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ABSTRACT

Shape Anisotropy and Electrostatics in Self-assembly of Colloidal Particles

Ziwei Wang

Self-assembly of colloidal particles at the nano- and microscale has been a powerful tool

for producing structures with emergent properties in applications ranging from electro-

mechanical systems to photonics and biomedical devices. Great success has been achieved in

experiments, where a variety of exotic phases have been discovered and even reconfigurable

and self-healing structures have been created by utilizing external fields. The self-assembly

process results from a delicate balance between different physical interactions, thermal fluc-

tuations, and external fields. Thus, understanding, predicting, and controlling the self-

assembled structure and its dynamic process has been a challenging and central problem

in materials design and engineering. In this dissertation, I employ various simulation tech-

niques to study the self-assembly of a range of colloidal systems and specifically explore how

shape anisotropy and electrostatic polarization effects play a role in the process.

Chapter 2 presents a study on the crystallization process of triangular nanoprisms into

a hierarchical hexagonal lattice. Large-scale Monte Carlo simulations reveal the microscopic

details of the assembled superlattice which is composed of columns of randomly stacked

prisms. I demonstrate that positional ordering of the superlattice indeed emerges from
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orientational disorder, from which the design rule is proposed that different phases can be

realized by varying the ionic strength and cell height.

Chapter 3 focuses on crystal growth kinetics at the nanoscale, where a prevalent layer-

by-layer growth mode is discovered for a diversity of nanoparticles. Coarse-grained modeling

and molecular dynamic simulations are applied to map the energy landscape involving key

diffusive barriers of the nanoparticle system, which explains the thermodynamic and kinetic

driving forces of the observed growth mode. By further coupling analysis of experimental

imaging and kinetic Monte Carlo simulations, we show that building block size governs the

crystal growth process by simultaneously controlling the ratio of surface diffusion rate to

incoming flux and the interaction range.

From Chapter 4, we turn our attention to explore how electrostatic polarization effects

play a role in self-assembly and how it can be utilized to realize structures with controlled

properties. Chapter 4 presents a general review of dielectric effects in mesoscale simulations,

which provides comparison of different methods for handling polarization and highlights key

physical phenomena attributed to dielectric effects at the nano- and microscale.

In Chapter 5, I investigate the structural and dynamical properties of a confined dipole

hard-sphere fluid near a polarizable interface. The Image Charge Method is incorporated

into the Ewald summation to deal with the polarization in simulations. I demonstrate that

while the global polarization only weakly depends on the substrate permittivity, the dipolar

orientation in the contact layer is strongly affected by the dielectric mismatch, as is the

anisotropy of the rotational dynamics.

Inspired by the above observation, Chapter 6 focuses on a two-dimensional dipolar film

supported by a dielectric substrate. Simulations show that the dielectric mismatch across
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the substrate can be utilized to achieve modulated patterns in the dipolar material. No-

tably, a rich phase diagram arises, where stripped and circular morphologies emerge with

geometric properties that can be controlled through variation of particle shape and substrate

permittivity.

Chapter 7 presents a detailed comparison between the recently proposed hybrid method

and the iterative boundary element method on solving the systems containing spherical

dielectric interfaces. By examining the challenging case of close-packed crystal structures, we

demonstrate that the hybrid method is superior to the iterative boundary element method in

terms of efficiency. The effects of various parameters on efficiency, convergence, and accuracy

are also explored for both methods.

By applying the hybrid method in simulations, I study the self-assembly of binary sus-

pensions of oppositely charged polarizable colloids presented in Chapter 8. A variety of

anisotropic superstructures are observed, resulting from the many-body dielectric effects

which impart effective directionality to interactions. Notably, both local connectivity and

fractal dimension can be well controlled by varying particle size ratio and relative permit-

tivity.

Lastly, I conclude this dissertation with a brief summary of the main findings and future

outlook for each chapter in Chapter 9.
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CHAPTER 1

Introduction

Self-assembly of colloidal particle with sizes of 10 nm to 10 µm is ubiquitous in nature1,

where particles spontaneously organize into complex patterns or ordered structures. Such

processes enable parallelized reproduction and structure formation across length scales that

are often difficult to realize by conventional means. Notably, great success has been achieved

at the nano- and microscale, where a variety of exotic phases have been discovered, such as

quasi-2, hierarchical3, and clathrate crystals4, and even reconfigurable5,6 and self-healing7

structures have been created by utilizing external fields. These assembled materials usually

have emergent properties for applications ranging from photonics, electronics to sensing

technologies8. Thus, understanding, predicting, and controlling the self-assembled structure

and its dynamic process has become a central problem in materials design and engineering.

Self-assembly of particles results from a balance between different mechanisms, such as

various interparticle interactions (e.g., van der Waals, electrostatic, magnetic and molecular

interactions)9, entropy (particularly shape entropy)10, and external fields (e.g., flow field

and electromagnetic field)11. This competition becomes exceedingly delicate as the particle

size reaches nanoscale, where various interactions (many of which scale with the volume

of particle) are of comparable magnitudes close to the thermal energy kBT
9. Despite the

crucial role played in applications such as metamaterials and photocatalysis, understanding

and predicting the assembled structure and its associated kinetics has been highly nontrivial
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at the nanoscale. On the one hand, the increased importance of discreteness and fluctua-

tions12, resulting from the fact that the building blocks, solvent and ligand molecules have

comparable length scales, precludes the use of mean-field theory and thus poses significant

barriers to theoretical calculations. On the other hand, experimental challenges arise from

the difficulty of directly imaging real-time, real-space nanoscale dynamics in solution at the

needed spatial resolution13–15, where conventional electron microscopy requires dry and thus

static samples4,16, while ensemble scattering (e.g., small-angle neutron or X-ray scattering)

methods do not resolve structure or dynamics at the level of individual particles17,18. There-

fore, particle-based computer simulation has become a powerful tool to study this problem,

in which the great spatial and temporal resolution offer the opportunity to investigate the

microscopic details and thus gain mechanistic understanding of the thermodynamics and

kinetics of the self-assembly process.

In this dissertation, I employ various simulation techniques to study the self-assembly

of a range of systems at nano- and microscale, including anisotropic nanoparticles, two-

dimensional dipolar film, and polarizable colloids. Each system is properly coarse-grained at

the length scale of interest, and Monte Carlo or molecular dynamics simulations are used to

extract the underlying physics as well as explore the phase space to guide the rational design

of materials. Specifically, I focus on how shape anisotropy and electrostatic polarization

effects play a role in the self-assembly process and how they can be utilized to achieve tunable

structures. Accordingly, the content of this thesis is divided into two parts: Crystallization

at the Nanoscale (Part 1, focusing on shape-anisotropic nanoparticles) and Dielectric Effects

in Self-assembly (Part 2, focusing on systems with polarizable interfaces).

Shape is considered as one of the most important features of the building blocks, which

could give rise to a variety of ordered structures19,20. To isolate and resolve the role of shape
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entropy in self-assembly, a series of simulations of non-spherical colloidal particles have been

performed which only take account hard-core interactions21. However, besides the effects

on entropy, non-spherical shape also induces the anisotropy of intrinsic (e.g., van der Waals

and electrostatic) interactions, potentially affecting the assembly behaviors. While the omis-

sion of this shape-induced enthalpic effects might be tolerable for micron-size colloids whose

interactions are usually short ranged compared with particle size, it can become problem-

atic for nanoparticles which often possess long-range interactions22. Therefore, a far more

detailed modeling than the hard excluded-volume potentials is required, which at the same

time needs to be computationally efficient to allow large-scale simulations. This remains

challenging, as the pairwise interaction between anisotropic particles depends not only on

their relative position but also on their orientations. In Part 1 (Chapter 2 to 3), I address this

technical challenge by deriving analytical functional forms of pairwise potential from the de-

tailed coarse-grained models of nanoparticles. The content of this part is closely interwoven

with experimental collaborations. Chapter 2 studies the crystallization process of triangular

nanoprisms into a hierarchical hexagonal lattice composed of columns of randomly stacked

prisms. Large-scale Monte Carlo simulations demonstrate that positional ordering of the

superlattice actually emerges from orientational disorder resulting from highly anisotropic

interactions. The design rule is further proposed that different phases can be realized by

varying the ionic strength and cell height. Additionally, by utilizing liquid-phase trans-

mission electron microscopy (TEM), we resolve the full transition of dispersed nanoprisms

to the superlattice at the single-particle level and reveal a nonclassical nucleation pathway

involving a dense, amorphous intermediate. In Chapter 3, we turn our attention to crys-

tal growth kinetics and discover a prevalent layer-by-layer growth mode resembling atomic

crystallization for a diversity of nanoparticles. Coupling statistical analysis of experimental
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TEM videos with molecular dynamics and kinetic Monte Carlo simulations, we elucidate

that building block size governs the crystal growth process in two distinct ways, by simul-

taneously controlling the ratio of surface diffusion rate to incoming flux and the interaction

range. These two parameters in turn determine the thermodynamic and kinetic driving

forces for different growth behaviors. Notably, our framework explains the prevalence of

corrugated crystal surfaces composed of micron-sized colloids23–25 in contrast to the faceted

nanoparticle superlattices with smooth surfaces26,27.

As one of the most ubiquitous interactions, electrostatic forces have shown their great

power in mediating and directing self-assembly of colloidal particles22,28, including colloidal

aggregation29,30, clustering31, and formation of nanostructured materials32–34. However, a

mechanism that, owing to its complicated many-body nature, has often been neglected or

oversimplified in both experiment and computation, is the electrostatic polarization effects

arising from the dielectric mismatch at material interfaces (e.g., dielectric contrast between

particles and solvent). This omission is noteworthy, given the demonstrated effects of po-

larization on protein folding35, plasmonics36, and ion transport37. In Part 2 (Chapter 4

to 8), by applying different computational methods to deal with the polarization effects,

I investigate systems with dielectric interfaces of different geometries and further demon-

strate how electrostatic polarization can be utilized to achieve assembled structures with

tunable properties. A general review of dielectric effects in mesoscale simulation is presented

in Chapter 4, which provides comparison of different methods for handling polarization in

simulation and highlights key physical phenomena attributed to polarization effects at the

nano- and microscale. Following this, I first focus on systems with dielectric interface of slab

geometry, which can be efficiently solved by incorporating the Image Charge Method into

the Ewald summation. In Chapter 5, I study the structural and dynamical properties of a
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confined dipole hard-sphere fluid, representing e.g., magnetic colloids or charged janus par-

ticles, near a dielectric interface. Simulation results reveal that while the global polarization

only has a weak dependency on substrate permittivity, the dipolar orientation in the contact

layer is significantly affected, as is the anisotropy of the rotational dynamics. Inspired by

this observation, in Chapter 6, I further demonstrate how dielectric mismatch across the

substrate can be utilized to achieve modulated patterns in a two-dimensional dipolar film.

Notably, a rich phase diagram arises, where striped and circular morphologies emerge with

geometric properties that can be controlled through variation of particle shape and substrate

permittivity.

Besides the slab geometry, system with spherical dielectric interfaces, e.g., an ensemble of

charged dielectric spheres, has attracted even more attention, as it is able to represent a wide

range of biological and synthetic systems such as colloidal suspensions and proteins. Such

system can be solved by multiple approaches, including the Image Charge Method38–40,

the Method of Moments41–45, the Boundary Element Method46–50, and the perturbative

many-body expansion method51,52. Specifically, Chapter 7 presents a detailed comparison

between a recently proposed hybrid method53, which combines the Method of Moments,

the Image Charge Method, and the Fast Multipole Method, and the iterative Boundary

Element Method50. By exploring the effect of various parameters on efficiency, convergence,

and accuracy, we demonstrate that for densely packed configurations of relatively small

number of dielectric spheres, the hybrid method computes the electrostatic energy with a

deviation of less than 0.01% at a rate that is more than two orders of magnitude faster

than the Boundary Element Method can achieve for deviations of 3%. Therefore, I apply

this efficient hybrid method in large-scale simulations to study the self-assembly of binary

suspensions of oppositely charged polarizable colloids, as presented in Chapter 8. Notably, I
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show that the dielectric many-body effects impart effective directionality to the interactions

and thus permit robust self-assembly into a variety of anisotropic superstructures. Both local

coordination number and fractal dimension can be accurately controlled through variation

of particle size ratio and relative permittivity. The mechanism I identified here offers a

potential avenue to designing materials with controllable structural properties.



Part 1

Crystallization at the Nanoscale
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CHAPTER 2

Kinetic Pathways of Crystallization at the Nanoscale

This chapter presents a combined experimental–computational study on the nanoscale

crystallization. To present a complete story, I have included experimental results that were

obtained by Zihao Ou. The content of this chapter is based on the following publication:

• Z. Ou1, Z. Wang1, B. Luo, E. Luijten, and Q. Chen, ”Kinetic pathways of crystal-

lization at the nanoscale,” Nat. Mater. 19, 450–455 (2020).

2.1. Abstract

Nucleation and growth are universally important in systems from the atomic to the mi-

crometre scale as they dictate structural and functional attributes of crystals. However,

at the nanoscale, the pathways toward crystallisation have been largely unexplored owing

to the challenge of resolving the motion of individual building blocks in a liquid medium.

Here we address this gap by directly imaging the full transition of dispersed nanoparticles

to a superlattice at the single-particle level. We utilise liquid-phase transmission electron

microscopy at low dose rates to control nanoparticle interactions without affecting their mo-

tions. Combining particle tracking with Monte Carlo simulations, we reveal that positional

ordering of the superlattice emerges from orientational disorder. Otherwise elusive param-

eters including line tension and phase coordinates are measured, charting the nonclassical

1These authors contributed equally to the work
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nucleation pathway involving a dense, amorphous intermediate. We demonstrate the versa-

tility of our approach via crystallisation of different nanoparticles, pointing the way to more

general applications.

2.2. Introduction

The physical properties of crystals, such as structure, shape, defects, domain size and

polymorphism, display a wide variability, strongly correlated with the crystallisation path-

ways underlying their formation54–56, with ramifications for mineralization57, pharmaceuti-

cals58, optics59 and electronics60. For example, carbonate-silica minerals can be engineered

into diversely shaped device elements (e.g. vase, stem, coral) by dynamically sculpting the

curved nuclei that arise in accretive crystallisation61. Protein crystallisation can be ac-

celerated by orders of magnitude via critical density fluctuations, allowing the creation of

high-quality lattices for structural analysis and drug formulation62. DNA-coated micron-

sized colloids can be grown into cubic diamond lattices with an omnidirectional photonic

bandgap by starting from preformed seeds with tetrahedral symmetry63. The central role of

crystallisation for building blocks spanning this range of length scales makes understanding

and engineering the underlying pathways of fundamental interest and crucially relevant for

applications.

Due to the stochastic nature of nucleation and growth, an effective route to mechanistic

understanding is to directly capture the translational and rotational motion of individual

building blocks as they interact and crystallise. On the micron scale, this approach has re-

vealed a series of crystallisation pathways beyond classical nucleation theory, such as prenu-

cleation cluster formation64, multi-step nucleation65 and diffusion-limited solidification66,

via time-lapse optical microscopy. For nanoscale entities, a richer variety of phases has been
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observed, such as quasi-2, hierarchical3 and clathrate crystals4. Their pathways can be

more complicated, owing to the increased importance of discreteness and fluctuations result-

ing from the fact that the building blocks, solvent and ligand molecules have comparable

length scales12. However, direct imaging of dynamics at the nanoscale has been challenging,

because TEM with the needed spatial resolution67 was not compatible with the liquid media

in which crystallites nucleate and grow.

2.3. Results and Discussion

2.3.1. Hierarchical self-assembly of nanoprisms

Here we exploit recent advances in low-dose liquid-phase transmission electron microscopy

(TEM), a technique rapidly gaining importance in materials research56,69–72, to achieve the

in-situ imaging of nanoscale entities ordering into crystals, distinct from the non-periodic

nanoparticle aggregates observed in recent liquid-phase TEM studies71,73. We employ a

sandwich geometry of two SiNx chips accommodating and sealing, against the high vacuum of

TEM, a liquid suspension containing many interacting nano entities (Fig. 2.1a). We focus on

a system of triangular gold nanoprisms as representative nonspherical, anisotropic nanoscale

building blocks. The nanoparticle interactions are highly directional due to the large aspect

ratio (100.5 ± 9.5 nm side length, 7.5 nm thickness). Moreover, the prisms are coated with

negatively charged thiolated ligands to render them well-dispersed by electrostatic repulsion

in the initial suspension (Fig. 2.1a).

We observe a surprising transition from dispersed prisms to a hexagonal lattice, which

is constructed hierarchically in three dimensions (3D) from standing columns of stacked,

misaligned prisms (solid arrowed path in Fig. 2.1ac). The hierarchical construction proceeds

as follows. Through radiolysis of water, the imaging beam monotonically increases the ionic
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Figure 2.1. Gold triangular nanoprisms crystallise hierarchically in 3D to an unex-
pected hexagonal lattice. (a–c) Illustration of the hierarchical crystallisation process.
a, An aqueous suspension of nanoprisms sealed and sandwiched between two SiNx

chips. Instead of packing into a space-filling honeycomb lattice (dotted arrow), the
nanoprisms stack face-to-face into columns (magenta), which subsequently bundle
into a hexagonal lattice (solid arrow). b, Liquid-phase TEM image showing the
highly ordered hexagonal lattice. Inset shows the Fourier transform of the image.
c, MC simulations confirm the hexagonal lattice as the thermodynamically stable
structure, as illustrated via a colour map denoting the squared modulus of the bond
orientational order parameter68 per column j, |ψ6j |2, two-dimensional (2D) projec-
tion and diffraction pattern. (d–g) Liquid-phase TEM snapshots showing the stack-
ing of misaligned prisms (top view): an individual prism sitting on the SiNx chip
(d), two prisms stacking with misalignment (e, polygonal projection contoured in
dotted red line) and more prisms stacking into columns (f–g, nearly circular projec-
tions contoured in solid red lines in the binary image). (h–i) Time lapse liquid-phase
TEM images (h) and corresponding Voronoi representations (i) of the lattice, show-
ing the annealing of imperfectly coordinated sites. Colour of each cell denotes the
coordination number. Arrows in the top panel are coloured by the magnitude of
the instantaneous velocity of individual columns v calculated from successive TEM
images. Scale bars for all images: 100 nm.

strength in the illuminated region within seconds, facilitating counterion screening of the

electrostatic repulsions72,73. The dispersed prisms in this region thus experience a stronger
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net attraction than elsewhere, initiating stacking on the flat SiNx chip into vertically standing

columns. The prisms in a column are not in perfect registry but misaligned in angular

orientation (cf. circular projection in Fig. 2.1d–g). These columns then interact to form

the final structure that appears as a hexagonal lattice of evenly spaced dark, circular disks

under TEM (Fig. 2.1b). The equilibrium lattice constant measured from the TEM images

matches that for hexagonally packed columns with touching edges. Voronoi cell analysis

of the movies shows that the columns vibrate rapidly, eventually annealing all imperfectly

bonded 5- and 7-fold clusters into hexagonal sublattice units (Fig. 2.1h–i). At the low

electron dose rates used here (3.7–8.9 e−Å
−2 · s−1), the ligands on the prism surface remain

intact and nanoparticle interactions are not affected other than through variation of the ionic

strength73. Quantification of the relationship between dose rate and ionic strength make it

possible to trigger and capture the complete crystallisation starting from dispersed prisms.

We note that this hexagonal lattice differs from the space-filling honeycomb lattice

predicted by prior computer simulations (dotted arrowed path, Fig. 2.1a)74, because the

nanoparticles in our experiments are not hard-core geometric shapes, but interact via a

combination of van der Waals and electrostatic interactions. The hierarchical lattice also

transcends the simple one-dimensional columns formed from face-to-face prism stacking75

or other loosely packed chain-like aggregates observed in liquid-phase TEM71,73, where sub-

strate adhesion prevented nanoparticle motions in 3D. Repeatedly switching the electron

beam off and on leads to reversible crystallisation and disassembly of the hexagonal lattice,

confirming the role of local ionic strength variation.

Explicit calculation shows that the misaligned stacking of prisms into columns originates

from an intricate balance between pairwise interaction energy and rotational entropy. The

comparable size of the building blocks and the interaction range necessitates far more detailed
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modelling than the hard excluded-volume potentials74 typically employed for anisotropic

colloids, so we compute the inter-prism pairwise interaction Etot = EvdW+Eel (with EvdW the

van der Waals attraction and Eel the electrostatic repulsion) via numerical summation over

250,000 discretised elements per prism (see Section 2.5.1 for details). The net interaction Etot

is highly directional and strongly attractive, explaining why the prisms predominantly stack

in parallel and coaxially, with minimal tilting of their basal planes at a vertical separation

d. To understand the energetics of prism misalignment, we plot the computed pairwise

interactions in polar maps along relative orientation ∆θ, the spin-angle difference between

neighbouring prisms (Fig. 2.2a). At the effective experimental ionic strength, Eel favours

anti-alignment of adjacent prisms, while the alignment-favouring EvdW dominates slightly,

resulting in a minimum in interaction energy Etot at ∆θ = 0 and vertical separation dmin

(Fig. 2.2b). Yet, Eel suppresses variation of Etot near ∆θ = 0, so that rotational entropy

negates the energetic penalty for small misalignments (penalty less than kBT for |∆θ| < π/10;

Fig. 2.2c), consistent with the experimental observations (Fig. 2.1 d–g).

The misalignment of prisms within each column has consequences that propagate to the

large-scale crystal structure, giving rise to radially isotropic interactions between columns

that promote their hexagonal packing. From the explicit pairwise interaction Etot we obtain

an effective functional form (Section 2.5.2 and 2.5.3) that allows efficient large-scale Monte

Carlo (MC) simulations (see Section 2.5.4 for details). On the individual column level, the

misalignment between adjacent prisms propagates as the prism number M in a column in-

creases (see Section 2.5.5.4). For a typical M of 23, we find that the orientational correlation

function along the column axis decreases exponentially to less than 10% for the fourth neigh-

bour, reflecting high orientational randomness (Fig. 2.2d,e). As a result, the inter-column

interactions at different relative column orientations collapse onto a master curve (Fig. 2.2f).
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Figure 2.2. Energetics and in-situ observation of the crystallisation process. (a–c) Pairwise
interaction between two stacked prisms at the effective experimental ionic strength of 0.5 M. a,
Definitions of vertical separation d and spin-angle difference ∆θ. b, Coloured polar maps showing
van der Waals attraction EvdW, electrostatic repulsion Eel and total interaction energy Etot =
EvdW +Eel as a function of d and ∆θ. c, Pairwise energies vs. ∆θ at d = dmin, the prism separation
at the global energy minimum. [∆θc,∆θc] marks the spin-angle range with energy penalty less than
kBT . (d) Orientational pair correlation function between prisms in a single column computed from
simulations. Inset: G3(m) on a semi-logarithmic scale, with a fitted decay length of 1.86 prisms,
indicating low orientational correlation beyond the second neighbour. (e) Representative snapshot
of a column. (f) Inter-column interaction Ecol is independent of relative orientation (marked by
different symbols). (g–i) Time-lapse TEM images show the real-time crystallisation process, with
gas columns coloured yellow, liquid columns coloured according to |ψ6j |2 and solid columns coloured
red. Insets: Fourier transforms highlighting increasing crystalline order. (j) Corresponding order-
density (|ψ̄6j |2, ρj) histograms showing the counts of columns exhibiting specific |ψ̄6j |2 and ρj
values. The liquid domain (low |ψ̄6j |2) gradually expands and transitions to the solid domain (high
|ψ̄6j |2) at approximatedly constant ρj . Scale bars: 200 nm.
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The potential well of this curve is shallow (−0.3kBT ), making columns interact as nearly

hard circular cylinders. Thermodynamically, such cylinders are expected to crystallise at

sufficiently high volume fraction76, consistent with our experiments and MC simulations

(Fig. 2.1b,c). Note that inter-column interactions in turn affect the intra-column alignment

(see Section 4.2 for details); this is fully taken into account in the large-scale simulations.

2.3.2. Nonclassical nucleation pathways

Since the agreement of the multiscale computation and the TEM observations underpins

the thermodynamic origin of the observed hierarchical crystallisation, we develop and apply

single-particle tracking codes to the TEM movies, obtaining a series of otherwise elusive

parameters quantifying the crystallisation pathway. Accurate statistics are achieved by lo-

cating more than 110,000 columns in independent movies. To specify the crystalline nuclei,

we measure the sixfold symmetry of bonds for each column j using the modulus squared

bond-orientational order parameter68 |ψ6j|2. The establishment of crystalline order is ac-

companied by density fluctuations, which we illustrate by directly measuring the evolution

of the local density ρj, the inverse Voronoi cell area65, as local order develops. Jointly, these

two instantaneous local parameters describe the structural state of a column at any given

time. The time-lapse TEM images (Fig. 2.2g–i) show that initially the columns are in a

dilute phase, translating rapidly– the analogue of a “gas” state with low |ψ6j|2 and low ρj

(ρj < 0.50ρ0, where ρ0 is the density of a dense-packed hexagonal lattice). Subsequently, a

region of columns with low |ψ6j|2 but higher ρj appears and transiently coexists with the

gas, analogous to a dense, amorphous “liquid” state. This liquid region expands steadily

until stable hexagonal crystallites nucleate from within, the “solid” state (characterised by

a solid bond number, the number of crystalline nearest neighbours of column j, ξj >= 4).
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Figure 2.3. Multi-step crystallisation of a nanoparticle superlattice via a dense,
amorphous liquid state as the intermediate. (a) Direct visualisation of the crys-
tallisation pathway in the order-density (|ψ̄6j |2, ρj) histogram collected during the
full crystallisation process. The populated region on the left represents the liquid
columns with low structural order, whereas the bright region on the right represents
the ordered solid. (b–c) Radial distribution functions corresponding to the two re-
gions highlight their structural differences. (d) Number of liquid columns Nliquid

(open) and solid columns Nsolid (filled) in a cluster of N columns. Data from three
independent experiments (differentiated by colour) are described by master curves
for liquid columns (blue, mean ± s.d. from three independent experiments) and
solid columns (red, mean ± s.d. from three independent experiments). Grey shaded
region highlights where the liquid-solid transition occurs, illustrated by the TEM
image (inset, scale bar: 200 nm) showing an emerging solid nucleus (red) surrounded
by a liquid (blue) network. The master curve reveals a characteristic cluster size Nc

beyond which a stable solid cluster emerges and continues to grow.

The liquid columns envelop the nuclei as they grow into large crystalline domains, which

represent the intermediate during the crystallisation. Note that this observed liquid phase is

indeed a metastable intermediate characteristic of a two-step crystallisation process, rather

than a transient state. These insights into the prenucleation intermediate and its dynamic

transformation into nuclei are enabled by observing time-dependent nanoscale motions and

rearrangements at the single-particle level, which is not possible via common in-situ tech-

niques, such as small-angle X-ray scattering, that only resolve ensemble-level parameters

(e.g., lattice spacing, symmetry group, domain size)75,77.
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To quantify the crystallisation pathway, we illustrate the liquid to solid conversion in the

plane of local order versus local density. We employ the coarse-grained order parameter65

|ψ̄6j|2 = |
(∑Z∗

k=0 ψ6k

)
/(Z∗+1)|2 to further distinguish the liquid and solid states, where the

sum runs over column j and its Z∗ nearest neighbours that belong to the same state. The time

evolution of the (|ψ̄6j|2, ρj) histogram shows that the liquid domain expands along the |ψ̄6j|2

axis, maintaining a high and roughly constant local density but significantly increasing the

local order to reach the solid domain (Fig. 2.2j). The (|ψ̄6j|2, ρj) histogram accumulated over

the full crystallisation process (Fig. 2.3a) clearly distinguishes the intermediate (left peak,

liquid) and final lattice (right peak, solid), with corresponding radial distribution functions

(Fig. 2.3b,c) resembling those of liquid and solid states of atomic matter. Interestingly, this

nonclassical nucleation pathway involving formation of a dense amorphous intermediate was

also found to assist crystallisation from a dilute state in proteins62,78 and Lennard-Jones

systems79, but hitherto could not be observed on the nanoscale.

The observed pathway is quantitively consistent in independent experiments. For ease

of comparison, we track the populations of liquid and solid columns in growing clusters, de-

fined65 as sets of contiguously bonded columns. Initially, the number of liquid columns Nliquid

grows to a characteristic size Nc (Fig. 2.3d), consistent among multiple crystallisation events,

and then decreases steadily while the number of solid columns Nsolid grows at a higher rate

until the cluster has fully solidified. This two-step process agrees with a phenomenological

two-barrier free energy79, where the intermediate liquid state acts as a “wetting” layer that

lowers the interfacial tension, so that ordering happens within (Fig. 3.4d, inset). Moreover,

the short-range character of the inter-column interaction (Fig. 2.2f, with interaction range

smaller than 25% of the column diameter) may be responsible for the existence of the liquid

intermediate, consistent with previous theoretical work62,79.
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Taking this concept a step further quantitatively, we use statistical-mechanical princi-

ples80 to determine the line tension from the cluster distribution for the gas-liquid interface

from TEM movies. The result, 1.0 ± 0.1 kBT per column diameter, is in remarkable agree-

ment with the computed inter-column attraction of magnitude 0.9 kBT (three column pairs

of 0.3 kBT each).

2.3.3. Exploration of the phase space and other nanoparticle systems

Lastly, full-scale MC simulations spanning the parameter space reveal how positional or-

dering is inextricably linked with orientational disorder (See Section 4.2 for details). To

illustrate this “order from disorder”, we characterise the orientational order of prisms within

a column via the triatic order parameter81 Sθ = maxθ0

(
1
M

∑M
i=1 cos [3(θi − θ0)]

)
, where θi

denotes the in-plane spin angle of prism i in the column (Fig. 2.4a, see Section 2.5.5.2 for free

energy calculation). We focus on 2D packing fractions φ2D = NcolA∆/(LxLy) (Ncol the total

number of columns and A∆ the area of a prism face) between 0.362 and 0.433, the regime

where multiple phases can be realised. When columns are orientationally ordered (e.g.,

〈Sθ〉 = 0.84), the inter-column interaction exhibits a radial anisotropy and a deep attrac-

tive well for side-to-side columnar attachment (−23kBT , Fig. 2.4b,c). The MC simulations

reveal slowly evolving clusters of columns that are laterally connected. In contrast, on the

same time scale, misaligned columns (e.g., 〈Sθ〉 = 0.37) fully crystallise into a perfect lattice

(Fig. 2.4d,e). Systematically varying both cell height Lz and ionic strength I (Fig. 2.4f) at

each 2D packing fraction φ2D, we find a hexagonal lattice if 〈Sθ〉 < 0.4. The global hexagonal

order parameter is a function solely of 〈Sθ〉 for the entire φ2D range, with data for a wide

range of I and Lz collapsing onto a single master curve (Fig. 2.4g, see Section 2.5.4.5 for

different φ2D).
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Figure 2.4. Positional ordering originates from orientational disorder. (a) Orientational
order Sθ of a column. (b–c) Columns of highly aligned prisms aggregate into slowly evolving clusters
(b), driven by strong and highly anisotropic inter-column interactions Ecol (c), shown as a function
of centre-to-centre distance r for three relative orientations: side-by-side (left axis, black), side-to-
tip (right axis, blue rhombi) and tip-to-tip (right axis, blue squares). (d) Orientationally highly
disordered columns form a plastic crystal. Prism orientations are highlighted by arrows coloured
according to their in-plane spin angle θ (−π/3 < θ < π/3). Diffraction patterns confirm the
positional columnar order. (e) Orientational trajectory of an arbitrary prism reflects orientational
randomness in (d). (f) Column-averaged orientational order 〈Sθ〉 as a function of ionic strength
I and cell height Lz (in units of prism thickness t0) at 2D packing fraction φ2D = 0.386. Yellow
triangles mark the conditions for the highly ordered and disordered columns that give rise to the
structures in panels (b) and (d), respectively. (g) Global hexagonal order, described by |ΨAV

6 |2
(mean ± standard error from 100 independent samples), develops over the 2D packing fraction
range 0.362 < φ2D < 0.433. Within this entire concentration range, data for widely different ionic
strengths and cell heights collapse onto a master curve described by the global columnar order 〈Sθ〉.
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Figure 2.5. Superlattice formation of gold nanospheres and concave nanocubes.
Time-lapse liquid-phase TEM images showing the real-time crystallisation process of

nanospheres (a, at dose rate 11.9e−Å
−2

s−1) and concave nanocubes (b, at dose rate

27.1e−Å
−2

s−1) into 3D superlattices. Fourier transforms provided are corresponding
to the boxed regions. Scale bars: 200 nm.

This plastic mesophase, with simultaneous orientational randomness and positional or-

dering, is akin to structures common in molecular solids82, yet arises here without the

conventional conditions of high axial symmetry and long-range repulsion83. The physi-

cal parameters measured for this model system of nanoprisms, involving both high shape

anisotropy and hierarchy, can provide experimental guidance to future refinements of theories
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for the pathways of nucleation and growth. To illustrate the versatility of our approach we

extend it to gold nanoparticles of different shapes, namely nanospheres (Fig. 2.5a) and con-

cave nanocubes (Fig. 2.5b). Capped with the same charged thiols as the nanoprisms, these

nanoparticles are triggered to crystallise into high-quality 3D lattices following a similar

mechanism (Fig. 2.5), validating the robustness of our low-dose liquid-phase TEM platform

to probe nanoscale crystallisation.

