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ABSTRACT

Nonlinear Dynamical Models: Politics, Stochastics, and a Mexican Hat Dance

David Sabin-Miller

Dynamical modeling aims to capture the essential mechanics at work in real-world sys-

tems while remaining tractable enough to yield mathematical insights for predictions and

interventions. The work presented here first takes this approach to the system of political

ideology and influence, establishing a model for the continuous-time evolution of individ-

ual and population-level ideological distributions. This model strikes a middle ground of

complexity, eschewing the normal network- or agent-based approach while maintaining

significantly more nonlinear realism than statistical-physics models. Second, we explore

an under-studied and formerly ill-defined technical roadblock of that model and establish

a technique for properly dealing with other such stochastic systems. Finally we examine

a nonlinear potential-coupled particle system with unique self-organizing behavior.
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Preface

Modeling is both an art and a science. Each new dynamic comes with inherent com-

plexity, leading to a constant balancing act of capturing sufficient realism without be-

coming overcomplicated. This work has been an ongoing attempt to capture sufficient

core dynamics to say something real and new, yet focusing on sufficiently nice examples

that we can make reasonably “clean” mathematical statements. This theme applies to all

three projects: 1) establishing a political modeling framework which produces tractable

predictions while being adaptable to plausibly attainable data, 2) handling a new type

of stochasticity and demonstrating its effect on a basic new class of attractor, and 3)

exploring/elucidating typical bulk behavior in a complex coupled system of interacting

particles.

This work has been a process of finding and following various rabbit-holes, most of

which are dead ends, until arriving at positions of value worth sharing—then paving the

path followed so others needn’t follow the same convoluted route.

The first chapter is based around the political-modeling project, which produced the

manuscript “When pull turns to shove: A continuous-time model for opinion dynamics”

which was published in Physical Review Research in October 2020 [1]. This project

attempts to capture sufficient core psychological tendencies and societal forces to build

up to population-level ideological distributions. The validation and extension of this work
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is ongoing, and hopefully will aid in the endeavor to understand vital and often worrying

systems of power.

The second chapter covers a project spun off from that initial work, and compiled in

the yet-unpublished manuscript entitled “Modeling and analysis of systems with nonlinear

functional dependence on random quantities.” [2] Our political model included a thorny

new type of stochasticity, which ended up requiring the establishment of more general

basic definitions in stochastic analysis. This type of stochasticity is subtly different from

anything we have seen covered in the literature before, yet we argue may easily arise

in a wide variety of modeling contexts, and even perhaps the basic situation of particle

velocity amidst turbulence.

The third chapter is based on our working manuscript “A Mexican hat dance: System

of Ricker-potential-coupled particles.” A seemingly-basic question about coupled parti-

cles ended up giving birth to a rich and complex paradigm, which we explore to find

some unexpectedly fascinating dynamical behavior, and point at several yet-unexplored

frontiers in its study.
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CHAPTER 1

Political Ideological Dynamics

1.1. Motivation

Accurate modeling of opinion dynamics has the potential to help us understand polar-

ization and what makes effective political discourse possible or impossible. Here, we use

physics-based methods to model the evolution of political opinions within a continuously

distributed population. We utilize a network-free system of determining political influence

and a local-attraction, distal-repulsion dynamic for reaction to perceived content. Our

approach allows for the incorporation of intergroup bias such that messages from trusted

in-group sources enjoy greater leeway than out-group ones. We are able to extrapolate

these nonlinear microscopic dynamics to macroscopic population distributions by using

probabilistic functions representing biased environments. The framework we put forward

can reproduce real-world political distributions and experimentally observed dynamics,

and is amenable to further refinement as more data becomes available.

1.2. Introduction

The field of opinion dynamics seeks to understand the evolution of ideas in popu-

lations, a complex interdisciplinary endeavor which has attracted a wide variety of ap-

proaches from different disciplines. After early mathematical groundwork [5], the growth

of network science has led to a boom in models which utilize neighbor-based update

rules to examine long-term outcomes for opinion distributions, such as polarization and
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consensus [6–19]. Other researchers have advanced “sociophysics” approaches such as

Ising [20,21], Sznajd [22,23], and generalized-kinetic models [24–27], which apply tech-

niques from statistical physics to analyze analogous social systems [28]. Complementary

to these modeling approaches, theoretical and empirical work from economics and social

science has examined the political bias of media entities [29,30] and their influence on

a population [31–35]. All these approaches contribute valuable insight toward an under-

standing of this complex topic, but the disparities between their perspectives make direct

cohesion a challenge.

Our model takes a different approach, which we believe achieves the key benefits of

previous models while expanding flexibility and retaining the ability to incorporate real-

world data as it becomes available. One key structural choice we make is to modularize

the process of opinion change by breaking it into two parts: perceptions and reactions.

In our model, individuals perceive a probabilistic mix of politicized experiences which

depends on their ideology and party. This might be thought of as the continuum limit

of a network approach, where influences are so numerous and varied that interactions are

best characterized by a probability distribution rather than explicit neighboring agents.

This approach also allows us to encapsulate broader societal influences such as politicized

media environments, since individuals’ perceptual mix may be constantly changing to

reflect their changing worldview.

We model individuals’ reactions to these perceptions by having their ideology evolve

in continuous time. This is governed by ordinary and stochastic differential equations

which depend on their current position and their perceptual distribution.



24

a

b

Figure 1.1. (a) Empirical ideological distributions by U.S. political
party. Average ideological position score from 1 (strongly liberal) to 7
(strongly conservative) on social, economic, and military issues for 1256
U.S. Twitter users. Data from [3]. (b) Model predictions. Steady state
for our simulated population of 70,900 Democrats and 54,700 Republicans,
with party perception curves shown in the inset. See Results section for
details.

Together, these perception and reaction modules capture a feedback loop between

individuals’ current beliefs, the biased “slice” of the political world they perceive, and

how they update those beliefs as a result.

1.2.1. Political Spectrum

Like many prior approaches (e.g., [3,6,7,14,17,29,32,33,36,37]), we consider a sin-

gle, finite ideology axis. Extensions to this are possible, as discussed in section 1.S.4,

but the unidimensional approximation is supported by empirical results showing that the
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liberal-conservative dimension captures the great majority of modern legislative behav-

ior [38]. Figure 1.1(a) shows a one-dimensional projection of political ideology for the

U.S. population based on one study [3]; though the precise methods of projecting the

political landscape onto one axis differ between sources, other recent reports like that of

Pew Research [37] show good qualitative agreement.

We will use the term belief score, b, to refer to an individual’s ideological position

between −1 (extreme liberal) and +1 (extreme conservative). We abstract all politically-

opinionated information an individual is exposed to (hereafter termed percepts, p) onto this

same axis, so that a percept of p = +0.5 is in support of belief score +0.5 (conservative),

a percept with value p = 0 argues for a neutral stance, and so on. Due to the imprecise

nature of any measurement on this scale (it’s a projection of a highly abstract space that

can be quantified in different ways), qualitative results should be robust to small changes

in these values.

1.2.2. Opinion Change

Classic “bounded-confidence” models (e.g., [6,7]), which allow for individuals to interact

only with others who are relatively like-minded, have been used to capture the effect of

homophily on interaction. But political issues are contentious and are often brought up

between those who disagree, and are easily suffused with negative emotional affect rather

than agreement or indifference. Repulsion from disliked positions seems to be an impor-

tant determinant in swing voters: a recent Pew survey [39] found that U.S. independents

supporting one of the political parties did so mostly due to negative perceptions of the

other party. So like some other extensions to bounded-confidence models (e.g., [14,17]),
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we supplement local-attraction behavior with distal repulsion: individuals who are ex-

posed to ideas which are too different from their own will not be attracted, but rather

be repelled from the espoused position of the source. There is experimental evidence

that this can be a very potent and real source of ideological movement: in recent work

from Bail et al. [3], it was found that exposure to 24 tweets per day from a prominent

member of the opposing party can have a significant repulsive effect over the course of a

month, even among all other political inputs received by the participants (self-identified

politically active Twitter users).

1.3. Methods

The first key component of our model is the reaction function. This is a continuous

function which relates an individual’s shift in ideological belief to the difference between

a perceived political opinion (the percept, p) and the individual’s own belief, b; we will

refer to this difference p− b as the dissonance. A repulsion effect will be modeled through

the existence of a repulsion distance d such that percepts less dissonant than d will be

attractive and percepts more dissonant than d will be repulsive. This parameter d can be

allowed to vary depending on the context of the message, which will allow us to model

the important effect of intergroup bias: for example, a somewhat challenging position can

be repulsive when it comes from a disliked source but attractive when introduced by a

member of one’s in-group (see “Adding Intergroup Bias” below).
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-0.5 0.5

Figure 1.2. Example reaction function. Here we show a cubic reaction
function, where an individual’s reaction depends on dissonance p− b. Ver-
tical scale has arbitrary units: the magnitude of this movement depends
on time constant τ and current belief score b. For this image a repulsion
distance of d = 0.8 was chosen.

One simple form for a reaction function that satisfies the above conditions employs a

cubic dependence on dissonance:

(1.1) R(p− b; d) = (p− b)

[
1− (p− b)2

d2

]
,

shown visually in Fig. 1.2.

To organically constrain belief dynamics to a bounded domain (in our case, [−1, 1]), we

temper the above reaction function with a multiplicative factor (1−b2). This has the effect

of gradually damping motion near the extremes—thus we interpret the ±1 boundaries

of our finite ideology scale to be asymptotic extremes that are only approachable, not

attainable. We also scale the dynamics by a time constant τ which controls the speed

of belief change. Then, for an individual j with belief score bj and repulsion distance d,

exposed to percept p (which may depend on many factors), we arrive at the following
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differential equation for ideological dynamics:

(1.2) τ
dbj
dt

= (1− b2j)

{
(p− bj)

[
1− (p− bj)

2

d2

]}
.

1.3.1. Perceptual Diets

An important question remains: which individuals are exposed to which messages? The

vast majority of work on opinion dynamics has been in a network context, wherein agents

update their opinions according to a rule incorporating the positions of some other agent(s)

(e.g., [5–11,13,14,17,19,21–23,28]). Our approach sidesteps the need for constructing

explicit influence networks, which are difficult to capture due to the many modalities of

human interaction. Instead we suppose that an individual’s party affiliation and current

political position determine their perceived “slice” of the political world—a probability

distribution of political experiences, ρ(p) 1. This continuum approach allows us to person-

alize political environments to account for “media bubbles” and other biased environments

even without a network, and is easily scaled to large populations.

1.3.2. Toy Models

1.3.2.1. Simplest Model. For the simplest concrete implementation of our framework,

we might suppose a single-party population is initially distributed across the belief spec-

trum but is otherwise homogeneous, and that every individual perceives the same delta-

distribution of political content, the constant percept p = C. Then upon choosing a

1Note that this is not necessarily inconsistent with a network approach; we believe a dynamical interaction
network dependent on affiliation and political position could lead to a similar model.
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Figure 1.3. Flow diagram. Example of differential movement for a popu-
lation uniformly exposed to a percept with score +0.25 assuming repulsion
distance 1 (see Eq. (1.3)). Vertical axis scaling is arbitrary.

repulsion distance d we can exactly determine long-term behavior of the entire group—

there will be a single flow function that affects the whole belief spectrum:

(1.3) τ
dbj
dt

= (1− b2j)

{
(C − bj)

[
1− (C − bj)

2

d2

]}
.

This ordinary differential equation (ODE) has fixed points at bj = C, bj = C ± d, and

bj = ±1 (due to the imposed domain bounds). The fixed point at bj = C is stable, and

stability of the other points alternates.

For example, if we use the cubic reaction function from Fig. 1.2 above and set d = 1,

C = 0.25, then that party’s population experiences differential movement as shown in

Fig. 1.3. Fixed points exist at {−1,−0.75, 0.25, 1, 1.25} (though beliefs are constrained to

the [−1, 1] domain, so the theoretical fixed point at 1.25 is not meaningful). Given time,
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all observers between −0.75 and 1 would congregate at 0.25, and all observers starting

left of −0.75 would converge to −1. This small segment of the population—the members

that are liberal enough to be repelled by the “party line”—might be likely to switch

parties in favor of one with more comfortable percepts, though we don’t include such

party-switching dynamics in this initial model.

1.3.2.2. Adding Intergroup Bias. We would also like our modeling framework to

accommodate the tendency for individuals to be more receptive to information from those

whom they perceive as allies, i.e., part of their “in-group” [40]. For the simplest case,

we modify our previous model by adding an “out-group” with its own distinct constant

“party line” percept po. Now percepts have a party identity attached to them, and we

allow individuals to consume a mixed diet of in-group and out-group information, at belief

scores of pi and po, respectively. We set repulsion distances di and do for in-group (e.g.,

U.S. Republican) and out-group (e.g., U.S Democrat) messengers, with do ≤ di. We can

set a fixed fraction f for in-party content, or allow for a belief-dependent skew f(b) such

that, e.g., liberal Republicans view a higher fraction of Democratic content than their

conservative party-mates. The average flow function db/dt is then a simple weighted

average of the flow functions in Eq. (1.2) due to each source:

(1.4) τ
db

dt
= (1− b2) [fRi + (1− f)Ro] ,

where in general f = f(b), Ri = R(pi − b; di), and Ro = R(po − b; do).

To understand the flow in this case, it is informative to consider the purely in-group and

purely out-group situations (f = 1 or 0, respectively), because all fractional perceptual

“diets” are interpolated between them (see Fig. 1.4). We note that exposure to some
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Figure 1.4. Flow with different messengers. The flow functions for in-
group (dotted) and out-group (dashed) messages of pi = +0.25 and po =
−0.25 with repulsion distances of 1 and 0.75, respectively. The solid curve is
the net flow if individuals are exposed to 70% in-group and 30% out-group
percepts. Vertical axis scaling is arbitrary.

out-group content can in some cases increase polarization for a small extreme group—for

example, in Fig. 1.4, individuals starting with b > 0.75 will on average move rightward

when exposed to percepts from a 70%/30% combination of in-group and out-group sources,

respectively (solid curve), whereas those same individuals would move leftward if presented

with in-group information alone (dotted curve). This simple example shows how exposure

to—and rejection of—opposing content can have a polarizing influence on a population.

