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Abstract

Platelets are circulating anucleate discs derived from megakaryocytes, and play major

roles in hemostasis, inflammation, thrombosis, and vascular biology. Multi-phase cul-

ture systems for inducing in vitro platelet production from mature megakaryocytes have

been explored to allow progenitor expansion, megakaryocyte maturation, and promotion

of platelet formation and shedding. In this thesis, I describe the development of several

methods for identifying influential factors for multi-phase megakaryocyte differentiation.

These methods combine both computational and experimental techniques, and build upon

existing approaches. After initial experiments in cell-lines, I constructed a method to de-

velop time-course networks for early, middle, and late megakaryopoiesis from transcription

factor array data. Validation with prior knowledge and experimental approaches revealed

several false positives and false negatives, which led to the development of a windowed

Granger causal inference strategy for network discovery. To identify influential culture fac-

tors for megakaryocyte differentiation, we screened several strategies and small molecules

for improved ex vivo production. I adapted and applied one of the machine learning

frameworks embedded in SWING to characterize donor heterogeneity within individual

megakaryocyte culture conditions to improve production and build a predictive frame-

work. Finally, I demonstrate a platform for generation of megakaryocytes from valproic

acid expanded cells, as well as a computational method to predict culture performance

based on observed donor heterogeneity, which provides potential for identification and

intervention in in vitro megakaryocyte production processes.

3



4

Acknowledgements

Graduate school has been an extraordinary experience. I have had the pleasure of building

computational models and experimental protocols with brilliant and amicable people. I have

learned an enormous amount and grown tremendously as a scientist and as a person. My

experience would not have been possible without my world-class colleagues and collaborators.

This work was supported by my advisors, Professors Neda Bagheri and William M.

Miller. I thank them for training me, encouraging me to participate in grant writing and peer

reviewing activities, teaching me to think critically, introducing me to colleagues, helping

me to secure postdoctoral positions, and taking an overall interest in my scientific and

personal development. Both mentors stand apart from their peers and I hope to one day

grow to fill their shoes; I will remember Neda’s lucidity in addressing research questions and

enormous capacity to accomplish both research and collaborative tasks. I will remember

Bill’s sharpness of mind, and tireless consistency in all tasks.

This work would not be possible without my mentors. Prof. Mariano Loza-Coll sharp-

ened my first set of tweezers in the fly room and set me off on an ambitious project; Kaz

Higaki, Teresa DeLuca, and Mark Duncan who served as excellent teachers; the members

of the Shea and Mahmud lab for showing me how collaborative research is done; my thesis

chair Professor Eric Weiss for unforgettable encouragement and life advice. I would also like

to thank my other thesis committee members, Professors Luis Amaral and Linda Broadbelt.

They have shared their time and advice with me throughout the years in graduate school. I



5

would like to especially thank Professor Christian Petersen for reading this thesis, and giving

helpful feedback and life advice.

Justin Finkle, Andres Martinez, and Jessica Yu are permanent influences for me. I can’t

wait to see what they do next.

I thank my lab friends who I share many memories with: Albert, Joe, Sebastian, and

Narasimhan. I hope our work will be fortified and surpassed by the next generation of

graduate students in our lab.

I thank Jenny (my adventure buddy) and Jonathan (my hiking and life partner).

Most importantly, this work was made possible by my family, particularly my parents

and my grandparents, who provided unconditional love, encouragement, and support.



6

Contents

Abstract 3

Acknowledgements 4

List of Figures 13

List of Tables 19

Chapter 1. Introduction: Understanding platelet generation from megakaryocytes 20

1.1. The role of platelets in the human body 20

1.2. Megakaryocyte differentiation: can we take a systems-level approach to address

key questions? 22

1.3. Ex vivo megakaryocyte production is limited by lack of understanding of

coordinated transcription factor network 24

1.3.1. Characterization of transcription factors and transcriptional networks 26

1.3.2. Existing methods of biological network inference are limited by static

assumptions 27

1.4. Testing megakaryocyte differentiation models ex vivo 29

Chapter 2. Inferring dynamic activity of key transcription factors during megakaryocyte

differentiation and other applications 32

2.1. Abstract 32



7

2.2. Transcription factor arrays in MEP cell line model reveal critical regulation

supported by prior knowledge. 33

2.3. TF–Reporter assays are imperfect elements for observing TF activity, so

modeled interactions should be experimentally validated 34

2.3.1. TF Activity During E Versus MK Differentiation of K562 Cells show highly

transient upregulation and downregulation of critical TFs 36

2.3.2. Random Forest–based construction of TF regulatory network reveals

characteristic edges for E Versus MK differentiation 38

2.3.3. Generation and Characterization of GATA–1 Depleted K562 Cells reveals

GATA–1 as a critical regulator of E and MK differentiation 40

2.3.4. TF Activity Profiles and Regulatory Network of GATA–1 Depleted Cells

reveal knockdown of fate–specific TFs 43

2.3.5. TF Activity and Regulatory Network for CHRF cells identify characteristic

interactions influencing cell polyploidization 46

2.3.6. Discussion 48

2.3.7. Methods 50

2.3.7.1. Cell Culture, Differentiation, and Transduction of Cell Lines 50

2.3.7.2. Transcription Factor Activity Reporter 51

2.3.7.3. TF Activity Pre–processing 53

2.3.7.4. Random Forest Inference 53

2.4. Transcription factor arrays and application to identification of critical secreted

factors mediating metastatic cell homing 55

2.4.1. Bridging the gap between heterogeneous data–types reveals critical factors

for metastatic cell homing 56



8

2.4.2. Isolation of secreted factors induces phenotypic changes in MDA–MB 231

cell lines 57

2.4.3. Merging proteomics data and TF activity data yields candidate homing

targets 57

2.4.4. Validation of haptoglobin as a secreted factor that mediates tumor cell

recruitment in vitro 62

2.4.5. A novel systems biology pipeline combining secretomic and TF data

identifies influential factors mediating cell homing 66

2.4.6. Methods 67

2.4.6.1. MDA–MB 231 cell culture 67

2.4.6.2. Splenocyte–conditioned medium 67

2.4.6.3. Proteomics analysis 68

2.4.6.4. Transcription factor array setup 70

2.4.6.5. MetaCore analysis 71

2.4.6.6. in vitro validation of haptoglobin 72

Chapter 3. Improved methods for temporally-defined generation of transcription factor

networks 73

3.1. Abstract 73

3.2. Challenges of gene regulatory network inference 74

3.3. Problem setup for inferring regulatory networks 75

3.3.1. Time-series data for biological data is stacked 75

3.3.2. SWING divides time-series using sliding window 76

3.3.3. Edges are partitioned into several sub-edges defined by minimum and

maximum lag 77



9

3.3.4. Edge rank is aggregated using group average between different windows 78

3.3.5. SWING graph generation uses resulting adjacency matrix and user-defined

cutoff 79

3.3.6. SWING parameter selection is defined by embedded inference methods 80

3.3.7. In silico data generation by time-delayed SDEs emulating transcriptional-

translation delays 81

3.3.8. Parameters for GNW subnetwork extraction 82

3.3.9. In silico predictions and scoring 83

3.3.10. Cross-correlation and lag analysis identifies time-delayed edges 83

3.3.11. In vitro data aggregation 84

3.3.12. Computational development 85

3.4. In silico validation and parameter sweep of SWING 85

3.5. SWING improves the inference of in silico GRNs 85

3.6. SWING infers distinct edges in networks 88

3.7. SWING improves network inference by promoting time-delayed edges 91

3.8. SWING infers apparent time-delayed edges with greater sensitivity in the E.

coli SOS network 95

3.9. SWING accurately infers RegulonDB modules with time-delayed edges 97

3.10. SWING performance is robust across parameters 103

3.11. Discussion 105

3.11.1. Consideration of time delays improves SWING performance and should be

integrated in experimental design 107

3.11.2. SWING outperforms common network inference algorithms across scales 108

3.11.3. SWING is an extensible framework 109



10

Chapter 4. Flow cytometry-based characterization and screening of several

megakaryocyte culture conditions from CD34+ cells derived from

umbilical cord blood 110

4.1. Abstract 110

4.2. Multi-step production of CD41a+CD42b+ cells from CB CD34+ cells. 111

4.3. Valproic acid (VPA) pre-expansion increases the number of CD34+ cells for

subsequent culture steps. 113

4.4. Length of primary pre-expansion culture (P0) affects CD41a+CD42b+

expression in secondary culture (P1) under static and shear conditions. 114

4.5. E8 VPA+ pre-expanded cultures produce greater numbers of PLPs than VPA-

conditions. 118

4.6. PLPs derived from VPA+ pre-expanded cultures exhibit functional activity. 121

4.7. p16INK4 and p21Cip/Waf1 are upregulated in pre-expansion conditions and

downregulated with VPA treatment. 124

4.8. Substantial variability in P1 MK production can be predicted via early culture

characteristics. 126

4.9. Discussion 134

4.10. Methods 142

4.10.1. Cell culture 142

4.10.2. Cell Counting 144

4.10.3. Polyploidization analysis 144

4.10.4. Flow cytometry analysis for MK differentiation 144

4.10.5. Aggregation assay 145

4.10.6. Aggregation assay open channel reactor fabrication 145



11

4.10.7. Microfluidic shear analysis 145

4.10.8. qRT-PCR 146

4.10.9. Intracellular flow cytometry 147

4.10.10. Platelet-like particle (PLP) preparation and analysis 147

4.10.11. PLP degradation analysis 148

4.10.12. Confocal microscopy 148

4.10.13. Immunofluoresence staining and microscopy 149

4.10.14. k-means clustering 150

4.10.15. Statistics 150

Chapter 5. Ex vivo cultures for megakaryocyte differentiation described by time-course

