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ABSTRACT

Motion as an Information Signal in Physical Human-Robot Interaction

Kathleen Fitzsimons

Robots can be capable partners when interacting with humans, but their value is

largely dependent on how information is communicated in that partnership. In physical

human-robot interaction, information is communicated via motion—configurations, veloc-

ities, forces, and torques. The autonomy interprets these implicit signals using metrics,

which ultimately drive the the autonomy. This thesis focus on how motion measures affect

the performance of the closed loop controller and our ability to statistically characterize

differences in motion due to deficit, assistance, and learning.

Perhaps the most common way to implement a control solution is to include a feedback

loop around the error with respect to a referent. In human motion, a single trajectory

cannot capture all the possible solution strategies or variance in a single task. Therefore,

I begin by describing a hybrid shared control that avoids specifying a time series of states

by using methods from model predictive control to assess user action. The resulting con-

troller improved training outcomes compared to unassisted practice and exhibited several

features that are critical to learning in physical human-robot interaction (pHRI). Analysis
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of the study of the hybrid shared control showed that a measure of the information about

the task encoded in the motion—ergodicity—was able to statistically capture the effect

of assistance and training when error and task specific measures were not able to detect

one or the other. I conclude this thesis by demonstrating how one could close the loop

on this information measure, such that robot provides forceful feedback that supports the

task goal rather than reduces local errors.
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CHAPTER 1

Introduction

As robots have transitioned from highly controlled settings in manufacturing envi-

ronments to use alongside and in collaboration with humans, the robotics community

has developed numerous machine learning approaches to help these autonomous systems

navigate these uncertain and unstructured environments. Often, the goal of learning is

to emulate human behavior or human learning strategies. Rather than examining robot

learning, the ideas in this thesis focus on using robots as tools to enhance human learning

processes—specifically human learning of physical tasks.

Robot-mediated training is not new. Some commercial robots have been available

since the 2000’s for rehabilitation. The interest in robot-mediated training stems from

the fact that robots can support many repetitions of an exercise or task and can provide

quantitative evaluation of the progress made during training. This reasoning assumes that

we have some reference definition of the task, but what should that be and how should

we adapt support to the individual needs of the user? The simplest reference definition

is a trajectory, but a reference trajectory imposes a strict adherence to a time-series of

states that does not correspond to stereotypical human motion. There are often multiple

equally good ways to perform a task—suggesting a need to encode this natural variation

into the reference or adapt the control online. This raises the question of what quantity

should be used to evaluate the human for the purposes of closing the loop and adapting

the high level support goals of the system. The most common measure used to update
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the control at a low level is error with respect to some desired system states, but to adapt

the support at a high level there are many performance heuristics used to evaluate skill

or deficit in a particular task. Unlike error, heuristics often cannot be translated from

one task to another. For instance, a heuristic for reaching is unlikely to be relevant to a

balance task.

These metrics dictate whether or not the robot should be providing assistance, resisting

an incorrect movement, or artificially increasing the difficulty of the task, so the chief

concern of this thesis is not to ask what a robot should do to support learning. Instead

we take a step back from that and ask how should human motion be measured and

evaluated in the loop? The way that we measure human movement has a direct impact

on how we can design algorithms with features that support principles of motor learning.

This thesis describes approaches to managing physical human-robot interactions that do

not require a strict time-dependent task definition by (1) focusing on the future impact

of user actions and (2) spatial statistic measures of motion quality.

1.1. Main Contributions

This thesis addresses control design in physical human-robot interaction when the goal

of the interaction is enhanced human motor learning. Specifically, it explores a training

strategy that neither actively assists users or amplifies error, instead the robot gets out of

the way of the user when action support the task goal or rejects user actions when they do

not. This strategy is enabled by measuring the user action and its future impact on the

dynamic system. Through user studies, I show how this control strategy enhances training

and explore the impact of performance measures on our ability to analyze and predict
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human motion. I introduce an information-theoretic approach to control in pHRI and

empirically compare it to an error-based assist-as-needed (AAN) controller. Thus, this

thesis focuses on how one can design and validate control methods for physical human-robot

interaction (pHRI) that enable one to create statistically consistent patterns of movement

rather than trajectories or velocity profiles.

1.1.1. Task-based Hybrid Shared Control

Traditional robotic control techniques have been designed to minimize error with respect

to a desired trajectory or produce motions that minimize an objective function consisting

of error and effort components. Early rehabilitation robots used recorded trajectories

from human experts, healthy references, or optimal task completions and ‘replayed’ them

with position controllers. However, these guidance-based approaches can provide too

much assistance, so ‘assist-as-needed’ (AAN) shared control paradigm were introduced—

usually by adjusting the gains on an impedance controller. While impedance-based AAN

controllers can interfere less often based on performance heuristics, impedance control is

fundamentally about desired velocity profiles rather than the task goal.

In some cases, the autonomy challenges the user through error amplification or random

perturbations instead of providing feedback designed to guide the user towards the desired

goal. Depending on the relative difficulty of the task, one approach or the other may be

more effective. However, the results of robotic training in general are mixed. There are

relatively few instances where robot-mediated training leads to more than small improve-

ments over human-mediated training or unassisted practice. This is perhaps because the
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adaptation of these training paradigms focuses on performance heuristics as opposed to

online evaluation of user actions based on the task goal.

Using task-based evaluation could be especially beneficial for dynamic tasks with mul-

tiple acceptable strategies. One example of this type of task is cart-pendulum inversion,

where a desired trajectory would become problematic both because slight perturbations

can significantly change the desired actions and swinging the pendulum up from the right

or left are equally good solutions. Rather than asking whether to assist or perturb user

inputs, I ask whether or not the user input should be rejected or the robot should be

transparent to the user according to whether or not the current action supports task ob-

jective. This control decision is made based on an evaluation of the impact of the current

action on the system dynamics in the future using methods from model predictive control.

The contributions of this chapter are as follows:

(1) I describe a novel approach to shared control that switches between full user

autonomy and full rejection of user inputs called hybrid shared control.

(2) Through user studies, I show that this approach enhances learning compared to

unassisted practice

(3) I demonstrate that hybrid shared control exhibits several features important to

motor learning, including improving user performance, adaptation to initial skill,

and assist-as-needed.

In this work, I developed the implementation of hybrid shared control on an admittance

controlled robot and designed a human subject study of training and retention over a

one week period. I would like to acknowledge Aleksandra Kalinowska, who introduced an

alternate acceptance criteria for hybrid shared control (the mode insertion gradient) with
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which we were able to run a second human subject study, emphasizing the effectiveness

of hybrid shared control in single training session. This work was published in [31].

1.1.2. Using Ergodicity for Analyzing and Predicting Human Motion

Measures are used for analysis, tracking progress, and to update intervention in robot-

mediated training. Energy and error are useful metrics because they allow us to reason

about the underlying principles of neuromotor control and because many well-developed

engineering techniques are based on minimizing these quantities. The problem is that

stereotypical motion—such as reaching, cleaning, self-feeding, and walking—have sub-

stantial variation between equally qualitatively successful trials, both within and between

individuals. So how should one quantitatively assess performance and incorporate mul-

tiple demonstrations into our mathematical definition of a task when there are multiple

equally reasonable approaches to solving the task?

One can develop task-specific performance heuristics that capture the qualitative de-

scription of task success and are independent of the task strategy. Yet, these are not

transferable to other tasks and do not provide insight into the underlying mechanism in

deficit or learning. In this work, I propose that we treat the body as an information

channel and motion as information-carrying signal. I use ergodicity to measure how much

information about the task is encoded in the motion. and demonstrate how this measures

captures phenomena that would not otherwise be captured with task-specific performance

heuristics or common engineering measures such as error.

The contributions of this chapter are as follows:
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(1) We show that ergodicity, which can be interpreted as the degree to which a

trajectory encodes information about a task, correctly predicts changes due to

reduction of a persons existing deficit or the addition of algorithmic assistance.

(2) We also show that the measure captures changes from training with robotic

assistance when other common measures for assessment failed to capture at least

one of these effects.

In this chapter, I develop the rationale for using ergodicity as a measure of motion quality

using reaching data from a stroke participant that was provided by Ana Maria Acosta

and experimental data from the work in chapter 3. This work was published in [30].

1.1.3. Ergodic Shared Control

Interactions with complex systems require safe and reliable interfaces. However, such

interfaces must be able to account for substantial uncertainty resulting from the unpre-

dictable and highly variable nature of human behavior. In the first chapter of this thesis,

I discuss instantaneous rejection or acceptance of user actions based on an objective

function that includes terms for error from a desired target, control effort, and barrier

functions. The impact of user actions on this objective function was evaluated at each

time instant to avoid underlying problem with a time-dependent reference definition. Per-

haps the most important feature of this control approach is its adaptability in real-time.

The approach requires no predefined trajectory, runs on an indefinite time horizon, and

automatically adapts to user skill. Yet when it comes to encoding multiple strategies

and the natural variability in human movement, it suffers from the same shortcoming in

defining the task that position controllers or path controllers do.
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In the second chapter, I explore an alternative measure—the ergodic measure—to

capture differences in task performance due to deficit and learning over time. Standard

objectives such as error or task success fail to capture both of these differences statistically.

The ergodic measure encodes the natural variation found in human motion using a distri-

bution over relevant states as the reference definition. In this chapter, we present a method

for hybrid shared control that uses the ergodic measure to encode the statistical definition

of the task into the control framework rather than simply avoiding the problems associ-

ated with time-dependent trajectories or task definitions that can only account for one

strategy. We compare this approach to an error-based path controller—virtual fixtures—

in an experimental study of timed drawing. Ergodic hybrid shared control enables one to

provide assistance based on global task goals as opposed to the local interactions managed

by error-based approaches and provides a framework in which demonstrations can be used

to define a task without loss of the variance encoded in those demonstrations.

The contributions of this chapter are as follows:

(1) I present a novel method for providing corrective feedback based on a statistical

task definition that can be generalized to a broad set of tasks.

(2) Through a user study, I compare this training paradigm to a fixed assist-as-needed

control paradigm called virtual fixtures.

(3) I demonstrate that ergodicity-based assistance can reduce error even compared

to error-based assistance and leads to better task completion.

The work in this chapter has been submitted to ACM Transactions on Human-Robot

Interaction and is currently under review.
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Overall, this thesis provides a foundation for evaluating motion in terms of information

measures as well as a potential solution to close the loop on this type of evaluation.

1.2. Dissertation Outline

This thesis begins with background information on human robot interaction and a

discussion of related work in metrics for motion evaluation. The remaining chapters are

dedicated to key works undertaken during my PhD and describe how the results motivate

further lines of study.

Chapter 3 introduces the idea of a shared control paradigm that is hybrid in the sense

that it discretely switches between full user autonomy and full rejection of user inputs.

The decision to accept or reject is made using task-based criteria to instantaneously assess

whether or not the user action will advance the system towards the task goal. This is

in contrast to other control paradigms that modulate the level of assistance based on

past performance and adjust the level of assistance on longer time frames. We find that

using this task-based acceptance/rejection paradigm, the controller exhibits many features

that are necessary for motor learning including improving task execution, adapting to user

skill, and adapting to online performance. The controller enhances training within session

and after one week compared to unassisted practice. The results of this human subject

experiment motivated further analysis into the measures used to track the quality of task

execution.

Chapter 4 uses the data from the experiments described in chapter 3 as well as data

from a stroke participant to compare task-specific measures such as task-success and bal-

ance time to task-independent measures like error and ergodicity. Task-specific measures
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failed to capture the effect of training. Error, on the other hand, statistically capture

the effect of training, but did not capture changes in performance due to deficit or the

addition of assistance. Ergodicity, which can be thought of as the amount of information

about a task encoded in a motion, captured both of these effects. Therefore, it could be

considered a useful metric to assess and predict human motion, particularly in the context

of physical human-robot interaction.

Chapter 5 describes a way to close the loop on the ergodic metric using hybrid shared

control. It is experimentally compared to training with an error-based control for HRI,

virtual fixtures, in a timed drawing task. The results showed that ergodic-based assistance

could increase performance in terms of reducing error and reducing the distance from

ergodicity, while the error-based assistance sometime improved performance but led users

to adopt a slower, more conservative strategy. Therefore, the group that trained with

ergodic feedback learned to draw more complete images, whereas the group that trained

with error feedback generated drawings that were precise, but less complete and less

accurate.
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CHAPTER 2

Background and Related Work

This thesis is principally concerned with enhancing human learning through physical

human-robot interaction (pHRI). Therefore, this chapter provides background information

on the broader landscape of research in human-robot interaction (HRI) and the unique

issues associated with robot-mediated training and rehabilitation. Although HRI has a

huge variety of applications, ultimately metrics are used to drive the autonomy, so a

discussion of the relevant work on measures of human motion is also presented.

2.1. Human-Robot Interaction

Human-robot interaction is a huge research domain that covers a broad range of ap-

plications from humanoid robots for behavioral therapy to autonomous vehicles. The

research problems addressed in the field of HRI can be both robot-centric, where human

inputs are leveraged to improve the performance of the robot, or human-centric, where

interfaces are designed enable people to easily control or receive assistance from a robot.

Some work also focuses on human-robot collaboration where the is a focus on effective

teaming. Regardless of how the HRI is framed, a key challenge to robots interfacing with

or working in close proximity to humans in any context is communication. Whether it is a

social robot processing natural language or an assistive wheelchair recording inputs from

a joystick, the robot must acquire information from humans and correctly interpret it in

the context of the environment and task. However, communication modalities in HRI are
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diverse and complex. Some systems rely on explicit communication such as processing

natural language input [123] or using binary queries [110]. Increasingly, autonomous sys-

tems acquire knowledge about attention, intent, or emotional state using implicit methods

like tracking eye gaze and body posture [124]. Importantly, this communication is not

one way. Robots act on incoming signals to generate situation-appropriate responses. In

any situation, the autonomy uses metrics to drive the algorithmic responses.

Physical human-robot interaction is a special case of communication because watching

a robot walk around you (e.g., a cleaning robot) is much different than walking around with

the robot(e.g., an exoskeleton). There are a 3 main motivations for considering consider

physical interactions. First and foremost is that as humans and robots increasingly occupy

the same physical spaces, unintended collisions need to be detected and managed to ensure

safety [17]. Therefore, new tactile sensors and sensing modalities continue to be developed

to improve the robot’s sense of touch using force/torque sensors, capacitive sensing arrays,

and robot ’skins’ [20]. Second, physical corrections and guidance from humans can be used

to help robots learn new behaviors or skills [6, 60, 72]. Finally, continuous intentional

forceful interactions are necessary in cases where the human and robot are acting as a

team—comanipulating an object [83] or sharing control of a vehicle [121]—or when the

robot is physically supporting training exercises. In the case of unintended collisions or

physical corrections, robots receive explicit communication via their tactile sensors, but

in cases where humans and robots are completing a task in cooperation, its difficult for

the human or the robot to assign explicit meanings to force/torque signals except in

some limited task-free applications like rendering haptic objects in a virtual environment

or force amplifying exoskeletons. Furthermore, implicit communication through forceful
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interactions is not as well-studied as implicit information gained from non-tactile signals

such as eye gaze [2] or explicit communication using natural language [123]. Therefore

there is much more uncertainty about how each side of the human-robot pair will interpret

the other’s physical contributions to a joint task.

This thesis focuses on interactions in which the goal is for the human to learn from

tactile interactions. It follows that we should, in general, expect reliance on the robot to

decrease as users become more competent—meaning that our interaction strategy needs

to change and adapt based on some measure of progress. Yet, there is not a clear way to

measure competency or progress and algorithmically we need some metric to decide when

and how to modulate the interaction strategy. Here, I take a task-oriented approach to

close the loop on assistance and suggest that one can detect learning and understanding

of a task by measuring the implicit information encoded in motion.

2.2. Reference Definition and Performance Metrics for Autonomy

Characterizing the quality of motion is most often done by measuring error with

respect to target location and transit time to that target [97]. These measures have

been well validated in the context of quasistatic tasks—those tasks where the timing

of the tasks is not critical to accomplishing the task and where there is not very much

variation in strategy. Some tasks, however, are very sensitive to timing and strategy (e.g.,

upright balance). In figure 2.1, we examine inversion—a classic problem in the field of

control that depends on a strategy for first exciting dynamics and then stabilizing near

an unstable equilibrium. Strategies for inversion can vary substantially from subject to

subject and timing can vary as a function of perturbations to a trajectory. As a result,
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the divergence between two trajectories can be quite large even when both accomplish a

task well. Metrics, such as those that focus on error between a desired trajectory and the

subject trajectory can overprescribe the behaviors necessary to accomplish a task.
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Figure 2.1. Different approaches to cart-pendulum inversion lead to very
different trajectories. Nevertheless, the spatial statistics of the trajectories
end up being very similar.

Why do people exhibit so much variation in their trajectories when they are nominally

doing the same task? One possibility is that small differences in mechanics and interpre-

tation of the goal lead to large differences in outcomes. I would instead argue that the

measure of motion quality itself may be to blame—that error (the integrated norm of the

difference between two curves) does not capture what makes two motions similar to each

other. As an alternative, one can use measures of spatial statistical similarity of time

evolutions (e.g. ergodicity) to quantitatively assess motion.

In humans, we observe stereotypical movement patterns for things like reaching, self-

feeding, and walking despite the fact that there are infinitely many trajectories that

can satisfy those high level task goals. The ability of the nervous system to plan [39],

control [127], and learn [142] movements is commonly modeled using a control response to
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a task-based objective [141]. Even in a simple mechanics-based model, human-like walking

has been interpreted as an energy-minimizing trajectory that bears similar qualitative

characteristics to human gait [14]. The objective function (energy, error) in these cases

is typically explicitly dependent on the trajectory, most often the error with respect to

a desired trajectory. Moreover, without the objective to describe the task, planning and

control cannot be used to analyze or predict motion. As a result, error and energy are

the de facto standards for creating a metric that describes how well a particular motion

accomplishes a task.

In both the upper and lower limb tracking error or kinematic error is measured by com-

paring trajectories to some model of a normative trajectory. Error is a useful metric both

because it is not task-specific and because many well-developed engineering techniques

are based on minimizing error with respect to some reference trajectory [77, 103]. These

optimal control techniques define the relationship between desired movement and motor

control for both the study of human motor control [127] and the advancement of humanoid

robots [62], but how should one rigorously define stereotypic movement patterns, partic-

ularly when there is a large amount of variation among normative motions? One possible

answer is to approximate normative movements of the upper limb based on mathematical

models such as a minimum jerk trajectory in reaching [58, 108, 139, 140]. Other options—

used in rehabilitation robotics—are to use the movement of the “good” limb [40, 74, 131]

or to scale/parameterize the time, amplitude, offset, and range of recorded movements

from healthy subjects using online optimizations or machine learning occurring over many

iterations of the same task [3, 5, 21, 26, 107]. For most tasks there is no model, so re-

searchers choose one or more performance measures that are specific to the task such as
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work area [24], movement speed [48], or a combination of velocity threshold, aim, and

maximum reach [58] in order to evaluate human performance and/or modulate robotic

assistance.

One reason these task specific measures capture the qualitative description of task

success is that they are independent of the strategy. The result is that movement gets

evaluated in highly task-specific manners, each one essentially a special case that does

not generalize. For healthy subjects, variations in strategy may play less of a role in

reaching tasks, but there are many strategies that subjects might use to enable balance,

dynamic inversion, or locomotion. Given the amount of variation that exists in strategies

used by healthy subjects, how should one choose a reference motion to measure perfor-

mance? Measuring the statistical variation as a function of state (between a trajectory

and the distribution of normative motions) might be preferable to measuring the error

as a function of time (between the trajectory and an average normative motion). Com-

paring the statistics of two distributions is often done using measures of information, so

I assert that information measures—for which there are information maximizing tech-

niques [81, 133]—have the potential to be used to analyze movement, predict features of

neuromotor control, and teach robots through observation of task executions.
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CHAPTER 3

Task-Based Hybrid Shared Control for Training Through

Forceful Interaction

Despite the fact that robotic platforms can provide both consistent practice and ob-

jective assessments of users over the course of their training, there are relatively few

instances where physical human robot interaction has been significantly more effective

than unassisted practice or human-mediated training. This chapter describes a hybrid

shared control robot, which enhances task learning through kinesthetic feedback. The

assistance assesses user actions using a task-specific evaluation criterion and selectively

accepts or rejects them at each time instant. Through two human subject studies (total

n=68), we show that this hybrid approach of switching between full transparency and

full rejection of user inputs leads to increased skill acquisition and short-term retention

compared to unassisted practice. Moreover, we show that the shared control paradigm

exhibits features previously shown to promote successful training. It avoids user passivity

by only rejecting user actions and allowing failure at the task. It improves performance

during assistance, providing meaningful task-specific feedback. It is sensitive to initial

skill of the user and behaves as an ‘assist-as-needed’ control scheme—adapting its en-

gagement in real time based on the performance and needs of the user. Unlike other

successful algorithms, it does not require explicit modulation of the level of impedance or

error amplification during training and it is permissive to a range of strategies because of
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its evaluation criterion. We demonstrate that the proposed hybrid shared control para-

digm with a task-based minimal intervention criterion significantly enhances task-specific

training.