Note that we assume that this “tribal” bias only affects the reaction to content, not

its subjectively perceived ideological score p. However, the inclusion of such an additional

bias effect is reasonable, and may be handled with a slight increase to model complexity

(see section 1.S.4).
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1.3.2.3. Adding Personalized Perceptions. Putting aside the in-group/out-group

balance for a moment, we might expand our simplest model in a different way: by linking

individuals’ perceptions to their current beliefs via a “perception curve” p(b), which indi-

cates what content they see as a function of position. This reflects the differing “slices”

of the political world that individuals see as a result of the differing environments and

personal biases that accompany their ideologies.

In our simplest model, where p = C, the perception curve is a horizontal line in b vs

p space; individuals at all b values perceive the same thing. In a hypothetical “perfectly

targeted” world, the perception curve would be the 45◦ line p = b, and nobody would

change belief because each person would perceive content perfectly in line with their

current worldview.

Luckily, we don’t need to privilege one such curve in particular—a graphical analysis

method lets us combine any perception curve with the reaction function and read off a

(qualitative) flow for each segment of the population. To do this, we plot the perception

curve p(b), and overlay the 45◦ line for reference—any time the perception curve inter-

sects it, the individuals at that belief score are stationary, since their perceptions are in

agreement with their current beliefs. If the perception curve is slightly above the 45◦ line,

individuals with those beliefs are perceiving something slightly more conservative than

their own views, and move right. Similarly, people move left wherever the perception

curve is slightly below the 45◦ line.

We also overlay the repulsion boundaries at distance d above and below that p = b

line. If the perception curve exits the resulting “trust band” over some b interval, that
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segment of the population is repelled and moves the opposite direction from what would

be expected based on small deviations from the 45◦ line.

It is then straightforward to determine the qualitative behavior of the whole population

given any perception curve p(b) by visually examining intersections of the perception curve

with the 45◦ lines, as in Fig. 1.5 (left panels). With a closed form expression for p(b), we

can use Eq. (1.2) to obtain an exact flow function (black curves on right panels of Fig.

1.5), and confirm our qualitative analysis. If multiple parties are present, this analysis is

performed separately for each, and the resulting reactions are combined as in Eq. (1.4).

The real benefit of this graphical approach is its generality; one can draw any percep-

tion curve one would like and simply read off the fixed points and stability. Whenever the

perception curve crosses the diagonal with slope less than one, that crossing becomes a sta-

ble fixed point. Whenever it crosses with a slope greater than one, the crossing becomes

an unstable fixed point instead. If the perception curve crosses a repulsion boundary,

shallow crossings create unstable points and steep crossings create stable ones.

While the choice of perception curve entails a large degree of modeling freedom, based

on our graphical analysis reasoning we know our model’s qualitative predictions aren’t

particularly sensitive to the choice. Ideally, real-world data could (and should) be used

to construct such a curve (e.g., by evaluating the partisan positions of news sources and

other political influences experienced by individuals across the political spectrum), though

we leave this for future work (see section 1.S.5).

1.3.2.4. Adding Heterogeneity. To move toward a more realistic scenario, we must

allow for heterogeneity of both environments and individuals. We can introduce random

variation in two distinct components of the model: perceptions (so individuals are exposed
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Figure 1.5. Two-take world. Graphical analysis of step-function percep-
tion curves. Left panels: perception curves color coded for the movement
induced, along with dashed p = b line and repulsion boundaries. Right
panels: Projection of that flow-velocity color onto the belief axis, compared
with the exact population flow calculated from Eq. (1.2) (black curve). Top
row: When perception curves lie within the trust region, we see two at-
tractors at the “party line” belief values. Bottom row: with more extreme
“party lines,” centrists are repelled by either party position, creating a sta-
ble central attractor.

to a range of different inputs rather than a single determined value), and the reaction

function (so otherwise identical individuals can react differently to the same percept).
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Figure 1.6. Simulated population distribution. The stable population
state induced by flow function Eq. (1.3) with added Gaussian noise (τ = 1,
dt = 0.001, σ = 0.25, N = 50, 000). Population was initialized to match
Republicans from Bail [3]. Inset: Perception curve, the constant C = 0.25.
All variation is in reaction.

For the latter, we add Gaussian noise to the reaction function R, which causes the stable

fixed points from our prior analysis to expand into finite-width stable distributions; these

may be estimated easily and accurately by Euler-Maruyama numerical integration of our

now-stochastic differential equation (SDE). For example, with the conditions in Fig. 1.6,

the main body of the party congregates around the primary attractor at 0.25, and a small

group is repelled to −1 2.

If we wish to add variability to the percept instead of the reaction, nonlinear effects

become more important, since p—now properly a probability distribution ρ(p)—must be

fed through reaction function R(p− b) before its effects are determined. This means the

net effect of the perceptual diet is a weighted average over all possible percepts, which for

smooth percept distributions becomes an integral of R(p − b) against ρ(p). Due to the

2In cases like this with multiple attracting “camps” without significant overlap, the long-term populations
of each camp may depend on initial conditions.
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asymmetry of the reaction function across the repulsion boundary—repulsion as modeled

above is stronger than attraction—a symmetric distribution of percepts centered at the

boundary will have a net repulsive effect. Thus, if the perception curve p(b) represents the

peak of this distribution, symmetrically broadening that distribution effectively narrows

the trust region. Regardless of the shape of perception distribution, we can still use our

graphical analysis technique to solve for net opinion drift, though the repulsion boundaries

may warp, as we show in section 1.S.1.

1.3.2.5. Full Model. Taking all these effects together, the model has the following

structure:

R(p− b; d) = (p− b)

[
1− (p− b)2

d2

]
(1.5a)

vin =

∫ 1

−1

R(p− b; din) ρin(p; b, σp)dp(1.5b)

vout =

∫ 1

−1

R(p− b; dout) ρout(p; b, σp)dp(1.5c)

τ db = (1− b2) {[fvin + (1− f)vout] dt+ σrdW}(1.5d)

with ρin and ρout as the perceptual distributions for in-group and out-group content re-

spectively, and vin and vout the opinion drift due to those influences.

1.4. Results

When we put together all the modeled effects described above, we find robust realistic

distributions at equilibrium (see Fig. 1.1(b)). We used simple sigmoid perception curves

(shown in the inset to Fig. 1.1(b), details in section 1.S.3)for the peaks of perceptual

diets (beta distributions with standard deviation σp = 0.2), and noisy reactions (standard
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deviation σr = 0.15), along with simple linear fractional content ratios

fD = 0.7 + 0.2b ,(1.6a)

fR = 0.7− 0.2b(1.6b)

for Democrats and Republicans, respectively, to emulate a “media bubble” effect. This

model’s steady state shows good agreement with real-world distributions of U.S. political

ideology from Bail et al. [3] and Pew Research [37]—see Fig. 1.1. For easy comparison with

real data, Fig. 1.1(b) shows a simulation of one hundred times Bail et al.’s experimental

population: 70,900 Democrats and 54,700 Republicans. In this comparison, we must note

that our belief scale is not identical to theirs; ±1 on our scale are asymptotically extreme,

whereas 1 and 7 on Bail et al.’s scale are attainable and signify strong agreement on all

surveyed issues.

We can also replicate the experiment of Bail et al. in silico: starting with a population

at equilibrium (shown in Fig. 1.1(b)), and artificially inducing counter-attitudinal Demo-

cratic content to Republican experimental subjects (a distribution peaked at p = −0.75,

weighted as if it consisted of 24 percepts on top of a presumed diet of 100 percepts per day)

over the course of 30 “days,” causes the mean position of those subjects to shift rightwards

by a little less than half its natural standard deviation (from 0.30 to 0.42, stdev σ ≈ 0.3).

This matches the findings of Bail et al., who found average rightward movement of 0.6

points on a 1-to-7 scale, which represented between 0.11 and 0.59 standard deviations

(p < 0.01) [3]. Implementation details can be found in section 1.S.3.
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1.5. Discussion

We have put forward a modeling framework for individual political opinion drift which

separates perceived content and the reaction of the viewer to that content, in order to

separately model perceptual filtering, the shift from attraction to repulsion for dissonant

content, and the effect of intergroup bias. We have presented toy models to elucidate each

effect on its own in the absence of noise, and introduced a graphical analysis technique for

qualitative analysis of behavior under general belief-dependent perception curves. With

the inclusion of additive noise, analytically determined fixed points widen into stable

distributions.

With all these effects included and some simple parameter assumptions, we showed

that population distributions matching recent survey data emerge naturally. Furthermore,

we were able to simulate the experiment of Bail et al. [3] and found similar outcomes.

Our approach allows for modeling of important psychological effects such as self-

serving bias (perception curves are increasing functions of b) and intergroup bias (repulsion

distance depends on source) without requiring a network. This frees future data-gathering

efforts from the often challenging task of network tie construction, and allows for easy

simulation of very large populations.

In order to approach this topic, we have made considerable simplifications, and it is

easy to imagine extensions which might increase the realism of this model (as we discuss in

section 1.S.4).We have intentionally chosen a relatively simple structure which is nonethe-

less able to capture psychological tendencies for repulsion and tribalism, and couple them

to a politicized environment, while preserving mathematical tractability. A paucity of

available data has forced us to make assumptions on functional forms and parameter
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values. While these are reasonable placeholders, they can be modified or replaced as em-

pirical data become available; it isn’t hard to imagine experiments which might elucidate

qualitative and quantitative effects of interest (see section 1.S.5 and Section 1.E).We hope

this endeavor leads to a new sort of data-driven political modeling to better understand

human behavior, polarization, and strategies for effective political dialogue.

1.S. Additional Mathematical Analysis

1.S.1. Perception Distributions

As we mention in the “adding heterogeneity” section of the previous section, if our model

is to have any claim at accurately modeling the political lives of real people, it must allow

individuals to consume not just a single, constant percept p(b) but rather a whole distri-

bution of content, ρ(p; b, σp). In this case, instead of using the single p value to determine

an individual’s reaction, we calculate their weighted-average reaction by integrating the

probability distribution of percepts they might receive multiplied by the reaction those

percepts would cause. We note that our cubic reaction function is asymmetric across

the repulsion boundary (it’s steeper outside the boundary than inside, so repulsion is

“stronger” than attraction). Thus, if individuals receive a distribution of percepts cen-

tered at their “perception curve” value p(b), a symmetric widening of their experiences has

the asymmetric effect of shifting the system’s fixed points: since it takes fewer repulsive

events than attractive ones to maintain net-zero movement, the fixed point occurs when

the center of the perceptual distribution is still in the trust region. In other words, the

repulsion boundary is effectively narrowed with regard to the peak percept value p(b).
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The precise effects of this perceptual variety depend on the shape of the perceptual

distribution and the choice of reaction function. First we’ll consider Gaussian-distributed

percepts centered on the “perception curve” value p(b), and the cubic reaction function

from Eq. (1) of the main text, (p − b)[1 − (p − b)2/d2]. These choices are convenient

in that the integral for average belief change is analytically tractable. For clarity, we

change variables to “average dissonance” µ = p(b)−b, and let x be the dummy variable of

integration for possible dissonance. An approximate version of this integral, with infinite

limits of integration (so that many terms drop out), is:

τ

〈
db

dt

〉
=
(
1− b2

) +∞∫
−∞

x

(
1− x2

d2

)
︸ ︷︷ ︸

R(x)

[
1√
2πσp

e
− (x−µ)2

2σ2
p

]
︸ ︷︷ ︸

ρ(x;b,σp)

dx

=
(
1− b2

)
µ

[
(d2 − 3σ2

p)

d2
− µ2

d2

]
.(1.7)

We see that d2 − 3σ2
p plays the role that d2 played before, setting the non-origin zeros

of the cubic; when µ2 is greater than this value, the average movement of the individual

is away from the peak percept. There is also a critical variance σ2
c = d2/3 at which the

system undergoes a pitchfork bifurcation. For σp > σc the bracketed term in Eq. (1.7)

is always negative, i.e., the net change in belief is always contrary to the average media

perceived. See Figure 1.S7.

These distribution widths are not unrealistically large; as seen in Fig. 1.S7, for a re-

pulsion distance of 0.8 the standard deviation needs only be 0.46 for the overall effect

of a content distribution to be repulsive (i.e. causing movement away from that distribu-

tion’s mean). Thus, especially for out-group content with a naturally narrower repulsion
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Figure 1.S7. Effect of perception distribution width on reaction.
Net change in belief db/dt versus expected value of dissonance µ for varying
levels of perception distribution width, from Eq. (1.7) with d = 0.8. The
critical standard deviation for d = 0.8 is σc = 0.8/

√
3 ≈ 0.46.

distance, viewing a wider distribution of that content can actually cause repulsion, since

the extreme percepts will repel the viewer more than the moderate percepts will attract

them.

To visualize the effects of normally distributed perceptual distributions ρ(p; b, σp) re-

placing deterministic percepts p(b), we can examine density plots for the net movement

for all combinations of b and p (repulsion distance d = 0.8): see Fig. 1.S8. This is the

space that our graphical analysis technique utilizes: if we establish a perception curve

p(b), the values of this map that the curve crosses are the realized average movement for

each part of the population.
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Figure 1.S8. Reaction map for normally distributed diets. Average
movement caused by normally distributed perceptual diets with peak p, for
individuals at belief score b, and repulsion distance d = 0.8. Results shown
for σp = 0.2 (top left), 0.3 (top right), 0.4 (bottom left), and 0.5 (bottom
right).

1.S.1.A. Bounded Percepts: Truncated Gaussian. In deriving Eq. 1.7 we approxi-

mated by integrating over the entire real line for dissonance when it should be constrained

to the range allowed by percepts in [−1, 1]—that is, from dissonance x = −1− b to 1− b.

That makes the result somewhat more complicated (note: lacking symmetry around b,

we don’t utilize the µ substitution, and x represents percept value instead of dissonance):

τ

〈
db

dt

〉
= (1− b2)

∫ 1

−1

[
A√
2πσp

e
− (x−P )2

2σ2
p

]{
(x− b)

[
1− (x− b)2

d2

]}
dx
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= A
(1− b2)σp

d2
√
2π

{[
1− d2 + 2σ2

p + P 2 − 3Pb+ 2b2
] [

e
−(−1+P )2

2σ2
p − e

−(1+P )2

2σ2
p

]

+ [P − 3b]

[
e

−(−1+P )2

2σ2
p + e

−(1+P )2

2σ2
p

]}

+
(1− b2) (P − b)

2d2
{
d2 − 3σ2

p − [P − b]2
} [

Erf

(
1 + P√
2σp

)
+ Erf

(
−1 + P√

2σp

)]
.(1.8)

using shorthand P = p(b) for compactness. A is a normalization factor depending on b

and σp needed to make the truncated Gaussian integrate to 1:

A =
1

1√
2πσp

∫ 1

−1
e

−(x−P )2

2σ2
p dx

=
2[

Erf
(

1+P√
2σp

)
− Erf

(
−1+P√

2σp

)]
Fig. 1.S9 shows the reaction map for these truncated-normal diets, computed analyt-

ically at each b and p combination.
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Figure 1.S9. Reaction map for truncated-normal diets. Expected
movement caused by truncated-normal perceptual diets with peak p (ver-
tical axis), for individuals at belief score b (horizontal axis), with repulsion
distance d = 0.8. Results shown for σp = 0.2 (top left), 0.3 (top right), 0.4
(bottom left), and 0.5 (bottom right).

