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ABSTRACT

Three problems in microfluidics: Electrokinetic instability, electrohydrodynamic

self-assembly, and slip

Hua-Yi, Hsu

This thesis deals with three problems encountered in micro- and nano-fluidics: linear

stability analysis of electrokinetic mixing in microchannels, development of a general purpose

numerical technique for fully resolved simulation of electrohydrodynamic particulate flows,

and studying the phenomenon of molecular scale slip next to boundaries in micro- and

nano-channels.

Mixing in microscale devices is not easy due to the laminar flow conditions. Hence,

various strategies are being proposed to mix fluids in microfluidic devices. One such approach

is based on so-called electrokinetic instabilities.

Self-assembly can be an important means for micro/nanoscale fabrication. A fundamental

understanding of this process is still missing. Such an understanding could help in developing

better strategies to obtain optimal deposition pattern. One part of this thesis is focused on

developing a fundamental numerical tool to investigate such problems.

In continuum fluid dynamics, the no-slip boundary condition is typically used. How-

ever, slip is typically reported in small scale devices. Slip can be helpful to reduce the flow

resistance and thus reduce the energy requirement in micro- and nano-channels. In this

thesis it is explored whether it is possible to reproduce molecular scale slip behavior through

continuum equations. This approach leads to insights into the mechanism of slip in the con-

text of continuum equations. It could also be useful in developing multiscale computational

techniques.
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CHAPTER 1

Introduction

Fluid is a continuously deforming substance. To study fluid behavior there are two

commonly used approaches: microscopic approach which is focused on molecular motion

and macroscopic approach which considers local average movement over many molecules.

To study the molecular motion, Molecular Dynamics (MD) is often used, however, it is

computationally expensive if the fluid domain is not small. The continuum hypothesis has

been used for solving macroscopic fluid problems. In this case, the fluid motion is described

in terms of conservation equations for mass, momentum and energy. The no-slip boundary

condition is typically applied for most fluid problems. During the past decade, micro and

nano-scale technology has been developing. At this scale molecular scale effects may become

important in capturing fluid behavior. However, often continuum theory has been successful

in describing observed phenomena.

This thesis deals with three problems encountered in micro- and nano-fluidics: under-

standing electrokinetic mixing in microchannels, development of a general purpose numerical

technique for fully resolved simulation of electrohydrodynamic particulate flows, and study-

ing the phenomenon of molecular scale slip next to boundaries in micro- and nano-channels.

Electrokinetic mixing is studied by linear stability analysis. The numerical technique for elec-

trohydrodynamic particulate flow is based on a new immersed boundary algorithm [4, 5].

The problem of slip is focused on a novel approach to resolve molecular scale slip behavior

by using continuum equations.

Mixing in microscale devices is not easy due to the laminar flow conditions. Hence,

various strategies are being proposed to mix fluids in microfluidic devices. One such approach

is based on so-called electrokinetic instabilities. Such instabilities are induced by an electric

field applied in the presence of two miscible liquids with different electrical conductivities.
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Figure 1.1. Mixing between two fluids with different conductivities. The exter-
nal AC field is applied perpendicular to the interface inducing the instability
that causes mixing [6].

Rapid mixing due to an electrokinetic instability can be induced beyond a critical threshold

of the applied AC and/or DC electric field [6, 7, 8] (see Figure 1.1). However, mixing due

to instabilities is not always desirable. Sometimes instabilities need to be avoided, e.g., in

Field Amplified Sample Stacking (FASS)[9, 10]. It is critically important to understand the

basic parameters that characterize these instabilities so that they could either be harnessed

or controlled depending on the application. One objective of this thesis is to study such

instabilities in electrolytic systems.

Carbon nanotubes (CNTs) have been studied since their discovery in 1991 [11]. In par-

ticular, carbon nanotubes (CNTs) can be used in nanoscale electronic devices[12] because of

their unique electrical and mechanical properties[13, 14]. Self-assembly can be an important

means for micro/nanoscale fabrication. J. Lee and co-workers have reported deposition of

CNTs between two electrodes using a combination of AC and DC electric fields [1]. Figures

(1.2) and (1.3) show that the deposition pattern of multiwalled carbon nanotubes (MWC-

NTs) is strongly dependent on the ratio of the DC and AC electric fields. A fundamental

understanding of the deposition process is still missing. Such an understanding could help

in developing better strategies to obtain optimal deposition pattern. One part of this thesis

is focused on developing a fundamental numerical tool to investigate such problems.

In continuum fluid dynamics, the no-slip boundary condition is typically used at the

walls. This implies that the fluid adjacent to the surface of a solid boundary moves at the

same tangential velocity as the solid. Slip at the fluid-solid interface has been investigated



12

Figure 1.2. A MWCNT deposited between two non-flat electrodes [1].

Figure 1.3. An SEM image of MWCNT deposition at different value of
Edc/Eac. Top-left: Edc/Eac = 0, Top-right: Edc/Eac = 0.41, Bottom-left:
Edc/Eac = 0.32, Bottom-right: Edc/Eac = 0.22 [1].

experimentally[15, 16], numerically, and analytically [17, 18, 19, 20, 21, 3, 22, 23, 24, 25,

26]. The resistance in micro and nano scale channels is large due to which it costs more energy

to pump the liquid through the channel. In this case, slip next to the wall can be helpful to

reduce the flow resistance and thus reduce the energy requirement.[27, 28, 29, 30, 31]

Molecular dynamic simulations have been useful to study the molecular scale slip behavior

at the fluid-solid interface. The most common approach is the soft sphere model with
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Figure 1.4. Results from molecular dynamic simulation of Couette flow [2].
The velocity of the top wall is 1 and the bottom wall is 0.

Lennard-Jones potential [32, 2, 23, 18, 19] (see Figure 1.4). However, MD simulations are

computationally expensive. Specifically, for multiscale problems coupling molecular dynamic

simulations at the fluid-solid interface with outer regions where continuum simulations are

reasonable is a computational challenge. Hence, in this thesis it is explored whether it is

possible to reproduce molecular scale slip behavior through continuum equations. It will be

seen that continuum approach also leads to insights into the mechanism of slip.

Thus, the focus of this thesis is on the following three problems:

(1) Instabilities in electrolytic systems also called electrokinetic instabilities for strong elec-

trolyte solutions. This is presented in Chapters 2 and 3.

(2) A numerical scheme to solve the motion of particles in electrohydrodynamic flows. This

is presented in Chapter 4.

(3) In Chapter 5, the problem of slip is considered.
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CHAPTER 2

The electrokinetic instability: Infinite domain

2.1. Introduction

Mixing of fluids in microfluidic devices is of interest in many applications. However, mix-

ing in microchannels is difficult since the flow is laminar and in the Stokes regime (Re<<1).

Thus, the need to enhance mixing has become an important issue.

The instability at the interface, between two miscible liquids with identical mechanical

properties but different electrical conductivities, due to an external electric field has been

observed and studied by Santiago and co-workers [6, 33, 34, 8, 7, 35, 36]. They called this

the electrokinetic instability because the miscible liquids were highly conducting electrolyte

solutions. They found that the flow was unstable no matter whether the externally applied

electric field was parallel or perpendicular to the interface. It was found that when one

electric field was applied, an instability was observed beyond a threshold value of the electric

field (keeping the remaining parameters same) [35]. It was also found that the instability,

with an external electric field perpendicular to the interface, was more unstable.

In this chapter the above instability is studied. Our work is focused on developing an

analytic tool to characterize this instability. The methodology is based upon the work by

Patankar [37]. He analyzed an instability where the electric field is parallel to the interface

between two miscible liquids. We will consider below a case where the electric field is

perpendicular to the interface. The objective is to find the appropriate parameters to describe

this instability.

2.2. Governing equations

Two miscible liquids of identical mechanical properties but different electrical conductiv-

ities separated by a sharp interface is considered. Santiago and co-workers have modeled this
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instability problem by using a diffuse interface in the base state and a convection-diffusion

equation for the electrical conductivity [6, 8, 7, 35]. Patankar [37] has proposed a sharp

interface assumption, which makes the analysis easier, and is useful to solve this same prob-

lem. The interface is defined with respect to the base state and it is an Eulerian surface. It

is defined as the location of the sharp change in the electrical conductivity in the base state.

The interface is fixed since it is independent of the perturbed state in the stability analysis.

An external electric field E is applied in the y-direction which is perpendicular to the

interface, where j is the unit vector in the y-direction. Liquid a is above the interface, and

Liquid b is below it (see Figure 2.1). The domain is infinite. The flow of liquids a and b is

Figure 2.1. Geometry of the domain.

governed by the continuity and momentum equations.

∇ · u = 0,(2.1)

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p + µ∇2u + ρbE,(2.2)

where u is the velocity field, ρ is the density, p is the dynamic pressure (gravity is balanced

by the hydrostatic component), and µ is the viscosity. The last term in Equation (2.2) is

the external body force term due to the electrohydrodynamic force. The electric field is

E = −∇φ, where φ is the electric potential. The bulk charge density ρb in the liquids is

(2.3) ρb = ∇ · (εE),
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where ε is the permittivity. The material properties ρ, µ and ε are assumed to be the same

and constant in both liquids a and b. The conservation of charge is given by

(2.4)
Dρb

Dt
−∇ · (σ∇φ) = 0,

where D/Dt denotes the material derivative. It is assumed that liquids a and b are strong

electrolytes so that the electrical conductivities are high. As a result, the charge conservation

equation becomes the current continuity equation given by

(2.5) ∇ · (σE) = 0,

where the electrical conductivity σ is different in liquids a and b. In electrolytes, the electrical

conductivities depend on the concentration of the charged species and their mobilities [38].

For simplicity, it is assumed here that each of the liquids a and b are binary electrolytes made

of the same two charged species. The concentrations of the charged species are different in

the two liquids. Hence, the electrical conductivity in the two liquids will be different. It

is further assumed that the two charged species have equal and opposite unit charge and

that they have identical mobilities. It is now essential to identify the appropriate governing

equation for the electrical conductivity. To that end it is useful to consider prior work which

is discussed below.

The instability with the electric field parallel to the interface has been studied theoret-

ically by Hoburg and Melcher [39]. In their analysis, they modeled the interface between

the miscible liquids by a diffuse layer of exponentially varying electrical conductivity. It was

assumed that the conductivity is governed by a hyperbolic equation

(2.6)
Dσ

Dt
= 0.

It was found that the configuration is always unstable even for small interface thickness.

The analysis by Hoburg and Melcher [39] could not model the threshold for the instability

as observed in experiments [6, 35, 8, 7]. To resolve this issue, Santiago and co-workers

[35, 8, 7] considered a modified equation for σ that added a diffusion term to Equation



17
(2.6):

(2.7)
Dσ

Dt
= Dσ∇2σ,

where Dσ is the diffusion coefficient for the electrical conductivity and is assumed to be the

same in both the liquids. They modeled the interface by a diffuse profile for the conductivity

near the interface. Their linear stability analysis captured the threshold behavior observed

in the experiments. Due to the above results in literature, in this work, we will consider

Equation (2.7) as the governing equation for σ.

The governing equations for this problem can be summarized as follows:

(2.8)

ε∇2φ = −ρb,

∇ · (σE) = 0,

Dσ
Dt = Dσ∇2σ,

∇ · u = 0,

ρ∂u
∂t

+ ρ(u · ∇)u = −∇p + µ∇2u + ρbE.







The jump conditions, at the Eulerian interface defined above, corresponding to Equation

(2.8) are listed below [40]

ρs = ‖εE‖ · n,(2.9)

‖σE‖ · n = 0,(2.10)

‖σu−Dσ∇σ‖ · n = 0,(2.11)

‖u‖ · n = 0,(2.12)

n · ‖τ − ρuu‖ · n = 0, and t · ‖τ − ρuu‖ · n = 0,(2.13)

where τ = −pI + µ(∇u +∇uT ) + εEE− ε

2
E ·EI, and ‖‖ denotes the value of the variables

at the interface in liquid a minus the value in liquid b. n is a unit normal to the interface

pointing into liquid a. τ is the electrohydrodynamic stress in the fluid which includes the

Maxwell stress component given by εEE− ε

2
E ·EI. Equation (2.9) gives the surface charge
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density ρs at the interface which follows from Equation (2.3). Equation (2.10) states the

current continuity at the interface which is from the equation of conservation of charge

(Equation 2.5). Equation (2.11), which follows from Equation (2.7), plays a key role in the

stability analysis since it introduces electrohydrodynamic coupling in the problem. Equation

(2.12) shows the normal velocity continuity at the interface. Equation (2.13) is a result of

the momentum equation at the interface.

2.3. Linear stability analysis

To study the instability, linear stability analysis will be done. An arbitrary perturbation

can be a combination of sets of normal modes. This normal mode method will lead to an

eigenvalue problem. The method of linear stability analysis includes sinusoidal perturbations

on a base state, which is the flow whose stability is being investigated. For example, in the

present study the perturbation for the x-component of velocity will be

(2.14) u′(x, t) = u(y)e−ikx+st,

where u(y) is a complex number, k is the wave number of the perturbation, and s is the

growth rate. k is real while s can be complex. If the real part of s > 0, then it is an unstable

mode.

2.3.1. Problem formulation

Figure (2.1) shows the flow domain. Semi-infinite domains are considered here in both liquids

a and b. A sharp Eulerian interface is defined in the center of the domain. The material

properties ρ, µ and ε are assumed to be the same and constant in both liquids a and b. Only

the conductivities are different in liquid a and b. The base state has a flat interface parallel

to the x-direction. The y-direction is perpendicular to the interface. Since the domain is

unbounded and symmetric with respect to the z-direction, the problem is considered as a

two-dimensional problem in the x-y plane. Assume that there is no electroosmotic flow in
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the base state. The base solution is given by

(2.15)

u0 = 0,

ρb0 = 0,

σ0 = σa
0 in liquid a,

σ0 = σb
0 in liquid b,

E0

a =
I0
σa

0

j, E0

b =
I0
σb

0

j,

ρs0 = −−ε0I0∆σ0

σa
0σ

b
0

,

pa
0 =

εI2
0

2(σa
0)

2
, pb

0 =
εI2

0

2(σb
0)

2
,







where ρb0 is the bulk free charge per unit volume inside the fluid, ρs0 is the charge per unit

area at the interface, ∆σ0 = σa
0 −σb

0, and subscript 0 denotes the variables in the base state.

I0 is a constant current in y-direction. A disturbed state is considered by superimposing a

perturbation on the base solution. Note that the conductivity profile in the base state will

diffuse with time. We introduce an approximation by assuming that the conductivity profile

is “frozen” with a sharp jump at the interface. This is not a fully consistent approximation

but it is found to be reasonable when the time scale of the instability is short [35, 8].