3.1. Introduction

Approaches to designing kinesthetic feedback for robotic training platforms lie on a

spectrum from antagonistic and resistive strategies that are dynamically updated based

on user performance to passive assistive strategies in which users have a consistent guide

during training. Training regimens at either end of the spectrum have been shown to be

appropriate depending on the type and relative difficulty of the task. Passive assistance in

the form of virtual fixtures [109] or record and replay strategies can provide task-relevant

feedback to users by demonstrating correct movements. However, this type of guidance

may not engage or challenge users because it does not dynamically adapt to different

users or changes in user performance. Training in which errors are amplified rather than

reduced by guidance has been effective in inducing adaptations in healthy and impaired

individuals [89] during quasistatic reaching, but guidance was more effective in a timing-

based motor task when individuals were less skilled [82]. Active assistance or shared

control has been introduced as an alternative where the level of assistance or impedance

is modulated based on performance heuristics. Though the results of robotic training are

mixed, meta-analysis of studies using robotics in therapeutic settings demonstrate small

but significant improvements in patient outcomes compared to usual care [57].
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Here we present a hybrid shared control paradigm that lies in the middle of that

spectrum—it does not resist or aid correct actions but requires user action for task com-

pletion. The autonomy evaluates user inputs based on criteria that capture how well

the current input contributes to task completion. If the filtering criterion is met, the

controller is transparent to the user. When the criterion is not met, the robot physically

rejects the user input, providing feedback but not guidance. Rather than adjusting the

relative contributions of the robot and human on a continuum based on heuristics over

past performance of the user, we hypothesize that using an evaluation criterion to in-

stantaneously switch between full user control and full rejection of user actions by the

autonomy is sufficient to improve user performance, adapt to user skill, and ultimately

enhance learning of a task.

The user input is evaluated at each time instant, using methods from model predic-

tive control, which allows us to avoid prescribing a desired trajectory over time. This

enables users to try different task completion strategies, to make errors, and to fail—all

of which are critical to learning [55, 64, 125]. Additionally, the fact that we choose to

only reject user input rather than replacing user input means that users must engage in

the task actively to achieve success. The results of two user studies demonstrates that

the controller-filter also adapts to the initial skill of the users, and adjusts the level of

assistance based on current user performance much like an assist-as-needed controller.

It does this without any pre-training assessments of the user’s initial skill and without

evaluating the overall performance of the subject within the current trial or any preceding

trials. We find that this form of hybrid shared control is an effective training tool for both

improving skill acquisition and retention of skill one week post-training.



42

In this chapter we show that a hybrid approach to switching between full user au-

tonomy and full rejection of user inputs is an effective way to enhance learning through

forceful interaction with a robot. Furthermore, we show, through two user studies, that

the task-based switching control leads to improved subject performance while the as-

sistance is engaged, decreased intervention for highly skilled users, and assistance that

increases when subject performance is poor and becomes more transparent when subjects

perform well.

The chapter is organized as follows. First, we review relevant work in robotic training

in Section 3.2 and our prior work in Section 3.3. We introduce the hyrbid shared control

algorithm in Section 3.4.1 and discuss the task-based criteria used to assess user inputs in

Section 3.4.2. The experimental platform and protocol is discussed in Sections 3.4.3 and

3.4.6, respectively. Experimental results of two user studies are given in Section 3.5—

discussing the training effect in Section 3.5.1 and the relevant features in Section 3.5.2-

3.5.4. Finally, a discussion of the results and their implications for future work is given

in Section 3.6.

3.2. Relevant Background

Using robotics in training provides a platform for consistent, high intensity repetitions

that are not limited by the time the coach or therapist has available. In rehabilitation

settings, specifically, devices can provide support and safety—reducing the physical and

cognitive load of the caregiver. Patients who receive additional therapy with robotics

often have improved clinical outcomes compared to patients receiving the standard of

care [59, 74, 104, 119, 134]. Furthermore, robotics can quantitatively assess users [122]
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and have the potential to systematically tailor the interaction to the user’s skill or level

of impairment. As a result, there is interest in facilitating training and rehabilitation

through forceful interaction between robots and humans.

Numerous devices and control strategies have been developed to support physical hu-

man robot interaction (pHRI) and modulate it based on principles of motor learning.

Despite the development of novel hardware and software to facilitate pHRI for training

and therapy, there are relatively few instances where robotics have been used to signif-

icantly improve learning outcomes. Gains are often modest [80, 96] or equivalent to a

similar amount of human-mediated training [18, 69, 132]. The success of robot-mediated

therapy is highly dependent on the principles used to design robotic assistance and the

corresponding features of training interfaces, which vary greatly from one implementation

to another.

Traditional robotic control techniques have been designed to minimize error with re-

spect to a desired trajectory or produce motions that minimize an objective function

consisting of both error and effort components. Early rehabilitation robotics used a

recorded trajectory from a human expert or healthy reference and ‘replayed’ it with posi-

tion controllers [11, 15]. Alternatively, the reference was generated from an optimal task

completion, such as minimum jerk reaching in the upper limb [33, 41]. Robotically assist-

ing subjects to perform these normative movements has led to moderate improvements

in training outcomes compared to unassisted practice [9, 49, 76]. This type of guidance

has been especially effective when the learned task is difficult relative to the subject skill

level [36] or the subject has a high level of impairment [13]. However, haptic guidance can

actually interfere with learning [95, 112, 138] or lead to ‘slacking’ by the user [77, 105].
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When learning a task, the central nervous system encodes not only a sequence of joint po-

sitions but also a feedback control loop—making motor output necessary to learning [116].

So while it is necessary for robotic trainers to be able to assist subjects in completing the

task, especially when subjects have limited ability or skill, too much support—leading to

user passivity—is not conducive to learning.

Rather than assisting subjects with task completion, some training paradigms act an-

tagonistically to task goals, making aspects of the task more difficult and allowing failure.

For instance, robotics have been used to introduce random noise-based disturbances into

training. Supported by studies demonstrating that mistakes or errors actually enhance

learning [125], training with this approach has been shown to improve training outcomes

compared to progressive guidance strategies and unassisted practice [63]. Perturbation-

based training could also improve the robustness of robot-mediated training—in human-

robot teaming training with perturbations led to increased performance across task vari-

ants [101]. Alternatively, control strategies that explicitly amplify errors have been devel-

oped and have also been shown to improve motor learning in the upper limb [25, 27, 89],

though the effects may be transient or may not generalize to other similar tasks [87].

Interestingly, error amplification is most effective when the users are not novices [82],

suggesting that this antagonistic strategy is not appropriate for unskilled or highly im-

paired individuals. Finally, another approach is to allow users to make errors rather than

enhancing them explicitly. Simply enabling kinematic variability has proved to be more

effective than enforcing strict repetitive movement patterns [64]. As a result, impedance-

based shared control has been widely adopted in pHRI to increase kinematic variability

and allow users to make errors [55].
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While shared control approaches are often implemented to augment user inputs such

that task performance is optimized [19], it does not necessarily improve training out-

comes [85]. The efficacy of blending control signals of a human expert [52] or robotic

teacher [92, 100] with students through shared control varies depending on the task and

mode of assistance [95]. Generally, shared control for training is considered most effective

when the robot provides only as much assistance as is necessary based on estimates of

user intent [65, 144], motor contribution [107], or other performance heuristics.

Assist-as-needed control schemes are implemented by dynamically updating the rela-

tive contributions of the robot and human. Updates to the relative contributions are made

by adjusting the gains of an impedance controller based on measured outcomes [58, 91],

introducing forgetting factors that adjust robot effort according to a schedule [26, 140],

or implementing a repulsive potential field at the boundary of a virtual tunnel around a

desired path [21].

Numerous implementations of assist-as-needed controllers have been developed for

robots that support gait rehabilitation in exoskeletons [21], provide end-point guidance for

upper limb tasks [28], offer support at anatomical joints in upper limb exoskeletons [140],

and enhance sports training [78, 102, 135] with mixed results.

Given that approaches at either end of the assistive/resistive spectrum seem to be

effective in some cases and ineffective in other training scenarios, one might ask what

features of the interfaces discussed above create conditions conducive to motor learning?

One idea that is consistent across training strategies is the need for user engagement and

active participation [77], often accomplished by modulating the assistive or antagonistic

forces based on subject performance trial to trial. However, it is still unclear how to best
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implement real-time modulation. Literature suggests that it is necessary for platforms to

be capable of assisting subjects in completing the desired task, especially when the user

is unskilled. Yet, allowing or enhancing errors is critical to learning. In this chapter, we

describe a novel shared control paradigm that, through an initial human subject study,

we find to be successful in improving learning. We then explore the features of the shared

control paradigm in the context of previous findings.

3.3. Prior Work

An algorithm for filtering control inputs was proposed in [129] for noise driven swing-

up problems based on the hypothesis that noisy inputs can be a rich source of control

authority if filtered in a meaningful task-specific way. This filter was implemented by

combining a controller and a filter into a single computational unit that cancels noise

samples not driving the system towards a desired control direction. In [32] and [50],

we modified this algorithm to allow for filtering of user input. User inputs were either

accepted or rejected based on the criteria described in Sections 3.4.2.1 and 3.4.2.2. When

they were not accepted, they may be either rejected by the automation (as shown in Figure

1) or replaced with input prescribed by a control policy. In the experiments described in

this work and our previous work, subject inputs were not replaced—allowing users to fail

both allowed us to evaluate the participants’ success rate during trials with and without

the shared control and to evaluate the training effect of the kinesthetic feedback provided

to them.

Previous experiments on a touchscreen platform in [32] represented an infinite ac-

tuation scenario for the filter, since user inputs were able to be completely rejected in
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Figure 3.1. Robotic responses of hybrid share control on the example of a
hand pushing a mass. The robot filters user input by physically accepting
or rejecting it. When a user action is accepted, the robot admits the force.
When a user action is not accepted, the robot rejects it by applying an
equal and opposite force.

software. A haptic stylus (Phantom Omni by Sensable) on the other hand provided

kinesthetic feedback, but did not have sufficient power to do more than weakly resist user

inputs. We found that both implementations were able to effectively assist subjects in

swinging up a cart-pendulum system compared to their baseline performance. The touch-

screen platform indicated significantly higher success rates and lower time to success for

the swing-up task. Although the assistance mode on the haptic platform did increase the

success rate, there was no significant difference in time to success between the baseline

and the assistance mode. This was likely due to the fact that the haptic interface did not

generate enough force to strictly enforce the filter’s acceptance criterion.

Therefore, we realized the mechanical filter on a higher power robotic system described

in Section 3.4.3. Preliminary results of this work have been discussed in [50], where we

noted a modest training effect compared to controls with unassisted practice as well
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as a low, but significant correlation between the controller intervention rate and the

participant’s initial skill level. In this work, we extend these results by evaluating the

progression of subject performance over time. We also present results using an alternative

acceptance criterion and assess the skill retention of the trained group after one week.

3.4. Methods

3.4.1. Hybrid Shared Control

The hybrid shared control algorithm works as follows. Given a system and an operator,

assume that a user input is measured every ts seconds. The user input is assessed based

on one of the acceptance criterion described in Section 3.4.2—roughly asking whether

the user understands the task goal or an optimal control strategy for task completion.

When the acceptance criterion is met, if the magnitude of the user command is within

the allowed limits, the command is applied to the system. Otherwise, saturation may

be applied.1 On the contrary, if the criterion is not met, one of two alternatives can be

followed: a) the system input can be set equal to zero (user command is “rejected”) or

b) the system input can be set equal to the nominal control value. The latter case would

result in potentially never-failing interfaces, serving both training and safety purposes.

Note that in our experimental setup we followed the first approach; the rationale behind

this choice is that being allowed to fail in the task should provide clear indications as to

whether the filtering algorithm has any effect on performance. When inputs were rejected

in these experiments, a force equal and opposite to the force of the user is exerted at the

end-effector. This results in the interface being transparent when user inputs are accepted

1Saturation limits may correspond to physical constraints e.g. angle or torque/force limits etc.
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or velocity being held constant when inputs are rejected. This process is illustrated in

Algorithm 1.

Algorithm 1 Hybrid shared control algorithm

Initialize current time t0, sampling time ts, time horizon length T , final time tf , input
saturation usat and angle tolerance γ.

1: while t0 < tf do
2: Infer user input uuser from sensor data
3: Calculate the quantities in eq. 3.2 or 3.3 for time T .
4: if Filter Criterion is True then
5: if |uuser| < usat then
6: Use uuser as current input, ucurr = uuser
7: else
8: Apply saturated user input ucurr = usat
9: else
10: Completely “reject” uuser (ucurr = 0)

11: Apply ucurr for t ∈ [t0, t0 + ts]
12: t0 = t0 + ts
13: end while

3.4.2. Acceptance Criteria

In this chapter, we use two criteria. Both are reasonable interpretations of the hybrid

philosophy of shared control. The Mode Insertion Gradient (MIG) assumes the user must

be generating descent directions while the Optimal Controller Inner Product (OCIP)

insists that the user agrees with the optimal control. Because of this difference, MIG is

more relevant to assessing how well a person understands a task in the moment, whereas

OCIP is more relevant to whether the person is being taught by the optimal control

solutions we compute. Naturally these two interpretations have considerable overlap, but

in different situations the choice may matter. For instance, a driver-assist wheelchair

may need to interpret the quality of motion control a person is providing without having
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an explicit need to train the user and potentially having reason to believe that the user

needs flexibility in his/her implementation (leading to MIG being a better choice). On the

other hand, technologies geared toward rehabilitation may want to steer a person’s motor

control towards a normative set of expected solutions (leading to OCIP). The practical

consequences of these two interpretations of acceptance is that in the MIG study the

acceptance criteria was met much more frequently and user actions were rejected less

often than in the OCIP study.

3.4.2.1. Mode Insertion Gradient Criterion. The mode insertion gradient dJ
dλ

is most

often used in mode scheduling problems to determine the optimal time τ to insert control

modes from a predetermined set [4, 12, 22, 35, 136]. In these cases, it gives an estimate

of the sensitivity of the cost function to the timing of a switch from one control mode to

another. Therefore, a negative MIG at a specific time indicates that a mode switch at

that time would decrease the cost compared to not switching modes. Often, the goal is

to choose an application time when the MIG is most negative, to optimize the benefit of

switching control modes. Here we use the mode insertion gradient as a measure of the

sensitivity of the cost to a change from the nominal control, u1, to a particular user input,

u2. Instead of using the MIG to decide when to switch modes, we use it to decide whether

to switch modes and allow user input. To aid in this evaluation, we consider the MIG

over the entire time horizon T and thus use the integral of it as our evaluation criterion.

Our approach to calculating the MIG criterion is outlined below.

The mode insertion gradient is usually defined as

(3.1)
dJ

dλ
(τ) = ρ(τ)T [f(x(τ), u2(τ))− f(x(τ), u1(τ))]
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for a system with dynamics

ẋ(t) = f(x(t), u(t), t) = g(x(t)) +B(x(t), t)u(t),

where ẋ(t) is linearly dependent on the control u. In (3.1), state x is calculated using

nominal control, u1, and ρ is the adjoint variable calculated from the nominal trajectory

x(t),

ρ̇ = −∇l1(x)−Dxf(x, u1)
Tρ,

where l1(x, t) is the incremental cost and ρ(t0 + T ) = ∇m(x(t0 + T )) is the terminal cost.

Moreover, in the work presented here, we define the nominal control, u1, to be equivalent

to the calculated controller action (u1(t) = ucontroller), and we define u2 with the piece-wise

function below,

u2(t) =

 uuser t ≤ t0 + ts

u1 t0 + ts < t ≤ t0 + T

where ts is the sampling time, T is the time window over which we are evaluating system

behavior, and uuser is a user input recorded at current time t0. The control mode, u2, is

defined by a combination of user input at current time t0 and actions from an optimal

controller over time T into the future2. It is worth noting that u1 is not a schedule of

actions that is precomputed ahead of time, instead we calculate the best sequence u1

every time step ts based on the previously taken action and current state of the system.

2Sequential Action Control [130] was used to compute the nominal controller action for both crite-
ria.However, any control policy that can be computed in real-time could be used.
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The current user input, uuser is not included in the computation of u1. In turn, the

action sequence u2 is defined by a combination of user input at current time t0 and newly

calculated actions from an optimal controller over time T into the future. This gives

unique flexibility to the criterion and grants the user more control authority over the

joint system, because any user action that could be corrected for by a future optimal

action or sequence of optimal actions without destabilizing the system during the time

window T will be admitted. Even suboptimal user actions will be allowed. The MIG

quantitatively represents the benefit or disadvantage of allowing the user to push the

system in the way that they are currently trying to move it.

When using MIG as an evaluation criterion, we calculate the integral of the mode

insertion gradient over a time window T into the future

(3.2)

∫ t0+T

t0

dJ

dλ
(t)δt,

to evaluate the impact of user control u2 on the system over time T 3. When negative,

the integral indicates that u2—the user input—is a descent direction over the entire time

horizon, which can be shown by evaluating the change in cost due to a control perturbation

u2−u1. Thus, the MIG integral can serve as the basis for evaluating the impact of a current

user action on the evolution of a dynamic system over a time window into the future

and has proven in our experiments to be a balanced assessment criterion—significantly

improving performance while only minimally rejecting user actions.

3.4.2.2. Optimal Controller Inner Product Criterion. The optimal controller in-

ner product (OCIP) criterion works in algorithm 1 by computing the value of a nominal

3The time window over which the MIG integral is evaluated, T was 1 s in the experiments discussed in
this chapter. In general, the time window is chosen based on the dynamics of the system.
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controller uc based on the current state of the system. In this study, we use a model pre-

dictive controller described in [4], and when the system is near equilibrium, we switch to a

linear quadratic regulator (LQR). Note that any controller could be used, but it should be

capable of driving the system by itself according to the desired specification. Calculating

the inner product between the user input and the nominal controller establishes whether

or not the two vectors are in the same half plane (e.g. 〈uc, uuser〉 > 0). One can further

specify that the user input vector must lie within a cone near the nominal control vector

by specifying a maximum angle γ between uuser and uc. If the user input lies in the same

half plane as uc and within γ radians of uc, then the filter does nothing. This acceptance

criterion is given by,

(3.3) 〈uc, uuser〉 > 0 and |φ| ≤ γ.

If the inner product between the control and the user command vector is positive, and

the corresponding angle of the vectors is small, then the effect of user input on the system

should be similar to that of the control vector. If the user input is not in the same half

plane as uc or not within γ radians of uc, the input is rejected.

3.4.3. Experimental Platform

All subject data was collected using the New Arm Coordination Training device (NACT-

3D) shown in Figure 3.2. The NACT-3D is a powerful haptic admittance-controlled

robot that can be used to render virtual objects, forces, or perturbation in three degrees

of freedom. This device is similar to that described in [122] and [23], to quantify upper

limb motor impairments and provide a means to modulate limb weight support during
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Figure 3.2. The New Arm Coordination Training 3D (NACT-3D) device
provides haptic feedback in three dimensions to simulate a specified inertial
model via admittance control. A force-torque sensor at the end-effector
provides input to the admittance control loop. During this experiment,
high stiffness virtual springs were used to restrict user motion in the z-
direction while allowing them to move freely in the x-y plane. The display
(bottom left) provided real-time visual state feedback of the cart-pendulum
system.

reaching. While in use, the subject is seated in a Biodex chair connected to the base of

the NACT-3D with their arm secured in forearm-wrist-hand orthosis. The NACT-3D is

capable of exerting forces at this interaction point between the user and the robot in the

x, y, and z directions only. The impedance control is updated at 1000 Hz.

The NACT-3D can move its end effector within a workspace defined both by its design

limits (a radius of approximately 0.6m around the participants shoulder in the half plane

in front of the participant’s chest) and safety limits set by the investigators. The splint
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can rotate passively but no torque can be exerted by the robot. At the point where the

splint is mounted, a force-torque sensor measures the subject input which is fed back to

the admittance controller. The peak push-pull force that can be exerted by the device

of the device at the end effector is approximately 4.7 kN. The force measured at the end

effector is sent to a host computer for use in the assistance algorithm to compare the user

input to the control policy and perform the filter update at a rate of 60 Hz. In Figure 3.3,

f(s) is the subject control input which is used in the filtering algorithm. At start up, the

haptic model is set such that the model of the end effector accounts for the mass of the

subject’s arm as well as an inertia parameter defined by the investigator.

During testing, a display provided real-time visual state feedback to the user about

the cart-pendulum system s/he was trying to invert. High stiffness virtual springs in the

haptic model were used to restrict user motion to a horizontal plane corresponding to the

path of the cart in the virtual display. When user inputs met the criterion being used,

they were accepted and the robot behaved according to the control scheme described in

Figure 3.3. When user inputs did not meet the criterion for acceptance, the user input

f(s) was ignored by the admittance controller, such that the robot maintained its velocity

at the time of rejection. Although the device was capable of replacing the user input with

an input prescribed by an optimal controller, we chose to simply reject user actions. In

this way, we provide feedback only by corrections without demonstrating or guiding the

user in the correct action.



56

Figure 3.3. A voluntary force f(s) is measured at the robot’s end-effector
using a six degree of freedom force-torque sensor (JR3) and passed through a
model M(s) that determines the velocity vr(s) the robot should move with.
The reference velocity is tracked by the low level velocity controllers of each
motor drive. The human also delivers involuntary impedance forces due to
movement, given by dynamics transfer H(s). Acceleration information is
fed back as a pseudo-force for extra inertia reduction of the system.

3.4.4. Experimental Task

Users were tasked with controlling a simulated two-dimensional cart-pendulum system,

which they were instructed to swing up to the unstable equilibrium (the system was

initially resting at the downward stable equilibrium). The equations that describe the

underactuated cart-pendulum system shown bottom left in Figure 3.2 are given by:

ẋ = f(x, u) =



θ̇

g
l

sin θ + u cos θ − b
ml2

θ̇

ẋc

u


(3.4)
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where the state vector x consists of the angular position and velocity of the pendulum

and the position and lateral velocity of the cart, x = [θ, θ̇, xc, ẋc], the input u is the lateral

acceleration of the cart, g is the acceleration due to gravity, b is the damping coefficient,

l is the pendulum length and m the mass at the tip.