2.4. Conclusions

As the approach is extended to other interacting nano-entities, more parameters can be

derived from the imaged coordinates. Fluctuating local features (symmetry of nuclei, topo-

logical defects, strain map, etc.) and global characteristics computable only from sufficient

single-particle statistics (such as nucleation rate, phonon modes, nanoparticle interaction)

are all of crucial importance for understanding the nanoscopic pathways of phase transi-

tions. Our workflow, combining nanoscale resolution of particle motion and shape with a

statistical-mechanical framework, can translate knowledge of fundamental interactions, fluc-

tuations and motion on the nanoscale into free-energy landscapes and design rules that will

make it possible to optimise dynamic switching of artificial16 and biological84 nanoscopic

entities between different functional states.

2.5. Methods and Supplementary Information

2.5.1. Coarse-grained model for pairwise interaction calculation

To describe the pairwise interaction between two triangular prisms at all possible relative

positions and orientations, we construct a coarse-grained (CG) model in which each prism

coated with charged ligands is discretised as a mesh of beads, placed on stacked hexagonal
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layers with both intralayer spacing and hexagonal lattice spacing ∆b = 0.5 nm. We represent

the triangular prism shape and surface ligands using N1 = 252, 540 beads of type 1 (dark

pink beads in Fig. 2.6a) to model the gold atoms and N2 = 54, 402 type-2 beads (light pink

beads in Fig. 2.6a) to model the coating of charged ligands. The type-1 beads form a 15-layer

triangular prism with thickness 7.5 nm. The type-2 beads form a triangular prism-shaped

monolayer representing the ligands. The resulting prism has a side length of 100 nm and a

thickness of 12.5 nm (7.5 nm prism thickness plus 5.0 nm for two monolayers of ligands),

matching the dimensions measured in experiment.

The type-1 beads have a van der Waals interaction uvdW(rb−b), and the type-2 beads in-

teract via a screened Coulomb potential uel(rb−b) using Debye–Hückel approximation, where

rb−b denotes the distance between pairs of interacting beads. The van der Waals inter-

actions between ligands and between ligands and gold atoms are negligible owing to the

very small Hamaker constants for hydrocarbon/hydrocarbon and gold/hydrocarbon across

water85. The interactions uvdW(rb−b) and uel(rb−b) are given by

uvdW(rb−b) = − H∆6
b

π2r6
b−b

, (2.1)

uel(rb−b) =
Z2

be
2

4πε0εrrb−b

e−κrb−b =
Z2

blB
rb−b

e−κrb−bkBT , (2.2)

where H = 28.9kBT is the Hamaker constant for gold in water, ε0 the vacuum permittiv-

ity, εr the relative permittivity of water, κ−1 the Debye length which depends on the salt

concentration via κ−1 ≈ 0.304/
√
I(M) nm for water at room temperature, lB = 0.7 nm

the Bjerrum length of water at 25◦C and Zb = σ∆2
b/e = 0.075 the effective charge (with

e = 1.6× 10−19C the unit charge) of each type-2 bead, derived from the surface charge den-

sity σ = −0.048C/m2 as measured in experiment. Note that the charge per bead is smaller
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Figure 2.6. CG model for prism–prism pairwise interactions and model validation.
(a) Schematic depiction of the CG model consisting of 252,540 type-1 beads (dark
pink beads) to model the gold triangular prism and 54,402 type-2 beads (light pink
beads) forming the ligand monolayer shell to model the charged ligands. Type-
1 bead have a van der Waals interaction uvdW(rbb) (Eq. 2.1) and type-2 beads
have a screened Coulomb interaction uel(rbb) (Eq. 2.2). The pairwise interaction
between two prisms is computed as a summation over all beadbead interactions.
The total thickness of the CG prism including two monolayers of ligands is denoted
as t0. (b) Van der Waals interaction EvdW (Eq. 2.3, dashed red line), electrostatic
interaction Eel (Eq. 2.4, dashed grey line) and the total pairwise energy Etot (solid
black line) between two coaxial parallel and aligned (∆θ = 0) prisms (as shown
in the lower left schematic) versus the prism–prism separation d at ionic strength
I = 2.0 M, computed in the CG model. The minimum total interaction energy C
(at corresponding separation dmin) is marked with a blue triangle. The inset shows
a magnified view of the shaded part of the Etot − d curve to highlight the deep
and narrow potential well. The definitions of d and ∆θ are shown in Fig. 2.2a. (c)
Total pairwise interaction energy Etot for two coaxial parallel prisms as a function
of vertical separation d at different values of relative spin angle ∆θ. The minimum-
energy separation dmin is independent of ∆θ. (d) Minimum-energy separation dmin

versus ionic strength I computed in the CG model (dark blue squares) and prism
spacings measured in our previous experiments (light blue triangles), validating the
CG model. (e) Minimum energy C between two coaxial parallel prisms as a function
of ionic strength I computed in the CG model.
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than the unit charge because we treat the surface charge density as smeared out uniformly

over the surface. We assume that the charge density of the ligands on the edges of the prism

is the same as on its face.

In our CG model, for computational efficiency we assume that the electrostatic and van

der Waals interactions are additive and pairwise. This is not exactly correct, especially at

the nanoscale and below, where the size of the building blocks, solvent and ligand molecules

are comparable12. However, these non-additivity effects appear to be minor in our case, as

shown in Section 2.5.4.6, which summarizes the consistency between simulations/modelling

and experiments at different levels. Moreover, we assume that the Debye–Hückel approxima-

tion still holds in the ionic strength range of interest. Note that Debye–Hückel theory is only

valid in the dilute regime but fails at moderate or high salt concentrations due to the neglect

of ion–ion correlations, hydration forces and steric effects. Remarkably, recent experiments86

have shown that the Debye length is a nonmonotonic function of salt concentration, so that

the interaction between charged surfaces in concentrated electrolytes decays exponentially

but with a decay length longer than the Debye length. This renders the electrostatic re-

pulsion stronger and longer-ranged than predicted by Debye–Hückel theory. On the other

hand, recent simulation work87 indicates that charged spherical nanoparticles with either low

or high surface charge densities experience strong long-range depletion attractions at high

monovalent salt concentrations, with ion clusters serving as the depletants. Owing to these

competing effects, it is not clear to what extent in our case the interactions will deviate from

the Debye–Hückel approximation (Eq. 2.2) at high ionic strengths. Empirically, we note

that the prism spacings predicted by our CG model exhibit a fair match with experimental

measurements over a wide range of ionic strengths (Fig. 2.6d). In Section 2.5.4.6, we provide
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a more complete list of comparisons between our modelling/simulations and the experiments

at different levels, showing good consistency and thus validating our assumptions here.

Based on the interactions uvdW(rb−b) between type-1 beads and uel(rb−b) between type-2

beads, the total pairwise interaction Etot between two arbitrarily oriented and positioned

prisms in our CG model is then computed by summing over pairwise interactions between

beads on the two prisms. The discretisation spacing ∆b is chosen small enough to ensure

convergence of this summation. Thus, we define the total pairwise van der Waals interaction

EvdW between two prisms as

EvdW =

N1∑
i=1

N1∑
j=1

uvdW(|ri − rj|) = −
N1∑
i=1

N1∑
j=1

H∆6
b

π2|ri − rj|6
, (2.3)

where the sums over i and j run over all type-1 beads in the first and the second prism,

respectively. Here ri and rj denote the position vectors of the beads being considered, and

N1 is the number of type-1 beads in a prism. Likewise, the pairwise electrostatic interaction

Eel between two prisms is

Eel =

N2∑
i=1

N2∑
j=1

uel(|ri − rj|) = −
N1∑
i=1

N1∑
j=1

Z2
blB

|ri − rj|
e−κ|ri−rj |kBT , (2.4)

where the sums over i and j run over all type-2 beads on the ligand shell of the first and the

second prism, respectively, and N2 is the number of type-2 beads in a prism.

Next, we examine how Etot = EvdW +Eel depends on the relative position and orientation

of two prisms. Starting from the simplest case, where two prisms are coaxial, parallel and

fully aligned (∆θ = 0) with a vertical separation d, we compute EvdW, Eel, and Etot as a

function of d at ionic strengths varying from 0.2 M to 3.0 M, using the CG model. The

definitions of d and ∆θ for the parallel and coaxial case are illustrated in Fig. 2.2a. As a
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typical example, Fig. 2.6b shows the interaction energy as a function of d at I = 2.0 M. The

potential minimum is very deep and narrow (Fig. 2.6b, inset). We denote the corresponding

separation and (minimum) energy of a pair of prisms as dmin and C, respectively (identified

by the blue triangle in Fig. 2.6b). We will refer to C as the coupling constant. Besides

this simple fully aligned case (∆θ = 0), we compute Etot − d at different ∆θ values at

I = 2.0 M. As shown in Fig. 2.6c, the equilibrium separation at which Etot is minimal

remains constant, independent of ∆θ, whereas the energy minimum becomes less deep when

∆θ increases (up to 60◦). Thus, the global energy minimum of a pair of parallel and coaxial

prisms corresponds to d = dmin and ∆θ = 0. The strong coupling and the small value

of dmin ( 1.08t0 at I = 2.0 M, where t0 = 12.5 nm denotes the total thickness of the prism

defined in Fig. 2.6a) indicates that only minimal tilting of the prism basal planes is permitted

and that the parallel two-prism configuration is a representative arrangement to study the

energetics of stacked prisms inside a column. The dependence of dmin on ionic strength I is

illustrated in Fig. 2.6d, where the values for dmin predicted by the CG model are shown to be

in good agreement with experimental values, validating our model. Likewise, we compute the

coupling constant C versus ionic strength I (Fig. 2.6e). As higher salt concentration screens

the electrostatic repulsion more effectively, the coupling constant increases in magnitude.

The coupling constant will be used as a key parameter to connect the pairwise interaction

with ionic strength in our analytical modelling below.

2.5.2. Analytical model for inter-particle interaction employed in Monte Carlo

simulations

The CG model is accurate but computationally very costly. Therefore, we derive an analyti-

cal model for use in the Monte Carlo simulations, by approximating the pairwise interaction
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energy obtained from the CG model along different degrees of freedom by analytical func-

tions that are inexpensive to evaluate. Beyond the coaxial case considered in Section 2.5.1,

we now focus on the case where the two prisms are only required to be parallel but not

necessarily coaxial. Therefore, their relative position and orientation can be fully described

by four parameters: the vertical separation d, the spin-angle difference ∆θ, the magnitude

of the horizontal displacement x and the angle α (see schematic in Fig. 2.7a). The vertical

separation d is defined as the distance from the centre of one prism (prism2) to the basal

plane of the other prism (prism1 or central prism). The horizontal displacement vector x

points from the centre of prism1 to the projected centre of prism2 on the basal plane of

prism1. The magnitude of x is denoted by x and its direction is measured by the angle

α (∈ [−π/3, π/3] owing to the threefold symmetry) between x and the orientation vector

(defined as the vector from the prism centre through an arbitrary vertex of its triangular

basal plane, shown by the red arrows in Fig. 2.7a) of prism1. The spin-angle difference ∆θ

(∈ [−π/3, π/3]) is defined as the angle between the orientation vector of prism1 (red arrows)

and the projection of the orientation vector of prism2 on the basal plane of prism1 (green

arrow). For two parallel prisms, the assignment of prism1 and prism2 does not make a dif-

ference for the values of d, ∆θ, α or x. However, the order does make a difference when the

basal planes of two prisms are not parallel, where we will have unequal di→j and dj→i; xi→j

and xj→i; ∆θi→j and ∆θj→i; and αi→j and αj→i, depending on which prism’s basal plane is

used for the measurement (see Section 2.5.2.4 for details).

Due to the strong screening of the electrostatic repulsion in the range of ionic strengths

considered here (0.2 to 3.0 M), the total interaction energy Etot between two parallel prisms

computed from the CG model consists of a short-range repulsive contribution and a rela-

tively long-ranged attractive contribution (see Fig. 2.6b for an example). The left panel of
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Figure 2.7. Connection between the CG model and the analytical model; classifica-
tion of configurations. (a) Schematic showing the definition of the four degrees of
freedom for a pair of parallel prisms (prism1, which is the central prism, and prism2)
employed in the analytical model: the vertical separation d, spin-angle difference ∆θ,
horizontal displacement magnitude x and direction angle α. The black dots stand
for the geometric centres of prism1 and prism2, while the green dot denotes the
projected centre of prism2 on the basal plane of prism1. (b) Side-view schematic
showing different interaction regions (repulsive, face-to-face attractive, side-by-side
attractive and excluded-volume regions) around the central prism (prism1) in the
CG model (left) and the analytical model (right). Due to its short-range character,
we choose to replace the repulsive part of the prism–prism interaction in the CG
model (yellow region) by the excluded-volume repulsion of the prisms in the ana-
lytical model (orange region), whereas the attractive part of the interaction (green
plus purple regions in left panel) in the CG model is fitted by analytical functions in
the analytical model. The configuration of two parallel prisms (prism1 and prism2)
is classified as face-to-face (side-by-side) if the centre of prism2 is located in the
green (purple) region. (c) Total interaction energy Etot between two parallel, coax-
ial (x = 0) and fully aligned (∆θ = 0) prisms versus their vertical separation d
at I = 2.0 M in the CG model (left) and the analytical model (right). Note that
the minimum-energy separation dmin in the analytical model becomes exactly t0
regardless of the ionic strength.
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Fig. 2.7b shows a schematic illustration of which term dominates in different regions around

a central prism (prism1), according to the CG model. To simplify the analytical modelling,

we approximate the repulsive part of Etot by merely the volume exclusion of the prisms

in the analytical model (cf. right panels of Fig. 2.7b,c), whereas the remaining attractive

part of Etot at larger distances, which is more complicated, is approximated by analytical

functions of d, x,∆θ and α derived from the fitting procedures detailed below. A direct

consequence of this simplification is that unlike the repulsive region in the CG model (whose

boundary shrinks or expands with ionic strength), the boundary of the excluded-volume

region (orange in Fig. 2.7b) in the analytical model is fixed by the geometry of the prism,

e.g., the minimum-energy separation dmin in the analytical model becomes simply the total

thickness of the prism t0 regardless of ionic strength (Fig. 2.7c, right panel). As shown in

Fig. 2.7b, inside the attractive region the configuration of the two parallel prisms can be

classified as either face-to-face (green region) or side-by-side (purple region); we will derive

functional forms of the pairwise interaction energy (attractive part) for these two types of

configurations below, see Sections 2.5.2.1 and 2.5.2.2.

Throughout this section, all lengths are expressed in dimensionless units, measured in

terms of the total prism thickness t0 = 12.5 nm, and denoted by an asterisk.

2.5.2.1. Face-to-face configurations.

A. Dependence of interaction energy on spin-angle difference ∆θ (at d∗ =

d∗min, x
∗ = 0)

The pairwise interaction energy Etot(d
∗ = d∗min,∆θ, x

∗ = 0) between two coaxial parallel

prisms at the minimum-energy separation vs. the spin-angle difference ∆θ is computed using

the CG model at various ionic strengths ranging from 0.2 to 3.0 M. We find that the curve
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Figure 2.8. Attractive part of pairwise interaction energy Etot in the analytical model for
a pair of parallel prisms in face-to-face configuration. (a) Pairwise interaction energy Etot between
two coaxial (x = 0) parallel prisms at the minimum-energy separation d∗ = d∗min as a function of the
spin-angle difference ∆θ at three different ionic strengths (I = 0.5, 1.0, 2.5 M). Blue symbols are the
data computed using the CG model, fitted by the analytical model (AM) Etot(d

∗ = d∗min,∆θ, x
∗ =

0) = C+∆E (1− cos(3∆θ)) /2 (solid red lines). The energy difference ∆E between the anti-aligned
(∆θ = π/3) and aligned (∆θ = 0) cases is labelled in the plot. (b) ∆E versus coupling constant
C determined from the CG model (grey circles) and fitted by a linear function in the analytical
model (solid red line). (c) Pairwise interaction energy Etot between two coaxial parallel prisms
as a function of d∗/d∗min for ∆θ = 0 (black squares) and ∆θ = π/3 (light green squares). The
data from the CG model (squares) are well fitted by the analytical model Etot(d

∗,∆θ, x∗ = 0) =
Etot(d

∗ = d∗min,∆θ, x
∗ = 0) · (d∗min/d

∗)4 for d∗ ≥ d∗min, accounting for the attractive part, combined
with excluded-volume repulsion Etot(d

∗ < d∗min) = +∞ (solid red lines). (d) Schematic showing
the six typical combinations of (α,∆θ) considered for fitting the dependence of Etot on horizontal
displacement x∗, with either ∆θ = 0 (green column, fits shown in panel e) or ∆θ = π/3 (yellow
column, fits shown in panel f). (e, f) Etot between two parallel prisms at the minimum-energy
separation d∗ = d∗min as a function of x∗ for α = 0 (dot), α = π/6 (star) and α = π/3 (triangle)
at (e) ∆θ = 0 and (f) ∆θ = π/3, at ionic strength I = 2.0 M. The data computed using the CG
model (symbols) are well fitted by Etot(d

∗,∆θ, x∗) = Etot(d
∗,∆θ, x∗ = 0) (1 + cos(πx∗/x∗c)) /2 for

x∗ < x∗c used in the analytical model (solid red lines), where x∗c (which depends on ∆θ and α) is
the cutoff distance beyond which Etot(d

∗,∆θ, x∗ > x∗c) = 0.
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for Etot(d
∗ = d∗min,∆θ, x

∗ = 0) versus ∆θ can be fitted very well with a cosine function,

Etot(d
∗ = d∗min,∆θ, x

∗ = 0) = C +
∆E

2
(1− cos(3∆θ)) , (2.5)

where ∆E = Etot(d
∗ = d∗min,∆θ = π/3, x∗ = 0) − Etot(d

∗ = d∗min,∆θ = 0, x∗ = 0) is

the difference in total interaction energy between the anti-aligned and aligned cases, and

C is the interaction energy minimum between two coaxial and parallel prisms Etot(d
∗ =

d∗min,∆θ = 0, x∗ = 0), as defined in Section 2.5.1, which only depends on the ionic strength I

(see Fig. 2.6e). As shown in Fig. 2.8a, the effective form Eq. 2.5 works well for typical ionic

strengths in the range probed, I = 0.5, 1.0 and 2.5 M. The interaction energy difference

∆E (labelled in Fig. 2.8a) is directly related to the coupling constant C (or ionic strength

I) as shown in Fig. 2.8b, following a linear dependence ∆E = −0.23 · C − 1. Thus, in the

analytical model we write the pairwise energy as a function of ∆θ as

Etot(d
∗ = d∗min,∆θ, x

∗ = 0) = C − 0.23 · C + 1

2
(1− cos(3∆θ)) . (2.6)

B. Dependence of interaction energy on vertical separation d∗ (at x∗ = 0)

The magnitude of the pairwise interaction Etot (the attractive part) between two coaxial

parallel prisms decreases as the separation d∗ increases (Fig. 2.6b and Fig. 2.8c). This decay

can be fitted by Etot(d
∗ > d∗min,∆θ, x

∗ = 0) = Etot(d
∗ = d∗min,∆θ, x

∗ = 0) · (d∗min/d
∗)4

at different ionic strengths and ∆θ values. As an example, we plot the full range of

Etot(d
∗,∆θ, x∗ = 0) versus d∗/d∗min at ionic strength I = 2.0 M for two extreme ∆θ val-

ues: ∆θ = 0 and ∆θ = π/3 in Fig. 2.8c, where the squares are the data computed from the
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CG model and the red solid lines represent the analytical model below,

Etot(d
∗ ≥ d∗min,∆θ, x

∗ = 0) = Etot(d
∗ = d∗min,∆θ, x

∗ = 0) ·
(
d∗min

d∗

)4

=
C

d∗4
− 0.23C + 1

2d∗4
(1− cos(3∆θ)) .

(2.7)

The last equality follows since d∗min = 1 in the analytical model due to the approximation

of the repulsive part of the pairwise energy by the excluded-volume interaction.

C. Dependence of interaction energy on horizontal displacement x∗

Now we turn to the off-centre case where the second prism has a horizontal displacement

with respect to the first prism with magnitude x∗ and direction characterised by the angle α

(−π/3 ≤ α ≤ π/3), as defined in Fig. 2.7a. To determine the dependence of the attractive

part of the pairwise interaction energy Etot on x∗ at different values of ∆θ and α, we consider

six typical cases listed in Fig. 2.8d, where the two prisms are perfectly aligned (∆θ = 0)

or anti-aligned (∆θ = π/3) and the displacement angle α is chosen to be 0, π/6 or π/3.

We observe that the qualitative dependence of Etot on x∗ remains similar at different ionic

strengths and vertical separations d∗. As an illustration, we plot the interaction energy

between two prisms at the minimum-energy separation d∗ = d∗min as a function of x∗ for the

above 6 cases at ionic strength I = 2.0 M in Fig. 2.8e (∆θ = 0 with α = 0, π/6, π/3) and

Fig. 2.8f (∆θ = π/3 with α = 0, π/6, π/3) obtained from the CG model. For all curves, the

dependence on x∗ can be described by a cosine function,

Etot(d
∗ ≥ d∗min,∆θ, x

∗, α) =
1

2
Etot(d

∗ ≥ d∗min,∆θ, x
∗ = 0)

(
1 + cos

πx∗

x∗c(∆θ, α)

)
, (2.8)
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where Etot(d
∗ ≥ d∗min,∆θ, x

∗ = 0) is defined in Eq. 2.7. The cutoff distance x∗c in the

above expression determines the off-centre distance beyond which the interaction energy is

negligible, i.e., Etot(d
∗ = d∗min,∆θ, x

∗ ≥ x∗c) = 0. As shown in Fig. 2.8e,f, x∗c is insensitive

to α at ∆θ = 0, but increases with decreasing α at ∆θ = π/3. We qualitatively capture

this trend by setting x∗c = 6.2 independently of α when ∆θ ≤ π/6, whereas for the more

misaligned case ∆θ > π/6 we set x∗c = 8.0 for α ≤ π/18, x∗c = 6.5 for π/18 < α < π/6 and

x∗c = 5.2 for π/6 ≤ α ≤ π/3. Combining Eqs. 2.5– 2.8, the general analytical form for the

attractive part of the pairwise energy, Etot(d
∗ ≥ d∗min,∆θ, x

∗, α), between two parallel prisms

arranged in a face-to-face fashion can be summarised as

Etot(d
∗ ≥ d∗min,∆θ, x

∗, α) =
2C − (0.23 · C + 1) (1− cos(3∆θ))

4d∗4

(
1 + cos

πx∗

x∗c(∆θ, α))

)
.

(2.9)

This equation covers all the different cases discussed in Section 2.5.2.1. Combination of

Eq. 2.9 with the excluded-volume repulsion Etot(d
∗ < d∗min,∆θ, x

∗, α) = +∞, yields the full

pairwise interaction energy for face-to-face configurations.

2.5.2.2. Side-by-side configurations.

We now consider the configurations where the centre of one prism is located in the side-

by-side region (purple region in Fig. 2.7b) of the other prism, see inset of Fig. 2.9a. Starting

from the simplest case where the two prisms are placed on the same plane with zero vertical

separation (d∗ = 0) and oriented such that ∆θ = α = π/3, we compute their pairwise

interaction energy Etot(d
∗ = 0,∆θ = α = π/3, x∗) versus x∗ using the CG model at ionic

strengths ranging from 0.2 to 3.0 M. We find that the data at different ionic strengths exhibit

a common trend. As shown in Fig. 2.9a, the curve Etot(d
∗ = 0,∆θ = α = π/3, x∗) versus
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x∗ at I = 2.0 M has a well-defined minimum side-by-side total interaction energy Cside and

horizontal displacement x∗min. Since Etot shows a rapidly increasing repulsion as x∗ decreases

below x∗min, we use the excluded-volume interaction of the prisms to model their repulsion,

similar to the analytical model for the face-to-face configurations (Section 2.5.2.1). Therefore,

the minimum-energy horizontal displacement x∗min in the analytical model is the centre-

to-centre distance between two fully attached side-by-side prims, x∗0 (defined in Fig. 2.9a,

inset). In this arrangement, Cside (i.e., Etot(d
∗ = 0,∆θ = α = π/3, x∗ = x∗min)), is directly

related to the coupling constant C (the global interaction energy minimum for face-to-face

configurations, cf. Section 2.5.2.1), as shown in Fig. 2.9b, which illustrates the linear fit

Cside = 0.15 · C + 0.75. Our general model for the attractive part of the interaction energy,

Etot(x
∗ ≥ x∗min), is described in detail below in Part A and B.

As a matter of simplification, we note that |∆θ| ≈ |α| ≈ π/3 holds for all side-by-side

configurations (purple region in Fig. 2.7b) and therefore we approximate the interaction

energy Etot(d
∗,∆θ, x∗, α) between two side-by-side prisms by Etot(d

∗,∆θ = α = π/3, x∗).

The justification for this assumption is that the pairwise attraction for the side-by-side

configurations is only substantial when the two edges are close enough (see Fig. 2.9a), where

|∆θ| and |α| cannot deviate significantly from π/3 for two non-overlapping prisms. For

example, if we choose the cutoff for the horizontal distance x∗c = 5.2 (as introduced below),

we have |∆θ| > 50◦ and |α| > 35◦, and our approximation introduces an error within kBT .

A. Dependence of interaction energy on horizontal displacement x∗ (at d∗ = 0)

To examine the dependence of the pairwise interaction energy between two side-by-side

prisms on the horizontal displacement x∗, we first consider zero vertical separation, Etot(d
∗ =

0,∆θ = α = π/3, x∗). The trend of the curves for Etot(d
∗ = 0,∆θ = α = π/3, x∗) versus

x∗ is qualitatively similar for all ionic strengths examined, and we choose I = 2.0 M for
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Figure 2.9. Attractive part of pairwise interaction energy Etot in the analytical
model for a pair of parallel prisms in side-by-side configuration. (a) Pairwise in-
teraction energy Etot between two parallel prisms arranged in side-by-side fashion
(∆θ = α = π/3) with zero vertical separation (d∗ = 0), as a function of horizontal
displacement magnitude x∗ computed using the CG model at ionic strength I = 2.0
M. The equilibrium distance x∗min and side-by-side interaction energy minimum Cside

are identified in the plot. Inset: Schematic of a typical side-by-side configuration
of two parallel prisms and definition of x∗0 denoting the centre-to-centre distance
between two fully attached side-by-side prisms. (b) Relationship between the side-
by-side energy minimum Cside and the coupling constant C measured from the CG
model (blue squares), described by a linear fit that we employ in the analytical model
(solid red line). (c) Pairwise energy Etot between two side-by-side (∆θ = α = π/3)
parallel prisms with zero vertical separation (d∗ = 0) as a function of the reduced
horizontal displacement x∗/x∗min at I = 2.0 M. Black squares are the data from the
CG model and the red line is the fit function Eq. 2.11 combined with the excluded-
volume repulsion Etot(d

∗ = 0,∆θ = α = π/3, x∗ < x∗min) = +∞. (d) Pairwise
energy between two side-by-side (∆θ = α = π/3) parallel prisms as a function of
the reduced vertical separation d∗/d∗min at three different values of x∗ (x∗min: circle;
1.034x∗min: star; 1.087x∗min: triangle) at I = 2.0 M. Symbols represent the CG model,
fitted by the linear function of d∗, Eq. 2.13 (solid red lines).
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illustration purposes. Fig. 2.9c shows Etot versus reduced distance x∗/x∗min (x∗min = x∗0 in the

analytical model, as discussed above) for this case, where the squares represent the data from

the CG model. The short-range repulsive part of Etot atx∗ < x∗min is well described by the

excluded-volume repulsion (vertical red line at x∗ = x∗min). We approximate the attractive

part of the total energy at x∗ ≥ x∗min via Etot(d
∗ = 0,∆θ = α = π/3, x∗) = Y/x∗4 + Z, with

Y and Z to be determined from the boundary conditions at x∗ = x∗min and at the cutoff

x∗ = x∗c,

Etot(d
∗ = 0,∆θ = α = π/3, x∗ = x∗min) = Y/x∗min

4 + Z

= Cside = 0.15 · C + 0.75

Etot(d
∗ = 0,∆θ = α = π/3, x∗ = x∗c) = Y/x∗c

4 + Z = 0 (x∗c = 5.2)

. (2.10)

For simplicity, the cutoff distance is chosen as x∗c = 5.2 for all ionic strengths (the same as

the face-to-face case when ∆θ = α = π/3, see Section 2.5.2.1 Part C). Equation 2.10 yields

Y = Csidex
∗
min

4x∗c
4/(x∗c

4 − x∗min
4) and Z = −Csidex

∗
min

4/(x∗c
4 − x∗min

4). Thus, in the analytical

model the attractive part of the pairwise interaction energy for the side-by-side configuration

(∆θ = α = π/3) at d∗ = 0 as a function of x∗ is

Etot(d
∗ = 0,∆θ = α = π/3, x∗ ≥ x∗min) =

x∗min
4

x∗c
4 − x∗min

4

(
x∗c

4

x∗4
− 1

)
(0.15 · C + 0.75)

=
x∗0

4

x∗c
4 − x∗04

(
x∗c

4

x∗4
− 1

)
(0.15 · C + 0.75)

, (2.11)

where x∗c = 5.2. Fig. 2.9c shows this expression (solid red curve), with x∗min = x∗0.

B. Dependence of interaction energy on vertical separation d∗

The pairwise interaction energy Etot for side-by-side configuration vs. the vertical sepa-

ration d∗ is plotted in Fig. 2.9d for different values of the horizontal distance x∗ at I = 2.0 M.
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Since the CG data (symbols) exhibit a fairly linear dependence on d∗, we approximate it as

Etot(d
∗,∆θ = α = π/3, x∗) = d∗Etot(d

∗ = 1,∆θ = α = π/3, x∗)

+ (1− d∗)Etot(d
∗ = 0,∆θ = α = π/3, x∗) ,

(2.12)

where Etot(d
∗ = 1,∆θ = α = π/3, x∗) follows from Eq. 2.9 in the face-to-face case and

Etot(d
∗ = 0,∆θ = α = π/3, x∗) from Eq. 2.11. The curves for this analytical model are

plotted in Fig. 2.9d (solid red curves), showing an overall good agreement.

Thus, we obtain the general form of the attractive part of the pairwise total energy

between two side-by-side parallel prisms (∆θ = α = π/3) with vertical separation d∗ (< 1)

and horizontal distance x∗ (≥ x∗min),

Etot(d
∗,∆θ = α = π/3, x∗ ≥ x∗min) = d∗

C − (0.23 · C + 1)

2

(
1 + cos

πx∗

x∗c

)
+ (1− d∗) x∗0

4

x∗c
4 − x∗04

(
x∗c

4

x∗4
− 1

)
(0.15 · C + 0.75) ,

(2.13)

where x∗c = 5.2 and the only control parameter is the coupling constant C (or the ionic

strength I).

2.5.2.3. Summary of the analytical functional forms for the pairwise interaction

energy between two parallel prisms.

Based on the pairwise interactions for face-to-face (Section 2.5.2.1) and side-by-side (Sec-

tion 2.5.2.2) configurations, the pairwise total energy between two parallel prisms with ver-

tical separation d∗, horizontal centre-to-centre distance x∗, spin-angle difference ∆θ and

horizontal relative direction α can be fully described by the volume exclusion of the prisms
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plus the analytical function Etot(d
∗,∆θ, α, x∗),

≈ Etot(d
∗,∆θ = α = π/3, x∗)

=
d∗[C − (0.23 · C + 1)]

2

(
1 + cos

πx∗

x∗c(π/3, π/3)

)
+ (1− d∗)

x∗0
4
(
x∗c(π/3, π/3)4 − x∗4

)(
x∗c(π/3, π/3)4 − x∗04

)
x∗4

(0.15 · C + 0.75) (x∗ ≤ x∗c, 0 ≤ d∗ < 1)

=
2 · C − (0.23 · C + 1)(1− cos(3∆θ))

4d∗4

(
1 + cos

πx∗

x∗c(α,∆θ)

)
(x∗ ≤ x∗c, 1 ≤ d∗ ≤ d∗c)

= 0 (x∗ > x∗c or d∗ > d∗c)

,

(2.14)

where the coupling constant C (which is also the global energy minimum for face-to-face

configurations) is the only control parameter, directly related to the ionic strength I. The

cutoff distance x∗c is assigned based on the rule introduced in Section 2.5.2.1 (Part C). For

computational efficiency, the cutoff for the vertical separation is set to the fairly small value

d∗c = 3.0 (i.e., Etot(d
∗ > d∗c,∆θ, x

∗, α) = 0). This is justified by the d∗−4 decay of Etot versus

d∗ and guarantees a relative error of less than 1.2%.

2.5.2.4. Generalisation of the analytical model to nonparallel pairs and the ap-

proximations being made.

