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ABSTRACT

Insights into Earthquake Processes and Hazards Using Statistical Methods

James Scott Neely

To better prepare for earthquakes, we need to know how large they will be, how

strong the shaking will be, and how often they will occur. To answer these questions,

seismologists look to past earthquakes to better understand future hazards. Earthquakes,

however, are complex physical phenomena that occur on timescales much larger than our

instrumental records so our past observations may only be providing a partial picture of

earthquake behavior. Therefore it is critical to know the limitations of past observations,

assess the uncertainty inherent in our earthquake models, and ensure that our models re-

flect our understanding of the processes that generate earthquakes. In this thesis, I present

novel implementations of various statistical methods to help answer these fundamental

earthquake questions.

Using probabilistic simulations, I show that the largest earthquakes in the eastern

North America record may not be the largest possible earthquakes that can occur. In

this region, the records are simply too short relative to the frequency of large earthquakes

to exclude the possibility of larger earthquakes. However, using a similar probability
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approach, I demonstrate that observed global variations in earthquake magnitude by fault

geometry likely do reflect real differences and are not an artifact of short catalog lengths.

I show that continental normal fault earthquakes do have smaller maximum magnitudes

than other fault geometries and propose that the smaller maximum magnitudes reflect

the weakness of continental lithosphere in extension.

In assessing potential earthquake hazards, we need to know not only how big earth-

quakes might be but also how strong the resulting shaking will be. Earthquake stress

drop—the change in stress along a fault due to an earthquakes—is a commonly estimated

earthquake parameter which is thought to control the amplitude of high-frequency shak-

ing that damages buildings and structures. I show that two of the most commonly used

methods can produce drastically different estimates for the same earthquakes. There is

significant, unaccounted for uncertainty in these estimates. As a result stress drop trends

that appear using one method are unobservable using the other method.

Lastly, seismic hazard analysis requires knowing how often large earthquakes will

occur. Current earthquake recurrence models make many simplifying assumptions that

ignore the complexities of the processes that drive earthquakes. Here I present the analyti-

cal equations for the Long-Term Fault Memory based on Salditch et al.’s (2020) numerical

design which produces earthquake probability estimates based on the specific sequence of

past earthquakes. I derive the equations for two different versions of this model and ap-

ply them to real earthquake records. My analysis shows the specific earthquake sequence

can significantly raise the estimated likelihood of an earthquake and may provide more

accurate assessments of earthquake hazard. Together, these different analysis show how
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statistical models can be applied in a variety of ways to provide insight into fundamental

earthquake questions.
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CHAPTER 1

Thesis Overview

1.1. Introduction

My thesis has been guided by three fundamental earthquake questions: (1) How large

will earthquakes be? (2) How often will large earthquakes occur? and (3) How strong

will the shaking be? The answers to these questions have important implications for both

our understanding of the physical processes that drive earthquakes and the hazards that

they pose. In this thesis I apply multiple statistical methods in novel ways to address

unanswered seismological questions. I move beyond standard statistical seismology that

focuses primarily on descriptive statistics to quantify past earthquake observations and

instead focus on what statistical analyses of past earthquakes can and cannot tell us about

future earthquake behavior.

1.2. Chapter 2: Have We Seen the Largest Earthquakes in Eastern North

America?

Eastern North America is not a particularly seismically active region, however, large

earthquakes have been observed in the past. Historical records suggest that over the last

300 years the largest earthquakes along the southern margin reach magnitude 7. Along the

northern margin, the largest earthquake in the past 100 years was in the mid magnitude 7

range. However, are these historical records long enough to constrain the maximum pos-

sible earthquake magnitudes for the region or are larger earthquakes possible and simply
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haven’t been observed yet because they are so infrequent? In this chapter I use recent,

instrumentally recorded earthquakes to simulate thousands of synthetic catalogs that are

the same length as our historical records. These simulations reveal that our historical

seismicity records along eastern North America are too short to reliably contain larger

and more infrequent earthquakes. These results do not mean that larger earthquakes can

occur along the coastal margin of eastern North America. Rather, the current historical

records are too short to eliminate the possibility of such larger earthquakes.

This chapter is published as Neely, J.S., Stein, S., Merino, M., Adams, J. (2018),

Have we seen the largest earthquakes in eastern North America? Physics of the Earth

and Planetary Interiors 284, 17-27. doi:10.1016/j.pepi.2018.09.005

1.3. Chapter 3: Large Uncertainties in Earthquake Stress Drop Estimates

and Their Tectonic Consequences

In this chapter, I quantify the uncertainties of the earthquake stress drop estimates

and the impact of the uncertainty on tectonic analyses. Earthquake stress drop, the

stress change on the fault due to an earthquake, is a commonly calculated parameter that

provides a window into rupture dynamics, including earthquake fracture energy, ground

motions, and rupture duration. Earthquake stress drop is also thought to control the

high frequency shaking that damages structures. Seismologists use stress drop estimates

of past, more frequent small magnitude earthquakes to estimate the stress drops, and

potential shaking, of a region’s future larger earthquakes. However, stress drop estimates

can vary by orders of magnitude, and different studies often produce conflicting results
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suggesting large stress drop uncertainties. In this chapter, I quantify stress drop esti-

mate uncertainty by comparing two independent stress drop estimates using different but

theoretically equivalent methods for the same set of earthquakes. I find that that there

is essentially no correlation between the two different estimates. The independent stress

drop estimates for the same earthquake can vary by as much as two to three orders of

magnitude, and tectonic stress drop trends that are apparent using one method are absent

using the other. These results suggest that stress drop estimate uncertainties are quite

large and many reported stress drop trends may just be a product of uncertainty and not

underlying tectonic differences.

This chapter is published as Neely, J.S., Stein, S., Spencer, B.D. (2020), Large uncer-

tainties in earthquake stress-drop estimates and their tectonic consequences, Seismological

Research Letters 91(4), 2320-2329. doi:10.1785/0220200004

1.4. Chapter 4: Why Do Continental Normal Fault Earthquakes Have

Smaller Maximum Magnitudes?

In this chapter, I examine the assumption that continental normal fault earthquakes

have smaller maximum magnitudes than other fault geometries and propose a possible ex-

planation for why. The hazard posed by large normal faults, such as the Wasatch Fault in

Utah, depends on whether they can rupture their full length in one very large earthquake

or if earthquakes are confined to small segments. I investigate whether these observations

reflect real differences between fault geometries or are simply an artifact of the relatively

short earthquake records. I apply statistical methods to show that the smaller maximum

magnitude trend is likely real, and if larger normal fault earthquakes were possible, we
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would have likely observed them. I then analyze possible physical mechanisms for the

observed differences. My analysis suggests that the length and structure of normal faults

is not what limits the size of normal fault earthquakes. Rather, the relative weakness of

lithosphere strength in extension is likely the primary culprit for the smaller normal fault

earthquakes.

This chapter is published as Neely, J.S., Stein S. (2021), Why do continental normal

fault earthquakes have smaller maximum magnitudes? Tectonophysics 809.

doi:10.1016/j.tecto.2021.228854

1.5. Chapter 5: A More Realistic Earthquake Probability Model Using

Long-Term Fault Memory

Paleoseismic records of earthquake recurrence indicate a complex pattern of strain

accumulation and release with earthquake clusters followed by long gaps until the next

earthquake. These records suggest that faults contain long-term memory where the time

until the next earthquake is influenced by the specific sequence of preceding earthquakes.

These records suggest that earthquakes may only release some of the accumulated strain

along a fault leaving residual strain which impacts the timing for the next earthquake.

However, the most commonly used earthquake probability models ignore this fundamen-

tal aspect of the earthquake process. Salditch et al. (2020) recently developed a new

numerical model called the Long-Term Fault Memory (LTFM) model that is specifically

designed to replicate the complex temporal patterns observed in paleoseismic records. In

this chapter, I reformulate the LTFM as a hidden Markov model. I derive the necessary

equations (see Appendix) to analytically calculate earthquake probabilities of interest and
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demonstrate the advantages of this model compared to existing ones. I apply the Markov

LTFM to the paleoseismic record for the southern San Andreas fault and show how it is

the only earthquake probability model to accurately forecast the occurrence of the 1857

Fort Tejon earthquake so soon after the preceding earthquake in 1812.

This chapter is in revision as Neely, J.S., Salditch, L., Spencer, B.D., Stein S., A more

realistic model for the probability of large earthquakes. Bulletin of the Seismological

Society of America. In Revision.

1.6. Chapter 6: The Generalized Long-Term Fault Memory Model and

Applications to Paleoseismic Records

In this chapter, I present the Generalized Long-Term Fault Memory Model (GLTFM),

an updated version of the LTFM that is more versatile and easier to implement. The

GLTFM allows for the simple calculation of earthquake probabilities based on the spe-

cific sequence of observed earthquakes. The GLTFM identifies which earthquakes in a

sequence likely left residual strain along the fault and it produces estimates of earthquake

probability based on this residual strain. I apply the GLTFM to paleoseismic sequences

and compare its probability estimates to other commonly used models. The GLTFM in-

dicates a significantly higher probability of an earthquake (compared to existing models)

along the Hayward fault in the San Francisco Bay and the southern San Andreas fault

due to residual strain after the most recent earthquakes along those respective faults. The

GLTFM is a powerful new tool in seismic hazard analysis that will yield more accurate

assessments of earthquake likelihood.
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CHAPTER 2

Have We Seen the Largest Earthquakes in Eastern North

America?

2.1. Summary

The assumed magnitude of the largest future earthquakes, Mmax, is crucial in assessing

seismic hazard, especially for critical facilities like nuclear power plants. Estimates are

made using various methods and often prove too low, as for the 2011 Tohoku, Japan,

earthquake. Estimating Mmax is particularly challenging within tectonic plates, where

large earthquakes are infrequent, vary in location and time, and often occur on previously

unrecognized faults. For example, it is unclear whether the short historical record includes

the largest possible earthquakes along the eastern continental margin of North America.

We explore this issue by generating synthetic earthquake histories and sampling them over

a few hundred years. Due to the short histories, the maximum magnitudes appearing most

often in a sub-catalog,Ma
max, are often smaller than the maximummagnitude in the parent

catalog, Mp
max, that can occur. Future earthquakes along the continental margin may thus

be significantly larger than those observed to date. More generally, these simulations

demonstrate that the largest earthquake in a catalog likely reflects a combination of

catalog length, a region’s earthquake productivity, and relative proportion of small to

large events. For regions with low seismicity, small variations in b value, the ratio of

large to small events, due to sampling has a significant impact on the expected recurrence
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times of large magnitude earthquakes. Although the precise likelihood of observing Mp
max

depends on the distribution of recurrence times, a catalog shorter than an earthquake’s

mean recurrence time will likely not contain an event of that size. As a result, Mmax

cannot always be reliably estimated from earthquake catalogs.

2.2. Introduction

The 2011 Virginia earthquake that shook much of the northeastern U.S. showed that

earthquakes large enough to cause significant damage do occur in eastern North America

(Wolin et al., 2012) (Figure 2.1). Assessing the hazard of such earthquakes poses major

unresolved issues. Hazard maps, giving the maximum shaking expected in an area with

a certain probability in some time period (Cornell, 1968), require assuming where and

how often large earthquakes will occur and how large they will be. However, the recent

Tohoku, Sumatra, and Wenchuan earthquakes illustrate that earthquakes much larger

than previously expected occur in many places (Stein and Okal, 2007; Geller, 2011; Stein

and Okal, 2011; Peresan and Panza, 2012; Wyss et al., 2012; Gulkan, 2013). Such surprises

arise because parameters required to reliably estimate the hazards are often poorly known

(Stein et al., 2012).

A crucial parameter is Mmax, the magnitude of the largest earthquake expected on a

fault or in an area (Stein et al., 2012). The Tohoku, Sumatra, and Wenchuan earthquakes

were more damaging than expected because their magnitudes were much larger than

the Mmax assumed in hazard planning (Kanamori, 2011; Sagiya, 2011). Unfortunately,

inferring Mmax is difficult. Even where we know the long-term rate of motion across a

plate boundary fault, or the deformation rate across an intraplate zone, neither predict
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how strain will be released although some models, like UCERF3 (Field et al., 2017),

provide detailed probabilistic earthquake rupture forecasts. Estimates from the expected

fault dimensions often prove incorrect. Strain release can occur seismically or aseismically,

and seismic strain release can occur via earthquakes with different magnitudes and rate

distributions.

As a result, quite different Mmax estimates can be made using different methodologies

(Kijko, 2004; Wheeler, 2009; U.S Nuclear Regulatory Commission, 2012; Kagan and

Jackson, 2013). Because all one can say with certainty is that Mmax is at least as large as

the largest earthquake in the available record, it was earlier practice to use that magnitude

or add an ad hoc increment. However, because catalogs are often short relative to the

average recurrence time of large earthquakes (McGuire, 1977; Stein and Newman, 2004;

Bell et al., 2013), earthquakes larger than anticipated often occur. Long paleoseismic

records, such as in Cascadia (Goldfinger, et al., 2017), containing multiple earthquake

cycles likely do a better job of estimating Mmax than shorter historical catalogs. Some

studies identify faults and use relations between fault length and earthquake magnitude

(Wells and Coppersmith, 1994) to infer Mmax. Other approaches extrapolate from current

catalogs (Kijko, 2004) or combine areas presumed to be geologically similar to sample

more large earthquakes (U.S. Nuclear Regulatory Commission, 2012; Kagan and Jackson,

2013).

Estimating Mmax is challenging at plate boundaries, where known plate motion rates

can be compared to earthquake records on known faults to infer the slip in, and thus

magnitude of, large earthquakes (McCaffrey, 2008). The situation is even more compli-

cated within plates, where deformation rates are poorly known, large earthquakes are
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rarer and variable in location and time, and often occur on previously unrecognized faults

(Crone et al., 2003; Camelbeeck et al., 2007; Stein et al., 2009; Clark et al., 2011; Liu et

al., 2011; Leonard et al., 2014). As a result, it is unclear whether apparent differences in

Mmax between various intraplate regions are real or artifacts of the short catalogs available

(Vanneste et al., 2016).

Before continuing, we should note that Mmax has slightly different meanings de-

pending on the assumed frequency-magnitude distribution. Some distributions assume

a “hard” Mmax that the frequency-magnitude distribution truncates at or asymptotically

approaches. Other distributions, assume a “soft” Mmax where larger earthquakes are

allowed but with a much lower frequency than predicted by the un-truncated Gutenberg-

Richter relationship (Kagan, 2002). In a “soft” Mmax distribution, Mmax is a slight mis-

nomer as some earthquakes are expected to exceed this threshold, although they would

be exceedingly rare. Whether the use of a “hard” or “soft” Mmax is more appropriate for

hazard planning, is not addressed in this chapter.

We explore the problem of Mmax estimation via earthquake catalog for eastern North

America. Notable events along the southern North America margin include the 1755

Cape Ann (Massachusetts), 1886 Charleston, and 1929 Grand Banks earthquakes (Figure

2.1). Larger earthquakes are known along the northern margin, notably the 1933 Baffin

Bay event. This passive continental margin, like others, is not inert since it experiences

moderate levels of seismicity (Stein et al., 1979; Stein et al., 1989; Schulte and Mooney,

2005; Wolin et al., 2012).
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Figure 2.1. Seismicity of the eastern North America continental margin
taken from the ANSS catalog from 1985 through 2017. Red and blue dots
correspond to seismicity along the southern and northern North America
margins, respectively. Grey dots correspond to inland and oceanic earth-
quakes not included in the analysis. Grey dashed line indicates boundary
between southern and northern margins. Major historical events are also
shown.
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A challenge in assessing the earthquakes’ hazard is that we know little about their

causes, partly because they are relatively rare due to the slow deformation at such mar-

gins. Along plate boundaries, relative plate motion is the primary driver of seismicity.

Geodynamic modeling, however, predicts that stresses from variations in topography and

crustal structure across the margin, combined with sublithospheric mantle flow may have

a strong influence on intraplate earthquakes (Ghosh et al., 2013). These intraplate earth-

quakes may reflect reactivation under these stresses of faults created by previous conti-

nental collision and breakup, given that passive margins are often reactivated (Johnston,

1989, Cloetingh et al., 2008). The complexity of the mechanisms driving earthquakes and

the scarcity of large earthquakes in intraplate tectonic settings make it difficult to assess

Mmax for an individual fault. Many concepts (such as seismic cycles and recurrence inter-

vals) that are applied to individual faults along plate boundaries are likely not appropriate

for individual faults in intraplate settings (Calais et al., 2016; Liu and Stein, 2016; Clark

et al., 2017). However, by considering seismicity to be homogeneously distributed over

an area, we assume that the non-steady state processes that affect local and short-term

seismicity are averaged out over large enough areas. Mmax is therefore an areal Mmax

with an associated areal recurrence time that is not necessarily linked to an individual

fault.

A crucial issue is how much to rely on past large earthquakes, as illustrated by suc-

cessive Geological Survey of Canada hazard maps (Swafford and Stein, 2007; Adams,

2011; Wolin et al., 2012). The 1985 suite of maps concentrate hazard at the sites of the

Grand Banks and Baffin Bay earthquakes, assuming that these recently active areas are

especially hazardous. The 2005 (and 2015) maps have an additional ribbon of hazard
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along the passive margin, assuming that similar earthquakes can occur anywhere along

the margin.

The observed seismicity may be an imperfect sample of more uniform seismicity, as

suggested by seismicity between the Grand Banks and Baffin Bay, some of which may

be aftershocks of prehistoric earthquakes (Basham and Adams, 1983; Ebel et al., 2000;

Stein and Liu, 2009; Wolin et al., 2012). Simulations with short catalogs yield apparent

concentrations and gaps that are artifacts of the sampling (Swafford and Stein, 2007).

Similarly, although seismicity in the eastern U.S is patchy, geological observations show

evidence of slow long-term deformation (Pazzaglia et al., 2010) and the present seismicity

occurs in areas that are not geologically or geomorphologically different from nearby areas

that appear aseismic.

A related question is whether the larger earthquakes along the northern portions of

the North America margin represent a real difference from the southern portions of the

margin. The difference could be real, perhaps due to stresses associated with deglaciation

(Stein et al., 1979; Stein et al., 1989; Mazzotti et al., 2005; Sella et al., 2007; Wolin et al.,

2012) or to how intraplate stresses interact with the differently oriented margins, or might

merely reflect the short earthquake record. We thus consider the two regions separately

and explore their differences.

2.3. Methods

Absent reliable ways of assessing Mmax, we use synthetic earthquake histories to ex-

plore what Mmax values would be observed in a short catalog. We assume earthquakes

satisfy a Gutenberg-Richter frequency-magnitude relation, log10(N) = a− bM , where N
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is the annual number of earthquakes with magnitude ≥ M , a defines the seismicity rate,

and b is the slope of the line relating the rates of small and large earthquakes. The re-

gional a and b values were estimated from the Advanced National Seismic System (ANSS)

catalog for earthquakes with M ≥ 4 from 1985 through 2017. All earthquakes along the

northeastern Canadian margin and near Hudson Strait (an area of weak extension during

the opening of the Atlantic) were grouped as northern North America passive margin

earthquakes (Figure 2.1). Southern North America passive margin earthquakes are all

earthquakes within 6◦ of the margin south of Newfoundland. Earthquakes near the his-

torical Grand Banks earthquake were assigned to the southern North America margin.

The southern and northern margins contain 95 and 145 earthquakes greater than M=4,

respectively.

A linear Gutenberg-Richter relationship can be fit to a set of frequency-magnitude

data using either maximum likelihood (MLE) (Aki, 1965; Weichert, 1980; Shi and Bolt,

1982) or least squares (LSQ) estimates (Figure 2.2), each with advantages and disadvan-

tages. In general, a least-squares fit characterizes large-magnitude occurrences better, but

may not match the rate of the smaller ones well. It does well at identifying deviations

from the linear Gutenberg-Richter distribution at larger magnitudes. Conversely, MLE

weights numerous smaller magnitudes heavily and so gives more stable estimates of the

distribution’s b value (slope). Thus if one expects that the data come from a Gutenberg-

Richter distribution, so that the deviations from the linear trend are artifacts of sampling

or otherwise, MLE estimation is preferable. As a result, most seismic hazard analyses

use MLE. Conversely, if one approaches the data without this expectation, LSQ can be

viewed as a better characterization of the data themselves. Analyses seeking to estimate
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Figure 2.2. Frequency-magnitude relationships calculated for southern
North America (left panel) and northern North America (right panel)
datasets. Blue dashed line is for the maximum likelihood estimate (MLE)
fit. Red line is for the least squares (LSQ) fit. The MLE results are used
as inputs to the simulations. Uncertainties indicate 1σ.

b typically use MLE. The two methods may give different b values leading to different

recurrence time predictions for large events.

Applying LSQ to relatively short catalogs may result in two biases. If the largest

“observed” earthquake is smaller than expected from the parent distribution, b is biased

upward (steeper slope), underestimating the rate of large earthquakes. On the other

hand, if the largest earthquakes are “observed”, their recurrence interval and the region’s

b are underestimated. Hence the short history causes us to either underestimate Mmax

when earthquakes of this size do not appear, or better estimate it but conclude that such

earthquakes are more common than they really are (Stein and Newman, 2004).

Because deformation rates are relatively slow and seismicity may migrate between

faults, earthquake recurrence times may not be well described by an earthquake cycle
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model. Hence, we use a time-independent Poisson model for the entire region to describe

the recurrence time between events. In a Poisson model, the probability PT (τ) of one

earthquake greater than or equal to a given magnitude m occurring in the next τ years

depends on the rate parameter λm (Equation 2.1).

(2.1) PT (τ) = 1− e−λmτ

We calculate the rate parameter for a given magnitude using the b value from the MLE

method and the a value projected from the measured M ≥ 4 recurrence rate, assumed to

be the minimum magnitude of completeness (Equation 2.2).

(2.2) λm = 10a−bm

For the southern North America margin a = 4.88± 0.44 and b = 1.10± 0.11 whereas

for the northern margin a = 4.43±0.27 and b = 0.95±0.07. Although various hypotheses

have been proposed for what the b value physically represents (Rundle, 1989; Todes et

al., 2021), here we treat it as simply a way to parameterize the magnitude distribution

curve.

To infer the time τ until the next earthquake, we invert Equation 2.1 and set 1 −

PT (τ) = X. The value of X is sampled from a uniform random distribution U(0, 1],

where U is a continuous probability density function between 0 and 1 that has a constant

probability density.

(2.3) τ =
−1

λm

logX
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Equation 2.3, where log is the natural logarithm, indicates when the next earthquake

happens but not its magnitude. To infer the magnitude, we follow a procedure similar to

the recurrence interval sampling (Zhuang and Touati, 2015). The cumulative probability

distribution of the linear Gutenberg-Richter relationship PM(m) is a function of magnitude

m, minimum magnitude mmin, and b.

(2.4) PM(m) = 1− e− log(10)b(m−mmin)

By substituting m
′
= m−mmin, setting 1−PM(τ) = Y (where Y ’s value is uniformly

randomly sampled from U(0, 1]), and rewriting Equation 2.4, we can sample the magnitude

cumulative distribution function to determine the magnitude of the earthquake in our

synthetic catalog (Equation 2.5). Our methodology assumes a ”hard” Mmax, truncated

Gutenberg-Richter distribution and discards any earthquakes that exceed the assigned

Mmax value. This assumption is made for simplicity.

(2.5) m′ =
−1

b log 10
log Y

Using the a and b values from the ANSS earthquake catalog as inputs, we generate a

synthetic earthquake catalog by randomly sampling the resulting recurrence time PT (τ)

and magnitude PM(m) cumulative distribution functions (Figure 2.3).
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Figure 2.3. Recurrence time cumulative distribution function (top left),
magnitude cumulative distribution function (top right), and sample syn-
thetic catalog (bottom). We use a and b values from the ANSS catalog to
generate the synthetic catalog.

2.4. Results and Analysis

For the southern North America margin, we use a = 4.88 and b = 1.10, calculated from

recent seismicity, corresponding to a M ≥ 7 earthquake on average every approximately

660 years. We generate four 10-million-year long synthetic catalogs, each with a different

parent maximum magnitude, Mp
max, (7.0, 7.2, 7.4, and 7.6). During synthetic catalog
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generation, if an earthquake’s magnitude exceeds the prescribed Mp
max, we remove that

event from the catalog. We then create 10,000 random 300-year long sub-catalogs from

the four parent catalogs, roughly corresponding to the length of the historic record for

the southern North America margin.

For the northern North America margin we also generate four 10-million-year long

catalogs but with Mp
max of 7.4, 7.6, 7.8, and 8.0, using a = 4.43 and b = 0.95. The

northern margin’s higher Mp
max values reflect the larger earthquakes observed along the

northern portion of the North America margin. From these parent catalogs, we create

10,000 random 100-year long sub-catalogs, reflecting the observation record for the north-

ern North America margin. We then compare the apparent maximum magnitude Ma
max

“observed” in each sub-catalog to the parent distribution’s Mp
max.

The number of sub-catalogs whose apparent “observed” Ma
max matches the parent dis-

tribution’s Mp
max or exceeds 7.0 for the southern or 7.4 for the northern margins indicates

the relative appropriateness of catalog length and assumed regional maximum magnitude

based on the historical catalogs (Mh
max). If relatively few sub-catalogs capture the parent

distribution’s Mp
max, then it is unlikely that the real catalog observation window (300

and 100 years for the southern and northern margins, respectively) includes the largest

magnitude events. Conversely, if Ma
max or a significant number of sub-catalogs exceeds

the region’s assumed largest magnitude earthquakes (Mh
max), then it is more likely that

the catalog window length and assumed regional maximum magnitude are appropriate.

In this scenario, the hypothetical larger magnitude events have a high probability of oc-

curring, so their absence from the historical earthquake catalogs may indicate that such

larger events do not occur.
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Figure 2.4 shows apparent Ma
max values “observed” for the northern and southern

margin sub-catalogs. The most common Ma
max value is approximately 6.7 for the northern

and southern margins. For both regions, the Mp
max of the parent distribution is not

the most common apparent Ma
max in the sub-catalogs. For example, along the northern

margin Mp
max = 8.0 occurs in only 2% of the sub-catalogs, and Mp

max = 7.6 in the southern

margin is present in only 2% of the sub-catalogs. For the northern margin Mp
max = 8.0

simulation, 15% of the sub-catalogs have an apparent Ma
max that exceeds the commonly

assumed regional Mh
max of 7.4. Likewise, 27% of the sub-catalogs for the southern margin

Mp
max = 7.6 simulations exceed the assumed Mh

max of 7.0.