Users kinematically controlled the cart acceleration (and thus position) by moving

their arm from left to right in the horizontal plane subject to the constraints of the

admittance controller outlined in Figure 3.3. To avoid confusion associated with conflating

the task-related forces with forces generated by the assistance algorithm [95], no haptic

feedback related to the system dynamics was displayed to the user during either nominal

task execution or in addition to the assistance. In both the assisted and unassisted cases,

users had to rely solely on visual state feedback to understand the system dynamics.

3.4.5. Sample Response

The mechanical filtering imposed by the robotic platform forces changes in the user input.

Figure 3.4 shows a sample response of user inputs in assistance mode. Shortly before t = 4

s, we see an example of a rejected user action. Although the user input (gray) is a positive

acceleration, the filtered input (red) is zero, and the velocity of the cart (green) is held

constant. The optimal control signal (blue) indicated that a negative acceleration should

be applied, but this was not used to replace the user input nor was it communicated to the

user. At around t = 3.5 s, the user attempts a negative acceleration, and the prescribed

optimal controller is also negative. Under the OCIP criterion, this action is allowed and

the cart velocity decreases. This demonstrates how the mechanical filter can effectively

yield to skilled users while assisting unskilled users.
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Figure 3.4. Sample response of a subject using the NACT-3D with the
OCIP criterion. The NACT-3D is able to directly shape user input. We
can see that even relatively large user inputs (gray) can be reduced to zero
in the filtered input (red). Top: the states of the cart-pendulum system.
The subject kinematically controls the cart position xc (and ẋc) through
the cart’s lateral acceleration. We see the subject is able to stabilize the
pendulum for 5 s. Bottom: The reference signal and user input used in
(3.3) to generate the filtered input that drives the system.

Unlike the haptic stylus used in [32], the robotic platform used in the studies discussed

in this chapter was capable of fully rejecting the physical motions of the subjects because

of its underlying control architecture and sufficient actuation capabilities. While the

haptic stylus, relied on users to interpret the feedback and correct their motion, the

device described in Section 3.4.3 could actively correct motion while giving feedback and

did not rely so heavily on the subjects interpretation of the haptic feedback. This allowed
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us to update the mechanical filter at a higher rate (60 Hz-100 Hz) than in the previous

implementation (10 Hz), which is part of why the improvements in performance are much

greater on this device. In the trial shown in Figure 3.4, the user stabilizes the pendulum

at the unstable equilibrium at t = 9 s and maintains that configuration for 5 s.

3.4.6. Experimental Protocol

Subjects used an upper limb robotic platform (NACT-3D) as an interface to control a

simulated cart-pendulum system with state vector x = [θ, θ̇, xc, ẋc] and horizontal accel-

eration of the cart as control input. During experimental trials, the user’s goal was to

invert the pendulum to its unstable equilibrium. User input was inferred from a force

sensor at the robot’s end-effector.

At the beginning of each session subjects were seated and secured in a Biodex chair

and their left arm was secured in the orthosis on the NACT-3D (Figure 3.2). The system

and task was demonstrated to them at the start of the testing using a video of a sample

task completion. Subjects were instructed to attempt to swing up the pendulum to the

upward unstable equilibrium and balance there for as long as possible. Subjects were

instructed to continue to try to do this until the 30 second trial was over even if they

succeeded at balancing near the equilibrium more than once. Depending on the study,

subjects performed sets of 30 trials with short breaks in the same session or in sessions

scheduled approximately one week apart as shown in Figure 3.5.

Subjects were recruited locally, and had to be healthy, able-bodied adults (in the

age range of 18 to 50) with no prior history of upper limb or cognitive impairments.

Only right-hand dominant participants were accepted into the study, and each subject
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Figure 3.5. Each rectangle represents a set of 30 trials. MIG study partic-
ipants completed all sets on the same day. OCIP participants completed
sets one week apart.

performed the task with their left limb. All study protocols were reviewed and approved

by the Northwestern University Institutional Review Board, and all subjects gave written

informed consent prior to participation in the study.

3.4.6.1. MIG Study. Twenty-eight subjects (9 males and 19 females) consented to

participate in the MIG study. All subjects in the MIG study completed three sets of

thirty 30-second trials with short breaks between sets. Upon enrollment, subjects were

randomly placed into either a control (n = 10) or training group (n = 18). During

the second set, feedback in the form of a filter using the MIG criterion was engaged for

the training group, while the control group completed each of the three sets without any

feedback. Again, each user did three sets of thirty trials: set 1 (both groups: no feedback),

set 2 (control: no feedback, training: feedback in the form of a mechanical filter using

MIG), set 3 (both groups: no feedback).

3.4.6.2. OCIP Study. Fifty-three subjects (17 males, 36 females) consented to partici-

pate in this study. Each subject completed 2 sessions being approximately one week apart.
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Upon enrollment in the study, each subject was placed into 1 of 3 groups. If placed in the

training group (n = 20), the subject completed the first session with the OCIP filter and

received no assistance in the second session. If a subject was placed in the non-training

group (n = 20), they performed the task without assistance in the first session and used

the OCIP filter in the second session. Finally, a control group (n = 13) performed the

task without assistance in both the first and second session.

3.4.7. Performance Measures

The full state and user inputs were recorded in each trial and were used to calculate

task-specific performance measures as well as more general measures such as error. The

task-specific performance measures used to evaluate subjects in both studies is predicated

on a notion of success. The definition of success that was used was based on the region

of attraction for a linear quadratic regulator capable of stabilizing the system dynamics

defined in the experiments. A trial was considered successful when a subject reached an

angle of ±0.15 rad and angular velocity of ±0.6 rad/s. This definition of success was used

to determine the time to success of the users in each experiment. In addition, if a subject

was successful, the total time spent at the angle and angular velocity defined as success

was recorded as the balance time. When users were successful multiple times in the same

trial, time spent in the balance region was cumulative.

While these outcome-based measures provide clear indication about whether or not

users could meet task goals, they neglect the behavior of users away from the goal state.

Therefore, we use two measures—error and ergodicity—that use the full trajectory data

to characterize task performance. The root mean square (RMS) error of each trajectory
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Figure 3.6. A histogram of all the trajectories recorded in the OCIP study
demonstrates how the statistics of unassisted and assisted trajectories differ
from one another. The histogram of unassisted trajectories (left) has its
highest density at θ = ±π which is the farthest point from the goal state.
The rest of the distribution is diffuse over the state space. Although the
histogram of the assisted trajectories (right) also has a high density at θ =
±π, the distribution is not as diffuse as that of the unassisted trajectories.
There are bands of high density spreading outward form the goal state
(θ, θ̇) = (0, 0). The spatial statistics of the assisted trajectories are more
similar to the reference distribution, because there is a high density at and
around the goal state. This outcome is captured by measuring the distance
from ergodicity of the trajectories in each group with respect to the reference
distribution.

generated by the users was calculated with respect to the desired position in an inverted

unstable equilibrium (zero-vector of the states). RMS error was normalized by the RMS

error of a constant trajectory at the stable equilibrium, equivalent to the error of the

user not moving from the initial conditions. Finally, we also compared the experimental

conditions through an analysis of the spatial distribution of trajectories that we observe

under each condition. For instance, in the histogram of states recorded for all subject tra-

jectories (Figure 3.6), one can see that trajectories in which subjects received assistance
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have high density values near the goal state. To quantify the comparison of the distribu-

tions, we compute a metric on the ergodicity [79, 81] of each trajectory with respect to

a Dirac delta δ(x − s) function centered at the unstable equilibrium (θ, θ̇) = (0, 0). The

ergodic measure captures how well the time averaged statistics of the trajectory match

the statistics of the reference distribution. The value of this metric was determined by

calculating the weighted distance between the Fourier coefficients of the trajectory and

those of the distribution. The ergodic metric gives us the distance from ergodicity, such

that trajectories which were highly ergodic had lower ergodicity than those that were less

ergodic.

The controller intervention was measured as the percent of rejected actions (PRA).

PRA measured the fraction of user inputs that were rejected, where we defined an action

to be a non-zero user input.

3.4.8. Statistical Analysis

The MIG experiment consisted of 30 baseline trials, 30 trials with or without the MIG

filter, and 30 trials post-training for a total of 90 trials. These were grouped into blocks

of 5 trials to evaluate subject performance over time. The analysis consisted of two-factor

(block and group) repeated measures ANOVA tests, using the baseline and post-training

data only. The ANOVA’s were used to compare the effect of the MIG filter and unassisted

practice on each of the performance measures. Trials from set 2 are removed from the

analysis to avoid including the assistance itself as a factor in the experiment. In the OCIP

study, subjects trained with the filter received no prior exposure to the task without
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assistance. Student’s t-tests were used to evaluate the difference between the week 2

performance of the trained group and the week 2 performance of the control group.

The relevant features of the hybrid shared controller were evaluated statistically. First,

the ability of the shared controller to assist subjects in completing the task was tested

in each study. In the MIG study, this was done by comparing the experimental group

to controls with an equivalent amount of practice using a two-sample t-test. The effect

of the OCIP criterion as an assistive controller was tested in a counter-balanced fashion

using paired two-sample t-tests on all performance metrics. Second, the sensitivity of the

shared controller to the initial skill of the users was evaluated by performing Peason’s R

correlation tests between the level of controller intervention and the performance of users

in their first set of unassisted trials. Finally, the assist-as-needed feature of the shared

controller was shown by testing the correlation between the level of controller intervention

and the current performance of subjects.

3.5. Results

The results were reported as follows. First, the training effect of each study was

statistically tested in Section 3.5.1. The results demonstrated that training with the

hyrbid shared controller increased subject performance in later trials within the same

session (Section 3.5.1.1) and in a session one week after training (Section 3.5.1.2). An

analysis of the hyrbid shared controller was performed to test for three characteristics of

effective pHRI. In Section 3.5.2, the performance improvement made while the criterion

was engaged was evaluated in both the MIG study and the OCIP study. In Section 3.5.3

and 3.5.4, the correlation of the percent of rejected actions with the initial skill and current
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performance are reported to evaluate the sensitivity of the shared controller to user skill

and its ability to assist-as-needed, respectively. In each section the relevant statistics are

reported first, followed by a summary and interpretation of the results.

3.5.1. Training Effect

The effectiveness of the filter as a training tool was assessed in both experiments. In

the MIG study, we consider only skill acquisition within a single session. We assess the

retention of skill over the course of one week in the OCIP study.

3.5.1.1. MIG Study: Skill Acquisition. Two-factor repeated measures ANOVAs

were used to assess the effects of the group (between-subjects) and set (within-subjects)

on all performance measures listed in Section 3.4.7. The training group and control group

were evaluated based on the baseline trials (set 1) and the post-training trials (set 3)

only. Set 2 was left out of the ANOVA, so that effects of the assistance itself would not be

measured in the analysis. In order to assess how subject performance evolved over time,

the baseline and post-training sets were analyzed using blocks containing five individual

trials. Therefore, there were 6 blocks in each set as shown in Figure 3.7.

The factorial ANOVA of the balance time revealed that block was the only significant

factor (p < 2 × 10−16, F (11, 286) = 10.775). The main effect of group and interaction

effect of group and block were not significant for balance time (p > 0.05). When an

analysis of variance was performed on the time to success, again, the main effect of block

was significant (p = 3.81 × 10−15, F (11, 286) = 9.848) and the main effect of group was

not significant (p = 0.533, F (1, 25) = 0.399). However, the interaction effect of group

and block was significant (p = 0.0135, F (11, 286) = 2.222). The control and trained
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Figure 3.7. The MIG study showed that subjects improved with practice in
all sets regardless of training group, however, there was a significant inter-
action effect between training group and block when ANOVAs were applied
to three of the four performance metrics. This suggests that although sub-
jects in each group started around the same performance level, the trained
group attained a higher level of performance than the the control group
during the post-training trials. Note that the set 2 performance (gray) was
not included in the ANOVA to avoid measuring effects of the assistance
itself.

group performed similarly in the baseline trials. The time to success decreased even

before the training set (Figure 3.7). However, the control group essentially plateaued

during the training set and saw large fluctuations in the time to success during the post-

training trials. The time to success of the trained group decreased during training and

was maintained in the post-training trials.

The group also was not a significant factor affecting the RMS error (p = 0.223, F (1, 25) =

1.560), but main effect of subset (p < 2× 10−16, F (11, 286) = 20.620) and the interaction

of group and subset (p = 0.004, F (11, 286) = 2.575) were significant. When the error

of the control group and trained group was plotted over time (Figure 3.7), the control

group error decreased initally but leveled off. The error of the trained group continued to

decrease during training and in the post-training trials.
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When the distributions of the trajectories were compared using the ergodic metric,

the significant factors were the subset (p < 2 × 10−16, F (11, 286) = 18.311) and the

interaction between group and subset (p = 0.030, F (11, 286) = 1.983). The main effect

of group was not significant (p = 0.294, F (1, 25) = 1.151). The progress of the ergodic

metric over time was similar to that of the RMS error.

(a) The density function of trained group
trajectories subtracted from the control
trajectories density.

(b) Control trajectories density function
subtracted from the post-training trajec-
tories density.

Figure 3.8. Trajectories from Week 2 of the OCIP study showed that sub-
jects who trained with the hyrbid shared controller spent more time near
the goals state (θ, θ̇) = (0, 0) than subjects who practiced unassisted. On
the left, the week 2 control trajectories have higher densities than the post-
training trajectories at higher angular velocities as well as in bands near
θ = ±π which is the farthest angle from the goal state. The control tra-
jectories also spend time near the goal state, but to a lesser extent. On
the right, the trained trajectories also have high density near θ = ±π, but
there are large bands of high density in the region −1.5 ≤ θ ≤ 1.5 and
−4 ≤ θ̇ ≤ 4. This suggests that the trained group’s motions were more
consistent with the task goal—making the statistics of the trained group
closer to the spatial statistics of the reference Dirac delta distribution, so
the ergodic measure of the trained group is lower than that of the controls.
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The results of the ANOVA of each of the performance measures showed that subset

was a significant factor—implying that regardless of the training in set 2, all subjects

performed better in later sets than in their initial sets. The significant interaction effect

observed in three out of the four metrics demonstrates that while the subjects started at

the same performance level, subjects in the trained group attained a higher performance

level than the control group.

3.5.1.2. OCIP Study: Short-term Retention. The effect of training was assessed

by comparing the week 2 session of the trained group to the week 2 session of the con-

trol group. The two groups were not significantly different in terms of the task-specific

measures of success. However, the trained group had significantly lower RMS error,

and the distributions of the trained group’s trajectories were more similar to the refer-

ence distribution, resulting in a much lower ergodic measure than the control group. A

two-sample t-test was performed on the task specific performance measures, finding no

difference between trained group and untrained group in terms of their time spent bal-

anced (p = 0.1687, t(988) = 1.378) and time to success (p = 0.1935, t(988) = 1.301).

The two-sample t-test of the RMS error showed a significant difference between the

trained (mean = 0.621, SD = 0.058) and control (mean = 0.629, SD = 0.061)

groups (p = 0.0499, t(988) = −1.963). The t-test of the ergodic metric also showed a

significance difference (p = 2.266 × 10−4, t(988) = −3.701) between the trained group

(mean = 0.705, SD = 0.177) and the control group (mean = 0.751, SD = 0.207). Al-

though subjects who trained with the OCIP criterion were not successful more often than

the control group, they did spend a higher proportion of their time near the goal state

as can be seen by the histogram of their trajectories shown in Figure 3.8. These results
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suggest that subjects learned more and retained that skill one week after training when

they trained with assistance rather than simply practicing the task unassisted.

The progress of the two groups over the second session (Figure 3.9) was analyzed

further by performing mixed design ANOVAs on the training group (between participants)

and block (within participants) using all four measures.

The balance time of the control group and the trained group in the second session was

analyzed with a 2 (training groups) x 6 (blocks) mixed design ANOVA, which showed no

significant main effects or interactions effects. The main effect of training group was not

significant F (1, 31) = 1.202, MSE = 1.25, p = 0.28, Cohen′sf = 0.08. The main effect

of block also was not significant F (5, 155) = 2.018, MSE = 0.44, p = 0.079, Cohen′sf =

0.11, nor was the interaction of training and block significant F (5, 155) = 1.05, MSE =

0.23, p = 0.39, Cohen′sf = 0.08.

The mixed design 2 x 6 ANOVA design was also applied to the time to success,

and the main effect of training group was not significant F (1, 31) = 0.334, MSE =

103.4, p = 0.567, Cohen′sf = 0.05. The main effect of block was not significant either

F (5, 155) = 1.34, MSE = 66.32, p = 0.25, Cohen′sf = 0.09. The interaction effect of

block and training group also was not significant F (5, 155) = 1.34, MSE = 66.50, p =

0.25, Cohen′sf = 0.09.

The same mixed design ANOVA was used to analyze the RMS error in each trial. The

main effect of block was significant F (5, 155) = 4.336, MSE = 0.011, p = 0.001, Cohen′sf =

0.19, but the main effect of training was not significant F (1, 31) = 0.76, MSE =

0.035, p = 0.39, Cohen′sf = 0.15. The interaction effect of training group and block also

was not significant F (5, 155) = 1.61, MSE = 0.004, p = 0.16, Cohen′sf = 0.12.
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Figure 3.9. The results of the OCIP study demonstrate that subjects
trained in week 1 retain high performance levels in week 2 as measured
by RMS error and ergodicity. In the first 2 blocks of trials, the error and
ergodicity of the control group are higher than that of the trained group.
The trained group retains their initial performance level, while the control
group continues to improve—eventually reaching the same level of perfor-
mance as the trained group. It appears the feedback helped with retention
because the learning was more structured. Note that the performance mea-
sures in week 1 (gray) were not used in the statistical analysis to avoid
measuring the effects of the assistance itself.

The analysis of the ergodic metric using the mixed design ANOVA revealed a signifi-

cant main effect of block F (5, 155) = 2.88, MSE = 0.08, p = 0.0163, Cohen′sf = 0.15,

and a significant interaction effect of block and training group F (5, 155) = 2.33, MSE =

0.06, p = 0.045, Cohen′sf = 0.14. The main effect of training was not significant

F (1, 31) = 1.056, MSE = 0.49, p = 0.312, Cohen′sf = 0.17.

In Figure 3.9, the control group performed worse at the beginning of the second session

that it did at the end of the first session, and their performance increased in terms of error

over the course of the session. The trained group also improves moderately during the

second session. The ANOVA of the ergodic metric is also able to detect the significant

improvement during the second session by the control group as well as the interaction effect

of group and training. This interaction is a result of the trained group performing better
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under the ergodic metric at the beginning of the second session and maintaining that

performance, while the control group eventually reached the same level of performance.

Training with the OCIP criterion in week 1 speeds learning, and skill is retained after one

week though the improvements due to unassisted practice are not retained.

3.5.2. Task-based Assistance

We evaluate the ability of the hybrid shared controller to assist subjects in completing

the task while it is engaged. In the MIG study, we compare the the control group to the

group recieving assistance during their second set of trials. In the OCIP study, the order

in which subjects received assistance was counterbalanced, such that subject performance

in the assisted session was compared to the same subject’s performance in the unassisted

session.

3.5.2.1. MIG Study. Comparisons between the control and experimental groups are

shown in Figure 3.10. Two-sample t-tests showed that there was no significant differ-

ence between the control group (n = 10) and experimental group (n = 18) baseline

performance in terms of their balance time (p = 0.178, t(793.22) = 1.35), time to suc-

cess (p = 0.9497, t(644.23) = 0.063), error (p = 0.411, t = 749.28 = −0.822), or

ergodicity (p = 0.507, t(711.17) = −0.6631). During the training set (set 2), the ex-

perimental group (mean = 2.36, SD = 3.47) maintained the pendulum in the balanced

position for significantly longer (p = 7.674 × 10−8, t(832.55) = 5.42) than the control

group (mean = 1.37, SD = 1.78). The group receiving assistance also reached the bal-

ance position more quickly than the group practicing the task without assistance (p =
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Figure 3.10. The MIG filter study demonstrated that the filter successfully
assisted subjects in set 2 compared to controls. Moreover, trained subjects
outperformed the control group in set 3. Note: error bars indicate standard
error; significance is indicated by ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

9.87×10−5, t(666.93) = −3.9174), so the experimental group (mean = 17.98, SD = 9.79)

had a lower time to success than the control group (mean = 20.58, SD = 8.84).

The RMS error of the experimental group (mean = 0.605, SD = 0.087) was also

significantly lower (t(753.59) = −5.925, p = 4.738× 10−9) than that of the control group

(mean = 0.636, SD = 0.066). Finally a comparison of the trajectory distributions

of the experimental group in terms of ergodicity (mean = 0.398, SD = 0.157) to the

distributions of the control group (mean = 0.441, SD = 0.131) showed that the filter

was effective able to effectively assist subjects in the task (t(707.63) = −4.2435 p =

2.494× 10−5).

The two experimental groups performed similarly in their baseline trials, but in set 2,

the group using the filter outperformed the control group in terms of balance time, time
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to success, RMS error, and the ergodic metric. This demonstrates that the hyrbid shared

controller using the MIG criterion meets the basic requirement of assisting subjects with

the task while in use.

3.5.2.2. OCIP Study. In the study of the OCIP criterion, subjects were randomly

placed into either a group who used the shared controller in the 1st session (n = 20)

or a group who used the shared controller in the second session (n = 20). Therefore,

the ability of the hybrid shared controller to provide assistance was tested in a coun-

terbalanced fashion. Pairwise student’s t-test were used to compare performance with

and without the assistance of the filter on a subject by subject basis. Subjects did not

have significantly lower error (t(1199) = −1.674, p = 0.0949) when using the OCIP filter

(mean = 0.626, SD = 0.102) compared to unassisted trials (mean = 0.632, SD = 0.062).