The analytical forms presented in Section 2.5.2.3 apply to prisms that are nearly parallel.

For nonparallel prism pairs, there are additional degrees of freedom to be taken into account.

However, due to the short-range character of the interactions (e.g., the cutoff distance for

the vertical separation d∗c = 3.0), two prisms within the same column must be very close and

almost parallel to have a nonzero pairwise interaction. In addition, the attraction between

prisms and the substrate (see Section 2.5.3) promotes the vertical growth of columns on the

substrate, so that most prisms are nearly parallel with each other and with the substrate.
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Figure 2.10. Schematic summarising the interaction zone of two interacting prisms
and the dependence of interaction energy on tilt angle γ. (a–b) Schematics showing
the interaction zone of face-to-face (a) and side-by-side (b) configurations, outside
which the pairwise interaction is zero in our analytical model. Here the central prism
(prism1, with solid border) interacts with all almost parallel (as defined in the text)
prisms (prism2, with dashed border) whose centres are located inside the (a) green or
(b) purple regions. dc denotes the cutoff distance for the vertical separation, which
we set to dc = 3t0 for computational efficiency (see Section 2.5.2.3 for details). Note
that the cutoff for the horizontal displacement xc varies with the angles ∆θ and α
(see Section 2.5.2.1 Part C for details) and is plotted here as a constant just for visual
clarity. (c) Configurations used to examine the effect of tilt angle γ in panels d and
e: ∆θ = 0 (left) and ∆θ = π/3 (right). (d–e) Dependence of pairwise interaction
energy Etot on tilt angle γ between two coaxial prisms with spin-angle difference (d)
∆θ = 0 and (e) ∆θ = π/3 at I = 2.0 M. Black symbols are calculated from the CG
model and red lines represent the analytical model Eq. 2.15. Three different vertical
separations with respect to prism1 are investigated, d∗1→2 = d∗min (open square, solid
line), d∗1→2 = 1.2d∗min (open circle, dotted line) and d∗1→2 = 1.5d∗min (open triangle,
dashed line). (f) Schematics of the prismsubstrate interaction, showing the overlap
volume Vin between a prism and the substrate interaction zone.

Therefore, we impose in our analytical model that two prisms have nonzero interaction energy

only if |n̂A · n̂B| > 0.95, where n̂A and n̂B are the normal vectors of the two prisms, respec-

tively. This requirement in the analytical model promotes nematic order of the system and

artificially lowers the probability of certain rare nonequilibrium configurations, e.g., face-to-

edge arrangements, but does not affect equilibrium configurations. For near-parallel prisms,
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the interaction zone around a central prism in the analytical model is shown in Fig. 2.10a,b

for face-to-face and side-by-side configurations, respectively. The combined interaction zone

(green and purple regions) around the central prism appears as an approximately cylindrical

shape due to the simplification (in the schematic only) that x∗c is a constant. Since x∗c varies

with ∆θ and α, the actual contour is considerably more complicated. As mentioned at the

beginning of Section 2.5.2 and shown in Fig. 2.7a, a pair of non-parallel prisms (i and j) has

unequal interaction parameters when i and j are exchanged, i.e., the pairs d∗i→j and d∗j→i;

∆θi→j and ∆θj→i; αi→j and αi→j; and x∗i→j and x∗j→i are not identical. To eliminate this

geometric asymmetry, we employ their average as the true pairwise interaction energy,

Eij
tot =

1

2

[
Etot(d

∗
i→j, x

∗
i→j,∆θi→j, αi→j) + Etot(d

∗
j→i, x

∗
j→i,∆θj→i, αj→i)

]
, (2.15)

where Etot(d
∗
i→j, x

∗
i→j,∆θi→j, αi→j) and Etot(d

∗
j→i, x

∗
j→i,∆θj→i, αj→i) are defined in Eq. 2.14.

Lastly, we examine the validity of restricting pairwise attractions to near-parallel prisms.

The requirement |n̂A · n̂B| > 0.95 corresponds to tilt angles γ < 18.2◦. For two coaxial cases,

∆θ = 0 and ∆θ = π/3 (Fig. 2.10c), we compute the pair potential from the CG model as

a function of tilt angle at different separations d∗1→2 (Fig. 2.10d,e). The data from the CG

model (symbols) agree fairly well with the analytical model Eq. 2.15 (red lines). Note that

at each value for d∗1→2, beyond a certain tilt angle γ the interaction energy increases sharply

due to the strong electrostatic repulsion (CG model) or the excluded-volume interactions

(analytical model). In particular, at d∗1→2 = d∗min = 1 no tilting is permitted in the analytical

model.
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2.5.3. Prism–substrate interaction employed in Monte Carlo simulations

As reported earlier88 and also observed in the present work, there is a short-range attraction

between the substrate and the prisms. Since prisms attracted to the surface are greatly

confined in their motion, the substrateprism attraction plays an important role in templating

the assembly of the final hierarchical lattice and promoting the vertical growth of stacks of

prism (see Fig. 2.1d–g).

We model this prismsubstrate interaction via an attractive square-well potential with

range t0 from the substrate (Fig. 2.10f). Thus, the interaction energy EPS is proportional

to the overlap volume between the prism and the interaction zone (Vin in Fig. 2.10f), EPS =

E0Vin/V∆ , where E0 < 0 is a constant and V∆ = 16
√

3t30 is the total volume of the prism

including the coated ligands (i.e., the volume of the prism in the analytical model). Setting

the magnitude of E0 too large will result in prisms first fully covering the entire substrate

before forming columns, whereas a too small value will not lead to vertical columns, in

contradiction to the experimental observations. Thus, we choose E0 = C/2, where C is the

minimum of the prism–prism interaction.

2.5.4. Large-scale Monte Carlo simulations of hierarchical assembly

2.5.4.1. Simulation methods.

Monte Carlo (MC) simulations are conducted of systems of Mtot triangular prisms in a

rectangular simulation box in the canonical ensemble. The system is periodic in x and y

directions, but finite along the z-axis to make it consistent with the experimental setup. The

aspect ratio of the box is chosen to be Lx : Ly = 2 :
√

3, which ensures that the target crystal

structure (hexagonal lattice) will not be forbidden by the periodic boundary conditions in
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the x − y plane89. All prisms have pairwise interactions described by the analytical model

in Section 2.5.2, Eqs. 2.14 to 2.15. For the excluded-volume interactions, overlapping prisms

are detected via the Möller–Trumbore raytriangle interaction algorithm90.

Each simulation runs for 107 MC cycles for equilibration and then another 107 MC cycles

for production, where a cycle consists of Mtot MC moves. In each MC move, a prism is

randomly picked for a translation, rotation or spin with respective probabilities 0.4, 0.3 and

0.3. In a rotation, the normal vector of the prism face is rotated to a trial orientation

generated by adding a randomly oriented vector with magnitude αr to the original normal

vector. Thus, αr controls the maximum range of the rotational motion. A spin refers

to rotation of the prism around its normal vector within the range [−αs, αs]. During the

equilibration process, αr and αs, as well as the maximum displacement of the translational

move αt, are adjusted after every cycle to maintain an acceptance rate of 20%.

The initial configuration of the system consists of Ncol = 64 columns organised on a 2D

square lattice in order to accelerate the assembly of individual prisms into columns. There

are M prisms inside each column, where M is determined by Lz to achieve an average spacing

Lz/M of 1.1t0. We use Mtot = Ncol ·M to denote the total number of prisms. Note that

the columns are free to disassemble or rearrange themselves during the equilibration cycles.

To ensure that the equilibrium structure does not depend on the initial configuration, we

also perform simulations starting from more random initial configurations, where the system

is composed of M layers within which prisms are randomly distributed and oriented within

x−y plane. After a longer equilibration time, such systems arrive at the same final structure

as those started from a square-lattice initial configuration.
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Since the packing density along the z-axis is controlled by the confinement and does not

influence the 2D structural order, we use the 2D packing fraction to describe the concentra-

tion of the columns. φ2D is defined as the 2D packing faction φ2D = Ncol ·A∆/(LxLy), where

A∆ is the area of the face of a prism and Ncol = 64 in all simulations (φ2D is varied from

0.29 to 0.5 which is realised by varying Lx). At each φ2D, we vary both the height of the

simulation box Lz from 10t0 to 25t0 (with M and Mtot being automatically determined) and

the ionic strength I from 0.44 to 3.0 M (by varying C in the model). The parameters used

in the large-scale simulations are listed in Table 2.1, in which there are three independent

variables: ionic strength I, height of the simulation box Lz and the 2D packing fraction φ2D.

Table 2.1. Parameters used in the large-scale Monte Carlo simulations.

Parameter 1
I (M) 0.44 0.52 0.65 0.76 0.98 1.44 2.25 3.00
C(kBT ) −20 −22 −25 −27 −30 −35 −40 −43

Parameter 2
Lz(t0) 10 15 20 25
M 9 14 18 23
Mtot 576 896 1152 1472

Parameter 3
Lx(t0)

64.4 66.4 68.2 68.8 69.4 71.2 72.0 72.8
73.6 74.4 75.2 76.0 79.2 84.0

φ2D
0.494 0.465 0.440 0.433 0.425 0.404 0.395 0.386
0.378 0.370 0.362 0.355 0.327 0.290

2.5.4.2. Characterisation of orientational order of a single column.

To quantify the in-plane (i.e., x−y) orientational order of the M prisms within a column,

we define the orientational order parameter Sθ = maxθ0
1
M

∑M
i=1 cos[3(θi − θ0)], where θi de-

notes the in-plane spin angle (i.e., the angle between the projection of the orientation vector

of the prism on the x− y plane and the x axis) of prism i and n̂ = (cosθ0, sinθ0) is the global

director for triatic phases. Sθ follows the conventional definition of the triatic order param-

eter of 2D liquid-crystalline phases due to the three-fold symmetry of triangular prisms. In

particular, S2 = maxθ0
1
M

∑M
i=1 cos[2(θi− θ0)] and S4 = maxθ0

1
M

∑M
i=1 cos[4(θi− θ0)] measure
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the degree of nematic and tetratic ordering of 2D systems81. Sθ ranges from 0, correspond-

ing to an orientationally disordered (randomly misaligned) state, to 1, corresponding to a

fully ordered (perfectly aligned) state. The calculation of Sθ can be easily converted to an

eigenvalue problem by rewriting it as

Sθ = maxθ0
1

M

M∑
i=1

(
2cos2

[
3

2
(θi − θ0)

]
− 1

)

= maxθ0
1

M

M∑
i=1

[
2

(
cos2 3θi

2
cos2 3θ0

2
+ sin2 3θi

2
sin2 3θ0

2
+ 2cos

3θi
2

cos
3θ0

2
sin

3θi
2

sin
3θ0

2

)
− 1

]

= maxθ0
1

M

M∑
i=1

(
cos

3θ0

2
, sin

3θ0

2

)cos3θi sin3θi

sin3θi −cos3θi


cos3θ0

2

sin3θ0
2


.

(2.16)

If n̂′ denotes the vector
(
cos3θ0

2
, sin3θ0

2

)
and Q = 1

M

∑M
i=1

(
cos3θi sin3θi
sin3θi −cos3θi

)
is the ordering matrix,

we obtain the simplified expression Sθ = maxn̂′
{
n̂′ ·Q · n̂′T

}
. Thus, Sθ is just the largest

eigenvalue of the ordering matrix Q, and the director n̂ = (cosθ0, sinθ0) can be obtained

from
(
cos3θ0

2
, sin3θ0

2

)
= n̂0, where n̂0 is the normalised eigenvector corresponding to Sθ. The

average columnar orientational order of the system of multiple columns is denoted by 〈Sθ〉,

where the angular brackets indicate an average over all columns.

The orientational structure of a column can also be quantified by the orientational correla-

tion function G3(m) = 〈cos [3(θi − θi+m)]〉i, quantifying the average orientational correlation

between prism i and its mth-nearest neighbour within the same column. Fitting G3(m) with

e−m/lc yields the decay length lc.

2.5.4.3. Characterisation of crystal structure in simulations.
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To describe the 2D hexagonal order of the columns we first detect and locate each column.

Prisms are considered to belong to the same column if their centre-to-centre distance in the

x − y plane lies within a certain cutoff. We find that a cutoff of 50/
√

3 nm maximises the

accuracy. The center position of the column in the x−y plane is calculated by averaging the

x− y centre position of each constituent prism. The local hexagonal order of the columns is

quantified by the squared modulus of the six-fold bond-orientation order parameter |ψ6j|2.

The cutoff distance used to determine the bonded neighbours is the position of the first

minimum after the first peak of the radial distribution function g(r) of the columns. The

global bond-orientation order parameter ΨAV
6 is given by

ΨAV
6 = 〈 1

Ncol

Ncol∑
j=1

ψ6j〉 , (2.17)

where the angular brackets indicate the time average. The square of the absolute value of

the bond-orientation order parameter |ΨAV
6 |2 is used to characterise the 2D global structural

order of the system89.

The 3D translational order of the prisms is characterised by the diffraction patterns in

Fig. 2.1c and Fig. 2.4d, which were generated by computing the structure factor,

S(q) =
1

Mtot

〈
Mtot∑
j=1

Mtot∑
k=1

e−iq·(Rj−Rk)〉 , (2.18)

where Rj is the position vector of the center of prism j and the angular brackets denote the

temporal average.

The translational order of the prisms along the z axis is characterised by (i) the structure

factor S(qz) = 〈
∑Mtot

j=1

∑Mtot

k=1 e
−iqz(zj−zk)〉/Mtot, where zj denotes the z coordinate of the

centre of prism j, and (ii) the volume fraction profile along the z axis. The latter is defined
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Figure 2.11. In-plane angle distribution and rotational dynamics of the system after
reaching equilibrium. (a) Histogram of the in-plane angle θ of each prism mea-
sured over the production runs (1000 samples of 1152 prisms). (b) Orientational
autocorrelation function gr(t) at different ionic strengths.

as the ratio between the volume fraction of prisms whose centres lie in a horizontal slab of

volume LxLy∆z between z and z + ∆z and the overall volume fraction. This ratio can be

written as φ(z)/φ = 〈M(z)V∆/(LxLy∆z)〉/φ = 〈M(z)Lz/(Mtot∆z)〉, where M(z) represents

the number of prisms whose centres are located between z and z+ ∆z and V∆ is the volume

per prism. We choose ∆z = 0.2t0.

2.5.4.4. Analysis of single-prism rotational motion from the large-scale simula-

tions.

As shown in Section 2.3.3 (Fig. 2.4d,e), the final assembled lattice is orientationally

disordered. Figure 2.11a shows a histogram of the in-plane angle θ of all prisms in the

equilibrated hierarchical lattice, consistent with our observation of orientational random-

ness. The minor variation (peaks) in the histogram originate from the spatial symmetry of

the hexagonal lattice, which makes certain orientations (±π/6) slightly more favourable
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in a rectangular simulation cell with periodic boundary conditions. The temporal de-

cay of orientational order can be derived from the orientational autocorrelation function

gr(t) = 〈 1
Mtot

∑Mtot

i=1 ûi(t0) · ûi(t0 + t)〉t0 , where ûi(t) is the unit vector that defines the in-

plane orientation of prism i at the instance t and the angular brackets denote the ensemble

average. Figure 2.11b illustrates that gr(t) decays more slowly at higher ionic strength, due

to the strong orientational correlation between prisms within the same column.

2.5.4.5. Dependence of 2D hexagonal order on 2D packing fraction.

Within the range of packing fractions examined (0.362 ≤ φ2D ≤ 0.433), the correlation

between the global hexagonal order parameter |ΨAV
6 |2 and the average columnar orientational

order 〈Sθ〉 is described by a master curve (Fig. 2.4g). In Fig. 2.12a,b we illustrate that

2D packing fractions outside this range will suppress the hexagonal order, regardless of

〈Sθ〉. In both regimes, |ΨAV
6 |2 is consistently smaller than 0.5, even at small 〈Sθ〉. At lower

packing fractions, no crystallisation takes place, whereas higher packing fractions can only

be attained for columns consisting of aligned prisms, which then can only crystallise into a

honeycomb lattice (if φ2D is sufficiently high). The effects of packing fraction on the columnar

orientational order 〈Sθ〉 are discussed in Section 2.5.5.5 below.

2.5.4.6. Consistency between modelling/simulations and experiments.

The MC simulations presented are consistent with the liquid-phase TEM experiments

on the following levels. First, the pairwise interaction modelled in the simulation correctly

predicts the equilibrium inter-prism spacing in the columns measured in experiments at dif-

ferent ionic strengths (Fig. 2.6d). Second, on the column level, the prism misalignment in

columns given as the equilibrium structure by MC matches the TEM images (Fig. 2.1e).

Third, the computed inter-column interaction strength in the simulations matches the line
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Figure 2.12. Dependence of global 2D hexagonal order on column packing fraction.
Correlation between the average global hexagonal order characterised by |ΨAV

6 |2 and
the average columnar orientational order 〈Sθ〉 at (a) high and (b) low 2D packing
fraction φ2D.

tension obtained from the cluster analysis in the experiments. Last, the equilibrium (hexag-

onal) crystal phase observed in the large-scale simulations matches our experimental imaging

(Fig. 2.1b,c).

2.5.5. Single-column Monte Carlo simulations of column orientational order

2.5.5.1. Simulation methods.

To understand the energetics driving column formation, we examine the dependence

of the orientational structure of a single column on the ionic strength I and the number

of constituent prisms M . Thus, we perform single-column simulations, where the centre

positions of the prisms are fixed and only spin motion around the z axis is allowed, i.e.,

αt = αr = 0 and αs = 1. For simplicity, we simulate the most common case where the

prisms are coaxial, equally spaced and parallel to the x − y plane. For consistency with

the large-scale simulations, we vary the confinement Lz along the z direction from 10t0 to
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25t0, choosing M to set the spacing Lz/M to 1.1t0. We set Lx and Ly large enough to avoid

interactions between periodic images.

2.5.5.2. Helmholtz free-energy calculation in single-column simulations.

We calculate the Helmholtz free energy F , scaled entropy TS and interaction energy E

of a single column as a function of the orientational order parameter Sθ. The free energy

F (Sθ) is obtained from the distribution P (Sθ) of Sθ, since P (Sθ) ∝ e−F (Sθ)/kBT , i.e., F (Sθ) =

−kBT ln (P (Sθ)) + const. The additive constant is only related to the choice of the reference

state. Computation of the interaction energy E(Sθ) then yields the entropic contribution

TS(Sθ) = E(Sθ) − F (Sθ). Although this does not provide the absolute entropy, it permits

calculation of free-energy barriers.

We apply this approach to two cases: a short column at high ionic strength (Fig. 2.13a)

and a tall column at low ionic strength (Fig. 2.13b). Due to competition between the entropy

favouring low Sθ and the interaction energy which is minimised when the prisms are perfectly

aligned, the free-energy minimum is located at very different values of Sθ for these two cases,

confirming that the orientational order of the column is controlled by both ionic strength

and the number constituent prisms.

Owing to the small size of either column, the free-energy well is rather shallow and

broad, resulting in large fluctuations in Sθ. Moreover, it is important to note that the

orientational order of the columns in the large-scale (many-column) system is also affected

by the intercolumn interaction and column packing fraction φ2D (see Section 2.5.5.5 for a

comparison of single-column and large-scale simulations). In particular, for the large-scale

system at the same condition as in Fig. 2.13a, the columns are more aligned and fluctuate

less (cf. Fig. 2.4b) than in the single-column simulations due to strong lateral attractions

between columns.
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Figure 2.13. Free-energy curve of a single column at the two different conditions dis-
cussed in Fig. 2.4b–f. Free energy F (left axis), entropic contribution TS (right axis),
and total interaction energy E (right axis) computed from single-column simulations
as a function of the column orientational order parameter Sθ at (a) M = 9, L∗z = 10,
and I = 3.0 M, and (b) M = 23, L∗z = 25, and I = 0.5 M. (Insets) Snapshots of
typical configurations at the thermodynamic equilibrium state (orange triangle).

A noteworthy point is that the maximum of the entropy curve in Fig. 2.13 is not located

at Sθ = 0, the orientationally isotropic state. The reason is that the eigenvalues of the

ordering matrix Q (cf. Eq. 2.16) are dependent on the number of constituting prisms M . As

reported previously91, for an orientationally isotropic system, the largest eigenvalue of Q,

which we define as Sθ, decays to zero as 1/
√
M . Therefore, for the small systems considered

here with number of prisms between 9 and 23, the computed Sθ is nonzero even for a perfectly

isotropic column, leading to the entropy maximum at a nonzero value. Therefore, Sθ can

give a better estimation of the orientational order when the column is in a more ordered

phase or the number of prisms is large.

2.5.5.3. Dependence of columnar orientational order on ionic strength.

The ionic strength I determines the pairwise interaction profile versus ∆θ between two

coaxial parallel prisms (Fig. 2.14a), and thus affects the relative rotational range quantified
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Figure 2.14. Dependence of orientational structure on ionic strength. (a) Total
pairwise energy Etot between two parallel and coaxial prisms with minimum-energy
separation dmin, computed in the CG model and plotted versus (∆θ, I). Black lines
mark the [−∆θc,∆θc] interval upon variation of ionic strength I. (b) Orientational
correlation function G3(m) of an individual column with M = 27 and L∗z = 30 at
four different ionic strengths.

by ∆θc (defined in Fig. 2.2c). At low ionic strength, the two prisms have more relative

rotational freedom (larger ∆θc). This dependence on ionic strength propagates along the

column once prisms are stacked into a column, and thus affects the orientational order of

the column. Figure 2.14b confirms that the orientational correlation function G3(m) of an

individual column decays faster at lower ionic strength, indicating a more disordered column

as a result of larger ∆θc.

2.5.5.4. Dependence of column orientational order on the number of constituent

prisms.

From single column simulations, a random-walk model has been presented to illustrate

the dependence of the orientational order on the number of prisms inside the column as

shown in Fig. 2.15.

2.5.5.5. Connection between large-scale simulations and single-column simula-

tions.
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Figure 2.15. Random-walk model illustrating the dependence of orientational or-
der on the number of prisms inside the column M . (a) (Inset) Schematic of the
1D random-walk model in which successive rotations proceed clockwise or counter-
clockwise with equal probability. The step size is the pairwise relative orientation
〈∆θ〉, and the number of steps is the number of prisms M within the column. (Main)

Mean squared angular displacement relative to the first prism, (θM − θ1)2, as a func-
tion of M calculated from 1,000,000 random paths, confirming the expected linear
relationship. (b) Columnar orientational order Sθ versus number of constituent
prisms M for a representative random walk path (purple line) and the average over
1000,000 random paths (black line). (Inset) Snapshots showing the configurations
of the column at M = 5, 10, 18 and 24 for the representative path (marked by the
yellow triangles). The colour of the four snapshots reflects their orientational order
Sθ (cf. colour bar).

For single-column simulations, the columnar orientational order Sθ depends on ionic

strength I and cell height Lz. Figure 2.16a summarises the trends found in Sections 2.5.5.3

and 2.5.5.4, namely that orientational order is promoted by high ionic strength and by small

cell height. However, in systems where columns interact with each other, the columnar

orientational order is also affected by this interaction and thus also by the column packing

fraction φ2D. Figure 2.4f shows a 2D map of the column-averaged orientational order 〈Sθ〉

obtained in large-scale simulations at a representative packing fraction φ2D = 0.386. This

map is qualitatively consistent with the single-column results of Fig. 2.16a, except for a shift

toward larger values.
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Figure 2.16b quantifies this correlation via a scatter plot of 〈Sθ〉 at various I, Lz and φ2D

(as listed in Table 2.1) determined in large-scale simulations versus the order parameter Sθ

obtained from single-column simulations. For low packing fractions, the data points closely

follow 〈Sθ〉 = Sθ (red line), i.e., the single column simulations provide a good estimation of

the columnar orientational order in the large-scale system. 〈Sθ〉 is systematically larger than

Sθ at large Sθ, due to the additional intercolumn attraction, which is particularly strong at

high ionic strength. At higher packing fractions φ2D, the shift of 〈Sθ〉 toward larger value

becomes more apparent due to the decrease of free space for each column, along with the

increased intercolumn attraction. In particular, when φ2D is large enough (> 0.440), 〈Sθ〉

never reaches low values, no matter how small Sθ is, owing to crowding. Within our φ2D

range of interest (0.362 ≤ φ2D ≤ 0.433), the single-column order parameter Sθ serves as a

good estimator for 〈Sθ〉 in the multi-column systems.
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Figure 2.16. Effects of 2D packing fraction and intercolumn interaction on columnar
orientational order. (a) Orientational order parameter Sθ from single-column simu-
lations as a function of ionic strength I and cell height Lz (in units of prism thickness
t0). Yellow triangles mark the two conditions used in Fig. 2.4b,d. (b) Scatter plot
of average columnar orientational order 〈Sθ〉 measured from large-scale simulations
versus predicted Sθ in single-column simulations at the same ionic strength and
cell height. Symbol colours specify the 2D packing fractions φ2D used in the large-
scale simulations and each data point corresponds to an (I, Lz) condition listed in
Table 2.1.
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CHAPTER 3

Universal Layer-By-Layer Growth Mode in Nanoparticle

Superlattices

This chapter presents a combined experimental–computational study on the nanoscale

crystal growth kinetics. To present a complete story, I have included experimental results

that were obtained by Binbin Luo. The content of this chapter is based on the following

publication:

• B. Luo1, Z. Wang1, Z. Ou, E. Luijten, and Q. Chen, ”Universal layer-by-layer growth

mode in nanoparticle superlattices,” (To be published).

3.1. Abstract

Kinetic growth modes of crystals, which dictate fundamentally the morphology and prop-

erties of crystalline materials, have been phenomenologically shown as different for atoms and

micron-sized colloids and exhibit an intriguing dependence on the size of building blocks.

Using liquid-phase transmission electron microscopy (TEM), we experimentally capture a

universal growth mode in the underexplored intermediate nanoscale, where nanoparticles

of various symmetries and surface curvatures (cubes, concave polyhedral, spheres) follow

an atom-mimetic layer-by-layer growth to generate smooth surface facets. Coupling single

particle tracking and simulation, we elucidate the crucial role of the generic particle size

in shaping the kinetics and energy landscape (e.g., surface diffusion rate, energy barriers)

1These authors contributed equally to the work
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involved in selecting growth modes. Our work unifying understandings of crystal growth

across scales can be applied to enriching crystal morphology engineering

3.2. Introduction

Crystal growth occurs through attachment of new building blocks, such as atoms, ions,

molecules, and nanoparticles, to surfaces from a suspended medium92–96. This kinetic process

dictates major design parameters (e.g., crystal symmetry, morphology, and surface struc-

ture) and thereby applications ranging from semiconductors to nanostructures for optical

devices93,97. For example, the extent of supersaturation has been shown to determine the

polymorphs of lysozyme crystals98, while the ion flux during the growth of semiconduc-

tor devices shapes the distribution of grain boundaries and defects, which interfere with

transport of charge carriers95. Phenomenologically, one robust observation is the intriguing

yet puzzling dependence of crystal growth modes on the size of the building blocks94,99.

On the atomic scale, crystal growth theories were established decades ago and successfully

applied to explain and guide experimental crystal growth92,93,96. Layer-by-layer growth is

often the preferred mode of atomic crystallization, permitting, e.g., production of flat films

of semiconductors or alloys92,93,100. In contrast, crystalline photonic coatings of micron-sized

colloids often adopt corrugated surfaces23–25, with surface roughness matching predictions

from capillary-wave theory. Lack of information on crystal growth behavior at the inter-

mediate nanoscale complicates classification of growth modes for the full range of building

block sizes and hinders an explanation of the apparent lack in universality.

Until now, crystal growth modes of nanoscopic building blocks have remained largely un-

explored in both experiments101 and simulations12, even though the resulting crystal prop-

erties play a critical role in applications such as metamaterials and photocatalysis in the case
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of nanoparticle superlattices16. Experimental challenges arise from the difficulty of directly

imaging real-time, real-space dynamics in solution at the needed spatial resolution13,101,

where conventional electron microscopy requires dry and thus static samples2,16,26,102, while

ensemble scattering (e.g., small-angle neutron or X-ray scattering) methods do not resolve

structure or dynamics at the level of individual particles26,103. For modeling and simula-

tion, crystal growth kinetics also pose challenges unique to the nanoscale12. As the building

blocks become comparable in size to solvent and ligand molecules, accurate modeling of the

interactions and incorporation of fluctuation effects are essential. At the same time, growth

processes occur over much larger time and length scales, and involve far more particles,

than nucleation. Equally important, the fundamental lack of experimental data on essen-

tial kinetic parameters leads to a dearth of reliable input parameters for simulations and

precludes their validationa situation manifestly different from atomic crystallization, where

materials-specific parametrizations have been established experimentally.

Here we report the first imaging of crystal growth modes at the nanoscale and present a

framework applicable to nanoscopic building blocks of different shapes, where key parameters

are measured that until now were inaccessible, such as surface diffusion rate and the associ-

ated energetic barriers. The experimental imaging is made possible by low-dose liquid-phase

transmission electron microscopy (TEM)101, which combines nanometer resolution and com-

patibility with a suspension. We focus on model systems of nanoparticles crystallizing into

three-dimensional (3D) superlattices, where tracking of individual nanoparticles reveals the

superlattice growth process in full detail, including nanoparticle adsorption/desorption, sur-

face diffusion, propagation and merging of steps, and individual nanoparticle displacements

in the crystalline structures. Unexpectedly, we discover a prevalent layer-by-layer growth

mode resembling atomic crystallization92 for a diversity of nanoparticle shapes, where a new
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surface layer grows only after the preceding layer is complete. Coupling statistical analy-

sis of experimental TEM videos with molecular dynamics (MD) and kinetic Monte Carlo

(KMC) simulations, we elucidate that building block size governs the crystal growth pro-

cess in two distinct ways, by simultaneously controlling the ratio of surface diffusion rate to

incoming flux and the interaction range. These two parameters in turn determine the ther-

modynamic and kinetic driving forces for different growth behaviors, providing mechanistic

understanding for crystal morphology engineering at the nanoscale. Notably, our framework

explains the consistent observation of corrugated crystal surfaces composed of micron-sized

colloids24,25, whose relatively shorter-ranged interactions suppress the thermodynamic pref-

erence for a smooth surface, and whose slower diffusion rate increases trapping at surface

sites that represent local energy minima.

3.3. Results and Discussion

Liquid-phase TEM (Fig. 3.1) directly captures the layer-by-layer growth of a simple cubic

superlattice from a suspension of concave gold nanocubes. The concave nanocubes, which

have an edge length L = 62.0±4.6 nm and a concaving angle104 α = 16◦ (Fig. 3.1A), initially

remain dispersed in deionized water owing to the electrostatic repulsion between negatively

charged thiols uniformly covering their surface. This suspension of highly concentrated

nanocubes is sealed between two SiNx chips following our previously reported protocols101

to permit liquid-phase TEM imaging. We use low electron beam dose rates (4–27 e−Å
−2 ·s−1)

to ensure that the thiol ligands and nanoparticles remain intact under electron beam illumi-

nation and the interparticle interactions are not fundamentally altered. When we increase

the phosphate buffer concentration (PBS, pH = 8; range of ionic strength I: 15–110 mM),

the van der Waals attraction between the nanocubes overwhelms the screened electrostatic
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and (entropic) steric repulsion of the ligands (Fig. 3.1A), thereby triggering nucleation and

growth of superlattices. We observe that the nucleation occurs via face-to-face attachment

of the nanocubes, but in this work focus on the growth stage, the expansion of single crys-

tallinity following nucleation, which produces large-scale 3D simple cubic superlattices. Due

to confinement by the cell along the direction of the electron beam (∼ 3–4 times of nanopar-

ticle size), the superlattices predominantly develop along the lateral directions. The radial

distribution function and bond network of the superlattice show high ordering spanning a

lateral dimension larger than 2 µm, comprising more than 1000 concave nanocubes in the

superlattice. Due to thermal fluctuations, the concave nanocubes exhibit local vibrations

and self-correction of mis-coordinated sites as they relax on the lattice sites.

During the growth process, incoming concave nanocubes preferentially attach to the kink

sites on a growing crystalline layer to form a flat surface (schematic in Fig. 3.1B); diffusion

is sufficiently rapid to prevail over the formation of corrugated terraces (I = 25mM). This

growth behavior is clearly visible in the time-lapse liquid-phase TEM images (Fig. 3.1, C–D)

and surface profiles of the superlattice overlaid over time (Fig. 3.1E). Further tracking of the

superlattice surface shows a staged increase in the number of lateral layers (Fig. 3.1F), a key

signature of the layer-by-layer growth mode. The orientation map25 of the nanoparticles in

the superlattice shows a high degree of orientational order, confirming the face-to-face align-

ment of neighboring concave nanocubes (Fig. 3.1D). The binding energy from this alignment

serves as the thermodynamic driving force for an incoming building block to position in the

most coordinated kink site92 rather than on a terrace or step site (Fig. 3.1B). To quantify

this binding energy, explicitly accounting for the effects of ligand charge and entropy, we

perform MD simulations and thermodynamic integration of a detailed coarse-grained model

with about 4.6×106 gold atoms as the gold core and about 1.6×103 grafted ligand chains (see
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Figure 3.1. Layer-by-layer growth of nanoparticle superlattices from gold concave
nanocubes. (A) Contributions to the interaction energy of two concave nanocubes
(left inset: TEM image) approaching face-to-face at I = 25 mM as a function of
center-to-center distance d, as computed from molecular dynamics simulation (right
inset: schematic). The pairwise binding energy (with magnitude ε = 4.5kBT ) is
estimated as the minimum of Etot versus d. (B) Schematic of terrace (blue), step
(purple), and kink (pink) sites on the surface of a simple cubic lattice assembled of
concave nanocubes, following layer-by-layer growth. (CD) Time-lapse liquid-phase
TEM images showing layer-by-layer growth of superlattice from concave nanocubes
at I = 25 mM. Whereas the crystal is three-dimensional, the images show pro-
jections on the plane perpendicular to the beam. Coordination number of surface
particles (C) and orientation of each concave nanocube (D) in the projected view
are shown. The gray scale colormap was manually adjusted to highlight individual

nanoparticles. Dose rate 27.1 e−Å
−2 · s−1. (E) Interface profile of the superlattice.

