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ABSTRACT

Optimization Methods for Scale Invariant Problems in Machine Learning

Cheolmin Kim

While optimization has received much attention in the machine learning community, most

of them consider unconstrained supervised learning models such as neural networks and

support vector machine. In this dissertation, we introduce a new class of optimization prob-

lems called scale invariant problems that include interesting unsupervised learning models

such as PCA, ICA, GMM and KL-NMF. We develep scalable optimization algorithms for

scale invariant problems and provide their convergence guarantees.

The first half of this thesis develops deterministic optimization algorithms. Specifically,

we develop an iterative optimization algorithm for L1-norm kernel PCA and generalizes

it to solve general scale invariant problems. In the second half, we study stochastic

optimization methods. We present two stochastic PCA algorithms and develop a stochastic

generalization of power iteration to solve scale invariant problems with finite-sum objective

functions. Numerical experiments on various scale invariant problems reveal that the

proposed algorithms not only scale better than state-of-the-art algorithms but also produce

excellent quality robust solutions.
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CHAPTER 1

Introduction

This thesis considers a class of optimization problems called scale invariant problem of

the form

(1.1) max
x

f(x) subject to x ∈ ∂Bd , {x ∈ Rd : ‖x‖ = 1}

where f : Rd → R is a scale invariant function. A function f is called scale invariant, which

is rigorously defined later, if its geometric surface is invariant under constant multiplication

of x. Several optimization problems in statistics and machine learning have the form of

(1.1), for instance, Lp-norm kernel PCA and maximum likelihood estimation of mixture

proportions, to name a few. Moreover, as studied herein, independent component analysis

(ICA), Gaussian mixture model (GMM), Kullback-Leibler divergence non-neative matrix

factorization (KL-NMF) and the Burer-Monteiro factorization of semidefinite programming

(SDP) problem are formulated as extended settings of (1.1).

In the first chapter of this thesis, we study L1-norm kernel PCA, which is an instance of

(1.1) with the objective function f(x) =
∑n

i=1 |Φ(ai)
Tx|. We present an iterative algorithm

to solve L1-norm kernel PCA and provide a convergence analysis for it. While an optimal

solution of L2-norm kernel PCA can be obtained through matrix decomposition, finding

that of L1-norm kernel PCA is not trivial due to its non-convexity and non-smoothness.

We provide a novel reformulation through which an equivalent, geometrically interpretable
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problem is obtained. Based on the geometric interpretation of the reformulated problem,

we present a “fixed-point” type algorithm that iteratively computes a binary weight for

each observation. As the algorithm requires only inner products of data vectors, it is

computationally efficient and the kernel trick is applicable. In the convergence analysis,

we show that the algorithm converges to a local optimal solution in a finite number of

steps. Moreover, we provide a rate of convergence analysis, which has been never done for

any L1-norm PCA algorithm, proving that the sequence of objective values converges at a

linear rate. Numerical experiments show that the algorithm is robust in the presence of

entry-wise perturbations and computationally scalable, especially in a large-scale setting.

Moreover, we introduce an application to outlier detection where the model based on the

proposed algorithm outperforms the benchmark algorithms.

Based on the observation that the same approach can be used to develop an algorithm

for general scale invariant objective functions, we study scale invariant problems in the

second chapter and derive an algorithm called scale invariant power iteration (SCI-PI).

SCI-PI has a general form of power iteration that finds the leading eigenvector of a

matrix. Since a stationary point of (1.1) is an eigenvector of the Hessian evaluated at the

point, the scale invariant problem can be locally seen as a leading eigenvector problem

near a local optimal solution. Our convergence analysis reveals that SCI-PI attains

local linear convergence with a generalized convergence guarantee of power iteration.

Moreover, we discuss some extended settings of (1.1) and provide similar convergence

results. In numerical experiments, we introduce applications to ICA, GMM and KL-NMF.

Experimental results demonstrate that SCI-PI is competitive to state-of-the-art benchmark

algorithms and often yield better solutions.
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In the third chapter, we consider the PCA problem whose objective function f(x) =

1

2n

∑n
i=1(aTi x)2 consists of finitely many convex quadratic functions. This chapter presents

two stochastic variance-reduced PCA algorithms and provide their convergence analyses.

By deriving explicit forms of step size, epoch length and batch size to ensure the optimal

runtime, we show that the proposed algorithms can attain the optimal runtime with any

batch sizes. Our novel approach, which studies the optimality gap as a ratio of two expec-

tation terms, allows us to establish global convergence of the algorithms. The framework in

our analyses is general and can be used to analyze other stochastic variance-reduced PCA

algorithms and improve their analyses. Moreover, we introduce practical implementations

of the algorithms which do not require hyper-parameters. The experimental results show

that the proposed methodsd outperform other stochastic variance-reduced PCA algorithms

regardless of the batch size.

The last chapter studies a stochastic variance-reduced algorithm to solve scale invari-

ant problems with finite-sum objective functions and provides a convergence analysis.

Specifically, we develop a stochastic generalization of scale invariant power iteration, which

specializes to power iteration when full-batch is used for the PCA problem. The conver-

gence analysis that shows the expectation of the optimality gap decreases at a linear rate

under some conditions on initial iterate, step size, batch size and epoch length. Numerical

experiments on the KL-NMF problem using real and synthetic datasets demonstrate

that the proposed stochastic approach not only converges faster than state-of-the-art

deterministic algorithms but also produces excellent quality robust solutions.
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CHAPTER 2

L1-norm Kernel PCA

2.1. Introduction

Principal Component Analysis (PCA) is one of the most popular dimensionality

reduction techniques [34]. Given a large set of possibly correlated features, it attempts

to find a small set of features (principal components) that retain as much information

as possible. To generate such new dimensions, it linearly transforms original features by

multiplying loading vectors in a way that newly generated features are orthogonal and

have the largest variance.

In traditional PCA, variance is measured using the L2-norm. This has a nice property

in that although the problem itself is non-convex, an optimal solution can be easily found

through matrix factorization. With this property and easy interpretability, PCA has been

extensively used in a variety of applications. Nonetheless, it still has some limitations.

First, since it generates a new dimension through a linear combination of features, it

cannot capture non-linear relationships among features. Second, as it uses the L2-norm

for measuring variance, its outcome tends to be affected by influential outliers. In order to

overcome these limitations, the following two approaches have been proposed.

Kernel PCA The idea of kernel PCA is to map original features into a high-

dimensional feature space, and perform PCA in that high-dimensional feature space [71].

Using a non-linear mapping, it can capture non-linear relationships among features in an
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efficient way using the kernel trick. Using the trick, principal components can be computed

with no explicit mapping.

L1-norm PCA To alleviate the effects of influential outliers, L1-norm PCA uses the

L1-norm instead of the L2-norm to measure variance. The L1-norm is more advantageous

than the L2-norm in presence of observations having large feature values since it is less

influenced by them. Using this property, more robust results can be obtained by L1-norm

PCA in the presence of influential outliers.

In this work, we combine the two approaches for the variance maximization version of

L1-norm PCA. In what follows, we always refer to the variance maximization version of

L1-norm PCA which is not the same as minimizing reconstruction error with respect to

the L1-norm. Compared to L2-norm kernel PCA, the kernel version of L1-norm PCA is a

hard problem in that it is not only non-convex but also non-smooth. However, through

a novel reformulation, we convert it to a geometrically interpretable problem where the

objective is to minimize the L2-norm of a vector subject to a linear constraint consisting

of terms involving the L1-norm. For the reformulated problem, we present a “fixed point”

type algorithm that iteratively computes a weight of −1 or 1 for each observation using

the kernel matrix and previous weights. We show that the kernel trick is applicable to this

algorithm. Moreover, we prove that the algorithm converges to a local optimal solution in

a finite number of steps and the sequence of objective values converges at a linear rate. In

numerical experiments, we computationally investigate the robustness of the algorithm

and introduce an application to outlier detection. We also provide a runtime comparison

to other robust kernel PCA algorithms and L2-norm kernel PCA. The contributions of

this work are summarized as follows.
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1. We provide a novel reformulation of L1-norm kernel PCA and present an iterative

algorithm based on the geometric interpretation of the reformulated problem.

This approach is not specific to L1-norm kernel PCA but can be applied to a

more general problem. Particularly, its application to L2-norm PCA results in

Power iteration [26].

2. We not only prove convergence but also provide a rate of convergence analysis.

Although many algorithms have been proposed for L1-norm PCA, none of them

provided a rate of convergence analysis. We stress that our analysis is for the

kernel version which clearly covers L1-norm PCA. Through a novel analysis, we

show that the algorithm attains a linear rate of convergence.

3. We introduce a methodology based on L1-norm kernel PCA for outlier detection

and demonstrate that it outperforms the benchmark algorithms.

The work is organized as follows. Section 2.2 reviews related works and points out how

our work is different. Section 2.3 introduces a novel reformulation of L1-norm kernel PCA

and provides a geometric interpretation behind it. Based on the geometric interpretation,

we present an iterative algorithm in Section 2.4. Section 2.5 provides a convergence analysis

for it and the experimental results are followed in Section 2.6.

2.2. Related Works

Extracting a low-rank representation from a large matrix is an important problem in

statistics and machine learning. In a variety of contexts, many previous works [15,16,

51,78] have been proposed to address this problem. Recovering a low-rank matrix from

a sampling of its entries is studied in [16]. Given that the number of sampled entries is
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sufficiently large, exact recovery is guaranteed with high probability by solving a simple

convex optimization problem [16]. Assuming that a data matrix can be decomposed into

the sum of a low-rank matrix L0 and a sparse matrix S0, a convex program (known as

robust PCA) that minimizes a weighted combination of the nuclear norm of L0 and the

L1 norm of S0 is presented in [15]. Also, a variant of robust PCA that identifies outliers

by additionally imposing a column-sparse structure on S0 is considered in [78]. Under

some mild conditions, exact recovery is shown for both models [15,78]. Moreover, exact

recovery of mixture data is studied in [50–53]. Utilizing a dictionary matrix, low-rank

representation (LRR) [51] is shown to better handle mixture data than robust PCA. While

matrix recovery is the main focus of theses works, our work considers dimensionality

reduction with emphasis on robustness, especially focusing on kernel PCA with the

L1-norm.

To reduce the number of features in a robust way, the L1-norm has been involved in

many PCA studies [12,56,58,62,64–66] and subspace estimation formulations [19,37].

Finding a subspace onto which the L1 projections of data vectors have the smallest

reconstruction error is studied in [12]. Based on the observation that the L1 projection

occurs along a single unit direction, it finds an optimal subspace for each unit direction by

solving d least absolute deviation regression problems, each having one dimension as a

dependent variable while having the other dimensions as independent variables. Using

linear programming, this approach can find a global optimal subspace in polynomial

time [12].

Minimizing reconstruction error with respect to the L1-norm is considered in [37,65,66].

While the PCA problem of minimizing ‖M −XXTM‖1 subject to XTX = I is considered
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in [65], the subspace estimation problem of minimizing E(U, V ) = ‖M − UV ‖1 is studied

in [37] where M is a data matrix. In order to solve the former problem, an iterative

algorithm that computes a weight for each observation and applies L2-norm PCA on

the weighted data matrix is presented in [65]. On the other hand, the latter problem

is solved using alternative convex minimization based on the observation that E(U, V )

becomes a convex function once U or V is known. It alternatively optimizes one matrix at

a time while keeping the other one fixed, repeating this process until convergence. Also,

a subspace estimation formulation that minimizes reconstruction error with respect to

the R1-norm, ‖M − UV ‖R1 =
∑n

i=1 ‖xi − Uvi‖2 where xi is the ith column of M and vi is

that of V , is presented in [19]. Since this formulation minimizes the sum of distances with

respect to the L2-norm, it is different from L2-norm PCA which minimizes the sum of

squared distances with respect to the L2-norm. Nonetheless, they share the same property

that they have a unique global solution which is rotational invariant [19].

Maximizing variance with respect to the L1-norm, which we refer to as L1-norm

PCA, is studied in [56,58,62,64]. Our work also considers this formulation rather than

the previous two since it has a favorable structure in that an optimal solution can be

represented as a linear combination of data vectors with a weight of −1 or 1. L1-norm

PCA is shown to be NP-hard in [56] and [58]. Nevertheless, an algorithm finding a global

optimal solution is proposed in [56]. Utilizing the auxiliary-unit-vector technique [36], it

computes a global optimal solution with complexity O(npr+p−1) where n is the number of

observations, r is the rank of the data matrix, and p is the desired number of principal

components. Assuming r and p are fixed, the runtime of this algorithm is polynomial in n.

However, if n, p, r are large, it can be computationally prohibitive. Instead of finding a
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global optimal solution which is intractable in general, our work focuses on developing an

efficient algorithm finding a local optimal solution for L1-norm kernel PCA.

Recognizing the hardness of L1-norm PCA, an approximation algorithm is presented

in [58] based on the known Nesterov’s theorem [61]. In this work, L1-norm PCA is relaxed

to a semi-definite programming (SDP) problem and alternatively, the SDP relaxation is

considered. After solving the relaxed problem, it generates a random vector and uses

randomized rounding to produce a feasible solution. This randomized algorithm is a√
2/π-approximate algorithm in expectation. To achieve this approximation ratio with

high probability, it performs randomized rounding multiple times and takes the one having

the best objective value. Rather than providing an approximation guarantee by solving

a relaxed problem, our work directly considers the kernel version of L1-norm PCA and

develops an efficient algorithm finding a local optimal solution.

Another approach utilizing a known mathematical programming model is introduced

in [64] where the author proposes an iterative algorithm that solves a mixed integer

programming problem in each iteration. Given an orthonormal matrix of loading vectors,

it perturbs the matrix slightly in a way that the resulting matrix yields the largest objective

value. After the perturbation, it uses singular value decomposition to recover orthogonality.

The algorithm is completely different from the one proposed herein and the sequence of

objective values does not necessarily improve over iterations. Unlike it, our algorithm

guarantees that the sequence of objective values keeps improving and converges at a linear

rate.

A simple numerical algorithm finding a local optimal solution is proposed in [42]. In

this work, an optimal solution is assumed to have a certain form, and weights involved in
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that form are updated in each iteration, improving the objective value. A similar algorithm

and its extended version that finds multiple loading vectors at once are derived in [62]

utilizing an optimization algorithm for general L1-norm maximization problems. In the

case of linear kernel, our algorithm uses the same framework as the one in [42] and [62].

However, while the algorithm in [42] is derived without any justification, we provide

a geometric interpretation behind the algorithm, which is different from the derivation

in [62]. Moreover, we provide a rate of convergence analysis and introduce a kernel version,

which are not considered in [42] and [62].

On other hand, the kernel version of L1-norm PCA has been rarely studied. Due to the

difficulty of applying the kernel trick to L1-norm kernel PCA, an alternative method named

nonlinear projection trick is applied in [43]. Based on the finding that an optimal loading

vector lies in the span of Φ(A)TUΛ−1/2 where Φ(A) is a high-dimensionally mapped data

matrix and UΛUT is the eigenvalue decomposition of the kernel matrix K, it alternatively

considers L1-norm PCA having UΛ1/2 in place of Φ(A) and solves it using the algorithm

in [42]. Another kernel extension of L1-norm PCA is studied in [77]. In this work, a linear

system involving a kernel matrix is solved in each iteration and the resulting solution is

used to update the iterate. While the algorithms in [43] and [77] entail either eigenvalue

decomposition or solving a linear system, our algorithm requires only a matrix-vector

multiplication in each iteration, making it suitable in a large-scale setting.

2.3. Reformulations

We consider L1-norm PCA in a high-dimensional feature space F . Suppose we map

data vectors ai ∈ Rd, i = 1, . . . , n into a feature space F by a possibly non-linear mapping
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Φ : Rd → F . Assuming that each feature is standardized with a mean of 0 and standard

deviation of 1 and that the kernel matrix K defined by Kij = Φ(ai)
TΦ(aj) satisfies Kii > 0

for 1 ≤ i ≤ n and |Kij| < ∞ for 1 ≤ i, j ≤ n, the kernel version of L1-norm PCA is

formulated as

(2.1) max
x

f(x) =
n∑
i=1

|Φ(ai)
Tx| subject to x ∈ ∂Bd.

This formulation having Φ(ai) in place of ai extends the variance maximization version of

L1-norm PCA in the obvious way and is also considered in [43,77]. In this formulation,

we only consider extracting the first loading vector. This assumption is justifiable since

the subsequent loading vectors can be found by repeatedly solving (2.1). For example,

once we obtain the first loading vector x∗, we can find the second loading vector by solving

(2.1) with Φ(ai)− x∗(Φ(ai)
Tx∗) in place of Φ(ai).

Solving (2.1) is not trivial since it has a convex non-smooth objective function to

maximize and a Euclidean unit ball constraint. In order to better understand the problem

and set an algorithmic foundation, we reformulate (2.1) as

(2.2) min
w

g(w) = ‖w‖2 subject to
n∑
i=1

|Φ(ai)
Tw| = 1.

In what follows, all vector norms are L2, so we drop the subscript for notational convenience.

In order to prove the equivalence of (2.1) and (2.2), we argue that an optimal solution of

one formulation can be derived from an optimal solution of the other formulation by means

of some mapping. Two optimization problems are equivalent if there exists some mapping

h such that if x∗ is an optimal solution to one problem, then h(x∗) is an optimal solution

to the other problem, and vice versa for a possible different mapping function [10].
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Proposition 2.3.1. Let x∗ and w∗ be an optimal solution to (2.1) and (2.2), respec-

tively. Then, x̂ =
w∗

‖w∗‖
and ŵ =

x∗∑n
i=1 |Φ(ai)Tx∗|

are optimal solution to (2.1) and (2.2),

respectively.

Proof. It is obvious that x̂ is feasible to (2.1). To derive a contradiction, suppose that

x̂ is not optimal to (2.1). Then, there exists some feasible x̄ such that
∑n

i=1 |Φ(ai)
T x̂| <∑n

i=1 |Φ(ai)
T x̄|. Let w̄ =

x̄∑n
i=1 |Φ(ai)T x̄|

. Then, from ‖x̄‖ = 1, we have

g(w̄) =
‖x̄‖∑n

i=1 |Φ(ai)T x̄|
=

1∑n
i=1 |Φ(ai)T x̄|

.

On the other hand, we obtain g(w∗) =
1∑n

i=1 |Φ(ai)T x̂|
since w∗ =

x̂∑n
i=1 |Φ(ai)T x̂|

and

‖x̂‖ = 1. This implies that g(w∗) > g(w̄), which contradicts the assumption that w∗ is

optimal to (2.2). Therefore, x̂ is optimal to (2.1).

It is easy to check that ŵ is a feasible solution to (2.2). Suppose that ŵ is not optimal

to (2.2). Then, there exists some feasible w̃ such that ‖w̃‖ < ‖ŵ‖. As w̃ is feasible to

(2.2), we have
∑n

i=1 |Φ(ai)
T w̃| = 1. Let x̃ =

w̃

‖w̃‖
. Then, we have

f(x̃) =
n∑
i=1

|Φ(ai)
T x̃| =

∑n
i=1 |Φ(ai)

T w̃|
‖w̃‖

=
1

‖w̃‖
.

In the same way, we obtain f(x∗) =
1

‖ŵ‖
from x∗ =

ŵ

‖ŵ‖
. This leads to f(x∗) < f(x̃),

which contradicts the assumption that x∗ is an optimal solution of (2.1). Therefore, ŵ is

optimal to (2.2) �

Let us take a look at the constraint set ∂P = {w
∣∣ ∑n

i=1 |Φ(ai)
Tw| = 1}. Geometrically,

this constraint set is symmetric with respect to the origin and represents the boundary
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of polytope P = {w
∣∣∑n

i=1 |Φ(ai)
Tw| ≤ 1}. It is easy to check that P is a polytope since

it can be written as the intersection of a finite set of linear inequalities each having the

form of
∑n

i=1 ciΦ(ai)
Tw ≤ 1 where ci ∈ {−1, 1}. As the objective function measures the

distance from the origin, formulation (2.2) can be understood as a problem of finding

the closest point to the origin from the boundary of the polytope ∂P . The following

proposition shows that an optimal solution w∗ must be perpendicular to one of the faces

of ∂P .

Proposition 2.3.2. An optimal solution w∗ is perpendicular to the face that it lies on.

Proof. Let E be a face such that E = {w |
∑n

i=1 c
∗
iΦ(ai)

Tw = 1} ∩ ∂P where c∗i =

sgn(Φ(ai)
Tw∗) for 1 ≤ i ≤ n. If w∗ is not perpendicular to face E, then

z =

∑n
i=1 Φ(ai)c

∗
i

‖
∑n

i=1 Φ(ai)c∗i ‖2

is the closest point to the origin from {w
∣∣ ∑n

i=1 c
∗
iΦ(ai)

Tw = 1} having

‖z‖ < ‖w∗‖.(2.3)

Let w̄ =
z∑n

i=1 |Φ(ai)T z|
. Then, w̄ is feasible to (2.2) and has the objective value of

‖w̄‖ =
‖z‖∑n

i=1 |Φ(ai)T z|
.(2.4)

From ‖
∑n

i=1 Φ(ai)c
∗
i ‖2 =

∑n
i=1 Φ(ai)

T c∗i
(∑n

j=1 Φ(aj)c
∗
j

)
, we have

n∑
i=1

|Φ(ai)
T (

n∑
j=1

Φ(aj)c
∗
j)| − ‖

n∑
i=1

Φ(ai)c
∗
i ‖2 ≥ 0,
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which results in

n∑
i=1

|Φ(ai)
T z| =

∑n
i=1 |Φ(ai)

T (
∑n

j=1 Φ(aj)c
∗
j)|

‖
∑n

i=1 Φ(ai)c∗i ‖2
≥ 1.(2.5)

As a result, by (2.3), (2.4) and (2.5), we have ‖w̄‖ ≤ ‖z‖ < ‖w∗‖, which contradicts the

assumption that w∗ is optimal to (2.2). Therefore, w∗ must be perpendicular to E. �

Proposition 2.3.2 is important since it helps to characterize the form of an optimal

solution x∗. From Proposition 2.3.2, we obtain the following corollary.

Corollary 2.3.3. An optimal solution w∗ of (2.2) has the form of w∗ =
y∗∑n

i=1 |Φ(ai)Ty∗|
for some y∗ and c∗ such that y∗ =

∑n
i=1 Φ(ai)c

∗
i and c∗i = sgn(Φ(ai)

Ty∗) for 1 ≤ i ≤ n.

The characterization of an optimal loading vector using a sign vector is first proposed

in [42] without any justification. However, we provide a derivation based on the geometry

of ∂P , which is different from the one in [62] that uses the KKT conditions. Moreover,

since
∑n

i=1 |Φ(ai)
Ty∗| =

∑n
i=1 c

∗
iΦ(ai)

Ty∗ = ‖
∑n

i=1 Φ(ai)c
∗
i ‖2, we have

‖w∗‖ =
‖y∗‖∑n

i=1 |Φ(ai)Ty∗|
=

1

‖
∑n

i=1 Φ(ai)c∗i ‖
.(2.6)

We can further show that an optimal solution of formulation (2.2) can be found from an

optimal solution of the following binary problem,

(2.7) max
c
‖

n∑
i=1

Φ(ai)ci‖2 subject to ci ∈ {−1, 1}, 1 ≤ i ≤ n.
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Proposition 2.3.4. Let c∗ be an optimal solution of binary formulation (2.7). Then,

y∗ =
∑n

i=1 Φ(ai)c
∗
i satisfies

c∗i = sgn(Φ(ai)
Ty∗),(2.8)

for 1 ≤ i ≤ n. Moreover, w∗ =
y∗∑n

i=1 |Φ(ai)Ty∗|
is an optimal solution to (2.2).

Proof. To deduce a contradiction, let us assume that there exists some nonempty set

J ⊂ {1, . . . , n} such that c∗j = −sgn(Φ(aj)
Ty∗) for j ∈ J . Since c∗ is an optimal solution

of (2.7), flipping the sign of c∗j for j ∈ J must not improve the objective value of (2.7).

However, for any j ∈ J , flipping the sign of c∗j results in ‖y∗ − 2Φ(aj)c
∗
j‖2 > ‖y∗‖2 since

‖y∗ − 2Φ(aj)c
∗
j‖2 = ‖y∗‖2 + 4|Φ(aj)

Ty∗| + 4‖Φ(aj)‖2. This contradicts the assumption

that c∗ is an optimal solution to (2.7). Therefore, y∗ must satisfy c∗i = sgn(Φ(ai)
Ty∗) for

1 ≤ i ≤ n. Since y∗ and c∗ satisfy (2.8) and c∗ maximizes the objective value of (2.7), w∗

is a minimizer of (2.2) due to Corollary 2.3.3 and (2.6). �

The following result has been shown in [56] for the linear kernel case but here we

generalize it.

Corollary 2.3.5. Formulation (2.2) is equivalent to formulation (2.7).

Proof. Based on Corollary 2.3.3 and (2.6), we can formulate (2.2) as

max
c,y
‖

n∑
i=1

Φ(ai)ci‖2 subject to y =
n∑
i=1

Φ(ai)ci, ci = sgn(Φ(ai)
Ty), 1 ≤ i ≤ n.

Since an optimal solution c∗ to (2.7) satisfies the constraints of the above optimization

problem by Proposition 2.3.4, the two formulations are essentially the same. �
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It is interesting to note that we can reduce formulation (2.7) to the weighted max-cut

problem since

‖
n∑
i=1

Φ(ai)ci‖2 =
n∑

i,j=1

Kij +
n∑

i,j=1

(−2Kij)
(1− cicj

2

)
.(2.9)

Using the above reduction, we can alternatively consider the weighted max-cut problem on

a complete graph with weight wij = −Kij. Therefore, a popular approximation algorithm

for the weighted max-cut problem [25] can be used to solve (2.7). However, due to the

additional constant terms in (2.9), this does not imply a constant worst case approximation

ratio algorithm for (2.7).

2.4. Algorithm

In this section, we develop an algorithm that finds a local optimal solution to (2.2)

based on the findings in Section 2.3. Before giving details of the algorithm, we first provide

the idea behind the algorithm.

The main idea of the algorithm is to move along the boundary of P so that the L2-norm

of wk successively decreases. Figure 2.1 illustrates a step of the algorithm. Starting with

an iterate wk, we first identify the hyperplane hk which the current iterate wk lies on. After

identifying the equation of hk, we find the closest point to the origin from hk, which we

denote by zk. After that, we obtain wk+1 by projecting zk to the constraint set ∂P , which

is done by multiplying an appropriate scalar between 0 and 1. We repeat this process

until the sequence of iterates {wk} converges.

Now, we develop an algorithm based on the above idea. Given wk, let ck be the sign

vector ck = [ck1, . . . , c
k
n]T such that cki = sgn(Φ(ai)

Twk) for 1 ≤ i ≤ n and yk be the normal
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x𝑘 

x𝑘+1 

𝑧𝑘 

ℎ𝑘 

wk+1

zk

wk

hk

Figure 2.1. Geometric derivation of the algorithm

vector at wk defined as

yk =
n∑
i=1

Φ(ai)c
k
i .(2.10)

Using the normal vector yk at wk, we can find the equation of hyperplane hk as

yTk (w − wk) = 0.(2.11)

The closest point zk to the origin from hk has the form of

zk = syk.(2.12)

Plugging (2.12) into (2.11), we have

s =
yTk wk
yTk yk

, zk =
yTk wk
yTk yk

yk.(2.13)
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Projecting zk to ∂P , we obtain

wk+1 =
zk∑n

i=1 |Φ(ai)T zk|
.(2.14)

Using

yTk wk =
n∑
i=1

Φ(ai)
Twkc

k
i =

n∑
i=1

|Φ(ai)
Twk| = 1,(2.15)

we can further write (2.13) as

zk =
yk
‖yk‖2

,(2.16)

which leads to

wk+1 =
yk∑n

i=1 |Φ(ai)Tyk|
.(2.17)

Also, from (2.10) and
∑n

i=1 |Φ(ai)
Tyk| =

∑n
i=1 Φ(ai)

Tykc
k
i = (ck)TKck, we can represent

wk+1 as a function of ck as

wk+1 =

∑n
i=1 Φ(ai)c

k
i

(ck)TKck
.(2.18)

Since ck+1
i = sgn(Φ(ai)

Txk+1) = sgn(Ki·c
k), we can update ck+1

i using only K and ck by

ck+1 = sgn(Kck). Moreover, from

‖wk+1 − wk‖2 =
(ck − ck+1)TK(ck − ck+1)

(ck)TKck(ck+1)TKck+1
,

the termination criteria wk+1 = wk can be represented by (ck − ck+1)TK(ck − ck+1) = 0.
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Due to non-convexity of the problem, the algorithm can be stuck at a local optimum

unless it is initialized close to a global optimum. In order to obtain a good initial iterate,

we consider each Φ(aj) and select the one such that
Φ(aj)

‖Φ(aj)‖
yields the largest objective

value for f , which is computed by

Σn
i=1|Φ(ai)

TΦ(aj)|
‖Φ(aj)‖

=
Σn
i=1|Kij|√
Kjj

.(2.19)

Once we find the index j∗ maximizing (2.19), we set

w0 =
Φ(aj∗)∑n

i=1 |Φ(ai)TΦ(aj∗)|
, c0

i = sgn(Φ(ai)
Tw0) = sgn(Φ(ai)

TΦ(aj∗)) = sgn(Kij∗).

Summarizing all the above, we obtain Algorithm 1.

Algorithm 1 L1-norm Kernel PCA

Input: kernel matrix K
find j∗ that maximizes (2.19)
initialize the sign vector c0 with c0

i = sgn(Kij∗)
k ← −1
repeat
k ← k + 1
compute ck+1 = sgn(Kck)

until (ck − ck+1)TK(ck − ck+1) = 0
Output: sign vector c∗

Once we get the output c∗ from Algorithm 1, we can compute principal scores with

no explicit mapping. For example, the principal component of the ith observation can be

computed by

Φ(ai)
Tx∗

‖x∗‖
=

∑n
j=1 Φ(ai)

TΦ(aj)c
∗
j√∑n

i=1

∑n
j=1 Φ(ai)TΦ(aj)c∗i c

∗
j

=
Ki·c

∗√
(c∗)TKc∗

.
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Also, we can proceed to find more principal components with no explicit mapping.

Noting that computing a loading vector and principal components requires only the kernel

matrix, it suffices to update the kernel matrix each time a new loading vector is found.

Fortunately, updating the kernel matrix can be done with no explicit mapping by

K̃ij = Φ(ai)
TΦ(aj)−

Φ(ai)
Tx∗Φ(aj)

Tx∗

‖x∗‖2
= Kij −

Ki·c
∗Kj·c

∗

(c∗)TKc∗
,

which is equivalent to K̃ = K − (Kc∗)(Kc∗)T

(c∗)TKc∗
in a matrix form.

From yk = ∇f(xk), update rule (2.17) can be understood as projecting a gradient

∇f(xk) to the constraint set ∂P in each iteration. In this sense, Algorithm 1 resembles

Power iteration [26] for solving the eigenvalue problem, and interestingly, the application

of our framework to the eigenvalue problem yields the same algorithm. The framework

developed in this work such as reformulation, geometric interpretation and algorithm

derivation is not specific to L1-norm kernel PCA but can be extended to solve a more

general problem. For the application of this approach to general scale invariant problems

(1.1), see Chapter 3.

Compared to the other L1-norm kernel PCA algorithms [43,77] considering the same

formulation (2.1), Algorithm 1 is much simple and computationally efficient as it involves

just one matrix-vector multiplication in each iteration. In the case of L1-KPCA [77], a

system of linear equations having the form of Kη = Σn
j=1c

k
jK·j is repeatedly solved. Solving

the above linear system is not only computationally costly but also numerically unstable

since it is singular due to the presence of non-trivial solution ck. On the other hand, KPCA-

L1 [43] requires one matrix-vector multiplication but it does not directly consider the

kernel matrix K. Instead, the eigenvalue decomposition of the kernel matrix K = UΛUT
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must be computed before starting to find each loading vector. Also, UΛ1/2 is involved

in computation instead of the kernel matrix K. As Algorithm 1 entails neither solving

a linear system nor computing the eigenvalue decomposition of K, it is computationally

more efficient than the other algorithms.

When it comes to initialization, L1-KPCA [77] uses the optimal loading vector from

L2-norm kernel PCA. While KPCA-L1 [43] finds the data vector having the largest norm

and uses its normalization for the initial iterate, Algorithm 1 finds the normalized data

vector with the largest objective value for f and set it to be the initial iterate. As the

initialization scheme of Algorithm 1 is based on the objective fucntion f while the others

are not, it is more likely to obtain a good initial iterate compared to the others.

2.5. Convergence Analysis

In this section, we provide a convergence analysis of Algorithm 1. We first prove

that the algorithm converges in a finite number of iterations, and then provide a rate of

convergence analysis. Before proving the finite convergence of the algorithm, we first show

that the sequence {‖wk‖} generated by Algorithm 1 is non-increasing.

Lemma 2.5.1. Let {wk} and {zk} be a sequence of vectors generated by Algorithm 1

and (2.16), respectively. Then, we have

‖wk+1‖ ≤ ‖zk‖ ≤ ‖wk‖.

Moreover, if ‖wk‖ = ‖zk‖, we have wk = ryk for some r ∈ R.
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Proof. The inequality ‖zk‖ ≤ ‖wk‖ follows from

‖wk‖2 − ‖zk‖2 = ‖wk‖2 − 1

‖yk‖2
= ‖wk‖2 − (yTk wk)

2

‖yk‖2
=
‖wk‖2‖yk‖2 − (yTk wk)

2

‖yk‖2
≥ 0

where the second equality holds follows from (2.15) and the last inequality holds due to

the Cauchy-Schwarz inequality. If ‖wk‖ = ‖zk‖, the Cauchy-Schwarz inequality becomes

an equality resulting in wk = ryk for some r ∈ R.

Next, from (2.14), we have

‖wk+1‖2 =
‖zk‖2

(
∑n

i=1 |Φ(ai)T zk|)2
.(2.20)

Using (2.13), we can represent the denominator as

n∑
i=1

|Φ(ai)
T zk| =

∑n
i=1 |Φ(ai)

Tyk|
yTk yk

.

From

n∑
i=1

|Φ(ai)
Tyk| =

n∑
i=1

|Φ(ai)
T (

n∑
j=1

Φ(aj)c
k
j )| =

n∑
i=1

|
n∑
j=1

Φ(ai)
TΦ(aj)c

k
i c
k
j |

and

yTk yk =
n∑
i=1

n∑
j=1

Φ(ai)
TΦ(aj)c

k
i c
k
j ,

we obtain

n∑
i=1

|Φ(ai)
T zk| =

∑n
i=1 |

∑n
j=1 Φ(ai)

TΦ(aj)c
k
i c
k
j |∑n

i=1

∑n
j=1 Φ(ai)TΦ(aj)cki c

k
j

≥ 1.(2.21)
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By (2.20) and (2.21), we finally have ‖wk+1‖2 ≤ ‖zk‖2. �

Lemma 2.5.2. If ‖wk‖ = ‖wk+1‖, then we have wk =
yk
‖yk‖2

and yk =
wk
‖wk‖2

, which

leads to wk = wk+1.

Proof. Since ‖wk‖ = ‖wk+1‖, by Lemma 2.5.1, we have ‖zk‖ = ‖wk‖ and thus

wk = ryk for some r ∈ R. Using (2.15), we have r =
1

‖yk‖2
, which results in wk =

yk
‖yk‖2

.

In the same way, we can show yk =
wk
‖wk‖2

. Since this implies zk = wk by (2.16), we finally

have

wk+1 =
zk∑n

i=1 |Φ(ai)T zk|
=

wk∑n
i=1 |Φ(ai)Twk|

= wk

where the first equality follows from (2.14) and the last equality holds from the feasibility

of wk. �

Theorem 2.5.3. The sequence {wk} converges in a finite number of steps.

Proof. Suppose the sequence {wk} does not converge. As an iterate wk is solely

determined by a sign vector ck ∈ {−1,+1}n, the number of possible vectors that wk can

take is finite. Therefore, if the sequence {wk} does not converge, some vectors must appear

more than once. Without loss of generality, let wl = wl+m. By Lemma 2.5.1, we have

‖wl+m‖ = ‖wl‖ ≥ ‖wl+1‖ ≥ ... ≥ ‖wl+m‖ forcing us to have ‖wl‖ = ‖wl+1‖ = · · · = ‖wl+m‖.

This implies wl = wl+1 = · · · = wl+m by Lemma 2.5.2, contradicting the assumption that

the sequence {wk} does not converge. Therefore, the sequence {wk} generated by Algorithm

1 must converge in a finite number of steps. �
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Next, we show that the sequence of {‖wk‖} generated by Algorithm 1 converges at

a linear rate. Although Theorem 2.5.3 shows that the algorithm converges in a finite

number of steps, it may take an exponential number of steps to converge, due to the

combinatorial structure of the problem, making it not appropriate in a large-scale setting.

To make sure that this does not happen for Algorithm 1, we additionally prove linear

convergence, which ensures that the optimality gap decreases no worse than a certain

rate ρ < 1. Since this result implies that an ε-optimal local solution can be attained after

O
(

1
1−ρ log 1

ε

)
iterations, we can obtain a near-optimal solution after a sufficient number of

iterations without waiting for an exponential number of steps.

Theorem 2.5.4. Let Algorithm 1 start from w0 and terminate with w∗ at iteration

k∗. Then, for k < k∗, we have

‖wk‖ − ‖w∗‖ ≤ ρk(‖w0‖ − ‖w∗‖)

where ρ = max {ρ(c) | c ∈ {−1, 1}n, ρ(c) < 1} where

ρ(c) =

∑n
i=1

∑n
j=1 Φ(ai)

TΦ(aj)cicj∑n
i=1 |

∑n
j=1 Φ(ai)TΦ(aj)cicj|

.

Proof. From (2.14), we have

‖wk‖ =
‖zk−1‖∑n

i=1 |Φ(ai)T zk−1|
.

Since ‖zk−1‖ ≤ ‖wk−1‖ holds by Lemma 2.5.1, we obtain

‖wk‖ ≤
‖wk−1‖∑n

i=1 |Φ(ai)T zk−1|
.(2.22)
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Subtracting ‖w∗‖ to (2.22), we have

‖wk‖ − ‖w∗‖ ≤
‖wk−1‖∑n

i=1 |Φ(ai)T zk−1|
− ‖w∗‖ ≤ 1∑n

i=1 |Φ(ai)T zk−1|
(‖wk−1‖ − ‖w∗‖)(2.23)

where the last inequality follows from (2.21).

By induction on (2.23), we obtain

‖wk‖ − ‖w∗‖ ≤
k∏
l=1

1∑n
i=1 |Φ(ai)T zl−1|

(‖w0‖ − ‖w∗‖).(2.24)

From (2.21), we know that

n∑
i=1

|Φ(ai)
T zl−1| ≥ 1.