After linearization, the governing equations under the assumption of a ”frozen” base

state for the perturbations are

(2.16)

∇ · u′ = 0,

ε∇2φ′ = −ρ′b,

σ0∇2φ′ − I0
σ0

∂σ′

∂y
= 0,

∂σ′

∂t
= Dσ∇2σ′,

ρ
∂u′

∂t
= −∇p′ + µ∇2u′ + ρ′bE0









20
where superscript ′ denotes perturbations. The dimensional form of the perturbations is

given by

(2.17)


















u′

p′

φ′

ρ′b

σ′

v′int


















=


















u(y)

p(y)

φ(y)

ρb(y)

σ(y)

vint


















e−ikx+st,

where vint is the y velocity component at the interface, k is the wave number of the pertur-

bation, s is the growth rate, and u, p, φ, ρb and σ are the amplitude of the perturbations,

k is real while s can be complex. A positive real part of s implies an unstable mode. This

approach leads to the condition for the onset of the temporal instability.

The governing equations are non-dimensionalized by using the following scales

Length→ H, φ′ → I0H

σm

, E ′ → I0
σm

, ρ′b →
εI0
Hσm

, p′ → εI2
0

σ2
m

σ′ → σm(=
(σa

0 + σb
0)

2
), V elocity → HεI2

0

σ2
mµ

, time→ µσ2
m

εI2
0

.(2.18)

Since there is no geometric length scale in this problem, the inverse of the wave number

k of the perturbation is chosen as the length scale i.e. H = 1/k. The velocity scale is

obtained by balancing the viscous and electrical forces in the momentum equation. After

non-dimensionalization, the perturbation equations become

(2.19)

∇ · u′ = 0,

∇2φ′ = −ρ′b,

σ2
0N∇2φ′ − ∂σ′

∂y
= 0,

P e
∂σ′

∂t
= ∇2σ′,

Re
∂u′

∂t
= −∇p′ + ∇2u′ +

ρ′b
σON

j.







where same symbols have been retained for the non-dimensional variables.
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The non-dimensional parameters in the governing equations are

(2.20)

Re =
ρεI2

0

µ2σ2
mk

2
,

P e =
εI2

0

µDσσ2
mk

2
,

σ0N =
2σ0

σa
0 + σb

0

,







where Re is the Reynold’s number, Pe is the Peclet number which is a ratio of convection

and diffusion terms, and σ0N is the non-dimensionalized value of σ0 in each liquid.

In the non-dimensional form of Equation (2.17), we put k = 1 since the length is non-

dimensionalized by 1/k, and s will be understood to be non-dimensionalized by the inverse of

the time scale. Inserting the non-dimensional form of Equation (2.17) into Equation (2.19)

and simplifying we get

(2.21)

(D2 − 1 − Pes)σ = 0,

(D2 − 1)φ =
Dσ

σ2
ON

,

(D2 − 1 − Res)(D2 − 1)υ = − Dσ

σ3
ON

,

u = −iDυ,

p = (D2 − 1 − Res)Dv,







where s is the non-dimensional growth rate, D denotes the derivative with respect to y, and

u, v are the x, y components of velocity respectively. The solution of Equation (2.21) along

the y-direction as y → ±∞ in liquids a and b, respectively, should approach zero. This gives

the following solutions for liquids a and b

(2.22)

σa = Aae−λy,

φa = Bae−y +
Dσa

(σa
0N )2(Pes)

,

va = Cae−y +Dae−qy − Dσa

(Pes− Res)(Pes)(σa
0N)3

,






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(2.23)

σb = Abeλy,

φb = Bbey +
Dσb

(σb
0N)2(Pes)

,

vb = Cbey +Dbeqy − Dσb

(Pes− Res)(Pes)(σb
0N )3

,







where λ and q are positive and are given by

(2.24)
λ =

√
1 + Pes,

q =
√

1 +Res.







Superscripts a or b denote liquids a or b, respectively. A,B,C and D’s with superscript are

constants.

The linearized jump conditions for the electrical conductivity at the interface are given

by

(2.25)
‖σ‖ = 0,

‖Dσ‖ = Pevint∆σON ,







where vint = va = vb =
(va + vb)

2
at y = 0 is the amplitude of the non-dimensional pertur-

bation velocity at the interface, and ∆σON = σa
ON − σb

ON . The jump conditions in Equation

(2.25) follow by assuming that there is no self-sharpening mechanism that creates disconti-

nuities in the electrical conductivity. This is reasonable, since the diffusive behavior of σ is

important in this problem [40]. The second jump condition in Equation (2.25) follows from

Equation (2.11). Using these conditions, we get the solution for Aa and Ab as

(2.26) Aa = Ab = −Pevint∆σON

2λ
.

To solve for Ba and Bb, we use the interface jump conditions for the electric potential:

(2.27)
‖φ‖ = 0,

‖σONDφ‖ + σy=0

∆σ0N

σa
0Nσ

b
0N

= 0.






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The first jump condition in Equation (2.27) follows by assuming that no double layers are

formed at the interface. This is reasonable since the interface is not insulating and the

current carrying species can pass from one side of the interface to the other [40]. The second

jump condition in Equation (2.27) follows from Equation (2.10). Thus, Ba and Bb are

Ba =
Pevint△σ2

0N

4σa
0Nσ

b
0N (λ2 − 1)λ

− Pevint△σ0N(σa2
0N + σb2

0N )

4(λ2 − 1)σa
0Nσ

b2
0N

,(2.28)

Bb =
Pevint△σ2

0N

4σa
0Nσ

b
0N (λ2 − 1)λ

+
Pevint△σ0N (σa2

0N + σb2
0N )

4(λ2 − 1)σa2
0Nσ

b
0N

.(2.29)

The linearized jump conditions for the velocity (from Equation 2.12) and the stress (from

Equation 2.13) at y = 0 give

(2.30)

‖v‖ = 0,

‖u‖ = 0,

‖ − p+ 2Dv − Dφ

σ0N

‖ = 0,

‖D2v + v − φ

σ0N

‖ = 0.







Note that the jump condition for u is due to the no-slip condition. This is reasonable since

no double-layers are formed at the interface. Inserting the solutions for velocity in Equations

(2.22) and (2.23) into Equation (2.30), we get five equations for five unknowns: Ca, Cb, Da,

Db, and vint. All the equations are homogeneous. The equations can be represented in the

following matrix form

(2.31)















1 −1 1 −1 f1

1 1 q q f2

1 1 q3 q3 f3

1 −1 q q2 f4

1 1 1 1 f5





























Ca

Cb

Da

Db

vint















=















0

0

0

0

0














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f1 = − PeΣ(Γ − 2)

2(λ2 − 1)(λ2 − q2)

√

Γ − 3

Γ + 1
,(2.32)

f2 =
λPeΣΓ

2(λ2 − 1)(λ2 − q2)
,(2.33)

f3 =
λ3PeΓ

2(λ2 − 1)(λ2 − q2)
+

PeΓ

2(λ2 − 1)
(
1

λ
+ (Γ − 1) − λΓ),(2.34)

f4 =
λ2PeΣ(Γ − 2)

2(λ2 − 1)(λ2 − q2)

√

Γ + 1

Γ − 3
+

PeΓ

2(λ2 − 1)

√

Γ − 3

Γ + 1

+
PeΣ(Γ − 1)2

2(λ2 − 1)
√

(Γ + 1)(Γ − 3)
− PeΣ(Γ − 2)

2(λ2 − 1)

√

Γ + 1

Γ − 3
,(2.35)

f5 =
PeΣΓ

2(λ2 − 1)(λ2 − q2)
− 2.(2.36)

where Σ =
∆σ2

0N

σa2
0Nσ

b2
0N

and Γ =
σa

0N

σb
0N

+
σb

0N

σa
0N

+ 1. Setting the determinant of the matrix to zero

gives the dispersion equation. All symbolic manipulations were done using Mathematica.

2.3.2. The critical condition for instability

The dispersion equation obtained from manipulations in Mathematica is

− (4Γ(1 +
√

1 + ST )((1 + S)
3

2

√
1 + ST +

√
1 + S(1 + ST ) + (1 + S)

√
1 + ST (1 +

√
1 + ST )))

+PΣ(
√

1 + S − Γ
√

1 + S +
√

1 + ST ) = 0,(2.37)

where S = Pes, PΣ = PeΣΓ, and T =
Re

Pe
. The maximum growth rate for this problem is

the largest root of the dispersion equation. It can be verified that the maximum growth rate

is positive and real.

When the system is marginally stable i.e. when the maximum growth rate S = 0, then

PΣ is found to be independent of T and is a function of Γ. The marginal stability condition
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gives the critical condition for the onset of the instability. It is given by

(2.38)
P cri

Σ =
32Γ

Γ − 2
,

⇒ (
εEmean

2

Dσµk2
)cri =

32

(Γ − 2)Σ
,







where Emean =
I0
σm

. Equation (2.38) gives the critical electric field for the instability of a

mode of wave number k, when the material properties of the liquids are given. Figure (2.2)

shows a plot of P cri
Σ as a function of Γ.
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i P cri
Σ

=
32Γ

(Γ−2)

Figure 2.2. The marginal stability curve (P cri
Σ vs. Γ) identifying the critical

condition for the onset of instability.

2.3.3. The mechanism of instability

Figure (2.3) shows a plot of the streamlines for a typical unstable mode. The streamfunction

plotted in Figure (2.3) is given by ψ = Real| − iv(y)e−ix|. The parameters are T = 0.05,

S = 25, PΣ = 683.3914,
σa

0N

σb
0N

= 10 , and Γ = 11.1. The y = 0 line is the Eulerian interface

and one wavelength of the unstable mode is plotted. The higher conductivity fluid occupies
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Figure 2.3. Streamlines of an unstable mode in an infinite domain where the
applied electric field is perpendicular to the interface between the two liquids.
Clockwise rotation of the fluid is denoted by ’c’ and counterclockwise rotation
is denoted by ’cc’.

the upper part (y > 0) and the lower conductivity is in the lower part (y < 0). Two counter-

rotating cells of the fluid that are asymmetric with respect to the Eulerian interface y = 0

are found.

To elucidate the mechanism of the instability, we consider a perturbation velocity at

the Eulerian interface v′int = cos(x). The velocity disturbance at the interface leads to

a perturbation field for the conductivity due to the electrohydrodynamic coupling in the

interface condition given by Equation (2.25). The perturbation to the electrical conductivity

is obtained from Equations (2.22), (2.23) and (2.26):

(2.39) σ′a = −Pe∆σON

2λ
e−λycos(x), σ′b = −Pe∆σON

2λ
eλycos(x).

It follows from Equation (2.39) that a region of lower electrical conductivity is formed when

vint is maximum, and higher electrical conductivity is formed when vint is minimum. This

is depicted in Figure (2.4) with vertical bold arrows at locations of maximum and minimum

velocities.



27

Figure 2.4. A schematic depicting the key aspects of the mechanism of in-
stability. One wavelength of the perturbation field is shown. The Eulerian
interface is located at y = 0. Liquid a in the upper half (y > 0) has greater
electrical conductivity in the base state. The bold arrows on the Eulerian in-
terface indicate the perturbation velocity at the interface. The x locations of
high and low values of the perturbed electrical conductivity are shown. The
positive and negative signs indicate the bulk charge in the domain. Bold signs
indicate greater bulk charge for y < 0.

The second and third of Equation (2.19) imply ρ′b = − 1

σ2
ON

∂σ′

∂y
. Thus, a negative bulk

charge density is formed in regions where the conductivity increases with respect to the

y-direction, and a positive bulk charge density is formed where the conductivity decreases

with respect to the y-direction. The bulk charge density is created because of the diffusive

equation for the electrical conductivity which also causes the electrohydrodynamic coupling.

For the case being considered here, the perturbation bulk charge density in the two liquids

is given by

(2.40) ρ′ab = −Pe∆σON

2σa2
ON

e−λycos(x), ρ′bb =
Pe∆σON

2σb2
ON

eλycos(x).

Equation (2.40) implies that at a given distance from the Eulerian interface and a given

x location, the magnitude of the bulk charge density in Liquid a is much smaller than the
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corresponding value in Liquid b. In addition, the charges have opposite signs (see Figure

2.4). This gives an asymmetric distribution of the perturbation bulk charge density in the

fluid domain and leads to a body force in the momentum equations for both liquids (see

Equation 2.19). The body force due to the bulk charge is dominant in Liquid b and is in

the direction of the initial perturbation velocity at the interface (see Figure 2.4). This gives

rise to a cellular flow that reinforces the initial perturbation thus resulting in an instability

shown in Figure (2.3).

2.3.4. Comparison with the parallel electric field case

It has been reported that when the electric field is applied perpendicular to the interface the

system is more unstable compared to the parallel electric field case [6].

We consider this issue by comparing the critical condition for instability for these cases.

The critical condition for the instability of the parallel electric field case is given by [37],

(2.41)
P cri

Σ‖ = 32,

⇒ (
εE0

2

Dσµk2
)cri =

32

Σ‖

,







where Σ‖ =
∆σ2

0N

σa
0Nσ

b
0N

. Comparison between Equations (2.38) and (2.41) implies that the

perpendicular electric field case is more unstable compared to the parallel electric field case.

This is discussed below.

Consider parameters: σa/σb = 10 , µ = 0.001kg/ms, ε = 6.9 × 10−10C/V m, ρ =

1000kg/m3 , and Dσ = 10−9m2/s. We express Σ’s in terms of σa and σb rather than σa
0N

and σb
0N in both parallel and perpendicular electric field cases, Thus

(2.42) Σ‖ =
(σa − σb)2

σaσb
= 8.1.

Using equation (2.41), we get

(2.43) (
εE0

2

Dσµk2
)cri =

32

8.1
≈ 3.95.
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For the perpendicular electric field case, we have

(2.44)
Σ = (

(σa)2 − (σb)2

2σaσb
) = 24.5025,

Γ =
σa

σb
+
σb

σa
+ 1 = 11.1.







Using equation (2.38), we get

(2.45) (
εEmean

2

Dσµk2
)cri =

32

Σ(Γ − 2)
=

32

24.5025 × 9.1
≈ 0.143.

Comparing Equations (2.43) and (2.45), we see that the electric field needed to achieve the

instability state in the parallel case is large than the perpendicular electric field case. Thus,

we conclude that the perpendicular case is more unstable than the parallel case.

Figure 2.5. Streamlines of an unstable mode in infinite domain where the
applied electric field is parallel to the interface between the two liquids [37].

This difference is due to the difference in the flow pattern in the unstable modes. Figure

(2.5) shows that the parallel electric field case has a different cellular flow pattern in the

unstable mode [37]. Two pairs of counter rotating vortices are produced in the parallel

electric field case. This flow pattern is much less asymmetric and gives rise to weaker flows.

In the perpendicular electric field case the asymmetry is much stronger primarily due to



30
the current flowing perpendicular to the interface in the base state. This results in stronger

destabilizing forces in the perpendicular electric field case thus making it more unstable.

2.4. Conclusion

In this chapter the instability at the interface between two miscible liquids with identical

mechanical properties but different electrical conductivities was analyzed. Linear stability

analysis was done by considering a sharp interface between adjacent liquids in the base state.

This approach enabled, for the first time, an analytic solution for the critical condition of

the electrokinetic instability. For the perpendicular electric field case, it was seen that the

instability depends on a non-dimensional parameter PΣ defined in the Equation (2.38). This

parameter was not identified in any of the prior studies.