Although relatively few of the sub-catalogs contain the Mp
max of the parent simulation,

the parent b values are well recovered. The b values from the sub-catalogs given by both

LSQ and MLE have Gaussian distributions (Figures 2.5, 2.6) with means similar to the

input b value parameters. MLE yields tightly grouped b values with a standard deviation

of approximately ± 0.04. LSQ, however, yields b value uncertainties more than twice as

large (approximately ± 0.10).

Figures 2.7 and 2.8 illustrate the combined uncertainties in Ma
max and b value found

in the different sets of simulations shown in Figure 2.4. LSQ (Figure 2.7) has more

scatter in b value and a strong tradeoff between b value and Ma
max. The LSQ method

does a poor job recovering the parent distribution’s b value, which is estimated with large

uncertainties, and Mp
max, which is generally biased low. The MLE method (Figure 2.8)

better recovers the parent distribution parameters with little trade-off between b value

and Ma
max, although Ma

max is still biased low.
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Figure 2.4. Histograms of Ma
max from simulated catalogs. Top: Results for

four sets of 10,000 sub-catalogs for the northern North America margin, each
with a different parent Mp

max. Panels show the percentage of simulations
in which a given apparent Ma

max is observed. Red line represents the Mh
max

of 7.4 inferred from the Baffin Bay earthquake. Bottom: Simulations for
southern North America margin. Red line represents the inferred Mh

max of
7.0 corresponding approximately to the Charleston earthquake (Chapman
et al., 2016), a key earthquake used for assessing seismic hazard along the
North America margin (U.S. Nuclear Regulatory Commission, 2012).

The uncertainties in a and b values correspond to uncertainties in the estimated re-

currence times. Simulations for Mp
max = 7.6 in the southern margin and Mp

max = 8.0

in the northern margin yield estimated recurrence times of these large and rare events

that vary widely (Figure 2.9). The most likely recurrence times (calculated from the
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Figure 2.5. b value results for the four sets of 10,000 sub-catalogs for the
southern North America margin, each drawn from a parent catalog with a
different Mp

max and a = 4.88, b = 1.10 (red line). Mean b value and 1σ un-
certainties are listed for each simulation. Top: Panels show the percentage
of simulations in which a given b value, calculated by the LSQ method, is
observed. Bottom: Similar results using the MLE method to calculate b
values.

sub-catalog simulations) for these largest events are biased and often shorter than the

estimated recurrence times corresponding to the parent catalog parameters.

These uncertainties in the a and b values also have a significant impact on the likelihood

of observing the parent distribution’s Mp
max. We repeat the parent catalog generation

process for a range of a and b values. For each a and b value combination, we generated
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Figure 2.6. b value results for the four sets of 10,000 sub-catalogs for the
northern North America margin, each drawn from a parent catalog with a
different Mp

max and a = 4.43, b = 0.95 (red line). Mean b value and 1σ un-
certainties are listed for each simulation. Top: Panels show the percentage
of simulations in which a given b value, calculated by the LSQ method, is
observed. Bottom: Similar results using the MLE method to calculate b
values.

a 10-million-year long catalog with Mp
max = 7.6. From each of these parent catalogs,

we create 10,000 randomly sampled sub-catalogs for two different window lengths, 300

and 750 years (Figure 2.10). The color of the parameter space region corresponds to the

percentage of sub-catalogs containing the parent Mp
max. For example, for a parent catalog

generated using a = 4.4 and b = 1.1, only 1% of the 300-year long sub-catalogs contain
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Figure 2.7. Distributions of LSQ estimates of b and Ma
max for the eight sets

of simulations in Figure 2.4. Warmer colors indicate more sub-catalogs with
those parameter values. Blue dot indicates parent distribution parameters.
Dashed line shows Mp

max.

Mp
max. For a parent catalog generated using a = 5.0 and b = 0.95, 33% of the 300-year

long sub-catalogs contain Mp
max. Within the parameter space, the northern and southern

North America margin “true” a and b value parameters are shown with one standard

deviation indicated (Figure 2.10).

Two clear patterns emerge. First, the b value more strongly influences the likelihood

of observing the parent Mp
max than the a value. Small absolute variations in b value have

a more significant impact than a similarly small change in a value. Second, as expected,
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Figure 2.8. Distributions of MLE estimates of b and Ma
max for the eight sets

of simulations in Figure 2.4. Warmer colors indicate more sub-catalogs with
those parameter values. Blue dot indicates parent distribution parameters.
Dashed line shows Mp

max.

increasing the length of the sub-catalog increases the likelihood of observing the parent

Mp
max. However, the a and b values still largely control the likelihood of observing the

parentMp
max. Subtle changes in b value produce a wide range of expected mean recurrence

times for large earthquakes (Figure 2.11). For 2σ uncertainties (for the MLE b values),

possible mean recurrence times span an order of magnitude for earthquakes M ≥7 along

the northern (60-400 years) and the southern (150-3000 years) margins.



40

Figure 2.9. Distributions of estimated Mp
max recurrence. Left: Recurrence

time distribution for an M = 7.6 earthquake along the southern North
America margin corresponding to the results of sub-catalogs with an Mp

max

of 7.6. Right: Recurrence time distribution for a M = 8.0 earthquake along
the northern North America margin corresponding to the results of sub-
catalogs with an Mp

maxp of 8.0. Red line indicates average recurrence time
based on parent catalog parameters.

2.5. Discussion

The simulations suggest that future earthquakes along both margins may be larger

than observed to date. The actualMp
max for both margins may be the same, although if the

lower b value in northern margin is real rather than a sampling artifact, large events would

be more common there. A complexity is that some of the northern margin seismicity rate

may reflect aftershocks of recent large earthquakes or of prehistoric earthquakes (Basham

and Adams, 1983; Ebel et al., 2000; Stein and Liu, 2009; Wolin et al., 2012).

More generally, these simulations demonstrate that Mmax cannot be reliably estimated

from the available short earthquake catalogs. In both the southern and northern margin
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Figure 2.10. Percent of simulations yielding Ma
max = 7.6 within the pa-

rameter space for 300 and 750 year-long sub-catalogs. For each a and b
value combination shown above, we ran the synthetic catalog generation
and sub-catalog sampling simulations. The color represents the percent-
age of sub-catalogs from a given a and b value combination that yield the
parent distribution’s Mp

max (7.6). Warmer (and black) colors indicate a
greater percentage of sub-catalogs with Ma

max=Mp
max. The circles indicate

a and b values used for the southern North America margin (grey open
circle) and the northern North America (blue solid circle) simulations. The
boxes indicate the 1σ ranges for the southern margin (dashed grey) and
northern margin (solid blue) parameters. Top: Results for 300 year-long
sub-catalogs. Bottom: Results for 750 year-long sub-catalogs. b value vari-
ations have a greater impact than similarly sized a value variations in de-
termining whether a sub-catalog will yield the parent distribution’s Mp

max.

cases, the relatively low percentages of sub-catalogs yielding the parent catalog’s max-

imum magnitudes indicate that these short catalogs are unlikely to include the largest

earthquakes. Along these margins, the largest earthquake observed likely reflects the

length of the history used, even if larger earthquakes occur. Although the precise fraction
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Figure 2.11. Mean recurrence times for earthquakes greater than a given
magnitude. Recurrence times calculated from the inverse of Equation 2.2.
Values for the northern margin (blue) and southern margin (red) are shown.
The shaded envelopes indicate 2σ uncertainties (dashed and dotted for the
southern and northern margins, respectively). For earthquakes M >5.5,
there is significant overlap for expected mean recurrence times for the two
regions.

depends on the distribution of recurrence times, a catalog shorter than an earthquake’s

mean recurrence time is unlikely to contain an event of that size (Figure 2.10).

In addition to failing to capture the true Mmax, catalogs shorter than the mean re-

currence time may not adequately capture the true a and b values. For regions with

relatively infrequent large events, even small parameter uncertainties lead to recurrence
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Figure 2.12. Percentage of sub-catalogs with Ma
max observed based on

10,000, 150 year-long sub-catalogs. Left: Results for Australia with Mp
max

= 7.6. Red line represents the possible known Mh
max of 6.9, corresponding

to the 1892 M6.9 West Tasman Sea earthquake. Middle: Results for the
full California catalog with Mp

max = 8.3. Right: Results for a de-clustered
California catalog withMp

max = 8.3. For the California catalogs, the red line
represents a possible Mh

max of 7.9 based on the 1859 Fort Tejon earthquake.

rate estimates varying by thousands of years (Figure 2.9). The calculated b value uncer-

tainties for the northern and southern margins significantly impact whether the actual

Mmax is observed (Figure 2.10). Lower b values increase the likelihood of observing Mmax.

These small b value uncertainties also greatly affect the expected mean recurrence time

for large magnitude events (Figure 2.11). Additionally, there is significant overlap in ex-

pected mean recurrence times for these two regions, indicating that despite differences

in historical seismicity, these regions may be seismically similar. A well-constrained b

value is therefore pivotal to calculating the likelihood of observing the actual Mmax and

estimating recurrence times for regions with relatively infrequent large events.

Similar analysis could be done for other regions. For example, we ran the simulation

for the Australian continent and margin (a = 4.84 ± 0.14 and b = 0.90 ± 0.03) with a
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sub-catalog length of 150 years and Mp
max = 7.6 (Figure 2.12). Using the magnitudes in

the Geoscience Australia catalog, we calculated the a and b values utilizing the 593 earth-

quakes with M ≥ 4 that have occurred since the beginning of 1985. The small parameter

differences between Australia and the eastern North America continental margin have a

significant impact on the likelihood of observing Mp
max. 27% of the Australia sub-catalogs

contained Mp
max, and 99% contained an Ma

max > 6.9, corresponding to the 1892 M = 6.9

West Tasman Sea earthquake. These results indicate that, unlike in eastern North Amer-

ica, the activity rate in Australia may mean the historical record is much closer to being

long enough to observe Mmax.

An interesting subtle effect is that b value differences due to catalog processing also

impact recurrence times for large magnitude events. For example, de-clustering the Cali-

fornia earthquake catalog affects the probability of observing Mmax. We ran simulations

for a 150-year sub-catalog sampled from a parent catalog with a and b values from Felzer

(2008) for a full (a = 5.93 b = 1.02) and de-clustered (a = 4.83 b = 0.85) California catalog

with Mp
max = 8.3 (Figure 2.12). These may be typical results, as declustering removes

chiefly smaller earthquakes while leaving most of the larger ones. Declustering thus re-

duces the a value, but more importantly also the b value; it is the latter that is more

important for determining whether Mmax has been observed. Despite the full California

catalog’s higher earthquake productivity (a value), the de-clustered catalog’s lower b value

produces a shorter recurrence rate for large magnitude events. In the de-clustered catalog,

16% of the sub-catalogs capture Mp
max, and 62% contain Ma

max exceeding 7.9 (the size of

1857 Fort Tejon earthquake). Using the full catalog, 10% have Mp
max and only 46% of the

sub-catalog Ma
max exceed 7.9. Based on these results, the de-clustered catalog analysis
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suggests that a 150-year observation window may be long enough to observe Mmax while

the full catalog results are not as clear.

Estimates of Mmax may be improved by substituting space for time (ergodic assump-

tion), though there is always an issue whether different regions are “alike” (Vanneste et

al., 2016). Estimates of the lower bound for Mmax can be improved by paleoseismic inves-

tigation of active and apparently inactive faults to assess the size of past earthquakes over

periods longer than the instrumental catalog (e.g., Camelbeeck et al., 2007). Geodetic

studies can constrain the minimum magnitude of future earthquakes from the strain accu-

mulation rate and time since the last large earthquake (Manaker et al., 2008). However,

there is no reliable way to infer an upper bound, although various plausible assumptions

can be made. Thus the only certainty about Mmax, is that it is at least as large as that

observed to date, as in the adage “anything that did happen, can happen.”

2.6. Conclusion

Synthetic earthquake catalog simulations for the eastern North America margin sug-

gest that the historical record is probably not long enough to observe the region’s largest

possible earthquakes. The inferred frequency of these large magnitude events is much

more sensitive to a region’s b value than to its a value. For the eastern North America

margin, these large magnitude events likely occur on time scales much longer than our

historical record. Due to the infrequent nature of these events, the absence of a large

earthquake along a segment of the margin need not reflect the long-term spatial distribu-

tion of seismicity. The different observed Mmax values between the northern and southern

margins may simply reflect the limited length of historical catalogs. Only historical and
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paleoseismic catalogs that are longer than the mean recurrence time are likely to contain

earthquakes approaching Mmax. In the absence of additional evidence, it may be more ap-

propriate to assume the hazard is uniformly distributed along the eastern North America

continental margin.
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CHAPTER 3

Large Uncertainties in Earthquake Stress Drop Estimates and

Their Tectonic Consequences

3.1. Summary

Earthquake stress drop, the stress change on a fault due to an earthquake, is impor-

tant for seismic hazard analysis because it controls the level of high frequency ground

motions that damage structures. Numerous studies report that stress drops vary by tec-

tonic environment, providing insight into a region’s seismic hazard. Here we show that

teleseismic stress drop estimates have large uncertainties that make it challenging to dis-

tinguish differences between the stress drops of different earthquakes. We compared stress

drops for 900 earthquakes derived from two independent studies using teleseismic data

and found practically zero correlation. Estimates for the same earthquake can differ by

orders of magnitude. Therefore, reported stress drop differences between earthquakes

may not reflect true differences. As a result of these larger uncertainties, some tectonic

environment stress drop patterns that appear in one study do not appear in the other

analysis of the same earthquakes. These large uncertainties in teleseismic estimates might

lead to erroneous inferences about earthquake hazards. In many applications it may be

more appropriate to assume that earthquakes in different regions have approximately the

same average stress drop.
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3.2. Introduction

Earthquake stress drop, the difference in stress on a fault before and after an earth-

quake, is an important earthquake parameter for seismic hazard analysis (Boore, 1983).

An earthquake’s stress drop controls the level of high frequency ground motions that dam-

age structures (Hanks and McGuire, 1981; Cotton et al., 2013). Many studies (Kanamori

and Anderson, 1975; Cocco and Rovelli, 1989; Allmann and Shearer, 2009; Courboulex

et al., 2016) report that stress drops vary by tectonic environment. If a region’s future

earthquakes have similar stress drops to its past earthquakes, stress drop studies can pro-

vide insight into the expected levels of shaking and the region’s seismic hazard. However,

the uncertainties in stress drop estimates and thus these estimates’ ability to resolve dif-

ferences between earthquakes and different tectonic environments are poorly understood.

3.3. Estimating Earthquake Stress Drop

Although widely used, earthquake stress drops cannot be directly observed. Rather

they are estimated via a combination of observed and assumed parameter values. An

earthquake’s stress drop (∆σ) is proportional to the strain released and thus to the ratio

of the seismic moment (Mo) to the cube of the characteristic rupture dimension (L) times

a shape factor (c) (Stein and Wysession, 2003). This assumes that there is a scaling law

between Mo and L, and no saturation of L occurs at larger magnitudes.

(3.1) ∆σ = c
Mo

L3

Field studies can measure a characteristic rupture dimension (typically the fault

length) for large earthquakes on land that rupture the earth’s surface. However, for
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most earthquakes L is estimated from seismograms. Although some seismogram tech-

niques directly estimate rupture dimensions (Silver, 1983), most stress drop studies indi-

rectly estimate the characteristic rupture dimension via an earthquake’s rupture duration

(T ) (Courboulex et al., 2016) or its frequency-domain counterpart, corner frequency (fc)

(Brune, 1970; Abercrombie, 1995; Allmann and Shearer, 2009; Baltay et al., 2011) (Figure

3.1). The measured rupture duration or corner frequency is combined with an assumed

rupture velocity and rupture propagation model to estimate the characteristic rupture di-

mension (Brune, 1970; Sato and Hirasawa, 1973; Madariaga, 1976; Kaneko and Shearer,

2015). Rupture duration and corner frequency are inversely proportional (fc = qT−1)

with a constant of proportionality (q) based on the assumed rupture model (Godano et

al., 2015). For complex ruptures with multiple pulses of moment release (such as in Fig-

ure 3.1), this approach is a simplification, because the assumption of a single constant

of proportionality between corner frequency and inverse rupture duration for all earth-

quakes may no longer be applicable. Similarly, a single stress drop estimate likely does not

capture the true heterogeneity of stress release along the fault during a complex rupture.

To estimate stress drop, seismologists deconvolve seismograms to remove the effects of

the seismometer and the seismic wave’s path and recover the original earthquake source

signal in either the time or frequency domain (Figure 3.1). Time-domain estimates use

the duration of an earthquake’s source time function (STF), a representation of the time

history of the rupture (Courboulex et al., 2016). Frequency-domain studies estimate the

corner frequency of the source time spectrum (Abercrombie, 1995; Baltay et al., 2011),

which marks the transition between the flat, low frequency plateau and the high frequency

falloff.



50

0 5 10 15 20
Time (s)

0

1x1018

2x1018

3x1018

4x1018

M
om

en
t R

at
e 

(N
-m

/s
)

Time Domain

Rupture Duration (T)

0.01 0.1 1
Frequency (Hz)

1016

1017

1018

1019

M
om

en
t (

N-
m

)

Frequency Domain

Co
rn

er
 F

re
qu

en
cy

 (f
c)

Figure 3.1. Earthquake stress drop estimates depend on estimates of charac-
teristic rupture dimension from either rupture duration or corner frequency.
Top: An earthquake’s source time function (STF) with a rupture duration
estimate. Bottom: Amplitude spectrum of the above STF (solid line) with
best fitting Brune spectral model (dashed line) and corner frequency (dot-
ted line) indicated. The STF and spectrum are from an October 4th, 2000
Mw 6.9 earthquake near Vanuatu in the Pacific Ocean. We estimated the
rupture duration and corner frequency using the methods described in this
paper.

Stress drop estimates from time-domain (∆σT ) and frequency-domain (∆σf ) methods

are theoretically equivalent. Both require simplifying assumptions about the earthquake’s

geometry and rupture process. Most studies assume a circular fault model with a shape
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factor (c) of 7/16 (Eshelby, 1957), a shear wave velocity (β), and a constant (k) that

incorporates an assumed rupture velocity and rupture propagation model (Brune, 1970;

Sato and Hirasawa, 1973; Madariaga, 1976; Kaneko and Shearer, 2015) (Equation 3.2).

Time-domain stress drop estimates include the same assumed parameters with the re-

ciprocal of the rupture duration and a constant of proportionality (q) replacing corner

frequency.

(3.2) ∆σf =
7Mo

16

(
fc
kβ

)3

= ∆σT =
7Mo

16

(
q

kβT

)3

For a given moment, higher corner frequencies or shorter rupture durations correspond

to a smaller estimated characteristic rupture dimension and thus higher stress drop and

greater high-frequency energy.

3.4. Previously Reported Differences in Earthquake Stress Drop

Stress drop estimates generally range from 0.1 to 100 MPa (1 to 1000 bars) (Allmann

and Shearer, 2009) across a wide range of magnitudes (Kanamori and Anderson, 1975;

Abercrombie, 1995). However, studies have suggested that stress drops may vary by

tectonic environment. Previous studies have proposed that intraplate earthquakes have

larger stress drops than interplate earthquakes (Kanamori and Anderson, 1975), and

subduction zone earthquakes have a lower mean stress drop than non-subduction zone

earthquakes (Courboulex et al., 2016). Stress drop may also vary with fault geometry.

Some studies report higher stress drops for thrust fault earthquakes than normal fault

earthquakes (Cocco and Rovelli, 1989). However, others find similar values for thrust and

normal faulting events, with strike-slip faulting earthquakes having the largest median
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stress drop (Allmann and Shearer, 2009). There is also ongoing debate whether human-

induced earthquakes have lower stress drops than tectonic earthquakes (Hough, 2014;

Huang et al., 2017). Previous studies have also suggested that average stress drops are

similar across a broad moment magnitude range (Allmann and Shearer, 2009; Cocco et al.,

2016) while other studies indicate that stress drop may vary systematically with moment

magnitude (Mayeda and Walter, 1996; Malagnini et al., 2014).

Whether these reported tectonic stress drop patterns are real or artifacts of uncertainty

is critical to understanding earthquake behavior. Because stress drop estimates depend

on the cube of the characteristic rupture dimension—and therefore on the cube of rupture

duration or corner frequency—small uncertainties in the estimated characteristic rupture

dimension can significantly impact stress drop estimates (Stein and Wysession, 2003;

Kane et al., 2011; Cotton et al., 2013; Kaneko and Shearer, 2015). Comparisons of

multiple stress drop estimates for the same earthquakes provide insight into the impacts

of these uncertainties. Although the magnitudes of the stress drop estimates may differ

between studies, the relative values (i.e., which earthquakes have small stress drops and

which have large ones) should be similar if the uncertainties are small. However, large

discrepancies between stress drop estimates for the same earthquakes would suggest that

the estimates have significant uncertainties. Previous comparative studies have been

limited in scope and produced mixed results, with some indicating strong correlation

between different estimates (Baltay et al., 2011, Baltay et al., 2013) and others showing

only limited correlation between a few of the earthquakes (Allmann and Shearer, 2007;

Abercrombie, 2014).
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3.5. Large Uncertainty in Stress Drop Estimates

We expand on these previous comparative studies by using a much larger dataset

and comparing two independent stress drop studies using teleseismic (distances greater

than 1000 km) data for the same earthquakes. The earthquakes are mostly shallower

than 50 km, with moment magnitudes from approximately 5.5 to 8.3. We estimate time-

domain stress drop values using source time functions from the SCARDEC database

(Vallée and Douet, 2016) and compare them to frequency-domain estimates from a pre-

vious independent study by Allmann and Shearer (2009) (hereinafter called AS09). We

compared magnitudes, locations, and event times to identify 894 earthquakes common to

both databases. For a full list of earthquakes used in this analysis, see Data S1 in the

Supplemental Material.

The SCARDEC database contains two types of STFs: average and optimal. The

optimal STF is the individual STF that most closely matches the earthquake’s average

STF. Because averaging STFs reduces the high frequency content, the optimal STF is

more appropriate for spectral analyses (Vallée and Douet, 2016). We use the optimal

STFs in this study.

In principle, the rupture duration can be estimated from the full duration of the source

time function (STF). However, STFs often have long tails that do not necessarily reflect

the true rupture duration, which tends to be shorter. We use two methods proposed by

Courboulex et al. (2016) to estimate rupture duration. The first method uses the first

and last points of the STF with values that exceed 10% of the maximum STF moment

rate (STFmax) to determine the rupture duration. The second method models the source

time function as an isosceles triangle with height = STFmax and area equal to the total
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seismic moment released (the integral of the STF). The width of this isosceles triangle

is then an estimate of rupture duration. While the precise rupture duration values differ

somewhat, both methods generally give similar rupture duration estimates (Courboulex

et al., 2016). We average the two rupture duration estimates to produce a duration value

(T ) for the earthquake based on the optimal STF.

To ensure consistency between our stress drop estimates and the AS09 frequency-

domain estimates, we use the same assumed parameters (k = 0.32; β = 3900 m/s) as

AS09. For our time-domain estimates, we use a value of 1 for the constant of proportion-

ality (q) between corner frequency and inverse rupture duration. Our time-domain stress

drop estimates use the seismic moment values from the SCARDEC database.

Because stress drop estimates span several orders of magnitude, the logarithmic do-

main is a natural scale for stress drop analyses (e.g., Cotton et al., 2013). Therefore, we

perform our statistical analyses using the log10 values of the stress drop estimates.

Surprisingly, the time-domain estimates are essentially uncorrelated with the AS09

frequency-domain estimates (Figure 3.2a). If the two estimates produced similar results,

we would expect a clear linear trend. Instead we find large scatter and very low cor-

relation (0.07) between the stress drop estimates. These differences suggest significant

uncertainty in stress drop estimates. However they do not indicate whether the uncer-

tainty arises from the time-domain estimates, the AS09 frequency-domain estimates, or

both. Using a different constant of proportionality between corner frequency and inverse

rupture duration shifts the time-domain estimates, but does not change the correlation.

The distribution of the frequency-domain to time-domain stress drop ratios provides

insight into the reproducibility of a stress drop estimate (Figure 3.2b, Figure 3.3). On
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Figure 3.2. Correlation plots of AS09 frequency-domain and time-domain
estimates of stress drop and rupture duration for individual earthquakes.
(a) Time-domain stress drop estimates and corresponding AS09 frequency-
domain estimates. Dashed line indicates ideal corresponding values. The
two estimates are essentially uncorrelated. (b) Histogram of the logarithm
of the ratios of AS09 frequency-domain to time-domain stress drop estimates
with mean and standard deviation (SD) indicated. All units are log10. (c)
AS09 corner frequencies (fc) versus inverse rupture duration ( 1

T
) estimates,

which should be equivalent but instead show only moderate correlation.

average, the AS09 frequency-domain estimates are twice as large (0.33 in log10 units)

as the time-domain estimates, but the ratio’s large standard deviation (0.77 in log10

units) indicates that the relative values of the two estimates differ substantially between

earthquakes. Changing the constant of proportionality (q) between corner frequency and

inverse rupture duration shifts the mean value of the stress drop ratios but does not

impact the standard deviation. For a time-domain stress drop estimate of 1 MPa (0 in

log10 units), the corresponding AS09 frequency-domain estimate would be on average 2.1

MPa (0.33 in log10 units). If we consider the one standard deviation plus/minus range,

the corresponding value may fall between 0.4 to 12.6 MPa (-0.44 to 1.1 in log10 units).

Using plus/minus two standard deviations, the possible range spans 0.06 to 74.1 MPa

(-1.21 to 1.87 in log10 units). Therefore, attempts to reproduce an estimate using the
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other method may produce a corresponding value that falls anywhere within a 3 orders

of magnitude range. Our possible range of corresponding values is approximately the

same size as previously reported stress drop variations among earthquakes (Allmann and

Shearer, 2009). These similar ranges suggest that reported stress drop differences may

not reflect the true differences in stress drop between earthquakes.

The large scatter in stress drop results from discrepancies in the characteristic rupture

dimension inferred from our time-domain and the AS09 frequency-domain results. Figure

3.2c compares the AS09 corner frequency estimates to the inverse of our rupture dura-

tion estimates. Although the two estimates should tightly cluster about a straight line,

they have only a moderate correlation (0.56) with considerable scatter. The higher cor-

relation reflects the similar dependence of corner frequency and inverse rupture duration

on moment because larger earthquakes have longer durations and lower corner frequen-

cies. However, the large scatter suggests large uncertainties in estimates of characteristic

rupture dimension.