If
∑n

i=1 |Φ(ai)
T zl−1| = 1, then we have∑n

i=1 |
∑n

j=1 Φ(ai)
TΦ(aj)c

l−1
i cl−1

j |∑n
i=1

∑n
j=1 Φ(ai)TΦ(aj)c

l−1
i cl−1

j

= 1,

resulting in

cl−1
i = sgn

( n∑
j=1

Φ(ai)
TΦ(aj)c

l−1
j

)
.

Since this implies cl = sgn(Kcl−1) = cl−1, we obtain wl = wl+1. Therefore, as long as l < k∗,

we must have
∑n

i=1 |Φ(ai)
T zj−1| > 1. Since this implies ρ(cj−1) =

1∑n
i=1 |Φ(ai)T zj−1|

< 1,

using (2.24), we obtain the desired result. �
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As shown in Theorem 2.5.4, no matter where the algorithm starts, the sequence of

objective values of (2.2) converges at a linear rate. Now, we show that we can obtain a

local optimal solution of (2.1) by scaling the output of Algorithm 1.

Theorem 2.5.5. Let the output of Algorithm 1 be w∗. Then, x∗ =
w∗

‖w∗‖
is a local

optimal solution of (2.1).

Proof. By construction, x∗ is feasible. Since w∗ is the output of Algorithm 1, y∗ =

w∗

‖w∗‖2
holds by Lemma 2.5.2. Next, consider L(λ, x) =

∑n
i=1 |Φ(ai)

Tx| − λ(‖x‖2 − 1).

From ∇xL(λ, x) =
∑n

i=1 sgn(Φ(ai)
Tx)Φ(ai)− 2λx, we have

∇xL(λ, x∗) =
n∑
i=1

sgn(Φ(ai)
Tx∗)Φ(ai)− 2λx∗ =

n∑
i=1

sgn(Φ(ai)
Tw∗)Φ(ai)− 2λx∗.

Since
∑n

i=1 sgn(Φ(ai)
Tw∗)Φ(ai) = y∗ =

w∗

‖w∗‖2
=

x∗

‖w∗‖
, we have

∇xL(λ, x∗) =

(
1

‖w∗‖
− 2λ

)
x∗

Therefore, with λ∗ =
1

2‖w∗‖
, we have ∇xL(λ∗, x∗) = 0, meaning that (λ∗, x∗) satisfies the

first order necessary conditions. Moreover, from ∇xxL(λ∗, x∗) = −2λ∗I ≺ 0, the second

order sufficient condition is also satisfied. Since (λ∗, x∗) satisfies the first and second order

conditions, from the theory of constrained optimization, x∗ is a local optimal solution of

(2.1). �

2.6. Numerical Experiments

In this section, we assess the robustness and scalability of Algorithm 1 by running

it on several tasks and compare it with other kernel PCA algorithms. First, we apply
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them on datasets having entry-wise perturbations and investigate how well each algorithm

extracts principal components in a noisy setting. Next, we introduce their application

to outlier detection and compare their performance with other popular outlier detection

models. Lastly, we provide their runtime comparison.

In addition to Algorithm 1, the two other L1-norm kernel PCA algorithms (KPCA-

L1 [43], L1-KPCA [77]), the kernel version of R1-norm PCA (R1-KPCA [19]) and L2-norm

kernel PCA (L2-KPCA [71]) are considered in the experiments. While R1-norm PCA [19]

is not originally designed to incorporate kernels, we include it as it is easy to develop a

kernel variant. Other L1-norm PCA algorithms were also considered but since it is not

straightforward to develop a kernel version for them, they are disregarded.

2.6.1. Robust Extraction of PCs

To measure robustness, we first run the algorithms on datasets having entry-wise pertur-

bations (noisy datasets) to obtain loading vectors. After that, we compute how much

variation in the perturbation-excluded datasets (normal datasets) is explained by the

loading vectors obtained from the noisy datasets. For this experiment, we prepare synthetic

datasets having entry-wise perturbations so that loading vectors obtained by running

L2-norm kernel PCA on noisy and normal datasets are different from each other.

To generate synthetic datasets, we first construct a 1000× 50 data matrix with the

rank of 10 following the data generation procedure in [65]. While the largest size in [65] is

300× 50, we choose the size of 1000× 50 to consider larger datasets. To obtain entry-wise

perturbations, we corrupt r% of observations by adding some random noises. We refer

to the resulting dataset as a noisy dataset and the noisy dataset without the entry-wise
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perturbations as a normal dataset. For each value of r ∈ {5, 10, 15, 20, 25, 30}, we generate

10 instances.

Let K denote a kernel matrix of a normal dataset and x1, . . . , xp be p loading vectors

obtained by running L2-norm kernel PCA on K. Also, let K̃ be a kernel matrix of a

noisy dataset and x̃1, . . . , x̃p be loading vectors obtained by running one of the kernel PCA

algorithms (Algorithm 1, KPCA-L1, L1-KPCA, R1-KPCA, L2-KPCA) on K̃. Assuming

that the normal dataset is standardized,

p∑
j=1

n∑
i=1

(Φ(ai)
T x̃j)

2 =

p∑
j=1

x̃Tj Kx̃j(2.25)

represents the amount of variation in the normal dataset explained by the p loading vectors

x̃1, . . . , x̃p where n is the number of observations in the normal dataset. After dividing

(2.25) by
∑p

j=1 x
T
j Kxj, which is the maximum amount of variation in the normal dataset

that the p orthogonal vectors can explain, and multiplying by 100, we get the following

measure:

(Total Explained Variation) 100×
∑p

j=1 x̃
T
j Kx̃j∑p

j=1 x
T
j Kxj

.(2.26)

Metric (2.26) captures how well the loading vectors obtained from the noisy dataset

explain variation in the normal dataset with respect to the L2-norm. Therefore, it can be

used to measure the robustness of each kernel PCA algorithm in the presence of entry-wise

perturbations. For example, if one algorithm has a value close to one, then it is robust

with respect to entry-wise perturbations. Using this metric, we compare the robustness of

Algorithm 1 with that of KPCA-L1, L1-KPCA, R1-KPCA, and L2-KPCA. For each value
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of r, we compute (2.26) for the ten datasets with p = 4 and average them. We arbitrarily

choose p = 4 since the result is consistent regardless of the choice of p. Figure 2.2 shows

the results for the linear kernel and Figure 2.3 shows the results for the Gaussian kernel

with the width parameter σ varying from 10 to 25.
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Figure 2.2. Robust extraction of PCs (linear kernel)

In the case of the linear kernel, R1-KPCA achieves the best performance for all

values of r followed by the L1-norm based kernel PCA algorithms and L2-KPCA. While

the loading vectors from L2-KPCA explain about 90% of the variation, those from

R1-KPCA, Algorithm 1, KPCA-L1, and L1-KPCA explain around 96%,95%,94%, and

93% of the variation, respectively. This demonstrates the robustness of the R1-norm

and L1-norm based kernel PCA algorithms with respect to the presence of entry-wise

perturbations. Among the three L1-norm based kernel PCA algorithms, Algorithm 1

consistently outperforms KPCA-L1 and L1-KPCA by 1% and 2%, respectively. As the
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Figure 2.3. Robust extraction of PCs (Gaussian kernel with σ from 10 to 25)

percentage of corrupted observations (r%) increases, the total explained variation tends to

decrease for all of them but the gaps between them remain the same.

When the Gaussian kernel is used, the results are slightly different depending on the

value of r and σ. If r and σ are small, the effects of entry-wise perturbations are relatively

small so that all the algorithms give pretty similar results. However, if r or σ is large, the

effects of entry-wise perturbations are pronounced in the kernel matrix, and therefore, the

results are different depending on the robustness of the algorithms. As shown in Figure 2.3,

the three L1-norm kernel PCA algorithms and R1-KPCA outperform L2-KPCA as in the

case of the linear kernel. However, while R1-KPCA achieves the best performance for the

linear kernel, the L1-norm based kernel PCA algorithms work better than R1-KPCA when

the Gaussian kernel is used. Especially, Algorithm 1 outperforms all the other algorithms
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if r exceeds 20. The superior performance of Algorithm 1 ranges from 1% to 5% in these

cases.

2.6.2. Outlier Detection

L2-norm PCA has been shown to be effective for anomaly detection [74]. The idea is to

extract loading vectors using datasets consisting of only normal samples and use these

loading vectors to develop a detection model. Specifically, a boundary of normal samples

is constructed from the loading vectors and the boundary is used to discriminate normal

and abnormal samples.

We extend this principle to outlier detection, i.e. its unsupervised counterpart. In the

outlier detection setting, sample labels are not given when the model is built. Therefore,

it is not possible to build a detection model solely based on normal samples. Given this

context, we run robust kernel PCA algorithms on the entire dataset (with outliers) and use

the resulting loading vectors to characterize a boundary of normal samples. Since these

loading vectors are less influenced by outliers as illustrated in Section 2.6.1, we expect

that they would better construct a normal boundary. We compare the performance of

Algorithm 1 based models to that of KPCA-L1, L1-KPCA, R1-KPCA, and L2-KPCA

based models as well as two other popular outlier detection models [11] [49].

2.6.2.1. Toy Examples. We first illustrate the advantage of using robust kernel PCA

for outlier detection using the following two-dimensional toy examples.

Figure 2.4 displays the distribution of normal samples and outliers. As the normal

samples follow a linear pattern, we run the kernel PCA algorithms with the linear kernel

and represent their first loading vectors in Figure 2.4. In the figure, the first loading
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Figure 2.4. First toy example (original space)

vectors of the three L1-norm based kernel PCA algorithms are represented using a single

dashed line since they yield the same first loading vector in this example. In addition to

the normal samples forming a linear pattern, there are some outliers scattered exhibiting

two different patterns; the two triangle points are outliers due to their scale and the six

square points are outliers since they do not follow the linear pattern. If the first loading

vector exactly matches the linear pattern, outliers can be easily detected in the principal

space; the triangle points can be detected due to large first principal components and the

square points can be detected from large second principal components. However, due to

the presence of outliers, it is impossible that the first loading vector exactly matches the

linear pattern. Given this context, we use robust kernel PCA algorithms to obtain the

first loading vector with lower deviation from the linear pattern.

Figure 2.5 displays the PCA results of the five kernel PCA algorithms. In the figure, the

x-axis and the y-axis represents the first and the second principal component, respectively.
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Figure 2.5. First toy example (principal space)

As shown in the figure, the triangle outliers can be easily separated by the first principal

component for any kernel PCA algorithm. However, while the square outliers can be

discriminated by the second principal component of the L1-norm based kernel PCA

algorithms and R1-KPCA, there exists some overlap between the normal samples and the

square outliers in the range of the second principal component of L2-KPCA. As seen in

the figure, two outliers appear closer to the origin than some normal samples making the

circular boundary of the normal samples include them. On the other hand, all the normal

samples are clearly separated from the outliers in the principal space of the L1-norm based

kernel PCA algorithms and R1-KPCA, demonstrating the advantage of using robust kernel

PCA in outlier detection. This result is consistent with the findings in Figure 2.2.
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Figure 2.6. Second toy example (original space)
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In order to see if the same result holds for the Gaussian kernel, we consider another

example. As shown in Figure 2.6, the second example has a spiral pattern consisting of

normal samples as well as two types of outliers. As in the previous example, it has both

trivial outliers (the triangle points) and more challenging outliers (the square points). In

order to obtain nonlinear principal components, we run the five kernel PCA algorithms

with the Gaussian kernel. As Figure 2.7 displays, only Algorithm 1 succeeds to exclude

the square outliers from the boundary while the other kernel PCA algorithms include

them within the boundary. This superior performance of Algorithm 1 with the Gaussian

kernel is consistent with the results in Section 2.6.1 and attests the effectiveness of using

it for outlier detection, especially with the Gaussian kernel.
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Figure 2.7. Second toy example (principal space)

2.6.2.2. Real-world Datasets. For outlier detection, we use datasets from the UCI

Machine Learning Repository [18] and the ODDS Library [69], see Table 2.1.

Table 2.1. Real-world datasets for outlier detection

Data set # samples # features # outliers
WBC 378 30 21 (7.6%)
Ionosphere 351 33 126 (36%)
BreastW 683 9 239 (35%)
Cardio 1831 21 176 (9.6%)
Musk 3062 166 97 (3.2%)
Mnist 7603 100 700 (9.2%)
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In this experiment, we use a similar detection rule as the one in [74] where it is applied

for anomaly detection. Let Y ∈ Rn×p denote p principal components and mj and λj be

the mean and variance of the jth principal component, respectively. To detect outliers, we

consider the following detection model, which classify the ith sample as an outlier if

∑
{j:λj≥α}

(Yij −mj)
2

λj
> c.(2.27)

The metric appearing on the left-hand side of (2.27) represents the squared Euclidean

distance to the origin in the standardized principal space consisting of principal components

whose variance is greater than or equal to α. Therefore, our model can be understood

as drawing a circular boundary (as illustrated in Figures 2.5 and 2.7) on this reduced

standardized principal space. Since sample labels are unknown at the stage of building a

model in the outlier detection setting, it is unclear how to choose an appropriate c. So, we

compute precision and recall with varying c and evaluate the performance of each model

using AUC under the precision-recall curve. We compare AUC of the Algorithm 1 based

models to that of the KPCA-L1, L1-KPCA, R1-KPCA, and L2-KPCA based models as

well as that of the two popular outlier detection models, Local Outlier Factor (LOF) [11]

and Isolation Forest (iForest) [49].

Since principal components having small sample variance provide minor information,

we only consider principal components whose sample variance is greater than or equal to

some threshold value α. We set α be to the largest ᾱ such that

0.8×
d∑
j=1

λj ≤
∑

{j:λj≥ᾱ}

λj
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holds where d is the number of features. For the choice of the kernel function, we consider

both the linear kernel and the Gaussian kernel with the width parameter σ of the Gaussian

kernel to be equal to d. On the other hand, we set the number of nearest neighbors to 10

in LOF, and the number of trees, the size of subsample, and the number of rounds to 100,

256, and 10, respectively in iForest since these parameter values are commonly used.

Table 2.2. AUC of the outlier detection models

Datasets
AUC

Linear Gaussian
[11] [49]

Alg 1 [43] [77] [19] L2 Alg 1 [43] [77] [19] L2
WBC 0.52 0.53 0.53 0.47 0.48 0.55 0.55 0.56 0.47 0.49 0.35 0.55

Ionosphere 0.66 0.73 0.68 0.70 0.71 0.71 0.67 0.68 0.68 0.71 0.70 0.71
Breastw 0.93 0.91 0.92 0.92 0.92 0.94 0.92 0.93 0.95 0.94 0.38 0.95
Cardio 0.58 0.56 0.58 0.44 0.51 0.59 0.52 0.56 0.49 0.44 0.19 0.51
Musk 0.99 0.99 0.99 0.96 0.94 0.99 0.99 0.99 0.92 0.94 0.09 0.76

MNIST 0.40 0.40 0.40 0.40 0.39 0.40 0.40 0.40 0.38 0.36 0.19 0.34

Table 2.2 displays the AUCs of the 12 different detection models. The numbers in bold

present the highest AUC cases (there can be several similar top performances). If outliers

are obvious, any kernel PCA based model works well as seen in the case of Breastw and

Musk. However, if outliers are unclear, the Algorithm 1 based detection models tend to

outperform the other detection models. Especially, the Algorithm 1 based model with the

Gaussian kernel consistently achieves top AUC values. Compared to the kernel PCA based

models, LOF and iForest do not work well. LOF never achieves the top performance and

iForest is not competitive for high-dimensional datasets such Must and MNIST although

it yields the top AUC values for WBC and Breastw. As opposed to them, the Algorithm 1

based model with the Gaussian kernel consistently works well regardless of the size of the

problem, demonstrating its effectiveness in outlier detection.
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2.6.3. Runtime Comparison

Lastly, we compare the runtime of Algorithm 1 to that of KPCA-L1, L1-KPCA, R1-KPCA,

and L2-KPCA. In order to obtain a runtime comparison, we run them on the six real-

world datasets presented in Table 2.1 and measure the time taken to get all the principal

components.

Table 2.3. Runtime comparison

Datasets
Runtime (minutes)

Linear Gaussian
Alg 1 [43] [77] [19] L2 Alg 1 [43] [77] [19] L2

WBC 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.2 0.0
Ionosphere 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.1 0.2 0.0

Breastw 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.1 0.1 0.0
Cardio 0.0 1.9 12.3 7.6 0.1 0.0 1.8 15.3 6.2 0.1
Musk 0.5 69.6 999.1 973.5 0.3 0.5 12.9 1018.0 968.3 0.1

MNIST 1.8 558.6 9172.9 2285.3 4.4 2.0 1121.7 18231.7 2897.5 10.9

As shown in Table 2.3, the runtime largely varies across the algorithms. Among

the L1-norm based kernel PCA algorithms, Algorithm 1 has the smallest runtime for all

datasets. Actually, it is much faster than the other two algorithms since it requires only one

matrix-vector multiplication while the other algorithms entail either eigen-decomposition

or solving a system of equations. R1-KPCA is also not as fast as Algorithm 1 since it

involves QR-decomposition in each iteration to make loading vectors orthogonal. Among

the robust kernel PCA algorithms, only Algorithm 1 is computationally comparable to

L2-KPCA, making it the best choice for robust kernel PCA in a large-scale setting.

2.7. Final Remarks

In this work, we present a simple algorithm for L1-norm kernel PCA and provide its

convergence analysis. In order to develop it, we first reformulate L1-norm kernel PCA
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into a geometrically interpretable problem and derive a geometric interpretation behind

it. Based on the geometric interpretation, we develop an algorithm to which the kernel

trick is applicable. In the convergence analysis, we prove that the algorithm converges to

a local optimal solution in a finite number of steps and the sequence of objective values

converges at a linear rate.

The computational experiments demonstrate the robustness of the proposed algorithm

in the presence of entry-wise perturbations and the runtime comparison shows that it

takes much less time than the other robust kernel PCA algorithms. Also, its application

to outlier detection outperforms all of the other benchmark algorithms. The model based

on the proposed algorithm is not only better than that of the other kernel PCA based

models but also outperforms LOF and iForest, especially when high-dimensional datasets

are considered.
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CHAPTER 3

Scale Invariant Power Iteration

3.1. Introduction

This chapter studies scale invariant problem (1.1) and its extended settings. In (1.1),

the constraint ∂Bd in is not a convex set, therefore scale invariant problems are in general

non-convex optimization problems. Nevertheless, it is possible to efficiently solve some

cases of (1.1), for instance, the leading eigenvector problem [26], which is a motivating

example of our study. Power iteration is an algorithm to find the leading eigenvector

of a matrix A. In power iteration, the update rule xk+1 ← Axk/‖Axk‖ is repeatedly

applied until some stopping criterion is satisfied. Since no hyperparameter is required,

this update rule is practical yet attains global linear convergence with the rate of |λ2|/|λ1|

where |λi| is the ith largest absolute eigenvalue of A. This convergence result is analogous

to that of gradient descent for convex optimization. Therefore, many variants including

coordinate-wise [46], momentum [79], online [9,24], stochastic [63], stochastic variance-

reduced (VR) [72,73], and stochastic VR momentum [40,79] power iterations have been

developed, drawing a parallel literature to gradient descent for convex optimization.

Power iteration can be considered as a special case of the Frank-Wolfe algorithm

(also called the conditional gradient method) with the step size of one. In this respect,

an iterative algorithm called generalized power method (GPM), which computes the

gradient at a current iterate and obtains the next iterate by projecting the gradient to the
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constraint set is introduced in [35]. This idea has been used in many applications such

as sparse principal component analysis (PCA) [35,55], L1-norm kernel PCA [39], phase

synchronization [54], and the Burer-Monteiro factorization of semi-definite programs [20].

While the linear convergence property of power iteration has been extended to some of

these applications, theoretical understanding of when and how such an algorithm enjoys

the attractive convergence property of power iteration is limited. For example, only global

sublinear convergence of GPM has been shown for a general convex f [35], which does

not generalize the appealing linear convergence property of power iteration.

On the other hand, we can view a scale invariant problem as an optimization problem on

the real projective plane and consider an equivalent optimization problem on the embedding

space (Rd). The resulting optimization problem is unconstrained in the embedding space

but have a highly non-convex structure as the maximization of the Rayleigh quotient. To

find an optimal solution of the reformulated problem, one can employ general algorithms

for unconstrained non-convex optimization such as gradient and Newton methods with

line search, and trust region method [1].

In this work, rather than working in the embedding space, we focus on a generalization

of power iteration to solve scale invariant problems. Specifically, we derive an algorithm

called scale invariant power iteration (SCI-PI) and show that scale invariant problems can

be efficiently solved by SCI-PI with a generalized convergence guarantee of power iteration.

Having a general form of power iteration, SCI-PI requires no parameters and is thus much

simpler than general non-convex algorithms yet still attains local linear convergence. To

justify that SCI-PI is an appropriate algorithm for scale invariant problems, we derive an

eigenvector property stating that any stationary point x∗ satisfying ∇f(x∗) = λ∗x∗ for
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some λ∗ is an eigenvector of ∇2f(x∗). Due to the eigenvector property, scale invariant

problems can be locally seen as the leading eigenvector problem and thus we can expect

that SCI-PI, a general form of power iteration, would efficiently solve scale invariant

problems near a local optimum x∗.

In order to derive SCI-PI, we rely on a novel reformulation. By swapping the objective

function and the constraint, we obtain a geometrically interpretable dual problem with

the goal of finding the closest point w to the origin from the constraint f(w) = 1. By

mapping a primal iterate xk to the dual space, taking a descent step in the dual space

and mapping it back to the original space, we provide a geometric derivation of SCI-PI,

which replaces Axk with ∇f(xk) in power iteration. In the convergence analysis, we

show that SCI-PI converges to a local maximum x∗ at a linear rate when initialized close

to it. The convergence rate is proportional to λ̄2/λ
∗ where λ̄2 is the spectral norm of

∇2f(x∗)(I − x∗(x∗)T ) and λ∗ is the Lagrange multiplier corresponding to x∗, generalizing

the convergence rate of power iteration. Moreover, under some mild conditions, we provide

an explicit expression of the initial condition ‖x0 − x∗‖ to ensure local convergence.

In the extended settings, we discuss three variants of scale invariant problems. In the

first setting, f is replaced with a sum of scale invariant functions. This setting covers a

Kurtosis-based ICA and can be solved by SCI-PI with similar convergence guarantees. We

also consider a block version of scale invariant problems which covers the Burer-Monteiro

factorization of semi-definite programs and KL-NMF. To solve block scale invariant

problems, we present a block version of SCI-PI and show that it attains linear convergence

in a two-block case. Lastly, we consider partially scale invariant problems which include

general mixture problems such as GMM. To solve partially scale invariant problems, we
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present an alternative algorithm based on SCI-PI and the gradient method, and prove its

local linear convergence. In numerical experiments, we benchmark the proposed algorithms

against state-of-the-art methods for KL-NMF, GMM and ICA. The experimental results

show that our algorithms are computationally competitive and result in better solutions

in several cases.

Our work has the following contributions.

(1) We introduce scale invariant problems which cover interesting examples in statistics

and machine learning yet can be efficiently solved by SCI-PI due to the eigenvector

property.

(2) We present a geometric derivation of SCI-PI using a dual reformulation and

provide a convergence analysis for it. We show that SCI-PI converges to a local

maximum x∗ at a linear rate when initialized close to x∗, generalizing the attractive

convergence property of power iteration. Moreover, we introduce three extended

settings of scale invariant problems together with their convergence analyses.

(3) We report numerical experiments including a novel reformulation of KL-NMF to

extended settings of scale invariant problems. The experimental results demon-

strate that SCI-PI are not only computationally competitive to state-of-the-art

methods but also often yield better solutions.

The paper is organized as follows. In Section 3.2, we define scale invariance and present

interesting properties of scale invariant problems including an eigenvector property and a

dual formulation. We then provide a geometric derivation of SCI-PI and a convergence

analysis in Section 3.3. The extended settings are discussed in Section 3.4 and we report

the numerical experiments in Section 3.5.
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3.2. Scale Invariant Problem

Before presenting properties of scale invariant problems, we first define scale invariant

functions.

Definition 3.2.1. We say that a function f : Rd → R is multiplicatively scale invariant

if it satisfies

(3.1) f(cx) = u(c)f(x)

for some even function u : R→ R+ with u(0) = 0. Also, we say that f : Rd \ {0} → R is

additively scale invariant if it satisfies

(3.2) f(cx) = f(x) + v(c)

for some even function v : R \ {0} → R with v(1) = 0.

The following proposition characterizes the exact form of u and v for continuous f .

Proposition 3.2.2. If a continuous function f 6= 0 satisfies (3.1) with a multiplicative

factor u, then we have

(3.3) u(c) = |c|p

for some p > 0. Also, if a continuous function f satisfies (3.2) with an additive factor v,

then we have

(3.4) v(c) = loga |c|
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for some a such that 0 < a and a 6= 1.

Proof. We first consider the multiplicative scale invariant case. Let x be a point such

that f(x) 6= 0. Then, we have

f(rsx) = u(rs)f(x) = u(r)u(s)f(x),

which results in

u(rs) = u(r)u(s)

for all r, s ∈ R. Let g(r) = ln(u(er)). Then, we have

g(r + s) = ln(u(er+s)) = ln(u(eres)) = ln(u(er)) + ln(u(es)) = g(r) + g(s),

which implies that g satisfies the first Cauchy functional equation. Since f is continuous,

so is u and thus g. Therefore, by [70, pp. 81-82], we have

g(r) = rg(1)(3.5)

for all r ≥ 0. From the definition of g and (3.5), we have

u(er) = eg(r) = (er)g(1).(3.6)

Representing r > 0 as r = eln(r) and using (3.6), we obtain

u(r) = u
(
eln(r)

)
= rg(1) = rln(u(e)) = rp.
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Since f(x) 6= 0, if p = ln(u(e)) < 0, then we have

limr→0+f(rx) = limr→0+u(r)f(x) = f(x) · limr→0+r
p = f(x) · ∞ 6= f(0) <∞,

contradicting the fact that f is continuous at 0. Also, if p = 0, then we get u(r) = 1, which

contradicts u(0) = 0. Therefore, we must have p > 0. From u being an even function, we

finally have

u(r) = |r|p

for r ∈ R.

Now, consider the additive scale invariant case. For any x ∈ dom(f), we have

f(rsx) = f(x) + v(rs) = f(x) + v(r) + v(s),

which results in

v(rs) = v(r) + v(s)

for all r, s ∈ R. Let g(r) = v(er). Then, we have

g(r + s) = v(er+s) = v(eres) = v(er) + v(es) = g(r) + g(s).

Since g is continuous and satisfies the second Cauchy functional equation, by [70, pp. 83-84],

we have

g(r) = rg(1)
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for all r ≥ 0. For r > 0, letting r = eln(r), we have

v(r) = v(eln(r)) = g(ln(r)) = g(1)ln(r) = v(e)ln(r) = loga(r)

where a = e
1
v(e) . Note that a satisfies 0 < a and a 6= 1. From the fact that v is an even

function, we finally have

v(r) = loga|r|

for r ∈ R \ {0}. �

Using the explicit forms of u and v in Proposition 3.2.2, we establish derivative-based

properties of scale invariant functions below.

Proposition 3.2.3. Suppose that f is twice differentiable. If f satisfies (3.1) with a

multiplicative factor u(c) = |c|p, we have

(3.7) c∇f(cx) = |c|p∇f(x), ∇f(x)Tx = pf(x), ∇2f(x)x = (p− 1)∇f(x).

Also, if f satisfies (3.2) with an additive factor v(c) = loga |c|, we have

(3.8) c∇f(cx) = ∇f(x), ∇f(x)Tx = log−1(a), ∇2f(x)x = −∇f(x).

Proof. Without loss of generality, we can represent a scale-invariant function f as

f(cx) = u(c)f(x) + v(c)(3.9)
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since we can restore a multiplicatively or additively scale-invariant function by setting

v(c) = 0 or u(c) = 1, respectively. By differentiating (3.9) with respect to x, we have

∇f(cx) =
u(c)

c
∇f(x).

On the other hand, by differentiating (3.9) with respect to c, we have

∇f(cx)Tx = u′(c)f(x) + v′(c).(3.10)

By differentiating (3.10) with respect to x, we obtain

c∇2f(cx)x+∇f(cx) = u′(c)∇f(x).(3.11)

Plugging c = 1 into (3.10) and (3.11) completes the proof. �

Proposition 3.2.3 states that a scale invariant function satisfies ∇2f(x) = k∇f(x) holds

for some k. This relation is interesting since using the first-order optimality conditions,

we can derive an eigenvector property as follows.

Proposition 3.2.4. Suppose that f is twice differentiable and let (λ∗, x∗) be a station-

ary point of (1.1) such that

∇f(x∗) = λ∗x∗.

If f satisfies (3.1) with u(c) = |c|p, then we have

∇2f(x∗)x∗ = (p− 1)λ∗x∗.
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Also, if f satisfies (3.2) with v(c) = loga |c|, then we have

∇2f(x∗)x∗ = −λ∗x∗.

In both cases, x∗ is an eigenvector of ∇2f(x∗). Moreover, if λ∗ is greater than the largest

eigenvalue of ∇2f(x∗)(I − x∗(x∗)T ), then x∗ is a local maximum to (1.1).

Proof. Consider the Lagrangian function

L(x, λ) = f(x) +
λ

2

(
1− ‖x‖2

)
and a stationary point (λ∗, x∗) satisfying

∇f(x∗) = λ∗x∗, ‖x∗‖ = 1.

If f is multiplicative scale invariant with the degree of p, by Proposition 3.2.3, we have

∇2f(x∗)x∗ = (p− 1)∇f(x∗) = (p− 1)λ∗x∗.

Also, by Proposition 3.2.3, if f is additive scale invariant f , we have

∇2f(x∗)x∗ = −∇f(x∗) = −λ∗x∗.

Therefore, in both cases, a stationary point x∗ is an eigenvector of ∇2f(x∗).

Suppose that λ∗ is greater than the largest eigenvalue of ∇2f(x∗)(I − x∗(x∗)T ). For

any d satisfying dTx∗ = 0, we have

dT∇2
xxL(x∗, λ∗)d = dT∇2f(x∗)(I − x∗(x∗)T )d− λ∗‖d‖2 < 0.
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Since the second-order sufficient condition is satisfied, x∗ is a local maximum. �

Proposition 3.2.4 states that a stationary point x∗ is an eigenvector of ∇2f(x∗). Note

that the Lagrange multiplier λ∗ is not necessarily an eigenvalue corresponding to x∗. The

eigenvalue corresponding to x∗ is (p− 1)λ∗ if f is multiplicatively scale invariant or −λ∗

if f is additively scale invariant. The sufficient condition for local optimality requires

that the Lagrange multiplier λ∗ rather than the eigenvalue corresponding to x∗ is greater

than the largest eigenvalue of ∇2f(x∗)(I − x∗(x∗)T ). Due to this eigenvector property,

scale invariant problems can be considered as a generalization of the leading eigenvector

problem. Next, we introduce a dual formulation of scale invariant problems.

Proposition 3.2.5. Suppose that a continuous function f is either multiplicatively

scale invariant such that f(x∗) > 0 or additively scale invariant with an additive factor

u(c) = loga |c| with a > 1. Then, solving (1.1) is equivalent to solving the following

optimization problem

(3.12) min
w

‖w‖ subject to f(w) = 1.

In other words, if x∗ is an optimal solution to (1.1), then w∗ = x∗/f(x∗)1/p (multiplicative)

or w∗ = a1−f(x∗)x∗ (additive) is an optimal solution to (3.12). Conversely, if w∗ is an

optimal solution to (3.12), x∗ = w∗/‖w∗‖ is an optimal solution to (1.1).

Proof. First, we consider the case where an objective function f is multiplicative

scale invariant with a multiplicative factor u(c) = |c|p where p > 0. Let w∗ be an optimal

solution to (3.12). From that f(w∗) = 1, we have w∗ 6= 0, which leads to ‖w∗‖ > 0 and
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f (w∗/‖w∗‖) = 1/‖w∗‖p > 0. Suppose an optimal solution to (1.1) is y with

f(y) > f (w∗/‖w∗‖) > 0.(3.13)

Let ŷ = y/f(y)1/p. Then, we have f(ŷ) = 1 and y = ŷ/‖ŷ‖. Using f(ŷ) = f(w∗) = 1, we

have

f(y) = f (ŷ/‖ŷ‖) = 1/‖ŷ‖1/p, f (w∗/‖w∗‖) = 1/‖w∗‖1/p.(3.14)

From (3.13) and (3.14), we obtain ‖ŷ‖ < ‖w∗‖, which contradicts that w∗ is an optimal

solution to (3.12).

On the other hand, let x∗ be an optimal solution to (1.1) with f(x∗) > 0. Suppose

that an optimal solution to (3.12) is z with

‖z‖ < ‖x∗‖/f(x∗)1/p.(3.15)

Let ẑ = z/‖z‖. Then, we have ‖ẑ‖ = 1 and z = ẑ/f(ẑ)1/p. From that ‖ẑ‖ = ‖x∗‖ = 1, we

have

‖z‖ = ‖ẑ‖/f(ẑ)1/p = 1/f(ẑ)1/p, ‖x∗‖/f(x∗)1/p = 1/f(x∗)1/p.(3.16)

From (3.15) and (3.16), we have f(x∗) < f(ẑ) since p > 0, which contradicts the assumption

that x∗ is an optimal solution to (1.1).

Next, let f be an additively scale invariant function with an additive factor v(c) = loga|c|

with a > 1. In the same way as above, let w∗ be an optimal solution to (3.12) and suppose
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that an optimal solution of (1.1) is y with

f(y) > f (w∗/‖w∗‖) .(3.17)

Let ŷ = a1−f(y)y. Then, we have f(ŷ) = 1 an y = ŷ/‖ŷ‖. Since f(ŷ) = f(w∗) = 1, we have

f(y) = f(ŷ)− loga‖ŷ‖ = 1− loga‖ŷ‖, f (w∗/‖w∗‖) = 1− loga‖w∗‖.(3.18)

From (3.17) and (3.18), we have ‖ŷ‖ < ‖w∗‖ due to a > 1, contradicting the fact that w∗

is an optimal solution to (3.12).

Conversely, let x∗ be an optimal solution to (1.1) and suppose that an optimal solution

to (3.12) is z with

‖z‖ < ‖a1−f(x∗)x∗‖.(3.19)

Let ẑ = z/‖z‖. Then, we have ‖ẑ‖ = 1 and z = a1−f(ẑ)ẑ. Using ‖ẑ‖ = ‖x∗‖ = 1, we have

‖z‖ = a1−f(ẑ), ‖a1−f(x∗)x∗‖ = a1−f(x∗).(3.20)

From (3.19) and (3.20), we have f(x∗) < f(ẑ) due to a > 1, contradicting the assumption

that x∗ is an optimal solution to (1.1). �

Note that a dual reformulation for a multiplicatively scale invariant f with f(x∗) < 0

or an additively scale invariant f with 0 < a < 1 can be obtained by replacing f(w) = 1

with f(w) = −1 in (3.12). The dual formulation (3.12) has a nice geometric interpretation

that an optimal solution w∗ is the closest point to the origin from the set {w : f(w) = 1}.

We use this understanding to derive SCI-PI in Section 3.3.
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Lastly, we introduce two well-known examples of scale invariant problems in machine

learning and statistics.

Example 3.2.6 (Lp-norm Kernel PCA). Given data vectors ai ∈ Rd and a mapping

Φ : Rd → F , Lp-norm PCA considers

(3.21) max
x

1

n

∑n
i=1|Φ(ai)

Tx|p subject to x ∈ ∂Bd

where the objective function satisfies property (3.1) with u(c) = |c|p.

Example 3.2.7 (Estimation of Mixture Proportions). Given a design matrix L ∈ Rn×d

satisfying Ljk ≥ 0, the problem of estimating mixture proportions seeks to find a vector

π of mixture proportions on the probability simplex Sd = {π :
∑d

k=1 πk = 1, π ≥ 0} that

maximizes the log-likelihood
∑n

j=1 log
(∑d

k=1Ljkπk
)
. By reparametrizing πk by x2

k, we

obtain an equivalent optimization problem

(3.22) max
x

1

n

∑n
j=1 log

(∑d
k=1Ljkx

2
k

)
subject to x ∈ ∂Bd,

which now satisfies property (3.2) with v(c) = 2 log |c|.

The reformulation idea in Example 3.2.7 implies that any simplex-constrained problem

with scale invariant f can be reformulated to a scale invariant problem.

3.3. Scale Invariant Power Iteration

In this section, we provide a geometric derivation of SCI-PI to find a local optimal

solution of (1.1). The algorithm is developed using the geometric interpretation of the

dual formulation (3.12) as illustrated in Figure 3.1. Starting with an iterate xk ∈ ∂B,
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we obtain a dual iterate wk by projecting xk to the constraint f(w) = 1. Given wk, we

identify the hyperplane hk which the current iterate wk lies on and is tangent to f(w) = 1.

After identifying the equation of hk, we find the closest point zk to the origin from hk and

obtain a new dual iterate wk+1 by projecting zk to the constraint f(w) = 1. Finally, we

obtain a new primal iterate xk+1 by mapping wk+1 back to the set ∂Bd.

(0, 0)

xk

wk

hk

xk+1

wk+1

zk

∂Bd

f(w) = 1

Figure 3.1. Geometric derivation of SCI-PI

Now, we develop an algorithm based on the above idea. For derivation of the algorithm,

we assume that an objective function f is continuous and satisfies either (3.1) with

u(c) = |c|p where p > 0 and f(x) > 0 for all x ∈ ∂B or (3.2) with v(c) = loga|c| where

1 < a. Under these conditions, a scalar mapping from xk to wk can be well defined as

wk = xk/f(xk)
1/p or wk = a1−f(xk)xk, respectively. Let wk = ckxk. Since wk is on the

constraint f(w) = 1, the tangent vector of the hyperplane hk is ∇f(wk). Therefore, we can

write down the equation of the hyperplane hk as {w : ∇f(wk)
T (w − wk) = 0}. Note that

zk is a scalar multiple of ∇f(wk) where the scalar can be determined from the requirement

that zk is on hk. Since wk+1 is the projection of zk, it must be a scalar multiple of the

tangent vector yk = ∇f(wk). Therefore, we can write wk+1 as wk+1 = dkyk. Finally, by
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projecting wk+1 to ∂B, we obtain

xk+1 =
wk+1

‖wk+1‖
=

dkyk
‖dkyk‖

=
yk
‖yk‖

=
∇f(wk)

‖∇f(wk)‖
=
∇f(ckxk)

‖∇f(ckxk)‖
=
∇f(xk)

‖∇f(xk)‖

where the last equality follows from Proposition 3.2.3. Summarizing all the above, we

obtain SCI-PI presented in Algorithm 2.

Algorithm 2 SCI-PI

Input: initial point x0

for k = 0, 1, . . . , T − 1 do

xk+1 ← ∇f(xk)
‖∇f(xk)‖

end for

Output: xT

Next, we provide a convergence analysis of SCI-PI. Global sublinear convergence of

SCI-PI for convex f has been addressed in [35]. We additionally show that SCI-PI yields

an ascent step even for quasi-convex f .

