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ABSTRACT

Multi-indexed Deligne Extensions and Multiplier Subsheaves

Lei Wu

We define multi-indexed Deligne extensions and multi-indexed log-variations of Hodge

structures in the category of (filtered) logarithmic D-modules, via the idea of Bernstein–

Sato polynomials and Kashiwara–Malgrange filtrations, generalizing the Deligne canonical

extensions of flat vector bundles. We also obtain many comparison results with perverse

sheaves via the logarithmic de Rham functor.

Based on multi-indexed Deligne extensions, we define multiplier subsheaves for pure

Hodge modules (geometrically for higher direct images of dualizing sheaves for projective

families) on algebraic varieties, which specialize to multiplier ideals when the pure Hodge

module is trivial. From Kodaira–Sato vanishing for Hodge modules, we obtain a Nadel-

type vanishing theorem for multiplier subsheaves, which in the geometric case generalizes

both Kollár vanishing for higher direct images of dualizing sheaves and Nadel vanishing

for multiplier ideals.

As an application, we use it to deduce a Fujita-type effective global generation theorem

extending a result of Kawamata for higher direct images of dualizing sheaves.



4

Acknowledgements

First and foremost, I would like to express my special appreciation and thanks to my

advisor Professor Mihnea Popa for the continuous support of my Ph.D study and research,

for his patience, motivation, and immense knowledge. His guidance helped me in all the

time of research and writing of this thesis. I could not have imagined having a better

advisor and mentor. I would also like to deeply thank Professor Lawrence Ein. It has

been my fortune meeting and learning from him at my early Ph.D stage when I was at

UIC. I am also grateful to Preffessor Valentino Tosatti, for the invaluable advice on both

research as well as on my career. I also thank Professor Yifeng Liu for being a member

of my defense committee.
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CHAPTER 1

Introduction

Morihiko Saito’s theory of mixed Hodge modules is a deep generalization of classi-

cal Hodge theory. Roughly speaking, mixed Hodge modules are filtered D-modules with

properties analogous to those of mixed Hodge structures. They have many good homolog-

ical properties. For instance, Grothendieck’s six functor between the derived category of

mixed Hodge modules can be naturally defined which are compatible with the functors for

coherent O-modules. In the pure case, Hodge modules are generically defined variations

of Hodge structures (VHS) with certain boundary conditions; that is Hodge modules can

be identified with generically defined VHS. This natural statement is indeed very hard

to prove. This identification can be understood as the minimal extension functors j!∗

for open embeddings analogous to minimal extensions of local systems in the category of

perverse sheaves. Saito’s strategy towards it is as follow. By the decomposition theorem

and the direct image theorem for pure Hodge modules, after taking log resolution of the

singular locus of the VHS, it is enough to obtain the identification in normal crossing

case. But in normal crossing case, the construction of Hodge modules from the VHS is

explicit and depending on the Deligne canonical extensions. See [Sai90] or [Sch14] for

details.

In this thesis, the first part is to understand Deligne canonical extensions for flat

vector bundles (not only vector bundles underlying VHS). Deligne canonical extensions

have naturally defined flat logarithmic connections. This motivated us to study log D-

modules (or V D
0 DX-modules) systematically. This is the content of Chapter 2. By using

the idea of Bernstein–Sato polynomials, in the category of log D-modules, multi-indexed

Deligne extensions are defined. In trivial case, they are exactly multiplier ideals for Q-

divisors with normal crossing supports. Chapter 3 is constituted of their construction

and basic properties. Chapter 4 consists of global properties of multi-indexed Deligne

extensions and D-modules induced from multi-indexed Deligne extensions.
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The second part is about construction of multiplier subsheaves. The primary mo-

tivation is vanishing theorems. Kodaira vanishing is one of the most famous vanishing

theorem in algebraic geometry. In the theory of Hodge modules, it has a natural general-

ization which is called Kodaira-Saito vanishing. In birational geometry, Kodaira vanishing

has a natural birational generalization, Kawamata-Viehweg vanishing. By using multi-

plier ideals, Q-Kawamata-Viehweg vanishing is equivalent to Nadel vanishing. On the

other hand, in [Wu15] we obtained a Kawamata-Viehweg type vanishing theorem for

pure Hodge modules, i.e. Kodaira–Saito vanishing also has a birational generalization.

But it only works for integral divisors. In order to obtain a full generalization along this

line, objects analogous to multiplier ideals are needed. All these vanishing results reflect

the fact that the V -filtrations for Hodge modules are rationally indexed.

In Chapter 5, we discuss multi-indexed log-VHS, and how to construct Hodge modules

from them. Chapter 6 is about vanishing theorems for Hodge modules. A Q-Kawamata-

Viehweg type vanishing will be proved. After all these, multilpier subsheaves for Hodge

modules can be defined. This will be done in Chapter 7. Besides the basic properties, we

also discuss some advanced properties analogous to that of multiplier ideals like jumping

numbers and subadditions (at least in normal crossing case). At last, as an application, a

Fujita-type effective global generation theorem for Hodge modules, parallel to Kawamata’s

relative Fujita’s freeness conjecture in geometric case, is proved.

We begin by summarizing the main results in the thesis.

1.1. Summary of results

Let X be a complex manifold and let D =
∑

iDi be a normal crossing divisor with

(possibly singular) irreducible components Di; i.e., we assume that D is locally defined

by z1 · · · zr = 0 where (z1, . . . , zn) are local coordinates. Suppose (V ,∇) is a holomorphic

vector bundle with an integrable connection on X \D. Then it is well-known that V can

be extended to Ṽ , the Deligne canonical extension, and V(∗D), the Deligne meromorphic

extension. Moreover, Ṽ is an OX(∗D) lattice of V(∗D), where OX(∗D) is the sheaf of

meromorphic functions that are holomorphic on X \D, and ∇ extends to a logarithmic

connection ∇̃ for Ṽ .

If B =
∑

i aiDi is a divisor supported on D, then OX(B) is defined by, for each open

set U of X

OX(B)(U) := {f ∈ OX(∗D)(U) such that ordDi|U(f) ≥ −ai for all i}.
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Namely, the natural embedding

OX(B) ↪−→MX

factors through OX(∗D), where MX is the sheaf of meromorphic functions on X. The

holomorphic differential extends naturally to a logarithmic connection on OX(B). If Di

is an irreducible component of D, then the residue of OX(B) along Di is exactly −ai.
Based on this observation, using the idea of Bernstein–Sato polynomials, we define the

orders of sections of V(∗D). Roughly speaking, for a section m of V(∗D), ordDi(m) is

the smallest real part of the roots of the Bernstein–Sato polynomial of m along Di. See

Definition 3.3.5 and Corollary 3.3.8. If V = OX\D and f ∈ OX(∗D)(X), then ordDi(f) is

exactly the usual order of f along Di.

Use τ to denote a unit interval like [a, a + 1) or (a, a + 1] for some a ∈ R, and (τi) a

family of such intervals such that each i runs over the set of irreducible components of

D; that is, the family (τi) is a locally finite family. For a fixed such (τi), we consider the

following sheaves.

Definition 1.1.1. For each open set U of X,

V(τi)(U) := {m ∈ V(∗D)(U) | ordDi(m) ≥ ai if τi = [ai, ai+1) or > ai if τi = [ai, ai+1)}.

In particular, we get subsheaves V(τi) of V(∗D) for each (τi). If D is smooth and

irreducible, then all Vτ ’s together are exactly the V -filtration (Kashiwara–Milgrange fil-

tration) of V(∗D), where τ corresponds to the only component D.

If we use the natural partial order for all families (τi) (see Notations in §3.1), then all

V(τi)’s give a multi-indexed filtration of V(∗D). We also prove that V(τi) are locally free

with (naturally defined) logarithmic connections, and that they are characterized by the

eigenvalues of the residues of the logarithmic connections. This is summarized as follow.

Theorem 1.1.2. With the above notation, for each family (τi), there exist logarithmic

extensions (locally free with a logarithmic connection) (V ′,∇′) of V such that

{real part of eigenvalues of ResDi∇′} ⊆ τi.

Moreover, (V(τi),∇(τi)) is universal among all of them.

The above theorem extends Deligne’s theorem on canonical extensions; see for instance

[HTT08, Theorem 5.2.17] and gives a more precise description of Deligne extensions of
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V . We call such V(τi) multi-indexed Deligne extensions of V . In particular, under such

notation, we have Ṽ = V(τi) where τi = (−1, 0] for each i. It is worth noticing that V(τi)

can also be constructed via L2 cohomology and all multi-indexed Deligne extensions give

a parabolic structure of V(∗D).

For a fixed family (τi), the logarithmic connection ∇(τi) induces naturally a V D
0 DX-

module structure for V(τi), where V D
i DX is the i-th term of the V -filtration (also known as

the Kashiwara-Malgrange filtration) of DX along D. All these extensions constitute a full

sub-category of the category of left V D
0 DX-modules, denoted as Conn(τi)(X;D), which

is equivalent to the category of local systems on X \ D. This is the Riemann-Hilbert

correspondence for log D-modules (see Corollary 3.3.12).

For vector bundles with integrable connection, their DX-duals are also vector bundles

with integrable connections and are equal to their OX-duals. How about the same story

but for V(τi)? Indeed, the V D
0 DX-dual of V(τi) is V∗(−τi), where V∗ is the O-dual of V . See

Theorem 4.2.16. Furthermore, the V D
0 DX-dual of V(τi) is exactly the OX-dual of V(τi).

By the well-known comparison theorem of Grothendieck-Deligne, we have a quasi-

isomorphism

DR (V(∗D)) ' Rj∗K[n],

where j : X \D ↪−→ X is the open embedding and K is the local system corresponding

to V on X \ D. Along this line, we obtain a number of comparison formulas between

DRD(V(τi)) and some interesting perverse sheaves derived from K. See Theorem 4.4.9

and Theorem 5.3.13.

Since V(∗D) is a regular holonomic DX-module, it is also interesting to study its

submodules DXV(τi); that is DX-submodules of V(∗D) generated by V(τi) for different

(τi).

Theorem 1.1.3. Asume that D =
∑r

i=1Di with Di irreducible. Let I be a subset of

{1, ..., r} . For any r-tuple (τi) such that τi ≤ [−1, 0) for i ∈ I, and (−1, 0] ≤ τi for i /∈ I,

DXV(τi) = DXV(τ ′i),

where τ ′i = [−1, 0) for i ∈ I, and τ ′i = (−1, 0] for i /∈ I.
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This theorem tells that DXV(τi) changes when τi goes across the critical point 0.1 For

instance, if B =
∑

i aiDi is an integral divisor such that ai > 0 for i ∈ I and ai ≤ 0 for

i /∈ I, then DXOX(B) = OX(∗DI), where DI =
∑

i∈I Di.

For a subset I, denote the DXV(τi) as in the above theorem by VI The first extremal

case is that V∅ corresponds to the minimal extension of the local system by Riemann-

Hilbert correspondence; hence also denoted by Vmin (see Proposition 4.4.11). See also

[Bjö93, Definition 3.1.12 and Proposition 3.1.13] for an alternative perspective. The

other extreme is V{1,...,r} = V(∗D) (see Proposition 4.1.4). It is also worth noticing that

if 1 is not an eigenvalue for any local monodromies, then all VI are the same. This point

becomes clearer if one looks at the corresponding perverse sheaves.

If, moreover, suppose V underlies a polarizable variation of Hodge structure (PVHS),

V = (V , F•,V), then the multi-index Deligne extensions V(τi) induces extensions of F•.

To be precise,

F (τi)
• := V(τi) ∩ j∗F•.

The above sheaf is possibly quite badly behaved in general (for instance, not even co-

herent). Therefore, we also assume that all the local monodromies of V along the local

irreducible component of D are quasi-unipotent. This is a standard assumption made

for Hodge modules; see [Sai90]. In fact, by the Monodromy Theorem, if the PVHS are

Gauss-Manin connections of proper families, then this assumption is automatically ful-

filled. We make this assumption for all PVHS used in this paper. Under this assumption,

using the local unipotent reduction and Schmid’s nilpotent orbit theorem, we prove the

following local freeness result for F
(τi)
• .

Proposition 1.1.4. F
(τi)
• are sub-bundles of V(τi) for every (τi).

The proof is inspired by some idea in [Kol86]. See Theorem 5.1.3. Furthermore, F
(τi)
•

satisfy the logarithmic Griffith transversality condition. See [Sai90, §3.b] for a different

approach by using compatibility of V -filtrations and Hodge filtrations.

Inspired by Saito’s idea of filtered DX-modules, we obtain a filtered comparison the-

orem.

1This is a phenomenon analogous to real Morse theory (if we go through a critical value, then the
homotopy of the level set changes).
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Theorem 1.1.5. For every (τi), the natural morphism

DRD(V(τi+1), F (τi+1)
• )

q.i.
'−→ DR ((DX , F•)⊗(V D0 DX ,F•) (V(τi), F (τi)

• ))

is a filted quasi-isomorphism of filtered complexes of CX-modules.

For some special family (τi), the above theorem is contained in [Sai90, Proposition

3.11]. Its significance is that since for some special family (τi),

(DX , F•)⊗(V D0 DX ,F•) (V(τi), F (τi)
• )

underlies a mixed Hodge module (see §5.2 or [Sai90]), we can understand such mixed

Hodge module in terms of relatively simple log-PVHS.

The second part of this paper is devoted to the construction of multiplier subsheaves

and to the study of their properties in the algebraic category. This can be seen as the

application of multi-indexed Deligne extensions to algebraic geometry.

We first need to discuss a Kawamata–Viehweg type vanishing theorem, which is essen-

tial for the construction of multiplier subsheaves. Suppose, for the moment, that (X,D)

is a pair consisting of a smooth complex algebraic variety X and a reduced SNC divisor

D =
∑r

i=1Di. Let V be a PVHS on the underlying analytic space of X \D. Set

S(V ) := FlowestV .

Namely, S(V ) is the initial term in the Hodge filtration of V . If B =
∑r

i=1 aiDi is an

R-divisor supported on D (zero coefficients are held in B), then we write

S(V )B = F
((a1−1,a1],...,(ar−1,ar])
p(V ) ;

i.e., we make τi consistently left open and right closed unit intervals for all i and write

the indices in terms of R-divisors. For instance, if V is the trivial VHS, then

S(V )B = OX(−bBc)

. The following R-Kawamata–Viehweg type vanishing is proved.

Theorem 1.1.6. Assume X is projective. Let L be an integral divisor and B an R-divisor

supported on D. Suppose L−B is nef and big. Then

Hq(X,S(V )B ⊗ ωX(L)) = 0

for q > 0.
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The proof is greatly inspired by that of [Kaw02, Theorem 4.2] which deals with only

geometric cases; see Theorem 6.3.2.

Now we come to the definition of multiplier subsheaves. Suppose Y is a smooth

algebraic variety over C, M a pure Hodge module strictly supported on Y , extending a

generically defined PVHS V , and B an R-divisor on Y . Then the multiplier subsheaf

associated to M and B is

J (M,B) := µ∗(S(V )µ
∗B ⊗ ωX/Y )),

where µ is a log resolution of supp(B)+sing(M), sing(M) is the locus where V fails to be

defined and ωX/Y is the relative canonical sheaf. This definition is independent of choices

of log resolutions. They are named multiplier subsheaves because J (M,B) possess many

similar properties as that of multiplier ideals and when M is the trivial Hodge module,

we have

J (M,B) = I(B),

where I(B) is the multiplier ideal associated to B; see [Laz04] for the definition of

multiplier ideals . One of its most important properties is that J (M,B) satisfies Nadel-

type vanishing.

Theorem 1.1.7. Assume Y is projective. If L is an integral divisor such that L − B is

nef and big, then

Hq(Y,J (M,B)⊗ ωY (L)) = 0

for q > 0.

Since J (M, 0) = S(M) (see for instance [Wu15, Corollary 3.13]), the above theorem

specializes to a Kawamata–Viehweg-type vanishing result for pure Hodge modules which

was proved independently and simultaneously in [Suh15] and in [Wu15]; see for instance

[Wu15, Theorem 1.4]. It also specializes to the Nadel vanishing theorem for multiplier

ideals when M is the trivial Hodge module and Kollár vanishing for higher direct images

of dualizing sheaves.

Kawamata proposed a relative version of Fujita’s freeness conjecture in [Kaw02], and

proved a criterion to guarantee the global generation involving the higher direct image

of dualizing sheaves in the normal crossing case. Parallel to the geometric case, we get a

similar criterion for a global generation problem involving S(M) as an application of the

above Nadel-type vanishing.
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Theorem 1.1.8. Let X be a smooth projective variety of dimension n and M a pure

Hodge module strictly supported on X with sing(M) = D a reduced SNC divisor. Let L

be an ample divisor on X, and x ∈ X a point. Assume that for every klt pair (X,B0),

there exists an effective Q-divisor B on X satisfying the following conditions:

(i) B ≡ λL for some 0 < λ < 1;

(ii) (X,B +B0) is lc at x;

(iii) {x} is a log canonical center of (X,B +B0).

Then the natural morphism

H0(X,S(M)⊗ ωX(L)) −→ S(M)⊗ ωX(L)|{x}

is surjective.

It is known from [EL93] and [Kaw97] that the assumption for kL always holds for

k ≥ n + 1 and n ≤ 4, from [AS95] for k ≥
(
n+1

2

)
and n arbitrary. Therefore, we obtain

the following corollary.

Corollary 1.1.9. Let X be a smooth projective variety of dimension n and M be a pure

Hodge module strictly supported on X with sing(M) = D a reduced SNC divisor. Let

L be an ample line bundle on X. Then the locally free sheaf S(M) ⊗ ωX(L) is globally

generated when k ≥ n+ 1 if n ≤ 4, or k ≥
(
n+1

2

)
in general.
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CHAPTER 2

Preliminaries on V D
0 DX-modules

In this Chapter, the theory of log D-modules (or V D
0 DX-modules) is introduced and

discussed systematically, which recovers D-modules theory in the usual sense when the

divisor D is trivial.

2.1. OX-modules with Logarithmic Connections.

Let X be a complex manifold of dimension n, let D be a normal crossing divisor and

let M be a sheaf of OX-module. An integrable logarithmic connection ∇ on M along D

is a C-linear morphism

(2.1.1) ∇ :M−→ Ω1
X(log D)⊗M

satisfying the Lebniz rule and ∇2 = 0. When D = 0, we call ∇ an integrable connection

for short.

Definition 2.1.2 (V -filtration of DX along D). The V -filtration on DX along D indexed

by Z is defined by

V D
i DX = {P ∈ DX |PIjD ⊂ I

j−i for any j ∈ Z},

where ID is the ideal sheaf of D and

IjD =

I
j
D if j > 0

OX otherwise
.

From definition, it is obvious that V D
0 DX is a sheaf of ring (it is a nice sheaf of ring, for

instance V D
0 DX is a coherent sheaf of ring with noetherian stalks; the proof is similar to

that of DX). Let (z1, z2, . . . , zn) be a local chart of X on a open neighborhood U and

assume that D is defined by z1 · · · zr = 0 on U . Then we have

V D
0 DU = OU < z1∂1, ..., zr∂r, ∂r+1, ..., ∂n >
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where ∂i = ∂
∂zi

and for j > 0

V D
−jDU = (z1 · ... · zr)jV D

0 DU , and V D
j DU =

j∑
k=0

V D
0 DU · ∂ki .

In particular, for any j ∈ Z, we have V D
j DX |X\D = DX\D.

We have the following interpretation of left V D
0 DX-modules.

Lemma 2.1.3. Let M be an OX-module. Giving a left V D
0 DX-module structure on M

extending the OX-module structure is equivalent to giving an integrable logarithmic con-

nection on M along D.

2.2. ⊗ and Hom over OX and Side-changing Operations

Since V D
0 DX is non-commutative, it is also interesting to consider right V D

0 DX-modules.

It is well-know that the Lie-derivation gives a right DX-module structure for ωX . In par-

ticular, ωX is a right V D
0 DX-module. We denote the category of left V D

0 DX-module by

Mod(V D
0 DX), and the category of right V D

0 DX-module by Mod(V D
0 D

op
X ).

Set ΘX(log D) := HomOX (OX ,Ω1(log D)). Namely Θ(log D) is the dual of the sheaf

of logarithmic 1-forms. I The following lemma is easy to check (its proof is essentially the

same as that of [HTT08, Proposition 1.2.9]).

Lemma 2.2.1. Let M, M′ ∈ Mod(V D
0 DX) and N , N ′ ∈ Mod(V D

0 D
op
X ). Then

(1) M⊗OM′ ∈ Mod(V D
0 DX); (s⊗ s′)θ = θs⊗ s′ + s⊗ θs′,

(2) M⊗O N ∈ Mod(V D
0 D

op
X ); θ(s⊗ t) = −θs⊗ t+ s⊗ tθ,

(3) HomOX (M,M′) ∈ Mod(V D
0 DX); (θφ)(s) = θ(φ(s))− φ(θs),

(4) HomOX (M,N ) ∈ Mod(V D
0 D

op
X ); (φθ)(s) = φ(s)θ + φ(θs),

(5) HomOX (N ,N ′) ∈ Mod(V D
0 DX); (φθ)(s) = −φ(s)θ + φ(sθ),

where θ ∈ Θ(log D).

This lemma can be treated as generalizations of product rules and chain rules for

differentiations. Because of Oda’s rule (see for instance [HTT08, Remark 1.2.10]), the

other two scenarios are excluded from the above lemma.

By Lemma 2.2.1, we can easily get the following corollary.
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Corollary 2.2.2. Let M, M′ ∈ Mod(V D
0 DX) and N ∈ Mod(V D

0 D
op
X ). Then we have

canonical isomorphisms

(M⊗O N )⊗V D0 DXM
′ ' N ⊗V D0 DX (M⊗OM′) ' (M′ ⊗O N )⊗V D0 DXM

m⊗ n⊗m′ 7→ n⊗m⊗m′ 7→ m′ ⊗ n⊗m,

as C-modules.

If B is an integral divisor supported on D, then OX(B) is a left V D
0 DX-module. By

tensor product rules, we have that ωX(B) = OX(B) ⊗ ωX is a right V D
0 DX-module. In

particular ωX(D) is a right V D
0 DX-module. Therefore, by Lemma 2.2.1 we have functors

ωX(D)⊗ • : Mod(V D
0 DX) −→ Mod(V D

0 D
op
X )

and

• ⊗ ω−1
X (−D) = HomOX (ωX(D), •) : Mod(V D

0 D
op
X ) −→ Mod(V D

0 DX).

It is easy to check that these two functors are quasi-inverse to each other. Hence, we have

proved that ωX(D)⊗ • induces an equivalence between Mod(V D
0 DX) and Mod(V D

0 D
op
X ).

They are side-changing operations.