Under all other metrics, subjects performed better on the day that they used the OCIP

filter compared to their performance on the day they performed the task without assis-

tance (p < 10−14) as shown in Table 3.1. These results showed that the shared controller

with the OCIP criterion was able to help subjects complete the task more frequently.

3.5.3. Hybrid Shared Control Adapts to Initial Skill

We previously reported that there was a relationship between participant skill level—

estimated based on performance in unassisted trials—and the frequency of controller

intervention in the MIG filter mode in [50]. In that case, we calculated the success rate of

the 30 trials from set 1 to approximate user skill level. We then used Percent of Rejected

Actions (PRA) values from individual trials in set 2 from the same users to identify the

correlation.
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No Assistance Assistance
n = 40

Measure µ SD µ SD ∆µ t df p
Success Rate 0.348 0.163 0.792 0.182 0.444∗∗∗ 12.314 39 5.162× 10−15

Balance Time 0.191 0.411 1.661 1.913 1.47∗∗∗ 26.519 1199 2.541× 10−122

Time to Success 25.333 7.648 20.068 7.824 −5.265∗∗∗ −17.202 1199 1.926× 10−59

Error 0.632 0.062 0.626 0.102 −0.006 −1.674 1199 9.477× 10−2

Ergodicity 0.739 0.191 0.631 0.283 −0.108∗∗∗ −11.261 1199 4.954× 10−28

Table 3.1. The OCIP filter assisted subjects in completing the task more
frequently and at a higher level of performance in four out of five mea-
sures when subjects were randomly assigned to use the filter in either the
first of second session. Paired two-sample t-tests were performed in R [99]
comparing the unassisted and assisted trials of the 20 subjects receiving
subjects in the first session and the 20 subjects receiving assistance in the
second session. Significant differences in means are indicated by ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001. Note that the degree of freedom (df) for success
rate is 39 since there is only one rate per subject.

The PRA of OCIP filter had a moderate correlation to the initial skill of the subjects

under all of our performance measures. We evaluated the correlation between initial skill

of the untrained group (n = 20) who received no assistance in week 1 and the PRA in

individual trials of the group when they did not receive assistance from the filter in week

2. We found that there is again a significant correlation between the initial skill of the

users as measured by the success rate and mean performance measures in week 1 and

the PRA of those subjects in week 2. In this case, the correlation coefficients, shown in

Table 3.2, were slightly higher, indicating a moderate correlation between the subject’s

initial performance and the filter’s response to their inputs. The correlations of each

performance metric matched the expected sign corresponding to a decrease in PRA in

response to an increase in the user’s initial skill. Although the hybrid shared controller is
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Measure Test Sign r p
Success Rate − −0.235 5.898× 10−9

Balance Time − −0.427 < 2.2× 10−16

Time to Success + 0.2444 1.2898× 10−9

Error + 0.302 4.308× 10−14

Ergodicity + 0.282 2.078× 10−12

Table 3.2. There were moderate correlations between the initial skill of the
user and PRA of the OCIP filter in all measures (p < 0.05). Pearson’s
correlation tests were performed in R [99] by applying a linear model to
the mean of performance metrics first session and percent of action rejected
by the OCIP filter. The expected sign of the correlation coefficient (r) for
a shared control scheme that is sensitive to the initial skill of the user is
indicated in the column on the right.

not tailored to either high skill or low skill users, it adapts to user skill level and could be

appropriate for both novices and expert users.

3.5.4. Hybrid shared control Assists-As-Needed

In addition to testing the relationship between the initial skill of the user and the level

of controller intervention, the responsiveness of the controller to user performance in the

current trial was tested using Pearson’s product-moment correlation. There were high

significant correlations between user performance within a single trial and the PRA in

that trial. These correlations and significance values are reported in Table 3.3. The test

sign indicated in the table indicates the expected sign of the correlation coefficient when

the controller accepts more user inputs in response to high user performance. Under each

metric, the correlation meets this expectation. This demonstrates that the robotic assis-

tance adapts in real-time to the needs of the users without including high-level performance

heuristics to tune the relative contributions of the human and the robot.
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Measure Test Sign r p
Balance Time − −0.616 < 2.2× 10−16

Time to Success + 0.602 < 2.2× 10−16

Error + 0.677 < 2.2× 10−16

Ergodicity + 0.706 < 2.2× 10−16

Table 3.3. The PRA of the OCIP filter was highly correlated with the cur-
rent performance of the users under all measures (p < 0.05). Pearson’s
correlation tests were performed by applying a linear model to the perfor-
mance measures in each trial in the OCIP study and the PRA in the same
trials. The expected sign of the correlation coefficient (r) for a shared con-
trol scheme that is sensitive to the performance of the user is indicated in
the column on the right.

3.6. Discussion

Despite the breadth of research, there are relatively few instances where physical hu-

man robot interaction has been significantly more effective than unassisted practice or

human-mediated training. In the work presented here, experimental results demonstrate

that our implementation of a task-based hybrid shared control paradigm enhances the

effect of training compared to unassisted practice. On average, subjects who trained

with our robotic feedback improved significantly more than subjects who trained with

an equivalent amount of unassisted practice. Based on analysis of the spatial statis-

tics of the post-training trajectories, the training group was capable of more controlled

movement with significantly more time spent near the goal state. Moreover, subjects

who trained with the proposed MIG shared control scheme continued to improve even

after the assistance was removed, while members of the control group plateaued in their

performance. Finally, through our studies, we observed that subjects both experienced

immediate improvement from training with feedback and exhibited short-term retention
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of the acquired skill. These results demonstrate that the proposed hybrid shared control

paradigm enhances task learning through forceful interaction.

In order to understand why the algorithm was effective, we examine the unique char-

acteristics of the hybrid shared control paradigm as well as qualities that coincide with

existing best practices in robotic training. Reviewing the motor learning literature, sev-

eral features of pHRI can be identified to lead to effective training. For one, a necessary

condition for effective training through forceful interaction is that the automation should

be able to assist subjects in completing a task while assistance is engaged. In our experi-

mental results, we show that the hybrid shared control paradigm is capable of improving

success in accomplishing a dynamic task during the trials in which it was engaged. In

the MIG study in set 2, subjects performed better across all metrics when assistance was

engaged, even though on average they started off at the same skill level in set 1. Similarly,

the subjects in the OCIP study performed better with assistance compared to their own

unassisted trials.

Secondly, interfaces should avoid user passivity and require substantial user effort.

This is inherent to our algorithm because the hybrid controller never actively assists with

task completion by only rejecting, but not replacing, incorrect actions. As a result, users

are allowed to fail at the task and when they succeed, they succeed through their own

actions. While impedance-based assist-as-needed controllers can interfere less based on

performance heuristics, impedance control is based on desired velocity profiles rather than

the task goal. The hybrid shared control paradigm discussed in this chapter uses a task-

based criterion in order to measure whether or not it is needed. This allows the controller
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to effectively get out of the way when users are progressing towards the task goal on their

own—maximizing their effort.

Building on the principle of requiring effort from the patient, shared control paradigms

have been shown to be more effective when they adapt the level of assistance over time,

assisting only as much as is necessary. The need for modulating the level of assistance can

be due to two factors: (1) differing initial user skill level and (2) varying user performance

over time. Users are expected to progress in their training over time. However, it is not

enough for the level of assistance to decrease over time or after a certain performance

target had been reached—there are cases, where subjects fatigue or become less engaged

if the task is too difficult, so interfaces must be able to adjust both up and down in

response to the automation’s current assessment of the user. In our results, we show that

the proposed shared control paradigm adapts to user initial skill and exhibits properties

of an ‘assist-as-needed’ controller, reducing or increasing its intervention according to user

performance in real-time. In future studies, it would be interesting to explicitly assess

fatigue in between or during trials. In this way, we could adjust assistance based on

current levels of fatigue and/or control for the effects of fatigue in study outcomes.

All in all, we present here a hybrid shared control paradigm that significantly im-

proves task learning. We use a task-based criterion to discretely switch between full user

control and full rejection of user control, which allows us to synthesize an interface with

characteristics important for motor learning. Experimental data confirms that the shared

control scheme exhibits these characteristics.

We also found that within a single session, trained subjects attained a higher level

of performance than their counterparts who practiced unassisted. Yet at the end of
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the second session in week 2, control subjects reached the same level of performance

as the trained group. This is likely due to the difference in when the hybrid shared

control was introduced, and indicates an opportunity to explore the scheduling of assisted

and unassisted practice over the course of a training regimen. In future work, we plan

to test subjects in higher-dimensional tasks and make comparisons to other assist-as-

needed controllers, such as path controllers, active constraints, and other impedance-based

approaches. In addition, we are exploring ways to define more complex tasks where it

may be difficult to define a desired trajectory or goal state.

3.7. Conclusion

Numerous devices and control strategies have been developed to facilitate forceful

interaction between humans and robots for the purposes of training specific skills or tasks.

However, it is difficult to show the efficacy of these robots in promoting skill learning.

Some types of robot-mediated training may be detrimental to learning, and others might

be no more effective than an equivalent amount of unassisted practice. Interfaces for pHRI

that have been shown to successfully enhance training have several features explicitly

included in their design to enhance motor learning. Specifically, the automation must be

able to assist users in completing the task and adapt the assistance to the needs of the

individual user in terms of both initial skill and current performance in order to promote

user engagement.

In this work, we investigate the use of a hybrid shared control method for assistance

and training. The interface allowed subjects to make errors and even fail at the task.

While the application of the filter improved subject success rates, it did not make subjects
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successful all of the time. It also avoided enforcing a specific trajectory by evaluating the

effect of user inputs on a continuous basis. Results from two user studies with different

task-based acceptance criteria demonstrate the method’s effectiveness in both assistance

and training. Analysis of the correlations between the level of controller engagement and

the initial skill of the users showed that the filter is sensitive to users’ skill level. While the

filter inherently adapts with every measurement of the user inputs, the strong correlation

between performance measures and the level of controller intervention shows that this

instantaneous adaptation results in a controller that also assists as needed according to

the performance of the user in an individual trial.
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CHAPTER 4

Ergodicity Reveals Assistance and Learning from Physical

Human-Robot Interaction

This chapter applies information theoretic principles to the investigation of physical

human-robot interaction. Drawing from the study of human perception and neural en-

coding, information theoretic approaches offer a perspective that enables quantitatively

interpreting the body as an information channel, and bodily motion as an information-

carrying signal. We show that ergodicity, which can be interpreted as the degree to which

a trajectory encodes information about a task, correctly predicts changes due to reduc-

tion of a person’s existing deficit or the addition of algorithmic assistance. The measure

also captures changes from training with robotic assistance. Other common measures for

assessment failed to capture at least one of these effects. This information-based interpre-

tation of motion can be applied broadly, in the evaluation and design of human-machine

interactions, in learning by demonstration paradigms, or in human motion analysis.

4.1. Introduction

Hundreds of devices have been designed and built to facilitate forceful interactions

between humans and an autonomous system for the purposes of training, safe collabora-

tion, and physical task assistance [17, 38, 83]. The goal of these systems is to augment

the capabilities of the human either by providing feedback that enhances the training

of a person in a certain task or by eliminating an existing deficit, such as weakness or
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discoordination due to a neuromotor pathology. As a result, these robotic systems have

unique requirements for sensing, actuation, and algorithmic design. In particular, the al-

gorithmic component must be able to infer the quality of the measured behaviors or tasks

performed by the joint human-robot system, implying the use of an appropriate metric as

the basis for evaluating and modulating the human-robot interaction. However, it is un-

clear what metrics are appropriate for automating human-machine collaboration. Should

one use measures from traditional robotic control such as trajectory error, biologically

relevant measures (e.g., energy), or task-specific measures of motion quality? The choice

of metric has implications beyond modulation of the interaction, including evaluation of

the effectiveness of the physical interaction between the human and robot. One of the

purposes of the interaction should be discernible improvements in performance from the

assistance and learning from the assistance. In this chapter, we show that ergodicity—a

measure of the task information encoded by a movement—can predict the presence of

robotic assistance and detect the training effect of assistance.

In the human body, sensory information and motor commands are transmitted by

nerve fibers conducting action potentials from one synapse to the next. Information

theory provides a means to measure the information contained in such signals and to

characterize the communication channel [117]. Part of the difficulty of analyzing neural

signals are the idiosyncratic sources of variability, but applying information theoretic

principles to the nervous system has allowed us to understand and analyze neural coding

and organization [7, 86, 98] as well as cognitive perception [118, 143, 145]. Here we

provide evidence that the motions resulting from neuromotor signals can be understood
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as information-carrying signals themselves, and that information measures can also be

used to analyze the movement and predict features of neuromotor control.

While signals analysis has been broadly applied to study the transfer of information

from stimuli to cortex, principles from information theory are rarely used to model the

ouput of motor commands. Instead theories of motor coordination are often developed on

the basis of constrained optimization, often substituting the behavioral goal with the mini-

mization of a measured quantity such as error or energy [14, 126]. These are useful metrics

both because they allow us to reason about the underlying principles of neuromotor con-

trol and because many well-developed engineering techniques are based on minimizing

these quantities [29, 77, 89, 103]. Therefore one can characterize human-like walking as

an energy-minimizing trajectory [14] or reaching in the upper limb as a minimum jerk

movement [33, 41]. When generic measures fail to capture important features of mo-

tion, they are supplemented with qualitative analysis (e.g., similarity to normal patterns

of motion) [14] and task-specific measures of success such as work area [24], movement

speed [48], or a combination of velocity threshold, aim, and maximum reach [58].

One of the reasons task-specific or outcome-based measures capture the qualitative

description of the behavioral goal is that they are independent of the motion strategy,

whereas energy or error is typically explicitly dependent on a specific desired trajectory.

For instance, one might travel forward and then to the right to a reach a target, or one

could follow a diagonal path, resulting in the same level of task success using two disparate

strategies. Even if the average of the two paths were used as a reference, the resulting

desired trajectory may not convey the task goal, and the variance and other statistics of

the set of motion strategies are not part of a typical control architecture. Stereotypical



84

motion—such as reaching, self-feeding, and walking—have substantial variation between

equally qualitatively successful trials, both within and between individuals. Because of

the inherent stochasticity in neuromotor commands and the resulting task executions,

we use a distribution φ(x) : Rn 7→ R over a state space X to define a task goal. We

assess a motion by asking how much information about φ(x) ∈ R, x ∈ X is encoded in the

movement x(t) : R 7→ X where x(0) = x0 and x(t) ∈ X for some time t.

There are a few natural ways to describe a task statistically rather than by specifying

a goal state or a goal trajectory. If there is a particular goal state s, one can represent

this as a Dirac delta function δ(x − s). Or, if the task definition is a consequence of

measuring many instances of task execution, the collection of observations will form a

distribution φ(x) in the domain X . As more demonstrations of the target reaching task

are added to the set of observations, the collective time spent at the goal state generates

a higher peak at the state s, asymptotically approaching a delta function at the goal

state. To quantify information content in a motion, one needs to measure a trajectory

x(t) ∈ X that describes movement of the body. If x(t) were itself a distribution across all

of X , one could use the Kullback-Leibler divergence DKL [61] to measure how well x(t)

communicates information about φ(x). However, x(t) is a trajectory, taking on only one

state at each time t, and as a consequence DKL between x(t) and φ(x) will be generally

infinite.

To compare a trajectory x(t) to a distribution φ(x) while avoiding the underlying

problems with using DKL, we use ergodicity—which relates the temporal behavior of a

signal to a distribution. A trajectory x(t) is ergodic with respect to a distribution φ(x)

if, for every neighborhood N ⊂ X , the amount of time x(t) spends in N is proportional
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to the measure of N provided by φ(x). On a long enough time horizon, measuring a

perfectly ergodic x(t) gives a complete description of φ(x). However, since a trajectory

can only visit every neighborhood of X on an infinite time horizon, a finite time horizon

x(t) cannot be perfectly ergodic. Instead, we can ask that x(t) be maximally ergodic,

by introducing a metric on ergodicity, so that the time-averaged statistics of x(t) best

capture the statistics of φ(x) in a specified time horizon T , subject to system dynamics

and constraints. Ergodicity can be measured by several metrics [114, 115]; here we use

the spectral approach [79], which characterizes ergodicity by comparing spatial Fourier

coefficients of x(t) to coefficients of φ(x)—giving us the distance from ergodicity. In

Fig. 4.1, we show two hypothetical cases of the trajectory of the center of mass during

walking compared to an idealized reference trajectory based on typical gait patterns. The

high quality execution is not temporally aligned with the reference and may represent

faster or slower walking than the reference. Nonetheless, the time-averaged statistics of

the trajectory match that of the reference distribution. The low quality execution provides

an example of what one might obtain from an impaired individual with poor balance or

motor coordination. The ergodic metric used here gives us the distance from ergodicity,

such that trajectories which are highly ergodic, like the high quality execution in Fig. 4.1,

have a lower ergodicity than those that are less ergodic.

We use this information measure to analyze two cases of assisted motion—where the

lack of assistance may be interpreted as a deficit relative to the assisted condition. First,

we looked at data in supported reaching for a participant with an abnormal tendency to

flex the elbow when lifting the arm at the shoulder, where we can see in Fig. 4.2 that
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Figure 4.1. Illustration of Motion Signals and Statistics using the
Center of Mass in Walking. For the task of walking on a line, we can
distinguish between two hypothetical cases—a high quality execution (A)
and a low quality execution (B) by tracking the vertical and medio-lateral
displacement of the person’s center of mass. These displacements can be
characterized as motion signals (C) with a reference or desired trajectory
that is based on typical gait patterns. As a trajectory, the high quality
execution does not exactly track the reference trajectory in time, but when
we look at the Fourier reconstruction of the trajectory statistics (D), we
can see that the high quality execution is very similar to the reference
distribution. In contrast, the low quality execution has spatial statistics
that are very different from the reference distribution.
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Figure 4.2. Target-Reaching Trials of a Stroke Participant. A stroke
patient was asked to reach to one of three targets (EE=Elbow Extension,
SF = Shoulder Flexion, RF=Reach Forward) in different areas of their
workspace. The ergodic Measure (left) provides clear distinction between
the level of full arm support and partial or no arm support in the case of both
EE and RF (as indicated by the circled data). The error measure (right)
provides little distinction between the fully supported case and the partially
supported. Each marker represents a trial from the same individual.

the ergodic metric distinguishes between different levels of arm weight support—although

error does not—even for a single participant.

Motivated by this individual result, we collected data from (healthy) human partic-

ipants robotically assisted with a dynamic inversion and balance task, to see whether

the presence of assistance and learning on the part of the participants can be detected.

In both cases, the outcome is affirmative. Based on our task-specific measures, there

is a clear distinction between the assisted and unassisted conditions. Analysis of the

error measure does not show such a distinction based on assistance, but does detect a

training effect based on the significantly lower RMS error of the training group in their

second session compared to the control. The ergodic measure detects both the presence
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of assistance and the training effect. These results suggest that measures of the informa-

tion encoded by a movement can be used to predict the presence of assistance and that

such measures capture outcomes that would not otherwise be captured in task-specific

performance measures.

4.2. Materials and Methods

4.2.1. Quantifying Ergodicity.

One metric for quantifying ergodicity of the trajectory is the sum ε of the weighted

square distance between Fourier coefficients of the distribution φk and the coefficients of

the spatial Fourier transform of the trajectory ck,

(4.1) ε =
K∑

k1=0

...
K∑

kn=0

Λk|ck − φk|2,

where at each time the state is n-dimensional and there are K + 1 coefficients along each

dimension [79]. The subscript k in eq. 4.1 is a multi-index over the coefficients of the

multi-dimensional Fourier transform. The coefficient Λk = (1 + ||k||2)−s where s = n+1
2

places larger weights on lower frequency information, creating a Sobolev norm [79]. Using

Fourier basis functions of the form,

(4.2) Fk(x) =
1

hk

n∏
i=1

cos

(
kiπ

Li
xi

)
,

where hk is a normalizing factor [79] and Li is a measure of the length of the dimension,

we can compute the coefficients of a spatial distribution or time-averaged trajectory using
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Eq. 4.3 and Eq. 4.4 respectively1.

φk =

∫
X

φ(x)Fk(x)dx(4.3)

ck =
1

T

∫ T

0

Fk(x(t))dt(4.4)

The x(t) defined here represents the set of ergodic states xε(t), or states which are relevant

to the task, which may be a subset of the full set of dynamic states x(t) ∈ Rn (i.e.,

nε ≤ n). For example, for the cart-pendulum inversion task, the full dynamic state vector

is x(t) = [θ(t), θ̇(t), xcart(t), ẋcart(t)], but the relevant ergodic states for the inversion task

are xε(t) = [θ(t), θ̇(t)]. For the comparisons made in this chapter, RMS error was also

calculated based on the ergodic states only.

4.2.2. Experimental Protocol and Analysis.

Fifty-three participants (17 males, 36 females) consented to participate in this study2. At

the beginning of each session, the system and task was demonstrated to the participant

using a video of a sample task completion. Participants were instructed to attempt to

swing up the pendulum to the upward unstable equilibrium and balance there for as long

as possible. Participants were instructed to continue to try to do this until the 30 seconds

were over even if they succeeded at balancing near the equilibrium more than once. The

full 30 seconds was used in calculation of all metrics, and the trajectory statistics were

averaged over this time horizon. In each session, 30 trials were completed with short

breaks upon request of the participant. In order to assess the effect of assistance, 40

1The choice of T
2This study protocol was approved by the Northwestern University Institutional Review Board and all
the participants signed an informed consent form.
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participants were tested in two sessions (one week apart), one session with assistance

and one session without assistance. The order of the sessions was randomized to account

for any learning effects. Paired two-sample t-test were performed to evaluate differences

between the session with assistance and sessions without assistance. Another group of 13

participants performed two unassisted sessions one week apart to establish a baseline for

learning from unassisted practice. A two-sample t-test was evaluated to test the difference

in means between the second session of the control group and the second session of the

group of 20 participants who used assistance in their first session.

