicals and solvents were purchased from commercial suppliers and used without further 

purification. CoCl26H2O, N,N-dimethylformamide (DMF) (99.9%), methanol (99.8%), 

hydrochloric acid (36.5−38%), and KOH were purchased from Fisher Scientific. Only deionized 

water was used in the experiments. 

D.3.2 Instrumentation 

Powder X-ray Diffraction (PXRD). PXRD patterns were collected at room temperature on a 

STOE-STADIMP powder diffractometer equipped with an asymmetric curved Germanium 

monochromator (CuKα1 radiation, λ = 1.54056 Å) and one-dimensional silicon strip detector 

(MYTHEN2 1K from DECTRIS). The generator was set to be 40 kV and 40 mA. Powder was 

packed in a 3 mm metallic mask and sandwiched between two layers of polyimide tape. The 

measurement was carried out in transmission geometry in a rotating holder with the intensity data 

from 1 to 40 degrees. The scan step was set to be 2θ = 4° while the scan time was 60 s per step. 
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X-ray Photoelectron Spectroscopy (XPS). Measurements were carried out at the 

KECKII/NUANCE facility at Northwestern University on a Thermo Scientific ESCALAB 250 Xi 

equipped with an electron flood gun and a scanning ion gun. XPS data was analyzed using Thermo 

Scientific Avantage Data System software and all spectra were referenced to the C1s peak (284.8 

eV). 

Nitrogen and Oxygen Isotherm Measurements. MOF powders were initially dried at 80 °C in a 

vacuum oven for a few hours. Then Co2Cl2(bbta) was activated at 150 °C for 12–24 h and 

Co2(OH)2bbta was activated at 200 °C for 12–24 h under vacuum on a Micromeritics Smart Vac 

prior to N2 sorption isotherms on a Micromeritics Tristar II 3020 (Micromeritics, Norcross, GA) 

instrument at 77 K. Pore size distributions curves were calculated by using DFT calculations 

according to a carbon slit-pore model with a N2 kernel. Around 20−50 mg of sample was used in 

each measurement and the Brunauer–Emmett–Teller (BET) surface area was calculated in the 

region 𝑃/𝑃0 = 0.005–0.05. O2 isotherms were measured on 3Flex (Micromeritics) multiport 

surface characterization instrument with enhanced chemical resistant (ECR) analyzer where the 

samples were activated at 225 °C in order to remove any traces of residual solvent and/or water 

molecules. Fire Hazard Warning: Users must check that the analyzer does not run with a regular 

oil pump since oxygen can dissolve in oil which could be a potential fire hazard. Therefore, either 

an oil-free pump or a pump with non-flammable oil must be used for oxygen isotherm 

measurements. The temperature for oxygen isotherms was controlled by liquid-free ISO Controller 

Temperature Control Device (Micromeritics). UPC grade (99.996%) oxygen gas from Airgas was 

used for analysis. It is important to note that oxygen adsorption in Co2(OH)2bbta is very slow 
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compared to Co2Cl2bbta; therefore, increasing the equilibrium interval time was necessary (see 

Figure D.18 and D.19 as well as the corresponding discussion).  

Diffuse Reflectance Infrared Fourier Transform Spectra (DRIFTS) measurements. A Nicolet 

6700 FTIR spectrometer (Thermo Scientific) equipped with an MCT detector and a Harrick 

praying mantis accessory was used to collect infrared (IR) spectra. Before the measurement of the 

data shown in Figure D.14, Co2(OH)2(bbta) was activated at 200 °C, and Co2Cl2(bbta) was 

activated at 100 °C under high vacuum for 12 h. The DRIFTS data shown in Figures D.15 and 

D.16 were collected as a function of temperature without prior activation of the Co2(OH)2(bbta) 

material. The spectra were collected at 1 cm−1 resolution over 64 scans with solid KBr as the 

background. 

D.3.3 Synthesis of Co2Cl2(bbta) 

Co2Cl2(bbta) was prepared according to a reported procedure194,280 with slight modifications. 50 

mg H2bbta (0.312 mmol) was dissolved in 10 mL N,N-dimethylformamide (DMF) in a 20 mL vial. 

In a separate 20 mL vial, 150 mg (0.630 mmol) (2 eq.) CoCl26H2O was dissolved in a solution of 

10 mL methanol and 0.1 mL concentrated hydrochloric acid (HCl). The clear solutions were 

combined in a 100 mL jar, capped, and heated to 65 °C in an oven for 3 days. Next, the reaction 

mixtures were removed from the oven, and solids were separated by centrifugation. The solids 

were washed with DMF (three times) and methanol (three times). Solvent exchange of DMF was 

carried out by Soxhlet extraction with methanol for 72 hours. The materials were then activated 

under dynamic vacuum at 100 °C for 24 hours (yield: 70%). 
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D.3.4 Synthesis of Co2(OH)2(bbta) 

Co2(OH)2(bbta) was prepared according to a reported procedure277 with slight modifications. 25 

mL of 1 M KOH solution was added into a sample of fully activated Co2Cl2(bbta) (50 mg, 0.289 

mmol) in a two-necked round-bottle flask. The mixture was stirred overnight at room temperature 

under N2 atmosphere. The solid was separated by centrifugation and washed with water three 

times. The resultant residue was finally evacuated at 80 °C overnight under vacuum and 200 °C 

for 12–15 h to obtain the activated product as light pink microcrystalline powder (yield: 96%) used 

for gas uptake studies. 

D.4 Additional Results from Screening Procedure 

D.4.1 Structure−Property Relationships 

 
Figure D.2. a) DFT-computed vibrational stretching frequencies of adsorbed O2, 𝜈O−O, as a 

function of the O−O distance, 𝑑O−O, with a fit to Badger’s rule (Equation D.2). b) Vibrational 
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stretching frequencies of adsorbed N2, 𝜈N−N, as a function of the N−N distance, 𝑑N−N, with a fit 

to Badger’s rule (Equation D.3). c) Sum of absolute Bader spin densities on adsorbed O2, 𝜌O2
, as 

a function of 𝑑O−O, with a linear fit (Equation D.4). d) Sum of absolute Bader spin densities on 

adsorbed N2, 𝜌N2
, as a function of 𝑑N−N, with a linear fit (Equation D.5). e) Sum of Bader partial 

atomic charges on adsorbed O2 as a function of 𝑑O−O. Two separate best-fit lines are drawn to 

distinguish the 𝜂0/𝜂1 binding modes from the 𝜂2 binding mode (Equation D.6). (f) Sum of Bader 

partial atomic charges on adsorbed N2 as a function of 𝑑N−N, with a linear fit (Equation D.7). The 

correlations in Figure D.2 include data from all the MOFs shown in Figure 5.2, with the exception 

of the MIL-88B/MIL-88B-OH series, which is excluded from Figures D.2a and D.2b due to 

challenges in converging the SCF to 10-8 eV when the adsorbate atoms were displaced. Computed 

properties are at the M06-L/PAW level of theory, including those of the gas-phase references. 

 

To evaluate the redox states of adsorbed O2 and N2, several complementary methods were 

considered. Experimentally, the most common approach is to measure the O−O or N−N stretching 

frequencies, using known reduced states of O2 (e.g. HO2, H2O2) and N2 (e.g. N2H2, N2H4) as 

reference points.310 Often, the stretching frequencies, 𝜈, can be correlated with the bond distance, 

𝑑, via Badger’s rule,587,588 which empirically states that 

𝑑 = 𝐶𝜈−
2

3 + 𝛿 (D. 1)

where 𝐶 and 𝛿 are fitting parameters that are dependent on the adsorbate. As shown in Figure D.2a 

and D.2b, Badger’s rule appears to hold reasonably well for the O2 and N2 complexes studied in 

this work. The best-fit parameters at the M06-L/PAW level of theory were found to be 

𝑑O−O [Å] = 70.9𝜈
O−O

−
2

3 + 0.70 (D. 2)

and

𝑑N−N [Å] = 43.8𝜈N−N

−
2

3 + 0.87 (D. 3) 

where 𝜈 is in cm-1. Equation D.2 and D.3 have an 𝑟2 of 0.97 and 0.98, respectively. 



341 

 

Based on this spectroscopic and structural perspective of redox states, the M−O2 complexes 

in this work are fairly spread out over the dioxygen−superoxide−peroxide spectrum (Figure D.2a). 

While assigning the “best” resonance structure can be conceptually helpful, we note that the nearly 

continuous range of 𝜈O−O and 𝑑O−O values indicates that one should not consider the redox states 

to be quantized. In other words, for many of the complexes, it can be difficult to ascribe a definitive 

“dioxygen”, “superoxide”, or “peroxide” descriptor for the charge distribution. For O2 adsorption, 

we also found that the side-on (𝜂2) binding mode results in more significantly reduced O2 species 

than the end-on (𝜂1) mode, with all metal−dioxygen complexes in the superoxo−peroxo range 

having energetically preferable side-on bonding modes. 

In contrast with what was found for O2, the N−N distances are all within about 0.02 Å of 

the free N2 interatomic bond distance of 1.11 Å at the M06-L/PAW level of theory (Figure D.2b). 

For reference, the N−N distances for N2H2 and N2H4 at the M06-L/PAW level of theory are 1.27 

Å and 1.44 Å, respectively. As expected from Badger’s rule, the small changes in the N−N bond 

distance correspond to relatively minor changes in the N−N stretching frequencies in terms of the 

percent deviation from that of gas-phase N2. In some cases, a small amount of electron density is 

donated from the N2 molecule to the metal, as was previously predicted for N2 binding at the open 

metal sites of Fe2(dobdc).341 

 The redox states of O2 and N2 can also be probed via the spin density and partial atomic 

charges on the bound adsorbates. As shown in Figure D.2c and Figure D.2d, there is a strong 

correlation between spin density and interatomic bond distance for both O2 and N2, such that 

𝜌O2
= −11.0 Å−1 ⋅ (𝑑O−O) + 15.4 (D. 4) 
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and 

𝜌N2
= 17.7 Å−1 ⋅ (𝑑N−N) − 19.6 (D. 5) 

which have an 𝑟2 of 0.99 and 0.87, respectively.  The outliers in Figure D.2c (which are excluded 

from the best-fit line) happen to be all the [FeO2]
2+ complexes considered in the screening study. 

Unlike most of the other MOFs investigated in this work, the Fe(II) sites were ferromagnetically 

coupled with the adsorbed (triplet) O2 molecule (Table D.1), which may explain this deviation. 

Based on the larger number of metal−dinitrogen complexes with negligible spin density on the N2 

molecule (Figure D.2d), it is clear that the majority of MOFs are unable to break the N−N triple 

bond. Nonetheless, there are some complexes (particularly those with 𝜌N2
≈ 0.4) that may be best 

described as having an N−N bond order of approximately 2.5. 

We also investigated the sum of Bader charges on the O2 and N2 molecules as a function 

of bond distance (Figure D.2e and Figure D.2f). It is important to note that the partial atomic 

charges are not numerically equivalent to the formal oxidation state,298 but they can still be used 

as a metric to gauge the degree of reduction of the bound adsorbates. As with the stretching 

frequency and spin density, there are clear correlations between the Bader charge and interatomic 

bond distance, such that  

𝑞O2
= {

−7.2 Å−1 ⋅ (𝑑O−O) + 8.9, 𝜂0 or 𝜂1

−5.0 Å−1 ⋅ (𝑑O−O) + 6.1, 𝜂2
(D. 6) 

𝑞N2
= −15.4 Å−1 ⋅ (𝑑O−O) + 17.0 (D. 7) 



343 

 

Notably, the side-on M−O2 complexes fall on a different line than the end-on (and weakly 

physisorbed) M−O2 complexes. For predicting 𝑞O2
, the 𝜂0/𝜂1 expression has 𝑟2 = 0.997, and the 

𝜂2 expression has 𝑟2 = 0.96. The expression for 𝑞N2
 has 𝑟2 = 0.99.  

D.4.2 Adsorbed N2 in V-MAF-OH 

As discussed in the main text, several MOFs with V2+ open metal sites are predicted to bind N2, 

should they be synthesized. Here, we briefly highlight V-MAF-OH as one such MOF. The DFT-

computed physicochemical properties suggest that the adsorbed N2 molecule is partially reduced, 

as determined from a −249 cm-1 shift in the N−N stretching frequency compared to free N2, a 

Bader spin density of 0.38 on the N2 adsorbate, and a short V−N bond distance of 2.01 Å at the 

M06-L/PAW level of theory. Visualization of the molecular orbitals of V-MAF-OH using a finite 

cluster model indicates the presence of two spin-unrestricted singly occupied molecular orbitals 

that exhibit 𝜋-backbonding from the vanadium 3𝑑 orbitals into the 𝜋∗ orbitals of N2 (Figure D.4). 

The 79-atom cluster model used here (Figure D.3) was constructed from the corresponding M06-

L/PAW-optimized structure. To balance the charge of the cluster model, three protons were added 

to the undercoordinated triazolate groups. These charge-balancing protons were relaxed at the 

M06-L/def2-TZVP level of theory (with the remaining framework atoms temporarily fixed in their 

M06-L/PAW positions) to ensure their placement was physically reasonable. 
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Figure D.3. Finite cluster model of V-MAF-OH. The cluster model was charge-balanced with three 

protons added to undercoordinated N atoms. Color key: V (silver), Mg (green), N (blue), O (red), 

C (gray), H (white). 

 

a) 

 

b) 

 
Figure D.4. Visualization of two singly occupied molecular orbitals a) 𝛼 HOMO-2 and b) 𝛼 

HOMO-4, both of which have significant bonding interactions between the vanadium site of V-

MAF-OH and proximal N atom of N2 at the M06-L/def2-TVZP level of theory. Color key: V 

(silver), Mg (green), N (blue), O (red), C (gray), H (white). The orange and purple surfaces 

represent the two phases of the molecular orbitals. 
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D.4.3 Relative Binding Energies 

 
Figure D.5. Relative adsorption energy of O2 and N2, ΔΔ𝐸O2/N2

, at the M06-L/PAW level of 

theory, computed as ΔΔ𝐸O2/N2
= Δ𝐸O2

− Δ𝐸N2
. 

 

D.4.4 Additional Results for the MOF-74 and MOF-74-S Families 

Table D.2. Bader partial atomic charge on the metal site of MOF-74 and MOF-74-S before and 

after O2 adsorption as a function of transition metal at the M06-L/PAW level of theory. 
 Bare MOF MOF with adsorbed O2 Difference upon O2 adsorption 

M 𝑞M,MOF−74 𝑞M,MOF−74−S 𝑞M,MOF−74 𝑞M,MOF−74−S Δ𝑞M,MOF−74 Δ𝑞M,MOF−74−S 

V 1.62 1.53 2.03 1.90 0.41 0.37 

Cr 1.47 1.36 1.81 1.66 0.34 0.30 

Mn 1.53 1.41 1.70 1.56 0.17 0.15 

Fe 1.43 1.29 1.73 1.57 0.29 0.28 

Co 1.34 1.17 1.42 1.19 0.07 0.02 

Ni 1.29 1.11 1.32 1.16 0.04 0.05 

 

For a given MOF family, all structures in the main text were considered to be isostructural for the 

purposes of identifying structure−property relationships. The vast majority of MOFs investigated 

in this work that have already been synthesized are known to be members of the corresponding 

isostructural series. One notable exception is Mn2(dsbdc), which has a different coordination 

environment than Fe2(dsbdc) and the M2(dobdc) series.206 The model used in the main text has a 

square pyramidal coordination environment, whereas the true structure of Mn2(dsbdc) has been 

shown to have a mix of coordinatively saturated, octahedral Mn(II) centers and coordinatively 
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unsaturated, seesaw-like Mn(II) centers (Figure D.6). At the M06-L/PAW level of theory, the 

predicted O2 and N2 binding energies at the seesaw Mn(II) centers are −21 kJ/mol and −14 kJ/mol, 

respectively, which are both weaker than those predicted for Mn-MOF-74 and the Mn-MOF-74-S 

model that is isostructural with Mn-MOF-74 (Table D.3). 

Table D.3. O2 and N2 adsorption energies at the M06-L/PAW level of theory for the two structures 

of Mn-MOF-74-S considered in this work and Mn-MOF-74. 

MOF Δ𝐸O2
 

(kJ/mol) 

Δ𝐸N2
 (kJ/mol) 

Mn-MOF-74-S (seesaw) −21 −14 

Mn-MOF-74-S (square pyramidal) −53 −21 

Mn-MOF-74 −80 −31 

 

 
Figure D.6. Mg2+-diluted model system for the mixed octahedral/seesaw-like structure of 

Mn2(dsbdc). Color key: Mn (purple), Mg (orange), O (red), S (yellow), C (brown), H (white). 

 

D.4.5 Additional Results for the MAF-X Families 

The DFT-optimized M06-L/PAW structures for O2 adsorbates bound to the metal centers of M-

MAF-OH are shown in Figure D.7. The close proximity of the H atoms of the μ-OH- groups 

enables stabilizing electrostatic and dispersive interactions, provided the O2 adsorbate is partially 

reduced. The minimum O−H distance between the O2 adsorbate and μ-OH- group is 2.26, 2.20, 

2.31, 2.46, 2.10, 2.32, 2.87, and 2.96 Å for M = V, Cr, Mn, Fe, Co, Ni, Cu, and Zn, respectively. 
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V: 

 

Cr: 

 

Mn: 

 

Fe: 

 

Co: 

 

Ni: 

 

Cu: 

 

Zn: 

 

  

Figure D.7. DFT-optimized structures for M-MAF-OH (M = V, Cr, Mn, Fe, Co, Ni, Cu, Zn) with 

an O2 adsorbate at the M06-L/PAW level of theory. Only a representative portion of the structures 

is shown for clarity. Color key: N (blue), O (red), H (white). The central atom is the specified 

metal cation. 

 

Table D.4. Average distance between the metal binding site and bridging X ligands, 𝑑(M−X)avg
, 

and between the metal binding site and equatorial N ligands, 𝑑(M−Neq)
avg

, in the guest-free (i.e. 

bare) structure and after O2 is adsorbed at the M06-L/PAW level of theory. Fe-MAF-X and Co-

MAF-X are highlighted as representative examples. 
Fe-MAF-X 

 𝑑(Fe−X)avg
 (Å) 𝑑(Fe−Neq)

avg
 (Å) 

X Bare With O2 bound Bare With O2 bound 

Br 2.48 2.63 2.23 2.18 

Cl 2.36 2.50 2.19 2.14 

F 1.97 1.99 2.14 2.15 

     

SH 2.44 2.51 2.19 2.17 

OH 1.98 2.02 2.21 2.18 

Co-MAF-X 

 𝑑(Co−X)avg
 (Å) 𝑑(Co−Neq)

avg
 (Å) 

X Bare With O2 bound Bare With O2 bound 
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Br 2.49 2.44 2.12 2.03 

Cl 2.38 2.30 2.08 2.01 

F 2.00 1.91 2.04 1.97 

     

SH 2.31 2.33 2.02 2.02 

OH 2.00 1.94 2.09 2.00 

 

Table D.5. O2 and N2 adsorption energy as a function of the bridging anion in the Co-MAF-X (X 

= bridging ligand) series at the M06-L/PAW level of theory. 