3.6. Possible Sources of Earthquake Stress Drop Uncertainty

Understanding the cause of the corner frequency and rupture duration discrepancies

has significant implications for the estimation of stress drop. Although the time-domain

and frequency-domain methods are theoretically equivalent, the observed discrepancies

could simply reflect the uncertainties of analyzing real data using different methods. The

corner frequency and rupture duration estimation methods assume relatively simple earth-

quake source models. It is possible that this simple parameterization of an earthquake

rupture is inappropriate for complex earthquakes.
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Figure 3.3. Distributions of stress drop estimates in log10 space. Panel (a)
shows AS09 frequency-domain stress drop estimates, and panel (b) shows
our time-domain estimates. All units are log10 MPa. Mean and standard
deviation (SD) indicated. The ratio of these estimates is shown in Figure
3.2b.
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We explore the possibility that simpler earthquake ruptures may produce better agree-

ment between the two studies by binning the earthquakes by magnitude and recalculating

the stress drop estimate correlations. Dividing the earthquakes into four magnitude bins

(Mw < 6.0; 6.0 ≤ Mw < 6.5; 6.5 ≤ Mw < 7.0; Mw ≥ 7.0) produces a slight decrease

in correlation with increasing magnitude (Figure 3.4). The slightly better agreement in

stress drop estimates for smaller magnitude earthquakes is consistent with these events

generally having simpler ruptures. However, even the correlation for the smallest earth-

quakes (Mw < 6.0) is still only 0.25 (Figure 3.4a), indicating significant disagreement

between the two studies for even the simplest ruptures in the dataset.

We cannot attribute all of the stress drop discrepancies to the different time-domain

and frequency-domain methods because there are several other major methodological

differences between the two studies. The two studies considered here used different de-

convolution procedures to remove the effects of seismic wave propagation between the

earthquake and seismometers and recover the original earthquake signal. Additionally,

the two studies did not necessarily use the same seismograms for the same earthquakes.

To assess the contribution of the time-domain and frequency-domain methods to the ob-

served stress drop discrepancies, we must apply these methods to the same exact data.

We address this data consistency issue by transforming the SCARDEC STFs into the

frequency domain and finding their corner frequencies. This analysis ensures that any ob-

served stress drop discrepancy only reflects the different techniques used to infer rupture

duration in the time and frequency domains.

We pad the SCARDEC STFs with zeros to increase the length of the signal to 5 times

the original STF length and perform a Fourier Transform. We make two modifications to
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Figure 3.4. Correlation plots of AS09 frequency-domain and time-domain
estimates of stress drops for earthquakes grouped by magnitude. Correla-
tion is marginally better for smaller earthquakes (a) but significant scatter
still exists for all magnitude ranges. Number of earthquakes (N) indicated
for each magnitude group. Dashed line indicates ideal corresponding values.

the resulting amplitude spectrum before fitting the Brune model (Equation 3.3). First,

we low-pass filter the signal below 2 Hz. This ensures that high frequency noise does not
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unduly influence the fitting of the Brune model. Second, we evenly resample the spectrum

amplitude in log10 space using a 0.025 spacing and remove the zero frequency amplitude.

This creates additional points along the low frequency plateau of the spectrum and ensures

that the fitting procedure is not dominated by the high frequency falloff above the corner

frequency (Imanishi and Ellsworth, 2006). Using the Brune (1970) displacement spectral

model,

(3.3) A(f) =
Ω0[

1 +
(

f
fc

)n]
we solve for the best fitting corner frequency (fc), low frequency plateau height (Ω0),

and spectral falloff (n) in log10 space. At frequencies (f) below the corner frequency, the

spectral amplitude A(f) has a flat plateau. At frequencies above the corner frequency,

the spectrum decreases at falloff rate n. We perform a grid search to find the optimal

parameter combination that minimizes the least squares residuals. The corner frequency

grid search spans 0.001 Hz to 1 Hz in increments of 0.001 Hz. The low frequency plateau

search spans 0.5 to 3.5 times the maximum spectral amplitude in increments of 0.05. The

spectral falloff range covers 0.5 to 4.5 in increments of 0.1. Our procedure differs from

the AS09 corner frequency fitting procedures, which assumes the same fixed falloff rate

of 1.6 for all earthquakes (Allmann and Shearer, 2009).

The resulting stress drop estimates (Figure 3.5a) are better correlated (0.66) than

those for the two independent studies (0.07). The two estimates have a clear linear trend

with some scatter. The histogram of the stress drop ratios (Figure 3.5b) also has a much

smaller standard deviation (0.49) compared to the standard deviation of the ratios of

the two independent studies (0.77). The increased agreement between the two stress
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Figure 3.5. Correlation plots of frequency-domain and time-domain esti-
mates of stress drop and rupture duration for individual earthquakes show-
ing the effect of applying different methods to the same data. (a) Time-
domain stress drop estimates and corresponding frequency-domain esti-
mates for the same data. Dashed line indicates ideal corresponding values.
These estimates show better correlation compared to Figure 3.2. (b) His-
togram of the logarithm of the ratios of frequency-domain to time-domain
stress drop estimates with mean and standard deviation (SD) indicated.
All units are log10. (c) Corner frequency (fc) and inverse rupture duration
( 1
T
) estimates show a strong correlation.

drop estimates reflects the improved correlation (from 0.56 to 0.84) between the corner

frequency and inverse rupture duration estimates (Figure 3.5c).

The remaining scatter between corner frequency and inverse rupture duration (Fig-

ure 3.5c) may reflect uncertainties in the analytical procedures or real differences in the

constant of proportionality (q) between corner frequency and inverse rupture duration

between individual earthquakes (Atkinson and Beresnev, 1997). We conjecture that the

different deconvolution procedures between the two studies may account for the low cor-

relation between the AS09 corner frequencies and the inverse rupture duration estimates

(Figure 3.2c). Additional sources of uncertainty may include the specifics of how rup-

ture duration and corner frequency are estimated and the possibility that the two studies

included different seismograms for the same earthquakes.



62

3.7. Observed Stress Drop Trends Vary Depending on Analysis

Spatial stress drop trends that appear in one dataset do not necessarily appear in the

other. Figure 3.6 shows the spatial distribution of the stress drops for each dataset. The

AS09 frequency-domain stress drop dataset shows a few spatially coherent stress drop

patterns. Earthquakes along Central America have relatively lower stress drops, whereas

earthquakes in southern Central Asia and Iran have higher stress drops (Figure 3.6a).

In the time-domain results (Figure 3.6b), the negative anomaly stress drop trend along

Central America is less pronounced, and the southern Central Asia and Iran earthquakes

do not show a spatially coherent pattern.

Comparison of the stress drop ratios (AS09 frequency-domain stress drop divided by

the time-domain stress drop) allows for the identification of spatially coherent patterns

in the ratio of the two datasets’ values. In Figure 3.6c, reds indicate earthquakes where

the stress drop ratio is larger than the average ratio, and blues indicate earthquakes

where the value is lower than average. A few regions exhibit some spatial coherence.

Ratios lower than expected (blues) dominate along the west coasts of Central and South

America. Conversely regions like the South Sandwich Trench in the South Atlantic,

southern Central Asia, and southern Iran seem to have predominantly higher stress drop

Figure 3.6 (following page). Stress drop estimates for the 894 earthquakes
in this study. Plots are mean (µ) centered so that the color scale corre-
sponds to the mean log10 value for that dataset. (a) Mean log10 centered
AS09 frequency-domain stress drop estimates. (b) Mean log10 centered
time-domain stress drop estimates. (c) Mean log10 centered ratio of AS09
frequency-domain and time-domain stress drop estimates. Only limited re-
gional stress drop coherence appears between the two studies.
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ratios than expected. Other regions, especially along the trenches of the Indian and Pacific

Oceans, show significant heterogeneity in stress drop ratios.

The large discrepancies between the time-domain and AS09 frequency-domain stress

drop estimates also suggest that reported trends in stress drop between tectonic environ-

ments may not be robust. Dividing our dataset of 894 earthquakes by fault geometry and

by lithospheric type produces strikingly different trends in stress drop distributions be-

tween the two studies. We classify earthquake fault geometry based on the plunge of the

P and T axes of the moment tensor (Frohlich, 1992) from the GCMT catalog (Ekström

et al., 2012). The Frohlich (1992) classification scheme is arbitrarily asymmetric with the

thrust classification spanning a larger segment of the T axis space (Todes et al., 2021). As

previously reported (Allmann and Shearer, 2009), the AS09 frequency-domain estimates

indicate that strike-slip earthquakes have a larger median stress drop (11.0 MPa) than

other fault geometries combined (2.7 MPa) (Figure 3.7, top). Our time-domain estimates,

however, indicate that the median strike-slip earthquake (1.4 MPa) is indistinguishable

from the other geometries combined (1.7 MPa) (Figure 3.7, top). Classifying the AS09

frequency-domain estimates by lithosphere type using the U.S. Geological Survey’s Seis-

moTectonic Regime Earthquake Calculator (STREC) software indicates that earthquakes

in oceanic lithosphere have a higher median stress drop (4.8 MPa) than non-oceanic litho-

sphere earthquakes (3.0 MPa) (Figure 3.7, middle). However, in the time-domain data,

the median estimate for oceanic lithosphere (1.8 MPa) is very similar to non-oceanic

lithosphere (1.6 MPa) (Figure 3.7, middle). Although the Wilcoxon rank-sum test in-

dicates that the higher strike-slip (p-value < 0.001) and oceanic lithosphere (p-value <

0.001) AS09 frequency-domain stress drops are statistically significant at the 0.01 level,
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Figure 3.7. Stress drop distributions for different tectonic environments.
Box and whisker plots show median value (vertical line), 1st and 3rd quar-
tiles (ends of boxes), and min/max values. The three rows indicate different
classification schemes with distinct sub-groups. Left and right columns are
AS09 frequency-domain and our time-domain estimates. Number of events
(N) in each subgroup indicated. Tectonic stress drop trends vary between
the two estimates.

the time-domain estimates for the same earthquakes show no statistically significant dif-

ferences (p-values of 0.26 and 0.27, respectively) (Table 3.1).

Classifying the earthquakes by tectonic setting using STREC indicates similar trends

between the two studies (Figure 3.7, bottom). Both show that subduction zone earth-

quakes have a lower median stress drop than active region (non-subduction) earthquakes—2.6

vs. 5.1 MPa for AS09 frequency-domain estimates and 1.4 vs. 2.0 MPa for time-domain

estimates. Regions of ongoing tectonic deformation that are not subduction zones are



66

Table 3.1. Wilcoxon rank-sum test (two-tailed) for statistical significance of
tectonic environment stress drop patterns. We compared the distributions
of strike-slip vs. non-strike-slip, oceanic vs. non-oceanic, and subduction
vs. active zone (non-subduction) earthquakes. We used the Wilcoxon rank-
sum statistic to test the null (H0) and alternative (Ha) hypotheses.

Hypothesis Test
AS09 Frequency Domain Time Domain
Statistic p-value Statistic p-value

H0: Strike-slip = Non-Strike-slip
Ha: Strike-slip ̸= Non-Strike-slip

92652 < 0.001 52843 0.26

H0: Oceanic = Non-Oceanic
Ha: Oceanic ̸= Non-Oceanic

83252 < 0.001 71396 0.27

H0: Subduction = Active
Ha: Subduction ̸= Active

58341 < 0.001 72922 0.003

considered active tectonic settings. These differences are statistically significant at the

0.01 level (p-values 0.003 and < 0.001 for time and frequency, respectively) (Table 3.1).

Although the stable (i.e. intraplate) earthquakes appear to have a higher stress drop

distribution in both estimates, the low number (N=17) of stable earthquakes means that

the statistical test has low power, which prevents us from making useful inferences. The

same limitation applies to volcanic earthquakes.

Although the tectonic setting patterns are consistent between the two datasets, the

fact that the fault geometry and lithosphere type trends differ so vastly is a cause for

concern. Such differences suggest that reported tectonic stress drop patterns may depend

on the details of the analytical procedures. Multiple analyses of the same earthquakes

can produce different patterns. Therefore, stress drop studies should be cautious before

treating apparent or reported differences as meaningful.

We observe similar discrepancies for stress drop relative to seismic moment. Figure

3.8 shows seismic moment plotted against the AS09 corner frequency and inverse rup-

ture duration for the 894 earthquakes in our dataset. As expected, corner frequency and
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inverse rupture duration, which are both inversely proportional to rupture dimension,

decrease with increasing seismic moment. However, the different slopes of the regression

lines for the AS09 frequency-domain and the time-domain data suggest that the relation-

ship between seismic moment and stress drop varies between the two methods. For the

AS09 frequency-domain data, the regression line has a slope similar to the lines of con-

stant stress drop, indicating that the mean stress drop is relatively constant with seismic

moment (Figure 3.8a). The slope of the regression line for the time-domain data (Figure

3.8b) differs from the lines of constant stress drop, indicating that mean stress drop in-

creases somewhat with increasing seismic moment. Once again, two analyses of the same

earthquakes produce different trends.

3.8. Discussion

Our results suggest that stress drop estimates are quite sensitive to the details of the

analytical procedure. Deconvolution methods used to remove propagation effects appear

likely to be a primary cause of the large discrepancies between the two studies. One key

difference is how each method accounts for seismic wave attenuation. The application

of an attenuation model seeks to correct for anelastic effects and thus more accurately

represent the source signal. For the SCARDEC STFs, Vallée and Douet (2016) apply the

same global, frequency-dependent attenuation model to all earthquakes. In contrast, the

AS09 deconvolution implicitly corrects for both path and seismic station site attenuation.

It also contains additional source-specific attenuation corrections based on a previous

upper mantle attenuation study (Warren and Shearer, 2002). Therefore, in the AS09

analysis, the applied attenuation model varies between earthquakes.
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Figure 3.8. Corner frequency and inverse rupture duration as a function
of seismic moment. (a) AS09 frequency-domain data. (b) Time-domain
data. Circles indicate earthquakes. Dashed lines are lines of constant stress
drop. Solid line indicates best-fitting regression line with intercept (β0) and
slope (β1) with 1 standard deviation and correlation indicated. Differing
regression line slopes suggest that the inferred relationship between seismic
moment and stress drop varies depending on details of analytical procedure.

Small variations in an attenuation model can significantly impact stress drop estimates

(Allmann and Shearer, 2009). Deconvolution models that assume higher attenuation yield

higher frequency content and thus higher stress drops. If the AS09 source-specific adjust-

ments accounted for most of the discrepancy between the time-domain and the AS09

frequency-domain stress drop estimates, we would expect a clear spatial correlation be-

tween the relative stress drop ratios (Figure 3.6c) and the source specific attenuation

adjustments made in AS09 (see Figure 3 in Allmann and Shearer, 2009). Earthquakes in
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the AS09 dataset that have larger attenuation adjustments would produce higher stress

drop values relative to the time-domain results and thus larger stress drop ratios. How-

ever, we do not observe any clear correlations between the stress drop ratios (Figure

3.6c) and Allmann and Shearer’s (2009) attenuation adjustments. This suggests that the

earthquake-specific attenuation adjustments are not the sole cause of the stress drop es-

timate discrepancies. The sensitivity of stress drop to attenuation corrections, however,

suggests that the attenuation model differences may still play a role in the observed stress

drop discrepancies.

The different deconvolution methods may have disparate impacts on different fre-

quencies. Because rupture duration estimates depend largely on the long period (low fre-

quency) components of the source time function and corner frequency estimates depend

largely on the short period (high frequency) components, the uncertainty introduced by

deconvolution may impact one method more than the other. These frequency-specific

effects will likely increase with the distance the waves travel, so stress drops inferred from

studies using seismograms at teleseismic distances would have greater uncertainties than

ones derived from seismometers closer to the source.

Our results have implications for ongoing debates about the meaning and utility of

stress drop in earthquake studies (Atkinson and Beresnev, 1997). Some studies attribute

geologic significance to this parameter itself (Kanamori and Anderson, 1975; Abercrombie,

2014), whereas others (Hanks and McGuire, 1981) use it as a proxy for the relative level

of high-frequency energy. At least for the datasets we compared, the lack of correlation

between stress drop estimates suggests that they might not be useful for either application.
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Our analysis shows that large uncertainties in stress drop estimates might lead to

erroneous inferences about earthquakes and their hazards. The theoretical link between

earthquake stress drop and ground motion is well established (Boore, 1983). Ideally,

ground motion prediction equations (GMPE) developed for one region could be applied

to another region if adjustments for regional differences in earthquake stress drop (and

other source and site processes) are made (Baltay and Hanks, 2014). This would be espe-

cially useful when assessing earthquake hazards in regions where existing ground motion

data are relatively sparse. However, incorrect assumptions about a region’s median earth-

quake stress drop level and between-event variability can lead to significant discrepancies

between a region’s expected hazard and its true hazard (Baltay et al., 2017).

Other studies have found that assumptions about the earthquake rupture (Kaneko

and Shearer, 2015) and variability between seismograms (Kane et al., 2011) can intro-

duce considerable uncertainty into stress drop estimation. Because stress drop estimates

contain many sources of uncertainty that are poorly understood, the teleseismic evidence

for differences in average stress drop between earthquakes in different regions is weak.

Therefore, it may be appropriate in many applications to assume that earthquakes in

different regions have approximately the same average stress drop.
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CHAPTER 4

Why Do Continental Normal Fault Earthquakes Have Smaller

Maximum Magnitudes?

4.1. Summary

Continental normal fault earthquakes have been reported to have smaller maximum

magnitudes (Mmax) than continental earthquakes with other fault geometries. This differ-

ence has significant implications for understanding seismic hazards in extensional regions.

Using the Global Centroid Moment Tensor (GCMT) catalog, we examine howMmax varies

with fault geometry in continental regions, whether these trends are robust, and potential

physical reasons for the smaller magnitudes of continental normal fault earthquakes.

We find that the largest continental normal fault earthquakes are in the low Mw 7

range whereas other fault geometries can reach Mw ≈ 8. The continental normal fault

earthquake magnitude-frequency distribution has a lower corner magnitude (one possible

parameterization of Mmax) than other fault geometries. The observed smaller continental

normal fault Mmax is not an artifact of classification criteria or catalog length. Probability

calculations indicate that the GCMT catalog is long enough to capture differences inMmax

due to fault geometry. Additionally, our analysis indicates that neither fault length nor

width is limiting the size of continental normal fault earthquakes. Fault complexity can

limit rupture extent, but it is likely not the primary reason for the smaller continental

normal fault Mmax.
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Rather, lithosphere yield stress (strength) appears to be the main factor controlling

Mmax. In extension, lithosphere is weaker, failing at lower yield stresses than in compres-

sion. Although this yield stress difference is consistent with smaller continental normal

fault earthquakes, it appears inconsistent with the occurrence of large oceanic normal

fault earthquakes. However, the largest oceanic normal fault earthquakes occur near sub-

duction zones where the lithosphere is bending. Laboratory studies indicate that bending

lithosphere likely has a higher yield stress than lithosphere in pure extension, which may

allow for larger oceanic normal fault earthquakes. Therefore, yield stress—rather than

fault geometry alone—appears to be the key factor limiting an earthquake’s maximum

magnitude.

4.2. Introduction

How fault geometry influences an earthquake’s maximum magnitude (Mmax) is impor-

tant for understanding seismic hazards. In continental regions, it is commonly assumed

that the largest normal fault earthquakes are smaller than those of other fault geome-

tries (Jackson and White, 1989). Some of the largest historical continental strike-slip

and thrust earthquakes include the 1906 Mw = 7.9 San Francisco (Biasi et al., 2013),

1911 Mw = 8.0 Chon-Kemin, Kazakhstan (Kulikova and Krüger, 2015), 1920 Mw = 8.0

Haiyuan, China (Deng et al., 1984), 1957 Mw = 8.1 Gobi-Altai, Mongolia (Okal, 1976),

1990 Mw = 7.7 Luzon, Philippines (Velasco et al., 1996), 2002 Mw = 7.8 Denali, Alaska

(Ekström et al., 2012), and 2008 Mw = 7.9 Wenchuan, China earthquakes (Yu et al.,

2010). These are much larger than the largest historical normal fault earthquakes, which

include the 1887 M = 7.5 Sonora, Mexico (Suter, 2015), 1915 Mw = 7.3 Pleasant Valley,



73

Nevada (Wesnousky, 2008), 1954 Mw = 7.1 Fairview Peak, Nevada (Doser, 1986), and

1959 Mw = 7.3 Hebgen Lake, Montana (Doser, 1985) earthquakes.

The past 100 years of earthquake observations suggest that continental normal fault

earthquakes have a smallerMmax. Whether this observation reflects a fundamental limita-

tion on their size, however, remains unresolved. This question has serious ramifications for

seismic hazard in extensional regions. The expected hazard of large normal fault systems,

like the 370-km-long Wasatch Fault, changes depending on whether the fault ruptures in

single or multiple segments (DuRoss et al., 2016). Likewise, the expected hazard posed by

low angle normal faults, which are widespread in extensional regions (Collettini, 2011) but

rarely host large earthquakes (Wernicke, 1995; Axen, 1999), strongly depends on whether

very large continental normal fault earthquakes will occur.

Before continuing, we should clarify the meaning of Mmax. Mmax can either be a

“hard” or “soft” cutoff value (Kagan, 2002). Under a “hard” Mmax framework, it is

assumed that no earthquakes can exceed Mmax. However with a “soft” Mmax, earth-

quakes can exceed Mmax but they are far less likely to occur than we would expect under

the linear Gutenberg-Richter magnitude-frequency relationship. It is helpful to think

of these “hard” and “soft” Mmax differences in terms of the Gutenberg-Richter earth-

quake magnitude-frequency relationship. For a “hard” Mmax, the Gutenberg-Richter

curve abruptly terminates at Mmax, above which no earthquakes are predicted. For a

“soft” Mmax, larger magnitude earthquakes are possible, but their frequency is signif-

icantly lower than predicted by the unrestricted Gutenberg-Richter curve. As Kagan

(2002) notes, a “soft” Mmax better reflects the behavior of dissipative physical systems,



74

and even if a “hard” Mmax exists, the uncertainties in seismic moment estimation mean

a “soft” Mmax is more appropriate. In this paper, Mmax refers to a “soft” Mmax.

Here, we examine the observation that continental normal fault earthquakes have a

smaller Mmax than other continental fault geometries. We explore whether these lower

magnitudes are an artifact of how we classify earthquakes or relatively short catalog

lengths, and (if the observation proves true) potential physical reasons for the smaller

magnitudes.

4.3. Data Set and Earthquake Classifications

We use the Global Centroid Moment Tensor (GCMT) catalog (Dziewonski et al.,

1981; Ekström et al., 2012) from its inception in 1976 through the end of 2019 to examine

how earthquake magnitudes vary with fault geometry. Although the catalog includes

earthquakes smaller than moment magnitude (Mw) 5, it is only complete down to Mw

5.8 (Kagan, 2003). We group earthquakes into fault geometry classifications - normal,

strike-slip, thrust, and oblique – using Frohlich’s (1992) classification based on the plunge

of the P, T, and B axes of the earthquake’s moment tensor. In this classification, normal

earthquakes have a P-axis plunge greater than 60◦ and thrust earthquake have a T-axis

plunge greater than 50◦.

We further divide the earthquakes into six categories by depth and tectonic environ-

ment. We classify earthquakes as shallow (≤40 km) or deep (40 - 200 km) and either

continental, oceanic, or convergent. These tectonic zone classifications are based on litho-

sphere type and proximity to a convergent plate boundary. For our purposes, convergent
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Table 4.1. Numbers of earthquakes Mw ≥ 5.8 in the GCMT database clas-
sified by tectonic environment and fault geometry.

Tectonic
Environment

Normal Thrust Strike-Slip Oblique Total

Shallow
Continental

135 267 321 162 885

Shallow
Oceanic

366 235 1251 158 2010

Shallow
Subduction

212 2329 443 441 3425

plate boundary earthquakes occur in island arcs, close to (< 20 km) or below the sur-

face of the subducting slab, or in continental lithosphere within 100 km of a convergent

plate boundary. Continental earthquakes are those within continental lithosphere that do

not meet the convergent criteria. Oceanic earthquakes occur within oceanic lithosphere

and do not meet either the convergent or continental criteria. In addition to continental

interiors, our definition of continental lithosphere includes continental shelves as well as

complex tectonic regions like the Aegean Sea and maritime Southeast Asia.

We classify the earthquakes using a slightly modified version of Matthews et al.’s

(2016) island arc and continental polygons. Unlike in the Matthews et al. (2016) dataset,

we classify the full Aleutian Islands chain, Japan, and the Okinawa Trough as island arcs.

Additionally, we reclassify the Sea of Japan and portions of the Bering Sea as oceanic

lithosphere. For convergent boundary earthquakes, we use the USGS’s SeismoTectonic

Regime Earthquake Calculator (STREC) to calculate the depth to the subducting slab

and Coffin et al.’s (1998) dataset to determine distance to a convergent boundary. Table

4.1 shows the number of shallow earthquakes (the earthquakes of interest here) by fault

geometry and tectonic environment with Mw ≥ 5.8.
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4.4. Global Distribution of Large Normal Fault Earthquakes

Large normal fault earthquakes occur in various tectonic environments. Figure 4.1

shows all Mw ≥ 6.5 normal fault earthquakes shallower than 200 km in the GCMT

catalog. Most great (Mw ≥ 8) normal fault earthquakes occur near subduction zones,

some within the subducted plate (Okuwaki, and Yagi, 2017). These larger normal fault

earthquakes occur due to bending (flexural) stresses within the subducting plate between

the trench and outer rise (Craig et al., 2014). Although spreading ridges have numerous

small normal fault earthquakes, Mw ≥ 6.5 earthquakes are rare there. The 1983 Chagos

Archipelago earthquake is the largest normal fault oceanic earthquake not located near

a trench. However, this earthquake may not be as large as it appears to be. Although

the GCMT catalog indicates Mw = 7.7, the U.S Geological Survey’s (USGS) National

Earthquake Information Center (NEIC) lists a lower value of Mw = 7.3.