2.3. Filtered V D
0 DX-modules

The order filtration of DX (see for instance [HTT08, §1])) induces an order filtration

of V D
0 DX , denoted by F•V

D
0 DX . A filtered (right or left) V D

0 DX-module is a pair (M, F•)

with a DX-module M and an inceasing filtration F• (bounded from below) of M which

is compatible with the order filtration of V D
0 DX , i.e.

FpV
D

0 DX · FlM(or FlM · FpV D
0 DX) ⊂ Fp+lM

for all p, l ∈ Z. The filtration is said to be coherent if

FpV
D

0 DX · FlM(or FlM · FpV D
0 DX) = Fp+lM

for l� 0 and p ∈ Z>0. Then obviously,

Lemma 2.3.1. F• is coherent if and only if GrFM is coherent over GrFV D
0 DX .

It is easy to see that we have the canonical isomorphism

GrFV D
0 DX ' Sym(ΘX(log D))
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as OX-algebras.

We can also define filtered side-changing operations. For a filtered left DX-module

(M, F•), define

F•(ωX(D)⊗M) = ωX(D)⊗ F•−nM.

Clearly, the filtered side-changing operations induce an equivalence between filtered left

and right V D
0 DX-modules.

It is worth mentioning that if D = 0, all the above results (side-changing operations

and Lemma 2.1.3 and the above lemma etc.) are just that for DX-modules.

2.4. Log-de Rham and Log-Spencer Complexes

Let M ∈ Mod(V D
0 DX). By Lemma 2.1.3, from (2.1.1), we obtain a C-linear complex,

DRD(M) := [0 −→M ∇−→ Ω1
X(log D)⊗M ∇1

−→ ...
∇n−1

−−−→ Ωn(log D)⊗M −→ 0][n],

which is called the logarithmic de Rham complex ofM along D. When D = 0, the above

complex is the usual de Rham complex of M , denoted by DR(M).

The left V D
0 DX-module structure of V D

0 DX gives us DRD(V D
0 DX), the log de Rham

complex of V D
0 DX . The right V D

0 DX-module structure of V D
0 DX makes DRD(V D

0 DX) be

a complex of right V D
0 DX-modules. Therefore, we have

DRD(M) ' DRD(V D
0 DX)⊗V D0 DX M.

This means that DRD(•) defines a functor from the derived category of Mod(V D
0 DX) to

the derived category of C-sheaves.

Since V D
0 DX is a V D

0 DX-bimodule, after side-changing (use the right V D
0 DX-module

structure of V D
0 DX)

V D
0 DX ⊗O ω−1

X (−D)

has two compatible left V D
0 DX-module structures. One is induced from the left V D

0 DX-

module structure of V D
0 DX , denoted by (V D

0 DX ⊗O ω−1
X (−D))triv. The other is induced

from the right V D
0 DX-module structure of V D

0 DX , denoted by (V D
0 DX ⊗O ω−1

X (−D))tens.

Then we have an involution (see also [Sai88, Lemme 2.4.2])

(2.4.1) (V D
0 DX ⊗O ω−1

X (−D))triv −→ (V D
0 DX ⊗O ω−1

X (−D))tens

P ⊗ φ 7→ P · (1⊗ φ).
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The involution map interchanges the two left V D
0 DX-module structures. Therefore, the

involution induces a natural isomorphism

DRD((V D
0 DX ⊗O ω−1

X (−D))triv)tens ' DRD((V D
0 DX ⊗O ω−1

X (−D))tens)triv.

of complexes of left V D
0 DX-modules. In other words, we have an isomorphism

(2.4.2) DRD(V D
0 DX)⊗O ω−1

X (−D) ' DRD((V D
0 DX ⊗O ω−1

X (−D))tens)

between complexes of left V D
0 DX-modules.

The contraction map gives an isomorphism

(2.4.3) Ωk
X(log D)⊗O ω−1(−D) −→ ∧n−kΘX(log D).

It induces an isomorphism

(2.4.4) Ωk
X(log D)⊗O (V D

0 DX ⊗O ω−1
X (−D))tens ' V D

0 DX ⊗O ∧n−kΘX(log D)

of left V D
0 DX-modules. The (•)tens means we use the OX-structure induced from the

tensor product for the first tensor product over OX in (2.4.4). Moreover, we can see

(V D
0 DX ⊗O ω−1

X (−D))triv gives the left V D
0 DX-module structure of

Ωk
X(log D)⊗O (V D

0 DX ⊗O ω−1
X (−D))tens.

It is easy to check that the above isomorphism induces an isomorphism of complexes of

left V D
0 DX-modules

SPD(V D
0 DX) := [0→ V D

0 DX⊗O∧nΘX(logD)→ ...V D
0 DX⊗OΘX(logD) −→ V D

0 DX → 0],

with the first term of degree −n, which is called the logarithmic Spenser complex of

V D
0 DX . Since SPD(V D

0 DX) is induced from (2.4.4), we obtain an isomorphism

(2.4.5) SPD(V D
0 DX) ' DRD((V D

0 DX ⊗O ω−1
X (−D))tens)

as complexes of left V D
0 DX-modules. Therefore, by (2.4.2) and (2.4.5) we obtain an

isomorphism between the de Rham complex and the Spencer complex.

Proposition 2.4.6. We have isomorphisms

SPD(V D
0 DX) ' DRD(V D

0 DX)⊗O ω−1
X (−D) ' DRD((V D

0 DX ⊗O ω−1
X (−D))tens),

of complexes of left V D
0 DX-modules.
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Suppose N ∈ Mod(V D
0 D

op
X ). Define

SPD(N ) := N ⊗V D0 DX SPD(V D
0 DX),

the logarithmic Spenser complex of N . By Proposition 2.4.6, we have isomorphisms

SPD(N ) ' N ⊗V D0 DX DRD((V D
0 DX ⊗O ω−1

X (−D))tens) ' DRD(N ⊗O ω−1
X (−D))

of complexes of C-sheaves. Symmetrically, replacing N by M ⊗O ωX(D) (because of

side-changing), we also have an isomorphism

DRD(M) ' SPD(M⊗O ωX(D))

of complexes of C-sheaves.

Now assumeM• (N • resp.) is complex inDb(V D
0 DX) (Db(V D

0 D
op
X ) resp.), the bounded

derived category of left (right resp.) V D
0 DX-modules. Define

DRD(M•) := DRD(V D
0 DX)

L
⊗V D0 DX M

•,

and

SPD(N •) := N •
L
⊗V D0 DX SPD(V D

0 DX).

Since every term of DRD((V D
0 DX) and SPD((V D

0 DX) is locally free over V D
0 DX ,

DRD(M•) = DRD((V D
0 DX)⊗V D0 DXM

•,

and

SPD(N •) =M•⊗V D0 DXSPD((V D
0 DX).

Therefore, by Proposition 2.4.6 we obtain the following isomorphism.

Corollary 2.4.7. There exists a functorial isomorphism

DRD(M•) ' SPD(M• ⊗O ωX(D)).

In other words, we have a commutative diagram

Db(V D
0 DX)

Db(V D
0 D

op
X ) Db(C).

←

→
DRD(•)←→•⊗ωX(D)

←→
SPD(•)
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2.5. Residue Maps for Left V D
0 DX-modules

To define residue maps, we assume that D is not only normal crossing but also globally

D =
r∑
i=1

Di

with each Di irreducible and nonsingular (following conventions from algebraic geometry,

such divisors are called reduced simple normal crossings (SNC) divisors). Since OX is a

left V D
0 DX-module, we obtain the logarithmic de Rham complex,

DRD(OX) = [0 −→ OX
d−→ Ω1

X(log D) −→ ... −→ Ωn(log D) −→ 0][n].

The k-th Poincaré residue map

Ωk(log D)
βk−→ Ωk−1

Di
(log (D −Di)|Di)

is defined by

βk(φ) = βk(φ1 + φ2 ∧
dzi
zi

) = φ2|Di ,

where zi is the local defining function of Di and φ1 + φ2 ∧ dzi
zi

is the local decomposition

of the section φ of Ωk(log D). See also [EV92, §2]. It is obvious that the above Poincaré

residue map induces a short exact sequence of O-modules,

0 −→ Ωk(log (D −Di)) −→ Ωk(log D)
βk−→ Ωk−1

Di
(log (D −Di)|Di) −→ 0.

Let (M,∇) be a OX-module with an integrable logarithmic connection (that means

M is a left V D
0 DX-module if we do not want to emphasis ∇). The Poincaré residue

map induces a commutative diagram as follow and the residue maps for M, denoted by

ResDi∇k,

(2.5.1)

Ωk(log (D −Di))⊗M Ωk+1
X (log D)⊗M

Ωk
Di

(log (D −Di)|Di)⊗M Ωk
Di

(log (D −Di)|Di)⊗M

← →∇k

←

→

←→ ←→ βk+1

←→
ResDi∇

k

for each i. Here 99K denotes that the morphism is induced by the commutative diagram.

To be precise, the residue map ResDi∇k is induced by βk+1 ◦∇k It is clear that it factors
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through Ωk
Di

(log (D −Di)|Di)⊗M and

ResDi∇k ∈ EndODi (Ω
k
Di

(log (D −Di)|Di)⊗M).

In particular, when k = 0, we get ResDi∇ ∈ EndODi (M|Di). From (2.5.1), it is easy to

see that

ResDi∇k = (−1)k · id ∧ ResDi∇.

If we fix coordinates (z1, ..., zn) on a neighborhood U ′ such that D|′U = (z1 · ... ·zr = 0),

then locally we can define an integrable logarithmic connection for M|Di induced from

the following diagram,

(2.5.2)

Ω1
X(log D)⊗M Ω2

X(log D)⊗M

M|Di Ω1
D1

(log (D −Di)|Di)⊗M|Di .

←→ β1

← →∇1

←→ β2

← →
∇|Di

To be precise, for a section m ∈M|D1(U), the connection is defined by

∇|Di(m) = β2(∇1(
dzi
zi
⊗m)),

where m is a lift of m inM(U). It is obvious that the definition of ∇|Di does not depend

on both the lift m and the local defining function of Di. It is also not hard to see ∇|Di is

integrable. Therefore, we obtain anODi-module with an integrable logarithmic connection

(M|Di ,∇|Di) on Di along D(i), where D(i) = (D −Di)|Di .

2.6. Logarithmic Extentions and Minimal Polynomials of Residue Maps

Now assume that (E ,∇) is a holomorphic vector bundle of finite rank on X with

an integrable logarithmic connection along D. In this case, E|X\D is a flat holomorphic

vector bundle on U . In some situation, such a pair (or just E if ∇ is obvious) is called a

logarithmic extension of E|X\D if we want to emphasis E|X\D.

Example 2.6.1. Let B =
∑
αiDi be an integral divisor supported on D. We know that

(OX(B), d) is a logarithmic extension of OX\D with the holomorphic differential d. The

residue of OX(B) along Di is −αi · Id.

Fix coordinates (z1, ..., zn) on a open neighborhood U ′ so that D = (z1 · ... · zr = 0).

By diagram (2.5.2), (E|Di ,∇|Di) is a holomorphic vector bundle on Di with a logarithmic
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connection along D(i) on U ′ ∩ Di. By Lemma 2.2.1(3), EndODi (E|Di) has an induced

integrable logarithmic connection ∇(i) along D(i) on U ′ ∩Di; that is

(∇(i)φ)e = (id⊗ φ)(∇|Di(e))−∇|Di(φ(e))

for a test section e.

Lemma 2.6.2. There exists a polynomial b(s) ∈ C[s] such that

b(ResDi∇) = 0

for each i.

Proof. With the above local chart, by local calculation (see for instance the proof of

[HTT08, Proposition 5.2.15]), we know that ResDi∇|U∩Di is ∇(i)-flat, which means

∇(i)(ResDi∇|U) = 0.

Hence, ResDi∇|U∩Di\D(i) is locally constant with respect to ∇(i). Take bi(s) to be the

minimal polynomial of (ResDi∇)(z) ∈ EndC(E(z)) for some point x on U ∩ Di \ D(i),

where E(z) is the fiber of E at z. Covering X by a family of such U ’s, we obtain

bi(ResDi∇|Di\D(i)) = 0.

After picking a test section e ∈ Γ(Di, E|Di), set

e′ = bi(ResDi∇)e ∈ Γ(Di, E|Di).

Hence e′|Di\D(i) = 0. But E|Di is torsion-free, which tells us e′ = 0. Therefore,

bi(ResDi∇) = 0.

�

It is not hard to see that bi(s) in the above proof is the minimal polynomial of ResDi∇.

We denote it by bDi(s). Clearly, the roots of bDi(s) are the eigenvalues of (ResDi∇)(z)

for any z ∈ X (which means eigenvalues of ResDi∇ are locally constant). Therefore, it

makes sense discuss eigenvalues of the residue map along each irreducible component of

D for any logarithmic extensions globally.

If B =
∑
αiDi is a divisor supported on D, then by Lemma 2.2.1(1)

E(B) = E ⊗ OX(B)



25

has an integrable logarithmic connection ∇B. It is not hard to see that the residue is

given by

(2.6.3) ResDi∇B = ResDi∇− αi · Id.

See [EV92, Lemma 2.7] for detail. Thus, the roots of minimal polynomial of ResDi∇B

are shifted by αi to the right.



26

CHAPTER 3

Multi-indexed Deligne Extensions

In this chapter, we construct a special kind of log-D-modules from local systems defined

on the complement of a normal crossing divisor, called multi-indexed Deligne extensions.

We begin by local extensions first.

3.1. Local extensions on ∆n

Notation. We use τ to denote an interval [α, α + 1) or (α, α + 1] for some α ∈ R, and

(τi)
r
i=1 = (τ1, ..., τi) an r-tuple of such intervals for some r ∈ Z. When r is clear from

the context, simply write (τi) for short. We say τ < τ ′ if interval τ is on the left side of

interval τ ′ (we also say τ ′ ≥ τ if τ ′ is not less than τ) and β < τ if β is on the left side of

(not in) the interval τ for some β ∈ R (we also say β ≥ τ if β is not less than τ). This

order gives a partial order on the set of all (τi)
r
i=1.

Suppose X = ∆n is the product of n-copies of unit disks with a complex coordinate

system (z1, . . . , zn) and U = ∆∗r×∆n−r with the open embedding j : U ↪−→ X. Let L be

a local system of rank m on U . From L we get the induced monodromy representation

ρL : π1(U) −→ GL(V,C),

where V is any fiber of L, and the induced vector bundle V = L ⊗C OU , with a natural

flat connection ∇. Indeed, for s ∈ V , s =
∑
fici in a basis ci of a local trivialization of L,

∇(s) =
∑

dfi ⊗ ci ∈ Ω1
X ⊗ V .

Use γi to denote the monodromy operators along zi; that is the image of loops around zi

under ρL.
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Take the universal covering of U with the induced complex structure,

X̃ := Hr ×∆n−r

U = ∆∗r ×∆n−r,

←→ exp

where Hr is the product of r-copies of upper half planes with coordinates (w1, . . . , wr), so

that for i = 1, . . . , r, we have zi = e−2π
√
−1wi .

Under this setting, we know that exp−1L is trivial on X̃. Choose a basis {cj}mj=1 of

H0(X̃, exp−1L) ' V . Then we have

(3.1.1) cj(w1, . . . , wi + 1, . . . , wr, zr+1, . . . , zn) = γi · cj(w1, . . . , wi, . . . , wr, zr+1, . . . , zn).

Lemma 3.1.2. Assume (τi) is a fixed r-tuple of intervals. There exists a unique Γ
τj
j ∈

gl(V,C) for each j = 1, . . . , r, such that

(1) exp(−2π
√
−1Γτii ) = γi,

(2) Re{all eigenvalues of Γτii } ⊂ τi,

(3) Γτii (i = 1, . . . , r) mutually commute.

Proof. Since γ• mutually commute, there exists a decomposition

V = ⊕Vk

such that γj(Vk) ⊂ Vk and γj|Vk has a single eigenvalue for every pair (j, k). By looking

at each Vk, it suffices to assume that each γj has a single eigenvalue. Suppose the Jordan

decomposition of γj for all j are

γj = γj,sγj,u,

where γj,s is the semi-simple part of γj and γj,u is the unipotent part of γj.

Under such setting, log(γj,u) exists and

log(γj,u) = (γj,u − Id)− (γj,u − Id)2

2
+ ....

The above is a finite sum, because γj,u are unipotent. log(γj,s) also exist, and are unique

up to 2nπ
√
−1. Hence, there exist such Γ

τj
j uniquely because of condition (2). The

third condition can also be satisfied because of the assumption that each γj has a single

eigenvalue. �

For a fixed r-tuple (τi), we define
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(3.1.3) sj = e
∑r
i=1 Γ

τi
i log zi · cj,

for j = 1, . . . ,m, where log zi = −2π
√
−1wi. By (3.1.1) and Lemma 3.1.2(2), each sj

descends to a global holomorphic section of V on U . Namely, {sj}mj=1 gives a trivialization

of V . Then we define,

(3.1.4) V(τi) := ⊕mj=1OXsj,

which is naturally a subsheaf of j∗V . By definition, all sj are singular along zi (i = 1, . . . , r)

as sections of j∗V . Moreover, the connection ∇ of V on U induces an integral logarithmic

connection ∇(τi) of V(τi) on X along D = (z1 · · · zr = 0) by

(3.1.5) ∇(τi)sj = ∇(τi)e
∑r
i=1 Γ

τi
i log zi · cj =

r∑
i=1

dzi
zi
⊗ Γτii · sj

Thanks to Lemma 3.1.2(3), ∇(τi) is integrable. Therefore, we see that V(τi) is a logarithmic

extension of V . We also see

ResDi(∇(τi)) = Γτii

, where Di is the divisor defined by zi = 0. Moreover, Since Γτii + ki · Id = Γτi+kii and

zkii = ekilog zi,, we obtain

V(τi)(−D′) = V(τi+ki),

where D′ =
r∑
i=1

kiDi.

By construction, we know that (•)(τi) is functorial. In particular, if L1 is a sub-local

system of L, then we have a short exact sequence of V D
0 DX-modules,

(3.1.6) 0 −→ V(τi)
1 −→ V(τi) −→ (

V
V1

)(τi) −→ 0,

where V1 = L1 ⊗C OU .

3.2. Sheaves of Sections of Moderate Growth

The local construction of V(τi) depends on the choice of coordinate systems of ∆n. We

need a more intrinsic way to define extensions of V globally. In this section, I will recall

the construction of Deligne’s meromorphic extension of V following [Bjö93].
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Suppose that X is a complex manifold of dimension n with a normal crossing divisor

D =
∑
Di in this section.

Definition 3.2.1 (Good Coverings). An open covering {Uα} of X \D is said to be good

if the following conditions are satisfied

(1) Every Uα is simply connected

(2) For every relatively compact subset K of X, there are only finitely many Uα

having non-empty intersections with K.

Remark 3.2.2. The definition of good coverings is not the paracompactness of X \ D,

because K in condition (2) is a subset of X but not of X \ D. Furthermore, good

coverings for X \ D always exist. To be precise, take a local chart (z1, . . . , zn) of a

polydisk neighborhood ∆n so that D = (z1 · · · zr = 0). Define

U+
i = {z ∈ ∆n | Re(zi) < |Im(zi)|} and U−i = {z ∈ ∆n | Re(zi) > −|Im(zi)|}.

For every subset C of {1, . . . , r}, define

UC = ∩i∈CU+
i

⋂
∩i/∈CU−i .

Then {UC} is a good covering of ∆n\D when C goes over all subset of {1, . . . , r}. Covering

X by polydisk neighborhoods, we obtain a good covering of X \D.

Let L be a local system on X \D of rank m. Assume that (V = L⊗COX\D,∇) is the

induced flat vector bundle. Fix a good covering {Uα} of X \D. Suppose locally {cαj }mj=1

trivialize L|Uα for each α. Suppose s ∈ Γ(U, j∗(V)) for some open subset of X. Then

(3.2.3) s|U∩Uα =
∑
j

fαj c
α
j ,

where fαj ∈ Γ(U ∩ Uα,OX).

Definition 3.2.4. A section s ∈ Γ(U, j∗(V)) is said to be of moderate growth along U ∩D
if for every z0 ∈ U ∩ D there exists a polydisk neighborhood ∆n of z0 with coordinates

(z1, . . . , zn) and a pair of constants C, k ≥ 0 such that

|fαj (z)| ≤ A · d(z,∆n ∩D)−k

for every pair of α, j and any z ∈ Uα ∩∆n. Here d is the standard distance function on

∆n and fαj ’s are as in (3.2.3). Then we obtain Vmod, a subsheaf of j∗(V), consisting of

moderate sections along D.
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It is easy to check that the moderate growth condition is independent of choices of

good coverings and local trivializations of L (or see [Bjö93, Remark 4.1.5]). Thus, so

is Vmod. We followed [Bjö93, §IV] for the construction of Vmod. Indeed, Vmod can be

constructed for any hypersurface D similarly like this; see [Bjö93, §IV].

Example 3.2.5. We denote by OX(∗D) the sheaf of meromorphic functions on X that

are holomorphic on X \D. When L = CX\D, by Riemann extension theorem,

OX\D, mod = OX(∗D).

It is well-known that OX(∗D) is a coherent sheaf of rings (see e.g. [Kas03, Appendix

A.1]). It is clear from definition that Vmod is an OX(∗D)-module. By Cauchy integral

formula for several complex variables, Vmod is a left DX-module (with the DX-module

structure induced from that of j∗(V)). In this way, Vmod is a left DX(∗D)-module, where

DX(∗D) := DX ⊗OX(∗D) ' OX(∗D)⊗DX .

Lemma 3.2.6. Locally on a polydisk neighborhood ∆n of X,

Vmod|∆n = V(τi) ⊗O (OX(∗D)|∆n),

for any V(τi).

Proof. Assume that X = ∆n, with a local coordinates (z1, . . . , zn) and D = (z1 · · · zr =

0). It is enough to prove that

Γ(X,Vmod) = Γ(X,V(τi) ⊗OX(∗D))

for any fixed r-tuple (τi). Since each s
(τi)
j = e

∑r
i=1 Γ

τi
i log zi · cj is of moderate growth along

D, we know

Γ(X,V(τi) ⊗OX(∗D)) ⊂ Γ(X,Vmod).