models 152

5.1. Abstract 152

5.2. Introduction to flow cytometry analysis 153

5.3. TEmporal Gaussian Models (TEGM) is a framework for time-series flow

cytometry analysis and identifies populations using unbiased, automated

segmentation of each time-point data using Gaussian mixtures 154

5.3.1. Development of GMM at each time-point organizes data into representative

populations 155

5.3.2. Eigenfeatures define quantitative features of cellular differentiation 157

5.3.3. Machine learning identifies relative importance of extracted features 158

5.4. Results 159

5.4.1. TEGM gating identifies primary cell populations in well-defined ex vivo

data-set 159



12

5.4.2. TEGM introduces a new method to use FC data for prediction of cell

responses 163

5.4.3. TEGM identifies culture factors that correspond to and potentially govern

cell responses 165

5.5. Discussion 168

5.6. Conclusion and Summary 170

Chapter 6. Conclusions and Future Outlook 171

Bibliography 177



13

List of Figures

1.1 Guinea pig thrombus (1882) 20

1.2 Thrombosis initation at the site of injury 22

1.3 Commitment of megakaryocytic-erythroid progenitors (MEPs) toward

megakaryocytic (MK) and erythroid (E) lineages is orchestrated by a

complex network of transcription factors (TF) 25

1.4 Example of a gene-regulatory network 28

1.5 The dream: a bioreactor for megakaryocyte and platelet generation 30

2.1 Schematic showing a transcription factor array construct consisting of

three transcriptional response elements (TREs) prepended to a CMV

promoter driving expression of luciferase 35

2.2 Dynamic TF activity array and regulatory networks of K562 cells during

MK or E differentiation 37

2.3 Leave–one–out table for K562 and CHRF networks 39

2.4 Characterization of GATA–1 silenced K562 cells in control media 41

2.5 Characterization of PMA induced MK differentiation of GATA–1

silenced K562 cells 42

2.6 Characterization of hemin–induced E differentiation of GATA–1 silenced

K562 cells 43



14

2.7 Dynamic TF activity array and GATA1–silenced–K562 cells during E or

MK differentiation 44

2.8 Dynamic TF regulatory network of GATA–1–downregulated K562 cells

during E and MK differentiation 45

2.9 Dynamic TF activity array and regulatory networks of CHRF cells

during MK maturation 47

2.10 Secretome analysis of SCM 58

2.11 Summary of identified proteins from secretomics analysis of H–SCM and

D–SCM 59

2.12 TF activity of MDA–MB 231 cells cultured in D–SCM 60

2.13 TF activity of MDA–MB 231 cells measured cultured in D–SCM 61

2.14 List of significantly active transcription factor reporters in Cluster 1 of

D–SCM TF activity screen 62

2.15 Identification of secreted factors and transcription factors mediating

metastatic cell homing 63

2.16 in vitro validation of haptoglobin as a secreted factor mediating

MDA–MB 231 migration 65

3.1 SWING improves inference of 10-node in silico networks 86

3.2 Overview of the SWING framework 87

3.3 Changes in AUPR and AUROC curve distributions for 100-node GNW

networks 88



15

3.4 SWING and non-SWING methods are grouped according to similarity

of ranked predictions for 40 10-node in silico networks via principal

component analysis 90

3.5 Boxplots show the percent change in performance of RF vs SWING-RF,

SWING-LASSO, SWING-PLSR, SWING-Community prediction for 40

10-node networks 91

3.6 Identification of delays in DREAM 4 in silico networks 92

3.7 SWING promotes edges with apparent time delays between genes 93

3.8 SWING promotes time-delayed edges and increases correlation between

genes 94

3.9 Graph representations of (A) S. cerevisiae-derived network 12 and (B)

E. coli SOS network 95

3.10 SWING promotes edges with apparent time delays and increases

correlation between genes 96

3.11 Cross-correlation analysis of time-delayed interactions derived in S.

cerevisiae 98

3.12 Application of SWING on time-delayed gene regulatory network modules

in E. coli 100

3.13 Barplots show the lag distribution each sampling interval for each

aggregated in silico data sets 104

3.14 Boxplots show the percent change in performance of SWING-RF,

SWING-LASSO, SWING-PLSR compared to baseline methods (RF,



16

LASSO, PLSR respectively) for each window size change (white dot =

mean, black bar = median) 105

3.15 Results of sensitivity analysis on in vitro SOS data using SWING-RF 106

4.1 Timeline of ex vivo MK culture process illustrating durations of

pre-expansion and secondary culture phases of E0, E6, E8 culture

conditions 113

4.2 Flow cytometry density plots showing representative expression 115

4.3 VPA enhances proportion of CD34+ cells 116

4.4 VPA maintains larger pool of CD34+ cells in UCB 117

4.5 Cultures pre-expanded with VPA for 8 days showed greater expansion of

CD34+ , CD34+ CD90+, and total nucleated cells 118

4.6 Pre-expansion with VPA increases CD41a+CD42b+ expression and cell

production during P1 culture 119

4.7 Pre-expansion with VPA increases peak CD41a+CD42b+ expression

and cell production during P1 culture 120

4.8 Effect of shear on pre-expanded cells 121

4.9 Effect of shear on individual pre-expanded donors 122

4.10 VPA pre-expansion does not appear to have an effect on ability to form

proplatelets 123

4.11 VPA pre-expansion increases polyploidization of CD41+ cells 124

4.12 PLPs were collected from all conditions over multiple days 125

4.13 VPA increases PLP output compared to pre-expanded control 126



17

4.14 E8 VPA condition releases more PLPs per interval than that of E6 VPA,

though unexpanded cells releases most PLPs per interval 127

4.15 PLPs derived from VPA pre-treated cells display characteristic spreading128

4.16 PAC1 and CD62P activation of VPA-PLPs appear to be similar to E0 129

4.17 PAC1 and CD62P mean activation appears to be similar 130

4.18 Aggregation assay reveals that all derived PLPs aggregate in response to

ADP agonist 130

4.19 Transcript levels of p21 and p16 decrease with VPA treatment 131

4.20 Protein levels of p21 and p16 increase with greater pre-expansion and

decrease with treatment of VPA 132

4.21 P16 gating strategy showing subpopulations of CD41+ cells that are

p16+ 133

4.22 P21 gating strategy showing subpopulations of CD41+ cells that are

p21+ 134

4.23 Extensive donor heterogeneity can be clustered into high-MK and

low-MK groups 135

4.24 K-means clustering of pre-expanded growth 135

4.25 Linear mixed effect modeling shows significant difference between high

and low MK groups in E6 and E8 expansions 136

4.26 Linear mixed effect modeling shows significant difference between high

and lower MK groups in E0 expansion 137

4.27 Correlation analysis between culture response variables 138



18

4.28 Correlation analysis between culture response variables 139

4.29 Correlation network between culture response variables shows influential

factors of MK culture 140

5.1 Summary of TEGM segmentation and feature extraction algorithm 156

5.2 Notation table of TEGM 160

5.3 Major steps implemented by TEGM package integrate automated gating

and feature extraction of time-series flow cytometry data and machine

learning prediction versus manual analysis 161

5.4 TEGM automated gating identifies bead and cell populations in

well-defined cell populations 163

5.5 Gradient–boosted trees identify top TEGM features 164

5.6 TEGM reveals influential culture factors using relative influence 166

6.1 Screen of conditions of UCB not included in published work 173

6.2 Fed–batch cytokine regimes enable greater proliferation of TNCs 174

6.3 Peak MK production under explored conditions is several fold greater

than control 175



19

List of Tables

3.1 Summary of SWING performance on in silico networks 89

3.2 E. coli data set for RegulonDB lag analysis 97

3.3 Lagged edge analysis of 35 E. coli subnetworks from RegulonDB 99

3.4 Gene ontological analysis of E. coli subnetworks in RegulonDB 101

3.5 Lagged edge analysis of E. coli transcription factors from RegulonDB.

We highlight lagged edges with apparent time delays of 10 minutes or

greater. 102

3.6 S. cerevisiae data set for DREAM5 lag analysis 103

3.7 Gene ontological analysis of S. cerevisiae subnetworks 103



20

CHAPTER 1

Introduction: Understanding platelet generation from

megakaryocytes

1.1. The role of platelets in the human body

Platelets, about a tenth of the size of red blood cells, were discovered in the the 19th

century when a microscope with sufficient power became available. In 1865, Max Schultze,

a medical doctor and professor at the Anatomical Institute at the University of Bonn, first

described platelets as “granules” that are associated with the “coagulation of fibrous ma-

terial” whose “appearances suggest that coagulation begins from these accumulations of

granules” [2]. These observations were later cited by Giulio Bizzozero, a professor of General

Pathology at the University of Turin, who conducted well-devised experiments into the func-

tion of platelets [1]. Bizzozero and several contemporaries recognized the role of platelets

Figure 1.1 | Guinea pig thrombus (1882). Two small thrombi formed in
the artery of a guinea pig. In the larger thrombus, white blood cells can be
seen amongst the platelets. Picture from [1].
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in formation of a thrombus in veins of model organisms, such as frogs, guinea pigs, and

dogs (Fig. 1.1). Today, platelets are recognized as circulating anucleate discs derived from

megakaryocytes (MK), and play major roles in mammalian response to injury or infection,

characterized by the interplay of processes such as hemostasis (the process to prevent bleed-

ing or hemorrhage), inflammation (the immune response to injury), and thrombosis (process

of coagulation). Platelets have a highly organized cytoskeleton and intracellular stores of

proteins, which are secreted at sites of blood vessel injury to initiate and propagate the

coagulation response [3]. Specifically, platelets adhere to a von Willebrand factor/collagen

matrix at the site of injury, get activated, secrete granules, aggregate via integrin interac-

tions, and produce thrombin to further initiate activation of other platelets and polymerize

fibrin (Fig. 1.2). Calcium signaling (Ca2+) plays an important role in the activation pro-

cess. The formed thrombus activate platelets via GPCR to trigger the release of coagulation

factors and the conversion of fibrinogen into fibrin.