Shallow continental normal fault earthquakes in the GCMT catalog, on the other hand,

rarely reach Mw > 7. The largest normal fault earthquakes occur in extensional plate

boundary zones like the Basin and Range province in the western U.S., Italy, eastern

Mediterranean, and the East Africa Rift extension zones. Since 1976 (the start of the

GCMT catalog), the largest normal fault earthquakes in these regions range from Mw 6.5

to Mw 7.1. Surprisingly, the Baikal Rift in Siberia has no large normal fault earthquakes

during this time period. Another conspicuously quiet region is the Basin and Range

province in the western U.S. Only one earthquake with Mw ≥ 6.5 appears in the GCMT

catalog (1983 Mw 6.9 Borah Peak, Idaho), although this region hosted large earthquakes

with Mw ≥ 7 earlier in the 20th century. Figure 4.2, showing the depth versus magnitude

of normal fault earthquakes, highlights the lack of large shallow continental normal fault
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Figure 4.1. Distribution of Mw ≥ 6.5 normal fault earthquakes in the
GCMT catalog. Circle color corresponds to tectonic environment and
depth. Circle size indicates magnitude. Color lines show convergent bound-
aries (red), spreading centers (black), and transform boundaries (blue) (Cof-
fin et al., 1998). No deep oceanic earthquakes exceed Mw 6.5.

earthquakes despite their prevalence near convergent plate boundaries and in oceanic

environments.

4.5. Variations in Earthquake Magnitude Distribution with Fault Geometry

The above observations show that over the past 44 years shallow continental normal

fault earthquakes rarely exceed Mw 7, although both shallow oceanic and convergent nor-

mal fault earthquakes can be much larger. To better understand how fault geometry im-

pacts magnitude, we compare the magnitude distributions of shallow continental, oceanic,
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Figure 4.2. Depth versus magnitude plot for normal fault earthquakes,
showing depth and tectonic environment classification. No deep oceanic
earthquakes have Mw > 6.5.

and convergent earthquakes (Figure 4.3). For each fault geometry (normal, thrust, strike-

slip, oblique), we fit a tapered Gutenberg-Richter (TGR) distribution using the maximum

likelihood method (Kagan, 2002). The TGR distribution includes two key parameters: b-

value and corner magnitude (Mc). The b-value corresponds to the slope of the cumulative

magnitude distribution line. Mc is one specific parameterization of the “soft” Mmax con-

cept (Kagan, 2002). The inclusion of Mc causes the distribution for larger magnitudes to

deviate below the straight line assumed in a traditional unrestricted Guttenberg-Richter

distribution. Although various hypotheses have been proposed for what b-value (Rundle,
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Figure 4.3. Tapered Gutenberg-Richter distributions for shallow continen-
tal (a), oceanic (b), and convergent (c) earthquakes. Color corresponds to
earthquake fault geometry with b-values and Mc listed for each fault geom-
etry. 1-sigma range indicated for each parameter.

1989) and corner magnitude (Okal and Romanowicz, 1994) physically represent, we sim-

ply use these values to parameterize the magnitude distribution curve. Previous studies

noted that normal fault earthquakes have a higher b-value (Schorlemmer et al., 2005) and

that Mc trends can differ between tectonic environments (Kagan, 2002).

The greatest differences between normal fault earthquakes and other geometries occur

for shallow continental earthquakes. For this environment, normal fault earthquakes have

the lowest Mc (6.9) compared to the other geometries (Figure 4.3a) but a similar b-

value. Thrust, strike-slip, and oblique geometries have an Mc between 7.6 and 7.7. The

more earthquakes in the dataset that exceed Mc, the better constrained the estimate of

Mc (Kagan, 2002). In the shallow continental environment, the normal fault Mc is best

constrained with seven earthquakes exceeding it (Figure 4.3a). The other fault geometries

have at most one or two earthquakes exceeding their Mc.

Normal fault earthquake distributions do not stand out in shallow oceanic (Figure

4.3b) or shallow convergent (Figure 4.3c) environments. In shallow oceanic environments,
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normal fault earthquakes have an Mc (8.1) indistinguishable from strike-slip (8.2) and

thrust (7.8) geometries, however these are all poorly constrained. In the shallow conver-

gent environment, the b-values are all similar, but thrust earthquakes have the highest Mc

(9.0), reflecting the large megathrust earthquakes along convergent interfaces. Although

normal fault earthquakes have the next highest Mc (8.5), this estimate is poorly con-

strained. However, the normal fault Mc for convergent earthquakes appears to be higher

than the corresponding Mc values for strike-slip and oblique earthquakes, although these

are also poorly constrained. Thus, normal fault earthquakes have significantly smaller

maximum magnitudes compared to other fault geometries only in shallow continental

regions.

4.6. Smaller Normal Fault Mmax Not Due to Classification

Our analysis indicates that in the GCMT catalog, shallow continental normal fault

earthquakes have smaller maximum magnitudes. To assess the robustness of this result,

we examine how fault geometry classification impacts our assessment of Mmax. The hard

cutoffs in Frohlich’s (1992) classification cause similar earthquakes just above and below

the cutoff to be grouped separately. In this classification, normal-fault-like earthquakes

with P-axis plunges just below 60◦ are classified as oblique. If the smaller continental

normal fault Mmax observation is robust, oblique earthquakes just below the cutoff should

have a similar Mmax to those above the cutoff.

A plot of magnitude versus P-axis plunge (Figure 4.4a) shows that oblique earth-

quakes just below the 60◦ cutoff are no bigger than those above it. Shallow continental

earthquakes (Figure 4.4a) show a clear pattern in maximum magnitude as P-axis plunge
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Figure 4.4. Plot of magnitude versus P-axis plunge for shallow continental
(a), oceanic (b), and convergent (c) earthquakes. Circle color corresponds
to fault geometry classification. In panel a, the dashed line indicates the
drop in Mw with increasing P-axis plunge. In panel b, the dashed line shows
constant Mw with increasing P-axis plunge. In panel c, the dashed circle
indicates megathrust earthquakes.

increases from 0◦ to 90◦. Maximum magnitudes approach Mw 8 for strike-slip, thrust, and

oblique earthquakes with P-axis plunges less than 50◦. Above 50◦ the largest earthquakes

drop to approximately Mw 7 for both normal and oblique geometries. Thus, maximum

magnitude drops as the fault geometry becomes more normal-fault like

We do not observe similar sharp drops in maximum magnitude as the P-axis plunge

increases for shallow oceanic (Figure 4.4b) or shallow convergent (Figure 4.4c) environ-

ments. For shallow oceanic earthquakes, the largestMw stays relatively constant as P-axis

plunge increases. A different Mmax trend occurs for shallow convergent earthquakes. In-

stead of a constant Mmax across the P-axis plunge range, a peak occurs between 30◦ and

40◦, corresponding to megathrust earthquakes at subduction interfaces. Aside from these

megathrust earthquakes, the overall trend between Mmax and P-axis plunge appears flat.
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4.7. Smaller Normal Fault Mmax Not Due to catalog Length

In the GCMT catalog, shallow continental normal fault earthquakes have a smaller

corner magnitude (due to the lack of large earthquakes), but is 44 years long enough to be

confident in these differences? We explore this question using probability density functions

(PDF) to estimate the likelihood of observing these trends. The tapered Gutenberg-

Richter distribution (Figure 4.3) assumes that the magnitude of each shallow continental

normal fault earthquake is independent and drawn from the same PDF (Kagan, 2002).

Hence, we can calculate the probability that an earthquake falls within a given magnitude

range. By assuming that the earthquake magnitudes are independent and identically

distributed, we can also calculate the probability that a number of earthquakes all fall

within the same magnitude range by taking the probability for one earthquake and raising

it to a power equal to the number of earthquakes. We can use the same procedure to

estimate the probability that no earthquakes exceed a specified magnitude.

The GCMT catalog contains 135 shallow continental normal fault earthquakes with

Mw ≥ 5.8. We calculate the probability that none of 135 such earthquakes would have

Mw > 7.1, the largest in the catalog, for a range of b-values and Mc. A high probability

indicates the lack of earthquakes with Mw > 7.1 is a likely outcome. A low probability

indicates that it is an unlikely outcome. This lets us assess whether our Mc estimate

of 6.9 for shallow continental normal fault earthquakes is reasonable or is artificially low

because the GCMT catalog is too short to capture rarer larger events.

The probability estimates show that the catalog is long enough to provide a reasonable

estimate of Mc. In Figure 4.5, the purple lines correspond to the probability that Mw

7.1 is the largest earthquake for three different b-values and a range of Mc values. As
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Figure 4.5. Probability that for 135 earthquakes, Mw 7.1 is the largest ob-
served earthquake for a range of Mc using a tapered Gutenberg-Richter
distribution. Purple lines indicate probabilities for different b-values. Best
estimate of shallow, normal continental Mc (black line) with 1 sigma indi-
cated (grey shading). Corner magnitudes for other fault geometries indi-
cated.

Mc increases, the probability that an Mw = 7.1 earthquake is the largest in the catalog

decreases. For our best estimate of b-value (1.0) and Mc (6.9) there is an approximately

70% chance that an Mw = 7.1 would be the largest earthquake. If we assume a lower

b-value (0.8) and higher Mc (7.0) based on the parameters’ 1-sigma uncertainties, then

the probability decreases to 20%. Conversely, for a higher b-value (1.1) and lower Mc

(6.7), the probability is closer to 95%.
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It is highly unlikely that the Mc for shallow continental normal fault earthquakes is as

large as the Mc for thrust, strike-slip, and oblique earthquakes, which we estimated to be

between 7.6 to 7.7. If normal fault earthquakes had an Mc value to similar to the other

fault geometries, there is less than an approximately 5% chance (and possibly even lower

for smaller b-values) that the observed Mw = 7.1 event would be the largest shallow conti-

nental normal fault earthquake. These low probabilities indicate that shallow continental

normal fault earthquakes likely have a smaller Mc (and therefore Mmax) than the other

fault geometries, and the GCMT catalog is long enough to observe these differences.

4.8. Reconciling GCMT Mmax with Early Instrumental Earthquakes

Larger magnitude historical earthquakes that pre-date the GCMT catalog have been

reported in extensional environments. However, the lack of a global seismographic network

makes it difficult to compare historical instrumental earthquake magnitudes to modern

instrumental estimates. Accurate Mw estimates for pre-instrumental earthquakes require

well-constrained fault length, width, and slip measurements, but we only directly observe

surface rupture length and surface displacement. For instance, the M 7.5 estimate for

the 1887 Sonora Earthquake is based on extrapolating Wells and Coppersmith’s (1994)

empirical scaling relations between surface rupture length and Mw (Suter, 2015). For

early instrumental-era earthquakes with few available seismograms like the 1915 Pleas-

ant Valley, Nevada earthquake, discrepancies exist between the Mw = 7.3 geologic Mw

estimate (Wesnousky, 2008) and instrumental Mw = 6.9 to 7.0 estimates (Doser, 1988).

These historical large extensional environment earthquakes may also contain signif-

icant oblique motion (Doser and Yarwood, 1990) resulting in an oblique rather than
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normal fault classification using the Frohlich (1992) criteria. For instance, the 1910

Mw = 7.4 Rukwa earthquake, the largest instrumentally recorded earthquake in East

Africa (Ambraseys. 1991), appears to have a significant strike-slip component (Ayele and

Kulhánek, 2000). The 1956 Mw = 7.7 Amorgos, Greece earthquake—the largest Aegean

Sea earthquake over the past 100 years—may also contain significant oblique motion be-

cause some studies find predominantly normal faulting (Okal et al., 2009) whereas others

indicate it was primarily strike-slip (Papazachos & Delibassis, 1969; Ritsema, 1974). In

the Baikal rift region, the largest instrumentally recorded earthquake, the complex 1957

Mw = 7.8 Musik earthquake, involved primarily strike-slip faulting (Doser, 1991). The

1959 Mw = 7.3 Hebgen Lake, Montana earthquake is another large historical event in an

extensional environment with a somewhat complicated geometry. Doser’s (1985) body-

wave inversion suggests that this earthquake is best described by two subevents, the larger

of which contains oblique motion, however the surface rupture indicates predominantly

normal faulting displacement (Johnson et al., 2018).

How do we reconcile the absence of any shallow, normal fault earthquakes with an

Mw > 7.1 in the GCMT catalog with the presence of larger continental normal fault

earthquakes in the pre-GCMT instrumental record? Although there is some uncertainty

in the moment magnitude and geometry of these early instrumental earthquakes, the

1959 Hebgen Lake, Montana and possibly the 1915 Pleasant Valley, Nevada are Mw = 7.3

earthquakes that exceed the largest GCMT shallow continental normal fault earthquakes.

However, the occurrence of these larger magnitude earthquakes is expected given the

longer observation window.
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Figure 4.6. Probability of observing at least 1 (a), 2 (b), or 3 (c) shallow
continental normal fault earthquakes ≥ Mw 7.3 for a given combination of
b-value and Mc over a 120-year period. Colors and contours indicate the
probability. The red star and dashed red ellipse indicate the best fitting
b-value and Mc and 2-sigma uncertainty ellipse estimated from the GCMT
shallow continental normal fault earthquakes.

If we assume the annual rate of shallow, continental, normal fault earthquakes with

Mw ≥ 5.8 is constant (approximately 3.07 per year based on the GCMT catalog), then

we can calculate the probability of observing these larger earthquakes over the length

of the historical instrumental record. Figure 4.6 shows the probability of at least one

(Figure 4.6a), two (Figure 4.6b), and three (Figure 4.6c) shallow continental normal fault

earthquakes with Mw ≥ 7.3 occurring in a 120-year span—the approximate length of

the historical instrumental catalog (Di Giacomo et al., 2015)—for a range of Mc and b-

values. The red star and dashed red ellipse indicate the best fitting b-value and Mc and

2-sigma uncertainty ellipse estimated from the GCMT shallow continental normal fault

earthquakes.

The probability estimates based on GCMT b-value and Mc parameters seem to be

roughly in line with what we observe in the historical instrumental record, but the GCMT-

based Mc estimate might be slightly low. The best fitting b-value and Mc parameters
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indicate that there is a 20% to 30% chance of at least one shallow continental normal

fault earthquake with Mw ≥ 7.3 (1959 Hebgen Lake) in the historical instrumental record

(Figure 4.6a). If we consider the upper end of the 2-sigma uncertainty ellipse, there is an

approximately 60% chance. The probability of at least two earthquakes with Mw ≥ 7.3

(1915 Pleasant Valley and 1959 Hebgen Lake) occurring is significantly lower (Figure

4.6b). The best fitting b-value and Mc parameters indicate less than a 10% chance of

at least two earthquakes with Mw ≥ 7.3 occurring, but this rises to at least 20% if

we consider the upper end of the 2-sigma uncertainty. Although 20% may seem low,

it is still a higher probability than rolling a specific number on a 6-sided die. More

importantly, due to the tight clustering of the probability contours, a small increase in

Mc to 7.0 or 7.1 increases the probability to between 50 and 90%. In the scenario of

at least three earthquakes with Mw ≥ 7.3 (Figure 4.6c), only a small increase in Mc

above the GCMT-based estimate is needed to increase the probability to 50%. Thus an

Mc near 7.0 could account for the observed shallow continental normal fault earthquake

magnitude distribution over the entire historical instrumental record. A normal fault Mc

of 7.0 would still be significantly lower than observed Mc’s (7.6-7.7) for thrust, strike-slip,

and oblique earthquakes, indicating significant magnitude distribution differences due to

fault geometry.

4.9. Fault Dimensions Not a Limitation on Normal Fault Earthquake

Magnitude

Understanding why shallow continental normal fault earthquakes have a smaller Mmax

has important implications for seismic hazard analysis. Because larger earthquakes require
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longer faults, fault length may limit the size of normal fault earthquakes. We examine

this possibility by comparing the global distribution of extensional faults from the Global

Earthquake Model (GEM) Global Active Fault Database (Styron and Pagani, 2020) to the

expected surface rupture lengths for normal fault earthquakes (Wells and Coppersmith,

1994).

The fault length histogram (Figure 4.7) shows that are at least 890 normal faults

long enough to host earthquakes with Mw ≥ 7.0, 547 faults long enough for earthquakes

with Mw ≥ 7.2, 223 faults long enough for earthquakes with Mw ≥ 7.5, and 22 faults

long enough for earthquakes Mw ≥ 8.0, especially considering the variability in earth-

quake rupture length for a given magnitude. Because Wells and Coppersmith’s (1994)

regression only includes earthquakes with magnitudes from 5.2 to 7.3, it is possible that

larger earthquakes do not follow the same relation between fault length and magnitude.

However, larger earthquakes generally follow similar trends as smaller earthquakes (Fig-

ure 4.8), but earthquakes with similar magnitudes can have very different surface rupture

lengths. For Mw < 7.5, normal fault rupture lengths do not appear to differ signifi-

cantly from the other two fault geometries, so there is little reason to suggest that larger

earthquakes would behave differently.

Although the fault length data suggest that some continental normal faults are long

enough for larger magnitude earthquakes, the fault database does not indicate how contin-

uous these large faults are. A comprehensive study of normal faults in the Afar region of

the East Africa Rift showed that nearly all the faults showed some segmentation regardless

of fault length (Manighetti et al., 2015). Fault segmentation is also clearly visible along

the Wasatch Fault Zone in Utah and the Fucino Fault Zone in Italy (DuRoss, 2016).



89

0 50 100 150 200 250 300 350
Fault Length (km)

0

100

200

300

400

Nu
m

be
r o

f F
au

lts

M
7.0

M
7.2

M
7.5

M
8.0

Figure 4.7. Histogram of active continental normal fault lengths from the
GEM-Active Fault database. Vertical lines indicate expected magnitude
for the surface rupture length shown (Wells and Coppersmith, 1994), and
extrapolated at higher magnitudes.

Fault segments are delineated by fault gaps, fault branches, fault steps, or changes in

fault strike, and it is thought that these complexities can limit rupture extent and hence

earthquake magnitude (Wesnousky, 1988) but not always (Ando, 1975).

Detailed paleoseismic and historical rupture studies of normal fault earthquakes sug-

gest that fault complexities sometimes, but not always, control rupture extent. A paleo-

seismic study (DuRoss et al., 2016) found that, along the central portion of the Wasatch

Fault Zone, the most recent earthquakes (< 3 ka) appear to be confined to individual



90

101 102

Surface Rupture Length (km)

6.0

6.5

7.0

7.5

8.0

8.5

M
w

Mapped Surface Rupture (Anderson et al. 2017)
Normal
Thrust
Strike-Slip
Pre-1968
Post-1968

Figure 4.8. Mapped surface rupture length versus magnitude for large his-
torical earthquakes. Data compiled by Anderson et al. (2017). Color
corresponds to geometry. Shape corresponds to earthquake date.

fault segments. However, older earthquakes may have been multi-segment ruptures. His-

torical earthquake fault rupture studies also suggest a range of behavior. Jackson and
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White (1989) observed that the largest normal fault ruptures consist of multiple, dis-

jointed segments. Similarly, DuRoss et al. (2016) noted that while some of the largest

historical Basin and Range province normal fault earthquakes appear to be limited to

a single fault segment, others overcame fault complexity and ruptured as least parts of

multiple segments.

If fault complexity were the primary reason for smaller normal fault earthquakes, we

would expect to see a stronger spatial correlation between fault rupture extent and fault

complexity for normal fault earthquakes compared to other fault geometries. However,

this does not appear to be the case. In a study of historical earthquake fault step size—the

perpendicular distance between two distinct fault traces—Wesnousky (2008) noted that

both strike-slip and normal fault earthquake rupture end points correspond to fault steps

approximately 70% of the time. However, normal fault earthquakes can jump larger fault

steps (5 to 7 km) than strike-slip earthquakes (3 to 4 km). In a larger study, Biasi and

Wesnousky (2016) also observed that normal and thrust fault earthquakes can propagate

across larger fault steps than strike-slip earthquakes. They also observed that for similar

length ruptures, dip-slip earthquakes (normal and thrust) include more gaps—the absence

of surface rupture along an assumed continuous fault trace—than strike-slip earthquakes.

Between 60% to 70% of the studied earthquake ruptures end at either a fault step or

fault end, with strike-slip earthquakes more likely to end at a fault step while dip-slip

earthquakes end at the fault end. For both strike-slip and dip-slip ruptures, in 30% to

40% of earthquakes the rupture ends but the fault trace continues (Biasi and Wesnousky,

2016).
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Fault bends—changes in fault strike—are also thought to limit rupture extent. How-

ever, Biasi and Wesnousky (2017) found that fault bends at dip-slip rupture ends are

no larger than bends within the rupture. In contrast, the ends of strike-slip ruptures

corresponded to larger bends than those within the ruptures. These results suggest that

strike-slip earthquake rupture extent is more sensitive to fault bends than dip-slip earth-

quakes. These multiple, detailed fault rupture studies show that fault complexity limits

earthquake rupture, but not that normal fault earthquakes are more sensitive to this com-

plexity. In many cases, normal fault ruptures seem to overcome more fault complexity

than strike-slip earthquakes.

Fault width, the down-dip fault extent, also impacts earthquake magnitude. As mag-

nitude increases, so does fault width (Wells and Coppersmith, 1994). However, width is

limited by the depth of the seismogenic zone (Sibson, 1986). For a given seismogenic zone

depth, steeply dipping faults will have smaller widths than shallowly dipping faults. Along

the San Andreas Fault, which is capable of hosting Mw ≈ 8.0 earthquakes, estimates of

the seismogenic zone thickness are approximately15 km (Nazareth and Hauksson, 2004),

so large earthquakes can occur even for relatively thin seismogenic zones. In extensional

environments, seismogenic zones are on average 10 to 15 km thick (Jackson and Blenk-

insop, 1993), although some zones like the Baikal Rift have seismogenic zones more than

30 km thick (Déverchère et al., 2001). Extensional seismogenic zones are thick enough to

host larger magnitude earthquakes, especially considering that most normal fault earth-

quakes have dips between 30◦ to 60◦ (Jackson and White, 1989; Collettini and Sibson,

2001), increasing the potential fault area within the seismogenic zone. Therefore, neither
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fault length nor fault width appears to limit the size of shallow continental normal fault

earthquakes.

4.10. Lithosphere Yield Stress Controls Mmax

If fault length and width are not limiting the size of continental normal fault earth-

quakes, then what is? Some argue that the primary energy source driving faulting dif-

fers between normal fault earthquakes and other fault geometries and may impact Mmax

(Doglioni et al., 2015; Bignami et al., 2020). Others argue that continental lithosphere

may be too weak to host large normal fault earthquakes (Jackson andWhite, 1989). Litho-

sphere is weaker in extension than in compression (Sibson, 1977). Lithosphere yield-stress

envelopes (also termed strength envelopes) (Figure 4.9), showing the difference between

the most compressive and least compressive principal stress axes required to induce fail-

ure, illustrate that the lithosphere fails at lower stress differentials in extension than in

compression. Previous research also indicates a link between earthquake magnitude and

the lithosphere stress differential (Scholz, 2015). In laboratory experiments, Scholz (1968)

observed that lower stress differentials produce larger b-values (relatively few large events)

and proposed that large magnitude events occur when multiple high stress asperities are

linked in a rupture. Schorlemmer (2015) and Petruccelli et al. (2019) also observed larger

b-values for normal fault earthquakes and attributed them to smaller stress differentials

in extensional environments.

For the yield stress envelopes in Figure 4.9, we use a modified equation 22a from Burov

(2011)

∆σmax(z) = sign(ϵ)min
(
|σb|, |σd|

)
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where σb and σd are the maximum brittle and ductile yielding stresses, sign(ϵ) is a sign

function equal to -1 for compression and 1 for extensions, and z is depth.

We use equation 12 from Burov (2011) for brittle deformation

σb = αρgz(1− λ)

where α is a fault geometry dependent parameter, ρ is the rock density, g is the acceleration

due to gravity, and λ is the ratio of water to rock density. We use dislocation creep

(modified from equation 15 in Burov, 2011) for ductile deformation.

σd =

(
ϵ̇

Afw∆exp(−Q(RT )−1)

)(1/n)

where A and n are material constants, Q is activation energy, ϵ̇ is strain rate, fw is the

water fugacity factor, R is Boltzmann gas constant, and T is temperature. For oceanic

lithosphere we assume a dry olivine rheology. For continental lithosphere, we assume

a two-layer rheology with a wet quartz crust and wet olivine mantle (Kohlstedt et al.,

1995). We use a half-space cooling model to calculate the oceanic lithosphere and a

steady-state model with shallow radioactivity for continental lithosphere—see equation

4.31 in Turcotte and Schubert (2014). Parameters used in these calculations are listed in

Tables 4.2 and 4.3.

Because lithosphere is weaker in extension for both oceanic (Figure 4.9a) and con-

tinental (Figure 4.9b) lithosphere, we would expect normal fault earthquakes to have a

smaller Mmax in both shallow continental and oceanic environments. The lithosphere

yield-stress argument is compelling except that oceanic earthquakes do not appear to

have the same Mmax pattern as continental earthquakes. However, a closer examination
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of shallow oceanic normal fault earthquakes suggests that their Mmax may actually be

similar to their continental brethren.

As shown in Figure 4.1, the largest oceanic normal fault earthquakes occur between the

trench and outer rise due to bending stresses in the subducting plate (Craig et al., 2014).

In the GCMT catalog, these outer rise events reachMw ≈ 8, and larger ones, including the
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Table 4.2. Lithology parameters used in yield stress envelope calculations.
Values from Burov (2011).

Mineral/Rock A (MPa−n s−1) n Q (kJ mol−1) Density (kg/m3)

Wet Quartz 1e-4 2.4 160 2700

Wet Olivine 4.876e6 3.5 515 3300

Dry Olivine 1e4 3 520 3300

Table 4.3. Earth structure and geotherm calculation parameters.

Coefficient of Friction 0.5

Oceanic thermal diffusivity 0.804e-6 m2s−1

Oceanic base temperature 1330 ◦C

Oceanic surface temperature 0 ◦C

Continental surface temperature 10 ◦C

Continental mantle heat flow 30 mWm−2

Length scale of radioactivity 10 km

Continental surface heat flow 56.5 mWm−2

Continental thermal conductivity 3.35 Wm−1◦C−1

Continental crustal thickness 35 km

1933 Mw = 8.6 Sanriku earthquake off the coast of Japan (Kanamori, 1971), have been

observed. If we remove outer rise earthquakes from the dataset, Mmax drops as the P-axis

plunge increases, as observed for continental earthquakes (Figure 4.10). The outlier is

the 1983 Chagos earthquake, with a significant discrepancy between GCMT (Mw = 7.7)
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and USGS NEIC (Mw = 7.3) magnitude estimates. If the USGS NEIC Mw better reflects

the true value, then shallow oceanic earthquakes away from trenches have Mmax in the

low 7 range. This event occurred in a tectonically complex region and may not represent

genuine oceanic lithosphere away from plate boundaries (Wiens & Stein, 1984).