1.S.1.B. Bounded Percepts: Beta Distributions. For our simulations, we bounded

perceptual diets in a more natural way, by utilizing beta distributions stretched to fit

[−1, 1]. These distributions approach zero at the boundaries of our domain, fitting our

asymptotic-extremes interpretation of this axis. The beta distribution with our endpoints

has the equation

Beta[−1,1](x;α, β) = 4
(1 + x)α−1(1− x)β−1

2α+β

Γ(α + β)

Γ(α)Γ(β)
,(1.9)

where α and β are parameters of the distribution and Γ is the gamma function.
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We can construct a distribution to have any desired mode (peak) p(b) and standard

deviation σp by solving the implicit equations

mode = p =
α− β

α + β − 2
(1.10)

variance = σ2
p =

4αβ

(α + β)2(α + β + 1)
(1.11)

for α, β > 1 in terms of p and σ. Examples are shown in Fig. 1.S10.
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Figure 1.S10. Beta-distributed diets. Examples of beta distributions
with peaks at −0.9,−0.5, 0, 0.5, and 0.9. All have the same standard
deviation, σp = 0.2.

Unfortunately, when using these beta distributions, the weighting integrals with our

cubic reaction function aren’t possible to evaluate in closed form. However, we may

numerically compute these integrals for a finite grid of p and b values at any chosen

standard deviation to visualize the reaction space. In Fig. 1.S11, we can see the repulsion

boundaries bending and bifurcating as σp increases.
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Figure 1.S11. Reaction map for beta-distributed diets. Average
movement caused by beta-distributed perceptual diets with peak p, for in-
dividuals at belief score b, and repulsion distance d = 0.8. Results shown
for σp = 0.2 (top left), 0.3 (top right), 0.4 (bottom left), and 0.5 (bottom
right).

Computing a reaction map like 1.S8, 1.S9 or 1.S11 allows us to use our graphical

analysis technique with any perception curve, to get a sense of average population drift

for the whole political spectrum.

1.S.2. Stochastic Differential Equation Details

For the “realistic” simulation shown in Fig. 1 of the main text, we used beta-distributed

perceptual diets with constant standard deviation σp. Party perception curves pD(b) and

pR(b) determine the peaks of these distributions, so that individuals see in-group and
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out-group content distributions ρin(p; b, σp) and ρout(p; b, σp). The average effect of each

distribution is the integral against the reaction such content would cause (i.e., Eqs. (1.13)

and (1.14)). Each group’s effect on the observer is weighted by its content fraction, then

the stochastic reaction-noise term is added before all movement is edge-damped, leaving

us with Eq. (1.15).

R(p− b; d) = (p− b)

[
1− (p− b)2

d2

]
(1.12)

vin =

∫ 1

−1

R(p− b; din) ρin(p; b, σp)dp(1.13)

vout =

∫ 1

−1

R(p− b; dout) ρout(p; b, σp)dp(1.14)

τ db = (1− b2) {[fvin + (1− f)vout] dt+ σrdW}(1.15)

This can be made computationally feasible by discretizing the b and p domains (e.g.,

to the nearest hundredth) and computing the integrals vin and vout at each possible

combination—as was done for Figs. 1.S9 and 1.S11, which show vout for different σp val-

ues. Then in iteration, we simply reference the nearest-case pre-computed value (nearest-

neighbor interpolation) rather than computing each individual’s weighting integral at each

time-step.

1.S.3. Implementation Details

Our “realistic” simulation shown in Fig. 1.1b initialized the population’s starting beliefs to

uniform random values in [−1, 1] for both parties. The sigmoid perception curves (shown
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in Fig. 1.1b inset) used were:

Republicans: pR(b) = 0.6 tanh

[
1.05

0.6
(b− 0.35)

]
+ 0.42, and

Democrats: pD(b) = 0.7 tanh

[
1.00

0.7
(b+ 0.46)

]
− 0.55 ,

arrived at by rough visual fitting of results to empirical target distributions. Parameter

values were:

di = 1.3, do = 0.8, σp = 0.2, σr = 0.15 .

In-group fraction scaled linearly and symmetrically from 0.5 (for b = +1 Democrats and

b = −1 Republicans) to 0.9 (for b = −1 Democrats and b = +1 Republicans):

fD(b) = 0.7 + 0.2b,

fR(b) = 0.7− 0.2b .

Equations (1.12), (1.13), (1.14), (1.15) determined population movement over time, uti-

lizing Euler-Maruyama numerical integration. For finding equilibria, the time constant

τ = 1 was used.

We note that, in fitting the model’s results via the 8 sigmoid parameters, the equilib-

rium distributions were particularly sensitive to the most-repulsive tails of these curves:

cross-party content seen by the more-extreme sections of the spectrum (e.g., the left tail

of the Republican-content curve powerfully affected the left edge of the Democrat distri-

bution, and vice-versa). This sensitivity would be significantly reduced in a scenario with

saturating repulsion, which we would expect to find from data, but it is the main reason

for the parameters being fit to the hundredths place in section 1.4.
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For simulation of Bail’s experiment, the population was initialized at its equilibrium,

but in addition to vin and vout there was a third influence vbot based on an out-group

distribution peaked at value p = −0.75 shown to Republicans and p = 0.3 shown to

Democrats, to roughly match the other party’s distribution. This extra out-group effect

was weighted as if it were 24 additional percepts on top of a 100-percept daily diet, i.e.,

with weight fbot = 24/124. So Eq. (1.15) becomes

τ db = (1− b2) {[(1− fbot)(fvin + (1− f)vout) + fbotvbot] dt+ σrdW} .(1.16)

Under this assumption, the time constant τ = 30 caused movement in agreement

with Bail et al. [3]: slight leftward movement of Democrat mean from −0.51 to −0.53

(about 6% of its natural standard deviation), but significant rightward movement of the

Republican mean from 0.30 to 0.42 (about 40% of its natural standard deviation).

All code utilized is available upon request.

1.S.4. Some additional extensions

One simple extension is the addition of more groups/parties, such as independent/unaligned

individuals and messages. This would require another perception curve, and a three- or

more-way fractional content breakdown instead of the single in-group fraction f(b) as our

analysis used.

Additional affiliations such as religion, race, regional identity, etc., may be added to

the model without change to the framework. These affiliations would appear as labels that

affect the perception curve(s)—since affiliations can change what individuals are exposed

to—and inter-group bias, since identity can affect how one reacts to others’ opinions
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and identity. In particular, the repulsion distance d, representing “trust,” “credulity,”

or “benefit of the doubt,” can depend on each affiliation of the individual and of the

messenger to allow for more intricate inter-group prejudices than just in-party and out-

of-party trust levels. One could also add noise to d values to model individual variation

in level of credulity towards other groups. However, given the difficulty of measuring

inter-group trust levels, we chose to avoid over-fitting by only utilizing party affiliation in

our simulations.

One might also generalize this model to multiple dimensions: instead of a scalar

belief value b, an n-dimensional vector b would represent an individual’s beliefs with

respect to each of n issue axes. Percepts would engage with one or more of these issues.

Lacking relevant data, we do not put forward assumptions on how reaction dynamics

might be coupled; one might assume that dynamics along each axis would be largely

independent of one another, since position on one issue rarely affects position on another

directly. However, it is possible that the dynamics along multiple axes would be coupled by

tribalism; being repelled from a message might drive an individual closer to the opposing

camp on more axes than just the one being engaged with, as the individual identifies more

strongly with the whole opposing party.

One might also suggest that individuals perceive a more extreme version of the other

party as they become more extreme themselves. This would require additional perception

curves for out-group content rather than re-using the same curve for both parties—in

particular, the curves that determine out-group content might be decreasing with belief

instead of increasing. The large dissonance numbers in this case would likely require

a different reaction function—one in which repulsion saturates—since repulsion quickly
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dwarfs attraction under our cubic function. As an additional bonus, these new cross-party

perception curves could incorporate partisan interpretation bias (as well as reaction bias

narrowing the repulsion distance), such that even the same statement could be given a

different subjective ideological rating (p value) when individuals believe it comes from an

out-party source.

Another potential extension would be the addition of mechanisms by which the per-

ception curves change over time. Time-dependence could be introduced to investigate hy-

potheses about the impact of changing media environments, or perception curves might

evolve in response to the population state. The latter option would provide a form of

indirect coupling between modeled individuals.

1.S.5. Further Work

The modular structure of our framework is amenable to the incorporation of further data,

replacing idealized functions and parameters with empirical distributions from surveys

and experiments. For example, to refine the reaction function, further experiments like

that of Bail et al. [3] might investigate the impact of political opinions on individuals,

and how the messenger’s apparent identity affects the reception of dissonant ideas. As

for perceptual environments, the non-network approach means that data collection can

focus on averages and distributions rather than influence-network properties and tie re-

construction. Perceptual diets might be estimated from the top down: each media outlet

(or other notable source of political influence) might be assigned an ideology score (as oth-

ers have done, see, e.g., [29,30,33,41]), and surveys or viewership data could determine

which content is consumed in what proportion by each part of the ideological spectrum.
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Alternately, self-report of political influences and their positions could produce estimates

of perceptual diets which also account for interpretation bias—the same content might be

interpreted differently by different observers.

Regardless of the approach, any such data-driven realization of this framework will

possess greater validity and predictive power as more data is collected. We hope that this

modeling framework will afford a better understanding of individual and population-level

opinion dynamics, and the feedback effects due to personalized political environments.

1.E. Design for Experimental Refinement

This model was designed with the philosophy of admitting realistically-attainable data,

and I have designed an experiment which will provide a good deal of it. As the model

currently stands, the main areas to be elucidated are:

• The reaction function: how do individuals update their ideological beliefs in

response to political percepts, based on their current ideology, the percept’s ide-

ology, and party affiliation of each?

• The perception curves: how does the political information ecosystem distribute

information to each part of the ideological spectrum, from each party to each

party?

But the issue of subjectivity of these ideology-score ratings requires some care, including:

• How consistent are individuals’ self-reported ideological positions?

• How do different individuals rate identical percepts?

• How does party affiliation bias those ratings?
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In order to address as many of these outstanding questions with as simple an experiment

as possible, I have begun constructing a survey to be distributed on the Mechanical Turk

platform with the following structure:

(1) Participants are randomly divided into control and treatment groups. This will

determine whether their percepts are marked with a speaker’s party affiliation or

not, to experimentally examine the effect of intergroup bias.

(2) Individuals rate their own overall political position on a liberal-conservative axis

as well as where they stand on that same axis on individual issues. Participants

also provide their own political party affiliation.

• This will allow us to compare the agreement of overall self-identification with

an average of self-reported positions on individual issues.

(3) Participants are shown a batch of political statements, asked to rate their ide-

ological position, and asked to rate their positive/negative sentiment about the

statement.

• Ideally we would measure real ideological shift, but for an initial experiment

we choose to use sentiment as a proxy. Finding this “sentiment curve” (as

opposed to the reaction curve) may in fact have direct practical value for

its own sake, for things like political messaging campaigns which are more

focused on immediate sentiment than actual incremental ideology shift.

(4) Participants will also be asked to estimate the frequency that they are exposed

to political content from each part of the political spectrum.

The data from this will be compared to extract:

• The ideological rating distributions for individual statements.
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• The effect of visible party affiliation on statements’ ideological rating distributions

by participants.

• The “sentiment curve” from the cloud of points produced by participants’ sen-

timent ratings and the ideological dissonance p− b each participant reported to

cause that rating. Alternate hypotheses may be explored at this stage, for exam-

ple de-coupling p and b by viewing the points in (b, p, s) space to see if dissonance

is actually a meaningful/useful invariant across the population. From this sen-

timent curve, an empirical reaction curve may be estimated as dissonance times

the sentiment curve.

• Sentiment curves for each party viewing unmarked, same-party, or opposite-party

content. This will interrogate the hypotheses that (a) intergroup bias is consistent

and (b) party affiliation influences sentiment (and by proxy reaction) separately

from its effect on perception bias (the influence of speaker’s apparent party affil-

iation on the ideology-score ratings given by observers).

• An approximation for perception curves (or perception surfaces) describing ex-

posure of each part of the political spectrum to each other part. This will allow

us to interrogate the number of perception curves, and the accuracy of Beta

distributions as a model for political information diets.
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CHAPTER 2

Handling Nonlinear Stochasticity

2.1. Introduction

Many real-world systems exhibit noisy evolution; interpreting their finite-time be-

havior as arising from continuous-time processes (in the Itô, Stratonovich, or Hänggi-

Klimontovich sense) has led to significant success in modeling and analysis in a variety of

fields. Here we examine a previously overlooked class of differential equations where evo-

lution depends nonlinearly on a random or effectively-random quantity. We put forward

a method for converting these ambiguous equations into equivalent Itô processes, which

may be of great utility for their numerical simulation and theoretical analysis. In particu-

lar, we show that this technique provides distinct predictions for the velocity distribution

of a particle experiencing quadratic drag amidst turbulence, and for a simpler cubic-drag

analogue. We also develop an equilibrium-moment relation for examining the equilibria

of Itô attractors, which may provide information when exact solutions are unavailable.

We use this technique to extract previously unattainable information about one of our

example systems’ equilibrium. This work enables the theoretical and numerical examina-

tion of a wide class of mathematical models which might otherwise be oversimplified due

to a lack of appropriate tools.
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2.2. Generalizing Langevin Equations

Langevin equations are often used to represent theoretical differential behavior for sys-

tems exhibiting stochastic dynamics (see, e.g., [42,43]). These equations have a standard

form, which we will aim to generalize:

dx

dt
= f(x, t) + g(x, t)ηt ,

where ηt represents the “Gaussian white noise” term, δ-correlated in continuous time. If

g(x, t) exhibits x dependence, such Langevin equations are ill-defined, necessitating an

Itô, Stratonovich, or Hänggi-Klimontovich interpretation [43–45]. These will differ in

their “drift” behavior, but may be converted between one another in a straightforward

manner.