Platelets have a short-half life (8-9 days) that requires regular replenishment in the

vascular system [5]. In fact, the average human produces 1011 new platelets every day.

Thus, the hematopoietic system is poised to continuously replenish these lineages by rapid

proliferation, differentiation, and maturation of progenitor populations. Platelets are derived

from megakaryocytes, rare cells (less than 0.01% of nucleated cells) from the bone marrow [6].

Megakaryocytes are large polyploid cells (up to 128 copies of DNA) which release extensions

called proplatelets that elongates, and branches repeatedly [6]. Platelets form selectively at

the tips of the extensions and are swept away with blood flow. Biochemically, as platelets

develop, granules and organelles are transported by an extended network of membranes called

the demarcation membrane system (DMS) to the sites of storage [7]. The time required for

MKs to become polyploid and release platelets is estimated to be 5 days in humans [8].
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Figure 1.2 | Thrombosis initation at the site of injury. Stages of platelet
activation and thrombus formation. Platelets form a procoagulant surface and
then a contracted thrombus with fibrin. Ca2+ signaling ranges from green (low
signal) to red (high signal). Image from [4].

1.2. Megakaryocyte differentiation: can we take a systems-level approach to

address key questions?

The differentiation process of megakaryocytes is particularly unique; megakaryocytes un-

dergo an extraordinarily dynamic cellular transformation, first becoming polyploid through

repeated cycles of DNA synthesis without cell division, then developing proplatelets, and

then releasing 2 nm-sized anucleate platelets. To understand parts of the complex life-cycle

of the megakaryocyte, I combined approaches in cell biology, engineering, and computational

modeling to interrogate a variety of questions. There are several questions that this thesis

addresses:

1) On a cell-intrinsic level, how does the core transcription factor (TF) network govern

activity during megakaryocyte differentiation?
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2) Taking into account external cell signaling and epigenetics, what is the effect of pertur-

bations like histone deacetylase inhibitors on primary human megakaryocyte differentiation

and physiology?

3) Finally, on a macroscopic level, what are the key aspects of the endogenous microen-

viroment that promote and discourage megakaryocyte differentiation?

To address these questions, we employed several ex vivo models of megakaryocyte dif-

ferentiation and a diverse panel of computational approaches. I present a series of studies

culminating in multiple biological insights and new techniques. In Chapter 1, I briefly review

the history, mechanisms, and current challenges of modeling transcription factor networks

of megakaryocytes and other products of the hematopoietic system.

In the first half of the thesis, I describe mechanistic approaches to understand transcrip-

tional and signaling networks of the developing megakaryocyte. In Chapter 2, I employ

transcription factor arrays to analyze several aspects of the erythroid-megakaryocyte bi-

furcation, as well as other transcription factor networks of other systems. In Chapter 3, I

describe the development and application of a novel network inference framework to discover

temporally-defined transcriptional networks.

In the second half of the thesis, I describe statistical, non-mechanistic approaches for

analyzing megakaryocyte differentiation. Chapter 4 introduces several projects related to

the characterization and optimization of a novel multi-phase culture protocol to differentiate

megakaryocytes from umbilical cord blood-derived CD34+ cells. Chapter 5 describes a novel

method for modeling and predicting culture outcomes for megakaryocyte differentiation using

time-course flow cytometry. All software described in this thesis will be available under an

open-source license. Together, these studies provide the first glimpse into a systems-approach
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towards optimizing ex vivo megakaryocyte differentiation, which may have broad applications

in basic biological science, bioengineering, and medicine.

1.3. Ex vivo megakaryocyte production is limited by lack of understanding of

coordinated transcription factor network

Recently, genetic studies have provided key insights into the molecular and transcriptional

regulation of megakaryocyte (MK) differentiation. Pluripotent human stem cells (HSCs) give

rise to MK and erythroid precursor cells, which have the CD34 antigen. These precursor

cells are stimulated to begin MK differentiation by a cytokine called thrombopoietin (TPO)

[9]. During normal MK differentiation, MKs grow exceptionally large and undergo several

rounds of endomitosis, exhibiting high expression of TFs such as GATA1, FOG1, RUNX1,

FLI1, SCL/TAL1, and AML1[10] (Fig. 1.3). In this thesis, in addition to using primary cells

derived from human patients, we employ several cell lines that can be induced to develop

megakaryocytic features such as polyploidization and proplatelet-like-extensions by being

induced by phorbol 12-myristate 13-acetate (PMA), such as K562 and CHRF [11, 12]. Dis-

ruption of these genes has been shown to decrease ploidy level, and impair differentiation,

but their interactions with other TFs have not been systematically studied. As the MK

matures, it undergoes proplatelet formation, which is essential for the formation of platelets

[6]. A number of genes has been associated with proplatelet formation, such as NFE2, and

Myb [6]. As the MK matures, proplatelets eventually extend processes until the cytoplasm

is transformed into an extensive network of interconnected proplatelets. Platelets are formed

and released at the ends of these pseudopods. During this highly coordinated process, MKs

can be identified by their markers CD41/CD61, CD42, and CD62 [13]. Transcription factors

coordinately activate numerous genes that function in concert to mediate these processes,
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Figure 1.3 | Commitment of megakaryocytic-erythroid progenitors
(MEPs) toward megakaryocytic (MK) and erythroid (E) lineages
is orchestrated by a complex network of transcription factors (TF).
Putative transcription factor interactions governing E and MK commitment
collected from literature. Figure from Dore, L.C., and Crispino, J.D. (2011)
[10].

which are enriched in genetic ontologies such as cytoplasmic reorganization, membrane re-

cruitment, and organelle assembly and transport [10].

Aberrant transcription of transcription factor genes within bipotent progenitor cells of

mammalian organisms can lead to dysregulation of proteins involved in pathological progres-

sion towards thrombocytosis or thrombocytopenia. Surprisingly, information on how pertur-

bations may affect megakaryocytic-specific transcription factors and overall gene expression

is very limited. To understand the maturation program of erythrocytes and megakaryocytes,

it is imperative to define how perturbations trigger functional interactions between transcrip-

tion factors and how these interactions change over time. Insight into the dynamics of the

transcription factor network governing cell fate and maturation could reveal new opportuni-

ties to drive expression towards the megakaryocyte lineage.
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1.3.1. Characterization of transcription factors and transcriptional networks

Transcription factors bind to the promoter region of the gene where they have the ability

to recruit other co-factors, and initiate or repress the transcription of the gene. A few stud-

ies have investigated transcription factor sequence-specificity on a systematic basis. The

primary binding sequence of a transcription factor is called the transcription factor mo-

tif. Transcription factor motifs usually consist of 6-10 base pairs, that may or may not

be conserved between organisms and cell-types [14]. To identify transcription factor motifs,

chromatin immunoprecipitation (ChIP) against the TF of interest is combined with sequenc-

ing technologies to map binding sites of the TF within the genome [14]. Additionally, other

methods may be employed to establish binding interaction or sequence of binding sites, such

as electrophoretic mobility shift assays (EMSA), systematic evolution of ligands by expo-

nential enrichment (SELEX), protein binding microarray (PBM), DNA immunoprecipitation

(DIP-CHIP), mechanical trapping (MITOMI), TF-mediated DNA methylation profiling, and

surface plasma resonance (BIA-core) [15].

TFs are found to extensively cross-regulate each other through several mechanisms. TFs

may enhance or inhibit the function of target TFs by activating or repressing the target

promoter by direct binding, binding to a complex, or participating in indirect, complex

regulatory mechanisms such as feedback and feedforward inhibition [14]. Additionally, post-

translational modifications, such as phosphorylation can alter the binding specificity and

combinatorial complexing behavior of a TF [14]. Therefore, TF interactions can readily be

represented by an extensive, sometimes ambiguous network, with nodes representing a single

or combination of subunits, and edges representing the transfer of information or directed

action.
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1.3.2. Existing methods of biological network inference are limited by static

assumptions

Elucidating gene-gene regulation is a fundamental challenge in molecular biology, and high-

throughput technologies continue to provide insight about the underlying organization, or

topology, of these interactions. Accurate network models representing genes (nodes) and

regulatory interactions (edges) infer information from many observed heterogeneous com-

ponents while minimizing the effects of noise and hidden nodes. Several methods rely on

prior knowledge or databases to generate networks; To illustrate, I have generated a gene

regulatory network based on DNAse hypersensitivity maps in K562 cell-lines based on data

in Neph et al 2012 (Fig. 1.4). Many methods infer gene regulatory networks (GRNs) from

expression profiles [16], but each suffers from limitations—assumptions of linearity, univari-

ate comparisons, or computational complexity —and most ignore temporal information in

time-series data. Understanding the temporal dynamics of gene/protein expression is crit-

ical to elucidating responses involved in cell cycle, circadian rhythms, DNA damage, and

development [17, 18, 19, 20].

The inference of biological networks from high-throughput data has received much at-

tention during the last decade and can be considered an important problem class in sys-

tems biology. However, it has been recognized that reliable network inference remains an

unsolved problem. Large-scale modeling approaches derive networks directly from ’omics’

data. Within the large-scale approach, it is common to handle thousands of unknown pa-

rameters, in order to generate a course-grained, genome-wide view of gene regulation. These

types of approaches have been shown to perform relatively well in several benchmark studies.
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Figure 1.4 | Example of a gene-regulatory network. Prior knowledge
network was created using a DNAse hypersensitivity K562-specific map. Data
available in [21]. Colors of the edges roughly depict the cluster origin. Influ-
ential, direct targets of SIRT1 are labeled.

Examples of these approaches include LASSO [22], Inferelator [23], and ARACNE [24]. How-

ever, these methods often do not provide high accuracy to realistically predict systems-wide

changes in biological systems [25].