(F) Staged growth of the number of (partial) layers Nlayer over time t. Scale bars:
30 nm in (A); 200 nm in (CE).

Section 3.5.1 and 3.5.2). Per face-to-face contact (i.e., single coordination), we find an attrac-

tive minimum −4.5kBT (with its magnitude defined as binding strength ε) for I = 25mM,
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estimated as the minimum in the total energy Etot along the center-to-center distance d

(Fig. 3.1A). Estimating the transition from a rough to a smooth surface at ε ≈ 1.77kBT

using Kossel’s model92, we conclude that the attraction between concave nanocubes should

be sufficient to favor positioning in the kink sites. However, beyond the existence of a suffi-

ciently strong thermodynamic driving force, a necessary condition for layer-by-layer growth

is sufficiently rapid diffusion of the surface-attached building blocks. During crystal growth,

incoming particles that are not directly deposited onto kink sites can land on step or terrace

sites which are local energy minima with lower coordination92,93,100. Diffusion to kink sites

then follows through thermally agitated hopping over the in-plane energy barrier ∆Ein or

the Ehrlich–Schwoebel (step-edge) barrier ∆EES 105,106 (Fig. 3.2A–B).

Traditionally, the ratio of the (in-plane) surface diffusion rate D to the incoming flux

F of building blocks is viewed as the dominant parameter governing growth kinetics, as

it measures the extent of surface sites explored by a deposited particle before it joins an

existing island or meets another particle to nucleate a new island93. Small D/F produces

kinetically roughened growth, whereas large D/F can result in layer-by-layer growth. This

proves to be a key point in the differentiation of crystal growth for atoms, nanoparticles,

and colloids. Although similar deposition rates F can be achieved for building blocks of

different sizes, the situation is different for the diffusion rate D. We estimate D via an

Arrhenius relationship, D = D0exp(−∆Ein/kBT ). The intrinsic diffusion rate D0 follows

the StokesEinstein relationship and depends inversely on building block size. The in-plane

barrier ∆Ein is more subtle, as it is part of the energy landscape of the crystal surface,

which depends on both particle shape and the reduced (i.e., normalized by particle size)

interaction range ∆. It is helpful to assess the role of the latter via a generic analytical model

(See Section 3.5.3) in which hard spheres of size σ have a pairwise attraction −ε(σ/r)n with
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Figure 3.2. Surface diffusion and the corresponding energy landscape. (A)
Schematic showing in-plane and interlayer diffusion processes. (B) Energy land-
scapes experienced by a particle moving across a step edge for different interaction
ranges ∆. For ease of comparison, the curves with ∆ = 0.12 and 0.41 are displaced
vertically by −2.5ε and −1.5ε, respectively. (C) Time-lapse liquid-phase TEM im-
ages showing in-plane diffusion, with trajectories overlaid (right). Dose rate: 17.9

e−Å
−2 · s−1. (D) Top: Scatter plot of surface particle positions x relative to the

center of the nearest nanocube pair underneath. Coordinate system defined in (C).
Each color represents a data set from an independent TEM movie. Bottom: Rel-
ative free energy ∆F as a function of reduced coordinate a (with reference state
chosen at the perfect aligned case with a = 0) at the superlattice surface measured
from experiments. Error bars are standard errors from three independent movies.
(E) Time-lapse liquid-phase TEM images of two representative interlayer diffusion
events, with diffusing particles labeled as cyan squares. The gray scale colormap
was adjusted to highlight the individual nanoparticles. (F) Energy landscape expe-
rienced by a concave nanocube diffusing between layers along two possible paths as
depicted. Energies are computed from simulations at I = 25 mM. Scale bars: 100
nm.
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power-law decay n controlling the attraction range. We define the reduced interaction range

∆ as (21/n1), such that the pairwise energy is stronger than −ε/2 for separations in the

range [σ, σ(1 + ∆)]. For very short-ranged interactions (∆ = 0.01, n = 50), representative

of, e.g., micron-sized colloids, we observe a strongly oscillatory energy landscape (Fig. 3.2B,

green) with large ∆Ein against in-plane hopping, which gradually flattens with increasing

interaction range (cf. ∆ = 0.12 and n = 6, typical for atoms, light blue), ultimately reducing

to a smooth profile with negligible ∆Ein (∆ = 0.41 and n = 2, dark blue). The physical

origin of this trend is the increasing importance of interactions beyond nearest neighbors with

increasing ∆99. For nanoparticles, ∆ is shape-dependent and, for van der Waals interactions,

approximately lies in the range 0.1 to 0.485, leading to very small ∆Ein in general. Combining

the size dependence of D0 and ∆Ein, we recognize that atoms and nanoparticles possess a

sufficiently large diffusion rate D and thus–for most practical flux rates–a sufficiently large

D/F to permit layer-by-layer growth.

While these analytical considerations clarify the generic effects of building block size

on surface diffusion, they do not capture the dependence of the energy landscape on the

arrangement of particles or their anisotropy. We are able to directly access this crucial

information by combining particle diffusion trajectories obtained via liquid-phase TEM and

energy calculations from MD simulations, explicitly determining the energy landscape for the

nanocube system and the surface diffusion rate. By mapping more than 1,000 coordinates of

surface particles relative to the lattice underneath (Fig. 3.2C, I = 110 mM) and assuming a

Boltzmann distribution, we obtain the energy profile along the lattice surface as a function

of lattice coordinate a (Fig. 3.2D, with a = 0 or 1 for perfectly aligned and a = 0.5 for

fully misaligned configurations). Figure 3.2D shows broad energy minima corresponding to

perfect face-to-face alignment separated by an in-plane diffusion barrier ∆Ein of only 0.3kBT .
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This agrees fairly well with the MD result of 0.1kBT , given the underlying approximations in

the simulation model. This low barrier is also consistent with the rapid surface diffusion of

nanoparticles, which we measure from their mean square displacement. We find a diffusion

rate D = 161.3 d2
equil/s (dequil as the equilibrium lattice spacing), four orders of magnitude

larger than the typical surface diffusion rate of micron-sized colloids (∼ 0.01 d2
equil/s)

94,107.

Another determinant for crystal growth, potentially as important as surface diffusion is

interlayer diffusion, in which particles climb over a step edge from a terrace to merge with the

layer underneath93,108. This process is primarily controlled by the Ehrlich–Schwoebel barrier

∆EES (Fig. 3.2A). While surface diffusionD determines the uniformity parallel to the surface,

interlayer exchange determines the uniformity perpendicular to it. In liquid-phase TEM we

directly observe the frequent occurrence of interlayer diffusion, with nanoparticles diffusing

either individually or collectively on a time scale of 0.1–0.2 s (Fig. 3.2E). The simulations

yield the associated Ehrlich–Schwoebel barrier ∆EES = 2.4kBT (Fig. 3.2F). Interestingly, this

is markedly lower than for atomic systems, where ∆EES = 0.2–0.5 eV, i.e., 8–20kBT at room

temperature. Indeed, for such systems layer-by-layer growth is only observed at elevated

temperatures upward of 700K108 (where ∆EES is reduced to 3.4kBT ). Conversely, although

micron-sized colloids typically display a small (enthalpic) Ehrlich–Schwoebel barrier due to

the short range of their interactions (cf. green curve in Fig. 3.2B), they experience a high

diffusive (entropic) step-edge barrier94, which suppresses interlayer exchange and thus serves

as another inhibitor for the layer-by-layer growth.

To examine the generality of our observations and understanding of nanoscale crystal

growth, we extend our investigation to systems of flat (i.e., non-concave) nanocubes and

systems of nanospheres. Despite the differences in symmetry and surface curvature, we

observe layer-by-layer growth for all of these (Fig. 3.3). This not only corroborates the kinetic
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Figure 3.3. Generalization of layer-by-layer growth of nanoparticles with different
shapes. (A) Schematic and SEM image of gold nanocubes with flat faces. (B)
Top: Time-lapse liquid-phase TEM images showing the layer-by-layer growth of
superlattice from nanocubes. Particles in the advancing surface layer are labeled

with dots color-coded by their coordination numbers. Dose rate 15.5 e−Å
−2 · s−1.

Bottom: Voronoi cell partition and orientation maps of the nanocubes. Each Voronoi
cell is colored according to the orientation φj of each nanocubes. (C) Staged growth
of the number of layers Nlayer over time t in (B). (D) Schematic and TEM image
of gold nanospheres. (E) Top: Time-lapse liquid-phase TEM images showing the
layer-by-layer growth of superlattice from nanospheres. Particles in the advancing
surface layer are labeled with dots color-coded by their coordination numbers. Dose

rate 17.6 e−Å
−2 · s−1. Bottom: Voronoi cell partition and orientation maps of the

nanospheres. Each Voronoi cell is colored according to the orientation φj of each
nanospheres. (F) Staged growth of the number of layers Nlayer over time t in (E).
Scale bars: 100 nm.

arguments outlined above, but also illustrates that the prevalence of faceted nanoparticle

superlattices with smooth surfaces26,109 is due to layer-by-layer growth.

The universality of crystal growth for different nanoparticle shapes confirms the role

of particle size in selecting the preferred growth mode. To obtain a unified picture and

disentangle the effect of the intrinsic diffusion rate D0 and the interaction range ∆ on both

thermodynamic and kinetic driving forces, we perform kinetic Monte Carlo simulations of
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Figure 3.4. Kinetic Monte Carlo simulations distinguish crystal growth modes for
atoms, nanoparticles, and colloids. (A–B) Crystal growth modes (blue triangles:
layer-by-layer growth; yellow circles: roughened growth) parametrized by interaction
range ∆ and the ratio between intrinsic diffusivity and flux rate D0/F at tempera-
ture kBT = 0.15ε (A) and kBT = 0.25ε (B). The regions where atoms, nanoparticles,
and micron-sized colloids reside are shaded in red, purple, and green, respectively.
The shadings are semi-quantitative due to the large experimental variability in flux
F , and primarily should be interpreted to indicate the relative position of colloidal,
nanoparticle, and atomic crystal growth.

systems covering a wide range of D0 and ∆ (see Section 3.5.3). At low temperature (kBT =

0.15ε, below the thermodynamic roughening temperature for all ∆ considered), layer-by-layer

growth can only be hindered by kinetic effects. Indeed, Fig. 3.4A shows a sharp boundary as

a function of D0/F , only weakly dependent on ∆. This reaffirms that low D0/F typical of

micron-sized colloids, yields roughened growth, whereas large D0/F typical for nanoparticles

or atoms (2–4 orders of magnitude larger) leads to layer-by-layer growth, consistent with our

experiments and previous literature. When we increase the temperature (kBT = 0.25ε), the

interaction range becomes critical as well. For small ∆(e.g., ∆ < 0.05, typical for micron-

sized colloids), rough crystal surfaces appear for all D0/F , owing to thermally excited holes

and islands that prevent particles from diffusing across the growing surface (Fig. 3.4B).

Conversely, at the larger relative interaction ranges typical for atoms and nanoparticles,

kinetic effects dominate again, and layer-by-layer growth reappears for large D0/F . Thus,
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Figure 3.5. Thermodynamic roughening transition in the growth of the superlattice.
(A) Schematic showing a thermodynamically roughened surface of a simple cubic
lattice. (B) Total pairwise energy versus particle center-to-center distance computed
from simulations at different ionic strengths I (from dark to light green: 110 mM,
50 mM, 25 mM, 15 mM, and 10 mM). Inset: Pairwise binding energy −ε versus
the predicted lattice constant dequil. (C) Time-lapsed liquid-phase TEM images of
a nanoparticle superlattice growing with a roughened surface at I = 15 mM. Dose

rate 14.9 e−Å
−2 · s−1. TEM images are colored according to the image intensity to

highlight different lattice layers. (D) Correlation in the magnitude (solid triangles)
and orientation (open circles) in the velocity field of the lattices. (E) Velocity fields
of lattices with roughened surface. Scale bars: 200 nm.

their relatively large intrinsic diffusion rate and wide spectrum of interaction ranges makes

nanoparticles likely to display layer-by-layer growth, whereas for micron-sized colloids the

opposite is true.

To demonstrate the utility of the insights obtained, we control the surface morphologies

that arise in nanoparticle crystallization by manipulating the binding energy ε (Fig. 3.5A).

We increase the electrostatic repulsion by lowering the ionic strength from 25 mM to 15 mM,
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which the MD simulations predict to lower ε from 4.5kBT to 2.8kBT (Fig. 3.5B). Experi-

mentally, this leads to roughened growth of the superlattice (Fig. 3.5C), with the roughness

(defined as the standard deviation of the surface profile) increasing from ∼ 0.9dequil (layer-

by-layer growth) to ∼ 3.6dequil. This observation is reminiscent of the roughening transition

that in atomic metal and alloy films92 can be triggered by elevation of temperature. Track-

ing the motion of individual particles, we show that the velocity field of concave nanocubes

displays extended domains with large, coherent translational motion (Fig. 3.5, D–E).

3.4. Conclusions

Direct real-time and real-space access has not only allowed us to observe and understand

the crystal growth mode of nanoparticles, but also completed the gap in length scales between

atoms and micron-sized colloids. The “atom-mimetic” behavior of nanoparticles, along with

the single-particle resolution of liquid-phase TEM, establishes these systems as a superior

alternative to micron-sized colloids for visualizing atom-like kinetics and phase behavior. In

combination with the variety of shapes and interactions with which nanoparticles can be

endowed, this opens a wealth of possibilities for establishing design rules and quantitative

predictions of surface morphology in nanoparticle superlattices or other forms of nanoscale

self-assemblies.

3.5. Methods and Supplementary Information

3.5.1. Coarse-grained model for the gold concave nanocubes

To compute the pairwise interaction of two concave nanocubes, we constructed a coarse-

grained (CG) model (see Fig. 3.1A) in which each gold concave nanocube core is discretized

as a mesh of beads (red), placed on a three-dimensional (3D) simple cubic lattice with a
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lattice spacing of σgold = 0.332 nm (diameter of a gold atom). The concaveness (α = 16◦)

of the concave nanocube was considered in the meshing. Each charged ligand coated on the

gold surface was characterized by the beadspring model with 5 beads of size σlig = 1.25 nm

connected by harmonic springs. The number and size of the beads were determined using the

ideal chain model by considering the Kuhn lengths (≈ 1.25 nm) of the polymer segments110.

The head bead (green) of the ligand chain is rigidly attached on the gold surface and the

tail bead (yellow) carries a unit negative charge (e). The charge density ρs was set to be

−0.075e/nm2, as measured in our experiment.

The beads making up the gold core have a bead–bead van der Waals interaction uvdW(rb−b),

and the tail beads of the ligands interact via a screened Coulomb potential uel(rb−b) which we

modeled following Debye–Hückel approximation, where rb−b denotes the distance between

the pairs of interacting beads. The van der Waals interactions between ligands and between

ligands and gold atoms are negligible owing to the very small Hamaker constants for hy-

drocarbon/hydrocarbon and gold/hydrocarbon across water85. The interactions uvdW(rb−b)

and uel(rb−b) are given by

uvdW(rb−b) = −
Hσ6

gold

π2r6
b−b

, (3.1)

uel(rb−b) =
e2

4πε0εrrb−b

e−κrb−b =
lB
rb−b

e−κrb−bkBT , (3.2)

whereH = 28.9kBT is the Hamaker constant for gold/gold in water, ε0 the vacuum permittiv-

ity, εr the relative permittivity of water, κ−1 the Debye length following κ−1 = 0.304/
√
I(M)

nm (with ionic strength I in unit of M) for aqueous solutions at room temperature, lB = 0.7

nm the Bjerrum length of water at 25◦C. Note that cutoff value of 70 nm beadbead distance

was chosen in the van der Waals interaction computation for computation efficiency and the
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truncation error was tested to be less than 0.2kBT for interparticle interaction energy (Ta-

ble 3.1). A shift-truncated Lennard-Jones potential uLJ(rb−b) was applied to all the beads

to model the excluded-volume interactions:

uLJ(rb−b) =


4kBT

[
(
σ

rb−b

)12 − (
σ

rb−b

)6

]
+ kBT, (rb−b ≤ 21/6σ)

0, (rb−b > 21/6σ)

, (3.3)

where σ = σgold, σlig, (σgold + σlig)/2 for gold–gold, ligand–ligand, gold–ligand bead pairs,

respectively. The bonds between neighboring beads along a ligand chain were modeled with

a harmonic potential ubond(rb−b) = K(rb−b − σlig)2, where K = 25kBT/nm2 is the spring

constant and σlig sets the native spring length. All model parameters are summarized in

Table 3.2.

Table 3.1. Interparticle van der Waals interaction energies (in unit of kBT ) at dif-
ferent interparticle center-to-center distance d computed using different bead–bead
cutoff distances.

d = 68.0 nm d = 70.0 nm d = 71.0 nm d = 74.0 nm
Cutoff = 35 nm −10.01 −5.47 −4.14 −1.88

Cutoff = 70 nm (chosen) −11.97 −7.24 −5.82 −3.28
Cutoff = 80 nm −12.05 −7.32 −5.90 −3.36
Cutoff = 100 nm −12.10 −7.37 −5.95 −3.41

It is noteworthy that both the geometrical details (e.g., concaveness) of the concave

nanocube and the discreteness of ligand molecules (e.g., steric effects) can significantly affect

the magnitude and range of the effective interparticle interaction at this nanoscale (see more

discussion in Section 3.5.2). Therefore, including these features in the modeling is crucial in

order to provide quantitative predictions of the energy landscape and the lattice spacing of

the superlattices. For the same reason, the hard-core models21 which have been widely used

in simulating anisotropic nanoparticles are not feasible here.
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Table 3.2. The parameters used in the coarse-grained model.

Symbol Description Value
σgold Diameter of gold atoms 0.332 nm

H
Hamaker constant (gold-gold

28.9kBTacross water)
L Concave nanocube edge length 62.0 nm
α Concave nanocube concaveness 16◦

σlig
Diameter of a bead in the

1.25 nm
bead-spring model for ligands
Number of beads per ligand 5

K
Spring constant in the bead-

25kBT/nm2

spring model for ligands
lB Bjerrum length 0.7 nm
ρs Charge density of nanocube −0.075e/nm2

T Temperature 298 K

3.5.2. Molecular dynamics simulations of the gold concave nanocubes

Molecular dynamics simulations were conducted for the concave nanocubes coated with

ligands in the NVT ensemble. All simulations were performed at 298 K using a Langevin

thermostat at different ionic strengths from 15 mM to 110 mM, within which the Debye–

Hückel approximation is valid. All systems were simulated with a 0.01-fs time step for 2.5 ns

during equilibration and a 0.05-fs time step for 500 ns during production. Ten independent

runs were conducted for each condition to obtain ensemble averages.

To calculate the total pairwise interaction energy Etot of two concave nanocubes, one

important component of Etot we considered is the entropic steric repulsion Esteric between

the ligands, which occurs as the ligands of two approaching concave nanocubes start to

overlap. To measure Etot as a function of the interparticle center-to-center distance d (when

the two concave nanocubes perfectly aligned face-to-face), we ran multiple simulations with

the two concave nanocubes positioned at different values of d. In each simulation, both the

position and orientation of two concave nanocube cores are fixed, while the ligand chains
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are free to move and relax. We measured the ensemble-averaged total force between the

concave nanocubes at each given d. Total energy profile Etot(d) was then computed through

integration of the force profile. Since the ensemble-averaged potential energy EvdW +Eel as

a function of d is straightforward to extract from the simulations, Esteric was obtained from

Esteric = Etot−EvdW−Eel for discussions in Fig. 3.1A and Fig. 3.6. Note that Esteric consists

of two parts: the ensemble-averaged excluded-volume interaction energy and the entropic

contribution from ligand molecules (−TSlig, Slig: ligand entropy; T : temperature). After

obtaining the profile of Etot versus d, the equilibrium interparticle center-to-center distance

(dequil) was identified as the distance d at the minimum of Etot, which is our prediction for

the lattice spacing. The energy of adsorption per face-to-face contact (−ε) is approximated

by the minimum of Etot by assuming the interactions with second nearest neighbors are

negligible.

A similar approach was adopted to measure the energy landscape experienced by a tracer

concave nanocube on top of the superlattice during the interlayer exchange (Fig. 3.2F).

At I = 25 mM (i.e., the layer-by-layer growth condition), the predicted lattice spacing

dequil is 73.5 nm (determined in simulations as noted above, matching well with 73.7 nm

measured in experiments) and the ligands on the neighboring concave nanocubes are barely

touching (dequil > L + 2lmax = 73.25 nm with lmax = 5.625 nm as the length of a fully

extended ligand molecule). Therefore, Esteric can be ignored and Etot reduces to the ensemble-

averaged EvdW + Eel, which was computed between the tracer concave nanocube and the

concave nanocubes underneath in the superlattice. Similar to our simulations of two concave

nanocubes, the position and orientation of all the concave nanocubes are fixed, while the

ligand chains are free to relax. We ran simulations with the tracer concave nanocube sitting at

different horizontal lattice coordinates a (where a is the horizontal displacement of the tracer
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Figure 3.6. Molecular dynamics simulations of the pairwise interaction energy of
gold concave nanocubes. (A) Total pairwise interaction energy Etot between two
concave nanocubes as a function of the relative horizontal offset a (see the inset
schematic) at the respective lattice spacing dequil at ionic strengths of 20 and 110
mM. The energy minima locate around a = 0, indicating that the face-to-face con-
figuration with no offsets is energetically preferred. (B) Energy components of two
concave nanocubes approaching face-to-face at I = 110 mM versus interparticle
center-to-center distance d, as computed from molecular dynamics simulations. Pur-
ple line: Esteric; Red line: EvdW + Eel; Black line: Etot. The inset snapshot from
our simulation shows the overlap between ligands of two concave nanocubes as they
approach, resulting in the steric repulsion. (C) Predicted lattice spacing (dequil)
as a function of ionic strength (I) computed from simulations, showing that dequil

decreases with increased ionic strengths (see the inset schematics).

concave nanocube normalized by dequil, see inset of Fig. 3.2B), while keeping the configuration

of the underlying lattice unchanged. We selected two typical paths of the tracer concave

nanocube (inset of Fig. 3.2F) to provide a reasonable estimation of the Ehrlich–Schwoebel

barrier. Path 1 involves a 90◦ rotation of the tracer concave nanocube at the step edge.

Conversely, path 2 involves no rotation where the tracer concave nanocube vertically drops

along the step, resulting in a slightly larger Ehrlich–Schwoebel barrier. Note that we assume

the vertical center-to-center distance between the tracer concave nanocube and the concave

nanocube layer underneath is 73.5 nm irrespective of a, since the energy landscape near a

flat lattice surface is insensitive with a (cf. in-plane energy landscape part of Fig. 3.2F).

Molecular dynamics simulation elucidates that the face-to-face alignment of the concave

nanocubes is energetically favored and that the lattice spacing (dequil) can be well-predicted.
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As shown in Fig. 3.6A, the face-to-face alignment of zero offset (a = 0) is energetically

favored over a wide range of ionic strengths, consistent with the experiments. At I = 15–

50 mM, dequil measured from simulations is mostly contributed by the balance between Eel

and EvdW, following expectations of DLVO theory111 (Fig. 3.1A). For higher ionic strengths

such as I = 110 mM, Eel is weakened by counter-ion screening and Esteric overwhelms Eel to

counteract EvdW (Fig. 3.6B), resulting in a minimum of Etot at dequil = 71.0 nm. This value

of dequil matches with the lattice spacing (70.8 ± 0.8 nm) measured from the liquid-phase

TEM images of the superlattices at I = 110 mM. This agreement confirms the increasing

importance of the discreteness (e.g., entropic effects of ligands) at the nanoscale and necessity

of including it in the modeling12. The lattice spacing predicted by our simulations (dequil)

was plotted as a function of I (Fig. 3.6C), from which we derived the effective ionic strength

in our liquid-phase TEM experiments based on the experimentally measured values of dequil

(Table 3.3).

Table 3.3. Lattice spacing dequil measured from liquid-phase TEM and the corre-
sponding effective ionic strengths by matching the experimentally measured dequil

with simulation results.

Conditions
dequil measured from Effective ionic strength

experiments (nm) from calculations (mM)
Layer-by-layer growth (Fig. 3.1) 73.7± 1.2 25± 5
Intralayer diffusion (Fig. 3.2C) 70.8± 0.8 80− 110

Roughened growth (Fig. 3.5C,E) 75.6± 0.9 15± 5

3.5.3. Kinetic Monte Carlo simulations and analytical models for generating

phase diagrams

3.5.3.1. Simulation model. To explore how interaction range ∆ affects the transition

between different growth modes (layer-by-layer growth or roughened growth), we conducted
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on-lattice kinetic Monte Carlo simulations on a two-dimensional square lattice (box size

L = 100 lattice sites) using SPPARKS112. Incoming particles are deposited vertically at

a flux rate F (in unit of monolayers/second). We employed the Clarke-Vvedensky bond-

counting ansatz113 and assume an Arrhenius-like rate. The hopping rate between lattice

sites i and j is thus defined as

ri,j = D0exp

(
−∆Ein + niE

b + si,j∆E
ES

kBT

)
, (3.4)

where D0 is the intrinsic diffusivity (or attempt frequency), ∆Ein denotes the in-plane barrier

for diffusion of a free particle, ni is the number of lateral nearest neighbors of site i, Eb is

the bond strength of each lateral neighbor, ∆EES is the step–edge (or Ehrlich–Schwoebel)

barrier, and si,j = 1 if the diffusion path leads across a step edge and 0 otherwise.

3.5.3.2. Analytical model. To simulate the system with different reduced interaction

ranges ∆, we need to obtain the corresponding values of ∆Ein, Eb and ∆EES resulting from

the energy landscape for each ∆. Thus, we built up a simple analytical model where the

pairwise interaction between particles follows the functional form

E(n, r) =


− ε

(r/σ)n
(r ≥ σ)

+∞ (r < σ)

, (3.5)

with a tunable attraction part plus a hard repulsion, where σ denotes the particle size and

our length unit, ε is the magnitude of energy minimum at contact and our energy unit, and

n determines the attraction range. Here the interaction range ∆ is defined as ∆ = (21/n−1),

such that the pairwise energy is lower than −ε/2 within the distance [σ, (∆+1)σ]. The energy

landscape can be mapped out by moving a tracer particle on top of a partially filled lattice
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Figure 3.7. Kinetic Monte Carlo simulations of different growth modes. (A)
Schematics of the energy landscape a particle experiences along the path (denoted
by black line with arrows) with key energetic parameters (∆Ein, ∆Eb, and ∆EES)
defined on the graph. (B–C) Surface roughness as a function of time (t, in unit of
the time to form one monolayer) at different D0/F for (B) n = 6, ∆ = 0.12 and
(C) n = 50, ∆ = 0.01. The black dashed line shows the scaling of ∼ t0.1. The
temperature is at kBT = 0.15ε. (D–F) Simulation snapshots showing the surface
profiles at (D) n = 1 (∆ = 1.00), D0/F = 107, (E) n = 1 (∆ = 1.00), D0/F = 105,
and (F) n = 14 (∆ = 0.05), D0/F = 105. The temperature is at kBT = 0.25ε.

(Fig. 3.7A) and recording the energy value from direct summation. Key energetic parameters

∆Ein, Eb and ∆EES, which are input parameters for kinetic Monte Carlo simulations, can

thus be extracted from the potential landscape (Fig. 3.7A). To simulate micron-sized colloids

with a very small interaction range (e.g., ∆ ≤ 0.05), an additional entropic step–edge barrier

was also included in ∆EES. Here this entropic barrier is of the magnitude of ln(2) · kBT as

the step–edge diffusion path is twice longer than the in-plane path94.
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3.5.3.3. Simulation of phase diagrams. Simulations were conducted at different tem-

peratures (phase diagrams at kBT = 0.25ε and 0.15ε as presented in Fig. 3.2B). At each

temperature, we scanned different flux rates F (with respect to a fixed D0) and interaction

ranges ∆ (by varying n). For each ∆, the energetic parameters (∆Ein, Eb and ∆EES) are

uniquely determined by the analytical model as introduced in Section 3.5.3.2, which are

listed in Table 3.4.

To identify different growth modes (layer-by-layer growth or roughened growth), we plot

the surface roughness (i.e., standard deviation of the surface height) as a function of time

t (in unit of the time to form one monolayer) in the log–log scale (Fig. 3.7, B and C).

The curves with a slope smaller than 0.1 (i.e., they have β < 0.1 for tβ) are identified as

layer-by-layer growth; while those with a slope larger than 0.1 are classified to be roughened

growth. Note that for the case of random deposition without surface diffusion, the surface

roughness grows as ∼ t0.5 108. Simulation snapshots of typical surface profiles for layer-by-

layer growth, kinetic roughening, and thermal roughening are shown in Fig. 3.7, D–F. The

simulated “phase diagrams” are summarized in Fig. 3.4.

Table 3.4. The input parameters at each interaction range ∆ (or n) used in kinetic
Monte Carlo simulations.

n 1 2 3 4 6 9 14 25 50
∆ 1.00 0.41 0.26 0.19 0.12 0.08 0.05 0.03 0.01

∆Ein/ε 0.01 0.02 0.05 0.08 0.18 0.35 0.60 0.88 0.99
∆EES/ε 0.92 0.98 0.95 0.92 0.82 0.65 0.40 + ln2·kBT

ε
0.12 + ln2·kBT

ε
0.01 + ln2·kBT

ε
∆Eb/ε 2.12 1.45 1.19 1.08 1.02 1.00 1.00 1.00 1.00



Part 2

Dielectric Effects in Self-assembly



94

CHAPTER 4

A Review of Dielectric Effects in Mesoscale Simulation

The content of this chapter is based on the following publication:

• Max Meirow, Ziwei Wang, and Erik Luijten, ”Dielectric effects in mesoscale simu-

lation,” To be published (2020).

4.1. Introduction

Electrostatic interactions play a fundamental role in determining the spatial organization

and dynamic behavior of soft matter systems114–116. Examples of their significance abound

in the natural sciences, ranging from the assembly of nanoparticle117 and colloidal crystals30

to protein folding and binding118. Thorough yet efficient treatment of charged systems in

molecular dynamics and Monte Carlo simulation is now routine due to a variety of algorithms

which greatly accelerate the long-ranged calculation119–123. However, such simulations will

often treat the dielectric constant as a spatially uniform constant throughout the system,

therefore neglecting effects which arise from the electrostatic polarization at dielectric inter-

faces.

In soft matter systems, common values of the dielectric constant range from εr ≈ 2 for

many polymers to εr ≈ 80 for water at room temperature111. A spatially uniform dielectric

constant screens the free charges of the system by a degree proportional to εr, but in systems

with a piecewise uniform permittivity, dielectric mismatch at the interfaces induces a polar-

ization or bound charge. Notably, the polarization charge modulates a variety of physical
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phenomena, including colloidal self-assembly50, ion transport37, the structure and stability

of emulsions124,125, and the charging process in supercapacitors126. Thus, incorporation of

dielectric effects in simulation is physically motivated in a range of systems, if often neglected

because of the complexity of the polarization computation.

Accurate evaluation of these many-body dielectric effects is numerically demanding and

analytically intractable except for simple geometries such as spheres, planes, and infinite

cylinders. In response, a variety of numerical methods have been developed which solve for

the electrostatic potential with the inclusion of the polarization charge. The polarization

can be coarsely modeled as an electric dipole, ignoring higher-order contributions. A system

consisting of many inducible dipoles can be solved self-consistently, approximating polariza-

tion effects in dielectric materials127,128. Boundary element methods solve for the surface

bound charge on a discretized two-dimensional interface, permitting arbitrary geometries50.

Relevant vectorial or scalar field variables such as polarization or polarization charge density

can be used in a variational formulations of the electrostatic potential129–131. Finally, for

geometrically simple dielectric objects, image charges facilitate solution of the Poisson equa-

tion for the electrostatic potential40. The relative merits and limitations of these techniques

will be evaluated in this work.