Why might normal faulting earthquakes in flexural regions between the trench and

outer rise have a higher Mmax than those in extensional regions far from the trench?

Perhaps this occurs because the stress fields due to plate bending differ from those due to

pure extension. For a homogenous material, pure extension produces uniform extensional

stress within the material (Figure 4.11). Bending, however, produces extensional stress

that is highest at the top of the material and decreases until the neutral plane where no

extensional stresses occur (Turcotte and Schubert, 2014). Below the neutral plane, the

material is in compression that increases with depth, producing thrust fault earthquakes

(Craig et al., 2014).

The different stress fields may cause different failure behavior. Homogenous material

fails at the same yield stress in both pure extension and bending. However, experiments

(Campo, 2008; Whitney and Knight, 1980) show that materials are generally stronger in

bending than in pure extension. Small defects in materials cause this strength discrepancy

(Leguillon et al., 2015). In pure extension with a uniform stress field, when stress exceeds

the yield stress of the weakest point, the material fails. In bending, however, stress in

parts of the material may exceed the yield stress of the weakest point. Unless the weak

point is near the outer surface, it will not experience the highest bending stresses. Instead,

other regions will continue to experience increasing stress levels until the weak zone’s yield

stress is reached. When it fails, other parts of the material are actually at higher stresses.
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Although the real stress state within lithosphere is complicated (Buck, 1991; Craig et

al., 2014), these simple models suggest that varying yield stress may explain normal fault



99

σx σx σx σx

Extension Bending (Flexure)
x

y

Figure 4.11. Schematic plot of stress within homogenous material for ex-
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ermost points.

earthquake magnitude. In bending oceanic lithosphere, when failure occurs, the additional

areas of high stress may allow earthquakes to grow large. However, in continental litho-

sphere under pure extension, the yield stresses may be too low to allow large magnitude

earthquakes. This reasoning follows Scholz’s (1968) hypothesis that large earthquakes

occur from linking several high stress asperities.

Therefore, the mode of deformation’s impact on yield stress appears to be important

for maximum earthquake magnitude. The weakness of lithosphere in extension appears

to prevent shallow continental normal fault earthquakes from growing as large as those for

other fault geometries. However, bending oceanic lithosphere’s ability to produce large

normal fault earthquakes indicates that fault geometry alone is an insufficient predictor of

Mmax. Understanding the lithosphere’s stress state and deformation mode is thus critical

in assessing a region’s seismic hazard.
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4.11. Conclusion

Our analysis shows that shallow continental normal fault earthquakes have a smaller

maximum magnitude (in the low Mw 7 range) than other fault geometries (Mw ≈ 8). This

maximum magnitude difference appears to be real and not an artifact of catalog length or

earthquake classification. Although fault length, width, and complexity can impact the

extent of an earthquake’s rupture, these do not appear to be the primary reason for the

smaller maximum magnitudes of shallow continental normal fault earthquakes. Instead,

we propose that the weakness of lithosphere in extension is what primarily limits the size

of normal fault earthquakes. The smaller maximum magnitudes of shallow continental

normal fault earthquakes have important implications for seismic hazard assessment in

extensional tectonic environments. In such environments, normal fault earthquakes are

unlikely to exceed a low Mw 7 earthquake, even if the fault system is long enough to host

much larger earthquakes.
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CHAPTER 5

A More Realistic Earthquake Probability Model Using

Long-Term Fault Memory

5.1. Summary

Forecasts of the probability of a large earthquake occurring on a fault during a spe-

cific time interval assume that a probability distribution describes the inter-event times

between large earthquakes. However, current models do not incorporate fundamental as-

pects of the strain accumulation and release processes that cause earthquakes. In these

models, earthquake probabilities remain constant or even decrease after the expected

mean recurrence interval, implying that additional accumulated strain does not make an

earthquake more likely. Moreover, these models assume that large earthquakes release all

accumulated strain, despite evidence of partial strain release in earthquake histories show-

ing clusters and gaps. Here we calculate earthquake probabilities using the Long-Term

Fault Memory (LTFM) model, which better reflects the strain accumulation and release

processes. Using the southern San Andreas fault as an example, we show that LTFM

yields a more realistic earthquake forecast. Whereas current models estimate the earth-

quake probability will be essentially unchanged in the next 80 years, LTFM predicts that

the probability will continue to grow, resulting in a 30-year earthquake probability that is

38% higher than the other models. By allowing partial strain release, LTFM incorporates

the specific timing of past earthquakes, which commonly used probability models cannot
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do. Thus LTFM better forecasts the exceptionally short inter-event time before the 1857

Fort Tejon earthquake. Although LTFM is more complex than existing models, it is also

more powerful.

5.2. Introduction

For decades, seismologists have tried to predict when, where, and how large the next

earthquake on a major fault would be. However, to date these attempts have been un-

successful (Hough, 2016). Instead, seismologists develop forecasts of the probability of an

earthquake occurring in a region over a given timeframe (e.g., Field et al., 2015; Schor-

lemmer et al., 2018). These estimates are incorporated in mitigation policies, notably via

hazard maps that predict the shaking levels that structures should withstand and raise

public awareness of seismic hazards.

The forecasts are based on the concept of the earthquake cycle, in which the strain that

accumulates between large earthquakes due to motion between the two sides of a locked

fault is released by slip on the fault when an earthquake occurs (Reid, 1910). However,

current methodology does not include fundamental aspects of the strain accumulation and

release process. Here, we present a new method of deriving probability estimates using the

recently introduced Long-Term Fault Memory (LTFM) model, which better reflects the

strain accumulation and release processes and allows temporal clusters of earthquakes and

gaps between them (Salditch et al., 2020). We apply this method to the Mojave section of

the San Andreas fault in California—a region with a well-documented earthquake history

at Pallett Creek (Weldon et al., 2005; Scharer et al., 2010)—and show that it produces

more realistic forecasts.
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Table 5.1. Dates of the most recent 10 earthquakes along the Pallett Creek
section of the San Andreas fault as listed in Table 4 in Scharer et al. (2011).
Note that the earthquake in the year 645 is event C from Biasi et al. (2002)

Date

645 728 805 957 1102 1181 1339 1508 1812 1857

5.3. Limitations of Current Earthquake Probability Methods

The Mojave section of the San Andreas is of concern because large earthquakes occur

on average every 135 years, most recently the 1857 M = 7.9 Fort Tejon earthquake. Prior

to 1857, a M7.5 earthquake occurred in 1812 (an inter-event time of 45 years), which was

preceded by a long 304-year quiescent period (Scharer et al., 2011) (Table 5.1). Stud-

ies suggest that the probability of a large earthquake here in next 30 years is 20 - 25%

(Biasi et al. 2002; Field et al., 2015). How such probabilities are calculated varies be-

tween studies but follows a general methodology. Studies start with a paleoseismic record

giving dates of large past earthquakes (Figure 5.1A) and fit some probability density

function (PDF) to the distribution of inter-event times (Figure 5.1B). Here we show four

models, the time-independent (which assumes the probability is constant with time) expo-

nential—commonly referred to as the Poisson model in seismological literature—and the

time-dependent (which assume the probability changes with time) lognormal, Brownian

Passage Time (BPT), and Long-Term Fault Memory (LTFM) models. From these PDFs,

one can calculate the probability of a large earthquake during a time period, typically the

next 30 years, given that one has not occurred since 1857 (Figure 5.1C).

The estimated 30-year probabilities depend dramatically on each PDF’s assumption

about how the probability of an earthquake changes with time. For the time-independent
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Figure 5.1. Estimating earthquake probabilities. (A) Pallett Creek paleo-
seismic record of past earthquakes (Scharer et al., 2011, listed in Table 5.1).
(B) Histogram of inter-event times (grey bars) and estimated probability
distributions for inter-event times for exponential, lognormal, BPT, and
LTFM models. The lognormal and BPT models have a coefficient of varia-
tion of 0.54. (C) Conditional probability of an earthquake (EQ) in the next
30 years given the date of the last earthquake. Only LTFM yields steadily
rising and thus higher earthquake probability, consistent with continuing
strain accumulation on the San Andreas fault.

exponential model, the 30-year probability stays constant at 20% (Fig 1C). The 30-year

probabilities change with time for the time-dependent lognormal, BPT, and LTFM mod-

els. In 2022, the lognormal (34%), BPT (34%), and LTFM (36%) produce similar 30-year

estimates but diverge significantly in the future. The lognormal and BPT probabilities

have been relatively flat since the expected mean recurrence time (approximately 1990s),

whereas LTFM’s has steadily increased. Moving forward, if no earthquake occurs by 2050,

the lognormal and BPT models give probabilities of 35% and 34%, whereas LTFM pre-

dicts 40%. By 2100, the lognormal and BPT forecasts remain stable at 34%, but LTFM’s
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forecast increases to 47%—a 38% higher chance. By 2150, the LTFM forecast is nearly

60% higher (53% chance) than the lognormal and BPT (33 to 34% chance) forecasts. By

2250, the BPT forecast has leveled out, but the lognormal model continues to decrease.

These time-probability relationships reflect assumptions about accumulated strain and

earthquake probability. Intuitively we expect that earthquake probability should increase

with time as strain accumulates on a fault, so the exponential model’s flat 30-year prob-

ability seems unrealistic. Similarly, the lognormal and BPT’s decreasing and flattening

30-year probabilities after the expected mean recurrence interval seem implausible. The

behavior of these two models change if an earthquake has not happened by the mean

recurrence time, whereas in LTFM the probability keeps increasing with time.

The difference arises because LTFM is designed to reflect paleoseismic records sug-

gesting that complex patterns of strain accumulation and release influence the timing of

earthquakes, often giving rise to clusters of earthquakes and gaps between them (Wallace,

1970; Rockwell et al., 2000; Friedrich et al., 2003; Weldon et al., 2004; Sieh et al., 2008;

Goldfinger et al., 2013; Salditch et al., 2020; Hecker et al., 2021). However, unlike LTFM,

the common earthquake probability models do not incorporate this effect and its implica-

tions. To better understand the accumulated strain/probability relationship, we examine

each PDF’s corresponding hazard-rate function. The hazard rate is the conditional prob-

ability of an earthquake occurring in the next time increment (in this case 1 year) given

that one has not occurred since the most recent earthquake. It can be calculated using

f(t)/[1 − F (t)], where t is the time since the most recent earthquake, f(t) is the PDF,

and F (t) is the cumulative distribution function (CDF), the integral of the PDF. Fig 5.2A

shows four PDFs with the same mean and standard deviation (except for the exponential
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PDF whose mean is also the standard deviation), and Fig 5.2B shows the corresponding

hazard-rate functions.

Although the hazard rate is a function of time, we can also interpret it in terms of

accumulated strain. The agreement between long-term plate motions that load faults

and the short-term loading seen geodetically (Gordon & Stein, 1992) indicates that strain

steadily accumulates on faults in the interseismic period between large earthquakes, so we

can substitute strain for time. The hazard rate thus indicates how earthquake probability

changes with accumulated strain, and the derivative of the hazard-rate function (Figure

5.2C) shows whether each additional unit of accumulated strain increases or decreases

earthquake probability. The exponential distribution’s hazard-rate derivative is zero, so

additional accumulated strain does not affect the probability of an earthquake. For the

lognormal and BPT PDFs, each additional unit of accumulated strain has a different

probability increment. The corresponding probability change for each strain increment

increases quickly after an earthquake, then begins to decrease, and then ultimately turns

negative, indicating that future strain accumulation decreases earthquake probability.

How much the BPT hazard-rate curve decreases depends on its parameters. Although

past studies acknowledged this behavior (Davis et al., 1989, Matthews et al., 2002), no

physical mechanism has been proposed for how strain accumulation could lead to variable

probability increments. Unlike the other models, in LTFM each additional strain unit

corresponds to a constant increase in earthquake probability.

Another limitation of the common time-dependent models is their assumption that

the probability resets to zero after each earthquake. They assume that the inter-event

times between earthquakes are independent, treating earthquakes as a renewal process
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Figure 5.2. Pallett Creek earthquake probabilities. (A) Probability density
functions for the inter-event time with same mean (135 years) and standard
deviation (70 years)—except exponential where mean equals standard devi-
ation. (B) Corresponding hazard-rate functions. The hazard rate at time t
is the probability that an earthquake will occur at t given that one has not
occurred since the past earthquake (C) The derivative of each hazard-rate
curve shows whether the hazard rate is increasing/decrease/staying con-
stant with time as each new strain increment accumulates.

(Cornell & Winterstein, 1988). Hence the calculated probability of the next earthquake

depends only on the time since the most recent earthquake and the known distribution

of inter-event times, but not the specific sequence of previous earthquakes. Because

earthquakes release strain accumulated on a fault, the independence assumption implies

that an earthquake releases all strain accumulated since the previous one. Although

assuming independence simplifies the probability calculation, it ignores the wealth of

geologic observations showing temporal clusters of earthquakes followed by long gaps,

indicating that earthquakes often only partially release the accumulated strain (Wallace,

1970; Rockwell et al., 2000; Friedrich et al., 2003; Weldon et al., 2004; Sieh et al., 2008;

Borrero et al., 2009; Goldfinger et al., 2013; Hecker et al., 2021). LTFM overcomes

this limitation by allowing partial probability drops, reflecting partial strain releases in
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Figure 5.3. Long-term fault memory (LTFM) as a hidden Markov process.
(A) Example with 3 earthquakes. (B) Representation of (A) as a Markov
model with the probability space discretized into 11 states. (C) Transition
probability matrix indicating probability of transition from state j to state
k for this set of model parameters.

earthquakes. This behavior allows LTFM to incorporate more available information—the

specific sequencing of earthquakes—in its probability forecasts.

5.4. Calculating Earthquake Probabilities with Long-Term Fault Memory

The Long-Term Fault Memory (LTFM) model (Figure 5.3A) builds upon previous

earthquake probability models, but with modifications to model the temporal patterns of

strain accumulation and release. LTFM, like some earlier models (Lomnitz-Adler, 1983),

assumes that the probability of a large earthquake is linearly proportional to the strain

accumulated on the fault. The accumulated strain, and hence probability, increases with

time until an earthquake happens, after which probability decreases, but not necessarily

to zero. The system thus retains long-term memory of earthquakes prior to the most

recent, so the probability of an earthquake depends on prior earthquakes and so can

remain relatively high over multiple cycles. Unlike the renewal models, the probability

does not necessarily reset after an earthquake, so inter-event times are not independent.
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LTFM has two basic parameters: A – the rate at which strain, described by earth-

quake probability, increases per year, and R – the drop in probability (strain) from an

earthquake. The drop R can be variable to simulate earthquakes of different magnitudes,

or constant for simplicity because the paleoearthquake record generally shows that past

earthquakes were large enough to provide a clear record, but their specific magnitudes are

unknown unless multiple paleoseismic cites can be correlated to bound the length of the

rupture. Here, we assume a fixed value for R. An additional probability (strain) threshold

that must be met or exceeded before an earthquake can occur can be included but is not

for this analysis. How much memory is retained in the system after an earthquake depends

on the size of the probability drop (R) relative to the rate of probability accumulation

(A). If the probability drop is much larger than the amount of probability accumulated in

a year (R >> A), the probability usually resets to zero after an earthquake, as in renewal

models. Otherwise, some residual probability (aka memory) is generally retained after

the earthquake. Thus, if an inter-event time much longer than the average inter-event

time preceded the most recent earthquake, then residual strain may have remained on the

fault after the earthquake. This simple model can recreate a wide range of earthquake

recurrence patterns including clusters and gaps.

To calculate earthquake probabilities, we formulate the LTFM model as a hidden

Markov model that yields analytical expressions. Markov models are stochastic models

where the probabilities of future outcomes only depend on the system’s most recent state

(Girardin & Limnios, 2018). For LTFM, the current state corresponds to the accumu-

lated earthquake probability (commensurate with strain). This Markov process is hidden

because we do not observe what state the system is in (the level of strain on the fault)
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(Rabiner, 1989). Instead, we only observe whether an earthquake occurs. We discretize

the probability range 0 - 1 into N states, so that the probability of an earthquake in

state 1 is 0 and the probability of an earthquake in state N is 1 (Figure 5.3B). In this

formulation, N = 1+ 1
A
, where A is the probability increment in the original formulation.

The earthquake drop D corresponds to R
A
in the original formulation.

At each epoch (time step), an earthquake either occurs or does not. If an earthquake

occurs, the system moves from state n to a lower state n−D or 1 (whichever is larger). If

no earthquake occurs, the system moves to state n+ 1. The conditional probability that

an earthquake occurs in the current epoch given that the state is n equals [n–1]/[N–1].

Figure 5.3C shows the transition matrix giving the probability of transitioning from state

j to state k. This simple example contains 11 states with a fixed earthquake drop of 3

states. For example, in state 5 the probability of an earthquake is 0.4. Therefore, the

probability of having an earthquake and moving down to state 2 is 0.4 and the proba-

bility of no earthquake occurring and moving up to state 6 is 0.6. Using this matrix, we

can calculate earthquake probabilities following the procedures in the Appendix. Like

the existing probability models, we do not explicitly account for the different earthquake

magnitudes in the paleoseismic record. Instead, we forecast the recurrence of large earth-

quakes which can have a range of magnitudes, but treat each earthquake as having the

same strain drop. Although the LTFM can be modified to allow for variable magnitude

earthquakes, this would introduce additional model parameters, which would be difficult

to constrain because most paleoseismic records contain little or no magnitude information

unless multiple cites are correlated.
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Markov models have been used in seismic hazard analysis (Anagnos & Kiremidjian,

1988; Ebel et al., 2007; Votsi et al., 2013), but generally did not tie the states to strain

increments as LTFM does. Anagnos & Kiremidjian (1985) proposed a Markov formula-

tion with linear strain increments, but specified a fixed strain threshold for earthquake

occurrence, whereas LTFM allows earthquakes to randomly occur. Although calculat-

ing probabilities with LTFM is more complicated than current approaches, the resulting

probabilities should better reflect the earthquake process and the history of earthquakes

on the fault.

With just two parameters—number of states N and earthquake drop size D—LTFM

can replicate a wide range of observed earthquake recurrence patterns (Salditch et al.,

2020). For given D and N values, we can calculate the long-run distribution of inter-

event times. This long-run PDF shows the expected distribution of inter-event times if

we observed the fault for a sufficiently long time, analogous to the exponential, lognormal,

and BPT PDFs in Figure 5.1B. Figure 5.4 shows a set of simulations with a fixed N and

increasing D and the resulting long-run distribution of inter-event times and hazard rates.

The hazard-rate curves represent the probability of an earthquake in the next time epoch,

which we assume to be one year.

Simulations (i)-(iii) in Figure 5.4A show how fixing the number of states N and

increasing the size of the earthquake drop D changes the behavior of the LTFM model.

For each simulation, we include the state space history showing the probability/strain

history, and the corresponding earthquake record. In simulation (i) D << N , so after

an earthquake the system rarely drops to the lowest state (where the probability of an

earthquake equals 0), leaving residual probability for another earthquake. Hence the
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Figure 5.4. LTFM simulations with different input parameters. (A) Earth-
quake record simulations with fixed number of states N and increasing
earthquake drop D (i − iii). (B) Long-run inter-event time probability
distributions for the simulations in panel A. Thicker lines indicate larger
values of D. Mean (µ), standard deviation (σ), and coefficient of variation
(CV) indicated. (C) Hazard-rate curves for probability density functions in
panel B.

corresponding earthquake record contains clusters and long gaps. However as D increases

relative to N (simulations ii & iii), the system increasingly drops to the lowest state

after an earthquake, making residual probability less likely. This reduces the number of

short recurrence intervals, and so increases the mean expected long-run inter-event time

and decreases the coefficient of variation (standard deviation/mean) (Figure 5.4B). With
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a lower coefficient of variation, the earthquake record looks more regular (and periodic)

with fewer outlier (short or long) inter-event times.

The shapes of the long-run inter-event time distributions (Figure 5.4B) illustrate how

likely memory is to be retained after an earthquake, based on the size of D relative to N .

Higher y-intercepts indicate more residual strain/probability after an earthquake in the

long run, making very short inter-event times possible, as in simulation (i) for D << N .

Conversely, simulation (iii) has a y-intercept of essentially zero, so very short recurrence

times are very unlikely. For D large relative to N , LTFM behaves in the long run like

a renewal model with no residual strain after an earthquake. Beyond a certain point,

increasing D relative to N does not impact the expected inter-event time distribution.

A simulation with D=500 and N=2500 would be indistinguishable from simulation (iii)

with D=250 and N=2500, and the coefficient of variation does not continue to decrease

below approximately 0.5 in the long run without the addition of a 3rd parameter (the

threshold parameter) in the model.

The hazard curves also reflect LTFM’s incorporation of fault memory. When a model is

unlikely to have residual earthquake probability (iii in Figure 5.4C), the hazard function is

a straight line, reflecting the linear strain/probability accumulation in LTFM. Simulations

(i) and (ii)—which have the same number of states N as (iii) but different D values

—initially have a higher hazard rate because they have more residual probability on

average. However, as the quiescent period continues, the hazard curves with the same N

(i and ii) asymptotically converge towards the curve in which residual strain is unlikely

(iii). The number of states N , which reflects the strain accumulation rate, controls the

slope of the hazard-rate curve. Increasing N decreases the slope, so the hazard rate grows
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more slowly. These plots assume that one epoch equals one year. Assuming that one epoch

equals another time increment would simply scale the probability/strain increment.

5.5. Inter-Event Time Order Matters for LTFM

The advantages of LTFM’s partial strain/probability drop are illustrated by two syn-

thetic paleoseismic records that contain the same inter-event times but in a different order

(Figure 5.5A & 5.5B). We use a maximum likelihood estimation (MLE) approach to find

the distribution parameters that best fit each record. Because the exponential, lognormal,

and BPT models assume inter-event time independence, the order does not matter so the

best fitting parameters (and therefore probability distributions) for each model are the

same for both records (Figure 5.5C & 5.5D). However, LTFM behaves differently. Using

an MLE grid search, we estimate the best fitting number of states N and earthquake

drop size D for both records. (For details of the MLE procedure and how the probability

density and hazard curves are calculated, see the Appendix). Because LTFM does not

assume inter-event time independence, N=11300 and D=100 for the original record and

N=7100 and D=180 for the reordered record.

These parameters yield LTFM’s long-run distribution of inter-event times (solid LTFM-

LR lines in Figure 5.5C & 5.5D). Although both records contain the same inter-event

times, LTFM fitted to the original record indicates that the fault has more memory (re-

tained strain) in the long run compared to the LTFM fitted to the reordered record.

This is shown by the LTFM-LR distribution fitted to the original record having a larger

positive y-intercept (Figure 5.5C) than the LTFM-LR distribution fitted to the reordered

record (Figure 5.5D). The coefficients of variation for the LTFM-LR models differ from the
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Figure 5.5. LTFM applied to sample records. (A) Earthquake record with
inter-event times labeled. The best fitting LTFM model parameters for this
sequence of inter-event times yield long-run probability distributions for the
time until the next earthquake (LTFM-LR) and conditional probability dis-
tributions for the next earthquake given the most recent P inter-event times
(LTFM-P1, LTFM-P2, LTFM-P3). (B) Reordered version of the record in
panel A. (C) Estimated inter-event time probability distributions for the
record in panel A with mean (µ), standard deviation (σ), and coefficient of
variation (CV) indicated. (D) Estimated inter-event time probability dis-
tributions for the record in panel B. The exponential, lognormal, and BPT
forecasts are the same as in panel C, but the LTFM forecasts differ because
they depend on the order of inter-event times. (E, F) Hazard-rate curves
for inter-event time distributions in panels C and D.

time-dependent renewal models. For the lognormal and BPT models, the MLE produces

parameters that match the paleoseismic record’s coefficient of variation. The LTFM-LR,
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however, assumes that a paleoseismic record is described by both the coefficient of varia-

tion and the long-term fault memory, so the MLE parameter estimates reflect both pieces

of information. As Salditch et al. (2020) demonstrated, records with the same coefficient

of variation can look very different, so the coefficient of variation only tells part of the

story about the earthquake record.

Furthermore, we can use the LTFM parameters to calculate short-term earthquake

probabilities conditional on the most recent sequence of inter-event times. These short-

term probabilities incorporate extra information—the timing of the most recent prior P

inter-event times (LTFM-P1, LTFM-P2, LTFM-P3 for P = 1, 2, and 3). The correspond-

ing short-term forecasts of the distribution of the time until the next earthquake can vary

greatly from the long-run probability distribution. In contrast, because the exponential,

lognormal, and BPT assume inter-event time independence, their short- and long-term

forecasts are the same. For clustered paleosesimic records, seismologists often must decide

whether to assume the fault is currently in a cluster (shorter average inter-event time)

or a gap (longer average inter-even time) and produce forecasts accordingly (Sieh et al.,

1989). By allowing residual earthquake probability, LTFM takes this difficult decision out

of the hands of the analyst by making continuous adjustments in a data-driven manner.

The LTFM long-run and short-term forecasts estimate the probability that the fault

is in a given state to calculate earthquake probabilities (see Appendix). If the fault is in

a low state (low earthquake probability), then it will likely be a while until an earthquake

occurs. Conversely a high state (high earthquake probability) means an earthquake is

more likely to occur soon. With the additional information about the specific timing of the

most recent P inter-event times, the short-term forecast updates these state probability
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estimates to produce an updated earthquake forecast. In our analysis, after conditioning

on the first few recent inter-event times, the short-term forecast stabilizes and does not

change noticeably with the inclusion of additional inter-event times farther back in time.

For the original record, conditioning on the most recent 1, 2, or 3 inter-event times

decreases the probability of an earthquake in the near future by shifting the probability

distributions (LTFM-P1, LTFM-P2, and LTFM-P3 in Figure 5.5C) to the right. This

increases the expected mean inter-event time for the next earthquake relative to the long-

run distribution (LTFM-LR). The distribution shifts to the right because the most recent

inter-event times are short compared to the others in the record. LTFM in effect infers

that the fault must have released a lot of strain recently, so there is likely little residual

strain/probability left over after the most recent earthquake. LTFM-P2 and LTFM-P3

are similar because once information about the two most recent inter-event times is used,

the third provides little additional information. However, LTFM behaves differently for

the reordered record. Here, conditioning on the 1, 2, or 3 most recent inter-event times

shifts the distribution to the left (LTFM-P1, LTFM-P2, and LTFM-P3 in Figure 5.5D)

with a lower expected mean inter-event time until the next earthquake. The distribution

shifts to the left because the recent inter-event times have been exceptionally long, leaving

significant residual strain/probability after the most recent earthquake.