 μ-Br- μ-Cl-
 μ-F- μ-SH- μ-OH- 

Δ𝐸O2
 (kJ/mol) −46 −47 −74 −75 −103 

Δ𝐸N2
 (kJ/mol) −19 −20 −17 −9 −17 

ΔΔ𝐸O2/N2
 

(kJ/mol) 

−27 −27 −57 −66 −86 

 

D.4.6 Additional Results for the MIL-88B Family 

Table D.6. Bader partial atomic charge on the metal binding sites of MIL-88B and MIL-88B-OH 

as a function of transition metal at the M06-L/PAW level of theory. As expected, the partial 

charges on the metal binding site of MIL-88B are lower than that of MIL-88B-OH, consistent with 

a lower formal oxidation state in the former. 

M 𝑞M,MIL−88B 𝑞M,MIL−88B−OH 

Sc --- 2.15 

Ti --- 2.20 

V 1.73 1.97 

Cr 1.53 1.84 

Mn 1.56 1.81 

Fe 1.55 1.81 

Co 1.42 1.50 

Ni 1.35 1.45 

Cu 1.29 --- 

Zn 1.44 --- 

D.5 Enhanced O2 Binding in Co2(OH)2(bbta) 

D.5.1 Benchmarking the Level of Theory 

As mentioned in the main text, the PBE-D3(BJ)/PAW level of theory with a Hubbard U 

correction339 of 𝑈 = 3.3 eV on the 𝑑 levels of the Co sites was used to optimize the volume and 

atomic positions of Co2(OH)2(bbta) and Co2Cl2(bbta). The value of U = 3.3 eV was taken from a 

prior benchmarking study on the oxidation energies of transition metal oxides.340 With regards to 

geometries, the inclusion of a Hubbard U correction is needed to accurately capture the lattice 
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constants of M2(dobdc), which is isoreticular with the M2X2(bbta) (X = OH, Cl) family, when there 

are multiple 3𝑑 transition metal cations.589 

To further justify the choice of U = 3.3 eV, we chose to benchmark the level of theory 

against experimental results for Co-BTTri since this MOF has previously been investigated for O2 

adsorption,216 and the Co(II) centers have similar coordination environments to those of 

Co2X2(bbta) (X = OH, Cl). The structure of Co-BTTri was modeled starting from the published 

crystal structure216 with protons placed at undercoordinated N atoms of the triazolate groups to 

balance the charge of the framework, as done in prior work.216,590 Antiferromagnetically aligned, 

low-spin (𝑆 = 1/2) Co(II) centers were considered, in accordance with experiments.216 With regards 

to the lattice constants, the DFT-predicted values for Co-BTTri are in near-perfect agreement with 

the experimentally determined values (Table D.7). In addition, the PBE-D3(BJ)+U/PAW level of 

theory predicts Δ𝐸O2
= −44 kJ/mol for the formation of the low-spin (𝑆 = 1/2) [CoO2]

2+
 site 

described in prior work.216 To a first approximation, if one assumes the thermodynamic corrections 

are largely due to the loss of the O2 translational and rotational degrees of freedom, then Δ𝐻O2
 = 

−40 kJ/mol at 195 K. This is in close agreement with the experimentally determined, low-loading 

isosteric heat of −34(1) kJ/mol.216 

Table D.7. Comparison of the DFT-computed lattice constants (at the PBE-D3(BJ)+U/PAW level 

of theory) and experimental lattice constants of Co-BTTri. The predicted adsorption enthalpy at 

195 K at the PBE-D3(BJ)+U/PAW level of theory and experimentally determined low-loading 

isosteric heat of O2 adsorption are also shown. 

Lattice 

constants 

PBE-D3(BJ)+U/PAW Experiment216 

𝑎 (Å) 18.49 18.53 

𝑏 (Å) 18.55 18.53 

𝑐 (Å) 18.54 18.53 

𝛼 (°) 90.1 90.0 

𝛽 (°) 89.9 90.0 
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𝛾 (°) 90.0 90.0 

Δ𝐻O2,195 K  −40 kJ/mol −34(1) kJ/mol 

 

D.5.2 Periodic Models of Co2X2(bbta) (X = OH, Cl) 

Periodic models of non-diluted Co2(OH)2(bbta) and Co2Cl2(bbta) were constructed with 6 Co2+ 

cations per (primitive) unit cell, analogous to the Mg-diluted analogues shown in Figure D.1. 

Unless otherwise specified, the guest-free Co(II) centers of Co2X2(bbta) (X = OH, Cl) were 

modeled as being on the high-spin (𝑆 = 3/2) surface, which was the most favorable for both 

materials at the PBE-D3(BJ)+U level of theory (see Table D.9 below). Antiferromagnetic coupling 

between Co(II) centers in both materials was neglected to maintain a more computationally 

tracTable D.ize for the model systems, as done in prior work.25 This decision was also motivated 

by the finding that several Co2(dobdc)-type frameworks have ferromagnetic intrachain coupling 

(and only relatively weak, temperature-dependent antiferromagnetic interchain coupling).377,591–

593 The lattice constants resulting from a volume relaxation at the PBE-D3(BJ)+U/PAW level of 

theory are reported in Table D.8 and are within 3% of previously published experimental lattice 

constants.277 We note that the presence of water molecules is likely to slightly alter the lattice 

constants, so some of the discrepancy in Table D.8 may be attributed in part to residual water. 

Table D.8. DFT-computed lattice constants (at the PBE-D3(BJ)+U/PAW level of theory) of guest-

free Co2(OH)2(bbta) and Co2Cl2(bbta) compared to experiment. 

 PBE-D3(BJ)+U/PAW Experiment277 

Lattice 

constants 

Co2(OH)2(bbta) Co2Cl2(bbta) Co2(OH)2(bbta) Co2Cl2(bbta) 

𝑎 (Å) 7.94 8.08 8.19 8.19 

𝑏 (Å) 14.89 14.70 14.55 14.67 

𝑐 (Å) 14.91 14.70 14.55 14.67 

𝛼 (°) 116.6 117.0 116.6 116.6 

𝛽 (°) 99.8 100.5 100.8 100.7 

𝛾 (°) 100.3 100.5 100.8 100.7 
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We note that the H atoms of the μ-OH- groups of Co2(OH)2(bbta) can be oriented in 

different directions. Temporarily using a larger 2 × 1 × 1 supercell of the Co2(OH)2(bbta) 

primitive cell, we considered three arrangements for the H atoms, as shown in Figure D.8. All 

three arrangements had nearly equivalent energies following a full relaxation of the atomic 

positions (and cell volume), so one can expect that the H atoms are likely to be mobile at ambient 

conditions. For the purposes of this study, we adopt the arrangement in Figure D.8c and placed 

any adsorbates at the metal binding site with two aligned H atoms. Unlike the arrangements in 

Figure D.8a and S8b, the arrangement in Figure D.8c can be modeled using the primitive unit cell 

(i.e. each chain having three cobalt cations per cell). This is also what was adopted for the M-

MAF-X (X = OH, SH) calculations. 

a) 
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b) 

 

c) 

 

Figure D.8. If ↑ and ↓ represent the possible directions that the H atoms can point in, then 

schematically, the H atom orientations above can be represented as a) (↑↓↑↓↑↓)∞, b) (↑↑↓↓↑↑)∞, 

and c) (↑↓↓↑↓↓)∞. b) and c) are isoenergetic, and a) is 5 kJ/mol less stable per simulation cell than 

b) and c). Color key: Co (dark blue), O (red), N (light blue), C (brown), H (white). 

 

D.5.3 Comparing Mg-Diluted and Non-Diluted Co2(OH)2(bbta) Models 

Before proceeding with the PBE-D3(BJ)+U/PAW calculations of the non-diluted Co2X2(bbta) 

frameworks, we recalculated the O2 adsorption energy in Co2(OH)2(bbta) at the M06-L/PAW level 

of theory (using the lattice constants in Table D.8) to confirm that strong O2 binding is still 

observed. For this calculation, we modeled an end-on O2 binding mode, high-spin (𝑆 = 3/2) Co(II) 

centers, and a single low-spin (𝑆 = 1/2) Co(III)−superoxo site, in accordance with the lowest 

energy states (see Tables D.9 and D.10 below). The O2 adsorption energy for Co2(OH)2(bbta) was 
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found to be Δ𝐸O2
 = −95 kJ/mol at the M06-L/PAW level of theory, which is comparable to the 

value of Δ𝐸O2
 = −103 kJ/mol for the Mg-diluted analogue, indicating that Mg-dilution does not 

drastically influence the O2 adsorption behavior in this material 

D.5.4 Spin State Analysis 

Using the PBE-D3(BJ)+U/PAW level of theory, we investigated the relative energy of the high- 

and low-spin states, Δ𝐸HS−LS, for the Co(II) centers: 

Δ𝐸HS−LS =
𝐸HS − 𝐸LS

𝑛Co

(6) 

where 𝐸HS and 𝐸LS are the electronic energy (per primitive cell) of the MOF with all high-spin or 

all low-spin Co(II) centers, respectively. The energy per primitive cell is divided by 𝑛Co, the 

number of Co sites per primitive cell, to obtain a relative energy on a per-Co basis (𝑛Co = 6 for 

VASP calculations with both Co2(OH)2(bbta) and Co2Cl2(bbta)). For this analysis, we let the unit 

cell volume and atomic positions fully relax. As shown in Table D.9, both Co2(OH)2(bbta) and 

Co2Cl2(bbta) have a high-spin ground state at the PBE-D3(BJ)+U/PAW level of theory. The 

presence of high-spin Co(II) centers has been confirmed experimentally for Co2Cl2(btdd) (H2btdd 

= bis(1H-1,2,3-triazolo[4,5-b],[4',5'-i])dibenzo[1,4]dioxin), the large-pore analogue of 

Co2Cl2(bbta).25 We note that Δ𝐸HS−LS is relatively small on a per-Co basis and that the high-spin 

state is slightly less stable in Co2(OH)2(bbta) than Co2Cl2(bbta), which is consistent with the fact 

that OH- has a higher ligand field strength than Cl-. The presence of low-lying spin states is to be 

expected, given that spin-crossover behavior has been observed in several previously synthesized 

MOFs with azolate linkers.193,216,270 

Table D.9. Difference in energy between high-spin (𝑆 = 3/2 per Co) and low-spin (𝑆 = 1/2 per 

Co) states, Δ𝐸HS−LS, in the non-diluted Co2(OH)2(bbta) and Co2Cl2(bbta) unit cells at the PBE-
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D3(BJ)+U/PAW level of theory. The unit cell volume, shape, and atomic positions were fully 

relaxed at both spin states. A negative value for Δ𝐸HS−LS indicates a preference for the high-spin 

state. 

MOF Δ𝐸HS−LS (kJ/mol per Co) 

Co2(OH)2(bbta) −26 

Co2Cl2(bbta) −31 

 

With regards to the addition of a single O2 adsorbate to the simulation unit cell of 

Co2(OH)2(bbta), we found that the lowest energy state at the PBE-D3(BJ)+U/PAW level of theory 

is one in which there is negligible spin density on the cobalt binding site and a reduced spin density 

on the O2 molecule (Table D.10). This [CoO2]
2+ complex can be best described as a low-spin (𝑆 = 

1/2) species that is most consistent with a Co(III)−superoxo state. In contrast, the lowest energy 

spin state predicted for Co2Cl2(bbta) is one in which an O2 molecule is antiferromagnetically 

coupled to a high-spin (𝑆 = 3/2) cobalt center (Table D.11). While this [CoO2]
2+ species is also 

best described as a low-spin (𝑆 = 1/2) species, it does not involve any appreciable oxidation of the 

metal center (or, by extension, reduction of the O2 adsorbate). The converged magnetic moments 

for N2 adsorption at high-spin Co(II) centers are shown in Tables D.12 and D.13. 

Table D.10. Converged magnetic moments, number of unpaired electrons (|𝑛α − 𝑛β|), and relative 

spin state energies for the non-diluted Co2(OH)2(bbta) with adsorbed O2 at the PBE-

D3(BJ)+U/PAW level of theory. The magnetic moments represent the converged values for each 

of the six cobalt atoms in the simulation unit cell, with the last value (in italics) corresponding to 

the cobalt binding site. The magnetic moments on the two O atoms of O2 are also shown. 

Magnetic moments (𝜇B) |𝑛α − 𝑛β| 𝐸 (kJ/mol) 

Co: [2.697, 2.682, 2.688, 2.696, 2.681, −0.009] 

O2: [0.412, 0.480] 

16 0 

Co: [2.694, 2.689, 2.681, 2.694, 2.685, 2.324] 

O2: [−0.607, −0.656] 

16 10 

Co: [2.693, 2.695, 2.682, 2.693, 2.694, 2.799] 

O2: [0.737, 0.760] 

20 38 

 

Table D.11. Converged magnetic moments, number of unpaired electrons (|𝑛α − 𝑛β|), and relative 

spin state energies for the non-diluted Co2Cl2(bbta) with adsorbed O2 at the PBE-D3(BJ)+U/PAW 
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level of theory. The magnetic moments represent the converged values for each of the six cobalt 

atoms in the simulation unit cell, with the last value (in italics) corresponding to the cobalt binding 

site. The magnetic moments on the two O atoms of O2 are also shown. 

Magnetic moments (𝜇B) |𝑛α − 𝑛β| 𝐸 (kJ/mol) 

Co: [2.668, 2.662, 2.666, 2.667, 2.665, 2.574] 

O2: [−0.703, −0.792] 

16 0 

Co: [2.669, 2.660, 2.670, 2.669, 2.661, −0.571] 

O2: [0.574, 0.668] 

16 17 

Co: [2.661, 2.661, 2.661, 2.661, 2.661, 2.676] 

O2: [0.782, 0.824] 

20 17 

 

Table D.12. Converged magnetic moments and number of unpaired electrons (|𝑛α − 𝑛β|) for the 

non-diluted Co2(OH)2(bbta) with adsorbed N2 at the PBE-D3(BJ)+U/PAW level of theory. The 

magnetic moments represent the converged values for each of the six cobalt atoms in the 

simulation unit cell, with the last value (in italics) corresponding to the cobalt binding site. The 

magnetic moments on the two N atoms of N2 are also shown. 

Magnetic moments (𝜇B) |𝑛α − 𝑛β| 

Co: [2.690, 2.692, 2.682, 2.692, 2.692, 2.703] 

N2: [0.114, 0.113] 

18 

 

Table D.13. Converged magnetic moments and number of unpaired electrons (|𝑛α − 𝑛β|) for the 

non-diluted Co2Cl2(bbta) with adsorbed N2 at the PBE-D3(BJ)+U/PAW level of theory. The 

magnetic moments represent the converged values for each of the six cobalt atoms in the 

simulation unit cell, with the last value (in italics) corresponding to the cobalt binding site. The 

magnetic moments on the two N atoms of N2 are also shown. 

Magnetic moments (𝜇B) |𝑛α − 𝑛β| 

Co: [2.667, 2.665, 2.665, 2.667, 2.666, 2.682] 

N2: [0.104, 0.104] 

18 

 

D.5.5 O2 and N2 Adsorption Behavior 

The O2 adsorption energy, Δ𝐸O2
, was computed for the non-diluted Co2(OH)2(bbta) and 

Co2Cl2(bbta) frameworks at the PBE-D3(BJ)+U/PAW level of theory using the aforementioned 

lowest energy spin states and lattice constants in Table D.8. Co2(OH)2(bbta) is still predicted to 

have a significantly greater O2 affinity than Co2Cl2(bbta) at the PBE-D3(BJ)+U/PAW level of 

theory (Table D.14). As shown in Table D.15, an O2 molecule bound to a cobalt site of 

Co2(OH)2(bbta) is predicted to have significant superoxo character. The integrated crystal orbital 
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Hamilton population (COHP) values for the Co−ligand interactions all increase in magnitude upon 

O2 adsorption, suggesting an increase in the bond strength between the cobalt center and the 

surrounding ligands after O2 binding occurs (Table D.16). This is also reflected in the shorter bond 

distances (Table D.16). The effective ionic radii of (six-coordinate) low-spin Co(III), low-spin 

Co(II), and high-spin Co(II) are 54.5 pm, 65 pm, and 74.5 pm, respectively.358 The large difference 

in ionic radii for high-spin Co(II) and low-spin Co(III) enables the shorter bond distances within 

the first coordination sphere upon O2 binding. As expected from the Mg-diluted model, the N2 

adsorption energy, Δ𝐸N2
, is weak in both materials (Table D.14). 

Table D.14. O2 and N2 adsorption energies in Co2(OH)2(bbta) and Co2Cl2(bbta) at the PBE-

D3(BJ)+U/PAW level of theory, using the lowest energy spin states shown in Tables D.10−D.13. 

MOF Δ𝐸O2
 

(kJ/mol) 

Δ𝐸N2
 

(kJ/mol) 

Co2(OH)2(bbta) −51 −18 

Co2Cl2(bbta) −21 −21 

 

Table D.15. DFT-computed properties of O2 adsorption in Co2(OH)2(bbta) at the PBE-

D3(BJ)+U/PAW level of theory, with computed properties of gas-phase O2 and HO2 used as points 

of comparison. The computed properties include the O−O distance (𝑑O−O), O−O stretching 

frequency (𝜈O−O), sum of CM5 partial charges on O2 (𝑞CM5,O2
), and sum of Bader spin densities 

on O2 (𝜌Bader,O2
). 