Conversely, assume s ∈ Γ(X,Vmod). Take the good covering {UC} of X as in Remark

3.2.2. On each UC , s can be written as

s|UC =
∑
j

fCj cj,

where fCj are holomorphic functions on UC with moderate growth. But

s|UC =
∑
j

fCj cj =
∑
j

fCj e
−

∑r
i=1 Γ

τi
i log zi · sj|UC =

∑
j

gCj sj.
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Since sj’s are globally defined on X \D and linear independent, for a fixed j all gCj glue

to a holomorphic function gj on X \D for each j = 1, ...,m. Since fCj and all entries of

the matrix

e−
∑r
i=1 Γ

τi
i log zi

are of moderate growth along D, gj are of moderate growth along D. Hence, gj are

meromorphic along D as explained in Example 3.2.5. So s ∈ Γ(X,V(τi) ⊗O OX(∗D)).

Therefore

Vmod = V(τi) ⊗O OX(∗D).

�

We also denote Vmod, the Deligne meromorphic extension of V , by V(∗D) in order to

be consistent with OX(∗D) (see Example 3.2.5). By the above lemma, V(∗D) is a locally

free OX(∗D)-module, and each V(τi) gives a local trivialization.

Assume

f : (Y,E) −→ (X,D)

is a morphism of pairs, i.e. f is a morphism of complex manifolds, and (f ∗D)red = E and

M is an OX(∗D)-module. Since

f ∗M = OY ⊗f−1OX f
−1(OX(∗D)⊗OX(∗D)M) = OY (∗E)⊗f−1OX(∗D) f

−1M,

f ∗(M) is an OY (∗E)-module. In this definition, it is not necessary to assume that D

is SNC. Similarly, if moreover, M is a left DX(∗D)-module, then f ∗M is also a left

DY (∗E)-module.

If E is also an SNC divisor, and N is a left V D
0 DX-module, then similarly f ∗N is a

left V E
0 DY -module with the left V E

0 DY -action induced by the morphism

ΘY (log E) −→ f ∗ΘX(log D).

More generally than Lemma 3.2.6, the following lemma tells us that every logarithmic

extension is a OX(∗D)-lattice of Vmod.

Lemma 3.2.7. If V is a logarithmic extension of V (assuming existence), then

Vmod ' V ⊗O OX(∗D)

as left DX(∗D)-modules.
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Proof. Since V|X\D = V and V ⊗OX(∗D) is torsion-free, the natural map

V ⊗OX(∗D) ↪−→ j∗(V)

is injective. First, we prove that all sections of V ⊗OX(∗D) are of moderate growth.

First we assume X = ∆, the unit disk, and D = {0} first. In this case, by some

classical theory about complex ODE’s (see [HTT08, Theorem 5.1.4] for instance), sections

of V ⊗O OX(∗D) are of moderate growth.

In general, we assume X = ∆n. If s is a section of V ⊗O OX(∗D), then since j∗(V) =

V(τi) ⊗OX j∗OU , we can write s =
∑

j fjsj for some sections fj of j∗OU and sections sj as

in (3.1.3). For any inclusion ∆ ↪→ X satisfying ∆ ∩ D = {0}, as in 1-dimensional case

we know fj|∆ are meromorphic at 0. Hence fj are meromorphic along D. Hence s is of

moderate growth.

Now we know that particularly sections of V are of moderate growth. By Lemma 3.2.6,

this means

V ↪−→ V(τi) ⊗OX(∗D).

Hence, for some k � 0, we have a short exact sequence both as OX-modules and V D
0 DX-

modules,

0 −→ V −→ V(τi)(kD) −→ V
(τi)(kD)

V
−→ 0.

SinceOX(∗D) is flat overOX , after tensoring withOX(∗D), we obtain another short exact

sequence both asOX(∗D)-modules and V D
0 DX-modules (the V D

0 DX-module structures are

induced by product rules (see Lemma 2.2.1)(1)),

0 −→ V ⊗O OX(∗D) −→ Vmod −→
V(τi)(kD)

V
⊗O OX(∗D) −→ 0.

It is clear that
V(τi)(kD)

V
is supported on the divisor D. By analytic nullstellensatz,

V(τi)(kD)

V
⊗O OX(∗D) = 0.

Therefore, we get

Vmod ' V ⊗O OX(∗D),

as OX(∗D)-modules and left V D
0 DX-modules and hence also as left DX(∗D)-modules. �
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Suppose M and N are two left DX(∗D)-modules. By the product rule similar to

Lemma 2.2.1(1),M⊗OX(∗D)N has an induced left DX(∗D)-module structure. Similarly,

by the chain rule similar to Lemma 2.2.1(3), HomOX(∗D)(M,N ) has an induced left

DX(∗D)-module structure.

Lemma 3.2.8. Assume that V and V ′ are two vector bundles with integrable connections

on X \D. With the induced integrable connections, as DX(∗D)-modules

(1) Vmod ⊗OX(∗D) V ′mod ' (V ⊗OX\D V ′)mod

(2) EndOX(∗D)(Vmod) ' EndOX\D(V)mod

(3) HomOX(∗D)(Vmod,V ′mod) ' HomOX\D(V ,V ′)mod.

Proof. We prove the first isomorphism. The other two can be proved similarly.

Since sections of Vmod ⊗OX(∗D) V ′mod are of moderate growth,

Vmod ⊗OX(∗D) V ′mod ↪−→ (V ⊗OX\D V
′)mod.

Clearly the cokernal of the above inclusion is a coherent OX(∗D)-module supported on

D. Therefore, the cokernal is 0 by the analytic nullstellensatz. So

Vmod ⊗OX(∗D) V ′mod ' (V ⊗OX\D V
′)mod.

�

Denote the category of DX-modules by Mod(DX). Assume M∈ Mod(DX). Set

M∇ := ker∇ = ker(M ∇−→ Ω1
X ⊗M).

Lemma 3.2.9.

V∇mod = j∗L.

Proof. By definition, we have

Vmod Ω1
X ⊗ Vmod

j∗V Ω1
X ⊗ j∗V

←→∇

←
↩

→ ←
↩→

←→∇

By the left exactness of j∗,

(j∗V)∇ = j∗L.
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Since sections of j∗L are of moderate growth by definition, clearly we have

V∇mod = j∗L.

�

Denote the category of OX(∗D)-coherent (locally finite presented) modules with DX-

module structures extending the OX-module structures by

Conn(X;D).

Morphisms are just morphisms of the corresponding DX-modules. Hence Conn(X;D) is

naturally a full subcategory of Mod(DX). Notice that in this definition, it is not necessary

to assume that D is SNC. Moreover, It is easy to see that Conn(X;D) is closed under

bifunctors • ⊗OX(∗D) • and HomOX(∗D)(•, •).

Definition 3.2.10. Suppose M ∈ Conn(X;D). By the analytic Nullstellensatz, the

nature morphism

M ↪−→ j∗(M|X\D)

is injective. It is called regular along D if

M j∗(M|X\D)

(M|X\D)mod

←↩ →
←↩
→ ←↩

→

i.e. the above natural morphism factor throught (M|X\D)mod (M|X\D is an integrable

connection on X \D). All such M form a full subcategory of Conn(X;D). Denote this

subcategory by

Connreg(X;D).

The above definition of regularity is coincide with the regularity defined in [Bjö93,

§V.3] (see [Bjö93, Proposition 5.3.9]). See also Theorem 4.1.7.

By analytic Nullstellensatz, the following lemma is easy to prove.

Lemma 3.2.11. If M∈ Connreg(X;D), then

M = (M|X\D)mod.

By the above lemma and Lemma 3.2.8, we see that Connreg(X;D) is also closed under

bifunctors • ⊗OX(∗D) • and HomOX(∗D)(•, •).
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Theorem 3.2.12 (Deligne [Del70]). The functor ker∇|X\D induces an equivalence of

categories

Connreg(X;D) Loc(X \D),←→'

where Loc(X \D) is the category of C-local systems on X \D.

Proof. Suppose M and M′ ∈ Connreg(X;D). Then, by definition

HomConnreg(X;D)(M,M′) = Γ(X,HomOX(∗D)(M,M′)∇))

Use L and L′ to denote the underlying local system of M|U and M′|U respectively. By

Lemma 3.2.8 (3), Lemma 3.2.9 and Lemma 3.2.11,

Γ(X,HomOX(∗D)(M,M′)∇) ' HomCX\D(L,L′).

Therefore, ker∇|X\D induces

HomConnreg(X;D)(M,M′) ' HomCX\D(L,L′),

which means the functor is fully faithful.

For essential surjectivity, suppose L ∈ Loc(X\D). Then by the definition of regularity

Vmod ∈ Connreg(X;D),

where V = L⊗OU . �

The above theorem is Deligne’s Riemann-Hilbert correspondence for Deligne’s mero-

morphic extensions. Riemann-Hilbert correspondence for regular holonomic D-modules

is based on this theorem.

Clearly, ker∇ induces

Conn(X \D) ' Loc(X \D).

We thus also have the following equivalence.

Corollary 3.2.13. The functor •|X\D induces an equivalence of categories

Connreg(X;D) Conn(X \D).←→'

3.3. Bernstein-Sato Polynomials and Multi-indexed Deligne Extensions

We have constructed the canonical extension, Vmod = V(∗D) of V . From now on, we

forget the moderate-growth structure Vmod (because the moderate-growth condition is not
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needed anymore), but only memorize the meromorphic structure V(∗D). In this section,

we will canonically and globally construct V(τi) via Bernstein-Sato polynomials.

Suppose that m is a local section of V(∗D) on a open neighborhood of z ∈ Di for

some fixed i. We focus on the V D
0 (DX)z(stalk of V D

0 (DX) at z )-submodule of V(∗D)z

generated by the germ of m at z. By Lemma 3.2.6, we have the inclusion

(V D
0 DX)z ·mz ⊂ V(τi)(kD)z,

for some k � 0 and a fixed r-tuple (τi). Since OX,z is a noetherian ring, (V D
0 DX)z ·mz is

finite generated over OX,z. Suppose locally D is defined by z1 · · · zr = 0 around the point

z. Then we have the following result about the minimal polynomial of zi∂i-action.

Proposition 3.3.1. For each Di, there exists a polynomial bDi(s) ∈ C[s] such that

bDi(zi∂i) ·
(V D

0 DX)z ·mz

zi · (V D
0 DX)z ·mz

= 0.

Proof. For simplicity, set

W0 = (V D
0 DX)z ·mz.

Assume W0 ⊂ V(τi)(kD)z for some k ∈ Z. Then we have a short exact sequence

(3.3.2) 0 −→ Wj+1

ziWj

−→ Wj

ziWj

−→ Wj

Wj+1

−→ 0,

whereWj+1 =Wj∩V(τi)(kD−(j+1)Di)z for j ∈ Z≥0. We also have short exact sequences

(3.3.3) 0 −→ zi ·
Wj

Wj+1

−→ Wj+1

ziWj+1

−→ Wj+1

ziWj

−→ 0.

Since
Wj

Wj+1

↪−→ V(τi)(kD − jDi)z
V(τi)(kD − (j + 1)Di)z

,

the zi∂i-action on
Wj

Wj+1
is the restriction of the residue ResDi∇ of V(τi)(kD−jDi) on

Wj

Wj+1
.

Hence, by Lemma 2.6.2, there exists some bj(s) ∈ C[s] such that bj(zi∂i) annihilates
Wj

Wj+1

for each j . Similarly, there exists some b′j(s) ∈ C[s] such that b′j(zi∂i) annihilates zi · Wj

Wj+1

for each j.

On the other hand, by Artin-Rees lemma

(3.3.4)
Wj+1

ziWj

= 0

for j � 0. By (3.3.2), (3.3.3) and (3.3.4), the assertion follows inductively. �
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Definition 3.3.5. Suppose 0 6= mz ∈ V(∗D)z for some point z ∈ Di. All the polynomials

annihilating
V D0 (DX)z ·mz
ziV D0 (DX)z ·mz

is an ideal of C[s]. The generator of this ideal (since C[s] is

a PID) is called the Bernstein-Sato polynomial of m along the germ of Di, denoted by

bDi,mz(s). The order of mz along the germ of Di is defined by

ordDi(mz) = min{real parts of roots of bDi,mz(s)}.

Conventionally, set

ordDi(0) = +∞,

and the root of 0 polynomial to be also +∞.

When V = OX\D and f is a meromorphic function which is holomorphic on X \D, it

is clear that ordDi(f) is exactly the order of vanishing of f along the germ of Di.

Corollary 3.3.6. For some fixed r-tuple of intervals (τi) and fixed point z ∈ X,

V(τi)
z = {m ∈ V(∗D)z | ordDi(m) ≥ τi for all Di passing z}.

Proof. By (2.6.3) and the proof of Proposition 3.3.1,

V(τi)
z ⊆ {m ∈ V(∗D)z | ordDi(m) ≥ τi ∀i}.

On the other hand, assume that for m ∈ V(∗D)z ordDi(m) ≥ τi for all i. Let k be the

smallest integer so that m ∈ V(τi)(kD)z. The proof is over if k ≤ 0. Assume on the

contrary k > 0. Then there exist an i so that,

W0 * V(τi)(kD −Di)z.

This particularly implies W0

W1
6= 0. Since W0

W1
is a quotient of W0

ziW0
, bDi,m(zi∂i) annihilates

W0

W1
. On the other hand,

W0

W1

↪−→ V(τi)(kD)z
V(τi)(kD −Di)z

.

Hence, W0

W1
is killed by bi(zi∂i), where bi(s) is the minimal polynomial of V(τi)(kD) along

Di (see Lemma 2.6.2). However, by (2.6.3) and the local construction of V(τi), bi(s) and

bDi,m(s) have no common roots. Therefore, by Bézout’s lemma, 1 annihilates W0

W1
. So

W0

W1
= 0, which is a contradiction. �

Remark 3.3.7. If M is a finite generated (V D
0 DX)z-submodule of V(∗D)z, by the same

method, their exists a polynomial b(s) ∈ C[s] such that b(zi∂i) annihilates M
ziM

.
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Corollary 3.3.8. For any section m of V(∗D), ordDi(mz) does not depend on z ∈ Di.

Proof. It is enough to proof that ordDi(mz) is locally constant for z ∈ Di. Hence it is

sufficient to assume that X is a small polydisk with coordinate (z1, ..., zn) and D is defined

by z1 · ... · zr = 0. Assume mz ∈ Vτiz for some r-tuple (τi).

If V is of rank 1, then mz = f · s where f is a holomorphic function round z and s

is the generator of V(τi) as in (3.1.4). Let k be the order of f along Di. Then we know

(V D
0 DX)z ·mz ∈ V(τi)(−kDi)z, but (V D

0 DX)z ·mz /∈ V(τi)(−(k + 1)Di)z. Hence,

ordDi(mz) = α + k

where α is the eigenvalue of ResDi∇(τi). By Weierstrass Preparation Theorem, k is locally

constant around z ∈ Di, and by Lemma 2.6.2, α is also locally constant. Hence, in this

case ordDi(mz) is locally constant.

In general, suppose ρL is the π1-representation on X \ D corresponding to the flat

bundle V . Take an irreducible sub-representation ρ1 of ρL. Then we have a short exact

sequence,

0 −→ V(τi)
1 −→ V(τi) −→ V(τi)

2 −→ 0,

where V(τi)
1 is the extension constructed from ρ1 and V(τi)

2 is the quotient constructed from

the quotient representation. By the induction assumption, ordDi(mz) is locally constant,

where mz is the image of mz in V(τi)
2,z . The above short exact sequence induces another

short exact sequence

0 −→M −→W −→W −→ 0,

whereW = (V D
0 DX)z ·mz,W = (V D

0 DX)z ·mz, andM =W∩V(τi)
1,z . By Remark 3.3.7, the

minimal polynomial of M exist. Moreover, since the rank of V(τi)
1 is 1, the smallest root

of the minimal polynomial ofM is locally constant. Since the Bernstein-Sato polynomial

of mz is the product of that of mz and the minimal polynomial of M, we conclude that

ordDi(mz) is locally constant. �

Therefore, we can define ordDi(m) to be this common value. Then for a fixed r-tuple

(τi), we can globally define V(τi) as follow:

Definition 3.3.9. For each open subset U of X,

V(τi)(U) := {m ∈ V(∗D)(U) | ordDi(m) ≥ τi for all Di intersects U}.
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If P is a section of V D
0 DX , then it is easy to see

ordDi(P ·m) ≥ ordDi(m).

Hence, V(τi) is a V D
0 DX-module. Moreover, by Corollary 3.3.6, (3.1.4) gives a local trivi-

alization of V(τi) as locally free OX-modules. Hence,

Proposition 3.3.10. V(τi) is a logarithmic extension of V globally.

Assume (τi) is a fixed family of unit intervals for divisor D globally. From local

description, we know V(τi) has the following characterization (by Lemma 3.1.2)

{real parts of eigenvalues of ResDi∇(τi)} ⊆ τi

for each i. Therefore, when τi = (−1, 0] for each i, V(τi) is the Deligne canonical extension.

Motivated by this observation, for arbitrary family (τi) we call V(τi) the multi-indexed

Deligne extension of V with index (τi). If τi = τ for every i, write Vτ instead.

For a fixed family (τi), now we denote category of all logarithmic extensions with the

characterization

{real parts of eigenvalues of ResDi∇} ⊆ τi

by Conn(τi)(X;D). Morphisms are V D
0 DX-linear sheaf morphisms. Hence Conn(τi)(X;D)

is naturally a full subcategory of Mod(V D
0 DX).

For a morphism V −→ W in the category of Conn(X \D), by the Corollary 3.2.13, it

corresponds to a morphism

ψ : V(∗D) −→W(∗D).

The restriction of ψ on V(τi) gives us a V D
0 DX-linear morphism

ψ|V(τi) : V(τi) −→W(∗D).

Suppose m is a section of V(τi). Then for each Di,
V D0 DX ·ψ(m)

V D0 DX(−Di)·ψ(m)
is a quotient of

V D0 DX ·m
V D0 DX(−Di)·m

. Hence the Bernstein-Sato polynomial of m annihilates
V D0 DX ·ψ(m)

V D0 DX(−Di)·ψ(m)
.

Therefore, ψ(m) ∈ W(τi). Namely, ψ|V(τi) factors through W(τi). Conversely, for a

morphism in Conn(τi)(X;D), tensoring by OX(∗D) gives a morphism in Connreg(X;D).

Hence,

HomConn(X;D)(V(∗D),W(∗D)) ' HomConn(τi)(X;D)(V
(τi),W(τi)).
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However, by Corollary 3.2.13, we have an isomorphism

HomConn(X;D)(V(∗D),W(∗D)) ' HomConn(X\D)(V ,W).

Since it is induced by •|X\D, the morphism

HomConn(X;D)(V(∗D),W(∗D)) −→ HomConn(X\D)(V ,W)

also factors through HomConn(τi)(X;D)(V(τi),W(τi)). In short, we have proved the following

lemma.

Lemma 3.3.11.

HomConn(τi)(X;D)(V
(τi),W(τi)) ' HomConn(X\D)(V ,W).

By the above lemma, we obtain a refine version of Riemann-Hilbert correspondence

for log D-modules.

Theorem 3.3.12. For a fixed family (τi), the functor •|X\D induces an equivalence of

categories

Conn(τi)(X;D) ' Conn(X \D).

As a byproduct, we also know for any (τi) the inclusion

V(τi) ↪→ V(∗D)

is natural.

There may exist logarithmic extension of V other than multi-indexed Deligne exten-

sions. For instance, assume

f : (Y,E) −→ (X,D)

is a morphism of smooth log pairs, then for some τ

f ∗(Vτ )

is a logarithmic extension of f ∗V , but can hardly be a multi-indexed Deligne extension

because the eigenvalues of its residues have been significantly changed after pull-back.

3.4. Multi-indexed Deligne Extensions and Parabolic Structures of Vmod

With the same notation as in the previous section, immediately, we obtain

Proposition 3.4.1. V(τi) ⊆ V(τ ′i) if τi ≥ τ ′i for all i.
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The above proposition means with the natural partial order for all families of unit

intervals, V(∗D) is decreasingly filtered by the multi-indexed Deligne extensions. Since

the set of eigenvalues of the residue map along any Di is finite (see Lemma 2.6.2), such

filtration is discrete in the following sense,

V(τi) = V(τi+(−1)a(τi)εi),

for 0 ≤ εi � 1, where a(τi) = 1 when τi is left closed and right open unit interval, and

a(τi) = 0 otherwise. Moreover, by (2.6.3), we have

(3.4.2) V(...,τj+1,... ) = V(τi) ⊗OX(−Dj).

If D =
∑r

i=1Di is finite, for any (ti) = (t1, . . . , tr) ∈ Rr or R-divisor B =
r∑
i=1

tiDi,

then we also write

V(ti) = VB := V((ti−1,ti]),

and
(ti)V = BV := V([ti,ti+1)).

If ti = t for all i, then denote V(t,...,t) and (t,...,t)V by V t and tV respectively. For instance, 0V
and V0 are the lower and upper canonical extensions respectively in [Kol86]. In [Sai90],
0V and V0 are denoted by V≥0 and V>−1 respectively.

When the local monodromies are unipotent, the order of any section along each Di

can only be integers. Hence,

V(ti) = V(btic),

and

V(ki) = (ki)V ,

when (ki) ∈ Zr.

Definition 3.4.3. For any nonzero section m of V(∗D), the total order of m is an R-

divisor defined by

ord(m) =
∑
i

ordDi(m)Di,

Proposition 3.4.4. For a section m, we have

ord(m) = max{
∑

tiDi | m ∈ (ti)V},
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and

ord(m) = sup{
∑

(ti − 1)Di | m ∈ V(ti)}.

Proof. We prove the first equation; the second is similar and left to interested readers.

Without loss of generality, we assume that D is finite.

B = sup{
r∑
i=1

tiDi | m ∈ (ti)V} =
r∑
i=1

tiDi.

If ti > ordDi(m) for each i, then m is not a section of (τi)V . Hence B is a well-defined

divisor. By definition of (ti)V , B = ord(m). Hence the sup is a max. �

Example 3.4.5. If V = OU , then VB = OX(−bBc), and BV = OX(−dBe), where B is

an R-divisor supported on D.

For a good covering {Uα} of X \D. Suppose {cαj }mj=1 trivialize L|Uα for each α (since

Uα is simply connected). Suppose s ∈ Γ(U, j∗(V)) for some open subset U of X. Then

(3.4.6) s|U∩Uα =
∑
j

fαj c
α
j ,

where fαj ∈ Γ(U ∩ Uα,OX).