Existing methods to infer GRNs from time-series expression profiles include dynamical

models, statistical approaches, and hybrids of the two [23, 26, 27, 16]. Dynamical sys-

tems models of differential equations can forecast future system behaviors and characterize

formal properties such as stability [28], but these models are computationally intractable

for large GRNs due to extensive and explicit parameterization requirements [29]. Statisti-

cal inference methods—such as regression schemes, mutual information, decision trees, and
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Bayesian probability [22, 30, 31]—make no explicit mechanistic assumptions and are often

more computationally efficient than dynamical models. However, many implementations of

aforementioned algorithms treat time points as independent observations, disregarding time

delays associated with transcription, translation, and other processes inherent to gene reg-

ulation [25, 32]. Hybrid methods—such as SINDy and Jump3—use statistical methods to

optimize the search and parameterization of dynamical models, but they remain computa-

tionally expensive and rely on accurate specification of basis functions [33, 34]. Most authors

have identified lack of data and deficiencies in the inference algorithms as the main reasons

for this situation. During the last decade, many methods have been developed to solve the

network-inference (sometimes called reverse-engineering) problems arising in gene expres-

sion, signal transduction and metabolic networks. I employed Random Forest methodologies

to infer mechanistic factors governing megakaryocytic differentiation, continued to improve

on the Random Forest methodology by building a framework for time-series data inference

(Chapter 3).

1.4. Testing megakaryocyte differentiation models ex vivo

In order to model, perturb, and validate hypothesis pertaining to the life-cycle of the

human megakaryocyte, cell or animal models for megakaryocyte differentiation need to be

established. The limited understanding of the megakaryocyte lineage development is largely

due to the dearth of useful systems in which to conduct experiments. There are several

models that others have used to model the megakaryocyte life cycle, from cell-lines to

primary cells derived from mouse and human [35]. In particular, the limited number of

megakaryocytes and the difficulty of extracting them from the bone marrow, has hindered

the procurement of purified primary cell populations. Thus, ex vivo or in vitro models of



30

Figure 1.5 | The dream: a bioreactor for megakaryocyte and platelet
generation. Stimulants to initiate megakaryocyte development are known.
Several groups have generated bioreactors for megakaryocyte development and
platelet generation. Image from [37].

differentiation of megakaryocytes from primary human stem cells serve as useful tools for

understanding megakaryocyte differentiation. Additionally, others have developed systems

to generate platelet-like-particles ex vivo in near-clinically relevant scales from multiple cell

types [36, 37] (Fig. 1.5). These artificial systems derived from iPSC cells, may allow us to

manufacture platelets at an industrial scale to replace methods for isolating donor-derived

platelets. Chapter 4 is a departure from computational work, where I focus on character-

izing differentiating in vitro MKs. Detailed summaries of previous work on differentiating

in vitro MKs can be found in Chapter 4. Finally, collection of this dataset led to another

modeling opportunity on a different biological scale; we generated a novel predictive model

for heterogenous cellular differentiation on a single cell level for multiple donors (Chapter

5).

Thus, this thesis is an assortment of various computational and experimental analysis

of the megakaryocyte life-cycle. In summary, the first half of the thesis mainly describes
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computational methods for identifying transcription factor and gene regulatory network in-

teractions, some of which relates to the core megakaryocyte network. The second half of the

thesis describe computational and experimental methods to perturb in vitro megakaryocyte

differentiation process towards additional cell proliferation.



32

CHAPTER 2

Inferring dynamic activity of key transcription factors during

megakaryocyte differentiation and other applications

Work presented in this chapter consists of my work with transcription factor arrays

adapted from the following papers:

• Duncan M.T.*, Shin S.*, Wu J.J.*, Mays Z., Weng S., Bagheri N., Miller W.M.,

Shea L.D. Dynamic transcription factor activity profiles reveal key regulatory in-

teractions during megakaryocytic and erythroid differentiation. Biotechnology and

Bioengineering 111:2082–2094. 2014.

• Aguado B.A., Wu J.J., Azarin S.M., Nanavati D., Rao S.S., Bushnell G.G., Chai-

tanya M.B., Shea, L.D. Secretome identification of immune cell factors mediating

metastatic cell homing. Scientific Reports 5, 17566. 2015.

2.1. Abstract

The directed differentiation toward erythroid (E) or megakaryocytic (MK) lineages by

the MK–E progenitor (MEP) could enhance the ex vivo generation of red blood cells and

platelets for therapeutic transfusions. The lineage choice at the MEP bifurcation is con-

trolled in large part by activity within the intracellular signal transduction network, the

output of which determines the activity of transcription factors (TFs) and ultimately gene

expression. Although many TFs have been implicated, E or MK differentiation is a com-

plex process requiring multiple days, and the dynamics of TF activities during commitment
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and terminal maturation are relatively unexplored. Thus my colleagues and I applied a

transcription factor array for the large–scale, dynamic quantification of TF activities during

MEP bifurcation. A panel of hematopoietic TFs (GATA–1, GATA–2, SCL/TAL1, FLI–1,

NF–E2, PU.1, c–Myb) was characterized during E and MK differentiation of bipotent K562

cells. Dynamic TF activity profiles associated with differentiation towards each lineage were

identified, and validated with previous reports. From these activity profiles, I show that

GATA–1 is an important hub during early hemin–and PMA–induced differentiation, and

reveal several characteristic TF interactions for E and MK differentiation that confirm reg-

ulatory mechanisms documented in the literature. Additionally, I highlight several novel

TF interactions at various stages of E and MK differentiation. Furthermore, I investigated

the mechanism by which nicotinamide (NIC) promoted terminal MK maturation using an

MK–committed cell line, CHRF–288–11 (CHRF). Concomitant with its enhancement of

ploidy, NIC strongly enhanced the activity of three TFs with known involvement in terminal

MK maturation: FLI–1, NF–E2, and p53. Dynamic profiling of TF activity represents a

novel tool to complement traditional assays focused on mRNA and protein expression levels

to understand progenitor cell differentiation.

2.2. Transcription factor arrays in MEP cell line model reveal critical

regulation supported by prior knowledge.

Enhancers, which are binding sequences located in non–coding sites and exonic regions,

contribute to the regulation of location, timing, and levels of gene transcription of given

genes [38]. The genetic reporter assay is a well–established tool for dissecting the activ-

ity, or the ability to regulate gene function, of a given enhancer sequence. Enhancers are

generally characterized by a reporter assay that links a multimerized sequence binding site
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(purportedly for TFs and cofactors) to a minimal reporter sequence and reporter gene (such

as lacZ, GFP, or luciferase). These reporter vectors are introduced to cell lines or organisms

to examine the binding activity of an enhancer. In this classical method, examination of

enhancer activity is low–throughput and time–consuming, since candidate sequences would

be introduced to cell lines and examined individually. Recently, the Shea lab has optimized

their own methodology for a “living cell array” for the large–scale quantification of dynamic

TF activities (Fig. 2.1). This assay directly quantifies the activity of TFs through a reporter

assay driven by a minimal CMV promoter expressing luciferase, and allows us to exam-

ine time–series identification of TF activity during lineage commitment and differentiation

[39, 40].

2.3. TF–Reporter assays are imperfect elements for observing TF activity, so

modeled interactions should be experimentally validated

Prepending the discussion of this work, there are several noted caveats with the reporter

assay approach to model TF activities. In this “living cell array” approach and other classical

enhancer assay designs, the TF binding sequences are removed from their genomic context.

Thus the effect of enhancer–promoter distance, looping, and chromosome state is not taken

account in the reporter assay. Also, these reporters use a standard minimal promoter instead

of the actual promoter targeted by the candidate enhancer constructs.

Specifically with multimeric transcription factor binding sites designed in Fig. 2.1, we

note that endogenous TF binding sites found in organisms consist of combinations of sites in

a context–dependent manner [38], and not necessarily in a series of concatenated sequences

with spacers. Additionally, TF sequences exhibit highly degenerate sequences–that result in

a large number of nonspecific interactions or promiscuous binding [41].
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Figure 2.1 | Schematic showing a transcription factor array con-
struct consisting of three transcriptional response elements (TREs)
prepended to a CMV promoter driving expression of luciferase. The
TRE binds transcription factors that recruit the pre–initiation complex (RNA
polymerase) to initiate and maintain transcriptional activity.

Ultimately, to characterize the functional effect of an enhancer or TF binding interaction,

an experiment needs to be conducted such that the enhancer or TF binding of interest is

assayed in an endogenous setting. One potential tool that facilitates this is genome editing

via CRISPR/CAS9 technology, which can test the effect of enhancer mutations or knock–in

reporter genes at endogenous sequences [42]. In these subsequent experiments, we knock

down the TF identified to influence many transcription factors early on. Thus, we caution

that the approach described is to be used for screening purposes only.

In this study, I applied the TF activity assay to investigate E versus MK commitment and

differentiation using the model cell line K562, which resembles MEPs in that it is bipotent

for the E and MK lineages [43]. My colleagues and I selected a panel of seven TFs known to

be involved in E/MK differentiation and monitored their dynamic activities throughout the

differentiation process. First, I examined the divergence in TF activities associated with the
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bifurcation between the E and MK lineages. I then utilized an ensemble tree–based inference

algorithm (GENIE3) to infer the TF regulatory network for both lineages and performed a

topological analysis of the inferred network [30]. The impact of knocking out the GATA–1

TF on the subsequent response of the TF network was also determined. Finally, I investi-

gated the dynamic TF activity associated with NIC promotion of MK maturation using the

CHRF–288–11 (CHRF) cell line, which resembles MK progenitors[44]. The previously estab-

lished NIC–mediated inhibition of SIRTs, as well as changes in metabolism due to increased

NAD+ concentration [45], were expected to influence TF activities. TF activity arrays can

provide unique perspectives on cell differentiation, which may ultimately be translated into

strategies to more effectively promote production of cells in specific lineages.