Herein, we highlight soft condensed matter systems within the mesoscopic length scale,

i.e., matter exhibiting a characteristic length of hundreds of nanometers to a few microm-

eters. For example, our scope includes colloidal suspensions and coarse-grained biological

macromolecules. Studies which treat electronic polarization at the atomistic level, such as

simulations using polarizable molecular mechanics force fields or potentials for “soft” ions

and atoms, are reviewed thoroughly elsewhere132–137. Earlier reviews evaluating the treat-

ment of polarization effects in theory and simulation have highlighted a single method or
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physical system (e.g., a single charged particle in an external electric field)138–142. In this

review, we aim instead to offer a comprehensive survey and comparison of the methods

used to investigate dielectric effects in coarse-grained molecular dynamics (MD) and Monte

Carlo (MC) simulations. In Section 4.2, we will review the methods most often employed

for handling polarization in simulation: dipolar methods, boundary element methods, vari-

ational methods, and image charge methods. As means of illustration, we will highlight key

physical phenomena attributable to polarization effects which have been observed in such

studies in Section 4.3. We will conclude by surveying the remaining challenges which limit

contemporary computation and indicate future directions of research.

4.2. Numerical Methods

Methods for determining electrostatic polarization at dielectric interfaces are essentially

seeking direct numerical solutions to the Poisson’s equation which converge efficiently. In this

section, we will review four different categories of methods and provide a table summarizing

the efficiency, applications, and available implementations for each method in the end. Before

proceeding to each category, we first provide a brief mathematical formulation of the problem.

As a matter of illustration, we consider an ensemble of N dielectric spheres, in which

sphere i (i = 1, . . . , N) is centered at oi, has a radius ai and a dielectric constant εi, and

carries a central charge Qi. The spheres do not overlap and are embedded in a continuum

background solvent with dielectric constant εs. The internal dielectric constants εi are gen-

erally different from εs, resulting in polarization contributions to the electrostatic potential

that need to be resolved.

We start by seeking the expression for the electrostatic energy. First, for any given free

charge density ρf(r) that generates a potential field Φ(r) and is embedded in a dielectric
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medium, the electrostatic energy U can be written as143

U =
1

2

∫
ρf(r)Φ(r)dr . (4.1)

In the model we consider, the free charge density originates from the N point charges at the

centers of the dielectric spheres, i.e.,

ρf(r) =
N∑
i=1

Qiδ(r− oi) , (4.2)

where δ(·) is the Dirac delta function. Moreover, the electrostatic potential Φ(r) satisfies the

Poisson equation,

−∇ · [ε(r)∇Φ(r)] = ρf(r) , (4.3)

where

ε(r) =


εi if r inside sphere i,

εs if r in the exterior region,

(4.4)

and on each spherical interface Si (i = 1, . . . , N) the electric potential Φ(r) has to satisfy

the standard dielectric interface conditions,

Φ(r−) = Φ(r+) , r ∈ Si , (4.5)

εi
∂Φ(r)

∂n

∣∣∣∣
r=r−

= εs
∂Φ(r)

∂n

∣∣∣∣
r=r+

, r ∈ Si , (4.6)

where r− and r+ refer to the limits approaching the interface from the inside and outside,

respectively, and n is the surface outward unit normal vector at r. In addition, we impose

the vanishing far-field boundary condition, i.e., Φ(r) → 0 as |r| → ∞. Once Φ(r) has
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been obtained, the electrostatic energy can be calculated and the electrostatic forces can be

obtained through differentiation.

It is worth noting that an alternative way to solve for the electrostatic potential Φ(r) is

via the bound charge density ρb(r), which satisfies

ρb(r) = −∇ ·P(r) . (4.7)

Assuming a linear polarization field P(r) = [ε(r)− 1]E(r) and substituting the electric field

E(r) = −∇Φ(r), one obtains

ρb(r) = ∇ · {[ε(r)− 1]∇Φ(r)} . (4.8)

Combining this expression with Eq. (4.3), one obtains the well-known result144

−∇2Φ(r) = ρf(r) + ρb(r) . (4.9)

This is a Poisson equation with constant coefficient, so that the solution Φ(r) can be simply

represented as the standard Coulomb potential due to both the free and the bound charge

density,

Φ(r) =

∫
ρf(r

′) + ρb(r′)

4π|r− r′|
dr′ . (4.10)

Substitution of Eq. (4.10) into Eq. (4.1) allows the electrostatic energy to be expressed as

U =
1

8π

∫∫
ρf(r)

[ρf(r
′) + ρb(r′)]

|r− r′|
dr′dr . (4.11)

The singularity at r′ = r due to the direct Coulomb interaction of point free charges should

be discarded to render the integral finite. The remaining problem in Eq. (4.11) is that the
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bound charge density ρb(r) is still unknown. For systems with arbitrarily shaped dielectric

bodies, the boundary element methods (see Section 4.2.2) and variational methods (see

Section 4.2.3) can be employed to numerically obtain ρb(r). For the current system of

dielectric spheres, the hybrid method framework (an image-charge based method) makes it

possible to effectively represent the bound charge density ρb(r) as a combination of multipole

moments and image charges (see Section 4.2.4).

4.2.1. Approximate Dipolar Methods

Fundamentally, dipolar methods are based on the description of polarization as an electric

dipole moment per unit volume143,145. Dipolar approximations of polarization effects may be

classified by whether they employ constant or mutually-dependent dipoles, and whether a

single dipole or multiple dipoles are used to represent a mesoscale dielectric object127,128. The

term approximation is used here as multipolar contributions to the electrostatic potential

and interaction energies are neglected in this family of methods. Such an approximation is

most sound when the particles are separated by a distance considerably greater than their

diameter, and begins to break down the nearer the particles approach one another.

Constant, or permanent, dipole models, though computationally inexpensive, are not

suitable for capturing complex, many-body dielectric effects and physical phenomena as-

sociated with polarization146,147. In a constant dipole model, the dielectric ”objects” in a

simulation possess a dipole moment which is linearly proportional only to the applied ex-

ternal electric field. The magnitude of the induced moment depends on the polarizability of

the particles. The calculation of the electrostatic interaction between particles of a constant

dipole moment is a routine textbook exercise.
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For anisotropic colloids, including spherocylinders, ellipsoids, dumbbells, and rods, a

related two-charge model may be more appropriate6,148–151. In the two-charge model of

polarization, two point charges which possess equal magnitude but opposite sign are placed

along the long axis of the colloid and are separated by a tunable distance d 149. The separation

distance is chosen so that the potential of the two point charges equals the potential of a

permanent dipole. The advantage of the two-charge model over a constant dipole model

is that interaction energy between pairs of adjacent particles is simply the sum of their

Coulombic interactions127.

As the density of particles in the system increases, the constant dipole method and two-

charge models are not an acceptable approximation because many-body effects are neglected.

The dipole moment of a given particle depends not only on the effect of the external electric

field but also on the local electric field generated by the induced dipoles of neighboring par-

ticles. Accordingly, a better approximation of the interaction energy of polarizable particles

must employ a self-consistent calculation. In the literature, this is sometimes referred to as

the ”mutual dipole model.”128

Self-consistent dipolar methods were pioneered in the 1960s, in a method referred to as the

coupled dipole method (CDM)152,153. This method employs the atomistic Lorentz model, in

which each atom is represented by a nucleus and a lone electron harmonically bound together.

Many such atoms may exist in a cluster, and the ground state potential energy, including their

complete, many-body interactions, can be calculated from the sum of the eigenfrequencies

of a set of harmonic oscillators. Initially, the coupled dipole method was used to calculate

the static polarizabilities of clusters of atoms featuring different geometries154,155; a similar

derivation is found in Ref. 156, which does not include the formalism of Lorentz atoms.

Another extension of the CDM includes image dipoles in the case of a dielectric rod near a
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planar surface157. For an in-depth discussion of image charges used in simulation of dielectric

materials, see Section 4.2.4.

Later, this same self-consistent method was used to calculate the electrostatic interaction

energies between colloids of various shapes induced by an applied electric field127. In this

work, they compared two self-consistent methods, one in which the particles were represented

by a single point dipole and another in which the three-dimensional dielectric object is

discretized into ”chunks,” each of which possesses an inducible dipole moment. As the

number of point dipoles in the latter method increases, so does the accuracy of the resulting

energy. Given the expensive matrix operations which must be calculated in this method,

only pairs of interacting particles were considered (though the formalism can handle many-

body effects) and implementation in MD or MC simulations involving many particles would

be unwieldy. Other examples of self-consistent dipoles used to model polarization may be

found in Refs. 128 and 148.

4.2.2. Boundary Element Methods

Boundary element methods (BEM) are often employed when the solution of the partial

differential equations (the Poisson equation for our problem) are expressed using boundary

integral equations. Considering the system consisting of sharp dielectric interfaces, the

boundary integral problem reduces to solving for the induced charge density on the surface

patches where the dielectric permittivity has a discontinuity. Levitt46 first applied such a

technique to systems with cylindrical symmetry, and Zauhar et al.47,158 further extended the

method to arbitrary geometries. The reader may refer to review articles159,160 if interested

in the historical developments in the field.
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The advantages of the BEM are manifold: there is no constraint on the geometry, the

number of unknown (N) is reduced by an order of magnitude compared with methods

involving volume discretization (e.g., finite element method or finite difference method),

and boundary conditions at infinity (open region problems) can be exactly treated. One

notable disadvantage is that although the number of unknowns N is reduced, discretizing

the boundary integral equations produces dense linear systems whose memory costs scale as

O(N2) and solution costs scale as O(N3) in the direct solution approach. Moreover, singular

boundary integrals affect the accuracy and stability of the solution.

Different approaches have been proposed to accelerate the BEM in order to enable large-

scale dynamical simulations48–50,129,130,161,162. Here Refs. 129 and 130 are also classified as

variational methods and will be covered at length in Section 4.2.3. Bharadwaj et al.161

developed an adaptive method of successive over relaxation (SOR) to solve the linear matrix

equation and applied FMM to calculate the Coulombic interaction between surface elements

by linear time cost. Boda et al.48 proposed an induced charge computation (ICC) method

which computes the polarization charges based on the variational formulation of Allen et

al.129. The minimization of the functional yields a matrix equation Ah = c where the vector

h contains induced charges for each surface element. Note that this matrix formulation is the

same as the one previously introduced by Hoshi et al.163 through different ways of derivation

and is used as basis for later work49,50. Since the matrix A only depends on the geometry of

the dielectric medium, it needs to be inverted only once at the beginning of the simulation

for the systems containing only static dielectric interfaces. Thus, the ICC method scales as

O(N2
e ) in its basic implementation, where Ne is the number of surface elements.

However, considering the systems consisting of dynamical dielectric interfaces, it requires

O(N3
e ) operations to solve the matrix equation at each time step. To tackle this problem,
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Barros et al.50 presented a collection of techniques to accelerate simulation of dynamical

dielectric objects. Specifically, they solve the matrix equation using the Generalized Min-

imal Residue method (GMRES), where each GMRES iteration is evaluated using a fast

Ewald solver with cost that scales linearly or near-linearly to Ne. The GMRES is found to

converge in very few iterations, as the matrix A is positive definite and the residual error de-

creases exponentially with the number of iterations. The memory allocation required by this

GMRES-accelerated method is on the order of Ne, as it needs to store the residual vector and

vectors spanning the Krylov subspace at each iteration. Given its competitive efficiency and

the flexibility of the BEM on geometry of interfaces, large-scale MD simulations have been

done to explore dielectric effects in different systems, such as the self-assembly process of

polarizable particles164 and electric double layer near a dielectric anisotropic particle165,166 or

a structured polarizable interface167. Alternatively, Tyagi et al.49 proposed another efficient

iterative algorithm for periodic systems, named the ICC∗ method, where the ∗ represents

any choice of the solver for the electrostatic field (e.g., FMM, Particle-Particle Particle-Mesh,

Ewald summation etc.). By reformulating the matrix equation into the form of h = Bh,

they applied the SOR approach, similarly with Bharadwaj et al., to solve for the induced

charges. In practice, the ICC∗ method does not require large memory space (linearly to Ne),

and its bottleneck is the number of calculations of electric field until convergence.

More recently, an O(Ne) and scalable parallel approach was developed for BEMs by

Jiang et al.162. The boundary integrals are accelerated using a kernel-independent FMM

which utilizes Chebyshev interpolation and low-rank approximation. The approach does

not require storage of the matrix and thus scales as O(Ne) for memory cost. Notably,

the magnetostatic problem can be solved here in the framework of a hybrid finite element

(FEM)–BEM, as the volume mesh is required to account for the non-zero volume pole density
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∇·M(r), where M(r) is the magnetization density of the magnetized body at r. The details

of the implementation as well as its distribution are presented in Ref. 162. Moreover, the

GMRES-accelerated BEM, the ICC∗ method, and the direct optimization of the functional

by Jadhao et al. (cf. Section 4.2.3) are implemented and available for download,168 where

their performance are also compared in different systems.

4.2.3. Variational Methods

Variational methods provide approximate solutions to many physical problems including

those involving electronic polarization. Fundamentally, this approach is based on the prin-

ciple that there exists a unique electrostatic potential function which describes a system

at its minimum electrostatic potential energy143,145. The potential function must satisfy

the Poisson or Laplace equations with the relevant boundary conditions (Dirichlet or Neu-

mann) for the system at equilibrium. An archetypal variational approach to electrostatic

problems follows these steps: (1) Construct a trial function of the electrostatic potential or

another electrostatic quantity which depends on a number of variable parameters; (2) Select

a functional (often the electrostatic energy) of the trial function; (3) Iteratively refine the

variational parameters of the trial function to identify the maximum or minimum of the

functional. Since at least the 1950s169, a number of variational methods which treat elec-

tronic polarization have been explored124,129–131,143,169–183. Of these, only a select few have

been implemented in MC or MD simulations129–131,179,180.

The first variational methods for the solution of the electrostatic potential employed the

polarization P(r) as a field variable. This class of variational formulation was proposed in

1956169. The overall polarization was expressed as the vector sum of two independent po-

larization components: one which is proportional to the local electric field strength and one
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which is field-independent. This definition was employed in a functional of the electrostatic

free energy which contains several vector functions of various electric fields and polariza-

tions. The functional introduced in Ref. 169 is frequently invoked alongside another free

energy functional of the polarization, originally derived in a study of thermal fluctuations in

dielectric, magnetic media178.

The variational methods introduced in Refs. 169 and 178 were not immediately imple-

mented in simulation. Nonetheless, they laid a groundwork for future variational formu-

lations employed in MC and MD schemes. The functional developed by Marcus has been

re-expressed in terms of the vectorial polarization and displacement and used to simulate

the dielectric response of polarizable media via a cluster Monte Carlo algorithm.181 Notably,

the method proposed in Ref. 181 was also employed in the modeling of nonlinear dielec-

tric response, with comparable computational efficiency with respect to purely linear media.

Another variational method which treats nonlinear dielectric functions has been derived–

though not implemented in simulation–which is also capable of handling spatial variation in

the permittivity184.

In MD simulations, a method based on the variational formulations of Marcus and Felder-

hof was used to calculate the forces associated with the electrostatic free energy.179 Motivated

by the application of biomolecules in a dielectric continuum, the functional is minimized ac-

cording to Car-Parinello-like scheme185 in which the polarization fields are evolved at the

same time as particle coordinates. Numerical solution is facilitated by pseudospectral ex-

pansion of the polarization field using a plane wave basis set. Consequently, the fast Fourier

transform may be applied, resulting in an algorithm with a computational complexity di-

rectly proportional to the number of particles in the simulation.
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A few variants of functionals which employ the polarization charge density ρb(r) have

been proposed. In Ref. 129, a variational method which closely follows the derivation out-

lined in Ref. 143 is described. Here, the extremum of the functional is a local minimum

which equals to the negative of the total electrostatic energy. While this method is suitable

for an arbitrary configuration of free charges, the major drawback of this functional is its

lack of intuitive physical meaning. The functional of Ref. 129 is not an energy functional,

meaning that values of the functional away from its minimum do not correspond to the

system’s electrostatic potential energy. Accordingly, this method is not suitable for dynami-

cal optimization techniques such as Car-Parinello-like molecular dynamics. Instead, at each

time step, the polarization surface charge density must first be optimized before calculating

the forces acting on the charges and updating their positions.

Energy functionals offer attractive advantages for implementation in simulation. In Ref.

131, an energy functional with the polarization charge density as the exclusive field variable

is derived. To ensure that the functional yields the total electrostatic energy, a constraint

such that the polarization charge density equals a specific functional of the spatially-varying

polarization charge density is imposed. This so-called ”true” energy functional differs from

previous, related functionals in the form of the Lagrange multiplier which enforces that

constraint130. The earliest example of this functional handles a single dielectric interface,

while follow-up work has extended the method to simultaneously treat multiple dielectric

interfaces124.

The true energy functional of Ref. 131 may be numerically minimized via a simulated

annealing procedure and implemented in molecular dynamics simulations. Minimization of

the functional occurs concurrently with the update of particle coordinates, in contrast to
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Ref. 129. Accordingly, the variational approach outlined here is described as Car-Parinello-

like. This is somewhat misleading as quantum effects are of course neglected in classical,

particle-based, mesoscale simulations.

The method highlighted in Refs. 130,131 is closely related to an earlier variational for-

mulation177. Both sources develop a functional of the total electrostatic energy suitable for

dynamical optimization with the polarization charge density as the variational parameter.

They diverge in that the functional form of Ref. 177 requires that all free charges reside in a

single, uniform dielectric continuum adjacent to a charge-free region with a different relative

permittivity. On the other hand, the variational formulation in Refs. 130,131 is suitable for

any configuration of free charges without the former’s contingency.

4.2.4. Image Charge Methods

The image charge method (ICM) is generally only available for simple geometries, such as

planar, spherical, or cylindrical interfaces. For a slab geometry, the ICM can be efficiently in-

corporated into the Ewald summation186–188 and numerous simulations have been conducted

to study different dielectric modulated phenomena, including polymer adsorption189, ionic

structure190, ion mobility37,191, and pattern formation192 near a polarizable flat interface.

Recently, more attention has been paid to systems consisting of multiple dielectric spheres,

which is able to represent a wide range of biological and synthetic systems such as colloidal

suspensions and proteins193–196. For a single dielectric sphere, it is well known that the

Green’s function can be efficiently computed by an image-line construction, namely a point

charge plus a line charge density distributed from the sphere center to the Kelvin point. This

was first discovered by Neumann40 and rediscovered several times in different areas197. The

extension of the ICM to the treatment of multiple spheres can be achieved through different
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formalism. Xu et al. has extended the discrete image approximation of the Neumann’s im-

age principle to multi-sphere case by recursive reflections of image charges among different

dielectric interfaces198,199. The ICM is accurate when spheres are close, as the singular quad-

rature problem for the image line charge integral has been well approximated. However, it

has been shown that as the number of spheres N grows, the computational cost of ICM in-

creases as a power law (∼ O(N3)) due to the repeated image reflection between spheres200.

The other image-charge based method is the multiple-scattering formalism, developed by

Qin et al., which solves for the potential iteratively by considering chains of interfacial polar-

ization with increasing complexity52,201. Here the total energy of the system is written as a

series expansion including one-body, two-body, and higher-order energies which involve more

surface scatterings. Therefore, every term in the series can bear a physical interpretation.

The formalism has been extended to the polarizable dipolar systems as well202. However,

similar with the recursive reflection formalism, the computational cost grows rapidly with

number of particles and scales as O(Nm) if the expansion is truncated at the level of m-body

interactions. The method and its application are well summarized in a recent review142.

In order to deal with the low efficiency of the ICM when the number of spheres is large,

an efficient and spectrally accurate hybrid method was recently developed, which combines

the ICM with the Method of Moments (MoM)53. The MoM can be further accelerated via

the FMM to achieve scaling that is linear with the number of spheres N . The basic idea

of this hybrid method is as follows. If the dielectric spheres are well separated, the MoM is

coupled with the FMM and an iterative solver to take advantage of the spherical geometry

and achieve optimal complexity. If the spheres are close to each other, images are generated

only for nearly touching pairs of spheres and the ICM is applied. The computational cost
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for both the MoM and the ICM parts is linear to N 203. This method has been recently in-

corporated in a MD simulation and demonstrates simultaneously linear scaling behavior and

high accuracy203. A systematical comparison between the hybrid method and the GMRES-

accelerated BEM was conducted in terms of accuracy and efficiency at different parameter

settings (see Chapter 7). Particularly, for densely packed configurations of relatively small

numbers of dielectric spheres, the hybrid method computes the electrostatic energy with a

deviation of less than 0.01% at a rate that is more than two orders of magnitude faster than

the BEM can achieve with deviations of 3%.

For nonspherical geometries, system containing cylindrical interfaces has attracted much

attention as a model system to study biological ion channels196,204–206. In Ref. 205, an

optimization method was used to find the image representation for cylinder by fitting the

exact expression in terms of cylindrical harmonics. In Ref. 206, the ICM was developed for a

source charge inside a finite length cylinder due to the electric polarization of the surrounding

inhomogeneous continuum. Moreover, the two-level ICM was recently utilized a method to

evaluate Green’s function in irregular domains207.

4.2.5. A Brief Comparison Between Different Methods

In order to provide a brief overview of different methods of solving the polarization problem,

we construct a table below (Table 4.1) including the time/memory cost, feasibility, and

open-source availability of each method. It can be seen that while the BEM (as well as

the variational methods) is advantageous in dealing with interfaces of irregular geometries,

the ICM, especially the hybrid method by Gan et al., remains more efficient and accurate

for close-packed multi-sphere systems, which would require a significant amount of surface

elements if using the BEM.
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Table 4.1. A table summarizing the advantages, disadvantages as well as the effi-
ciency of different methods to solve the polarization problem. Note that VM is short
for variational method, and the symbols Ne, re, N , and m below denote the number
and the size of surface elements, the number of polarizable spheres, and the level at
which the image reflections are truncated, respectively.

Advantages Disadvantages Different Implementations Time Memory Open Source Distribution

Apply to

arbitrary

geome-
tries

Singularity
when interfaces

are close leads

to large error
(∼ O(re))

ICC∗ by Tyagi et al.

O(Ne)

at best

O(Ne)

bitbucket.org/ndtrung/lammps

or ESPResSo software139
BEM

& GMRES–BEM by Barros bitbucket.org/ndtrung/lammps

VM Kernel–BEM by Jiang et al. ime-code.uchicago.edu

Functional by Jadhao et al. O(N2
e ) bitbucket.org/ndtrung/lammps

ICM
Accurate

for close

interfaces

Apply to only
simple geome-

tries

Recursive reflection by Xu et al.
O(Nm) O(Nm)

Not found

Multiple-scattering by Qin et al. Not found

Hybrid method by Gan et al. O(N) O(N) Not found

4.3. Representative Applications

There are numerous physical and chemical problems in which electronic polarization plays

a prominent role. In this section, we select several illustrative applications of the methods

described previously. These examples demonstrate the diversity of systems accessible to

computational study and indicate the importance of including dielectric effects in mesoscale

simulations.

4.3.1. Assembly

Electronic polarization contributes to assembly at the mesoscale, by which we broadly mean

the spatial organization and ordering of constituent components of the system50,128,192,208,209.

In the presence of an applied external field, polarizable particles will align and reach a

thermodynamically favorable equilibrium configuration128. This result for particles with

inducible dipole moments is physically intuitive. Such assembly of particles may not be
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considered true “self”-assembly, since their collective ordering depends on an external driving

force, namely an AC or DC field.

In the absence of an applied field, dielectric effects have been shown to play a role in

the true self-assembly of colloids164, pattern formation involving metamaterial substrates192,

and the ordering of ion-containing droplets in oil/water emulsions124. In Ref. 164, as the

temperature of a binary mixture of charged colloidal particles is reduced, the particles spon-

taneously assemble into different structures (strings, sheets, and NaCl crystal) depending on

the degree of dielectric mismatch between small and large particles (Fig. 4.1). A later study

also claims to display dynamic self-assembly driven by the dielectric mismatch of interacting

particles, though the simulation methods used therein are relatively crude in comparison to

Ref. 50 and no claim regarding accuracy is made208. In a quasi-two-dimensional scenario,

systems of dipolar spheres atop a substrate will exhibit different spatial patterns as the di-

electric mismatch (between particle and substrate) or particle geometry is tuned, yielding

complex phase diagrams192. Finally, the aggregation of droplets in an oil/water emulsion

was demonstrated to depend on their surface polarization, which contributes an attractive

inter-droplet force124.

4.3.2. Transport

Dielectric effects have been demonstrated to modulate transport processes, ranging from

the macromolecular scale down to the motion of individual ions in solution37,191,210,211. The

translocation of biological macromolecules through solid state nanopores is relevant to appli-

cations such as real-time DNA sequencing technologies.212 The dielectric mismatch between

the solvent and nanopore gives rise to a repulsive force within the pore channel which impedes

the transport of a highly-charged DNA molecule211. The impact of pore polarization on the
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Figure 4.1. Structures formed by dynamical polarizable colloids in MD simulation.
The large colloids are positively charged, the small colloids are negatively charged,
and the induced surface charges are represented by red (positive) and blue (negative)
color gradients. In the left panel, the string-like structures emerge as a result of
dielectric many-body effects when κ, the reduced dielectric constant of large colloids,
is large. Adapted from Ref. 164.

translocation of DNA was recently investigated by MD simulation as shown in Fig. 4.2210,211.

After discretizing the surface charge density on the pore, the authors of Refs. 210,211 com-

pute the dielectric boundary force by means of the ICC∗ algorithm49. The computed free

energy profiles for the translocation of both single-stranded and double-stranded DNA (ss-

DNA and dsDNA, respectively) shows an increase in the translocation barrier height of

ssDNA relative to dsDNA. The authors attribute this discrepancy to the greater flexibility

of the ssDNA chain which increases its proximity to the induced charges on the wall of the

pore channel. The dielectric boundary force is shown to be affected by salt concentration,

with the energetic barrier height inversely related to salt concentration due to screening

effects.

The mobility of ions near a surface is qualitatively different than their mobility in the

bulk. In Ref. 37, the authors rationalize this discrepancy in ionic behaviour by examining
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Figure 4.2. Translocation of a flexible ssDNA polymer (red beads) through a solid-
state nanopore with explicit monovalent counterions (orange and blue) present. For
the ICC∗ algorithm, the nanopore has been discretized as shown by the white beads.
Adapted from Ref. 211.

the contribution of surface polarization. They show that the mobility of ions near a dielec-

tric interface may be modulated by varying the dielectric mismatch between the solvent and

the surface. The model system employed in Ref. 37 consists of explicit ions in a dielectric

continuum representing the solvent; the planar geometry of the model makes the method

of images the most efficient choice for computing surface polarization effects. Surprisingly,

they observe that ion mobility increases near surfaces with a high relative permittivity and

decreases near surfaces with a lower permittivity. This phenomenon is attributed to distor-

tions in the shape of the counterion atmosphere surrounding the ion of interest, which result

from interactions with the induced surface charges. A similar effect on ion mobility is ob-

served in a system consisting of coarse-grained polyelectrolyte brushes grafted to a dielectric

surface191.
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4.3.3. Electric Double Layer Structure

The electric double layer (EDL) refers to the diffuse atmosphere of counterions which are

attracted to co-ions of opposite charge on the surface of a dielectric material immersed in a

liquid111. For a polarizable material, the counterions will induce an additional charge on the

surface of the dielectric, which in turn influences the density profiles of the ions in the EDL.

One applied example of the importance of elucidating the EDL structure is found in the

charging of supercapacitors. The efficient storage of electrical energy is a central challenge in

the development of technologies for renewable energy. Supercapacitors, occasionally referred

to as double-layer capacitors, outperform conventional batteries in some aspects of energy

storage. Namely, they have rapid charge-discharge cycles and can undergo millions of such

cycles before the device is retired126. Supercapacitors contain an ionic liquid, accumulating

and conducting charge via its interaction with porous electrodes. Recently, simulation studies

have attempted to reveal new insights into the parameters such as electrode composition

and charging cycle protocol which control supercapacitor performance, in particular energy

density126,213–215. In the case of constant potential, surface structure and finite pore length

of the nanoporous channels significantly influences adsorption of ions and their resulting

density profiles near the electrode213,214.

4.4. Conclusion

Dielectric effects may play an important, if often neglected, role in coarse-grained, mesoscale

simulation. Over the past several decades, a number of attempts to accurately and efficiently

treat polarization in MD and MC simulation have been reported. In this Review, we have
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offered a survey of these methods, highlighting approximate dipolar, boundary element, vari-

ational, and image charge methods. These techniques have been applied to study various

physical phenomena such as ion transport, self-assembly, and charging behavior.

Looking forward, promising directions of future research include:

• developing efficient algorithms for handling non-linear dielectrics where the polar-

ization has a non-linear dependency on the electric fields;

• incorporating anisotropic dielectric objects which possess a tensor-like dielectric

constant than a scalar;

• extending current methods to efficiently include a continuously varying permittivity

(unlike the systems with piecewise uniform permittivity considered here). Note

that this problem currently can be dealt with by the Maxwell equation method

(implemented in ESPResSo)180,216–219 or finite element method, but such techniques

are very computationally costly.
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CHAPTER 5

Structural and Dynamical Properties of Dipolar Fluids Near a

Dielectric Interface

The content of this chapter is based on the following publication:

• Z. Wang and E. Luijten, “Structural and dynamical properties of dipolar fluids near

a dielectric interface,” To be published (2019)

5.1. Abstract

Dipolar fluids belong to the most fundamental classes of model liquids, providing insight

into the structural and thermodynamics properties of a wide range of polar liquids. Spatial

confinement can have a profound influence of such properties, inducing anisotropy as well

as steric constraints. Owing to the electrostatic interactions in dipolar fluids, an additional

effect arising in the presence of interfaces is the dielectric mismatch between medium and

substrate. Until now, this effect has largely been ignored in computational studies. Here,

we extend the dipolar Ewald summation to incorporate induced polarization for arbitrary

permittivity mismatch between medium and substrate, and systematically study the ferro-

electric transition and local structural properties of a confined dipole hard-sphere fluid. We

demonstrate that while the global polarization only has a weak dependence on substrate

permittivity, the dipolar orientation in the contact layer is significantly affected, as is the

anisotropy of the rotational dynamics.
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5.2. Introduction

The dipolar interaction, one of the most fundamental anisotropic potentials, plays an

essential role in many physical systems of technological interest, including ferrofluids220–222,

electrorheological fluids223, and polar fluids224,225. The simplest models described by dipolar

interactions are the dipolar hard-sphere (DHS) and soft-sphere fluids, where a permanent

point dipole is affixed to the center of each sphere. A variety of fundamental problems

related to dipolar systems, including structural properties226–228, phase behavior229–232, and

dynamics233,234 have been studied via this model.

Many applications of dipolar systems involve spatial confinement, e.g., polar solvents

within narrow pores and thin films of magnetic colloids or ferrofluids235–239. Numerous sim-

ulations have been conducted of dipolar systems under confinement236,240–248, and demon-

strated that various properties are significantly affected by the spatial confinement. Exam-

ples include wall-induced anisotropy and slow-down of dynamics240,242,246, the inhomogeneity

of density profile241,242, and dielectric response242,245,247, the enhancement of orientational or-

der243, and the emergence of layered structures under external field248. However, a parameter

that, owing to its complicated many-body nature, is typically ignored is the dielectric mis-

match between the substrate and the medium in which the dipolar spheres are suspended.

This means that one effectively assumes that the substrate is simply characterized by a di-

electric constant (εs) equal to the permittivity of the confined medium (εm). This omission

is noteworthy, given that (i) dielectric contrast across the interface is unavoidable in nearly

all real applications and (ii) the polarization charge resulting from the dielectric mismatch

results in additional forces that can alter the structural properties and dynamical behavior of

the dipolar system. Moreover, it has already been demonstrated that substrate permittivity



118

can affect the properties of a wide range of electromagnetic systems, from plasmonics36 to

ion mobilities in electrolytes37 and polyelectrolyte brushes191.

A notable exception in the existing literature, incorporating dielectric boundary effects

on a dipolar fluid, concerns the extreme case of confinement between two conducting plates

(εs = +∞)187. This is a special situation that can be approximated by a periodic system,

simplifying the mathematical treatment. Somewhat surprisingly, no qualitative differences

were observed in this system compared with the situation without dielectric effects. Here, we

demonstrate that this finding resulted from the particular choice adopted for the repulsive

fluid–substrate potential187, which prevented the dipolar particles from approaching the

interface very closely. This in turn suppressed polarization effects, which depend on the

dipole–wall separation. In the present work, we employ hard sphere–wall interactions that

do not suffer from this limitation. Moreover, to the best of our knowledge, no prior studies

exist that explore the opposite case of a low-permittivity interface, εs < εm, where the

polarization is qualitatively different.

To address these open questions, we perform Monte Carlo (MC) simulations of a DHS

fluid confined between two hard walls, one of which has a permittivity mismatch with the

medium. We investigate the global isotropic–ferroelectric transition and local structural

properties as a function of dielectric mismatch and in different density regimes. To eluci-

date the origin of the orientational preferences observed for various boundary conditions we

compute the ground-state energy of typical configurations. Interestingly, we find that the

orientational dynamics depend on the interfacial dielectric mismatch as well. We are able to

obtain these results by incorporating image-dipole effects into the dipolar Ewald summation.