Proposition 3.3.1. If f is quasi-convex and differentiable, a sequence of iterates

{xk}k=0,1,··· generated by SCI-PI satisfies f(xk+1) ≥ f(xk) for k = 0, 1, · · · .

Proof. If f(xk+1) < f(xk), by the first-order condition of differentiable quasi-convex

functions, we have

∇f(xk)
T (xk+1 − xk) = ∇f(xk)

T

(
∇f(xk)

‖∇f(xk)‖
− xk

)
= ‖∇f(xk)‖ − ∇f(xk)

Txk ≤ 0.

(3.23)
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However, since f(xk+1) 6= f(xk), ∇f(xk) is not a scalar multiple of xk, leading to

‖∇f(xk)‖ − ∇f(xk)
Txk > 0.

This contradicts (3.23). Therefore, we should have f(xk+1) ≥ f(xk). �

If f is quasi-convex, the set {w : f(w) ≤ 1} is convex, therefore, from Figure 3.1, we

can expect that SCI-PI would yield an ascent step. If f is not quasi-convex, {f(xk)}k=0,1,···

is not necessarily increasing, making it hard to analyze global convergence. Assuming that

an initial point x0 is close to a local maximum x∗, we study local convergence of SCI-PI

as follows.

Theorem 3.3.2. Let f be a scale invariant, twice continuously differentiable function

on an open set containing ∂Bd and let x∗ be a local maximum satisfying ∇f(x∗) = λ∗x∗

and λ∗ > λ̄2 = max2≤i≤d|λi| where (λi, vi) is an eigen-pair of ∇2f(x∗) with x∗ = v1. Then,

there exists some δ > 0 such that under the initial condition 1− xT0 x∗ < δ, the sequence of

iterates {xk}k=0,1,··· generated by SCI-PI satisfies

1− (xTk x
∗)2 ≤

k−1∏
t=0

(
λ̄2

λ∗
+ γt

)2 (
1− (xT0 x

∗)2
)
,

where

λ̄2

λ∗
+ γt < 1 for all t ≥ 0 and lim

k→∞
γk = 0.
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Moreover, if ∇if = ∂f/∂xi has a continuous Hessian Hi on an open set containing

Bd,∞ , {x ∈ Rd : ‖x‖∞ ≤ 1}, we can explicitly write δ as

δ(λ∗, λ̄1, λ̄2,M) = min

{(
λ∗

λ̄1 +M

)2

,

(
λ∗ − λ̄2

λ̄1 + 2M

)2

, 1

}

where

λ̄1 = |λ1|, M = max
x∈∂Bd, y∈Bd,∞

√∑d
i=1(xTGi(y)x)2, Gi(y) =

∑d
j=1 vi,jHj(y).

Proof. Since ∇2f(x∗) is real and symmetric, without loss of generality, we assume

that {v1, . . . , vd} form an orthogonal basis in Rd.

Since f is twice continuously differentiable on an open set containing ∂Bd, for x ∈ ∂Bd,

using the Taylor expansion of ∇f(x)Tvi at x∗, we have

∇f(x)Tvi = ∇f(x∗)Tvi + (x− x∗)T∇2f(x∗)vi +Ri(x)(3.24)

where

Ri(x) = o(‖x− x∗‖).(3.25)

From ∇f(x∗) = λ∗x∗ and x∗ = v1, we have

(3.26)

∇f(x)Tv1 = ∇f(x∗)Tx∗ + (x− x∗)T∇2f(x∗)x∗ +R1(x)

= λ∗ − λ1(1− xTx∗) +R1(x)

= λ∗ + α(x)
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where

α(x) = −λ1(1− xTx∗) +R1(x) = o(‖x− x∗‖)

due to R1(x) = o(‖x− x∗‖) and 1− xTx∗ = o(‖x− x∗‖).

On the other hand, for 2 ≤ i ≤ d, due to ∇f(x∗) = λ∗x∗, we have

∇f(x∗)Tvi = λ∗(x∗)Tvi = 0.(3.27)

From (3.24), this results in

∇f(x)Tvi = λix
Tvi +Ri(x).(3.28)

Let R̄2(x) = max2≤i≤d |Ri(x)|. Note that R̄2(x) = o(‖x− x∗‖). By (3.28), we obtain

(3.29)

d∑
i=2

(
∇f(x)Tvi

)2
=

d∑
i=2

[
λ2
i (x

Tvi)
2 + 2λi(x

Tvi)Ri(x) + (Ri(x))2]
≤ λ̄2

2

d∑
i=2

(xTvi)
2 + 2λ̄2R̄2(x)

d∑
i=2

|xTvi|+ d
(
R̄2(x)

)2
.

From x ∈ ∂Bd, x∗ = v1, and the fact that {v1, . . . , vd} forms an orthogonal basis in Rd, we

have

d∑
i=2

(xTvi)
2 = 1− (xTv1)2 = 1− (xTx∗)2 ≤ 2(1− xTx∗) = ‖x− x∗‖2.

Also, by the Cauchy Schwartz inequality, we have

d∑
i=2

|xTvi| ≤
√
d

√√√√ d∑
i=2

(xTvi)2 ≤
√
d‖x− x∗‖.
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Therefore, we obtain from (3.29) that

(3.30)

d∑
i=2

(
∇f(x)Tvi

)2 ≤ λ̄2
2‖x− x∗‖2 + 2λ̄2R̄2(x)

√
d‖x− x∗‖+ d

(
R̄2(x)

)2

=
(
λ̄2‖x− x∗‖+ β(x)

)2

where

β(x) =
√
dR̄2(x) = o(‖x− x∗‖).

By (3.26), (3.30), and Lemma A.1.1, we obtain the first part of the desired result.

Next, we consider the case where ∇if has a continuous Hessian Hi. From ∇if(x) being

twice continuously differentiable in B∞, we have

∇if(xk) = ∇if(x∗) +∇∇if(x∗)(xk − x∗) +
1

2
(xk − x∗)T Hi(x̂

i
k) (xk − x∗)(3.31)

where

x̂ik ∈ N (xk, x
∗) , {x : xs = tsx

∗
s + (1− ts)xk,s, 0 ≤ ts ≤ 1, s = 1, . . . , d} .

In the above, x∗s and xk,s denote the sth coordinates of x∗ and xk, respectively.

For each 1 ≤ i ≤ d, we have

1

2

d∑
j=1

vi,j (xk − x∗)T Hj(x̂
j
k) (xk − x∗) =

1

2
(xk − x∗)TGi(x̂

j
k)(xk − x

∗).

From

∣∣(xk − x∗)TGi(x̂
j
k)(xk − x

∗)
∣∣ = ‖xk − x∗‖2

∣∣∣∣ [ xk − x∗

‖xk − x∗‖

]T
Gi(x̂

j
k)

[
xk − x∗

‖xk − x∗‖

] ∣∣∣∣(3.32)



71

and

max
x∈∂Bd

|xTGi(x̂
j
k)x| ≤ max

x∈∂Bd, y∈B∞
|xTGi(y)x| ≤ max

x∈∂Bd, y∈B∞

√∑d
i=1

(
xTGi(y)x

)2
= M,

we have

∣∣(xk − x∗)TGi(x̂
j
k)(xk − x

∗)
∣∣ ≤M‖xk − x∗‖2,

leading to

1

2

∣∣∣∣ d∑
j=1

vi,j (xk − x∗)T Hj(x̂
j
k) (xk − x∗)

∣∣∣∣ ≤ 1

2
M‖xk − x∗‖2.(3.33)

From (3.31), (3.33) and that x∗ = v1, we have

∇f(xk)
Tv1 ≥ ∇f(x∗)Tx∗ + (xk − x∗)T∇2f(x∗)x∗ − M

2
‖xk − x∗‖2,

resulting in

∇f(xk)
Tv1 ≥ λ∗ − (M + |λ1|)(1− xTk x∗).(3.34)

For 2 ≤ i ≤ d, we have

∇f(xk)
Tvi = ∇f(x∗)Tvi + (xk − x∗)T∇2f(x∗)vi +

1

2
(xk − x∗)TGi(x̂

j
k)(xk − x

∗)

= λix
T
k vi +

1

2
(xk − x∗)TGi(x̂

j
k)(xk − x

∗).(3.35)
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Using (3.32) and

max
x∈∂Bd

d∑
i=2

(xTGi(x̂
j
k)x)2 ≤ max

x∈∂Bd, y∈B∞

d∑
i=2

(xTGi(y)x)2 ≤ max
x∈∂Bd, y∈B∞

d∑
i=1

(xTGi(y)x)2 ≤M,

we have

d∑
i=2

[
(xk − x∗)TGi(x̂

j
k)(xk − x

∗)
]2 ≤M2‖xk − x∗‖4.(3.36)

Using (3.35), (3.36) and the Cauchy-Schwartz inequality, we have

d∑
i=2

(∇f(xk)
Tvi)

2 ≤
d∑
i=2

(
|λi||xTk vi|+

1

2
(xk − x∗)TGi(x̂

j
k)(xk − x

∗)

)2

≤ λ̄2
2

d∑
i=2

(xTk vi)
2 + λ̄2M‖xk − x∗‖2

√√√√ d∑
i=2

(xTk vi)
2 +

M2

4
‖xk − x∗‖4

=

(
λ̄2

√
1− (xTk x

∗)2 +
M

2
‖xk − x∗‖2

)2

.(3.37)

Using (3.34), (3.37), and Lemma A.1.2 with

A = λ∗, B = M + |λ1|, C = 0, D = λ̄2, E = 0, F = M,

we obtain the desired result. �

Theorem 3.3.2 presents a local convergence result of SCI-PI with the rate being
λ∗

λ̄2

. This

convergence rate generalizes that of power iteration, since it specializes to
λ1

λ2

when it comes

to the leading eigenvector problem. Note that Theorem 3.3.2 requires that a Lagrange

multiplier λ∗ corresponding to a local maximum x∗ satisfies λ∗ > λ̄2 = max2≤i≤d |λi|.

This assumption is satisfied by all local maxima if f is convex, multiplicatively scale
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invariant or concave, additively scale invariant. However, in general, not all local maxima

satisfy this assumption since it is stronger than the local optimality condition stated as

λ∗ > max2≤i≤d λi. Nevertheless, by adding σ‖x‖2 for some σ > 0 to the objective function

f , we can always enforce λ∗ > λ̄2. Conversely, by adding σ‖x‖2 for some σ < 0, we may

improve the convergence rate as in shifted power iteration.

3.4. Extended Settings

3.4.1. Sum of Scale Invariant Functions

Consider a sum of scale invariant functions having the form of f(x) =
∑m

i=1 gi(x) +∑n
j=1 hj(x) where gi is a multiplicatively scale invariant function with u(c) = |c|pi and

hj is an additively scale invariant function with v(c) = logaj |c|. Note that this does not

imply that f is scale invariant in general. Here is an example that involves a sum of scale

invariant functions.

Example 3.4.1 (Kurtosis-based ICA). Given a pre-processed data matrix W ∈ Rn×d,

Kurtosis-based ICA [31] solves

(3.38) max
x

1

n

n∑
i=1

[
(wTi x)4 − 3

]2
subject to x ∈ ∂Bd.

The objective function f is a sum of scale invariant functions.

By Proposition 3.2.3, the gradient of f has the form of

∇f(x) =
m∑
i=1

∇gi(x) +
n∑
j=1

∇hj(x) = F (x)x,
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where

F (x) =
m∑
i=1

(
1

pi − 1

)
∇2gi(x)−

n∑
j=1

∇2hj(x).

Note that a stationary point x∗ satisfying ∇f(x∗) = λ∗x∗ is not necessarily an eigenvector

of ∇2f(x∗). Instead, a stationary point x∗ is an eigenvector of F (x). We present a local

convergence analysis of SCI-PI for a sum of scale invariant functions as follows.

Theorem 3.4.2. Let f be a sum of scale invariant functions and twice continuously

differentiable on an open set containing ∂Bd and let x∗ be a local maximum satisfying

∇f(x∗) = λ∗x∗ and λ∗ > λ̄2 = ‖∇2f(x∗)(I − x∗(x∗)2)‖. Then, there exists some δ > 0

such that under the initial condition 1 − xT0 x∗ < δ, the sequence of iterates {xk}k=0,1,···

generated by SCI-PI satisfies

1− (xTk x
∗)2 ≤

k−1∏
t=0

(
λ̄2

λ∗
+ γt

)2 (
1− (xT0 x

∗)2
)
,

where

λ̄2

λ∗
+ γt < 1 for all t ≥ 0 and lim

k→∞
γk = 0.

Moreover, if ∇if = ∂f/∂xi has a continuous Hessian Hi on an open set containing Bd,∞,

we can explicitly write δ as

δ(λ∗, λ̄1, λ̄2,M) = min

{(
λ∗

λ̄1 +M

)2

,

(
λ∗ − λ̄2

λ̄1 + λ̄2 + 2M

)2

, 1

}

where

λ̄1 =
√

2 · ‖∇2f(x∗)x∗‖, M = max
x∈∂Bd, y∈Bd,∞

√∑d
i=1(xTGi(y)x)2, Gi(y) =

∑d
j=1 vi,jHj(y).
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Proof. Let {v1, . . . , vd} be a set of eigenvectors of F (x∗) with x∗ = v1. Since F (x∗)

is real and symmetric, without loss of generality, we assume that {v1, . . . , vd} form an

orthogonal basis in Rd.

Since f is twice continuously differentiable on an open set containing ∂Bd, for x ∈ ∂Bd,

using the Taylor expansion of ∇f(x)Tvi at x∗, we have

(3.39) ∇f(x)Tvi = ∇f(x∗)Tvi + (x− x∗)T∇2f(x∗)vi +Ri(x)

where Ri(x) = o(‖x− x∗‖). Using (3.39) with i = 1 and ∇f(x∗) = λ∗x∗, we obtain

(3.40)
∇f(x)Tv1 = λ∗(x∗)Tv1 + (x− x∗)T∇2f(x∗)v1 +R1(x)

= λ∗ + α(x)

where

α(x) = (x− x∗)T∇2f(x∗)v1 +R1(x) = o(
√
‖x− x∗‖).

Using (3.39) and ∇f(x∗) = λ∗x∗ for 2 ≤ i ≤ d, we have

∇f(x)Tvi = λ∗(x∗)Tvi + (x− x∗)T∇2f(x∗)vi +Ri(x)

= (x− x∗)T∇2f(x∗)vi +Ri(x),

resulting in

d∑
i=2

(∇f(x)Tvi)
2 =

d∑
i=2

(
(x− x∗)T∇2f(x∗)vi +Ri(x)

)2
.(3.41)

Let R̄2(x) = max2≤i≤d |Ri(x)|. Note that R̄2(x) = o(‖x− x∗‖).
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From x∗ = v1 and the fact that {v1, . . . , vd} forms an orthogonal basis in Rd, we have

d∑
i=2

(
(x− x∗)T∇2f(x∗)vi

)2
= ‖∇2f(x∗)(x− x∗)‖2

2 −
(
(x− x∗)T∇2f(x∗)v1

)2

= (x− x∗)T∇2f(x∗)
(
I − x∗(x∗)T

)
∇2f(x∗)(x− x∗)

= (x− x∗)T∇2f(x∗)
(
I − x∗(x∗)T

)2∇2f(x∗)(x− x∗).

Since

‖∇2f(x∗)
(
I − x∗(x∗)T

)2∇2f(x∗)‖ = ‖
(
I − x∗(x∗)T

)
∇2f(x∗)‖2

= ‖∇2f(x∗)
(
I − x∗(x∗)T

)
‖2,

we have

d∑
i=2

(
(x− x∗)T∇2f(x∗)vi

)2 ≤ λ̄2
2‖x− x∗‖2.(3.42)

Also, from (3.42) and the Cauchy-Schwartz inequality, we obtain

d∑
i=2

(x− x∗)T∇2f(x∗)vi ≤
d∑
i=2

|(x− x∗)T∇2f(x∗)vi| ≤ λ̄2

√
d‖x− x∗‖.(3.43)

Using (3.42) and (3.43) for (3.41), we obtain

d∑
i=2

(∇f(x)Tvi)
2 ≤ λ̄2

2‖x− x∗‖2 + 2λ̄2R̄2(x)
√
d‖x− x∗‖+ d(R̄2(x))2,

resulting in

(3.44)
d∑
i=2

(∇f(x)Tvi)
2 ≤

(
λ̄2‖x− x∗‖2 + β(x)

)2
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where β(x) =
√
dR̄2(x) = o(‖x− x∗‖). By (3.40), (3.44), and Lemma A.1.1, we obtain the

first part of the desired result.

Next, we assume that ∇if has a continuous Hessian Hi. By the Taylor theorem, we

have

∇if(xk) = ∇if(x∗) +∇∇if(x∗)(xk − x∗) +
1

2
(xk − x∗)T Hi(x̂

i
k) (xk − x∗)(3.45)

for some x̂ik ∈ N (xk, x
∗).

Taking the steps used to derive (3.33) and (3.36) in the proof of Theorem 3.3.2, we

can derive the same inequalities

(3.46)
1

2

∣∣(xk − x∗)TGi(x̂
j
k)(xk − x

∗)
∣∣ ≤ 1

2
M‖xk − x∗‖2

and

(3.47)
1

4

d∑
i=2

[
(xk − x∗)TGi(x̂

j
k)(xk − x

∗)
]2 ≤ M2

4
‖xk − x∗‖4.

Using (3.45), (3.47) and that x∗ = v1, we have

∇f(xk)
Tv1 ≥ ∇f(x∗)Tx∗ + (xk − x∗)T∇2f(x∗)x∗ − M

2
‖xk − x∗‖2

resulting in

(3.48)
∇f(xk)

Tv1 ≥ λ∗ − ‖∇2f(x∗)x∗‖
√

2(1− xTk x∗)−M(1− xTk x∗)

= λ∗ − λ̄1

√
(1− xTk x∗)−M(1− xTk x∗)
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For 2 ≤ i ≤ d, we have

∇f(xk)
Tvi ≤ ∇f(x∗)Tvi + (xk − x∗)T∇2f(x∗)vi +

1

2
(xk − x∗)TGi(x̂

j
k)(xk − x

∗)

= λ∗(x∗)Tvi + (xk − x∗)T∇2f(x∗)vi +
1

2
(xk − x∗)TGi(x̂

j
k)(xk − x

∗)

= (xk − x∗)T∇2f(x∗)vi +
1

2
(xk − x∗)TGi(x̂

j
k)(xk − x

∗).(3.49)

From (3.49), (3.42), (3.46), (3.47) and the Cauchy-Shwartz inequality, we have

d∑
i=2

(∇f(xk)
Tvi)

2 ≤
d∑
i=2

(
(xk − x∗)T∇2f(x∗)vi +

1

2
(xk − x∗)TGi(x̂

j
k)(xk − x

∗)

)2

≤
(
λ̄2‖xk − x∗‖+

M

2
‖xk − x∗‖2

)2

.(3.50)

Using (3.48), (3.50), and Lemma A.1.2 with

A = λ∗, B = M, C = λ̄1, D = 0, E = λ̄2, F = M,

we obtain the desired result. �

Note that λ̄1 has the additional
√

2 factor which comes from the fact that x∗ is not

necessarily an eigenvector of ∇2f(x∗). Nonetheless, the asymptotic convergence rate in

Theorem 3.4.2 provides a generalization of the convergence rate in Theorem 3.3.2.

3.4.2. Block Scale Invariant Problems

Next, consider a class of optimization problems having the form of

max
x,y

f(x, y) subject to x ∈ ∂Bd1 , y ∈ ∂Bd2
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where f : Rd1+d2 → R is scale invariant in x for fixed y and vice versa. Some examples of

block scale invariant problems are given next.

Example 3.4.3 (Semidefinite Programming (SDP) [20]). Let A,X ∈ Rn×n. Given an

SDP problem

max
X

〈A,X〉 subject to Xii = 1, i ∈ {1, 2, · · · , n}, X � 0,

the Burer-Monteiro approach [14] yields the following block scale invariant problem

max
σ

〈A, σσT 〉 subject to ‖σi‖ = 1, i ∈ {1, 2, · · · , n}.

Example 3.4.4 (Kullback-Leibler (KL) divergence NMF). The KL-NMF problem

[21,45,76] is defined as

(3.51)

min
W,H

DKL(V ‖WH) ,
∑

i,j

[
Vij log

Vij∑
kWikHkj

− Vij +
∑

kWikHkj

]
subject to Wik ≥ 0, Hkj ≥ 0, i ∈ {1, · · · , n}, j ∈ {1, · · · ,m}, k ∈ {1, · · · , K}.

Many popular algorithms for the KL-NMF problem are based on alternate minimization

of W and H. Given W ≥ 0 and j ∈ {1, · · · ,m}, we consider a subproblem such that

(3.52) min
h

fKL(h) =
∑

i

[
vi log

vi∑
kWikhk

− vi +
∑

kWikhk

]
subject to hk ≥ 0

where we let vi = Vij and hk = Hkj as the objective is decomposed into m separate

subproblems. Note that the KL-NMF problem in the form of (3.51) is not a block scale
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invariant problem. However, using a novel reformulation, we show that the KL divergence

NMF subproblem is indeed a scale invariant problem.

Lemma 3.4.5. The KL-NMF subproblem (3.52) is equivalent to the following scale

invariant problem

(3.53) max
h̄

−
∑

ivi log
∑

kWikh̄k subject to
∑

kh̄k = 1, h̄k ≥ 0,

with the relationship (
∑

i vi)h̄k = (
∑

iWik)hk.

Proof. Since a log-linear function is concave, (3.52) is a convex problem in h. Consider

the Lagrangian of the original problem

(3.54) L(h, λ) = fKL(h)−
∑

kλkhk

where λ ≥ 0. By the first-order KKT conditions, we must have

(3.55) ∇kfKL(h∗) = λ∗k, λ∗kh
∗
k = 0, ∀k = 1, · · · , K

at an optimal solution (h∗, λ∗). Since (3.55) implies
∑

k h
∗
kλ
∗
k = 0, we have

∑
k

h∗kλ
∗
k =

∑
k

h∗k∇kfKL(h∗) = −
∑
i,k

viWikh
∗
k∑

k′Wik′h∗k′
+
∑
i,k

Wikh
∗
k,

resulting in

(3.56)
∑

i vi =
∑

i,kWikh
∗
k.
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Next, we show that

(3.57) min
h

fSCI(h) =
∑

ivi log
vi∑

kWikhk
subject to

∑
i

vi =
∑
i,k

Wikhk, hk ≥ 0.

is equivalent to the original subproblem (5.68), due to the following:

(1) It always satisfies f ∗SCI ≥ f ∗KL since (3.57) has an additional constraint
∑

i vi =∑
i,kWikhk compared to (3.52).

(2) A solution h∗ of (3.52) is a feasible point of (3.57) since we have shown that∑
i vi =

∑
i,kWikh

∗
k. This implies f ∗KL ≥ f ∗SCI .

Now, we can reparametrize h by h̄ so that
∑

i vi =
∑

i,kWikhk if and only if
∑

k h̄k = 1,

which yields the relationship between two variables h̄k = hk

∑
iWik∑
i vi

. Note that (3.53) has

the optimization problem as Example 3.2.7 and thus a scale invariant problem. �

To solve block scale invariant problems, we consider an alternating maximization

algorithm called block SCI-PI, which repeats

(3.58) xk+1 ←
∇xf(x, yk)

‖∇xf(x, yk)‖
, yk+1 ←

∇yf(xk, y)

‖∇yf(xk, y)‖
.

We present a local convergence result of block SCI-PI below.

Theorem 3.4.6. Suppose that f is twice continuously differentiable on an open set

containing ∂Bd1 × ∂Bd2 and let (x∗, y∗) be a local maximum satisfying

∇xf(x∗, y∗) = λ∗x∗, λ∗ > λ̄2 = max
2≤i≤d1

|λi|, ∇yf(x∗, y∗) = s∗y∗, s∗ > s̄2 = max
2≤i≤d2

|si|
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where (λi, vi) and (si, ui) are eigen-pairs of ∇2
xf(x∗, y∗) and ∇2

yf(x∗, y∗), respectively with

x∗ = v1 and y∗ = u1. If

ν2 = ‖∇yxf(x∗, y∗)‖2 < (λ∗ − λ̄2)(s∗ − s̄2),

then for the sequence of iterates {(xk, yk)}k=0,1,··· generated by (3.58), there exists some

δ > 0 such that if max{|1− xT0 x∗|, |1− yT0 y∗|} < δ, then we have

‖∆k‖ ≤
∏k−1

t=0 (ρ+ γt) ‖∆0‖ and limk→∞γk = 0

where

∆k =

√1− (xTk x
∗)2√

1− (yTk y
∗)2

 , ρ =
1

2

 λ̄2

λ∗
+
s̄2

s∗
+

√[
λ̄2

λ∗
− s̄2

s∗

]2

+
4ν2

λ∗s∗

 < 1.

Proof. From Lemma A.1.3 with w = xk, z = yk, we have

1− (∇xf(xk, yk)
Tx∗)2

‖∇xf(xk, yk)‖2
≤
(
λ̄2

λ∗

√
1− (xTk x

∗)2 +
ν

λ∗
‖yk − y∗‖+ θx(xk, yk)

)2

.

Since

xk+1 =
∇xf(xk, yk)

‖∇xf(xk, yk)‖
,

we obtain

√
1− (xTk+1x

∗)2 ≤ λ̄2

λ∗

√
1− (xTk x

∗)2 +
ν

λ∗
‖yk − y∗‖+ θx(xk, yk).
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Using

‖yk − y∗‖ =
√

2(1− yTk y∗) =

(
1 +

1− yTk y∗

1 + yTk y
∗ +

√
2(1 + yTk y

∗))

)√
1− (yTk y

∗)2,

we have

√
1− (xTk+1x

∗)2 ≤ λ̄2

λ∗

√
1− (xTk x

∗)2 +
ν

λ∗

√
1− (yTk y

∗)2 + θ̄x(xk, yk)(3.59)

where

θ̄x(xk, yk) = θx(xk, yk) +

(
1− yTk y∗

)√
1− (yTk y

∗)2

1 + yTk y
∗ +

√
2(1 + yTk y

∗))
= o

(∥∥∥∥[xk − x∗yk − y∗
]∥∥∥∥).

Using Lemma A.1.3 for w = yk, z = xk and the definition of yk+1, we have

√
1− (yTk+1y

∗)2 ≤ ν

s∗

√
1− (xTk x

∗)2 +
s̄2

s∗

√
1− (yTk y

∗)2 + θ̄y(xk, yk)(3.60)

where

θ̄y(xk, yk) = θy(xk, yk) +

(
1− xTk x∗

)√
1− (xTk x

∗)2

1 + xTk x
∗ +

√
2(1 + xTk x

∗))
= o

(∥∥∥∥[xk − x∗yk − y∗
]∥∥∥∥).

Combining (3.59) and (3.60), we obtain


√

1− (xTk+1x
∗)2√

1− (yTk+1y
∗)2

 ≤

λ̄2

λ∗
ν

λ∗

ν

s∗
s̄2

s∗



√

1− (xTk x
∗)2√

1− (yTk y
∗)2

+

θ̄x(xk, yk)
θ̄y(xk, yk)

(3.61)

≤ (M +N(xk, yk))


√

1− (xTk x
∗)2√

1− (yTk y
∗)2

(3.62)
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where

M =


λ̄2

λ∗
ν

λ∗

ν

s∗
s̄2

s∗

 , ε(x, y) =
max{θ̄x(x, y), θ̄y(x, y)}√

2− xTx∗ − yTy∗
,

and

N(x, y) =
ε(x, y)√

2− xTx∗ − yTy∗


√

1− xTx∗

1 + xTx∗

√
1− yTy∗

1 + yTy∗√
1− xTx∗

1 + xTx∗

√
1− yTy∗

1 + yTy∗

 .
Note that the spectral radius ρ of M satisfies

ρ =
1

2

 λ̄2

λ∗
+
s̄2

s∗
+

√(
λ̄2

λ∗
− s̄2

s∗

)2

+
4ν2

λ∗s∗

 < 1

due to ν2 < (λ∗ − λ̄2)(s
∗ − s̄2). Also, for i, j = 1, 2, we have lim(x,y)→(x∗,y∗) Nij(x, y) = 0.

By Lemma A.1.5, there exists a sequence ωt such that

‖Mk‖ =
k−1∏
t=0

(ρ+ ωt) and limt→∞ωt = 0.

Let

τ = min{k : ‖Mk‖ < 1}, ρ̄ =
‖M τ‖+ 1

2
, ρmax = max

1≤k≤τ
‖Mk‖.

By Lemma A.1.3, we have

∇xf(x, y)Tv1 = λ∗ + (y − y∗)T∇2
yxf(x∗, y∗)x∗ + αx(x, y)

∇yf(x, y)Tu1 = s∗ + (x− x∗)T∇2
xyf(x∗, y∗)y∗ + αy(x, y)
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where

αx(x, y) = o

(∥∥∥∥[xk − x∗yk − y∗
]∥∥∥∥), αy(x, y) = o

(∥∥∥∥[xk − x∗yk − y∗
]∥∥∥∥).

Therefore, there exists some δ1 > 0 such that if

xTx∗ > 0, yTy∗ > 0,

∥∥∥∥∥
[√

1− (xTx∗)2√
1− (yTy∗)2

]∥∥∥∥∥ < δ1,

then

(3.63) ∇xf(x, y)Tv1 > 0, ∇yf(x, y)Tu1 > 0.

Also, since Nij(x, y) → 0 as (x, y) → (x∗, y∗) for i, j = 1, 2, there exists some δ2 > 0

such that if

xTx∗ > 0, yTy∗ > 0,

∥∥∥∥∥
[√

1− (xTx∗)2√
1− (yTy∗)2

]∥∥∥∥∥ < δ2,

then we have

(3.64)∥∥∏τ−1
l=0

(
M +N(φ(x, y, l))

)∥∥ < ρ̄, max
0<m≤τ

∥∥∏m−1
l=0

(
M +N(φ(x, y, l))

)∥∥ < 1 + ρmax

where φ(x, y, l) denotes the vector after l iterations of the algorithm starting with (x, y).

To see this, let us define

g(x, y,m) =
∥∥∏m−1

l=0

(
M +N(φ(x, y, l))

)∥∥ .
By (3.62) and (3.63), if x→ x∗ and y → y∗, then for any 0 ≤ l ≤ τ , we have

φ(x, y, l)→ (x∗, y∗),
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resulting in

g(x, y,m)→ ‖Mm‖.

Therefore, there exists some δ2,τ > 0 such that g(x, y, τ) < ρ̄. Also, for each 1 ≤ m < τ ,

there exists some δ2,m > 0 such that g(x, y,m) < 1 + ρmax. Taking the minimum of δ2,m

for 1 ≤ m ≤ τ , we obtain δ2 satisfying (3.64).

Let

δ =
δ̄√
2
, δ̄ = min

{
δ1,

δ1

1 + ρmax

, δ2, 1

}
, Nk = N(xk, yk).

By mathematical induction, we show that for any n ≥ 0, if

(3.65) xTnτx
∗ > 0, yTnτy

∗ > 0, ∆nτ < δ̄,

then for 0 ≤ m ≤ τ , we have

xTnτ+mx
∗ > 0, yTnτ+my

∗ > 0, ∆nτ+m ≤ (1 + ρmax)∆nτ < δ1.(3.66)

By (3.65), it is obvious that we have (3.66) for m = 0. This proves the base case. Next,

suppose that we have (3.66) for 0 ≤ m < τ . Then, by the definition of δ1, we have

xTnτ+m+1x
∗ = xTnτ+m+1v1 =

∇xf(xnτ+m, ynτ+m)Tv1

‖∇xf(xnτ+m, ynτ+m)‖
> 0

and

yTnτ+m+1y
∗ = yTnτ+m+1u1 =

∇yf(xnτ+m, ynτ+m)Tu1

‖∇yf(xnτ+m, ynτ+m)‖
> 0.
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Also, by (3.62), (3.65) and (3.64), we have

∆nτ+m+1 ≤ ‖
∏m

l=0 (M +Nnτ+l)‖∆nτ ≤ (1 + ρmax)∆nτ < δ1.

This completes the induction proof.

Suppose that (x0, y0) satisfies max{|1− xT0 x∗|, |1− yT0 y∗|} < δ. Then, we have

(3.67) xT0 x
∗ > 0, yT0 y

∗ > 0, ∆0 < δ̄.

Now, we show

xTnτx
∗ > 0, yTnτy

∗ > 0, ∆nτ ≤ ρ̄n∆0.(3.68)

For n = 0, we have (3.68) by (3.67). This proves the base case. Next, suppose that we

have (3.68) for n. Then, since (3.68) implies that ∆nτ ≤ ρ̄n∆0 < δ̄, by (3.66), we have

xT(n+1)τx
∗ > 0, yT(n+1)τy

∗ > 0.

Moreover, using (3.62) and (3.64), we have

∆(n+1)τ ≤
∥∥∏τ−1

l=0 (M +Nnτ+l)
∥∥∆nτ ≤ ρ̄∆nτ < ρ̄n+1∆0,

which completes the induction proof. By repeatedly applying (3.68), we have

(xnτ , ynτ )→ (x∗, y∗) as n→∞.
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Furthermore, due to (3.66), we have

(xnτ+m, ynτ+m)→ (x∗, y∗) for every 0 < m ≤ τ,

indicating that

(xk, yk)→ (x∗, y∗).

This in turn implies that Nk → 0. Letting

ηk =
‖
∏k

t=0(M +Nt)‖
‖
∏k−1

t=0 (M +Nt)‖
− ‖M

k+1‖
‖Mk‖

, γk = ωk + ηk,

we have

‖
∏k−1

t=0 (M +Nt)‖ =
∏k−1

t=0 (ρ+ ωt + ηt) =
∏k−1

t=0 (ρ+ γt).(3.69)

Since ηk → 0 as Nk → 0, we have lim γk = 0. This concludes the proof. �

If x and y are independent (ν = 0), we have ρ = max {λ̄2/λ
∗, s̄2/s

∗}. Otherwise, ρ

increases as ν increases. Note that the result of Theorem 3.3.2 can be restored by dropping

x or y in Theorem 3.4.6. While we consider the two-block case, the algorithm and the

convergence analysis can be easily generalized to more than two blocks.

3.4.3. Partially Scale Invariant Problems

Lastly, we consider a class of optimization problems of the form

max
x,y

f(x, y) subject to x ∈ ∂Bd1
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where f(x, y) : Rd1+d2 → R is a scale invariant function in x for each y ∈ Rd2 . A partially

scale invariant problem has the form of (1.1) with respect to x once y is fixed. If x is fixed,

we obtain an unconstrained optimization problem with respect to y.

Example 3.4.7 (Gaussian Mixture Model (GMM)). The GMM problem is defined as

max
x

n∑
i=1

log
d∑

k=1

x2
kN (xi;µk,Σk) subject to x ∈ ∂Bd.

Note that the objective function is scale invariant in x for fixed µk and Σk, and µk

is unconstrained. If we assume some structure on Σk, estimation of Σk can also be

unconstrained. For general Σk, semi-positive definiteness is necessary for Σk.

To solve partially scale invariant problems, we consider an alternative maximization

algorithm based on SCI-PI and the gradient method as

(3.70) xk+1 ←
∇xf(xk, yk)

‖∇xf(xk, yk)‖
, yk+1 ← yk + α∇yf(xk, yk).

While the gradient method is used in (3.70), any method for unconstrained optimization

can replace it. We present a convergence analysis of (3.70) below.

Theorem 3.4.8. Suppose that f(x, y) is scale invariant in x for each y ∈ Rd2, µ-

strongly concave in y with an L-Lipschitz continuous ∇yf(x, y) for each x ∈ ∂Bd1, and

three-times continuously differentiable on an open set containing ∂Bd1 × Rd2. Let (x∗, y∗)

be a local maximum satisfying

∇f(x∗) = λ∗x∗, λ∗ > λ̄2 = max2≤i≤d |λi|
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where (λi, vi) is an eigen-pair of ∇2f(x∗) with x∗ = v1. If

ν2 = ‖∇2
yxf(x∗, y∗)‖2 < µ(λ∗ − λ̄2),

then for the sequence of iterates {(xk, yk)}k=0,1,··· generated by (3.70) with α =
2

L+ µ
,

there exists some δ > 0 such that if max{|1− xT0 x∗|, ‖y − y∗‖} < δ, then we have

‖∆k‖ ≤
∏k−1

t=0 (ρ+ γt) ‖∆0‖ and limk→∞γk = 0

where

∆k =

[√
1− (xTk x

∗)2

‖yk − y∗‖

]
, ρ =

1

2

 λ̄2

λ∗
+
L− µ
L+ µ

+

√(
λ̄2

λ∗
− L− µ
L+ µ

)2

+
8ν2

λ∗(L+ µ)

 < 1.

Proof. Using Lemma A.1.3 for w = xk, z = yk and the definition of xk+1, we have

√
1− (xTk+1x

∗)2 ≤ λ̄2

λ∗

√
1− (xTk x

∗)2 +
ν

λ∗
‖yk − y∗‖+ θx(xk, yk).(3.71)

where

θx(xk, yk) = o

(∥∥∥∥[xk − x∗yk − y∗
]∥∥∥∥).

By Lemma A.1.4 with w = xk, z = yk, we also have

‖yk+1 − y∗‖ ≤
(

2ν

L+ µ

)
‖xk − x∗‖+

(
L− µ
L+ µ

)
‖yk − y∗‖+ θy(xk, yk).(3.72)

Using

θ̄y(xk, yk) = θy(xk, yk) +
(1− xTk x∗)

√
1− (xTk x

∗)2

1 + xTk x
∗ +

√
2(1 + xTk x

∗))
= o

(∥∥∥∥[xk − x∗yk − y∗
]∥∥∥∥),
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we can write (3.72) as

‖yk+1 − y∗‖ ≤
(

2ν

L+ µ

)√
1− (xTk x

∗)2 +

(
L− µ
L+ µ

)
‖yk − y∗‖+ θ̄y(xk, yk).(3.73)

Combining (3.71) and (3.73), we obtain

[√
1− (xTk+1x

∗)2

‖yk+1 − y∗‖

]
≤


λ̄2

λ∗
ν

λ∗

2ν

L+ µ

L− µ
L+ µ


[√

1− (xTk x
∗)2

‖yk − y∗‖

]
+

[
θx(xk, yk)

θ̄y(xk, yk)

]
(3.74)

≤ (M +N(xk, yk))

[√
1− (xTk x

∗)2

‖yk − y∗‖

]
(3.75)

where

M =


λ̄2

λ∗
ν

λ∗

2ν

L+ µ

L− µ
L+ µ

 , ε(x, y) =
max{θx(x, y), θ̄y(x, y)}√

1− xTx∗ + ‖y − y∗‖2

and

N(x, y) =
ε(x, y)√

1− xTx∗ + ‖y − y∗‖2


√

1− xTx∗

1 + xTx∗
‖y − y∗‖

√
1− xTx∗

1 + xTx∗
‖y − y∗‖

 .
Since ν2 < µ(λ∗ − λ̄2), the spectral radius ρ of M satisfies

ρ =
1

2

 λ̄2

λ∗
+
L− µ
L+ µ

+

√(
λ̄2

λ∗
− L− µ
L+ µ

)2

+
8ν2

λ∗(L+ µ)

 < 1.