Definition 3.4.7. For any R-divisor B supported on D, a section s ∈ Γ(U, j∗(V)) is said

to be locally L2 along D with weight B if for every z0 ∈ U ∩ D there exists a polydisk

neighborhood ∆n of z0 with B|∆n =
∑
tiDi|∆n and Di|∆n defined by holomorphic function

zi, such that ∫
∆n∩Uα

|fαj |2

Π|zi|2ti
du <∞

for every pair of α, j. Here du is the standard volume form on ∆n and fαj ’s are as in

(3.4.6).

Similar to sections of moderate growth, the condition for a section to be locally L2

is also independent of choices of good covers and local trivializaitions of L. Denote by

L2(L,D;B) the subsheaf of j∗V consisting of locally L2 sections with weight B.

When L = CX\D and B is effective,

L2(L,D;B) = I(ψB) = OX(−bBc),

where ψB =
∑
ti log|gi| is the plurisubharmonic function associated to B locally, and

I(ψB) is the analytic multiplier ideal associated to ψB. See e.g. [Dem].
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Proposition 3.4.8. For any R-divisor B supported on D, we have an identification

VB = L2(L,D;B).

In particular, when B = 0 we have V0 = L2(L,D).1

Proof. Assume that X = ∆n, the coordinate of X is z = (z1, . . . , zn), D = (z1 · · · zr = 0)

and B =
∑r

i=1 tiDi. It is enough to prove that

Γ(X,VB) = Γ(X,L2(L,D;B)).

Since each s
((ti−1,ti])
j = e

∑r
i=1 Γ

(ti−1,ti]
i log zi · cj (as in (3.1.3)) is L2 with weight B,

Γ(X,VB) ⊆ Γ(X,L2(L,D;B)).

Conversely, assume s ∈ Γ(X,Vmod). Take the good covering {UC} of X as in Remark

3.2.2. On each UC , s can be written as

s|UC =
∑
j

fCj cj,

where fCj ’s are holomorphic functions on UC . But

s|UC =
∑
j

fCj cj =
∑
j

fCj e
−

∑r
i=1 Γ

τi
i log zi · sj|UC =

∑
j

gCj sj.

Since sj’s are globally defined on X \D and linear independent, for a fixed j all gCj glue

to a holomorphic function gj on X \D for each j = 1, . . . ,m. Since∫
X∩UC

|fCj |2

Π|zi|2ti
du <∞,

by Cauchy-Schwarz inequality and the eigenvalue assumption on Γ(ti−1,ti] (see Lemma 3.1.2)

we obtain ∫
X

|gj|2du <∞

Hence, gj extends to a holomorphic function on X for each j. So s ∈ Γ(X,VB). �

The above proposition means that all VB form a parabolic structure of V(∗D).

1This explains why the upper canonical extension is usually called the Deligne canonical extension of V.
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CHAPTER 4

Global Calculus of V (τi)

In this Chapter, we discuss some global properties of V(τi) and D-modules induced

from V(τi).

4.1. Holonomicity of V(∗D) and Middle extensions

Let (X,D) be a complex manifold with a normal crossing divisor D. To make notation

simpler, we assume D is finite and every irreducible component is smooth; that is D is a

simple normal crossing (SNC) divisor. Suppose that L is a local system on X \ D, and

V = L⊗OX\D as before. From the previous construction, we obtain a bunch of Deligne

extensions of V , V(∗D) and V(τi). We already know that V(τi) is a V D
0 DX-module which is

also locally free over OX for every index (τi). In this section, we will find out generators

of V(∗D) as a DX-module in terms of V(τi), and prove the holonomicity of V(∗D).

Lemma 4.1.1. For some r-tuple of intervals (τi),

(1) if τk ≤ [−1, 0) for some k, then for z ∈ Dk the morphism

∂k : (
V(τi)

V(τi)(λkDk)
)z −→ (

V(τi)(Dk)

V(τi)((λk + 1)Dk)
)z

is isomorphic, where λk is the only integer in τk;

(2) if [0, 1) < τj for some j, then for z ∈ Dj the morphism

∂j : V(τi)
z −→ V(τi)(Dj)z

is isomorphic.

Proof. By functorality, we can use inductions on the rank of V to prove both of the two

statement. Therefore, by picking an irreducible sub-representation of ρL, it is sufficient to

assume that V is of rank 1. Assume s is the local generator of V(τi) defined as in (3.1.3).

Then we have for each i, there exists λi ∈ C

∂is = λi
s

zi
.
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By the assumption on the index (τi), we know λk < 0 and λj > 0. Thereafter, for some

holomorphic function f on a neighborhood of z (assume z = 0),

∂i(fs) = ∂i

∞∑
j=0

fjz
j
i s =

∞∑
j=0

(j + λi)fjz
j
i

s

zi
.

From above, if λi /∈ Z≤0,

(4.1.2) ∂i : V(τi)
z −→ V(τi)(Di)z

is isomorphic. This proves the second statement. If λk ∈ Z<0, only z−λk−1
k s is not in the

image of ∂k. Therefore, in this case,

(4.1.3) ∂k : (
V(τi)

V(τi)(λkDk)
)z −→ (

V(τi)(Dk)

V(τi)((λk + 1)Dk)
)z

is an isomorphism of C-vector spaces. Consequently, combining (4.1.2) and (4.1.3), the

first statement is also proved. �

Proposition 4.1.4. For any r-tuple of intervals (τi) so that τi ≤ [−1, 0 for all i, we have

DXV(τi) = V(∗D).

Proof. From Lemma 4.1.1(1) and (3.4.2), for any k ≥ 0 we have locally

Vτi((k + 1)D) =
n∑
k=1

∂kV(τi)(kD) + V(τi)(kD).

On the other hand

V(∗D) = lim
k→∞
V(τi)(kD).

Therefore, V(τi) generates V(∗D) over DX . �

By the second part of Lemma 4.1.1, we also get the following proposition.

Proposition 4.1.5. For any r-tuple of intervals (τi) satisfying [0, 1) < τi for all i, we

have

DXV(τi) = DXV(−1,0].

Proof. By the assumption on (τi),

DXV(k,k+1] ⊆ DXV(τi) ⊆ DXV(−1,0]
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for k � 0. But by the second part of Lemma 4.1.1, we know DXV(k,k+1] = DXV(−1,0].

Therefore, we have DXV(τi) = DXV(−1,0]. �

Combining the arguments of the proof of Proposition 4.1.4 and Proposition 4.1.5,

we obtain the following proposition about DX-submodules generated by Multi-indexed

extensions.

Proposition 4.1.6. Asume I ⊆ {1, . . . , r}. For any r-tuple (τi) such that τi ≤ [−1, 0)

for i ∈ I, and [0, 1) < τi for i /∈ I, we have

DXV(τi) = DXV(τ ′i),

where τ ′i = [−1, 0) for i ∈ I, and τ ′i = (−1, 0] for i /∈ I.

Inspired by the above proposition, for the same index (τi) set

VI := DXV(τi).

We call the first extremal case V∅ the minimal extension of V , thus it is also denoted by

Vmin. The other extreme is V{1,...,r} = V(∗D). Thus V(∗D) is also called the maximal

extension of V . All VI other than these two extremal cases are called middle extensions

associated to proper subset I of {1, . . . , r}. This phenomenon is also analogous to real

Morse theory (if we go through a critical value, then the homotopy of the level set changes).

Theorem 4.1.7. V(∗D) is holonomic. Thus, so is VI for every I ⊂ {1, . . . , r}.

Proof. Since holonomicity is local, we can assume X = ∆n with coordinate system

(z1, . . . , zn) and D = (z1 · · · zr = 0). First, we prove the statement when the rank of V is

1. By Lemma 3.2.6, we can assume that V(∗D) is a free OX(∗D)-module with generator

s satisfying ∂is = λi
s
zi

for i = 1, . . . , r, and λi ∈ C such that Re(λi) ∈ [−1, 0), and ∂is = 0

for i = r + 1, . . . , n. By Proposition 4.1.4, V(∗D) is generated by s as a DX-module.

Hence,

V(∗D) ' DX∑r
i=1DX(zi∂i − λi) +

∑n
i=r+1DX∂i

.

Therefore, the characteristic variety of V(∗D) is

ch(V(∗D)) = Λ = {(x, ξ) | z1ξ1 = · · · = zrξr = ξr+1 = · · · = ξn = 0},

where ξi is the symbol of ∂i. Since Λ is Lagrangian, V(∗D) is holonomic in this case.
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In general, by functoriality after picking an irreducible sub representation of ρL on

∆∗r ×∆n−r, we get a short exact sequence of integrable connections on ∆∗r ×∆n−r,

0 −→ V1 −→ V −→
V
V1

−→ 0,

where V1 corresponds to the irreducible sub representation. Hence, because of the equiv-

alence in Theorem 3.2.12, we also get a short exact sequence of Deligne meromorphic

extensions,

0 −→ V1(∗D) −→ V(∗D) −→ V(∗D)

V1(∗D)
−→ 0.

Since its rank is 1, the statement for V1 is proved. Consequently, by additivity of charac-

teristic varieties and inductions, the statement is proved. �

4.2. Duality

In this section, we are dealing with dualities of Deligne extensions. For simplicity, we

assume D is finite.

We set V∗ = HomOX\D(V ,OX\D). By Lemma 2.2.1(3), V∗ has an induced integrable

connection.

Lemma 4.2.1. For any fixed r-tuple (τi), we have a natural isomorphism

HomOX (V(τi),OX) ' V∗(−τi)

as V D
0 DX-modules.

Proof. Since HomOX (V(τi),OX)|X\D ' V∗, HomOX (V(τi),OX) is a logarithmic extension

of V∗. By the residue characterization of V(τi), it is sufficient to check the statement

locally. Assume that {s∗j} is the local basis of HomOX (V(τi),OX) dual to the basis of V(τi)

defined in (3.1.3). Since s∗j(sk) = δjk, we know

s∗j = c∗j · e
∑r
i=1−Γ

τi
i log zi ,

where c∗j ’s are multi-valued flat basis of V∗ dual to cj’s. Hence,

∇s∗j =
r∑
i=1

dzi
zi
⊗ (−Γτii )T · s∗j ,
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where •T is the transpose operator. Hence, we have ResDi∇ = (−Γτii )T . Since real

parts of eigenvalues of (−Γτii )T are in −τi, the proof is finished thanks to the eigenvalue-

characterization of multi-indexed Deligne extensions. �

The above duality is the duality of multi-indexed Deligne extensions as OX-modules.

By Lemma 3.2.8(3), HomOX(∗D)(V(∗D),OX(∗D)) ' V∗(∗D) as DX(∗D)-modules. This

gives us the OX(∗D)-dual of V(∗D).

By Theorem 4.1.7, we already know that V(∗D) is holonomic. Hence, it is interesting

to ask what the DX-dual of V(∗D) is and what the V D
0 DX-dual of V(τi)’s are.

Koszul complexes. Before we proceed, let us recall Koszul complexes for future use.

Suppose A is an abelian group, and

φi : A −→ A

are pairwise commuting endomorphisms of A for i = 1, . . . , l. Then the Koszul complex

associated to φ1, . . . , φl, denoted by K(φ1, . . . , φl;A), is inductively defined as follow:

(1) K(φ1;A) is defined to be the complex

0 −→ A
φ1−→ A −→ 0,

with the first A of degree −1;

(2) K(φ1, . . . , φi+1;A) is the total complex of the double complex

K(φ1, . . . , φi;A)

K(φ1, . . . , φi;A).

← →φi+1

Clearly from the above definition, K(φ1, . . . , φl;A) is independent of the order of φi’s and

K(•; •) is functorial. If furthermore, A is a C-vector space, then the Koszul complex

becomes

K(φ1, . . . , φl;A) = [A⊗C ∧lCl −→ . . . −→ A⊗C Cl −→ A],

a⊗ e1 ∧ e2 ∧ · · · ∧ ek 7→
k∑
i=1

(−1)kφi(a)⊗ e1 ∧ · · · ∧ êi ∧ · · · ∧ ek.

The following lemma is easy but useful. So the proof is omitted.



49

Lemma 4.2.2. Suppose {φi}li=1 and {ψi}li=1 are two families of pairwise commuting en-

domorphisms of abelian groups A and B respectively. If for each i we assume

K(φi)
q.i.
' K(ψi)

where
q.i.
' denotes the quasi-isomorphism of complexes, then we have

K(φ1, . . . , φl;A)
q.i.
' K(ψ1, . . . , ψl;B).

Furthermore, if one of the φi’s is an isomorphism, then we have

K(φ1, . . . , φl;A)
q.i.
' 0.

After the general theory about Koszul complexes, we start to prove duality theorems.

First, we will construct Koszul resolutions of V(τi) locally.

Temporarily, we assume X = ∆n with coordinate system (z1, . . . , zn), and D =

(z1 · · · zr = 0). For any fixed r-tuple (τi), define V D
0 DX-morphisms

φi : V D
0 DX ⊗O V(τi) −→ V D

0 DX ⊗O V(τi)

by

φi(P ⊗ sj) = Pxi∂i ⊗ sj − P ⊗ Γτii · sj
for i = 1, . . . , r, where sj and Γτii are as that in (3.1.3), and

φi(P ⊗ sj) = P∂i ⊗ sj

for i = r + 1, . . . , n. Since V(τi) is a V D
0 DX-module, we have a natural morphism of

V D
0 DX-modules

V D
0 DX ⊗O V(τi) −→ V(τi)

defined by

P ⊗ s 7−→ P · s.

By the construction of φi’s, the above morphism induces a morphism of complexes of

V D
0 DX-modules,

K(φ1, . . . , φn;V D
0 DX ⊗O V(τi)) −→ V(τi).

Globally, this is nothing but the canonical morphism

SP(V D
0 DX ⊗O V(τi)) −→ V(τi).
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Theorem 4.2.3. The morphism

SPD(V D
0 DX ⊗O V(τi))

q.i.
'−→ V(τi)

is a quasi-isomorphism as complexes of left V D
0 DX-modules. Thus, SP(V D

0 DX ⊗O V(τi))

is a locally free resolution of V(τi). In particular, we have

SPD(V D
0 DX)

q.i.
'−→ OX .

Proof. Since we have already established the canonical morphism globally, it is enough

to prove the statement locally. Hence, assume X = ∆n and D = (z1 · · · zr = 0).

First, we assume V is of rank 1. By identifying V(τi) with OX locally, we have to prove

that

K(φ1, . . . , φn;V D
0 DX)

q.i.−→ OX ,

where φi : V D
0 DX −→ V D

0 DX is defined by

φi(P ) = P (xi∂i − λi)

with Re(λi) ∈ τi for i = 1, . . . , r, and

φi(P ) = P∂i

for i = r + 1, . . . , n.

We also need the order filtration of V D
0 DX , F•V

D
0 DX . It induces a filtration of

K(φ1, ..., φn;V D
0 DX),

F•K(φ1, . . . , φn;V D
0 DX).

It is not hard to see

Gr•FK(φ1, . . . , φn;V D
0 DX) ' K(ξ1, . . . , ξn; Gr•FV

D
0 DX),

where ξi’s are symbols of xi∂i or ∂i in Gr•FV
D

0 DX . On the other hand, since {ξ1, . . . , ξn}
is a regular sequence in Gr•FV

D
0 DX , we know

(4.2.4) K(ξ1, . . . , ξn; Gr•FV
D

0 DX)
q.i.−→ OX .

This implies, for p ≥ 1 (K(ξ1, . . . , ξn; Gr•FV
D

0 DX) is a complex of graded modules)

(4.2.5) K(ξ1, . . . , ξn; Gr•FV
D

0 DX)p
q.i.
' 0.
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By (4.2.4) and (4.2.5), for any 0 ≤ p < q, we have quasi-isomorphisms

FpK(φ1, . . . , φn;V D
0 DX)

q.i.
↪−→ FqK(φ1, . . . , φn;V D

0 DX).

Since

K(φ1, . . . , φn;V D
0 DX) = lim

p→+∞
FpK(φ1, ..., φn;V D

0 DX)

and

F0K(φ1, ..., φn;V D
0 DX) = OX ,

by exactness of direct limit functors, we obtain a quasi-isomorphism

(4.2.6) K(φ1, . . . , φn;V D
0 DX)

q.i.−→ OX .

In general, by picking an irreducible sub-representation of ρL, we obtain a short exact

sequence of V D
0 DX-modules,

0 −→ V(τi)
1 −→ V(τi) −→ V

(τi)

V(τi)
1

−→ 0.

Since V D
0 DX is flat over OX (locally free indeed), tensoring V D

0 DX , we also obtain another

short exact sequence of V D
0 DX-modules,

0 −→ V D
0 DX ⊗O V

(τi)
1 −→ V D

0 DX ⊗O V(τi) −→ V D
0 DX ⊗O

V(τi)

V(τi)
1

−→ 0.

From it, we obtain a short exact sequence of complexes,

0 0

0 SPD(V D
0 DX ⊗O V

(τi)
1 ) V(τi)

1 0

0 SPD(V D
0 DX ⊗O V(τi)) V(τi) 0

0 SPD(V D
0 DX ⊗O

V(τi)

V(τi)
1

)
V(τi)

V(τi)
1

0

0 0 .

←→ ←→

←→ ←→

←→ ←→

←→

←→ ←→

←→ ←→
←→

←→ ←→

←→ ←→

←→
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Since V1 is of rank 1, we have proved that the first row is exact. The third row is also exact

by inductive assumptions. Therefore, by the Snake Lemma, so is the second row. �

By Proposition 2.4.6, in particular we have the following quasi-isomorphism.

Corollary 4.2.7. The natural morphism

DRD(V D
0 DX)

q.i.
'−→ ωX(D)

is a quasi-isomorphism.

By Theorem 4.2.3, we have

DX
L
⊗V D0 DX V

(τi)
q.i.
' DX ⊗V D0 DX SPD(V D

0 DX ⊗O V(τi)) ' SPD(DX ⊗O V(τi)).

More than this we have the following resolution.

Proposition 4.2.8. The morphism

SPD(DX ⊗O V(τi))
q.i.
'−→ DX ⊗V D0 DX V

(τi)

is a quasi-isomorphism as complexes of left DX-modules; that is SPD(DX ⊗O V(τi)) is a

locally free resolution of DX ⊗V D0 DX V
(τi) as left DX-modules.

Proof. By a similar inductive argument as in the proof of Theorem 4.2.3, it is sufficient

to assume that V(τi) is of rank 1. In this case, by identifying V(τi) with OX locally, we

have

SPD(DX ⊗O V(τi)) ' K(φ1, ..., φn;DX)

where φi : DX −→ DX is defined by

φi(P ) = P (xi∂i − λi)

with Re(λi) ∈ τi for i = 1, . . . , r, and

φi(P ) = P∂i

for i = r + 1, . . . , n. Then the symbols of x1∂1, . . . , xr∂r, ∂r+1, . . . , ∂n form a regular

sequence in Gr•FDX . Therefore, by arguments similar to the proof of (4.2.6), we obtain

K(φ1, . . . , φn;DX)
q.i.−→ DX∑r

i=1DX(zi∂i − λi) +
∑n

i=r+1DX∂i
' DX ⊗V D0 DX V

(τi).

�
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We also have another resolution in terms of de Rham complexes.

Corollary 4.2.9. For any (τi), we have

DRD(V(τi) ⊗O DX)
q.i.
'−→ ωX ⊗O (DX ⊗V D0 DX V

(τi−1))

as complexes of right DX-modules.

Proof. By Corollary 4.2.7, we know

DRD(V D
0 DX ⊗O V(τi))

q.i.
'−→ ωX(D)⊗O V(τi).

Thus we have

(4.2.10) DRD(V D
0 DX ⊗O V(τi))⊗V D0 DX DX

'−→ (ωX(D)⊗O V(τi))
L
⊗V D0 DX DX .

By Corollary 2.2.2, we see

(4.2.11) (ωX(D)⊗O V(τi))
L
⊗V D0 DX DX ' (ωX ⊗O DX)

L
⊗V D0 DX V

(τi−1).

Meanwhile, by the involution (2.4.1) (taking D = 0), we also know

(4.2.12) (ωX ⊗O DX)
L
⊗V D0 DX V

(τi−1) ' ωX ⊗O (DX
L
⊗V D0 DX V

(τi−1)).

On the other hand, similar to the involution (2.4.1), the following canonical morphism

V D
0 DX ⊗O V(τi) −→ V(τi) ⊗O V D

0 DX

(P ⊗ v) ·Q 7→ P · (v ⊗Q)

gives an isomorphism between V D
0 DX ⊗O V(τi) and V(τi)⊗O V D

0 DX as bi-V D
0 DX-modules.

Thus, we obtain

(4.2.13) DRD(V D
0 DX ⊗O V(τi)) ' DRD(V(τi) ⊗O V D

0 DX)

as complexes of right V D
0 DX-modules. Combining (4.2.11) (4.2.12) and (4.2.13), we obtain

(4.2.14) DRD(V(τi) ⊗O DX)
'−→ ωX ⊗O (DX

L
⊗V D0 DX V

(τi−1)).

By Proposition 4.2.8, we can get rid of L in (4.2.14). Therefore,

DRD(V(τi) ⊗O DX)
q.i.
'−→ ωX ⊗O (DX ⊗V D0 DX V

(τi−1))

as complexes of right DX-modules. �
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Theorem 4.2.3 enable us to calculate

(4.2.15) RHomV D0 DX (V(τi), V D
0 DX)⊗O ω−1

X (−D).

Since RHomV D0 DX (V(τi), V D
0 DX) is naturally a complex of right V D

0 DX-modules, after

tensoring ω−1
X (−D) (the side-changing operation), it becomes a complex of left V D

0 DX-

modules.

Theorem 4.2.16. For any r-tuple (τi), we have

RHomV D0 DX (V(τi), V D
0 DX)⊗O ω−1

X (−D)[n]
q.i.
'−→ V∗(−τi).

Proof. By Theorem 4.2.3,

RHomV D0 DX (V(τi), V D
0 DX) ' HomV D0 DX (SPD(V D

0 DX ⊗O V(τi)), V D
0 DX).

We have the following isomorphisms of right V D
0 DX-modules,

HomV D0 DX (V D
0 DX⊗OV(τi)⊗O∧kΘX(logD), V D

0 DX) ' HomO(V(τi)⊗O∧kΘX(logD), V D
0 DX)

' HomO(V(τi),Ωk
X(log D)⊗O V D

0 DX) ' HomO(V(τi),OX)⊗O Ωk
X(log D)⊗O V D

0 D.
The first two”'” follow from the tensor-hom adjunction. It is because V D

0 DX is locally

free over OX that the last ”'” is true. By Lemma 4.2.1, we know

HomO(V(τi),OX) = V∗(−τi).