This approach also enabled an analysis of the mechanism of instability which was not

clearly understood from prior work. Specifically, it was found that any velocity pertur-

bation at the interface leads to a varying electrical conductivity in its vicinity due to the

electrohydrodynamic coupling in the following interface condition

(2.46) ‖σu−Dσ∇σ‖ · n = 0.

The above interface condition as the source of electrohydrodynamic coupling was not previ-

ously identified. This in turns leads to a bulk charge density that gives a body force in the

fluid equations. The body force generates a cellular motion that results in the instability.

We showed, consistent with prior experimental results, that the perpendicular electric

field case is more unstable compared to the parallel electric field case. The reason for this

is the greater asymmetry in the perpendicular field case that results in larger destabilizing

electrohydrodynamic force.

Detailed experimental investigation of the perpendicular electric field case is not available

in literature at this time. Hence, a quantitative comparison with experiments is not possible

in this case like it was possible for the parallel electric field case [37].
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Typical experimental devices have microchannels. In the analysis in this chapter we did

not consider the effect of a microchannel geometry on the instability. This will be considered

in the next chapter.
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CHAPTER 3

The electrokinetic instability: Shallow channel

In this chapter we extend the linear stability analysis introduced in the previous chapter

to the case of a shallow microchannel geometry that is typical in microfluidic devices [6, 35].

The objective is to quantify the influence of the device geometry on the instability.

3.1. Problem formulation

The shallow channel geometry is shown in Figure (3.1). The domain is unbounded in the

x-direction. The depth of the channel is 2d which is much smaller than the width 2H . There

is an external electrical field applied perpendicular to the interface (y-direction) between two

liquids a and b. Assume that there is no electroosmotic flow, and there is no charge in the

base state. The base state is the same as that in Equation (2.15). As noted in the previous

chapter, the perturbations are governed by the following equations

(3.1)

∇ · u′ = 0,

ε∇2φ′ = −ρ′b,

σ0∇2φ′ − I0
σ0

∂σ′

∂y
= 0,

∂σ′

∂t
= Dσ∇2σ′,

ρ
∂u′

∂t
= −∇p′ + µ∇2u′ + ρ′bE0.







The governing equations are non-dimensionalized by using the following scales

x, y → H, z → d, φ′ → I0H

σm

, E ′ → I0
σm

, ρ′b →
εI0
Hσm

, p′ → εI2
0

σ2
m

,

σ′ → σm(=
(σa

0 + σb
0)

2
), V elocity → Hβ2εI2

0

σ2
mµ

, time → µσ2
m

β2εI2
0

.(3.2)

where β = d/H << 1 for a shallow channel.



33

Figure 3.1. The shallow channel geometry.

For a shallow channel, Hele-Shaw equations for the perturbations can be obtained by

considering the limit β → 0 in the governing equations. It follows that, in the leading order,

φ′ = φ′(x, y), σ′ = σ′(x, y), and ρ′b = ρ′b(x, y). To arrive at this form it is assumed that

∂φ′/∂z = ∂σ′/∂z = 0 at the top and bottom walls. These conditions imply that the walls

are insulating and that the charged species do not penetrate the walls, respectively. Both

conditions are realistic. This leads to a two-dimensional problem for φ′, σ′ and ρ′b in the x−y

plane.

The fluid equations in the Hele-Shaw limit imply that, to the leading order, the velocity

component in the vertical direction is zero and the pressure p′ = p′(x, y). The horizontal

velocity in the x−y plane, to the leading order, is of the form u′(x, y, z) = 1.5(1−z2)u′
m(x, y)

[41, 35], where the variables are non-dimensional. The velocity vector has only x − y

components and u′
m is the perturbation velocity at a given location that is averaged with

respect to the z direction. This form assumes that the viscous stress due to the change of u′

in the z direction dominates over changes in the other directions. Thus, the velocity profile

is locally parabolic with respect to the z direction (the lubrication approximation). Using
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these approximations, the governing equations become

(3.3)

∇H · u′
m = 0,

∇2
Hφ

′ = −ρ′b,

σ2
0N∇2

Hφ
′ − ∂σ′

∂y
= 0,

P e
∂σ

∂t
= ∇2

Hσ,

Reβ2∂u
′
m

∂t
= −∇p′ + β2∇2

Hu′
m − 3u′

m +
ρ′b
σON

j,







where ∇H denotes the gradient in the x − y plane. All variables carry same meaning as in

the previous chapter unless specified. The non-dimensional parameters are given by

(3.4)

Re =
β2H2ρεI2

0

µ2σ2
m

,

P e =
β2H2εI2

0

µDσσ2
m

,

σ0N =
2σ0

σa
0 + σb

0

,







where σ0 is as defined in the previous chapter.

It should be noted that the terms involving β2 in the last of equation (3.3) should be

dropped in the Hele-Shaw limit. However, Chen et al. [35] recommend, based on their work

on the parallel electric field case, that those terms be retained to approximately capture

the viscous effects due to the flow in the x − y plane. This is clearly not a fully consistent

formulation and they refer to this as the modified Hele-Shaw formulation [35]. A rigorous

analysis will require the matching of the ”inner” solution in the thin viscous layers near the

vertical walls with the ”outer” Hele-Shaw solution. Such an analysis will not be considered

here. Instead, following Chen et al. [35], an approximate approach based on Equation (3.3)

will be considered where the inertia and the horizontal viscous terms are retained.

The novelty of our effort is the use of a sharp interface approach in the linear stabil-

ity analysis. Assuming perturbations of the form given by Equation (2.17) the governing
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equations become

(3.5)

(D2 − k2 − Pes)σ = 0,

(D2 − k2)φ =
Dσ

σ2
ON

,

(D2 − k2 − Res− 3

β2
)(D2 − k2)vm − k2Dσ

β2σ3
ON

,

um = −iDvm

k
,

p =
(β2(D2 − k2) − β2s− 3)Dvm

k2
,







where we use the same notation as in the previous chapter unless stated otherwise. Solutions

of the governing equations are given by

σa = Aa sinhλy +Ba coshλy,

φa = Ca sinh λy +Da coshλy +
Dσa

(σa
0N )2(λ2 − k2)

,

va = Ea sinh λy + F a coshλy +Ga sinhλy +Ha cosh λy

−k2 Dσa

β2(σa
0N)3(λ2 − q2)(λ2 − k2)

,







σb = Ab sinh λy +Bb coshλy,

φb = Cb sinhλy +Db cosh λy +
Dσb

(σb
0N )2(λ2 − k2)

,

vb = Eb sinhλy + F b cosh λy +Gb sinhλy +Hb coshλy

−k2
Dσb

β2(σb
0N )3(λ2 − q2)(λ2 − k2)

.







Superscripts a or b denote liquids a or b, respectively. A,B,C,D,E, F,G and H are

constants. λ and q are positive and are given by

λ =
√
k2 + Pes,

q =

√

k2 +Res+
3

β2
.







Now we must use the boundary and interface conditions to solve for the constants in the

solution.



36
As noted in the previous chapter, the linearized jump conditions for electrical conductivity

at the interface are

‖σ‖ = 0,

‖Dσ‖ = Pevintσ0N .







The linearized boundary conditions for electrical conductivity at the side walls (i.e. at y =

±1) are given by Dσ = 0. The interface conditions together with the boundary conditions

give the following solution for the constants

Aa = −Ab = −Pevint∆σ0N

2λ
,

Ba = Bb = −Pevint∆σ0N

2λ tanhλ
,







where ∆σ0N = σa
0N − σb

0N , and vint = va
m = vb

m =
va

m + vb
m

2
at y = 0 is the y component of

velocity at the interface.

The interface conditions for the electrical potential are

‖φ‖ = 0,

‖σ0NDφ‖ + σy=0

∆σ0N

σ+

0Nσ
−
0N







at y=0.

Since there are electrodes at y = ±1, there is no perturbation of the electric potential at

those boundaries. This implies φ = 0 at y = ±1. Using these interface and boundary

conditions we solve for Ca, Cb, Da, and Db to obtain

Ca =
∆σ0N

4σa
0Nσ

b
0N

k

λ2 − k2
(

−1

tanhλ
)
Pevint∆σ0N

λ
+

Pevint∆σ0Nσ
b
0N

4(λ2 − k2) tanh k

σa2
0N + σb2

0N

σa2
0Nσ

b2
0N

,

Cb =
∆σ0N

4σa
0Nσ

b
0N

k

λ2 − k2
(

1

tanhλ
)
Pevint∆σ0N

λ
+

Pevint∆σ0Nσ
a
0N

4(λ2 − k2) tanh k

σa2
0N + σb2

0N

σa2
0Nσ

b2
0N

,

Da = − tanh kCa,

Db = tanh kCb.







The interface conditions for velocity are ‖Dvm‖ = 0 (which follows from ‖um‖ = 0)

and ‖vm‖ = 0 at y = 0. The velocity boundary conditions are vm = 0 and Dvm = 0 (i.e.

um = 0) at y = ±1. The stress conditions at the interface are ‖ − p + 2β2Dv − Dφ

σ0N

‖ = 0
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and ‖D2v + v − φ

σ0N

‖ = 0. Using these conditions together with Equations (3.6) and (3.6)

we get eight equations for the constants E, F , G and H in liquids a and b. Only four of

those equations and the equation vint =
va

m + vb
m

2
contribute to the dispersion equation for

the maximum growth rate. These equations are given below in a matrix form

















sinh k cosh k sinh q cosh q 0

k cosh k k sinh k q cosh q q sinh q − k2λ2PΣ

2λ sinhλ(λ2 − q2)(λ2 − k2)

q 0 q 0 − k2λ2PΣ

2λ tanhλ(λ2 − q2)(λ2 − k2)

k3 0 q3 0 f(k, λ, q,Γ, PΣ)

0 1 0 1 (
k2PΣ

2(λ2 − k2)(λ2 − q2) − 2
)































Es

F t

Gs

H t

vint















(3.6) =















0

0

0

0

0















In Equation (3.6), Es = Ea − Eb and F t = F a + F b. Gs and H t are defined similarly.

PΣ = PeΣΓ/β2, where Σ =
∆σ2

0N

σa2
0Nσ

b2
0N

and Γ =
σa

0N

σb
0N

+
σb

0N

σa
0N

+ 1.

Setting the determinant of the matrix in equation (3.6) to zero gives the dispersion

equation. All symbolic manipulations were done in Mathematica.
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3.2. Results

The dispersion equation gives PΣ as a function of λ, k, q, and Γ.

PΣ = −(32Γλ(−k2 + λ2)q(k2 − q2)(λ2 − q2)(kcoshqsinhk − qcoshksinhq))

/(k2(
1

2
(−1 + Γ)kλq(λ2 − q2)cothk(31 + coshk2 − 16coshkcoshq + sinhk2)

+8cothλ(q(−Γλ2q2 + k2((−2 + Γ)λ2 + 2q2)) − q(−Γλ2q2 + k2((−2 + Γ)λ2 + 2q2))

coshkcoshq + k(k2((−1 + Γ)λ2 + q2) + q2((−1 + Γ)λ2 + q2))sinhksinhq) +

λ(−8qcoshq(−(−1 + Γ)k(λ2 − q2)cschk + Γλ(k2 − q2)cschλ+ k(Γk2 +

λ2 − Γλ2 − q2)sinhk + coshk(8Γλq(k2 − q2)cschλ+ (−1 + Γ)kq(λ2 − q2)sinhk −

8(q2((−1 + Γ)λ2 + q2) + k2((−1 + Γ)λ2 + (1 − 2Γ)q2))sinhq)))).

(3.7)

PΣ can also be expressed as a function of k,Pes, (Res +
3

β2
), and Γ i.e.

(3.8) PΣ = f(λ, k, q,Γ) = g(k,Pes, (Res +
3

β2
),Γ).

For marginal stability at low Re we take Re → 0 and s → 0. In this case PΣ depends on

Γ, k, and β i.e.

(3.9) PΣ = f(Γ, k, β).

The trends of PΣ will be considered next. Although there are no systematic data available

for the onset of instability for the perpendicular case, we will first use parameters correspond-

ing to typical experimental values [35]. To that end, we will use d = 5.5µm, H = 78µm,

ρ = 1000kg/m3, µ = 0.001kg/ms, ε = 6.9 × 10−10C/Vm, Dσ = 10−9m2/s, and
σa

0

σb
0

= 10.

This implies β = 0.07, Γ = 11.1, and Σ = 24.5. The only free variables are I0/σm and k.

In this case, PΣ is therefore the non-dimensional parameter that represents the variation of

I0/σm which is an average measure of the external electric field.



39
Figure (3.2) shows the marginal stability curve of PΣ vs.the wavenumber k obtained from

the dispersion equation discussed above. It is seen that there is a critical value of the PΣ

(or correspondingly I0/σm) below which the system is stable. This is consistent with the

threshold type behavior seen in experiments [6]. Figure (3.2) shows that the system becomes

unstable at P crit
Σ = 40211.4. This implies a critical value of (I0/σm)crit = 0.06kV/cm. Typical

values in experiments are 0.1 − 1kV/cm [6, 35]. This suggests that an instability should

be observed under experimental conditions and the limited data available [6] are consistent

with these calculations.

Figure (3.2) also shows that at P crit
Σ = 40211.4 the unstable wave corresponds to k = 13.6

which implies a wavelength of the instability that is 0.23 times the channel width. Typical

wavelengths of the instability are reported to be of the order of the device width [6].

The critical value for the onset of instability P crit
Σ identified in Figure (3.2) depends on

the the conductivity ratio of the two liquids (i.e. on Γ) and also on the channel height to

width ratio (i.e. on β). This is considered next.
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Figure 3.2. The marginal stability curve of PΣ vs. k for β=0.07 and Γ=11.1.
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Figure 3.3. Plot of P cri
Σ vs. Γ indicating the critical condition for the onset of

instability at β=0.07.
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Figure 3.4. Plot of P cri
Σ vs. β indicating the critical condition for the onset of

instability at Γ=11.1.
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Figure (3.3) shows P cri

Σ vs. Γ indicating the critical condition for the onset of instability

at β = 0.07. As expected, when Γ increases the critical value of PΣ decreases. It implies

that the system is more unstable with a larger conductivity ratio between the two liquids.

Figure (3.4) shows P cri
Σ vs. β indicating the critical condition for the onset of instability

at Γ = 11.1. As β decreases, i.e. as the channel becomes more shallow, the critical value

of PΣ increases. It implies that the shallow nature of the channel has a stabilizing effect

on the instability. Thus, it would be a better device design for applications such as Field

Amplified Sample Stacking (FASS) where it is desirable to avoid electrokinetic instabilities.

Our approach can provide a formal theoretical estimate for the desired aspect ratio of the

channel.

Finally, we compare the cases where the electric field is applied parallel or perpendicular

to the liquid-liquid interface. Using the same parameters as those used in Figure (3.2), it

was found that the critical electric field for the onset of instability for the parallel electric

field case is 0.08kV/cm [37]. Comparing this with the value of 0.06kV/cm computed above

for the perpendicular electric field case, it is implied that the perpendicular electric field case

is more unstable. Although we have compared these numbers at the experimentally relevant

condition, this trend continues at other parameters.