Comparison of the hazard rates highlights key differences between the LTFM and other

probability models. Long-run LTFM-LR models for both the original (Figure 5.5E) and

reordered records (Figure 5.5F) behave similarly. Initially, their hazard-rate curves are

below the exponential distribution but higher than the lognormal and BPT distributions.
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As the quiescent time increases, the lognormal and BPT distributions surpass the long-

run LTFM-LR, indicating that an earthquake is more likely if it has not yet occurred.

However, because in LTFM probability accumulates linearly, its hazard-rate function

continues to climb, soon surpassing both the flat exponential distribution and the flatten-

ing/dropping lognormal and BPT distributions. Once LTFM-LR has crossed above these

curves, it indicates that an earthquake is even more likely if it has not yet occurred. Con-

ditioning on the most recent inter-event times (LTFM-P1, LTFM-P2, LTFM-P3) shifts

when these crossovers occur (Figure 5.5E) or eliminates them (Figure 5.5F).

5.6. Earthquake Forecast Immediately after the 1812 Pallett Creek

Earthquake

To illustrate the effects in Figure 5.5, we use the Pallett Creek record to develop fore-

casts shortly after the 1812 earthquake. In hindsight, we know that the next earthquake

occurs in 1857—a remarkably short 45-year inter-event period—but how well would any

of the probability models have forecast such a short interval? Prior to 1812, there was

an exceptionally long 304-year inter-event time. We re-analyze the Pallett Creek record

up to and including the 1812 earthquake to get a set of parameters for each model and

compare their forecasts. Figure 5.6A shows the estimated PDFs for the different mod-

els. Integrating the PDFs from 0 to 45 years yields estimated probabilities of another

earthquake within 45 years of the 1812 earthquake (Figure 5.6B). Here we include an ad-

ditional time-dependent renewal model—the Weibull distribution, discussed shortly—for

comparison. The probability of such a short inter-event time is extremely low in the
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Figure 5.6. Probability estimates immediately after 1812 Pallett Creek
earthquake. (A) Estimated probability density functions (PDFs) for inter-
event time until the next earthquake. Empirical mean (µ) and standard
deviation (σ) indicated. BPT and lognormal curves overlap. (B) Probabil-
ity of an earthquake within 45 years of 1812 earthquake for models in panel
A. The next earthquake occurred in 1857 (dashed line). Values listed are
probabilities of an earthquake within 45 years of 1812.

lognormal (0.01), BPT (0.01), and Weibull (0.05) models. LTFM-LR (0.13)—which al-

lows for residual strain after an earthquake—and the exponential (0.27) model—which

assumes constant earthquake probability—forecast a higher probability of a short inter-

event time compared to the renewal models. Strikingly, LTFM-P1, which conditions on

the date of the previous earthquake (1508) and so explicitly incorporates the recent long

prior inter-event time, forecasts the highest probability (0.42) of observing an earthquake

by 1857, as actually occurred. This example suggests that allowing residual earthquake

strain and conditioning on the prior inter-event times provides a more accurate assessment
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of future earthquake hazards, especially when the most recent earthquake is preceded by

a relatively long inter-event time.

5.7. Assumptions About Earthquake Probability and Accumulated strain

LTFM’s accurate forecast for the 1857 Fort Tejon earthquake is gratifying. However,

it is just one earthquake, and because of the stochastic nature of the forecasts, there are

likely some instances where the LTFM model performs worse. Unfortunately, determin-

ing which models perform best on average is challenging because paleoseismic records

contain relatively few earthquakes. Time-dependent models fit the observed inter-event

times better than a time-independent model (Scharer et al., 2010), but statistical tests

struggle to identify the most appropriate time-dependent model due to the relatively few

earthquakes in a paleoseismic record (Matthews et al., 2002). Hence in our view, model

choices should reflect what is known about the relationship between accumulated strain

and earthquake probability. Although some schematic earthquake recurrence models as-

sume that tectonic strain and thus earthquake probability accumulate linearly in the

interseismic period (Shimazaki and Nakata, 1980), the commonly used time-dependent

models do not.

The choice of probability density function determines the hazard function, and hence

the relationship between accumulating strain and earthquake probability. Thus when

selecting a probability density function, attention should be paid to both the shape of the

PDF and the resulting behavior of the hazard-rate function. In particular, the decline and

flattening of the lognormal and BPT hazard-rate curves (Fig 5.2B) are intrinsic to these

PDFs and do not reflect any updated knowledge of processes on the fault. These are hard
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Figure 5.7. Weibull distribution with different shape parameters (β). (A)
Weibull probability density functions plotted with same scale parameter η
but different β shape parameters. Coefficient of variation (CV) indicated.
(B) Hazard-rate functions for the probability density functions shown in
panel A.

to justify physically because tectonic plate motion loading the fault continues unabated.

Although processes besides long-term tectonic loading like aseismic slip and Coulomb

stress transfer from earthquakes on nearby faults may impact earthquake probability

(Toda et al., 1998), these do not explain the shape of the lognormal and BPT probability

curves.

Interestingly, some features of LTFM are shared by the Weibull distribution. Although

the Weibull has fallen out of fashion in the seismological community, this distribution used

in reliability engineering has been used to describe the distribution of earthquake inter-

event times (Hagiwara, 1974; Chou and Fischer, 1975; Brillinger, 1982). The Weibull

distribution has two parameters: a scale parameter η and shape parameter β. β controls

the PDF’s coefficient of variation (CV, Figure 5.7A) and the shape of the hazard-rate
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function (Figure 5.7B). For β < 1, the hazard rate decreases with time, making failure

less likely as time passes. For β=1, the hazard rate is constant because the Weibull

distribution becomes the exponential distribution. For β > 1, the hazard rate increases

with time, making failure more likely. For β = 2, the hazard rate increases linearly,

implying a linear increase in the earthquake probability, as in LTFM. Brillinger (1982)

noted that when β = 2, the linear increase in earthquake probability appropriately mimics

the steady strain increases that drive earthquakes.

Plotting observed earthquake inter-event times against theoretical cumulative hazard

probabilities shows that the Weibull distribution is often appropriate (Chou & Fischer,

1975). If the data can be fit by a straight line on a log-log plot, then the slope of the line is

the inverse of the shape parameter β. Brillinger (1982) and Sieh et al. (1989) applied this

method to an earlier Pallett Creek dataset, finding shape parameters of approximately

2 and 1.5 ± 0.8. A similar analysis (Figure 5.8A) shows that the Pallett Creek dataset

we used is well-fit by a line whose corresponding β value is 1.84. This suggests that a

model with linearly increasing earthquake probability (β = 2) is reasonable. The long-run

LTFM-LR and Weibull models (either with best-fitting β or with a fixed β = 2) have quite

similar PDFs (Figure 5.8B). The hazard-rate functions (Figure 5.8C) further highlight the

similarities, with both indicating a constantly increasing earthquake probability reflecting

the linear accumulation of strain. They differ slightly because LTFM assumes that on

average there will be some residual strain after an earthquake, so there may be some

very short recurrence times (Figure 5.8B). The Weibull model, which is a renewal model,

lacks long-term memory and so does not predict these. Hence Weibull, like the common
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Figure 5.8. Comparisons of Weibull and LTFM. (A) Pallett Creek inter-
event time cumulative hazard plot for Weibull distribution with 1σ uncer-
tainties indicated. (B) Comparison of best fitting Weibull distribution and
β = 2 Weibull distribution to the long-run LTFM-LR inter-event time dis-
tribution. Inter-event time mean (µ) and standard deviation (σ) indicated.
(C) Corresponding hazard-rate functions for PDFs in panel B.

renewal models, does not describe clusters and gaps and so does much worse than LTFM

in forecasting the 1857 Fort Tejon earthquake (Figure 5.6).

5.8. Conclusion

LTFM advances beyond the current time-dependent renewal models by assuming

earthquake probability increases with accumulated strain and allowing residual strain

after an earthquake. It avoids the implausible result in current models that probabilities

flatten or even decrease with time after the expected mean recurrence interval. It also

incorporates the specific earthquake history, allowing estimates of earthquake probabil-

ities conditioned both on the time of the last earthquake and the specific sequence of

preceding earthquakes. Incorporating the specific history impacts earthquake probabil-

ity calculations especially when the most recent earthquake is preceded by a relatively
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long inter-event time. Although LTFM is computationally more complex than the ex-

isting earthquake probability models, it is far more powerful. It allows forecasts with

more information than the current models can include and should lead to more realistic

earthquake probability estimates.
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CHAPTER 6

The Generalized Long-Term Fault Memory Model and

Applications to Paleoseismic Records

6.1. Introduction

What is the probability of an earthquake occurring in the near future? The answer to

this question has important implications for both hazard planning and public awareness

of a region’s hazards. Estimates of the probability can vary significantly depending on

methodology. For instance, along the Nankai Trough off the coast of Japan, estimates of

the probability of an earthquake in the next 30 years range from 6% to 80% depending on

model assumptions (Hashimoto, 2022). Because the forecasts depend heavily on model

choice (Neely et al., in review), it is critical that the models reflect our understanding of

earthquake processes.

However, commonly used earthquake probability models make assumptions that con-

flict with our understanding of earthquake processes informed by geologic evidence. Here,

I present a new earthquake probability model that builds on prior work in Chapter 5

(Salditch et al., 2020; Neely et al., in review) to construct an earthquake recurrence

model that reflects our understanding of earthquake processes. This new method is much

easier to implement and less computationally expensive than its prior iterations.

The earthquake process is fundamentally about strain. Strain accumulates on faults

during the inter-seismic period and is released suddenly during an earthquake. Simple
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models of this strain accumulation and release, like the elastic rebound model (Reid, 1910)

date back to the early 20th century. In principle, if we knew the current level of strain

on a fault and the threshold level at which the accumulated strain overcomes the fault’s

strength, we could forecast when the next earthquake would occur. However, neither of

these values are easy to measure.

Instead, most earthquake probability forecasts rely on an alternative approach. Seis-

mologists choose a probability model that they think best characterizes the observed

inter-event times (e.g., Field et al., 2015; Schorlemmer et al., 2018) to produce forecasts

for the next earthquake. However some of the assumptions of the most commonly used

models ignore key aspects of the strain accumulation and release process (Salditch, et al.,

2020; Neely et al., in review).

Earthquake recurrence models can be broadly grouped into three categories based on

how time impacts earthquake probability (Salditch, et al., 2020). Memoryless models

assume earthquake probability does not change with time. Even when an earthquake oc-

curs, the probability of an earthquake at the next moment remains unchanged. Short-term

memory models assume that earthquake probability depends on the elapsed time since

the most recent earthquake but not on the order of the prior inter-event times. When an

earthquake occurs, the probability resets to zero, so these models only “remember” when

the most recent earthquake occurred. Long-term memory models, however, depend both

on the time since the most recent earthquake and the specific timing of prior earthquakes.

These probability models do not necessarily reset after an earthquake. Thus they allow

for the possibility of some residual probability that will impact the timing of the next

earthquake in the sequence.
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The memoryless and short-term models are purely statistical and assume that future

earthquakes will satisfy a probability distribution that describes the times between past

large earthquakes. These models are fit to the mean and standard deviation of the inter-

event times. These models describe average earthquake behavior well, but not deviations

from it, because they do not incorporate fundamental aspects of the strain accumulation

and release processes that cause earthquakes. Long-term memory models, on the other

hand, seek to model the specific sequence of observed events by mimicking the underlying

strain accumulation and release process that produced that sequence.

Because tectonic loading leads to constant strain accumulation along faults (Gordon &

Stein, 1992), these time/earthquake probability assumptions correspond to strain/probability

assumptions (Neely et al., in review). For memoryless models, increasing strain accumula-

tion has no impact on earthquake probability. For short-term memory models, increasing

accumulated strain impacts earthquake probability, but because the probability resets

after an earthquake, it implies that there is never any residual strain after an earthquake.

For the long-term memory models, increasing accumulated strain impacts earthquake

probability, but because the probability does not necessarily reset after an earthquake,

the model allows the possibility of residual strain.

Paleoseismic records of past large earthquakes suggest that long-term memory models

most accurately reflect the underlying strain processes. These records contain inter-event

time trends that suggest a complex pattern of strain accumulation and release (Wallace,

1970; Rockwell et al., 2000; Friedrich et al., 2003; Weldon et al., 2004; Sieh et al., 2008;

Goldfinger et al., 2013; Salditch et al., 2020; Hecker et al., 2021). Clusters of earthquakes

and long gaps between them in the seismic record suggest that earthquakes may only
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release some of the accumulated strain, so the level of residual strain impacts the tim-

ing until the next earthquake. Long-term memory probability models, which model the

probability impact of residual strain over multiple earthquakes, attempt to recreate the

behavior observed in the paleoseismic record.

6.2. The Mechanics of Probability Models

To construct an earthquake forecast using a memoryless or short-term memory model,

seismologists follow a series of steps. First, they compile a record of when past large earth-

quakes occurred—usually by combining instrumental, historical, and geologic records (e.g.

Sieh et al., 1989). These earthquake histories (referred to as paleoseismic records when

they contain primarily geologic evidence of past earthquakes) indicate when earthquakes

occurred but usually do not have much information about the size of the earthquakes ex-

cept that they were large enough to leave observable geologic evidence (unless they could

be correlated along a specific fault segment). In Figure 6.1A, I show a sample paleoseis-

mic record consisting of n+ 1 earthquakes occurring at successive times t0, t1, ..., tn with

positive inter-event times ui = ti−ti−1, i = 1, ..., n. With the paleoseismic record, seismol-

ogists fit a probability density function (PDF) f(u) to the distribution of the inter-event

times ui (Figure 6.1B). I have included fits (using a maximum likelihood method) for the

memoryless exponential model as well as the short-term memory Brownian Passage Time

(BPT) and Weibull models. Both the memoryless and short-term memory models assume

that the inter-event times are independent, so reordering the ui’s would not impact the pa-

rameter estimates. After finding the appropriate PDF parameters, it’s straightforward to

calculate the cumulative distribution function (CDF) F (u) by integrating the PDF from
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0 to u (Figure 6.1C). The CDF indicates the estimated probability that an earthquake

will occur within u years.

An important related function is the hazard rate h(u) = f(u)/[1 − F (u)], which

is calculated from the PDF and CDF. The hazard rate function indicates the rate at

which an earthquake will occur at time u since the prior earthquake (Figure 6.1D). More

specifically, it is the probability density of an earthquake occurring at time u given the

prior earthquake occurred u years ago. Although the hazard rate is not a probability itself

(it can exceed 1), the shape of the function shows how the probability of an earthquake

changes with time (and therefore accumulated strain). The memoryless exponential model

has a flat hazard rate function indicating that the probability does not change with time,

whereas the short-term memory Brownian Passage Time and Weibull models change with

time but in different ways.

Long-term memory models do not assume that the inter-event times are independent

and instead allow the possibility of residual probability after an earthquake. Thus the

specific order matters (Salditch et al., 2020). A long inter-event time may make a short

inter-event time for the next earthquake more likely and vice versa (Neely et al., in review).

Salditch et al.’s (2020) Long-Term Fault Memory (LTFM) model (described in detail in

Chapter 5) assumes that earthquake probability increases linearly at rate A and decreases

by some value R when an earthquake occurs. If the accumulated probability prior to the

earthquake was greater than R, the remaining residual probability will impact the timing

of the subsequent earthquakes. LTFM was designed to mimic the linear strain accumula-

tion and partial strain release patterns suggested by paleoseismic records. Salditch et al.

(2020) used this discrete-time numerical model to show how a wide range of earthquake
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recurrence behaviors could be reproduced by modifying the input parameters. However,

its numerical formulation meant that 1000s of simulations were needed to find f(u), F (u),

and h(u). In subsequent work, I reformulated the LTFM as a hidden Markov model (see

Chapter 5; Neely et al., in review) which allowed me to derive the necessary equations

for f(u), F (u), and h(u) to calculate probabilities of interest (see Appendix). However,

the Markov reformulation required significant computational resources to construct the

necessary matrices to make these calculations.

In this chapter, I present a revised version of the LTFM model, which I call the Gen-

eralized LTFM. Unlike the prior iterations of LTFM, the Generalized LTFM is in contin-

uous, not discrete, time and the earthquake probability accumulation function can take

any form (it does not need to accumulate linearly). The Generalized LTFM’s equations

are simpler to code than the hidden Markov formulation, which allows faster calculation

of earthquake probabilities. Below, I present the equations necessary to implement the

Generalized LTFM and apply this model to various paleoseismic records.

6.3. The Generalized LTFM

The Generalized LTFM (GLTFM) builds upon the key assumption in prior LTFM

models: if there is residual strain after an earthquake it will likely impact the inter-event

time to the next earthquake. The inter-event time PDF, CDF, and hazard rate function,

denoted by f(u|z), F (u|z), and h(u|z), depend on the residual strain z at the start of the

inter-event period, where z > 0. If the residual strain z = 0, then f(u|z = 0) = f(u) and

likewise for F (u|z) and h(u|z). Because I only have measurements of the time between
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Figure 6.1. Application of memoryless and short-term memory models. (A)
Sample paleoseismic record with earthquakes occurring at ti and separated
by inter-event times ui. The first 5 earthquakes and four inter-event times
are labeled. (B) Probability density functions (PDF) fit to the distribution
of inter-event times ui indicated by the histogram. Times are given in terms
of µ, the mean inter-event time from the paleoseismic record. (C) Cumu-
lative distribution functions (CDF) for corresponding PDFs. (D) Hazard
rate functions for PDFs.

earthquakes and not the residual strain, I define z in terms of time (aka z years of residual

strain).

To calculate f(u|z) consider the following example. Find the probability of waiting

exactly u0 years until the next earthquake given that we already have z0 years of residual

strain at the start of the inter-event period f(u0|z0). This probability is the same as
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the probability of waiting u0 more years until the earthquake given that we have already

waited z0 years without an earthquake. Therefore f(u|z) can be expressed as

(6.1) f(u|z) = f(u+ z)/[1− F (z)]

Figure 6.2A shows a simple example of how to calculate f(u|z) (red curve) using f(u)

(black curve). To calculate f(u = 75|z = 50)—the probability (indicated by the red X) of

waiting 75 years until the next earthquake given that there is 50 years of residual strain

at the start of the inter-event period, first retrieve the value f(u + z = 125) (indicated

by the black X) then divide that by 1 minus the area between 0 and 50 under the black

curve F (50) (shaded grey area). The function f(u|z) is simply f(u) shifted to the left

by z time units and renormalized to keep the total probability as 1 by dividing by the

area of the curve that is now to the left of time 0, 1−F (z). The concept of time shifting

PDFs has been used by Stein et al. (1997) to model the probability impact of stress

transfer between earthquakes on different fault sections, but this is the first time it has

been used to model residual strain after an earthquake. With f(u|z), I apply probability

relationships to derive F (u|z) and h(u|z). Integrating f(u|z) from 0 to u gives the CDF

(6.2) F (u|z) = [F (u+ z)− F (z)]/[1− F (z)]

Plugging f(u|z) and F (u|z) into the hazard rate function equation gives

(6.3) h(u|z) = f(u+ z)]/[1− F (u+ z)]

Note that Equation (6.3) indicates that h(u|z) = h(u+ z) based on the definition of h(u).
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Figure 6.2. GLTFM calculation schematic. (A) PDF plot showing how
to calculate f(u|z = 50) (red curve) from f(u) (black curve). The black
X [f(75 + 50)]and the shaded gray area [F (50)] are the values needed to
calculate f(u = 75|z = 50) (red X). Mean (µ), standard deviations (σ),
and coefficient of variation (σ/µ) indicated for the curves. (B) Cumulative
distribution functions for the PDFs in (A). (C) Corresponding hazard rate
functions.

Figure 6.2B and 6.2C further show how residual strain impacts our expectation of

earthquake probability. For a given probability value, F (u|z) always corresponds to a

smaller u value than F (u) indicating that residual strain makes shorter inter-event times

more likely (Figure 6.2B). Likewise, for a given inter-event time u, the hazard rate (Figure

6.2C) is higher when residual strain is present if the hazard rate function is monotonically

increasing.

To calculate the residual strain, I assume that the first observed earthquake occurred

at time t0 and left residual strain of z0. Although I do not observe z0, I specify a value as if

it were known (the impact of this assumption is discussed more in detail below). Suppose

the second earthquake occurred at time t1. The residual strain following that earthquake

is z1 = max[0, (u1 + z0 − R)] where R, defined in terms of time, is the amount of strain

released during the earthquake. z1 depends on u1 = t1 − t0, which is observed, z0, which
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is specified, and R the amount of accumulated strain the earthquake releases. I choose

R and the parameters of the assumed probability function f to maximize the likelihood

of observing the earthquake sequence. Suppose the third earthquake occurred at time

t2. The residual strain following the earthquake at time t2 is z2 = max[0, (u2 + z1 − R)].

The value z2 depends on u2 = t2 − t1, which is observed, z0, which is specified, and R.

Generally, the kth earthquake occurs at time tk with zk−1 = max[0, (uk−1 + zk−2 − R)].

The values of z1, ..., zk depend on u1, ..., uk, which are observed, z0, which is specified, and

R.

Figure 6.3 shows the GLTFM applied to the sample paleoseismic record from Figure

6.1. Figure 6.3B illustrates how the hazard rate changes with time and whether there

is residual strain after an earthquake. The color solid lines correspond to earthquakes

in panel A, and the dashed color lines indicate the hazard rate in the inter-event period

before the corresponding earthquake. The hazard rate builds during the inter-event period

until an earthquake occurs. The hazard rate drops to zero after the first four earthquakes,

indicating that there is no residual strain. However, after the long inter-event time u4,

the earthquake at t4 does not reset the hazard rate to zero, indicating residual strain.

The hazard rate curve stays elevated over the next four earthquakes until the earthquake

at t8 drops the hazard rate back to zero and wipes out any long-term memory in the

system. Figure 6.3C shows the impact of the residual strain on the expected distribution

of inter-event times. Each inter-event time uk has an expected distribution based on the

initial residual strain at the start of the inter-event time. In Figure 6.3C, µ is the mean

of the observed inter-event times, not the mean of the PDFs. The expected PDFs for

u1 through u4 and u9 are identical because each of those inter-event times starts with
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Figure 6.3. GLTFM applied to sample paleoseismic record. (A) Sample
paleoseismic record with first 10 earthquakes and 9 inter-event times la-
beled. (B) Hazard rate history plot which shows the hazard rate changes
with time and whether residual strain is present after an earthquake. Solid
lines correspond to earthquakes in panel (A). Dashed lines show how hazard
rate builds during the inter-event period. If the hazard rate history curve
drops to zero then there is no residual strain, otherwise some residual strain
remains after an earthquake. (C) Corresponding estimated probability den-
sity functions for first 9 inter-event times. Time and the mean and standard
deviations for each PDF are given in terms of µ, the mean inter-event time
from the paleoseismic record.

zero residual strain. Inter-event times u5 through u8 have different PDFs with shorter

expected intervals because these sequences each start with some residual strain. u5 has the

shortest expected inter-event time mean with the values increasing with each subsequent
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earthquake until the earthquake at t8, after which no residual strain remains. In contrast,

in the conventional short-term memory models, every time an earthquake occurs, the

hazard rate drops to zero because of the assumption of no residual strain. Additionally,

the PDFs for each inter-event time would be identical.

6.4. Fitting Parameters and Choosing the Probability Function f

In addition to estimating R, the earthquake drop size in terms of time, I also need

to estimate the parameters of the chosen probability function f . Although f can contain

many parameters, the most commonly used models have just two parameters, which I will

refer to generically as α and ω. The actually names of these parameters will vary depend-

ing on the probability function. To find these, I apply a maximum likelihood approach to

the likelihood function L(α, ω,R) in Equation (6.4). The value of the likelihood function

is the probability of observing the actual specific sequence of inter-event times

(6.4) L(α, ω,R) = f(u1|z0)× f(u2|z1)× ...× f(un|zn−1)

The ui’s indicate the inter-event times and zi’s the residual strain at the start of the

ith inter-event time. I can find the values of α, ω, and R that maximize the likelihood

L(α, ω,R) using any number of optimization functions.

The GLTFM is designed so that any probability function f can be used. However some

probability functions are more realistic for modeling earthquake recurrence than others.

The lognormal and BPT distributions, two of the most commonly used probability models,

behave in counterintuitive ways when an earthquake has not happened by the average

inter-event time. The hazard rates for these functions decrease steadily to zero (lognormal)
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or decrease and asymptotically approach a lower value (BPT) after the quiescent period

extends beyond approximately the average inter-event time (Matthews et al., 2002). This

behavior indicates that an earthquake becomes less likely as the quiescent time continues

and implies that adding more stored strain on the fault decreases the probability of an

earthquake, which seems unlikely (see Figure 5.2 in Chapter 5).

A model with a monotonically increasing hazard rate function makes more sense con-

ceptually. Such functions imply that as the quiescent period lengthens (and more strain

accumulates) the estimated earthquake probability always increases. The 2-parameter

Weibull distribution, with shape parameter (β) and scale parameter (η) fits this criterion.

A Weibull distribution’s shape parameter (β) controls the shape of the hazard function

and implies different relationships between accumulated strain and earthquake probabil-

ities. For β < 1, the hazard rate decreases with time (additional strain decreases the

earthquake probability), for β = 1 the hazard rate is constant (additional strain does not

impact earthquake probability), for β > 1 the hazard rate increases with time (additional

strain increases earthquake probability). For 1 < β < 2 the hazard rate increases with

time but at decreasing rate. For β = 2, the hazard rate increases linearly with time. For

β > 2, the hazard rate increases with time at an increasing rate. As discussed in Chapter

5, β = 2 corresponds to the Markov LTFM formulation which assumed a constant rate of

probability accumulation.

I explore the effect of using different β values [2.5, 2, 1.5] on earthquake probability

in Figure 6.4. I fix β and then solve for the best fitting η and R. Despite the different β

values, the GLTFM hazard rate plots (Figure 6.4A-C) show many similarities. Regardless

of β, the earthquakes from t4 through t7 and t9 through t15 show similar patterns of
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partial strain release although the amount of residual strain varies among the models.