Here, we seek to generalize to systems of the form

(2.1)
dx

dt
= R(x, t, ηt).

We argue that, with the proper conversion procedure based on the central limit theorem

[46], these Langevin-type systems may be reduced to equivalent Itô behavior, allowing

for consistent simulation and theoretical analysis.

As a motivating example, we start by highlighting the difference between two similar-

looking Langevin-type equations:

dx

dt
= −x3 + ηt,(2.2)

dx

dt
= −(x+ ηt)

3.(2.3)
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Equation (2.2) is a classic Langevin equation with cubic attraction towards zero and diffu-

sive noise—easily interpreted (in e.g. the Itô sense) as the stochastic differential equation

(SDE) dx = −x3dt+dW (where dW represents the usual derivative of a Wiener process),

enabling all the analytical and numerical options that entails.

Equation (2.3), however, is notably different in that the nonlinear cubing operation

happens to a fundamentally random quantity, linking the deterministic and random parts

of the equation. Näıve numerical simulation of such a process simply converges to de-

terministic behavior as the time-step shrinks, since the fluctuations average out before

x changes considerably. If timestep-independent stochastic behavior is desired, we must

develop a new consistent and coherent interpretation of this equation.

“Baked-in” stochasticity of this type might arise in a variety of physical modeling sce-

narios. For example, nonlinear drag forces acting on a macroscopic object in a turbulent

flow would cause velocity to evolve according to this type of Langevin equation, with

“noise” coming from rapidly fluctuating relative fluid velocity—including, e.g., viscous

drag on a cylinder in a turbulent wake [47]. We compute results for this velocity distribu-

tion, and its stark difference from a näıve approach, at the end of this section. Physical

systems with nonlinear feedback based on rapidly fluctuating quantities or quantities sub-

ject to random measurement error would also be of this type. Inasmuch as measurement

error acts as independent random variation of a quantity, the behavior of simulated or

artificially forced dynamical systems would also benefit from this analysis. Our interest

was motivated by an earlier model for individuals reacting to a stochastic political envi-

ronment [1]. A variety of other physics-inspired nonlinear models of complex real-world

phenomena may also share this form.
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We note that the systems we are concerned with differ from other ways in which non-

linearity can arise in stochastic systems, for example in the deterministic part (e.g., [48])

or when x-dependence appears multiplied by the stochastic quantity (e.g., [49,50]), or

when functions are applied to a continuous random-walking quantity rather than the un-

certain/noisy quantity itself (as Itô’s lemma would handle [43]). Certain specific problems

exhibiting nonlinear dependence on stochastic quantities have been examined [51], but a

general theory of this class of Langevin equations has not been developed.

Our argument is based on the consideration that over any finite time-scale, a theo-

retical system such as Eq. (2.3) will have experienced a large enough number of nearly-

independent increments that the generalized central limit theorem should apply [52].

That is, the net increment over any finite time must be drawn from the family of sta-

ble distributions, or—if the intrinsic noise has finite variance—a Gaussian distribution in

particular [52]. This intuitively dovetails with the more practically-motivated necessary

condition that, in the numerical simulation of any continuous-time system, its behavior

must not depend sensitively on the simulated timestep; that is, one relatively large step

must result in the same distribution (in an ensemble average sense) as the commensurate

number of arbitrarily small steps.

We proceed henceforth with the assumption of finite underlying variance. This means

that the increment over any small but finite time must be drawn from a Gaussian dis-

tribution with mean equal to the mean of the underlying process. We may also choose

this distribution’s variance per unit time to likewise match the underlying process, main-

taining consistency with the classic Langevin-Itô conversion and agreement in standard

cases.
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By this reasoning, we argue that every such stochastic process with finite variance is

in fact equivalent to an Itô SDE over any finite time-scale: in particular, the SDE with

deterministic part matching the underlying mean behavior and random part matching its

standard deviation. We note that this is not a one-to-one mapping, but rather many-to-

one: any stochastic process with the same mean and standard deviation would behave

identically, and thus be represented by the same Itô SDE.

That is, for a general stochastic system of the form

dx

dt
= R(x, t, ηt) ∼ P (r|x, t),

where R is some finite-variance stochastic quantity dependent on x and δ-correlated in

time, with distribution P , one should simulate the Itô SDE

dx = F (x, t)dt+G(x, t)dW, where

F (x, t) = mean [R(x, t)] =

∞∫
−∞

rP (r|x, t)dr,

G(x, t) = std [R(x, t)] =

√√√√√ ∞∫
−∞

[r − F (x, t)]2 P (r|x, t)dr,

if these quantities exist. We will limit ourselves to stationary and autonomous processes

(i.e., F (x, t) = F (x) and G(x, t) = G(x)) from this point forward, but the theory should

extend to non-stationary processes.

Once we have this Itô equation, we may use standard numerical integration techniques

for individual trajectories, or convert the system to a Fokker-Planck form and evolve the
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solution’s probability distribution ρ(x) directly, with

∂ρ(x, t)

∂t
= − ∂

∂x
[F (x)ρ(x, t)] +

1

2

∂2

∂x2

[
G(x)2ρ(x, t)

]
.

As an example, we will now examine a slightly generalized version of Eq. (2.3) to

determine the effect of noise with arbitrary constant amplitude σ:

dx

dt
= −(x+ σηt)

3.(2.4)

In section 2.S.1,we examine a yet more general version of this attractor with arbitrary

positive-integer exponent, but for illustration and concreteness henceforth focus on this cu-

bic nonlinear-stochastic attractor. Using the shorthand notationN(r|µ, σ) = e
−(r−µ)2

2σ2 /(σ
√
2π),

we have:

F (x|σ) =
∞∫

−∞

−r3N(r|x, σ)dr

= −x3 − 3σ2x

and

G(x|σ) =

√√√√√ ∞∫
−∞

[−r3 − F (x)]2N(r|x, σ)dr

=
√
9σ2x4 + 36σ4x2 + 15σ6.
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So we argue that the system

dx

dt
= −(x+ σηt)

3

is equivalent to the Itô SDE

(2.5) dx = (−x3 − 3σ2x) dt+
√
15σ6 + 36σ4x2 + 9σ2x4 dW,

which is amenable to various methods of simulation and analysis like any other Itô equa-

tion. We note that this Itô equation is significantly different from anything one might

obtain from the similar-looking but simply additive Langevin form in Eq. (2.2).

To reiterate: a näıve interpretation of Eq. (2.4) would lead to the Itô SDE

(2.6) dx = −x3dt+ σ3dW ,

which has completely different physical behavior than our proposed interpretation in

Eq. (2.5)1. Basic properties like the variance of the equilibrium distribution differ, with

divergence possible in Eq. (2.5) but not in Eq. (2.6). This has significant implications for

all types of stochastic models used throughout physics.

As an illustrative physical example, we consider the regime of quadratic drag with

rapidly varying relative fluid velocity—of relevance to the behavior of particles in well-

developed turbulence. In the one-dimensional case without stochasticity, relative velocity

v would vary as dv/dt = −cv|v| (here the constant c sets the time scale, and we set it to

1In our “naive” interpretation, we assume expansion of (x+ ση)3 would be approximated with constant
noise of amplitude σ3, though the amplitude of constant noise could also be taken to be a fitted constant.
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1 henceforth). When random velocity fluctuations are included, we have:

dv

dt
= −(v + σηt)|v + σηt|.(2.7)

This might näıvely be modeled by the Itô equation

(2.8) dv = −v|v|dt+ σ2dW ,

which has an exact solution for its steady-state probability distribution

(2.9) p(v) =
C

σ2/3
exp

(
−2|v3|
3σ2

)
,

where C is a normalization constant, namely 37/6Γ(2/3)/(25/3π).

But this system is more faithfully modeled by using our proposed conversion, which

yields

(2.10) dv = F2(v|σ)dt+G2(v|σ)dW ,

where

F2(v|σ) = −
(
σ2 + v2

)
Erf

(
v

σ
√
2

)
−
√

2

π
xσe

−v2

2σ2 ,

G2(v|σ) =
√

v4 + 6v2σ2 + 3σ4 + 3[F2(v|σ)]2

(computation details in section 2.S.1).The significant difference in behavior between these

systems is illustrated in in Fig. 2.1.
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Figure 2.1. Equilibrium velocity distributions. Comparison of equilib-
rium distributions for the drag system in Eq. (2.7) with σ = 0.2, computed
by Fokker-Planck integration of our proposed behavior (2.10) and compared
to the exact solution (2.9) for a näıve interpretation of the system’s behav-
ior.Top: Linear scale. Bottom: Zoomed-out log-scale view, emphasizing
clear differences in implied behaviors.

2.3. Equilibrium Moment Analysis of Itô SDEs

We now shift our focus from Itô interpretation of generalized Langevin equations to a

technique of equilibrium analysis for Itô SDEs themselves. Equilibrium distributions are

of considerable interest in any system where they exist. However, in some cases, direct

analytical calculation of the steady-state distribution (as described in, e.g., [43]) requires

integrals that fail to converge. Our interpretation of the stochastic cubic attractor (2.5)

is of this type, and we will show that this technique yields insight into its structure.
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Suppose we seek to examine the equilibrium distribution (if it exists) of the au-

tonomous Itô SDE

dx = F (x)dt+G(x)dW.(2.11)

We will use Euler-Maruyama numerical integration [53] as a guide: in discrete time, we

have

∆x = F (x)∆t+G(x)
√
∆t η,(2.12)

where η ∼ N(0, 1). We may write the expression for the distribution of the new value

ξ = x+∆x from any previous position x:

ξ ∼ N
(
x+ F (x)∆t , G(x)

√
∆t
)

,

P (ξ|x) = 1

G(x)
√
2π∆t

e
−[ξ−x−F (x)∆t]2

2G(x)2∆t .(2.13)

Given this probability density function (PDF) for the outcome of a single step from

any initial position x, we may write an expression for the evolution of the solution PDF

from initial state ρk(x) to subsequent state ρk+1(x) a short time ∆t later:

ρk+1(ξ) =

∞∫
−∞

P (ξ|x)ρk(x)dx .

At equilibrium, this operation leaves the distribution ρk = ρk+1 = ρ∗ unchanged, i.e.,

(2.14) ρ∗(ξ) =

∞∫
−∞

P (ξ|x)ρ∗(x)dx .
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Rather than attempt to solve this implicit integral equation for ρ∗ directly, we instead

examine the second (raw) moment of the distribution µ2 by multiplying both sides of

Eq. (2.14) by ξ2 and integrating over all ξ:

µ2 =

∞∫
−∞

ξ2ρ∗(ξ)dξ =

∞∫
−∞

ξ2

 ∞∫
−∞

ρ∗(x)P (ξ|x)dx

 dξ

=

∞∫
−∞

ρ∗(x)

∞∫
−∞

ξ2
1

G(x)
√
2π∆t

e
−[ξ−x−F (x)∆t]2

2G(x)2∆t dξ dx .

After swapping the order of integration2, we observe that the inner integral over ξ is of

the form

1

s
√
2π

∞∫
−∞

u2e
−(u−a)2

2s2 du = a2 + s2

with u = ξ, a = x+ F (x)∆t, and s = G(x)
√
∆t. So we find

µ2 =

∞∫
−∞

ρ∗(x)
[
x2 + 2xF (x)∆t+ F (x)2∆t2 +G(x)2∆t

]
dx .

Distributing the integral and subtracting µ2 from both sides (note that the integral of x2

against ρ∗ is simply the definition of µ2), we find

(2.15) 0 = ∆t

∞∫
−∞

ρ∗(x)
[
2xF (x) +G(x)2

]
dx+∆t2

∞∫
−∞

ρ∗(x)F (x)2dx ,

2Changes in the order of integration will always be allowable for finite µ2.
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which should hold exactly for any such Itô system. Enforcing this to leading order in ∆t

for our cubic stochastic attractor gives

0 =

∞∫
−∞

ρ∗(x)
[
2x(−x3 − 3σ2x) + (9σ2x4 + 36σ4x2 + 15σ6)

]
dx

= 15σ6

∞∫
−∞

ρ∗(x)dx+ (36σ4 − 6σ2)

∞∫
−∞

x2ρ∗(x)dx+ (9σ2 − 2)

∞∫
−∞

x4ρ∗(x)dx .

= 15σ6 + 6σ2(6σ2 − 1)µ2 + (9σ2 − 2)µ4(2.16)

So we obtain a relationship between moments of the equilibrium ρ∗.

However we notice a problem: if σ is large enough that 9σ2 − 2 > 0 and 6σ2 − 1 > 0

(i.e., σ >
√
2/3), all terms on the right hand side are positive and there is no way for the

equality to hold.

If we had preserved all terms from Eq. (2.15), rather than truncating at leading order,

we would have obtained the full, exact relation

0 = 15σ6 + (36σ4 − 6σ2 + 9σ4∆t)µ2 + (9σ2 − 2 + 6σ2∆t)µ4 +∆t µ6 .(2.17)

This still does not avoid the problematic implication at large σ—in fact, it makes the

situation slightly “worse” by adding more positive terms. This contradiction implies that

we were wrong to treat µ2 as finite: the equilibria for these values of σ must have infinite

second moments.3

3We note that the earlier assumption of finite underlying stochastic-process variance was only necessary
to arrive at the Itô SDE from the initial Langevin-type equation; our analysis of the Itô SDE itself does
not rely on that assumption.
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If we repeat our above analysis, but with the 2kth moment of ρ∗ instead of the second4,

we have

µ2k =

∞∫
−∞

ξ2kρ∗(ξ)dξ

=

∞∫
−∞

ρ∗(x)

∞∫
−∞

ξ2k

G(x)
√
2π∆t

e
−[ξ−x−F (x)∆t]2

2G(x)2∆t dξ dx .(2.18)

Integrals of the following form arise:

I2k : =
1

σ
√
2π

∞∫
−∞

u2ke
−(u−a)2

2σ2 du

= (2k)!
k∑

i=0

σ2ia2k−2i

(2i)!!(2k − 2i)!
.

So with any Itô SDE we have

µ2k =

∞∫
−∞

ρ∗(x)

[
(2k)!

k∑
i=0

(G(x)
√
∆t)2i(x+ F (x)∆t)2k−2i

(2i)!!(2k − 2i)!

]
dx

=
k∑

i=0

(2k)!

(2i)!!(2k − 2i)!
∆ti

∞∫
−∞

ρ∗(x)G(x)2i
2k−2i∑
j=0

(
2k − 2i

j

)
xj[F (x)∆t]2k−2i−jdx .