4.3. Statistical Results.

The results of the comparison of the unassisted and assisted trials using two sample

t-tests are summarized in table 3.1. These tests pair samples from each participant ac-

cording to the order in which they were performed in each session—accounting for the

variance between participants. The hypothesis testing was performed in R [99] by sub-

tracting the unassisted condition from the assisted condition, showing improvement due to

assistance in all five measures. Both the task-specific measures and ergodicity—measured

as the distance from ergodicity—capture the effect of the assistance.

Additional analysis of the effect of assistance as participants progress through trials

was performed by grouping individual trials into blocks of five trials, such that the effect

of both the assistance and the trials could be assessed from independent and interaction

effects.

The time spent at the balance position during each trial was analyzed with a 2 (as-

sistance/no assistance) x 12 (blocks of 5 trials) mixed design ANOVA, which showed a
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significant main effect of the assistance mode F (1, 418) = 388.87, MSE = 1296.5, p <

2×10−16, Cohen′s f = 0.76. The main effect of the block was also significant F (11, 418) =

2.196, MSE = 7.3, p = 0.0139, Cohen′s f = 0.19. The assistance and block interaction

effect was not significant F (10, 418) = 1.266, MSE = 4.2, p = 0.25, Cohen′s f = 0.14.

The time to success was also computed for each trial. This measure was analyzed with

the same 2 x 12 mixed design ANOVA, and showed only a significant main effect of assis-

tance mode F (1, 418) = 224.922, MSE = 16629, p < 2 × 10−16, Cohen′s f = 0.44.

The main effect of block was not significant F (11, 418) = 0.809, MSE = 60, p =

0.63, Cohen′s f = 0.09. The assistance and block interaction effect also was not sig-

nificant F (10, 418) = 0.709, MSE = 52, p = 0.72, Cohen′s f = 0.08.

The mixed design ANOVA was also used to analyze the RMS error of the relevant

states (θ, θ̇) over each 30 second trial, and found no significant effects from any fac-

tor. The main effect of assistance was not significant F (1, 418) = 1.367, MSE =

0.018, p = 0.24, Cohen′s f = 0.05. The main effect of block was also not significant

F (11, 418) = 1.399, MSE = 0.019, p = 0.17, Cohen′s f = 0.18. The interaction of

block and assistance was not significant either F (10, 418) = 0.609, MSE = 0.008, p =

0.806, Cohen′s f = 0.11.

The ergodic metric was computed over each 30 second trials using the relevant states

(θ, θ̇) and was analyzed using the 2 x 12 mixed design ANOVA. The only significant main

effect was assistance mode F (1, 418) = 62.51, MSE = 6.90, p = 2.38×10−14, Cohen′sf =

0.35. Block was not a significant main effect F (11, 418) = 1.31, MSE = 0.144, p =

0.218, Cohen′sf = 0.17, and the interaction of assistance and block was not significant

F (10, 418) = 0.691, MSE = 0.076, p = 0.73, Cohen′s f = 0.12.
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These ANOVAs show that the task-specific measures and the ergodic metric detected

the effect of assistance with a moderate effect size, while error did not distinguish between

the assisted and unassisted conditions over the course of each session.

The comparison of the trained and control group using two sample t-tests is sum-

marized in table 4.1. Unlike the assisted and unassisted trials, the groups in these tests

Control Post-Training
n = 13 n = 20

Measure µ SD µ SD t df p
Success Rate 0.438 0.211 0.380 0.200 −0.8032 31 0.4280
Balance Time 0.295 0.570 0.243 0.502 1.378 988 0.1687
Time to Success 24.319 7.844 24.981 7.794 1.301 988 0.1935
Error 0.629 0.061 0.621 0.058 −1.963 988 0.0499
Ergodicity 0.751 0.207 0.705 0.177 −3.701 988 2.266× 10−4

Table 4.1. Two-sample t-tests of week 2 control trials and week 2
trained trials. Hypothesis testing was performed in R [99] by comparing
the means of the control group to the means of the trained group. Error
and ergodicity—measured as the distance from ergodicity—were the only
measures that revealed a significant improvement in the mean between the
trained group and the control group. Note that the degree of freedom (df)
for success rate is 31 since there is only one rate per participant.

are independent and therefore, the samples are not paired. The progress of the two

groups over the second session (Fig. 6) was analyzed further by performing mixed design

ANOVAs on the training group (between participants) and block (within participants).

The balance time of the control group and the trained group in the second session was

analyzed with a 2 (training groups) x 6 (blocks) mixed design ANOVA, which showed no

significant main effects or interactions effects. The main effect of training group was not

significant F (1, 31) = 1.202, MSE = 1.25, p = 0.28, Cohen′s f = 0.08. The main effect

of block also was not significant F (5, 155) = 2.018, MSE = 0.44, p = 0.079, Cohen′s f =
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0.11, nor was the interaction of training and block significant F (5, 155) = 1.05, MSE =

0.23, p = 0.39, Cohen′s f = 0.08.

The mixed design 2 x 6 ANOVA design was also applied to the time to success,

and the main effect of training group was not significant F (1, 31) = 0.334, MSE =

103.4, p = 0.567, Cohen′s f = 0.05. The main effect of block was not significant either

F (5, 155) = 1.34, MSE = 66.32, p = 0.25, Cohen′s f = 0.09. The interaction effect of

block and training group also was not significant F (5, 155) = 1.34, MSE = 66.50, p =

0.25, Cohen′s f = 0.09.

The same mixed design ANOVA was used to analyze the RMS error in each trial. The

main effect of block was significant F (5, 155) = 4.336, MSE = 0.011, p = 0.001, Cohen′s f =

0.19, but the main effect of training was not significant F (1, 31) = 0.76, MSE =

0.035, p = 0.39, Cohen′s f = 0.15. The interaction effect of training group and block

also was not significant F (5, 155) = 1.61, MSE = 0.004, p = 0.16, Cohen′s f = 0.12.

The analysis of the ergodic metric using the mixed design ANOVA revealed a signifi-

cant main effect of block F (5, 155) = 2.88, MSE = 0.08, p = 0.0163, Cohen′s f = 0.15,

and a significant interaction effect of block and training group F (5, 155) = 2.33, MSE =

0.06, p = 0.045, Cohen′s f = 0.14. The main effect of training was not significant

F (1, 31) = 1.056, MSE = 0.49, p = 0.312, Cohen′s f = 0.17.

These ANOVAs demonstrate that the task-specific measures were not sensitive to

either the improvement made by the participants throughout the second session or the

benefit of the feedback provided to the trained group in the first session. The error

measure indicates that users performed better over the course of the second session. In

Fig. 6, the control group performed worse at the beginning of the second session that
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it did at the end of the first session, and their performance increased in terms of error

over the course of the session. The trained group also improves moderately during the

second session. The ANOVA of the ergodic metric is also able to detect the significant

improvement during the second session by the control group as well as the interaction

effect of group and training. This interaction is a result of the trained group performing

better at the beginning of the second session and maintaining that performance, while

the control group eventually reached the same level of performance.

4.4. Results

In order to evaluate training effect and presence of assistance, participants were tested

in both assistance and no assistance modes. Each participant completed 2 sessions, ap-

proximately one week apart. Upon enrollment in the study, each participant was placed

into 1 of 3 groups. If placed in the training group (n=20), the participant completed the

first session with assistance and received no assistance in the second session. If a par-

ticipant was placed in the non-training group (n=20), they performed the task without

assistance in the first session and used the assistive interface in the second session. Finally,

a control group (n=13) performed the task without assistance in both the first and second

session. Participants were tasked with inverting and balancing a virtual cart-pendulum

system as shown in Fig. 4.3 (often studied in nonlinear control [45, 67]). For the purposes

of calculating ergodicity, a delta function δ(x− s) at the goal state s was used.

In this experiment, we implemented a form of assistance that can convert pure noise

input into a successful task execution by comparing the noise input to that of an optimal

controller [129]. The assistance acts as a filter similar to that described in [129] and [32],
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Figure 4.3. Experimental System. Participants controlled the cart po-
sition xc directly and indirectly controlled the angle θ and angular velocity
θ̇ of the cart-pendulum system (left). The goal state used to calculate the

RMS error was (θ, θ̇) = (0, 0) and the distribution used as the task defini-

tion for the information measure was a Dirac delta function at (θ, θ̇) = (0, 0)
(right).

such that if user inputs agree with the optimal controller, user input is not modified by the

interface. When user inputs do not agree, the robot physically rejects the input, providing

feedback but not guidance. The user input—acceleration of the cart as measured at the

robot end-effector—is either accepted or rejected at each instant based on whether or not

the input vector is in the same direction as the input prescribed by an optimal controller.

Note that the objective of the optimal controller is to minimize the error between the

system trajectory and the goal state at the unstable equilibrium, s = (θ, θ̇) = (0, 0).

The input vector calculated by the optimal controller is never implemented. It is only

used as a filtering criterion. The input is completely rejected—replacing the user input

with a zero-vector—when user inputs do not agree with the optimal controller. If the

participant is a perfect actor, the assistance is completely transparent. Details of the

assistance algorithm can be found in chapter 3.
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4.4.1. Assistance adds task information

Several task-specific performance measures were recorded, including success rate, balance

time, and time to success. The training and non-training group data was aggregated

to evaluate the effect of assistance on the 40 participants in a counterbalanced fashion.

Paired two-sample t-tests on these task-specific measures of the participants with and

without assistance showed that the participants improved with the addition of assistance.

The assisted trials had a higher success rate (p < 0.001, t(39) = 12.314), more cumulative

time spent at the goal state (p < 0.001, t(1199) = 26.519), and reached the goal state more

quickly (p < 0.001, t(1199) = 17.202). The trajectories generated in the assisted condition

were also more ergodic with respect to the task distribution than those without assistance

when the paired two sample t-test was performed (p < 0.001, t(1199) = 11.261). However,

the root mean square (RMS) error of the trajectory from the goal state did not show a

significant difference (p = 0.094, t(1199) = 1.674) between the assisted and unassisted

conditions. This suggests that the assistance improved task-specific performance metrics

and increased the task information encoded by the movement. A two-factor (assistance

and block) analysis of variance also showed that the assistance had a significant effect

in terms of the task-specific measures and the ergodic metric. However, the analysis of

the RMS error revealed no significant effects. When we look at the spatial statistics

(see Fig. 3.6) of the assisted trials versus the unassisted trials, we see that the assisted

trials spend a larger proportion of time near the origin where the target distribution is

centered. The histogram of unassisted trajectories (left in Fig. 3.6) has its highest density

at θ = ±π which is the farthest point from the goal state. The rest of the distribution

is diffuse over the state space. Although the histogram of the assisted trajectories (right
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in Fig. 3.6) also has a high density at θ = ±π, the distribution is not as diffuse as

that of the unassisted trajectories. There are bands of high density spreading outward

form the goal state (θ, θ̇) = (0, 0). The spatial statistics of the assisted trajectories are

more similar to the reference distribution in Fig. 4.3, because there is a high density at

and around the goal state. This suggests that assistance increased the task information

encoded in the movement. This outcome is captured by measuring the ergodicity of the

trajectories in each group with respect to the reference distribution. The mean ergodicity

of the unassisted trajectories is 0.739, and the mean ergodicity with assistance is 0.631.

This lower number indicates that less information is lost in the assisted motion than the

unassisted motion.

4.4.2. Learning involves increasing task information

The effect of training was assessed by comparing the week 2 session of the trained group

to the week 2 session of the control group. Although performance in the task-specific

measures did not improve with training, the ergodicity and error of the trained group was

significantly better than the control group. A two-sample t-test was performed on the task

specific performance measures, finding no difference between trained group and untrained

group in terms of their success rate (p = 0.4280, t(31) = −0.8032), time spent balanced

(p = 0.1687, t(988) = 1.378), and time to success (p = 0.1935, t(988) = 1.301). The two-

sample t-test of the RMS error showed a significant difference between the trained and

control group (p = 0.0499, t(988) = −1.963), but the effect size was small (d = 0.127).

The t-test of ergodicity (p = 2.266× 10−4, t(988) = −3.701) also detected the difference,

but with a larger effect size (d = 0.237). A two-factor (training group and block) analysis
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Figure 4.4. Learning increases information. The histogram of week 2
control trajectories (left) has its highest density at θ = ±π which is the

farthest angle from the goal state at (θ, θ̇) = (0, 0). The control trajectories
also spend time near the goal state, but to a lesser extent. The histogram of
trained trajectories (right) also has high density near θ = ±π, but there are

large bands of high density in the region −1.5 ≤ θ ≤ 1.5 and −4 ≤ θ̇ ≤ 4.
These bands make the statistics of the trained group closer to the spatial
statistics of the reference distribution in Fig. 4.3. We quantify how well
these statistics match that of the reference by calculating the ergodicity.
The trained trajectories are on average more ergodic (µ = 0.705) than the
controls (µ = 0.751). In other words, the trained motions communicate
information about the task goal more effectively than the control motions.

of variance also showed that block and the interaction between training group and block

had a significant effect in terms of the RMS error and the ergodic metric. However, the

task-specific measures revealed no significant effects. This indicates that the training

effect is not captured by task-specific measures but is captured by error and ergodicity.

While the training effect can be detected with error, the information measure detects it

with a larger effect size.
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4.5. Discussion

Our results suggest that the information encoded in bodily motion provides a language

for describing changes due to assistance and learning in physical human-robot interaction.

Using this framework, we found that an information measure was a better predictor of

changes in deficit compared to error, even when the robotic assistance was based on that

error metric. Additionally we showed that when the error-based assistance was used to

supplement training, task-specific measures failed to detect the effect of training, and

the ergodic measure demonstrated a stronger statistical power to detect the performance

changes due to training. When we consider the body as an information channel and

bodily motion as an information-carrying signal, we can interpret these results in a way

that captures phenomena that would not otherwise be captured by task-specific measures

or standard measures such as error. This analysis could provide valuable insight into

changes in performance over the course of training or therapy.

When we examined the effect of robotic assistance in reducing the deficit of a stroke

participant, we found that simply reducing the deficit by arm weight support increased

the information encoded in their reaching motions to multiple targets. Specifically, their

motions were more ergodic with respect to a Dirac delta distribution at the target position.

We found that task-oriented assistance using an error-based optimal control also reduced

the information lost in task executions. These decreases in information loss indicate that

the information channel (the human-robot pair) itself was improved by the addition of

both forms of assistance.

Task-specific measures also reflected differences in task executions due to deficit. Clin-

ically, task-specific measures are frequently used to assess deficit [43, 44, 53, 68], often
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motivated by the fact that more standard and generalizable measures, like error and en-

ergy, fail to predict the presence of deficit. As a consequence, deficit often must be assessed

in very narrow experimental conditions where the measures are applicable. These task-

specific measures have several negative consequences. First, they do not translate to other

motions (e.g., an assessment strategy for reaching cannot be applied to interpretation of

walking or even self-feeding). Moreover, and more importantly, task-specific measures

do not admit the same level of principled interpretation as measures such as state error

(which captures motor control accuracy) and energy (which captures metabolic efficiency).

Measuring the task information encoded by a movement provides an information-theoretic

framework for interpreting motion—in a principled manner like error or energy—by cap-

turing the qualitative description of task while not implicitly prescribing a specific strategy

for task completion.

Task specific measures are able to capture qualitative task success because they mea-

sure events at the goal state or task outcomes—making them independent of the strategy.

In contrast, measurement of error is typically explicitly dependent on a reference trajec-

tory, so error measures and error-based assistance prescribe a specific strategy for task

completion. Measures on information are still independent of the strategy chosen, but

can be expected to detect that a strategy is encoded in the movement even if the move-

ment does not result in task success. A movement with a focused strategy should have

higher task information than a movement without a focused strategy. In the case of the

swing-up and inversion problem, the assistive algorithm forces participants to employ an

error-reducing strategy, increasing the task information in the assisted movement as seen

in Fig. 3.6.
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Figure 4.5. Comparison of the control and trained group perfor-
mance progress over training. The statistical comparisons of the
trained and control groups excluded the data from the first session (gray)
to avoid including the effects of the assistance algorithm itself. For the
task specific-measures (top row), there was no difference between the two
groups, and block had not significant effect on performance. For the error
and ergodic metric, block has a significant effect, especially in the control
group. Under both measures, the control group performance was worse at
the beginning of the second session (the first two blocks in white), but by
the end of the session performed as well as the trained group. Ergodicity
enables one to see the difference between the treated and untreated group,
and both error and ergodicity allow one to see learning as a function of
block.

Participants attempting to maintain the error reducing strategy after training with

the assistance explains the training effect that we see in the error and ergodic metrics (see

Fig. 4.5). However, the error-based assistance used in this experiment may not be the most

effective strategy to improve task outcomes like balance time and success rate. Assistive
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algorithms that provide too much guidance—thereby reducing errors during training fail

to result in improved training because both error [125] and kinematic variability[55] are

critical to learning. Additionally, the feedback may lead users to learn the wrong task[66].

In this case, participants may have learned to reduce the cumulative error without learning

the true task goal which is to reach the unstable equilibrium regardless of the RMS error

incurred before or after reaching that state.

While this work demonstrates that the ergodic measure is useful for assessing hu-

man motion post-hoc, it could also be used as a powerful tool for modulating haptic and

kinesthetic feedback during training. There is already some evidence that providing feed-

back based on relevant measures of movement quality is more effective that trajectory

error-based assistance [47]. Using the ergodic metric, one can generate distribution-based

representations of tasks from sets of imperfect demonstrations—providing an alterna-

tive means for robots to ‘learn’ from humans by applying information maximizing tech-

niques [81, 133]. Rather than learning a policy or task objective, one could generate a

reference distribution from recordings of human task executions and use the distribution

as the task objective for a deterministic information-based model-predictive controller,

allowing the human-robot pair to accomplish the task from different initial conditions

and under various system constraints. Furthermore, providing assistance based on the

ergodic measure allows us to build joint-human robot control policies that directly encode

the natural variability of human motion, such that we do not need to restrict assistance to

enforce a particular goal trajectory or make inferences about which movement parameters

are relevant to the task.
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These results suggest that the ergodic measure can augment error or energy measures

in the study of biomechanical motion—providing fine-grained insight on the progression of

robot-aided training and therapy. Specifically this study supports the idea that ergodicity

is a principle of motion for interpreting and predicting animal motion with potential

implications for the design of effective feedback and training strategies.
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CHAPTER 5

Ergodic Shared Control: Closing the Loop on pHRI Based on

Information Encoded in Motion

Advances in exoskeletons and robot arms designed for physical human-robot interac-

tion have given us increasing opportunities for providing physical support and meaningful

feedback in training and rehabilitation settings. However, roboticists and researchers

must choose control strategies that support motor learning and provide mathematical

task definitions that are actionable for the actuation. Typical robot control architectures

rely on measuring error from a reference trajectory. In physical human-robot interaction

(pHRI), this leads to low user engagement, invariant practice, and few errors, which are

all negative features in the context of motor learning. Furthermore, a reliance on reference

trajectories means that the task definition is both over-specified—requiring specific tim-

ings not critical to task success—and lacking information about normal variability in task

execution. In this chapter, we examine a new way to define tasks and close the loop on

physical human robot interaction using an ergodic measure that quantifies how much in-

formation about a task is encoded in the human-robot motion. This measure can capture

the natural variability that exists in typical human motion—enabling therapy based on

scientific principles of motor learning. We implement an ergodic hybrid shared controller

(HSC) on a robotic arm as well as an error-based controller—virtual fixtures—in a timed
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drawing task. In a study of 24 participants, we compare ergodic HSC with virtual fixtures

and find that ergodic HSC leads to improved training outcomes.

5.1. Introduction

Designing robotic assistance frameworks presents a set of challenges that are unique

to HRI and highly dependent on the task, environment, capabilities of the user, and

the ultimate goal of the interaction. Robotic interfaces can act as guides in remote

teleoperation or robotic surgery—providing haptic feedback and constraints to users—or

shared control may enable robots to act as partners providing assistance that compensates

for a user’s deficit due to disability or high cognitive load[46, 90]. While the goal of

teleoperation and assistive robotics is successful task completion, rehabilitation robots

must target learning—sometimes at the expense of achieving task success. Robotics have

great potential for enhancing training and rehabilitation because of their ability to support

many task repetitions and to quantify the performance of the trainee. However, the

automation cannot simply track the same series of joint states over and over—measuring

the user’s error. Instead, the automation must take actions based on a quantitative task

definition and the specific needs of the user.

Motor learning literature and past studies of control strategies for training provides

us with several requirements that robots must meet in order to promote learning. Most

important in these is a need for active involvement by the user. When a patient is suffering

from severe deficit, such as immediately after a stroke, there is some benefit to passive

movement. However, in the long term, simply moving a person through the motions of

a task leads to slacking [42]. Training and therapy is most effective when training is
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intense and patients are actively involved in the exercises [73]. User engagement can be

promoted using game-like graphic interfaces for task-oriented training [113, 137] and by

matching the control strategy to the relative difficulty of the task [71, 82]. This suggests

that typical robot control frameworks tracking a particular joint trajectory are ill-suited

for robot-mediated training.