Property Co2(OH)2(bbta)−O2 O2 HO2 

𝑑O−O (Å) 1.306 1.233 1.346 

𝜈O−O (cm-1) 1201 1568 1111 

𝑞CM5,O2
 −0.31 0.0 −0.3

5 

𝜌Bader,O2
 1.08 2.0 1.0 

 

Table D.16. Bond distances, 𝑑, and integrated COHP (ICOHP) values (up to the Fermi level) 

between the cobalt binding site of Co2(OH)2(bbta) and the ligands in the first coordination sphere 

(excluding the adsorbate, if present) before and after O2 adsorption at the PBE-D3(BJ)+U/PAW 

level of theory 

  Co−Neq,1 Co−Neq,2 Co−Nax Co−Oeq,1 Co−Oeq,2 

𝑑 (Å) 2.123 2.132 2.049 2.067 1.980 



357 

 

Before 

O2 

𝛼-ICOHP 

(eV) 
−1.245 −1.219 −1.124 −1.277 −1.486 

𝛽-ICOHP 

(eV) 
−1.529 −1.473 −1.525 −1.669 −2.006 

After O2 

𝑑 (Å) 2.024 2.017 1.982 1.949 1.928 

𝛼-ICOHP 

(eV) 
−1.613 −1.636 −1.627 −1.762 −1.846 

𝛽-ICOHP 

(eV) 
−1.594 −1.619 −1.556 −1.774 −1.861 

D.5.6 Unit Cell Contraction 

We note that it is possible for the lattice constants to change as a function of coverage. In fact, the 

lattice constants of previously synthesized metal−triazolate frameworks have been shown to be 

sensitive to solvent and adsorbate loading.193,216 For this analysis, we let the shape, volume, and 

atomic positions of the unit cell of Co2(OH)2(bbta) fully relax when loaded with one O2 molecule 

(i.e. 𝜃O2
 = 1/6) and two O2 molecules (i.e. 𝜃O2

 = 2/6) per unit cell. As shown in Table D.17, the 

unit cell is predicted to slightly contract upon adsorption of O2 molecules at the Co(II) centers. As 

previously mentioned, this contraction is due to the shortened equatorial (and to a lesser degree, 

axial) Co−ligand bond distances upon O2 adsorption (Table D.18), enabled by the significantly 

smaller ionic radius of low-spin Co(III) compared to high-spin cobalt Co(II).358 

Table D.17. DFT-computed lattice constants of Co2(OH)2(bbta) as a function of O2 coverage, 𝜃O2
, 

at the PBE-D3(BJ)+U/PAW level of theory. High-spin Co(II) sites are assumed. 

Lattice 

constants 
𝜃O2

 = 0 

(Lattice 1) 

𝜃O2
= 1/6 

(Lattice 2) 

𝜃O2
= 2/6 

(Lattice 3) 

𝑎 (Å) 7.94 7.88 7.84 

𝑏 (Å) 14.89 14.79 14.75 

𝑐 (Å) 14.91 14.78 14.68 

𝛼 (°) 116.6 116.0 116.0 

𝛽 (°) 99.8 100.7 101.5 

𝛾 (°) 100.3 101.3 102.0 

𝑉 (Å3) 1486.2 1445.2 1408.5 

 

Table D.18. Bond distances between the cobalt binding site and ligands within the first 

coordination sphere before and after adsorption of a single O2 molecule for the three 
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Co2(OH)2(bbta) unit cell volumes listed in Table D.17. Results are at the PBE-D3(BJ)+U/PAW 

level of theory. 

 Lattice 1 Lattice 2 Lattice 3 

Bond distance MOF MOF−O2 MOF MOF−O2 MOF MOF−O2 

𝑑(Co−Neq)
avg

 (Å) 2.13 2.02 2.06 1.97 2.02 1.92 

𝑑Co−Nax
 (Å) 2.05 1.98 2.04 1.96 2.02 1.95 

𝑑(Co−OH)avg (Å) 2.02 1.93 2.04 1.96 2.09 1.95 

 

D.5.7 Low-Spin Co(II) Centers 

Given the relatively close energy between the high- and low-spin Co(II) surfaces (Table D.9) and 

the fact that many metal−azolate frameworks exhibit spin-crossover behavior,267 we considered 

the effect of low-spin Co(II) sites incorporated within the Co2(OH)2(bbta) framework. At the PBE-

D3(BJ)+U/PAW level of theory, letting the Co2(OH)2(bbta) structure fully relax with all low-spin 

Co(II) centers results in a lattice parameters of 𝑎 = 7.65 Å, 𝑏 = 14.62 Å, 𝑐 = 14.68 Å, 𝛼 = 116.8°, 

𝛽 = 99.9°, 𝛾 = 100.2°, 𝑉 = 1382 Å3. For this unit cell, we modeled the O2 adsorption process 

involving the oxidation of a low-spin (𝑆 = 1/2) Co(II) species to low-spin (𝑆 = 1/2) 

Co(III)−superoxo species. Since there is no high- to low-spin transition of the cobalt binding site 

in this scenario, there is a less significant decrease in the metal–ligand bond distances upon O2 

binding (Table D.19). If the lattice constants are allowed to relax, the lattice contraction is also 

less pronounced for 𝜃O2
 = 1/6 in the low-spin case (𝑎 = 7.66 Å, 𝑏 = 14.56 Å, 𝑐 = 14.60 Å, 𝛼 = 

116.6°, 𝛽 = 100.2°, 𝛾 = 100.4°, 𝑉 = 1370 Å3). The charge density difference plot for O2 binding 

at low-spin Co(II) sites is shown in Figure D.9. Significant reduction of the O2 molecule is still 

present, although there is less charge transfer from the equatorial ligands for the reaction on the 

low-spin Co(II) surface. 

Table D.19. Bond distances between the cobalt binding site and ligands within the first 

coordination sphere before and after adsorption of a single O2 molecule for a Co2(OH)2(bbta) unit 

cell with low-spin Co(II). Results are at the PBE-D3(BJ)+U/PAW level of theory. 
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 Low-spin Co(II) 

Bond distance MOF MOF−O2 

𝑑(Co−Neq)
avg

 (Å) 1.976 1.967 

𝑑Co−Nax
 (Å) 2.004 1.944 

𝑑(Co−OH)avg (Å) 1.981 1.958 

 

 

Figure D.9. Charge density difference upon O2 adsorption in Co2(OH)2(bbta) at the PBE-

D3(BJ)+U/PAW level of theory with low-spin Co(II) sites. The yellow and cyan surfaces represent 

a gain or loss of electron density, respectively (isovalue = 0.005 e-/bohr3). Only a representative 

portion of the periodic structure is shown. Color key: Co (dark blue), O (red), N (light blue), C 

(brown), H (white). 

 

While the O2 adsorption energy can, in principle, be computed for low-spin Co(II) centers 

with the PBE-D3(BJ)+U/PAW level of theory (it is Δ𝐸O2
 = −91 kJ/mol), this value is likely to be 

overly exothermic given that the Co(II) centers are not at their ground state spin state at the given 

level of theory (Table D.9). As further confirmation that O2 chemisorption occurs even if low-spin 

Co(II) sites were present, we relaxed the Co2(OH)2(bbta) unit cell with low-spin Co(II) sites using 

the M06-L functional (𝑎 = 7.63 Å, 𝑏 = 14.52 Å, 𝑐 = 14.55 Å, 𝛼 = 116.5°, 𝛽 = 100.2°, 𝛾 = 100.2°). 

We then carved a representative 79-atom cluster model with three Co2+ cations (Figure D.10) 

analogous to the one used for V-MAF-OH in Figure D.3. As described in the methods, the central 

binding site and the atoms in the first and second coordination sphere were allowed to relax. Upon 
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structural relaxation, the M06-L/def2-TZVP286,287 and MN15/def2-TZVP286,572 levels of theory 

predict low-spin Co(II) sites in this cluster model at the low-spin lattice constants, whereas the 

M06/def2-TZVP286,288 continues to predict the high-spin ground state found at the PBE-

D3(BJ)+U/PAW level of theory (Table D.20). The O2 and N2 adsorption energies are shown in 

Tables D.21 and D.22 for binding at low-spin Co(II) sites in the cluster models. The finite cluster 

calculations indicate that strong O2 binding and weak N2 binding are to be expected even at low-

spin Co(II) sites. The [CoO2]
2+ site continues to be best characterized as a cobalt−superoxo species 

(Table D.23). 

 
Figure D.10. Optimized periodic structure of Co2(OH)2(bbta) at the M06-L/PAW level of theory 

with low-spin Co(II) sites and the corresponding 79-atom cluster model carved from the periodic 

structure. 

 

Table D.20. DFT-predicted spin-splitting energy, Δ𝐸HS−LS, for the Co2(OH)2(bbta) cluster model 

carved from an M06-L/PAW-optimized periodic structure with low-spin Co(II) sites (here, 𝑛Co = 

3). 

Level of theory %HF Δ𝐸HS−LS (kJ/mol per 

Co) 

M06-L/def2-TZVP 0 8 

M06/def2-TZVP 27 −14 

MN15/def2-TZVP 44 11 

 

Table D.21. DFT-predicted O2 adsorption energy, Δ𝐸O2
, and O2 adsorption enthalpy, Δ𝐻O2

, at the 

open metal sites of the Co2(OH)2(bbta) cluster model carved from an M06-L/PAW-optimized 
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periodic structure with low-spin Co(II) sites. Cluster models were modeled as being on the quartet 

spin surface both with and without the O2 adsorbate. 

Level of theory %HF Δ𝐸O2
 

(kJ/mol) 

Δ𝐻O2
 

(kJ/mol) 

M06-L/def2-TZVP 0 −114 −108 

M06/def2-TZVP 27 −73 −67 

MN15/def2-TZVP 44 −65 −59 
 

Table D.22. DFT-predicted N2 adsorption energy, Δ𝐸N2
, and adsorption enthalpy, Δ𝐻N2

, at the 

open metal sites of the Co2(OH)2(bbta) cluster model carved from an M06-L/PAW-optimized 

periodic structure with low-spin Co(II) sites. Cluster models were modeled as being on the quartet 

spin surface both with and without the N2 adsorbate. 

Level of theory %HF Δ𝐸N2
 

(kJ/mol) 

Δ𝐻N2
 (kJ/mol) 

M06-L/def2-TZVP 0 −17 −14 

M06/def2-TZVP 27 −16 −12 

MN15/def2-TZVP 44 −16 −12 

 

Table D.23. DFT-computed properties at the MN15/def2-TZVP level of theory for O2 adsorption 

with the Co2(OH)2(bbta) cluster model carved from an M06-L/PAW-optimized periodic structure 

with low-spin Co(II) sites. Computed properties of gas-phase O2 and HO2 are used as points of 

comparison. The computed properties include the O−O distance (𝑑O−O), O−O stretching frequency 

(𝜈O−O), sum of CM5 partial charges on O2 (𝑞CM5,O2
), sum of Mulliken spin densities on O2 

(𝜌Mulliken,O2
), and Co−O2 distance (𝑑Co−O2

). 

Property Co2(OH)2(bbta)−O2 O2 HO2 

𝑑O−O (Å) 1.281 1.195 1.309 

𝜈O−O (cm-1) 1311 1732 1250 

𝑞CM5,O2
 −0.35 0.0 −0.37 

𝜌Mulliken,O2
 1.08 2.0 1.0 

𝑑Co−O2
 (Å) 1.861 --- --- 

D.6 Additional Experimental Results and Characterization 

D.6.1 Characterization 

After exchanging the Cl- ions of Co2Cl2(bbta) with OH- ions via aqueous alkaline solution 

treatment, the crystallinity was maintained as verified via the measured PXRD pattern (Figure 

D.11). Likewise, N2 isotherm measurements of the Co2(OH)2(bbta) material at 77 K demonstrate 

that the material retained high porosity (Figure D.12), with a BET surface area of 1360 m2/g (BET 

area of Co2Cl2(bbta) is 1280 m2/g). XPS measurements were conducted on Co2Cl2(bbta) and 
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Co2(OH)2(bbta) to determine the oxidation state of the Co species in each material and the presence 

of Cl- ions. 

Figure D.13a shows the XPS spectra of the Co 2p region. Both materials exhibit satellite 

signals around 786.2 eV and 803.4 eV for 2p3/2 and for 2p1/2 core level, respectively, which are 

characteristic peaks of Co(II) ions. This indicates that the oxidation state is preserved after alkali 

(KOH) treatment. The XPS of the Cl 2p core level of Co2Cl2(bbta) was observed around 197.8 eV, 

as shown in Figure D.13b. The peak is broad and could be resolved into 2p3/2 and 2p1/2 doublets 

using a curve resolver employing a Gaussian-Lorentzian line shape fit. These signals are notably 

absent from the Co2(OH)2(bbta) in Figure D.13c, indicating that the Cl- ions have been replaced 

by OH- ions. 

In order to confirm the presence of bridging OH- groups, infrared spectra were acquired. 

Figure D.14 shows the diffuse reflectance infrared Fourier transform spectra (DRIFTS) of 

Co2Cl2(bbta) and Co2(OH)2(bbta). A strong peak around 3650 cm−1 was observed for 

Co2(OH)2bbta, indicating the presence of bridging OH- groups, which was not observed for 

Co2Cl2(bbta). DRIFTS measurements were also collected for Co2(OH)2(bbta) (without prior 

activation) as a function of temperature, as shown in Figures D.15 and D.16. At the activation 

temperature of 225 °C, the O−H stretching region retains only the feature at 3650 cm-1, with 

essentially all of the residual water molecules removed from the framework. This O−H stretch is 

still present up to (at least) 275 °C. As shown in Figure D.16, the intensity of the O−H stretch does 

not change with increasing temperature, indicating that the μ-OH- groups are stable and do not, for 

instance, dehydrate at the activation temperature. 
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Figure D.11. PXRD patterns of Co2Cl2(bbta) (simulation) (black), Co2Cl2(bbta) (experimental) 

(blue), Co2(OH)2(bbta) (simulation) (green) and Co2(OH)2(bbta) (experimental) (red). 

 

 
Figure D.12. N2 adsorption isotherm at 77 K for Co2(OH)2(bbta) (red circles) and Co2Cl2(bbta) 

(purple triangles). 
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Figure D.13. X-ray photoelectron spectra of a) Co2Cl2(bbta) (blue) and Co2(OH)2(bbta) (red) at 

the Co 2p region, b) Cl 2p core level spectra of Co2Cl2(bbta), c) Cl 2p core level spectrum of 

Co2(OH)2(bbta). 

 
Figure D.14. Diffuse reflectance infrared Fourier transform spectra (DRIFTS) of Co2Cl2(bbta) 

(blue) and Co2(OH)2(bbta) (red). An O−H stretch is observed near 3650 cm−1 for Co2(OH)2(bbta). 
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Figure D.15. DRIFTS of Co2(OH)2(bbta) as a function of temperature. The spectra are vertically 

offset from one another (including baseline corrections). 

 
Figure D.16. DRIFTS of Co2(OH)2(bbta) as a function of temperature, focusing on the region 3800 

to 2600 cm-1. The spectra are overlaid with no baseline correction. 
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D.6.2 O2/N2 Selectivity Estimate 

From the single-component, room temperature O2 and N2 isotherms, ideal adsorbed solution theory 

(IAST)359 was used to predict the mixed component system with 0.21 bar O2 and 0.79 bar N2 at 

room temperature. The O2/N2 selectivity was calculated as  

𝑆O2/N2
=

𝑛O2
/𝑛N2

𝑥O2
/𝑥N2

(S8) 

where 𝑛𝑖 is the loading of component 𝑖 in the mixed system and 𝑥𝑖 is the mole fraction of 

component 𝑖 in the gas phase. PyIAST360 was used to calculate the mixed gas behavior from the 

adsorption branch of the single-component isotherms, using a dual-site Langmuir fit for the O2 

isotherm  

𝐿(𝑃) = 𝑀1

𝐾1𝑃

1 + 𝐾1𝑃
+ 𝑀2

𝐾2𝑃

1 + 𝐾2𝑃
(S9) 

and Henry’s law for the N2 isotherm  

𝐿(𝑃) = 𝐾H𝑃 (S10) 

where 𝐿(𝑃) is the loading (in mmol/g) for a given component at pressure 𝑃 (in bar) in the single-

component system. The best-fit parameters are 𝑀1 = 2.585 mmol/g, 𝐾1 = 0.249 bar-1, 𝑀2 =

0.471 mmol/g, 𝐾2 = 296.317 bar-1, and 𝐾H = 0.194 mmol/(g⋅bar). The best-fit equations are 

plotted over the isotherm data in Figure D.17 and agree well with the experimental data. The 

resulting selectivity for Co2(OH)2(bbta) is 𝑆O2/N2 = 49 at 298 K. We note that the O2/N2 

selectivity for Co2(OH)2(bbta) is likely an underestimate, given that the room temperature O2 

isotherm is near – but not at – equilibrium (Figure D.18). 
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Figure D.17. Dual-site Langmuir fit to the room temperature O2 isotherm data (left, red) and 

Henry’s law fit to the room temperature N2 isotherm data (right, blue) for Co2(OH)2(bbta). 

 

D.6.3 Rate of Adsorption Data for Oxygen Isotherms 

The O2 uptake data as a function of time for the Co2(OH)2(bbta) sample is shown in Figure D.18, 

highlighting the ~20 mbar and ~226 mbar points of Figure 5.9. Here, we have set the equilibration 

interval time to 2000 sec (i.e. 33.3 minutes). The equilibration interval time determines how often 

the instrument makes a given pressure measurement, and the pressure at a given point along the 

isotherm is considered equilibrated when the rate of change in the pressure is less than 3% over 

the course of the equilibration interval time. In the case of Co2(OH)2(bbta), we emphasize that the 

approach to equilibrium is gradual despite setting the equilibration interval time to 2000 sec, a 

much larger value than the 10 sec more commonly used for isotherm measurements. This is in 

clear contrast with Co2Cl2(bbta) where the equilibration occurs within seconds, as shown in Figure 

D.19. We can conclude that the O2 uptake data for Co2(OH)2(bbta) is approaching equilibrium, 

although the time to reach true equilibrium is much higher for Co2(OH)2(bbta) than for 

Co2Cl2(bbta). For this reason, the O2 uptake data in Figure 5.9 for Co2(OH)2(bbta) can be thought 
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of as a lower-limit, with the possibility for a slightly increased O2 uptake at even longer 

equilibration times.  

 
Figure D.18. Kinetic data for O2 adsorption in Co2(OH)2(bbta) at 298 K. The pressure profiles on the 

top correspond to the kinetic uptake plots at the bottom. 
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Figure D.19. Pressure vs. time data for O2 adsorption in Co2Cl2(bbta) at 298 K. 

 

D.7 Grand Canonical Monte Carlo Simulations 

Before simulating the adsorption of O2 and N2 in Co2Cl2bbta and Co2(OH)2bbta, we first took the 

DFT-optimized crystal structures of the two activated MOFs at the PBE-D3(BJ)+U level of theory 

and calculated the surface areas using the geometry-based method implemented in the Zeo++ 

software109 with a probe radius of 1.8 Å that is half of the kinetic diameter of N2. The geometric 

surface areas for the DFT-optimized Co2(OH)2(bbta) and Co2Cl2(bbta) structures are within 91% 

and 98% of the experimentally determined values, respectively (Table D.24). We then simulated 

the adsorption of N2 at 77 K and the adsorption of O2 at 298 K for both MOFs, using the grand 

canonical Monte Carlo (GCMC) method implemented in the RASPA package.119 The frameworks 

were treated as rigid, and the Lennard-Jones parameters for the framework atoms were taken from 

the DREIDING594 force field, with the exception of Co atoms, where we took the parameters from 

UFF595 as DREIDING does not have parameters for Co. 4 × 3 × 3 supercells were used in the 

GCMC simulations of both MOFs to satisfy the minimum image convention requirement. Partial 
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atomic charges for the framework atoms were derived from periodic DFT-optimized structures 

using the DDEC6 method as implemented in Chargemol.158,233,374 N2 and O2 molecules were 

defined using the TraPPE force field.596 The standard 12-6 Lennard-Jones potential with a 12.8 Å 

cut-off and the Lorentz-Berthelot mixing rule was used to model the van der Waals interactions, 

while the Coulomb potential with Ewald summation was used to model the electrostatic 

interactions. For each point on the adsorption isotherms, 10,000 Monte Carlo cycles were 

performed in which the first 5,000 cycles were used for equilibration and only the remaining 5,000 

cycles were used to collect data for calculating thermodynamic properties. Each cycle contains 

insertion, deletion, translation, rotation and re-insertion Monte Carlo moves (with the number of 

moves per cycle being 20 or the number of adsorbate molecules at the beginning of the cycle, 

whichever is larger). 