2.3.1. TF Activity During E Versus MK Differentiation of K562 Cells show

highly transient upregulation and downregulation of critical TFs

The activity profiles of 7 key hematopoietic TFs [10] were quantified over the 5–day culture,

during which cells differentiate to either E or MK phenotypes (Fig. 2.2A). Throughout

MK differentiation, I noted a gradual reduction (Days 1–3) and recovery (Days 4–5) in the

activities of GATA–1, c–Myb, and PU.1. TAL1, had a slight decrease by Day 5. FLI–1 was

rapidly increased, due to induction by PMA and remained significantly upregulated with

respect to the untreated control (P <0.05) except for a transient decrease at Day 3. NF–E2,

important for regulating platelet release from mature MKs also showed an immediate and

strong activation, but this activation gradually regressed to the level of untreated cells.

During E differentiation, I observed early, strong activation of both NF–E2 (Day 1) and

GATA–2 (Day 2). NF–E2 activity subsequently fluctuated, but remained >2–fold higher

than in untreated cells, while GATA–2 activity peaked at Day 3. TAL1 was significantly
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Figure 2.2 | Dynamic TF activity array and regulatory networks of
K562 cells during MK or E differentiation. A) K562 cells transduced
by each TF–activity–reporting lentivirus were treated with 10ng/mL of PMA
(MK–differentiation) or 30µM of hemin (E differentiation). TF activity was
normalized by TA activity and represented by the ratio to vehicle–treated cells.
Shaded regions denote 95% confidence intervals about the mean of six measure-
ments (indicated by data points) from two independent transduction experi-
ments. B) The dynamic TF regulatory networks for PMA–and hemin–treated
K562 cells inferred from TF array data. The TF network shows target and reg-
ulator TFs (circles), as well as putative direct or indirect interactions between
TFs (directed arrows). TF nodes (circles) indicate if TF activity is upregulated
(bold outline), downregulated (dashed outline), or unchanged (thin outline)
with respect to untreated control on the indicated day. Edge line styles depict
whether the inferred interaction is a direct interaction confirmed by previous
literature found in GENEGO (parallel lines), a direct interaction confirmed by
previous literature but activation (blue lines) or inhibition (red lines) of the
target is unknown (solid lines), or inferred interaction is novel (dotted lines).
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upregulated with respect to the untreated control by Day 3 and had increased activity

throughout the differentiation period. Although an initial slight repression was observed

relative to untreated cells, GATA–1 and PU.1 activities trended toward an increase with

respect to control until peaking at Day 3 and declining thereafter. The activities of c–Myb

and the MK–specific TF FLI–1 remained similar to that of untreated cells beyond Day 3.

The observed trends in our activity data were consistent with literature reports of expres-

sion data, and with functional studies describing the specific role of each TF in regulating

E/MK differentiation (see below). However, I note that changes in expression level do not

always correspond to changes in TF activity level due to posttranslational regulatory mech-

anisms, and emphasize that TF activity measurements should not be considered as dynamic

measurements on the protein level.

2.3.2. Random Forest–based construction of TF regulatory network reveals char-

acteristic edges for E Versus MK differentiation

Next, I utilized the TF activity data to construct a regulatory network that identifies putative

positive and negative interactions between TFs. The network was inferred by applying tree

ensemble–based models to predict a set of possible regulators for each TF (Fig. 2.2B). We

sought to evaluate the number of inferred edges that are supported by evidence of direct

binding from literature. Of the 35 edges predicted for E/MK differentiation over 5 days,

20 edges had supporting evidence of direct binding. Although these relationships have been

identified by other authors as direct binding, we note that the relationship inferred by the

network could be direct or the result of indirect interactions. For several of the edges with

evidence of direct binding, sources could not confirm whether the regulatory TF activated

or inhibited the target TF. The probability of an edge within the network shown in Figure
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Figure 2.3 | Leave–one–out table for K562 and CHRF networks.
P–values of inferred edges of CHRF cells during MK maturation with PMA
and PMA plus NIC found using the permutation test.

2B was investigated using a leave–one–out (LOO) analysis. All interactions in the resulting

network were present in those culminating from LOO analysis, though not all interactions

were present in every LOO network in which a TF had been removed. The frequency of a

sustained linkage within networks lacking a single TF reflects confidence of that interaction

in the resulting model. The ranked list of interactions for the LOO analysis at each time

point can be found in 2.3.

In the reconstructed networks, active regulatory interactions, as well as strong regulatory

hubs (i.e., nodes with a large number of interactions), have been identified in both PMA

(Fig. 2.2Bi) and hemin (Fig. 2.2Bii) networks. Judged by the number of connections,

GATA–1 appears to be an influential TF with respect to both hemin–and PMA–mediated

differentiation. According to the model, GATA–1 is a target of most TFs that were screened.

In both PMA and hemin networks, GATA–1 was found to participate in a mutually activating

relationship with TAL1. The activation of these links early in both hemin–and PMA–induced

differentiation reflects that these processes are essential to commitment for both E and
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MK fate. GATA–1 was also inferred to be activated by c–Myb during Day 3 and 4 of

hemin–induced differentiation, and Day 3 for PMA–induced differentiation.

In addition, the inferred networks identified characteristic interactions for hemin–and

PMA–induced differentiation of K562 cells. For PMA–induced differentiation, FLI–1 and

PU.1 participated in a mutually activating relationship for a majority of the timeline that

was observed. During hemin–induced differentiation, GATA–2 and PU.1 were predicted to

act cooperatively in Day 3. Additionally, GATA–2 and c–Myb were inferred to participate

in a mutually inhibiting relationship in the PMA network, while during hemin–induced

differentiation, GATA–2 was predicted to activate c–Myb. Evidence of reciprocal target

binding sites has been found in GATA–2 and c–Myb promoters, but it is not known whether

this relationship is activating or inhibiting [46, 47]. Our results suggest that both cooperative

and antagonistic interplay exist between c–Myb and GATA–2, and that the nature of the

relationship may contribute to the specification of either E or MK commitment.

2.3.3. Generation and Characterization of GATA–1 Depleted K562 Cells reveals

GATA–1 as a critical regulator of E and MK differentiation

The well–established importance of GATA–1 (confirmed by the preceding network analy-

sis) in regulating normal E and MK differentiation motivated studies with the silencing

of GATA–1 during K562 cell differentiation and the measurement of TF activity profiles.

Inhibition of GATA–1 is predicted to disrupt differentiation for both E and MK lineages.

Lentivirus encoding shRNA against GATA–1 was delivered, with 90% knockdown of

GATA–1 mRNA confirmed by qRT–PCR (Fig. 2.4A). This potent silencing of GATA–1

greatly reduced K562 cell expression of the constitutively expressed E antigens GlyA and

CD71 (Fig. 2.4B). In particular, a substantial subpopulation (50%) of GlyACD71 cells
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Figure 2.4 | Characterization of GATA–1 silenced K562 cells in con-
trol media. A: qRT–PCR of GATA–1 mRNA levels in shGATA–1 cells.
B: Expression of the erythroid antigens CD71 and Glycophorin A. C: DAPI
and Annexin V staining of shGATA–1 K562 cells. Data is representative of
two independent transduction experiments. D: TF activity normalized by TA
activity and represented by the ratio to normal K562 cells. All tested TF activ-
ities were significantly reduced (P<0.05) by GATA–1 knockdown. Error bars
in (A) and (D) represent the standard deviation (n=3 biological replicates).

emerged, suggesting a definitive regression from the MEP–like phenotype. In addition,

GATA–1 silencing increased the fraction of apoptotic (AnV+DAPI) and non–viable cells

(DAPI+) (Fig. 2.4C). Further, the basal level of all TF activities was significantly reduced

(to 5–30% of wild–type level) by GATA–1 knockdown (Fig. 2.4D). These profound reductions

further indicate the importance of GATA–1 for the maintenance of the MEP–like phenotype.

Next, we examined the E and MK differentiation of GATA–1 silenced K562 cells. GATA–1

silenced K562 cells were unresponsive to PMA treatment, failing to acquire CD41 (Fig. 2.5A)

or undergo polyploidization (Fig. 2.5B) and typically retaining a small, round, undifferenti-

ated morphology (Fig. 2.5C). Additionally, GATA–1 silenced cells did not respond to hemin,

as they failed to produce hemoglobin (Fig. 2.6A and B) or upregulate GlyA expression (Fig.
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Figure 2.5 | Characterization of PMA induced MK differentiation
of GATA–1 silenced K562 cells. Ploidy (A) and CD41 expression (B)
were monitored for 1 week after PMA induction to assess MK differentiation.
Data is from two independent time–course experiments. Error bars represent
the standard deviation. C: GATA–1 silenced cells retained a small, rounded
morphology 5 days post–PMA treatment.

2.6C). These results were consistent with the preceding network analysis, where GATA–1

was predicted to be essential for both E and MK differentiation.



43

Figure 2.6 | Characterization of hemin–induced E differentiation of
GATA–1 silenced K562 cells. TA–transduced, sh–GATA1 and wild–type
K562 cells were induced with hemin for 3 days in comparison to wild–type and
TA transduced cells. Erythroid differentiation was assessed by hemoglobiniza-
tion using benzidine staining

(A: representative light micrographs on Day 3; B: quantification) and Glycophorin A
expression (C). Representative flow cytometry histograms on day 3 for uninduced (red
lines) and hemin–induced (blue lines) cells. Data is from two independent time–course

experiments. Error bars in (B) represent the standard deviation.

2.3.4. TF Activity Profiles and Regulatory Network of GATA–1 Depleted Cells

reveal knockdown of fate–specific TFs

Next, we considered the TF activities of GATA–1 depleted cells during differentiation using

the dynamic TF activity array (Fig. 2.7). During MK differentiation, we found that PU.1

and c–Myb activities were no longer repressed by PMA treatment in GATA–1 silenced cells.