Regrouping by powers of ∆t and retaining only leading order behavior, we find that

the constant term (i = 0, j = 2k) cancels from the left hand side, leaving

0 = ∆t

∞∫
−∞

ρ∗(x)
[
2kx2k−1F (x) +G(x)2

]
dx .

4For symmetric equilibria like our cubic example, odd moments are all zero.
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This relation should hold for any equilibrium of an Itô SDE for which the 2kth raw

moment is finite. If F (x) and G(x)2 are polynomials, this may be used to obtain a

recursion relation for all moments of the equilibrium ρ∗.

For example, in the case of our cubic nonlinear-stochastic attractor from Eq. (2.4),

0 =

∞∫
−∞

ρ∗(x)
[
2kx2k−1(−x3 − 3σ2x) + (9σ2x4 + 36σ4x2 + 15σ6)

]
dx

= 15σ6 + 36σ4µ2 + 9σ2µ4 − 6kσ2µ2k − 2kµ2k+2

for integers k ≥ 1.

While this slightly under-specified system of equations doesn’t yield exact moments,

it implies that those moments should lie on a surface, which we confirm by numerical

simulation (see section 2.S.2).When the typical magnitude of x is small compared to σ

(i.e., µ2 ≪ σ2), however, Eq. (2.5) is well approximated by an SDE with constant noise

and linear drift: an Ornstein–Uhlenbeck process [54,55] (see also, e.g., [56] or [57]). This

implies a normal distribution at equilibrium, with moment relationship

(2.19) µ4 = 3µ2
2.

Plugging this additional constraint into our lowest-order relation Eq. (2.16) yields

0 = 15σ6 + 6σ2(6σ2 − 1)µ2 + 3(9σ2 − 2)µ2
2 ,

which agrees well with simulation in the relevant parameter region: see Fig. 2.2. For a

direct look at the Gaussian nature of equilibria across this transition, see section 2.S.3.
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Figure 2.2. Numerical validation. Comparison of numerical results (via
Fokker-Planck evolution) to the theoretical relation, augmented with the ex-
tra Gaussian condition µ4 = 3µ2

2. The shaded region indicates µ2 < 0.1σ2

(top) and correspondingly µ4 < 0.03σ4 (bottom), where the Gaussian ap-
proximation (from µ2 ≪ σ2) should be most valid. Top: Smaller σ values
take longer simulated time T to equilibrate, but do approach the theorized
line. For high noise amplitudes, the relation need not hold, and indeed the-
ory suggests that µ2 and µ4 should diverge for σ >

√
2/3 (indicated by the

vertical dashed line). Bottom: As predicted by theory, the fourth moment
µ4 does indeed appear to diverge for σ >

√
2/3, though simulation with

ever wider domain width W (measured in number of standard deviations of
the equilibrium solution) is needed capture more of the distribution’s tails
(all curves shown for T = 100).
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2.4. Discussion and Limitations

The first proposition of this paper—the argument for Ito-equivalency of nonlinear

Langevin-type systems—is really a proposed definition rather than a theoretical result.

Like Langevin equations themselves, the notation is simple and intuitive, but solid math-

ematical interpretation requires the use of the more rigorous notation, and we propose

that interpretation in terms of Itô calculus.

We apply logic based on the central limit theorem for finite-variance random variables,

but the Langevin noise terms are not regular random variables and their variance may not

be well-defined or finite. If variance is treated as well-defined but not finite, other (non-

Gaussian) stable distributions per time-step may arise, rather than normally distributed

Itô time-steps.

We also note the perhaps-undesirable sensitivity to the assumption of Gaussian un-

derlying noise in Eq. (2.1). In particular, the assumption that ηt is normally distributed

may be incorrect for some systems with biased or irregularly shaped noise (such as the

Beta distributions of percepts in [1]), and if the noise shape is known it should be used.

The Itô equilibrium analysis ending with Eq. (2.15) applies to any Itô system with

an equilibrium where the second raw moment of that equilibrium is finite, but it is of

particular use when the functions F and G2 are polynomial in nature, since this allows the

analysis to culminate with a relation between even moments rather than merely integrals

against an unknown distribution.
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Finally, in the analysis of our particular cubic-attractor equilibrium, we have employed

an approximation (valid only for σ2 ≫ µ2) which allowed us to fully prescribe the mo-

ments of the equilibrium when they are finite. It remains unclear whether a more general

constraint valid for arbitrary σ can be found.

2.5. Conclusions

We have shown that a class of “nonlinear-stochastic” Langevin equations may be

interpreted such that they have well-defined behavior after conversion to an equivalent

Itô system. We have applied this theory to a class of nonlinear attracting fixed points

to analyze their equilibria via moment relations, and showed that simulations bear out

this analysis. This type of equilibrium may be more general than initially apparent, since

nearly any isolated attracting fixed point is locally well-approximated by equations of this

form.

This conversion technique should lead to more faithful physical modeling, yielding

qualitatively different behavior when compared to simplifications which transform a de-

terministic quantity and add noise afterward. In particular, we have shown that there

exists a critical noise level in one such system which leads to divergent moments of its

equilibrium, something that cannot occur if x-independent noise is simply added after the

nonlinear operation. Conversely, our reasoning also leads to the implication that apparent

Itô behavior might be driven by any number of nonlinear Langevin processes.

Independent but complementary to these considerations, the equilibrium-analysis sec-

tion of this work applies to all Itô systems, and can lead to recursive moment relations

or other insights in their study when exact equilibrium solutions aren’t attainable. In
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particular, we note that the divergent moments this technique exposes for the example

system would be difficult to deduce using numerical solutions of the Itô (or corresponding

Fokker-Planck) equation in question.

2.S. Additional Mathematical Work

2.S.1. Generalization to positive-integer attractors

Here we examine a generalization of the nonlinear attracting system from the main text:

the nth-order attracting fixed point. As in the main text, the nonlinear attracting function

is applied to a Gaussian random variable (in the Langevin sense) centered on the current

value (using N(r;x, σ) as shorthand for the Gaussian pdf with mean x and standard

deviation σ):

r := x+ ση, i.e. r ∼ N(r|x, σ)

dx

dt
= − sgn(r)|r|n, n ∈ Z+ .(2.20)

Using the proposed Itô conversion from the main text, this should be equivalent to the

system

dx = F (x|σ, n)dt+G(x|σ, n)dW, where(2.21)

F (x|σ, n) =
〈
dx

dt

〉
=

∫ ∞

−∞

[
− sgn(r)|r|n

]
N(r|x, σ)dr(2.22)

G(x|σ, n) = std

(
dx

dt

)
=

√√√√√ ∞∫
−∞

[− sgn(r)|r|n − F (x|σ, n)]2N(r|x, σ)dr.(2.23)
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We first note that G can be easily computed in terms of F :

G(x|σ, n) =

√√√√√ ∞∫
−∞

[
− sgn(r)|r|n − F (x|σ, n)

]2
N(r|x, σ)dr

=

√√√√√ ∞∫
−∞

[
r2n + 2 sgn(r)|r|nF (x|σ, n) + F 2(x|σ, n)

]
N(r|x, σ)dr

=

√√√√√ ∞∫
−∞

r2nN(r|x, σ)dr + 2F (x|σ, n)
∞∫

−∞

sgn(r)|r|nN(r|x, σ) + F 2(x|σ, n)
∞∫

−∞

N(r|x, σ)dr

=
√
µ2n,x,σ + 3F 2(x|σ, n),

where the first term is not quite F (x|σ, 2n)—due to the sign difference—but rather the

(much simpler) 2nth non-central moment of the normal distribution N(r|x, σ):

µ2n,x,σ :=

∞∫
−∞

r2nN(r|x, σ)dr

=

∞∫
−∞

(x+ z)2nN(z|0, σ)dz

=
2n∑
i=0

(
2n

i

)
x2n−i

∞∫
−∞

ziN(z|0, σ)dz

=
n∑

j=0

(
2n

2j

)
(2j − 1)!!x2n−2jσ2j .
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We now seek F . If n is odd, this calculation is simply the non-central moment again:

F (x|σ, n) =
∫ ∞

−∞
−rn

[
1

σ
√
2π

e
−(r−x)2

2σ2

]
dr if n odd

=
n∑

i=1
i odd

(
n

i

)
(i− 1)!!xn−iσi(2.24)

=
n∑

i=1
i odd

An,i x
n−iσi,(2.25)

where An,i : =

(
n

i

)
(i− 1)!! =

n!

i!!(n− i)!
.(2.26)

However if n is even, we must split the integral and the boundary terms no longer

cancel due to the sign difference:

F (x|σ, n) =
∫ ∞

−∞

[
− sgn(r)|r|n

]
N(r;x, σ)dr

=

∫ 0

−∞
rnN(r;x, σ)dr −

∫ ∞

0

rnN(r;x, σ)dr

=

∫ ∞

−∞
rnN(r;x, σ)dr − 2

∫ ∞

0

rnN(r;x, σ)dr

=
n∑

i=0
i even

An,i x
n−iσi − 2

∫ ∞

−x

(x+ w)nN(w; 0, σ)dw

=
n∑

i=0
i even

An,i x
n−iσi − 2

n∑
i=0

(
n

i

)
xi

∫ ∞

−x

wn−iN(w; 0, σ)dw︸ ︷︷ ︸
J−x(n−i)

.(2.27)
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We then need to process the expression marked J using IBP, and unlike before we have

boundary terms:

J−x(p) : =

∫ ∞

−x

wpN(w; 0, σ)dw

=

(−1)p−1 (p− 1)!!√
2π

e
−x2

2σ2

p∑
j=1
j odd

xp−jσj

(p− j)!!

+


0, if p odd

(p−1)!!
2

σp
[
1 + Erf

(
x

σ
√
2

)]
, if p even .

We can now expand the relevant sum from (2.27), separating out the Erf parts of J

from the sums:

−2
n∑

i=0

(
n

i

)
xiJ−x(n− i) = −2

n∑
i=0

n−i even

(
n

i

)
xi (n− i− 1)!!

2
σn−i

[
1 + Erf

(
x

σ
√
2

)]

− 2
n∑

i=0

(
n

i

)
xi(−1)n−i−1 (n− i− 1)!!√

2π
e

−x2

2σ2

n−i∑
j=1
j odd

xn−i−jσj

(n− i− j)!!

= −
[
1 + Erf

(
x

σ
√
2

)] n∑
i=0

i even

An,n−i x
iσn−i

+

√
2

π
e

−x2

2σ2

n∑
i=0

(−1)iAn,n−i

n−i∑
j=1
j odd

xn−jσj

(n− i− j)!!
,

using the fact that n is even to recondition the sums and simplify the alternating negative

sign. We now notice that we can combine all terms of constant j in the second line,

rearranging the order of the sums:√
2

π
e

−x2

2σ2

n∑
i=0

(−1)iAn,n−i

n−i∑
j=1
j odd

xn−jσj

(n− i− j)!!
=

√
2

π
e

−x2

2σ2

n−1∑
j=1
j odd

xn−jσj

n−j∑
i=0

(−1)i
An,n−i

(n− i− j)!!
.
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So we may rename index variables i → k and j → i and define another constant:

Bn,i :=

√
2

π

n−i∑
k=0

(−1)k
An,n−k

(n− k − i)!!
=

√
2

π

n−i∑
k=0

(−1)k
(
n

k

)
(n− k − 1)!!

(n− k − i)!!

in order to reunify the sums for even and odd i:

−2
n∑

i=0

(
n

i

)
xiJ−x(n− i) =

n∑
i=0

xn−iσi ·


−An,n−i

[
1 + Erf

(
x

σ
√
2

)]
, i even

Bn,i e
−x2

2σ2 , i odd

.

And finally recombine with the first term of (2.27) to get F itself:

F (x|σ, n)|n even =
n∑

i=0
i even

An,i x
n−i σi +

n∑
i=0

xn−iσi ·


−An,n−i

[
1 + Erf

(
x

σ
√
2

)]
, i even

Bn,i e
−x2

2σ2 , i odd

=
n∑

i=0

xn−iσi ·


An,i − An,n−i

[
1 + Erf

(
x

σ
√
2

)]
, i even

Bn,i e
−x2

2σ2 , i odd

.(2.28)

In particular, for the n = 2 case which might have utility for modeling drag amidst

turbulence, we have

F (x|σ, 2) = −
(
σ2 + x2

)
Erf

(
x

σ
√
2

)
−
√

2

π
xσe

−x2

2σ2 ,

=⇒ G(x|σ, 2) =
√

µ4,x,σ + 3F 2(x|σ, 2)

=

√√√√x4 + 6x2σ2 + 3σ4 + 3

[
(σ2 + x2) Erf

(
x

σ
√
2

)
+

√
2

π
xσe

−x2

2σ2

]2
.
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2.S.2. Additional figures

Here we have provided some additional 3-dimensional figures elaborating on the 2-dimensional

ones from the main text.

Figure 2.S3. Small-noise convergence. Three dimensional version of
Fig. 1 (top panel) from the main paper; at small noise σ, solutions con-
verge over increasing simulated time T to the intersection of the Gaussian
condition and Eq. (11), our theorized surface from the main paper relat-
ing the equilibrium’s second and fourth moments to the inherent noise σ:
0 = 15σ6 + 6σ2(6σ2 − 1)µ2 + (9σ2 − 2)µ4.
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Figure 2.S4. Large-noise divergence. Three dimensional version of Fig. 1
(bottom panel) from main paper relating noise amplitude σ to the second
and fourth moments of the equilibrium (µ2 and µ4, respectively), but on a
linear scale. We can see the clear suggestion of divergence for (at least) µ4;
as our domain captures more standard deviations W of the solution, the
measured µ4 grows without bound. We propose that noise values σ beyond
the asymptote “curtain” σ∗ =

√
2/3 ≈ 0.47 must have divergent second

and fourth moments.

Figure 2.S5. Gaussian validity boundary. Three dimensional, linear-
scale zoom of the region where the Gaussian assumption fails to hold. Our
solutions fall off the intersection line due to their non-Gaussian nature.
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2.S.3. Gaussian/non-Gaussian transition

In the main text we argue that the small-noise limit of the stochastic-cubic-attractor

system leads to a Gaussian equilibrium. We can see this transition clearly in Fig. 2.S6.
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Figure 2.S6. Equilibrium shape transition. Comparison of equilibrium
distributions for different noise values to Gaussian distributions with the
same standard deviation. Top Left: For small σ, equilibria exhibit the
signature parabolic shape (on semi-log axes) indicating a near-Gaussian
distribution. Other panels: For larger σ, equilibria exhibit increasingly
“fat tails” differentiating them from Gaussians.
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CHAPTER 3

A Mexican Hat Dance: System of Ricker-Potential-Coupled

Particles

3.1. Motivation

Systems of coupled particles are a classic problem in modeling and applied mathemat-

ics (e.g., [58–61] and many others) . The final project of this thesis involves the investiga-

tion of particles interacting via a “potential function” which exhibits finite short-distance

repulsion and long-distance attraction: the Ricker wavelet (as explored in, e.g., [62,63]).