Table D.24. Experimentally determined BET surface areas and geometric surface areas for the 

DFT-optimized structures. 
MOF Experimental surface area (m2/g) Theoretical surface area (m2/g) 

Co2Cl2(bbta) 1280 1300 

Co2(OH)2(bbta) 1360 1486 

 

Table D.25. Force field parameters for the Lennard-Jones potential in the GCMC simulations. 

Atom 휀/𝑘B (K) σ (Å) Atom 휀/𝑘B (K) σ (Å) 

H (MOF) 7.64893 2.84642 Cl (MOF) 142.562 3.51932 

C (MOF) 47.8562 3.47299 Co (MOF) 7.04507 2.55866 

N (MOF) 38.9492 3.26256 N (N2) 36.0 3.31 

O (MOF) 48.1581 3.03315 O (O2) 49.0 3.02 

 

For N2 adsorption at 77 K (Figure D.20), the shapes of the simulated and experimental isotherms 

agree with each other, while the simulated isotherms have higher saturation loadings due to the 

aforementioned difference in surface areas. For O2 adsorption at 298 K (Figure D.21), the 

simulated Co2Cl2(bbta) isotherm is in excellent agreement with experiment. There is strong 
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disagreement, as expected, between the simulated O2 isotherm for Co2(OH)2(bbta) and experiment 

because O2 chemisorption cannot be captured in GCMC simulations based on generic molecular 

mechanics force fields. 

 
Figure D.20. GCMC-predicted N2 adsorption isotherms at 77 K for Co2Cl2(bbta) (purple triangles) 

and Co2(OH)2(bbta) (red circles). Error bars on the GCMC simulations are shown (but are 

generally too small to discern given the range of the 𝑦-axis). 

 

 
Figure D.21. GCMC-predicted O2 adsorption isotherms at 298 K for Co2Cl2(bbta) (purple 

triangles, dashed line) and Co2(OH)2(bbta) (red circles, dashed line) compared to experiment (solid 

lines). Error bars on the GCMC simulations are shown (but are generally too small to discern given 
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the range of the 𝑦-axis). Note that the use of classical force fields implies that the simulated results 

will not capture possible chemisorption of the O2 adsorbate. 

 

 
Figure D.22. GCMC-predicted N2 adsorption isotherms at 298 K for Co2Cl2(bbta) (purple 

triangles, dashed line) and Co2(OH)2(bbta) (blue circles, dashed line) compared to experiment 

(solid lines). Error bars on the GCMC simulations are shown. 
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Appendix E. APPENDIX FOR CHAPTER 6 

E.1 Additional Methods 

E.1.1 Spin States 

The total number of unpaired electrons per simulation cell are shown in Table E.1. For a 

breakdown of the individual magnetic moments, refer to the supporting dataset. Only one metal 

cation per unit cell is a 3𝑑 transition metal. The remainder are diluted with Mg2+ and/or Al3+ 

cations, as described in the Methods section. 

Table E.1. Total number of unpaired electrons per simulation unit cell for each calculation carried 

out in this work. 

 Guest-free MOF MOF−O2 MOF−N2 

MOF PBE M06-L PBE-D+𝑈 PBE M06-L PBE-D+𝑈 PBE M06-L PBE-D+𝑈 

Co2Cl2(bbta) 1 3 3 1 1 1 1 3 3 

Co2(OH)2(bbta) 1 3 3 1 1 1 1 3 3 

Co2(dsbdc) 1 3 3 1 1 1 1 3 3 

Co-MIL-88B 3 3 3 1 1 1 1 3 3 

Co-MIL-88B-OH 0 0 2 0 2 2 0 0 0 

Co2(dobdc) 3 3 3 1 1 1 3 3 3 

Cr2Cl2(bbta) 4 4 4 2 2 2 2 4 4 

Cr2(OH)2(bbta) 4 4 4 2 2 2 2 4 4 

Cr2(dsbdc) 4 4 4 2 2 2 4 4 4 

Cr-MIL-88B 4 4 4 2 2 2 2 2 4 

Cr-MIL-88B-OH 3 3 3 1 1 1 3 3 3 

Cr2(dobdc) 4 4 4 2 2 2 4 4 4 

Cu2Cl2(bbta) 1 1 1 3 3 3 1 1 1 

Cu2(OH)2(bbta) 1 1 1 3 3 3 1 1 1 

Cu2(dsbdc) 1 1 1 1 1 1 1 1 1 

Cu-MIL-88B 1 1 1 3 3 3 1 1 1 

Cu2(dobdc) 1 1 1 3 3 3 1 1 1 

Fe2Cl2(bbta) 4 4 4 0 6 2 0 4 4 

Fe2(OH)2(bbta) 4 4 4 0 6 6 0 4 4 

Fe2(dsbdc) 4 4 4 0 6 2 0 4 4 

Fe-MIL-88B 4 4 4 4 6 6 0 4 4 

Fe-MIL-88B-OH 5 5 5 1 3 3 5 5 5 

Fe2(dobdc) 4 4 4 4 6 6 4 4 4 

Mn2Cl2(bbta) 5 5 5 3 3 3 5 5 5 

Mn2(OH)2(bbta) 5 5 5 3 3 3 1 5 5 

Mn2(dsbdc) 5 5 5 3 3 3 5 5 5 

Mn-MIL-88B 5 5 5 3 3 3 5 5 5 

Mn-MIL-88B-OH 4 4 4 2 2 2 4 4 4 

Mn2(dobdc) 5 5 5 3 3 3 5 5 5 

Ni2Cl2(bbta) 2 2 2 0 0 0 2 2 2 

Ni2(OH)2(bbta) 2 2 2 0 0 0 2 2 2 
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Ni2(dsbdc) 0 2 2 0 0 0 0 2 2 

Ni-MIL-88B 2 2 2 0 0 0 2 2 2 

Ni-MIL-88B-OH 1 1 1 1 1 1 1 1 1 

Ni2(dobdc) 0 2 2 0 0 0 0 2 2 

V2Cl2(bbta) 3 3 3 1 1 1 3 3 3 

V2(OH)2(bbta) 3 3 3 1 1 1 3 3 3 

V2(dsbdc) 3 3 3 1 1 1 3 3 3 

V-MIL-88B 3 3 3 1 1 1 3 3 3 

V-MIL-88B-OH 2 2 2 0 0 0 2 2 2 

V2(dobdc) 3 3 3 1 1 1 3 3 3 

E.1.2 Adsorption Modes 

Table E.2. Most stable O2 adsorption mode for each MOF at the various levels of theory. The 

adsorption modes are categorized based on the CrystalNN coordination environment algorithm 

implemented in Pymatgen.82 A value of 0 indicates the adsorbate is far away from the metal (best 

described as weak physisorption), 1 indicates end-on adsorption, and 2 indicates side-on 

adsorption. 
 Guest-free MOF 

MOF PBE M06-L PBE-D+𝑈 

Co2Cl2(bbta) 1 1 1 

Co2(OH)2(bbta) 1 1 1 

Co2(dsbdc) 1 1 0 

Co-MIL-88B 1 1 1 

Co-MIL-88B-OH 1 1 1 

Co2(dobdc) 1 1 1 

Cr2Cl2(bbta) 2 1 1 

Cr2(OH)2(bbta) 2 1 1 

Cr2(dsbdc) 2 1 1 

Cr-MIL-88B 1 1 1 

Cr-MIL-88B-OH 1 2 1 

Cr2(dobdc) 1 1 1 

Cu2Cl2(bbta) 1 1 0 

Cu2(OH)2(bbta) 1 1 1 

Cu2(dsbdc) 0 0 0 

Cu-MIL-88B 1 1 1 

Cu2(dobdc) 1 1 1 

Fe2Cl2(bbta) 1 2 1 

Fe2(OH)2(bbta) 1 2 2 

Fe2(dsbdc) 1 2 1 

Fe-MIL-88B 1 2 2 

Fe-MIL-88B-OH 1 1 1 

Fe2(dobdc) 1 2 2 

Mn2Cl2(bbta) 1 1 1 

Mn2(OH)2(bbta) 1 1 1 

Mn2(dsbdc) 1 1 1 

Mn-MIL-88B 1 1 1 

Mn-MIL-88B-OH 1 1 1 

Mn2(dobdc) 1 1 1 

Ni2Cl2(bbta) 1 1 1 

Ni2(OH)2(bbta) 1 1 1 

Ni2(dsbdc) 1 1 1 

Ni-MIL-88B 1 1 1 

Ni-MIL-88B-OH 1 1 1 



375 

 
Ni2(dobdc) 1 1 1 

V2Cl2(bbta) 2 2 2 

V2(OH)2(bbta) 2 2 2 

V2(dsbdc) 2 2 2 

V-MIL-88B 2 2 2 

V-MIL-88B-OH 2 2 2 

V2(dobdc) 2 2 2 

E.2 Additional Results 

E.2.1 Fe-Containing MOFs 

As shown in Figure 6.5, the PBE-D level of theory predicts less exothermic O2 adsorption energies 

than the M06-L level of theory for Fe2+-containing MOFs. This can be rationalized by looking at 

the relative energies of the spin states. Here, we highlight Fe2Cl2(bbta) as a representative example. 

As shown in Table E.3, for the favored 𝜂1−O2 binding geometry, the lowest energy spin state at 

the PBE-D level of theory is one with a low-spin Fe site and an O2 adsorbate with a relatively low 

degree of spin density. This is in contrast with the M06-L and PBE-D+U levels of theory, which 

predict high spin iron sites both before and after O2 adsorption. The spin states with O2 best 

described as a singlet O2 molecule (i.e. |𝑛α − 𝑛β| = 4) are also unusually stable for both adsorption 

geometries – one would not expect singlet O2 to be thermodynamically accessible in these systems. 

Table E.3. Energy of various spin states for the [FeO2]
2+ complex in Fe2Cl2(bbta), 𝐸, at the PBE-

D3(BJ)/PAW level of theory for various magnetic moments on the iron site (𝜇Fe in Bohr-

magnetons), O2 adsorbate (𝜇O2
 in Bohr-magnetons), and number of unpaired electrons per unit 

cell (|𝑛α − 𝑛β|). 

Binding mode |𝑛α − 𝑛β| 𝜇Fe 𝜇O2
 𝐸 (eV) 

𝜂1−O2 

6 3.71 1.36 −391.961 

4 3.34 0.10 −392.245 

2 2.90 −1.06 −392.263 

0 −0.75 0.61 −392.267 

𝜂2−O2 

6 3.78 1.28 −392.142 

4 3.27 0.12 −392.004 

2 1.47 0.29 −391.958 

0 −0.63 0.60 −391.943 
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E.2.2 Benchmarking 𝑼 Values 

The Co-BTTri and Cr-BTT frameworks are both anionic. Experimentally, Co-BTTri is charge-

balanced with extraframework Co(II) cations, whereas Cr-BTT is charge-balanced with Na+ 

species. When evaluating the effect of different 𝑈 values shown in Figure 6.9, Co-BTTri and Cr-

BTT were charge-balanced with protons added to the undercoordinated N atoms, as done in prior 

work.73,216,590 Motivated by prior experimental findings,22,24,216,326 we modeled 𝜂1−O2 binding 

modes for all the MOFs except for Fe2(dobdc), for which we considered the low-temperature 

𝜂2−O2 mode. The spin states for each MOF considered in Figure 6.9. are shown in Table E.4. 

Antiferromagnetic coupling of spins between metal centers in a given ring of metals was 

considered for Cr-BTT and Co-BTTri in the manner previously reported for Co-BTTri.216 For 

M2(dobdc) (M = Fe, Co, Ni), only ferromagnetic orderings were considered since the energy 

difference between the antiferromagnetic and ferromagnetic states is known to be small.377  

While the DFT-calculated adsorption energies are at 0 K, one can approximate the 

thermodynamic correction for O2 adsorption to be roughly 5𝑅𝑇/2, which is the enthalpic 

contribution due to a loss of translational and rotational motion of an O2 adsorbate. This value of 

5𝑅𝑇/2 can be added to the 0 K (i.e. electronic) adsorption energy to yield the desired adsorption 

enthalpy. This correction was applied to all five MOFs in Figure 6.9, setting 𝑇 = 298 K (i.e. +6 

kJ/mol) for Ni2(dobdc), Co2(dobdc), and Cr-BTT and setting 𝑇 = 200 K (i.e. +4 kJ/mol) for 

Fe2(dobdc) and Co-BTTri to be consistent with the temperatures used in prior experiments 

involving these materials.22,24,216,326 Note that the experimentally determined isosteric heat of O2 

adsorption in Cr-BTT is approximate and is best thought of as −65 ± 5 kJ/mol.22 
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Unlike what was considered when screening the Mg-diluted models, we let the guest-free 

unit cell shape and volume relax at the PBE-D3(BJ)+U level of theory for each U value in Figure 

6.9. The unit cell volumes as a function of U are reported in Figure E.1. Since the unit cells contain 

all transition metal cations – instead of mostly Mg2+ cations – the unit cell volumes for some of 

the MOFs are highly sensitive to the value of U. For comparison, Figure E.2 compares the O2 

binding energy with lattice constants fixed at the PBE-D3(BJ) (𝑈 = 0 eV) level of theory and 

relaxed for each value of U for the three MOFs with the greatest change in cell volume. The change 

in cell volume has only a minor impact on the computed Δ𝐸O2
 values in these materials. This is 

reassuring, as it suggests that errors in the computed lattice constants are unlikely to significantly 

alter O2 adsorption energies. 

Table E.4. Total number of unpaired electrons per simulation unit cell for each MOF included in 

Figure 6.9. The number of metal cations per simulation unit cell are also shown. 

MOF Number of metals MOF MOF−O2 

Ni2(dobdc) 6 12a 10 

Co2(dobdc) 6 18 16b 

Fe2(dobdc) 6 24 26 

Co-BTTri 12 0 (AFM, low-spin)c 2 

Cr-BTT 12 0 (AFM, high-spin)c 2 
aAs noted in the main text, the spin state of the Ni(II) sites of Ni2(dobdc) depends on the value of 𝑈. For consistency, 

we modeled the accepted high-spin Ni(II) state.377 The transition from low- to high-spin Ni(II) sites occurs for 𝑈 ≥ 2 

eV. 
bFor 𝑈 = 1 eV, an arrangement of spins corresponding to a low-spin (𝑆 = 1/2) Co(III)−superoxo site was most 

favorable, whereas for 𝑈 ≥ 2 eV, an antiferromagnetically stabilized, low-spin (𝑆 = 1/2) Co(II)−dioxygen site was 

most favorable. For consistency, we modeled the latter site for all 𝑈 values since it has been experimentally shown 

that the Co(II) sites are redox-inactive in the presence of O2 at room temperature.326 
cAntiferromagnetic coupling between metals. For Co-BTTri, each Co site has 1 unpaired electron (i.e. low-spin) and 

for Cr-BTT, each Cr site has 4 unpaired electrons (i.e. high-spin). 
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Figure E.1. Percent change in the primitive unit cell volume as a function of U compared to the 

PBE-D3(BJ)/PAW (U = 0 eV) case for Ni2(dobdc), Co2(dobdc), Co-BTTri, Fe2(dobdc), and Cr-

BTT. 

 
Figure E.2. O2 adsorption energy, Δ𝐸O2

, for structures with guest-free cell volumes relaxed for 

each U value compared to Δ𝐸O2
 values with guest-free cell volumes fixed at the PBE-D3(BJ)/PAW 

(U = 0 eV) level of theory. The dashed line is the line of parity. 

 

E.2.3 Partial Charges 

Throughout the text, we show Bader partial atomic charges. In the supporting dataset, we have 

also provided DDEC6 partial atomic charges. Generally, these two charge schemes are correlated, 

as shown in Figure E.3. We chose to highlight Bader charges in the main text because, for several 
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MOFs, the DDEC6 method predicts the O2 adsorbate to have a net positive charge (Figure E.3), 

which is inconsistent with what would be expected to occur upon O2 binding at a metal center. 

 
Figure E.3. Sum of Bader partial atomic charges on the adsorbed O2 molecule as a function of the 

sum of DDEC6 partial atomic charges on the adsorbed O2 molecule for all the investigated MOFs 

at the PBE-D+U level of theory. A best-fit line of 𝑦 = 1.15𝑥 − 0.077 is shown (𝑟2 = 0.98), and 

the dashed lines indicate the 𝑞O2
= 0 boundaries. 
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Appendix F. APPENDIX FOR CHAPTER 7 

F.1 Publicly Available Data 

Please refer to the following GitHub page for an overview of how to access the QMOF Database 

as well as for additional scripts/tools needed to reproduce the machine learning results presented 

in this study: https://github.com/arosen93/QMOF. Data associated with the QMOF Database is 

hosted via Figshare and has the following permanent DOI: 10.6084/m9.figshare.13147324. 

F.2 Dataset Construction 

F.2.1 Dataset Summary 

A summary of the dataset construction process is shown in Figure F.1, with the important datasets 

in this work summarized in Table F.1. 



381 

 

 
Figure F.1. Workflow for generating the dataset of DFT-ready MOF structures and DFT-computed 

properties. Important datasets discussed throughout this study are highlighted in purple. 

 

Table F.1. Summary of the important datasets discussed throughout this work. All de-duplicated 

subsets are made using Pymatgen’s StructureMatcher utility82 to flag identical materials in the 

parent set. 

Description Name 

Un-optimized, DFT-ready MOF structures. QMOF-42349 

DFT results for structures that passed all stages of the workflow. DFT-

derived properties are those associated with the fully optimized (“opt”) 

structures. 