This approach is applicable to interfaces with arbitrary mismatch in permittivity.
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This paper is organized as follows. We introduce the model in Sec. 5.3.1 and derive the

Ewald summation for the total energy of the system, taking into account both the slab geome-

try and polarization effects, in Sec. 5.3.2. The simulation method and definition of important

parameters are provided in Sec. 5.3.3. In Sec. 5.4, we discuss the numerical results for the

structure and dynamics of the system as a function of dielectric mismatch. Specifically, we

show the influence of the dielectric interface on the global isotropic–ferroelectric transition

(Sec. 5.4.1) and local orientational order (Sec. 5.4.2). Following that, in Sec. 5.4.3 we explain

the origin of different orientational preferences induced by the dielectric mismatch based upon

the electrostatic energy of typical one-particle and two-particle configurations. As Sec. 5.4.1

and 5.4.2 suggest an apparent discrepancy between the influence of substrate permittivity

on the global polarization and local orientational structure, we correlate these two properties

in Sec. 5.4.4. Lastly, we present results for the rotational dynamics in Sec. 5.4.5, followed by

a brief summary and discussion in Sec. 5.5.

5.3. Model and Simulation Methods

5.3.1. Model system

We consider a system of N dipolar hard spheres with positions ri (1 ≤ i ≤ N) and embed-

ded point dipole moments µi placed at their centers. All dipole moments have the same

magnitude µ = |µi|. The potential between a pair of particles i and j with separation vector

rij = ri − rj is

uij = uHS(rij) +
1

εm

{
µi · µj
r3
ij

− 3
(µi · rij)(µj · rij)

r5
ij

}
, (5.1)
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where rij = |rij| and uHS is the hard-sphere potential,

uHS(rij) =


+∞ if rij ≤ σ

0 if rij > σ

, (5.2)

with σ the diameter of the spheres. The DHS fluid is confined by two parallel walls located

at z = 0 and z = Lz, respectively, and periodically replicated in the x and y directions with

dimensions Lx and Ly. The walls serve as hard boundaries to the particles,

uwall(zi) =


+∞ if zi < σ/2 or zi > Lz − σ/2

0 if σ/2 ≤ zi ≤ Lz − σ/2
, (5.3)

for a particle with z-coordinate zi. We assume the upper wall has the same dielectric constant

as the confined medium (εm), while the lower slab has arbitrary permittivity εs. Owing to

the piecewise uniform permittivity, the dielectric mismatch at the lower interface (z = 0)

results in surface polarization. Analogous to polarization charge, this induced dipole moment

must be computed self-consistently, which requires a numerical solver (e.g., the analog of the

Induced Dielectric Solver of Refs. 50,249) for complex geometries166,167. But thanks to simple

geometry, the planar interface can be treated mathematically by means of image dipoles143

(Fig. 5.1). A central point of our study is that these image dipoles have interactions with the

real dipoles that are either attractive (for a high-permittivity surface, Fig. 5.1a) or repulsive

(for a low-permittivity surface, Fig. 5.1b).
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Figure 5.1. Schematic of a system consisting of N dipoles near a dielectric interface.
The medium (top half of panels) has permittivity εm and the substrate (lower half
of panels) has permittivity εs. Mathematically, the role of surface polarization can
be treated by means of image dipoles, depicted in the lower half of the panels. For
a high-permittivity substrate (a), the interactions between real dipoles and their
images are attractive, whereas for a low-permittivity substrate (b) the interactions
are repulsive. The arrows in the image dipoles only indicate the directions of the
dipole moments, not their magnitude (which depends on the dielectric mismatch).
The dipoles are confined to the region near the dielectric interface by a second
surface near the top, but this surface has the same permittivity as the medium.

5.3.2. Energy of the dipolar system

To study this dipolar system via MC simulations, we need to compute the electrostatic

energy of individual configurations,

Udip = −1

2

N∑
i=1

µi · E(ri) . (5.4)
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To obtain the electric field E, we start by considering an individual dipole with dipole moment

µj = (µj,x, µj,y, µj,z), located at position rj = (xj, yj, zj), where σ/2 ≤ zj ≤ Lz − σ/2. The

dielectric mismatch at the z = 0 interface results in an image dipole at r′j = (xj, yj,−zj) =

rj − 2zj ẑ with dipole moment µ′j = γ(µj,x, µj,y,−µj,z). The dielffectric mismatch γ =

(εm − εs)/(εm + εs) characterizes the relative magnitude and direction of the image dipole,

and ẑ represents the unit vector (0, 0, 1). Thus, the electric field at position ri, created by

all dipoles j (excluding dipole i), their image dipoles (including the image of i), and the

periodic replicas of all real and image dipoles is

E(ri) =
1

εm

×
∞∑
n

{
N∑
j=1

′
(

3(rij + rrep) (µj · (rij + rrep))

|rij + rrep|5
− µj
|rij + rrep|3

)

+
N∑
j=1

(
3(r′ij + rrep)

(
µ′j · (r′ij + rrep)

)
|r′ij + rrep|5

−
µ′j

|r′ij + rrep|3

)}
,

(5.5)

where r′ij = ri−r′j = (xi−xj, yi−yj, zi+zj) is the vector pointing from the image of dipole j

to the (real) dipole i. The vector n = (nx, ny, 0), with nx, ny ∈ Z, runs over all periodic

images of the cell and the replication vector is defined as rrep = (nxLx, nyLy, 0). The prime

on the summation indicates that j 6= i when n = (0, 0, 0).

The slow convergence of the series in eqn (5.5) can be addressed by a standard Ewald

summation. In view of the more rapid convergence of this summation in three dimensions

than in two dimensions, it is convenient to periodically replicate the system in the z direction

after adding a so-called “vacuum layer” above z = Lz. This makes it possible to apply

the standard three-dimensional (3D) dipolar Ewald summation. Artifacts resulting from the

additional periodicity are then suppressed via a so-called slab correction250. To accommodate
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the image dipoles, we first extend the system to −Lz ≤ z ≤ Lz and then expand the volume

by a factor m, i.e., we add m − 1 (m > 1) vacuum layers to obtain a total system volume

V = 2mLxLyLz. In practice, we choose m = 3.

Thus, the total dipolar energy can be written as

Udip = US + UL − Uself + Ucor . (5.6)

The short-range contribution US consists of a sum over all dipole–dipole pairs as well as

all dipole–image pairs (including the interaction of each dipole with its own image) whose

distance is within the real-space cutoff rc,

US =
1

2εm

N∑
i=1

{
N∑
j=1

′ {(µi · µj)F (rij)− (µi · rij)(µj · rij)G(rij)}

+
N∑
j=1

{
(µi · µ′j)F (r′ij)− (µi · r′ij)(µ′j · r′ij)G(r′ij)

}}
,

(5.7)

where rij = |rij| < rc, r
′
ij = |r′ij| < rc, and we require rc ≤ Lx,y/2. The functions F (r)

and G(r) are defined as

F (r) =
erfc(
√
αr)

r3
+ 2

√
α

π

exp(−αr2)

r2
, (5.8)

G(r) = 3
erfc(
√
αr)

r5
+ 2

√
α

π

(
2α +

3

r2

)
exp(−αr2)

r2
. (5.9)

The parameter α determines the decay of the short-range potentials. Note that interactions

between image dipoles do not contribute to the energy.
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The long-range contribution UL is computed in Fourier space summing all the wave

vectors whose magnitude is within the k-space cutoff kc,

UL =
2π

εmV

|k|≤kc∑
k 6=0

1

k2
e−k

2/4α

×
{
A(k)2 +B(k)2 + A(k)C(k) +B(k)D(k)

}
,

(5.10)

with

A(k) =
N∑
i=1

µi · k cos(k · ri) , (5.11)

B(k) = −
N∑
i=1

µi · k sin(k · ri) , (5.12)

C(k) =
N∑
i=1

µ′i · k cos(k · r′i) , (5.13)

D(k) = −
N∑
i=1

µ′i · k sin(k · r′i) . (5.14)

Note that he combined choice of α, rc, and kc determines the accuracy and efficiency of the

computation. In this study the Ewald accuracy reaches 10−5.

To correct for spurious self-interactions (which occur for the real dipoles only), we sub-

tract the self energy Uself ,

Uself =
2π

3εm

(α
π

)3/2
N∑
i=1

µ2
i =

2π

3εm

(α
π

)3/2

Nµ2 . (5.15)
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Lastly, the slab correction term is

Ucor =
2π

3εm

( N∑
i=1

µi,z

)2

+

(
N∑
i=1

µ′i,z

)2


=
2π

εmV
(1− γ)

(
N∑
i=1

µi,z

)2

.

(5.16)

Having thus obtained the dipolar interaction energy including the effect of the dielectric

interface, we can write the total system energy as

U = Udip +
1

2

N∑
i=1

N∑
j=1
j 6=i

uHS(rij) +
N∑
i=1

uwall(zi) . (5.17)

5.3.3. Simulation methods

We perform MC simulations in the canonical ensemble for a system of lateral dimensions

Lx = Ly = 10σ and height Lz = 10σ. Each simulation runs for 5 × 106 MC cycles for

equilibration followed by another 5× 106 cycles for production, where a cycle consists of N

MC moves. In each MC move, a dipole is selected at random and a translation or rotation

trial move is attempted with equal probability. For a translational move, the maximum

displacement is determined during the equilibration process, adjusting it after every 1000

MC cycles to achieve an acceptance rate of 10%. A rotational trial move is generated by

adding a randomly oriented vector with magnitude δr to the original unit vector of the

dipole moment. In practice we choose δr = 0.4. After each attempted move, the change of

the total energy is computed to employ Metropolis algorithm. Note that it is unnecessary

to recompute the whole energy at each time and only the energy change associated with
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the particle being moved is computed. The initial configuration of the system consists of

randomly oriented dipoles placed on a simple cubic lattice.

To explore the behavior of this dipolar fluid, we vary both the coupling constant λ =

µ2/(εmσ
3kBT ) and the reduced number density ρ = Nσ3/(LxLyLz). We systematically

tune ρ from 0.05 to 0.9 and λ from 1 to 8, respectively. To examine the role of substrate

permittivity, we choose three different cases: εs = 100εm (high-permittivity or “conducting”),

εs = εm (equal-permittivity), and εs = 0.01εm (low-permittivity).

To quantify the global orientational order, we introduce the order parameters P1 and P2

measuring the degree of global polarization and alignment, respectively251. For an instanta-

neous configuration, P2 is the largest eigenvalue of the ordering matrix Q = 1
2N

∑N
i=1(3µ̂iµ̂i−

I), where µ̂i is the unit vector associated with µi and I the identity matrix. The correspond-

ing normalized eigenvector is the global director d̂ from which the instantaneous value of P1

follows as P1 = 1
N
|
∑N

i=1 µ̂i · d̂|. Whereas P2 merely characterizes global alignment of the

dipolar particles, P1 is a measure of the global polarization. The degree of the uniaxial align-

ment along the z-direction can be quantified by Qzz = 〈 1
2N

∑N
i=1(3µ̂2

i,z−1)〉, where Qzz is zero

in orientationally isotropic states, whereas Qzz = −0.5 and Qzz = 1 reflect configurations of

perfectly in-plane or out-of-plane dipoles, respectively.

5.4. Results and Discussion

5.4.1. Ferroelectric transition and global orientational order

The orientational order of dipolar fluids has been the subject of considerable attention. The

existence of ferroelectric orientational order in strongly interacting dipolar soft- and hard-

sphere fluids at high density was first shown in computer simulations226,252–254, demonstrating

that dipolar forces alone can create an orientationally ordered liquid phase. The observation
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Figure 5.2. Order parameter P1 as a function of (a) number density ρ at coupling
constant λ = 7; (b) λ at ρ = 0.7 for conducting (blue squares), equal-permittivity
(green circles), and low-permittivity (yellow triangles) substrates.

of this spontaneous polarization not only answered a long-standing question in the liquid-

crystal literature255, but also provided guidance for constructing ferroelectric nematic liquid

crystals in the laboratory.

Spatial confinement, such as the presence of an interface, reduces the orientational en-

tropy and thereby promotes the formation of ferroelectric arrangements243. To investigate

whether the dielectric properties of the substrate further influence the isotropic–ferroelectric
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transition of the system, we study the global polarization order parameter P1 for conduct-

ing, equal-permittivity (i.e., no dielectric mismatch between solvent and substrate), and

low-permittivity interfaces. As found previously226,243,252–254, the spontaneous polarization,

where dipoles point in the same direction (along the global director d̂), is induced when either

the number density ρ (Fig. 5.2a) or the dipolar coupling strength λ (Fig. 5.2b) is increased.

Substrate permittivity εs does not qualitatively affect the global polarization, except that

for a high-permittivity surface the polarization is slightly suppressed. This small shift of the

global polarization curve can be understood from inspecting the orientational preference at

different wall boundary conditions, as demonstrated below.

For dipolar system confined by two walls without dielectric contrast at the interfaces,

the presence of the confining walls constrains the dipole orientations parallel to the walls in

both isotropic and ferroelectric phases243. The origin of this preferred in-plane orientation

of the confined dipoles is that (i) the head-to-tail chainlike configuration is energetically

favorable and will be formed at large λ243,254; (ii) with the existence of the confining walls,

long chains can only be formed parallel to the walls such that the out-of-plane orientations

are largely suppressed. When the dielectric contrast at the interface is considered, the

attractive (repulsive) surface polarization induced by high- (low-) permittivity plate can

alter the orientational structure in different ways.

To explore the global orientational preference, i.e., uniaxial alignment given the reduced

symmetry, for different substrates, we calculate the order parameter Qzz as a function of ρ (at

λ = 7) and λ (at ρ = 0.7) in Fig. 5.3a,b, respectively. Qzz is always negative, suggesting that

the global orientation is always more in-plane than out-of-plane regardless of εs. Combining

this with the transition curves in Fig. 5.2, we find the isotropic–ferroelectric transition is

shown to accompany with the transformation from nearly orientationally isotropic state
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Figure 5.3. Order parameter Qzz as a function of (a) number density ρ at coupling
constant λ = 7; (b) λ at ρ = 0.7 for conducting (blue square), equal-permittivity
(green circle), and low-permittivity (yellow triangle) lower slabs.

(Qzz ≈ 0) to in-plane state (Qzz ≈ −0.5), consistent with the previous work243. However,

there is a clear disparate behavior of the conducting wall (blue squares in Fig. 5.3), where

the in-plane orientation is less preferred at εs = 100εm than the other two cases. This

difference is more pronounced at the low-density regimes (Fig. 5.3a), where the dipoles are

almost orientationally isotropic at ρ = 0.05 with “conducting slab,” while they clearly favor

in-plane arrangement for equal- and low-permittivity slabs.
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Figure 5.4. Local structural properties for dipolar fluids at coupling constant λ = 7
and reduced global number density ρ = 0.4 (panels a–c, isotropic phase) and ρ = 0.7
(panels d–f, ferroelectric phase). (a,d) Local number density ρ(z). (b,e) Uniaxial
alignment Qzz(z). (c,f) Polarization P1(z). Blue curve: conducting substrate; green
curve: no dielectric mismatch between dipolar medium and substrate; yellow curve:
low-permittivity substrate.

5.4.2. Local structural properties: density, polarization, and uniaxial alignment

Whereas dielectric properties of the substrate have only a minor effect on the global polar-

ization and orientational order when averaged over the entire system, it turns out that the

local structure of the dipolar fluid varies significantly depending on the dielectric mismatch

at the fluid–solid interface. We demonstrate this by examining various structural properties

as a function of distance z to the interface. As representative examples of the isotropic and

ferroelectric phases, we consider systems with global number density ρ = 0.4 and ρ = 0.7,

respectively. In both cases, we set the coupling constant to λ = 7.
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Figure 5.4a,d illustrates (for ρ = 0.4 and ρ = 0.7, respectively) the reduced local number

density ρ(z) = 〈N(z)σ3/(LxLy∆z)〉, where ∆z = 0.05σ is the bin width and N(z) is the

number of particles i with z ≤ zi < z + ∆z. For conducting substrates, we observe a strong

condensation near the interface owing to the induced attractive polarization. In the isotropic

phase, this condensation also leads to a layered structure near the interface (blue curve in

Fig. 5.4a), unlike the structureless ρ(z) observed in the absence of a dielectric mismatch

(green curve) or for a low-permittivity substrate (yellow curve). In the latter case, the

dipoles are noticeably depleted from the interfacial region due to the repulsive polarization.

The local orientational order as a function of distance to the interface is characterized

via Qzz(z) = 〈 1
2N(z)

∑
z(3µ̂

2
i,z − 1)〉, where the sum runs over all dipoles within layers of

thickness ∆z = 0.05σ (Fig. 5.4b,e). Just as for the density, the degree of uniaxial alignment

is strongest for a conducting substrate. There, in the isotropic phase (Fig. 5.4b), Qzz(z)

displays positive peaks, indicating that the dipoles are oriented more perpendicular than

parallel to the interface (blue curve), in particular for layers close to the interface. For

substrates with permittivity equal to (green curve) or less than (yellow curve) that of the

fluid medium, Qzz(z) is negative throughout the entire region. Even in the ferroelectric

phase (Fig. 5.4e), where Qzz(z) is strongly negative in the equal- and low-permittivity cases

due to the long-range polarization parallel to the interface, the orientational order near

the conducting substrate shows significantly smaller in-plane preference. Note that the

oscillatory behavior of the Qzz(z) curves near the interface originates from the (moderate)

stratification of the fluid within that region.

Lastly, the profile of polarization along the global director d̂ is calculated as P1(z) =

〈 1
N(z)
|
∑

z µ̂i · d̂|〉 and shown in Fig. 5.4c,f, for the isotropic and ferroelectric phases, re-

spectively. When the reduced number density ρ is raised from 0.4 to 0.7, P1(z) displays
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Figure 5.5. Typical one-particle (left) and two-particle (right) configurations near
an (a) ideally conducting, (b) equal-permittivity (εs = εm), and (c) zero-permittivity
slab. The dimensionless dipolar energy U∗dip = Udip/kBT consisting of both dipole–
dipole and dipole–image interactions is shown for each arrangement. The induced
image dipoles in panels (a) and (c) are indicated by dashed gray circles.

an increase for all distances to the interface, as anticipated based upon the growth with ρ

in Fig. 5.2a. Near a conducting substrate, P1(z) is smaller than for the other two types

of boundaries, as the dipoles have a lower tendency to orient parallel to the interface (cf.

Fig. 5.4b,e) and are therefore less polarized along d̂ which is parallel to the wall.
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5.4.3. Mechanistic understanding of dielectric effects on orientational structure

In Sec. 5.4.1 and 5.4.2, we found a weak dependence of global polarization on interfacial

dielectric mismatch, but a qualitative variation of orientational order in the surface layer. To

understand the origin of the orientational preference induced by the substrate permittivity,

we start by comparing the dipolar energy Udip of typical one- and two-particle configurations

for different boundary conditions. This energy follows directly from eqns (5.4) and (5.5) if

the sum over periodic images is omitted, n = (0, 0, 0).

We first consider the parallel and perpendicular arrangements of a single dipole near a

perfectly conducting (εs = +∞), equal-permittivity (εs = εm), and zero-permittivity (εs = 0)

substrate, cf. left-hand side of Fig. 5.5a,b,c, respectively. Note that for εs = +∞ and

εs = 0 the magnitude of the dipole moment of the induced image dipoles equals that of the

real dipoles. Yet, the two cases have opposite orientational preference: for the conducting

substrate, Udip is minimized by the perpendicular state, whereas the parallel orientation is

favored by the zero-permittivity wall.

Addition of a second dipole near the interface, neighboring the first one, introduces

dipole–dipole and additional dipole–image interactions, which leads to a qualitative change.

For this two-particle configuration, both equal- and zero-permittivity surfaces prefer the

in-plane head-to-tail configuration. However, as a result of the competition between dipole–

dipole and dipole–image interactions, the ideally conducting plane equally favors out-of-

plane and in-plane arrangements. For a two-particle configuration near a nonideal high-

permittivity substrate, i.e., εm < εs < +∞, in-plane alignment will be weakly favored over

the perpendicular arrangement These observations explain why the contact layer near a

high-permittivity surface has a much weaker in-plane orientation that the other two cases.
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Figure 5.6. Scatter plot of the global order parameters P1 (solid symbols) and P2

(open symbols) versus the degree of uniaxial alignment of the contact layer, Qc
zz,

for (a) conducting (εs = 100εm), (b) equal-permittivity (εs = εm), and (c) low-
permittivity (εs = 0.01εm) substrates. Different data points are obtained at different
number densities ρ ranging from 0.05 to 0.9. The dipolar coupling is fixed at λ = 7.

In particular when the density is low, where the system exhibits an isotropic phase already

for all substrates, the dipole–dipole interaction is reduced and the interaction between a

dipole and its own image becomes dominant. This leads to the strong tendency toward

out-of-plane orientations near a conducting surface in the isotropic phase, reflected by the

positive peaks of Qzz(z) in Fig. 5.4b.

5.4.4. Correlation between global polarization and local orientational order

Given the different degrees to which global polarization and local orientational order depend

on dielectric mismatch, it is instructive to examine their correlation for different boundary

conditions. We quantify the degree of uniaxial alignment in the contact layer only via the

order parameter Qc
zz = 〈 1

2Nc

∑
zi<zc

(3µ̂2
i,z − 1)〉, summing over all dipoles contacting the in-

terface, i.e., those particles i with zi < zc, where zc is the location of the first minimum

after the first peak in ρ(z). We examine this property for systems with fixed coupling λ = 7,

varying the density from 0.05 to 0.9. The correlation between Qc
zz and the global order

parameters P1 and P2 (cf. Sec. 5.3.3) is illustrated in the scatter plots Fig. 5.6a–c, for the
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Figure 5.7. Structural properties of the system residing in the isotropic phase (λ = 3,
ρ = 0.7) for which we study dipolar dynamics. (a) Local number density ρ(z),
(b) uniaxial alignment Qzz(z), and (c) polarization order parameter P1(z) for con-
ducting (blue curve), equal-permittivity (green curve), and low-permittivity (yellow
curve) substrates.

three choices of interfacial dielectric mismatch. The three cases share a similar trend: ferro-

electric polarization occurs as Qc
zz decreases towards −0.5, corresponding to the increasing

in-plane orientational ordering of the contact layer. However, the onset of the ferroelectric

ordering occurs at different threshold values of Qc
zz. In particular, for the conducting inter-

face this phase transition takes place when Qc
zz ≈ 0 (Fig. 5.6a), indicating that the local

orientational structure near the surface is still isotropic and does not promote the global

isotropic–ferroelectric transition. Conversely, if the substrate has a permittivity equal or

lower than the medium spontaneous polarization happens when the dipolar orientation near

the interface already has a strong in-plane order, Qc
zz ≈ −0.35 (Fig. 5.6b,c).

5.4.5. Rotational dynamics

Since our MC simulations employ only local translational and rotational moves, their evolu-

tion can be interpreted as reflecting the dynamics of the system. In the absence of dielectric

effects, the rotational dynamics of a dipolar fluid in a slit-like geometry was shown to be



136

(a) (b) (c)

0 5000 10000
0

0.2
0.4
0.6
0.8
1.0

MC cycles
0 5000 10000

MC cycles

0
0.2
0.4
0.6
0.8
1.0

Cμ,c
xy

Cμ,c
z

Cμ,mid
xy

Cμ,mid
z

0 5000 10000
MC cycles

0
0.2
0.4
0.6
0.8
1.0

Cμ,c
xy

Cμ,c
z

Cμ,mid
xy

Cμ,mid
z

Cμ,c
xy

Cμ,c
z

Cμ,mid
xy

Cμ,mid
z

Figure 5.8. Normalized dipole–dipole autocorrelation functions Cxyµ,c(t) (solid line)
and Czµ,c(t) (dashed line) in the contact layer, Cxyµ,mid(t) (dotted line) and Czµ,mid(t)

(dash-dotted line) in the middle region for (a) conducting, (b) equal-permittivity,
and (c) low-permittivity walls at λ = 3 and ρ = 0.7. Note that since Cxyµ,mid(t) ≈
Czµ,mid(t) in the middle layers, the two curves (dotted and dash-dotted) overlap with
each other.

anisotropic246. Here, we examine the role of interfacial dielectric effects on dipolar dynam-

ics, focusing on the globally isotropic phase, selecting the parameters (λ = 3, ρ = 0.7) as a

representative example. For reference, the structural properties ρ(z), Qzz(z), and P1(z) at

these conditions are shown in Fig. 5.7a–c.

We characterize the single-particle rotational dynamics via the dipole–dipole autocorre-

lation functions246,

Cα
µ (t) =

〈
1

N

N∑
i=1

µi,α(t0)µi,α(t0 + t)

〉
t0

, (5.18)

where µi,α is the α-component (α = x, y, z) of dipole moment µi. The corresponding relax-

ation time of Cα
µ (t) is defined as

ταµ =
1

Cα
µ (0)

∫ ∞
0

Cα
µ (t)dt , (5.19)

which is in unit of MC cycle. To identify the effects of the dielectric mismatch on the

single-particle dynamics, we calculate the in-plane and out-of-plane functions, Cxy
µ (t) =

(Cx
µ(t) + Cy

µ(t))/2 and Cz
µ(t), as well as their relaxation times for the contact layer and
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the central bulk-like region separately at different boundary conditions (Fig. 5.8). Here the

contact layer consists of dipoles located at z < zc (as in Sec. 5.4.4), while the central region

extends over 3σ < z < 7σ. For the central region, regardless of boundary conditions, two

correlation functions Cxy
µ,mid and Cz

µ,mid are indistinguishable. On the other hand, in the

contact layer the dynamics are anisotropic for equal- and low-permittivity substrates, with

the out-of-plane correlation decaying much more rapidly than the in-plane correlation. This

is clearly manifested by their distinct relaxation times: τxyµ,c = 884 as opposed τ zµ,c = 273 for

the equal-permittivity case and τxyµ,c = 1138 as opposed τ zµ,c = 256 for the low-permittivity

case. This anisotropy of rotational dynamics is attributed to the predominantly parallel

orientations near the surface (Fig. 5.7b). For the same reason, dipoles near the conducting

surface whose in-plane character is very much weakened by the dipole–image interaction

possess almost isotropic dynamics and behave similarly with the middle-region dipoles.

5.5. Conclusion

We have performed extensive simulations of dipolar hard-sphere fluids confined by a di-

electric interface. These simulations are made possible by a formulation of the 3D dipolar

Ewald summation supplemented by a so-called slab correction and extended to incorporate

image dipoles. We have used this method to systematically study the effects of interfacial

dielectric mismatch on the orientational structure and dynamics of the dipolar fluid. Unlike

previous studies187,256 where a soft repulsive fluid–wall potential was applied that suppressed

polarization effects, we employed a hard fluid–wall potential and modeled the fluid as dipo-

lar hard spheres. This does not only highlight the role of polarization effects, but also is

more appropriate for dipolar colloidal particles, where the structural or hydration forces are

extremely short-ranged compared with the particle size.
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We find that the presence of a conducting surface shifts the global isotropic–ferroelectric

transition only slightly toward a higher density and coupling strength, but that dielectric

effects in general have a significant influence on the orientational structure of the contact

layer. Specifically, low-permittivity interfaces enhance the in-plane orientation of the dipolar

particles, whereas a conducting or high-permittivity surface suppresses the in-plane character

and can even promote out-of-plane dipolar orientation when the particle density is low.

The induced orientational structure in turn affects the dynamical properties of the system,

especially close to the interface. In the absence of surface polarization or for low-permittivity

interfaces, the contact layer exhibits highly anisotropic single-particle dynamics, where the

out-of-plane dipole moment decorrelates much more rapidly than the in-plane components.

For conducting substrates, this anisotropy disappears, as the in-plane character of the in-

duced dipole moment is significantly weakened near such interfaces.

Our findings not only clarify the effects of substrate permittivity on confined dipolar

fluids, instrumental for the fundamental understanding of a variety of experimental systems,

but also have implications for the design of tunable dipolar material by exploiting dielectric

effects.
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CHAPTER 6

Dielectric Modulation of Two-dimensional Dipolar Materials

The content of this chapter is based on the following publication:

• Z. Wang and E. Luijten, “Dielectric modulation of two-dimensional dipolar materi-

als,” Phys. Rev. Lett. 123, 096101 (2019)

6.1. Abstract

Spontaneous pattern formation plays an important role in a wide variety of natural phe-

nomena and materials systems. A key ingredient for the occurrence of modulated phases is

the presence of competing interactions, generally of different physical origins. We demon-

strate that in dipolar films, a prototypical system for pattern formation, patterns can be

induced by dielectric effects alone. A rich phase diagram arises, where striped and circu-

lar morphologies emerge with geometric properties that can be controlled through variation

of particle shape and substrate permittivity or permeability. These effects are particularly

enhanced by metamaterial substrates.

6.2. Introduction

Spontaneous pattern formation and modulation of phases in two dimensions occur in a

diverse set of physical, chemical, and biological systems257,258. The domains can exhibit a

variety of patterns—notably stripes, islands, and circular droplets—that are often character-

ized by spatial periodicity. Examples include the orientational patterns in ferromagnetic thin

films236,259,260, the domain structure of dipolar Langmuir monolayers261,262, and microphase
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separation in block copolymer melts263,264. These phenomena have significant potential for

technological applications, such as nanofabrication265,266 and nanomagnetism267.

One of the central common, and in fact necessary, factors underlying pattern forma-

tion in thermodynamic equilibrium is the presence of competing interactions257,258. Dipolar

interactions, so ubiquitous in nature, have emerged as the most basic and widely stud-

ied starting point. Yet, a second potential is required for modulated patterns to appear,

such as the short-range exchange interaction260,268,269, interfacial energy261,262, geometric

constraints7,270,271, or an external field272,273. No modulated phases have been reported in

systems with solely dipolar interactions.

Two-dimensional (2D) dipolar systems exhibit a rich phase diagram244,274–277, with an

isotropic–polymeric phase transition at low surface densities275,277 and more complicated

structures as well as orientational ordering at high densities244,274. Although these systems

have received widespread attention, a parameter that has been mostly ignored (with dipo-

lar particles confined between metallic plates as a notable exception187,256) is the dielectric

mismatch between the substrate and the medium containing the dipolar particles. This omis-

sion is noteworthy, given the demonstrated effect of substrate permittivity on properties of a

wide range of electromagnetic systems, from plasmonics36 to ion mobilities in electrolytes37.

Moreover, with the emergence of electromagnetic metamaterials278,279, in which the elec-

tric permittivity and/or magnetic permeability are negative, the magnitude of polarization

effects can be greatly enhanced280,281.

Here, we demonstrate that variation of dielectric mismatch can qualitatively alter the ori-

entational phases of (quasi-)2D dipolar systems. Remarkably, even modulated phases can be

induced in purely dipolar systems, without the need for external fields or other interactions.

We elucidate the origin of the different phases and map the corresponding phase diagram.
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In addition, we illustrate how even within an individual phase the characteristic length scale

can be accurately controlled. Throughout this work, we employ electric dipoles, yet all our

findings are directly applicable to magnetic dipolar systems as well282. There, tuning of the

interfacial dielectric contrast must be replaced by variation of the permeability of the sub-

strate. Experimental realizations of the model studied here include charged Janus colloids283

and ferromagnetic particles. Various aspects of this work pertain to metamaterial substrates

with negative static permittivity or permeability. Whereas the former can be realized in a

wide range of materials (e.g., metals284,285, quasi-2D crystals286, and nanoparticle287,288 and

polymeric systems289), the latter can be realized by including active components in artificial

metamaterials290.

6.3. Model and Simulation Methods

We examine monolayers of N = Nx × Ny spheres of diameter d that each carry a point

dipole µ. To minimize the influence of the underlying lattice269, the particles are placed

on a hexagonal lattice with lattice constant a and dimensions Lx = Nxa, Ly =
√

3Nya/2,

periodically replicated in the x and y directions. All particles have fixed z-coordinate d/2 and

are embedded in a medium with uniform permittivity εm. The substrate has permittivity εs,

so that there is a dielectric mismatch at z = 0. We study this system via Monte Carlo

simulations in the canonical ensemble where only 3D rotations of the dipoles are permitted.

Owing to the piecewise uniform permittivity, the electric dipoles induce surface polarization

charge at the substrate interface. Mathematically, the influence of this polarization is most

conveniently phrased in terms of “image” dipoles, centered at z = −d/2 and with dipole

moment µ′ (Fig. 6.1).
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Figure 6.1. Schematic depiction of a system of 2D hexagonally packed dipolar
spheres immersed in a uniform dielectric medium with permittivity εm above of
a dielectric substrate with permittivity εs. To account for the polarization charges
induced at the interface, we employ “image” dipoles (dashed circles). (a) For high-
permittivity substrates (as well as for metamaterials with sufficiently negative per-
mittivity), the in-plane component of these induced dipoles is anti-parallel to their
counterpart above the surface, whereas the perpendicular component is parallel. (b)
For substrate materials with small absolute permittivity, the situation is reversed. In
both cases, nonintuitive collective behavior can emerge, since the images are induced
by individual dipoles, but interact with all other dipoles above the substrates.