The rest of the proof is the same as the steps taken in the proof of Theorem 3.4.6. �
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As in the result of Theorem 3.4.6, the rate ρ increases as ν increases and is equal

to max {λ̄2/λ
∗, (L − µ)/(L + µ)} when ν = 0. Also, by dropping y, we can restore the

convergence result of Theorem 3.3.2.

3.5. Numerical Experiments

We test the proposed algorithms on real-world data sets. All experiments are im-

plemented on a standard laptop (2.6 GHz Intel Core i7 processor and 16GM memory)

using the Julia programming language. Let us emphasize that scale invariant problems

frequently appear in many important applications in statistics and machine learning. We

select three important applications, KL-NMF, GMM and ICA. A description of the data

sets is provided below.

3.5.1. Description of Data Sets

Table 3.1. Summary of datasets for KL-NMF

Name # of samples # of features # of nonzeros Sparsity

WIKI 8,274 8,297 104,000 0.999
NIPS 1,500 12,419 280,000 0.985
KOS 3,430 6,906 950,000 0.960
WT 287 19,200 5,510,000 0.000

For KL-NMF (Section 3.5.2), we use four public real data sets available online1 and

summarized in Table 3.1. Waving Trees (WT) has 287 images, each having 160 × 120

pixels. KOS and NIPS are sparse, large matrices implemented for topic modeling. WIKI is

a large binary matrix having values 0 or 1 representing the adjacency matrix of a directed

graph.

1These are obtained from https://www.microsoft.com/en-us/research/project, https://archive.
ics.uci.edu/ml/datasets/bag+of+words and https://snap.stanford.edu/data/wiki-Vote.html.

https://www.microsoft.com/en-us/research/project
https://archive.ics.uci.edu/ml/datasets/bag+of+words
https://archive.ics.uci.edu/ml/datasets/bag+of+words
https://snap.stanford.edu/data/wiki-Vote.html
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Table 3.2. Summary of datasets for GMM

Name # of classes # of samples Dimension

Sonar 2 208 60
Ionosphere 2 351 34

HouseVotes84 2 435 16
BrCancer 2 699 10

PIDiabetes 2 768 8
Vehicle 4 846 18

Glass 6 214 9
Zoo 7 101 16

Vowel 11 990 10
Servo 51 167 4

For GMM (Section 3.5.3), we use 10 public real data sets, corresponding to all small

and moderate data sets provided by the mlbench package in R. We select data sets for

multi-class classification problems and run EM and SCI-PI for the given number of classes

without class labels. In Table 3.2, the sample size varies from 101 to 990, the dimension

varies from 2 to 60, and the number of classes varies from 2 to 51. Only a small portion of

entries are missing, if missing data exists, and we simply impute by mean.

Table 3.3. Summary of datasets for ICA

Name # of samples # of features

Wine 178 14
Soybean 683 35
Vehicel 846 18

Vowel 990 10
Cardio 2,126 22

Satellite 6,435 37
Pendigits 10,992 17

Letter 20,000 16
Shuttle 58,000 9
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For ICA, we use nine public data sets (see Table 3.3) from the UCI Machine Learning

repository2. The sample size varies from 178 to 58,000 and the dimension varies from 9 to

37.

3.5.2. KL-divergence Nonnegative Matrix Factorization

We perform experiments on the KL-divergence NMF (KL-NMF) problem (3.51) described

in Example 3.4.4. Let us recall that the original KL-NMF problem can be solved via block

SCI-PI where in each iteration the algorithm solves the subproblem of the form (5.69).

Our focus is to compare this algorithm with other well-known alternating minimization

algorithms listed below, updating H and W alternatively. To lighten the notation, let

�, � and (·)�2 denote element-wise product, division and square, respectively. We let

z = V � (Wh) and 1n denote a vector of ones.

• Projected gradient descent (PGD): It iterates hnew ← h−η�W T (z−1n) followed

by projection onto the simplex, where η ∝ h is an appropriate learning rate [48].

• Multiplicative update (MU): A famous multiplicative update algorithm is originally

suggested by [45], which iterates hnew ← h� (W T z)� (W T1n) and is learning

rate free.

• Our method (SCI-PI): It iterates hnew ← h� (σ +W T z)�2 and rescales h, where

σ is a shift parameter. We simply use σ = 1 for preconditioning.

• Sequential quadratic programming (MIXSQP): It exactly solves each subproblem

via a convex solver mixsqp [41]. This algorithm performs sequential non-negative

least squares.

2https://archive.ics.uci.edu/ml/index.php

https://archive.ics.uci.edu/ml/index.php
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KL-NMF Subproblem. Note that the KL-NMF subproblem (3.53) has exactly the

same form of the estimation of mixture proportions (3.22) described in the Example 3.2.7.
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Figure 3.2. Convergence plots for the KL-NMF subproblem. n/m: the
number of samples/features of the data matrix.

To study the convergence rate for the KL-NMF subproblems, we use the four data

sets studied in [41]. We study MU, PGD and SCI-PI since they have the same order

of computational complexity per iteration, but omit MIXSQP since it is a second-order

method which cannot be directly compared. For PGD, the learning rate is optimized by grid

search. The stopping criterion is ‖f(xk)− f ∗‖ ≤ 10−6f ∗ where f ∗ is the solution obtained

by MIXSQP after extensive computation time. The average runtime for aforementioned 3

methods are 33, 33 and 30 seconds for 10,000 iterations, respectively. The result is shown

in Figure 3.23. It shows that SCI-PI outperforms the other 2 for all simulated data sets.

Also, all methods seems to exhibit linear convergence.

KL-NMF on real-world datasets. Next, we test the four algorithms on the data

sets in Table 3.1. We estimate k = 20 factors. At each iteration, all four algorithms solve

m subproblems simultaneously for W and then alternatively for H.

3For each evaluation, we randomly draw 10 initial points and report the averaged relative errors with
respect to f∗. The initial input for the KL-NMF problem is a one-step MU update of a Unif(0, 1) random
matrix.
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Figure 3.3. (Left) Convergence plots for the KL-NMF problem. (Right)
Boxplots containing ten objective values achieved after 400 seconds.

The result is summarized in Figure 3.34. The convergence plots are based on the average

relative errors over 10 repeated runs with random initializations. The result shows that

SCI-PI is an overall winner, showing faster convergence rates. The stopping criterion is

the same as above. To assess the overall performance when initialized differently, we select

KOS and WIKI and run MU, PGD, SCI-PI, and MIXSQP 10 times. The three algorithms

except MIXSQP have (approximately) the same computational cost per iteration, take

runtime of 391, 396, 408 seconds for KOS data and 372, 390, 418 seconds for WIKI data,

respectively for 200 iterations. MIXSQP has a larger per iteration cost. After 400 seconds,

SCI-PI achieves lowest objective values in all cases but one for each data set (38 out

of 40 in total). Thus it clearly outperforms other methods and also achieves the lowest

variance. Unlike the other three algorithms, SCI-PI is not an ascent algorithm but an

4In all plots we do not show the first few iterations. The initial random solutions have the gap of
approximately 50% which drops to a few percent after 10 iterations where the plots start.
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eigenvalue-based fixed-point algorithm. We observe that sometimes SCI-PI converges to a

better solution due to this fact. Admittedly, non-monotone convergence of SCI-PI can

hurt reliability of the solution but for the KL-NMF problem its performance turns out to

be stable.

3.5.3. Gaussian Mixture Model and Independent Component Analysis

In this subsection, we study the empirical performance of SCI-PI when it is applied to

GMM and ICA.
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Figure 3.4. Box plots showing relative errors of (Left) f ∗SCI-PI/f
∗
EM for GMM,

(Right) f ∗SCI-PI/f
∗
FastICA for ICA.

GMM. GMM fits a mixture of Gaussian distributions to the underlying data. Let

Lik = N (xi;µk,Σk) where i is the sample index and k the cluster index and let π be the

actual mixture proportion vector. GMM fits into our restricted scale invariant setting

(Section 3.4.3) with reparametrization, but the gradient update for µk,Σk is replaced

by the exact coordinate ascent step. The EM and SCI-PI updates for π can be written
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respectively as

(3.76) r = 1� (Lπ), πnew
k ∝ π � (LT r) (EM), πnew

k ∝ π � (α + LT r)�2 (SCI-PI).

We compare SCI-PI and EM for different real-world data sets from Table 3.2. All the

algorithms initialize from the same standard Gaussian random variable, repeatedly for 10

times. The result is summarized in the left panel in Figure 3.4. The stopping criterion is

‖xk+1 − xk‖ < 10−8. In some cases, SCI-PI achieves much larger objective values even if

initialized the same. In many cases the two algorithms exhibit the same performance. This

is because estimation of µk’s and Σk’s are usually harder than estimation of π, and EM

and SCI-PI have the same updates for µ and Σ. For a few cases EM outperforms SCI-PI.

Let us mention that SCI-PI and EM have the same order of computational complexity

and require 591 and 590 seconds of total computation time, respectively.

ICA. We implement SCI-PI on the Kurtosis-based ICA problem [30] and compare

it with the benchmark algorithm FastICA [29], which is the most popular algorithm.

Given a pre-processed5 data matrix W ∈ Rn×d, we seek to maximize an approximated

negative entropy f(x) =
∑n

i=1

[
(wTi x)4 − 3

]2
subject to x ∈ ∂Bd, for maximizing Kurtosis-

based non-Gaussianity [31]. This problem fits into the sum of scale invariant setting

(Section 3.4.1). SCI-PI iterates xk+1 ← W T [(Wxk)
�4 − 31n) � (Wxk)

�3] and FastICA

iterates xk+1 ← W T (Wxk)
�3 − 3(1T (Wxk)

�2)xk, both followed by normalization.

In Figure 3.4 (right panel), we compare SCI-PI and FastICA on the data sets in

Table 3.3. The majority of data points (81 out of 100 in total) show that SCI-PI tends to

find a better solution with a larger objective value, but in a few cases SCI-PI converges to

5A centered matrix W̃ = n1/2UDV T is pre-processed by W = W̃V D−1V T so that WTW = nV V T .
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a sub-optimal point. Both algorithms are fixed-point based and thus have no guarantee of

global convergence but overall SCI-PI outperforms FastICA. SCI-PI and FastICA have the

same order of computational complexity and require 11 and 12 seconds of total computation

time, respectively.

3.6. Final Remarks

In this paper, we propose a new class of optimization problems called the scale invariant

problems, together with a generic solver SCI-PI, which is indeed an eigenvalue-based fixed-

point iteration. We showed that SCI-PI directly generalizes power iteration and enjoys

similar properties such as that SCI-PI has local linear convergence under mild conditions

and its convergence rate is determined by eigenvalues of the Hessian matrix at a solution.

Also, we extend scale invariant problems to problems with more general settings. We show

by experiments that SCI-PI can be a competitive option for numerous important problems

such as KL-NMF, GMM and ICA. Finding more examples and extending SCI-PI further

to a more general setting is a promising direction for future studies.
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CHAPTER 4

Stochastic Power Iterations

4.1. Introduction

Principal component analysis (PCA) [34] is a fundamental tool for dimensionality

reduction in machine learning and statistics. Given a data matrix A = [a1a2 . . . an] ∈ Rd×n

consisting of n data vectors a1, a2, . . . , an in Rd, PCA finds a direction x onto which the

projections of the data vectors have the largest variance. Assuming that the data vectors

are standardized with a mean of zero and standard deviation of one, the PCA problem

can be formulated as

(4.1) max
x

f(x) =
1

2n

n∑
i=1

(aTi x)2 =
1

2
xTCx subject to x ∈ ∂Bd

where C = 1
n
AAT ∈ Rd×d is the covariance matrix of data matrix A. Since the largest

eigenvector u1 of C maximizes f(x), (4.1) can be solved by the singular value decomposition

(SVD) of A. However, the runtime of SVD is O(min{nd2, n2d}), which can be expensive in

a large-scale setting. An alternative way to solve (4.1) is to use power iteration [26] which

repeatedly applies xt+1 = Cxt/‖Cxt‖ at each iteration. The sequence of iterates {xt}

generated by power iteration is guaranteed to obtain an ε-optimal solution after O
(

1
∆

log1
ε

)
iterations where λ1 > λ2 ≥ . . . ≥ λd ≥ 0 are the eigenvalues of C and ∆ = 1 − λ2/λ1.

Since each iteration involves multiplying vector xt with the matrix C, the runtime becomes

O
(
nd 1

∆
log1

ε

)
. When n and d are both large, the runtime of power iteration is better than
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that of SVD. Nonetheless, it still largely depends on n and can be prohibitive when ∆ is

small.

In order to reduce the dependence on ∆ or n, many variants have been developed. To

improve the dependence on ∆, [79] propose power iteration with momentum (Power+M)

based on the momentum idea of [67]. With the optimal choice of the momentum parameter

β = λ2
2/4, the total runtime reduces to O

(
nd 1√

∆
log1

ε

)
. Also, a stochastic algorithm utilizing

a stochastic gradient rather than a full gradient Cwt is introduced in [63]. Since it requires

just one data vector at a time, the computational cost per iteration is significantly reduced.

However, due to the variance of stochastic gradients, a sequence of diminishing step sizes

needs to be adopted, making its progress slow near the optimum.

Table 4.1. Comparison of stochastic variance-reduced PCA algorithms and
their convergence analyses. Types of convergence and complexity results are
summarized. “Local” means that there is a restriction on the angle between
an initial iterate and the first eigenvector u1 and “global” implies no such
restriction. For VR Power and VR HB Power, µ ≥ 0 is a parameter that
controls the progress of the algorithms through step size η = ∆µ.

Algorithm Convergence Iteration Batch Size Total Runtime

VR-PCA [72] Local O
(

1
∆2 log1

ε

)
O(1) O

(
d
(
n + 1

∆2

)
log1

ε

)
VR Power+M [79] Local O

(
1

∆1/2 log1
ε

)
O
( √

d
∆3/2

)
O
(
d
(
n +

√
d

∆2

)
log1

ε

)
Fast PCA [22] Global O

(
1

∆2 poly
(
log1

ε

))
O(1) O

(
d
(
n + 1

∆2

)
poly

(
log1

ε

))
VR Power Global O

(
1

∆1+µ log1
ε

)
O
(

1
∆1−µ

)
O
(
d
(
n + 1

∆2

)
log1

ε

)
VR HB Power Global O

(
1

∆1/2+µ log1
ε

)
O
(

1
∆3/2−µ

)
O
(
d
(
n + 1

∆2

)
log1

ε

)

Built on the recent stochastic variance-reduced gradient (SVRG) technique [33], [72,73]

propose a stochastic variance-reduced version of Oja’s algorithm (VR-PCA) and its

extension for finding k ≥ 1 principal components. Utilizing stochastic variance-reduced

gradients, VR-PCA works with a constant step size and converges at an exponential rate,

reducing the total runtime to O(d(n + 1
∆2 )log1

ε
). The analysis of VR-PCA considers a
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batch of size one. While this implies that it works with any batch size, conditions for

the step size and the epoch size are not precisely given, making it hard to attain the

theoretically guaranteed performance in practice.

A stochastic variance-reduced version of Power+M (VR Power+M) is introduced

by [79]. Due to the momentum term, the iteration complexity is improved to O
(

1
∆1/2 log1

ε

)
.

However, a batch size of O
( √

d
∆3/2

)
is required to achieve such iteration complexity, leading

to the total runtime of O
(
d
(
n+

√
d

∆2

)
log1

ε

)
. This runtime is worse than that of VR-PCA

due to the extra dependency on
√
d. Moreover, if the batch size is not sufficiently large,

VR Power+M may diverge, which makes it hard to use.

On other other hand, [22] reduce the PCA problem into a sequence of convex opti-

mization problems. Each convex optimization problem has the form of the least square

problem and amounts to one step of inverse power iteration [26]. Due to the finite sum

structure of the objective function, the SVRG algorithm [33] can be used to solve the

least square problem. However, solving this strongly convex optimization problem can

be as hard as the original PCA problem since the objective function is (λ1 − λ2)-stronly

convex and (2λ1 − λ2 − λd)-smooth in the accurate regime. Through inexactly solving

these problems, an ε-optimal solution can be obtained after a poly-logarithmic number of

iterations.

The shifted-and-inverted approach is also introduced for the leading eigenvector problem

[23] and numerous solvers such as coordinate-descent [75], SVRG [23], accelerated gradient

descent, accelerated SVRG [2] and Riemannian gradient descent [80] have been developed

to solve the least square problem. Other works on power iteration include the noisy [27]

and coordinate-wise [46] power methods. The noisy power method considers the power
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method in a noise setting, which [5] extend to provide an improved gap-dependency

analysis. Moreover, power iteration has been analyzed for incremental or online PCA in

many works [3,4,6,9,32,47,59].

In this paper, we introduce two mini-batch stochastic variance-reduced PCA algorithms

(VR Power, VR HB Power) and provide their convergence analyses. They are mini-batch

stochastic variance-reduced variants of power iteration [26] and power with momentum

method [79]. While VR-PCA [72] takes a data vector at a time, VR Power works with

any batch sizes and the accompanying analysis reveals that whatever the batch size is,

VR Power attains the optimal runtime by appropriately choosing the step size and epoch

length. Explicit conditions of the step size, epoch length and batch size to ensure the

optimal runtime of VR Power are derived. On the other hand, VR HB Power is an

enhanced algorithm of VR Power+M. By adding the step size, VR HB Power works with

any batch sizes while VR Power+M can fail unless the batch size is sufficiently large. For

any batch sizes, VR HB Power can achieve the optimal runtime if we appropriately choose

the step size, epoch length and momentum parameter. We derive explicit expressions for

theses parameters. Our analysis improves the analysis of VR Power+M by removing the

dependency on
√
d for the batch size. For the comparison of stochastic variance-reduced

PCA algorithms and their convergence analyses see Table 4.1.

In the convergence analyses, we introduce a novel framework of analyzing stochastic

variance-reduced algorithms for PCA. For an inner-loop iterate xt, we decompose E[(uTk xt)
2]

with uk an eigenvector with respect to λk into two parts where the first one is the expectation

term and the second one is the variance term. To obtain a tight bound for the variance term,

we analyze its growth over an epoch rather than focusing on iteration-by-iteration behavior.
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Based on the Binomial expansion of matrices, we come up with a compact bound of the

variance term, which is used to establish an upper bound of
∑d

k=2E[(uTk xt)
2]/E[(uT1 xt)

2]

and derive conditions for the step size, epoch length and batch size to ensure its sufficient

decrease.

The concept of representing the optimality gap as the ratio of two expectations has

been never used for analyzing stochastic PCA algorithms. However, it results in much

simpler convergence statements than probabilistic statements in [72,79]. Note that we are

able to obtain probabilistic statements from the expectation bounds using the Chebyshev

inequality. Using the expectation bounds, we can establish global convergence of stochastic

PCA algorithms. Although stochastic PCA algorithms have been observed to work well

with random initialization [72], an initial condition such as |uT1 w̃0| ≥ 1/2 is required in

previous probabilistic analyses. In our framework, such condition is not necessary and the

rate of convergence does not depend on how far an iterate is from u1 but is kept the same

across iterations, as in the case of deterministic power iteration. The framework introduced

in this work is not specific to the proposed algorithms; it can be applied to analyze other

stochastic variance-reduced PCA algorithms such as VR-PCA or VR Power+M, deriving

expectation bounds for them and resolving their initialization issues.

This work has the following contributions.

(1) We introduce two mini-batch stochastic variance-reduced PCA algorithms. Re-

gardless of the batch size, our algorithms can attain the optimal runtime by

appropriately choosing algorithm parameters. Explicit expressions for these

parameters are provided.
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(2) We provide novel convergence analyses for the algorithms where we establish

global convergence by deriving a bound for the ratio of two expectation terms.

The framework in our convergence analyses is general and can be used to analyze

other stochastic variance-reduced PCA algorithms. To this end, we are the first

to establish convergence of VR-PCA and VR Power+M for any initial vector and

in expectation.

(3) We present practical implementations of the algorithms and report numerical

experiments. The experimental results on real-world datasets show that our

algorithms outperform other stochastic variance-reduced algorithms for any batch

size.

This chapter is organized as follows. We introduce the algorithms in Section 4.2 and

the convergence analyses in Section 4.3. Some practical considerations regarding the

implementations of the algorithms are discussed in Section 4.4 and the experimental results

are followed in Section 4.5.

4.2. Algorithms

We consider two mini-batch stochastic variance-reduced algorithms for PCA. The

first one is a mini-batch version of VR-PCA [72] and the second one is an enhanced

version of VR Power+M [79] with a step size incorporated. For eigenpairs (λk, uk) of

C, we assume that the eigenvalues λ1, λ2, . . . , λd satisfy λ1 > λ2 ≥ . . . ≥ λd ≥ 0 and

the eigenvectors u1, u2, . . . , ud form an orthonormal basis. Since a symmetric matrix is

orthogonally diagonalizable, we can assume that such eigenvectors exist without loss of

generality. We assume that all norms are L2 for vectors and spectral for matrices.
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Variance reduction algorithms have an outer loop and an inner loop. They periodically

compute exact gradients at each outer iteration and use it in inner iterations to reduce

the variance of stochastic gradients. Let x̃s and xt denote an outer-loop and inner-loop

iterate, respectively. To get a stochastic variance-reduced gradient of an inner loop iterate

xt, we first decompose the inner loop iterate xt it into two parts as

xt =
x̃Ts xt
‖x̃s‖2

x̃s +

(
I − x̃sx̃

T
s

‖x̃s‖2

)
xt

using the outer loop iterate x̃s. In the above decomposition, the former term represents

the projection of xt on x̃s while the latter term represents the remaining vector. Utilizing

the exact gradient g̃s at x̃s, the exact gradient at the first term can be computed as

∇f
(
x̃Ts xt
‖x̃s‖2

x̃s

)
=

x̃Ts xt
‖x̃s‖2

Cx̃s =
x̃Ts xt
‖x̃s‖2

g̃s.

On the other hand, a stochastic sample St is used to compute a stochastic gradient at the

second term as

1

|St|
∑
l∈St

ala
T
l

(
I − x̃sx̃

T
s

‖x̃s‖2

)
xt.

This results in the following stochastic variance-reduced gradient gt at xt as

gt =
x̃Ts xt
‖x̃s‖2

g̃s +
1

|St|
∑
l∈St

ala
T
l

(
I − x̃sx̃

T
s

‖x̃s‖2

)
xt.(4.2)
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4.2.1. VR Power

Using the stochastic variance-reduced gradient gt, we obtain a stochastic variance reduced

version of Power iteration as

xt+1 ← (1− η)xt + ηgt.(4.3)

This update rule has a similar form as the one in VR-PCA, which repeats

xt+1 ← wt + η̄
(
ait(a

T
itxt − a

T
itx̃s) + g̃s

)
.(4.4)

Note that (4.3) generalizes (4.4) in the following two senses. First, we can obtain an

update rule of (4.4) by letting η = (1 + η̄)/η̄ in (4.3). Second, with the choice of η = 1,

we can recover deterministic power iteration from (4.3) while (4.4) does not. Using update

rule (4.3), we have VR Power exhibited in Algorithm 3.

Algorithm 3 VR Power

Parameters: step size η, mini-batch size |S|, epoch length m
Input: data vectors ai, i = 1, . . . , n
randomly initialize outer iterate x̃0

for s = 0, 1, . . . do
g̃ ← Cx̃s
x0 ← x̃s
x1 ← (1− η)x0 + ηg̃
for t = 1, 2, . . . ,m− 1 do

sample a mini-batch St ⊂ {1, · · · , n} of size |S| uniformly at random

gt ← 1
|St|
∑

l∈St ala
T
l

(
I − x0xT0

‖x0‖2
)
xt +

(xTt x0)

‖x0‖2 g̃

xt+1 ← (1− η)xt + ηgt
end for
x̃s+1 ← xm

end for
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When per sample cost is as expensive as per iteration cost, VR Power is an efficient

algorithm since it attains the optimal sample complexity. However, if per sample cost is

cheap, it might not be effective since its iteration complexity does not improve beyond

O( 1
∆

log(1
ε
)). For this reason, we introduce VR HB Power which works better in the latter

setting.

4.2.2. VR HB Power

Using gt, we obtain a stochastic variance-reduced heavy ball power iteration as

xt+1 ← 2
(
(1− η)xt + ηgt

)
− βxt−1(4.5)

where η ∈ (0, 1] is the step size and β is the momentum parameter. Note that we can

recover the deterministic heavy ball power iteration from (4.5) when the step size η is set

to 1 and the exact gradient gt = Cxt is used. The mechanism of controlling the progress

of the algorithm using the step size η is not present in VR Power+M [79]. As a result, it

fails to converge unless the mini-batch size |S| is sufficiently large. To the contrary, our

algorithm works with any mini-batch size |S| due to the presence of the step size η. By

selecting an appropriate value of η depending on the size of |S| and m, we can always

ensure that the variance terms do not grow faster than expectation terms. Having update

rule (4.5), VR HB Power is described in Algorithm 4.

4.3. Convergence Analyses

In this section, we provide convergence analyses for VR Power and VR HB Power.

Before presenting the convergence analyses, we first introduce some notation.
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Algorithm 4 VR HB Power

Parameters: step size η, momentum β, mini-batch size |S|, epoch length m
Input: data vectors ai, i = 1, . . . , n
randomly initialize outer iterate x̃0

for s = 0, 1, . . . do
g̃ ← Cx̃s
x0 ← x̃s
x1 ← (1− η)x0 + ηg̃
for t = 1, 2, . . . ,m− 1 do

sample a mini-batch St ⊂ {1, · · · , n} of size |S| uniformly at random

gt ← 1
|St|
∑

l∈St ala
T
l

(
I − x0xT0

‖x0‖2
)
xt +

(xTt x0)

‖x0‖2 g̃

xt+1 ← 2
(
(1− η)xt + ηgt

)
− βxt−1

end for
x̃s+1 ← xm

end for

4.3.1. Notation

Let Ct and P be the sample covariance matrix at inner iteration t and the projection

matrix to the space orthogonal to the outer iterate x0 = x̃s as

(4.6) Ct =
1

|St|
∑
l∈St

ala
T
l , P = I − x0x

T
0

‖x0‖2
.

Using (4.6), we can write gt as gt = ηCxt + η(Ct − C)Pxt. Next, we characterize the

variance of sample covariance matrix Ct as

K = E[‖(Ct − C)2‖], σ2 = E[‖aitaTit − C‖
2].

Then, for Mk = E[(Ct − C)uku
T
k (Ct − C)], we have

(4.7) ‖Mk‖ ≤ K =
σ2

|S|
.
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For the analysis of VR HB Power, we define

αk(η) = 4(1− η + ηλk)
2, β(η) = (1− η + ηλ2)2.(4.8)

Also, we let pt(α, β) and qt(α, β) be the Chebyshev polynomials of the first and the second

kind [57] respectively such that

pt(α, β) = (α− β)pt−1(α, β)− β(α− β)pt−2(α, β) + β3pt−3(α, β),(4.9)

qt(α, β) = (α− β)qt−1(α, β)− β(α− β)qt−2(α, β) + β3qt−3(α, β)(4.10)

for t ≥ 3 and

p0(α, β) = 1, p1(α, β) =
α

4
, p2(α, β) =

(α
2
− β

)2

,(4.11)

q0(α, β) = 1, q1(α, β) = α, q2(α, β) = (α− β)2.(4.12)

Since the first eigenvector u1 of the covariance matrix C is an optimal solution to (4.1),

the optimality gap is measured as
∑d

k=2(u
T
k xt)

2/(uT1 xt)
2, representing how closely xt is

aligned with u1. Note that this ratio is zero if xt = u1. Our analysis studies it in

expectation, providing a bound for θt =
∑d

k=2E[(uTk xt)
2]/E[(uT1 xt)

2] given fixed s and

θ̃s =
∑d

k=2E[(uTk x̃s)
2]/E[(uT1 x̃s)

2] for an inner loop iterate xt and an outer loop iterate x̃s,

respectively.

4.3.2. VR Power

In Lemmas 4.3.1, 4.3.2 and 4.3.3, we consider a single epoch, which corresponds to one

inner loop iteration starting with x0.
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Lemma 4.3.1. For any η ∈ (0, 1], 1 ≤ k ≤ d and 1 ≤ t ≤ m, we have

E[(uTk xt)
2] = (1− η + ηλk)

2tE[(uTk x0)2] + η2

t−1∑
i=1

(1− η + ηλk)
2(t−i−1)E[xTi PMkPxi].

Proof. Since Px0 =
(
I − x0x

T
0

)
x0 = 0, we have

(4.13) uTk x1 = (1− η)uTk x0 + ηuTkCx0 + ηuTk (C0 − C)Px0 = (1− η + ηλk)u
T
k x0.

Taking the expectation of the square of (4.13), we obtain

(4.14) E[(uTk x1)2] = (1− η + ηλk)
2E[(uTk x0)2].

For t ≥ 2, we have

(4.15) uTk xt = (1− η + ηλk)u
T
k xt−1 + ηuTk (Ct−1 − C)Pxt−1.

Since St is sampled uniformly at random, Ct is independent of S1, . . . , St−1 and x0 with

E[Ct] = C, leading to

E[uTk xt−1u
T
k (Ct−1 − C)Pxt] = E[E[uTk xt−1u

T
k (Ct−1 − C)Pxt|x0, S1, . . . , St−2]]

= E[uTk xt−1u
T
kE[Ct−1 − C]Pxt] = 0.

Therefore, taking the expectation of the square of (4.15), we have

(4.16)

E[(uTk xt)
2] = (1− η + ηλk)

2E[(uTk xt−1)2] + η2E[xTt−1P (Ct−1 − C)uku
T
k (Ct−1 − C)Pxt−1]

= (1− η + ηλk)
2E[(uTk xt−1)2] + η2E[xTt−1PMkPxt−1]
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where the last equality follows from

E[xTt−1P (Ct−1 − C)uku
T
k (Ct−1 − C)Pxt−1]

= E[E[xTt−1P (Ct−1 − C)uku
T
k (Ct−1 − C)Pxt−1|x0, S1, . . . , St−2]]

= E[xTt−1PE[(Ct−1 − C)uku
T
k (Ct−1 − C)]Pxt−1]

= E[xTt−1PMkPxt−1].

Repeatedly applying (4.16) and using (4.14), we obtain

E[(uTk xt)
2] = (1− η + ηλk)

2tE[(uTk x0)2] + η2

t−1∑
i=1

(1− η + ηλk)
2(t−i−1)E[xTi PMkPxi].

�

Lemma 4.3.1 decomposes E[(uTk xt)
2] into two parts. The first part represents the

expectation term which grows at a rate of (1−η+ηλk)
2 and the second part is the variance

term which increases as xt strides away from x0 as captured by E[xTt PMkPxt].

Lemma 4.3.2. For any η ∈ (0, 1], 1 ≤ k ≤ d and 1 ≤ t ≤ m, we have

d∑
k=2

E[xTt PMkPxt] ≤ 2K ·
d∑

k=2

E[(uTk x0)2] ·
[
(1− η + ηλ1)2 + η2K

]t
.

Moreover, if 0 <
η2Km

(1− η + ηλ1)2
< 1, then we have

θm ≤

[(
1− η + ηλ2

1− η + ηλ1

)2m

+
4η2Km

(1− η + ηλ1)2

]
· θ0.
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Proof. By Lemma A.2.2, we have

(4.17)
d∑

k=2

E[xTt PMkPxt] =
d∑

k=2

E[xTt PMkPxt] = E[xTt P
d∑

k=2

MkPxt] ≤ ‖
d∑

k=2

Mk‖ · E[‖Pxt‖2].

Using the Jensen’s inequality and the fact that ‖
∑d

k=2 uku
T
k ‖ = 1, we have

‖
d∑

k=2

Mk‖ = ‖
d∑

k=2

E[(Ct − C)uku
T
k (Ct − C)]‖ ≤ E[‖Ct − C‖2] = E[‖(Ct − C)2‖] = K,

resulting in

(4.18)
d∑

k=2

E[xTt PMkPxt] ≤ KE[‖Pxt‖2].

Let

B = (1− η)I + ηC, Bi = (1− η)I + ηC + η(Ci − C)P.

Since Px0 = 0 and

0∏
i=t−1

Bi =
1∏

i=t−1

Biη(C0 − C)P +
1∏

i=t−1

Bi ((1− η)I + ηC)

=
1∏

i=t−1

Biη(C0 − C)P +
t−1∑
j=1

j+1∏
i=t−1

Biη(Cj − C)P [(1− η)I + ηC]j + [(1− η)I + ηC]t

=
1∏

i=t−1

Biη(C0 − C)P +
t−1∑
j=1

j+1∏
i=t−1

Biη(Cj − C)PBj +Bt,

which can be seen by elementary manipulation, we have

xt =
0∏

i=t−1

Bix0 =

[
t−1∑
j=1

j+1∏
i=t−1

Biη(Cj − C)PBj +Bt

]
x0,
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resulting in

Pxt =

[
t−1∑
j=1

P

j+1∏
i=t−1

Biη(Cj − C)PBj + PBt

]
x0.(4.19)

Since C0, · · · , Ct−1 are independent with E[Ci] = C for all 1 ≤ i ≤ t− 1, we obtain

E
[
xT0B

tP 2

j+1∏
i=t−1

Biη(Cj − C)PBjx0

]
= 0(4.20)

E
[
xT0B

j1P (Cj1 − C)η
t−1∏

i=j1+1

BiP
2

j2+1∏
i=t−1

Biη(Cj2 − C)PBj2x0

]
= 0(4.21)

where 1 ≤ j, j1, j2 ≤ t− 1 and j1 6= j2. Therefore, we have

E[‖Pxt‖2] =
t−1∑
j=1

E
[∥∥P j+1∏

i=t−1

Biη(Cj − C)PBjx0

∥∥2]
+ E[‖PBtx0‖2](4.22)

due to cross-terms being 0 from (4.20) and (4.21) when “squaring” (4.19). Using

Lemma A.2.1 with x = x0/‖x0‖ and the fact that ‖x0‖2(1−(uT1 x0)2/‖x0‖2) =
∑d

k=2(uTk x0)2,

we have

E[‖PBtx0‖2] ≤ 2(1− η + ηλ1)2t

d∑
k=2

E[(uTk x0)2].(4.23)

By Lemma A.2.2 and ‖P‖ = 1, we have

∥∥P j+1∏
i=t−1

Biη(Cj − C)PBjx0

∥∥2 ≤ η2
∥∥ j+1∏
i=t−1

Bi(Cj − C)PBjx0

∥∥2
.(4.24)
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Moreover, by repeatedly using first the property thatBi is independent of x0, Cj, Bj+1, · · · , Bi−1

and Lemma A.2.2, we have

E
[∥∥ j+1∏

i=t−1

Bi(Cj − C)PBjx0

∥∥2]
= E[xT0B

jP (Cj − C)
( j+1∏
i=t−2

Bi

)T
BT
t−1Bt−1

j+1∏
i=t−2

BiP (Cj − C)Bjx0]

= E[xT0B
jP (Cj − C)

( j+1∏
i=t−2

Bi

)T
E[BT

t−1Bt−1]

j+1∏
i=t−2

BiP (Cj − C)Bjx0]

≤ ‖E[BT
t−1Bt−1]‖ · E

[∥∥ j+1∏
i=t−2

Bi(Cj − C)PBjx0

∥∥2]
≤

j+1∏
i=t−1

∥∥E[BT
i Bi]

∥∥ · E[‖(Cj − C)PBjx0‖2].

In the same way, using the fact that Cj is independent of x0 and Lemma A.2.2, we have

E[‖(Cj − C)PBjx0‖2] ≤ ‖E[(Cj − C)2]‖ · E[‖PBjx0‖2],

resulting in

E
[∥∥ j+1∏

i=t−1

Bi(Cj − C)PBjx0

∥∥2] ≤ j+1∏
i=t−1

‖E[BT
i Bi]‖ · ‖E[(Cj − C)2]‖ · E[‖PBjx0‖2].

(4.25)

Since Ci is independent of x0 and E[Ci] = C, we have

‖E[BT
i Bi]‖ ≤ ‖B2‖+ η2‖E[P (Ci − C)2P ]‖.
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Since all induced norms are convex, using the Jensen’s inequality, we have

‖E[P (Ci − C)2P ]‖] ≤ E[‖P (Ci − C)2P‖] ≤ E[‖(Ci − C)2‖] = K,

leading to

‖E[BT
i Bi]‖ ≤ ‖B2‖+ η2‖E[P (Ci − C)2P ]‖ ≤ (1− η + ηλ1)2 + η2K.(4.26)

In the same way, we obtain

(4.27) ‖E[(Cj − C)2]‖ ≤ E[‖(Cj − C)2‖] = K.

Using (4.26), (4.27) and (4.23) for (4.25), we have

(4.28)

E
[∥∥ j+1∏

i=t−1

Bi(Cj − C)PBjx0

∥∥2] ≤ K ·
d∑

k=2

E[(uTk x0)2] · (1− η + ηλ1)2j

·
[
(1− η + ηλ1)2 + η2K

]t−j−1
.

From (4.22), (4.23), (4.24) and (4.28), we finally have

E[‖Pxt‖2] ≤ 2η2K ·
d∑

k=2

E[(uTk x0)2] ·
t−1∑
j=1

[
(1− η + ηλ1)2 + η2K

]t−j−1
(1− η + ηλ1)2j

+ 2 · (1− η + ηλ1)2t ·
d∑

k=2

E[(uTk x0)2]

≤ 2
[
(1− η + ηλ1)2 + η2K

]t · d∑
k=2

E[(uTk x0)2],
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where the last inequality can be checked by elementary manipulation. This results in

d∑
k=2

E[xTt PMkPxt] ≤ 2K
[
(1− η + ηλ1)2 + η2K

]t · d∑
k=2

E[(uTk x0)2].(4.29)

This proves the first part of the proof.

Next, we have

d∑
k=2

t−1∑
i=1

(1− η + ηλk)
2(t−i−1)E[xTi PMkPxi]

≤ (1− η + ηλ1)2t ·
t−1∑
i=1

(1− η + ηλ1)−2(i+1)

d∑
k=2

E[xTi PMkPxi]

and

t−1∑
i=1

(1− η + ηλ1)−2(i+1)
[
(1− η + ηλ1)2 + η2K

]i
≤ 1

(1− η + ηλ1)2

t−1∑
i=1

(
(1− η + ηλ1)2 + η2K

(1− η + ηλ1)2

)i

≤ 1

η2K

[(
1 +

η2K

(1− η + ηλ1)2

)t−1

− 1

](
1 +

η2K

(1− η + ηλ1)2

)

≤ 1

η2K

[
exp

(
η2Kt

(1− η + ηλ1)2

)
− 1

]
.

Using the condition that

0 <
η2Km

(1− η + ηλ1)2
< 1
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and the fact exp(x)− 1 ≤ 2x for all x ∈ (0, 1), we further obtain

t−1∑
i=1

(1− η + ηλ1)−2(i+1)
[
(1− η + ηλ1)2 + η2K

]i ≤ 2t

(1− η + ηλ1)2
.