QMOF-15713-opt 

De-duplicated subset of QMOF-15713-opt. QMOF-14482-opt 

 

F.2.2 The DFT-Ready, Free Solvent Removed QMOF-42349 Dataset 

Obtaining the initial structures. In this work, we chose to take all crystal structures from the 

Cambridge Structural Database (CSD). As discussed below, existing databases of “cleaned” 
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metal–organic framework (MOF) structures that have been widely used for grand canonical Monte 

Carlo simulations often contain several structural fidelity issues that can significantly impact the 

quality of density functional theory (DFT) calculations. Furthermore, starting from the unmodified 

CSD structures makes it possible to use ConQuest535 for more complicated filtering stages that 

take into account CSD meta-data not necessarily present in the individual crystallographic 

information files (CIFs). The CSD also contains many more MOF structures than existing “pre-

cleaned” experimental MOF databases, making it easier to generate a large database of computed 

properties for subsequent machine learning studies. 

Disorder and error handling. To construct the dataset of MOFs to study with DFT, we began 

with the Aug. 2019 release of the CSD and considered the 75,404 structures that are part of the 

“non-disordered” MOF subset.44 These structures lack disorder in the framework atoms but can 

potentially have disorder in the remaining species (e.g. free or coordinating solvents). We used 

ConQuest to remove any structures that were flagged as having any remaining disorder to increase 

the likelihood that the resulting CIFs would be physically reasonable for DFT calculations. While 

the CoRE MOF database attempts to automatically resolve disorder, this automated procedure is 

prone to occasional errors410–412 and so we instead neglect any disordered materials in the present 

study. Additionally, we use ConQuest to remove any structures with CSD-flagged errors in the 

crystal structure. 

Carbon requirement. We ensured that all structures contain at least 1 carbon atom, as this is an 

inherent requirement to yield a MOF. Several structures in the CoRE MOF 2019 database lack 

carbon atoms, many of which are best-described as inorganic metal–phosphate frameworks (e.g. 

refcodes ABETAE597, BEFLIJ598). 



383 

 

Ion handling. We did not consider any structures that were flagged as having ions, as identified 

via ConQuest. This step is crucial, as it is often difficult to experimentally resolve all the charge-

balancing ions, and many of these structures are therefore not charge-neutral. A structure with the 

incorrect number of electrons makes the resulting DFT calculations unphysical. This is a potential 

cause of inaccurate calculation results when screening MOF databases.410–412 

Solvent removal. We chose to remove free (i.e. unbound) solvent molecules from each structure 

but retained solvent bound to the metal centers. We chose not to remove bound solvent, as 

automated scripts to remove bound solvent have been shown to incorrectly remove framework 

atoms on occasion.410 The removal of bound solvent can also lead to undesirable charge-balancing 

issues. For instance, the structure with refcode ASAHEJ599 in the “all solvent removed” subset of 

the CoRE MOF 2019 database is missing its terminal oxo ligands because they were incorrectly 

assumed to be bound water molecules. Another motivating factor for only removing free solvent 

is that it may not be feasible to remove bound solvent during the thermal activation procedure for 

some MOFs. Here, we removed all free solvents that have identical SMILES strings as the 

molecules included in the CSD list of solvents.44 

Missing 3D coordinates. Following removal of free solvent, we used ConQuest to filter out any 

structures that have an atom flagged as having missing 3D coordinates. When structures are 

downloaded directly from the CSD, they may be missing atoms that were not able to be assigned 

based on X-ray diffraction (XRD). For instance, the MOF with refcode ADATAC600 has terminal 

water groups bound to metal centers, but the unmodified CIF is missing the H atoms on the water 

ligands. Similarly, many Zr-containing frameworks are known to have complicated proton 

topologies, such that it can be difficult to distinguish between terminal oxo, hydroxo, and water 
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ligands from XRD alone.425 If these H atoms are not included (or an incorrect number are 

included), this will lead to charge-balancing issues with the overall structure. In addition, based on 

the CIF alone, it can be difficult to tell if a terminal O atom should be an oxo, hydroxo, or water 

ligand, and this can complicate the solvent removal procedure if the user wishes to remove bound 

solvent. We note that, in cases where the CSD entry is appropriately annotated, it may be possible 

to retain more structures by adding the corresponding H atoms via the CSD Python API in future 

studies.407 

No H atoms. Structures without any H atoms (following removal of free solvent) were discarded. 

While, in principle, a MOF could have a linker without H atoms, the more common scenario is 

that the H atoms were simply omitted from the structure, leaving behind highly unphysical organic 

groups. This is a well-established limitation with existing databases of MOF crystal structures.410–

412 

Short interatomic distances. Any structures with an interatomic distance less than 0.75 Å were 

discarded after the above filtering procedures. This can often happen if the structure has disorder 

that was not appropriately flagged in the CSD entry (e.g. partial occupancies were not supplied). 

Nearly overlapping atoms will also create challenges for the structure relaxation algorithms. 

Lone atoms. After the above procedures, we used Pymatgen to generate crystal graphs of every 

MOF using the CrystalNN algorithm335,336 and removed any structures that had lone (i.e. 

unbonded) atoms in the graph. As an example, this is necessary to remove structures like 

CAXVOO,601 which has lone H atoms in the pores of the crystal structure (which should actually 

be H2). 
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After all of the above procedures, this resulted in 42,292 MOFs (Figure F.1). 

Additional Structures Identified as MOFs in the CoRE MOF Database. To supplement this 

list of structures, we also considered the MOFs identified during the construction of v.1.1.2 of the 

2019 CoRE MOF database.14 The CoRE MOF structures were not used directly in this work. 

Rather, the corresponding CSD refcodes were identified and run through the aforementioned 

filtering procedure for consistency. The 2019 CoRE MOF database contains a maximum of 14,142 

structures identified as MOFs, of which 13,544 can be found in the Aug. 2019 release of the CSD. 

Of these 13,544 structures, a total of 3,788 have no disorder, no errors, do not contain ions, and 

contain carbon. The majority of the structures removed in this process had disorder in the CIF. Of 

these 3,788 structures, 2,844 of them had H atoms and no missing coordinates. 2,699 MOFs were 

left after removing structures with lone atoms in the crystal graphs and ensuring that there were no 

interatomic distances less than 0.75 Å. Of these, only 108 were unique refcodes when compared 

to the 42,292 taken directly from the list of MOFs in the CSD MOF subset. This resulted in a 

combined dataset of 42,400 refcodes. 

QMOF-42349. After the above procedure, we removed 51 additional structures that had disorder 

or missing H atoms not flagged via the automated ConQuest search, the majority of which have 

been mentioned in prior work.407 Finally, this left us with a suitably DFT-ready dataset containing 

a grand total of 42,349 structures, which we refer to as the QMOF-42349 dataset. The list of 

refcodes for the QMOF-42349 dataset, the script to remove free solvent, and the intermediate lists 

of refcodes are available with the supporting dataset.402 All the CIFs in the QMOF-42349 dataset 

were converted to their Niggli-reduced primitive unit cells using Pymatgen prior to carrying out 

the DFT calculations.82 



386 

 

F.2.3 Completed Job Statistics to Yield the QMOF-15713-opt Dataset 

From the Niggli-reduced QMOF-42349 dataset, we started by selecting MOFs with < 150 atoms 

to ensure that a large number of DFT calculations could be carried out. A total of 24,002 structures 

fit this criterion. Of the 24,002 MOFs with < 150 atoms per Niggli-reduced unit cell considered 

for the high-throughput periodic DFT screening, 19,308 successfully completed the initial single-

point (i.e. static) calculation, and a total of 14,170 successfully completed every step of the 

workflow. While some calculations did not complete due to wall-time limits and related resource 

limitations, the majority of the incomplete calculations can be attributed to not meeting the strict 

10-6 eV self-consistent field (SCF) convergence tolerance in 150 iterations during the initial single-

point calculation. Many of these cases would likely have the SCF converged after a few steps of 

the geometry optimization, as it is common for the first few steps to require the largest number of 

SCF cycles to reach convergence. However, to be on the cautious side and to maximize overall 

resource usage, we did not consider them further or run them for a greater number of SCF 

iterations. We refer to the computed properties of the 14,170 DFT-optimized structures as the 

QMOF-14170-opt (“opt” = optimized) dataset. The corresponding single-point data on the starting 

structures is referred to as the QMOF-14170-SP (“SP” = single-point) dataset. 

The above procedure was how v1 of the QMOF Database was generated. Since its initial 

release, we decided to expand the database further by including structures not already in the 

QMOF-14170-opt dataset. Specifically, we identified unique structures not in the QMOF-14170-

opt dataset with a pore-limiting diameter greater than 2.4 Å (prior to structure relaxation) and 

increased the limit on the maximum atoms per cell from 150 to 300. 2185 new structures fitting 
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these criteria were added to the DFT workflow, of which 1543 made it through the entire structure 

relaxation procedure. 

Collectively, a grand total of 15,713 structures completed the structure relaxation 

workflow. We refer to the completed structural relaxations as the QMOF-15713-opt dataset. 

F.2.4 De-Duplication to Yield the QMOF-14482-opt Dataset 

Prior to this point, duplicate structures were not removed, as slight variations in the input geometry 

could potentially lead to different optimized structures, and the definition of unique will ultimately 

depend on the application of interest. Nonetheless, for training machine learning (ML) models, it 

is important to have a diverse dataset, and identical structures may lead to unrepresentative testing 

statistics. Therefore, we used Pymatgen’s StructureMatcher tool (using the default algorithm) 

on the 15,713 initial, un-relaxed structures and their relaxed counterparts to identify a unique 

subset of 14,482 structures. For Niggli-reduced primitive cells of two structures, the 

StructureMatcher scales the two lattice volumes, aligns the crystal lattices, and compares the 

atomic distances. While other methods, such as MOFid/MOFkey79 or a comparison of the 

underlying crystal graphs, could be used to identify unique MOFs based on their building blocks, 

here we used a geometrically sensitive structure matching approach so that identical nodes/linkers 

but different geometries would still be considered as separate entities in the dataset. For instance, 

QUPZIM, QUPZIM01, and QUPZIM02 are the same MOF with the same composition and 

connectivity, but the first is the closed-pore analogue of the latter two, and the latter two are 

conformationally distinct.431 All three are included in the de-duplicated subset, as they can 

potentially have different electronic structure properties (as has been shown for other flexible 

frameworks in the literature430). We acknowledge that no matter what approach is taken, there will 
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nonetheless be a few MOFs in the dataset with very similar structures. Other de-duplication 

schemes are always possible, and we encourage users to consider different approaches depending 

on their intended use-case. 

Of the 15,713 structures, 14,482 were classified as unique and used for machine learning. 

The quantum-chemical properties of these 14,482 structures are collectively referred to as the 

QMOF-14482-opt dataset. 

F.3 High-Throughput Periodic DFT Screening 

F.3.1 VASP Details 

Plane-wave, periodic density functional theory calculations were carried out using the Vienna ab 

initio Simulation Package (VASP) v.5.4.4.122,123 The widely used and computationally tractable 

PBE exchange-correlation functional125 with Grimme’s D3 dispersion correction126 and Becke–

Johnson (BJ) damping127 was used to generate a sufficiently large dataset for the purposes of 

training machine learning models. PBE with dispersion corrections has been shown to accurately 

capture the geometries of MOFs.128,129 Based on prior benchmarking work,32 the following 

parameters were generally used for the results presented in this study (see Table F.2 for more 

details). A 520 eV plane-wave kinetic energy cutoff was applied with a 𝑘-point density (KPPA) 

of ~1000/number of atoms, as arranged using Pymatgen 2019.9.16.82 The VASP-recommended 

v.54 projector-augmented wave (PAW)123,124 pseudopotentials were considered for all elements, 

with the exception of Li (for which we used the standard 140 eV default cutoff potential for 

computational simplicity), Eu (for which we use the Eu_3 pseudopotential rather than the Eu_2 

pseudopotential since Eu(III) is more common), Yb (for which we use the Yb_3 pseudopotential 

rather than the Yb_2 pseudopotential since Yb(III) is more common), and W (for which we use 
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the _sv pseudopotential since the _pv pseudopotential is not included in the v.54 PAW set). All 

elements have a default cutoff of < 520 eV when multiplied by 1.3 (to prevent Pulay stresses upon 

volume relaxation134). Structure relaxations were considered converged when the net force on each 

atom is below 0.03 eV/Å. 

The accurate-precision keyword was enabled in VASP. Gaussian smearing of the band 

occupancies with a smearing width of 0.01 eV was applied, with extrapolation back to the 0 K 

limit. Symmetry operations were disabled. The SCF was converged using the “Fast” algorithm, 

which is a mixture of the Davidson and residual minimization method–direct inversion in the 

iterative subspace (RMM-DIIS) algorithms.135 If the SCF did not converge to 10-6 eV within 150 

iterations, the calculation was aborted and the results not considered in this work. In some cases, 

challenging SCF convergence can be attributed to an incorrect structure, oftentimes a result of a 

structure that is not charge-neutral. Spin-polarization was considered in a similar manner as several 

previous DFT-computed property databases.30,33 Here, any 𝑑-block metals (excluding Zn, Cd, and 

Hg) were initialized with a magnetic moment of 5 𝜇B. All 𝑓-block elements (excluding Lu and Lr) 

were initialized with 7 𝜇B. All other elements were not initialized with any spin. We note that in 

VASP, the magnetic moments can freely change throughout the SCF convergence procedure, 

reaching a local minimum configuration once converged. 

F.3.2 Breakdown of Sequential Steps in Periodic DFT Workflow 

Each calculation was broken down into five sequential stages, similar to what has been described 

and benchmarked previously.32 These stages generally include: 1) An initial, high-accuracy single-

point calculation (520 eV cutoff, ~1000 KPPA); 2) A (coarse accuracy)  relaxation of the atomic 

positions (default plane-wave kinetic energy cutoff, ~100 KPPA, 0.05 eV/Å force tolerance); 3) A 
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medium-accuracy relaxation of the cell volume and atomic positions (520 eV cutoff and ~100 

KPPA, 0.03 eV/Å force tolerance); 4) A high-accuracy relaxation of the cell volume and atomic 

positions (520 eV cutoff, ~1000 KPPA, 0.03 eV/Å force tolerance); 5) A final high-accuracy 

single-point calculation of the fully optimized structure using the aforementioned settings. If the 

SCF did not converge for any step within 150 iterations, that calculation was not considered to be 

complete, and the remaining steps of the workflow were not carried out. If any individual stage of 

the workflow took greater than 2 hours per MOF, the job was canceled, and the remaining stages 

were also not carried out. On-the-fly error-handling was used to correct for warnings and errors 

should they appear,32 but if for any reason the job crashed and could not be successfully continued, 

that MOF was also not considered further. The VASP input parameters are summarized in Table 

F.2. All VASP calculations were carried out using the Atomic Simulation Environment (ASE) 

3.19.0b1.83 Band gaps were obtained using pymatgen.io.vasp.outputs.Eigenval() with 

an occupancy tolerance of 10-8. Partial atomic charges, spin densities, and effective bond orders 

were computed using the density-derived electrostatic and chemical (DDEC6) method158,230–232 as 

implemented in Chargemol 09-26-2017.374 Charge Model 5 (CM5) charges289 were also computed 

using Chargemol 09-26-2017. PyMOFScreen commit #e9768a5 was used to manage and carry out 

the automated DFT calculations.139 

Table F.2. ASE input arguments for the VASP calculators used in the screening workflow, 

excluding file I/O-related keywords.* Note that the appropriate pseudopotentials can be 

automatically selected with setups={'base':'recommended','Li':'', 
'Eu':'_3','Yb':'_3', 'W':'_sv'}. 

Flag Stage 1 Stage 2** Stage 3 Stage 4 Stage 5 
xc 'PBE' 'PBE' 'PBE' 'PBE' 'PBE' 

ivdw 12 12 12 12 12 
encut 520a 400 520 520 520 
kppab 1000a 100 100 1000 1000 
isif — 2 3 3 — 
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ibrion — 2 2 2 — 
prec 'Accurate' 'Accurate' 'Accurate' 'Accurate' 'Accurate' 
ismear 0 0 0 0 0 
sigma 0.01 0.01 0.01 0.01 0.01 
ediff 1E-6 1E-4 1E-6 1E-6 1E-6 
algo 'Fast' 'Fast' 'Fast' 'Fast' 'Fast' 
nelm 150 150 150 150 150 
nelmin 3 3 3 3 — 
lreal False Falsec Falsec False False 

nsw 0 250d 30e 30e 0 
ediffg — -0.05 -0.03 -0.03 — 
lorbit 11 11 11 11 11 
isym 0 0 0 0 0 

symprec 1E-8 1E-8 1E-8 1E-8 1E-8 
aFor structures in v1 of the QMOF Database (QMOF-14170), “Stage 1” (i.e. the static calculation on the starting 

structure) used the same settings as “Stage 5” (i.e. the static calculation on the optimized structure) to enable direct 

comparisons between properties (e.g. Figure F.5). For subsequent additions to the database, “Stage 1” used the same 

encut and kppa as in “Stage 2” for increased computational efficiency. 
bkppa = 𝑘-point density, computed with the automatic_density() tool in Pymatgen. The choice of whether the grid 

should be Γ-centered or not (i.e. gamma=True or gamma=False) and how the 𝑘-points are distributed among the three 

lattice dimensions are also determined based on this Pymatgen utility. 
cSwitches to lreal='Auto' if the VASP output file suggests doing so due to a large unit cell (only for Stages 2 – 3). 
dThe max 250-cycle relaxations of atomic positions were sequentially repeated until the force tolerance given by 

|ediffg| (0.05 eV/Å) was achieved. 
eThe max 30-cycle volume relaxations were sequentially repeated until the force tolerance given by |ediffg| (0.03 

eV/Å) was achieved. For Stage 4, after this process was completed, a final max 100-cycle volume relaxation was 

carried out for good measure. 
*Slight changes to the input parameters that do not affect the accuracy of the results may occur during the workflow 

to correct for errors on-the-fly. For instance, the conjugate-gradient (CG) algorithm (ibrion=2) often leads to a 

bracketing error when the potential energy surface is flat, and in such a scenario the geometry optimization algorithm 

automatically switches to the Fast Inertial Relaxation Engine (FIRE)137 (ibrion=3, iopt=7, potim=0). 
**The coarse-accuracy update of the atomic positions is preceded by an initial relaxation using the BFGSLineSearch 

algorithm in ASE until the maximum net force is less than 10 eV/Å. Empirically, we have found that this algorithm is 

better at resolving high forces without the structure “exploding” when compared to the CG algorithm. 

 

F.3.3 Further Investigation of Selected MOFs 

For select calculations, we use a hybrid-level functional to improve the quality of the band gap 

predictions. Using the PBE-D3(BJ) wavefunction and structure as a starting point, the HSE06-

D3(BJ) level of theory465–467 was used to re-relax the unit cell shape, volume, and atomic positions. 