The reason for greater instability of the perpendicular electric field case is same as that

discussed in the previous chapter.

3.3. Conclusion

In this chapter the instability at the interface between two miscible liquids with identical

mechanical properties but different electrical conductivities was analyzed at experimentally

relevant conditions. Specifically, the effect of the microchannel geometry was studied for the

perpendicular electric field case.

Our linear stability analysis based on a sharp interface approach, once again, enabled us to

identify the appropriate parameters to characterize the instability. The relevant parameters

are PΣ, β, and Γ as defined in the chapter.
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The analysis captured the threshold type behavior for the onset of instability. It showed

that larger conductivity ratio has a destabilizing effect, while the shallow nature of the

channel has a stabilizing effect on the instability. Although these trends are not surprising,

our approach provides a quantitative tool to estimate these effects. Finally, our approach

successfully captures the experimental observation that the perpendicular electric field case

is more unstable.
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CHAPTER 4

Numerical simulation of electrohydrodynamic particulate flows

4.1. Introduction

Electrohydrodynamic self-assembly of particles is an important tool in micro- and nano-

scale fabrication process. For example, carbon nanotubes (CNTs) can be used in nanoscale

electronic devices because of their unique electrical and mechanical properties[13, 14]. J. Lee

and co-workers have reported deposition of CNTs between two electrodes using a combination

of AC and DC electric fields [1] (also see Figures 1.2 and 1.3).

The process of electrohydrodynamic self-assembly can be based on electrophoretic and/or

dielectrophoretic forces. Charged particles experience a force due to an external electric field.

This is the electrophoretic force. Dielectrophoresis (DEP), which was a term coined by Pohl

[42], is the motion of uncharged polarizied particles in a non-uniform electric field.

DEP based deposition process leads to many interesting observations. For example,

Figures (1.2) and (1.3) show that the deposition pattern of multiwalled carbon nanotubes

(MWCNTs), between electrodes, is strongly dependent on the ratio of the DC and AC

electric fields. A fundamental understanding of such phenomena is still missing.

In this chapter the objective is to formulate and complete an initial implementation

of a fundamental numerical tool capable of investigating electrohydrodynamic particulate

flows. Such a tool, which is not currently available in literature, would eventually be useful

in developing better strategies for electrohydrodynamic self-assembly. Studying the self-

assembly process itself is not the focus of this work. It is also noted that after the initial

development, this approach was further developed in collaboration with Prof. W.-K. Liu’s

group [43, 44]. Detailed quantitative tests of this approach can be found elsewhere [44].
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The chapter is organized as follows. In section (4.2) we will review the dipole moment

theory for dielectrophoresis, which is based on approximations. In section (4.3) our numerical

approach will be presented, and results will be presented in section (4.4).

4.2. Background: The dipole moment theory

In this section the dipole moment theory for DEP, which is based on approximations, is

summarized. Dipole moment theory is not accurate for arbitrarily shaped bodies or when

the particle size is not small compared to the external length scale imposed by the geometry,

or when there are multiple particles that are electrohydrodynamically interacting.

4.2.1. DEP force: DC field

Figure (4.1) shows a dielectric particle of radiusR and permittivity ε2 immersed in a dielectric

fluid of infinite extent and of permittivity ε1. The particle and the fluid are subjected to a

uniform electric field of magnitude E0 as shown. Note that E0 = E0ẑ, where bold variables

are vectors and ẑ is the unit vector in the z-direction.

Figure 4.1. A dielectric sphere of radius R and permittivity ε2 immersed in a
dielectric liquid of permittivity ε1 and subjected to a uniform electric field of
magnitude E0 [45].
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The analytic solution for this problem is [45]:

φ(r, θ) = −E0r cos θ +
A cos θ

r2
, r > R,(4.1)

φ(r, θ) = −Br cos θ, r < R,(4.2)

where φ is the electric potential, θ and r are the polar angle and the radial position in a

spherical coordinate system (see Figure 4.1), and

A =
ε2 − ε1

ε2 + 2ε1

R3E0,(4.3)

B =
3ε1

ε2 + 2ε1

E0.(4.4)

Note that the potential field φdipole of a point dipole of dipole moment peff directed in

the z-direction is [45]

(4.5) φdipole =
peffcosθ

4πε1r2
.

Comparing the far field solution in Equation (4.1) with the potential field due to a point

dipole in Equation (4.5), it can be deduced that the effective dipole moment peff induced

due to the presence of the particle is

(4.6) peff = peff ẑ = 4πε1KR
3E0ẑ,

where K is known as the Clausius-Mossotti factor is given by

(4.7) K(ε1, ε2) =
ε2 − ε1

ε2 + 2ε1

.

Thus, the effect of the presence of the particle in an external electric field can be approximated

in terms of an induced dipole of strength given in Equation (4.6). The electric field due to

this induced dipole is a good approximation to the exact solution in Equation (4.1) in the

farfield.

If the external electric field has a gradient, then the interaction of the induced dipole

with the gradient of electric field gives a net force on the particle. This is the DEP force
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[45]. If the length scale at which the external electric field varies is much larger than the

particle size, then the DEP force can be approximated by the dot product of the induced

dipole moment and the gradient of the electric field [45]. In the case depicted in Figure (4.1)

it implies that

(4.8) FDEP = peff · ∇E0 = 2πε1R
3K∇(E0 · E0) = 2πε1R

3K∇E2
0 ,

where E0 is the external electric field in the absence of the particle and the gradient of this

unperturbed electric field is computed at the location of the center of the spherical particle.

Equation (4.8) gives the DEP force due to a DC field when both the particle and the fluid

are perfect dielectrics (i.e. perfect insulators).

Equation (4.8) implies that the DEP force is in the direction of increasing magnitude of

the external electric field if ε2 > ε1. This is called positive DEP. In this case the particle

migrates toward the location where the external electric field is high. When ε2 < ε1 the DEP

force is in the direction of decreasing magnitude of the external electric field. This is called

negative DEP and the particle migrates toward the location where the external electric field

is low.

4.2.2. DEP force: AC field

In the presence of an AC field, analysis similar to that discussed above leads to the following

expression for the DEP force on a sphere [45, 46]

(4.9) 〈FDEP〉 = 2πε1R
3Re[K(ω)]∇E2

0,rms,

where 〈〉 denotes time-averaged value, Re denotes real value of the term inside the bracket,

subscript rms denotes the root mean square value of the external AC field of magnitude E0

in the z-direction, and a bar under a variable denotes a complex variable, e.g., K(ω) is the

complex Clausius-Mossotti factor given by

(4.10) K =
ε2 − ε1 − i(σ2 − σ1)/ω

ε2 + 2ε1 − i(σ2 + 2σ1)/ω
.
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In the above equation σ1 and σ2 are the electrical conductivities of the fluid and the particle,

respectively, and i =
√
−1. Note that in this case a lossy dielectric is considered, i.e., it

is not a perfect insulator. Therefore, the electrical conductivities are non-zero. Re[K(ω)]

required to calculate the DEP force is given by

(4.11) Re[K] =
ε2 − ε1

ε2 + 2ε1

+
3(ε1σ2 − ε2σ1)

τMW (σ2 + 2σ1)
2(1 + ω2τMW )2

,

where τMW is the Maxwell-Wagner charge relaxation time which is defined as

(4.12) τMW =
ε2 + ε1

σ2 + 2σ1

.

The high and low frequency limits of Re[K] can be identified as follows

(4.13) Re[K] =







σ2 − σ1

σ2 + 2σ1

ωτMW << 1,

ε2 − ε1

ε2 + 2ε1

ωτMW >> 1.

Thus, DC conduction governs the low-frequency DEP behavior, and dielectric polarization

governs the high-frequency behavior.

Finally, it is noted that positive(negative) DEP will be observed when the sign of

Re[K(ω)] is positive(negative). This sign will depend not only on the material parame-

ters, i.e., the permittivities and the conductivities, but also on the imposed frequency ω.

The above results will be used to qualitatively validate our numerical method.

4.3. Numerical formulation

The numerical formulation is presented in this section. The solution process has two

primary steps. In the first step, the AC or DC electric field is solved for a given configuration

of the particles. Once the electric field is obtained, the electrical force at any location is

obtained based on the Maxwell stress. In the second step the fluid-particle problem is solved

together with the electrical force computed in step one. The fluid-particle solution gives the

velocity field of the fluid as well as the translational and rotational velocities of the particles.

The particle positions are updated and same steps are repeated to calculate a solution for
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the next time step. The sections below are organized consistent with the above two step

process.

4.3.1. Governing equations for the electric field

The governing equations for the electric field are presented below for a general case of an

AC field. The equations for the DC case follow as a special case with zero frequency.

The electric field E is the gradient of a scalar potential φ

(4.14) E = −∇φ.

In the equation above and in those to follow, bold variables are vectors or tensors, and

the underbar denotes a complex variable. Since we consider an AC field, in general, it is

convenient to consider the electric field and its potential as complex variables. The electric

field obeys the following equation at any point in the domain:

(4.15) ∇ · (ε∇φ) = −ρ
b
,

where ε is the permittivity which is a function of location (i.e. it depends on whether a given

location is in the fluid or the particle). The conservation of bulk charge ρb is given by

(4.16)
Dρ

b

Dt
−∇ · (σ∇φ) = 0,

where σ is the electrical conductivity which is also a function of location. In an AC field we

write

ρ
b
= ρ̂

b
eiωt,

φ = φ̂eiωt,







where ω is the angular frequency, and variables with hat are the amplitudes (which can be

complex numbers). Inserting Equation (4.17) into Equation (4.16), and assuming that the

contribution from the convection term in Equation (4.16) is negligible, this is reasonable for
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low Reynolds number flows, we get

(4.17) iωρ̂
b
eiωt = ∇ · (σ∇φ̂)eiωt.

Eliminating eiωt from both sides of Equation (4.17) we get,

(4.18) ρ̂
b
= −∇ · ( iσ

ω
∇φ̂).

Using this in Equation (4.15), we get

∇ · (ε∇φ̂) = ∇ · ( iσ
ω
∇φ̂),

⇒ ∇ · ((ε− iσ

ω
)∇φ̂) = 0.(4.19)

By defining complex permittivity as

(4.20) ε = ε+
σ

iω
.

Equation (4.19) can be rewritten as

(4.21) ∇ · (ε∇φ̂) = 0.

This is simply a Laplace equation with complex variables. This equation together with the

boundary condition for φ̂ can be discretized and solved for the complex amplitude of the

electrical potential in the entire domain for the given position of the particle (note that

multiple particles case is no different). The complex permittivity ε is different in the particle

and fluid domains. Thus, Equation (4.21) represents a combined fluid-particle equation for

the entire domain.

Once the electric field is obtained by solving Equation (4.21), it can be used to calculate

the electrical force in the domain. This is discussed next.
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4.3.2. Electrical force

The electrical force is calculated based on the Maxwell stress σM [40, 46]. The procedure

is discussed below.

The Maxwell stress σM is given by [40]

(4.22) σM = εE E − ε

2
(E · E)I,

where I is the identity tensor. The divergence of the Maxwell stress is the electrical body

force at any location in the domain. It is given by

(4.23) ∇ · σM = ∇ · (εE)E− 1

2
∇ε(E · E).

In case of AC fields, the Maxwell stress σM is given by

(4.24) σM = εRe(E)Re(E) − ε

2
Re(E) · Re(E)I,

where E = Êeiωt. The real part of E can be expressed as:

(4.25) Re(E) =
1

2
(E + E∗),

where superscript * indicates the complex conjugate. Rewriting the Maxwell stress we get:

(4.26) σM = ε
1

2
(E + E∗)

1

2
(E + E∗)

︸ ︷︷ ︸

(1)

− ε

8
(E + E∗) · (E + E∗)I

︸ ︷︷ ︸

(2)

.

If the frequency time scale is much shorter (i.e. at high frequencies) than the particle

response time scale, then only the time averaged electrical body force is of interest. To that

end, the time averaged Maxwell stress is calculated by averaging over the time period T of
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the imposed frequency. This done below.

1

T

∫ T

0

σM,1dt

=
1

T

∫ T

0

ε

4
(E E + E E∗ + E∗E + E∗E∗)dt

=
1

T

∫ T

0

ε

4
(ÊÊe2iωt + ÊeiωtÊ

∗
e−iωt + Ê

∗
e−iωtÊeiωt + Ê

∗
Ê

∗
e−2iωt)dt

=
1

T

∫ T

0

ε

4
(ÊÊ

∗
+ Ê

∗
Ê)dt

=
ε

4
(ÊÊ

∗
+ Ê

∗
Ê),

where σM,1 corresponds to the terms identified as (1) in equation (4.26). Similarly, we get

1

T

∫ T

0

σM,2dt

=
1

T

∫ T

0

−ε
8

(E · E + E · E∗ + E∗ · E + E∗ · E∗)Idt

=
1

T

∫ T

0

−ε
8

(Ê · Êe2iωt + Êeiωt · Ê∗
e−iωt + Ê

∗
e−iωt · Êeiωt + Ê

∗ · Ê∗
e−2iωt)Idt

=
1

T

∫ T

0

−ε
8

(Ê · Ê∗
+ Ê

∗ · Ê)Idt

= −ε
4
|Ê|2I,

where σM,2 corresponds to the terms identified as (2) in Equation (4.26). Substituting

Equations (4.27)and (4.27) into Equation (4.26), the time averaged Maxwell stress 〈σM〉 is

given by:

(4.27) 〈σM〉 =
ε

4
(Ê Ê

∗
+ Ê

∗
Ê − |Ê|2I).

The electrical body force sought at a point is the divergence of the time averaged Maxwell

stress, i.e. ∇ · 〈σM〉. It is given by

(4.28) ∇ · 〈σM〉 =
1

4
([∇ · (εÊ)]Ê

∗
+ [∇ · (εÊ∗

)]Ê−∇ε|Ê|2).

This body force term will be used in the fluid-particle equations of motion. Adding this

body force in the particle domain gives the net electrical force on the particle which includes

the DEP force.
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The time averaged body force will be used under the assumption that the frequency is

high such that the particle response time scale is much larger than the frequency time scale.

Thus, the fluid-particle motion will be determined in response to the time averaged electrical

force. The governing equations for fluid-particle motion are considered next.

4.3.3. Governing equations for fluid-particle motion

Consider a simple case with one spherical particle in the fluid. Extension to multiple particles

is straightforward. The entire computational domain which includes both the fluid and the

particle is denoted by Ω. P(t) is the particle domain that changes with time, and ∂P is the

interface between the particle and the fluid. Γ is the fluid boundary which is not shared with

the particle. The combined equations for the fluid-particle domain are:

ρ(
∂u

∂t
+ (u · ∇)u) = −∇p + µ∇2u + ρg + f + ∇ · 〈σM〉 in Ω,(4.29)

∇ · u = 0 in Ω,(4.30)

∇ · (D[u]) = 0 in P(t),(4.31)

D[u] · n = 0 on ∂P(t),(4.32)

u = uΓ(t) on Γ,(4.33)

where u is the fluid velocity, p is the pressure, µ is the fluid viscosity, ρ is the density = ρf in

the fluid and = ρs in the particle, and g is the gravitational acceleration. f is non-zero only in

the particle domain and arises as a result of the rigid motion constraint in the particle domain

represented by Equations (4.31) and (4.32), where n is a unit normal on the particle surface

and D[u] is the deformation-rate tensor [47]. In this formulation the particle is treated as

if it is a fluid with an additional rigid motion constraint. The fluid-particle system is driven

by the electrical body force ∇ · 〈σM〉.