Therefore,

(4.2.17) HomV D0 DX (SPD(V D
0 DX ⊗O V(τi)), V D

0 DX)[n] ' DRD(V∗(−τi) ⊗O V D
0 DX).

Moreover, we also have two canonical isomorphisms

V∗(−τi) ⊗O V D
0 DX ' V D

0 DX ⊗O V∗(−τi)

P · (v ⊗ 1) 7→ P ⊗ v

as left V D
0 DX-modules and

V∗(−τi) ⊗O V D
0 DX ' V D

0 DX ⊗O V∗(−τi)

v ⊗ P 7→ (v ⊗ 1) · P
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as right V D
0 DX-modules. By the above two isomorphisms, we obtain

(4.2.18) DRD(V∗(−τi) ⊗O V D
0 DX) ' DRD(V D

0 DX ⊗O V∗(−τi))

as complexes of right V D
0 DX-modules. Since we use the trivial left V D

0 DX-module struc-

ture of V D
0 DX ⊗O V∗(−τi) for DRD(V D

0 DX ⊗O V∗(−τi)), clearly we have

(4.2.19) DRD(V D
0 DX ⊗O V∗(−τi)) ' DRD(V D

0 DX)⊗O V∗(−τi)

as complexes of right V D
0 DX-modules. By Corollary 4.2.7, we also know

(4.2.20) DRD(V D
0 DX)⊗O V∗(−τi)

q.i.
'−→ ωX(D)⊗O V∗(−τi)

Combining (4.2.17), (4.2.18), (4.2.19) and (4.2.20) together, we get the desired quasi-

isomorphism.

�

So we can define the V D
0 DX-dual of V(τi) by

ExtnV D0 DX (V(τi), V D
0 DX)⊗O ω−1

X (−D) = V∗(−τi).

This theorem tells us that the OX-dual and V D
0 DX-dual of V(τi) are canonically isomor-

phism.

For a left DX-module M, recall that the DX-dual of M is defined by

D(M) := RHomDX (M,DX)⊗O ω−1[n].

By Theorem 4.2.3, we have

RHomDX (DX ⊗V D0 DX V
(τi),DX) ' HomV D0 DX (SPD(V D

0 DX ⊗O V(τi)),DX)

' HomV D0 DX (SPD(V D
0 DX ⊗O V(τi)), V D

0 DX)⊗V D0 DX DX .

By Theorem 4.2.16, then we have

D(DX ⊗V D0 DX V
(τi))

q.i.
'−→ (V∗(−τi) ⊗O ωX(D))

L
⊗V D0 DX DX ⊗O ω

−1
X [n].

By Corollary 2.2.2, we also have

(V∗(−τi) ⊗O ωX(D))
L
⊗V D0 DX DX ⊗O ω

−1
X ' (ωX ⊗O DX ⊗O ω−1

X )
L
⊗V D0 DX V

∗(−τi)(D).
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However, by (2.4.1) taking D = 0, we have

(ωX ⊗O DX ⊗O ω−1
X ) ' DX

as DX-bi-modules. Thanks to Proposition 4.2.8, we have proved the following duality.

Theorem 4.2.21. For any r-tuple (τi),

D(DX ⊗V D0 DX V
(τi))

q.i.
'−→ DX ⊗V D0 DX V

∗(−τi−1).

We have a natural morphism of DX-modules

(4.2.22) DX ⊗V D0 DX V
(τi) −→ V(∗D)

defined by

P ⊗ s 7−→ P · s.

Its image is just DXV(τi).

Lemma 4.2.23. For any r-tuple (τi) satisfying

τi ≤ [−1, 0)

for all i, the natural DX-morphism

DX ⊗V D0 DX V
(τi) −→ V(∗D)

is isomorphic.

Proof. Suppose that we have a short exact sequence of flat vector bundles on X \D,

0 −→ V1 −→ V −→ V2 −→ 0.

Then by Theorem 3.3.12, we have a short exact sequence of V D
0 DX-modules

0 −→ V(τi)
1 −→ V(τi) −→ V(τi)

2 −→ 0.

Tensoring DX over V D
0 DX , by Proposition 4.2.8 we have a short exact sequence

0 −→ DX ⊗V D0 DX V
(τi)
1 −→ DX ⊗V D0 DX V

(τi) −→ DX ⊗V D0 DX V
(τi)
2 −→ 0.

However, by Theorem 3.2.12, we also have another short exact sequence of DX-modules

0 −→ V1(∗D) −→ V(∗D) −→ V2(∗D) −→ 0.
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Hence, by induction and Five-Lemma, it is sufficient to assume that V is of rank 1. In

this case, assume s is the generator of V(τi) as in (3.1.3) satisfying

zi∂i · s = λis

with Re(λi) ∈ τi for i = 1, ..., r, and

∂i · s = 0

for i = r + 1, ..., n. Thus, we see

V(τi) ' V D
0 DX∑r

i=1 V
D

0 DX(zi∂i − λi) +
∑n

i=r+1 V
D

0 DX∂i
.

Since tensor product is right exact, we know

DX ⊗V D0 DX V
(τi) ' DX∑r

i=1DX(zi∂i − λi) +
∑n

i=r+1DX∂i
.

But by Proposition 4.1.4, we also know

V(∗D) = DXV(τi) = DXs '
DX∑r

i=1DX(zi∂i − λi) +
∑n

i=r+1DX∂i
.

Since in rank 1 case, the natural morphisms are

DX∑r
i=1DX(zi∂i − λi) +

∑n
i=r+1DX∂i

'−→ DX ⊗V D0 DX V
(τi) −→ DXV(τi)

1 7→ 1⊗ s 7→ s,

we have isomorphism

DX ⊗V D0 DX V
(τi) −→ DXV(τi) = V(∗D).

�

Remark 4.2.24. If V = OX\D, then we know

V [0,1) = OX '
V D

0 DX∑r
i=1 V

D
0 DX(zi∂i) +

∑n
i=r+1 V

D
0 DX∂i

.

Tensoring DX , we get

DX ⊗V D0 DX OX '
DX∑r

i=1DX(zi∂i) +
∑n

i=r+1DX∂i
.
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However, we know as DX-modules

OX = DX · OX '
DX∑n

i=1DX∂i
.

This is why we have to put the requirement on (τi) in Lemma 4.2.23. If 0 ∈ τi for some

i, the natural morphism (4.2.22) is neither injective nor surjective in general. This in

particular tells us that DX is not flat over V D
0 DX .

By Theorem 4.2.21 and Lemma 4.2.23, we obtain the following duality for V(∗D).

Theorem 4.2.25. For any r-tuple of intervals (τi) satisfying τi ≤ [−1, 0) for all i,

D(V(∗D))
q.i.
'−→ DX ⊗V D0 DX V

∗(−τi−1).

By Corollary 4.2.9 and Lemma 4.2.23, we obtain the de Rham resolution of the right

D-module ωX ⊗O OX(∗D) as follow.

Proposition 4.2.26. For any r-tuple of intervals (τi) satisfying τi ≤ [0, 1) for all i,

DRD(V(τi) ⊗O DX)
q.i.
'−→ ωX ⊗O V(∗D)

as complexes of right DX-modules. In particular, we have

DRD(DX)
q.i.
'−→ ωX(∗D) := ωX ⊗O OX(∗D).

Remark 4.2.27. In [MP16], the authors proved the quasi-isomorphism

DRD(DX)
q.i.
'−→ ωX(∗D)

by using the Eagon-Northcott complex associated to the logarithmic tangent bundle. See

[MP16, Proposition 3.1] for details.

4.3. Regularity of DX ⊗V D0 DX V
(τi)

In this section, regularity of DX ⊗V D0 DX V
(τi) will be proved.

Definition 4.3.1. Suppose M is a holonomic DX-module. Let Λ be its characteristic

variety in T ∗X, and Iλ the ideal sheaf of GrFDX of functions vanishing on Λ. M is

regular if there exists locally a good filtration F• on M such that IΛ ·GrFM = 0.

Proposition 4.3.2. For any index (τi), DX ⊗V D0 DX V
(τi) is regular holonomic.
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Proof. After picking an irreducible sub-representation of ρL on X \D at least locally, we

obtain a short exact sequence of V D
0 DX-modules,

0 −→ V(τi)
1 −→ V(τi) −→ (

V
V1

)(τi) −→ 0.

TensoringDX over V D
0 DX from the left, by Proposition 4.2.8, we get a short exact sequence

of DX-modules

0 −→ DX ⊗V D0 DX V
(τi)
1 −→ DX ⊗V D0 DX V

(τi) −→ DX ⊗V D0 DX (
V
V1

)(τi) −→ 0.

Since regularity and holonomicity are all stable by extensions, by induction on rank of V ,

it is enough to assume V is or rank 1. In this case, locally

DX ⊗V D0 DX V
∗(τi) ' DX∑r

i=1DX(zi∂i − λi) +
∑n

i=r+1DX∂i
,

with λi ∈ τi, which is obviously regular holonomic. �

By Lemma 4.2.23, immediately we obtain

Corollary 4.3.3. V(∗D) is regular.

This corollary implies that the regularity defined in §3.2 is compatible with the regu-

larity of holonomic DX-modules.

4.4. Comparison Theorems

By the classical Riemann-Hilbert correspondence, L
q.i.
' DR(V). SinceX\D is Stein, by

a well-know theorem of Cartan and Oka, Ωk
X\D⊗V is acyclic for j∗, where j : X \D ↪−→ X

is the open embedding. Therefore,

(4.4.1) j∗DR(V)
q.i.
' Rj∗L[n].

Also, by adjunction between j∗ and j−1, we have the natural morphism

(4.4.2) DR(V(∗D)) ↪−→ j∗DR(V).

Then we have the following well-know comparison theorem due to Grothendieck and

Deligne. The idea of the following proof is due to Malgrange.
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Theorem 4.4.3 (Grothendieck-Deligne). The morphism (4.4.2) induces a quasi-isomorphism

DR(V(∗D))
q.i.
' j∗DR(V).

Proof. Since the statement is local, we can assume X is the germ at 0 of Cn and D is

defined by z1 · · · zr = 0. Thereafter, it is enough to prove that the natural morphism

DR(V(∗D))0 −→ (j∗DR(V))0

is a quasi-isomorphism. By picking an irreducible sub-representation of ρL as in the proof

of Theorem 4.1.7, we get a diagram

0 DR(V1(∗D)) DR(V(∗D)) DR( V(∗D)
V1(∗D)

) 0

0 j∗DR(V1) j∗DR(V) j∗DR(V/V1) 0,

←→ ←→

←→

←→
←→

←→

←→

←→ ← → ←→ ←→

where V1 corresponds to the irreducible sub representation (hence of rank 1). It is clear

that the two rows in the above diagram are exact. Hence, by 5-lemma, the statement can

be proved inductively on the rank of L.

After these simplifications, it is sufficient to assume that V(∗D)0 is free of rank 1 over

OX(∗D)0 (assume the generator is s). By Lemma 3.2.6 and (3.1.5), we can assume

∂is = λi
s

zi

for i = 1, . . . , r, where Re(λi) ∈ [0, 1), and

∂is = 0

for i = r + 1, . . . , n. Therefore, DR(V(∗D))0 is just the Koszul complex

K(δ1, . . . , δr, ∂r+1, . . . , ∂n;OX(∗D)0),

where δi = ∂i + λi
zi

.

On the other hand, it is clear that s also generates (j∗V)0 over (j∗OX\D)0 freely. Since

(j∗DR(V))0 ' DR(j∗V)0,

(j∗DR(V))0 is the Koszul complex

K(δ1, . . . , δr, ∂r+1, . . . , ∂n; (j∗OX\D)0).
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Therefore, the statement is reduced to compare the complex

0 −→ OX(∗D)0
δi−→ OX(∗D)0 −→ 0,

and the complex

0 −→ (j∗OX\D)0
δi−→ (j∗OX\D)0 −→ 0

thanks to Lemma 4.2.2. For a function f (meromorphic or of essential singularities along

D), write its Laurent expansion as

f(z1, . . . , zn) =
∑
k∈Z

fk(z1, . . . , zi−1, zi+1, . . . , zn)zki .

Then

(4.4.4) δi(f) = δi(
∑
k∈Z

fkz
k
i ) =

∑
k∈Z

(k + 1 + λi)fkz
k
i .

If λi 6= 0 for some i, then by (4.4.4), δi for both OX(∗D)0 and (j∗OX\D)0 are isomor-

phisms (as C-vector spaces). Hence, by Lemma 4.2.2,

DR(V(∗D))0

q.i.
' (j∗DR(V))0

q.i.
' 0,

in this case. Otherwise, λi = 0 for all i = 1, ..., r. In this case, we are left to prove

K(∂1, ..., ∂n;OX(∗D)0)
q.i.
' K(∂1, ..., ∂n; (j∗OX\D)0).

This can be proved by comparing cohomologies of the complex

0 −→ OX(∗D)0
∂i−→ OX(∗D)0 −→ 0,

and the complex

0 −→ (j∗OX\D)0
∂i−→ (j∗OX\D)0 −→ 0

for all i, via similar use of Laurent expansions. Details are left for interested readers. �

Immediately, from the above theorem and quasi-isomorphism (4.4.1), we get

Corollary 4.4.5.

DR(V(∗D))
q.i.
' Rj∗L[n].

Before we prove other comparison theorems, we need the following lemma. See also

[EV92, Lemma 2.10].
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Lemma 4.4.6. Assume that (E ,∇) is a logarithmic extension of V, such that 0 is not a

eigenvalue of ResD1∇. Then the natural inclusion

DRD(E(−D1)) ↪−→ DRD(E)

is a quasi-isomorphim.

Proof. First, define DRl
D(E) to be the complex

E(−D1) −→ Ω1(log D)⊗ E(−D1)) −→ ... −→ Ωl−1(log D)⊗ E(−D1) −→

−→ Ωl(log (D −D1))⊗ E −→ Ωl+1(log D)⊗ E −→ ... −→ Ωn(log D)⊗ E .

Then we have DR0
D(E) = DRD(E) and DRn

D(E) = DRD(E(−D1)), and inclusions

DRl+1
D (E) ↪−→ DRl

D(E).

By (2.5.1), the quotient of the above inclusion is the complex

Ωl
Di

(log (D −Di)|Di)⊗ E
ResD1

∇l
−−−−−→ Ωl

Di
(log (D −Di)|Di)⊗ E .

Since 0 is not a eigenvalue of ResD1∇, ResD1∇l is isomorphic for each l. Hence, all DRl
D(E)

are quasi-isomorphic. Therefore,

DRD(E(−D1)) ↪−→ DRD(E)

is quasi-isomorphic. �

Inspired by the above Grothendieck-Deligne comparison theorem, it is also interested

to compare DRD(V(τi)) and Rj∗L[n] (or some other sheaves associated to L).

Proposition 4.4.7. For any index r-tuple (τi) such that τi ≤ [0, 1) for all i, the natural

inclusion

DRD(V(τi)) DR(V(∗D))←↩ →q.i.

is a quasi-isomorphism. Thus, the natural morphism

DRD(V [0,1))
q.i.−→ Rj∗L[n]

is quasi-isomorphic.

Proof. Since

V(∗D) = lim
k→+∞

V(τi)(kD),
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we have an induced direct system of De Rham complexes, and

DR(V(∗D)) = lim
k→+∞

DRD(V(τi)(kD)).

Since filtered direct limit functors are exact, it is enough to proved that for such (τi) and

all k ∈ Z≥0, the natural inclusion

(4.4.8) DRD(V(τi)(kD)) ↪−→ DRD(V(τi)((k + 1)D))

is a quasi-isomorphism. Because of Lemma 4.4.6 and the assumption that τi ≤ [0, 1) for

all i, the inclusion (4.4.8) is quasi-isomorphic. Therefore, the proof is complete. �

Assume I ⊆ {1, . . . , n}. Define

DI =
∑
i/∈I

Di.

Then we have two open embeddings,

X \D X \DI X.←↩ →j1 ←↩ →j2

Thereafter,

Theorem 4.4.9. For any r-tuple (τi) such that τi ≤ [0, 1) for i ∈ I, and [0, 1) < τi for

i /∈ I,

DRD(V(τi))
q.i.
'←− j2!Rj1∗L[n].

In particular,

DRD(V [0,1)(−DI))
q.i.
'←− j2!Rj1∗L[n].

Proof. First, we need a natural morphism between DRD(V(τi)) and j2!Rj1∗L. By Propo-

sition 4.4.7 and the assumption on (τi), we see

DRD|X\DI
(V(τi)|X\DI )

q.i.
' Rj1∗L.

Hence, by the adjunction between j−1
2 = j!

2 and j2!, we have a natural morphism

j2!Rj1∗L[n] −→ DRD(V(τi)).

Clearly, it is enough to prove that for any z ∈ DI the natural morphism

(j2!Rj1∗L[n])z −→ DRD(V(τi))z
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is quasi-isomorphic. But for any z ∈ DI , we have (j2!Rj1∗L[n])z ' 0. Hence it is sufficient

to prove that for any z ∈ DI , DRD(V(τi))zis acyclic. Suppose the coordinate system around

z is (z1, ..., zn) and D = (z1 · ... · zr = 0). Then we know

DRD(V(τi))z = K(z1∂1, ..., zr∂r, ∂r+1, ...∂n;V(τi)
z ).

But by Lemma 4.1.1(2), the assumption on (τi), for i /∈ I, the morphism

V(τi)
z

zi∂i−−→ V(τi)
z

is an isomorphism. Hence, by the second part of Lemma 4.2.2, the Koszul complex

K(z1∂1, ..., zr∂r, ∂r+1, ...∂n;V(τi)
0 )

is acyclic. �

Since DV ◦DR ' DR◦D, and j! ' DV ◦Rj∗◦DV (DV is the Verdier duality functor; see

[KS90] for these two isomorphisms of functors), applying Proposition 4.4.7 for V∗(∗D),

we obtain

j!L[n]
q.i.
' DV ◦Rj∗ ◦DVL

q.i.
'−→ DR(D(V∗(∗D)).

Applying Theorem 4.2.25 for V∗, we get

D(V∗(∗D))
q.i.
' DX ⊗V D0 DX V

(−1,0].

Hence, we have

DR(DX ⊗V D0 DX V
(−1,0])

q.i.
' DR(D(V∗(∗D))).

Also, applying Theorem 4.4.9 for I = {1, ..., r}, we get j!L[n]
q.i.
'−→ DRD(V(0,1]). Moreover,

it is clear that the natural morphism of V D
0 DX-modules,

V(0,1] −→ DX ⊗V D0 DX V
(−1,0]

induces a morphism

DRD(V(0,1]) −→ DR(DX ⊗V D0 DX V
(−1,0]).

Combining all these quasi-isomorphisms together, we obtain the following comparisons.

Proposition 4.4.10. The natural morphisms

j!L[n]
q.i.
'−→ DRD(V(0,1])

q.i.
'−→ DR(DX ⊗V D0 DX V

(−1,0])
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are quasi-isomorphisms.

The natural morphism

DX ⊗V D0 DX V
(−1,0] −→ DX ⊗V D0 DX V

[−1,0) ' V(∗D)

induces a morphism

DR(DX ⊗V D0 DX V
(−1,0]) −→ DR(V(∗D)).

After using the quasi-isomorphisms in Proposition 4.4.7 and Proposition 4.4.10, it is easy

to see that the above morphism is just the canonical morphism

j!L[n] −→ Rj∗L[n]

in the Db(CX), where Db(CX) is the derived category of bounded CX-complexes. By

Riemann-Hilbert correspondence (see for instance [Kas03, Theorem 5.7]), the De Rham

functor induces an equivalence of abelian categories between the category of regular holo-

nomic DX-modules and the category of perverse sheaves (which is an abelian category).

Hence, by Proposition 4.4.7 and Proposition 4.4.10, j!L[n] and Rj∗L[n] are perverse.

Hence, we get a morphism

j!L[n] −→ Rj∗L[n]

in the category of perverse sheaves. The minimal extension of L[n] is defined as the image

of the above morphism,

j!∗(L[n]) := imp(j!L[n] −→ Rj∗L[n])

in the category of perverse sheaves (see [HTT08, Definition 8.2.2] or [BBD82]). However,

by construction, we also know

Vmin = im(DX ⊗V D0 DX V
(−1,0] −→ V(∗D)).

In summary, we have proved the following proposition.

Proposition 4.4.11.

j!∗(L[n])
q.i.
' DR(Vmin).

This proposition also explains why DXV(−1,0] is called the minimal extension of V .
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CHAPTER 5

Multi-indexed Log-VHS

We already know how to make nice extensions across normal crossing boundaries from

flat vector bundles. If the flat vector bundle underlies a VHS, it would be interesting to

get nice extensions for the filtrations. The induced extensions turn out to work. All these

extensions are crucial for the study of pure Hodge modules.

5.1. Filtration Structures for Log-VHS and Unipotent Reductions

As before, let (X,D) be a pair of a complex manifold and D =
r∑
i=1

Di a reduced

SNC divisor. Suppose V underlies a PVHS (polarized variation of Hodge structure)

V = (V , F•,V) on X \ D. From now on, we assume all the local monodromies of V
are quasi-unipotent.

Naively, we make the following definition.

Definition 5.1.1. For any index (τi), we define

F (τi)
• := V(τi) ∩ j∗F•,

where the intersection happens inside j∗V .

From the above definition, F
(τi)
• have an induced filtration from that of V(τi). Moreover,

they also inherit the discreteness property,

F (ti)
• = F (ti+ε)

•

and
(ti)F• = (ti−ε)F•

for (ti) ∈ Rn and 0 < ε � 1. But it is not clear whether F
(τi)
• is coherent or not.

However, we will see that F
(τi)
• are locally free with the quasi-unipotent assumption on

local monodromies of V. To prove this, we need the following easy but useful lemma.
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Lemma 5.1.2. If F and G are coherent subsheaves of a holomorphic vector bundle E on

a complex manifold X satisfying F|U = G|U for some open dense U , and F is a subbundle

of E, then

(1) G ⊆ F ;

(2) F = E ∩ j∗F|U , where j : U ↪→ X.

Proof. Since G is torsion-free (as a subsheaf of a holomophic vector bundle), the natural

map

G ↪−→ j∗G|U = j∗F|U
is injective. Hence, (1) follows from (2). For (2), consider the following commutative

diagram,
0 −−−→ F −−−→ E −−−→ E/F −−−→ 0

α

y y β

y
0 −−−→ E ∩ j∗F|U −−−→ E −−−→ E/(E ∩ j∗F|U) −−−→ 0

Since E/F is locally free, kerβ = 0. Therefore the natural morphism α is an isomorphism

by the Snake Lemma.