Instead, impedance/admittance control, virtual fixtures, and potential fields are used

to ‘assist-as-needed’ or to challenge high skill users through error augmentation, kinematic

variability, and random perturbations [10, 77, 97]. Although hardware advances have

made robots more versatile and made it possible for us to autonomously support an

almost unlimited number of meaningful tasks, most prior work in the upper extremity

has focused on path-following tasks, where the goal is to minimize tracking error or follow

a normative velocity profile. This is because a fundamental problem in physical human-

robot interaction is how we should define the desired behavior [77, 97]. There are two

main aspects to consider. One must specify the low level task that the actuators and

encoders manage—e.g., a desired trajectory, velocity profile, or torque specification—and

at a higher level one must select from one of many possible strategies to achieve the desired

behavior. While the simplest solution may be to minimize the error between the robot

and a recorded trajectory based on expert input or average behaviors, this brings up issues

of time-dependence and enforcing a particular solution to a task that may have infinitely

many ’good enough’ solutions. This approach also neglects a fundamental principle of

motor learning—that errors and variability actually enhance learning [125]

We assert that interfaces must enable flexibility in task solutions and provide task-

based feedback rather than error-based. Stereotypical movements—such as reaching,
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cleaning, self-feeding, and walking—have substantial variation between equally qualita-

tively successful trials, both within and between individuals. This variability is necessary

for motor learning, so our control objectives need to maintain a task-level view of per-

formance. This perspective is achieved by monitoring the spatial statistics of movement

rather than relying on error or task-specific performance heuristics—providing assistance

based on a global measure as opposed to local interactions.

In this chapter, we present a novel method for providing corrective feedback based on

a statistical task definition that can be generalized to a broad set of tasks. Rather than

asking the robot to help the user minimize their tracking error, the robot intervenes to

increase the information about the task that is encoded in the motion. This is implemented

by using an ergodic measure to close the loop on our hybrid approach that switches

between full user autonomy and full rejection of user inputs. In a user study, we implement

ergodic hybrid shared control (HSC) on an impedance control robot (Figure 5.1) and

empirically compare training with the ergodic HSC to an assist-as-needed path controller.

The chapter is organized as follows: First, in Section 5.2, we provide background

information on control strategies used in robotic training applications and highlight two

control design features that greatly impact the performance of these training strategies.

This is followed by a discussion of our prior work and the ergodic HSC algorithm in

Section 5.3. Results of applying the algorithm to simulated noise input are given in

Section 5.4. The experimental protocol and design can be found in Section 5.5 followed

by the results in Section 5.6. Finally, we provide a discussion of the results in Section 5.7.
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Figure 5.1. Participants were seated in front of a display showing the refer-
ence image and corresponding square in which they were to copy the draw-
ing. They held onto a handle rigidly fixed to the end-effector of the Sawyer
robot. The display provided visual feedback on what they had drawn so far
and the amount of time remaining. A physical card with the given reference
image was displayed throughout each trial. Study participants were asked
to reproduce the images on the left as quickly as possible. They were given
a maximum of 10 seconds per drawing.

5.2. Related Work

5.2.1. Control Strategies for Training

Control strategies that are designed to support learning can be classified as either pas-

sive, corrective, resistive, or some combination thereof. Many early rehabilitation robots

provided passive assistance to users by replaying trajectories from healthy humans or ex-

perts [11, 15, 84, 120]. This type of guidance is beneficial for patients in an acute stage of

recovery or when the relative difficulty of the task is exceedingly high. As patients recover

and relearn motor skills, the task should be performed under shared control [42, 88]. In an

effort to avoid user passivity, Assist-As-Needed (AAN) control was introduced and is now

widely used. This can be done by adjusting the relative contributions of the robot and the

human based on user performance, or it can be corrective—using virtual fixtures to reject
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user commands when they deviated from the planned trajectory or enter restricted re-

gions [10]. AAN is usually achieved through impedance/admittance control [97]. Resistive

strategies have also been implemented by adjusting the impedance gains on the control

or specifying a novel potential field where the forces push users away from the desired

trajectory or path, but results are mixed. Users benefit from resistive strategies when the

relative difficulty is low, whereas users with significant deficits need assistance [71, 82].

Our approach is not to provide assistance or resistance based on some desired velocity

profile, but rather to accept or reject user actions based on global knowledge of the task

goal. This results in an interface that inherently adapts to user performance and skill [31],

while other strategies require two separate strategies to select the appropriate level of con-

troller intervention and the lower level modulation of controller responses to individual

user actions.

5.2.2. Adaptation

To promote user engagement and participation during training, controllers must mod-

ulate assistance based on user performance or the relative difficulty of the task. The

most common solution is trial-by-trial adaptation based on tracking error [8, 140]. In

some cases, mean velocity [37, 54], anticipated deviation based on model of participant

impairment [93], or other performance heuristics are used. This adaptation has led to

moderately better therapuetic outcomes compared to conventional therapy [106]. Yet,

the rate at which control parameters are adapted may affect the skill retention [71]. Re-

gardless of the adaptive scheme or the assistive/resistive strategy, some definition of this

desired behavior is required.
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5.2.3. Reference Definiton

Defining the reference for pHRI involves choosing between many possible solutions to

achieve the task goal and translating that solution into something that the system can

feasibly execute and monitor throughout that execution. When autonomous systems are

acting alone, one can simply define a trajectory over the robot joint states and use state

error feedback to execute the trajectory. However, in activities of daily living, there are

many possible redundant solutions to seemingly simple tasks like reaching and stepping.

Often trajectories are recorded from a human expert [11, 56, 120], a healthy person [15, 94],

or the unaffected limb in hemiparetic stroke [11, 74], but the time-dependence in these

definitions is problematic. A task execution is not less successful because it is slower or

faster than the reference. This can be avoided by defining a reference path rather than a

reference trajectory. Potential fields can limit the distance from the path [21, 75] or, in

the case of error augmentation, push users away from the desired path.

Still, this does not answer the higher level question of which trajectory, path, or

task strategy the robot assistance should be supporting. In cases where the task goal

is ambiguous, we could plan reference definitions for a short time into the future using

intent detection based on EMG [70], EEG [16, 34, 111], force torque sensors [65, 107],

or kinematic data [144]. Proietti et. al suggest that another potential solution is to

generate trajectories from statistically consistent patterns from a sufficient number of

healthy subjects [97]. There are almost no instances of this in the literature, possibly,

because it is not clear how one would close the loop on statistical patterns—something

that we specifically achieve in the present work. Even if the average of the two paths were

used as a reference, the resulting desired trajectory may not convey the task goal, and
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the variance and other statistics of the set of motion strategies are not part of a typical

control architecture. In this chapter, we present an approach to reference definition based

on statistical task definitions and modulate robotic assistance based on concepts from

information theory.

5.2.4. Current Study

Our approach is to treat the body as a communication channel and motion as an infor-

mation carrying signal by relating the time-averaged behavior of trajectories to a spatial

distribution that describes the task. To quantify information content in a motion in a

domain X , one needs to measure a trajectory x(t)(e.g., position of an arm over time) that

describes movement of the body and describe the task as a distribution p(x) (e.g., the

volume of positions that the arm has been in) over states in the domain. Describing a

task by a distribution requires that there is a natural way to describe a task statistically

rather than by specifying a goal state or a goal trajectory. For instance, if there is a

particular goal state s, one can represent this as a singular function with infinite value at

the goal state. Or, if the task definition is a consequence of measuring many instances of

task execution as in Learning from Demonstration (LfD) [6], the collection of observations

will form a distribution. As more demonstrations of the target reaching task are added to

the set of observations, the collective time spent at the goal state would generate a higher

peak at the state s, asymptotically approaching a singular function at the goal state. In

either case, we assess a motion by asking how much information about the task is encoded

in the movement. To compare a trajectory to a distribution, we use ergodicity—which

relates the temporal behavior of a motion signal to a distribution. We implement a hybrid
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shared controller using an ergodic measure to update the control of a robot arm online.

An error-based AAN path controller is also implemented on the robot arm—a form of

virtual fixtures [10]. In a study of 24 participants performing a timed drawing task, we

compare our approach to virtual fixtures that provide resistance to users when they are

too far from the desired path.

5.3. Ergodic Hybrid Shared Control

Our previous work has compared error-based hybrid shared control (HSC) to unas-

sisted practice in cart-pendulum inversion task. We found that it adapted to user skill,

improved performance while in use, improved training within a single session, and led to

greater skill retention over a one week period [31]. An analysis of the data from those

experiments led us to take a closer look at the measures that we were using to evaluate

performance. Task-specific measures like time to success and balance time captured the

effect of HSC as form of assistance, but did not capture any training effects over time in

either the control or experimental group. The RMS error of the system states did not

capture the clear improvement in performance when assistance was provided by HSC, but

showed that both time and training conditions were statistically significant factors. An

ergodic measure was able to capture both of these effects [30]. This unintuitive outcome

indicates that error-based assistance, by far the most common way of creating an assis-

tive device and measuring its efficacy, may not be an effective measure for many dynamic

tasks.
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5.3.1. Ergodic Metric

Ergodicity can be measured by several metrics [114, 115]. When we analyzed ergodic mo-

tion in our prior work, we used the spectral approach [79], which characterizes ergodicity

by comparing spatial Fourier coefficients of a trajectory x(t) to coefficients of a reference

distribution p(x)—giving us the distance from ergodicity. While one can compute controls

based on this formulation as in [81], there are two major drawbacks. First, this approach

scales as O(|k|n), where k is the maximum integer-valued Fourier term and n is the num-

ber of relevant states. Second, the use of periodic basis functions leads to artifacts in the

reconstructed distribution. Both of these factors contribute to limitations in computing

the measure online for complex, high-dimensional tasks. In [1], Abraham et al proposed

an alternative measure of ergodicity using the Kullback-Leibler Divergence [61], where

the time-average statistics of the trajectory are defined as a mixture distribution:

(5.1) q(s|x(t)) =
η

tf − t0

∫ tf

t0

exp

[
−1

2
(s− x(t))TΣ(s− x(t))

]
dt

where η is a normalization constant and Σ ∈ Rn×n is a parameter representing the covari-

ance of the Gaussian approximation. This is an approximation because the time-averaged

statistics of the trajectory is actually a collection of delta functions parameterized by time.
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Under this definition, we can define the ergodicity of the trajectory relative to the distri-

bution p(x) using the Kullback-Leibler divergence as:

DKL(p(s)||q(s)) =

∫
X
p(s)ln

p(s)

q(s)
ds

=

∫
X
p(s)ln p(s)− p(s)ln q(s)ds

= −
∫
X
p(s)ln q(s)ds

Note that we drop the first term because it does not depend on the trajectory x(t). Rather

than computing the integral over the entire domain X , we approximate it by sampling

such that given a set of N points S = s1, ..., sN randomly sampled over the domain X ,

the KL-divergence ergodic measure [1] is computed by,

(5.2) εKL =
N∑
i=1

p(si)ln

∫ tf

t0

exp

[
−1

2
(si − x(t))TΣ(si − x(t))

]
dt.

5.3.2. Mode Insertion Gradient

The mode insertion gradient gives an estimate of the sensitivity of the cost to switching

from one mode to another at a particular time. Therefore it is used in mode scheduling

problems to find the optimal time to insert a mode from predetermined set [4, 12, 22,

35, 136]. In hyrbid shared control [31], we instead use the mode insertion gradient to

determine whether or not to accept a switch from the nominal control u1 to the user

action, uuser. We define the hybrid control, u2 with the piece-wise function below,

(5.3) u2(t) =

 uuser t ≤ t0 + ts

u1 t0 + ts < t ≤ t0 + T
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We assume a system with dynamics

(5.4) ẋ(t) = f(x(t), u(t), t) = g(x(t)) +B(x(t), t)u(t),

where ẋ(t) is linearly dependent on the control u. The cost describing the task objectives

is

(5.5) J = εKL +

∫ tf

t0

l2(x(t), u(t))dt,

where l2(x, u) represents the running cost associated with the control effort, safety pa-

rameters, or other secondary objectives. The mode insertion gradient is then,

(5.6)
dJ

dλ
= ρ(τ)T [f(x(τ), u2(τ))− f(x(τ), u1(τ))] .

In (5.6), state x is calculated using nominal control, u1, and ρ is the adjoint variable

calculated according to Equation 5.7, below.

ρ̇ = −l(x, t)−Dxf(x, u1)
Tρ,(5.7)

subject to ρ(t0 + T ) = 0

where

l(x, t) = −
N∑
i=1

psi
qsi
exp

[
−1

2
(si − x)TΣ−1(si − x)

]
(si − x)TΣ−1 +∇l2(x, u).

In the work presented here, we define the nominal control, u1, to be equivalent to the

free dynamics of the system. Nevertheless, a calculated controller action could be used to
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define u1 as in [50] and [31]. User inputs are then accepted when the following integral

computed over a time window into the future is negative:

(5.8)

∫ t0+T

t0

dJ

dλ
(t)δt.

When the integral of the mode insertion gradient is negative, u2 is a descent direction

over the time horizon, T . Thus the mode insertion gradient as an acceptance criterion

represents quantitatively the advantage or disadvantage of allowing the user to push the

system in the way that they are currently trying to move it.

5.3.3. Algorithm Implementation

The ergodic hybrid shared control algorithm works as follows. Given a system and an

operator, assume that a user input is measured every ts seconds. The user input is used

to define the control input u2, and the system is simulated forward for T seconds into the

future. The user input is assessed based on the integral of the mode insertion gradient—

roughly asking whether the user understands the task goal. When the integral is negative,

if the magnitude of the user command is within the allowed limits, the command is applied

to the system. Otherwise, saturation may be applied. On the contrary, if the criterion

is not met, the user input is rejected. When inputs were rejected in these experiments,

the impedance at the end-effector was increased proportional to the difference between

the current velocity and the velocity of the system at the time of the last accepted input.

This results in the interface being transparent when user inputs are accepted or velocity

being held constant when inputs are rejected. This process is illustrated in Algorithm 2.
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Algorithm 2 Ergodic hybrid shared control

Initialize current time t0, sampling time ts, time horizon length T , final time tf , input
saturation usat and target distribution p(x).

1: while t0 < tf do
2: Generate N samples of si within the domain X
3: Infer user input uuser from sensor data
4: Simulate the system (5.4) for t ∈ [t0, ts + T ]
5: Simulate (5.7) for t ∈ [t0, ts + T ]

6: Compute
∫ ts+T
t0

dJ
dλ

(t)δt using Equation 5.6.

7: if
∫ ts+T
t0

dJ
dλ

(t)δt < 0 then

8: if |uuser| < usat then
9: Use uuser as current input, ucurr = uuser

10: else
11: Apply saturated user input ucurr = usat
12: else
13: Completely “reject” uuser (ucurr = 0)

14: Apply ucurr for t ∈ [t0, t0 + ts]
15: t0 = t0 + ts
16: end while

5.4. Simulation Results

Ergodic HSC was first implemented on a simulated double integrator system with a

sampling rate of 60 Hz, where the user input was randomly sampled from a uniform

distribution uuser ∈ [−10m/s2, 10m/s2]. We can see that even using noise as input, the

hybrid shared control paradigm can produce drawings that resemble the original images

(Figure 5.2). Unlike the robotic platform used in the experiment, where shared control was

implemented by updating impedance control parameter, the simulation is able to perfectly

reject the noise input. In prior work, we have noted the differences in performance when

the robotic interface has relatively low power compared to the user [32] with learning

outcomes being more significant when the system has power sufficient to mechanically

alter the movements of the user [31].
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Figure 5.2. When noise is used as input, we can use hybrid shared control to
reject any noise that does not represent a descent direction for the ergodic
cost. This enables us to transform a noisy input (gray) that would generate
a random walk to the filtered input (blue). This generates a trajectory that
roughly follows the lines of the original image.

5.5. Methodology

In this study, we assess ergodic hybrid shared control in a set of timed drawing tasks,

and compare it to virtual fixtures. There are many possible strategies one could use to

complete a drawing, and the order of locations visited does not affect the end result. Yet,

one can still make a comparison to an error-based controller by using the distance from

the lines in the drawing to generate a set of virtual fixtures that limit the distance between

the user’s path and the desired path. The time limit was added to make the task more

dynamic. Twenty-four participants were asked to perform a set of baseline tests without
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assistance, followed by a training set and post-training set for each image tested. The

type of assistance provided during training was randomly assigned. The experimental

design allowed us to establish performance changes due to each of the control strategies

and compare their effects on training.

5.5.1. Study Design/Apparatus

Participants were asked to draw the four grayscale line drawings shown in Figure 5.1.

Each were sized to 2200px× 2200px They were given a maximum of 10 seconds to copy

each image into a box on the screen. The area on the screen corresponded to a 1m× 1m

horizontal plane in front of the user, much like the mapping of a mouse to a computer

screen. For our experiment, we utilized a Sawyer Robot (Rethink Robotics) in the interac-

tion control mode provided in the Intera SDK. Interaction control mode enabled us to set

the type of control—force vs. impedance—of each dimension in Cartesian space. Sawyer’s

integrated sensors were used track the state of the end-effector as well as estimate the

user inputs. The sensor information was sent to the host computer which simulated a

double integrator system and executed algorithm 2—sending updates on the interaction

control parameters according to Equation 5.9 and Equation 5.10, defined below. The host

computer also updated the visualization provided to the users.

5.5.1.1. Virtual Fixture Implementation. Virtual fixtures were implemented by set-

ting the planar components of the interaction control commands to force mode. The other

dimensions were set to a high level of impedance, restricting the motion of the user to

the horizontal plane. When users were within 100 pixels (approximately 4.5cm) of a dark

pixel in the given drawing, impedance and force parameters were set to 0. When this



120

condition was violated, a force proportional to the distance to the nearest pixel and the

current velocity was produced by the robot as in Equation 5.9,

(5.9) FV F =
KP (dp − r)

dp

xp − xuser
yp − yuser

+KDvuser,

where dp is the distance to the nearest dark pixel, r is the radius of the channel, and (xp, yp)

are the coordinates of the nearest pixel. KP and KD are gains on the proportional and

derivative terms of the feedback law, respectively.

5.5.1.2. HSC Rejection Equations. There are several ways to implement the rejection

of user actions described in Algorithm 2. When using a low power haptic device, one can

generate a transient virtual wall or ignore the user inputs when using an admittance

controller with sufficient mechanical power to generate forces equal to that of the user.

In this study, we modify the impedance parameters in the end-effector space of the robot.

The task-irrelavant dimensions were set to a high impedance—again restricting the motion

of the user to the horizontal plane. When user actions are accepted, impedance in the

plane is set to zero. When user inputs are rejected, impedance parameters are set to track

the velocity at the time of the last accepted action according to the following equation:

(5.10)

Dx

Dy

 =

sgn(vx) 0

0 sgn(vy)


∆vx

∆vy

 .

5.5.2. Procedure

At the beginning of the session, participants were seated in a chair facing the robot and

a display screen, and were asked to grasp a handle on the robot end-effector. Sawyer is
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capable of exerting forces at this interaction point between the user and the robot in the

x, y, and z directions, and can exert torques about all 3 axes. However, we maximized

the impedance on the torques about these axes as well as the force in the z-direction,

restricting the end effector to a horizontal plane. The position of the end-effector was

measured from the joint angles using forward kinematics, and the acceleration of the end

effector was measured using an inertial measurement unit installed in the end-effector.

The acceleration was used as input to the simulated double integrator system. At start-

up, force/torque limits were place on each degree of freedom.

A host computer was used to communicate with Sawyer during setup and operation.

Using the core software architecture of the Robot Operating System (ROS), the Host

received position and acceleration information from Sawyer. The host also sent messages

setting the parameters of the Sawyer impedance model and controller. Information from

the Sawyer was used to visualize the interaction point as a 3D cursor and the drawing

history as a series of dots in the ROS visualization package, rviz. The position information

also kinematically controlled the double integrator system being simulated by the host

computer. The host set the parameters to either increase of decrease the impedance at

the end effector or modify the forces at the end effector according to either Equation 5.9

or Equation 5.10.

At the beginning of the session, the drawing task was demonstrated to the participants

by the authors, and participants were able to practice drawing on the screen using the

robot as a cursor. Participants performed a baseline set of trials in which they drew each

image 10 times for a total of 40 trials. The order in which they completed these drawings

was randomized to minimize learning during the baseline trials. After the baseline set
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of trials, participants trained with their assigned control strategy completing both the

training and post-training trials for one image before moving on to the next image.

Subjects were recruited locally (n=24), and had to be healthy, able-bodied adults (in

the age range of 18 to 50) with no prior history of upper limb or cognitive impairments.

Only right-hand dominant participants were accepted into the study, and each subject

performed the task with their right limb. All study protocols were reviewed and approved

by the Northwestern University Institutional Review Board, and all subjects gave written

informed consent prior to participation in the study.

5.5.3. Measurements & Statistical Analysis

We assess user performance using the metrics that close the loop in the two control

strategies that were tested—error and ergodicity. The data for each image consisted of

10 baseline trials, 10 trials with either ergodic HSC or virtual fixtures, and 10 trials post-

training for a total of 30 trials for each of the four images. These were grouped into sets of

10 trials to evaluate subject performance over time. The analysis consisted of two-factor

(set and group) repeated measures ANOVA tests. The ANOVA’s were used to compare

the effect of the ergodic HSC and virtual fixture training on each of the performance

measures. When significant main effects or interaction effects were detected, student’s

t-tests were used to evaluate the difference between the performance of the ergodic HSC

group and the control group.

5.5.3.1. Error. Every ts seconds, we measured the position of the robot end-effector and

translate it to image coordinates on the domain [0, 2200]× [0, 2200]. We then perform a

search for the nearest dark pixel (saturation< 130). The distance between the end-effector



123

position and the nearest dark pixel is recorded. The error measure that we report here is

the mean distance from the nearest dark pixel computed for each trial.

5.5.3.2. Ergodicity. We treat each image as a discrete histogram over the domain and

generate 100 random samples from that distribution as can be seen in Figure 5.3. We use

these to calculate the ergodic metric according to Equation 5.2–giving us the trajectory’s

distance from ergodicity for each image.

5.5.3.3. Completeness. Scorers were asked to provide a rating evaluating the complete-

ness of each drawing on a scale from 1 to 100. Each participant drawing was assigned a

random code and randomly assigned to one of eight scorers via an online survey. Scorers

were instructed not to judge the quality of the drawing on the basis of scale or accuracy.