The fluid-particle equations of motion are solved by an algorithm developed by Sharma

and Patankar [48, 49]. That algorithm is summarized next for completeness.
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4.3.4. Computational algorithm

Numerical simulation techniques for solid-fluid flows have been developed for the past decade.

These techniques are called Direct Numerical Simulations (DNS). The Navier-Stokes equa-

tions governing the motion of the fluid are solved coupled with the rigid- body motion of the

particles. The numerical algorithm we used here has been developed by Hu and co-workers

[50, 51, 52]. The equivalence of the computational algorithm presented below to the gov-

erning equations of fluid-particle motion presented above will not be discussed here and can

be found elsewhere [48, 49].

The governing equations are solved by a fractional time stepping approach analogous

to that proposed by Kim and Moin [53]. Given the velocity field of the fluid and the

translational and rotational velocities, U and ω, respectively, of the particle up to time

instant tn, the algorithm solves for the solution at a new time tn+1. The steps are given as

follow:

(1) Update the position of the particle based on the latest known translational and

rotational velocities. This gives the new configuration of the domain. Solve for the

electrical potential (Equation 4.21) and calculate the electrical body force (Equation

4.23 for DC or Equation 4.28 for AC) for this new configuration.

(2) Solve for û satisfying the following equation in Ω

ρf(
û − un

∆t
) +

ρf

2
[3∇ · (unun) −∇ · (un−1un−1)]

+Hn+1(ρs − ρf )[
(Un + ω

n × r) − (Un−1 + ω
n−1 × r)

△t ]

=
µ

2
∇2(û + un) +Hn+1(ρs − ρf )g + fn + ∇ · 〈σM〉n+1,(4.34)

where superscript denotes time instant, r is the coordinate with respect to the

particle centroid, and H is a heaviside function defined by:

(4.35) H(x) =







1 x ∈ P,

0 x ∈ Ω \ P.
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For the convective term a second-order explicit Adams-Bashforth scheme is used.

A second order Crank-Nicholson scheme is used for the viscous term.

(3) Correct the velocity field û to get the corrected velocity field ˆ̂u which satisfies the

continuity equation ∇ · ˆ̂u = 0 in Ω. This is done by the following steps:

(a) Solve for a scalar field ψ such that

(4.36) ρf (
ˆ̂u− û

△t ) = −∇ψ.

By imposing the incompressibility constraint ∇· ˆ̂u = 0, we get the equation for

ψ:

(4.37) ∇2ψ − ρf

∆t
∇ · û = 0.

(b) Compute ˆ̂u after solving for ψ

(4.38) ˆ̂u = −∆t

ρf

(∇ψ) + û.

(c) Set un+1 = ˆ̂u in the fluid domain Ω/P (t), and calculate the pressure pn+1 as

follows:

(4.39) pn+1 = ψ +
∆tµ

2ρf

∇2ψ.

ψ is related to the original pressure p[53]

(4) Correct the velocity field ˆ̂u in the particle domain P (t).

(a) Solve for
ˆ̂
û satisfying the following equation:

(4.40) ρf (
ˆ̂
û− ˆ̂u

∆t
) −Hn+1(ρs − ρf )[

(Un + ω
n × r) − (Un−1 + ω

n−1 × r)

∆t
] = −fn

2
.

(b) Do rigid body projection and acceleration correction:

(4.41) ρf (
un+1 − ˆ̂

û

∆t
) +Hn+1(ρs − ρf)[

(Un+1 + ω
n+1 × r) − (Un + ω

n × r)

∆t
] =

fn+1

2
,
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(4.42) ⇒ [Hn+1ρs + (1 −Hn+1)ρf ]u
n+1 = ρf

ˆ̂
û +Hn+1(ρs − ρf )(U

n + ω
n × r) +

fn+1

2
∆t.

To solve for un+1, we need to know fn+1. We can get fn+1 by projecting
ˆ̂
û onto

a rigid body motion in the particle domain. To that end, split
ˆ̂
û as given below

(4.43)
ˆ̂
û = (

ˆ̂
Û +

ˆ̂
ω̂ × r) +

ˆ̂
û′,

where

M
ˆ̂
Û =

∫

p

ρs
ˆ̂
ûdx,(4.44)

Ip · ˆ̂
ω̂ =

∫

p

r × ρs
ˆ̂
ûdx.(4.45)

M is the mass of the particle and Ip is the moment of inertia of the particle. It

can be shown that [48, 49]

(4.46) fn+1 = −2ρf

ˆ̂
û′

∆t
.

Equation (4.41) can now be used to solve for un+1 in the particle domain.

Finally, it is noted that adding Equations (4.34), (4.36), (4.40), and (4.41) gives the

time discretized momentum equation of the combined fluid-particle motion. The 3D spatial

discretization is done by using second-order central differencing scheme. A control volume

method is used, and all the elliptic equations are solved by using Fast Fourier Transform

(FFT) solvers. A fixed staggered[54] grid is used in the entire domain. An immersed body

approach is used to implement the rigid motion constraint [47, 48, 49].

4.4. Results

In this section we will first present results pertaining to the electric field solution. That

will be followed by problems pertaining to a particle moving due to an electrical force in DC

and AC fields. All simulations are done in 3D domains.
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Note that in all the computations reported here we have chosen values for parameters to

test the code and not necessarily to solve a specific physical situation. Hence, it is implied

that all the parameters are non-dimensional with some appropriate scale and therefore we

will not provide physical units in our discussion below.

4.4.1. Computation of the electric field and the electrical force

As an example of the computation of the electric field, here we consider a problem with a

DC field. The computational domain is a cubic box of length L = 1 filled with fluid and one

spherical particle is placed in the center of the box. The grid size is ∆x = ∆y = ∆z = 0.025.

Using the governing Equation (4.21), we solve for the electric potential φ. The boundary

conditions used here are (see Figure 4.2)

(4.47)







φ = 0 at x = −L/2

φ = 1 at x = L/2

∂φ

∂y
= 0 at y = −L/2

∂φ

∂y
= 0 at y = L/2

∂φ

∂z
= 0 at z = −L/2

∂φ

∂z
= 0 at z = L/2

The other parameters are: the particle permittivity ε2 = 1, the fluid permittivity ε1 = 20,

and the radius of the particle R = 0.2L. The objective of this simulation is to quantitatively

compare the electric field solution with the known analytic solution for a particle in an

infinite domain in Equations (4.1) and (4.2). The computational domain size is chosen large

enough compared to the particle size so that such a comparison can be done.

Figures (4.3) and (4.4) show the analytic and numerical potential fields, respectively. We

have confirmed that the quantitative agreement between the two solutions is very good.

Next we consider the electrical body force. It can be shown that in case of materials with

constant permittivities, no bulk charge, and an imposed DC field, the body force ∇·σM = 0

[40]. This is because according to Equation (4.23) there two contributions to the body
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Figure 4.2. The view in a x-y plane (except the front and back walls) of a three-
dimensional domain to compute the electric field and the electrical force. The
imposed electric field is uniform in the farfield.

force. The second term is zero since ∇ε = 0 in the fluid and particle domains where the

permittivities are constant. The first term on the right hand side of Equation (4.23) is also

zero because ∇ · (εE) = 0 when there is no bulk charge in the domain. However, there is

a surface force on the particle due to the jump in the permittivities [40]. In our immersed

boundary approach, this surface force appears as a bulk force at the particle boundary region

where the permittivity changes from its value in the bulk liquid to that of the bulk solid.

Figure (4.5) shows the x component of the body force term ∇ · σM in the fluid-particle

domain calculated according to Equation (4.23). It is in agreement with the discussion

above. The body force is zero in the bulk fluid and particle domains, and it is non-zero only

in the particle boundary region. It is also noted that the force distribution is symmetric

as expected for this problem so that there is no net force on the particle. Similar trend is
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Figure 4.3. The analytic solution of the electrostatic potential
for a particle in an infinite domain. The solution in the mid-x-y
plane is shown.

Figure 4.4. The 3D numerical solution of the electrostatic po-
tential for a particle in a large cubic domain. The solution in
the mid-x-y plane is shown.
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Figure 4.5. The x-component of the electrical body force shown in the mid
x-y plane of the domain.

observed for other components of force. This also leads to a zero net torque on the body as

expected in this case.

4.4.2. Computation of electrohydrodynamic particulate motion

In this section, we consider the problem of fluid-particle motion cause by electrical force,

specifically the DEP force. All the domain of computation simulations for the electrohydr-

dynamic particulate motion is a cubic box of length L = 2 filled with fluid, and one spherical

particle is placed in the center of the box. Particle radius is R = 0.15. The grid size is

∆x = ∆y = ∆z = 0.05. The fluid properties were taken as: density ρf = 2, and viscosity

µ = 0.25. The density of the particle is ρs = 3. The discrete time step ∆t = 0.005.

4.4.2.1. Uniform DC electric field. The case of a uniform DC field imposed in the

far field was considered in the previous section (Figures 4.2 - 4.4). The electric field was
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solved and the electrical body force was computed. In this section we report the solution of

fluid-particle motion according to the algorithm described in section (4.3.4).

As discussed before, there is no net force on the particle in this configuration. This

is expected. The particle has no net charge hence there will be no electrophoretic force.

Additionally, it is in a uniform electric field in the farfield hence there will be no net DEP

force (see Equation 4.8) according to the approximate dipole moment theory. Hence, the

particle should not move from its original position when we solve the equations for fluid-

particle motion. Indeed, in our simulations the particle did not change its position with

time.

Figure (4.6) shows a plot of |E|2. Note that, as expected, there is no gradient in the

magnitude of the electric field in the farfield.

Figure 4.6. A plot of the square of the magnitude of the electric field.
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4.4.2.2. Non-uniform DC electric field. As implied by Equation (4.8) positive DEP

should be observed in DC fields when ε2 > ε1, and negative DEP should be observed when

ε2 < ε1. In this section, the numerical approach will be tested on this aspect.

Figure 4.7. The view in a x-y plane (except the front and back walls) of a
three-dimensional domain to simulate particle motion in a non-uniform DC
field.

Figure (4.7) shows the domain in all x-y planes, except the front and back walls, to

simulate positive and negative DEP in a non-uniform external DC field. The potential is

applied on the left and right sides, as shown, to generate a non-uniform electric field. The

normal components of the gradient of potential are zero at all other boundary locations. The

non-uniform electric field should cause the particle to migrate due to the DEP force. The

direction of migration should depend on the permittivity of the particle relative to that of

the fluid. These cases are considered next corresponding to negative and positive DEP.

Negative dielectrophoresis in a DC field: To simulate negative DEP we chose

particle permittivity ε2 = 1 and the fluid permittivity ε1 = 20. The domain size L = 2 in

all directions, and the particle radius R = 0.15 (see Figure 4.7). In this case, the dipole
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moment theory (Equation 4.8) implies that the particle should migrate toward a region of

lower magnitude of the electric field.

Figure 4.8. Negative DEP in a DC field: Numerically computed trajectory of
the particle center in a non-uniform electric field when ε1 > ε2. The mid-x-y
plane is shown. The contour lines show |E|2 at the initial instant when the
particle is at the center of the domain.

Figure (4.8) shows the computed trajectory of the particle center for this case. The

contour lines show |E|2 at the initial instant when the particle is at the center of the domain.

These contour lines change as the particle moves, however, the plot for the initial instant is

still useful in identifying regions of high and low electric fields in the domain. It is seen that,

as expected, in this case where ε1 > ε2 the particle migrates toward a region of low electric

field intensity.
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Positive dielectrophoresis in a DC field: To simulate positive DEP we chose

particle permittivity ε2 = 20 and the fluid permittivity ε1 = 1. All the other parameters are

same as that in the negative DEP case including the geometry (see Figure 4.7). In this case,

the dipole moment theory (Equation 4.8) implies that the particle should migrate toward a

region of higher magnitude of the electric field.

Figure 4.9. Positive DEP in a DC field: Numerically computed trajectory of
the particle center in a non-uniform electric field when ε1 < ε2. The mid-x-y
plane is shown. The contour lines show |E|2 at the initial instant when the
particle is at the center of the domain.

Figure (4.9) shows the computed trajectory of the particle center for this case. Once

again the contour lines of |E|2 at the initial instant are shown to identify regions of high

and low electric field intensity. From Figure (4.9) the maximum electric field intensity is

found to be around x = 0 and between y = 0.5 and y = 0.75. By the dipole moment theory
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(Equation 4.8) the particle should be attracted to that location. Figure (4.9) shows that the

particle is indeed attracted to the location of the maximum electric field intensity.

4.4.2.3. Non-uniform AC electric field. In this part, dielectrophoresis in non-uniform

AC fields is considered. Specifically we want to test the code for frequency dependent DEP

behavior. Hence, we fix the material parameters. The fluid permittivity ε1 = 20, and

conductivity σ1 = 1.818 × 10−3. The particle permittivity is chosen to be ε1 = 1, and

conductivity σ1 = 1.818 × 10−1.

The above choice of parameters imply that σ2 > σ1 and ε2 < ε1. Using Equation (4.12),

the Maxwell-Wagner charge relaxation time τMW is:

τMW =
ε2 + ε1

σ2 + σ1

=
20 + 1

1.818 × 10−3 + 2 × 1.818 × 10−1
= 57.4684

The AC frequencies are chosen to be 10−6, 10−5, 10−3, 10−1, and 103 defining Cases

1-5. According to the dipole moment theory, to determine whether there will be positive or

negative DEP behavior in these cases, it is essential to know the sign of the real part of the

Clausius-Mossotti factor, i.e. Re[K(ω)] (Equation 4.11). Re[K(ω)] vs. ω is plotted in Fig

(4.10). It is seen that Re[K] is positive for Cases 1-3 at low frequencies and negative for

Cases 4 and 5 at high frequencies. Hence, it is expected that Cases 1-3 should show positive

DEP while Cases 4 and 5 show negative DEP.

Figure (4.11) shows the domain in all x-y planes, except the front and back walls, to

simulate positive and negative DEP in a non-uniform AC field.

Positive DEP in an AC field: Figure (4.12), shows a plot for Case 1. A contour

plot of the square of the RMS value of the magnitude of the electric field, i.e. E2
rms, is shown

in the figure. Following a derivation similar that for the mean value of the Maxwell stress,

the RMS value of the electric field is given by

(4.48) E2
rms =

1

2
|Ê|2 =

1

2
Ê · Ê∗

.