Combined with (4.29), this results in

η2

d∑
k=2

m−1∑
i=1

(1− η + ηλk)
2(m−i−1)E[xTi PMkPxi]

≤ η2

m−1∑
i=1

(1− η + ηλk)
2(m−i−1)

d∑
k=2

E[xTi PMkPxi]

≤ 4η2Km(1− η + ηλ1)2(m−1) ·
d∑

k=2

E[(uTk x0)2].

Using Lemma 4.3.1 for t = m and the fact that (1 − η + ηλk)
2m ≤ (1 − η + ηλ2)

2m for

k ≥ 2, we finally have

d∑
k=2

E[(uTk xm)2] =
d∑

k=2

(1− η + ηλk)
2mE[(uTk x0)2]

+ η2

d∑
k=2

m−1∑
i=1

(1− η + ηλk)
2(m−i−1)E[xTi PMkPxi]

≤
(
(1− η + ηλ2)2m + 4η2Km(1− η + ηλ1)2(m−1)

)
·

d∑
k=2

E[(uTk x0)2].(4.30)

On the other hand, by Lemma 4.3.1 and the fact that PMkP is positive semi-definite, we

have

(4.31) (1− η + ηλ1)2mE[(uT1 x0)2] ≤ E[(uT1 xm)2].
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Combining (4.31) with (4.30), we obtain

∑d
k=2E[(uTk xm)2]

E[(uT1 xm)2]
≤

[(
1− η + ηλ2

1− η + ηλ1

)2m

+
4η2Km

(1− η + ηλ1)2

]
·
∑d

k=2 E[(uTk x0)2]

E[(uT1 x0)2]
.

�

Lemma 4.3.2 provides a bound for
∑d

k=2E[xTt PMkPxt], which grows at a rate not

greater than (1− η + ηλ1)2 + η2K. Using this bound and assuming some condition on η,

K, and m, a bound on θm is derived as a function of θ0, η, m, and K. In Lemma 4.3.3,

we present explicit conditions for η, m, and |S| to ensure a sufficient decrease of θm.

Lemma 4.3.3. Let η = ∆µ for some µ ≥ 0. If m and |S| satisfy

(4.32) m =

⌈
(1− η + ηλ1) log 2

2ηλ1∆

⌉

and

(4.33) |S| ≥ 16η2σ2m

(1− η + ηλ1)2
,

then we have θm ≤
3

4
· θ0.

Proof. From the conditions on η, m and |S|, we have

0 <
η2Km

(1− η + ηλ1)2
<

1

16
.

Therefore, using Lemma 4.3.2, we have

∑d
k=2E[(uTk xm)2]

E[(uT1 xm)2]
≤

[(
1− η + ηλ2

1− η + ηλ1

)2m

+
4η2Km

(1− η + ηλ1)2

]
·
∑d

k=2 E[(uTk x0)2]

E[(uT1 x0)2]
.
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By the choice of η and m, we have

(
1− η + ηλ2

1− η + ηλ1

)2m

=

(
1− η(λ1 − λ2)

1− η + ηλ1

)2m

≤ exp

(
−2η(λ1 − λ2)m

1− η + ηλ1

)
≤ 1

2
.

Also, by the choice of η, m and |S|, we have

4η2Km

(1− η + ηλ1)2
=

4σ2η2m

|S|(1− η + ηλ1)2
≤ 1

4
.

Therefore, we have ∑d
k=2E[(uTk xm)2]

E[(uT1 xm)2]
≤ 3

4
·
∑d

k=2E[(uTk x0)2]

E[(uT1 x0)2]
.

�

For any µ ≥ 0 such that η = ∆µ, Lemma 4.3.3 provides explicit values of m and |S| to

ensure a sufficient decrease of θm. In the analysis of VR-PCA, exact values of η and m

to ensure the optimal runtime have not been provided. Instead, only the orders of η and

m have been provided such that η = c1∆ and m = c2/∆
2, making it hard to obtain the

optimal runtime in practice. Contrary to it, our analysis provides explicit expressions for

m and |S|, being more practical. Moreover, since the term on the right-hand side of (4.33)

goes to zero as µ increases, it can be also stated that for any |S| ≥ 1, there exists some

µ ≥ 0 and thus η = ∆µ and m (see (4.33)) such that θm ≤ 3/4 · θ0 holds. This implies

that VR Power can always attain a sufficient decrease of θm no matter what |S| is used.

We next give the main result.

Theorem 4.3.4. Suppose that an initial vector x̃0 satisfies uT1 x̃0 6= 0 and let θ̃0 =

(1 − (uT1 x̃0)
2)/(uT1 x̃0)

2 ≥ ε for some ε > 0. If η = ∆µ and m and |S| satisfy (4.32) and

(4.33), after τ = dlog(θ̃0/ε)/ log(4/3)e epochs of VR Power, we have θ̃τ ≤ ε.
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Proof. By repeatedly applying Lemma 4.3.3, we have

∑d
k=2 E[(uTk x̃τ )

2]

E[(uT1 x̃τ )
2]

≤
(

3

4

)τ ∑d
k=2 E[(uTk x̃0)2]

E[(uT1 x̃0)2]
=

(
3

4

)τ
θ̃0.

Since τ = dlog(θ̃0/ε)/ log(4/3)e, we have

τ log

(
3

4

)
≤ log

(
ε

θ̃0

)
,

resulting in ∑d
k=2 E[(uTk x̃τ )

2]

E[(uT1 x̃τ )
2]

≤ ε.

�

Theorem 4.3.4 present a convergence result for τ epochs. Note that our result requires

only a trivial assumption on θ̃0 and thus establishes global convergence. Also, since

τ = O(log(1
ε
)), only a logarithmic number of inner loops is needed to be performed to

obtain ε-accuracy.

4.3.3. VR HB Poxer

The folloxing Lemmas 4.3.5, 4.3.6 and 4.3.7 are counterparts of Lemmas 4.3.1, 4.3.2

and 4.3.3 for VR HB Power. For the momentum parameter β, we let β = β(η) which is

defined in (4.8). As in the analysis of VR Power, we first consider a single epoch with an

initial inner loop iterate x0.

Lemma 4.3.5. For any η ∈ (0, 1], 1 ≤ k ≤ d and 1 ≤ t ≤ m, we have

E[(uTk xt)
2] = pt(αk(η), β(η))E[(uTk x0)2] + 4η2

t−1∑
r=1

qt−r−1(αk(η), β(η))E[xTr PMkPxr].
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Proof. From x1 = (1− η)x0 + ηg̃ = (1− η)x0 + ηCx0, we have

uTk x1 = (1− η)uTk x0 + ηuTkCx0 = (1− η + ηλk)u
T
k x0.(4.34)

Taking the expectation of the square of (4.34), we obtain

E[(uTk x1)2] = (1− η + ηλk)
2E[(uTk x0)2] =

αk(η)

4
E[(uTk x0)2].(4.35)

Next, from (4.5), we have

xt+1 = 2

(
(1− η)xt + η

1

|St|
∑
it∈St

aita
T
it

(
xt −

(xTt x0)

‖x0‖2
x0

)
+

(xTt x0)

‖x0‖2
g̃

)
− β(η)xt−1

= 2

(
(1− η)xt + η

1

|St|
∑
it∈St

aita
T
it

(
I − x0x

T
0

‖x0‖2

)
xt + C

x0x
T
0

‖x0‖2
xt

)
− β(η)xt−1

= 2

(
(1− η)xt + ηCxt + η

1

|St|
∑
it∈St

(aita
T
it − C)

(
I − x0x

T
0

‖x0‖2

)
xt

)
− β(η)xt−1

= 2
(
(1− η)xt + ηCxt + η(Ct − C)Pxt

)
− β(η)xt−1,(4.36)

leading to

uTk xt+1 = 2
(
(1− η + ηλk)u

T
k xt + ηuTk (Ct − C)Pxt

)
− β(η)uTk xt−1.(4.37)
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Taking the square of (4.37), we have

(uTk xt+1)2 = 4(1− η + ηλk)
2(uTk xt)

2

+ 4η2xTt P (Ct − C)uku
T
k (Ct − C)Pxt + (β(η))2(uTk xt−1)2

+ 8η(1− η + ηλk)u
T
k xtu

T
k (Ct − C)Pxt − 4(1− η + ηλk)β(η)uTk xtu

T
k xt−1

− 4ηβ(η)uTk (Ct − C)Pxtu
T
k xt−1.

Since St is sampled uniformly at random, Ct is independent of S1, . . . , St−1 and

identically distributed with E[Ct] = C. Therefore,

E[uTk xtu
T
k (Ct − C)Pxt] = E[uTk xtu

T
kE[Ct − C]Pxt] = 0.

Similarly, we have

E[uTk (Ct − C)Pxtu
T
k xt−1] = 0.(4.38)

As a result, we obtain

E[(uTk xt+1)2] = αk(η)E[(uTk xt)
2]− 2

√
αk(η)β(η)E[(uTk xt)(u

T
k xt−1)] + (β(η))2E[(uTk xt−1)2]

+ 4η2E[xTt PMkPxt].(4.39)

Using (4.34) and (4.35) in (4.39) for t = 1, we have

E[(uTk x2)2] =
(αk(η)

2
− β(η)

)2

E[(uTk x0)2] + 4η2E[xT1 PMkPx1].(4.40)
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Moreover, by using (4.37) with t− 1, multiplying it with uTk xt−1, taking expectation and

using (4.38) with xt being xt−1 (which can be derived in the same way as (4.38)) , we have

E[(uTk xt)(u
T
k xt−1)] =

√
αk(η)E[(uTk xt−1)2]− β(η)E[(uTk xt−1)(uTk xt−2)].(4.41)

Using (4.41), we can further write (4.39) as

E[(uTk xt+1)2] = αk(η)E[(ukxt)
2]− β(η)(2αk(η)− β(η))E[(uTk xt−1)2]

+ 2
√
αk(η)(β(η))2E[(uTk xt−1)(uTk xt−2)] + 4η2E[xTt PMkPxt].(4.42)

With t− 1 in (4.39), we have

E[(uTk xt)
2] = αk(η)E[(uTk xt−1)2]− 2

√
αk(η)β(η)E[(uTk xt−1)(uTk xt−2)]

+ (β(η))2E[(uTk xt−2)2] + 4η2E[xTt−1PMkPxt−1].

Adding (4.43) multiplied by β(η) to (4.42), we obtain

(4.43)

E[(uTk xt+1)2] = (αk(η)− β(η))E[(uTk xt)
2]− β(η)(αk(η)− β(η))E[(uTk xt−1)2]

+ (β(η))3E[(uTk xt−2)2] + 4η2E[xTt PMkPxt] + 4η2β(η)E[xTt−1PMkPxt−1].

With t− 1 in (4.43), we finally have

(4.44)

E[(uTk xt)
2] = (αk(η)− β(η))E[(uTk xt−1)2]− β(η)(αk(η)− β(η))E[(uTk xt−2)2]

+ (β(η))3E[(uTk xt−3)2] + 4η2E[xTt−1PMkPxt−1] + 4η2β(η)E[xTt−2PMkPxt−2].
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Using Lemma A.2.4 for E[(uTk xt)
2] defined by (4.35), (4.40) and (4.44) with

α = αk(η), β = β(η), L0 = E[(uTk x0)2], Lt = 4η2E[xTt PMkPxt],

we have

E[(uTk xt)
2] = pt(αk(η), β(η))E[(uTk x0)2] + 4η2

t−1∑
r=1

qt−r−1(αk(η), β(η))E[xTr PMkPxr].

�

Lemma 4.3.5 breaks E[(uTk xt)
2] into the sum of expectation part and variance part.

While the expectation term is a function of the Chebyshev polynomial of the first kind,

the variance part is a function of the Chebyshev polynomials of the second kind. That

being said, the variance term grows faster and thus we need a careful analysis for it.

Lemma 4.3.6. For any η ∈ (0, 1], 1 ≤ k ≤ d, and 1 ≤ t ≤ m, we have

d∑
k=2

E[xTt PMkPxt] ≤ 4K ·
d∑

k=2

E[(uTk x0)2] ·
(

1 +
4η2K

α1(η)− 4β(η)

)t−1

·

(√
α1(η)

2
+

√
α1(η)− 4β(η)

2

)2t

.

Moreover, if 0 <
4η2Km

α1(η)− 4β(η)
< 1, then we have

θm ≤
(
pm(α2(η), β(η))

pm(α1(η), β(η))
+

128η2Km

α1(η)− 4β(η)

)
· θ0.

Proof. Since ‖
∑d

k=2 uku
T
k ‖ ≤ 1, we have ‖

∑d
k=2Mk‖ = ‖

∑d
k=2E[(Ct−C)uku

T
k (Ct−

C)]‖ ≤ E[‖Ct − C‖2] = E[‖(Ct − C)2‖] = K.
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By Lemma A.2.2, this leads to

(4.45)
d∑

k=2

E[xTt PMkPxt] = E[xTt P
d∑

k=2

MkPxt] ≤ ‖
d∑

k=2

Mk‖E[‖Pxt‖2] ≤ KE[‖Pxt‖2].

Let

F =

I
0

 , G =

2 [(1− η)I + ηC] −β(η)I

I 0


and

G0 =

(1− η)I + ηC −β(η)I

I 0

 , Ht = 2η

(Ct − C)P 0

0 0

 .
From the update rule in Algorithm 4 expressed in (4.36), we can write

xt = F T (G+Ht−1)(G+Ht−2) · · · (G+H1)(G0 +H0)Fx0.

Using Lemma A.2.3 for the expansion of (G+Ht−1)(G+Ht−2) · · · (G+H1)(G0 +H0) ,

we have

(4.46)

Pxt = PF T

(
Gt−1G0 +

t−1∑
i=1

[
i+1∏
j=t−1

(G+Hj)HiG
i−1G0

]
+

1∏
j=t−1

(G+Hj)H0

)
Fx0.

Since C0, C1, · · · , Ct−1 are independent and identically distributed with mean C, so are

H0, H1, · · · , Ht−1 with mean 0. Therefore, the expectation of all cross-terms in the “square”

of (4.46) are zero. Using the fact that H0Fx0 = 0, we have

E[‖Pxt‖2] = E[‖PF TGt−1G0Fx0‖2] +
t−1∑
i=1

E
[∥∥PF T

i+1∏
j=t−1

(G+Hj)HiG
i−1G0Fx0

∥∥2
]
.

(4.47)



127

Note that this result is analogous to (4.22) in the analysis of VR Power. From F TGt−1G0F =

Yt((1− η)I + ηC, β(η)) (see (A.36) for the definition of Yt) and (A.40b) in Lemma A.2.1

with x = x0/‖x0‖ and the fact that ‖x0‖2(1− (uT1 x0)2/‖x0‖2) =
∑d

k=2(uTk x0)2, we have

(4.48) E
[
‖PF TGt−1G0Fx0‖2

]
= 4pt(α1(η), β(η)) ·

d∑
k=2

E[(uTk x0)2].

Using Lemma A.2.2, ‖P‖ = 1, Ht = 2ηF (Ct − C)PF T , we have

(4.49)

E
[∥∥PF T

i+1∏
j=t−1

(G+Hj)HiG
i−1G0Fx0

∥∥2]
≤ 4η2‖P‖2 · E

[∥∥F T

i+1∏
j=t−1

(G+Hj)F (Ci − C)PF TGi−1G0Fx0

∥∥2]
≤ 4η2 ·

∥∥E[F T
[ i+1∏
j=t−1

(G+Hj)
]T
FF T

i+1∏
j=t−1

(G+Hj)F
]∥∥E[∥∥(Ci − C)PF TGi−1G0Fx0

∥∥2]
.

Using mathematical induction on i, we prove that

(4.50)

E
[[ i+1∏

j=t−1

(G+Hj)
]T
FF T

i+1∏
j=t−1

(G+Hj)
]

=
∑

(vi+1,··· ,vt−1)∈{0,1}t−i−1

E
[[ i+1∏

j=t−1

H
1−vj
j Gvj

]T
FF T

i+1∏
j=t−1

H
1−vj
j Gvj

]
for any i ≤ t− 2 and fixed t ≥ 2. Since E[Ht−1] = 0, we have

E[(GT +HT
t−1)FF T (G+Ht−1)] = GTFF TG+ E[HT

t−1FF
THt−1].

This proves the base case for i = t− 2.
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Suppose that (4.50) holds for i = k. Then, since Hk is independent from Hk+1, · · · , Ht−1

and E[Hk] = 0, we have

E
[[ k∏

j=t−1

(G+Hj)
]T
FF T

k∏
j=t−1

(G+Hj)
]

= GTE
[[ k+1∏

j=t−1

(G+Hj)
]T
FF T

k+1∏
j=t−1

(G+Hj)
]
G

+ E
[
HT
k

[ k+1∏
j=t−1

(G+Hj)
]T
FF T

k+1∏
j=t−1

(G+Hj)Hk

]
.

From (4.50), we have

GTE
[[ k+1∏

j=t−1

(G+Hj)
]T
FF T

k+1∏
j=t−1

(G+Hj)
]
G

=
∑

(vk+1,··· ,vt−1)∈{0,1}t−k−1

E
[[( k+1∏

j=t−1

H
1−vj
j Gvj

)
G
]T
FF T

( k+1∏
j=t−1

H
1−vj
j Gvj

)
G
]
.

Also, by the independence of Hk from Hk+1, · · · , Ht−1 and (4.50), we have

E
[
HT
k

[ k+1∏
j=t−1

(G+Hj)
]T
FF T

k+1∏
j=t−1

(G+Hj)Hk

]
= E

[
HT
k E
[[ k+1∏

j=t−1

(G+Hj)
]T
FF T

k+1∏
j=t−1

(G+Hj)
]
Hk

]
= E

[
HT
k

∑
(vk+1,··· ,vt−1)∈{0,1}t−i−1

E
[[ k+1∏

j=t−1

H
1−vj
j Gvj

]T
FF T

k+1∏
j=t−1

H
1−vj
j Gvj

]
Hk

]

=
∑

(vk+1,··· ,vt−1)∈{0,1}t−k−1

E
[[( k+1∏

j=t−1

H
1−vj
j Gvj

)
Hk

]T
FF T

( k+1∏
j=t−1

H
1−vj
j Gvj

)
Hk

]
.
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Therefore, we have

E
[[ k∏

j=t−1

(G+Hj)
]T
FF T

k∏
j=t−1

(G+Hj)
]

=
∑

(vk,··· ,vt−1)∈{0,1}t−k
E
[[ k∏

j=t−1

H
1−vj
j Gvj

]T
FF T

k∏
j=t−1

H
1−vj
j Gvj

]
,

which completes the proof of (4.50).

Using the Jensen’s inequality and the norm property of a symmetric matrix, we have

‖E
[
F T
[ i+1∏
j=t−1

[H
1−vj
j Gvj ]

]T
FF T

i+1∏
j=t−1

[H
1−vj
j Gvj ]F

]
‖ ≤ E

[
‖F T

i+1∏
j=t−1

[H
1−vj
j Gvj ]F‖2

]
.

(4.51)

For (vi+1, · · · , vt−1) ∈ {0, 1}t−i−1, let J = {j1, j2, · · · , jk̄} be a set of indices such that

j1 < j2 < · · · < jk̄ and vj = 0 if j ∈ J and vj = 1 otherwise. Also, let j0 = i. Using that

Hj = FF THjFF
T , we have

E
[
‖F T

i+1∏
j=t−1

[H
1−vj
j Gvj ]F‖2

]
= E

[
‖F TGt−jk̄−1F

1∏
l=k̄

(
F THjlFF

TGjl−jl−1−1F
)
‖2
]

≤ E
[
‖F TGt−jk̄−1F‖2

1∏
l=k̄

‖F THjlF‖2‖F TGjl−jl−1−1F‖2
]
.(4.52)

Since F TGtF = Zt((1− η)I + ηC, β(η)), using (A.40c) in Lemma A.2.1, we have

(4.53) ‖F TGtF‖2 ≤ qt(α1(η), β(η)).
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Also, from that F THtF = 2η(Ct − C)P , we have

(4.54) E
[
‖F THtF‖2

]
≤ 4η2E

[
‖(Ct − C)P‖2

]
≤ 4η2E

[
‖(Ct − C)‖2

]
= 4η2K.

where the last inequality follows from ‖P‖ = 1 and the second last equality follows from

the symmetry of Ct − C. Using (4.53) and Lemma A.2.5, we have

‖F TGt−jk̄−1F‖2

1∏
l=k̄

‖F TGjl−jl−1−1F‖2 ≤
(

1

α1(η)− 4β(η)

)k̄
qt−i−1(α1(η), β(η)).(4.55)

We use Lemma A.2.5 k̄ times to obtain the term on the right-hand side.

Using (4.51), (4.52), (4.55), and the independence of C0, C1, · · · , Ct−1, we obtain

‖E
[
F T
[ i+1∏
j=t−1

[H
1−vj
j Gvj ]

]T
FF T

i+1∏
j=t−1

[H
1−vj
j Gvj ]F

]
‖

≤
(

4η2K

α1(η)− 4β(η)

)k̄
qt−i−1(α1(η), β(η)).

Combined with (4.50), this results in

‖E
[
F T
[ i+1∏
j=t−1

(G+Hj)
]T
FF T

i+1∏
j=t−1

(G+Hj)F
]
‖

=
∥∥ ∑

(vi+1,··· ,vt−1)∈{0,1}t−i−1

E
[
F T
[ i+1∏
j=t−1

[H
1−vj
j Gvj ]

]T
FF T

i+1∏
j=t−1

[H
1−vj
j Gvj ]F

]∥∥
≤

∑
(vi+1,··· ,vt−1)∈{0,1}t−i−1

∥∥E[F T
[ i+1∏
j=t−1

[H
1−vj
j Gvj ]

]T
FF T

i+1∏
j=t−1

[H
1−vj
j Gvj ]F

]∥∥
≤

t−i−1∑
k̄=0

(
t− i− 1

k̄

)(
4η2K

α1(η)− 4β(η)

)k̄
qt−i−1(α1(η), β(η)).
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From
t−i−1∑
k̄=0

(
t− i− 1

k̄

)(
4η2K

α1(η)− 4β(η)

)k̄
≤
(

1 +
4η2K

α1(η)− 4β(η)

)t−i−1

,

we further have

(4.56)

‖E
[
F T
[ i+1∏
j=t−1

(G+Hj)
]T
FF T

i+1∏
j=t−1

(G+Hj)F
]
‖

≤ qt−i−1(α1(η), β(η))

(
1 +

4η2K

α1(η)− 4β(η)

)t−i−1

On the other hand, using Lemma A.2.2 and (4.48) for t = i, we have

(4.57)

η2E
[∥∥(Ci − C)PF TGi−1G0Fx0

∥∥2]
= η2E[x0F

TGT
0 (Gi−1)TFP TE[(Ci − C)2]PF TGi−1G0Fx0]

≤ η2‖E[(Ci − C)2]‖E[‖PF TGi−1G0Fx0‖2]

≤ 4η2K · pi(α1(η), β(η)) ·
d∑

k=2

E[(uTk x0)2].

Using (4.56) and (4.57) to bound (4.49), we have

(4.58)

E
[∥∥PF T

i+1∏
j=t−1

(G+Hj)HiG
i−1G0Fx0

∥∥2] ≤ 16η2K ·
d∑

k=2

E[(uTk x0)2]

· pi(α1(η), β(η)) · qt−i−1(α1(η), β(η)) ·
(

1 +
4η2K

α1(η)− 4β(η)

)t−i−1

.
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Using (4.48) and (4.58) for (4.47), we finally have

E[‖Pxt‖2] ≤
d∑

k=2

E[(uTk x0)2] ·
[
4pt(α1(η), β(η))

+ 16η2K

t−1∑
i=1

pi(α1(η), β(η)) · qt−i−1(α1(η), β(η))

(
1 +

4η2K

α1(η)− 4β(η)

)t−i−1 ]
.

By (A.52) and (A.53) in Lemma A.2.4, we have

pt(α1(η), β(η)) ≤

(√
α1(η)

2
+

√
α1(η)− 4β(η)

2

)2t

,

qt(α1(η), β(η)) ≤
(

1

α1(η)− β(η)

)(√
α1(η)

2
+

√
α1(η)− 4β(η)

2

)2(t+1)

.

Therefore, we obtain

4pt(α1(η), β(η)) + 16η2K
t−1∑
i=1

pi(α1(η), β(η)) · qt−i−1(α1(η), β(η))

[
1 +

4η2K

α1(η)− 4β(η)

]t−i−1

≤ 4

[
1 +

4η2K

α1(η)− 4β(η)

t−1∑
i=1

(
1 +

4η2K

α1(η)− 4β(η)

)t−i−1
][√

α1(η)

2
+

√
α1(η)− 4β(η)

2

]2t

= 4

(
1 +

4η2K

α1(η)− 4β(η)

)t−1
[√

α1(η)

2
+

√
α1(η)− 4β(η)

2

]2t

,

which results in

E[‖Pxt‖2] ≤ 4

(
1 +

4η2K

α1(η)− 4β(η)

)t−1
[√

α1(η)

2
+

√
α1(η)− 4β(η)

2

]2t

·
d∑

k=2

E[(uTk x0)2].
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Finally, from (4.45), we have

(4.59)

d∑
k=2

E[xTt PMkPxt] ≤ 4K ·
d∑

k=2

E[(uTk x0)2] ·
(

1 +
4η2K

α1(η)− 4β(η)

)t−1

·

[√
α1(η)

2
+

√
α1(η)− 4β(η)

2

]2t

.

This completes the proof of the first statement.

Next, from α2(η) = 4β(η) ≥ αk(η) for k ≥ 2 and (A.54) in Lemma A.2.4,

d∑
k=2

pm(αk(η), β(η))E[(uTk x0)2] ≤ pm(α2(η), β(η)) ·
d∑

k=2

E[(uTk x0)2].(4.60)

Also, using (A.53) and (A.54) in Lemma A.2.4 and (4.59), we have

4η2

d∑
k=2

m−1∑
r=1

qm−r−1(αk(η), β(η))E[xTr PMkPxr]

≤ 16η2K

α1(η)− 4β(η)
·

d∑
k=2

E[(uTk x0)2] ·

[√
α1(η)

2
+

√
α1(η)− 4β(η)

2

]2m

·
m−1∑
r=1

(
1 +

4η2K

α1(η)− 4β(η)

)r−1

≤ 4
d∑

k=2

E[(uTk x0)2]

[(
1 +

4η2K

α1(η)− 4β(η)

)m−1

− 1

][√
α1(η)

2
+

√
α1(η)− 4β(η)

2

]2m

.

Since 0 <
4η2Km

α1(η)− β(η)
< 1, using that exp(x) ≤ 1 + 2x for x ∈ [0, 1] we have

(
1 +

4η2K

α1(η)− 4β(η)

)m−1

− 1 ≤ exp

(
4η2Km

α1(η)− 4β(η)

)
− 1 ≤ 8η2Km

α1(η)− 4β(η)
,
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leading to

(4.61)

4η2

d∑
k=2

m−1∑
r=1

qm−r−1(αk(η), β(η))E[xTr PMkPxr]

≤ 32η2Km

α1(η)− 4β(η)
·

[√
α1(η)

2
+

√
α1(η)− 4β(η)

2

]2m

·
d∑

k=2

E[(uTk x0)2].

Using (4.60), (4.61) for Lemma 4.3.5, we finally have

(4.62)

d∑
k=2

E[(uTk xm)2] ≤
d∑

k=2

E[(uTk x0)2] ·

[
pm(α2(η), β(η))

+
32η2Km

α1(η)− 4β(η)
·

(√
α1(η)

2
+

√
α1(η)− 4β(η)

2

)2m ]
.

Lastly, using Lemma 4.3.5 for k = 1, we have

E[(uT1 xm)2] = pm(α1(η), β(η))E[(uT1 x0)2] + 4η2

m−1∑
r=1

qm−r−1(α1(η), β(η))E[xTr PM1Pxr].

Since PMkP is positive semi-definite and qt(α1(η), β(η)) ≥ 0 for 1 ≤ t < m by (A.53) in

Lemma A.2.4, we have

E[(uT1 xm)2] ≥ pm(α1(η), β(η))E[(uT1 x0)2].(4.63)

Also, from α1(η) > α2(η) = 4β(η) and (A.52) in Lemma A.2.4, we have

(4.64) pm(α1(η), β(η)) ≥ 1

4

(√
α1(η)

2
+

√
α1(η)− 4β(η)

2

)2m

.
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Using (4.62), (4.63) and (4.64), we eventually obtain

∑d
k=2E[(uTk xm)2]

E[(uT1 xm)2
≤
[
pm(α2(η), β(η))

pm(α1(η), β(η))
+

128η2Km

α1(η)− 4β(η)

]
·
∑d

k=2 E[(uTk x0)2]

E[(uT1 x0)2
,

which completes the proof. �

Lemma 4.3.6 provides a bound for
∑d

k=2E[xTt PMkPxt]. Note that it depends on ∆

and blows up as ∆ goes to zero due to the term involving 1/(α1(η)− 4β(η)). Due to this

dependency, VR HB Power tends to require a larger batch size than VR Power given the

same values of η and m. Lemma 4.3.6 also establishes a bound for θm as a function of θ0,

η, m and K under some assumption.

Lemma 4.3.7. For some µ ≥ 0, let η = ∆µ and

(4.65)

m =

⌈(
1− η + ηλ1

ηλ1∆ +
√
ηλ1∆(2(1− η) + η(λ1 + λ2))

+

√
ηλ1∆(2(1− η) + η(λ1 + λ2))

ηλ1∆ +
√
ηλ1∆(2(1− η) + η(λ1 + λ2))

)
log 8

2

⌉

and

(4.66) |S| ≥ 128ησ2m

λ1∆ [2(1− η) + η(λ1 + λ2)]
.

Then, we have θm ≤
3

4
· θ0.

Proof. Using the conditions on m and |S|, we have

(4.67) 0 ≤ 4η2Km

α1(η)− 4β(η)
≤ 1

128
.
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Also, from

pm(α2(η), β(η)) = (β(η))m, pm(α1(η), β(η)) ≥ 1

4

[√
α1(η)

2
+

√
α1(η)− 4β(η)

2

]2m

and the choice of and m, we have

(4.68)

pm(α2(η), β(η))

pm(α1(η), β(η))
≤ 4

[ √
4β(η)√

α1(η) +
√
α1(η)− 4β(η)

]2m

= 4

[
1−

√
α1(η)−

√
4β(η) +

√
α1(η)− 4β(η)√

α1(η) +
√
α1(η)− 4β(η)

]2m

= 4

(
1−

ηλ1∆ +
√
ηλ1∆(2(1− η) + η(λ1 + λ2))

1− η + ηλ1 +
√
ηλ1∆(2(1− η) + η(λ1 + λ2))

)2m

≤ 4 exp

[
−2

ηλ1∆ +
√
ηλ1∆(2(1− η) + η(λ1 + λ2))

1− η + ηλ1 +
√
ηλ1∆(2(1− η) + η(λ1 + λ2))

m

]

≤ 1

2
.

Therefore, using (4.67) and (4.68) in Lemma 4.3.6, we finally have

∑d
k=2E[(uTk xm)2]

E[(uT1 xm)2]
≤
[
pm(α2(η), β(η))

pm(α1(η), β(η))
+

128η2Km

α1(η)− 4β(η)

]
·
∑d

k=2 E[(uTk x0)2]

E[(uT1 x0)2]

≤ 3

4
·
∑d

k=2E[(uTk x0)2]

E[(uT1 x0)2]
,

which completes the proof. �

Lemma 4.3.7 provides explicit conditions for m and |S| to ensure a sufficient decrease

of θm. Note that when µ = 0, we have |S| ≥ O( 1
∆3/2 ), which improves the analysis of

VR Power+M in [79] by removing the dependency on
√
d. Also, for any |S| ≥ 1, there

exists some η and m satisfying the conditions in Lemma 4.3.7. This implies that VR HB
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Power works with any batch size while VR Power+M does not. The overall convergence is

established next.

Theorem 4.3.8. Suppose that an initial vector x̃0 satisfies uT1 x̃0 6= 0 and let θ̃0 =

(1 − (uT1 x̃0)
2)/(uT1 x̃0)

2 ≥ ε for some ε > 0. If η = ∆µ and m and |S| satisfy (4.65) and

(4.66), after τ = dlog(θ̃0/ε)/ log(4/3)e epochs of VR HB Power, we have θ̃τ ≤ ε.

Proof of Theorem 4.3.8. By repeatedly applying Lemma 4.3.7, we have

∑d
k=2 E[(uTk x̃τ )

2]

E[(uT1 x̃τ )
2]

≤
(

3

4

)τ ∑d
k=2 E[(uTk x̃0)2]

E[(uT1 x̃0)2]
=

(
3

4

)τ
θ̃0.

Since τ = dlog(θ̃0/ε)/ log(4/3)e, we have

τ log

(
3

4

)
≤ log

(
ε

θ̃0

)
,

resulting in ∑d
k=2 E[(uTk x̃τ )

2]

E[(uT1 x̃τ )
2]

≤ ε.

�

The global convergence result in Theorem 4.3.8 is based on the single epoch result in

Lemma 4.3.7. Since τ = O
(

log(1
ε
)
)
, the iteration complexity is τm = O

(
1

∆1/2+µ/2 log(1
ε
)
)
.

On the other hand, from |S| = O
(

1
∆3/2−µ/2

)
, the sample complexity amounts to O

(
(n +

1
∆2 ) log(1

ε
)
)
. Note that VR HB Power has the same sample complexity as VR Power but

may have small iteration complexity. Therefore, if per sample cost is cheaper than per

iteration cost, VR HB Power can be more efficient than VR Power.
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4.4. Practical Considerations

In this section, we discuss some practical aspects implementing the proposed algorithms.

First, to ensure that the algorithms are numerically stable, we consider normalizations as

introduced in [72] and [79]. After updating xt+1, we normalize xt+1 as xt+1 ← xt+1/‖xt+1‖2

in VR Power and update xt and xt+1 as xt ← xt/‖xt+1‖2 and xt+1 ← xt+1/‖xt+1‖2 in VR

HB Power. Since these scaling schemes do not impact the sample paths of xt/‖xt‖, we

can obtain the same results with numerical stability.

Another practical issue with the implementations of VR Power and VR HB Power is

to estimate λ1 and λ2. As appearing in Lemma 4.3.3 and Lemma 4.3.7, accurate values of

λ1 and λ2 are essential to determine the values of η, m, and β (for VR HB Power). In the

experiments, the mini-batch size |S| is given as some percentage of n, so no estimation is

required for |S|. In order to estimate λ1 and λ2 at a regular interval (at the start of each

inner-loop), we use the exact gradients of two consecutive outer-loop iterates x̃s−1 and

x̃s. Since we expect that x̃s approaches u1 as the iterations advance, using the Rayleigh

quotient, we estimate λ1 as

λ̂1 =
(x̃s)

TC(x̃s)

(x̃s)T x̃s
.(4.69)

To estimate λ2 in the same way, we need an estimate of u2. In Power iteration, an iterate

first approaches the subspace spanned by u1 and u2 before converging to u1. That being

said, after a number of iterations, we can approximate it by a linear combination of u1

and u2. Based on this observation, we estimate u2 as

û2 = x̃s−1 − (x̃Ts−1x̃s)x̃s.(4.70)
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The idea of the above estimation is to project x̃s−1 to the space orthogonal to x̃s. If

x̃s ≈ u1 and x̃s−1 ≈ α1u1 +α2u2 for some α1, α2(6= 0), we have û2 ≈ u2. Using the Rayleigh

quotient of û2, we estimate λ2 as

λ̂2 =
x̃Ts−1Cx̃s−1 − 2θsx̃

T
s Cx̃s−1 + θ2

s x̃
T
s Cx̃s

1− θ2
s

(4.71)

where θs = x̃Ts−1x̃s. While two matrix-vector multiplications, Cx̃s−1 and Cx̃s, are involved

in computing (4.69) and (4.71), they incur no extra computation since they are the exact

gradients of x̃s−1 and x̃s, which are computed regardless of the estimation. As a result,

we can obtain λ̂1 and λ̂2 by only computing some inner products. For initial estimation

of λ̂1 and λ̂2, we run Power iteration five times and use the last two iterates. Note that

the exact gradient of the last iterate is computed at the start of the very first outer-loop

iteration.

Given |S| and estimates of λ1 and λ2, we use bisection search to find η ∈ (0, 1] such

that the terms on the right-hand sides of (4.33) and (4.66) are almost equal to |S|. After

η is found, we use (4.32) and (4.65) to determine m.

4.5. Numerical Experiments

In this section, we test the performance of VR Power and VR HB Power with that

of (i) VR-PCA [72], (ii) VR Power+M [79] and (iii) Fast PCA [22] for finding the first

eigenvector u1 of the covariance matrix C constructed by data vectors ai, i = 1, . . . , n from

real world datasets. Note that all present stochastic variance-reduced PCA algorithms are

compared in this experiment.
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4.5.1. Datasets

The datasets include ijcnn [68], covertype [8], YearPredictionMSD [7] and MNIST [44] as

summarized in Tabel 4.2. All of them are obtained either from the UCI repository [18] or

the LIBSVM library [17]. They are carefully chosen to incorporate a variety of datasets

in terms of size and eigen-gap. The first three datasets are standardized with a mean of

Table 4.2. Summary of datasets for PCA

dataset n d ∆

icjnn(test) 91,701 22 0.0079
cov 581,012 54 0.2106
MSD 463,715 90 0.3224
MNIST 70,000 764 0.8851

zero and standard deviation of one while the last one is scaled to the range between 0 and

1 to preserve its sparsity.

4.5.2. Settings

In order to report a comprehensive comparison of the algorithms, we consider two settings

for selecting hyper-parameters. In the first setting, we use hyper-parameter tuning. Specif-

ically, we use a grid search to find the best values of η, m and |S| = ρ% of each algorithm

and dataset where η ∈ {0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0}, m ∈ {25, 50, 100, 200} and

ρ ∈ {1, 2, 5, 10}.

In the second setting, we use the following theoretically derived or recommended

hyper-parameter values.



141

• VR-PCA:

η =

√
n∑n

i=1 ‖ai‖2
, m = n, |S| = 1.

• VR Power+M:

β =
λ2

2

4
, σ2 =

∑n
i=1 ‖ai‖2

n
, |S| = λ2 log 16√

λ2
1 − λ2

2

, T =
512 log 16λ2σ

2
√
d√

λ2
1 − λ2

2

.

• Fast PCA: δ = λ1 − λ2. We only consider the accurate regime. In order to solve

each problem, we use SVRG [33] with ε̃ = 10−3,

η =
λ1 − λ2

7(2λ1 + λ2)2
, m =

⌈
1

2η2(2λ1 + λ2)2

⌉
.

• VR Power, VR HB Power: |S| = ρ% · n for ρ ∈ {1, 2} and σ2 =
∑n

i=1 ‖ai‖2/n.