Work has been done on the birth of multimodality in similar systems [64], but we wanted

to explore the behavior as populations of such particles were “squeezed” together, similar

in concept to “particle in a box” considerations from quantum physics (e.g., [65]). The

most interesting domain to study ended up being the infinite real line with a quadratic po-

tential well, but we also examined “oscillator” interpretations with the particles’ positions

on a circle representing phase (see section 3.S.4).

Local repulsion and distal attraction may call to mind the Lennard-Jones and Morse

potentials from physics (see section 3.S.3). These models for intermolecular potential

energy have features rendering them distinct from our Ricker wavelet: infinite repulsion

in the case of Lennard-Jones, and a “sharp” non-differentiable peak at the origin for

Morse. However, these models may not be applicable in situations where coexistence at

the same position is allowed, due to their nonphysical implications at x = 0. However,
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we believe a “smoothing” of the Morse potential’s central peak (such as by integration

against a “blurring” kernel function) would cause qualitatively similar results to what

we observe in our Ricker system, and it is possible other “soft-core” potential systems

(e.g., [66–68]) could find our results applicable. The smooth and coexistence-friendly

dynamic embodied by our Ricker wavelet may also apply to neuronal phase models under

proper conditions (e.g., [69–71]).

3.2. The Modified Ricker Potential

We use a modified1 form of the Ricker wavelet as the potential function due to each

particle:

(3.1) U(x) =

[
1−

(
k

k − 1

)(x
s

)2]
e−k(x

s )
2

,

which is pictured in Fig. 3.1.

Figure 3.1. Ricker Wavelet. Our Ricker wavelet Eq. (3.1) with parame-
ters s = 1 and k = 2.

1The “modification” here is an isolation of the trough position into the parameter s and other constants
into the parameter k, while fixing the peak height at 1.
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This function has the following nice properties:

(1) central peak at (0, 1)

(2) symmetric troughs at x = ±s

(3) trough depth controlled by k ∈ [1,∞): as k → 1+, trough depth → ∞, and as

k → +∞, trough depth → 0+

Due to the central hump and symmetric troughs, this potential provides short-range, finite

repulsion coupled with long-range attraction to a “preferred distance.” This qualitative

shape is known as a “Mexican Hat Potential.”

The potential at position x due to a particle at position xi is

(3.2) U(x|xi) =

[
1− k

(k − 1)s2
(x− xi)

2

]
e−

k(x−xi)
2

s2 .

We suppose that n particles, indexed 1 through n, have one-dimensional positions

xi and influence each other through their modified Ricker potential via the first order

dynamical system

dxi

dt
= − dUtot

dx

∣∣∣∣
xi

= −

(
dU0(x)

dx
+

n∑
j=1

dU(x|xj)

dx

)∣∣∣∣∣
xi

,

where confinement is imposed by the global potential function U0, which we choose to

have a quadratic shape

U0(x) =
x2

w2

with width-control parameter w. Figure 3.2 shows an example arrangement of particles

in such an arrangement.
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We note for later reference the first and second derivatives of our Ricker potential:

(3.3)
dU

dx
= − 2k2

(k − 1)s2
x

(
1− x2

s2

)
e−

kx2

s2 ,

and

(3.4)
d2U

dx2
= − 2k2

(k − 1)s2

[
1− 3 + 2k

s2
x2 +

2k

s4
x4

]
e−

kx2

s2 .

In particular we note that particles have no self-interaction due to the zero derivative

of the Ricker potential at the origin.

Unless otherwise noted, we use default parameter values s = 1, k = 2. We note

that s may be scaled out of the problem entirely with appropriate scaling of space (via

x̃ = x/s and w̃ = w/s) and time (as t̃ = t/s), but the parameter k does qualitatively

affect behavior (as we briefly explore in Section 3.S.2 at the end of this discussion).

3.2.1. Intriguing Collective Behavior

Free of constraint (e.g., if w → ∞), these particles settle into a uniform spacing, with each

particle residing at the preferred distance s from its neighbors. However, when confined,

they exhibit highly nonuniform and rich behavior.

With random starting positions, we see spontaneous organization of the particles de-

pending on the choice of confinement parameter w. The particles form “stacks,” since their

repulsion weakens as they get nearer to each other, but the number of particles in each

stack can vary, and indeed the stacks exchange particles as w changes. We demonstrate

this spontaneous organization in Fig. 3.3. There is some slight asymmetry in Fig. 3.3 due
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Figure 3.2. Three particles at equilibrium. Example of three particles
at an equilibrium. The vertical solid blue lines show particle positions, the
dotted blue curves show the particles’ Ricker potentials, and the dashed
maroon parabola is the background potential well. The solid black curve is
the total potential, and we can see the derivative is zero at each particle’s
position, indicating this arrangement is at equilibrium. This arrangement is
stable; since a particle never influences itself, each particle effectively “sees”
the global potential minus its own contribution, which makes each particle’s
position in this arrangement a “trough” from its own point of view.

to high dimensional multistability with various stack sizes; if we enforce symmetry, we

see a picture of “core” behavior as shown in Fig. 3.4.

We note that this is actually a 2-dimensional view of an n-dimensional bifurcation

diagram, with each particle’s position occupying one dimension. However, the inter-

changeability symmetry of the particles allows the display of the whole population to

serve as analogue for any single particle’s possible positions.
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Figure 3.3. Equilibrium diagram, n = 512. A diagram showing equi-
librium positions for a population of 512 independent Ricker-potential-
carrying particles confined in a quadratic potential well. The horizontal
w-axis tick marks are placed at approximate bifurcation points, and per-
sist on other diagrams of this type for comparison’s sake. The rightward-
pointing arrow indicates that that equilibria were continued with gradually
increasing parameter w. Ricker-potential constants for this run (and all
other diagrams in this section) were s = 1, k = 2. See section 3.3 for addi-
tional simulation details.

3.3. Methods/Simulation details

Particles were started with random Gaussian positions with standard deviation 0.1

on the small-w end. The positions were updated using ODE45 numerical integration

for an initial duration of T = 20n−1/2 time units (chosen empirically to approximate

equilibration-time scaling with n), with exponentially scaling integration time until all
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Figure 3.4. Equilibrium diagram, n = 512, symmetry enforced. A
symmetry-enforced version of Fig. 3.3. Besides being “cleaner,” however,
we also notice the apparent bifurcation points change slightly.

particles have moved less than 0.001 units, or a run ends with T > 5000n−1/2 (which

occurs after 8 doublings, for a maximum total run-time of 10, 220n−1/2 time units for

any single w value). This was necessary since equilibration time grows dramatically near

bifurcation points.

After each integration converged or hit the time limit at one w value, final positions

were recorded and a small random perturbation of each particle’s position (Gaussian with

standard deviation 0.001) was applied to that ending state before the parameter value w

was updated and the next simulation commenced—this ensured we only recorded stable
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equilibria. This process proceeded from w = 0.925w0 to 5w0 before descending along those

same values; the black arrows in these diagrams indicate the direction of this continuation.

The stack-size information (encoded by color) can be further emphasized with a third

dimension, as we show in Fig. 3.5. Thus we see even more clearly the pattern of sta-

Figure 3.5. Symmetry-enforced large system, 3D view. A 3D view
of the data in Fig. 3.4, with stack-size information encoded in the vertical
axis as well as color. This emphasizes the continuous shift in population
fractionation and the structure of the major bifurcations.

ble behavior. For very small w (strong confinement, i.e., a narrow parabolic well) all

the particles stack up at the origin, but the population splits apart into two symmetric

stacks2 when w passes a critical threshold we label w0—we derive a formula for this value

2There is some multistability with regards to slight asymmetry of these two stacks; for example, sometimes
the stacks are 63 and 65 particles, and the system is stable, although in that case their positions are not
perfectly symmetric—the larger stack settles slightly closer to the origin.
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(Eq. (3.13)) in the “Large n analysis” section. As w continues to grow, the stacks drift

apart and the origin becomes stable again, and we see particles “fall” inwards to settle

there. Initially only a few particles stably rest there, but as the stacks continue to separate

the central stack grows, until it becomes large enough to split into two in a manner that

appears similar to its initial bifurcation at w = w0.

There are many other, more complex equilibria possible, but for large n the equilib-

rium diagram appears to become increasingly well characterized by the aforementioned

behavior, as shown in Fig. 3.6. All the “major” bifurcations (birth of central stacks,

splitting of central stacks) appear to happen at the same multiples of the critical param-

eter value w0, thus with proper scaling of the w axis (to match w0) the diagrams appear

increasingly similar to one another.

We will start our exploration with smaller, more tractable examples and then progress

from there to the more general, large-n cases.

3.3.1. Small-n particular cases

3.3.1.1. Two-particle case. We can solve for the equilibrium condition by assuming

based on symmetry that the two particles reside at ±x∗— plugging in 2x∗ as the distance

in equation (3.3) and setting dx/dt = −dUtot/dx = 0. The equilibrium condition on the
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Figure 3.6. Symmetry-enforced system, n convergence. Equilibrium
diagrams for increasing population sizes n. The diagrams appear to con-
verge in a visual sense to the same few “major” bifurcations, which occur
at nearly the same multiples of the critical parameter value w0 (given in
Eq. (3.13)). This motivates us to understand and characterize this large-n
generic behavior.

particle at +x∗ becomes

dUtot

dx

∣∣∣∣
x∗

=
2x∗

w2
− 4k2x∗

(k − 1)s2

(
1− 4

x∗2

s2

)
e−

4kx∗2
s2

0 = 2x∗
[
1

w2
e

4kx∗2
s2 − 2k2

(k − 1)s2

(
1− 4

x∗2

s2

)]
e−

4kx∗2
s2

=⇒ x∗ = 0 or

0 =
1

w2
e

4kx∗2
s2 − 2k2

(k − 1)s2

(
1− 4

x∗2

s2

)
(3.5)
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So the bifurcation diagram (in w against x∗) is given by the implicit equation (3.5), which

can be solved explicitly for w2 as:

w2 =
(k − 1)s2

2k2

e
4kx∗2

s2(
1− 4x∗2

s2

) ,

or solved for (x∗)2 instead,

(3.6) [x∗(w)]2 =
s2

4

[
1− 1

k
W

(
(k − 1)s2ek

2kw2

)]
,

where W (·) is the Lambert W function, defined as the solution to

W (z)eW (z) = z .

Fig. 3.7 shows this solution overlaid on the equilibrium diagram for two particles.
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Figure 3.7. Two-particle bifurcation diagram, with exact solutions.
Equilibria for the two-particle system, with exact analytical solutions x∗ =
0 (dashed when unstable) and Eq. (3.5) overlaid in black. The critical
parameter value w0 (= 1√

8
in this case) is marked as well.

For a more explicit, albeit approximate solution, we may expand (3.5) for small x∗

(effectively assuming near-bifurcation w). Setting x = ϵ ≪ 1, we find

0 =
1

w2

(
1 +

4kϵ2

s2
+O

(
ϵ4
))

− 2k2

(k − 1)s2

(
1− 4

ϵ2

s2

)
,

2k2w2

(k − 1)s2
=

1 + 4kϵ2

s2
+O (ϵ4)

1− 4 ϵ2

s2

=

(
1 +

4kϵ2

s2
+O

(
ϵ4
))(

1 + 4
ϵ2

s2
+O

(
ϵ4
))

= 1 +
4 + 4k

s2
ϵ2 +O

(
ϵ4
)
,

w2 =
(k − 1)s2

2k2

(
1 + 4

k + 1

s2
ϵ2 +O

(
ϵ4
))

w(x) ∼ s

k

√
k − 1

2

(
1 + 2

k + 1

s2
x2 +O(x4)

)
.(3.7)
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Then by inversion, defining the constant w0,2, we can get the leading-order x(w) behavior

near this bifurcation:

w0,2 :=
s

k

√
k − 1

2
(3.8)

x∗(w) ∼ s√
2w0,2(k + 1)

√
w − w0,2 .(3.9)

This matches the expansion of the exact Lambert-W-based solution near w = w0,2.

Eq. (3.8) gives w0 for the n = 2 case; we derive the general-n version in the “Large-

n analysis” section (Eq. (3.13)).

3.3.1.2. Three- and four-particle cases. Three- and four-particle systems have unique

stable equilibria for all w, which are shown in Fig. 3.8; unfortunately these resist such

easy exact-solution form as the n = 2 case. Other equilibria exist for these systems (such

as 1−2 states3 in the n = 3 case, 1−2−1 and 1−3 states in n = 4, and the fully-stacked

origin state at w > w0), but none of them are stable. In Fig. 3.9 we show all such equi-

librium positions using the MatCont analytical-continuation software package for Matlab

(MatCont v7.3, see [4]) to track those unstable artificially-partitioned states as well as

the stable state we actually see in regular numerical simulations.

The nonzero stable branches for n = 3 (and k = 2, s = 1) are solutions to the implicit

equation

e8x
∗2
+ (4x∗2 − 4)w2e6x

∗2
+ (32x∗2 − 8)w2 = 0 ,

3This notation indicates the partition state of the particles, i.e., the number of particles in each stack, in
order. In this case, there are two visibly-distinguishable 1− 2 states since the two-particle stack can be
above or below the single-particle stack, though each of those represents six equilibria in full state space
due to permutations of the particles.
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Figure 3.8. Three- and four-particle bifurcation diagrams. Equilibria
for 3-particle (left) and 4-particle (right) systems. For these small n, these
are the only stable states. Note that we have shifted to using multiples of
w0 on the w axis, for comparison with higher n cases.

which is the result of assuming symmetry (one particle at 0 and the other two at x∗)

and solving for nonzero x∗ solutions to the equilibrium condition on the particle at x∗.

For large w ≫ w0 this relationship converges to w2 = e2x
2
(4− 4x2)−1 (or explicitly in x:

x2 = 1− 1
2
W (1

2
e2/w2)); for w near w0 (w0 =

√
3/6) the relation is well approximated by

x2 ≈ 1/9− 1/108 w−2 instead.