The contour plot is shown for the initial location of the particle and identifies regions of

high and low electric field intensities. According to the dipole moment theory (equation
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Figure 4.10. Plot of Clausius-Mossotti factor as a function of ω for the cases
chosen to study positive and negative DEP in AC fields.

4.9) Case 1 should exhibit positive DEP and the particle should migrate toward the region

of high electric field intensity. Figure (4.12) shows the numerically computed trajectory of

the particle. As expected it migrates toward the region of high electric field intensity, thus

showing positive DEP behavior. We verified that Cases 2 and 3 also show positive DEP

behavior as was expected according to the dipole moment theory.

Negative DEP in an AC field: Figure (4.13), shows a plot for Case 5. A contour

plot of E2
rms is shown for the initial location of the particle and identifies regions of high and

low electric field intensities. The figures also shows the numerically computed trajectory of

the particle. As expected it migrates toward the region of low electric field intensity, thus

showing negative DEP behavior. We verified that Case 4 also shows negative DEP behavior

as was expected according to the dipole moment theory.

4.5. Conclusion

In this chapter a numerical technique for fully coupled simulation of electrohydrody-

namic particulate flows was developed. Such a tool was not reported previously in literature
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Figure 4.11. The view in a x-y plane (except the front and back walls) of a
three-dimensional domain to simulate particle motion in a non-uniform AC
field.

and has potential use in several micro- and nano-scale fabrication processes that rely on

electrohydrodynamic self-assembly of particles. We have tested this approach for all the

basic dielectrophoretic behaviors expected in DC and AC fields. Further development of this

approach was undertaken in collaboration with Prof. W.-K. Liu, and more details on its

quantitative performance and its application to carbon nanotubes can be found elsewhere

[44].
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Figure 4.12. Positive DEP in an AC field: The contour lines show E2
rms for

Case 1 (ε1 = 20, ε2 = 1, σ1 = 1.818 × 10−3, σ2 = 1.818 × 10−1, and ω = 10−6)
at the initial instant when the particle is at the center of the domain. The
mid-x-y plane is shown. A numerically computed trajectory of the particle
center is also shown.
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Figure 4.13. Negative DEP in an AC field: The contour lines show E2
rms for

Case 5 (ε1 = 20, ε2 = 1, σ1 = 1.818 × 10−3, σ2 = 1.818 × 10−1, and ω = 103)
at the initial instant when the particle is at the center of the domain. The
mid-x-y plane is shown. A numerically computed trajectory of the particle
center is also shown.
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CHAPTER 5

A continuum approach to reproduce molecular scale slip behavior

5.1. Introduction

In continuum fluid dynamics, the no-slip boundary condition is typically used. This

implies that fluid adjacent to the surface of a solid boundary moves at the same tangential

velocity as the solid. The resistance in micro and nano scale channels is large due to which

it costs more energy to pump the fluid through the channel. In this case, slip next to the

wall can be helpful to reduce the flow resistance and thus reduce the energy requirement

[27, 28, 29, 30, 31].

Slip at the fluid-solid interface has been investigated experimentally, numerically, and

analytically [17, 18, 20, 21, 3, 22, 55, 23, 24, 25, 56, 57, 58, 59]. Molecular dynamic

(MD) simulations have been useful to study the molecular behavior at the fluid-solid inter-

face. The most common approach is the soft sphere model with Lennard-Jones potential

[32, 2, 23, 18, 19, 20, 21, 3, 22, 55, 24]. Prior work in literature, based on molecu-

lar methods, has provided important insights into the mechanism of slip. However, the best

methodology to seamlessly couple the near wall slip behavior to continuum approaches needs

to be explored.

Coupling near wall slip, governed primarily by molecular scale effects, with continuum

equations in the outer region is necessary in multiscale simulation of micro/nanoscale chan-

nels. Such simulations are useful for micro/nanofluidic device design. Typical strategies

include coupling a molecular domain at the fluid-solid interface, where molecular dynamic

simulations are performed, with outer regions where continuum simulations are reasonable

[60, 61]. These strategies are computationally challenging for at least two reasons. First,

in multiscale problems with fluids, the molecules in the molecular domain do not have fixed

identity. This is unlike multiscale approaches for solid mechanics where molecules do not
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diffuse in and out of the molecular domain. It is not trivial to resolve this issue [60]. Second,

continuum scale phenomena outside the molecular domain are typically governed by time

scales that are much longer than the molecular times scales at which molecular dynamic

simulations must be done. Resolution of this issue is also non-trivial. One way to address

these issues is to explore if molecular scale effects can be included in the continuum equations

by suitably modifying them.

In this chapter it is explored if it is possible to reproduce molecular scale slip behavior

through continuum equations. The primary objective is to gain insights into the molecular

scale mechanism of slip in the context of continuum equations. Successful completion of this

goal is potentially useful in developing multiscale computational strategies that resolve the

two key challenges stated above.

5.2. Background

In the discussion to follow, we will refer to slip velocity and slip length. For the purposes

of the discussion in this chapter, these variables are as defined in Figure (5.1). It shows

shear flow next to a wall, where the wall molecules (or atoms) are located at y = 0. The

mean velocity of any wall molecule is zero. Next to the wall molecules are shown the first

two layers of fluid molecules (or atoms). As will be discussed later, the first layer of fluid

molecules plays a dominant role in the mechanism of slip. The first layer is defined as the

location of the first peak in the density profile of the fluid next to the wall.

The velocity profile of the fluid is linear in a Couette flow. This profile when extrapolated

to the location of the wall molecules, i.e. to y = 0, should give velocity equal to zero if no-slip

is valid. However, it has been reported that this velocity can be non-zero. This is called the

slip velocity Vs (see Figure 5.1). The velocity profile of the fluid can also be extrapolated

further to find the location where the velocity is zero. That gives the slip length Ls (see

Figure 5.1). The slip velocity and slip length are related by

(5.1) Vs = Lsγ̇,
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where γ̇ is the shear-rate as shown in Figure (5.1).

Figure 5.1. Definition of slip velocity and slip length.

Slip velocity for flows next to both hydrophobic and hydrophilic surfaces has been studied

experimentally. The reported slip lengths range from 20nm to 1µm [56, 25, 58]. While the

accuracy of the values has been debated, it is generally agreed that slip occurs at fluid-solid

interfaces [57].

The presence of slip next to solid walls has been attributed to the depletion of fluid density

next to solid walls [62, 57]. The primary motivation for this suggestion is the observation

that hydrophobic surfaces, which tend to cause high depletion of fluid density [63], exhibit

much larger slip [58].

Good insight into the mechanism of slip is obtained from prior analytic and computational

work in literature [32, 2, 23, 18, 19, 20, 21, 3, 22, 55, 24, 64, 65, 66, 67]. Specifically,

Lichter and co-workers [21, 22, 3, 20, 55] have elucidated the various mechanisms of slip.

They note that fluid molecules next to the wall experience an interaction potential (e.g. the

Lennard-Jones potential). As a result, the fluid molecules tend to occupy locations of low

potential along the wall and stay away from locations of high potential. They showed, by

using MD and a new variable-density Frenkel-Kontorova model, that local defects in the

occupancy of the low potential locations propagate in the presence of shear. This leads to

slip of the fluid molecules in the first layer at low shear rates. This was termed the defect

propagation mechanism of slip [22, 3]. At high shear rates it was shown that slip occurs

concurrently, i.e., the fluid molecules slip collectively rather by defect propagation. In this

case the wall potential does not play an important role; instead slip is primarily dependent
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on the heat transfer between the fluid and wall molecules [55, 3]. Thus, in this regime, slip

depends on the high shear rate friction coefficient between the fluid and wall molecules.

The above results can summarized by a plot of slip length vs. shear rate. At low shear

rates the slip length is almost constant. After a critical shear rate the slip length increases.

The rise in the slip length is unbounded if the wall molecules are fixed [55, 3] (i.e. there

is no dissipation of heat from the fluid molecules to the wall molecules) as seen in the MD

results by Thompson and Troian [2] in Figure (5.2). However, if the wall molecules have

thermal motion, then heat can be dissipated to the wall molecules. In this case, the slip

length reaches another constant value at high shear rates after the transition [55, 3](see

Figure 5.3).

Figure 5.2. Slip length vs. shear rate from MD simulations [2].

In this work we ask the question: Is it possible to reproduce molecular scale slip behavior,

described above, by using continuum equations? To that end we note that the continuum

model must incorporate the following: i) near the wall, the fluid experiences a potential from

the wall molecules and correspondingly a force due to the gradient in the potential, ii) the

fluid density responds to the wall potential, hence, fluid compressibility is relevant, and iii)

the fluid looses momentum to the wall at high shear rates even if the wall potential does
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Figure 5.3. Slip length at high shear rate from MD simulations [3].

not play a significant role. To incorporate the above features, we simulate shear flow of a

compressible fluid in the presence of a wall potential. A body force due to the wall potential

is included in the momentum equation. Finally, a friction coefficient is used to capture the

high shear rate dissipation at the wall.

It will be shown that this approach reproduces all the trends of slip length discussed

above.

5.3. Governing equations

Shear flow of a compressible fluid is considered as shown in Figure (5.1). A two-

dimensional domain is considered for simplicity. Conservation of mass for a compressible

fluid is given by:

(5.2)
∂ρ

∂t
+ ∇ · (ρu) = 0,

where u is the velocity field, and ρ is the density of the fluid. The momentum equation is:

(5.3) ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p + µ∇2u +

1

3
µ∇(∇ · u) − ρ∇φ,
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where p is the thermodynamic pressure, µ is the fluid viscosity, and φ is the potential imposed

due to the wall molecules. The last term −ρ∇φ is the local body force per unit volume

experienced by the fluid due to the wall potential. It will be seen that this term is crucial

to reproduce the low shear rate slip behavior where the force due to the potential plays an

important role. Gravity is not considered. Note that the fluid inertia is not important in

this problem. This will be shown later. However, inertial and unsteady terms are retained

while presenting the equations because the commercial code (FLUENT [68]) did not exclude

these terms during computations.

Since the fluid is considered compressible, an equation of state is required. Here we make

a simplifying assumption by considering an ideal gas equation of state. Once the viability of

this approach to reproduce molecular scale slip is established then complex state equations

for realistic fluids can be considered. The ideal gas state equation is:

(5.4) p = ρRT,

where T is the temperature in Kelvin, and R is the specific gas constant which depends on the

molecular mass of the gas. R = Runiversal/Mmolecular, where Runiversal = 8314.34J − kmol/K,

and Mmolecular is the molecular weight of the gas in kg/kmole. An isothermal system will be

assumed, hence, an energy equation for temperature will not be considered.

Our goal is to study slip next to a wall due to an imposed shear flow. To replicate that

scenario, a non-zero potential φ is considered only next to the bottom wall. No potential is

imposed next to the top wall. The potential φ will be discussed in section (5.4).

To impose a shear flow the x velocity component at the top boundary of the fluid domain

is set to Utop (see Figure 5.1). The y velocity component is zero. At the location of the bottom

wall, i.e. at y = 0, the following Navier boundary condition is applied:

(5.5) µ
∂u

∂y
= ηw(u− Ub),
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where u is the x component of fluid velocity, ηw is the friction coefficient at the wall, and Ub

is the x velocity component of the bottom wall. In our simulations, we use Ub = 0 i.e. the

bottom wall is stationary. The y velocity component of the fluid at y = 0 is set to zero.

Some comments about the Navier boundary condition at y = 0 are in order. This

condition by itself leads to slip between the fluid velocity and the wall velocity at y = 0.

It will be seen that this boundary condition dominates the slip behavior only at high shear

rates. Thus, ηw is a critical parameter to reproduce the high shear rate slip behavior. It is

the friction coefficient that would arise due to the energy dissipated to the wall molecules

(i.e. if there is heat transfer to the wall) in MD simulations at high shear rates. If the wall

molecules are assumed fixed, then no energy is dissipated to the wall molecules (i.e. there is

no heat transfer to the wall) [55] and it would correspond to ηw = 0.

Periodic boundary conditions are used with respect to the x direction.

The governing equations are solved in a non-dimensional form (see section 5.5) using a

commercial solver FLUENT [68]. Only steady state solution to the governing equations are

reported. Grid sensitivity tests were done to ensure that the solution is not dependent on

the grid size.

5.4. The wall potential

In this section, the choice of potential φ used in equation (5.3) is discussed. In prior

results it has been suggested that the influence of the wall potential on the first fluid layer

is dominant [22]. Thus, one approach to obtain φ is to suitably integrate the molecular

potential imposed by the wall molecules on the fluid molecules. This would imply integrating

the Lennard-Jones potential for Lennard-Jones solid and fluid.

Another approach is based on deducing the effective potential φ based on the density

profile obtained from MD simulation of a stationary fluid next to the wall. Consider, for

example, the density profile of a stationary fluid as a function of the distance from the wall

molecules obtained from MD simulations (Figure 5.4). This density profile shows the well

known layering of fluid molecules next to the wall as indicated by the successive peaks in
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density. Using this density profile, equation (5.3) with u = 0, and the ideal gas equation of

state, φ can be obtained as follows:

(5.6)

−∇(ρRT ) − ρ∇φ = 0,

⇒ −RT∇(lnρ) −∇φ = 0,

⇒ ∇(lnρ) = −∇φ
RT

,

⇒ e
−
φ

RT =
ρ

ρbulk

,

⇒ φ = −RT ln(
ρ

ρbulk

),







where ρbulk is the density of the fluid far from the wall where the φ is zero. Figure (5.5)

shows φ computed according to equation (5.6) by using the density profile shown in Figure

(5.4). This φ can be used in equation (5.3) for shear flow simulations as well.

It should be noted that φ obtained from equation (5.6) is an effective potential expe-

rienced by the fluid. It is not equal to the wall potential. φ from equation (5.6) will be

dominated by the wall potential in the first fluid layer, however, the undulating nature of φ

beyond the first layer (see Figure 5.5) is also influenced by the potential exerted by the fluid

molecules on subsequent layers.

By using φ as obtained from equation (5.6) for shear flows as well, we assume that it is

not strongly dependent on the shear rate. While this is a simplifying assumption, a favorable

comparison between our results, to be presented later, with prior MD calculations suggests

that this is reasonable.

In summary, one MD computation near the wall at stationary state can be done to yield

a density profile. The effective potential φ can then be computed according to equation

(5.6). φ thus computed can be used in equation (5.3) for continuum calculations of shear

flows.

In this work, for convenience of numerical simulation and parametric investigation, a

potential function is used that emulates the trends in Figure (5.5) [69]

(5.7) φ = φampe
−kycos(my)(1.1 + bsin(nx)),
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Figure 5.4. A typical profile of fluid density vs. the distance from the center of
the wall molecules computed from MD calculations. Successive peaks indicate
the layering of fluid molecules next to the wall. σ is the diameter of the fluid
molecules in our MD calculations.
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Figure 5.5. A typical profile of φ computed according to equation (5.6) by
using the density profile shown in Figure (5.4).

where φamp is a parameter which controls the amplitude of the potential, k is a parameter for

the exponential decay away from the wall, m and n are the wave numbers for the undulations

in potential along the x and y directions. Note that undulations in the x direction are due

to periodic spacing of the wall molecules along the wall, and undulations in the y direction

are due to the layering of fluid molecules as seen in Figure (5.5). Adding 1.1 in the last part

of equation (5.7) prevents φ from being equal to zero at y = 0, when sin(nx) = −1. b is
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another parameter that determines the degree of corrugation of the potential φ. Larger b

implies more corrugation and vice-versa.