The forecasts for the next earthquake, however, vary. The β = 1.5 model predicts the

likely time until the next earthquake to be shorter whereas the β = 2.5 model predicts a

longer inter-event time (Figure 6.4D). The 30-year earthquake forecasts, which show the

probability of an earthquake occurring within the next 30 years, further highlight these

differences (Figure 6.4E). Initially, the β = 1.5 model forecasts a higher probability of an

earthquake, but it is surpassed by the other models near the expected mean recurrence

time. The β = 2.5 model ultimately forecasts the highest probabilities as the quiescent

period continues because earthquake probability accumulates faster with time.

6.5. GLTFM Applied to Real Paleoseismic Records

How does GLTFM compare to conventional models when applied to real earthquake

records? Figures 6.5 – 6.9 show GLTFM applied to paleoseismic records of the Pallett

Creek section of the southern San Andreas fault (Scharer et al., 2011), the Hayward fault

along the east side of San Francisco Bay (Lienkaemper & Williams, 2007), the Nankai

Trough subduction zone (Ando, 1975) off the cost of Japan, the Cascadia subduction zone

(Goldfinger et al., 2012, 2017), and the Alpine fault in New Zealand (Clark et al., 2013;

Cochran et al., 2017). For each location, I assume a 2-parameter Weibull distribution

and apply the maximum likelihood method to find β, η, and R. I assumed an initial

residual strain of z0 = 0 for all locations. For each fault, the figure includes the hazard

rate history plot and the corresponding forecast of the probability of an earthquake in

the next 50 years. Above each earthquake in the hazard rate history plot, I show the

remaining residual strain (defined in terms of years of residual strain) on the fault after
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Figure 6.4. Impact of probability accumulation rate on earthquake proba-
bility. (A) – (C) GLTFM hazard rate history plots for sample paleoseismic
record with 2-parameter Weibull distribution with different fixed β’s. (D)
Estimated PDFs for the next earthquake in the sequence for models in (A)
– (C). (E) Corresponding 30-year earthquake forecasts after the most recent
earthquake. Time and the mean and standard deviations for each PDF are
given in terms of µ, the mean inter-event time from the paleoseismic record.

that earthquake. For comparison, I also show the 50-year forecasts for the memoryless

exponential and short-term memory lognormal, Weibull, and BPT models.

GLTFM estimates that there was residual strain after the most recent earthquakes in

the Pallett Creek (Figure 6.5A) and Hayward fault records (Figure 6.6A), which increases

the likelihood of an earthquake in the near term. Along the Pallett Creek section of the

San Andreas fault, GLTFM estimates that the most recent earthquakes in 1812 and 1857

left 135 years and 11 years of residual strain, respectively. Along the Hayward Fault, the
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most recent earthquake likely left 70 years of residual strain. These residual strains arise

because of long inter-event times in the sequences. At Pallett Creek, GLTFM estimates

a 60% probability of an earthquake in next 50 years, higher than the exponential (31%),

BPT (50%), lognormal (51%), and Weibull (55%) (Figure 6.5B). The impact of residual

strain on earthquake probability is even more apparent for the Hayward fault (Figure

6.6B). GLTFM estimates that there is a 92% chance of an earthquake in the next 50

years, but the exponential (25%), BPT (66%), lognormal (67%), and Weibull (63%) are

all much lower. For a 30-year forecast (not shown), the GLTFM (73%) is 60% higher than

the lognormal and BPT (45%) models. The residual strain in both systems reflects the

relatively recent and exceptionally long (for the respective faults) inter-event times.

Along the Nankai Trough (the paleoseismic record is for the A-B section of the subduc-

tion zone), the 1361 and 1605 earthquakes may also have left residual strain, but GLTFM

estimates all residual strain has been released by the 1707 earthquake (Figure 6.7A), and

none persists after the two more recent events. With no estimated residual strain at the

start of the current quiescent period, the GLTFM 50-year forecast is lower (12%) than

the exponential (24%), BPT (23%), lognormal (22%), and Weibull (16%) models (Fig-

ure 6.7B). These different estimates reflect the differences in how each model assumes

earthquake probability accumulates with time. If no earthquake occurs in the next 100

years, the GLTFM forecast will overtake the exponential, lognormal, and BPT forecasts

because the GLTFM assumes that additional accumulated strain always increases earth-

quake probability but these other models do not.

For the Cascadia subduction zone (Figure 6.8A) and Alpine fault (Figure 6.9A), the

GLTFM estimates that each earthquake released all accumulated strain. In these cases,
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the GLTFM is identical to the short-term memory Weibull model, and the 50-year fore-

casts (Figure 6.8B and 6.9B) are indistinguishable. Although the GTLFM estimates that

there is no residual strain after any earthquake in either of these records, it does not mean

that future earthquakes will also always release all accumulated strain. If an exceptional

long inter-event time (relative to the rest of the paleoseismic record) occurs, some residual

strain would likely remain after the subsequent earthquake, which would impact future

earthquake probability.

Although I assumed the starting residual strain (z0) equaled 0, it could be a non-zero

value. I performed a sensitivity analysis to determine how varying the starting strain

threshold after the first earthquake impacts the 50-year forecast. For each paleoseismic

record, I selected a new starting residual strain (z0) that corresponds to the probability

that the accumulated strain right before the first earthquake is in the 99th percentile based

on the estimated GLTFM parameters. This corresponds to a new z0 = max[0, (F−1(.99)−

R)] where F−1(.99) is the inverse CDF evaluated at 0.99. Both F−1(.99) and R are

calculated from the initial z0 = 0 maximum likelihood parameters. With this new starting

z0, I refit the GLTFMmodel. I have included the resulting 50-year forecasts as grey dashed

lines. For Cascadia and the Alpine fault, the starting residual strain (z0) remains 0,

indicating that residual strain would be unlikely along those faults based on the observed

paleoseismic record. For Pallett Creek and the Hayward fault, starting with the 99th

percentile residual strain increases the likelihood of an earthquake in the next 50 years

slightly, and for the Nankai Trough it decreases the probability.

The GLTFM suggests that relatively few earthquakes leave residual strain along the

fault. This may be true or may reflect the simplifying assumptions in the model. The
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minimization function only identifies residual strain when an abnormally long inter-event

time is in the record. It is possible that residual strain remains at other times, but the

likelihood function simply does not identify it. The lack of identified residual strain may

also be due to the assumption that all paleoseismic earthquakes along a specific fault have

the same magnitude. For many locations, this is the best that we can do. However, along

faults where there are multiple paleoseismic study cites, earthquake magnitudes can be

estimated. Along the Cascadia subduction zone, Goldfinger et al. (2012) has assigned

different magnitudes to various earthquakes. Incorporating this magnitude information

into GLTFM by allowing for a variable earthquake probability drop R may show that

residual strain is more prevalent than initially indicated.

6.6. Identifying the Best Model

Identifying which probability model performs best is challenging. Prior analyses have

shown (Matthews et al., 2002) that most statistical tests fail to differentiate between the

models. There is evidence that the short-term memory models perform better than the

memoryless exponential model (Scharer et al., 2010), but differentiating between short-

term memory models is challenging. Prior proposals for “better” models have relied on

qualitative arguments. The BPT was preferred over the lognormal distribution because

the probability of an earthquake will eventually return to zero with the lognormal distri-

bution if the quiescent period continues for a long time (Matthews et al., 2002). Unlike

the lognormal, the BPT decreases but then asymptomatically approaches a stable proba-

bility value in the long run. Although this is preferable to the lognormal model’s behavior,

I still consider it unsatisfactory. Shouldn’t earthquake probability continue to increase
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Figure 6.5. GLTFM applied to the Pallett Creek paleoseismic record. (A)
Hazard rate curve history with the residual strain indicated above each
earthquake. (B) Corresponding 50-year earthquake forecasts starting today
for GLTFM and other models. The two GLTFM curves indicate different
initial residual strain (z0) conditions.

with time? Strain is still accumulating so why should probability remain constant? In

Chapter 5, I argued that the Markov LTFM’s linear constant increase in probability incre-

ment made more physical sense. The GLTFM has this property as well and is even more

flexible by allowing for any functional form of the change in probability with time (aka

hazard rate function) although a monotonically increasing function (using the Weibull

with β > 1) is preferred.

Regardless of how exactly earthquake probability increases with time, the paleoseismic

evidence (Wallace, 1970; Rockwell et al., 2000; Friedrich et al., 2003; Weldon et al., 2004;
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Figure 6.6. GLTFM applied to the Hayward fault paleoseismic record. (A)
Hazard rate curve history with the residual strain indicated above each
earthquake. (B) Corresponding 50-year earthquake forecasts starting today
for GLTFM and other models. The two GLTFM curves indicate different
initial residual strain (z0) conditions.

Sieh et al., 2008; Goldfinger et al., 2013; Salditch et al., 2020; Hecker et al., 2021) strongly

suggests that earthquakes may only release some of the accumulated strain which impacts

the timing of subsequent earthquakes. Of the available models, only LTFM/GLTFM

incorporate this behavior in its forecasts. As Figures 6.5 through 6.9 show, residual strain

is rare, but when it is present, it can significantly impact the timing of the next earthquake.

Although it is just one example, the long inter-event time (≈ 300 years) before the 1812

Pallett Creek earthquake followed by the very short 45-year inter-event time until the

1857 earthquake is consistent with the impact of residual strain. In Chapter 5, I showed



145

800 1000 1200 1400 1600 1800 2000
Year

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Ha
za

rd
 R

at
e

0 0
0

33

48

0 0

0

(A)

Hazard Rate History

Today
(2022)

50 100
150

200
250

300

Years into Future

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

(B)

50-Year EQ Forecast

Exponential
BPT
Lognormal
Weibull
GLTFM z0=0
GLTFM z0=99

Nankai Trough

Figure 6.7. GLTFM applied to the Nankai Trough (section A-B) subduction
zone paleoseismic record. (A) Hazard rate curve history with the residual
strain indicated above each earthquake. (B) Corresponding 50-year earth-
quake forecasts starting today for GLTFM and other models. The two
GLTFM curves indicate different initial residual strain (z0) conditions.

that LTFM forecasts the short 45-year inter-event time much better than the short-term

memory models.

Ultimately, assessing which model performs best with these paleoseismic records runs

into a fundamental problem: these records are simply too short and sparse to differen-

tiate the models. Methods like the Brier Score (Brier, 1950)—a commonly used scoring

method to assess probabilistic weather forecasts—do not perform well with very rare

events (Benedetti, 2010) such as large earthquakes. One possible approach is to perform

a joint likelihood analysis with all available paleoseismic records. This Bayesian approach
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Figure 6.8. GLTFM applied to the Cascadia subduction zone paleoseismic
record. (A) Hazard rate curve history with the residual strain indicated
above each earthquake. (B) Corresponding 50-year earthquake forecasts
starting today for GLTFM and other models. The two GLTFM curves
indicate different initial residual strain (z0) conditions. The short-term
memory Weibull model is indistinguishable from the GLTFM.

allows the specific parameters to vary for each paleoseismic record and then calculates

the likelihood that a specific model produced all of the paleoseismic records. By jointly

solving for all paleoseismic records, it leverages additional data to distinguish which model

performs best.
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Figure 6.9. GLTFM applied to the Alpine fault paleoseismic record. (A)
Hazard rate curve history with the residual strain indicated above each
earthquake. (B) Corresponding 50-year earthquake forecasts starting to-
day for GLTFM and other models. The two GLTFM curves indicate differ-
ent initial residual strain (z0) conditions. The short-term memory Weibull
model is indistinguishable from the GLTFM.

Laboratory-based experiments may also prove to be fruitful for further analysis. These

experiments simulate earthquakes by sliding various materials across each other at a con-

stant loading rate. Most of the time the materials are locked together (like the inter-

seismic period), but eventually the accumulated strain overcomes the frictional strength

of the materials, and the blocks move (like an earthquake). Unlike with natural earth-

quakes, these lab earthquake data sets can contain far more events for analysis. Prior
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studies suggest that memoryless models often perform well at forecasting these inter-

event times (Rubinstein et al., 2012) but others suggest that there may be memory in the

observed earthquake sequences. Beeler et al. (2014) suggest the stress drops of consecu-

tive earthquakes are strongly correlated possibly suggesting that there may be memory of

prior slip in lab experiments. Although lab earthquakes are not perfect analogs for real

earthquakes, they may provide some insights into influence of long-term fault memory on

earthquake recurrence.

6.7. Conclusion

GLTFM is a powerful, yet simple to implement, earthquake probability model that

better reflects our understanding of the strain accumulation and release processes that

drive earthquakes. Unlike the most commonly used earthquake probability models, GLTM

can estimate whether an earthquake likely left residual strain along a fault and can in-

corporate this knowledge into earthquake forecasts. Although the GLTFM suggests that

residual strain is relatively rare along faults, when it does occur, it raises the estimated

earthquake probability in the near term by making shorter inter-event times more likely.

Paleoseismic records are too short to quantitively prove that GLTFM performs better

than other models, but joint likelihood approaches and analyses of simulated earthquakes

from laboratory experiments may provide insight into this question.
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APPENDIX A

Derivations for Markov LTFM Formulation

A.1. Fitting the LTFM to Data

We calculate the LTFM probabilities in Chapter 5 using the following steps. The

corresponding Appendix section or equations are indicated for each step.

1. Construct the matrix of transition probabilities P using best fitting number of

states and earthquake drop size (Section A2).

2. Calculate the vector π of stationary probabilities of being in different states (Equa-

tion A.2).

3. Calculate the values in Equations (A.5) through (A.10) and use these values as

input to calculate the distribution of inter-event times rT |1 (Equation (A.12)). This is the

long-run LTFM-LR PDF.

4. Calculate the values in Equations (A.13), (A.14), (A.17), and (A.19). Use these

values as input to calculate the distribution of inter-event times conditioned on the most

recent inter-event time rT |1,Tm (Equation (A.21)). This is the short-term forecast LTFM-

P1 for the next earthquake. To calculate the inter-event time distribution conditioned on

additional prior inter-event times (LTFM-P2, LTFM-P3, etc.), use Equation (A.27). For

the Pallett Creek data, Tm = 45.
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5. To calculate the LTFM hazard curves, use Equation (A.38) with T ′ = 1. For the

long-run LTFM-LR curve, use sk|T from Equation (A.14) as input. For the LTFM-P1

curve use sk|T,Tm from Equation (A.23) with Tm = 45 for the Pallett Creek data.

6. To calculate the conditional probability of an earthquake in the next 30 years for

Pallet Creek, use Equation (A.38) with T ′ = 30. For the long-run LTFM-LR curve, use

sk|T from Equation (A.14) as input. For the LTFM-P1 curve use sk|T,Tm from Equation

(A.23) with Tm = 45.

We used a maximum likelihood estimation (MLE) to find the best combination of

LTFM parameters (number of states N and earthquake drop size R) to fit the sequence of

inter-event times in Table 5.1. We did not include the current half-open inter-event interval

(1857 to today). The likelihood is found by evaluating Equation (A.27) for each inter-event

time, starting with the first in the sequence, and then multiplying the probabilities. For

the Pallett Creek data, m = 10 and T1 = 83, T2 = 77,...,T8 = 304, T9 = 45. For the Pallett

Creek sequence, the likelihood equals rT1|1× rT2|1,T1 × ...× rT9|1,T1,T2,T3,T4,T5,T6,T7,T8 . To find

the parameter values that maximize the likelihood we used a grid search, with number of

states spanning the range from 1000 to 25000 in increments of 250 and earthquake drop

size from 50 to 1000 in increments of 25. For the exponential, lognormal, and Brownian

Passage Time models, we used the fit function from Python’s scipy.stats package to find

the best parameters through MLE. We again do not include the current open inter-event

interval. Conditional probabilities for the exponential, lognormal, and Brownian Passage

Time are calculated using Equation (17) from Matthews et al. (2002).

The following section provides the equations (and corresponding derivations) needed

to calculate earthquake probabilities using the Markov LTFM described in Chapter 5.
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A.2. The Model

The process occurs in discrete time epochs, denoted by t = 0, 1, ... The state of the

process refers to the amount of accumulated strain, denoted by St for epoch t. Strain is

non-negative and increases by a constant amount A in each epoch unless an earthquake

occurs, in which case some or all of the accumulated strain is released. We assume

A = 1
N−1

for some integer N ≥ 3. Once the accumulated strain is large enough, an

earthquake is certain to occur and release some or all of the strain. Thus, St is bounded

above, and without loss of generality we assume the measurement scale for strain is

such that the upper bound equals 1. Strain is restricted to values 0, A, 2A, 3A, ..., 1 with

associated “states” 1, 2, ..., N . Thus, state 1 has strain 0, state 2 has strain 1A state 3

has strain 2A, and so on, up to state N with strain 1.

The probability of an earthquake for any state is assumed to be proportional to the

strain, so the state variable can be considered to be either probability or strain.

To consider when earthquakes occur, note that the model allows for thresholds to

limit when earthquakes can or cannot occur. When the strain St drops to 0 or below a

threshold δ ≥ 0, the probability of an earthquake equals zero. Otherwise, it is equal to

St.

Define the random variable It to indicate whether an earthquake occurs at epoch t

(It = 1) or not (It = 0). Then the conditional probability of an earthquake, given that it

is in state St is

(A.1) Pr [It = 1|St] =

 min {St, 1} if δ ≤ St

0 if St < δ
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If no earthquake occurs at epoch t, the strain increases by A so St+1 = St + A If

an earthquake occurs at epoch t, strain is released. The strain released equals R unless

R > St in which case the strain released is St. Thus we have

(A.2) St+1 =

 max {0, St −R} if It = 1

St + A if It = 0

In the numerical results in Chapter 5, R is fixed and equal to a positive integer multiple

of A. However, the model allows a more general formulation, so that R can assume values

A, 2A, 3A, . . . , St according to a specified probability distribution.

The following Table A.1 provides a glossary of notation.

Table A.1. LTFM notation glossary.

Symbol Interpretation Section or
Equation

It Indicator of earthquake (1) or no earthquake
(0) at epoch t

A1

A Strain increment if no earthquake A1

St Accumulated strain at epoch t A1

δ Stain threshold for earthquake to occur, i.e.,
no earthquake if St < δ

A1

R Strain drop if earthquake occurs and St ≥ R A1

pj,k Transition probability, i.e., probability of go-
ing to state k at next epoch given system is
in state j

A2

P Matrix of transition probabilities A2
Continued on next page
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Table A.1 – continued from previous page

Symbol Interpretation Section or
Equation

π Vector of long-run probabilities of being in
various states

A.3

ek Conditional probability of earthquake in
epoch t given system is in state k in epoch t

A.4

wk,T Conditional probability that the next earth-
quake occurs exactly T epochs from the cur-
rent epoch given that the current state is k

A.5

vk,T Conditional probability that the next earth-
quake occurs T or more epochs from the cur-
rent epoch given that the current state is k

A.6

wT Unconditional probability that the next
earthquake occurs exactly T epochs from the
current epoch

A.7

vT Unconditional probability that the next
earthquake occurs T or more epochs from the
current epoch

A.8

dk|0 Conditional probability of being in state k at
epoch t given earthquake at epoch t

A.9

dk|0,T Conditional probability of being in state k at
epoch t given last 2 earthquakes occurred in
epochs t and t− T

A.17

dk|0,T1,...,Tm−1 Conditional probability of being in state k at
epoch t given last m earthquakes occurred in
epochs t, t− T1, t− T1 − T2, ..., t−

∑m−1
i=1 Ti.

Thus, the Ti’s are inter-event times.

A.24

Continued on next page
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Table A.1 – continued from previous page

Symbol Interpretation Section or
Equation

sk|1 Conditional probability of being in state k at
epoch t given last earthquake at epoch t− 1

A.10

sk|T Conditional probability of being in state k at
epoch t given last earthquake at epoch t− T

A.14

sk|T,T1,...,Tm−1 Conditional probability of being in state k at
epoch t given last m earthquakes prior to t
occurred at epochs t− T, t− T − T1, , ..., t−
T −

∑m−1
i=1 Ti. Thus, the Ti’s are inter-event

times.

A.29

rT |1 Conditional probability that next earthquake
occurs in epoch t + T given that last earth-
quake occurred in epoch t

A.12

rT |1,T1 Conditional probability that next earthquake
occurs in epoch t+T given that last 2 earth-
quakes occurred in epochs t and t− T1

A.21

rT |1,T1,...,Tm−1 Conditional probability that next earthquake
occurs in epoch t+T given that last m earth-
quakes occurred in epochs t, t − T1, t − T1 −
T2, ..., t−

∑m−1
i=1 Ti

A.27

qT |1 Conditional probability that next earthquake
occurs in epoch t+ T or later given that last
earthquake occurred in epoch t

A.13

qT |1,T1 Conditional probability that next earthquake
occurs in epoch t+ T or later given that last
2 earthquakes occurred in epochs t and t−T1

A.22

Continued on next page
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Table A.1 – continued from previous page

Symbol Interpretation Section or
Equation

qT |1,T1,...,Tm−1 Conditional probability that next earthquake
occurs in epoch t+ T or later given that last
m earthquakes occurred in epochs t, t−T1, t−
T1 − T2, ..., t−

∑m−1
i=1 Ti

A.28

τk Expected waiting time until the next earth-
quake given that the process in state k

A.30

σ2
τ,k Conditional variance of the waiting time un-

til the next earthquake given that the process
in state k

A.31

τ Unconditional expected waiting time until
the next earthquake

A.32

σ2
τ Unconditional variance of waiting time until

the next earthquake
A.33

τ|T,T1,T2,...,Tm−1 Conditional expectation of waiting time un-
til next earthquake given that last m earth-
quakes occurred in epochs t, t − T1, t − T1 −
T2, ..., t−

∑m−1
i=1 Ti

A.34

σ2
τ |T,T1,T2,...,Tm−1

Conditional variance of waiting time until
next earthquake given that last m earth-
quakes occurred in epochs t, t − T1, t − T1 −
T2, ..., t−

∑m−1
i=1 Ti

A.35

FT ′,k Conditional probability of at least 1 earth-
quake in the next T ′ epochs given the current
state is k

A.36

FT ′ Unconditional probability of at least 1 earth-
quake in the next T ′ epochs

A.37

Continued on next page
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Table A.1 – continued from previous page

Symbol Interpretation Section or
Equation

FT ′|T,T1,T2,...,Tm−1Conditional probability of at least 1 earth-
quake in the next T ′ epochs given that the
previous m earthquakes occurred T epochs
ago, T + T1 epochs ago,..., T +

∑m−1
i=1 Ti

A.38

µrenew Expected number of epochs for the process
to renew (return to state 1 from state 1)

A.42

σrenew Standard deviation of number of epochs for
the process to renew (return to state 1 from
state 1)

A.43

cvrenew Coefficient of variation (cv) of number of
epochs for the process to renew (return to
state 1 from state 1)

A.44

A.3. Transition Probability and Stationary Distribution

The conditional probability of transition to state k at epoch t given that the process

is in state j is called a transition probability, denoted by pjk or pj,k. The matrix P of

transition probabilities pjk is called the transition probability matrix and its entries satisfy

0 ≤ pjk ≤ 1 and 1 =
∑

k pjk for each j. The LTFM rules in Equations (A.1) and (A.2)

specify that for k ≥ j,

pj,k =


(j − 1)A if k = 1 and j ≤ D

(j − 1)A if k = j −D > 0

0 otherwise, and k < j
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From Markov chain theory, the conditional probability of transition to state k at epoch

t +m given that the process is in state j at epoch t given by the (j, k) entry in the m-

fold matrix product Pm. Standard references on Markov chains include Feller (1968) and

Çinlar (1975).

Another result from Markov chain theory applicable to our model is the existence of

a long-run or stationary probability distribution over the states. The probability distri-

bution is given by a row vector π with elements between 0 and 1 and summing to 1 such

that

(A.3) πP = π

The vector π is called the stationary distribution of the Markov chain. We interpret

πj as the long-run probability of being in state j. Stationary distributions only exist if the

Markov chain is irreducible and regular, meaning it is possible to go from every state to

every other state (not necessarily in one epoch or “step”) and for some n ≥ 1 it is possible

to go from any state to any other state in exactly n epochs (or steps). Equivalently, for

some n ≥ 1 every element of Pn is positive. Those conditions are met by the LTFM.

In application, the numerical value of an epoch, t, will depend not on how long the

process has been ongoing but on an arbitrary reference period, such as the date of the

earliest observed earthquake, which might be considered epoch 0, for example. This

perspective is justified by the time-independence of the transition probability matrix P

and the existence of the stationary distribution π.

The conditional probability of an earthquake occurring given its state was shown

in Equation A.1 and can be expressed in terms of the elements of P. We denote the
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conditional probability of an earthquake occurring in an epoch given it is in state k in

the epoch by ek. Because transitions to lower states indicate an earthquake occurred, it

follows that

(A.4) ek = 1− pk,k+1

A.4. Conditional Probability of an Earthquake Occurring in T Epochs

A.4.1. Conditional probability that the next earthquake occurs exactly T

epochs from the current epoch given system is currently in state k

We define wk,T as the conditional probability that the next earthquake occurs exactly T

epochs from the current epoch given that the current state is k. The maximum number

of epochs to wait equals the number of total states, N , so wk,T = 0 for T > N . An

earthquake first occurs at epoch T if one does not occur at intermediate epochs and then

one occurs at T , so

(A.5) wk,T =

 ek if T = 1

ek+T−1

∏T−2
t=0 (1− ek+t) if 1 < T ≤ N

The N×N matrix W with elements wk,T (k = 1, ..., N ;T = 1, ..., N) will be called the

conditional waiting time matrix. The kth row of W contains the conditional probability

distribution for waiting times given that the process is in state k.
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A.4.2. Conditional probability that the next earthquake occurs T or more

epochs from the current epoch given system is currently in state k

The conditional probability that the next earthquake occurs T or more epochs from the

current epoch given that the current state is k is given by

(A.6) vk,T =
∑
τ≥T

wk,T

Notice that vk,1 = 1 for any state k.

A.5. Unconditional Probability of an Earthquake Occurring in T Epochs

A.5.1. Unconditional probability that the next earthquake occurs exactly T

epochs from current epoch

The unconditional probability that next earthquake occurs exactly T epochs from the

current epoch is equal to the weighted average of wk,T terms, with weights equal to the

probability of being in state k. The latter probabilities are not known but can be approx-

imated by the long-run probabilities πk. This leads us to approximate the unconditional

probability by

(A.7) wT =
N∑
k=1

πkwk,T

The vector w values w1, ...wN will be referred to as the unconditional waiting time

vector. It contains the approximate unconditional distribution of the waiting time until

the next earthquake.
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A.5.2. Unconditional probability that the next earthquake occurs T or more

epochs from current epoch

The approximate unconditional probability vT that the next earthquake occurs T or more

epochs from the current epoch is given by

(A.8) vT =
∑
τ≥T

wτ

Note that vT = 1.