Due to the high computational cost when running periodic DFT calculations with hybrid 

functionals, a looser force tolerance of 0.05 eV/Å was adopted. For all HSE06-D3(BJ) 

calculations, the VASP-recommended preconditioned conjugate gradient “all bands simultaneous 
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update of orbitals” algorithm132,133,338 (algo='All') was used to converge the SCF, the SCF 

convergence was set to a slightly looser value of 10-5 eV, and the density of states (DOS) was 

evaluated with 3000 grid-points. For increased computational efficiency, the HSE06-D3(BJ) 

structure relaxations were occasionally carried out using a smaller 𝑘-point grid than the single-

point calculation used to evaluate the band gap and DOS for select materials (Table F.3). All other 

settings remain unchanged from “Stage 5” of Table F.2. 

Table F.3. 𝑘-point grids for selected MOFs at the HSE06-D3(BJ) level of theory. 𝑘-points (low) 

and (high) refer to the structure relaxation and subsequent electronic structure analysis, 

respectively. 

CSD Refcode 
𝑘-points 

(low) 

𝑘-points (high) 

LOJLAZ 2 × 2 × 1 2 × 2 × 1 

RAXNEK 2 × 1 × 1 3 × 2 × 1 

WAQMEJ 2 × 1 × 1 3 × 1 × 1 

GUTYAW 2 × 2 × 1 4 × 4 × 1 

 

Table F.4. HSE06-D3(BJ) primitive cell lattice parameters compared with experiment. Note that 

any free solvent present in the crystal structure was removed from the framework in the DFT 

calculations. LS = low spin; HS = high spin. 

CSD Refcode  𝑎 (Å) 𝑏 (Å) 𝑐 (Å) 𝛼 (°) 𝛽 (°) 𝛾 (°) 

LOJLAZ-LS 
Theory 10.03 10.03 15.06 90.0 90.0 74.8 

Exp. 10.07 10.07 15.10 90.0 90.0 73.6 

LOJLAZ-HS 
Theory 10.40 10.40 15.46 89.9 90.0 71.0 

Exp. 10.38 10.38 15.50 90.0 90.0 70.1 

RAXNEK 
Theory 7.99 11.56 12.47 117.6 99.4 90.0 

Exp. 7.98 11.68 12.79 117.2 100.2 90.0 

WAQMEJ 
Theory 7.98 13.65 14.12 91.6 99.1 90.1 

Exp. 8.28 13.81 14.08 91.1 97.1 90.5 

GUTYAW 
Theory 4.88 4.88 14.90 86.9 86.9 66.9 

Exp. 4.97 4.97 14.98 87.0 87.0 66.4 

 

The HSE06-D3(BJ) lattice parameters for these materials are shown in Table F.4, and the relevant 

spin states are discussed below. 
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LOJLAZ, Fe(bipytz)(Au(CN)2)2 (bipytz = 3,6-bis(4-pyridyl)-1,2,4,5-tetrazine): This 

material has Fe(II) and Au(I) species. Experimentally, it has been shown that LOJLAZ is a spin-

crossover framework that has a low-to-high spin transition with increasing temperature.475 We 

consider both spin states in this work as a matter of consistency with the spin-crossover behavior 

observed experimentally. For reference, the high spin state is predicted to be 42 kJ/mol (per cell) 

more stable than the low spin state at the HSE06-D3(BJ) level of theory. 

RAXNEK, Fe(sq)(bpee)(H2O)2 (bpee = 1,2-bis(4-pyridyl)ethylene; sq = squarate): This 

material has Fe(II) species, which are known to exist in the high spin state with antiferromagnetic 

coupling.474 At the HSE06-D3(BJ) level of theory, a high-spin ground state is found. Both 

ferromagnetic and antiferromagnetic states were found to have comparable structures and energies, 

so we model the latter as a matter of consistency with the reported experiments. 

WAQMEJ, (TTF)[{Rh2(CH3CO2)4}2TCNQ]: This material is reported to have diamagnetic 

(formally) Rh(II) dimers with antiferromagnetically coupled TTF–TCNQ species such that the net 

magnetic moment is zero.471 A spin-unrestricted state with a net magnetic moment of zero was 

found to be the ground state at the HSE06-D3(BJ) level of theory. 

GUTYAW, Sr[C2H4(SO3)2]: This material has Sr(II) cations, and the framework is modeled as 

spin-restricted based on its structure. 

F.4 Machine Learning Details 

F.4.1 Software and Hardware Details 

Regression-based machine learning model development was carried out using scikit-learn v.0.23.2 

and the standard SciPy stack with NumPy v.1.19.2, pandas 1.1.5, Matplotlib 3.3.2, and Seaborn 

v.0.11.1.561,563,602–605 Pymatgen82 v.2020.12.3 was used to analyze structures and generate 
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descriptors. The smooth overlap of atomic positions (SOAP) features were computed using 

DScribe v.0.4.0.606 The sine Coulomb matrix and Meredig and Agrawal et al.436 features were 

generated using Matminer v.0.6.4.607 Crystal graph convolutional neural networks (CGCNNs) 

were based on the work of Xie and Grossman406 and used PyTorch v.1.6.0608 for constructing and 

evaluating the neural networks. Specifically, our CGCNN code is built upon commit #d612a69 of 

the CGCNN code609 with slight variations, as reflected in our fork of the CGCNN code.610 This 

fork saves the crystal graphs to .pkl files so they can be read in as-needed instead of needing to be 

re-computed when the memory cache is filled. This is a common problem with MOF crystal graphs 

given the large size of the unit cells. A branch of this revision610 also makes it possible to use 

Pymatgen-computed crystal graphs rather than those based on a fixed number of neighbors, 

although we did not observe any improvement when using a crystal graph based on the CrystalNN 

algorithm.335,336 This is potentially because there are many crystal structures in the QMOF 

Database that are connected in 1D or 2D, such that there are disconnected regions of the Pymatgen-

generated crystal graph. PTable Trends v.2.0611 was used to generate a heat map over the periodic 

table. Zeo++ v.0.3 was used for the pore diameter calculations using the “high accuracy” flag.109 

PyProcar v.5.6.1 was used to parse the DOS data.612 Timing data for the machine learning models 

are reported using Python 3.8.5 on a laptop with an Intel Core i7-9750H CPU. For the CGCNNs, 

CUDA v.10.1 was used to enable GPU support with an NVIDIA GeForce RTX-2070 (Max-Q 

Design) graphics card. 

F.4.2 Dataset Handling for Training and Evaluating Machine Learning Models 

Unless otherwise stated 80% of the 14,482 data points was reserved for training while 20% was 

held-out for testing of the kernel ridge regression (KRR) models. To optimize the hyperparameters 
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and determine the optimal ML models, 5-fold cross-validation of the training set was applied for 

KRR. Due to the higher computational cost when training neural network models, for CGCNN, 

80% of the data was reserved for training, 10% was held-out for validation, and 10% was reserved 

for testing. In all cases, performance of the models on the testing data was not inspected until the 

end of the project when ideal models were determined on the basis of the validation process. Data 

splitting was done via purely random sampling. To account for minor variations in model 

performance due to sampling bias, all the performance statistics in Table 7.1 and Figure 4A are 

reported as averages over five separate runs with different random seeds for the data splitting 

(arbitrarily chosen in advance to be 42, 125, 267, 541, and 582). Elsewhere, a constant seed is used 

for consistency (chosen in advance to be 42). 

F.4.3 Learning Curves 

For the learning curves in Figure 7.4a, training set sizes of 27, 28, 29, 210, 211, 212, 213, and 80% 

of the full dataset of 14,482 data points were investigated. Powers of 2 were chosen to allow for 

equidistant spacing on a logarithmic grid. For internal consistency, the same testing set was used 

(for a given data-splitting seed) regardless of training set size. The same validation set was also 

used (for a given data-splitting seed) for the CGCNN models. For the KRR models, 20% of the 

full QMOF-14482-opt dataset was held-out for testing. For the CGCNN models, 10% of the full 

QMOF-14482-opt dataset was used for validation, and 10% of the full QMOF-14482-opt dataset 

was held-out for testing. 

F.4.4 Kernel Ridge Regression 

KRR combines the kernel trick with ridge regression.613 Like all regression methods, the goal of 

KRR is to predict a response variable 𝐲 from a set of individual input vectors 𝐱 (which, when 
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combined, form a feature matrix 𝐗 containing an encoding of each individual material). KRR, 

being a kernel method, achieves this by transforming 𝐗 into a kernel matrix 𝐊 that describes the 

similarity between every pair of materials in 𝐗. In this way, KRR has a closed-form solution given 

by 

𝐰 = (𝐊train + 𝜆𝐈)−1𝐲train (F. 1) 

where 𝐰 is the vector of model weights, 𝐊train is the training set kernel matrix, 𝜆 is the 

regularization hyperparameter, 𝐈 is the identity matrix, and 𝐲train is the training set values to 

predict. For scikit-learn’s implementation of KRR, a parameter 𝛼 is supplied, which is defined as 

𝛼 ≡ 𝜆/2. 

With the model weights obtained, new values can be predicted via 

𝐲ML = 𝐊test𝐰 (F. 2) 

where 𝐲ML are the ML-predicted 𝐲 values for a new kernel matrix of the testing set 𝐊test. For 𝑁 

training samples and 𝑀 testing samples, 𝐊train will have dimensions of (𝑁 × 𝑁) and 𝐊test will 

have dimensions of (𝑀 × 𝑁). Here, 𝐊train represents the similarity between every pair of 

structures in the training set, whereas 𝐊test represents the similarity between each structure in the 

training set and each structure in the testing set. The transformation of 𝐗 → 𝐊 can be achieved by 

one of several kernel functions. For all kernel methods (except for SOAP), we use a Laplacian 

kernel function, 𝑘, given by 

𝑘(𝐱𝑖 , 𝐱𝑗) = exp (−𝛾‖𝐱𝑖 − 𝐱𝑗‖
1

) (F. 3) 
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where 𝛾 serves as an adjustable KRR model hyperparameter. In the case of SOAP, a similarity 

kernel 𝐊 is directly generated and so there is no need for further transformation. 

In all cases throughout his work, 𝐲train refers to the DFT-computed band gaps of the DFT-

optimized structures, whereas 𝐗 refers to the encodings of the corresponding unrelaxed crystal 

structures. 

F.4.5 Featurization Methods for KRR 

As mentioned in the main text, several featurization methods were pursued for generating the 

feature matrices 𝐗 for use with KRR, which we summarize in this section. For all non-SOAP 

featurization methods, a min-max scaler was applied during the KRR process, such that each 

feature was scaled to the range 0 – 1. 

F.4.5.1 Description: Stoichiometric-120 Features 

The Meredig and Agrawal et al.436 feature set (“Stoichiometric-120”) is a composition-based 

descriptor that was originally developed for formation energy predictions of inorganic solids in the 

Open Quantum Materials Database30,34 (OQMD). In this work, the descriptor set has 120 attributes. 

103 of these encode the elemental composition via the fraction of each unique element from H–Lr 

in the MOF. The remaining attributes are the mean atomic weight, mean group number, mean 

period number, maximum difference in atomic number, mean atomic number, range in atomic 

radii, mean atomic radius, range in electronegativities, mean electronegativity, the average number 

of 𝑠, 𝑝, 𝑑, and 𝑓 valence electrons, and the composition-weighted fraction of 𝑠, 𝑝, 𝑑, and 𝑓 valence 

electrons. 
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F.4.5.2 Description: Stoichiometric-45 Features 

The He et al.400 feature set (“Stoichiometric-45”) is a composition-based descriptor that has been 

used to classify if inorganic solids in the OQMD are metallic or non-metallic. The descriptor set 

has 45 attributes. These consist of 9 elemental properties (atomic number, group number, period 

number, electronegativity, electron affinity, melting temperature, boiling temperature, density, and 

ionization energy) and five statistical quantities of each (arithmetic mean, geometric mean, 

standard deviation, maximum, and minimum) computed for each structure. The tabulated data was 

taken from the Wolfram Knowledgebase, which we accessed with Mathematica 11.3.0. It is 

important to note that several of these attributes (e.g. melting and boiling temperatures, density) 

are ill-defined for single atoms. In the Wolfram Knowledgebase, these values are generally defined 

as being for stable bulk forms at ambient conditions. Furthermore, the electron affinities and 

ionization energies were chosen to be for the addition or removal of a single electron, respectively. 

We also chose to place the lanthanides and actinides in a fictitious group 19. We note that 477 out 

of the 14482 MOF structures in the QMOF-14482 dataset did not have fingerprints generated due 

to missing tabulated data for one or more of the elements in the structure and were therefore not 

considered with this featurization method. 

F.4.5.3 Description: Sine Coulomb Matrix Eigenspectrum 

The sine Coulomb matrix437 is a structure-based featurization method where a pair-wise interaction 

matrix 𝑀𝑖𝑗 is generated by the following formula: 

𝑀𝑖𝑗 = {

0.5𝑍𝑖
2.4, 𝑖 = 𝑗

𝑍𝑖𝑍𝑗

|𝐁 ⋅ ∑ �̂�𝑘 sin2 (𝜋𝐁−1 ⋅ (𝐑𝑖 − 𝐑𝑗))𝑘={𝑥,𝑦,𝑧} |
, 𝑖 ≠ 𝑗 (F. 4) 
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where 𝑖 and 𝑗 are two atoms in the structure, 𝑍𝑖 is the atomic number of 𝑖, 𝐁 is a matrix formed by 

the lattice vectors, �̂�𝑘 are the Cartesian unit vectors, and 𝐑𝑖 − 𝐑𝑗 is the distance vector between 

atoms 𝑖 and 𝑗. The sine Coulomb matrix is dependent on the number of atoms a given structure 

has, so to ensure a square matrix is generated, it is padded with zeros to match the maximum 

number of atoms in the dataset (i.e. 300 atoms in the case of the QMOF-14482 dataset). Since a 

feature vector for each material is needed for KRR, only the (sorted) eigenvalues of the sine 

Coulomb matrix are returned such that the descriptor becomes one-dimensional for each structure 

with a length of 𝑛max atoms (i.e. 300 in this case). This approach was chosen instead of flattening 

the sine Coulomb matrix because the resulting feature length would otherwise be extremely large, 

as the sine Coulomb matrix for each material has dimensions 𝑛max atoms × 𝑛max atoms (i.e. 90,000 

total entries upon flattening). 

F.4.5.4 Description: Orbital Field Matrix 

The orbital field matrix438 encodes each atom in a structure by a constant-length vector 

representing the valence subshells of the atomic environments in each structure. To do so, each 

atom in a structure is represented via its (neutral) electron configuration. This electron 

configuration is turned into a numerical vector via a one-hot encoding scheme using a dictionary 

composed of the possible valence subshell orbitals and their occupancies (i.e. 𝑠1, 𝑠2, 𝑝1, 𝑝2, …, 

𝑝6, 𝑑1, 𝑑2, …, 𝑑10, 𝑓1, 𝑓2, …, 𝑓14). This is a 32-entry one-hot encoding. As implemented in 

matminer,607 we supplemented this 32-entry encoding with 7 extra entries that represent the one-

hot encodings of the period number for the element (with lanthanides in period 6 and actinides in 

period 7). These atomic one-hot encoding vectors are then used to construct one-hot encoding 

vectors for each atomic local environment (i.e. an atom center and its coordinating atoms). This is 
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achieved by defining a 39 × 39 matrix obtained by multiplying the one-hot encoding vector of the 

central atom and a given coordinating atom. The orbital field matrix for an atomic environment is 

then the sum of these matrices between the center atom and each of its coordinating atoms, scaled 

by a distance function. This distance function is the inverse of the bond distance multiplied by a 

weighting factor (using the solid angle determined by the Voronoi polyhedra between the center 

atom and each neighbor). Each atomic environment orbital field matrix is converted into a 

structural orbital field matrix by averaging the atomic environment matrices across every atomic 

site such that each structure is described by an averaged 39 × 39 matrix, which is flattened to a 

1521-length encoding. Additional details can be found in the original work by Pham and 

coworkers.438 

F.4.5.5 Description: Average SOAP Kernel 

SOAP is a featurization method that encodes information about local atomic environments in a 

structure, which can then be used with an appropriate kernel function to measure the structural 

similarity between every pair of structures in a given dataset. For full details regarding SOAP, we 

refer the reader to the original paper on the use of SOAP for structure comparison440 and the brief 

summary and implementation of SOAP in the original DScribe paper,606 which we summarize 

below. We note that we have adopted much of the nomenclature from Musil and coworkers614 to 

clarify the description of the SOAP kernel. 

We start by representing a given structure using local atomic densities 𝜌, separately defined 

for each atomic element 𝑍. The local density of atoms within a chemical environment 𝜒𝑖 (i.e. a 

spherical region centered around atom 𝑖) is described as a sum of Gaussians placed at the central 

atom and the neighboring atoms within a cutoff region 𝑟cut. Mathematically, this is expressed as 
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𝜌𝜒𝑖
𝑍 (𝐫) = ∑ exp (−

|𝐫 − 𝐑𝑘|2

2𝜎2
)

𝑘

(F. 5) 

where 𝜎 is the standard deviation of the Gaussians, and |𝐫 − 𝐑𝑘| describes the distance between 

atom 𝑘, 𝐑𝑘, and position vector 𝐫. The origin, 𝒓 = 𝟎, is centered on the local point of interest (i.e. 

atom 𝑖). The summation is carried out for all atoms 𝑘 with atomic number 𝑍 in the structure that 

are within radius 𝑟cut from atom 𝑖. 

Given local atomic environments 𝑖 and 𝑗 in two structures 𝐴 and 𝐵, one can then compute 𝜌
𝜒𝑖

𝐴
𝑍  and 

𝜌
𝜒𝑗

𝐵
𝑍 . The structural similarity between two chemical environments in structures 𝐴 and 𝐵, denoted 

𝜒𝑖
𝐴 and 𝜒𝑗

𝐵, is 

�̃�(𝜒𝑖
𝐴, 𝜒𝑗

𝐵) = ∫ |∑ ∫ 𝜌
𝜒𝑖

𝐴
𝑍 (𝐫)𝜌

𝜒𝑗
𝐵

𝑍 (𝐫)d𝐫

ℝ3𝑍

|

2

SO(3)

d�̂� (F. 6) 

where SO(3) and �̂� refer to the group of all three-dimensional rotations. The above expression is 

necessary to achieve a rotationally invariant descriptor and describes the (squared) overlap of the 

density fields, integrated over all three dimensional rotations. In practice, the calculation of �̃� is 

carried out by expanding 𝜌(𝐫) using 𝑛max real spherical harmonic and ℓmax radial basis 

functions.440,606 We use spherical Gaussian type orbitals (GTOs) for the radial basis function in 

this work. The expression for �̃� can be normalized via 

𝑘(𝜒𝑖
𝐴, 𝜒𝑗

𝐵) =
�̃�(𝜒𝑖

𝐴, 𝜒𝑗
𝐵)

√�̃�(𝜒𝑖
𝐴, 𝜒𝑖

𝐴)�̃�(𝜒𝑗
𝐵, 𝜒𝑗

𝐵)

(F. 7)
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such that the self-similarity of a given environment, 𝑘(𝜒𝑖
𝐴, 𝜒𝑖

𝐴) or 𝑘(𝜒𝑗
𝐵, 𝜒𝑗

𝐵), is equal to 1. 