�

Theorem 5.1.3. For any (τi), F
(τi)
• are subbundles of V(τi).

Proof. This is a local question. Hence we can assumeX = ∆n and U = ∆∗r×∆n−r, where

∆ and ∆∗ are disk and punctured disk respectively. Assume (z1, . . . , zn) are coordinates of

∆n so that D = (z1 · · · zr = 0). Denote the monodromies of V around zi counterclockwise

by γi and denote the multivalued flat sections that generate V by c1, . . . , cm, as in (3.1.1).

Suppose the Jordan decomposition of γi is

γi = γi,sγi,u,

and mi is any fixed positive integer such that

(5.1.4) γmii,s = 1,

for i = 1, . . . , r. Then as in (3.1.4) V(τi) is generated freely by

{e
r∑
i=1

Γ
τi
i log(zi)

vj}
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for any (τi) and i = 1, ...,m. By Lemma 3.1.2, we know

e−2π
√
−1Γ

τi
i = γi,

and the eigenvalues of Γτii are in τi. Write the Jordan decomposition of Γτii as

Γτii = Sτii +Ni.

So

Ni =
−1

2π
√
−1

log(γi,u).

Suppose π : ∆n −→ ∆n is the branched covering satisfying,

(5.1.5) π∗zi =

{
wmii if i = 1, . . . , r

wi otherwise,

where (w1, . . . , wn) are coordinates upstairs. Then the monodromies of π∗V around each

wi are unipotent. Thereafter, by Lemma 3.1.2 Sτii for π∗V is 0 ∈ gl(V,C). Therefore

(π∗V)0 is generated freely by

e

r∑
i=1

miNilog(wi)
π∗vj

for j = 1, ...,m. Furthermore, (π∗V)(ti) is generated freely by all

e

r∑
i=1

miNilog(wi)
r∏
i=1

w
btic
i π∗vj.

The Galois group G of π is isomorphic to
r∏
i=1

Z/(mi). Let g1, ..., gr be generator of G

such that the Galois action on ∆n
w is

w
gj
k = ζ

δkj
mj wk

where ζmj is the mj-th root of unit for all j and k. Clearly, G acts on π∗vj and

(π∗vj)
gi = γi(π

∗vj).

Hence G acts on (π∗V)(ti). A simple computation would show that

(5.1.6) π∗((π
∗V)(ti))G ' (btic/mi)V .

Furthermore, since the monodromies are unipotent, by Schimd’s Nilpotent Orbit Theo-

rem([Sch73]), F•w := F•π
∗V extend to subbundles F 0

•w of (π∗V)0 upstairs.
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Since F 0
•w

r∏
i=1

w
btic
i are subbundles of (π∗V)(ti), we know

F (ti)
•w ' F 0

•w

r∏
i=1

w
btic
i .

Claim. F 0
•w also have G-actions.

Hence F
(ti)
•w have G-actions as well.

Proof of claim. Suppose e ∈ F (ti)
•w . If eg /∈ F (ti)

•w for some g ∈ G, then

0 6= eg ∈ (π∗V)(ti)

F
(ti)
•w

.

On the other hand, G acts on F•w. Hence eg is supported on X \U . Therefore eg generates

a torsion OX submodule of
(π∗V)(ti)

F
(ti)
•w

. This is a contradiction, because F
(ti)
•w are subbundles

(π∗V)(ti). �

Since π is finite and flat, by the Grauert’s base change Theorem, π∗F
(ti)
•w are subbundles

of π∗(π
∗V)(ti). The O∆n

z
-linear morphism

φ : π∗F
(ti)
•w −→ (π∗F

(ti)
•w )G

defined by

φ(s) = s =
1

r∏
i=1

mi

r∑
i=1

mi−1∑
ki=0

s
(
r∏
k=1

g
ki
k )

splits the inclusion

(π∗F
(ti)
•w )G ↪−→ π∗F

(ti)
•w .

Thus as a direct summands of π∗F
(ti)
•w , (π∗F

(ti)
•w )G are subbundles of (btjc/mj)V . Moreover,

it is obvious that

(π∗F
(ti)
•w )G|U = F•.

Hence, by Lemma 5.1.2 (2), we have

(5.1.7) (btjc/mj)F• = (π∗F
(ti)
•w )G.

Since the multi-indexed filtration of V(τi) is discrete ( Qr indexed indeed, because the

monodromies are quasi-unipotent), for any (τi) there exists a (
ni
mi

) ∈ Qr such that
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(5.1.8) V(τi) = (ni/mi)V .

Hence, we also get F
(τi)
• as subbundles of V(τi).

�

Example 5.1.9. O∆n underlies the trivial PVHS on ∆n. We know

(π∗O∆n)0 =
r⊕
i=1

mi−1⊕
ki=0

r∏
l=1

wkil O∆n,0,

and (π∗O∆n)G = O∆n , where π and other notations are as that in the proof of The-

orem 5.1.3. More generally, if B =
∑r

i=1 tiDi is an R-divisor where Di is the divisor

defined by wi = 0, then

π∗(OBU )
G

= π∗(O∆n(−bBc))G = O∆n(−
r∑
i=1

dbtic
mi

eD′i),

where D′i is the divisor defined by zi = 0.

Since F
(ti)
• are subbundles of V(ti), by (3.4.2) and Lemma 5.1.2 (1), we have

(5.1.10) F
(t1,...,tj+1,...,tr)
• = F (ti)

• ⊗OX(−Dj).

More generally we can depict F
(ti)
• in a consistent way for all (ti) ∈ Rr as follow.

The following lemma is inspired by [Kaw02, Lemma 3.5]. The author used the parabolic

structures with respect to Hodge metrics of higher direct images of relative dualizing

sheaves.

Lemma 5.1.11. For any z ∈ X, there exist a polydisk neighborhood U of z and a free

basis {s1, ..., sk} of F 0
• |U such that

(
∏
i

z
bti−ordDi (s1)c
i )s1, ..., (

∏
i

z
bti−ordDi (sm)c
i )sk

generates F
(ti)
• |U freely for any index (ti), where zi is the local defining equation of Di.

Proof. When x /∈ D, the statement is trivial. It is enough to assume x ∈ D. Take U to

be a polydisk neighborhood of x, and construct a Galois covering π of U as in the proof of

Theorem 5.1.3. Notations are as that in the proof of Theorem 5.1.3. Suppose w is a point

lying over z via the Galois covering π, and mw is the maximal ideal sheaf of w in O∆n .
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By the definition of G-action on F
(ti)
•w , G acts on mwF

0
•w. Hence G acts on F 0

•w ⊗ κ(w)

where κ(w) is the residue field of w. Since G is abelian, F 0
•w ⊗ κ(w) (as a C-vector space)

is decomposed into simultaneous eigenspaces with respect to the G-action. Pick sw to be

a simultaneous generalized eigenvector in F 0
•w ⊗ κ(w) such that

sgiw = ζaimisw

for some integers 0 ≤ ai < mi and i = 1, . . . , r. This can be achieved because gmii = 1.

Lift sw to a section s of F 0
•w (shrink U if necessary). Then the mean section

s =
1

r∏
i=1

mi

r∑
i=1

mi−1∑
ki=1

s
(
r∏
k=1

g
ki
k )

r∏
k=1

ζakkimk

satisfying s(w) = sw and sgi = ζaimis. So s′ := (
∏

iw
−ai
i )s is G-invariant and

s′ ∈ F (ai)
•w ⊆ F (−mi+1)

•w .

On the other hand, by (5.1.7) and (5.1.8),

F 0
• = (π∗F

(−mi+1)
•w )G.

Hence s′ descends to a section of F 0
• downstairs.

If one lets sw run over a basis of F 0
•w ⊗ κ(w), the corresponding sections s′ form a free

basis of

(π∗F
(−mi+1)
•w )G = F 0

• .

Similarly, since − ai
mi

+bti+ ai
mi
c ∈ (ti−1, ti], the sections (

∏r
i=1 z

bt+ ai
mi
c

i )s′ form a free basis

of F
(ti)
• , when sw runs over a basis of F 0

•w ⊗ κ(w).

Finally, we have to calculate the order of s′. By (5.1.7) again, we know s′ ∈ (−ai/mi)F•,

but by the construction of s′, we can easily see s′ /∈ (ti)F• whenever ti > −ai/mi for some

i. It follows that s′ /∈ (ti)V whenever ti > −ai/mi for some i. Therefore, we also get

ordDi(s
′) = −ai/mi, thanks to Proposition 3.4.4. �

5.2. Canonical Filtrations for V(∗D) and Vmin

Let (X,D) be a pair of a complex manifold and a reduced SNC divisor D =
∑r

i=1Di

as before. Suppose V underlies a PVHS (polarized variation of Hodge structures) V =
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(V , F•,V) on X \D with quasi-unipotent local monodromies. In §5.1, for any index (τi),

we have established filtered subbundles F
(τi)
• of V(τi) respectively.

By the definition of VHS, the connection of V satisfies the Griffiths’ transversality

condition; that is.

∇(Fp) ⊂ Ω1
X\D ⊗ Fp+1.

By definition, F
(τi)
• and ∇(τi) inherit this condition. Namely, ∇(τi) satisfying the logarith-

mic Griffiths’ transversality condition,

∇(τi)(F (τi)
p ) ⊂ Ω1

X(log D)⊗ F (τi)
p+1.

This means F
(τi)
• give a coherent filtration for V(τi).

For V(∗D) and index of r-tuple (τi) such that τi ≤ [−1, 0), we set

(5.2.1) F (τi)
p V(∗D) =

∑
i

Fp−iDX · F (τi)
i .

By Proposition 4.1.4, F
(τi)
• V(∗D) give a coherent filtration of V(∗D) for each such (τi).

Denote them by (V(∗D), F
(τi)
• ) for all such index (τi). Among them, the canonical one is

FpV(∗D) =
∑
i

Fp−iDX · −1Fi.

This filtration for V(∗D) is canonical in the sense that it defines the Hodge filtration for

the underlying mixed Hodge module of V(∗D) (see [Sai90]). For Vmin, define

(5.2.2) FpVmin =
∑
i

Fp−iDX · F 0
i .

F•Vmin also give a coherent filtration of Vmin. The construction of these two Hodge

filtrations is due to Saito. With such filtrations, (V(∗D), F•) underlies a mixed hodge

module, and (Vmin, F•) underlies a pure Hodge module. See [Sai90, Theorem 3.20 and

§3.c]. We will go back to this again in Chapter 6.

5.3. Filtered Comparison Theorems

Filtered Modules and Graded modules. First, let us recall some definitions about

filtered modules and graded modules. Suppose G• is a Z-graded ring (bounded from

below and possibly not commutative), and S is a bi-G•-module and S ′ is left G•-module.

If we forget the grading structures, S ⊗G S ′ is a left G-module, where G is G• without
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grading. Define the grading by

(S ⊗G S ′)p = {
∑
i

sp−i ⊗ s′i | sp−i ∈ Sp−i and s′i ∈ S ′i}.

Then it is clear that

S ⊗G• S ′ =
⊕
p

(S ⊗G S ′)p,

which is a left G•-module. If S is only a right G•-module, then S ⊗G• S ′ is a graded

abelian group.

Suppose (A,F•) is a filtered ring (always assume that the filtration is bounded from

below and exaustive, but A is not necessarily commutative). A filtered A-module (M,F•)

is A-modules M with a filtration compatible with that of A; i.e.

FpA · FlM ⊆ Fp+lM.

For simplicity, we call such modules (A,F•)-modules. The Rees ring of (A,F•) is a graded

ring

RF (A) =
⊕
p

FpA · zp ⊂ A[z,
1

z
].

The symbol variable z is introduced to help memorize the order. From definition, RF (A)

is a Z[z]-algebra. We can recover (A,F ) from RF (A) by

A ' RF (A)⊗Z[z] Z[z]/(z − 1)Z[z],

and

FpA = im(RF (A)p → RF (A)⊗Z[z] Z[z]/(z − 1)Z[z]).

Moreover, the associated graded ring of (A,F•) is

GrF• A ' RF (A)⊗Z[z] Z[z]/zZ[z].

Similarly, the Rees module of (M,F•) is

RF (M) =
⊕
p

FpM · zp

which is naturally a graded RF (A)-module. For instance, (V D
0 DX , F•) with the order

filtration (induced from that of DX) is a filtered sheaf of ring.

If N• is graded RF (A)-bi-module (left or right) which is in priori a Z[z]-module, then

N• is strict if it is z-torsion free. Denote the category of filtered (A,F•)-modules (with
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obvious morphisms) by FMod(A,F•) and the category of strict graded RF (A)-modules by

GMods(RF (A)) (as a full subcategory of GMod(RF (A)), the category of graded RF (A)-

modules). Then, we have the following easy but useful lemma.

Lemma 5.3.1. The functor RF (•) gives an equivalence of categories

FMod(A,F•) ' GMods(RF (A)).

If (M,F•) a filtered (A,F•)-module and (N,F•) is a left (A,F•)-module, then the

filtered tensor product (M,F•)⊗(A,F•) (N,F•) is given by the left-filtered the strict graded

RF (A)-module RF (M)⊗RF (A) RF (N) as in Lemma 5.3.1. In particular, if (M,F•) is only

a right (A,F•)-module, (M,F•)⊗(A,F•) (N,F•) is a filtered abelian group.

The following lemma is obvious.

Lemma 5.3.2.

GrF• ((M,F•)⊗(A,F•) (N,F•)) ' RF (M)⊗RF (A) RF (N)⊗Z[z]
Z[z]

zZ[z]
' GrF•M ⊗GrF• A

GrF•N.

Remark 5.3.3. The filtered tensor product can be generalized to filtered complexes. To

be precise, assume that (M•, F•) is a complex of right (A,F•)-modules and (N•, F•) is

a complex of left (A,F•)-modules. Then RF (M•) is a complex of right RF (A)-modules

and RF (N•) is a complex of left RF (A)-modules. Thereafter, RF (M•)⊗RF (A) RF (N•) is

a complex of strict Z[z]-modules. Hence, (M•, F•) ⊗(A,F•) (N•, F•) is defined to be the

filtered complex of abelian groups induced by RF (M•)⊗RF (A) RF (N•).

Filtered resolution of (DX , F•) ⊗(V D0 DX ,F•) (V(τi), F
(τi)
• ). Now, we are going to apply

the above abstract nonsense to filtered log D-modules.

Let (X,D) be a pair of a complex manifold and a reduced SNC divisor D =
∑r

i=1Di.

Suppose V underlies a PVHS (polarizable variation of Hodge structures) V = (V , F•,V)

on X \D with quasi-unipotent local monodromies.

The Canonical filtrations for ΘX(log D) and Ω1
X(log D). (OX , F•) is a filtered sheaf

of rings with trivial filtration; i.e.

FpOX =

OX if p ≥ 0

0 otherwise
.
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Since ΘX(log D) ⊂ F1V
D

0 DX , define a filtration of ΘX(log D) by

FpΘX(log D) =

ΘX(log D) if p ≥ 1

0 otherwise
.

Dually, define a filtration of Ω1
X(log D) by

FpΩ
1
X(log D) =

Ω1
X(log D) if p ≥ −1

0 otherwise
.

With these filtrations, we have a filtered isomorphism

(OX , F•) ' (ΘX(log D), F•)⊗(OX ,F•) (Ω1
X(log D), F•).

Then naturally we have (∧kΘX(log D), F•) = ∧n(ΘX(log D), F•); i.e.

Fp ∧k ΘX(log D) =

∧kΘX(log D) if p ≥ k

0 otherwise
,

and dually (Ωk
X(log D), F•) = ∧k(Ω1

X(log D), F•); i.e.

FpΩ
k
X(log D) =

Ωk
X(log D) if p ≥ −k

0 otherwise
.

In particular, (ωX(D), F•) = (Ωn
X(log D), F•) is a right (V D

0 DX , F•)-module.

From §5.1, we have known that (V(τi), F
(τi)
• ) is a left (V D

0 DX , F•)-module for each

index (τi). So the filtered tensor product (DX , F•) ⊗(OX ,F•) (V(τi), F
(τi)
• ) is a (DX , F•)-

(V D
0 DX , F•)-bimodule. Under this pattern, the complex SPD(DX ⊗O V(τi)) is filtered by

Fp(SPD(DX ⊗O V(τi))) =Fp(A⊗(OX ,F•) (∧nΘX(log D), F•)) −→ · · ·

−→ Fp(A⊗(OX ,F•) (ΘX(log D), F•)) −→ FpA

with the first term of degree −n, where A = (DX , F•) ⊗(OX ,F•) (V(τi), F
(τi)
• ). With this

filtration, we have that

SPD((DX , F•)⊗(OX ,F•) (V(τi), F (τi)
• )) := (SPD(DX ⊗O V D

0 DX), F•)

is a complex of left (DX , F•)-modules. Then we have the following filtered quasi-isomorphism.
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Lemma 5.3.4. The natural morphism

SPD((DX , F•)⊗(OX ,F•) (V(τi), F (τi)
• ))

q.i.
'−→ (DX , F•)⊗(V D0 DX ,F•) (V(τi), F (τi)

• )

is a filtered quasi-isomorphism of complexes of (DX , F•)-modules.

Proof. It is sufficient to prove that

GrF• (SPD((DX , F•)⊗(OX ,F•) (V(τi), F (τi)
• )))

q.i.
'−→ GrF• ((DX , F•)⊗(V D0 DX ,F•) (V(τi), F (τi)

• )).

However, by definition, we have

GrF• ((DX , F•)⊗(V D0 DX ,F•) (V(τi), F (τi)
• )) ' GrF• DX ⊗GrF• V

D
0 DX

GrF• V(τi),

and

GrF• ((DX , F•)⊗(OX ,F•) (V(τi), F (τi)
• )) ' GrF• DX ⊗GrF• OX GrF• V(τi).

Hence, locally we obtain

GrF• (SPD((DX , F•)⊗(OX ,F•) (V(τi), F (τi)
• ))) ' K(φ1, ..., φn; GrF• DX ⊗GrF• OX GrF• V(τi)),

where φi = −ξi ⊗ 1 + 1⊗ ξi for ξi’s symbols of zi∂i or ∂i in GrF1 V
D

0 DX . Since {ξ1, ..., ξn}
is a regular sequence for Gr•FV

D
0 DX (hence also for Gr•FDX), it not hard to see that

{φ1, ..., φn} is also a regular sequence for GrF• DX ⊗GrF• OX GrF• V(τi). Therefore, we have

GrF• (SPD((DX , F•)⊗(OX ,F•) (V(τi), F (τi)
• )))

q.i.
'−→ GrF• ((DX , F•)⊗(V D0 DX ,F•) (V(τi), F (τi)

• )).

�

If the filtration is forgotten, the above lemma is exactly Proposition 4.2.8.

Remark 5.3.5. By the above lemma, we would get a filtered duality formula for

(DX , F•)⊗(V D0 DX ,F•) (V(τi), F (τi)
• );

that is, a filtered version of Theorem 4.2.16. In particular, it implies that (DX , F•)⊗(V D0 DX ,F•)

(V(τi), F
(τi)
• ) are Cohen-Macaulay. We also know that some of them are Hodge modules.

This means in normal crossing case Cohen-Macaulayness of Hodge modules can be checked

directly by simple calculations.

By arguments similar to the proof of Lemma 5.3.4, we obtain another filtered quasi-

isomorphism but in terms of de Rham complexes.
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Lemma 5.3.6. The natural morphisms

DR((DX , F•)⊗(OX ,F•) (V(τi), F (τi)
• ))

q.i.
'−→ (ωX , F•)⊗(O,F•) (V(τi), F (τi)

• )

is a filtered quasi-isomorphism of complexes of (OX , F•)-modules ((V D
0 DX , F•)-modules

indeed).

Consequently, after tensoring the above filtered quasi-isomorphism in Lemma 5.3.6 by

(∧n−kΘX(log D), F•) (since (∧n−kΘX(log D), F•) is flat over (OX , F•)), we get

(5.3.7)

(V(τi+1), F
(τi+1)
• )⊗(O,F•) (Ωk

X(log D), F•)

(ωX , F•)⊗(O,F•) (V(τi), F
(τi)
• )⊗(O,F•) (∧n−kΘX(log D), F•)

DR((DX , F•)⊗(OX ,F•) (V(τi), F
(τi)
• ))⊗(OX ,F•) (∧n−kΘX(log D), F•),

← →'
← →q.i.

'

as filtered complexes of (OX , F•)-modules.

The following theorem is the filtered version of Theorem 4.4.7.

Theorem 5.3.8. For any (τi), the natural morphism

DRD(V(τi+1), F (τi+1)
• )

q.i.
'−→ DR ((DX , F•)⊗(V D0 DX ,F•) (V(τi), F (τi)

• ))

is a filtered quasi-isomorphism of filtered complexes of CX-modules. In particular, if the

index (τi) satisfies that for all i τi ≤ [−1, 0), then we have

DRD(V(τi+1), F (τi+1)
• )

q.i.
'−→ DR (V(∗D), F (τi)

• ).

Proof. First, by (5.3.7), we know that

(5.3.9) DR (SPD((DX , F•)⊗(OX ,F•) (V(τi), F (τi)
• )))

q.i.
'−→ DRD(V(τi+1), F (τi+1)

• ),

as filtered complex of CX-modules.

For simplicity, set

(B•, F•) := SPD((DX , F•)⊗(OX ,F•) (V(τi), F (τi)
• ) −→ (DX , F•)⊗(V D0 DX ,F•) (V(τi), F (τi)

• ).

Hence, by Lemma 5.3.4, B• is an exact complex of (DX , F•)-modules (i.e. every subcom-

plex in the filtration is also exact). So GrF• B• is an exact complex of GrF• DX-modules.
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By definition of associated graded modules, we easily see

GrF• DR (B•, F•) ' GrF• DR (DX , F•)⊗GrF• DX GrF• B•.

On the other hand, we also know

GrF• DR (DX , F•) = [GrF• DX −→ GrF• ((DX , F•)⊗(OX ,F•) (Ω1
X , F•)] −→ · · ·

−→ GrF• ((DX , F•)⊗(OX ,F•) (Ωn
X , F•)][n].

From it, we see each term of GrF• DR (DX , F•) is a locally free GrF• DX-module. There-

fore, GrF• DR (DX , F•) ⊗GrF• DX • is exact. So DR (DX , F•) ⊗(DX ,F•) • is filtered exact.