A.6. Conditional Probabilities Over States Given Recent Earthquake

A.6.1. Conditional probability of being in state k at epoch t given an earth-

quake at epoch t

We are interested in the conditional probability that the system was in state k at epoch

t given that an earthquake occurred in epoch t. To calculate this probability, we use the

relationship P (A|B) = P (B|A)P (A)/P (B) with A denoting the event that the system

was in state k at epoch t and B denoting the event that an earthquake occurred at epoch

t. We approximate P (A) by the long-run probability πk and we approximate P (B) by

w1. The conditional probability of an earthquake P (B|A) is given by ek. Putting this

together yields the approximation dk|0 for the conditional probability that the system was

in state k at epoch t given that an earthquake occurred in epoch t,

(A.9) dk|0 =
ekπk

w1
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To verify that the approximation yields a conditional probability distribution, note that

dk|0 > 0 and
∑

k dk|0 = 1.

A.6.2. Conditional probability of being in state k at epoch t + 1 given an

earthquake at epoch t

We also want to know the conditional probability of being in state k at epoch t+1 given

occurrence of an earthquake epoch t. We approximate this probability by sk|1 given by

(A.10) sk|1 =
∑
j>k

pj,kdj|0/ej =
∑
j>k

pj,kπj/w1

Note that sk|1 is also the approximate conditional probability of being in state k at

epoch t given occurrence of an earthquake epoch in epoch t−1. To verify that the approx-

imation yields a conditional probability distribution, note that sk|1 ≥ 0 and
∑

k sk|1 = 1.

To derive Equation (A.10), note that to be in state k at epoch t+1 after an earthquake

occurred at epoch t, the system must have been in a state j that allowed a transition to

state k by release of strain. The law of total probability implies the relationship

(A.11) P (A|B) =
∑
j

P (A|B,Cj)P (Cj|B)

and we let A denote the event that the system is in state k at epoch t+ 1, B denote the

event that an earthquake occurred in epoch t, and Cj denote the event that the system

was in state j at epoch t. From the relationship P (A|B,Cj) = P (A,B|Cj)/P (B|Cj), we

approximate P (A|B,Cj) by pj,k/ej if j > k and P (A|B,Cj) if j ≤ k. Using Equation
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(A.9) to approximate P (Cj|B) by dj|0, we approximate P (A|B) by
∑

j>k pj,kdj|0/ej which

equals
∑

j>k pj,kπj/w1.

A.7. Probability that the Next Earthquake Occurs T or More Epochs After

the Last Earthquake

A.7.1. Probability that the next earthquake occurs exactly T epochs after the

last earthquake

Consider the conditional probability that the next earthquake occurs at epoch t+T given

that the last earthquake occurred at epoch t. Since the process is stationary, this equals

the conditional probability that the next earthquake occurs exactly T epochs after the

last earthquake. This conditional probability is approximately equal to rT |1 defined as

(A.12) rT |1 =
∑
j

wj,T sj|1

Observe that rT |1 ≥ 0 for 1 ≤ T ≤ N, rT |1 = 0 for T > N and T < 1, and
∑

T rT |1 = 1.

Thus, we can treat the set of conditional probabilities rT as a probability mass function for

the different values of T , and comparable to discretized versions of distributions commonly

used in renewal models for earthquake occurrence (exponential, lognormal Brownian Pas-

sage Time, etc.). The renewal model closest to the LTFM is the Weibull distribution with

shape parameter equal to 2, for which probability increments for earthquake occurrences

are constant and positive.

Derivation of Equation (A.12). Let A denote the event that an earthquake occurs at

epoch t + T but not at epochs t + 1, t + 2, ..., t + T − 1. Let B denote the event that an

earthquake occurred in epoch t. Thus, the probability of interest is P (A|B). To obtain
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this, we use Equation (A.11) with Cj denoting the event that the system was in state j at

epoch t. Recall that P (A|B,Cj) is approximated by wj,T and P (Cj|B) is approximated

by sj. It follows from Equation (A.11) that the probability of waiting exactly T epochs

from the last earthquake until the next earthquake is approximated by rT |1 as given by

Equation (A.12).

A.7.2. Probability that the next earthquake occurs T or more epochs after

the last earthquake

The conditional probability that the next earthquake occurs T or more epochs after the

last earthquake is approximately equal to qT |1 defined as

(A.13) qT |1 =
∑
τ≥T

rτ |1

Note that q1|1 = 1.

A.8. Conditional Distribution over States Given Date of Last Earthquake

We are also interested in the conditional distribution over states given that the most

recent earthquake occurred T epochs ago. We will calculate the conditional probability of

being in state k at epoch t+T given that an earthquake occurred in epoch t and there was

no earthquake in the T −1 succeeding epochs, t+1, ..., t+T −1. In other words, the most

recent earthquake occurred T epochs ago. This conditional probability is approximately

equal to sk|T defined as

(A.14) sk|T = vk−T+1,T sk−T+1|1/qT |1
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Observe that for a given T , sk|T ≥ 0 and
∑

k sk|T = 1.

We now derive Equation (A.14). Let A denote the event of being in state k at epoch

t + T , let B denote the event of an earthquake occurring in epoch t, let C denote the

event of no earthquake in the T epochs t + 1, ..., t + T , and let Dj denote the event of

being in state j in epoch t+1. The probability of interest is P (A|B,C). The law of total

probability and the properties of conditional probability imply

(A.15)

P (A|B,C) =
∑
j

P (A|B,C,Dj)P (Dj|B,C)

=
∑
j

P (A|B,C,Dj)
P (C|B,Dj)P (Dj|B)P (B)

P (C|B)P (B)

Given that there was no earthquake for T epochs following epoch t, the only way to be in

state k at epoch t+ T is to have been in state k − 1 at epoch t+ T − 1, in state k − 2 at

epoch t+ T − 2,..., and in state k − T + 1 at epoch t+ 1. Furthermore, given that there

was no earthquake for T epochs following epoch t, if the system was in state k− T +1 at

epoch t+ 1, it was necessarily in state k at epoch t+ T . Thus, P (A|B,C,Dj) equals 1 if

j = k − T + 1 and it equals 0 if j ̸= k − T + 1. It follows from Equation (A.15) that

(A.16) P (A|B,C) =
P (C|B,Dk−T+1)P (Dk−T+1|B)

P (C|B)

The denominator, P (C|B) is approximated by qt. In the numerator, P (C|B,Dk−T+1 is

approximated by vkT+1,T . The other term in the numerator, P (Dk−T+1|B) is approximated

by sk−T+1|1. Thus, P (A|B,C) is approximately equal to Equation (A.14).
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A.9. Conditional Probabilities Given Dates of Past 2 Earthquakes

A.9.1. Conditional probability of being in state k at epoch t given that the

last 2 earthquakes occurred in epochs t and t− T1

Because the Markov LTFM does not reset after each earthquake, the conditional prob-

abilities based on the two most recent earthquakes are not equal to those conditional

on just the most recent earthquake. The conditional probability that the system was in

state k at epoch t given that an earthquake occurred in epoch t (0 epochs ago) and the

previous earthquake occurred in epoch t − T1 (or T1 epochs ago, i.e., T1 epochs between

earthquakes) is approximately equal to dk|0,T1 defined as

(A.17) dk|0,T1 =
eksk|T1∑
j ejsj|T1

To verify that the approximation yields a conditional probability distribution for each T1,

note that for any fixed T1, dk|0,T1 ≥ 0, and
∑

k dk|0,T1 = 1.

Derivation of Equation (A.17). Let A denote the event of being in state k at epoch

t, let B denote the event that an earthquake occurs in epoch t, let C denote the event

of there are exactly T1 epochs between two successive earthquakes, and let D denote the

event that an earthquake occurs in epoch t− T1. We have

(A.18)

P (A|B,C,D) =
P (B|A,C,D)P (A|C,D)P (C,D)

P (B|C,D)P (C,D)

=
P (B|A,C,D)P (A|C,D)

P (B|C,D)

The conditional probability P (B|A,C,D) is equal to P (B|A) by the Markov property,

and is equal to ek. Next, P (A|C,D) is approximately equal to sk|T1 . The numerator is
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thus approximately eksk|T1 . The denominator P (B|C,D) equals the sum of the numerator

over all states, and dividing the numerator by the denominator yields Equation (A.17).

A.9.2. Conditional probability of being in state k at epoch t+1 given that the

last 2 earthquakes occurred in epochs t and t− T1

We also want to know the conditional probability of being in state k at epoch t+1 given an

earthquake occurred in epoch t and the earthquake before that occurred at epoch t− T1.

Notice that the distance between the current epoch and the epochs with earthquakes on

which the conditioning occurs takes the values 1 and T1 + 1 This conditional probability

is approximately equal to sk|1,T1+1 given by

(A.19)

sk|1,T1+1 =
∑
j>k

pj,kdk|0,T1/ej

=

∑
j>k pj,ksj|T1∑

l elsl|T1

To explain the notation, we use sk|T,T1,...Tm−1 to denote the probability of being in state k

given that the latest earthquake occurred T epochs ago, the second-to-latest earthquake

before that occurred T + T1 epochs ago, and so on, and the mth-to-latest earthquakes

occurred T + T1 + ... + Tm−1epochs ago. Thus, the spacings between the earthquakes,

going backward in time, are T, T1, T2, ...Tm−1.

To derive Equation (A.19), note that in order to be in state k at epoch t+ 1 after an

earthquake occurred at epoch t, the system must have been in a state j that allowed a

transition to state k by release of strain. Let A denote the event that the system is in

state k at epoch t + 1, B denote the event that the last 2 earthquakes occurred 1 epoch
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ago and T1 + 1 epochs ago, and Cj denote the event that the system was in state j at

epoch t. From Equation (A.11) it now follows that

(A.20) P (A|B) =
∑
j>k

P (A|B,Cj)P (Cj|B)

From the relationship P (A|B,Cj) = P (A,B|Cj)/P (B|Cj) we approximate P (A|B,Cj)

by pj,k/ej if j > k and P (A|B,Cj) = 0 if j ≤ k. Using Equation (A.17) to approximate

P (Cj|B) by dj|0,T1 , we approximate P (A|B) by
∑

j>k pj,kdj|0,T1/ej, which is equal to

sumj>kpj,ksj|T1/
∑

l elsl|T1 .

A.9.3. Conditional probability the next earthquake occurs in epoch t+T given

that the last 2 earthquakes occurred in epochs t and t− T1

Consider the conditional probability that the next earthquake occurs in epoch t+T given

that the last earthquake occurred in epoch t and the earthquake prior to that occurred

in epoch t− T1. This probability is approximated by rT |1,T1 defined as

(A.21) rT |1,T1 =
∑
k

wk,T sk|1,T1

Derivation of Equation (A.21). The conditional probability of an earthquake in epoch

t + T given that the system is in state k at epoch t + 1 and that the past earthquake

occurred in epoch t and the earthquake prior to that occurred in epoch t − T1 is equal

to wk,t, by the Markov property. The conditional probability that the system is in state

k at epoch t + 1 given that the last earthquake occurred in epoch t and the earthquake

prior to that occurred in epoch t − T1 is approximately equal to sk|1,T1 . The product

wk,T sk|1,T1 approximates the conditional probability that the system is in state k at epoch
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t + 1 and an earthquake occurs in epoch t + T given that the past earthquake occurred

in epoch t and the earthquake prior to that occurred in epoch t − T1. By the law of

total probability, rT |1,T1 is approximated by the sum of wk,T sk|1,T1 over all states k, thus

establishing Equation (A.21).

A.9.4. Conditional probability that the next earthquake occurs in epoch t+T

or later given the past 2 earthquakes occurred in epochs t and t− T1

The conditional probability that the next earthquake occurs in epoch t+T or later given

that the past earthquake occurred in epoch t and the earthquake prior to that occurred

in epoch t− T1 is approximately equal to qT |1,T1 defined as

(A.22) qT |1,T1 =
∑
τ≥T

rτ |1,T1

Because there must always be 1 epoch between earthquakes, q1|1,T1 = 1.

A.9.5. Conditional probability of being in state k at epoch t given that the

past 2 earthquakes occurred in epochs t− T and t− T − T1

The conditional probability of being in state k at epoch t given the past 2 earthquakes

occurred at epochs t− T and t− T − T1 is approximately equal to sk|T,T1 defined as

(A.23) sk|T,T1 =
vk−T+1,T sk−T+1|1,T1

qT |1.T1

For a given T ,
∑

k sk|T,T1 = 1.

Derivation of Equation (A.23). Let A denote the event of being in state k at epoch t

let B denote the event that no earthquake occurs in epochs t− T + 1, t− T + 2, ..., t, let
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C denote the event that earthquakes occurred at epochs t− T and t− T − T1, but not in

between, and let Dj denote the event that the system is in state j at epoch t− T + 1.

The probability of interest is P (A|B,C,Dj) and it can be expressed as Equation

(A.15). To be in state k at epoch t given B and C, the system must have been in

state j = k − T + 1 in epoch t − T + 1, which is the epoch immediately following

the past earthquake. Thus, P (A|B,C,Dj) = 0 unless j = k − T + 1, in which case

P (A|B,C,Dj) = 1. It follows that equation (A.16) holds. Observe that P (B|C,Dk−T+1)

is equal to P (B|Dk−T+1) by the Markov property and is thus approximated by vk−T+1,T .

Next, P (Dk−t+1|C) is approximated by sk−T+1|1,T1 . Finally, P (B|C) is approximated by

qT |1,T1 . Equation (A.23) follows from substitution into Equation (A.16).

A.10. Conditional Probabilities Based on the Past m Earthquakes

We have derived dk|0,T1 , rT |1,T1 , qT |1,T1 , and sk|T,T1 in Equations (A.17), (A.21), (A.22),

and (A.23). Those probabilities were conditional on 2 past earthquakes. Derivation of

conditional probabilities given additional numbers of earthquakes proceeds inductively.

A.10.1. Conditional probability of being in state k at epoch t given that the

past m earthquakes occurred in epochs t, t−T1, t−T1−T2, ..., t−
∑m−1

i=1 Ti

Assume that conditional probabilities given the past m− 1 earthquakes are known. Then

the conditional probability of being in state k at epoch t given the past m earthquakes oc-

curred in epochs t, t−T1, t−T1−T2, ..., t−
∑m−1

i=1 Ti is approximately equal to dk|0,T1,...,Tm−1
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given by

(A.24) dk|0,T1,...,Tm−1 =
eksk|T1,...,Tm−1∑
j ejsj|T1,...,Tm−1

Derivation of Equation (A.24). Let A denote the event of being in state k at epoch t,

let B denote the event that an earthquake occurs in epoch t, and let C denote the event

that m − 1 earthquakes occurred in the epochs from t − 1 back to t − T1 − T2 · · ·Tm−1,

and the epochs in which they occurred are t−T1, t−T1−T2, ..., t−T1−T2 · · ·Tm−1. We

have

(A.25)

P (A|B,C) =
P (B|A,C)P (A|C)P (C)

P (B|C)P (C)

=
P (B|A,C)P (A|C)

P (B|C)

The conditional probability P (B|A,C) is equal to P (B|A) by the Markov property, and

is approximately equal to ek. Next, P (A|C) is approximately equal to sk|T1,...,Tm−1 . The

numerator is thus approximately eksk|T1,...,Tm−1 . The denominator P (B|C) equals the sum

of the numerator over all states, and dividing the numerator by the denominator yields

Equation (A.24).

A.10.2. Conditional probability of being in state k at epoch t given that the

past m earthquakes occurred in epochs t−1, t−1−T1, ..., t−1−
∑m−1

i=1 Ti

The conditional probability of being in state k at epoch t given that the past m earth-

quakes occurred at epochs t− 1, t− 1− T1, ..., t− 1−
∑m−1

i=1 Ti is approximately equal to
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sk|1,T1,...,Tm−1 given for m > 1 by

(A.26)

sk|1,T1,...,Tm−1 = dk|0,T1,...,Tm−1

∑
j>k

pj,k/ej

=

∑
j>k pj,ksj|T1,...,Tm−1∑

l elsl|T1,...,Tm−1

The case when m = 1 is given by Equation (A.10) for sk|1.

Derivation of Equation (A.26). Let A denote the event that the system is in state

k at epoch t and let B denote the event that the past m earthquakes occurred in the

epochs from t− 1 back through t− 1−
∑m−1

i=1 Ti and the epochs in which they occurred

are t− 1, t− 1− T1, ..., t− 1−
∑m−1

i=1 Ti. Let Cj denote the event that the system was in

state j at epoch t− 1. In order to be in state k at epoch t after an earthquake occurred

at epoch t− 1, the system must have been in a state j that allowed a transition to state

k by release of strain. From Equation (A.11) it thus follows that Equation (A.20) holds.

From the relationship P (A|B,Cj) = P (A,B|Cj)/P (B|Cj), we approximate P (A|B,Cj)

by pj,k/ej if j > k and P (A|B,Cj) = 0 if j ≤ k. Using Equation (A.17) to approximate

P (Cj|B) by dj|0,T1,...,Tm−1 , we approximate P (A|B) by
∑

j>k pj,kdj|0,T1,...,Tm−1/ej which is

equal to
∑

j>k pj,ksj|T1,...,Tm−1/
∑

l elsl|T1,...,Tm−1 .

A.10.3. Conditional probability the next earthquake occurs in epoch t+T given

that the past m earthquakes occurred in epochs t, t− T1, ..., t−
∑m−1

i=1 Ti

Consider the conditional probability that the next earthquake occurs in epoch t+T given

that the past m earthquakes occurred in epoch t, t− T1, ..., t−
∑m−1

i=1 Ti. This probability
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is approximated by rT |1,T1,...,Tm−1 defined as

(A.27) rT |1,T1,...,Tm−1 =
∑
k

wk,T sk|1,T1,...,Tm−1

Derivation of Equation (A.27). The conditional probability of an earthquake in epoch t+T

given that the system is in state k at epoch t+ 1 and the last m earthquakes occurred in

epoch t, t− T1, ..., t−
∑m−1

i=1 Ti is equal to wk,T by the Markov property. The conditional

probability that the system is in state k at epoch t+1 given that the past m earthquakes

occurred in epoch t, t − T1, ..., t −
∑m−1

i=1 Ti is approximately equal to sk|1,T1,...,Tm−1 . The

product wk,T sk|1,T1,...,Tm−1 approximates the conditional probability that the system is in

state k at epoch t + 1 and the past m earthquakes occurred in the epochs from t back

through t−
∑m−1

i=1 Ti and the epochs in which they occurred are t, t−T1, ..., t−
∑m−1

i=1 Ti. By

the law of total probability, rT |1,T1,...,Tm−1 is approximated by the sum of wk,T sk|1,T1,...,Tm−1

over all states k thus establishing Equation (A.27).

A.10.4. Conditional probability the next earthquake occurs in epoch t+ T or

late given that the past m earthquakes occurred in epochs t, t−T1, ..., t−∑m−1
i=1 Ti

The conditional probability that the next earthquake occurs in epoch t+T or later given

that the past m earthquakes occurred in epoch t, t− T1, ..., t−
∑m−1

i=1 Ti is approximately

equal to qT |1,T1,...,Tm−1 , defined as

(A.28) qT |1,T1,...,Tm−1 =
∑
τ≥T

rτ |1,T1,...,Tm−1

Because there must always be 1 epoch between earthquakes, q1|1,T1,...,Tm−1 = 1.
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A.10.5. Conditional probability of being in state k at epoch t given that the

past m earthquakes occurred in epochs t − T, t − T − T1, t − T − T1 −

T2, ..., t− T −
∑m−1

i=1 Ti

The conditional probability of being in state k at epoch t given that the past m earth-

quakes occurred at epochs t − T, t − T − T1, t − T − T1 − T2, ..., t − T −
∑m−1

i=1 Ti is

approximately equal to sk|T,T1,T2,...,Tm−1 given by

(A.29) sk|T,T1,...,Tm−1 =
vk−T+1,T sk−T+1|1,T1,...,Tm−1

qT |T1,...,Tm−1

The probability of interest is P (A|B,C,Dj) and can be expressed as Equation (A.15). To

be in state k at epoch t given B and C, the system must have been in state j = k−T +1

in epoch t− T + 1, which is the epoch immediately following the past earthquake. Thus,

P (A|B,C,Dj) = 0 unless j = k − T + 1 in which case P (A|B,C,Dj) = 1. It follows

that Equation (A.16) holds. Observe in Equation (A.16) that P (B|C,Dk−T+1) is equal

to P (B|Dk−T+1) by the Markov property and is thus approximated by vk−T+1,T . Next,

P (Dk−T+1|C) is approximated by sk−T+1|1,T1,...,Tm−1 . Finally, P (B|C) is approximated by

qT |T1,...,Tm−1 . Equation (A.29) follows from substitution into Equation (A.16).

A.11. Waiting Time Until Next Earthquake

A.11.1. Conditional Mean and Variance of Waiting Time Until Next Earth-

quake Given State k

The conditional probability that waiting time until the next earthquake is T epochs, given

that the process is in state k is equal to wk,T . The expected waiting time until the next
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earthquake given that the process is in state k, say τk, is thus

(A.30) τk =
∑
T≥1

Twk,T

The conditional variance of the waiting time until the next earthquake is approximately

σ2
τ,k defined as

(A.31)

σ2
τ,k =

∑
T≥1

(T − τk)
2wk,T

=
∑
T≥1

[
T 2wk,T − τ 2k

]

A.11.2. Unconditional Mean and Variance of Waiting Time Until Next Earth-

quake

The unconditional expected waiting time until the next earthquake is approximately τ ,

defined as

(A.32) τ =
∑
T≥1

TwT

The unconditional variance of the waiting time until the next earthquake is approximately

σ2
τ defined as

(A.33)

σ2
τ =

∑
T≥1

(T − τ)2wT

=
∑
T≥1

[
T 2wT − τ 2

]
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A.11.3. Conditional Mean and Variance of Waiting Time Given Earthquake

History

We can improve our estimation of the mean and variance of the expected waiting time

by conditioning on the earthquake history. The expected waiting time given that the

previous m earthquakes occurred T epochs ago, T + T1 epochs ago, . . ., T +
∑m−1

i=1 Ti

epochs ago is approximately equal to τ|T,T1,T2,...,Tm−1 which is a weighted sum of τk values

(A.34) τ|T,T1,T2,...,Tm−1 =
∑
k

τksk|T,T1,T2,...,Tm−1

The corresponding variance for the expected waiting time given that earthquake history

is approximately equal to σ2
τ |T,T1,T2,...,Tm−1

defined as

(A.35)

σ2
τ |T,T1,T2,...,Tm−1

=
∑
k

(
τksk|T,T1,T2,...,Tm−1 − τ|T,T1,T2,...,Tm−1

)2
=

∑
k

(
τ 2k sk|T,T1,T2,...,Tm−1 − τ 2|T,T1,T2,...,Tm−1

)

A.11.4. Conditional Probability of an Earthquake in Next T ′ Epochs Given

State k

The conditional probability of at least 1 earthquake in the next T ′ epochs given that the

current state is k is approximately equal to FT ′,k defined as

(A.36) FT ′,k =
∑
τ≤T ′

wk,τ
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A.11.5. Unconditional Probability of an Earthquake in Next T ′ Epochs

Similarly, the unconditional probability of at least 1 earthquake in the next T ′ epochs is

approximately equal to FT ′ defined as

(A.37) FT ′ =
∑
τ≤′

wt

A.11.6. Conditional Probability of an Earthquake in Next T ′ Epochs Given

Earthquake History

The conditional probability of at least 1 earthquake in the next T ′ epochs given that the

previous earthquakes occurred T epochs ago, T +T1 epochs ago, . . ., T +
∑m−1

i=1 Ti epochs

ago is approximately equal to

(A.38) FT ′|,T,T1,T2,...,Tm−1 =
∑
k

FT ′,ksk|T,T1,T2,...,Tm−1

Equation (A.38) can also be rewritten as

(A.39) FT ′|,T,T1,T2,...,Tm−1 =
∑
k

(1− vk,T ′+1) sk|T,T1,T2,...,Tm−1

A.12. Waiting Time Between Renewals of System

Although the times between earthquakes are not independent, the system can be

viewed as a renewal process from the perspective of a sufficiently long time scale. For

example, the LTFM process can be considered to renew itself each epoch t at which the

accumulated strain St equals 0. As described in Section A1, state 1 has accumulated

strain S equal to 0, so we would then consider the time for the system from state 1 back
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to state 1. More generally, we could consider the time (number of epochs) needed for the

accumulated strain to move from at or below a threshold κ1 to above another threshold

κ2 and then back to κ1 or below. For simplicity, we consider here the time needed for the

system to move from state 1 back to state 1, or from zero accumulated strain aback to

zero accumulated strain.

The number of epochs, y, required to move from state 1 back to state 1 is equal to 1

plus the number of epochs required to move from state 2 to state 1, because the probability

of an earthquake in state 1 equals 0. To find the distribution of y, we consider a modified

process that is identical to the original one except that once the modified process enters

state 1, it remains there. Denote the transition matrix of the modified process by P The

matrix P is identical to P except that the entries in the first row are p1,1 = 1 and p1,k = 0

for k > 1.

Let G1,2(t) denote the conditional probability that the modified process is in state 1 t

epochs after being in state 2. The theory of Markov chains implies

(A.40) G1,2(t) = (0, 1, 0, ..., 0)P
t
(1, 0, 0, ..., 0)T

Notice that G1,2(T ) gives the conditional probability that the modified process has entered

state 1 within t epochs after being in state 2. Let g1,2(t) = G1,2(t) − G1,2(t − 1) denote

the conditional probability that the modified process enters state 1 exactly t epochs after

being in state 2. Observe that

(A.41) g1,2(t) = (0, 1, 0, ..., 0)
(
P

t −P
t−1

)
(1, 0, 0, ..., 0)T
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The expected number of epochs for the original process to return to state 1 from state 1

thus has expected value µrenew given by

(A.42) µrenew = 1 +
∑
t≥0

tg1,2(t)

The standard deviation σrenew of the time between renewals given by

(A.43) σrenew =

√∑
t≥0

(1 + t− µrenew)
2 g1,2(t)

and coefficient of variation (cv) for the time between renewals,

(A.44) cvrenew = σrenew/µrenew
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