The Hamiltonian of the system is characterized by two energy scales, the interaction

between neighboring dipoles λdd = µ2/(εma
3kBT ) and the dipole–image coupling λdi =

γµ2/(εmd
3kBT ) = γλdd/α

3, where γ = (εm − εs)/(εm + εs) is the dielectric mismatch, α =

d/a is reduced by the lattice constant a, µ = |µ|, kB is Boltzmann’s constant, and T the

temperature. We choose a as the unit length and use a tilde to denote reduced lengths. The

Hamiltonian reads

H
kBT

=
1

2

N∑
i=1

∞∑
n

{
λdd

N∑
j=1

′ µ̂i · µ̂j − 3(µ̂i · r̂rep
ij )(µ̂j · r̂rep

ij )

|r̃rep
ij |3

+λdi

N∑
j=1

µ̂i · µ̂′j − 3(µ̂i · r̂′rep
ij )(µ̂′j · r̂

′rep
ij )∣∣1 + |r̃rep

ij /α|2
∣∣3/2

}
,

where µ̂i = µi/µ and µ̂′i = (µi,x, µi,y,−µi,z)/µ. The periodicity of the lattice is accounted

for via summation over n = (nx, ny, 0) (nx, ny ∈ Z), where the prime indicates that i 6= j for
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n = 0. The vector r̃rep
ij = (r̃j,x − r̃i,x + nxL̃x, r̃j,y − r̃i,y + nyL̃y, 0) points from dipole i to (a

replica of) dipole j, with corresponding unit vector r̂rep
ij , and r̃′rep

ij = (r̃j,x− r̃i,x + nxL̃x, r̃j,y −

r̃i,y + nyL̃y,−α) points from dipole i to (a replica of) image dipole j, with corresponding

unit vector r̂′rep
ij . Whereas λdd and λdi control the total contributions of the dipole–dipole

(D–D) and dipole–image (D–I) interactions to the system energy, respectively, the geometric

factor α determines the ratio between the second-order (and higher) contributions to the

D–I interaction (i.e., between dipoles and images of other dipoles) and the first-order D–I

interaction (between dipoles and their own images), which only depends on λdi (which we

regard as independent of α as it can be controlled via γ). The observation that α can serve as

an independent control parameter has profound consequences for the tunability of patterns

that arise for different choices of the coupling strength and dielectric mismatch, as we will

explore below.

In practice, we compute the energy via 3D dipolar Ewald summation (relative precision

10−5) modified to include image charges and supplemented with a slab correction188. For

each parameter choice, we employ 5× 105 Monte Carlo cycles of N rotational moves.

To quantify the global orientational order, we introduce the parameters P1 and P2
251.

For an instantaneous configuration, P2 is the largest eigenvalue of the ordering matrix

Q = 1
2N

∑N
i=1(3µ̂iµ̂i − I), where I is the identity matrix. The corresponding normalized

eigenvector is the global director d̂ from which the instantaneous value of P1 follows as

P1 = 1
N
|
∑N

i=1 µ̂i · d̂|. Whereas P2 merely characterizes global alignment (nematic order)

of the dipolar particles, P1 is a measure of the global polarization. The degree of uniaxial

alignment (along the z axis) is quantified by Qzz = 〈 1
2N

∑N
i=1(3µ̂2

i,z−1)〉, where Qzz vanishes

in orientationally isotropic states, whereas Qzz = −0.5 and Qzz = 1 reflect configurations of

perfectly in-plane or out-of-plane dipoles, respectively.
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6.4. Results and Discussion

To establish a baseline, we examine a system of dense-packed spheres (α = 1) in the

absence of dielectric contrast at the interface (γ = 0). In this case, the energy is mini-

mized by head-to-tail chains, yielding an in-plane ferroelectric (IF) state at strong couplings

(Fig. 6.2a)274,275. Note that this is indeed a global, long-range ferroelectric order, unlike the

vortex-like structure observed for quasi-2D dipolar spheres with positions that are not con-

strained to a lattice structure275. This tendency of dipolar interactions to favor arrangements

with in-plane orientation is enhanced in the presence of low-permittivity substrates (γ > 0),

since the interaction energy of dipoles with the induced surface charge is also minimized for

such configurations. More interesting is the situation of substrates with a higher permittivity

than the medium (γ < 0), where this energy is minimized for perpendicular dipoles. The

resulting competition between the dipole–dipole interactions favoring in-plane ferroelectric

ordering and the dipole–polarization interaction favoring out-of-plane configurations raises

the possibility of a dielectrically induced structural transition.

The magnitude of polarization effects, especially the first-order D–I interaction, is con-

trolled by λdi. This corresponds to the surface anisotropy in magnetic films270, which pro-

motes the out-of-plane orientation of dipoles. λdi can be varied by either the dielectric

mismatch at the interface γ or the geometric ratio α. Decreasing the latter from α = 1 to

α = 2
3

while keeping λdd = 5 leads to λdi = −16.875 for a perfectly conducting substrate

(γ = −1). As shown in Fig. 6.2b, this indeed transforms the IF state into a state with out-of-

plane orientation. Owing to the strong interaction of the dipoles with their own images, they

are predominantly aligned with the z-axis, so that P2 and Qzz are close to 1. Simultaneously,

the nearest-neighbor dipolar interaction is minimized by an antiparallel arrangement, i.e.,
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Figure 6.2. Typical structures formed by N = 100×114 dipolar spheres placed on a
2D hexagonal lattice at dipolar coupling λdd = 5. (a) Representative partial (30×30)
configuration in the absence of dielectric contrast (εs = εm, so γ = 0 and λdi = 0)
and at packing α = 1, showing an IF phase with P1 = 0.88, P2 = 0.68, Qzz = −0.43.
(b) Same subsample on a perfectly conducting substrate (εs = +∞, γ = −1) with
geometric ratio α = 2

3 , so that the dipole–image coupling is raised to λdi = −16.875.
This results in an OAF phase with P1 = 0.01, P2 = 0.79, Qzz = 0.78. (c) Snapshot
of the full dense-packed (α = 1) system on a metamaterial substrate with γ = −1.6,
exhibiting a bubble phase with P1 = 0.01, P2 = 0.23, Qzz = −0.12. (d) As the
dielectric contrast is increased further to γ = −3, the bubble phase transforms to a
stripe-like phase with P1 = 0.01, P2 = 0.34, Qzz = 0.12. Between the bubble and
stripe phases, the bubbles gradually merge into stripes, see snapshot between panels
(c) and (d), for γ = −2. Colors characterize the different phases: IF phase – green;
OAF phase – red; bubble phase – yellow; stripe phase – blue.

an out-of-plane anti-ferroelectric (OAF) state with P1 ≈ 0. This structure is confirmed by

the orientational pair correlation function (not shown). Experimentally, α can be reduced

by increasing the lattice constant either through variation of the particle shape or by em-

ploying a patterned substrate to control the lattice structure291. Alternatively, polarization
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effects can be enhanced (at fixed λdd) by increasing the magnitude of dielectric mismatch γ.

Although |γ| is bounded by 1 for conventional materials (i.e., the magnitude of an image

dipole cannot exceed the real dipole), this constraint is lifted for a negative-permittivity

material (or negative-permeability material for magnetic dipoles)280,281. Specifically, γ < −1

when εs < −εm. Remarkably, this additional control parameter gives rise to new modu-

lated phases. At fixed α = 1 and λdd = 5, increasing the dielectric contrast to γ = −1.6

(λdi = −8) yields the “bubble” phase (Fig. 6.2c), followed by the “stripe” phase (Fig. 6.2d)

at γ = −3 (λdi = −15). The bubble and stripe phases both consist of alternating ‘up’ and

‘down’ domains with a continuous variation of the dipolar orientation, and only differ in

the shape of the domains. Neither of these phases has a global polarization (P1 → 0 in the

thermodynamic limit), but due to their geometric difference they have either slight global

in-plane (bubble, Qzz < 0) or out-of-plane (stripe, Qzz > 0) characteristics.

We construct the phase diagram of this system as λdd–λdi sections for different fixed α

(Fig. 6.3; see the Appendix 6.6 and Fig. 6.5 for an alternative representation of the phase

diagram). In addition to the four ordered phases identified above (IF, OAF, bubble, stripe)

we find a disordered phase at low λdd, |λdi|. When dipolar couplings dominate, we observe the

IF phase, which transitions to either the OAF phase or the stripe phase upon increase of |λdi|,

when polarization interactions become dominant. For larger geometric ratio α (Fig. 6.3a)

the IF phase transitions to the stripe phase via a narrow region exhibiting the bubble phase.

This intermediate phase can be interpreted by noting that as |λdi| increases, the stripe phase

forms via merging of circular domains (Fig. 6.2, between panels c and d), thereby reducing

the area of the boundaries between oppositely oriented bubbles and thus the fraction of

in-plane dipoles. As α is increased further, the stripe region grows at the expense of the IF

and bubble regions (Fig. 6.3b). Conversely, for small α (Fig. 6.3c,d) the IF and disordered
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Figure 6.3. Phase diagrams parametrized by λdd and λdi, at different values of the
geometric factor α: (a) α = 1; (b) α = 3; (c) α = 2

3 ; (d) α = 1
3 . Colors characterize

the different phases: IF phase – green; OAF phase – red; bubble phase – yellow;
stripe phase – blue; disordered phase – pink. Phase boundaries are drawn based on
discrete simulation data points with positions indicated by black dots in (a).

phases occupy larger regions of the phase diagram, and the OAF phase replaces the stripe

phase. Interestingly, when the competing parameters λdd and |λdi| become large enough to

overwhelm entropic effects, at fixed α only their ratio determines the phase of the system

(cf. diagonal phase boundaries in Fig. 6.3a,c,d).

What is then the role of the geometric factor α in the phase diagram of Fig. 6.3? We

focus on conditions with strong polarization effects (large |λdi|), where the dipoles are pre-

dominantly oriented out-of-plane. In addition to the first-order D–D and D–I interactions

characterized by λdd and λdi, respectively, dipoles interact with the surface polarization in-

duced by other dipoles. The second-order D–I interaction (between a dipole and its nearest-

neighbor images) is controlled by λ
(2)
di = λdi[α

2/(1 + α2)]3/2 and grows in magnitude with
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Figure 6.4. (a) Role of geometric factor α in the effect of polarization charge on the
(anti-)parallel alignment of neighboring dipolar particles. The schematic shows the
electric field generated by a central dipole above a substrate (blue shaded region).
The interaction with the “image” of a neighboring dipole (also shown) is character-

ized by the parameter λ
(2)
di . At small geometric factor α (right) the field will promote

anti-parallel alignment of the neighboring image dipole and hence also of the real
dipole, in accordance with the direct dipole–dipole interaction. However, for large α
(left), the polarization will promote parallel alignment of two neighboring dipoles,
opposing the direct dipolar interaction. (b) Control of stripe width via the geomet-
ric factor. Reduced stripe width w̃ is shown as a function of α for fixed λdd = 5
and λdi = −16 (upper left panel). The width exhibits an exponential dependence
on the exchange parameter D0 (upper right panel), confirming theoretical predic-
tions. Representative equilibrium configurations of a 100 × 114 system are shown
for α = 0.8, 1.5, and 3 (lower panel).

increasing α, at fixed λdi. For large α, its contribution to the total energy becomes com-

parable to the first-order (direct) D–I interaction. Interestingly, precisely in this situation

of large α, the secondary images promote the parallel alignment of neighboring dipoles (cf.

dipolar field in Fig. 6.4a, left-hand side), opposing (and overwhelming) the influence of the

direct D–D interaction between nearest neighbors. Thus, the second-order D–I interaction

acts as an ‘exchange parameter’ with magnitude |D0| = |2α2−1
α2+1

λ
(2)
di | that promotes short-

range ferroelectric order (see Appendix 6.7 for derivation). However, at larger distances

the dipolar coupling dominates and favors anti-ferroelectric order, resulting in modulated



149

(i.e., stripe and bubble) phases. By contrast, at small α the ‘exchange parameter’ D0 is not

only smaller in magnitude, but owing to the geometry of the dipolar field it also favors the

same anti-parallel alignment as imposed by the D–D interactions (Fig. 6.4a, right-hand side,

see Appendix 6.7 for details). This explains why different values of α result in modulated

(stripe) or nonmodulated (OAF) equilibrium phases at large |λdi|.

The stripe phase, in particular, has been the subject of considerable attention264,268,269,292,

notably its formation mechanism in different systems and the degree to which it can be

controlled. Remarkably, the dielectric modulation mechanism identified here allows fine

control over the stripe width w̃ via the geometric factor α. The reduced stripe width is

defined as w̃ = 〈N/Np〉, where Np =
∑
〈jk〉H(−µj,zµk,z) is the number of dipole pairs at

stripe interfaces selected by the Heaviside function H(x) = [1 + sgn(x)]/2. For fixed dipolar

coupling λdd and dielectric coupling λdi, the width of stripes can be manipulated accurately

through variation of the geometric factor, as illustrated in Fig. 6.4b via w̃ as a function of

α and D0, as well as accompanying representative snapshots. The stripe width accurately

reflects an exponential dependence on D0 for sufficiently large w̃ (Fig. 6.4b), in accordance

with predictions based upon the asymptotic expression for the ground-state energy of a

2D Ising dipole system268. Moreover, the domain-wall thickness t, which is determined by

the balance between the exchange interaction D0 and the surface anisotropy λdi, increases

with α. This is consistent with the theoretical prediction293 that t scales as the square root

of the ratio between the exchange enery and surface anisotropy.

6.5. Conclusion

In conclusion, we have demonstrated that dielectric effects can induce modulated phases

in quasi-2D dipolar systems, without the presence of an additional competing interaction.
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Notably, the so-called striped and bubble patterns can be realized in dipolar films on a

substrate with negative static permittivity and/or permeability. Accurate control of the

properties of these modulated phases is possible via a geometric factor, related to particle

shape and separation, which can be interpreted in terms of an effective ‘exchange parameter’

promoting local ferroelectricity. Besides elucidating the pattern-modulation mechanism, our

findings may also provide guidance to future applications of such metamaterials.

6.6. Appendix A: Reformulation of the Hamiltonian and phase diagram

We discuss an alternate representation of the Hamiltonian as well as the phase diagram

constructed under this representation. The Hamiltonian presented in the main text can be

written as

H
kBT

=
1

2

N∑
i=1

∞∑
n

{
λdd

N∑
j=1

′ µ̂i · µ̂j − 3(µ̂i · r̂rep
ij )(µ̂j · r̂rep

ij )

|r̃rep
ij |3

+γλdd

N∑
j=1

µ̂i · µ̂′j − 3(µ̂i · r̂′rep
ij )(µ̂′j · r̂

′rep
ij )∣∣α2 + |r̃rep

ij |2
∣∣3/2

}
,

in which all variables have been introduced in the main text. In this formulation, we choose

the dielectric mismatch γ as an independent variable rather than λdi. There are two mo-

tivations for adopting this representation. First, γ is more directly related to materials

properties, thus facilitating the connection to experiments. Second, in the long-range limit

(|r̃rep
ij | � α) the total dipole–image energy scales as γλdd compared to the dipole–dipole

energy, which scales as λdd. Therefore, γ measures the anisotropy of the effective long-range

interaction. However, we remark that γ only determines the magnitude of the dipole–image

energy relative to the total long-range energy. Whether this contribution will reinforce or
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Figure 6.5. Phase diagram parametrized by α and γ at λdd = 5. Phase boundaries
are drawn based on discrete simulation data points with positions indicated by the
black dots.

counteract the dipole–dipole energy is different for dipoles with in-plane and out-of-plane

orientation.

In addition to λdd, which serves as a global energy scale (or inverse temperature), and

γ, we choose α as the third independent parameter. α determines the magnitude of the

surface anisotropy (i.e., the first-order dipole–image interaction), characterized by γλdd/α
3.

Figure 6.5 shows a λdd = 5 section of the phase diagram in the α–γ plane .

6.7. Appendix B: Energy analysis of the modulated phases

We (i) derive the effective pairwise potential between two dipoles placed on a dielectric

substrate and (ii) demonstrate how this potential affects the resultant modulated phases.

As a representative example, we focus on the stripe phase (λdi < 0, γ < 0) and assume

that the dipole moments of the particles are oriented perpendicular to the substrate owing

to the attraction by their own images (cf. Fig. 4a, main text). Thus, the dipole moment µi

of particle i is given by µi = µσi, where σi = (0, 0, σi,z) = (0, 0,±1). The induced image

dipole is µ′i = −γµσi (with γ as defined in the main text).
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The electric field at the position rj of dipole j, generated by dipole i located at ri and

its image located at r′i = ri− (0, 0, d) (we recall that all dipoles are located at a distance d/2

above the surface) is

E(σi, rij) = Edd(σi, rij) + Edi(σi, rij) , (6.1)

where rij = |rij| = |rj − ri|. Here the contributions Edd of the real dipole and Edi of the

image dipole are expressed as

Edd(σi, rij) = − µσi
εmr3

ij

, (6.2)

Edi(σi, rij) =
γµ

εm

(
σi

(r2
ij + d2)3/2

−
3dσi,zr

′
ij

(r2
ij + d2)5/2

)
, (6.3)

where r′ij = rj − r′i = rij + (0, 0, d). Thus, the total pairwise electrostatic energy between

dipole i and j is

U tot
p (σi,σj, rij) = −µj · E(σi, rij) = Udd

p + Udi
p , (6.4)

where the dipole–dipole and dipole–image (i.e., interaction of a dipole with the polarization

induced by the other dipole) contributions, Udd
p and Udi

p , are given by

Udd
p (σi,σj, r̃ij)

kBT
= λdd

σi,zσj,z
r̃3
ij

, (6.5)

Udi
p (σi,σj, r̃ij)

kBT
= λdi

(
2α2 − r̃2

ij

α2 + r̃2
ij

)
σi,zσj,z

(1 + r̃2
ij/α

2)3/2
. (6.6)

As in the main text, we choose the lattice constant a as the unit length and use a tilde to

denote reduced lengths.

From the energy expressions Eqs. (6.5) and (6.6) it is evident that the magnitudes of both

Udd
p and Udi

p decay asymptotically with the center-to-center distance r̃ as 1/r̃3. However,
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Figure 6.6. Illustration of the effective pairwise interaction between two dipoles
placed on a dielectric substrate and oriented parallel to the z-axis. As in Fig. 4
in the main text, we set λdd = 5 and λdi = −16, corresponding to the stripe
phase. (a) Dipole–image component of the pairwise interaction, Udi

p , as a function
of the center-to-center distance r̃ at different values of the geometric factor α. The
depth D0 of the energy well and the critical separation r̃c at which Udi

p switches
sign are marked by arrows. (b) Dependence of the two characteristic parameters D0

(left-hand axis) and r̃c (right-hand axis) as functions of α. Both quantities grow in
magnitude with increasing α.

what truly matters is how these interactions depend, at different length scales, on the relative

dipolar orientations {σi,z, σj,z}. The direct interaction Udd
p decays monotonically, favoring

anti-parallel orientational arrangements (with σi,zσj,z = −1) at all length scales. However,

at sufficiently short r̃ this is overwhelmed by the deep energy well of the dipole–image

interaction Udi
p with σi,zσj,z = 1 (Fig. 6.6a), favoring parallel arrangements. At r̃c =

√
2α,

the dipole–image contribution changes sign, so that a nonmonotonic trend results, where

ferroelectric order is preferred at short distances and anti-parallel arrangements become

favorable at larger r̃. Thus, as illustrated in the main text, the dipole–image component of

the pairwise interaction acts as an effective ‘exchange interaction’ to promote short-range

ferroelectricity. Here the depth of the energy well D0 = λ
(2)
di

2α2−1
α2+1

(in reduced units) and the

critical distance r̃c at which Udi
p switches sign characterize the strength and range of this

exchange interaction, both of which grow in magnitude with α (Fig. 6.6b).
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Interestingly, even though the interaction range extends beyond the nearest neighbors

(especially at large α), we observe that the exponential dependence of the stripe width on

the exchange parameter, as found for the 2D dipolar Ising system268 (with nearest-neighbor

exchange interaction only), accurately describes our system as well (see Fig. 6.4b).

Finally, it is noteworthy that while the observed orientational phases can be realized in

magnetic films by exploiting the quantum exchange interaction, they cannot be sustained in

systems with larger length scales (e.g., in colloidal systems). By contrast, in the approach

proposed here the many-body dielectric force acts effectively as an exchange interaction in

which both strength and range can be tuned independently by varying λdi and α. This

provides new ways to realize and control orientationally modulated patterns beyond the

atomic scale, with potential applications in optical devices and the possibility to serve as a

starting point for other studies on controlling orientational structure in materials.
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CHAPTER 7

Comparison of the Efficient Hybrid Method and the Boundary

Element Method

This chapter presents a close comparison between the hybrid method and the boundary-

element method in terms of the accuracy and efficiency. The content of this chapter is based

on the following publication:

• Z. Gan1, Z. Wang1, S. Jiang, Z. Xu and E. Luijten, ”Efficient dynamic simulations

of charged dielectric colloids through a novel hybrid method,” J. Chem. Phys. 151,

024112 (2019)

7.1. Abstract

Modern particle-based simulations increasingly incorporate polarization charges arising

from spatially nonuniform permittivity. For complex dielectric geometries, calculation of

these induced many-body effects typically requires numerical solvers based upon boundary-

element methods, which very significantly increase the required computational effort. For

the special case of dielectric spheres, such as colloids or nanoparticles, a semi-analytical

spectrally accurate hybrid method has been proposed recently that combines the Method of

Moments, the Image-Charge Method, and the Fast Multipole Method. The hybrid method

is efficient and accurate even when dielectric spheres are closely packed. Here, we apply

this hybrid method to both static configurations and molecular dynamics simulations. The

1These authors contributed equally to the work
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choice of the relevant numerical parameters for molecular dynamics simulations is discussed

in detail, as well as comparisons to the boundary-element method. As a concrete example, we

examine the challenging case of binary crystal structures composed of close-packed dielectric

colloidal spheres.

7.2. Introduction

Electrostatic interactions are ubiquitous in nature and arise in many areas of science and

engineering22,28,114. Whereas the long-range nature of these interactions makes their com-

putational treatment already costly, the problem is compounded in systems with spatially

nonuniform permittivity. Materials that differ in dielectric constant respond differently to

electric fields, a property that—for systems with piecewise uniform permittivity—can be

described in terms of an induced surface charge density distributed on the dielectric inter-

faces. This polarization charge contributes to the electric field, and hence must be solved

self-consistently143,145. Due to the computational effort involved this contribution is often

ignored, but various studies have demonstrated that this approximation can have profound

consequences, as polarization can influence protein folding35, ion transport through pores170

and nanochannels37, and nanoparticle aggregation and self-assembly12,164. As these many-

body effects are often analytically intractable, computational methods constitute an impor-

tant tool toward greater physical understanding of the underlying phenomena.

The practical computational challenge associated with investigating polarization effects

arises from the difficulty in efficiently obtaining an accurate estimate for the polarization

charge. Note that even if the polarization contribution can be accurately resolved, the

calculation usually becomes very demanding in the context of molecular dynamics (MD)

or Monte Carlo (MC) simulations. The internal energy or forces need to be evaluated at
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each time step, and typically millions of time steps are required to obtain sufficient data for

accurate ensemble averages, even after reaching thermodynamic equilibrium.

To overcome this computational challenge, various numerical methods have been pro-

posed46–50,129,130,163,249,294–301. Electrostatic solvers using finite-difference and finite-element

methods114,296 are less efficient for practical MD/MC simulations since (i) they require dis-

cretizing the entire three-dimensional (3D) space and (ii) special treatment is needed to

accurately model sharp dielectric interfaces and point charges. In the latter case, bound-

ary element methods (BEMs)46–50,129,163,294,300,301 offer an alternative. The BEM reduces the

3D electrostatic Poisson equation to a boundary integral equation, thus only requiring the

discretization of two-dimensional dielectric interfaces. The first MD simulation for mobile

dielectric objects was carried out using this approach, studying a system of 100 dielectric

spheres164. Yet, the BEM remains highly time consuming, in particular for dielectric in-

terfaces that are closely spaced. This situation typically arises in self-assembly processes of

densely packed structures, where a large amount of boundary elements is required to resolve

the numerical singularity due to nearly touching interfaces.

Instead of considering dielectric interfaces with arbitrary shape, the numerical difficulties

can be reduced if we start with models that are comprised of simple geometric shapes yet still

capture the essential physics. Naturally, the simplest case is based on the primitive model,

i.e., an ensemble of dielectric spheres with central charges, immersed in a solvent modeled im-

plicitly as a dielectric continuum. For such systems of charged dielectric spheres, alternative

approaches can be employed to solve the electrostatic potential, e.g., the Method of Mo-

ments (MoM)41–45, the Image Charge Method (ICM)38–40, and the perturbative many-body

expansion method51,52. These methods are developed by taking advantage of the spherical

geometry and based on analytical forms, thus avoiding the need to discretize the dielectric
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boundaries into elements. The MoM scales as O(N) if accelerated using the Fast Multipole

Method (FMM)123,302,303, where N is the total number of spheres. However, it suffers from

slow convergence if spheres are close. The ICM is both accurate and efficient if there are

only one or two spheres, but as the number of spheres grows, the ICM computational cost

increases as a power law (typically O(N3), see Ref. 200) due to the repeated image reflec-

tion between spheres. Finally, the perturbative many-body expansion method is also an

analytical method tailored for charged dielectric sphere systems, again with computational

complexity that scales as O(Nm) if the expansion is truncated at the level of m-body inter-

actions. As the expansion converges more slowly if spheres get closer, this approach (just

like the ICM) becomes costly for systems of closely spaced objects. An alternative method

in this category is the hybrid method developed in Ref. 53 by Gan et al., an efficient and

spectrally accurate semi-analytical approach for solving the electrostatics in systems of mul-

tiple dielectric spheres. In this approach, the ICM was first extended to analytically account

for the effect of multipoles in the 3D dielectric case. Then the MoM, the ICM, and the FMM

were combined to obtain an accurate and well-conditioned numerical method that requires

a nearly optimal number of unknowns with optimal O(N) computational complexity. It is

worth noting that the hybrid method works well even for compact configurations of spheres,

since the most singular part of the problem is removed by the ICM.

In this chapter, we present numerical tests to determine the dependence of the accuracy

and efficiency of the hybrid method on various numerical parameters, and perform a com-

parison of the hybrid method with the BEM. By matter of illustration, we carry out efficient

MD simulations using the hybrid method for a representative binary mixture of dielectric

spheres. We conclude with a discussion of the possible extensions of the hybrid method to

other systems, periodic boundary conditions, and MC simulations.
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7.3. Results and Discussion

7.3.1. Overview of the hybrid method

The basic idea of this hybrid method is as follows (see Fig. 7.1). If the dielectric spheres

are well separated (with center-to-center distance larger than the cutoff η), the MoM is

coupled with the FMM and an iterative solver to take advantage of the spherical geometry

and achieve optimal complexity. If the spheres are close to each other (with center-to-center

distance smaller than η), images are generated only for nearly touching pairs of spheres

and the ICM is applied. The accuracy of the hybrid method is solely determined by the

truncation order p for the spherical harmonics and the cutoff distance η which controls the

number of image charges. The computational cost for both the MoM and the ICM parts

is linear to N , specifically scaling as O(Np3) and O(Nη3), respectively203. This method

has been incorporated in a MD simulation and demonstrates simultaneously linear scaling

behavior and high accuracy203. The key issues for the implementation and extension of the

hybrid method, including a detailed derivation of the expressions for the electrostatic energy,

surface charge density, and forces on individual dielectric spheres, have been detailed in Ref.

203. In the rest of Section 7.3, we provide a systematical comparison between the hybrid

method and the GMRES-accelerated BEM in terms of accuracy and efficiency at different

parameter settings.

7.3.2. Numerical tests: static configurations

To illustrate the accuracy and efficiency of the hybrid method, we apply it to representative

close-packed crystal structures formed by a binary mixture of size-asymmetric and oppositely

charged dielectric spheres. We examine two crystal structures, namely a NaCl and a wurtzite
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Figure 7.1. Schematic showing the system and workflow of the hybrid method.

structure, illustrated in Fig. 7.2. Such densely packed structures with closely spaced dielectric

interfaces are generally challenging for most numerical methods. Disordered configurations

occurring in dynamic simulations tend to have fewer of the particle arrangements that yield

the largest numerical errors, and are typically also less costly to evaluate as the number of

image charges needed is generally smaller. The large and small spheres have diameters dL

and ds, respectively, and a size ratio dL/ds = 8. To avoid divergences due to the overlap of

two dielectric interfaces, we place the dielectric surface of each large sphere at r = 3.5ds,

i.e., 0.5ds below the sphere surface. The large spheres each carry a charge +q and the small

spheres each a charge −q. The two species are present in a 1:1 number ratio, so that charge

neutrality is satisfied. We select interaction parameters similar to those chosen in Ref. 164,

where the dielectric constant of the solvent is rescaled to εs = 1.0 and the small spheres have

the same dielectric constant as the solvent. For the NaCl structure, we set the dielectric

constant of the large spheres to εL = 0.01, whereas for the wurtzite structure we choose the

inverse mismatch, with εL = 100. In both cases, the magnitude of the charge q is chosen
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such that the dimensionless coupling strength λ = q2/[0.5εs(dL + ds)kBT ] = 100, where kBT

is the thermal energy (with kB Boltzmann’s constant and T the absolute temperature).

Figure 7.2. Two crystal structures formed by binary size-asymmetric dielectric
spheres, used for testing the hybrid method. (left) NaCl crystal structure with
lattice constant

√
2dL formed by 20 large spheres and 20 small spheres; (right)

wurtzite crystal structure with lattice constants a = b = dL, c = 2
√

2dL/
√

3, formed
by 18 large spheres and 18 small spheres. The lattice constants are chosen such
that the large spheres are precisely touching. Since the dielectric interface is located
0.5ds below the sphere surface, the dielectric surfaces of two touching spheres are
separated by ds.

To obtain reference values for these two static configurations, we first calculate the energy

for both structures using the analytic MoM. The multipole expansion is truncated at a

sufficiently high order (with the truncation order p = 30) to guarantee that the energies are

correct to the first six digits, with values −1028.49kBT and −2267.41kBT for the NaCl and

wurtzite configurations, respectively. To quantify the performance of the hybrid method, we

compute both the total electrostatic energy of the configurations and the net electrostatic

force exerted on each sphere. We examine the convergence of the hybrid method as a function

of algorithm parameters by comparison to the corresponding reference values. To establish

the efficiency of the hybrid method, we also compute the results via the BEM of Ref. 50.

In the hybrid method, we set the FMM accuracy to 9 digits, the GMRES tolerance to

10−6, and use 3-point Gauss–Jacobi quadrature for discretizing the image line integrals. The

accuracy of the hybrid method is then solely determined by the truncation order p for the
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Table 7.1. Accuracy and efficiency of the hybrid method and the BEM for the elec-
trostatic energy calculation of the NaCl and wurtzite configurations in Fig. 7.2. All
CPU time results are obtained by averaging over 100 calculations of both the total
energy and the force on each large dielectric spheres (the initialization time is not
counted in both methods). For both methods, the corresponding numerical param-
eters are varied to show the convergence (as reference values we use the energies
computed via the analytic MoM at p = 30, −1028.49kBT for the NaCl configu-
ration and −2267.41kBT for the wurtzite configuration). p is the order at which
the multipole expansion is truncated in the hybrid method and η is the cutoff that
controls the total number of images Nim between close pairs. In the BEM, Np is the
number of the discretized patches on each large sphere. The results with Np → ∞
are obtained by extrapolation, cf. Fig 7.3. Timing data for the BEM data with
Np = 14522 are affected by memory constraints and therefore not reported.

Hybrid method Boundary element method
p η Nim energy (kBT ) time (s) Np energy (kBT ) time (s)

NaCl 3 3 480 −1009.20 0.014 372 −1098.86 1.116
crystal 3 4 1392 −1038.23 0.047 732 −1077.85 1.355

4 4 1392 −1023.76 0.056 1472 −1062.54 2.284
4 5 1614 −1023.73 0.069 3002 −1051.56 6.320
5 5 1614 −1028.38 0.084 6072 −1043.88 21.341
5 6 2688 −1028.43 0.140 14522 −1037.55 n/a

∞ −1025.80
Reference −1028.49 −1028.49

wurtzite 3 3 508 −2375.67 0.014 372 −2326.40 1.112
crystal 3 4 1194 −2382.37 0.037 732 −2310.07 1.335

4 4 1194 −2284.24 0.044 1472 −2297.53 2.215
4 5 1518 −2282.63 0.061 3002 −2288.63 5.812
5 5 1518 −2272.37 0.074 6072 −2282.39 19.772
5 6 2216 −2267.43 0.081 14522 −2277.17 n/a

∞ −2267.90
Reference −2267.41 −2267.41

spherical harmonics and the number of image charges (via the cutoff distance η). Table 7.1

lists the energies for both systems as a function of these two parameters.