The similarity between all local atomic environments 𝑖 in structure 𝐴 and all local environments 𝑗 

in structure 𝐵 is then given by the general expression 

𝐶𝑖𝑗(𝐴, 𝐵) = 𝑘(𝜒𝑖
𝐴, 𝜒𝑗

𝐵) (F. 8) 

For a pair of structures 𝐴 and 𝐵, we can then compute an average kernel to go from the 

similarity of local environments to the similarity of global structures. This average kernel function 

is defined as 

𝐾(𝐴, 𝐵) = (
1

𝑛𝐴𝑛𝐵
∑ 𝐶𝑖𝑗(𝐴, 𝐵)

𝑖𝑗

)

𝜉

(F. 9) 

where 𝑛𝐴 and 𝑛𝐵 are the number of atoms in structure 𝐴 and 𝐵, respectively. Taking the summation 

over all sites 𝑖 and 𝑗 between the pairs of structures and then dividing by the number of atoms in 

both structures converts these otherwise local similarity scores into a global structural descriptor 

comparing structures 𝐴 and 𝐵. The variable 𝜉 is an optional model hyperparameter to modify the 

spread of entries in the kernel matrix, which we include as a tunable parameter during the KRR 

grid search. This expression for 𝐊 can be readily extended for all relevant pairs of structures, which 

can then be used directly with KRR. An example of the average SOAP similarity kernel for 

IRMOF-1, IRMOF-2, and ZIF-8 is shown in Figure F.2 for reference. Note that 𝐊 is normalized 

such that self-similarity is unity (i.e. 𝐾(𝐴, 𝐴) = 𝐾(𝐵, 𝐵) = 1). 
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Figure F.2. Average (normalized) SOAP similarity kernel for IRMOF-1, IRMOF-2, and ZIF-8. 

Here, 𝑟cut = 4 Å, 𝜎 = 0.1 Å, 𝜉 = 2, and 𝑛max = ℓmax = 9. 

 

F.4.6 Hyperparameter Tuning for KRR 

For featurization methods other than SOAP, a feature matrix 𝐗 is generated. As such, a decision 

must be made for the type of kernel function that should be used. The hyperparameters were 

identified based on a grid search via 5-fold cross-validation. Initially, we considered linear, 

Gaussian, and Laplacian kernel functions, of which we eventually decided to use a Laplacian 

kernel function (Equation F.3) where 𝛾 = 0.1 since this consistently yielded the lowest cross-

validation mean absolute error (MAE). A value of 𝛼 = 0.1 for the KRR regularization 

hyperparameter (Equation F.1) was chosen for all KRR models except for the sine Coulomb 

matrix, for which we use 𝛼 = 0.01. 

For the SOAP-based KRR model, there are two KRR parameters to tune: 𝛼 and 𝜉. These 

hyperparameters were also optimized using a grid search via 5-fold cross-validation, for which we 

decided upon 𝛼 = 0.001 and 𝜉 = 2. The SOAP descriptor itself also has several hyperparameters 

that can be tuned, including but not limited to the distance cutoff for determining local regions 

within a structure (𝑟cut), the maximum number of radial basis functions (𝑛max), the maximum 
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number of spherical harmonics (ℓmax), and the standard deviation of the Gaussians used to expand 

the atomic density (𝜎). Although there are too many parameters to easily carry out an exhaustive 

grid search, each parameter was independently adjusted, and the parameters that reduced the 

(average) MAE over the 5-fold cross-validation process were retained. This led to 𝑟cut = 4 Å, 𝜎 =

0.1 Å, and 𝑛max = ℓmax = 9. All other SOAP hyperparameters and settings were set to the default 

values in DScribe. 

F.4.7 Crystal Graph Convolutional Neural Networks 

CGCNN featurizes each crystal structure as an approximate crystal graph, defined such that the 

nodes are atoms and the edges are the atom connections, accounting for periodic boundary 

conditions. The crystal graphs are constructed by searching for a maximum set of neighbors within 

some user-defined cutoff distance. These crystal graphs are then fed as input to a convolutional 

neural network, wherein convolution and pooling layers convert the crystal graph to a given output, 

with the weights of the neural network updated to minimize the validation loss. Further details can 

be found in the original CGCNN paper.406 

Iterative testing of the various CGCNN hyperparameters led to the following high-

performing convolutional neural network configuration with regards to a reduced validation MAE: 

5 convolutional layers, 64 hidden atom features in the convolutional layers, 1 fully connected 

hidden layer after pooling, and 128 hidden features after pooling. A batch size of 16, initial learning 

rate of 0.01, and stochastic gradient descent optimizer were used. All other settings were the default 

values, including a neighbor search radius of 8 Å and a maximum of 12 neighbors connected to 

every node in the graph. The best model obtained within 400 epochs (in terms of validation MAE) 

was retained. We note that several variations on the original CGCNN algorithm, such as CGCNN 
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with a tanh activation function615 and iCGCNN,616 did not show substantial improvements over 

the original CGCNN implementation, although a detailed exploration of the hyperparameter space 

was not carried out. 

In the original CGCNN work,406 the (initial) CGCNN node (i.e. atom) feature vectors were 

based on one-hot encodings of group number, period number, electronegativity, covalent radius, 

number of valence electrons, first ionization energy, electron affinity, block, and atomic volume. 

However, the currently published version of the code contains several inconsistencies in the one-

hot encodings compared to that reported in the original text.617 As such, we regenerated the atom 

initialization file and made several minor modifications to the initialization process, wherein we: 

1) used Pauling electronegativities instead of Sanderson electronegativities; 2) defined the 

lanthanides and actinides as period 6 and 7 rather than 8 and 9; 3) placed the lanthanides and 

actinides in a fictitious group 19; 4) used van der Waals radius instead of the covalent radius 

defined by Cordero and coworkers618; 5) removed the atomic volume feature; 6) removed the 

electron affinity feature. Tabulated values were taken from mendeleev v.0.5.2.619 Functionally, we 

found that this process has no apparent change in the performance of the CGCNN models 

developed in this work, likely because the node vectors are iteratively optimized during the model 

training process. Nonetheless, the changes were retained. The edge (i.e. bond) feature vectors 

contain the bond distance between nodes, as in the original CGCNN work.406 

F.4.8 Dimensionality Reduction 

Dimensionality reduction was carried out via the uniform manifold approximation and projection 

(UMAP) algorithm447 as implemented in umap v.0.4.6.448 UMAP constructs a weighted graph of 

a given dataset in the high-dimensional space and then projects this graph to a lower-dimensional 
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(in this case, two-dimensional) space. Each node of the graph represents a data point, with the 

edges representing the proximity of each pair of data points in the feature space.447 The number of 

neighbors was set to 15 (for SOAP) or 50 (for Stoichiometric-120), and the minimum distance 

between points was set to 0.1 (for SOAP) and 0.4 (for Stoichiometric-120). All other parameters 

were set to the default values (for reproducibility, a random seed of 42 was used). For the 

connectivity map, edge bundling620 was enabled to help convey the overall structure by allowing 

edges to curve and then grouping nearby connections. 

The SOAP similarity kernel was converted to a distance matrix 𝐃 by invoking the 

following metric: 

𝐷𝑖𝑗 = √𝐾𝑖𝑖 + 𝐾𝑗𝑗 − 2𝐾𝑖𝑗 ∴ 𝐃 = √2 − 2𝐊 (F. 10) 

since the self-similarity scores 𝐾𝑖𝑖 and 𝐾𝑗𝑗 are normalized to 1. A Euclidean distance metric was 

used with the Stoichiometric-120 descriptor to create the distance matrix. Although maximum 

atomic number, max(𝑍), is not a feature in Stoichiometric-120, it can be directly related to the 

range(𝑍) feature since min(𝑍) = 1 in every MOF. For this reason, we use the more intuitive 

max(𝑍) feature in Figure 7.6a. 

F.4.9 Methodological Comments for Data Reuse 

One of the main motivations for developing the QMOF Database is to enable the 

development/evaluation of new machine learning models. In this case, if the goal is to develop a 

new machine learning algorithm specifically tailored for MOFs, there are a few comments worth 

considering.  
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First, if the purpose is to predict the properties of the optimized MOF structures from the 

un-optimized structures, then it is important to note that some MOFs have small structural changes 

before and after optimization whereas others may have somewhat significant changes in the lattice 

constants (e.g. due to solvent removal). This may (or may not) influence the machine learning 

process, depending on the property of interest and the way in which the MOFs are encoded. For 

computational simplicity, we have also assumed a high-spin initial guess for the magnetic 

moments in a similar manner as the current iterations of the OQMD30 and Materials Project.29,33 

While this initial guess may converge to a spin state quite different from the high-spin 

initialization, it is inevitable that several open-shell MOFs in the QMOF Database are not at their 

true magnetic ground states. This is especially the case for MOFs with the possibility of 

antiferromagnetic ordering. 

Another aspect to consider is that, while every effort was made to ensure the initial 

structures were charge-neutral and accurately constructed, it is inevitable that some structures in 

the database are not pristine. Oftentimes, this can occur for reasons completely outside the control 

of the workflow shown in Figure F.1, such as if some atoms could not be identified experimentally 

and were never included in the CIF or CSD entry. The most common scenario is likely 

omitted/additional H atoms, which are particularly difficult to identify if not already specified in 

the CSD entry. While many of these instances are filtered out either via the workflow in Figure 

F.1 or due to SCF convergence issues when the DFT calculations were performed, additional 

filtering steps are always possible and are suggested for new applications of interest. Users are 

encouraged to flag any identified “structural fidelity” issues on the QMOF Database GitHub 

page.402 
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We also note that the definition of a MOF employed by the CSD MOF subset44 is 

significantly less strict than that of the CoRE MOF database.14 Namely, materials in the CSD MOF 

subset do not need to be porous, and there is no restriction on the dimensionality of the framework 

itself. This is arguably ideal from a data inclusivity and model generalizability standpoint but will 

result in a subset of materials that are perhaps better classified as coordination polymers rather 

than “conventional” MOFs. For training machine learning models to predict electronic structure 

properties, it is not expected that the presence or lack of pore space would directly influence the 

properties of interest. Nonetheless, users only interested in more “conventional” MOF structures 

may wish to filter the QMOF Database by pore size and/or framework dimensionality. 

Finally, as mentioned in the text surrounding Figure 7.2a, some types of MOFs are likely 

to be underrepresented in the current version of the QMOF Database. The most apparent cases are 

MOFs that have undergone post-synthetic modification, MOFs with defects, and MOFs with 

metal-oxo clusters containing complex proton topologies. Unsupervised learning methods like 

those presented in this work can be used to determine if new MOFs of interest overlap in feature 

space with the MOFs in the QMOF Database. For instances where there is not significant overlap, 

we encourage users to supplement the QMOF Database with their own structures of interest. For 

particularly problematic structures in experimental MOF databases and/or those with elements that 

appear relatively infrequently in the database (e.g. Zr, Hf, and Al MOFs), we encourage the use of 

hypothetical MOF construction codes (e.g. ToBaCCo90,621) to generate “clean” starting structures 

suitable for DFT screening. 
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F.5 Supplemental Figures and Tables 

F.5.1 Example Flexible MOF 

The experimental and theoretical lattice constants for an example flexible MOF in the QMOF 

Database, Fe(bdp) (H2bdp = 1,4-benzenedipyrazole)431 (Figure F.3), are shown in Table F.5. 

QUPZIM 

 

 

QUPZIM01 

 

QUPZIM02 

  

Figure F.3. DFT-optimized structures of three different conformations of Fe(bdp) in the QMOF 

Database. Color key: Fe (orange), N (blue), C (gray), H (white). 
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Table F.5. Experimental lattice constants431 for the flexible MOF Fe(bdp) compared to the PBE-

D3(BJ) lattice constants from the QMOF Database. 

CSD Refcode  𝑎 (Å) 𝑏 (Å) 𝑐 (Å) 𝛼 (°) 𝛽 (°) 𝛾 (°) 

QUPZIM 
Exp. 6.89 6.98 13.00 91.6 105.4 90.0 

Theory 6.89 6.55 13.03 91.8 105.3 90.0 

QUPZIM01 
Exp. 6.95 13.48 13.48 83.2 84.5 84.5 

Theory 5.60 13.68 13.68 87.6 72.3 72.3 

QUPZIM02 
Exp. 7.20 13.41 13.41 90.0 90.0 90.0 

Theory 7.06 13.47 13.47 90.0 90.0 90.0 

F.5.2 Dataset Overview 

The average band gaps associated with each element are shown in Figure F.4. The partial charges 

before and after optimization are shown in Figure F.5A, indicating that the values do not 

substantially change upon structure relaxation. We also plot the cumulative frequency of absolute 

deviations in partial chares before and after structure relaxation in Figure F.5B. 

 
Figure F.4. Average DFT-computed band gap at the PBE-D3(BJ) level of theory, �̅�g,DFT, for MOFs 

containing a given metal element in the QMOF-14482-opt set. If multiple metal elements are 

present in a given MOF, the band gap is considered for both elements. Metals with less than 10 

entries were excluded. 
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A) 

 

B) 

 

Figure F.5. a) Parity plot comparing the DDEC6 partial atomic charges for the QMOF-14170-opt 

(𝑞opt) and QMOF-14170-SP (𝑞SP) datasets. b) The cumulative fraction of DDEC6 partial atomic 

charges in the QMOF-14170-opt dataset that are within some tolerance, given by |𝑞opt − 𝑞SP|, of 

the QMOF-14170-SP dataset. 

 

F.5.3 High-Spin Fe MOFs 

MOFs in the QMOF Database that contain both high-spin iron species (defined as having a spin 

density with a magnitude greater than 3.5 based on a DDEC6158 population analysis) and a pore-

limiting diameter greater than 3.6 Å (the kinetic diameter of N2) following the structure relaxation 

workflow are shown in Figure F.6. These MOFs include: Fe2(dobdc) (H4dobdc = 2,5-

dihydroxybenzene-1,4-dicarboxylic acid) (refcode: COKNOH)432 and its expanded pore analogue 

Fe2(dobpdc) (H4dobpdc = 4,4′-dihydroxy-(1,1′-biphenyl)-3,3′-dicarboxylic acid) (refcode: 

MALSIE),204 Fe2Cl2(bbta) (H2bbta = 1H,5H-benzo(1,2-d:4,5-d′)bistriazole) (refcode: 

HAYYUE)193 and its expanded pore analogue Fe2Cl2(btdd) (H2btdd = bis(1H-1,2,3-triazolo[4,5-

b],[4′,5′-i])dibenzo[1,4]dioxin) (refcode: HAYZAL),193 Fe(bdp) (refcode: QUPZIM01),431 and 

Fe(bpz) (H2bpz = 4,4′-bipyrazole) (refcode: ACODAA).476 For brevity, we exclude refcodes that 

have identical frameworks but contain guest species in the pores or are different conformations of 

the same MOF. 
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A) 

 

B) 

  

C) 

 

D) 

 

E) 

 

F) 

 

Figure F.6. Porous MOFs in the QMOF Database with high-spin Fe sites. A) Fe2(dobdc) (refcode: 

COKNOH); B) Fe2(dobpdc) (refcode: MALSIE); C) Fe2Cl2(bbta) (refcode: HAYYUE); D) 

Fe2Cl2(btdd) (refcode: HAYZAL) E) Fe(bdp) (refcode: QUPZIM01); F) Fe(bpz) (refcode: 

ACODAA). Color key: Fe (orange), N (blue), O (red), Cl (green), C (gray), H (white). 
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F.5.4 Comparing Machine Learning Models for Band Gap Prediction 

 
Figure F.7. Testing set parity plot for the A) Sine Coulomb matrix, B) Stoichiometric-45, C) 

Stoichiometric-120, D) Orbital field matrix, E) SOAP, and F) CGCNN machine learning models. 

The data is presented with hexagonal binning, comparing the machine learning band gaps, 𝐸g,ML, 

to the DFT-computed band gaps, 𝐸g,DFT. The color bar indicates the number of MOFs in each bin, 
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and the line of parity is shown as a dashed line. Histograms summarizing the distribution of 𝐸g,ML 

and 𝐸g,DFT data are displayed parallel to the 𝑦- and 𝑥-axes, respectively. 

 

F.5.5 Comparing Against ML Band Gap Models for Other Crystalline Materials 

It is worth comparing the results of the top-performing ML models in this work against state-of-

the-art ML models developed for the band gaps of other crystalline materials in the literature. In 

the original CGCNN work, the convolutional neural network was able to achieve a testing MAE 

of 0.39 eV when trained on 16,458 inorganic solids from the OQMD.406 A different graph network 

approach – the MatErials Graph Network (MEGNet) – achieved an MAE of 0.38 eV when trained 

on 36,720 inorganic solids from the Materials Project, which could be reduced to 0.33 eV after 

transfer learning via a model originally trained on the DFT-computed formation energies of 60,000 

inorganic solids.442 Recently, a global attention graph neural network (GATGNN) achieved MAEs 

of 0.32 eV and 0.31 eV on the OQMD and Materials Project datasets, respectively.622 Particularly 

relevant for the present study, Olsthoorn et al.443 used a weighted average of SOAP- and SchNet623-

based ML regression models trained on 10,000 band gaps of organic crystals in the Organic 

Materials Database (OMDB)37 to achieve a testing MAE of 0.39 eV. The band gaps in the OMDB 

work were based on single-point calculations of the as-deposited crystal structures, as geometry 

optimizations were not carried out. In addition, organic crystals with non-zero net magnetic 

moments were not considered in the OMDB work. 

F.5.6 Additional UMAP Results 

It is also worth investigating the degree of overlap in feature space between the QMOF-14482 

dataset and the parent QMOF-42349 dataset that the former was drawn from. To carry out this 

analysis, we used UMAP to project the feature space of the QMOF-42349 dataset to two 

dimensions. Again, we used the Stoichiometric-120 descriptor to featurize each material. We then 



415 

 

highlighted the subset of materials that are also present in the QMOF-14482 dataset. As shown in 

Figure F.8, there is significant overlap between the two datasets, such that we can expect ML 

models trained on the QMOF-14482 dataset to be applicable to other MOFs deposited in the CSD. 

We carried out a similar analysis to compare the QMOF-14482 dataset with the CoRE MOF 2019 

(v.1.1.3) database.14 For this purpose, we use the CoRE MOF 2019 database with free solvent 

removed (i.e. “FSR”), including both the “public” and “internal” subsets but excluding structures 

flagged as having disorder that could not be refined. Significant overlap in the reduced feature 

space was observed between both databases (Figure F.9). 