For η and m, we use bisection search explained in Section 4.4. Also, the scaling

schemes in Section 4.4 are used to ensure numerical stability. The exact values of

λ1 and λ2 are used to find η and m.

• PF VR Power, PF VR HB Power: As opposed to VR Power and VR HB Power,

adaptive estimates of λ̂1 and λ̂2 obtained by the procedure in Section 4.4 are used

to find η and m.

4.5.3. Results

Figure 4.1 displays the experimental result with hyper-parameter tuning. In the figure, the

x-axis represents time in seconds and the y-axis represents the optimality gap, 1− (x̃Ts u1)2,

in the log-scale. Since VR-PCA and VR Power are related algorithms, their performances

are similar except for cov where the step size of VR-PCA is tuned to the largest possible
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Figure 4.1. Convergence plots of stochastic variance-reduced PCA algorithms
with hyper-parameters tuned
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Figure 4.2. Convergence plots of stochastic variance-reduced PCA algorithms
with recommended hyper-parameters and parameter-free algorithms

value of 1.0. If some larger values are included in the grid, VR-PCA would have a similar

performance to VR Power even for cov. On the other hand, VR HB Power always performs

better than VR Power+M due to its additional control through the step size. VR HB

Power works particularly well for ijcnn which has the smallest eigen-gap. If the eigen-gap

is large, the performance of VR HB Power is not much different from the performances of

VR Power+M, VR-PCA and VR Power. We were not able to find good hyperparameters

for Fast PCA.

Figure 4.2 shows the experimental result without parameter tuning. In the figure,

regardless of the batch size, VR Power and VR HB Power outperform VR-PCA, VR

Power+M and Fast PCA. Although VR Power and VR-PCA are similar algorithms, the

performance of VR Power is much better than that of VR-PCA due to the choice of η
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and m. While VR Power precisely choose the values of η and m depending on the values

of λ1, λ2 and |S|, VR-PCA does not utilize such information and let them depend only

on n. As a result, the step size is too small and the epoch length is too large, leading to

slow convergence. On the other hand, due to the extra dependency on
√
d, VR Power+M

requires too large samples and thus it is slower than VR Power even for ijcnn which has

the smallest eigen-gap. The epoch length m of SVRG in Fast PCA is of the order of 1/∆2.

Therefore, Fast PCA takes a significant amount of time to solve each convex problem,

which makes its optimality gap not decrease as sharply as other algorithms. On the other

hand, PF VR HB Power takes longer than VR HB Power while the performance of PF

VR Power looks very similar to that of VR Power. This is because VR HB Power has

the additional momentum parameter β, which makes its performance more affected by

estimation errors. Nevertheless, both parameter-free algorithms work very well compared

to VR-PCA, VR Power+M and Fast PCA.

4.6. Final Remarks

In this chapter, we present two mini-batch stochastic variance-reduced algorithms for

PCA and derive exact forms of their parameters to attain the optimal runtime. For any

batch size, the result shows that the optimal runtime can be achieved by appropriately

choosing the step size and epoch length. We also introduce practical implementations

which automatically find such values depending on batch sizes. The framework used in

our analysis is not specific to the proposed algorithms but can be applied to analyze other

stochastic variance-reduced PCA algorithms and improve their results. In our framework,

the optimality gap is measured as the ratio of two expectation terms and this enables us
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to develop global convergence statements. Experimental results show that the proposed

algorithms work well for arbitrary batch sizes.
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CHAPTER 5

Stochastic Scale Invariant Power Iteration

5.1. Introduction

We consider scale invariant problems with finite-sum objective functions of the form

(5.1) max
x

f(x) =
1

n

n∑
i=1

fi(x) subject to x ∈ ∂Bd

where fi are scale invariant functions of the same type, i.e. fi are either multiplicatively

scale invariant with the multiplicative factor u(c) = |c|p such that fi(cx) = u(c)fi(x)

or additively scale invariant satisfying fi(cx) = fi(x) + v(c) with the additive factor

v(c) = loga |c|. It covers interesting problems in machine learning and statistics such

as Lp-norm kernel PCA [39] and the estimation of mixture proportions [41], and three

extended settings cover more interesting problems such as independent component analysis

(ICA) [29,30], Gaussian mixture models (GMM), Kullback-Leibler divergence non-negative

matrix factorization (KL-NMF) [21,45,76] and the Burer-Monteiro factorization of semi-

definite programs [20].

Assuming that f is twice differentiable on an open set containing ∂Bd, the scale invariant

problem (5.1) can be locally viewed as a leading eigenvector problem in the sense that a

stationary point x∗ is an eigenvector of ∇2f(x∗). If the Lagrange multiplier λ∗ satisfying

λ∗x∗ = ∇f(x∗) is greater than the absolute values of eigenvalues of ∇2f(x∗)(I − x∗(x∗)T ),

a stationary point x∗ is a local maximum to (5.1). Due to this eigenvector property, the



146

scale invariant problem can be efficiently solved by a general form of power iteration called

scale invariant power iteration (SCI-PI) [38] specified by

(5.2) xk+1 ←
∇f(xk)

‖∇f(xk)‖2

.

The convergence behavior of (5.2) generalizes that of power iteration. If x0 is initialized close

to a local optimum x∗, the optimality gap 1− (xTk x
∗)2 linearly converges at an asymptotic

rate of (λ̄/λ∗)2 where λ̄ is the largest absolute value of eigenvalues of ∇2f(x∗)(I−x∗(x∗)T ).

The convergence rate specializes to (λ1/λ2)2 in the case of the PCA problem [34] where

λ1 and λ2 are the first and the second eigenvalues of the covariance matrix 1
n

∑n
i=1 aia

T
i

constructed by data vectors ai. This result is consistent with the analysis of power iteration

in [26].

Due to the analogy between power iteration for the leading eigenvector problem

and gradient descent for convex optimization, many advanced algorithms have been

developed for power iteration, including noisy [27], coordinate-wise [46], momentum [79],

online [9,24] and stochastic [40,63,72,73,79] algorithms. In particular, based on the

stochastic variance-reduced gradient technique [33], stochastic variance-reduced power

iteration [40] reduces the total runtime to obtain an ε-optimal solution from O
(
dn
∆

log1
ε

)
to O

(
d
(
n+ 1

∆2

)
log1

ε

)
where ∆ = 1− λ2/λ1 represents the eigen-gap. This decoupling of

the data size n from the eigen-gap ∆ is significant in a large scale setting where n is large.

More importantly, the developement of stochastic algorithms for power iteration opens up

the possibility to develop stochastic algorithms for constrained machine learning models.

In this work, we develop a stochastic variance-reduced algorithm to solve (5.1). To

solve this general constrained problem in a stochastic manner, we introduce a stochastic
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variance-reduced algorithm of SCI-PI [38] (S-SCI-PI) and provide its convergence analysis.

The update formula of S-SCI-PI generalizes that of VR Power [40] but the scaling factor

for a full-gradient is not simply the dot product of an inner iterate and an outer iterate but

a homogeneous function of it. In the convergence analysis of S-SCI-PI, we derive a bound

on the expectation of the optimality gap. Developing this bound is not trivial since two

types of errors are involved. The first one is attributed to the difference of the Hessians

between the iterate and the optimal solution. To control this error, we derive a condition

on initial iterate, step size and batch size, so that the error is not increasing in the course

of the algorithm. On the other hand, the second error occurs from stochastic sampling

of gradient. Using recursion, we compute a bound of the variance part of the expected

optimality gap and develop a compact decomposition of the expectation of the optimality

gap. We show that the expectation of the optimality gap converges at a linear rate under

some conditions on the initial iterate, the step size, the epoch length and the batch size.

We apply S-SCI-PI to the KL-NMF problem. The KL-NMF subproblem is equivalent

to the estimation of mixture proportions problem, which can be reformulated to a scale

invariant problem. Using the separable structure of the KL-NMF subproblems, we refor-

mulate the KL-NMF problem as a two-block scale invariant problem [38] and alternatively

apply S-SCI-PI to optimize two non-negative matrices. Experiments on synthetic and

real datasets reveal that the proposed stochastic approach not only converges faster than

state-of-the-art deterministic algorithms but also produces robust solutions under random

initialization.

This work has the following contributions.
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(1) We propose a stochastic algorithm (S-SCI-PI) for solving the finite-sum scale

invariant problem. The algorithm adapts the stochastic variance-reduced gradient

technique and adjusts the scaling factor of full-gradients depending on the order

of scale invariance.

(2) We provide a convergence analysis for S-SCI-PI. Deriving compact representations

of error terms, we prove linear convergence of S-SCI-PI where we show that the

expected optimality gap decreases at a linear rate under some conditions on the

initial iterate, epoch length, batch size and an additional condition.

(3) We provide experiments to show that SCI-PI converges faster than the state-of-

the-art deterministic algorithms for KL-NMF and its subproblem.

The paper is organized as follows. We present the algorithm in Section 5.2 and

provide the convergence analysis in Section 5.3. We introduce the KL-NMF problem and

its reformulation to two-block scale invariant problem in Section 5.4 and discuss some

implementation issues in Section 5.4.2. The experimental results on real and synthetic

datasets are followed in Section 5.5.

5.2. Algorithm

Before presenting the algorithm, we introduce some notation used throughout the

paper. For the scale invariant objective function f in (5.1), we let p be the degree of

scale invariance. Let ∇kf(x) be the k-th coordinate of the gradient ∇f . For a mini-batch

sample S ⊂ [n] := {1, 2, · · · , n}, we define a stochastic function fS =
∑

l∈S fl/|S|. We

present the scale invariant multiplicative case and point out the changes needed for the

additive case later.
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The algorithm has the two-loop structure similar to the stochastic variance-reduced

gradient (SVRG) method [33]. Before the start of each inner-loop, we compute the full

gradient g̃s at the outer iterate x̃s, and utilize this gradient information to construct

a stochastic variance-reduced gradient gt at the inner iterate xt. In order to derive a

stochastic variance-reduced gradient at xt utilizing the full gradient at x̃s, we decompose

xt as

xt =
xTt x̃s
‖x̃s‖2

x̃s + xt −
xTt x̃s
‖x̃s‖2

x̃s.

In the above equation, the first component is the projection of xt onto x̃s while the second

part represents the orthogonal component of xt with respect to x̃s. Since ∇f is scale

invariant with degree p − 1 by Proposition 3.2.3, using g̃s, we can compute the exact

gradient at the first component as

(5.3) ∇f
(
xTt x̃s
‖x̃s‖2

x̃s

)
=
|xTt x̃s|p−1

‖x̃s‖2(p−1)
∇f(x̃s) = αtg̃s

where αt = |xTt x̃s|p−1/‖x̃s‖2(p−1). To approximate the difference of gradients at xt and

(xTt x̃s)x̃s/‖x̃s‖2, we use stochastic sample St ⊂ [n] as

1

|St|
∑
l∈St

(∇fl(xt)− αt∇fl(x0)) .(5.4)

Using (5.3) and (5.4), we obtain a stochastic variance-reduced gradient gt at xt as

gt = αtg̃s +
1

|St|
∑
l∈St

(∇fl(xt)− αt∇fl(x0)) .
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To control the progress of the algorithm depending on the variance of gt, we introduce a

step size η ∈ (0, 1]. Using the step size η, we derive the following update rule

xt+1 ← (1− η)xt + η
gt

‖xt‖p−2
.

Note that we further scale gt to match its scale with xt. We divide gt by ‖xt‖p−2 since

∇f(x) = ∇2f(x)x and ∇2f(x) is scale invariant with degree p− 2 by Proposition 3.2.3.

Summarizing all the above, we obtain Algorithm 5.

Algorithm 5 Stochastic SCI-PI (S-SCI-PI)

Parameter: step size η ∈ (0, 1], batch size |S|
Randomly initialize outer iterate x̃0 ∈ ∂Bd
for s = 0, 1, . . . do
x0 ← x̃s
g̃s ← ∇f(x0)
for t = 0, 1, . . . ,m− 1 do

αt ← |xTt x0|p−1

‖x0‖2(p−1)

Sample St ⊂ [n] of size |S| uniformly at random
gt ← αtg̃s + 1

|St|
∑

l∈St (∇fl(xt)− αt∇fl(x0))

xt+1 ← (1− η)xt + η gt
‖xt‖p−2

end for
x̃s+1 ← xm

end for

In the additive scale invariant case, the algorithm remains the same except that we

set p = 0. The analyses remains the same since we only use the property ∇2f(x)x =

(p− 1)∇f(x) for multiplicity while this expression for additive reads ∇2f(x)x = −∇f(x).

These expressions are provided in Proposition 3.2.3. Thus p = 0 in the multiplicative case

yields the additive case.
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5.3. Convergence Analysis

For the analysis of the algorithm, we assume that every fi is twice continuously

differentiable on an open set containing Bd,∞. Let x∗ be a local optimal solution satisfying

∇f(x∗) = λ∗x∗, (λi, vi) be an eigen-pair of ∇2f(x∗) and σ = ‖∇2f(x∗)‖. Due to the

eigenvector property of the scale invariant problem, x∗ is an eigenvector of ∇2f(x∗).

Without loss of generality, we let x∗ = v1. Since x∗ is a local maximum, by Proposition 3.2.4,

we have λ∗ > λ = max2≤i≤d|λi|.

Let Hi be the Hessian of ∇if and Fi(y
1, · · · , yd) = (λ∗ − λ1)1i=1I +

∑d
j=1 vijHj(y

j).

Also, we let GS(y1, · · · , yd) be the matrix such that ∇∇jgS(yj)T is the jth row of

GS(y1, · · · , yd) where gS = fS − f .

Next, we introduce some constants that are used to derive bounds in the analysis.

First, let M be a constant such that

(5.5) M = max
x∈Bd, y1,··· ,yd ∈Bd,∞

√∑d
i=1(xTFi(y

1, · · · , yd)x)2.

This constant measures local smoothness of the objective function f near the local optimal

solution x∗. We define quantities K and L as

K = max
y1,··· ,yd∈B∞

ES [‖GS(y1, · · · , yd)‖2], L = max
y1,··· ,yd∈B∞

‖GS(y1, · · · , yd)‖2(5.6)

and let L0 be an upper bound of L which we obtain by setting |S| = 1. K and L measure

deviation of fS from its mean f with respect to stochastic sample S of size |S|. K measures

the mean squared deviation (variance) of fS and L is concerned with the maximum squared

deviation of fS from f . As the batch size |S| is increasing, both K and L are decreasing,
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and both of them become zero when |S| = n. While K decreases as a factor of 1/|S|, L is

a non-trivial function of |S|. Therefore, if some fi is extremely irregular (i.e. |fi − f | has

an extremely large value around the solution), we would have to use a batch size close to

n to ensure that L is smaller than some level.

Next we present the convergence analysis for S-SCI-PI. We first analyze a single inner

iteration which computes xt+1 from xt. Let

α(η) = 1− η + ηλ∗, β(η) = 1− η + ηλ̄, yk =
xk
‖xk‖

, ∆t = 1− yTt x∗.

Since the optimality gap is expressed as
∑d

i=2(xTt vk)
2/(xTt v1)2, it is important to analyze

how xTt vk changes after each iteration. The following lemma provides an expression of

xTt+1vk as a sum of three components.

Lemma 5.3.1. For 1 ≤ k ≤ d and any t, if xTt x0 ≥ 0, then we have

xTt+1vk = (1− η + η(λk + (λ∗ − λ1)1k=1))xTt vk

+
1

2
η‖xt‖(yt − x∗)TFk(ŷ1

t , · · · , ŷdt )(yt − x∗)

+ η
(
GSt(ȳ

1
t , · · · , ȳdt )

(
xt − (xTt y0)y0

))T
vk.

Proof. From the update rule in Algorithm 5, we have

(5.7)

xt+1 = (1− η)xt +
η

‖xt‖p−2
(∇fSt(xt)− αt∇fSt(y0) + αtg̃)

= (1− η)xt +
η

‖xt‖p−2
∇f(xt)

+
η

‖xt‖p−2
[∇fSt(xt)−∇f(xt)− αt (∇fSt(y0)−∇f(y0))] .
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Since ∇if is twice continuously differentiable on an open set containing ∂Bd, using the

Taylor theorem, we obtain

∇if(yt) = ∇if(x∗) +∇∇if(x∗)(yt − x∗) +
1

2
(yt − x∗)T Hi(ŷ

i
t) (yt − x∗)(5.8)

where ŷit ∈ N (yt, x
∗) ,

{
z : zj = µjx

∗
j + (1− µj)ytj, 0 ≤ µj ≤ 1, j ∈ [d]

}
. We let the jth

coordinates of z, x∗, yt, vk as zj, x
∗
j , ytj, vkj, respectively. Since f is scale invariant with

the degree of p, by Proposition 3.2.3, ∇f is scale invariant with the degree of p− 1, leading

to

∇f(xt)
Tvk

‖xt‖p−1
= ∇f(x∗)Tvk + (yt − x∗)T∇2f(x∗)vk +

1

2
(yt − x∗)T

d∑
i=1

vkiHi(ŷ
i
t)(yt − x∗).

(5.9)

For k = 1, using v1 = x∗, we have

∇f(x∗)Tv1 = λ∗, (yt − x∗)T∇2f(x∗)v1 = (yt − x∗)T∇2f(x∗)x∗ = λ1(yTt x
∗ − 1),

which results in

(5.10)

∇f(xt)
Tv1

‖xt‖p−1
= λ∗ − λ1(1− yTt x∗) +

1

2
(yt − x∗)T

d∑
i=1

v1iHi(ŷ
i
t)(yt − x∗)

= λ∗yTt x
∗ + (λ∗ − λ1)(1− yTt x∗) +

1

2
(yt − x∗)T

d∑
i=1

v1iHi(ŷ
i
t)(yt − x∗)

= λ∗yTt x
∗ +

1

2
(yt − x∗)T

[
(λ∗ − λ1)I +

d∑
i=1

v1iHi(ŷ
i
t)
]
(yt − x∗)

= λ∗yTt x
∗ +

1

2
(yt − x∗)TF1(ŷ1

t , · · · , ŷdt )(yt − x∗)).
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For 2 ≤ k ≤ d, from (5.9), (x∗)Tvk = vT1 vk = 0 and ∇f(x∗)Tvk = λ∗vT1 vk = 0, we have

(5.11)
∇f(xt)

Tvk
‖xt‖p−1

= λky
T
t x
∗ +

1

2
(yt − x∗)TFk(ŷ1

t , · · · , ŷdt )(yt − x∗).

Since ∇fl is scale invariant with the degree of p− 1 for each l ∈ [n], we have

∇fl(xt) = ‖xt‖p−1∇fl(yt), αt∇fl(y0) = ‖xt‖p−1(yTt y0)p−1∇fl(y0),

which leads to

1

‖xt‖p−1
(∇fSt(xt)−∇f(xt)− αt (∇fSt(y0)−∇f(y0))) = ∇gSt(yt)−∇gSt

(
(yTt y0)y0

)
.

Using the Taylor approximation of ∇kgSt around (yTt y0)y0, we have

∇kgSt(yt)−∇kgSt((y
T
t y0)y0) = ∇∇kgSt

(
ȳkt
)T (

yt − (yTt y0)y0

)
where ȳkt ∈ N (yt, (y

T
t y0)y0). This leads to

1

‖xt‖p−2
(∇fSt(xt)−∇f(xt)− αt (∇fSt(y0)−∇f(y0))) = GSt(ȳ

1
t , · · · , ȳdt )

(
xt − (xTt y0)y0

)
.

(5.12)

Using (5.7), (5.10), (5.11) and (5.12), we have

(5.13)

xTt+1vk = (1− η + η(λk + (λ∗ − λ1)1k=1))xTt vk +
1

2
η‖xt‖(yt − x∗)TFk(ŷ1

t , · · · , ŷdt )(yt − x∗)

+ η
(
GSt(ȳ

1
t , · · · , ȳdt )

(
xt − (xTt y0)y0

))T
vk.

�
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In Lemma 5.3.1, the first term represents the growth of xTt vk. The multiplicative factor

is 1− η + ηλ∗ if k = 1 and 1− η + ηλk otherwise. The second component is attributed

to the difference of the Hessians at xt and x∗. As xt closes on x∗, this term goes to zero.

The last term is the stochastic error. The stochastic error is affected by the batch size |S|

and how closely xt is aligned with x0 where we compute the full gradient. The following

lemma provides a condition on η, L, M and x0 to ensure that yTt x
∗ is not smaller than

yT0 x
∗ for every stochastic realization.

In the below, we frequently use the fact that for 0 < η ≤ 1, η ≤ max(1, ν)−1 implies

nν ≤ 1.(5.14)

This can be easily proved by ην ≤ max(1, ν)−1ν ≤ 1 for ν ≥ 0 and ην < 0 for ν < 0. Also,

we often use that (5.16) implies

(5.15)

√
∆0

1−∆0

≤ 1,
1

1−∆0

≤
√

2.

Lemma 5.3.2. For any positive integer m, if the step size η, |S| and x0 are chosen to

satisfy

∆0 ≤ min

{
1− 1√

2
,

(λ∗ − λ̄)2

4(M + 2
√
L0)2

}
(5.16)

and either one of the following conditions:

(5.17) L ≤ (λ∗ − λ̄− 2M
√

∆0)2

32
, (5.18) η ≤ max(1, ν1, ν2, ν3)−1

where
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ν1 = 1− λ∗ + θ1m
√

2∆0

(5.19a)

ν2 = mλ∗ + 1− (m+ 1)(λ̄+M
√

∆0)

(5.19b)

ν3 =
128Lθ1λ

∗m2

θ2
2λ̄∆0

√
∆0

+ 1−
(
λ̄+M

√
∆0

)(5.19c)

θ1 = λ∗ + σ +M

√
∆0

2
+ 2
√
L(5.20a)

θ2 = λ∗ − λ̄− 2
√

∆0

(
M + 2

√
L
)
,(5.20b)

then we have xTt x0 ≥ 0 and ∆t ≤ ∆0 for all 0 ≤ t ≤ m.

Proof. We prove by induction. Suppose that we have ∆s ≤ ∆0 for s ≤ t < m. Since

∆0 ≤ 1− 1/
√

2, this implies that yTt x
∗ ≥ 1/

√
2 and yT0 x

∗ ≥ 1/
√

2. Therefore, we have

yTt y0 =
[
(yTt x

∗)x∗ + yt − (yTt x
∗)x∗

]T [
(yT0 x

∗)x∗ + y0 − (yT0 x
∗)x∗

]
= (yTt x

∗)(yT0 x
∗) + (yt − (yTt x

∗)x∗)T (y0 − (yT0 x
∗)x∗)

≥ (yTt x
∗)(yT0 x

∗)− ‖yt − (yTt x
∗)x∗‖‖y0 − (yT0 x

∗)x∗‖

≥ (yTt x
∗)(yT0 x

∗)−
√

1− (yTt x
∗)2

√
1− (yT0 x

∗)2

≥ 0,

which leads to

‖xt − (xTt y0)y0‖2 = ‖xt‖2(1− (yTk y0)2) ≤ 2‖xt‖2(1− yTt y0) = ‖xt‖2‖yt − y0‖2.
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By the triangular inequality, (a+ b)2 ≤ 2(a2 + b2) and ∆t ≤ ∆0, we have

‖yt − y0‖2 ≤ 2(‖yt − x∗‖2 + ‖y0 − x∗‖2) ≤ 4‖y0 − x∗‖2.

From yT0 x
∗ ≥ 0, we further obtain

‖xt − (xTt y0)y0‖2 ≤ 4‖xt‖2‖y0 − x∗‖2 = 8‖xt‖2(1− yT0 x∗)(5.21)

≤ 8‖xt‖2(1− (yT0 x
∗)2) = 8‖xt‖2

d∑
k=2

(yT0 vk)
2.(5.22)

Using Lemma 5.3.1, the definitions of M and L, (5.21) and that ∆t ≤ ∆0, we have

(5.23)

xTt+1v1 ≥ (1− η + ηλ∗)xTt v1 −
1

2
ηM‖xt‖‖yt − x∗‖2 − η

√
L‖xt − (xTt y0)y0‖

≥ (1− η + ηλ∗)xTt v1 − ηM(1− yTt x∗)‖xt‖ − η
√

8L(1− yT0 x∗)‖xt‖

≥
[
1− η + η

(
λ∗ − M∆0

1−∆0

−
√

8L∆0

1−∆0

)]
yT0 x

∗‖xt‖.

By (5.15), (5.16) and that L ≤ L0, we have

λ∗ − M∆0

1−∆0

−
√

8L∆0

1−∆0

≥ λ∗ −
(
M + 4

√
L
)√

∆0 = λ∗ −
(λ∗ − λ̄)

(
M + 4

√
L
)

2M + 4
√
L0

≥ 0.

This leads to xTt+1v1 ≥ 0.

Now, we prove that ∆t+1 ≤ ∆0. Since

d∑
k=2

(1− η + ηλk)
2(xTt vk)

2 ≤ (1− η + ηλ̄)2

d∑
k=2

(xTt vk)
2(5.24)

d∑
k=1

(1− η + η(λk + (λ∗ − λ1)1k=1))2 (xTt vk)
2 ≤ (1− η + ηλ∗)2‖xt‖2(5.25)



158

(5.26)
d∑

k=2

[
(yt − x∗)TFk(ŷ1

t , · · · , ŷdt )(yt − x∗)
]2 ≤ d∑

k=1

[
(yt − x∗)TFk(ŷ1

t , · · · , ŷdt )(yt − x∗)
]2

≤M2‖yt − x∗‖4

(5.27)
d∑

k=2

[
vTkGSt(ȳ

1
t , · · · , ȳdt )

(
xt − (xTt y0)y0

)]2 ≤ d∑
k=1

[
vTkGSt(ȳ

1
t , · · · , ȳdt )

(
xt − (xTt y0)y0

)]2
≤ L‖xt − (xTt y0)y0‖2

where (5.27) follows from ‖
∑d

k=1 vkv
T
k ‖ = 1, using Lemma 5.3.1 and the Cauchy-Schwarz

inequality, we have

d∑
k=2

(xTt+1vk)
2 ≤

[
(1− η + ηλ̄)

√√√√ d∑
k=2

(xTt vk)
2 +

1

2
ηM‖xt‖‖yt − x∗‖2 + η

√
L‖xt − (xTt y0)y0‖

]2
(5.28)

‖xt+1‖2 ≤
[
1− η + ηλ∗ +

1

2
ηM‖y0 − x∗‖2 + η

√
L‖yt − (yTt y0)y0‖

]2‖xt‖2.

(5.29)

First, we consider the case (5.17). Since ∆t ≤ ∆0 ≤ 1, we have 0 ≤ yTt x
∗ ≤ 1 and∑d

k=2(yTt vk)
2 = 1− (yTt x

∗)2 ≤ 1− (yT0 x
∗)2 =

∑d
k=2(yT0 vk)

2, resulting in

(5.30)

‖yt − x∗‖2 = 2
√

1− yTt x∗
√

1− (yTt x
∗)2 ≤ 2

√
∆t

√√√√ d∑
k=2

(yTt vk)
2 ≤ 2

√
∆0

√√√√ d∑
k=2

(yT0 vk)
2.
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Plugging (5.22) and (5.30) into (5.28), we have

d∑
k=2

(xTt+1vk)
2 ≤

[
1− η + η

(
λ̄+M

√
∆0 + 2

√
2L
)]2

‖xt‖2

d∑
k=2

(yT0 vk)
2.(5.31)

Combining (5.23) and (5.31), we have

∑d
k=2(xTt+1vk)

2

(xTt+1v1)2
≤
[

1− η + η
(
λ̄+M

√
∆0 + 2

√
2L
)

1− η + η
(
λ∗ −M∆0/(1−∆0)− 2

√
2L∆0/(1−∆0)

)]2∑d
k=2(yT0 vk)

2

(yT0 v1)2
.

(5.32)

Using (5.15) and (5.17), we have

λ∗ − M∆0

1−∆0

− 2
√

2L∆0

1−∆0

−
(
λ̄+M

√
∆0 + 2

√
2L
)
≥ (λ∗ − λ̄)− 2M

√
∆0 − 4

√
2L ≥ 0.

Therefore, from (5.32), we finally have

1− (yTt+1x
∗)2

(yTt+1x
∗)2

=

∑d
k=2(yTt+1vk)

2

(yTt+1v1)2
=

∑d
k=2(xTt+1vk)

2

(xTt+1v1)2
≤
∑d

k=2(yT0 vk)
2

(yT0 v1)2
=

1− (yT0 x
∗)2

(yT0 x
∗)2

.

Since (1− x2)/x2 is decreasing for x ≥ 0, this leads to ∆t+1 = 1− yTt+1x
∗ ≤ 1− yT0 x∗ = ∆0.

Next, we derive ∆t+1 ≤ ∆0 from (5.18). From (5.21) and (5.29), we have

‖xt+1‖2 ≤
[
1− η + η

(
λ∗ +

1

2
M‖y0 − x∗‖2 + 2

√
L‖y0 − x∗‖

)]2

‖xt‖2.

Using induction, this leads to

‖xt+1‖2 ≤
[
1− η + η

(
λ∗ +

1

2
M‖y0 − x∗‖2 + 2

√
L‖y0 − x∗‖

)]2(t+1)

‖x0‖2.(5.33)
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On the other hand, from (5.13), (5.21) and the definition of L, we have

xTt+1y0 = (1− η)xTt y0 +
η∇f(xt)

Ty0

‖xt‖p−2
+ ηyT0 GSt(ȳ

1
t , · · · , ȳdt )(xt − (xTt y0)y0)

≥ (1− η)xTt y0 +
η∇f(xt)

Ty0

‖xt‖p−2
− 2η

√
L‖y0 − x∗‖‖xt‖.

Replacing vk with y0 in (5.9) and using ∇f(x∗) = λ∗x∗ and the definition of M , we have

∇f(xt)
Ty0

‖xt‖p−1
= ∇f(x∗)Ty0 + (yt − x∗)T∇2f(x∗)y0 +

1

2
(yt − x∗)T

d∑
i=1

y0iHi(ŷ
i
t)(yt − x∗)

= λ∗yTt y0 + (yt − x∗)T
(
∇2f(x∗)− λ∗I

)
y0 −

1

2
M‖yt − x∗‖2

≥ λ∗yTt y0 − (λ∗ + σ)‖yt − x∗‖ −
1

2
M‖yt − x∗‖2.

This results in

xTt+1y0 ≥ (1− η + ηλ∗)xTt y0 − η
(
λ∗ + σ +

1

2
M‖y0 − x∗‖+ 2

√
L
)
‖y0 − x∗‖‖xt‖

= (1− η + ηλ∗)xTt y0 − ηθ1

√
2∆0‖xt‖.

Using (5.33), we obtain

xTt+1y0 ≥ (1− η + ηλ∗)xTt y0 − ηθ1

√
2∆0

[
1− η + ηλ∗ + ηθ1

√
2∆0

]t‖x0‖.

By mathematical recursion, we further have

(5.34) xTt+1y0 ≥
(

2(1− η + ηλ∗)t+1 −
[
1− η + ηλ∗ + ηθ1

√
2∆0

]t+1)
‖x0‖.
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Since ‖xt − (xTt y0)y0‖2 = ‖xt‖2 − (xTt y0)2, using (5.33) and (5.34), we have

‖xt − (xTt y0)y0‖2 ≤ 4(1− η + ηλ∗)2t
[(

1 +
ηθ1

√
2∆0

1− η + ηλ∗

)t
− 1
]
‖x0‖2.

By (5.18), (5.19a) and (5.14), η(1− λ∗ + θ1m
√

2∆0) ≤ 1 or ηθ1m
√

2∆0/(1− η+ ηλ∗) ≤ 1.

Since ηθ1t
√

2∆0/(1− η + ηλ∗) ≤ ηθ1m
√

2∆0/(1− η + ηλ∗) ≤ 1 and (1 + x)t ≤ exp (xt) ≤

2xt+ 1 for xt ≤ 1, we obtain

(5.35) ‖xt − (xTt y0)y0‖2 ≤ 8ηθ1(1− η + ηλ∗)2t−1
√

2∆0t‖x0‖2.

Plugging (5.30) and (5.35) into the square root of (5.28), we have

(5.36)√√√√ d∑
k=2

(xTt+1vk)
2 ≤

[
1− η + η(λ̄+M

√
∆0)

]√√√√ d∑
k=2

(xTt vk)
2

+ η

√
8ηLθ1

√
2∆0

1− η + ηλ∗
(1− η + ηλ∗)tt‖x0‖

≤
[
1− η + η(λ̄+M

√
∆0)

]t+1

√√√√ d∑
k=2

(xT0 vk)
2

+ η

√
8ηLθ1

√
2∆0

1− η + ηλ∗

t∑
i=1

i (1− η + ηλ∗)i
[
1− η + η(λ̄+M

√
∆0)

]t−i‖x0‖.

For a positive integer t and a non-negative real number r ≥ 0 such that t/t ≤ 1, we have

(1 + r)t − 1 = r
(
(1 + r)t−1 + (1 + r)t−2 + · · ·+ 1

)
≥ rt

(1 + r)t − 1 ≤ exp(rt)− 1 ≤ 2rt,
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which leads to

(5.37)

t∑
i=1

(1 + r)ii =
1 + r

r2

(
t(1 + r)t+1 − (t+ 1)(1 + r)t + 1

)
≤ 1 + r

r2

(
t(1 + r)t+1 − t(1 + r)t − rt

)
=

(1 + r)t

r

(
(1 + r)t − 1

)
≤ 2(1 + r)t2.

By (5.18), (5.19b) and (5.14), we have η
(
m(λ∗ − λ̄−M

√
∆0) + 1− λ̄−M

√
∆0

)
≤ 1,

which implies

1− η + ηλ∗

1− η + η(λ̄+M
√

∆0)
− 1 ≤ 1

m
.

Also, by (5.16), we have λ∗ − λ̄−M
√

∆0, leading to

1− η + ηλ∗

1− η + η(λ̄+M
√

∆0)
− 1 =

η(λ∗ − λ̄−M
√

∆0)

1− η + η(λ̄+M
√

∆0)
≥ 0.

Therefore, using (5.37), we have

(5.38)

t∑
i=1

i (1− η + ηλ∗)i
[
1− η + η(λ̄+M

√
∆0)

]t−i
=
[
1− η + η(λ̄+M

√
∆0)

]t t∑
i=1

i

[
1− η + ηλ∗

1− η + η(λ̄+M
√

∆0)

]i
≤ 2(1− η + ηλ∗)t2

[
1− η + η(λ̄+M

√
∆0)

]t−1
.
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Plugging (5.38) into (5.36), we obtain

(5.39)√√√√ d∑
k=2

(xTt+1vk)
2 ≤

[
1− η + η(λ̄+M

√
∆0)

]t+1

√√√√ d∑
k=2

(xT0 vk)
2

+ 2η

√
8(1− η + ηλ∗)ηLθ1

√
2∆0 t

2
[
1− η + η(λ̄+M

√
∆0)

]t−1‖x0‖.

On the other hand, from (5.23), we have

(5.40) xTt+1v1 ≥
[
1− η + η

(
λ∗ − M∆0

1−∆0

− 2
√

2L∆0

1−∆0

)]t+1

xT0 v1.

Combining (5.39) and (5.40), we have

(5.41)√∑d
k=2(xTt+1vk)

2

xTt+1v1

≤

[
1− η + η(λ̄+M

√
∆0)

1− η + η
[
λ∗ − (M∆0 + 2

√
2L∆0)/(1−∆0)

]]t+1
√∑d

k=2(xT0 vk)
2

xT0 v1

+
2ηt2

√
8(1− η + ηλ∗)ηLθ1

√
2∆0

[
1− η + η(λ̄+M

√
∆0)

]t−1(
1− η + η

[
λ∗ − (M∆0 + 2

√
2L∆0)/(1−∆0)

])t+1
yT0 v1

.

Since 0 < η ≤ 1, we have

(5.42)
λ̄

λ∗
≤ 1− η + ηλ̄

1− η + ηλ∗
≤ 1− η + η(λ̄+M

√
∆0)

1− η + ηλ∗
.

Let

(5.43) γ =
λ∗ − λ̄−M

√
∆0 − (M∆0 + 2

√
2L∆0)/(1−∆0)

1− η + η
[
λ∗ − (M∆0 + 2

√
2L∆0)/(1−∆0)

] .
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By (5.15) and θ2 ≥ 0 due to (5.16), we have

(5.44)
1

1− η + η(λ̄+M
√

∆0)
=

γ

1− ηγ

[
1

λ∗ − λ̄−M
√

∆0 − (M∆0 + 2
√

2L∆0)/(1−∆0)

]
≤ γ

θ2(1− ηγ)
.

Using (5.42), (5.44) and that yT0 v1 ≥ 1/
√

2, we have

2ηt2
√

8(1− η + ηλ∗)ηLθ1

√
2∆0

yT0 v1(1− η + η(λ̄+M
√

∆0))2
≤ 8
√

2

√
λ∗

λ̄

√
ηLθ1

√
∆0

1− η + η(λ̄+M
√

∆0)

ηγt2

θ2(1− ηγ)
.

By (5.18), (5.19c) and (5.14), we have

η

(
128Lθ1λ

∗m2

θ2
2λ̄∆0

√
∆0

+ 1−
(
λ̄+M

√
∆0

))
≤ 1

or

ηLθ1

√
∆0

1− η + η
(
λ̄+M

√
∆0

) ≤ θ2
2λ̄∆2

0

128λ∗m2
,

which results in

2ηt2
√

8(1− η + ηλ∗)ηLθ1

√
2∆0

yT0 v1(1− η + η(λ̄+M
√

∆0))2
≤ ηγt2∆0

(1− ηγ)m
≤ ηγt2

(1− ηγ)m

∑d
k=2(xT0 vk)

2

(xT0 v1)2
.(5.45)

The last inequality follows from

∆0 = 1− yT0 x∗ ≤ 1− (yT0 x
∗)2 ≤

∑d
k=2(yT0 vk)

2

(yT0 v1)2
=

∑d
k=2(xT0 vk)

2

(xT0 v1)2
.
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Plugging (5.43) and (5.45) into (5.41), we have√∑d
k=2(xTt+1vk)

2

xTt+1v1

≤ (1− ηγ)t+1

[
1 +

ηγt2

(1− ηγ)m

]√∑d
k=2(xT0 vk)

2

xT0 v1

.

Using 1 + nx ≤ (1 + x)n for x ≥ 0 and the fact that γ ≥ 0 by (5.16), we have

(1− ηγ)t+1

[
1 +

ηγt2

(1− ηγ)m

]
=

[
1−

[(
1 +

ηγ

1− ηγ

)t+1

− 1− ηγt2

(1− ηγ)m

]
(1− ηγ)t+1

]
≤
[
1−

(
t+ 1− t2

m

)
ηγ(1− ηγ)t

]
,

which yields √∑d
k=2(xTt+1vk)

2

xTt+1v1

≤

√∑d
k=2(xT0 vk)

2

xT0 v1

due to t < m. From that

1− (yTt+1x
∗)2

(yTt+1x
∗)2

=

∑d
k=2(xTt+1vk)

2

(xTt+1v1)2
≤
∑d

k=2(xT0 vk)
2

(xT0 v1)2
=

1− (yT0 x
∗)2

(yT0 x
∗)2

and (1−x2)/x2 is decreasing for x ≥ 0, we finally have ∆t+1 = 1−yTt+1x
∗ ≤ 1−yT0 x∗ = ∆0.