In addition, although FLI–1 activity was initially elevated, the increase was not sustained.

Surprisingly, NF–E2 activation remained robust, indicating that NF-E2 activation is GATA-1

independent.
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Figure 2.7 | Dynamic TF activity array and GATA1–silenced–K562
cells during E or MK differentiation. GATA–1–down–regulated K562
cells were transduced by each TF–activity–reporting lentivirus and treated
with PMA or hemin. TF activity was normalized by TA activity and repre-
sented by the ratio to vehicle–treated cells. Shaded regions denote the 95%
confidence interval about the mean for eight measurements (indicated by data
points) from two independent transduction experiments.

For E differentiation, the increase in GATA–2 activity was much less than for wild–type

cells and the increase in TAL1 activity observed for wild–type cells did not occur in GATA–1

silenced cells. However, as with PMA treatment, hemin rapidly induced NF–E2 activity de-

spite GATA–1 depletion. Taken together, these results demonstrate that, aside from NF–E2,

the TF activity trends shown in Figure 2.2A are GATA–1–dependent and are specifically

associated with E and MK differentiation. Finally, we also created an interaction network

for GATA–1 silenced cells, similar to that shown in Figure 2.2B. As expected, this network

substantially differed from that found during the differentiation of wild–type cells (Fig. 2.8).

Of note, a majority of the characteristic interactions identified for PMA–and hemin–induced

differentiation in wild–type cells were no longer present. In particular, as may be expected,

the mutually activating relationship between GATA–1 and TAL1 was no longer present in

early PMA–and hemin–induced differentiation, and GATA–1 no longer appears to be a tar-

get of FLI–1, PU.1, and c–Myb in PMA–induced differentiation. Depletion of GATA–1 also
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Figure 2.8 | Dynamic TF regulatory network of
GATA–1–downregulated K562 cells during E and MK differ-
entiation. Inferred TF network indicates that putative interactions are
disrupted when GATA–1 is down–regulated. TF networks show target and
regulator TFs (circles), as well as putative direct or indirect interactions be-
tween TFs (directed arrows). TF nodes indicate if TF activity is up–regulated
(bold outline), down–regulated (dashed outline), or unchanged (thin outline)
with respect to untreated control on indicated day. Edge weights depict
whether the inferred interaction is a direct interaction confirmed by previous
literature found in GENEGO (parallel lines), a direct interaction confirmed
by previous literature but activation (blue lines) or inhibition (red lines) of
the target is unknown (solid lines), or inferred interaction is novel (dotted
lines).

resulted in mutually activating relationships between TAL1 and c–Myb (hemin and PMA)

and between PU.1 and GATA–2 (PMA only) that were not observed for wild–type cells.
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2.3.5. TF Activity and Regulatory Network for CHRF cells identify character-

istic interactions influencing cell polyploidization

We investigated the mechanism of NIC action by profiling TF activities and constructing

a putative regulatory network using the MK cell line CHRF, which the Miller lab have

extensively validated as a model of MK differentiation [48]. CHRF cells are committed to

the MK lineage, yet are terminally differentiated by PMA addition, becoming polyploid and

forming proplatelet–like extensions. Importantly, as with primary MK cells, CHRF cells

substantially increase their ploidy in response to NIC [45].

After establishing CHRF TF–reporter cell lines, dynamic TF activities in response to

treatment with either PMA or PMA plus NIC over 6 days of differentiation was quantified.

Cells harvested from the array at the final day (Day 6) confirmed that NIC treatment con-

sistently increased polyploidization under the culture conditions (Fig. 2.9A). TF activity

analysis (Fig. 2.9B) revealed that, consistent with K562 cells, PMA tended to increase the

activities of NF–E2 and FLI–1 versus untreated cells (typically 1.5–to 2–fold induction).

Also, similar to K562 cells, GATA–2 and TAL1 activities remained essentially constant after

PMA induction. However, the decreases in GATA–1, PU.1, and c–Myb activities character-

istic of K562 cells were not observed for CHRF cells. These differences likely result from the

greater maturity of untreated CHRF cells (MK progenitor phenotype) relative to K562 cells

(MEP phenotype), so that the basal levels of the aforementioned TFs may have already been

down–regulated prior to PMA treatment. p53–activity increased throughout MK differen-

tiation. Adding NIC strongly enhanced the activities of FLI–1, PU.1, and NF–E2, while

moderately enhancing p53 and GATA–2 activities.

To identify possible mechanisms for the response of CHRF cells to NIC treatment, func-

tional TF networks were created and characteristic relationships were identified. Out of 68
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A

B

Figure 2.9 | Dynamic TF activity array and regulatory networks of
CHRF cells during MK maturation. A: Dynamic TF activity profiles.
TF activity was normalized by TA activity and represented by the ratio to un-
treated cells. Shaded regions denote the 95% confidence interval of the mean of
six measurements (indicated by data points) from two independent transduc-
tion experiments. Error bars indicate standard deviation. B: TF regulatory
network was inferred for CHRF cells during MK maturation with PMA, and
PMA plus NIC treatments. p53 was added as an additional node to identify
potential TFs that regulate its activity. TF networks show target and regu-
lator TFs (circles), as well as putative direct or indirect interactions between
TFs (directed arrows). TF nodes indicate if TF activity is upregulated (bold
outline), downregulated (dashed outline), or unchanged (thin outline) with
respect to untreated control on indicated day. Edge weights depict whether
the inferred interaction is a direct interaction confirmed by previous literature
found in GENEGO (parallel lines), a direct interaction confirmed by previous
literature but activation (blue lines) or inhibition (red lines) of the target is
unknown (solid lines), or inferred interaction is novel (dotted lines).
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edges inferred, 32 edges were found to have evidence in the literature for direct binding.

After NIC stimulation, NF–E2 appears to be a potent cooperator with GATA–1, PU.1, and

FLI–1 (Day 3). During PMA treatment without NIC, p53 expression appears to be primarily

regulated by GATA–2. With NIC treatment, p53 activation does not strongly correspond to

GATA–2 regulation and appears to cooperate with FLI–1 and GATA–1. I observed fewer

edges to p53 with NIC treatment. In contrast, there were more edges to PU.1 with NIC.

TAL1 and NF–E2 exhibited mutual inhibition, especially in cultures with NIC. Overall, little

similarity was observed between the functional TF networks inferred for PMA treatment in

the absence or presence of NIC.

2.3.6. Discussion

The distinct TF activity profiles we observed during E versus MK differentiation of K562 cells

provide a unique perspective for understanding how these cells develop toward two disparate

phenotypes. In particular, measuring TF activities enhances our understanding of previously

known expression patterns. Our inferred networks suggest that TAL1, PU.1, and c–Myb are

key cooperators with GATA–1, but the precise mechanism by which differentiating K562

cells activate and/or degrade GATA–1 remains to be determined. Recent studies suggests

that acetylation may play a key role by promoting GATA–1 transactivation, while also

enhancing its degradation by the proteasome [49]. The fact that independent reporters for

GATA–1 and TAL1 both exhibited reduced activity after PMA addition suggests that the

activity of GATA–1 + TAL1–containing complexes may likewise be reduced. Under PMA

treatment, we also observed a steady decrease in the activity of TAL1, which is known to

form transcriptional activating complexes with GATA–1 [50]. Conversely, I observed a late
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upregulation of TAL1 activity during hemin–mediated differentiation of K562 cells, which is

consistent with its reported requirement in terminal erythroid differentiation [50].

Unlike GATA–1, GATA–2 activity transiently increased during the first three days of

hemin treatment and recovered to basal level, while there was no significant change under

PMA treatment (Fig. 2.2A). Our analysis reveals interesting insights for GATA–2 function

in the differentiation of K562 cells and offers an explanation to inconsistencies observed in

the literature. These results that GATA–2 activity initially increases and then declines after

4–5 days of hemin treatment, support the idea that ectopic GATA–2 promotes E progenitor

cell proliferation, but interferes with their terminal differentiation, and that GATA–2 levels

decline during the later stages of erythroid differentiation [51].

We anticipated a decrease in FLI–1 activity in response to hemin, since FLI–1 antagonizes

commitment of MEPs to the erythroid lineage in favor of MK lineage [52]. However, hemin

did not alter basal FLI–1 activity. Since K562 cells already appear to exhibit a bias toward

the erythroid lineage (e.g., express the erythroid–specific antigens CD71 and GlyA), this

suggests that K562 cells may have already down–regulated FLI–1 expression and/or activity

prior to treatment.

TF analysis also provides interesting insights into the activity of NF–E2. In particular,

I found that NF–E2 is strongly and rapidly activated by the addition of hemin or PMA.

Furthermore, this activation does not depend on the presence of GATA–1 (Fig. 2.8) or the

ability to differentiate to the E and MK lineages as normally occurs in K562 cells. This

may indicate that NF–E2 activation is not far downstream in the intracellular signaling that

occurs upon K562 cell stimulation with either hemin or PMA.

The dynamic nature of the TF activity profiling assay provides the ability to capture

how TF networks functionally rewire during differentiation. Novel and known characteristic
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relationships were inferred for PMA–and hemin–mediated differentiation, which illustrates

changes in TF regulation during MK and E differentiation. Activities of some TFs were

consistent with and expected from previous reports, which verifies the dynamic TF activity

analysis. A tree–ensemble–based inference method was employed to create characteristic

networks describing active regulatory interactions, and this highlighted several functional

relationships previously identified in the literature. In addition, my colleagues created a

GATA–1 silenced model and verified GATA–1 as an early, essential regulator for both E and

MK differentiation in K562 cells, as indicated by the network analysis and previous reports.