Figures F.10 and S11 show Stoichiometric-120- and SOAP-based UMAPs generated for 

the QMOF-14482 dataset, respectively, but with edge connections shown to highlight the 

connectivity between different local regions in the projection. This is particularly notable for the 

Stoichiometric-120 UMAP, which shows that the individual clusters are connected in sequential 

order of max(𝑍) (Figure 7.6a, Figure F.10). The edge connections for the SOAP-based UMAP 

also makes the local regions, and their connectivity, clearer. 
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Figure F.8. Structural dimensionality reduction performed using UMAP, with a distance matrix 

obtained from the Euclidean distance of the Stoichiometric-120 encodings for the structures in the 

QMOF-42349 dataset. The QMOF-14482 subset is overlaid onto the projection. 

 
Figure F.9. Structural dimensionality reduction performed using UMAP, with a distance matrix 

obtained from the Euclidean distance of the Stoichiometric-120 encodings for the structures in the 

QMOF-14482 and CoRE MOF 2019 (free solvent removed) databases. 
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Figure F.10. Structural dimensionality reduction performed using UMAP, with a distance matrix 

obtained from the Euclidean distance of the Stoichiometric-120 encodings of the structures in the 

QMOF-14482 dataset. The connectivity between points is shown. Brighter colors indicate a greater 

density of connections. 

 

 
Figure F.11. Structural dimensionality reduction performed using UMAP, with a distance matrix 

obtained from the average SOAP similarity kernel of the (unrelaxed) structures in the QMOF-

14482 dataset. The connectivity between points is shown. Brighter colors indicate a greater density 

of connections. 
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F.5.7 Electronic Structure of GUTYAW 

The projected density of states at the HSE06-D3(BJ) level of theory for Sr[C2H4(SO3)2] (refcode: 

GUTYAW472) is shown in Figure F.12. 

 
Figure F.12. a) Structure of Sr[C2H4(SO3)2]. b) Total and projected density of states. The energy, 

𝐸, is shown with respect to the Fermi level, 𝐸f. 

 

F.5.8 Limitations of Averaging Schemes 

For any featurization method, there are inevitable limitations with how a given set of materials is 

encoded for machine learning. In the case of an average SOAP kernel, for instance, one limitation 

is that every atomic environment is weighted equally. To highlight why this may be imperfect, we 

show the average SOAP similarity kernel for IRMOF-1 with the formula Zn4O(bdc)3 (bdc = 
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benzene-1,4-dicarboxylate), IRMOF-2 with the formula Zn4O(bdc-Br)3, IRMOF-10 with the 

formula Zn4O(bpdc) (bpdc = 4,4′-biphenyldicarboxylate), Zn2(dobdc) (dobdc = 2,5-

dihydroxybenzene-1,4-dicarboxylate), and MFU-4l (MFU = Metal–Organic Framework Ulm 

University, l = large) with the formula Zn5Cl4(btdd)3 (btdd = bis(1,2,3-triazolato-[4,5-b],[4′,5′-

i])dibenzo-[1,4]-dioxin)) (Figure F.13). While IRMOF-1 and the functionalized analogue IRMOF-

2 have nearly identical averaged SOAP features, IRMOF-1 and the elongated analogue IRMOF-

10 are quite different (Table F.6). In fact, IRMOF-1 and Zn2(dobdc) are more similar than IRMOF-

1 and IRMOF-2 based on the average SOAP kernel (Table F.6). This can likely be traced back to 

the similarity of the linkers (bdc vs. dobdc) in IRMOF-1 and Zn2(dobdc) despite their very different 

inorganic nodes (Zn4O vs. isolated Zn sites) and metal coordination environments (tetrahedral vs. 

square pyramidal). Weighting the structural similarity of the inorganic nodes and organic linkers 

by different factors is one approach that may resolve this issue, aside from trying alternate kernel 

methods such as the computationally more expensive regularized entropy match (REMatch) 

kernel.440 This phenomenon is also expected to limit the performance of other methods that involve 

simple averaging over a structure, such as the orbital field matrix. With the development of a 

database of DFT-computed MOF properties, there is a rich opportunity for exploring featurization 

methods that are constructed specifically for the robust and accurate representation of MOFs. 
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Figure F.13. Crystal structures of IRMOF-1, IRMOF-2, IRMOF-10, Zn2(dobdc) (also known as 

Zn-MOF-74 and Zn-CPO-27), and MFU-4l. 

 

Table F.6. Average (normalized) SOAP similarity kernel for IRMOF-1, IRMOF-2, IRMOF-10, 

Zn2(dobdc), and MFU-4l. Here, 𝑟cut = 4 Å, 𝜎 = 0.1 Å, 𝜉 = 2, and 𝑛max = ℓmax = 9. 

 IRMOF-1 IRMOF-2 IRMOF-10 Zn2(dobdc) MFU-4l 

IRMOF-1 1.00 0.98 0.52 0.92 0.73 

IRMOF-2 0.98 1.00 0.43 0.94 0.72 

IRMOF-10 0.52 0.43 1.00 0.29 0.35 

Zn2(dobdc) 0.92 0.94 0.29 1.00 0.64 

MFU-4l 0.73 0.72 0.35 0.64 1.00 
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Appendix G. APPENDIX FOR CHAPTER 8 

G.1 Additional Methodological Details 

G.1.1 New Properties at the HLE17, HSE06*, and HSE06 Levels of Theory 

Prior to this study, the QMOF Database consisted only of PBE-D3(BJ) optimized structures with 

properties provided at the same level of theory. In the present work, we have updated the QMOF 

Database with properties at the HLE17, HSE06*, and HSE06 levels of theory using the 

aforementioned PBE-D3(BJ) geometries. This new data includes but is not limited to: absolute 

energies, band gaps, total and projected density of states, DDEC6 population analysis (i.e. partial 

atomic charges, atomic spin densities, bond orders),158,230–232 Charge Model 5 (CM5) charges,289 

magnetic moments, and charge densities. For these calculations, all PBE-D3(BJ) optimized 

structures were obtained from v4 of the QMOF Database.75,402 The DFT settings for the 

HLE17/HSE06*/HSE06 calculations are summarized in Table G.1 and are identical to those used 

in the original construction of the QMOF Database,75 with the following exceptions: 

• A 𝑘-point grid density (KPPA) of 500/(number of atoms per cell) was used, as arranged 

using the automatic 𝑘-pointy density generator in Pymatgen.82 This is reduced from the 

standard KPPA of 1000 used in the QMOF Database in order to decrease the computational 

cost of the meta-GGA and hybrid-level calculations. 

• The preconditioned conjugate gradient algorithm132,133,338 (algo=all instead of algo=Fast) 

was used to converge the self-consistent field (SCF), as this is the recommended algorithm 

for hybrid- and meta-GGAs.  



422 

 

• An SCF energy convergence criterion of 10-5 eV (instead of 10-6 eV) was chosen as a 

reasonable balance between runtime and precision for meta-GGA and hybrid-level 

calculations. 

• 2000 grid-points (instead of the VASP default of 301) were used when writing out the 

density of states (DOS). 

• A PBE wavefunction and charge density with KPPA of 500 (“PBE-lowkpt”) was used as 

the initial guess for the HSE06 and HLE17 calculations. Note that all PBE results reported 

throughout this work are nonetheless presented using the higher accuracy settings with a 

KPPA of 1000. 

• For the HSE06* calculations, the wavefunction and charge density from the HSE06 

calculations were used as the initial guess. 

To summarize the most important DFT-related settings in Table G.1, the plane-wave kinetic 

energy cutoff was set to 520 eV, a KPPA of 500 was specified using the automatic_density() 

function in Pymatgen for the HLE17/HSE06*/HSE06 calculations,82 the “accurate” precision 

keyword was enabled in VASP, Gaussian smearing of the band occupancies was applied with a 

smearing width of 0.01 eV, and symmetry considerations were disabled. 

Although it does not influence the band gaps or partial charges discussed in this work, the 

D3(BJ) dispersion correction467 was enabled for the HSE06 calculations since they were also 

included during the PBE-D3(BJ) structure relaxations. For consistency, the same D3(BJ) 

parameters were used for HSE06* as HSE06. The dispersion-free electronic energies, energy 

contribution from dispersion corrections, and total energies are all made available in the QMOF 

Database. 
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Table G.1. ASE and VASP input arguments for the VASP calculators used in the screening 

workflow.a Note that the “PBE-lowkpt” calculations are only used to generate the wavefunction 

and charge density for the HLE17, HSE06*, and HSE06 calculations. 

Flag PBE PBE-lowkpt HLE17 HSE06* HSE06 
xc 'PBE' 'PBE' 'HLE17' 'HSE06' 'HSE06' 
aexx 0 0 0 0.1 0 
ivdw 12 12 0 12 12 
encut 520 520 520 520 520 
kppab 1000 500 500 500 500 
prec 'Accurate' 'Accurate' 'Accurate' 'Accurate' 'Accurate' 

ismear 0 0 0 0 0 
sigma 0.01 0.01 0.01 0.01 0.01 
ediff 1E-6 1E-6 1E-5 1E-5 1E-5 
algo 'All' 'All' 'All' 'All' 'All' 
nelm 150 200 100 100 100 
lreal False False False False False 
nsw 0 0 0 0 0 

lorbit 11 11 11 11 11 
isym 0 0 0 0 0 

symprec 1E-8 1E-8 1E-8 1E-8 1E-8 
nedos 301 2000 2000 2000 2000 
lcharg True True True True True 
laechg True True True True True 
lwave True True True True True 
icharg 0 2 1 1 1 
vdw_s8 0.7875 0.7875 N/A 2.310 2.310 
vdw_a1 0.4289 0.4289 N/A 0.383 0.383 
vdw_a2 4.4407 4.4407 N/A 5.685 5.685 

aThe pseudopotentials can be automatically selected in ASE with 

setups={'base':'recommended','Li':'','Eu':'_3','Yb':'_3', 'W':'_sv'}. The v.54 projector-augmented 

wave (PAW)123 pseudopotentials were used throughout this work. 
b𝑘-point density computed with the automatic_density() tool in Pymatgen, which was used to set the kpts and 

gamma flags in ASE. The choice of whether the grid should be Γ-centered or not and how the 𝑘-points are distributed 

among the three lattice dimensions are also determined based on this Pymatgen utility. 

 

Several checks and filtering steps were performed when carrying out the HLE17, HSE06*, and 

HSE06 calculations: 
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• For computational efficiency, we only considered structures with less than or equal to 150 

atoms per cell. We also only considered unique structures, as determined by using 

Pymatgen’s StructureMatcher utility. 

• Any calculations with VASP-related errors or SCF convergence issues were discarded. 

• We adopted the converged PBE-D3(BJ) magnetic moments from the QMOF Database as 

the initial guesses in this work. As a matter of internal consistency, we discarded any 

calculations where the final net magnetic moment converged to one different than the 

provided initial guess. 

• Non-PBE calculations were not run if the MOF had a net force greater than or equal to 0.1 

eV/Å on any atom at the “PBE-lowkpt” level of theory (compared to the expected 

maximum of ~0.03 eV/Å at the “PBE” level of theory with the denser 𝑘-point grid). 

• Non-PBE calculations were not run if the band gap differed by more than ±0.1 eV between 

the original PBE-D3(BJ) calculations and the “PBE-lowkpt” level of theory. 

• To simplify the data analysis, we only considered structures where all the investigated 

levels of theory were successfully completed unless otherwise stated. 

The above process resulted in a dataset of 11,122 structures with computed properties at 

all the tested levels of theory. For this 11,122 structure dataset, the deviations in computed band 

gap and total energies between the “PBE” and “PBElowkpt” settings are shown in Figure G.1 and 

Figure G.2, respectively. The maximum net force at the “PBElowkpt” settings is shown in Figure 

G.3. 
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Figure G.1. Histogram showing the difference in the band gaps computed using the “PBE” and 

“PBElowkpt” settings, Δ𝐸g,PBE. A positive value indicates the “PBElowkpt” band gap is higher 

and vice versa. 

 

 
Figure G.2. Histogram showing the difference in the total energies using the “PBE” and 

“PBElowkpt” settings, Δ𝐸PBE. A positive value indicates the “PBElowkpt” energy is higher and 

vice versa. 
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Figure G.3. Histogram showing the maximum net force, 𝐹max,PBElow, computed using the 

“PBElowkpt” settings. 

 

G.1.2 Additional Methodological Details 

We used Pymatgen’s82 eigenvalue_band_properties function to compute the band gaps from the 

DFT calculations. Previously, eigenvalue_band_properties only provided min(CBM↑, CBM↓) −

max(VBM↑, VBM↓) as the band gap for spin-polarized calculations. We have since updated the 

function to allow for the calculation of CBM↑ − VBM↑ and CBM↓ − VBM↓ for spin-polarized 

calculations so that the band gaps of the individual spin channels are easily obtained (see Pymatgen 

v.2022.0.10 and newer). All values are reported in the QMOF Database.  

When classifying if a MOF has closed-shell or open-shell character, we investigated the 

net magnetic moment and DDEC6 spin densities. If the net magnetic moment was nonzero or the 

material had an absolute DDEC6 spin density on any atom greater than 0.1, the material was 

classified as having open-shell character; otherwise, it was classified as having closed-shell 

character. When classifying if an atom was a (semi-)metal or nonmetal, we used the following list 

of nonmetals: H, He, C, N, O, F, Ne, P, S, Cl, Ar, Se, Br, Kr, I, Xe, Rn. All other elements were 

classified as a (semi-)metal. 
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While v4 of the QMOF Database was the most up-to-date version of the database when the 

HLE17/HSE06*/HSE06 calculations were initiated, the database has since been updated and now 

has more PBE-quality structures and computed properties than v4. Therefore, for any figures 

involving only PBE-quality partial charges meant to compare charge calculation schemes (e.g. 

Figure 8.5), we used all the charge data available in the most up-to-date version of the QMOF 

Database. Because the QMOF Database currently has more DDEC6 and CM5 charge data than 

Bader charge data, Figure 8.5a shows the results for 911,092 atoms (Bader vs. DDEC6), whereas 

Figure 8.5b (CM5 vs. DDEC) shows the results for 1,893,381 atoms. For the PACMOF399 

calculations, MOFs that could not have their partial charges predicted were removed from the 

dataset. 

For the analysis shown in Figures 8.4d, G.7, and G.8 we searched through every atom in 

the MOF to identify any metal sites (i.e. those not in the nonmetal list). Pymatgen’s 

CrystalNN335,336 function was used to identify any nonmetal atoms within the first coordination 

sphere of each metal center. The difference in partial atomic charge on the metal sites as a function 

of the level of theory was then compared to the difference in partial atomic charge on the ligand 

atoms in the first coordination sphere.  

The following software packages were used in this work: VASP 5.4.4  with the v.54 

projector-augmented wave pseudopotentials (DFT calculations),122,123 Chargemol 09-26-2017 

(DDEC6 and CM5 calculations),374 ASE 3.20.0b1 (orchestrate VASP calculations),83 Pymatgen 

2022.0.10 (electronic structure analysis),82 Bader 1.04 (Bader analysis),159 

NumPy/Pandas/SciPy/matplotlib/seaborn (data analysis and visualization),561,563,603–605 and 

PtitPrince v.0.2.5 (for raincloud plots624). 
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G.1.3 Accounting for Spin-Forbidden Transitions 

An example DOS plot is shown in Figure G.4 for a magnetic material with three possible band 

gaps. While 𝐸g,#1 in Figure G.4 represents the gap in energy between the highest energy valence 

band and lowest energy conduction band, the VBM and CBM are of opposite spin. Using 

min(CBM↑ − VBM↑, CBM↓ − VBM↓), the band gap would be 𝐸g,#2 and not involve a spin 

transition. 

Figure G.5 is an analogue of Figure 8.1, but now 𝐸g is calculated as min(CBM↑ −

VBM↑, CBM↓ − VBM↓) instead of min(CBM↑, CBM↓) − max(VBM↑, VBM↓). While there are slight 

changes to some of the band gaps for the spin-polarized calculations, the overarching trends 

between functionals remain unchanged.  

 
Figure G.4. Density of states (DOS) for an example structure (refcode: PORKUE) at the PBE level 

of theory where multiple band gaps can be defined, denoted 𝐸g,#1, 𝐸g,#2, and 𝐸g,#3. All energy 

values 𝐸 are with respect to the Fermi level 𝐸f.  Color key: Spin-up (blue), Spin-down (orange).  
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Figure G.5. Raincloud plots (i.e. combined violin plot, box plot, and strip plot) for the DFT-

computed band gaps, 𝐸g, of 11,122 structures in the QMOF Database at the PBE, HLE17, HSE06*, 

and HSE06 levels of theory. Here, 𝐸g is defined as min(CBM↑ − VBM↑, CBM↓ − VBM↓). The strip 

plots show all the data at that level of theory (jittered horizontally for ease-of-visualization). The 

box plots show the extrema (whisker tails), interquartile range (box boundaries), and median 

(horizontal line). The violin plots show the probability density of the data. 
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G.2 Additional Results 

 
Figure G.6. Parity plots of the computed band gaps, 𝐸g, for 8970 closed-shell structures in the 

QMOF Database at various levels of theory. a) HLE17 vs. PBE; b) HSE06* vs. PBE; c) HSE06 

vs. PBE. Given the large dataset size, the data is plotted with hexagonal bins with the color bar 

reflecting the frequency of points in each bin. Histograms of the underlying band gap data are 

shown parallel to their corresponding axes. Best-fit lines (generated for the un-binned data) are 

shown as solid lines. 
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Figure G.7. A histogram of the change in DDEC6 charges between the PBE and HLE17 levels of 

theory for the (semi-)metals and ligand atoms within the first coordination sphere. 

 

 
Figure G.8. A histogram of the change in DDEC6 charges between the PBE and HSE06* levels of 

theory for the (semi-)metals and ligand atoms within the first coordination sphere. 
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Figure G.9. Parity plot of the partial atomic charges computed using the Bader, 𝑞Bader,PBE, and 

DDEC6, 𝑞DDEC6,PBE, charge partitioning schemes at the PBE level of theory. Points are only 

included for the elements Si (blue), P (orange), S (green), and Cl (red). The line of parity is shown 

as a dashed diagonal line. 

 

 
Figure G.10. Parity plot of the partial atomic charges computed from the DDEC6 method (DFT at 

the PBE level of theory), 𝑞DDEC6,PBE, and the pre-trained PACMOF399 machine learning model, 

𝑞PACMOF. The data consists of partial charges for 1,703,975 atoms. The line of parity is shown as 

a dashed diagonal line. The model performs with a mean absolute error of 0.03 and an 𝑅2 of 0.98 

despite being trained on partial charges for a separate database of MOF structures.234 
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The End.

 