All computations in this work are done by using φ given by equation (5.7). The governing

equations are solved in non-dimensional form. This is discussed in the next section.

5.5. Non-dimensionalization

To minimize roundoff errors, the governing equations were solved in non-dimensional

form. The scales used are the following:

(5.8)

[length] = h,

[density] = ρbulk,

[temperature] = T0,

[pressure] = ρbulkRT0,

[potential] = RT0,







where h is the height of the domain in the y direction (see Figure 5.1), and T0 is the constant

specified temperature.

Using the scales above, the momentum equation (5.3) is non-dimensionalized as follows:

[density][velocity]

[time]
(ρ∗

∂u∗

∂t∗
) +

[density][velocity]2

[length]
ρ∗(u∗ · ∇∗u∗) = − [pressure]

[length]
∇∗p∗

(5.9) +
µ[velocity]

[length]2
∇∗2u∗ +

1

3
µ

[velocity]

[length]2
∇∗(∇∗ · u∗) − [density][potential]

[length]
ρ∗∇∗φ∗,

where superscript ∗ denotes non-dimensional variables. By using time scale (if a transient

problem is solved) equal to the length scale divided by velocity scale, equation (5.9) can be

simplified as

ρ∗
∂u∗

∂t∗
+ ρ∗(u∗ · ∇∗u∗) = − RT0

[velocity]2
∇∗p∗ +

µ

ρbulk[velocity][length]
∇∗2u∗
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(5.10) +
µ

ρbulk[velocity][length]

1

3
∇∗(∇∗ · u∗) − RT0

[velocity]2
ρ∗∇∗φ∗.

The velocity scale is chosen as (it sets the coefficient of pressure equal to one)

(5.11) [velocity] =
√

RT0.

Note that velocity scale
√
RT0 is not the actual velocity scale of the flow which is set by the

velocity Utop of the top boundary of the domain. We keep Utop as a parameter of the problem

just like it is done is typical MD calculations. The momentum equation can be rewritten in

non-dimensional form as

(5.12) ρ∗
∂u∗

∂t∗
+ ρ∗(u∗ · ∇∗u∗) = −∇∗p∗ + µ∗∇∗2u∗ +

1

3
µ∗∇∗(∇∗ · u∗) − ρ∗∇∗φ∗,

where µ∗ is given by

(5.13) µ∗ =
µ

ρbulk

√
RT0h

.

The non-dimensionalized continuity equation is given by

(5.14)
[density][velocity]

[length]

∂ρ∗

∂t∗
+

[density][velocity]

[length]
∇∗(ρ∗u∗) = 0,

(5.15) ⇒ ∂ρ∗

∂t∗
+ ∇∗(ρ∗u∗) = 0.

The dimensionless form of the ideal gas equation of state is

(5.16) [pressure]p∗ = [density]R[temperature]ρ∗T ∗,

(5.17) ⇒ p∗ = ρ∗,
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where T ∗ = 1 by the choice of the temperature scale and the fact that the temperature is

assumed constant. Similarly, the non-dimensional form of the potential equation becomes

(5.18) φ∗ = φae
−k∗y∗cos(m∗y∗)(1.1 + b∗sin(n∗x∗)),

where k∗ = kh, m∗ = mh, n∗ = nh, b∗ = b, and φa = φamp/RT0. Note that this is the

potential due to the bottom wall only. No potential is imposed next to the top wall.

The boundary condition at the top boundary is u∗ = U∗
top, where U∗

top = Utop/
√
RT0.

At the bottom boundary, i.e. at y∗ = 0, the Navier boundary condition in equation (5.5)

becomes

(5.19)

µ
∂u

∂y
= ηwu,

⇒ µ
[velocity]

[length]

∂u∗

∂y∗
= ηw[velocity]u∗,

⇒ ∂u∗

∂y∗
=
ηwh

µ
u∗,

⇒ ∂u∗

∂y∗
= fwu

∗,







where fw is the non-dimensional wall friction coefficient.

The scales chosen would be as follows if we consider values typical for air at room tem-

perature:

(5.20)

T0 = 300K,

R = 287J/kg − K,

µ = 1.85 × 10−5Ns/m2,

ρbulk = 1.19kg/m3,

µ∗ =
µ

ρbulk

√
RT0h

= 52.98,

[length] = 1nm,

[pressure] = ρbulkRT0 = 1.024 × 105Pa,

[velocity] =
√
RT0 = 293.43m/s,

[time] =
[length]

[velocity]
≈ 3 × 10−12s.






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In typical MD simulations the scales are:

(5.21)

[length] ∼ 1nm,

[time] = τ ∼
√

mσ2/ǫ ∼ 10−12s,

[velocity] ∼ (σ/τ) ∼ 102m/s,







where m is the molecular mass, τ is the time scale for molecular motion, σ is the scale of the

molecular diameter, and ǫ is a Lennard-Jones interaction parameter. Our choice of scaling is

similar to the typical scaling used in MD calculations. It is also noted that it is not essential

to use these scales, however, we have chosen these to make it easier to draw parallels with

the MD results.

5.6. Results

Equations (5.12), (5.15), (5.17), and (5.18) are solved together with the boundary con-

ditions at the top and bottom boundaries. Periodic boundary conditions are used in the x∗

direction. The non-dimensional channel height h∗ and length L∗ are equal to one. Steady

state solution is considered.

In the non-dimensional equations presented above, the parameters of the problems are

µ∗, U∗
top, fw, φa, b

∗, k∗, m∗, and n∗. In the following subsections results are presented.

In the rest of this chapter, dimensionless dependent variables will be denoted by super-

script ∗. Dependent variables without superscript ∗ are dimensional.

5.6.1. Effect of shear rate on the slip length

In this section the basic trends in the velocity profile and the slip length vs. the imposed

shear rate are identified. The parameters chosen to solve shear flows are: µ∗ = 10, φa = 0.01,

k∗ = 8.5, m∗ = n∗ = 16π, and b∗ = 1. First, we consider fw =
ηwh

µ
→ ∞ which implies that

the fluid velocity u = 0 at y = 0 which is the location of the bottom wall.

The shear flow is solved for different value of U∗
top so that different shear rates are imposed

above the bottom wall. Higher the value of U∗
top higher is the imposed shear rate and vice-

versa.
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Figure (5.6) shows 〈u〉/Utop with respect to y/h, where 〈u〉 is the value of the x component

of fluid velocity that is averaged with respect to the x direction at any given y coordinate. It

is seen that the normalized velocity profile has two limiting solutions (see a zoomed in view

of the profile in Figure 5.7). At high shear rates (i.e. large values of U∗
top) the normalized

velocity profile is linear and does not change upon further increasing the imposed shear rate.

At low shear rates (i.e. small values of U∗
top) the normalized velocity profile does not change

upon further decreasing the imposed shear rate.
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Figure 5.6. The mean velocity profile 〈u〉/Utop vs. y/h. The parameters are:
µ∗ = 10, φa = 0.01, k∗ = 8.5, m∗ = n∗ = 16π, b∗ = 1, and fw → ∞. Legend:
(−) U∗

top = 1, (· · · ) U∗
top = 10−2, (−−) U∗

top = 10−3, (− · −) U∗
top = 10−5, and

(−o−) U∗
top = 10−7.

The imposed potential in equation (5.18) is sinusoidal with respect to the y direction to

replicate the layering of fluid molecules next to the wall. Given our choice of m∗ = 16π, this

implies that the extent of the first layer is up to y/h = 0.125. It is seen from Figures (5.6)

and (5.7) that the low shear rate limiting velocity profile is non-linear up to approximately

y/h = 0.125 and linear beyond that. Thus, it is apparent that the first layer plays a dominant

role by imposing an additional force that slows down the fluid next to the wall at low shear
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Figure 5.7. A zoomed in view of the mean velocity profile shown in Figure
(5.6). Legend: (−) U∗

top = 1, (· · · ) U∗
top = 10−2, (−−) U∗
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U∗
top = 10−5, and (−o−) U∗

top = 10−7.

rates. This force balance and the mechanism of slip will be discussed further in section

(5.6.2).

The transition from the limiting velocity profile in Figure (5.6) at low shear rates to

that at high shear rate occurs beyond a critical shear rate. During transition the velocity

profile is intermediate between the two limiting profiles. The mean imposed shear rate 〈γ̇〉 is

calculated as the slope of the velocity profile beyond the first fluid layer. The non-dimensional

slip length Ls/h is calculated by extrapolating the linear velocity profile obtained beyond

the first fluid layer in Figure (5.6) to the location of zero velocity (as depicted in Figure 5.1).

In the present case, the slip length is negative since the intercept of the outer linear profile

with the y/h axis happens above the coordinate of the wall (see the sign convention for the

slip length in Figure 5.1).

The slip length Ls/h calculated as discussed above is shown in Figure (5.8). It is seen

that at low shear rates the slip length is constant which transitions to another constant

value at high shear rates. The constant slip lengths at low and high shear rates are a direct
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consequence of the limiting profiles of the normalized velocity at low and high shear rates,

respectively, depicted in Figure (5.6). This trend of slip length is consistent with prior MD

calculations [3] and has been reproduced for the first time using a continuum approach. The

transition from the low shear rate to the high shear rate slip lengths happens at a critical

value of the shear rate; the estimation for which will be discussed in section (5.6.2). This

estimation will also explain the scaling used for the imposed shear rate 〈γ̇〉 in Figure (5.8).
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Figure 5.8. Ls/h vs. non-dimensionalized shear rate for φa = 0.01, k∗ = 8.5,
m∗ = n∗ = 16π, b∗ = 1, and fw → ∞.

To ensure that inertia does not play an important role, all calculations were repeated

with µ∗ = 100. The resultant plot of the slip length did not change (see Figure 5.8). It was

confirmed that in all the simulations the flow Reynolds number Re =
ρbulkUtoph

µ
was less

than order one.

The overall trend of the velocity profile remains the same irrespective of the friction

parameter fw in the Navier boundary condition at the bottom wall (equation 5.5). Figure

(5.9) shows velocity profiles for fw = 0.75 and Figure (5.10) shows profiles for fw = 0.

Reducing the friction coefficient compared to the cases in Figure (5.6) leads to positive slip

lengths at higher shear rate. Note that the limiting velocity profile at high shear rate for
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fw = 0 is vertical which corresponds to an infinite slip length. The effect of fw on the slip

length will be discussed in further details in section (5.6.3).
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Figure 5.9. The mean velocity profile 〈u〉/Utop vs. y/h. The parameters are:
µ∗ = 10, φa = 0.01, k∗ = 8.5, m∗ = n∗ = 16π, b∗ = 1, and fw = 0.75. Legend:
(−o−) U∗

top = 10+2, (· · · ) U∗
top = 3 × 10−2, (−−) U∗

top = 2 × 10−2, (− · −)
U∗

top = 1.5 × 10−2, (−) U∗
top = 1 × 10−5.

Next we will focus on explaining the low and high shear rate behavior discussed above,

and estimating the critical shear rate for transition.

5.6.2. The mechanism of slip

To understand the trends discussed in the previous section, we will focus on cases with the

following parameters: µ∗ = 10, φa = 0.01, k∗ = 8.5, m∗ = n∗ = 16π, b∗ = 1, and fw = 0.75.

The normalized velocity profiles corresponding to this case are shown in Figure (5.9) at

different values of the imposed shear rate.

As discussed earlier, the velocity profiles at low shear rates imply that there is a net

body force in the x direction acting in the first layer of fluid molecules next to the wall. At

high shear rates this body force is unimportant as indicated by the linear velocity profile
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Figure 5.10. The mean velocity profile 〈u〉/Utop vs. y/h. The parameters
are: µ∗ = 10, φa = 0.01, k∗ = 8.5, m∗ = n∗ = 16π, b∗ = 1, and fw = 0.
Legend: (−o−) U∗

top = 10−2, (· · · ) U∗
top = 2× 10−3, (−−) U∗

top = 10−3, (− · −)

U∗
top = 5 × 10−4, (−) U∗

top = 1 × 10−6.

in the high shear rate limit. To understand the origin of this body force we consider the

momentum equation (5.3). Given that inertia is unimportant (note that even if inertia were

important this contribution would be zero due to the periodic boundary condition in the x

direction), the flow is in steady state, and there is no net pressure gradient imposed in the

x direction, the only source for the net body force in the x direction is the term due to the

potential φ, i.e. −ρ∇φ.

5.6.2.1. Density profiles at high and low shear rates. The force due to the potential

is dependent on the density profile. Hence, we consider that next. Figure (5.11) shows the

density profile with respect to the y direction at x∗ = 0.5 which is the mid-axial location

of the computational domain (similar plots can be drawn for other x locations). It is seen

that the density profile shows layering, as expected, due to the imposed potential φ. This

profile does not change significantly with the imposed shear rate. Specifically, the locations

of peaks and valleys remain unchanged.
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Figure 5.11. The density profile with respect to y/h at x/h = 0.5. The pa-
rameters are µ∗ = 10, φa = 0.01, k∗ = 8.5, m∗ = n∗ = 16π, b∗ = 1,
and fw = 0.75.Legend: (−o−) U∗

top = 102, (· · · ) U∗
top = 2 × 10−2, (−−)

U∗
top = 1.5 × 10−2, (− · −) U∗

top = 10−2, (−) U∗
top = 10−5.

Figures (5.12) and (5.13) show the density profile with respect to the x direction at

y/h = 0.06 which is the location of the first peak in fluid density next to the wall (see Figure

5.11). Thus, this is a plot of the density in the first layer of fluid molecules next to the

wall. It is seen that the density profile strongly depends on the imposed shear rate. As

the shear rate increases there are two effects: the peaks are reduced, and they shift. At

high shear rates the density profile is almost constant with no undulations. The reduction

of undulations in the density profile with respect to the imposed shear rate is quantified in

Figure (5.14), where δρ = ρmax − ρmin. δρ is calculated based on the density profiles as

shown in Figure (5.12). Figure (5.14) delineates two distinct zones − one at low shear rates

and another at high shear rates with a transition region beyond a critical shear rate. As

expected, these low and high shear rate regions are in one-to-one correspondence with the

limiting velocity profiles at low and high shear rates, respectively, shown in Figure (5.9).
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Figure 5.12. The density profile with respect to x/h at y/h = 0.06. The
parameters are µ∗ = 10, φa = 0.01, k∗ = 8.5, m∗ = n∗ = 16π, b∗ = 1,
and fw = 0.75. Legend: (−o−) U∗

top = 102, (· · · ) U∗
top = 2 × 10−2, (−−)

U∗
top = 1.5 × 10−2, (− · −) U∗

top = 10−2, (−) U∗
top = 10−5.