�

Note that λ∗− λ̄2 is an eigen-gap at the solution and L and ∆0 are decreasing functions

of the batch size |S| and the dot product yT0 x
∗. Given that ∆0 is moderately small, we

can satisfy conditions (5.17) or (5.18) by increasing the batch size |S| or decreasing the

step size η, respectively. Conditioning on xt, the next lemma derives expectation bounds

for several quantities involving (xTt+1vk)
2 and norms.
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Lemma 5.3.3. For any positive integer m, if η, |S| and x0 satisfy (5.16), (5.17) (or

(5.18)) and

(5.46) η ≤ max(1, 1− λ∗ +
√

2M∆0)−1,

then for any 0 ≤ t ≤ m, we have

E[‖xt+1‖2|xt] ≤
[(
α(η) + ηM∆t

)2
+ η2K

]
‖xt‖2,

E
[ d∑
k=2

(xTt+1vk)
2|xt
]
≤
(
β(η) + ηM

√
∆t

)2
d∑

k=2

(xTt vk)
2 + 8η2K‖xt‖2

d∑
k=2

(yT0 vk)
2,

E[(xTt+1v1)2|xt] ≥
[
α(η)− ηM∆t

1−∆t

]2

(xTt v1)2.

Proof. By Lemma 5.3.1, we have

xTt+1vk = (1− η + η(λk + (λ∗ − λ1)1k=1))xTt vk

+
1

2
η‖xt‖(yt − x∗)TFk(ŷ1

t , · · · , ŷdt )(yt − x∗)

+ η
(
GSt(ȳ

1
t , · · · , ȳdt )

(
xt − (xTt y0)y0

))T
vk.

Since St is sampled uniformly at random, E[fSt(y)] = f(y) for all y ∈ Rd, which leads to

(5.47)

E[(xTt+1v1)2 |xt] =
[
(1− η + ηλ∗)xTt v1 +

1

2
η‖xt‖(yt − x∗)TF1(ŷ1

t , · · · , ŷdt )(yt − x∗)
]2

+ η2
(
xt − (xTt y0)y0

)T
E[GSt(ȳ

1
t , · · · , ȳdt )Tv1v

T
1 GSt(ȳ

1
t , · · · , ȳdt )]

(
xt − (xTt y0)y0

)
.
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In the same way, for 2 ≤ k ≤ d, we have

(5.48)

E[(xTt+1vk)
2 |xt] =

[
(1− η + ηλk)x

T
t vk +

1

2
η‖xt‖(yt − x∗)TFk(ŷ1

t , · · · , ŷdt )(yt − x∗)
]2

+ η2
(
xt − (xTt y0)y0

)T
E[GSt(ȳ

1
t , · · · , ȳdt )TvkvTkGSt(ȳ

1
t , · · · , ȳdt )]

(
xt − (xTt y0)y0

)
.

Using the definition of M and that ‖
∑d

k=1 vkv
T
k ‖ = 1, we have

(5.49)

η2
(
xt − (xTt y0)y0

)T d∑
k=1

E[‖GSt(ȳ
1
t , · · · , ȳdt )Tvk‖2]

(
xt − (xTt y0)y0

)
≤ η2K‖xt − (xTt y0)y0‖2.

Using (5.47), (5.48), (5.25), (5.26), (5.49) and the Cauchy-Schwarz inequality, we have

(5.50)
E[‖xt+1‖2|xt] ≤ (1− η + ηλ∗)2‖xt‖2 +

1

2
ηM(1− η + ηλ∗)‖xt‖‖yk − x∗‖2

+
1

4
η2M2‖xt‖2‖yk − x∗‖4 + η2K‖xt − (xTt y0)y0‖2.

Using ‖xt − (xTt y0)y0‖2 ≤ ‖xt‖2 in (5.50), we obtain

(5.51)
E[‖xt+1‖2|xt] ≤

[(
1− η + ηλ∗ +

1

2
ηM‖yt − x∗‖2

)2
+ η2K

]
‖xt‖2

=
[(

1− η + ηλ∗ + ηM(1− yTt x∗)
)2

+ η2K
]
‖xt‖2,

which establishes the first statement.

In the same way, using (5.48), (5.24), (5.26), (5.49) and the Cauchy-Schwarz inequality,

we have

(5.52)
E
[ d∑
k=2

(xTt+1vk)
2|xt
]
≤
[
(1− η + ηλ̄)

√√√√ d∑
k=2

(xTt vk)
2 +

1

2
ηM‖xt‖‖yt − x∗‖2

]2

+ η2K‖xt − (xTt y0)y0‖2.
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By Lemma 5.3.2, we have ∆t ≤ ∆0 ≤ 1− 1/
√

2 and thus yTt x
∗ ≥ 1/

√
2 and yT0 x

∗ ≥ 1/
√

2.

Since yTt x
∗ ≥ 0, using (5.30), we have

1

2
ηM‖xt‖‖yt − x∗‖2 ≤ ηM

√
∆t

√√√√ d∑
k=2

(xTt vk)
2.

As a result of (5.22) which we can use since ∆t ≤ ∆0, we obtain

(5.53)

E
[ d∑
k=2

(xTt+1vk)
2|xt
]
≤
[
1− η + ηλ̄+ ηM

√
∆t

]2
d∑

k=2

(xTt vk)
2 + 8η2K‖xt‖2

d∑
k=2

(yT0 vk)
2,

which shows the second statement in the lemma.

Lastly, from (5.47), we have

E[(xTt+1v1)2|xt] ≥
[
(1− η + ηλ∗)xTt v1 +

1

2
η‖xt‖(yt − x∗)TF1(ŷ1

t , · · · , ŷdt )(yt − x∗)
]2

By (5.46) and (5.14), we have η(1− λ∗ +M∆0

√
2) ≤ 1. Since 1/(1−∆0) ≤

√
2 by (5.16),

we further have

η

(
M∆0

1−∆0

+ 1− λ∗
)
≤ 1.

Due to ∆t ≤ ∆0, this implies that

(1− η + ηλ∗)xTt v1 −
1

2
ηM‖xt‖‖yt − x∗‖2 =

[
(1− η + ηλ∗) (1−∆t)− ηM∆t

]
‖xt‖

=
[
1− η

( M∆t

1−∆t

+ 1− λ∗
)]

(1−∆t)‖xt‖

≥
[
1− η

( M∆0

1−∆0

+ 1− λ∗
)]

(1−∆t)‖xt‖

≥ 0.
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Since (a+ b)2 ≥ (a− c)2 holds if a ≥ c and |b| ≤ c, we finally have

E[(xTt+1v1)2|xt] ≥
[
(1− η + ηλ∗)xTt v1 −

1

2
ηM‖xt‖‖yt − x∗‖2

]2

=

[
α(η)− ηM∆t

1−∆t

]2

(xTt v1)2.

�

Using induction on the single iteration bound in Lemma 5.3.3, we derive an upper

bound for E[
∑d

k=2(xTt vk)
2] and a lower bound E[(xTt v1)2] as functions of E[

∑d
k=2(xT0 vk)

2]

and E[(xT0 v1)2] for a single outer iteration.

Lemma 5.3.4. For any positive integer m, if η, |S| and x0 satisfy (5.16), (5.17) (or

(5.18)), (5.46) and

(5.54) η ≤ max
(
1, 1− λ∗ −M

√
∆0 +

√
Km

)−1
,

then we have

E
[ d∑
k=2

(xTt vk)
2
]
≤ E

[ d∑
k=2

(xT0 vk)
2
][(

β(η) + ηM
√

∆0

)2t
+ 16η2Kt

(
α(η) + ηM

√
∆0

)2(t−1)]
,

E[(xTt v1)2] ≥
[
α(η)− ηM∆0

1−∆0

]2t

E[(xT0 v1)2].

Proof. By Lemma 5.3.2, we have ∆t ≤ ∆0. Repeatedly applying Lemma 5.3.3, we

have

(5.55)
E[‖xt‖2|x0] = E[E[‖xt‖2|xt−1]|x0] ≤

[(
α(η) + ηM∆0

)2
+ η2K

]
E[‖xt−1‖2|x0]

≤
[(
α(η) + ηM∆0

)2
+ η2K

]t‖x0‖2.
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Using (5.55), we have

(5.56)

E
[
‖xt‖2

d∑
k=2

(yT0 vk)
2
]

= E
[
E
[
‖xt‖2

d∑
k=2

(yT0 vk)
2|x0

]]
= E

[
E[‖xt‖2|x0]

d∑
k=2

(yT0 vk)
2
]

= E
[[(

α(η) + ηM∆0

)2
+ η2K

]t‖x0‖2

d∑
k=2

(yT0 vk)
2
]

=
[(
α(η) + ηM∆0

)2
+ η2K

]t
E
[ d∑
k=2

(xT0 vk)
2
]
.

Using Lemma 5.3.3 and that ∆t ≤ ∆0, we have

(5.57)

E
[ d∑
k=2

(xTt vk)
2
]
≤
(
β(η) + ηM

√
∆0

)2
E
[ d∑
k=2

(xTt−1vk)
2
]

+ 8η2KE
[
‖xt−1‖2

d∑
k=2

(yT0 vk)
2
]
.

By induction on (5.57) using (5.56), we have

E
[ d∑
k=2

(xTt vk)
2
]
≤
(
β(η) + ηM

√
∆0

)2
E
[ d∑
k=2

(xTt−1vk)
2
]

+ 8η2K
[(
α(η) + ηM∆0

)2
+ η2K

]t−1
E
[ d∑
k=2

(xT0 vk)
2
]

≤ E
[ d∑
k=2

(xT0 vk)
2
][(

β(η) + ηM
√

∆0

)2t

+ 8η2K
t∑

s=1

[
α(η) + ηM

√
∆0

]2(t−s)[(
α(η) + ηM

√
∆0

)2
+ η2K

]s−1
]

≤ E
[ d∑
k=2

(xT0 vk)
2
][(

β(η) + ηM
√

∆0

)2t

+ 8
(
α(η) + ηM

√
∆0

)2t
[(

1 +
η2K(

α(η) + ηM
√

∆0

)2

)t
− 1

]]
.
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By (5.54) and (5.14), we have η
(
1− λ∗ −M

√
∆0 +

√
Km

)
≤ 1, which leads to

0 ≤ η2Kt(
α(η) + ηM

√
∆0

)2 ≤ 1.

Using (1 + x)t − 1 ≤ exp(xt)− 1 ≤ 2xt for xt ∈ [0, 1], we have

E
[ d∑
k=2

(xTt vk)
2
]
≤ E

[ d∑
k=2

(xT0 vk)
2
] [(

β(η) + ηM
√

∆0

)2t
+ 16η2Kt

(
α(η) + ηM

√
∆0

)2(t−1)
]
.

On the other hand, using ∆t ≤ ∆0 and Lemma 5.3.3, we have

(5.58) E[(xTt v1)2] = E[E[(xTt v1)2|xt−1]] ≥
[
α(η)− ηM∆0

1−∆0

]2

E[(xTt−1v1)2].

By induction on (5.58) using ∆t ≤ ∆0, we finally have

E[(xTt v1)2] ≥
[
α(η)− ηM∆0

1−∆0

]2t

E[(xT0 v1)2].

�

The inequalities in Lemma 5.3.4 are important since we can combined them to yield a

bound on the optimality gap which is expressed as E
[∑d

k=2(xTt vk)
2
]
/E[(xTt v1)2]. In the

next lemma, we show that under some conditions on η,m, |S| and x0, the optimality gap

decreases at least by 1− ρ after each outer iteration.

Lemma 5.3.5. For any positive integer m, if η, |S| and x0 satisfy (5.16), (5.17) (or

(5.18)) and

η ≤ max(1, ν4, ν5)−1(5.59)
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where

ν4 = 1− λ∗ −M
√

∆0 + max

(√
Km,

64K

λ∗ − λ̄− 2M
√

∆0

)
(5.60)

ν5 = 1− λ∗ +M
√

∆0 + max

(
2m
(
λ∗ − λ̄− 2M

√
∆0

)
,

4mM
√

∆0

log 2

)
,(5.61)

then we have

E[
∑d

k=2(xTmvk)
2]

E[(xTmv1)2]
≤ (1− ρ) · E[

∑d
k=2(xT0 vk)

2]

E[(xT0 v1)2]

where

(5.62) 0 < ρ =
ηm
(
λ∗ − λ̄− 2M

√
∆0

)
2
(
1− η + η(λ∗ −M

√
∆0)

) < 1.

Proof. By (5.59) and (5.60), we have (5.54). Also, (5.59), (5.61) and the fact that

√
2∆0 ≤ 1 due to (5.16) imply (5.46). Therefore, by Lemma 5.3.4, we have

(5.63) δm ≤

[(
β(η) + ηM

√
∆0

α(η)− ηM∆0/(1−∆0)

)2m

+
16η2Km

[
α(η) + ηM

√
∆0

]2(m−1)[
α(η)− ηM∆0/(1−∆0)

]2m
]
δ0

where δt = E[
∑d

k=2(xTt vk)
2]/E[(xTt v1)2]. By (5.15) due to (5.16) and the fact that 1 + x ≤

exp(x) for all x ∈ R, we have

(5.64)

(
β(η) + ηM

√
∆0

α(η)− ηM∆0/(1−∆0)

)2m

≤
(

1− η(λ∗ − λ̄− 2M
√

∆0)

1− η + η(λ∗ −M
√

∆0)

)2m

≤ exp

(
−2ηm(λ∗ − λ̄− 2M

√
∆0)

1− η + η(λ∗ −M
√

∆0)

)
≤ 1− ηm(λ∗ − λ̄− 2M

√
∆0)

1− η + η(λ∗ −M
√

∆0)

= 1− 2ρ
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where the last inequality follows from that exp(−x) ≤ 1− x/2 for 0 ≤ x ≤ 1 since (5.59),

(5.61) and (5.14) imply 2ηm(λ∗ − λ̄− 2M
√

∆0)/(1− η + η(λ∗ −M
√

∆0)) ≤ 1.

On the other hand, by (5.15) due to (5.16) and the fact that (1 + x)n ≤ exp(nx), we

have

(5.65)

16η2Km
[
α(η) + ηM

√
∆0

]2(m−1)[
α(η)− ηM∆0/(1−∆0)

]2m ≤ 16η2Km(
α(η) + ηM

√
∆0

)2

(
1 +

2ηM
√

∆0

α(η)− ηM
√

∆0

)2m

≤ 16η2Km(
α(η) + ηM

√
∆0

)2 exp

(
4ηmM

√
∆0

α(η)− ηM
√

∆0

)
.

By (5.59), (5.61) and (5.14), we have η
(
1− λ∗ −M

√
∆0 + 64K/(λ∗ − λ̄− 2M

√
∆0)

)
≤ 1,

which leads to

(5.66)
ρ

2
− 16η2Km(

α(η) + ηM
√

∆0

)2 ≥
ηm(λ∗ − λ̄− 2M

√
∆0)

4
(
1− η + η(λ∗ +M

√
∆0)

) − 16η2Km(
1− η + η(λ∗ +M

√
∆0)

)2

≥ 0.

By (5.59), (5.61) and (5.14), we have η(1−λ∗+M
√

∆0 + 4mM
√

∆0/ log 2) ≤ 1, resulting

in

(5.67) exp

(
4ηmM

√
∆0

α(η)− ηM
√

∆0

)
≤ 2.

Using (5.64), (5.65), (5.66) and (5.67) in (5.63), we finally have

E[
∑d

k=2(xTmvk)
2]

E[(xTmv1)2]
≤ (1− ρ) · E[

∑d
k=2(xT0 vk)

2]

E[(xT0 v1)2]
.

�
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Finally, we analyze the entire algorithm. Let

∆̃0 = 1− x̃T0 x∗, δ̃s =
E[
∑d

k=2(x̃Ts vk)
2]

E[(x̃Ts v1)2]
.

By repeatedly applying Lemma 5.3.5, the following theorem states that δ̃s decreases at a

liner rate under some conditions on η, |S| and x̃0.

Theorem 5.3.6. For any positive integer m, if η, |S| and x̃0 satisfy (5.16), (5.17) (or

(5.18)) and (5.59) with ∆0 = ∆̃0, then for any ε > 0, after τ = d(1/ρ) log(δ̃0/ε)e epochs of

S-SCI-PI (Algorithm 5), we have δ̃τ ≤ ε.

Proof. Since η, |S| and x0 = x̃0 satisfy (5.16), (5.17) (or (5.18)) and (5.59), by

Lemmas 5.3.2 and 5.3.5, we have ∆̃1 = ∆m ≤ ∆0 = ∆̃0 and δ̃1 = δm ≤ (1 − ρ)δ0 =

(1 − ρ)δ̃0. By repeatedly applying the same argument, we have δ̃τ ≤ (1 − ρ)τ δ̃0. Since

τ ≥ (1/ρ) log(δ̃0/ε), we finally obtain

δ̃τ ≤ (1− ρ)τ δ̃0 ≤ exp(−τρ)δ̃0 ≤ ε.

This completes the proof. �

Theorem 5.3.6 states that for epoch length m, if x̃0 is moderately close to x∗ and the

step size η and the batch size |S| satisfies certain conditions, the optimality gap vanishes

at an exponential rate. If there are few irregular fi and sampling costs are cheap, we

can satisfy (5.17) by making L small. In this case, η can take a large value and we are

able to obtain rapid convergence. On the other hand, if there are many irregular data

samples and sampling costs are not cheap, we may not satisfy (5.17). Nevertheless, we
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can always ensure linear convergence of Algorithm 5 by choosing a small enough step size

η as in [72].

5.4. KL-divergence NMF

Let V ∈ RN×M
+ be a given non-negative matrix, which we want to compress into the

product of W ∈ RN×K
+ and H ∈ RK×M

+ .

Consider the KL-NMF problem defined in (3.4.4). Let Hj be the j-th column of H.

Note that the objective function DKL(V ‖WH) is separable in H1, · · · , HM and thus

(5.68) Hnew
j = arg max

Hj≥0

∑
i

[Vij log(WHj)i − (WHj)i]

serves as the j-th subproblem. By Lemma 3.4.5, the j-th KL-NMF subproblem (5.68) is

equivalent to the following mixture proportion problem

(5.69) Xnew
j = arg max

Xj∈Sd

∑N
i=1Vij log(LXj)i

with Lik = Wik/(
∑

i′Wi′k) and the original solution can be recovered via

(5.70) Hnew
kj =

∑
i Vij∑
iWik

Xnew
jk , k = 1, · · · , d.

This result implies that the KL divergence NMF subproblem for H, namely

Hnew = arg max
H≥0

[Vij log(WH)ij − (WH)ij],

can be solved by S-SCI-PI after we reformulate problem (5.68) into (5.69) for j = 1, · · · ,M .
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Using a stochastic sample S ⊂ {1, · · · , N} of size |S|, our S-SCI-PI updates H by

(5.71)

Hnew
kj ← Hkj

[
(1− η) + η

∑
i∈S

LikVij
(LH)ij

]2

∀k, j,

Hnew ← column-rescale(Hnew),

where column-rescale(X) is rescaling the columns of X to have sum 1. The update for W

is similar due to

DKL(V ‖WH) = DKL(V T‖HTW T ).

Rather than dealing with M sub-problems (5.68), we tackle a single optimization prob-

lem. Let X = [X1, · · · , XM ] be the concatenation of the M column vectors X1, · · · , XM ∈

RK defined on the unit simplex. Lemma 3.4.5 states that in the exact alternating mini-

mization algorithm, the update of H amounts to solving

(5.72)

min
X

NM∑
i=1

vec(V )i log[(IM ⊗ L)vec(X)]i subject to vec(Xj) ∈ SK , j = 1, · · · ,M

where vec(X) = (X11, · · · , XK1, · · · , X1M , · · · , XKM) is a vectorization of X ∈ RK×M ,

vec(V ) ∈ RKM is defined similarly and IM⊗L = kron(IM , L) ∈ RNM×KM is the Kronecker

product of IM and L.

This allows us to exploit fast matrix multiplication routines (i.e. efficient matrix

computation library such as OpenBLAS or intel MKL) in solving the aggregated problem

(5.72) instead of solving the j-th subproblem sequentially for j = 1, · · · ,M .

5.4.1. Related Algorithms

Let Z = WH henceforth. We omit the update of W since it can be derived similarly.
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Multiplicative Update (MU/EM) [45]: MU updates all Hkj’s simultaneously by

Hnew
kj = Hkj

∑
iWikVij/Zij∑

iWik

for all k and j.

Let us emphasize that the MU update is identical to the standard EM algorithm for

the estimation of mixture proportions.

Cyclic Coordinate Descent (CCD/SCD) [28, 60]: For all j and k, CCD/CSD runs

coordinate-wise updates of H

Hnew
kj = max

{
0, Hkj −

∑
iWik(1− Vij/Zij)∑

i VijW
2
ik/Z

2
ij

}

sequentially in a pre-fixed cyclic order.

Projected Gradient Descent (PGD) [48]: PGD given element-wise step sizes (denoted

by αkj’s) updates all Hkj’s simulataneously via

Hnew
kj = max {0, Hkj − αkj (

∑
iWik(1− Vij/Zij))} .

Note that Multiplicative Update (MU) is a special case of PGD when αjk = Hjk/(
∑

iWik),

which does not require projection onto the non-negative orthant. Also, CCD updates

Hjk one at a time with a coordinate-wise optimal step size αjk = 1/
∑

i(ViW
2
ik/Z

2
ij). By

contrast, PGD uses a single step size αj = αj1 = · · · = αjK for each column j for fast line

searches.
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The proposed S-SCI-PI algorithm (5.71) is most similar to MU since W and H are

updated multiplicatively as well. As a special case of S-SCI-PI, the full-batch S-SCI-PI is

denoted by F-SCI-PI.

Let us highlight that S-SCI-PI and all the comparison methods belong to the family of

alternating minimization algorithms, which update H given W and then update W given

H iteratively.

5.4.2. Practical Considerations

Various Sampling Scheme. In this part, we compare several sampling schemes for

the update of H. The sampling scheme for the update of W can be similarly discussed,

but omitted.

Vector-wise Sampling: We construct VS ∈ R|S|×M+ and WS ∈ R|S|×D+ by sampling rows

of V ∈ RN×M
+ and W ∈ RN×D

+ uniformly at random, respectively. The stochastic gradient

reads

∇row
S f(H) =

n

|S|
W T
S [VS � (WSH)].

For a dense data matrix V , we prefer to use this vector-wise (or row-wise) sampling scheme

for the update of H, since it allows us to exploit fast matrix multiplication libraries.

Element-wise Sampling: We vectorize the problem by introducing the element-wise

iterator i = (i1, i2) ∈ [N ]× [M ] = [NM ]. This yields

f(H) =
∑
i∈I

Vi1,i2 log
D∑
k=1

Wi1,kHk,i2
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where I is the subset of [NM ] such that Vi1,i2 = 0 if and only if i = (i1, i2) ∈ I. In other

words, I is the index set of the nonzero elements in V .

We construct S by sampling |S| elements of I uniformly at random, and consider the

stochastic gradient as

∇elem
S f(H) =

|I|
|S|
∑
i∈S

∑
k

Wi1,kVi1,i2∑D
k′=1Wi1,k′Hk′,i2

Ek,i2

where Ek,i2 is the standard basis matrix having 1 at (k, i2)-th entry and 0 otherwise.

For a sparse data matrix V , we prefer this element-wise sampling scheme for H over

the row-wise sampling scheme, since each column has a different sparsity pattern.

Numerical Issues. Since the KL-NMF objective function (3.51) and its gradient are

unstable when entries of V and WH are close to 0. As reported in [38] and based on the

experiments in Section 5.5, MU and the full-batch version of F-SCI-PI are numerically

stable. On the other hand, S-SCI-PI has certain numerical issues since randomness of the

stochastic gradient may lead entries of W and H arbitrary close to 0. Thus we have added

safeguard to avoid this by rejecting the stochastic gradient when it produces a numeric

error (i.e. when any of the elements of stochastic gradient is negative). In such a case we

proceed to the next iteration.

5.5. Numerical Experiments

We test the proposed algorithm S-SCI-PI on synthetic and real-world data sets. All

experiments are implemented on a standard laptop (2.6 GHz Intel Core i7 processor and

16GB of RAM) using the C++ programming language.
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We use 4 real data sets publicly available online (See Table 3.1) and three synthetic data

sets generated from Poisson distributions. We preprocess the real data sets by removing few

rows and columns having sums less than 20 for NIPS and KOS data sets. For synthetic data,

V ∈ RN×M generated from i.i.d. Poisson random variables, i.e. Vij ∼ Poisson(− log(1−ρ)).

Here ρ denotes sparsity or proportion of nonzero entries of V . This corresponds to the

null signal case since in this case KL-NMF is the maximum likelihood estimation problem

when WH = 0.

Table 5.1. Summary of synthetic datasets for KL-NMF

Name # of samples # of features # of nonzeros Sparsity

Pois1 1,000 1,000 900,000 0.90
Pois2 3,000 3,000 900,000 0.10
Pois3 9,000 9,000 900,000 0.01

We set K = 20 features. All the reported values are averaged over 10 independent

replicates started at different initial points, each of which is obtained by running 5

MU/EM steps on a Uniform(0,1) random matrix. In certain runs due to numerical errors

the outcomes were peculiar and thus they were disregarded (but each observation has 5

normal runs). The benchmark algorithms are MU/EM, CCD/SCD, PGD, and F-SCI-PI.

For S-SCI-PI, we perform grid search on the parameters by selecting the best parameters

among different batch proportions |S|/n ∈ {0.0001, 0.001, 0.01, 0.1}, epoch lengths m ∈

{10, 100, 1000} and step sizes η ∈ {0.01, 0.1, 1}.

5.5.1. KL-NMF Subproblem

First, we compare the performance of S-SCI-PI against the four benchmark algorithms

(F-SCI-PI, MU/EM, CCD/SCD, PGD) on the KL-NMF subproblem (5.72). We run the
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algorithms until they attain an optimal solution W ∗ and compare relative objective values

over time.
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Figure 5.1. (Left 2 figures) Convergence plots for the KL-NMF subproblem.
(Right 2 figures) Boxplots showing the relative errors after 30 seconds from
10 independent replicates. The red colored boxes indicate the selected batch
sizes and epoch lengths, respectively.

The left two figures in Figure 5.1 display the results for the two larger size real

world data sets (NIPS, WT). It shows that S-SCI-PI is an overall winner solving the KL

divergence subproblems and hence an efficient method for exact alternating minimization.

However, it does not outperform F-SCI-PI significantly on the sparse NIPS data set. As

reported in [28], CCD/SCD is faster than MU/EM for the dense WT data set. However,

our result on NIPS shows that CCD/SCD is very slow mainly due to the expensive

coordinate updates.

Next, we compare convergence of S-SCI-PI with different batch sizes, epoch lengths

and step sizes. We select two data sets (NIPS and WT) and report the relative objective

values of S-SCI-PI with few selected parameters choices in the right figure in Figure 5.1.

They show that a careful choice of the batch size |S| and epoch length m yields non-

negligible improvements on the convergence of S-SCI-PI. Again, we confirm that the
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stochastic approach (S-SCI-PI) has a remarkable improvement over the full gradient

approach (F-SCI-PI) for the dense WT data set.

5.5.2. KL-NMF Problem

To solve the entire KL-NMF problem (3.51), we update H via a single iteration of each

algorithm (a single epoch for S-SCI-PI) and then update W in a similar way. We compare

S-SCI-PI with F-SCI-PI and MU/EM. We leave out CCD/SCD and PGD since they are

much slower.

For dense data sets (WT, MITF), we apply vector-wise sampling only on the columns

(of dimension 19,200 and 2,429, respectively) since the other dimension is small (287 and

361, respectively). For sparse data sets (NIPS, KOS), the element-wise sampling scheme

is applied to both dimensions, which turns out to be more effective.
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Figure 5.2. Convergence plots (relative error vs. computation time) of
one-step alternating minimization on synthetic data sets.

Figure 5.2 displays the results for the four synthetic data sets. By comparing the left

two figures in Figure 5.2, and the right figures, we conclude that S-SCI-PI performs much

better than F-SCI-PI for dense matrices, but is the winner also for sparse matrices.

Figure 5.3 displays the relative errors with respect to the computation time for the

4 real data sets. Overall, S-SCI-PI with the chosen batch and epoch size improves the
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Figure 5.3. Convergence plots (relative error vs. computation time) of
one-step alternating minimization on real data sets.

convergence over F-SCI-PI. However, S-SCI-PI does not outperform F-SCI-PI for the

MITF data set, which has a relatively small number of columns (2,429). Also, both

S-SCI-PI and F-SCI-PI exhibit much faster convergence than MU/EM. This clearly attests

that S-SCI-PI is an excellent practical option for the KL-NMF problem.
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Figure 5.4. Convergence plots (relative error vs. iteration) of one-step
alternating minimization on real data sets.

Figure 5.4 displays the relative errors with respect to the outer loop iterations. S-SCI-PI

takes longer steps per outer loop iteration than F-SCI-PI and MU/EM, at the expense

of larger computational complexity. The batch size and the epoch length balance the

trade-off between them. We also notice that F-SCI-PI and MU/EM have almost the same

computation time but F-SCI-PI takes longer step than MU/EM.
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5.6. Final Remarks

In this work, we introduce a stochastic variance-reduced algorithm (S-SCI-PI) to solve

finite-sum scale invariant problems and provide its convergence analysis. Our analysis shows

that under some conditions on initial iterate, epoch length, batch size, and an additional

condition the algorithm attains linear convergence in expectation. This algorithm is

applied to solve the KL-NMF problem. The experimental results demonstrate its superior

performance over state-of-the-art methods.
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CHAPTER 6

Conclusion

This thesis introduces scale invariant problems and studies deterministic and stochastic

solution methods. Starting with the L1-norm kernel PCA problem, we develop a novel

dual reformulation of scale invariant problems and derive an iterative algorithm based on

geometrical understandings of the dual formulation. Our algorithm, SCI-PI, not only has a

general form of power iteration but also extends the attractive linear convergence property

of power iteration. The second half of this thesis studies scale invariant problems with finite-

sum objective functions. In order to exploit the finite-sum structure, we develop stochastic

generalizations of power iteration and SCI-PI to solve PCA and finite-sum scale invariant

problems. Built upon the recent stochastic variance-reduced gradient technique, our

stochastic algorithms attain linear convergence in expectation. Our numerical experiments

on various unsupervised machine learning models reveal that the proposed deterministic

and stochastic algorithms are computationally competitive to state-of-the-art algorithms

as well as often yield better solutions.
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APPENDIX A

Additional Lemmas

A.1. Chapter 3

On several occasions, we use if x ∈ ∂Bd, y ∈ ∂Bd, then

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2xTy = 2(1− xTy).

Note that if xTy ≥ 0, then

√
1− (xTy)2 =

√
(1− xTy)(1 + xTy) ≥

√
1− xTy =

‖x− y‖√
2

.

By Cauchy-Schwarz, we also have

√
1− (xTy)2 =

√
(1− xTy)(1 + xTy) ≤

√
2
√

1− xTy = ‖x− y‖.

A.1.1. For the Proofs of Theorem 3.3.2 and Theorem 3.4.2

Lemma A.1.1. Let {v1, . . . , vd} be an orthogonal basis in Rd with x∗ = v1 and

{xk}k=0,1,··· be the sequence of iterates generated by SCI-PI. If for every x ∈ ∂Bd we have

∇f(x)Tv1 = λ∗ + α(x),
d∑
i=2

(∇f(x)Tvi)
2 ≤

(
λ̄2‖x− x∗‖+ β(x)

)2
(A.1)

where

α(x) = o(
√
‖x− x∗‖), β(x) = o(‖x− x∗‖),
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then there exists some δ > 0 such that under the initial condition 1− xT0 x∗ < δ, we have

1− (xTk x
∗)2 ≤

k−1∏
t=0

(
λ̄2

λ∗
+ γt

)2 (
1− (xT0 x

∗)2
)
,
λ̄2

λ∗
+ γt < 1, and lim

k→∞
γk = 0.

Proof. By (A.1) for every x ∈ ∂Bd, we have

∑d
i=2(∇f(x)Tvi)

2

(∇f(x)Tv1)2
≤
(
λ̄2‖x− x∗‖+ β(x)

λ∗ + α(x)

)2

.

Let

λ̄2‖x− x∗‖+ β(x)

λ∗ + α(x)
=
λ̄2

λ∗
‖x− x∗‖+ θ(x).

Then, we have θ(x) = o(‖x− x∗‖) and

∑d
i=2(∇f(x)Tvi)

2

(∇f(x)Tv1)2
≤
(
λ̄2

λ∗
+

θ(x)

‖x− x∗‖

)2

‖x− x∗‖2.(A.2)

Letting

ε(x) =
θ(x)

‖x− x∗‖
,(A.3)

we can further represent (A.2) as

∑d
i=2(∇f(x)Tvi)

2

(∇f(x)Tv1)2
≤
(
λ̄2

λ∗
+ ε(x)

)2(
1 +

1− xTx∗

1 + xTx∗

)(
1− (xTx∗)2

)
=

(
λ̄2

λ∗
+ γ(x)

)2 (
1− (xTx∗)2

)
(A.4)
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where

γ(x) =
λ̄2

λ∗

(
1− xTx∗

1 + xTx∗ +
√

2(1 + xTx∗)

)
+ ε(x)

√
1 +

1− xTx∗
1 + xTx∗

.(A.5)

From (A.1), there exists some δ1 > 0 such that if 1− xTx∗ < δ1, then

∇f(x)Tv1 > 0.(A.6)

Also, by (A.3), for any γ̄ > 0 satisfying

λ̄2

λ∗
+ γ̄ < 1,(A.7)

there exists some constant δ2 > 0 such that if 1− xTx∗ < δ2, then

|ε(x)| ≤ γ̄

4
.(A.8)

Let δ = min{δ1, δ2,
λ∗

λ̄2
γ̄, 1}. Before proving the main statement, we first prove the

following two statements:

1. If 1− xTk x∗ < δ, then we have

(A.9) xTk+1x
∗ > 0, 1− (xTk+1x

∗)2 ≤
(
λ̄2

λ∗
+ γk

)2 (
1− (xTk x

∗)2
)
, and γk ≤ γ̄.

Since δ < 1, we have xTk x
∗ > 0. Also, from 1 − xTk x∗ < δ1 and x∗ = v1, using the

update rule of SCI-PI and (A.6), we obtain xTk+1x
∗ =
∇f(xk)

Tv1

‖∇f(xk)‖
> 0. On other the hand,

since |xTk+1v1| ≤ ‖xk+1‖‖v1‖ = 1, we have

1− (xTk+1x
∗)2 ≤

1− (xTk+1v1)2

(xTk+1v1)2
.
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Also, from the fact that {v1, . . . , vd} forms an orthogonal basis in Rd, we have ∇f(xk) =∑d
i=1(∇f(xk)

Tvi)vi and ‖∇f(xk)‖2 =
∑d

i=1(∇f(xk)
Tvi)

2. Using the update rule of SCI-PI,

we have

1− (xTk+1v1)2

(xTk+1v1)2
=
‖∇f(xk)‖2 − (∇f(xk)

Tv1)2

(∇f(xk)Tv1)2
=

∑d
i=2(∇f(xk)

Tvi)
2

(∇f(xk)Tv1)2
,

resulting in

1− (xTk+1x
∗)2 ≤

∑d
i=2(∇f(xk)

Tvi)
2

(∇f(xk)Tv1)2
.

Let γk = γ(xk) and εk = ε(xk). Since xTk x
∗ > 0 and 1− xTk x∗ < min{δ2,

λ∗

λ̄2
γ̄}, from (A.5),

we have

γk =
λ̄2

λ∗

(
1− xTk x∗

1 + xTk x
∗ +

√
2(1 + xTk x

∗)

)
+ εk

√
1 +

1− xTk x∗
1 + xTk x

∗ ≤
γ̄

2
+
γ̄

2
= γ̄,

2. Using mathematical induction, we show that if

(A.10) 1− xT0 x∗ < δ,

then, for all k ≥ 0. we have

(A.11) 1− xTk x∗ < δ.

By (A.10), we have 1 − xT0 x
∗ < δ, which shows the base case. Next, suppose that

1− xTk x∗ < δ holds. Then, we have (A.9). Also, from δ < 1, we have xTk x
∗ > 0. Since

xTk+1x
∗ > 0, xTk x

∗ > 0, 1− (xTk+1x
∗)2 ≤

(
λ̄2

λ∗
+ γ̄

)2 (
1− (xTk x

∗)2
)
< 1− (xTk x

∗)2
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we have

1− xTk+1x
∗ < 1− xTk x∗ < δ,

which completes the induction proof.

Now, we prove the main statement. Since (A.11) holds for all k ≥ 0, we can repeatedly

apply (A.9) to obtain

1− (xTk x
∗)2 ≤

k−1∏
t=0

(
λ̄2

λ∗
+ γt

)2 (
1− (xT0 x

∗)2
)
, and

λ̄2

λ∗
+ γk ≤

λ̄2

λ∗
+ γ̄ ≤ 1.

Since

1− (xTk x
∗)2 <

(
λ̄2

λ∗
+ γ̄

)2k (
1− (xT0 x

∗)2
)
,(A.12)

we have (xTk x
∗)2 → 1. Moreover, from that xTk x

∗ > 0 for all k ≥ 0 by (A.11), we have

xk → x∗, and thus limk→∞ γk = 0 by (A.5). With (A.12), this gives the desired result. �

Lemma A.1.2. Let {v1, . . . , vd} be an orthogonal basis in Rd. If x∗ = v1 and a

sequence of iterates {xk}k=0,1,··· generated by SCI-PI satisfies

∇f(xk)
Tv1 ≥ A−B(1− xTk x∗)− C

√
1− xTk x∗(A.13)

and

d∑
i=2

(∇f(xk)
Tvi)

2 ≤
(
D
√

1− (xTk x
∗)2 + E

√
2(1− xTk x∗) +

F

2
‖xk − x∗‖2

)2

(A.14)
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where A > 0 and B,C,D,E, F are non-negative real numbers such that

B + C > 0,
D + E

A
< 1.

Then, under the initial condition that 1− xT0 x∗ < δ where

δ = min

{(
A

B + C

)2

,

(
A−D − E

B + C + E + F

)2

, 1

}
,(A.15)

we have

1− (xTk x
∗)2 ≤

k−1∏
t=0

(
D + E

A
+ γt

)2 (
1− (xT0 x

∗)2
)
,
D + E

A
+ γt < 1, and lim

k→∞
γk = 0.