Directed edges represent causal influences, but such predicted influences may be indirect

and not be mediated by a direct binding relationship. The causal influence (assume inferred

activation) of TF B by TF A could be explained by TF A binding to the promoter sequence

of the gene controlling the transcription of TF B. This interaction could also be explained

by a more complicated process, such as TF A binding to a gene that encodes a metabolic

enzyme producing a metabolite which in turn regulates the transcription of gene B. These

detailed biochemical events are hidden in the observed set of variables. Although likely

biological mechanisms have been described for known TF interactions, further experimental

verification is needed to uncover the biochemical mechanisms involved in novel relationships.

2.3.7. Methods

2.3.7.1. Cell Culture, Differentiation, and Transduction of Cell Lines. K562 cells

were maintained in exponential growth in RPMI 1640 media, supplemented with 10% fetal

bovine serum (FBS) from Hyclone (Logan, UT) and 1% penicillin/streptomycin (pen/strep).

CHRF cells were maintained in Iscoves Modified Dulbeccos Medium (IMDM) with 10% FBS
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and 1% pen/strep. The MK differentiation of either cell line was stimulated by the addition

of 10 ng/mL PMA. For E differentiation, K562 cells were treated with 30 µM hemin.

Phorbol 12–myristate 13–acetate (PMA), hemin, benzidine dihydrochloride, and nicoti-

namide were obtained from Sigma–Aldrich (St. Louis, MO). CD41a and GlyA antibodies

were from BD Biosciences (San Jose, CA). Annexin V antibody was from ebiosciences (San

Diego, CA).

Lentivirus was produced by co–transfecting HEK–293T cells with previously described

lentiviral packaging vectors (pMDL–GagPol, pRSV–Rev, pIVS–VSV–G) (Dull et al., 1998)

and lentiviral vectors such as pLenti–TRE–dsGFP–ffluc and GATA–1–directed TRC lentivi-

ral short hairpin RNA vectors (Open Biosystems, Huntsville, AL) using Lipofectamine 2000

(Life Technologies, Carlsbad, CA). After 48 h, supernatants were collected and cell debris

was spun down and removed. Viruses were concentrated using PEG–it (Systems Biosciences,

Mountain View, CA) and re–suspended in phosphate buffered saline (PBS). Lentivirus titers

were determined by HIV–1 p24 Antigen ELISA Kit (ZeptoMetrix Co., Buffalo, NY).

Transduction of GATA–1–targetting lentiviral shRNA into K562 cells was performed by

spinoculation. Two days after transduction, cells were cultured with media containing 2

µg/mL puromycin (Life Technologies) for 7 days. Cells were then cultured in regular media

for 3 days before being used for experiments. GATA–1 down–regulation was confirmed by

real–time PCR.

2.3.7.2. Transcription Factor Activity Reporter. TF reporters consist of a specific

TF response element (TRE) cloned upstream of a minimal cytomegalovirus (CMV) pro-

moter (TA) driving the gene for firefly luciferase (FLUC) and destabilized GFP packaged

in self–inactivating lentiviral vectors (pGreenFire, System Biosciences). Increased binding

on TRE by TFs results in increased luciferase production and a proportional increase in
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luminescence when an excess of substrate is added during imaging, thus providing a quan-

titative measure of relative transactivation. TF reporter specificity and sensitivity studies

are referenced on the TRANSFAC [53] and Panomics database (Affymetrix, Redwood, CA).

TF reporters were prepared by cloning specific binding elements into the pGreenFire lentivi-

ral backbone. Each lentiviral reporter consists of three repeats of a TF–specific binding

element driving expression of FLUC, and a puromycin resistance cassette. K562 or CHRF

cells were mixed with lentiviral vectors bearing TF reporter constructs at a multiplicitiy of

infection (MOI) of approximately 10 virions per cell and centrifuged at 800g for 45 min at 32

C. After removing the supernatant, cell pellets were resuspended and treated with medium

containing 1–2 µg/mL puromycin to select transduced cells. K562 cells bearing reporter

vectors were plated at 2 104/well in black 96–well plates (Greiner Bio–One, Monroe, NC)

and treated with hemin (30 µM) or PMA (10 ng/mL) to induce E or MK differentiation,

respectively. CHRF cells bearing reporter vectors were plated at 1 104/well and treated

with PMA (10 ng/mL) or PMA + NIC (12.5 mM) to induce MK differentiation. To mea-

sure TF–activity–dependent luciferase production, d–luciferin (Molecular Imaging Products,

Bend, OR) was added to wells to a final concentration of 1 mM, which had been previously

determined to be well in excess of a limiting concentration. Following a 20–min equilibration

period, luminescence in each well was measured using an IVIS Lumina LTE camera sys-

tem (Caliper Life Sciences, Hopkinton, MA). Untransduced cells in arrays served as controls

for non–enzymatic d–luciferin breakdown. Cells transduced with a minimal CMV–FLUC

(denoted TA–FLUC) reporter construct without additional TF response elements served as

controls for any differences in basal promoter activity between conditions. The media and

the inducing agent (hemin or PMA) were exchanged for fresh media containing the inducing

agent every other day.
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2.3.7.3. TF Activity Pre–processing. Luminescence values for each well on each day

were divided by the average of three luminescence readings from corresponding TA–FLUC

control wells to control for differences in basal TA promoter activity. Luminescence read–outs

for a reporter TF(J)–r in cells treated with treatment Tx on day Dx after adjustment for

basal transactivation from control reporter TA–r is therefore represented by the formula.

Normalized luminescence values for each treatment on each day were then divided by

the average of the normalized values for the respective untreated control (Veh) to correct

for TF activity changes due to continued cell growth in arrays that cannot be attributed to

differentiation.

Each TF activity was subsequently log–transformed to normalize the variance of TF(J)–r.

Each array had three replicates per TF reporter and complete array experiments were re-

peated two times on different days. Plate position of cells expressing each TF reporter was

varied between experiments beginning on different days.

2.3.7.4. Random Forest Inference. The GENIE3 algorithm was used to generate a net-

work model for each set of time–points[30]. For the random forest (RF) algorithm, param-

eters were set using the following criteria: K (the number of features selected at random to

generate each regression tree) was set to the number of TFs minus one. Ntrees (the total

number of trees generated for the ensemble) was set to 1,000. The sign of the interaction (ac-

tivating or inhibiting relationship) was determined by the sign of the correlation coefficient

between the putative regulator and target TFs.

GENIE3 receives a TF activity matrix as an input, and outputs a ranked list of edges

and importance scores associated with each edge. For the confidence estimation procedure,

each TF importance score was compared to a randomized score from a null model obtained

by using internal sampling (randomly shuffling initial activity values by 10,000 iterations).
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By randomly shuffling the data, any association between TFs as predicted by the algorithm

is removed. If a predicted interaction is observed in 4.99% of the null model predictions,

then a P–value of 0.0499 is implied. The importance score is plotted against the number

of false positives, and an importance score cut–off of 0.13 corresponding to a P–value of 0.1

was set for screening purposes.

In the absence of a reference hematopoietic TF network, I derived a network of experimen-

tally validated regulatory interactions from GeneGO. Direct interactions were downloaded

from the GeneGO database, yielding a network of 34 interactions among seven TFs. The

resulting networks from both GeneGO and RF inference were visualized by Cytoscape [54].

Results of experiments are presented as the mean standard deviation, unless otherwise

indicated. Analysis of Living Cell Arrays (ALCA), an R package that was previously devel-

oped and I subsequently worked to improve specifically for TF activity arrays, was used to

visualize and analyze the data [40]. Unless noted otherwise differences in means were evalu-

ated by a paired moderated t–test using false discovery rate correction [55, 56]. A P ¡0.05 was

considered to be statistically significant. I performed leave–one–out (LOO) cross validation

on our network models to evaluate network sensitivity with respect to the presence/absence

of transcription factors.

Transcription factor regulatory networks were generated by aggregating the most likely

interactions identified by GENIE3, a random–forest algorithm. I performed a leave–one–out

(LOO) cross validation to explore whether interactions were substantially impacted when

an individual TF was removed from the analysis. To do this, seven transcription factor

regulatory networks were generated by sequentially omitting data corresponding to one of

the seven observed transcription factors. For example, to identify possible regulators of the
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transcription factor cMyb, one regression tree was created with data from 5 of the other avail-

able transcription factors (e.g., FLI–1, GATA1, GATA2, NF–E2, PU.1, leaving out TAL1)

instead of 6. For each target transcription factor, the importance score of each candidate

regulator was identified and ranked to generate a list of interactions [30]. Only interactions

that were identified as significant were shown in networks such as Figure 2B. Thus, I sys-

tematically generated 7 LOO networks with a different transcription factor omitted from the

analysis. To identify significant interactions within these networks, I used the permutation

test procedure to generate null models [57, 58]. In the permutation test, the data is shuf-

fled and random networks are generated, and this was performed 10,000 times. For these

random networks, I determined the number of occurrences that an interaction had a similar

or higher rank than what was obtained with the original data set. The number of occur-

rences divided by the total number of random network permutations (10,000 in our studies)

reflects the probability (p–value) that an interaction would be a false positive and thus lead

to inappropriately rejecting the null hypothesis. I utilized a maximum p–value of 0.1 to

identify significant interactions in the leave–one–out models. This cut–off value was used

as it corresponds approximately to the elbow when the importance score is plotted against

the false positive rate, and thus further increasing the p–value cut–off would significantly

increase the false positive rate.