Each image was recieved at least one rating.

Figure 5.3. Using importance sampling, 100 sample locations are randomly
chosen from the original image. The color intensity at each point is used to
weight a series of Gaussian distributions that generate the reference distri-
bution.
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5.6. Experimental Results

The results were reported as follows. First, the error of each group was statistically

tested in Section 5.6.1. An analysis of the ergodicity was performed to test for differences

in the relative information communicated in the drawings of the HSC group and the VF

group in Section 5.6.2. Finally, an analysis of the completion scores of each group was

performed in Section 5.6.3. The results demonstrated that training with the ergodic HSC

increased subject performance in later trials within the same session. In each section

the relevant statistics are reported first, followed by a summary and interpretation of the

results.

5.6.1. Error Measure

The mean error of each group in each set can be seen in Figure 5.4. The progress of the

two groups over the training session was analyzed by performing mixed design ANOVAs

on the HSC group (between participants) and set (within participants) using the error on

all four images. Only the baseline trials (set 1) and post-training trials (set 3) were used

to avoid measuring the effects of the assistance itself in the analysis.

The mean error of the apple drawings had two significant factors. The main effect

of training group was not significant (p = 0.636, F (1, 20) = 0.231). However, the main

effect of set was significant (p = 5.58× 10−7, F (1, 454) = 25.784), as was the interaction

of training and set (p = 0.0272, F (1, 454) = 4.913). Interestingly, study participants in

the VF group increased their average distance from a dark pixel both during and after

training, whereas participants using HSC had similar levels of error in set 1 and set 3.
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Figure 5.4. Although both groups performed similarly in terms of error in
the baseline set, the group that trained with HSC had lower error when
drawing the apple, umbrella, and house in the post-training trials. Inter-
estingly, the virtual fixtures were activated based on the error measure, but
the umbrella was the only image in which virtual fixtures actually reduced
errors in the drawings. Note: error bars indicate standard error; significance
is indicated by ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

The mixed design ANOVA design was also applied to the error in the banana drawings,

and the main effect of training group was not significant (p = 0.4611, F (1, 20) = 0.565).

The main effect of set was not significant either (p = 0.1132, F (1, 454) = 2.514). The

interaction effect of block and training group was significant (p = 0.00202, F (1, 454) =

9.643). This reflects the fact that the two groups performed similarly in the first set, but

the VF group had lower error in the post-training set.

When the same mixed design ANOVA was applied to the error in the umbrella draw-

ings, the main effects of set (p = 0.071, F (1, 454) = 3.27) and group (p = 0.811, F (1, 20) =

0.059) were not significant. The interaction effect of training group and set was significant

(p = 0.0495, F (1, 454) = 3.88). In the case of this drawing, the VF group had higher

error in the post-training trial compared to the HSC group, though the two groups had

similar baseline error.

The analysis of the error in the drawings of the house revealed a significant main effect

of set (p = 1.23× 10−5, F (1, 454) = 19.545), but the interaction effect of set and training
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group (p = 0.46, F (1, 454) = 0.546) was not significant. The main effect of group also

was not significant (p = 0.728, F (1, 20) = 0.124). As in the drawings of the apple and

umbrella, the HSC group had lower error than the VF group in the post-training set,

though they started at the same baseline error.

In 3 of the 4 drawings, the group that trained with virtual fixtures, which were designed

to reduce error, actually performed worse during set 3 in terms of error compared to the

group that trained with HSC. When we look at Figure 5.4, we can see that even when the

virtual fixtures were engaged in set 2, the HSC group had lower error than the VF group

when drawing each image except the umbrella. These results demonstrate that even when

feedback is based on spatial statistics, other standard measures like error can be improved

though they are not directly targeted by the algorithm.

One reason that error increases when participants train with virtual fixtures is that

participants exploit these guides when they are present. For the participant shown in

Figure 5.5, it is clear when they were drawing the apple, banana, and house, that they

found the virtual wall and followed it such that they maintain a consistent distance from

the desired lines. When the virtual fixtures are removed, this bias remains. The offsets

in the post-training drawings are similar to those we see in the drawings with virtual

fixtures.

5.6.2. Ergodic Measure

Two-factor repeated measures ANOVAs were used to assess the effects of the group

(between-subjects) and set (within-subjects) on the ergodic measure defined Section 5.5.3.2

for each image used in the study. The HSC group and VF group were evaluated based on
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Figure 5.5. Example drawings from Participant 10 training with virtual
fixtures. Each plot contains the desired image as well as three drawings
by the participants. In drawings with virtual fixtures, we see two notable
responses to the guidance. Wall following is evident in the drawings of the
apple, banana, and house. There are also oscillations when bumping into
and out of the wall particularly in the drawings of the banana and the stem
of the apple.

the baseline trials (set 1) and the post-training trials (set 3) only. Set 2 was left out of

the ANOVA, so that effects of the assistance itself would not be measured in the analysis.

The factorial ANOVA of the ergodic measure on the apple image revealed that the in-

teraction effect of group and set was the only significant factor (p = 6.17×10−4, F (1, 454) =

11.889). The main effects of group and set were not significant for the apple drawings

(p > 0.05). The HSC and VF group performed similarly in the baseline trials, but the

HSC group performed slightly better after the training set. When an analysis of variance

was performed on the ergodicity of the banana drawings, again, there was no significant
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effect of group, set, or the interaction of those two factors (p > 0.05). When the er-

godicity of the trajectories drawing the umbrella were compared, the significant factors

were the set (p = 6.21 × 10−5, F (1, 454) = 16.34) and the interaction between group

and set (p = 1.95 × 10−4, F (1, 454) = 14.11). The main effect of group was not sig-

nificant (p = 0.613, F (1, 20) = 0.264). The group was not a significant factor affecting

the error in the house drawings (p = 0.238, F (1, 20) = 1.477). The main effect of set

(p = 0.73, F (1, 454) = 0.119) also was not significant, but the interaction of group and

set (p = 7.90× 10−8, F (1, 454) = 29.795) were significant.

The results of the ANOVA of ergodicity for 3 of the 4 drawings showed that the inter-

action effect of set and group was a significant factor—implying that while the participants

started at the same performance level in their baseline set, participants in the HSC group

attained a higher performance level in the post-training set than the VF group. The dif-

House
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BananaUmbrellaApple

Figure 5.6. Participants using Hybrid Shared Control in set 2 generated
drawing trajectories that were more ergodic with respect to the desired
image than those using virtual fixtures. This advantage was maintained in
set 3 when the assistance was removed in the apple, umbrella, and house
drawing. The difference between the two groups for set 3 of the banana
drawings was not significant. Note: error bars indicate standard error;
significance is indicated by ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

ferences in the ergodic measure implies that participants training with HSC generated

trajectories that encoded more information about the original image. This is likely due
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to the assistance intervening based on a measure of overall performance as opposed to the

local distance measure employed by the virtual fixtures. The virtual fixtures generally

led participants to draw more slowly—not completing the image. Participants receiving

feedback from HSC drew images that were smaller, but more complete as can be seen in

the examples in Figure 5.7.

Gaussian Approximation of Drawings with HSC

Gaussian Approximation of Drawings with VF

Figure 5.7. Representative examples of trajectories from Participant 10 us-
ing virtual fixture (top) and Participant 6 using hyrbid shared control (bot-
tom). The time-average statistics of the trajectories are plotted using the
Gaussian approximation from Equation 5.1. The trajectories in the top
row are taken from the middle row of Figure 5.5. However, here we plot
them over a representation of their spatial statistics. There is high density
around the trajectory, particularly points where participants moved more
slowly, such as corners on the house or cusps on the apple and umbrella. For
Participant 6 using HSC (bottom), we see that they were generally moving
more quickly and covered more of the original image than the drawings with
VF. This example demonstrates how HSC participants drew smaller, but
more complete drawings than the participants that trained with virtual fix-
tures. The difference between the two distributions demonstrates how the
drawings with HSC contained more information about the original image
than the drawings with VF.
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5.6.3. Completion Score

The mean completion score of each group in each set can be seen in Figure 5.8. The change

in completion percentage of the two groups over the course of training was analyzed by

performing mixed design ANOVAs on the HSC group (between participants) and set

(within participants) using the ratings on all four images. Only the baseline trials (set 1)

and post-training trials (set 3) were used to avoid measuring the effects of the assistance

itself in the analysis.

Figure 5.8. The virtual fixtures actually reduced completeness score in set
2 for every image except the banana, while the HSC greatly increased the
completion scores. Therefore, the group that trained with HSC had much
higher completion scores when drawing the apple, umbrella, and house in
the post-training trials, even though both groups performed similarly in
terms of completion score in the baseline set. Note: error bars indicate
standard error; significance is indicated by ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p <
0.001.

The completion percentage of the apple drawings had two significant factors. The main

effect of training group was not significant (p = 0.400, F (1, 20) = 0.739). However, the

main effect of set was significant (p = 0.00245, F (1, 460) = 9.276), as was the interaction

of training and set (p = 5.56× 10−5, F (1, 460) = 16.556). Study participants in the VF

group completed around the same amount of this drawing both before and after training,

whereas participants using HSC completed 7% more on average.
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The mixed design ANOVA was also applied to the completion in the banana drawings,

and the main effect of training group was not significant (p = 0.393, F (1, 20) = 0.761).

However, the main effect of set was significant (p = 2.200 × 10−5, F (1, 470) = 18.373).

The interaction effect of block and training group was significant (p = 0.0497, F (1, 470) =

3.871). This reflects the fact that the two groups performed similarly in the first set, but

the VF group had completed more of the drawings in the post-training set. Both groups

improved their completion scores post-training.

When the same mixed design ANOVA was applied to the completion scores in the

umbrella drawings, the main effect of set (p = 1.82 × 10−8, F (1, 477) = 32.79) and the

interaction effect of training group and set were significant (p = 0.005, F (1, 477) = 7.67).

The main effect of group (p = 0.662, F (1, 20) = 0.197) was not significant. In the case of

this drawing, the VF group and the HSC group had higher completion scores in the post-

training trials compared to their baseline. Although the two groups had similar baseline

completion scores, the HSC group achieved significantly higher scores that the VF group

post-training.

The analysis of the error in the drawings of the house revealed that the main effects

of set (p = 0.162, F (1, 455) = 1.963) and group(p = 0.284, F (1, 20) = 1.210) were not

significant, but the interaction effect of set and training group (p = 0.003, F (1, 455) =

9.190) was significant. As in the drawings of the apple and umbrella, the HSC group had

higher completion scores than the VF group in the post-training set, though they started

at the same baseline error. In this drawing in particular, the completion scores of the VF

group actually went down in the post-training trials.
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In 3 of the 4 drawings, the group that trained with virtual fixtures, had lower comple-

tion scores on their drawings compared to the group that trained with HSC. When we look

at Figure 5.8, we can see that the HSC group had much higher completion scores in set

2 and retained a modest advantage over the VF group in the post-training trials. These

results demonstrates that the HSC encouraged participants to take actions that improved

the overall quality of the drawing rather than the accuracy of an individual pose.

5.7. Discussion & Conclusions

There are numerous articles stating the potential of robotics to support training and re-

habilitation because of their ability to assist users in completing many repetitions and their

ability to provide quantitative feedback. The questions of how robots should assist/resist

users, how to define the task, and what metrics they should use quantify success have a

profound impact on the efficacy of training. Prior studies show that error, variability, and

active user participation—achieved by adapting the robot support as needed—are crucial

to motor learning. Furthermore, we know that there are many equally good solutions to

a particular task that a person might use.

We have developed a hybrid shared controller that selectively rejects or accepts user

actions based on how that action will affect the time-averaged statistics of the trajectory

for some time into the future—that is, how the amount of task information present in

the trajectory will be affected. Using this controller, a robot can provide physical cor-

rective feedback during training while avoiding issues of time-dependence and selection

of a particular strategy to complete a task. When user inputs increase the ergodicity of
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the trajectory with respect to a distribution defining the task, the controller is transpar-

ent to the user. Otherwise, user inputs are rejected by providing an equal and opposite

force—maintaining a constant velocity. In our study, we experimentally compare this

novel assistance paradigm, ergodic hybrid shared control, to a standard form of assis-

tance based on error.

Our results demonstrated that although ergodic HSC is based on a global measure of

the distance from ergodicity rather than a local measure of error, it improved the error

measure. Participants who trained with the error-based assistance actually performed

worse in terms of error than those who trained with ergodic HSC. Because the virtual

fixtures provide feedback based on distance from a local point on the desired path, there

is a tendency for participants to follow the virtual fixtures. This leads to drawings that

are precise but not accurate, following the same incorrect path over multiple trials. This

emphasizes the fact that error is a limited measure that cannot capture broader task

goals. Although error was higher in the VF trained participant drawings, one would not

say that their skill in reproducing the drawings was necessarily poor. If the reference

had been built off many example drawings, they likely would have fallen within range of

one or more of the examples. Yet, the need to define a specific path means that some

participants are penalized for being arbitrarily far from the mean.

When evaluating the impact of training in terms of the time-averaged statistics of

the participants’ trajectories, we found that there was a significant advantage to training

with ergodic HSC. The group that trained with virtual fixtures produced consistently

incomplete drawings, whereas the group receiving feedback based on the ergodic measure

produced drawings that were smaller than the original image, but more complete. This
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difference emphasizes the need for assistance based on global measures as opposed to

local interactions. Combining the ergodic measure with the dynamics of the system in

the MIG, allows ergodic HSC to be sensitive to time without being dependent on time

like some other assistance strategies.

Timed drawing is not a daily task that people need assistance with or training for.

Nevertheless, it shares characterstics with tasks such as cleaning, personal care, cooking,

and reaching. Moreover, it can be used in a Learning from Demonstration (LfD) frame-

work [51], so that erdogic HSC can be easily implemented for other tasks. When the task

is unknown, one could potentially use intent detection to define a representation that

encodes the uncertainty about the intent prediction.
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CHAPTER 6

Conclusions and Future Directions

This thesis began with a discussion of the impact that metrics have on how we assess

motion and drive our autonomous systems. The choice of metric affects our ability to

distinguish between normal and impaired movement, and more importantly from a robot-

ics standpoint, it affects our capacity to design systems that interact closely with people.

One of the most frequently used measures in robotics is error with respect to a desired

trajectory. This requires us to specify a specific strategy for movement to complete a task

even though there may be many good-enough solutions. In chapter 3, I avoid specifying

a trajectory by using methods from model predictive control to evaluate the user input

rather than the trajectory itself. Evaluating inputs instantaneously to decide whether to

accept or reject lead to improved training outcomes within a session and improved reten-

tion after one week. This is likely because task-based hybrid shared control had many of

the features of pHRI that we know are critical to motor learning. However, it was still

fundamentally based on error, with a state-based task definition.

When the goal of pHRI is to support stereotypical human motions, the ideal objective

or reference is statistical patterns of movement. Trajectories or paths can easily over spec-

ify a task, and when used to classify expert/novice or normal/impaired motion, they may

not provide reflect the significant differences between groups. Metrics based on concepts

from information theory can provide us with a way to quantify the differences or similar-

ities in statistical patterns of motion such that task performance is accurately classified.
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The ergodic metric described in chapter 4 is not the only possible way to quantify the

information encoded in motion. There are many representations of a distribution that

could be used, including wavelets or Gaussian mixtures, as long as a comparison metric of

two distributions can be defined. However, pHRI requires that the robot to be physically

synchronous with the person, so metrics we choose must be actionable for the autonomy

(i.e. computed online and differentiable) and should enable the robot to maintain a task-

level view of performance as opposed to managing local interactions. The metric used to

assist participants with drawing in the experiments described in chapter 5 was able to

accomplish this such that participants learned to draw more of each image in a shorter

time compared to participants who received assistance proportional to their distance from

the drawing path.When we design algorithm that can maintain a nonmyopic view of per-

formance at each instant in time as in chapter 3, we get desirable features for enhancing

motor leaning and users receive feedback that represents global task information rather

than local errors.

6.1. Future Directions

In the experimental work in chapter 5, we assume that we have a known distribution

that is fixed in time. The tasks presented in chapter 4 and chapter 5 can be reasonably

described by a single distribution, but we cannot expect this to hold for all tasks nor

can we assume that they are easily described by parametric density functions like a delta

function or Gaussian distribution. However, we can generate reference distributions using

Learning from Demonstration (LfD). In [51], we show that there is a straight forward

way to combine the Fourier coefficients of multiple trajectories to form a reference set
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of coefficients. Furthermore, one can use ergodic optimal control [1, 81] to generate

task executions that outperform individual demonstrations. These results suggest that

the combined demonstrations capture the essential components of the task. A similar

approach could be adopted to define the reference distribution in Algorithm 2.

Algorithm 2 assumes that the reference distribution φ does not depend on time. The

static reference distribution that ergodic LfD provides can be applied to many tasks of

interest, particularly task of daily living such as cooking and cleaning that may be relevant

in therapeutic settings. Part of the advantage of statistical definitions of tasks is that

there is not a direct dependence on time, however, there are situations in which timing

is significant. When a task is performed in a way that changes the dynamic model of the

task, we should expect that a new reference is necessary for each change. That is when

an object is picked up, adding mass, or contacts are made that induce new constraints,

the new dynamics require a new reference distribution. For these types of more complex

tasks, I anticipate that it would be necessary to segment sequential tasks like peg-in-hole

insertion or block stacking into sub tasks using machine learning. There would also be

value in generating or updating distributions based on intent. This would involve applying

intent detection methods such as those in [38, 48, 49] and [65, 144] to distributions as

opposed to joint torques or trajectories, respectively.

Throughout this thesis, I use examples of 2-dimensional tasks. Certain aspects of

extending the ergodic measure and control to higher dimensional tasks are trivial. The

sample-based metric described in [1] resolves the computational issues that arise with the

spectral approach, however, the choice of the parameters, Σ and N can significantly affect

the behavior of the ergodic control. These two parameters are strongly related in that
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to get an accurate representation of the original distribution without random artifacts

related to sampling, there must either be a large number of sample locations, N , with

small variance, Σ or a smaller N with large variance Σ. The latter representation would

be a coarser representation of the task, such that less precision is required to generate a

trajectory that is highly ergodic with respect to the representation. In the case of the

drawing task in chapter 5, this actually enables the shared control to generate drawings

that are complete but not to scale in the time allowed. If the task required more precision

in terms of the state, we would choose a lower value of Σ and would need to increase the

number of samples to avoid having erroneously low densities in areas of the state space

that were not sampled as often as others. For planar tasks, where the desired distribution

and its Gaussian mixture representation can be visualized, one can manually select these

two parameters to manage the trade-off between solution flexibility and task accuracy. In

higher dimensional settings, these parameters may be very difficult to choose especially

when the reference is a result of many demonstrations of a task where the sensitivity

of the task to the accuracy of the movements is unknown. Therefore, in future work,

the parameters of the ergodic metric should be auto-tuned such that the information

lost by using the randomly sampled Gaussian mixture representations instead of the true

distribution is minimized subject to constraints on the maximum number of samples that

can be used in the online controller.

In the work described in chapter 4, I compare the statistical outcomes of measures

with regard to different levels of assistance in stroke and healthy participants. Increasing

levels of assistance can be thought of as decreased deficit in this context. However in

a clinical setting, we would be interested in predicting deficit across healthy, mild, and
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moderate impairments. In future work, a rigorous comparison of clinical measures and

task measures should be conducted across multiple tasks and deficit level using healthy

age-matched controls. This comparison would characterize the extent to which one can

use information measures to predict deficit.

Up until this point, I have discussed immediate extensions of the work in this thesis,

but the information theoretic view of motion that is taken in this work opens up more ex-

citing questions about the tasks that we choose and the mode of communication between

the autonomy and the user. The commercial availability of wearable sensors, actuation,

and virtual reality systems makes it possible to envision autonomous systems capable of

assessing the motion of aging and impaired populations as well as prescribing therapeu-

tic exercises to mitigate disability. As of now, we lack the algorithmic foundations to

map measures of the user’s state to available actuation. Future work should focus on

creating methods for quantitatively assessing users based on measures that are actionable

for the automation. Utilizing methods for system identification and active exploration

as opposed to hand-crafted solutions, one could automatically generate exercises to re-

solve uncertainties about a user’s impairment. Therapy regimens can also be designed

to optimally challenge users by using quantitative measures in a framework informed by

knowledge and expertise from the areas of human factors and psychology. Augmented or

virtual reality systems can be developed to place these automatically generated tasks into

a motivating real-world context. I have already shown that measurement of the infor-

mation encoded by a motion about a task can discriminate well between different levels

of impairment using a predefined task. It would be interesting to continue to use this

information-theoretic view of motion to develop and apply measures of motion quality by
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framing the assessment and design of challenging tasks as information-maximizing prob-

lems. In assessment, we will ask how we can maximize our confidence in our assessment

by directing users to tasks that allow us to discriminate between different types and levels

of impairments. Additionally, we can challenge users by developing tasks that exploit this

assessment—ruling out tasks where we know users already have high task-embodiment.

Perhaps the largest hurdle in making such systems effective, especially for highly-

impaired individuals, is the sensorimotor feedback that could be provided through haptic

and robotic systems. For at-home semi-autonomous therapy to be widely adopted, devices

must be low cost and low power. For instance, an ideal device might be a haptic arm band

that can provide feedback through skin stretch, squeeze, and vibration. This necessarily

limits bandwidth, so we must learn how we can compress task-specific motion information

to generate low-dimensional feedback that enhances task performance and training. In

a one-dimensional task, we have seen that users can improve their task performance

when vibrotactile feedback is introduced into a balance task[128], because the feedback

chosen was simple and intuitive. For higher dimensional tasks and multimodal haptic or

kinesthetic feedback, the online synthesis of feedback is no longer trivial. If we connect

principles from communication engineering to motor control, we can distill the task-

relevant signals such that they are easily interpreted and incorporated with the native

sensory signals of users to improve their task performance for more complex tasks.
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[9] Jérémy Bluteau, Sabine Coquillart, Yohan Payan, and Edouard Gentaz. Haptic
guidance improves the visuo-manual tracking of trajectories. PLoS One, 3(3):e1775,
2008.