Equivalently

(5.3.10)

DR ((DX , F•)⊗(V D0 DX ,F•) (V(τi), F
(τi)
• ))

DR (SPD((DX , F•)⊗(OX ,F•) (V(τi), F
(τi)
• ))).

← →q.i.
'

Combining (5.3.9) and (5.3.10), the proof is finished. �

Trivial Filtrations of V(τi). Since V(τi) is a locally free OX-module for each (τi), V(τi)

has a trivial (coherent) filtration as a V D
0 DX-module; that is

GpV(τi) =

V(τi) if p ≥ 0

0 otherwise.

For indices (τi) satisfying τi ≤ [−1, 0) for all i, we set

(V(∗D), G(τi)
• ) := (DX , F•)⊗(V D0 DX ,F•) (V(τi), G•).

It is not hard to see that Lemma 5.3.4, Lemma 5.3.6 and (5.3.7) still hold if F
(τi)
• is

replaced by G•. Therefore, the above filtered comparison theorem still holds by the same

proof if we use G• instead.

Proposition 5.3.11. For any (τi), the natural morphism

DRD(V(τi+1), G•)
q.i.
'−→ DR ((DX , F•)⊗(V D0 DX ,F•) (V(τi), G•))
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is a filtered quasi-isomorphisms of filtered complexes of CX-modules. In particular, if the

index (τi) satisfies that for all i τi ≤ [−1, 0), then we have

DRD(V(τi+1), G•)
q.i.
'−→ DR (V(∗D), G(τi)

• )).

Remark 5.3.12. Since only G• are used, above theorem works for any flat bundle V on

U . Therefore, if the filtration structures are forgotten, we have

DRD(V(τi+1))
q.i.
'−→ DR (DX ⊗V D0 DX V

(τi))

which specializes to Proposition 4.4.7 and Proposition 4.4.10.

For I ⊆ {1, . . . , n}, we set

DI =
∑
i/∈I

Di.

With this notation, we have two open embeddings,

X \D X \DI X.←↩ →j1 ←↩ →j2

Theorem 4.4.9 tells us how to present j2!Rj1∗L in forms of Log De Rham complexes of

V(τi). How about Rj1∗j2!L?

Well, by Verdier duality of constructible sheaves,

Rj1∗j2!L[n] ' DV (j1!Rj2∗L
∗[n]),

where DV is the Verdier duality functor and L∗ is the dual local system of L. For any

r-tuple (τi) such that τi ≤ [0, 1) for i ∈ I, and [0, 1) < τi for i /∈ I, by Theorem 4.4.9 and

the above Remark, we obtain

Rj2∗j1!L[n]
q.i.
' DR (D(DX ⊗V D0 DX V

∗(τi−1))).

By Theorem 4.2.21, we also know

D(DX ⊗V D0 DX V
∗(τi−1))

q.i.
' DX ⊗V D0 DX V

(−τi).

Combining the above two observations together, we have proved the following comparison

result.
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Proposition 5.3.13. For any r-tuple (τi) such that τi ≤ [0, 1) for i /∈ I, and [0, 1) < τi

for i ∈ I,

Rj2∗j1!L[n]
q.i.
' DRD(V(−τi+1))

q.i.
'−→ DR (DX ⊗V D0 DX V

(−τi)).

In particular,

Rj2∗j1!L[n]
q.i.
' DRD(V(0,1])(DI).

If DI and DIC are considered together (IC is the complement of I in {1,. . . ,n}), we

have commutative diagram

X \D X \DI

X \DIC X.

←↩ →j1

←
↩→ k1 ←

↩→ j2

←↩ →k2

After combining Theorem 4.4.9 and Proposition 5.3.13, we obtain a constructive proof of

the following easy corollary (see also [KS90, Proposition 3.1.9(ii)])

Corollary 5.3.14. If L is a local system on X \D, then

Rk2∗k1!L[n]
q.i.
' j2!Rj1∗L[n].

In short, we have known all interesting perverse sheaves (with stratification (X,D))

coming from L[n] in forms of Log de Rham complexes of V(τi) and their images under the

Rieman-Hilbert correspondence.

5.4. Base change

In this section, following the idea of Kawamata, we will obtain a base change formula

for log-VHS which will be used in the proof of the vanishing theorem in §6.3.

Assume f : (Y,E) −→ (X,D) is a morphism of smooth log pairs; i.e. f is morphism of

pairs such that D and E = f−1D are both reduced SNC divisors. Assume that E =
r′∑
i′=1

Ei′

and D =
r∑
i=1

Di. Suppose V = (V , F•,V) is PVHS defined on X \D. The pull-back f ∗V

is also a PVHS on Y \ E. To simplify notation, we write

F•Y := F•f
∗V.

Other such pullbacks will also be denoted similarly.
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Example 5.4.1 (Unipotent Case). If all the local monodromies of V are assumed to

be unipotent, then so are those of f ∗V by local calculation. In this case the filtration

descends to be Zr-indexed. Namely,

FB
• = F 0

• ⊗OX(−bBc).

By calculating the residues locally and Lemma 5.1.2 (2), we have

F 0
•Y = f ∗F 0

• ,

and

FB′

•Y = f ∗FB
• ,

where B′ = f ∗bBc.

Inspired by Kawamata’s idea, we obtain the following base-change lemma. See [Kaw02,

Lemma 4.1].

Lemma 5.4.2. Suppose {s1, . . . , sk} is the local basis of F
(ti)
• on U in Lemma 5.1.11 for

some fixed (ti) ∈ Rr. Then

(1) ord(f ∗sj) = f ∗ord(sj);

(2) the basis {f ∗s1, . . . , f
∗sk} of f ∗(F

(ti)
• ) on U ′ (f(U ′) ⊂ U) satisfy that

(
r′∏
i′

y
bdi′−ordi′ (f

∗s1)c
i′ )f ∗s1, . . . , (

r′∏
i′

y
bdi′−ordi′ (f

∗sk)c
i′ )f ∗sk

generates F
(di′ )
•Y freely for any (di′) = (di′)

r′

i′=1 ∈ Rr′. Here the yi′ are defining functions of

Ei′ on U ′.

Proof. First, clearly f ∗(V(τi)) is also a logarithmic extension of f ∗V . Hence, by Lemma 3.2.7

f ∗(V(τi))⊗OY (∗E) ' (f ∗V)(∗E).

Hence orders of f ∗sj make sense.

We can assume X = ∆n and Y = ∆n′ . Let π : X ′ −→ X be the branched covering

(branched along Di’s) making the monodromies unipotent upstairs as in (5.1.5). By

construction, sj is a G-invariant section of F
π∗ord(si)
•X′ = F 0

•X′(−π∗ord(si)) (see the proof of

Lemma 5.1.11).
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Claim. There exists another branched covering

π′ : Y ′ −→ Y

branched along Ei′’s such that the following diagram

Y ′
f ′−−−→ X ′

π′

y yπ
Y −−−→

f
X

commutes and f ′ also is a morphism of smooth log pairs (Y ′, (π′∗E)red) and (X ′, (π∗D)red).

Proof of Claim. Suppose the coordinates ofX, X ′, Y , and Y ′ are (x1, . . . , xn) (z1, . . . , zn),

(y1, . . . , yn′) and (w1, . . . , wn′) respectively, and suppose D = (x1 · ... · xr = 0) and

E = (y1 · ... · yr′ = 0).

First, we assume π is the m-th cyclic covering along D1, i.e.

π∗xi =

{
zmi if i = 1

zi otherwise,

Since f is a morphism of smooth log pairs, we can assume that

f ∗D1 = g · yβ11 · · · y
βk
k

for some k ≤ r′, and a nowhere vanishing holomorphic function g on Y . Take π′ to be

the branched covering corresponding to m
√
g, m
√
y1, ..., m

√
yk. Then f ′ can be defined to be

m
√
f accordingly. By construction, π′∗E is also normal crossing.

In general, since π is a composition of a series of cyclic coverings, π′ and f ′ can

be constructed inductively. Furthermore, π′ is also a composition of a series of cyclic

coverings and unbranched coverings. �

Assume the Galois group of π′ is G′. Since the monodromies are unipotent,

f ′∗(F
π∗ord(sj)
•X′ ) = F

f ′∗π∗ord(sj)
•Y ′ = F 0

•Y ′(−f ′∗π∗ord(sj)).

Hence,

ord(f ′∗sj) = f ′∗π∗ord(sj).

On the other hand, since Y is the quotient space of Y ′ with respect to G′-action, f ′∗sj

descends to f ∗sj. Moreover, since π′ is a composition of a series of cyclic coverings and
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unbranched coverings (but unbranched coverings just bring extra copies of Y since Y is

simply connected), G′ acts on FB
•Y ′ for any R−divesor B supported on (π′∗E)red. Hence

by (5.1.7)

(π∗F
f ′∗π∗ord(sj)
•Y ′ )G

′
= f∗ord(sj)F•Y .

Therefore, we have

ord(f ∗sj) = f ∗ord(sj).

For the second statement, we write

ord(f ′∗sj) =
∑
i′

αi′jE
′
i′ ,

where E ′i′ = π′∗(Ei′)red. Since ord(f ′∗sj) = f ′∗π∗ord(sj), {(
r′∏
i′
w
−αi′j
i′ )f ′∗sj}kj=1 form a basis

of F 0
•Y ′ , where wi′ is the defining function of E ′i′ . Since f ′∗sj’s are G′-invariant, the second

statement follows. �

Corollary 5.4.3.

F
(di′ )
•Y =

∑
(ti)∈Rr

f ∗(F (ti)
• )⊗OY (−b

r′∑
i′=1

di′Ei′ +
∑
i

(1− ti)f ∗Dic),

where (di′) ∈ Rr′. Here, the sum of the right hand side of the equation happens inside the

Deligne meromorphic extension of f ∗V.

Proof. In sense of Lemma 5.1.2 (2), it is enough to prove the above equation locally.

Suppose {e1, . . . , ek} are the local basis of F 0
• as in Lemma 5.1.11. Set

f ∗Di =
r′∑
i′=1

aii′Ei′ .

By Lemma 5.4.2, the left hand side is generated by

{(
∏
i′

yi′
bdi′−ordi′ (f

∗ej)c)f ∗ej}kj=1,

where yi′ are the local defining function of Ei′ . Meanwhile, the right hand side is generated

by

{(
∏
i′

yi′
∑
ibti−ordi(ej)caii′+bdi′+

∑
i(1−ti)aii′c)f ∗ej}.
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By Lemma 5.4.2 (1), we know

ordi′(π
∗ej) =

∑
i

aii′ordi(ej),

hence ∑
i

bti − ordi(ej)caii′ + bdi′ +
∑
i

(1− ti)aii′c − bdi′ − ordi′(f
∗ej)c ≥ 0,

for any (ti) ∈ Rr. So we have one inclusion

(5.4.4) F
(di)
•Y ⊇

∑
t

F (ti)
• ⊗OY (b

∑
i′

di′Ei′ +
∑
i

(1− ti)f ∗Dic).

On the other hand, for a fixed j, if (tji ) = (ordi(ej)− ε+ 1) for 0 < ε� 1, then∑
i

btji − ordi(ej)caii′ + bdi′ +
∑
i

(1− tji )aii′c = bdi′ − ordi′(f
∗ej)c.

Therefore, the right hand side of (5.4.4) includes the left hand side, because it contains

the basis of the left hand side. �
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CHAPTER 6

Vanishing Theorems for Hodge modules

From this chapter, we go back to algebraic category. Throughout this section, we fix a

PVHS V = (V , F•,V) on Uan (the corresponding analytic space of U), where U = X\D for

an algebraic smooth log pair (X,D =
r∑
i=1

Di). For complete varieties, it is well known that

coherent analytic sheaves and coherent algebraic sheaves make no difference by GAGA

principle. We will see that even for non-complete varieties, PVHS satisfy the GAGA

principle automatically because of the extendability.

6.1. GAGA Principle and the Algebraicity of F
(ti)
•

By taking resolutions of singularities, we have an embedding of smooth log pairs,

i : (X,D) ↪−→ (X,D)

with X complete such that X \D = U and D|X = D. By Theorem 5.1.3, we have multi-

indexed (holomorphic) extensions of F• on both Xan and X
an

indexed by R-divisors

supported on D and D respectively. Denote them by FB
• on Xan for any R-divisor B

supported on D and FB
• on X

an
for any R-divisor B supported on D. Namely, they

are distinguished by their index divisors. By GAGA principle, FB
• are algebraic on X.

Clearly, for any R-divisor B supported on D, take B1 to be the closure of B in X. Then

FB
• = i∗FB1

• .

Hence, FB
• are also algebraic on X. In particular, V and F• are algebraic on U . This tells

us that the quasi-unipotency of all monodromies along the boundary divisor D forces V
and F• becoming algebraic.

Example 6.1.1. Let f : Y −→ X be a surjective morphism between smooth projective

varieties. Assume there exists a SNC divisor D such that f is smooth over U = X \D.

Set d = dimY − dimX. Then V = Rd+if∗(QY )|U ⊗OU underlies a PVHS, denoted by V i
f
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(the Gauss-Manin connection). It is proved in [Kol86] that

Rif∗ωY/X = F 0
−dV

i
f .

Adding indices. If C is a reduced simple normal crossings divisor such that C+D is also

SNC, then clearly F• have extensions indexed by R-divisors supported on supp(C+D) by

extending F•|U\C . Since V has trivial local monodromies along Ci, irreducible components

of C, the filtrations along Ci are just Ci-adic filtration, i.e.

FC′+D′

• = FD′

• ⊗O(−bC ′c)

and
C′+D′F• = D′F• ⊗O(−dC ′e),

where C ′ and D′ are R-divisors supported on C and D respectively.

It is well known that Rif∗ωY/X is birational invariant. More generally, FB
• are also

birational invariant. To be precise, we have

Proposition 6.1.2. Suppose B is an R-divisor supported on D. If µ : Y −→ X is a log

resolution of D with E = (µ∗D)red, then

µ∗(F
B′

•Y ⊗ ωY/X) = FB
• ,

where B′ = µ∗B, and FB′
•Y is the extenstion of π∗|Y \EF• on Y with index B′.

Proof. By the projection formula and (5.1.10), it suffices to assume bBc = 0. Write

E = D′ + E ′,

where D′ is the birational transform of D, and E ′ =
∑
i′
E ′i′ is exceptional. For simplicity,

we can assume that E ′ has only one component. There is no essential difference in general.

If B =
∑
i

tiDi, then

B′ =
∑
i

tiD
′
i +
∑
i

aitiE
′.

Suppose {s1, ..., sk} is the local basis of FB
• in Lemma 5.4.2 and

ordi(sj) = αij ∈ (ti − 1, ti].

Hence, by Lemma 5.4.2 (1),

ordE′(µ
∗sj) =

∑
i

aiαij.
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Therefore, by Lemma 5.4.2 (2) we know that

y
b
∑
i
ai(ti−αi1)c

µ∗s1, .., y
b
∑
i
ai(ti−αik)c

µ∗sk

generate FB′
•Y , where y is the defining function of E ′. Since ti − αij ≥ 0,

FB′

•Y ⊆ µ∗(FB
• ).

On the other hand, by local calculation (see for instance [Laz04, Lemma 9.2.19]), we see

ωY/X ≥ (
∑
i

ai − 1)E ′.

Moreover since 0 ≤ ti − αij < 1, we get an inequality

(
∑
i

ai − 1)E ′ ≥ b
∑
i

ai(ti − αij)cE ′.

Consequently, we have

µ∗FB
• ⊆ FB′

•Y ⊗ ωY/X ⊆ µ∗(FB
• )⊗ ωY/X .

After pushing forward the above inclusions, the proof is finished by the projection formula.

�

6.2. Hodge modules and Vanishing theorems

In previous chapters, we have already mentioned Hodge modules. Now we move to a

recall of the main notions and results (especially vanishing theorems) from the theory of

mixed Hodge modules that are used in this thesis.

Let X be a smooth algebraic variety over C. A pure Hodge modules1 M is a triple

M = (M, F•, KQ) consisting of

(1) A coherent filtered regular holonomic DX-module (M, F•);

(2) A Q-perverse sheaf K on X whose complexification corresponds to M via the

Riemann-Hilbert correspondence, so that there is an isomorphism

DR(M)
'−→ K ⊗ C.

In addition, they are subject to a list of conditions, which are defined by induction

on the dimension of the support of M . If X is a point, a pure Hodge module is simply a

1Since we are in algebraic category, pure Hodge modules are assumed to be polarizable as in Saito’s
original definition; see [Sai90].
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polarizable Hodge structure. In general it is required, roughly speaking, that the nearby

and vanishing cycles associated to M with respect to any locally defined holomorphic

function are again Hodge modules, now on a variety of smaller dimension; See [Sch14]

for a readable discussion or originally [Sai88].

Furthermore, M. Saito introduced in [Sai90] mixed Hodge modules on X. In addition

to data as in (1) and (2) above, in this case a third main component is:

(3) A finite increasing weight filtration W•M of M by objects of the same kind, such

that the graded quotients are pure Hodge modules.

Again, a mixed Hodge module on a point is a graded-polarizable mixed Hodge structure,

while in general these components are subject to several conditions defined by induction

on the dimension of the support of M , involving the graded quotients of the nearby and

vanishing cycles of M ; see [Sai90] for detail.

Hodge modules (pure or mixed) form an abelian category. In pure case, the abelian

category are semi-simple, with simple objects consisting of pure Hodge modules with strict

support. A pure Hodge module supported precisely along a subvariety Z is said to have

strict support if it has no nontrivial subobjects or quotient objects whose support is Z.

Roughly speaking, pure Hodge modules with strict support Z are just PVHS generically

defined on the smooth locus of Z. To be precise, Saito proved the following structure

theorem for pure Hodge modules.

Theorem 6.2.1 (Simple objects, [Sai90, Theorem 3.21]). Let X be a smooth complex

variety, and Z an irreducible closed subvariety of X. Then

(1) every polarizable VHS defined on a nonempty open set of Z extends uniquely to

a pure Hodge module with strict support Z;

(2) Conversely, every pure Hodge module with strict support Z is obtained in this

way.

Immediate from the above theorem, we know all pure Hodge modules on X are alge-

braic because we can always make X complete and smooth by adding boundary divisors.

Example 6.2.2 (Examples of Hodge modules).

(1) All PVHS on X are pure Hodge modules strictly supported on X, in particular

the trivial one QH
X =: (OX , F•,QX) (immediate from the above theorem);

(2) when V is a PVHS on X \ D for a SNC divisor D, M = (Vmin, F•, j!∗KQ) is a

pure Hodge modules strictly supported on X; F• is defined as in §5.2;
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(3) (V(∗D), F•, Rj∗KQ) is a mixed Hodge module; again see §5.2.

Usually, it is almost impossible to check a filtered DX underlies a Hodge module

directly by the inductive definition, because the nearby cycle and vanishing cycle might

be more complicated even in trivial case.

Now assume M = (M, F•, KQ) is a Hodge module (mixed or pure. Set

S(M) = Fp(M)M

where p(M) is defined to be

p(M) = min{q|FqM 6= 0}.

Theorem 6.2.3 (Saito Vanishing). Let X be a projective smooth variety over C and L

an ample divisor. Then

H i(X,S(M)⊗ ωX(L)) = 0

for all i > 0.

In fact, the above theorem just a small part of the complete Saito vanishing, but it is

enough for the use of this thesis. See [Sai90, §2.g] for the complete statement.

Example 6.2.4. Let f : Y −→ X be a surjective morphism between smooth projective

varieties of relative dimension d. Since f is generically smooth, Rd+if∗(QY ) generically

underlies a PVHS (the Gauss-Manin connection) on X. By Theorem 6.2.1, it uniquely

determines a pure Hodge module M i strictly supported on X. Saito proved in [Sai91]

S(M i) = Rif∗ωY/X .

By the above example, geometrically Saito vanishing specializes to Kollár vanishing for

higher direct images of dualizing sheaves. More generally, we proved a Kawamata-Viehweg

type generalization of Saito vanishing in [Wu15] (independently by Suh in [Suh15]).

Theorem 6.2.5. Let X be a projective smooth variety over C and L an nef and big

divisor. If M is a pure Hodge modules strictly supported on X, then

H i(X,S(M)⊗ ωX(L)) = 0

for all i > 0.
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Indeed, smoothness of X are not necessary in both of the above vanishing theorems,

because pure Hodge modules can be naturally defined on singular varieties. We will see

the above vanishing can be further generalized by using multiplier subsheaves.

6.3. An R-Kawamata–Viehweg Type Vanishing

In this section, we go back to normal crossing case and prove an R-Kawamata–Viehweg

Type Vanishing.

Let V = (V , F•,V) be a PVHS on U = X \D. By Theorem 6.2.1, V extends to a pure

Hodge module M = (Vmin ⊗ ωX , F•, j!∗V) strict supported on X.

As in (5.2.2), we know

(6.3.1) S(M) = F 0
p(V )V,

where p(V ) is defined to be

p(V ) = min{q|FqV 6= 0}.

In order to simplify notations, we set

S(V )B = FB
p(V )V

and

S(V )(ti) = F
(ti)
p(V )V

for an R-divisor B supported on D and index (ti) ∈ Rr. Furthermore, if µ : X ′ −→ X is

a log-resolution of D, for B′ an R-divisor supported on supp(µ∗D), then use S(V )B
′

to

denote the corresponding extension on X ′ (since µ is identical outside D).

Theorem 6.3.2. Assume X is projective. Let L be an integral divisor and B an R-divisor

supported on D. Suppose L−B is nef and big. Then

Hq(X,S(V )B ⊗ ωX(L)) = 0

for q > 0.

Proof. First, we assume that B is a Q-divisor supported on D and L−B is ample. Take

the Kawamata covering

π : Y −→ X
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so that π∗B is integral. By the construction of Kawamata covering (see [Kaw81, Theorem

17]), there exists an SNC divisor B such that supp(B) ⊇ supp(D) and π is étale over

U = X \B. By adding indices, we can assume D = B. Let G be the Galois group of π.

Therefore, by Corollary 5.4.3 and (5.1.10),

(6.3.3) S(V ′)0 =
∑

(ti)∈[0,1)r

π∗(S(V )(ti))⊗OY (−b
r∑
i=1

(1− ti)π∗Dic),

where V ′ is the pull-back PVHS of V via π|U . By (6.3.1),

S(V ′)0 = S(M ′),

where M ′ is the pure Hodge module extended from V ′. By Theorem 6.2.3,

Hq(Y, S(V ′)0 ⊗ ωY (π∗L− π∗B)) = 0

for q > 0. Again by the construction of the Kawamata covering,

π∗ωX(D) = ωY (E),

where E = (π∗D)red. Therefore,

Hq(Y,
∑

(ti)∈[0,1)r

π∗(S(V )(ti) ⊗ ωX(L))⊗OY (−E − b
r∑
i=1

(1− ti)π∗Dic+ π∗(D −B))) = 0

for q > 0 by (6.3.3).