Proof. Before proving the main result, we first show the following two statements:

(1) If 1− xTk x∗ < δ, then we have

xTk+1x
∗ > 0, 1− (xTk+1x

∗)2 <

(
D + E

A
+ γk

)2 (
1− (xTk x

∗)2
)
,
D + E

A
+ γk < 1(A.16)

for all k ≥ 0 where

γk =

(
A(E + F ) + (B + C)(D + E)

)√
1− xTk x∗

A
(
A− (B + C)

√
1− xTk x∗

) .(A.17)

Since 0 < xTk x
∗ ≤ 1, we have

√
1− xTk x∗ ≥ 1− xTk x∗. Using x∗ = v1, the update rule of

SCI-PI, (A.13), and the fact that δ ≤ (A/(B + C))2, we have

xTk+1x
∗ =
∇f(xk)

Tv1

‖∇f(xk)‖
≥
A−B(1− xTk x∗)− C

√
1− xTk x∗

‖∇f(xk)‖
> 0(A.18)
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since

A−B(1− xTk x∗)− C
√

1− xTk x∗
‖∇f(xk)‖

≥
A− (B + C)

√
1− xTk x∗

‖∇f(xk)‖
> 0.

Using the same arguments in Lemma A.1.1, we have

1− (xTk+1x
∗)2 ≤

∑d
i=2(∇f(xk)

Tvi)
2

(∇f(xk)Tv1)2
.(A.19)

By (A.18), we have

A−B(1− xTk x∗)− C
√

1− xTk x∗ > 0.

Therefore, by plugging (A.13) and (A.14) into (A.19) and using that xTk x
∗ > 0, we have

1− (xTk+1x
∗)2 ≤

(
D
√

1− (xTk x
∗)2 + E

√
2(1− xTk x∗) + F

2
‖xk − x∗‖2

A−B(1− xTk x∗)− C
√

1− xTk x∗

)2

=

D + E

√
1 +

1−xTk x∗
1+xTk x

∗ + F

√
1−xTk x∗
1+xTk x

∗

A−B(1− xTk x∗)− C
√

1− xTk x∗


2 (

1− (xTk x
∗)2
)

≤

D + E
(

1 +
√

1− xTk x∗
)

+ F
√

1− xTk x∗

A− (B + C)
√

1− xTk x∗

2 (
1− (xTk x

∗)2
)

=

(
D + E

A
+ γk

)2 (
1− (xTk x

∗)2
)

(A.20)

where we use the fact that
√

1 + x ≤ 1 +
√
x for x ≥ 0 to derive the second inequality.

Lastly, from √
1− xTk x∗ <

√
δ ≤ A−D − E

B + C + E + F
,
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we have

γk < 1− D + E

A
.

(2) Using mathematical induction, we show that if

1− xT0 x∗ < δ,(A.21)

then, for all k ≥ 0, we have

1− xTk x∗ < δ.(A.22)

By (A.21), we have 1− xT0 x∗ < δ, which proves the base case. Next, suppose that we have

1− xTk x∗ < δ. Then, we have (A.16). Also, from δ < 1, we have xTk x
∗ > 0. Since

xTk+1x
∗ > 0, xTk x

∗ > 0, 1− (xTk+1x
∗)2 < 1− (xTk x

∗)2,

we have

1− xTk+1x
∗ < 1− xTk x∗ < δ.

This completes the induction proof.

Now, we prove the main statement. Since (A.22) holds for all k ≥ 0, by repeatedly

applying (A.16), we obtain

1− (xTk x
∗)2 ≤

k−1∏
t=0

(
D + E

A
+ γt

)2 (
1− (xT0 x

∗)2
)
, and

D + E

A
+ γk < 1.(A.23)
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Since (D + E)/A + γk < 1 for all k ≥ 0, 1 − (xTk x
∗)2 is monotone decreasing, and so is

1− xTk x∗ by non-negativity. Moreover, from that γk is a monotone increasing function of

1− xTk x∗, we have γk+1 ≤ γk for all k ≥ 0, resulting in

k−1∏
t=0

(
D + E

A
+ γt

)2

≤
(
D + E

A
+ γ0

)2k

.

Since (D + E)/A+ γ0 < 1 by (A.16), we have (xTk x
∗)2 → 1. Due to xTk x

∗ > 0 for all k ≥ 0,

this implies xk → x∗, and thus limk→∞ γk = 0 due to (A.17). With (A.23), this gives the

desired result. �

A.1.2. For the Proofs of Theorem 3.4.6 and Theorem 3.4.8

Lemma A.1.3. Suppose that f(w, z) is scale invariant in w ∈ Rdw for each z ∈ Rdz

and twice continuously differentiable on an open set containing ∂Bdw × ∂Bdz . Let (w∗, z∗)

be a point satisfying

∇wf(w∗, z∗) = λ∗ww
∗, λ∗w > λ̄w2 = max2≤i≤dw |λwi |, w∗ = vw1

where (λwi , v
w
i ) is an eigen-pair of ∇2

wwf(w∗, z∗). Then, for any w ∈ ∂Bdw and z ∈ ∂Bdz ,

we have

∇wf(w, z)Tvw1 = λ∗w + (z − z∗)T∇2
zwf(w∗, z∗)w∗ + αw(w, z)

and

dw∑
i=2

(∇wf(w, z)Tvwi )2 ≤
(
λ̄w2
√

1− (wTw∗)2 + νwz‖z − z∗‖+ βw(w, z)
)2
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where

αw(w, z) = o

(∥∥∥∥[w − w∗z − z∗
]∥∥∥∥), βw(w, z) = o

(∥∥∥∥[w − w∗z − z∗
]∥∥∥∥).

Therefore, we have

1− (∇wf(w, z)Tw∗)2

‖∇wf(w, z)‖2
≤
(
λ̄w2
λ∗w

√
1− (wTw∗)2 +

νwz

λ∗w
‖z − z∗‖+ θw(w, z)

)2

where

νwz = ‖∇2
wzf(w∗, z∗)‖, θw(w, z) = o

(∥∥∥∥[w − w∗z − z∗
]∥∥∥∥).

Proof. Since ∇2
wwf(w∗, z∗) is real and symmetric, without loss of generality, we assume

that {vw1 , . . . , vwdw} forms an orthogonal basis in Rdw .

By Taylor expansion of ∇wf(w, z)Tvwi at (w∗, z∗), we have

∇wf(w, z)Tvwi = ∇xf(w∗, z∗)Tvwi +

[
w − w∗

z − z∗

]T[
∇2
wwf(w∗, z∗)

∇2
zwf(w∗, z∗)

]
vwi +Rw

i (w, z)

where

Rw
i (w, z) = o

(∥∥∥∥[w − w∗z − z∗
]∥∥∥∥).

Using ∇wf(w∗, z∗) = λ∗ww
∗ and w∗ = vw1 , we have

∇wf(w∗, z∗)Tvw1 = λ∗w, (w − w∗)T∇2
wwf(w∗, z∗)vw1 = −λw1 (1− wTk w∗).

Therefore, we obtain

∇wf(w, z)Tvw1 = λ∗w + (w − w∗)T∇2
zwf(w∗, z∗)w∗ + αw(w, z)(A.24)
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where

αw(w, z) = Rw
1 (w, z)− λw1 (1− wTw∗) = o

(∥∥∥∥[w − w∗z − z∗
]∥∥∥∥).

In the same way, for 2 ≤ i ≤ dw, we have

∇wf(w∗, z∗)Tvwi = λ∗w(w∗)Tvwi = 0, (w − w∗)T∇2
wwf(w∗, z∗)vwi = λwi w

Tvwi ,

resulting in

∇wf(w, z)Tvwi = λwi w
Tvwi + (z − z∗)T∇2

zwf(w∗, z∗)vwi +Rw
i (w, z).(A.25)

From (A.25), we obtain

dw∑
i=2

(∇wf(w, z)Tvwi )2 =
dw∑
i=2

(λwi )2(wTvwi )2 +
dw∑
i=2

(
(z − z∗)T∇2

zwf(w∗, z∗)vwi
)2

+
dw∑
i=2

(Rw
i (w, z))2 + 2

dw∑
i=2

λwi (wTvwi )(z − z∗)T∇2
zwf(w∗, z∗)vwi

+ 2
dw∑
i=2

λwi (wTvwi )Rw
i (w, z)

+ 2
dw∑
i=2

(z − z∗)T∇2
zwf(w∗, z∗)vwi R

w
i (w, z).

Since {vw1 , . . . , vwdw} forms an orthogonal basis in Rdw , with w∗ = vw1 and ‖w‖2 = 1, we

have

dw∑
i=2

(λwi )2(wTvwi )2 ≤ (λ̄w2 )2
(
1− (wTw∗)2

)
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and

dw∑
i=2

(
(z − z∗)T∇2

zwf(w∗, z∗)vwi
)2 ≤ ‖(z − z∗)T∇2

zwf(w∗, z∗)‖2 ≤ (νwz)2‖z − z∗‖2.

Let R̄w
2 (w, z) = max2≤i≤dw |Rw

i (w, z)|. Note that

R̄w
2 (w, z) = o

(∥∥∥∥[w − w∗z − z∗
]∥∥∥∥).

Using the Cauchy-Shwartz inequality, we have

dw∑
i=2

λwi (wTvwi )(z − z∗)T∇2
zwf(w∗, z∗)vwi ≤ λ̄w2 ν

wz‖z − z∗‖
√

1− (wTw∗)2.

Also, we have

dw∑
i=2

λwi (wTvwi )Rw
i (w, z) ≤ λ̄w2 R̄

w
2 (w, z)

√
dw
√

1− (wTw∗)2

and

dw∑
i=2

Rw
i (w, z)(z − z∗)T∇2

zwf(w∗, z∗)vwi ≤ νwzR̄w
2 (w, z)

√
dw‖z − z∗‖.

Therefore, we obtain

dw∑
i=2

(∇wf(w, z)Tvwi )2 ≤
(
λ̄w2
√

1− (wTw∗)2 + νwz‖z − z∗‖+ βw(w, z)
)2

(A.26)

where

βw(w, z) = R̄w
2 (w, z)

√
dw = o

(∥∥∥∥[w − w∗z − z∗
]∥∥∥∥).
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Since {vw1 , . . . , vwdw} forms an orthogonal basis in Rdw and |wTw∗| ≤ ‖w‖‖w∗‖ = 1, we

have

1− (∇wf(w, z)Tw∗)2

‖∇wf(w, z)‖2
≤
∑dw

i=2(∇wf(w, z)Tvwi )2

(∇wf(w, z)Tvw1 )2
.

Using (A.24) and (A.26), we have

∑dw
i=2(∇wf(w, z)Tvwi )2

(∇wf(w, z)Tvw1 )2
≤
(
λ̄w2
λ∗w

√
1− (wTw∗)2 +

νwz

λ∗w
‖z − z∗‖+ θw(w, z)

)2

where

θw(w, z) =
βw(w, z)

λ∗w
−

(
λ̄w2
√

1− (wTw∗)2 + νwz‖z − z∗‖+
√
dwβ

w(w, z)

λ∗w

)

·
(

(z − z∗)T∇2
zwf(w∗, z∗)w∗ + βw(w, z)

λ∗w + (z − z∗)T∇2
zwf(w∗, z∗)w∗ + βw(w, z)

)
.

Since

|(z − z∗)T∇2
zwf(w∗, z∗)w∗| ≤ νwz‖z − z∗‖,

we have

|(z − z∗)T∇2
zwf(w∗, z∗)w∗|

√
1− (wTw∗)2 ≤ 1

2

(
1− (wTw∗)2

)
+

1

2
(νwz)2‖z − z∗‖2

and

νwz|(z − z∗)T∇2
zwf(w∗, z∗)w∗|‖z − z∗‖ ≤ (νwz)2‖z − z∗‖2.

From

1− (wTw∗)2 = o

(∥∥∥∥[w − w∗z − z∗
]∥∥∥∥), ‖z − z∗‖2 = o

(∥∥∥∥[w − w∗z − z∗
]∥∥∥∥),
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we finally obtain

θw(w, z) = o

(∥∥∥∥[w − w∗z − z∗
]∥∥∥∥).

This completes the proof. �

Lemma A.1.4. Suppose that f(w, z) is µ-strongly concave in z ∈ Rdz with an L-

Lipschitz continuous ∇zf(w, z) for each w ∈ ∂Bdw and three-times continously differentiable

with respect to x and y on an open set containing ∂Bdw and Rdz , respectively. Let (w∗, z∗)

be a point such that ∇zf(w∗, z∗) = 0. Then, for any w ∈ ∂Bdw and z ∈ ∂Bdz , with

α = 2/(L+ µ), we have

‖z + α∇zf(w, z)− z∗‖ ≤
(

2νzw

L+ µ

)
‖w − w∗‖+

(
L− µ
L+ µ

)
‖z − z∗‖+ θz(w, z)(A.27)

where

νzw = ‖∇2
zwf(w∗, z∗)‖, θz(w, z) = o

(∥∥∥∥[w − w∗z − z∗
]∥∥∥∥).

Proof. Let ∇z,if be the ith coordinate of ∇zf and

Hz,i =

[
Hww
z,i Hwz

z,i

Hzw
z,i Hzz

z,i

]

be the Hessian of ∇z,if . By Taylor expansion of ∇z,if(w, z) at (w∗, z), we have

∇z,if(w, z) = ∇z,if(w∗, z) +∇2
zw,·if(w∗, z)T (w − w∗) +Rz

i (w, z)(A.28)

where ∇2
zw,·if(w∗, z) = ∇w∇z,if(w∗, z) denotes the ith column of ∇2

zwf(w∗, z) and

(A.29) Rz
i (w, z) =

1

2
(w − w∗)THww

z,i (ŵi, z)(w − w∗), ŵi ∈ N (w,w∗).
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Also, from f being three-times continuously differentiable, we have

∇2
zw,·if(w∗, z) = ∇2

zw,·if(w∗, z∗) +Hwz
z,i (w

∗, ẑi)(z − z∗), ẑi ∈ N (z, z∗).(A.30)

Since

|(z − z∗)THzw
z,i (w

∗, ẑi)(w − w∗)| ≤ ‖Hzw
z,i (w

∗, ẑi)‖‖w − w∗‖‖z − z∗‖

≤ 1

2
‖Hzw

z,i (w
∗, ẑi)‖

(
‖w − w∗‖2 + ‖z − z∗‖2

)
,

we have

(z − z∗)THwz
z,i (w

∗, ẑi)(w − w∗) = o

(∥∥∥∥[w − w∗z − z∗
]∥∥∥∥).(A.31)

By (A.28), (A.29), (A.30), and (A.31), we have

(A.32) ∇zf(w, z) = ∇zf(w∗, z) +∇2
zwf(w∗, z∗)(w − w∗) + R̄z(w, z)

where

R̄z
i (w, z) = Rz

i (w, z) + (z − z∗)THzw
z,i (w

∗, ẑi)(w − w∗) = o

(∥∥∥∥[w − w∗z − z∗
]∥∥∥∥).

Using (A.32), we have

z + α∇zf(w, z)− z∗ = z − z∗ + α∇zf(w∗, z) + α∇2
zwf(w∗, z∗)(w − w∗) + R̄z(w, z),
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resulting in

(A.33)
‖z + α∇zf(w, z)− z∗‖ ≤ ‖z − z∗ + α∇zf(w∗, z)‖

+ α‖∇2
zwf(w∗, z∗)(w − w∗)‖+ ‖R̄z(w, z)‖.

Since−f(w∗, z) is µ-strongly convex in z with an L-Lipschitz continuous gradient−∇zf(w∗, z),

by theory of convex optimization [13, p. 270], we have

‖z − z∗ + α∇zf(w∗, z)‖ ≤
(
L− µ
L+ µ

)
‖z − z∗‖(A.34)

due to α = 2/(L+ µ). Also, we have

α‖∇2
zwf(w∗, z∗)(w − w∗)‖ ≤

(
2νzw

L+ µ

)
‖w − w∗‖.(A.35)

Plugging (A.34), (A.35) into (A.33), we finally obtain

‖z − z∗ + α∇zf(w∗, z)‖ ≤
(
L− µ
L+ µ

)
‖z − z∗‖+

(
2νzw

L+ µ

)
‖w − w∗‖+ θz(w, z)

where

θz(w, z) = ‖R̄z(w, z)‖ = o

(∥∥∥∥[w − w∗z − z∗
]∥∥∥∥).

�

Lemma A.1.5. Let M be a 2× 2 matrix such that

M =

[
a e/b

e/c d

]
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for some a > 0, b > 0, c > 0, d ≥ 0, e ≥ 0 and let ρ be the largest absolute eigenvalue of M .

Then, there exists a sequence ωt such that

‖Mk‖ =
k−1∏
t=0

(ρ+ ωt) and limt→∞ ωt = 0.

Proof. The characteristic equation reads

det(M − λI) = λ2 − λ(a+ d) + ad− e2

bc
= 0

with the discriminant of

(a− d)2 +
4e2

bc
≥ 0.

Thus, all eigenvalues are real.

First, we consider the case when det(M − λI) = 0 has a double root. We obtain the

condition for a double root as

(a− d)2 +
4e2

bc
= 0.

Since b > 0 and c > 0, this implies

a = d, e = 0.

Therefore, M = aI and ρ = a. From Mk = akI, we have

‖Mk‖ =
√
a2k = ρk,

resulting in

ωk =
‖Mk+1‖
‖Mk‖

− ρ = ρ− ρ = 0
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for all k ≥ 0.

Next, we consider the case when M has two distinct eigenvalues λ1 and λ2. Since

a+ d > 0, we have λ1 + λ2 > 0. Without loss of generality, assume λ1 > λ2. Then, ρ = λ1.

Let v1 and v2 be corresponding eigenvectors of λ1 and λ2, respectively. Since v1 and v2

are linearly independent we can represent each column of M as a linear combination of v1

and v2 as

M = [α1v1 + β1v2 α2v1 + β2v2].

By repeatedly multiplying M , we obtain

Mk = [α1λ
k−1
1 v1 + β1λ

k−1
2 v2 α2λ

k−1
1 v1 + β2λ

k−1
2 v2].

Let Ck = (Mk)TMk. Then, we have

Ck
11 = α2

1λ
2(k−1)
1 + β2

1λ
2(k−1)
2 + 2α1β1(λ1λ2)k−1vT1 v2

Ck
22 = α2

2λ
2(k−1)
1 + β2

2λ
2(k−1)
2 + 2α2β2(λ1λ2)k−1vT1 v2

and

Ck
12 = α1α2λ

2(k−1)
1 + β1β2λ

2(k−1)
2 + (α1β2 + α2β1)(λ1λ2)k−1vT1 v2, Ck

21 = Ck
12.

Since

Ck
11 ≥ α2

1λ
2(k−1)
1 + β2

1λ
2(k−1)
2 − 2α1β1(λ1λ2)k−1 =

(
α1λ

k−1
1 − β1λ

k−1
2

)2 ≥ 0
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and

Ck
22 ≥ α2

2λ
2(k−1)
1 + β2

2λ
2(k−1)
2 − 2α2β2(λ1λ2)k−1 =

(
α2λ

k−1
1 − β2λ

k−1
2

)2 ≥ 0,

we have

‖Mk‖ =

√
1

2

[
Ck

11 + Ck
22 +

√(
Ck

11 − Ck
22

)2
+ 4(Ck

12)2

]
,

leading to

‖Mk+1‖
‖Mk‖

=

√√√√√Ck+1
11 + Ck+1

22 +

√(
Ck+1

11 − Ck+1
22

)2
+ 4(Ck+1

12 )2

Ck
11 + Ck

22 +
√(

Ck
11 − Ck

22

)2
+ 4(Ck

12)2

.

From

lim
k→∞

Ck
11

λ
2(k−1)
1

= α2
1, lim

k→∞

Ck
22

λ
2(k−1)
1

= α2
2, lim

k→∞

Ck
12

λ
2(k−1)
1

= lim
k→∞

Ck
21

λ
2(k−1)
1

= α1α2,

we obtain

lim
k→∞

‖Mk+1‖
‖Mk‖

=
√
λ2

1 = ρ.

From

lim
k→∞

ωk = lim
k→∞

‖Mk+1‖
‖Mk‖

− ρ = ρ− ρ = 0,

we obtain the desired result. �
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A.2. Chapter 4

In the proofs below, for α, β ≥ 0, we let Yt(A, β) and Zt(A, β) be matrix polynomials

such that

Yt(A, β) = 2AYt−1(A, β)− βYt−2(A, β), t ≥ 2, Y1(A, β) = A, Y0(A, β) = I,(A.36)

Zt(A, β) = 2AZt−1(A, β)− βZt−2(A, β), t ≥ 2, Z1(A, β) = 2A, Z0(A, β) = I.(A.37)

and let yt(α, β) and zt(α, β) be recurrence polynomials such that

yt(α, β) =
√
αyt−1(α, β)− βyt−2(α, β), t ≥ 2, y1(α, β) =

√
α

2
, y0(α, β) = 1,(A.38)

zt(α, β) =
√
αzt−1(α, β)− βzt−2(α, β), t ≥ 2, z1(α, β) =

√
α, z0(α, β) = 1.(A.39)

For a sequence of matrices B0, B1, B2, · · · , let

k∏
i=j

Bi =


BjBj−1 · · ·Bk if j ≥ k

I, otherwise

.

Since the eigenvectors u1, u2, . . . , ud form an orthogonal basis, we frequently use the fact

that for w ∈ Rd, we have ‖x‖2 =
∑d

k=1(uTk x)2.

Lemma A.2.1. Let x ∈ ∂Bd. For t ≥ 0, we have

‖P [(1− η)I + ηC]t x‖2 ≤ 2(1− η + ηλ1)2t(1− (uT1 x)2),(A.40a)

‖PYt((1− η)I + ηC, β(η))x‖2 ≤ 4(1− (uT1 x)2)pt(α1(η), β(η)),(A.40b)

‖Zt((1− η)I + ηC, β(η))‖2 ≤ qt(α1(η), β(η)).(A.40c)
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Proof. Since u1, u2, · · · , ud forms an orthogonal basis in Rd, we have x =
∑d

k=1(uTk x)uk.

From that (λk, uk) are eigenpairs of C, we have

[(1− η)I + ηC]t x =
d∑

k=1

(uTk x)(1− η + ηλk)
tuk.(A.41)

From the definition of x and P in (4.6), we have P = I − xxT . Since

‖P [(1− η)I + ηC]t x‖2 = xT [(1− η)I + ηC]t P 2 [(1− η)I + ηC]t x

= xT [(1− η)I + ηC]t P [(1− η)I + ηC]t x

= xT [(1− η)I + ηC]t (I − xxT ) [(1− η)I + ηC]t x

= ‖ [(1− η)I + ηC]t x‖2 −
(
xT [(1− η)I + ηC]t x

)2
,

using (A.41), we have

‖P [(1− η)I + ηC]t x‖2 =
d∑

k=1

(uTk x)2(1− η + ηλk)
2t −

( d∑
k=1

(uTk x)2(1− η + ηλk)
t
)2

≤ (1− η + ηλ1)2t − (uT1 x)4(1− η + ηλ1)2t

≤ 2(1− (uT1 x)2)(1− η + ηλ1)2t

where the last inequality follows from

1− (uT1 x)4 =
(
1 + (uT1 x)2

)(
1− (uT1 x)2

)
≤ 2
(
1− (uT1 x)2

)
.(A.42)

To prove (A.40b), we first show that

(A.43) Yt((1− η)I + ηC, β(η))uk = yt(αk(η), β(η))uk.
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First, consider the cases when t = 0 and 1. For t = 0, we have Y0((1− η)I + ηC, β(η))uk =

y0(αk(η), β(η))uk. For t = 1, it follows that

Y1((1− η)I + ηC, β(η))uk = (1− η + ηλk)uk =

√
αk(η)

2
uk = y1(αk(η), β(η))uk.

Suppose that (A.43) holds for t− 1 and t− 2. Using the definition of Yt in (A.36), we have

Yt((1− η)I + ηC, β(η))uk

= [2((1− η)I + ηC)Yt−1((1− η)I + ηC, β(η))− β(η)Yt−2((1− η)I + ηC, β(η))]uk

= [2(1− η + ηλk)yt−1(αk(η), β(η))− β(η)yt−2(αk(η), β(η))]uk

=
[√

αk(η)yt−1(αk(η), β(η))− β(η)yt−2(αk(η), β(η))
]
uk

= yt(αk(η), β(η))uk.

This completes the proof of (A.43).

Next, we show that

(A.44) (yt(αk(η), β(η))2 = pt(αk(η), β(η)).

For the base cases, we have

(y0(αk(η), β(η))2 = 1 = p0(αk(η), β(η)), (y1(αk(η), β(η))2 =
αk
4

= p1(αk(η), β(η))

and

(y2(αk(η), β(η))2 =

(
α(η)

2
− β(η)

)2

= p2(αk(η), β(η)).
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Using the definition of yt in (A.38) for t and t− 1, we have

(yt(αk(η), β(η)))2 = (
√
αk(η)yt−1(αk(η), β(η))− β(η)yt−2(αk(η), β(η)))2

= αk(η)(yt−1(αk(η), β(η)))2 − 2
√
αk(η)β(η)yt−1(αk(η), β(η))yt−2(αk(η), β(η))

+ β(η)2(yt−2(αk(η), β(η)))2

and

(yt−1(αk(η), β(η)))2

= αk(η)(yt−2(αk(η), β(η)))2 − 2
√
αk(η)β(η)yt−2(αk(η), β(η))yt−3(αk(η), β(η))

+ β(η)2(yt−3(αk(η), β(η)))2.

Moreover, since

yt−1(αk(η), β(η))yt−2(αk(η), β(η))

=
√
αk(η)(yt−2(αk(η), β(η)))2 − β(η)yt−2(αk(η), β(η))yt−3(αk(η), β(η)),

we have

(yt(αk(η), β(η)))2 = (αk(η)− β(η))(yt−1(αk(η), β(η)))2

− β(η)(αk(η)− β(η))(yt−2(αk(η), β(η)))2 + β(η)3(yt−3(αk(η), β(η)))2.

This proves (A.44).
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Now, using (A.43), we have

(A.45) Yt((1− η)I + ηC, β(η))x =
d∑

k=1

yt(αk(η), β(η))(uTk x)uk.

Since u1, u2, · · · , ud form an orthogonal basis in Rd, we have

‖Yt((1− η)I + ηC, β(η))x‖2 =
d∑

k=1

(yt(αk(η), β(η)))2(uTk x)2 =
d∑

k=1

pt(αk(η), β(η))(uTk x)2.

Using (A.52) and (A.54) in Lemma A.2.4, for k ≥ 2, we have

(A.46) pt(αk(η), β(η)) ≤ pt(α1(η), β(η))

Since
∑d

k=1(uTk x)2 = 1, we have

‖Yt((1− η)I + ηC, β(η))x‖2 ≤ pt(α1(η), β(η)).

Moreover, using (uT1 x)2 ≤ 1 and (A.45), we obtain

(
wTYt((1− η)I + ηC, β(η))x

)2

=
(
yt(α1(η), β(η))(uT1 x)2 +

d∑
k=2

yt(αk(η), β(η))(uTk x)2
)2

≥ (yt(α1(η), β(η)))2(uT1 x)4 − 2yt(α1(η), β(η))
d∑

k=2

|yt(αk(η), β(η))|(uTk x)2

≥ (yt(α1(η), β(η)))2(uT1 x)4 − 2(yt(α1(η), β(η)))2(1− (uTk x)2)
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Therefore,

‖PYt((1− η)I + ηC, β(η))x‖2

= ‖Yt((1− η)I + ηC, β(η))x‖2 −
(
xTYt((1− η)I + ηC, β(η))x

)2

≤ (yt(α1(η), β(η)))2(1− (uT1 x)4) + 2(yt(α1(η), β(η)))2(1− (uTk x)2)

≤ 4(yt(α1(η), β(η)))2(1− (uTk x)2)

where the last inequality follows from (A.42).

Lastly, we prove (A.40c). In the same way we prove (A.43) and (A.44), we can show

that

(A.47)

Zt((1− η)I + ηC, β(η))uk = zt(αk(η), β(η))uk, (zt(αk(η), β(η))2 = qt(αk(η), β(η)).

Using (A.53) and (A.54) in Lemma A.2.4, for k ≥ 2, we have

(A.48) qt(αk(η), β(η)) ≤ qt(α1(η), β(η)).

Using (A.47), we have

xTZt((1− η)I + ηC, β(η))x =
d∑

k=1

zt(αk(η), β(η))(uTk x)2 ≤
d∑

k=1

|zt(αk(η), β(η))|(uTk x)2.

Moreover, using (A.48) and the fact that
∑d

k=1(uTk x)2 = 1, we have

d∑
k=1

|zt(αk(η), β(η))|(uTk x)2 ≤ |zt(α1(η), β(η))|
d∑

k=1

(uTk x)2 = |zt(α1(η), β(η))|.
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This results in

xTZt((1− η)I + ηC, β(η))x ≤ |zt(α1(η), β(η))|,

leading to

‖Zt((1− η)I + ηC, β(η))‖2 ≤ |zt(α1(η), β(η))|2 = qt(α1(η), β(η)).

This complets the proof. �

Lemma A.2.2. Let x be a vector in Rd and let M be a d×d symmetric matrix. Then,

we have xTMx ≤ ‖M‖‖x‖2.

Proof. By the cyclic property of the trace, we have

xTMx = Tr[xTMx] = Tr[MxxT ].

Since xxT is positive semi-definite, we have Tr[MxxT ] ≤ ‖M‖Tr[xxT ]. Again, by the

cyclic property of the trace, we finally have

xTMx ≤ ‖M‖Tr[xxT ] = ‖M‖Tr[xTx] = ‖M‖‖x‖2.

�

Lemma A.2.3. Let Ai and Bi be d× d matrices for i = 0, · · · , t− 1. Then, we have

(A.49)
0∏

i=t−1

(Ai+Bi) = (At−1 +Bt−1) · · · (A0 +B0) =
0∏

i=t−1

Ai+
t−1∑
i=0

[
i+1∏
j=t−1

(Aj +Bj)Bi

0∏
k=i−1

Ak

]
.
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Proof. We prove the statement by induction. For t = 1, we have

0∏
i=0

Ai +
0∑
i=0

[
i+1∏
j=0

(Aj +Bj)Bi

0∏
k=i−1

Ak

]
= A0 +

[
1∏
j=0

(Aj +Bj)B0

0∏
k=−1

Ak

]
= A0 +B0,

which proves the base case. Next, suppose that we have (A.49) for t− 2. Then, we have

0∏
i=t−1

(Ai +Bi) = (At−1 +Bt−1)
0∏

i=t−2

(Ai +Bi)

= (At−1 +Bt−1)

(
0∏

i=t−2

Ai +
t−2∑
i=0

[
i+1∏
j=t−2

(Aj +Bj)Bi

0∏
k=i−1

Ak

])

=
0∏

i=t−1

Ai +Bt−1

0∏
i=t−2

Ai +

(
t−2∑
i=0

[
i+1∏
j=t−1

(Aj +Bj)Bi

0∏
k=i−1

Ak

])

=
0∏

i=t−1

Ai +
t−1∑
i=0

[
i+1∏
j=t−1

(Aj +Bj)Bi

0∏
k=i−1

Ak

]
.

This completes the proof. �

Lemma A.2.4. Let xt be a sequence of real numbers such that

xt = (α− β)xt−1 − β(α− β)xt−2 + β3xt−3 + Lt−1 + βLt−2

for t ≥ 3 and x0 = L0, x1 = α
4
L0, x2 =

(
α
2
− β

)2
L0 + L1. Then, we have

xt = pt(α, β)L0 +
t−1∑
r=1

qt−r−1(α, β)Lr.(A.50)

Moreover, for t ≥ 0, we have
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• if 0 ≤ α = 4β,

pt(4β, β) = βt ≥ 0, qt(4β, β) = (t+ 1)2βt ≥ 0,(A.51)

• if 0 ≤ 4β < α,

pt(α, β) =

[
1

2

(√
α

2
+

√
α− 4β

2

)t
+

1

2

(√
α

2
−
√
α− 4β

2

)t]2

> pt(4β, β) ≥ 0,

(A.52)

qt(α, β) =
1

α− 4β

[(√
α

2
+

√
α− 4β

2

)t+1

−
(√

α

2
−
√
α− 4β

2

)t+1]2

> qt(4β, β) ≥ 0,

(A.53)

• if 0 ≤ α < 4β,

pt(α, β) ≤ pt(4β, β), qt(α, β) ≤ qt(4β, β).(A.54)

Proof. It is easy to check that x0, x1, and x2 satisfy (A.50). Suppose that (A.50)

holds for t− 1, t− 2, t− 3. Then, we have

xt = (α− β)xt−1 − β(α− β)xt−2 + β3xt−3 + Lt−1 + βLt−2

= pt(α, β)L0 + Lt−1 + αLt−2 + (α− β)2Lt−3 +
t−4∑
r=1

qt−r−1(α, β)Lr

= pt(α, β)L0 +
t−1∑
r=1

qt−r−1(α, β)Lr.

Therefore, (A.50) holds by induction.
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Next, we prove (A.51), (A.52), (A.53) and (A.54). The characteristic equation of (4.9)

is

r3 − (α− β)r2 + β(α− β)r − β3 = 0.(A.55)

If 0 ≤ α = 4β, (A.55) has a cube root of r = β. From initial conditions (4.11) and

(4.12), we obtain

pt(4β, β) = βt ≥ 0, qt(4β, β) = (t+ 1)2βt ≥ 0.(A.56)

If 0 ≤ 4β < α, the roots of (A.55) are

r = β,
α− 2β

2
+

√
α2 − 4αβ

2
,
α− 2β

2
−
√
α2 − 4αβ

2
.

With initial conditions (4.11), we obtain

pt(α, β) =
1

4

(
α− 2β

2
+

√
α2 − 4αβ

2

)t
+

1

4

(
α− 2β

2
−
√
α2 − 4αβ

2

)t
+

1

2
βt

Using the fact that α > 4β and the arithmetic-geometric mean inequality, we have

pt(α, β) > βt ≥ 0.

Moreover, we can further write pt(α, β) as

pt(α, β) =

[
1

2

(√
α

2
+

√
α− 4β

2

)t
+

1

2

(√
α

2
−
√
α− 4β

2

)t]2

by expanding this expression.
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On the other hand, using (4.12), we have

qt(α, β) =
1

α− 4β

[(
α− 2β

2
+

√
α2 − 4αβ

2

)t+1

+

(
α− 2β

2
−
√
α2 − 4αβ

2

)t+1

− 2βt+1

]
=

1

α− 4β

[(√
α

2
+

√
α− 4β

2

)t+1

−
(√

α

2
−
√
α− 4β

2

)t+1]2

≥ 0.

Using the fact that At+1 −Bt+1 = (A−B)(At + At−1B + · · ·+Bt) for any A,B ∈ R, we

have

qt(α, β) =

[ t∑
i=0

(√
α

2
+

√
α− 4β

2

)i(√
α

2
−
√
α− 4β

2

)t−i]2

.

Again, using the arithmetic-geometric mean inequality and the fact that α > 4β, we have

qt(α, β) ≥
[
(t+ 1)

(√
α

2
+

√
α− 4β

2

)t/2(√
α

2
−
√
α− 4β

2

)t/2]2

= (t+ 1)2βt = qt(4β, β).

If 0 ≤ α < 4β, the roots of (A.55) are

r = β,
α− 2β

2
+

√
4αβ − α2

2
i,
α− 2β

2
−
√

4αβ − α2

2
i.

Setting

cos θp =
α− 2β

2β
, sin θp =

√
4αβ − α2

2β
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it is easy to verify that

pt(α, β) =
1

4
βt
[
cos θp + i sin θp

]t
+

1

4
βt
[
cos θp − i sin θp

]t
+

1

2
βt

=
1

4
(eiθt + e−iθt)βt +

1

2
βt

=
1

4
|eiθt + e−iθt|βt +

1

2
βt

≤ 1

4
(|eiθt|+ |e−iθt|)βt +

1

2
βt

= βt.

Moreover, with

cos θq =
α− 2β

2β
, sin θq =

√
4αβ − α2

2β
, cos φq = 1− α

2β
, sin φq = −

√
4αβ − α2

2β
,

it can be seen by using elementary calculus that

qt(α, β) =

[
2β

4β − α
+

2β

4β − α
cos(φq + tθq)

]
βt.(A.57)

Let

Q(t) =
qt(4β, β)− qt(α, β)

βt
.

Then, from (4.9) and (4.11), we have

Q(0) = 0, Q(1) =
4β − α
β

, Q(2) =
(4β − α)(2β + α)

β2
, Q(3) =

(α2 + 4β2)(4β − α)

β3

(A.58)
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resulting in

Q(2)−Q(0) =
(4β − α)(2β + α)

β2
≥ 0, Q(3)−Q(1) =

(α2 + 3β2)(4β − α)

β3
≥ 0.

(A.59)

In order to show Q(t) ≥ 0 for t ≥ 0, we prove Q(t+ 2)−Q(t) ≥ 0 for t ≥ 0. Using (A.56),

(A.57) and standard trigonometric equalities, it follows that

Q(t+ 2)− 2Q(t) +Q(t− 2) = 8 +
2α

β
cos(φq + tθq).

In turn, we have

Q(t+ 2)−Q(t) = Q(t)−Q(t− 2) + 8 +
2α

β
cos(φq + tθq)

≥ Q(t)−Q(t− 2) + 8− 2α

β

= Q(t)−Q(t− 2) +
2(4β − α)

β

≥ Q(t)−Q(t− 2).(A.60)

From (A.58), (A.59), and (A.60), for t ≥ 0, we obtain Q(t) ≥ 0 implying

qt(α, β) ≤ qt(4β, β).

�

Lemma A.2.5. If α > 4β ≥ 0, then for 0 ≤ t1 < t2, we have

qt1(α, β) · qt2(α, β) ≤
(

1

α− 4β

)
qt1+t2+1(α, β).
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Proof. From (A.53) in Lemma A.2.4, we have

qt1(α, β) · qt2(α, β)

=

(
1

α− 4β

)2 [(√
α

2
+

√
α− 4β

2

)t1+1

−
(√

α

2
−
√
α− 4β

2

)t1+1]2

·
[(√

α

2
+

√
α− 4β

2

)t2+1

−
(√

α

2
−
√
α− 4β

2

)t2+1]2

.

Since

0 ≤
√
α

2
−
√
α− 4β

2
<

√
α

2
+

√
α− 4β

2
,

we have

[(√
α

2
+

√
α− 4β

2

)t1+1

−
(√

α

2
−
√
α− 4β

2

)t1+1]
·
[(√

α

2
+

√
α− 4β

2

)t2+1

−
(√

α

2
−
√
α− 4β

2

)t2+1]
=

(√
α

2
+

√
α− 4β

2

)t1+t2+2

−
(√

α

2
−
√
α− 4β

2

)t1+1(√
α

2
+

√
α− 4β

2

)t2+1

−
(√

α

2
+

√
α− 4β

2

)t1+1(√
α

2
−
√
α− 4β

2

)t2+1

+

(√
α

2
−
√
α− 4β

2

)t1+t2+2

≤
(√

α

2
+

√
α− 4β

2

)t1+t2+2

−
(√

α

2
−
√
α− 4β

2

)t1+t2+2

.

Therefore, we have

qt1(α, β) · qt2(α, β) ≤
(

1

α− 4β

)
qt1+t2+1(α, β).

This completes the proof. �
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