142

[10] Stuart A Bowyer, Brian L Davies, and Ferdinando Rodriguez y Baena. Active
constraints/virtual fixtures: A survey. IEEE Transactions on Robotics, 30(1):138–
157, 2013.

[11] Charles G Burgar, Peter S Lum, Peggy C Shor, and HF Machiel Van der Loos.
Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford ex-
perience. J. Rehabilitation Research and Development, 37(6):663–674, 2000.

[12] Timothy M Caldwell and Todd D Murphey. Projection-based optimal mode sched-
uling. Nonlinear Analysis: Hybrid Systems, 21:59–83, 2016.

[13] B Cesqui, S Aliboni, S Mazzoleni, MC Carrozza, F Posteraro, and S Micera. On
the use of divergent force fields in robot-mediated neurorehabilitation. In IEEE Int.
Conf. on Biomedical Robotics and Biomechatronics (BioRob), pages 854–861. IEEE,
2008.

[14] Steve Collins, Andy Ruina, Russ Tedrake, and Martijn Wisse. Efficient bipedal
robots based on passive-dynamic walkers. Science, 307(5712):1082–1085, 2005.

[15] Gery Colombo, Matthias Joerg, Reinhard Schreier, and Volker Dietz. Treadmill
training of paraplegic patients using a robotic orthosis. J. Rehabilitation Research
and Development, 37(6):693–700, 2000.

[16] Janis J Daly and Jonathan R Wolpaw. Brain–computer interfaces in neurological
rehabilitation. The Lancet Neurology, 7(11):1032–1043, 2008.

[17] Agostino De Santis, Bruno Siciliano, Alessandro De Luca, and Antonio Bicchi.
An atlas of physical humanrobot interaction. Mechanism and Machine Theory,
43(3):253–270, 2008.

[18] Bruce H. Dobkin and Pamela W. Duncan. Should body weightsupported tread-
mill training and robotic-assistive steppers for locomotor training trot back to the
starting gate? Neurorehabilitation and Neural Repair, 26(4):308–317, 2012.

[19] Anca D Dragan and Siddhartha S Srinivasa. A policy-blending formalism for shared
control. Int. J. Robotics Research, 32(7):790–805, 2013.

[20] Vincent Duchaine, Nicolas Lauzier, Mathieu Baril, Marc-Antoine Lacasse, and
Clément Gosselin. A flexible robot skin for safe physical human robot interac-
tion. In 2009 IEEE International Conference on Robotics and Automation, pages
3676–3681. IEEE, 2009.



143

[21] Alexander Duschau-Wicke, Joachim von Zitzewitz, Andrea Caprez, Lars Lunen-
burger, and Robert Riener. Path control: a method for patient-cooperative robot-
aided gait rehabilitation. 18(1):38–48, 2010.

[22] Magnus Egerstedt, Yorai Wardi, and Henrik Axelsson. Transition-time optimization
for switched-mode dynamical systems. IEEE Trans. Automatic Control, 51(1):110–
115, 2006.

[23] Michael D Ellis, Yiyun Lan, Jun Yao, and Julius PA Dewald. Robotic quantification
of upper extremity loss of independent joint control or flexion synergy in individuals
with hemiparetic stroke: a review of paradigms addressing the effects of shoulder
abduction loading. J. NeuroEngineering and Rehabilitation, 13(1):95, 2016.

[24] Michael D. Ellis, Theresa Sukal-Moulton, and Julius P. A. Dewald. Progressive
shoulder abduction loading is a crucial element of arm rehabilitation in chronic
stroke. Neurorehabilitation and Neural Repair, 23(8):862–869, 2009. PMID:
19454622.

[25] Jeremy L Emken, Raul Benitez, Athanasios Sideris, James E Bobrow, and David J
Reinkensmeyer. Motor adaptation as a greedy optimization of error and effort. J.
Neurophysiology, 97(6):3997–4006, 2007.

[26] Jeremy L Emken, Susan J Harkema, Janell A Beres-Jones, Christie K Ferreira,
and David J Reinkensmeyer. Feasibility of manual teach-and-replay and continu-
ous impedance shaping for robotic locomotor training following spinal cord injury.
55(1):322–334, 2008.

[27] Jeremy L Emken and David J Reinkensmeyer. Robot-enhanced motor learning:
accelerating internal model formation during locomotion by transient dynamic am-
plification. IEEE Trans. Neural Syst. Rehabil. Eng., 13(1):33–39, 2005.

[28] M Ferraro, JJ Palazzolo, J Krol, HI Krebs, N Hogan, and BT Volpe. Robot-
aided sensorimotor arm training improves outcome in patients with chronic stroke.
Neurology, 61(11):1604–1607, 2003.

[29] Moria E Fisher, Felix C Huang, Zachary A Wright, and James L Patton. Distribu-
tions in the error space: Goal-directed movements described in time and state-space
representations. In IEEE Int. Conf. on Engineering in Medicine and Biology, pages
6953–6956, 2014.

[30] Kathleen Fitzsimons, Ana Maria Acosta, Julius P Dewald, and Todd D Murphey.
Ergodicity reveals assistance and learning from physical human-robot interaction.



144

Science: Robotics, 4, 2019.

[31] Kathleen Fitzsimons, Aleksandra Kalinowska, Julius Dewald, and Todd D Murphey.
Task-based hybrid shared control for training through forceful interaction. Int. J.
Robotics Reserach, 39(9):1138–1154, 2020.

[32] Kathleen Fitzsimons, Emmanouil Tzorakoleftherakis, and Todd D Murphey. Opti-
mal human-in-the-loop interfaces based on maxwell’s demon. In American Control
Conference, pages 4397–4402, July 2016.

[33] Tamar Flash and Neville Hogan. The coordination of arm movements: an experi-
mentally confirmed mathematical model. J. Neuroscience, 5(7):1688–1703, 1985.

[34] Antonio Frisoli, Claudio Loconsole, Daniele Leonardis, Filippo Banno, Michele Bar-
sotti, Carmelo Chisari, and Massimo Bergamasco. A new gaze-bci-driven control of
an upper limb exoskeleton for rehabilitation in real-world tasks. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(6):1169–
1179, 2012.

[35] Humberto Gonzalez, Ram Vasudevan, Maryam Kamgarpour, Shankar S. Sastry,
Ruzena Bajcsy, and Claire Tomlin. A numerical method for the optimal control of
switched systems. In IEEE Conf. on Decision and Control, pages 7519–7526, 2010.

[36] Mark Guadagnoli and Kristina Lindquist. Challenge point framework and efficient
learning of golf. Int. J. Sports Science & Coaching, 2(1 suppl):185–197, 2007.

[37] Marco Guidali, Alexander Duschau-Wicke, Simon Broggi, Verena Klamroth-
Marganska, Tobias Nef, and Robert Riener. A robotic system to train activities
of daily living in a virtual environment. Medical & biological engineering & comput-
ing, 49(10):1213, 2011.

[38] Abhishek Gupta, Marcia K O’Malley, Volkan Patoglu, and Charles Burgar. De-
sign, control and performance of ricewrist: a force feedback wrist exoskeleton for
rehabilitation and training. Int. J. Robotics Research, 27(2):233–251, 2008.

[39] Christopher M Harris and Daniel M Wolpert. Signal-dependent noise determines
motor planning. Nature, 394(6695):780–784, 1998.

[40] Stefan Hesse, Gotthard Schulte-Tigges, Matthias Konrad, Anita Bardeleben, and
Cordula Werner. Robot-assisted arm trainer for the passive and active practice of
bilateral forearm and wrist movements in hemiparetic subjects. Archives of physical
medicine and rehabilitation, 84(6):915–920, 2003.



145

[41] Neville Hogan. An organizing principle for a class of voluntary movements. J.
Neuroscience, 4(11):2745–2754, 1984.

[42] Neville Hogan, Hermano I Krebs, Brandon Rohrer, Jerome J Palazzolo, et al. Mo-
tions or muscles? some behavioral factors underlying robotic assistance of motor
recovery. Journal of Rehabilitation Research and Development, 43(5):605, 2006.

[43] Yu Wei Hsieh, Ching Yi Wu, Keh Chung Lin, Ya Fen Chang, Chia Ling Chen, and
Jung Sen Liu. Responsiveness and validity of three outcome measures of motor
function after stroke rehabilitation. Stroke, 40(4):1386–1391, 2009.

[44] Vincent S Huang and John W Krakauer. Robotic neurorehabilitation: a computa-
tional motor learning perspective. J. NeuroEngineering and Rehabilitation, 6(1):5,
2009.

[45] Alberto Isidori. A tool for semi-global stabilization of uncertain non-minimum-
phase nonlinear systems via output feedback. IEEE Trans. on Automatic Control,
45(10):1817–1827, 2000.

[46] Siddarth Jain and Brenna Argall. Probabilistic human intent recognition for shared
autonomy in assistive robotics. ACM Transactions on Human-Robot Interaction
(THRI), 9(1):1–23, 2019.

[47] William H Jantscher, Shivam Pandey, Priyanshu Agarwal, Sadie H Richardson,
Bowie R Lin, Michael D Byrne, and Marcia K O’Malley. Toward improved surgi-
cal training: Delivering smoothness feedback using haptic cues. In IEEE Haptics
Symposium, pages 241–246. IEEE, 2018.

[48] LE Kahn, WZ Rymer, and DJ Reinkensmeyer. Adaptive assistance for guided force
training in chronic stroke. In IEEE Int. Conf. Engineering in Medicine and Biology,
volume 1, pages 2722–2725, 2004.

[49] Leonard E Kahn, Michele L Zygman, W Zev Rymer, and David J Reinkensmeyer.
Robot-assisted reaching exercise promotes arm movement recovery in chronic hemi-
paretic stroke: a randomized controlled pilot study. J. Neuroengineering and Reha-
bilitation, 3(1):12, 2006.

[50] Aleksandra Kalinowska, Kathleen Fitzsimons, Julius P Dewald, and Todd D Mur-
phey. Online user assessment for minimal intervention during task-based robotic
assistance. In Robotics: Science and Systems, 2018.

[51] Aleksandra Kalinowska, Ahalya Prabhakar, Kathleen Fitzsimons, and Todd D Mur-
phey. Ergodic lfd: Learning from what to do and what not to do. In Robotics and



146

Automation Letters, Submitted. 2021.

[52] Behzad Khademian and Keyvan Hashtrudi-Zaad. Shared control architectures for
haptic training: Performance and coupled stability analysis. Int. J. Robotics Re-
search, 30(13):1627–1642, 2011.

[53] Tomoko Kitago, Johnny Liang, Vincent S Huang, Sheila Hayes, Phyllis Simon,
Laura Tenteromano, Ronald M Lazar, Randolph S Marshall, Pietro Mazzoni, Laura
Lennihan, and John W Krakauer. Improvement after constraint-induced movement
therapy: recovery of normal motor control or task-specific compensation? Neurore-
habilitation and Neural Repair, 27(2):99–109, 2013.

[54] Verena Klamroth-Marganska, Javier Blanco, Katrin Campen, Armin Curt, Volker
Dietz, Thierry Ettlin, Morena Felder, Bernd Fellinghauer, Marco Guidali, Anja Koll-
mar, et al. Three-dimensional, task-specific robot therapy of the arm after stroke: a
multicentre, parallel-group randomised trial. The Lancet Neurology, 13(2):159–166,
2014.

[55] Alexander C Koenig and Robert Riener. The human in the loop. In Neurorehabili-
tation Technology, pages 161–181. Springer, 2016.

[56] S Kousidou, NG Tsagarakis, C Smith, and DG Caldwell. Task-orientated biofeed-
back system for the rehabilitation of the upper limb. In 2007 IEEE 10th Interna-
tional Conference on Rehabilitation Robotics, pages 376–384. IEEE, 2007.

[57] Hermano Igo Krebs. Twenty+ years of robotics for upper-extremity rehabilitation
following a stroke. In Rehabilitation Robotics, pages 175–192. Elsevier, 2018.

[58] Hermano Igo Krebs, Jerome Joseph Palazzolo, Laura Dipietro, Mark Ferraro, Jen-
nifer Krol, Keren Rannekleiv, Bruce T Volpe, and Neville Hogan. Rehabilitation ro-
botics: Performance-based progressive robot-assisted therapy. Autonomous Robots,
15(1):7–20, 2003.

[59] Hermano Igo Krebs, Bruce T Volpe, Dustin Williams, James Celestino, Steven K
Charles, Daniel Lynch, and Neville Hogan. Robot-aided neurorehabilitation: a robot
for wrist rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng., 15(3):327–335,
2007.

[60] Klas Kronander and Aude Billard. Learning compliant manipulation through kines-
thetic and tactile human-robot interaction. IEEE transactions on haptics, 7(3):367–
380, 2013.



147

[61] Solomon Kullback and Richard A Leibler. On information and sufficiency. The
Annals of Mathematical Statistics, 22(1):79–86, 1951.

[62] Jean-Paul Laumond. Anthropomorphic action in robotics. In Brain-inspired in-
telligent robotics: The intersection of robotics and neuroscience, pages 39–41. Sci-
ence/AAAS, 2016.

[63] Jaebong Lee and Seungmoon Choi. Effects of haptic guidance and disturbance
on motor learning: Potential advantage of haptic disturbance. In IEEE Haptics
Symposium, pages 335–342, 2010.

[64] Michael D Lewek, Theresa H Cruz, Jennifer L Moore, Heidi R Roth, Yasin Y Dhaher,
and T George Hornby. Allowing intralimb kinematic variability during locomotor
training poststroke improves kinematic consistency: a subgroup analysis from a
randomized clinical trial. Physical Therapy, 89(8):829–839, 2009.

[65] Ming Li and Allison M Okamura. Recognition of operator motions for real-time
assistance using virtual fixtures. In Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems, pages 125–131. IEEE, 2003.

[66] Yanfang Li, Volkan Patoglu, and Marcia K O’Malley. Negative efficacy of fixed gain
error reducing shared control for training in virtual environments. Transactions on
Applied Perception, 6(1):3, 2009.

[67] Daniel Liberzon. Switching in Systems and Control. Springer, 2012.

[68] Keh Chung Lin, Yi An Chen, Chia Ling Chen, Ching Yi Wu, and Ya Fen Chang.
The effects of bilateral arm training on motor control and functional performance
in chronic stroke: a randomized controlled study. Neurorehabilitation and Neural
Repair, 24(1):42–51, 2010.

[69] Albert C Lo, Peter D Guarino, Lorie G Richards, Jodie K Haselkorn, George F Wit-
tenberg, Daniel G Federman, Robert J Ringer, Todd H Wagner, Hermano I Krebs,
Bruce T Volpe, et al. Robot-assisted therapy for long-term upper-limb impairment
after stroke. New England Journal of Medicine, 362(19):1772–1783, 2010.

[70] Claudio Loconsole, Stefano Dettori, Antonio Frisoli, Carlo Alberto Avizzano, and
Massimo Bergamasco. An emg-based approach for on-line predicted torque control
in robotic-assisted rehabilitation. In 2014 IEEE Haptics Symposium (HAPTICS),
pages 181–186. IEEE, 2014.



148

[71] Dylan P Losey, Laura H Blumenschein, Janelle P Clark, and Marcia K OMa-
lley. Improving short-term retention after robotic training by leveraging fixed-
gain controllers. Journal of rehabilitation and assistive technologies engineering,
6:2055668319866311, 2019.

[72] Dylan P Losey and Marcia K O’Malley. Trajectory deformations from physical
human–robot interaction. IEEE Transactions on Robotics, 34(1):126–138, 2018.

[73] Martin Lotze, Christoph Braun, Niels Birbaumer, Silke Anders, and Leonardo G
Cohen. Motor learning elicited by voluntary drive. Brain, 126(4):866–872, 2003.

[74] Peter S. Lum, Charles G. Burgar, Peggy C. Shor, Matra Majmundar, and
Machiel Van der Loos. Robot-assisted movement training compared with conven-
tional therapy techniques for the rehabilitation of upper-limb motor function after
stroke. Archives of Physical Medicine and Rehabilitation, 83(7):952–959, 2002.

[75] Ying Mao, Xin Jin, Geetanjali Gera Dutta, John P Scholz, and Sunil K Agrawal.
Human movement training with a cable driven arm exoskeleton (carex). IEEE
Transactions on Neural Systems and Rehabilitation Engineering, 23(1):84–92, 2014.

[76] Laura Marchal-Crespo and David J Reinkensmeyer. Haptic guidance can enhance
motor learning of a steering task. J. Motor Behavior, 40(6):545–557, 2008.

[77] Laura Marchal-Crespo and David J Reinkensmeyer. Review of control strategies
for robotic movement training after neurologic injury. J. NeuroEngineering and
Rehabilitation, 6(1):20–35, 2009.

[78] Laura Marchal-Crespo, Mark van Raai, Georg Rauter, Peter Wolf, and Robert
Riener. The effect of haptic guidance and visual feedback on learning a complex
tennis task. Experimental Brain Research, 231(3):277–291, 2013.
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pher KRT Jones. Capturing deviation from ergodicity at different scales. Physica
D: Nonlinear Phenomena, 238(16):1668–1679, 2009.

[116] Reza Shadmehr and Ferdinando A Mussa-Ivaldi. Adaptive representation of dy-
namics during learning of a motor task. J. Neuroscience, 14(5):3208–3224, 1994.

[117] Claude E Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27(3):379–423, 1948.

[118] Chris R. Sims. Efficient coding explains the universal law of generalization in human
perception. Science, 360(6389):652–656, 2018.

[119] V Squeri, L Masia, P Giannoni, G Sandini, and P Morasso. Wrist rehabilitation
in chronic stroke patients by means of adaptive, progressive robot-aided therapy.
IEEE Trans. Neural Syst. Rehabil. Eng., 22(2):312–325, 2014.

[120] Patricia Staubli, Tobias Nef, Verena Klamroth-Marganska, and Robert Riener. Ef-
fects of intensive arm training with the rehabilitation robot armin ii in chronic stroke
patients: four single-cases. Journal of neuroengineering and rehabilitation, 6(1):46,
2009.

[121] Micah Steele and R Brent Gillespie. Shared control between human and machine:
Using a haptic steering wheel to aid in land vehicle guidance. In Proceedings of the
human factors and ergonomics society annual meeting, volume 45, pages 1671–1675,
2001.

[122] Arno HA Stienen, Jacob G McPherson, Alfred C Schouten, and Jules PA Dewald.
The ACT-4D: a novel rehabilitation robot for the quantification of upper limb motor
impairments following brain injury. In IEEE Int. Conf. on Rehabilitation Robotics,
pages 1–6, 2011.

[123] Stefanie Tellex, Nakul Gopalan, Hadas Kress-Gazit, and Cynthia Matuszek. Robots
that use language. Annual Review of Control, Robotics, and Autonomous Systems,
3:25–55, 2020.

[124] Andrea Thomaz, Guy Hoffman, and Maya Cakmak. Computational human-robot
interaction. Foundations and Trends in Robotics, 4(2-3):105–223, 2016.



153

[125] Kurt A Thoroughman and Reza Shadmehr. Learning of action through adaptive
combination of motor primitives. Nature, 407(6805):742, 2000.

[126] Emanuel Todorov. Optimality principles in sensorimotor control. Nature Neuro-
science, 7(9):907, 2004.

[127] Emanuel Todorov and Michael I Jordan. Optimal feedback control as a theory of
motor coordination. Nature Neuroscience, 5(11):1226–1235, 2002.

[128] E. Tzorakoleftherakis, M.C. Bengtson, F.A. Mussa-Ivaldi, R.A. Scheidt, and T.D.
Murphey. Tactile proprioceptive input in robotic rehabilitation after stroke. In
IEEE Int. Conf. on Robotics and Automation (ICRA), pages 6475–6481, 2015.

[129] Emmanouil Tzorakoleftherakis and Todd D Murphey. Controllers as filters: Noise-
driven swing-up control based on maxwell’s demon. In IEEE Conf. on Decision and
Control (CDC), pages 4368–4374, 2015.

[130] Emmanouil Tzorakoleftherakis and Todd D Murphey. Iterative sequential action
control for stable, model-based control of nonlinear systems. IEEE Trans. Automatic
Control, 2018.

[131] Heike Vallery, Edwin HF Van Asseldonk, Martin Buss, and Herman Van Der Kooij.
Reference trajectory generation for rehabilitation robots: complementary limb mo-
tion estimation. 17(1):23–30, 2009.

[132] Janne Marieke Veerbeek, Erwin van Wegen, Roland van Peppen, Philip Jan van der
Wees, Erik Hendriks, Marc Rietberg, and Gert Kwakkel. What is the evidence for
physical therapy poststroke? A systematic review and meta-analysis. PloS one,
9(2):e87987, 2014.

[133] Massimo Vergassola, Emmanuel Villermaux, and Boris I Shraiman. infotaxis as a
strategy for searching without gradients. Nature, 445(7126):406, 2007.

[134] Bruce T Volpe, Mark Ferraro, Daniel Lynch, Paul Christos, Jennifer Krol, Christine
Trudell, Hermano I Krebs, and Neville Hogan. Robotics and other devices in the
treatment of patients recovering from stroke. Current Neurology and Neuroscience
Reports, 5(6):465–470, 2005.

[135] Joachim von Zitzewitz, Peter Wolf, Vladimir Novaković, Mathias Wellner, Georg
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