In the 4-particle case, (n = 4, k = 2, s = 1) we can find the implicit equation for the

2− 2 (i.e. two stacks of two particles each) state, namely

w2 =
e8x

∗2

16(1− 4x∗2)
,
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Figure 3.9. n = 3 bifurcation diagram, all equilibria. The equilibrium
diagram similar to the left panel of Fig. 3.8, but made with analytical-
continuation software (MatCont v7.3) [4], showing unstable equilibria (in
red) as well as stable ones (in blue). We note that since this is a 2D projec-
tion of a 4D bifurcation diagram (all three state variables are superimposed
on the same vertical axis), stable and unstable branches appear to “cross”
without exchanging stability but in fact belong to entirely different branches
in state space. For example, the stable curved branches correspond to the
outer particles of the 1−1−1 state, while the red branches which cross them
are for the single particle in the unstable 2− 1 state (meanwhile the inner
branches correspond to the location of the 2-stack in that state). Similarly,
the origin beyond w0 is a stable position if the system is in the 1 − 1 − 1
state but an unstable position for the fully-stacked state, so it is both blue
and red-dotted in this figure.

which is stable from w = w0 (= 1/4 in this case) to w ≈ 2.1w0 as seen in Fig. 3.8. More

exactly, the 2− 2 state splits into the 1− 1− 1− 1 state when w = wc, where

w2
c =

1 + 20x∗2 − 64x∗4

16(1− 4x∗2)
,
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and where x∗ satisfies the implicit equation

1 + 20x∗2 − 64x∗4 = e8x
∗2
.

The 1 − 2 − 1 state, while never stable, is also relatively tractable, with outer stack

positions given by the relation

8w2 =
e8x

2

1− 4x2 + (1− x2)e6x2 .

dx = F (x)dt+G(x)dW

Other particular states may also have similar implicit equilibrium expressions, but their

multitude makes this endeavor an impractical strategy for understanding the system for

general n.

3.3.1.3. Five-particles: birth of multistability. With five particles, we see the first

case where there is multistability, by two different mechanisms. First of all, unlike n = 3

the origin cannot stably hold a particle as we cross w0, and the population splits into a

3 − 2 state, which is necessarily asymmetric in position. Then the indifference between

which stack has 3 particles leads to bistability between two visibly different states, though

they might be considered the same state up to reflection of the domain. Second, the point

that the system drops to a 2− 1− 2 state (on an increasing-w pass) is different from the

point that it jumps back to the 3−2 state (on a decreasing-w pass). We can see this in the

difference between upper-left and upper-right panels in Fig. 3.10. This is because there is

a region of bistability between 3− 2 and 2− 1− 2 configurations—the loss of stability of

3− 2 happens at a higher w value than the gain of stability of 2− 1− 2. This hysteresis
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with respect to increasing and decreasing parameter w is explored more generally in the

“Medium-n analysis” section below.

Figure 3.10. Increasing- and decreasing-w equilibrium diagrams,
five particles. Zoomed equilibrium diagrams for five particles. Top Left:
increasing-w pass; note the asymmetric 3− 2 state arms are slightly longer.
Top Right: decreasing-w pass, with shorter 3− 2 arms. The overlapping
region exhibits bistability of 3 − 2 and 2 − 1 − 2 states. Bottom: Over-
lay with increasing-w in black and decreasing-w in orange, emphasizing the
area of bistability around w = 0.3. Previous w0 multiple reference points
persist as vertical lines, but decimal values are provided for finer reference.
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3.3.2. Medium-n analysis

To get a sense of how the transition to the large-n behavior happens, we will look at a

medium-scale n, in particular n = 32.

Figure 3.11 shows part of the bifurcation diagram for 32 particles, which shows hints of

the dynamical process by which the particles transfer between stacks. At this resolution,

we can see three “connecting” branches in the top right (decreasing-w) figure where single

particle pairs transfer from the central stack to the outer ones.

Just as with the n = 3 and n = 4 diagrams, there are many more equilibria than we see

in Fig. 3.11. First of all, we only see stable equilibria due to our method of forward-time

numerical integration with minutely perturbed initial conditions, so we do not see the huge

number of unstable equilibria. Second, we have enforced symmetry in this simulation, so

we are missing the slightly asymmetric stable states that can (and generally do) result

when particles are individually free; the enforcement of symmetry is nevertheless justified

as we seek a generic central pattern around which many co-stable perturbations exist. But

even in the symmetric case, there is co-stability of states, which is demonstrated by the

discrepancy between increasing- and decreasing-w passes. Exploring these discrepancies

will provide intuition about how the system behaves at higher n.

3.3.2.1. Repeated Hysteresis. The bottom panel of 3.11 emphasizes the differences

between the increasing- and decreasing-w passes, with increasing-w pass in black and

decreasing-w in orange. Two of those “branches” are isolated in Fig. 3.12.

To understand the hysteresis in Fig. 3.12, we start at the left side of the left-two

figures, at w = 0.2. The top-left figure, a scatter plot of the full population, hides the

stack-size information, but this is a 12− 8− 12 arrangement in both black (increasing-w)
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Figure 3.11. Equilibrium Diagrams, n = 32, zoomed. Bifurcation di-
agram for 32 particles, zoomed for higher resolution, displaying particle
transfer branches and the system’s multistability. Top Left: Increasing w
pass, where particles “fall” to the center only when the outer stacks lose
stability at their previous capacity. Top Right: Decreasing w, with par-
ticles transferring in three visible branches when the central stack becomes
“overstuffed” and sheds particles to the outer stacks. Bottom: Both passes
overlaid to emphasize differences, with forward pass in black and backward
pass in orange.

and orange (decreasing-w) passes. The bottom-left figure shows us why; the “free” pair
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12− 8− 12

11− 1− 8− 1− 11

11− 10− 11

12− 8− 12

1− 11− 8− 11− 1
11− 10− 11

10− 1− 10− 1− 10

10− 12− 10

11− 10− 11

1− 10− 10− 10− 1

Figure 3.12. Particle-transfer branches. Zoom views of central and
right “transfer arms” from Fig. 3.11. Top: Overlaid scatter plots of
the full-population equilibria, for forward (black) and backward (orange)
passes. Bottom: Stability of states evaluated using MatCont analytical-
continuation software, tracking locations where the transferring “free” par-
ticle pair can be—with stable positions are shown in blue, and unstable
in red. The free pair may align with the other stacks (seen as effectively-
horizontal lines, like the state labeled 12 − 8 − 12; these persist through
bifurcations but switch stability), or may reside in-between or outside them
(e.g., the 11 − 1 − 8 − 1 − 11 state which becomes 1 − 11 − 8 − 11 − 1 in
the bottom-left figure). The left figures explore the empirically observed
transition from a 12 − 8 − 12 state on the low w side to 11 − 10 − 11 for
higher w, and the right figures explore the transition from 11 − 10 − 11
(lower w) to 10− 12− 10 (higher w). For these parameters, w0 = 0.0884.
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of particles may only stably exist at the outer stack positions for this parameter value

(the central position is red, indicating instability).

As the parameter value increases, this arrangement stays stable until slightly under

w = 0.21, when we see this branch undergoes a transcritical bifurcation. Theoretically,

the pair could drift outward beyond the outer stack at this point, as the lower-left figure

indicates, but that diagram assumes the other stacks stay perfectly stacked, while in

reality we perturb all particles with noise, and that state isn’t robust to that broken

symmetry. So what we actually see is that one pair falls to the origin and the rest remain

together, corresponding to the x∗ = 0 stable state in the bottom-left figure, and the overall

population state 11− 10− 11.

However, as we decrease w again, the system stays at this 11 − 10 − 11 state until

the branch point near w = .205, where the free pair’s position follows stable branches

away from the origin (in a 11 − 1 − 8 − 1 − 11 state) until those branches go vertical in

an apparent saddle-node bifurcation, at which point the pair jump suddenly to join the

outer stacks again. During this bistable region, the position of the outer stacks differs

slightly, which is reflected in the disalignment of outer stacks in the top-left figure.

A similar process occurs at slightly higher parameter value, reflected by the right two

figures. In this case, the population is transitioning between 11−10−11 and 10−12−10

states. The only qualitative difference this time is the transcritical loss of stability at the

outer position occurs before the central pitchfork bifurcation, so the outer pair is dropped

to that branch of the pitchfork in a 10− 1− 10− 1− 10 state on the forward pass rather

than all the way to the center. On the backwards pass, of course, that 10−1−10−1−10
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state persists longer before losing stability and the transferring particles rejoin the outer

stacks.

In this way, we see how bistability occurs between distinct population fractionations.

As we can see in Fig. 3.11, the fractionation changes more rapidly when the central

stack is small, which we may now understand causes these branches to overlap, yielding

multi-stability between more than two fractionation states. Furthermore, as Fig. 3.6

displays, these transitionary states become narrower (in w) as n increases, such that we

no longer easily see them at finite resolution. In the infinite-n limit, there is a continuous

family of these bifurcations (and corresponding family of transition curves) as the central

fractionation changes smoothly rather than in these discrete jumps, and smooth bands of

stable fractionation (and corresponding stack positions) accordingly.

3.3.3. Large-n analysis

As Fig. 3.6 suggests, the overall system behavior appears to converge for large numbers of

particles, under the appropriate scaling of the w axis. This makes discussion of the large-n

limit meaningful—indeed it appears that the rapid “transitionary” bifurcations from the

previous section become effectively invisible, while the “major” central stack-birth/stack-

splitting bifurcations remain. There is still fractionation indifference (i.e. bands of possible

stable population percentages in each stack), and the location of these major bifurcations

can still vary meaningfully between forward and backward parameter continuation, as

Fig. 3.13 shows.
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Figure 3.13. Equilibrium diagrams, large-n forward and backward
passes. Equilibrium diagrams for 1024 particles, with symmetry enforced.
Some differences between forward and backward passes indicate the persis-
tence of stability bands: we see different stable fractions of the population
at the origin, and correspondingly different bifurcation points of the origin
stack.

We can check the stability of particular configurations like we did in Fig. 3.9 for 3

particles, again using the MatCont analytical-continuation software package for Matlab—

for example, testing the stable and unstable equilibrium positions of a 129th “test” particle

given 128 particles in two stacks of 64—this is shown in Fig. 3.14.

In Fig. 3.14 we see that the test particle can align with either of the large stacks

(desymmetrizing their locations imperceptibly). But we also see that the birth of sta-

bility at the origin is in fact due to a second pitchfork bifurcation with very short-lived

asymmetric unstable branches which cross the outer stack positions and become stable,

roughly corresponding to sitting in the trough outside the two large stacks (and in fact

approaching that well location, ±3s/2, as w → ∞).
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Figure 3.14. Stable and unstable equilibrium positions for a 129th

particle. Analytical-continuation software Matcont yields the stable (blue)
and unstable (red) equilibrium positions for a 129th particle in a system with
two perfectly-aligned stacks of 64 particles (which reside at the narrower U-
shape, technically but imperceptibly influenced by the position of this 129th

particle). We see that the “test particle” can stably align with those two
stacks from w = w0 up to slightly above w = 2w0, the latter point occurring
right after the birth of stability at the origin. At that point, it must either
fall to the center or flee to the outside trough position. In this context, we
see stability at the center is born as a pitchfork bifurcation, and we may
observe the small region of bistability between 64−65 and 64−1−64 states
(which includes 2w0). For n = 129, w0 = 0.0442.

3.4. Analysis

Here we present some analytical results for this system for general n.
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3.4.1. General Equilibrium Statement: Existence

For particle j to be at equilibrium:

dxj

dt
= −dUtot

dx

∣∣∣∣
xj

= 0 = −2xj

w2
+

n∑
i=1

2k2(xj − xi)

(k − 1)s2

(
1− (xj − xi)

2

s2

)
e−

k(xj−xi)
2

s2(3.10)

If the RHS is positive, particle j will move right, and if negative, left. If it is zero for all par-

ticles, the system is at equilibrium. There are many particular states, such as all the par-

ticles at the origin (0, 0, . . . , 0), two symmetric stacks (x∗, x∗, . . . , x∗,−x∗,−x∗, . . . ,−x∗),

etc., which may satisfy this equilibrium condition for various parameter values.

3.4.2. Stability

We can analytically examine the stability of the fully-stacked state at the origin, recover-

ing the critical bifurcation value w0 below which that state is stable—and in fact appears

to be the only equilibrium.

The elements of the jth row of the Jacobian matrix for the system (3.10) are

(3.11)


Jjj = − 2

w2
+

2k2

(k − 1)s2

n∑
i=1
i̸=j

[
1− 3 + 2k

s2
(xj − xi)

2 +
2k

s4
(xj − xi)

4

]
e−

k(xj−xi)
2

s2

Jji = − 2k2

(k − 1)s2

[
1− 3 + 2k

s2
(xj − xi)

2 +
2k

s4
(xj − xi)

4

]
e−

k(xj−xi)
2

s2

,
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which, at the origin (corresponding to the fully-stacked state), yields

Jjj|O = − 2

w2
+ (n− 1)

2k2

(k − 1)s2
,

Jji|O = − 2k2

(k − 1)s2
.

Due to the symmetry, we can identify all the eigenvectors.

(1) The eigenvector v1 = (1, 1, . . . , 1) corresponding to the full stack drifting left

or right from the origin has eigenvalue λ1 = −2/w2, which is always negative,

indicating that the 1-stack system is stable to these types of perturbations (un-

surprising based on intuition for a single particle).

(2) The other n− 1 eigenvectors consist solely of symmetric two-particle divergence;

i.e., vectors of the form (−1, 1, 0, 0, . . . , 0) with the positive 1 in each of the other

n− 1 positions. These vectors all have eigenvalue λ = −2/w2 + 2nk2/(k − 1)s2.

The 1-stack state is thus stable to these types of perturbations for

w

s
<

1

k

√
k − 1

n
.(3.12)

Solving for w, this gives us the critical parameter value w0 for general n:

(3.13) w0 =
s

k

√
k − 1

n
.