The above trend in the density profile with respect to the x direction is consistent with

the results based on molecular methods [21, 22, 3, 20, 55]. Specifically, the low shear

rate density profiles are consistent with the molecular scale mechanism based on defect

propagation [22, 3]. The near constant density profile with respect to the x direction at

high shear rates is also consistent with the molecular scale mechanism of collective slip [22, 3].

Thus, our approach is a valid continuum representation of the molecular scale dynamics that

are relevant to reproduce the appropriate slip behavior.

5.6.2.2. Force balance at low and high shear rates. The force balance to explain the

non-linear velocity profile at low shear rates and the linear velocity profile at high shear rates

(Figure 5.9) is considered next. Integrating the x component of equation (5.3) with respect

to the x direction leads to the following equation:

(5.22) µ
d2〈u〉
dy2

= 〈ρ∂φ
∂x

〉,
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Figure 5.13. A zoomed in view of the density profile shown in Figure (5.12).
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Figure 5.14. δρ/ρbulk vs. 〈γ̇〉µ/ρφamp that includes cases depicted in Figure (5.12).
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where 〈·〉 indicates average with respect to the x direction. Integrating this equation with

respect to the y direction yields

(5.23) τ1 − τ2 =

∫ ∫

ρ
∂φ

∂x
dxdy,

where τ1 is the total shear force on the fluid at the top boundary of the domain and directed

in the positive x direction. τ2 is the total shear force on the fluid at the bottom boundary

of the domain and directed in the negative x direction.

The limiting velocity profiles at low and high shear rates in Figure (5.9) can be discussed

in the context of equations (5.22) and (5.23). At low shear rates, the body force due to

the potential on the right hand side of equation (5.22) is non-zero in the first layer of fluid

molecules, and rapidly decays in the outer regions. That gives rise to a velocity profile for

〈u〉 that is non-linear in the first layer and linear beyond that. Consequently, the total shear

forces at the top and bottom walls are different with the difference being equal to the right

hand side of equation (5.23).

At high shear rates, the density profile is almost constant with respect to the x direction

(Figures 5.12-5.14). The body force due to the potential on the right hand sides of equations

(5.22) and (5.23) are zero if the density does not vary with the x direction. Thus, the force

due to the wall potential plays no role in the force balance at high shear rates. It follows

from equation (5.22) that the velocity profile for 〈u〉 is linear and consequently τ1 − τ2 = 0.

This is in agreement with the velocity profiles in Figure (5.9).

All the terms in equation (5.23) can be calculated from the numerical solution. In Figure

(5.15) we confirm that equation (5.23) is indeed satisfied by the numerical results. The plots

for the left and right hand sides of equation (5.23) are in excellent agreement at all values of

the imposed shear rates. Specifically, it is noted that the body force due to the potential is

important only at low shear rates and negligible at high shear rates. This is consistent with

the trends of the velocity and density profiles discussed above.

It was confirmed that the above force balance is valid for all the cases considered in this

chapter.
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Figure 5.15. Verification of force balance given by equation (5.23). The vari-
able “source” is the net body force due to the potential given by the right hand
side of equation (5.23). The parameters are the same as those for Figures (5.9)
and (5.12).

5.6.2.3. Estimation of the critical shear rate for transition. The scale of the body

force term due to the potential, on the right hand side of equation (5.22), is ρbulkφampb/λ,

where λ is the wavelength of the potential φ along the x direction. Similarly, the scale of the

net viscous force on the left hand side of equation (5.22) is µUtop/h
2. At high shear rates

the viscous term dominates the body force due to the potential. Thus, for transition from

low shear rate behavior to high shear rate behavior to occur the following condition must be

satisfied:

(5.24)

µUtop

h2
≫ ρbulkφampb

λ
,

⇒ Utopµ

hρbulkφamp

≫ h

λ
b,

⇒ 〈γ̇〉µ
ρbulkφamp

≫ h

λ
b,






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where it is assumed that 〈γ̇〉 ∼ Utop/h. Note that h/λ = 8 in our simulations because

we have n∗ = 16π, and b = b∗ = 1 in all cases except some in section (5.6.5). Thus,

for these parameters the transition to high shear rate behavior should be expected when

〈γ̇〉µ
ρbulkφamp

∼ 8. This estimate is in agreement with the results shown in Figures (5.8), (5.14)

and (5.15). It is also in qualitative agreement with the estimate based on molecular scale

analysis [3].

Equation (5.24) also explains the non-dimensionalization of the shear rate 〈γ̇〉 in Figures

(5.8), (5.14) and (5.15).

5.6.3. Effect of friction coefficient fw on the slip length

At high shear rates, the limiting velocity profile is linear and determined completely by the

boundary condition at the top and bottom boundaries. Thus, the slip length at high shear

rate is fully determined by the friction coefficient fw. This will be shown in this section.

To study the effect of the friction coefficient, especially at high shear rates, simulations

with the following parameters are considered: µ∗ = 10, φa = 0.01, k∗ = 8.5, m∗ = n∗ = 16π,

and b∗ = 1. Different values of fw are chosen. For each value of fw, shear flows are solved

for a range of values of U∗
top. As discussed in section (5.6.1) velocity profiles for different

imposed values of shear rate are plotted and the slip length is computed.

Figure (5.16) shows a plot of slip length vs. non-dimensional shear rate for different

values of fw. It is seen that the slip length is constant at low shear rates and increases

beyond the critical shear rate as estimated in equation (5.24). The slip length at high shear

rates is unbounded if fw = 0, and equal to another constant value for non-zero values of fw.

Thus, the high shear rate slip length crucially depends on fw. It arises because of frictional

heat loss to the solid molecules as shown in prior MD simulations [55, 3]. If MD calculations

are done with rigidly fixed wall molecules, then the liquid molecules cannot dissipate energy

to the wall molecules. This implies that the effective friction coefficient fw = 0 for such

simulations. These type of simulations were reported by [2] (see Figure 5.2). Their slip

length was indeed unbounded in agreement with the trend in Figure (5.16) [55, 3].
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Figure 5.16. The slip length as a function of nondimensional shear rate at
different values of fw = ηwh/µ. The fixed parameters are: µ∗ = 10, φa = 0.01,
k∗ = 8.5, m∗ = n∗ = 16π, and b∗ = 1.

Next we quantitatively verify that the high shear rate slip length is indeed solely deter-

mined by fw. At high shear rates the x averaged velocity 〈u〉 is governed by

(5.25)
d2〈u〉
dy2

= 0,

which follows from equation (5.22) and the fact that the body force due to the potential is

negligible. The x averaged boundary conditions become:

(5.26)







〈u〉 = Utop, at y = h,

µ
d〈u〉
dy

= ηw〈u〉, at y = 0.

The solution for 〈u〉 is:

(5.27)
〈u〉
Utop

=
1

(fw + 1)
(fw(

y

h
) + 1).
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We verified that the high shear rate limiting velocity profiles are the same as that given by

equation (5.27) for all the cases considered. The slip length at high shear rate follows from

the Navier boundary condition:

(5.28)
Ls

h
=

µ

ηwh
=

1

fw

.

Figure (5.17) shows that the slip length obtained from Figure (5.16) is in agreement with

the theoretical prediction in equation (5.28).
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Figure 5.17. A comparison of the slip length obtained from Figure (5.16) with
the theoretical prediction in equation (5.28).

5.6.4. Effect of φa on the slip length

To test the effect of φa, which is the non-dimensional amplitude of the potential, the following

parameters are fixed: µ∗ = 10, k∗ = 8.5, m∗ = n∗ = 16π, b∗ = 1, and fw = 0.75. Figure

(5.18) shows the plot of slip length vs. the non-dimensional shear rate at different values of

φa. As expected [2], the slip length increases as φa decreases. This is because the body force

on the first fluid layer is smaller at smaller values of φa, thus allowing greater slip. The value
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of φa has no influence on the slip length at high shear rates because it depends only on fw

as discussed in the previous section. Note that the non-dimensional shear rate at which the

slip length transitions to its high shear rate value is approximately same for all values of φa.

This implies that the effect of φamp on the transition is fully accounted for in the scaling of

the shear rate. This further supports the estimation for the critical shear rate for transition

given in equation (5.24).
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Figure 5.18. The slip length as a function of the non-dimensional shear rate
for different values of φa. The fixed parameters are: µ∗ = 10, k∗ = 8.5,
m∗ = n∗ = 16π, b∗ = 1, and fw = 0.75.

Figure (5.19) shows the constant slip length at low shear rates in Figure (5.18) as a

function of φa. A non-linear reduction in slip length with increasing φa is observed. A

formal explanation of this trend based on a theoretical solution of the limiting velocity

profile at low shear rates is being explored.
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5.6.5. Effect of b∗ on the slip length

The effect of b∗ is expected to be similar to that of φa. To that end, simulations are done

with the following fixed parameters: µ∗ = 10, φa = 0.01, k∗ = 8.5, m∗ = n∗ = 16π, and

fw = 0. Figure (5.20) shows the plot of slip length vs. the non-dimensional shear rate at

different values of b∗. The slip length increases as b∗ decreases. Less corrugated potential

leads to greater slip at low shear rates.

Figure (5.21) shows the constant slip length at low shear rates from Figure (5.20) as

a function of b∗. A non-linear reduction in slip length with increasing b∗ is observed; a

theoretical explanation for which is being explored.

Equation (5.24) implies that the critical shear rate for transition should scale linearly

with b∗. Figure (5.20) shows that the critical shear rate for transition indeed increases as

b∗ increases. However, we find that this increase is non-linear and closer to quadratic, i.e.

scales with b∗2, for this case where there is no friction at the bottom wall (fw = 0). To show

this we normalized the shear rate by b∗2 and re-plotted the data from Figure (5.20) in Figure
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(5.22). The b∗2 scaling could be due to non-linear effects in the governing equations that

become important when slip is large for cases with fw = 0.
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Figure 5.22. The slip length as a function of the non-dimensional shear rate
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Figure (5.20)

5.7. Conclusion

In this chapter we asked the question: Is it possible to reproduce molecular scale slip

behavior by using continuum equations? To that end we noted that: i) near the wall, the

fluid experiences a potential, ii) the fluid density responds to the wall potential, hence,

fluid compressibility is relevant, and iii) the fluid can loose momentum to the wall. To

incorporate these features we simulated shear flow of a compressible fluid in the presence

of a wall potential. It was found that compressibility is important only in the near wall

region. The slip length was calculated from the mean velocity profile. The slip length vs.

shear rate trend was found to be similar to that in molecular dynamic calculations. First,

there is a constant value of slip length at low shear rates. Then, the slip length increases
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beyond a critical shear rate. Lastly, the slip length reaches another constant value if the

wall friction coefficient is non-zero. The scaling for the critical shear rate emerged from our

results. The value of the slip length increases if the wall potential is less corrugated and if

the momentum loss to the wall is low. An understanding of the overall force balance during

various slip modes emerged from the governing equations. This work could be useful to

develop continuum simulation tools for nanoscale problems without the need for expensive

hybrid computations.
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CHAPTER 6

Conclusion

This thesis is summarized as:

(1) Instability in electrolytic system also called ”electrokinetic” instability has been stud-

ied.(Chapter 2 and Chapter 3)

(2) A direct numerical simulation scheme has been developed to solve the motion of a

single particle under a DC or AC electric field. (Chapter 4)

(3) A continuum approach with an external wall potential to capture the molecular scale

slip phenomenon has been developed. (Chapter 5)

6.1. Micromixing of fluid region

The instability at the interface between two miscible liquids with identical mechanical

properties but different electrical conductivities was analyzed. Linear stability analysis was

done by considering a sharp interface between adjacent liquids in the base state. This

approach enabled, for the first time, an analytic solution for the critical condition of the

electrokinetic instability. For the perpendicular electric field case, it was seen that the

instability depends on a non-dimensional parameter PΣ defined in the Equation (2.38). This

parameter was not identified in any of the prior studies.

This approach also enabled an analysis of the mechanism of instability which was not

clearly understood from prior work. Specifically, it was found that any velocity pertur-

bation at the interface leads to a varying electrical conductivity in its vicinity due to the

electrohydrodynamic coupling in the following interface condition

(6.1) ‖σu−Dσ∇σ‖ · n = 0.
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The above interface condition as the source of electrohydrodynamic coupling was not previ-

ously identified. This in turns leads to a bulk charge density that gives a body force in the

fluid equations. The body force generates a cellular motion that results in the instability.

We showed, consistent with prior experimental results, that the perpendicular electric

field case is more unstable compared to the parallel electric field case. The reason for this

is the greater asymmetry in the perpendicular field case that results in larger destabilizing

electrohydrodynamic force.

Detailed experimental investigation of the perpendicular electric field case is not available

in literature at this time. Hence, a quantitative comparison with experiments is not possible

in this case like it was possible for the parallel electric field case [37].

Typical experimental devices have microchannels. We also consider the geometry effect

in Chpater 3. The future work will be focused on solving the instability problem in an AC

electric field. Also we know that mixing is not always desirable. The application of field

ampliefied sample stacking (FASS) which involves fluid regions with different ionic strengths

and species which induced intabilities under electric field is desirable and is known to decrease

the separation efficiency. We will have to solve additional equations for the concentration of

the charge species.

6.2. Self-Assembly

A numerical technique for fully coupled simulation of electrohydrodynamic particulate

flows was developed. Such a tool was not reported previously in literature and has potential

use in several micro- and nano-scale fabrication processes that rely on electrohydrodynamic

self-assembly of particles. We have tested this approach for all the basic dielectrophoretic be-

haviors expected in DC and AC fields. Further development of this approach was undertaken

in collaboration with Prof. W.-K. Liu, and more details on its quantitative performance and

its application to carbon nanotubes can be found elsewhere [44]. A prolate spheroid sim-

ulation can be done in our future work. It can help us to understand the self-assembly

of carbon nanotubes in microfluidics. Our approach could lead to study aggregation and
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cluster formation. We should also consider the Brownian motion effect by using fluctuating

hydrodynamic equations for micron/nanoscale objects.

6.3. Continuum approach to study the fluid slip

We asked the question: Is it possible to reproduce molecular scale slip behavior by using

continuum equations? To that end we noted that: i) near the wall, the fluid experiences a

potential, ii) the fluid density responds to the wall potential, hence, fluid compressibility is

relevant, and iii) the fluid can loose momentum to the wall. To incorporate these features

we simulated shear flow of a compressible fluid in the presence of a wall potential. It was

found that compressibility is important only in the near wall region. The slip length was

calculated from the mean velocity profile. The slip length vs. shear rate trend was found to

be similar to that in molecular dynamic calculations. First, there is a constant value of slip

length at low shear rates. Then, the slip length increases beyond a critical shear rate. Lastly,

the slip length reaches another constant value if the wall friction coefficient is non-zero. The

scaling for the critical shear rate emerged from our results. The value of the slip length

increases if the wall potential is less corrugated and if the momentum loss to the wall is low.

An understanding of the overall force balance during various slip modes emerged from the

governing equations. This work could be useful to develop continuum simulation tools for

nanoscale problems without the need for expensive hybrid computations.) The future work

will be focused on the slip behavior under the effect of channel height.
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