On the other hand, from the construction of Kawamata covering, it is not hard to

see that if A is a integral divisor supported on E, then OY (A) has a G-action and the

G-invariant part of π∗OY (A) is

π∗OY (A)G = OX(A′),

where A′ is a divisor on X such that

π∗A′ ≤ A.

So S(V )(ti) ⊗ ωX(L) ⊗ π∗(OY (−E − b
∑r

i=1(1 − ti)π∗Dic) + π∗(D − B)) has a G-action,

and its G-invariant part is

S(V )(ti) ⊗ ωX(L− bB +
r∑
i=1

(1− ti)Dic).
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Therefore, π∗(S(V ′)0 ⊗ ωY (π∗L− π∗B)) also has a G-action and its G-invariant part is∑
(ti)∈[0,1)r

S(V )(ti) ⊗ ωX(L− bB +
r∑
i=1

(1− ti)Dic).

By (5.1.10) and the discreteness of the filtration, it is not hard to see that∑
(ti)∈[0,1)r

S(V )(ti) ⊗ ωX(L− bB +
r∑
i=1

(1− ti)Dic) = S(V )B ⊗ ωX(L).

Since π is finite, we know

Hq(X, π∗(S(V ′)0 ⊗ ωY (π∗L− π∗B))) = 0

for q > 0. Since π∗(S(V ′)0 ⊗ ωY (π∗L − π∗B))G is a direct summand of π∗(S(V ′)0 ⊗
ωY (π∗L− π∗B)),

Hq(X,S(V )B ⊗ ωX(L)) = 0

for q > 0. In consequence, we have proved the theorem when L−B is an ample Q-divisor.

Furthermore, if L − B is an ample R-divisor, by the openness of the amplitude of

R-divisor, we can find a Q-divisor B′ by perturbing the coefficients of B such that L−B′

is still ample and

S(V )B = S(V )B
′
.

Again, we obtain

Hq(X,S(V )B ⊗ ωX(L)) = 0

for q > 0.

In general, if L−B is a nef and big R-divisor, then

L−B ≡num A+N

where A is an ample and N is an effective R-divisor. Take a log resolution of D +N ,

µ : X ′ −→ X.

We can assume

µ∗(L−B) ≡num A′ +N ′

where A′ is an ample and N ′ is an effective R-divisor on X ′. Since µ∗(L−B) is nef,

µ∗L− µ∗B − 1

k
N
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is ample for any sufficiently large k. After picking k large enough, by the discreteness of

the multi-indexed filtration,

S(V )µ
∗B = S(V )µ

∗B+ 1
k
N .

But since µ∗L− µ∗B − 1
k
N is ample, we already know

Hq(X ′, S(V )µ
∗B+ 1

k
N ⊗ ωX′(µ∗L)) = 0

for q > 0. Choose a integral divisor H sufficiently ample, so that

Rqµ∗(S(V )µ
∗B+ 1

k
N ⊗ ωX′(µ∗(L+H))

is globally generated and the Leray spectral sequence degenerates. Then

H0(X,Rqµ∗(S(V )µ
∗B+ 1

k
N ⊗ ωX′(µ∗(L+H))) = Hq(X ′, S(V )µ

∗B+ 1
k
N ⊗ ωX′(µ∗(L+H)))

But since µ∗(L+H)− µ∗B − 1
k
N is also ample, we see

Hq(X ′, S(V )µ
∗B+ 1

k
N ⊗ ωX′(µ∗(L+H))) = 0,

for q > 0. Therefore,

Rqµ∗(S(V )µ
∗B+ 1

k
N ⊗ ωX′) = 0

for q > 0. By Proposition 6.1.2, we have

µ∗(S(V )µ
∗B+ 1

k
N ⊗ ωX′) = µ∗(S(V )µ

∗B ⊗ ωX′) = S(V )B ⊗ ωX .

Consequently, by the degeneracy of the Leray spectral sequence again, we get

Hq(X,S(V )B ⊗ ωX(L)) = 0

for q > 0. �

If M = QH
X the trivial pure Hodge module, then the above theorem is exactly the

R-Kawamata-Viehweg Vanishing Theorem (see for instance [Laz04, Theorem 9.1.18]),

because we know S(QH
X)B = OX(−bBc).
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CHAPTER 7

Multiplier Subsheaves, Nadel-type Vanishing And Applications

7.1. Multiplier subsheaves for pure Hodge modules

At this point, we established all we need to define multiplier submodules for Pure

Hodge modules.

Let X be a smooth algebraic variety over C and M pure Hodge module strictly sup-

ported on X. Use V to denote the PVHS generically defined on X corresponding to M .

By abuse of notations, V will also be used to denote the PVHS generically defined on X ′

whenever X ′ is birational to X.

Definition 7.1.1 (Multiplier subsheaves). If B is an R-divisor on X, then the multiplier

submodules of M , J (M,B) associated to M and B is defined to be

J (M,B) = µ∗(S(V )µ
∗B ⊗ ωY/X),

where µ : Y −→ X is a fixed log resolution of supp(B) ∪ sing(M).

By Proposition 6.1.2, it is obvious that J (M,B) is independent of choices of log

resolutions. By birational invariance of S(M) Furthermore, if B is effective, J (M,B) is

canonically a coherent subsheaf of J (M, 0) = µ∗(S(V )0⊗ωY/X) by definition. By (6.3.1)

and birational invariance of S(M) (See e.g. [Wu15, Corollary 3.13]),

S(M) = J (M, 0).

Hence, if B is effective, J (M,B) is a coherent subsheaves of S(M).

Example 7.1.2. (1) If M = QH
X is the constant pure Hodge module, then J (QH

X , B)

is the usual multiplier ideal associated to B. This is the reason why they are named

multiplier subsheaves.

(2) Suppose f : Y −→ X is a surjective morphism of projective varieties with Y smooth

as in Example 6.2.4. Thereafter, J(M i, B) gives a coherent submodule of Rif∗ωY/X when
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B is an effective R-divisor.

More generally, we can also define Multiplier submodules for ideal sheaves.

Definition 7.1.3 (Multiplier submodules associated to an ideal sheaf). Let I be a non-

zero ideal sheaf and b ∈ R+. Take a log resolution µ : Y −→ X of Z(I) ∪ sing(M) with

I ·OY = OY (−F ), where Z(I) is the scheme defined by I. Then the multiplier submodule

associated to M and Ib is

J (M, Ib) = µ∗(S(V )bF ⊗ ωY/X).

Again, J (M, Ib) does not depend on µ either and is canonically a subsheaf of S(M).

When M = QH
X and X is smooth,

J (QH
X , I

b) = I(Ib)

the usual multiplier ideal associated to Ib.

The following proposition is about some easy properties of mutliplier subsheaves.

Proposition 7.1.4. With notations as above, we have

(i) If B and B′ are two R-divisors on X with B′ effective, then

J (M,B) = J (M,B + εB′)

for all 0 < ε� 1.

(ii) If B is an integral divisor, then

J(M,B) = S(M)(−B).

(iii) If B2 ≤ B1 are R-divisors on X, then

J (M,B1) ⊆ J (M,B2).

Proof. The statement (i) is clear from the discreteness of F
(ti)
• . (ii) follows from the

definition of S(M) and projection formula. (iii) follows from the filtration structure of

the log-VHS. �

Theorem 7.1.5. Let B be an R-divisor on X, and let µ : Y −→ X be a log resolution of

supp(B) ∪ sing(M). Then

Rqµ∗(S(V )µ
∗B ⊗ ωY ) = 0
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for q > 0.

Proof. First assume that X and Y are projective. Pick a sufficiently ample integral

divisor A such that A−B is also ample. Hence, µ∗(A−B) is nef and big. By Theorem 6.3.2,

Hq(Y, S(V )µ
∗B ⊗ ωY (µ∗A)) = 0

for q > 0. Using the same trick as in the third part of the proof of Theorem 6.3.2 (or

[Laz04, Lemma 4.3.10]), we obtain

Rqµ∗(S(V )µ
∗B ⊗ ωY ) = 0

for q > 0. We have proved the statement under the projective hypothesis.

For the general situation, we are going to reduce it to the case just treated. Since

this statement is local on X, we can assume X is affine. Then we can constructed the

following fiber square,

Y Y

X X,

←↩ →

←→ µ ←→ µ

←↩ →

with X and Y projective. Since µ is a log resolution of supp(B)∪sing(M) (we can assume

µ is a series of blow-ups along smooth center supported over singularities of supp(B) ∪
sing(M)), we can also assume that µ is a log resolution of supp(B) ∪ sing(M)∪ (X \X).

Since the projective case has been proved,

Rqµ∗(S(V )µ
∗B ⊗ ωY ) = 0

for q > 0. Since

Rqµ∗(S(V )µ
∗B ⊗ ωY )|X = Rqµ∗(S(V )µ

∗B ⊗ ωY ),

we know

Rqµ∗(S(V )µ
∗B ⊗ ωY ) = 0.

�

Remark 7.1.6. A similar local vanishing for ideal sheaves is also true by imitating the

proof of Theorem 7.1.5.

By Theorem 6.3.2 and Theorem 7.1.5, and the degeneracy of the Leray spectral se-

quence, we obtain the following Nadel type vanishing theorem:
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Theorem 7.1.7. Suppose X is projective. Let B be an R-divisor on X, and let L be an

integral divisor so that L−B is nef and big. Then

Hq(X,J (M,B)⊗ ωX(L)) = 0

for q > 0.

When X is smooth and M = QH
X , the above theorem is exacly the Nadel vanish-

ing theorem for multiplier ideals. Because the proof of Theorem 6.3.2 only uses Saito

vanishing, taking B = 0, it gives another proof of Theorem 6.2.5.

7.2. Multiplier subsheaves in Normal crossing case

When X is smooth of dimension n and sing(M) = D is a normal crossing divisor, by

Theorem 5.1.3 S(M) = S(V )0 are locally free. Under such setting, we have the following

subaddition.

Proposition 7.2.1. Let X be a smooth algebraic variety and M be a pure Hodge module

strictly supported on X with sing(M) = D a reduced simple normal crossings divisor.

Suppose B is an R-divisor supported on D and F is another R-divisor. Then

J (M,B + F ) ⊆ J (M,B)⊗O I(F )

where I(F ) is the multiplier ideal associated to F . Furthermore, if all the local mon-

odromies of M are unipotent and B is integral, then the equality holds, i.e.

J (M,B + F ) = J (M,B)⊗O I(F ).

Proof. Take a log resolution of D + supp(F ), µ : X ′ −→ X. Suppose {s1, . . . , sk} is the

local basis S(V )B as in Lemma 5.1.11. Since ord(sj) ≤ B, by Lemma 5.4.2(1) we know

µ∗(F +B)−KX′/X − ord(µ∗sj) ≥ µ∗F −KX′/X ,

where KX′/X is the relative canonical divisor of µ. Therefore, by Lemma 5.4.2(2), we

know

S(V )µ
∗(B+F ) ⊗O ωX′/X ⊆ µ∗(S(V )B)⊗O ωX′/X(−bµ∗F c).

So the first assertion follows by projection formula.

For the second statement, since the monodromies are unipotent and B is integral

S(V )µ
∗(B+F ) ⊗O ωX′/X = µ∗(S(V )B)ωX′/X(−bµ∗F c).
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Hence the second statement is proved by projection formula again. �

By the above containment, we obtain that points of high multiplicity ensure non-

triviality of multiplier submodules.

Corollary 7.2.2. With notations as above, if F is effective and multx(F ) ≥ n at some

point x ∈ X, then

J (M,F ) $ S(M).

Proof. Under the assumption, by [Laz04, Proposition 9.3.2], I(F ) is non-trivial at x.

Therefore, by Proposition 7.2.1, J (M,F ) is non-trivial. �

7.3. Jumping numbers

If we fix an effective Q-divisor, by definition J (M, rB) discretely decrease as r grows

generalizing that of multiplier ideals. Namely, jumping numbers can be defined for mul-

tiplier subsheaves too. To be precise,

Lemma 7.3.1. Let X be an algebraic variety (not necessarily smooth), and M a pure

Hodge module strictly supported on X, and B be an effective Q-divisor on X with x on

the support of B. Then there is an increasing discrete sequence

0 = ξ0 < ξ1 < ξ2 < . . .

of rational numbers depending on M , B and x characterized by the properties that

J (M, rB)x = J (M, ξiB)x

for r ∈ [ξi, ξi+1), while

J (M, ξi+1B)x $ J (M, ξiB)x

for all i.

Proof. Fix a log resolution of sing(M)+ supp(B), µ : X ′ −→ X. By the discreteness

of F
(ti)
• , Sµ

∗(rB)(V ) remains the same if c increases slightly, where V is the generically

defined PVHS corresponding to M . Therefore, the corresponding multiplier submodules

are constant on the interval of the indicated shape. Since we are assuming that all the

local monodromies of V are all quasi-unipotent, F
(ti)
• is indexed by Qr indeed. Hence the

ξi are rational numbers. �
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Definition 7.3.2. The rational numbers ξi are the jumping numbers associated to the

pair (M,D) at x. ξ1 is the log-canonical threshold of (M,D) at x, denoted by lct(M,D;x).

7.4. A Fujita’s Freeness-type Theorem

In [Kaw02], Kawamata has proposed a relative version of Fujita’s freeness conjecture

and proved it under a stronger numerical condition. In this section, we extend it abstractly

to Hodge modules under similar conditions with the help of multiplier subsheaves and

Theorem 7.1.7.

Theorem 7.4.1. Let X be a smooth projective variety of dimension n and M be a pure

Hodge module strictly supported on X with sing(M) = D a reduced simple normal cross-

ings divisor. Let L be an ample divisor on X, and x ∈ X a point. Assume that for

any klt pair (X,B0), there exists an effective Q-divisor B on X satisfying the following

conditions:

(i) B ≡ λL for some 0 < λ < 1;

(ii) (X,B +B0) is lc at x;

(iii) {x} is a log canonical center of (X,B +B0).

Then the nature morphism

H0(X,S(M)⊗ ωX(L)) −→ S(M)⊗ ωX(L)|{x}

is surjective.

Proof. Let {s1, ..., sk} be the basis of S(V )0 on a neighborhood x ∈ U as in Lemma 5.1.11.

It is sufficient to prove that the image of the morphism

H0(X,S(M)⊗ ωX(L)) −→ S(M)⊗ ωX(L)|{x}

contains sj ⊗ t|{x} for any j, where t is the generator of ωX ⊗ L on U .

Recall that ord(sj) =
∑

i ordiDi|U is a Q-divisor on U . Then by definition, (X,−ord(sj))

is klt. By the assumption of the theorem, there exists an effective Q-divisor B such that

(i) B ≡ λL for some 0 < λ < 1;

(ii) (X,B − ord(sj)) is lc at x;

(iii) {x} is a log canonical center of (X,B − ord(sj)).

Take a general element B′ of |mL| for m� 0 passing through x. After replacing B by

(1− ε1)B + ε2B
′
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for some suitable 0 < εi � 1
m

, we can assume that {x} is the only log canonical center of

(X,B−ord(sj)) passing through x. Let µ : X ′ −→ X be a log resolution of D+supp(B).

Then

µ∗(B − ord(sj)) = KX′/X + E + F

where KX′/X the relative canonical divisor for µ and E is a reduced divisor such that

µ(E) = {x} and F is effective and a boundary divisor on µ−1U (shrink U if necessary).

Then we have a short exact sequence

0 −→ S(V )µ
∗ord(sj)+E+F −→ S(V )µ

∗ord(sj)+F −→ S(V )µ
∗ord(sj)+F |E −→ 0.

But we also know

S(V )µ
∗ord(sj)+E+F = S(V )µ

∗B−KX′/X ' S(V )µ
∗B ⊗ ωX′/X .

By Proposition 7.1.5, after pushing-forward the above short exact sequence and twisting

by ωX(L), we obtain another short exact sequence on X

0 −→ J (M,D)⊗ ωX(L) −→ Q −→ Q′ −→ 0,

where Q = µ∗(S(V )µ
∗ord(sj)+F ) ⊗ ωX ⊗ L and Q′ = µ∗(S(V )µ

∗ord(sj)+F |E) ⊗ ωX ⊗ L.

Moreover, since

µ∗ord(sj)−KX′/X ≤ µ∗ord(sj) + F,

we have

Q ⊆ µ∗(S(V )µ
∗ord(sj)−KX′/X )⊗ ωX ⊗ L ' J (M, ord(sj))⊗ L.

By Proposition 7.2.1, we also have

J (M,B) ⊆ J (M, ord(sj))⊗ J (B − ord(sj)).

Hence we have nature morphism

Q′ −→ J (M, ord(sj))⊗ ωX(L)|Z ,

where Z is the scheme defined by J (B − ord(sj)). By our assumption, {x} is an isolated

support of Z. Since F is a boundary divisor on µ−1U , by Lemma 5.4.2

µ∗sj ∈ S(V )µ
∗ord(sj)+F |µ−1U .

Hence by projection formula sj ⊗ t ∈ Q(U). But by Lemma 5.1.11, sj ⊗ t is a member of

the local basis J(M, ord(sj)) induced by the local basis {s1, ..., sj}. Therefore, sj ⊗ t is
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not a local section of J (M,B) ⊗ ωX(L). Since x is an isolated support of Z and {x} is

the support of Q′, sj ⊗ t|{x} lifts to a global section of Q′. By Theorem 7.1.7, we have

H1(X,J (M,D)⊗ ωX(L)) = 0,

and hence sj⊗t|{x} lifts to a global section of Q . On the other hand, since E is exceptional

and B is effective,

H0(X,Q) = H0(X ′, S(V )µ
∗B ⊗ ωX′(π∗L+ E)) ⊆ H0(X,S(M)⊗ ωX(L)),

which makes the proof accomplished. �
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(2014).

[Sai88] M. Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988), no. 6, 849–995.

[Sai90] , Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221–333.

[Sai91] , On Kollár’s conjecture, Proc. Sympos. Pure Math. 52 (1991), 509–517. Several complex

variables and complex geometry, Part 2 (Santa Cruz, CA, 1989).

[Sch73] W. Schmid, Variations of Hodge structure: the singularities of the period mapping, Invent. Math.

22 (1973), 211–319.

[Sch14] C. Schnell, An overview of Morihiko Saito’s theory of mixed Hodge modules, preprint

arXiv:1405.3096 (2014).

[Suh15] J. Suh, Vanishing theorems for mixed Hodge modules and applications, preprint, to appear in

J. Eur. Math. Soc. (2015).

[Voi02] C. Voisin, Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced

Mathematics, vol. 76, Cambridge University Press, Cambridge, 2002.

[Wu15] L. Wu, Vanishing and injectivity theorems for Hodge modules, preprint, to appear in Trans. of

the AMS (2015).



103

APPENDIX A

Variations of Hodge structures

For the reader’s convienience, in this paragraph we give a brief overview of some basic

facts about variations of Hodge structures.

A.1. Local Systems, Flat Vector Bundles and representations of π1

Let X be a complex manifold and let V be a locally constant sheaf of Q-vector spaces

(Q-local system). For local systems, usually we consider Q-coefficients, but Q can be

replaced by R, C or even any other rings. Then V = V⊗OX is a holomorphic vector bundle

on X. Since V is locally constant, for local sections c and f of V and OX respectively the

assignment

∇ : V −→ Ω1
X ⊗O V

c⊗ f 7→ df ⊗ c

defines a C-linear map for which the Leibniz rule holds

∇(fs) = f∇(s) + df ⊗ s,

for s a local section of V . This is an example of a holomorphic connection:

Definition A.1.1. Let V be a holomorphic vector bundle on X. A holomorphic connec-

tion on V is a C-linear map

∇ : V −→ Ω1
X ⊗O V

such that the Leibniz rule as above holds. A local section s of V with ∇(s) = 0 is called

flat or horizontal. We use the notation V∇ for ker∇.

The composition of cup product of holomorphic forms and ∇ gives

∇ : Ωp ⊗O V −→ Ωp+1 ⊗O V .

The curvature of the connection is the OX-linear map ∇2. The connection ∇ is flat or

integrable if the curvature is 0.
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Clearly if (V ,∇) comes from a local system, then ∇ is integrable. Conversely, we have

the following theorem.

Theorem A.1.2. Let (V ,∇) be a holomorphic vector bundle on X with an integrable

connection. Then

V = V∇

is a local system on X and (V ,∇) ' (V⊗OX ,∇).

The theorem is classic. For a proof see for instance [Voi02, §9.2]. It tells us that the

category of complex local system on X is equivalent to the category of flat holomorphic

vector bundles. This is the prototype of the Riemann-Hilbert correspondence.

Assume X is connected. Starting from an arbitrary local system L, for a fixed base

point x, we have the monodromy representation of π1

ρL : π1(X, x) −→ Aut(Lx).

For a loop γ, ρL(γ) is the composition of the following isomorphism

L0 ' Γ([0, 1], r−1L) ' L1.

Conversely, if we have a π1-representation ρ : π1(X) −→ Aut(L), the sheaf of locally

constant sections of the principal bundle X̃ ×ρ L gives a local system on X. Here X̃ is

the universal cover of X. Therefore, we have proved the following equivalence.

Theorem A.1.3. If X is connected, the category of local system on X and the category

of π1-representations on X are equivalent.

A.2. Variations of Hodge structures

Definition A.2.1. Let X be a complex manifold. A Q-variation of Hodge structure V

of weight k on X consists the following data:

(1) a Q-local system of finite type on X;

(2) a finite increasing filtration {F•} of holomorphic vector bundle of V = V ⊗ OX
by holomorphic subbundles (the Hodge filtration).1

Those date satisfy conditions

(1) for the x ∈ X, the fibres defines a Q-Hodge structure of weight k;

1Usually, the Hodge filtration is decreasing, but to be consistent with Hodge modules we use increasing
filtration.
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(2) the natural connection ∇ of V satisfies the Griffiths’ transversality condition:

∇(Fp) ⊂ Fp+1 ⊗ Ω1
X .

Definition A.2.2. A polarization of a variation of Hodge structure V of weight k on X

is a morphism of variations

Q : V⊗ V −→ Q(−k)

which induces on each fibre a polarization of the corresponding Hodge structure of weight

k, where Q(−k) = (2πi)−kQ, the −k-th Tate twist of constant variation Q.
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