We note that this agrees with the n = 2 particular case, Eq. (3.8). This also

suggests the appropriate way to rescale the w axis as n varies, since the structure

appears (at least asymptotically for large n) to depend only on the ratio w/w0.
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3.4.3. Two-stack state

The simplest nontrivial arbitrary-n case, the two-stack state—where the population is

split into two symmetric stacks of n/2 particles each—is quite relevant to examine since

it is the dominant behavior for approximately w0 < w < 2w0. It is exactly solvable via

a simple tweak of the logic which led us to Eq. (3.5), with the influence from the other

“particle” being multiplied by n/2 while the background contribution is unchanged:

dUtot

dx

∣∣∣∣
x∗

= 0 =
2x∗

w2
−
(n
2

) 4k2x∗

(k − 1)s2

(
1− 4

x∗2

s2

)
e−

4kx∗2
s2

0 = 2x∗
[
1

w2
− nk2

(k − 1)s2

(
1− 4

x∗2

s2

)
e−

4kx∗2
s2

]
=⇒ x∗ = 0 or

w2 =
s2(k − 1)

nk2

1

1− 4x∗2

s2

e
4kx∗2

s2

w2 = w2
0

e
4kx∗2

s2

1− 4x∗2

s2

(3.14)

3.4.4. Return of stability at the origin

We seek an understanding of the second “major” bifurcation: the birth of the three-stack

state near w = 2w0, with a small central stack between the two large symmetric stacks.

We can easily check the curvature of the potential landscape at the origin between two

equal stacks, using this as a test to identify when a particle would stably rest there. We
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note that this spot sees an identical contribution from all particles at ±x∗:

d2Utot

dx2

∣∣∣∣
x=0

=
2

w2
+ n

[
− 2k2

(k − 1)s2

(
1− 2k + 3

s2
x∗2 +

2k

s4
x∗4
)
e−

kx∗2
s2

]
=

2

w2
− 2

w2
0

(
1− 2k + 3

s2
x∗2 +

2k

s4
x∗4
)
e−

kx∗2
s2 ; ,

so the birth of stability happens when this curvature crosses 0, at

(3.15) w2
c = w2

0

e
kx∗2
s2

1− 2k+3
s2

x∗2 + 2k
s4
x∗4

.

When we combine this condition with the two-stack equilibrium relation for w2, Eq. (3.14),

we get

w2
0

e
kx∗2c
s2

1− 2k+3
s2

x∗2
c + 2k

s4
x∗4
c

= w2
0

e
4kx∗2c

s2

1− 4x∗2
c

s2

1− 4
x∗2
c

s2
=

(
1− 2k + 3

s2
x∗2
c +

2k

s4
x∗4
c

)
e

3kx∗2c
s2 ,(3.16)

which defies closed-form solution but which we may numerically approximate for our

default parameters k = 2 and s = 1, yielding x∗
c ≈ 0.324. We can see that this agrees

empirically with the stack width coincident with the birth of stability in our large-n figures

like Figs. 3.4 and 3.13.
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This approximation for x∗ in turn allows us to approximate wc, by using either relation

again. Using Eq. (3.14) with k = 2, s = 1, we have

w2
c = w2

0

e8x
∗2
c

1− 4x∗2
c

,

x∗
c ≈ 0.324176 . . .

=⇒ wc ≈ 1.99978w0 .

This is suspiciously close to 2w0, but these approximations were done using 16-digit

precision, so it appears to indeed be distinct. We note that this value depends on k

(though smay be scaled out as always); for example, for k = 100 we have wc,100 ≈ 1.791w0.

After the central stack’s creation, the exchange of particles between central and outer

stacks is complicated, since the fraction of the population at the origin influences the

position of the outer stacks, which in turn influences the stable fraction at the origin. We

observe empirically that the outer stacks drift apart in a roughly linear manner, which

may be helpful, though we leave this exploration for future work.

We note that the increasing-w sweep only sees particles at the center when they are

kicked out of the outer stacks to populate it. On the decreasing-w pass, however, the center

hosts a larger stable population at each w value reached, since continuation from the right

causes the accumulation of all nearby particles at the center, where they stay until they

are ejected to the outer stacks. It is perhaps counterintuitive that these particles “climb”

the global potential as it narrows, but it is nevertheless true; the narrowing background

potential pushes the outer stacks inward enough that the center becomes less stable, at
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which point it is “overstuffed” and repels some of its former constituents to join the other

stacks.

The decreasing pass thus acts as a lower bound for the maximal stable fraction at the

center, and the increasing pass acts as an upper bound on theminimal stable fractionation.

We expect a continuous band of stable fractionations between those values, as indicated

by Fig. 3.15. We leave further exploration of the bands of stability in the n → ∞ limit

for future work.

Figure 3.15. Origin fractionation bands, n = 1024. Fraction of popu-
lation at origin for forward and backward passes with small noise. These
curves demonstrate the existence of bands of stability, and are an approx-
imation of those bands. The true bands may be slightly wider, but the
fractionations between these curves are stable for corresponding w values.
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3.5. Discussion/Conclusion

We have examined a system of particles with first-order coupling through Ricker

wavelet potential functions, and found remarkably rich self-organizing behavior. Intu-

itive small-n cases transition to archetypal large-n limiting behavior, with non-origin bi-

furcations becoming compacted into invisibility while other, “major” bifurcations (those

regarding stability of the origin) persist and stabilize for large n. Multi-stability abounds,

and persists for large n; overlapping hysteresis in the position of individual particles be-

comes stability bands for fractions of the population.

There is plenty more to be explored with these particles. We have not systemati-

cally examined dependence on the parameter k, which controls trough depth, though we

showcase some promising initial findings in section 3.S.2 below. Also of interest is the

oscillator interpretation, with these particles living on a finite periodic domain, for which

we present some intriguing initial findings. Behavior with other types of confinement, such

as a finite “hard-walled” box, is also an open question. Some of these model variants may

lend themselves to real-world applications such as those mentioned in the introduction.

We hope this work provides a solid foundation for the exploration of this system and

its variants, which offer tantalizing glimpses of order governing a wild dynamical zoo of

possible behavior.

3.S. Extra Findings

3.S.1. Fresh random starts

Without continuation—i.e., when the simulation at each w value proceeds from an en-

tirely random starting state rather than a slightly-perturbed version of the previous
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equilibrium—we see a “fuzzier” but ultimately similar picture; see Fig. 3.S16. This does

yield some information about the system’s tolerance for asymmetry; the two-stack state

for n = 128 can be as lopsided as 68−60 in this run and still appear stable. More lopsided

stable two-stack states may be possible with biased initial conditions, however.

Figure 3.S16. Equilibrium diagram without continuation. Equilib-
rium states with a fresh Gaussian random start every time. Stack size here
gives a lower bound for tolerance of asymmetric fractionation; the greatest
asymmetry in the two-stack state observed here is 68− 60.

3.S.2. k dependence

The parameter k distorts the equilibrium diagram; Fig. 3.S17 shows what happens when

k grows. We see that large k coincides with a narrower population (smaller range on

vertical axis); this is perhaps unintuitive since large k makes the Ricker wavelet’s trough

shallower, which intuitively means less stability, and perhaps the dominance of repulsion.

However, that would imply a wider population, while we see a narrower one. We might
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instead take away the competing explanation that the Ricker wavelets’ weaker attraction

to their preferred distance means the particles don’t “buoy” their partners away from

the origin as strongly, which leads to more dominance of the background potential-well

containment overall.

Figure 3.S17. k dependence. Equilibrium diagrams for higher values of
k. The estimated bifurcation values are marked on the w axis. Larger k
appears to accelerate the bifurcation rate, but with diminishing returns–
these diagrams’ qualitative and quantitative similarity suggests a large-k
limit is potentially well-defined. It is important to note the vertical axis
scale is different, however; any additional invariance involved in this limit
would involve a rescaling the vertical (spatial) axis as well as the existing
horizontal axis scaling (implicit in w0 dependence, since w0 ∝ k−1/2).
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3.S.3. Lennard-Jones and Morse potentials

As mentioned in Section 3.1, the Lennard-Jones and Morse potentials from physics are

models of intermolecular potential energy with short-range repulsion and long-range at-

traction. These potentials may be described in the following forms:

ULJ(x) = 4ϵ

[(x
σ

)−12

−
(x
σ

)−6
]
,

UM(x) = De

[
e−2a(|x|−re) − 2e−a(|x|−re)

]
.

Fig. 3.S18 shows examples of these potential functions, with as much matching to

our default Ricker potential as possible. In particular, this should highlight the limits of

their qualitative comparability, and why alteration to a “soft-core” potential amenable to

“stacking”/coexistence would be necessary to expect results similar to those presented in

this work.

3.S.4. Ricker Oscillators

A model variant of considerable interest for these Ricker-potential-coupled particles is

their implementation as coupled oscillators. In this case, their position would represent

phase on a periodic domain, like (−π, π]). A slight tweak to the Ricker potential would

need to be defined to make it periodic; distance between particles in this space might be

taken to be the shortest distance around the circle, or the infinite sum of possible distance

interpretations at all ±2πm multiples, or the potential itself might be made periodic in

some other way. In any case, the parameter s (controlling the location of the troughs,
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Figure 3.S18. Other Classic Potentials. Examples of the Lennard-Jones
(left) and Morse (right) potentials from physics. Parameters have been
chosen to match the trough coordinates of our default-parameter Ricker
potential—(±1, e−2)—and the peak of (0, 1) for the Morse potential. Still,
we note significant qualitative discrepancies, namely the infinite central
spike for Lennard-Jones and the “sharp” origin peak for Morse. These
qualities preclude the stability (or even well-defined status) of stacking be-
havior, and thus the particular richness of behavior we find in our Ricker
system, but alterations to smooth behavior at the origin may lead to rec-
onciliation.

which acts as a “preferred distance”) is no longer removable by scaling in this paradigm;

its ratio with the domain is a qualitatively important value.

Using the simpler, shortest-distance interpretation, we performed simulations and

demonstrate the results in Fig. 3.S19. We found that for small n, the particles did settle

uniformly at intervals of s. Sometimes the system took a long time to find this state, as

it evolves more slowly when evenly spaced—even when the population is more compact

than necessary.

However, at large n (such that n times the preferred distance was much larger than

2π), the system appeared to exhibit “frozen disorder,” or a “glassy” state where particles

neither clump nor uniformly distribute (see Fig. 3.S20). The best lens for understanding
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Figure 3.S19. Oscillator interpretation, slow convergence. Ten Ricker
oscillators with preferred distance 2π/10. The left figure shows the system
at time t = 5, central figure at t = 25, and right figure at t = 30; the
population swiftly self-arranges to become near-evenly but too-compactly
arranged, then slowly separates, until suddenly “snapping” to perfectly even
spacing. Black dots around circle indicate preferred distance; we see the
particles eventually space themselves at the same intervals. Color indicates
particle index, to distinguish and keep track of them over time.

this process appears to be the global potential; as the population evolves, it appears to

self-organize almost instantly into a single low frequency wave (created by many individ-

ual Ricker potentials) which then damps quickly to reveal middle frequencies at smaller

amplitude. As the magnitude of this global potential wave shrinks beneath the scale of

a single wavelet, the inherent higher frequencies of individual particles emerge again (see

Fig. 3.S20, bottom right).

This apparent phenomenon of self-organization in service of the global potential’s

frequency-damping is only a numerical observation thus far, and merits future analytical

exploration. It is unclear if this disordered state is truly stable or merely quasi-stable, and

how the parameter-space transition from even-spacing to disordered “equilibrium” occurs

as the domain becomes overpopulated relative to the preferred distance. We believe this

is a ripe area for future exploration.
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Figure 3.S20. Ricker oscillator system. Two hundred Ricker oscillators
with preferred distance 2π/6. Top left: Random starting state. Top
right: At T = 0.1, the particles have very quickly arranged themselves
into a single low-frequency global-potential wave. Bottom left: At T =
0.6, the low-frequency wave has damped, leaving a mid-frequency wave
(with period 2π/8, higher frequency than the Ricker wavelet’s preferred
distance) of much lower amplitude (two orders of magnitude smaller), with
only minute positional adjustments. Bottom right: At T = 20, the global
potential has damped another order of magnitude, to 4 × 10−4, leaving
only the high-frequency spikes of individual Ricker wavelets (which have a
“sharp” nondifferentiable corner as they wrap around ±π). This “glassy”
and distinctly nonuniform state appears to be stable, though it might only
be extremely slow to evolve.
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[44] Nicolaas G Van Kampen. Itô versus Stratonovich. Journal of Statistical Physics,
24(1):175–187, 1981.

[45] Jörn Dunkel and Peter Hänggi. Theory of relativistic brownian motion: the (1+
1)-dimensional case. Physical Review E, 71(1):016124, 2005.

[46] Hans Fischer. A history of the central limit theorem: From classical to modern prob-
ability theory. Springer Science & Business Media, 2010.

[47] F.S. Hover and M.S. Triantafyllou. Galloping response of a cylinder with upstream
wake interference. Journal of Fluids and Structures, 15(3):503 – 512, 2001.



121

[48] Hilbert J. Kappen. Linear theory for control of nonlinear stochastic systems. Physical
Review Letters, 95:200201, Nov 2005.

[49] Weihai Zhang, Bor-Sen Chen, and Chung-Shi Tseng. Robust H-infinity filtering for
nonlinear stochastic systems. IEEE Transactions on Signal Processing, 53(2):589–
598, 2005.

[50] Nadav Berman and Uri Shaked. H-infinity-like control for nonlinear stochastic sys-
tems. Systems & Control Letters, 55(3):247–257, 2006.

[51] Robert H Kraichnan. Dynamics of nonlinear stochastic systems. Journal of Mathe-
matical Physics, 2(1):124–148, 1961.

[52] B. V. Gnedenko and A. N. Kolmogorov. Limit distributions for sums of independent
random variables. Addison-Wesley Mathematics Series. Addison-Wesley, Cambridge,
MA, 1954. Translated and annotated by K. L. Chung. With an Appendix by J. L.
Doob.

[53] Gisiro Maruyama. Continuous Markov processes and stochastic equations. Rendiconti
del Circolo Matematico di Palermo, 4(1):48, 1955.

[54] George E Uhlenbeck and Leonard S Ornstein. On the theory of the Brownian motion.
Physical Review, 36(5):823, 1930.

[55] Ming Chen Wang and George Eugene Uhlenbeck. On the theory of the Brownian
motion II. Reviews of Modern Physics, 17(2–3):323, 1945.

[56] Nicolaas Godfried Van Kampen. Stochastic processes in physics and chemistry. Else-
vier, 2007.

[57] Daniel T Gillespie.Markov processes: an introduction for physical scientists. Elsevier,
1991.

[58] John C Slater. A simplification of the hartree-fock method. Physical review, 81(3):385,
1951.

[59] Yoshiki Kuramoto. Self-entrainment of a population of coupled non-linear oscillators.
In International symposium on mathematical problems in theoretical physics, pages
420–422. Springer, 1975.
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