As we systematically increase p and η, we observe a clear convergence of the energy for

both the NaCl and wurtzite structures (left-hand side of Table 7.1). Specifically, in both

cases the energy is accurate up to the fifth digit at p = 5 and η = 6, with a moderate
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number of image charges (∼130 image charges per sphere). As the computational cost of

the hybrid method is proportional to both p3 and η3, we gradually increase both parameters

simultaneously in Table 7.1 to keep both of them sufficiently small.

1/�Np

0 0.02 0.04 0.06

E el
e 
(k

BT
)

–1100

–1080

–1060

–1040

 
Eele = –1407.9/�Np –1025.80

NaCl
Fitting

1/�Np

0 0.02 0.04 0.06
–2330

–2320

–2310

–2300

–2290

–2280

–2270

 
Eele= –1132.6/�Np –2267.90

Wurtzite
Fitting

E el
e 
(k

BT
)

  

(a)

(b)

Figure 7.3. Extrapolation of the electrostatic energy Eele in the BEM as a function
of 1/

√
Np (Np the number of surface patches per sphere) for the (a) NaCl and

(b) wurtzite crystal structures. The extrapolated values are in close agreement with
the reference values obtained via the Method of Moments.

For the BEM, the accuracy is controlled by the accuracy of the particle–particle particle–

mesh (PPPM) electrostatic solver, the GMRES tolerance, and the number of surface patches.
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By testing different combinations of the PPPM and GMRES accuracies, we empirically

determined that (at fixed number of patches) the energy converges to at least the fourth

digit if both are set to 10−5. We employ these tolerances for all BEM data shown and

only vary the number of surface elements. It should be noted that the BEM calculations

are performed for a system with periodic boundary conditions, so that the system size

matters. We used a cube of linear size L = 60ds and confirmed (by comparison to L = 100ds

and L = 200ds) that this periodicity has an effect of less than 10−4 on the energy. We

systematically vary the number of patches on each large sphere Np from 372 to 14522 and

compute the total electrostatic energy of both configurations (right-hand side of Table 7.1).

The energy values show a quite strong dependence on Np, but a plot of the energy as a

function of 1/
√
Np (which is proportional to the boundary element size), Fig. 7.3, illustrates

convergence to −1025.80 for the NaCl structure and −2267.90 for the wurtzite structure as

Np → ∞. These values are in quite good agreement with the reference values, deviating

by 0.3% and 0.03%, respectively. The linear convergence with boundary-element size has

been reported for other BEM approaches304,305. Whereas a fairly accurate estimate for the

energy can be obtained in the BEM through extrapolation, this is not a particularly useful

approach in a practical MD or MC simulation, where each run employs only a single number

of surface patches. Without the extrapolation, the BEM shows deviations of ∼1% even at

the largest Np (14522 patches per large sphere) tested here, owing to the closely separated

dielectric interfaces.

Since MD simulations evolve via Newton’s equations of motion, i.e., based upon forces

rather than energies, we also compare the force exerted on each sphere in the hybrid method

and the BEM. Since these forces are not extrapolated as a function of Np in an actual (BEM-

based) MD simulation, we directly compare the forces obtained in the BEM at Np = 14522
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with those obtained in the hybrid method at p = 5 and η = 6. The relative root-mean-square

difference in the forces is defined as

∆F =

√∑N
i=1 |Fi

HM − Fi
BEM|2∑N

i=1 |Fi
HM|2

, (7.1)

where the summation extends over all large spheres, and Fi
HM and Fi

BEM denote the electro-

static force exerted on sphere i computed via the hybrid method and the BEM, respectively.

We find that the relative discrepancy ∆F is 0.6% and 2.6% for the NaCl and wurtzite crystal

test cases, respectively.

The hybrid method needs far fewer image charges than the number of patches in the

BEM to achieve a high accuracy. Since the electrostatic solver is the dominant factor in

the computational cost of the induced energy and force calculation, the hybrid method

accordingly outperforms the BEM (see CPU time comparison in Table. 7.1). At four-digit

accuracy in the electrostatic energy, the hybrid method (with p = 5, η = 6) is more than a

hundred times faster than the BEM for Np = 6072 (which yields significantly lower accuracy)

for both test cases.

7.3.3. MD simulations: ensemble averages

Whereas numerical tests on static configurations provide information on accuracy and on the

appropriate numerical parameter settings, it is also informative to apply the hybrid method

to practical simulations of the aggregation of a binary mixture of dielectric spheres. We

examine the performance of the method and also cross-check ensemble-averaged equilibrium

properties with simulations performed using the BEM.
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We employ the same parameter settings as the NaCl case tested in the previous section.

In addition to the electrostatic interactions, we impose excluded-volume interactions modeled

via a shift-truncated Lennard-Jones (LJ) potential,

uLJ(r) = 4kBT

[(
ds

r −∆

)12

−
(

ds

r −∆

)
]6 +

1

4

]
, (7.2)

for ∆ < r ≤ 2
1
6ds + ∆, with ∆ = 0, 3.5ds, and 7ds for small–small, small–large, and large–

large interactions, respectively. This yields a large–small size ratio of 8. As before, we

place the dielectric surface of each large sphere at r = 3.5ds, where the purely repulsive LJ

potential already diverges. The mass of all spheres, which affects the dynamical evolution

of the system but not its thermodynamic properties, is set to m0, yielding a time scale

t0 = ds

√
m0/kBT .

We perform MD simulations of a binary mixture containing 20 large and 20 small spheres.

For the hybrid method, the system is confined in a spherical cell with cell radius Rshell = 30ds

and the algorithm parameters are set to p = 5 and η = 6. For the BEM, we employ a cubic

cell of size L = 60ds and periodic boundary conditions. The number of patches per large

sphere is set to Np = 1472, for reasons of computational feasibility. The tolerances are set

as detailed in Sec. 7.3.2.

In each time step, the (direct and induced) electrostatic force on each particle is calculated

and used to propagate the particles via the standard velocity-Verlet algorithm. A Langevin

thermostat with damping time t0 is used to control the temperature. Simulations are run for

5×105 steps for equilibration and another 5×105 steps to generate samples, with a timestep

of 0.001t0. The various contributions to the total energy as well as the radial distribution

functions are sampled every 500 steps during the production phase.
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Figure 7.4. (a) Large–large particle radial distribution functions for the system de-
scribed in Sec. 7.3.3, obtained using the BEM (blue curve) and the hybrid method
(HM, red curve). Inset: difference between the two distribution functions. (b)
Corresponding potential of mean force −kBT lng(r).

The equilibrated structure is predicted to be a NaCl crystal164, which is confirmed visually

for both methods. Moreover, the radial distribution function for the large spheres (Fig. 7.4)

produced by the hybrid method is almost identical to that produced by the BEM-based
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simulation. While the two dielectric solvers show excellent consistency in the self-assembled

structure, the hybrid method achieves this at a rate of 0.140 seconds per time step, com-

pared to 2.284 seconds per time step for the BEM (see Table 7.1). In addition, the static

tests show that for the settings adopted, the hybrid method method yields an electrostatic

energy that is virtually indistinguishable from the reference value, whereas the BEM yields

an energy that deviates from this value by more than 3%. As this deviation refers to a truly

dense-packed configuration, it is worthwhile to examine whether the ensemble-averaged en-

ergy shows a similar deviation. Table 7.2 shows the ensemble-averaged energies for MD

simulations employing either the hybrid method or the BEM, with different parameter set-

tings. Even though the hybrid and BEM simulations with the most precise parameter choices

produced very similar self-assembled structures, the average electrostatic energies differ by

approximately 4%, comparable to the difference in Table 7.1 for the same parameters.

Table 7.2. Ensemble averaged electrostatic and LJ energies obtained through MD
simulations using the hybrid method and BEM.

hybrid method
numerical parameters Eele ELJ

p = 4, η = 4 −954.0± 0.5 3.58± 0.07
p = 4, η = 5 −941.4± 0.6 2.69± 0.06
p = 5, η = 6 −943.9± 0.6 2.69± 0.05

boundary element method
Np = 372 −1019.3± 0.8 2.98± 0.06
Np = 732 −997.5± 0.9 2.86± 0.06
Np = 1472 −984.5± 0.8 3.00± 0.06

7.4. Conclusion

We have provided a concise overview of the hybrid method, systematically explored

the effect of various parameters on efficiency, convergence, and accuracy, and illustrated
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application of the method in a practical case that is challenging for competing approaches.

Unlike boundary-element approaches, which suffer from significant inaccuracies in situations

with closely spaced dielectric interfaces (such as in densely packed structures), and other

analytical approaches, which require an effort that increases rapidly (at least cubic power-

law dependence) with the number of dielectric spheres, the hybrid solver simultaneously

offers linear scaling behavior and high accuracy. We demonstrated that, for densely packed

configurations of relatively small numbers of dielectric spheres, the hybrid method computes

the electrostatic energy with a deviation of less than 0.01% at a rate that is more than two

orders of magnitude faster than the BEM can achieve for deviations of 3%.

This approach is generally applicable to multicomponent systems of charged dielectric

spheres. In principle, extension of our method to continuously variable, radially symmetric

permittivities ε(r) is feasible by using a harmonic interpolation, which results in a spherical

harmonic series than can be transformed into an image-charge method. Lastly, although the

current algorithm is restricted to finite systems, it can be further extended to situations with

periodic boundary conditions.
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CHAPTER 8

Anisotropic self-assembly of polarizable colloidal mixtures

The content of this chapter is based on the following publication:

• Z. Wang, Z. Gan, S. Jiang, Z. Xu and E. Luijten, “Anisotropic self-assembly of

polarizable colloidal mixtures,” To be published (2020)

8.1. Abstract

Particles with directional interactions are often realized through anisotropic shape or

surface patches. We demonstrate that dielectric many-body effects can impart effective

directionality to isotropic building blocks, which permits robust self-assembly of binary mix-

tures of oppositely charged colloids into anisotropic superstructures. Using a high-precision

simulation strategy, we show that both local coordination number and fractal dimension can

be accurately controlled through variation of particle size ratio and relative permittivity.

This mechanism offers a potential avenue to designing materials with controllable structural

properties.

8.2. Introduction

Self-assembly of nano- and micron-sized colloidal particles has long been a powerful means

for creating materials with tailored mechanical, optical, and electronic properties in appli-

cations ranging from electro-mechanical systems to photonics and biomedical devices307–309.

Thus, uncovering new design rules which lead to structures with precisely controlled lo-

cal and global properties is highly desirable. While isotropic inter-particle interactions often
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lead to close-packed ordered structures310,311 (with a few exceptions that exploit the presence

of multiple length scales292,312), far richer phase diagrams can be achieved by introducing

anisotropic (directional) interactions313, which can arise from, e.g., shape21, surface patchi-

ness314, external fields5,315, or grafted polymers316,317.

Ubiquitous versatile, electrostatic forces have shown their great power in mediating and

directing self-assembly of colloidal particles, including colloidal aggregation29,30, clustering31,

and formation of nanostructured materials32–34. However, a parameter that, owing to its

complicated many-body nature, has often been neglected or oversimplified in both exper-

iment and computation, is the dielectric mismatch between particles and the surrounding

medium, which gives rise to polarization charge at all interfaces. This omission is notewor-

thy, given the demonstrated effects of polarization on protein folding35, plasmonics36, pattern

formation318, and ion transport37. The first molecular dynamics (MD) simulations studying

dielectric effects in colloidal aggregation were performed using the boundary element method

(BEM)164, and demonstrated that polarization interactions can indeed qualitatively alter

the resultant structures of charged colloids. Yet, this conceptual study was carried out for a

specific parameter choice, as the BEM-based approach is computationally very costly, in par-

ticular for closely spaced dielectric interfaces that typically arise in self-assembly processes.

This problem is exacerbated by the subtle energy differences between distinct structures319,

which makes high precision imperative for predictive modeling of self-assembly. As a result,

no systematic exploration exists that elucidates how dielectric effects influence the properties

of self-assembled structures and the associated design rules are unknown.

Here, we set out to establish how polarization phenomena can be exploited to control

self-assembly of binary colloidal mixtures. We take advantage of a newly developed efficient
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“hybrid method”53,203 that reduces systematic errors by three orders of magnitude and simul-

taneously accelerates calculations by one or two orders of magnitude compared to the BEM.

This powerful improvement, in particular for densely packed dielectric interfaces, allows reli-

able exploration of the full phase space. We demonstrate that the many-body nature of the

dielectric effects imparts effective directionality to the inter-particle interactions and thereby

dictates the geometry of the resultant self-assembled structures. Moreover, we formulate

design rules in which the local coordination number and fractal dimension can be controlled

through variation of the particle size ratio and the mismatch in relative permittivity.

8.3. Model and Simulation Methods

As a model system, we choose a prototypical binary mixture of oppositely charged size-

asymmetric spherical colloids29–33,164,320. This mixture consists of NL large colloids (positive

charge +qL, permittivity εL, radius rL) and NS small colloids (negative charge −qS, permit-

tivity εS, radius rS) suspended in an implicit solvent (permittivity εm). Charge neutrality is

imposed by requiring NLqL = NSqS. Owing to the piecewise uniform permittivity, surface

polarization charge is induced at all particle–solvent interfaces. We choose a salt-free system

to isolate the role of dielectric effects, but our findings also apply to colloidal systems at low

salt concentration as well as macroscopic systems, especially granular particles321.

We study this system via large-scale MD simulations in the canonical ensemble under

spherical confinement. This choice is dictated by the hybrid method that is essential to

high-fidelity predictions. The number of large colloids is fixed at NL = 100 (except in

the calculation of fractal dimensions), which is sufficient to reveal large-scale structures.

The box volume is chosen such that the large colloids have a volume fraction of 2.5%.
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This ensures that boundary effects are negligible, yet is high enough to stabilize the crys-

talline phase. We fix the size of the large sphere to be rL = 4σ and systematically vary

the size ratio α = rL/rS from 1.5 to 8.0. The excluded-volume interactions between col-

loids are modeled via a purely repulsive shifted-truncated Lennard-Jones (LJ) potential,

4kBT {[σ/(r −∆)]12 − [σ/(r −∆)]6 + 1/4} for ∆ < r < 21/6σ + ∆, with hard-core diameter

∆ = 2rS−σ, rS+rL−σ, and 2rL−σ for small–small, small–large, and large–large interactions,

respectively. The electrostatic energy and forces are computed using the hybrid method with

relative accuracy 10−3; by comparison, an efficient BEM-based approach with tenfold larger

computational expenditures leads to errors of 5% in the internal energy. To avoid divergences

due to the overlap of dielectric interfaces, the dielectric surface of each colloid is placed at

r = ∆/2. Temperature is controlled via a Langevin thermostat and the characteristic cou-

pling strength λ = UCoul/(kBT ) is set to be 100, where UCoul = qLqS/[4πε0εm(rL + rS)] is the

magnitude of the direct Coulombic interaction of a large and a small colloid at contact. All

particles have mass m, yielding a time scale t0 = σ
√
m/kBT ; the timestep used is 0.005t0.

A typical simulation run consists of 106 steps for aggregation and equilibration, followed by

20 annealing cycles to prevent the system getting kinetically trapped. Each cycle contains

2.5× 104 steps at temperature T and another 2.5× 104 steps at a higher temperature 2.5T .

Finally, we run another 106 steps (at temperature T ), sampling structural properties each

103 steps.

8.4. Results and Discussion

We first explore how size ratio α and permittivity combinations (εL, εS) affect the total

electrostatic energy Uelec of two oppositely charged polarizable spheres at contact. For eq-

uisized spheres, polarizability modifies the contact energy by only a few percent (Fig. 8.1a).
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Figure 8.1. Pairwise electrostatic energy Uelec between two oppositely charged
(qL = qS = q) polarizable spheres. (a) Uelec (normalized by the magnitude of the di-
rect Coulombic contact energy UCoul = q2/[4πε0εm(rL + rS)]) between two touching
spheres with fixed center-to-center distance r = rL +rS, as a function of size ratio α.
Different combinations of the particle permittivities (εL, εS) are shown. Curves for
the same εL but different εS coincide everywhere except for small α (inset). In the
absence of dielectric mismatch (i.e., εL = εS = εm), Uelec/UCoul would have been −1
for all α. (b) Uelec (normalized by UCoul) between two spheres with size ratio α = 8
and εS = εm as a function of their center-to-center distance r, for different values of
εL.

However, as the size asymmetry increases, this effect (shown as deviation from −1 in the

figure) is greatly amplified. For εL > εm, such as metallic colloids, the (attractive) contact

energy increases with size asymmetry, and is already enhanced by 60% for α = 8. Conversely,

for low-permittivity colloids with εL < εm polarization effects diminish the Coulombic at-

traction by 40% at the same size ratio. The permittivity of the smaller species plays only

a secondary role (Fig. 8.1a, inset) and is negligible for α & 2, so that in subsequent large-

scale simulations of colloidal aggregation we ignore this parameter and assume no dielectric

mismatch between small spheres and the solvent (εS = εm).

Next, we review how dielectric effects modulate the pairwise electrostatic energy as a

function of separation between the two spheres. For a size-asymmetric pair, the charge on

the smaller particle induces an attractive surface polarization if εL > εm, resulting in a strong
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amplification of the attractive potential (Fig. 8.1b, blue curve; to be compared to the pure

Coulombic attraction, green curve). On the other hand, if εL < εm, a repulsive polarization

is induced. As an interesting consequence, the pairwise interaction now has a minimum away

from contact (Fig. 8.1b, red curve).

The two control parameters determining the shape of the potential then are size ratio α

and the dielectric mismatch between large spheres and the medium, γ = (εm − εL)/(εm +

εL). The two limiting cases γ = {−1, 1} correspond to conducting colloids (with attractive

dielectric effects) and low-permittivity colloids (with repulsive dielectric effects), respectively.

Computationally, we approximate these two extremes by εL = 100εm and εL = 0.01εm,

respectively.

Whereas pairwise configurations can be understood from straightforward considerations,

the situation changes once many-body effects come into play. Indeed, since the pairwise

energies demonstrate enhanced binding of large and small spheres for γ < 0, yet weakened

and looser binding for γ > 0, it appears intuitive that large-scale assembly yields compact

structures for the former condition and more open aggregates for the latter. However, this

expectation is refuted by the phase diagram of a binary mixture with 1:1 number ratio

obtained from large-scale simulations (Fig. 8.2a). At small α, where dielectric effects are

minimal, we consistently observe FCC crystal structures, independent of γ. The situation

changes at large size ratio, where the assembled structures strongly depend on γ (cf. con-

figurations in Fig. 8.2a). For γ � 0 we observe FCC crystal structures, followed by the

Wurtzite crystal (at α = 3.5, 5.0) and hexagonal monolayer shell (at α = 7.0, 8.0, cf. green

box in Fig. 8.2a) for γ ≈ 0. Lastly, for γ < 0 we find anisotropic open aggregates, including

two-dimensional sheets and one-dimensional single and dual chains. The Wurtzite structure

is consistent with prior predictions in the absence of dielectric effects320, and the chain-like
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shown on the right of panel (a), with parameters (α, γ) marked by solid symbols in
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conformations have been observed experimentally for nanoparticles in organic solvent322 and

computationally for size-asymmetric mixtures of metallic colloids164. However, the counter-

intuitive trend of decreasing compactness with increasingly attractive polarization effects

has neither been explored systematically nor been explained even qualitatively.

To make this classification more precise, we compute the local connectivity as well as the

(correlated) fractal dimension as a function of the control parameters α and γ (Fig. 8.2b,c).

The local connectivity is quantified via the coordination number ZL (ZS), i.e., the number of
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Figure 8.3. Influence of dielectric many-body effects on coordination number, illus-
trated for size ratio α = 8. (a) Surface polarization charge (shading on large sphere,
which carries a total charge +q) for increasing number of small satellite particles
(each carrying total charge −q). Top row: γ ≈ 1; bottom row: γ ≈ −1. The small
particles are placed at symmetric positions with respect to the center of the large
particle. (b) Pair energy (normalized as in Fig. 8.1) Uelec/UCoul between the large
sphere and a single small particle as a function of their center-to-center distance
with increasing number of satellite particles (progressing from solid line to dotted
line, as indicated by arrows) for γ ≈ 1 (red), γ = 0 (green), and γ ≈ −1 (blue).

large–small contacts around a large (small) sphere323, where a cutoff distance corresponding

to the first minimum in the large–small radial distribution function is imposed to identify

contacts. The fractal dimension df is estimated from the scaling law Nc ∼ Rdf
g , with Nc the

number of large particles in the cluster and Rg the associated radius of gyration. We use

five different system sizes with NL = 25, 50, 75, 100, and 200 large spheres (constant volume

fraction) and obtain clear power-law relationships. Owing to the limited range in Rg, the

uncertainty in df is around 0.4, yet this is still sufficiently accurate to exhibit clear trends

(Fig. 8.2c).

The key to understanding these observations lies in the many-body nature of the di-

electric effects, which impart anisotropy to the inter-particle interactions. Moreover, the

consequences of this anisotropy are distinctly different for high-permittivity (γ < 0) and

low-permittivity (γ > 0) particles. In the latter case, the polarization charge distribution



178

induced by a (negative) small particle bound to a larger sphere not only weakens its own

attraction, but simultaneously renders the remaining surface of the large particle more pos-

itive and thereby makes it more attractive to other small particles (Fig. 8.3a, top panel).

Conversely, for γ ≈ −1, the binding of a small particle is enhanced by the (positive) polar-

ization charge around the contact point, but away from this location the surface of the large

sphere becomes less positively (or even negatively) charged, making it less attractive or even

repulsive to additional small spheres (Fig. 8.3a, bottom panel). This is quantified systemat-

ically in Fig. 8.3b. In the absence of dielectric mismatch, the pairwise interaction between

a large and a small particle is independent of the local coordination number (green curve,

γ = 0). However, for positive (negative) γ the individual binding strength becomes stronger

(weaker) with increasing number of large–small contacts. As a result, dielectric effects that

are traditionally classified as “repulsive” in fact promote higher coordination numbers, and

vice versa. Full predictive capabilities for α- and γ-dependent self-assembled structures rely

on the subtle competition between these electrostatic interactions, steric constraints, and—

at higher temperatures–entropic contributions to the free energy. All these are captured in

the MD simulations and give rise to compact structures with high ZL and df for spheres with

εL < εm and elongated and anisotropic structures with small ZL and df for εL > εm. Inter-

estingly, the directionality of the inter-particle interactions in the latter case is reminiscent

of the many-body nature of self-assembly of polymer-grafted nanoparticles/colloids316,324.

The control afforded by polarization effects extends to colloidal clusters as well. For

asymmetric number ratio, e.g., NL/NS = 3 (and thus, by virtue of charge neutrality, qL/qS =

1/3), under dilute conditions at γ = 0 the particles assemble into flower-like clusters, with a

small sphere at the center and three large spheres (size ratio α = 5) as “petals.” However,

these arrangements are generally unstable, because the positively charged large spheres at the
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Figure 8.4. Stabilization of colloidal clusters comprised of a central small particle
and three larger “petals” (size ratio α = 5). In the absence of dielectric effects
(γ = 0), the clusters aggregate (snapshot on the left, small–small radial distribution
functions g(rS−S) in green). For low-permittivity spheres (γ ≈ 1), the aggregation is
so strong that the clusters disassemble and a liquid phase results (snapshot top right,
red curve). For negative mismatch (metallic large particles, γ ≈ −1), a “gas” of
isolated clusters emerges (snapshot bottom right, blue curve), reflecting the tendency
of high permittivity to lower the coordination number. To eliminate artifacts due
to the finite boundary condition in the simulations, we computed g(rS−S) by only
counting the number of neighbors of particles that are at least a distance rc = 32σ
from the boundary of the simulation cell.

outside of each cluster remain attractive to small particles inside other clusters, resulting in

cluster–cluster aggregation (Fig. 8.4, snapshot in green box and small–small pair correlation

function in green). Remarkably, stabilization of the individual clusters can be achieved

by introducing negative dielectric mismatch (γ ≈ −1), which reduces the coordination of

the large spheres by rendering their exposed parts less attractive. As a result, we observe

a gas phase of monodisperse flower-like clusters (Fig. 8.4, snapshot in blue box), as also

confirmed by the right-ward shift of the first peak of the pair correlation function (blue line).

Conversely, a positive permittivity mismatch (γ ≈ 1) causes disappearance of the clusters

and the formation of a liquid mixture of large and small spheres (Fig. 8.4, snapshot in red

box). These observations are further supported by direct sampling of the number of large–

small contacts around a small sphere, for which we find ZS = 3.5 ± 0.1 at γ = 0 (cluster
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aggregation), ZS = 5.6 ± 0.1 at γ ≈ 1 (liquid state), and lastly ZS = 3.0 (no fluctuation),

i.e., perfect flower structures at γ ≈ −1. These observations also hold, mutatis mutandis,

for other number ratios, with the caveat that as the number of “petals” increases, the

clusters become more stable already at γ = 0. Controlled aggregation of colloids into small

clusters has been the subject of considerable attention31,315,325. The mechanism uncovered

here provides an additional protocol to generate stable, monodisperse suspensions of multi-

component clusters.

8.5. Conclusion

In summary, by adopting a newly developed dielectric solver that combines high accuracy

and efficiency, we have been able to systematically explore the role of dielectric effects in the

self-assembly of binary colloidal mixtures. We have demonstrated that the many-body na-

ture of polarization imparts directionality to the interaction between isotropic and uniformly

charged spherical particles, making the phase diagram dependent on dielectric mismatch. As

an illustrative example, we found that the FCC phase in size-asymmetric mixtures is stabi-

lized by polarizability. The tunability of the assembly process extends beyond controlling

fractal dimension of large-scale aggregates to the stabilization of well-defined small clusters,

providing an avenue for producing building blocks for novel structures and materials313. As

an outlook, we note that the integration of the hybrid dielectric solver with molecular dy-

namics simulations also opens the possibility to explore the kinetics of dielectric aggregation

processes.
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CHAPTER 9

Conclusion

Self-assembly of nano and micro-scale colloidal particles has been a powerful approach

to synthesize novel structures with emergent optical, electrical, and mechanical properties in

various applications. The assembled structure usually results from an intricate competition

between different mechanisms, including various physical interactions, thermal fluctuations,

and external fields. Therefore, understanding, predicting, and controlling the self-assembly

process is of both fundamental interests and technical relevance. By performing particle-

based simulations and collaborating with experimental groups, I focus on understanding

how shape anisotropy (Part 1) and electrostatic polarization effects (Part 2) play a role in

the self-assembly process. Here I present a summary of the main findings and future outlook

for each chapter.

Part 1 (Chapter 2 to Chapter 3) is concerned with crystallization process of anisotropic

nanoparticles, driven by various nanoscale forces (e.g., van der Waals interaction, electro-

statics, and shape entropy). The content of this part is closely interwoven with experimental

imaging which is made possible by low-dose liquid-phase transmission electron microscopy

(TEM). Chapter 2 focuses on the system of triangular nanoprisms which crystallize into a

novel hierarchical hexagonal lattice. To properly capture the nanoscale interactions, which

later prove essential to reproduce the experimental observation, I derive analytical functional

forms of pairwise potential from the detailed coarse-grained model of nanoprism which allow

efficient large-scale simulations. Monte Carlo simulations not only reveal the microscopic
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details of the assembled superlattice which is composed of columns of randomly stacked

prisms, but also demonstrate that positional ordering of the lattice indeed emerges from

orientational disorder. By further exploring the phase space, I propose the design rule that

different phases can be realized through varying the morphology of columns which is con-

trolled by the ionic strength and the cell height. These findings are generalizable to other

systems of plate-like nanoparticles, which could provide guidance to future experimental de-

sign of functional nano-materials. This experimental–computational study, combining direct

imaging of particle motion at single-particle level and detailed modeling of nanoscale interac-

tions, offers a general workflow which can be translated to future research on other artificial

and biological nanoscopic entities. Particularly, great efforts are spent on developing the

analytical model of nanoprism which captures the practical nanoscale interactions in great

details but at the same time stays efficient enough to allow large-scale simulations. The

modeling approach here can also be applied to other anisotropic nanoparticles.

While Chapter 2 emphasizes on understanding and controlling the assembled structures,

Chapter 3 focuses on the crystal growth kinetics at the nanoscale. By examining the crys-

tallization process of a diversity of nanoparticles under liquid-phase TEM, our collaborators

discover a prevalent layer-by-layer growth mode, in contrast to the roughened growth of

micron-sized colloids reported previously. Coarse-grained modeling and molecular dynamic

simulations are applied to map the energy landscape involving key diffusive barriers of the

nanoparticle system, which explains the thermodynamic and kinetic driving forces of the

observed growth mode. By further coupling analysis of experimental imaging and kinetic

Monte Carlo simulations, we show that building block size governs the crystal growth pro-

cess by simultaneously controlling the ratio of surface diffusion rate to incoming flux and the

interaction range. Our combined experimental–computational work fills the knowledge gap
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of the crystal growth law at this intermediate nanoscale. Such understanding can greatly en-

rich the design rules and quantitative prediction for engineering ensemble order and surface

morphology in nanoparticle superlattices or other forms of nanoscale assemblies.

Part 2 (Chapter 4 to Chapter 8) is devoted to exploring the electrostatic polarization

effects in self-assembly of colloidal particles. A general literature review is presented in

Chapter 4, which provides comparison between different methods for solving polarization

in simulations and highlights key physical phenomena which are induced by the dielectric

effects at the nano- and microscale.

I start with systems with dielectric interfaces of slab geometry, which can be treated by

incorporating the Image Charge Method into the Ewald summation. In Chapter 5, I examine

the confined dipolar hard-sphere fluids near a dielectric interface. Simulation results show

that the presence of a conducting surface shifts the global isotropic-ferroelectric transition

only slightly toward a higher density and coupling strength, but that dielectric effects have

a significant influence on the orientational structure of the contact layer. Specifically, low-

permittivity interface enhances the in-plane orientation of the dipolar spheres, whereas a

conducting surface promotes out-of-plane dipolar orientations. The findings here not only

clarify the effects of substrate permittivity on confined dipolar fluids, e.g., magnetic colloids

or charged janus particles, which is instrumental for the fundamental understanding of a

variety of experimental systems, but also have implications for the design of tunable dipolar

materials by exploiting dielectric effects.

Inspired by the above findings, I take a closer look at a two-dimensional dipolar film

supported by a dielectric substrate and investigate how dielectric effects can be utilized

achieve modulated patterns (Chapter 6). Specifically, a rich phase diagram arises induced

by polarization across the substrate, where striped and circular morphologies emerge with
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geometric properties that can be controlled through variation of particle shape and permit-

tivity mismatch. These effects are particularly enhanced by metameterial substrates. Besides

elucidating the pattern-modulation mechanism, our findings may also provide guidance to

future applications of such metamaterials.

To explore system with spherical dielectric interfaces, which is able to represent a wide

range of biological and synthetic systems, more complicated approach needs to be applied to

solve the polarization. Chapter 7 presents a detailed comparison between the recently pro-

posed hybrid method, which combines the Method of Moments, the Image Charge Method,

and the Fast Multipole Method, and the iterative Boundary Element Method. By exploring

the effects of various parameters on efficiency, convergence, and accuracy, we demonstrate

that for close-packed crystal structures of dielectric spheres, the hybrid method computes

the electrostatic energy with a deviation of less than 0.01% at a rate that is more than two

orders of magnitude faster than the Boundary Element Method can achieve for deviations

of 3%.

By further applying this efficient hybrid method in simulations, I study the self-assembly

of binary suspensions of oppositely charged polarizable colloids (Chapter 8). I show that

a variety of anisotropic superstructures can be assembled, resulting from the many-body

dielectric effects which impart effective directionality to interactions. Both local coordination

number and fractal dimension can be well controlled by varying particle size ratio and relative

permittivity. The findings here can provide a new mechanism for designing materials with

controllable structural properties. As an outlook, we note that the integration of the hybrid

dielectric solver with molecular dynamics simulations also opens the possibility to explore

the kinetics of dielectric aggregation processes.



185

References

[1] G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,” Science 295, 2418–

21 (2002).

[2] X. Ye, J. Chen, M. Eric Irrgang, M. Engel, A. Dong, S. C. Glotzer and C. B. Murray,

“Quasicrystalline nanocrystal superlattice with partial matching rules,” Nature Mater.

16, 214–219 (2017).

[3] Y. Xia, T. D. Nguyen, M. Yang, B. Lee, A. Santos, P. Podsiadlo, Z. Tang, S. C.

Glotzer and N. a. Kotov, “Self-assembly of self-limiting monodisperse supraparticles

from polydisperse nanoparticles,” Nature Nanotech. 6, 580–587 (2011).

[4] H. Lin, S. Lee, L. Sun, M. Spellings, M. Engel, S. C. Glotzer and C. A. Mirkin,

“Clathrate colloidal crystals,” Science 355, 931–935 (2017).

[5] A. Yethiraj and A. van Blaaderen, “A colloidal model system with an interaction

tunable from hard sphere to soft and dipolar,” Nature 421, 513–517 (2003).

[6] J. J. Crassous, A. M. Mihut, E. Wernersson, P. Pfleiderer, J. Vermant, P. Linse and

P. Schurtenberger, “Field-induced assembly of colloidal ellipsoids into well-defined mi-

crotubules,” Nature Comm. 5, 5516 (2014).
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