2.4. Transcription factor arrays and application to identification of critical

secreted factors mediating metastatic cell homing

Metastatic cell homing is a complex process mediated in part by diffusible factors secreted

from immune cells found at a pre–metastatic niche. I discuss another application and analysis

pipeline for the TF array to identify functional paracrine interactions between immune cells
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and metastatic cells as novel mediators of homing. Metastatic breast cancer mouse models

were used to generate a diseased splenocyte conditioned media (D–SCM) containing immune

cell secreted factors. MDA–MB 231 metastatic cell activity including cell invasion, migration,

transendothelial migration, and proliferation were increased in D–SCM relative to control

media. D–SCM secretome analysis yielded 144 secreted factor candidates that contribute

to increased metastatic cell activity. The functional mediators of homing were identified

using MetaCore software to determine interactions between the immune cell secretome and

the TRACER–identified active transcription factors within metastatic cells. Among the 5

candidate homing factors identified, haptoglobin was selected and validated in vitro and

in vivo as a key mediator of homing. I demonstrate a novel systems biology approach to

identify functional signaling factors associated with a cellular phenotype, which provides an

enabling tool to complement large–scale protein identification provided by proteomics.

2.4.1. Bridging the gap between heterogeneous data–types reveals critical factors

for metastatic cell homing

My colleague, Brian Aguado, stimulated MDA–MB 231 breast tumor cells using a splenocyte

conditioned media (SCM) containing a complex mixture of immune cell secreted factors and

induced phenotypic changes in metastatic cell activity. Using a secretomics approach, the

immune cell secretome was analyzed to identify the secreted factors involved in activating

the phenotypic changes in cancer cells. In parallel, I used TF array data to identify active

transcription factors (TFs) involved with the increased MDA–MB 231 metastatic activity

in response to the secreted factors. Upon connecting the two data sets, the generated net-

work connected the SCM secreted factors to the activated TFs. The network was utilized
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to identify functional secreted factors that contribute to metastatic cell homing. One can-

didate secreted factor, haptoglobin, was validated in vitro and in vivo to confirm its role in

metastatic cell homing.

2.4.2. Isolation of secreted factors induces phenotypic changes in MDA–MB 231

cell lines

Leukocytes were harvested from spleens of diseased mice (inoculated with breast cancer cells)

and healthy mice (not inoculated with breast cancer cells), which are referred to as diseased

and healthy spleens, respectively. Splenocyte conditioned media from healthy (H–SCM)

and diseased (D–SCM) splenocyte populations were generated. Differences in metastatic

cell activity in H–SCM and D–SCM were evaluated using transwell culture assays [59].

Representative images from the transwell assays are provided in the publication, which had

increased MDA–MB 231 invasion, migration, and transendothelial migration when cultured

in D–SCM compared to H–SCM and RPMI controls [59].

2.4.3. Merging proteomics data and TF activity data yields candidate homing

targets

Secretomics techniques were employed to identify the candidate immune cell secreted factors

in D–SCM that increase metastatic activity of MDA–MB 231 cells in vitro. A total of 615

proteins were identified in both D–SCM and H–SCM, with 101 proteins identified exclusively

in D–SCM and 139 proteins identified exclusively in H–SCM. Out of the 375 proteins identi-

fied in both media, 115 of those proteins were identified ontologically as secreted factors (Fig.

2A). From this secreted factor pool, 23 proteins in D–SCM and 16 proteins in H–SCM had

a log2 fold change greater than 1.5, indicating increased protein abundance in the sample
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Figure 2.10 | Secretome analysis of SCM. (a) Heat–map indicating peptide
spectral matches (PSM) of 115 identified secreted factors for three replicates
of H–SCM and D–SCM. (b) Log–fold change of corresponding secreted factor
peptide hits. The green shaded region indicates secreted factors with a log–fold
change greater than 1.5 in D–SCM and the red shaded region indicates secreted
factors with a log–fold change greater than 1.5 in H–SCM.

(Fig. 2.10B. In addition to the 115 secreted factors identified in both media, 29 of the 101

proteins exclusively present in D–SCM were identified as secreted factors and included in

the secreted factor list, bringing the total to 144 secreted factors in D–SCM (Fig. 2.11).

The transcription factors (TFs) activated in response to D–SCM were subsequently mea-

sured using TF arrays. The transactivation profiles of 52 TF reporter constructs over a

time period of 8hours were determined by measuring TF activity of cells cultured in D–SCM

(Fig. 2.13). Of the 52 TF reporters, 35 reporters had significantly altered TF activity (ad-

justed p–value¡0.05) for cells cultured in D–SCM. Using k–means clustering, TF activity

profiles were grouped into 7 clusters, revealing TFs with similar temporal activation over

the 8–hour period (Fig. 2.12A). The 7 clusters were organized from most to least active,

allowing visualization of TF clusters that are most active in response to D–SCM secreted

factors (Fig. 2.12B). The cluster with the greatest increase in reporter activation contained

10 TFs involved in metastatic cell processes including migration, proliferation, and invasion

(Fig. 2.14).
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Figure 2.11 | Summary of identified proteins from secretomics anal-
ysis of H–SCM and D–SCM. List of 144 protein matches identified as
secreted proteins (115 identified in both D–SCM and H–SCM and 29 iden-
tified exclusively in D–SCM), with significance cut–off of p ¡ 0.1. Matched
proteins highlighted in green have peptide spectral matches with a log2 fold
difference greater than 1.5 in D–SCM. Matched proteins highlighted in red
have peptide spectral matches with a log2 fold difference greater than 1.5 in
H–SCM.

Candidate homing factors were subsequently identified through the intersection of TFs

downstream from D–SCM proteins and TFs identified with TRACER. First, 47 TFs were

identified to be downstream of the 144 D–SCM secreted factors using public data sources that

curate experimentally verified interactions. MetaCore network analysis software was used to

generate a network containing 144 D–SCM secreted factors, all known human receptors, and

all known human TFs as nodes. The group of 47 TFs predicted to be downstream of the

secreted factors were compared to the 10 TFs within the cluster with the greatest increase in
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Figure 2.12 | TF activity of MDA–MB 231 cells cultured in D–SCM.
(a) K–cluster line–graphs for TF reporter activity of MDA–MB 231 cells cul-
tured in D–SCM. (b) Heat map of normalized TF reporter activity values for
MDA–MB 231 cells cultured in D–SCM over 8hours. RPMI was chosen as a
control for basal TF reporter activity since there was no observable difference
in cell phenotype between MDA–MB 231 cells cultured in RPMI or H–SCM.
Activity values are organized using k–means into 7 clusters (n=6 arrays). Sig-
nificance in TF activity for at least one time point indicated with an asterisk
(*p¡0.05).

reporter activation identified with TRACER, revealing 6 common TF targets (Fig. 2.15A).

We determined that the highly activated cluster of TFs was significantly enriched with TFs

predicted to be downstream of 144 secreted factors.

Next, an interaction network was generated to determine functional connections between

secreted factors and active TFs. The 144 secreted factors, 35 significantly active TFs, and
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Figure 2.13 | TF activity of MDA–MB 231 cells measured cultured in
D–SCM. List of 144 protein matches identified as secreted proteins (115 iden-
tified in both D–SCM and H–SCM and 29 identified exclusively in D–SCM),
with significance cut–off of p ¡ 0.1. Matched proteins highlighted in green
have peptide spectral matches with a log2 fold difference greater than 1.5 in
D–SCM. Matched proteins highlighted in red have peptide spectral matches
with a log2 fold difference greater than 1.5 in H–SCM.

a list of all known human receptors obtained from MetaCore were connected as nodes to

generate a network to link our secretomics and TF actvity results (Fig. 2.15B). Edges

between nodes represent experimentally verified protein–protein or gene–gene interactions.

Additionally, the initial receptor and TF nodes were used as seed nodes and expanded by

one degree to include additional signaling components. The final network consisted of 3562

known interactions. The 6 common TF targets were predicted to interact with receptors
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Figure 2.14 | List of significantly active transcription factor reporters
in Cluster 1 of D–SCM TF activity screen. TFs are listed by TF reporter
category and associated gene ontology (GO) processes. Sources: TRANSFAC,
MetaCore, NCBI databases.

known to respond to 5 secreted factors identified in the network (calgranulin A, calgranulin

B, haptoglobin, heme binding protein, and myeloperoxidase) (Fig. 2.15C). By narrowing the

list of TFs included in the network with TF activity, we could objectively identify secreted

factor candidates that have a downstream effect on the network.

2.4.4. Validation of haptoglobin as a secreted factor that mediates tumor cell

recruitment in vitro

Among the list of 5 candidate secreted factors, haptoglobin was chosen for validation. In

the generated network, haptoglobin interacts with the CCR2 receptor and activates multi-

ple downstream TFs. Next, the role of haptoglobin on the in vitro metastatic activity of
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Figure 2.15 | Identification of secreted factors and transcription fac-
tors mediating metastatic cell homing. (a) Venn diagram summarizing
predicted TFs downstream of D–SCM. The white circle identifies the most
active TFs (Cluster 1) in the D–SCM TF activity screen, and the grey circle
identifies TFs that were predicted to be downstream of the secreted factors
(SFs) identified using MetaCore. A Fisher test was used to test the signifi-
cance of the overlapping TFs in red (p¡0.01). Bolded TFs indicate reporters
that were significantly active in the D–SCM TF activity screen. (b) Overview
of experimental approach and computational analysis to narrow down secreted
factor list of candidates. (c) Network generated in MetaCore summarizing in-
teractions between 5 secreted factor candidates, receptors, and downstream
TFs from TF activity in Cluster 1. The network includes TFs expanded by
one interaction.

MDA–MB 231 cells was investigated using two approaches: i) RPMI supplemented with

recombinant haptoglobin (rHp) relative to control RPMI media, and ii) D–SCM supple-

mented with a haptoglobin antibody (HpAb) relative to control D–SCM. MDA–MB 231
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migration increased almost three–fold to 295.916.9 cells in rHp supplemented medium com-

pared to 100.510.4 cells in control RPMI. Additionally, MDA–MB 231 migration was de-

creased almost two–fold in D–SCM supplemented with HpAb, with 118.66.2 cells compared

to 219.916.9 cells in D–SCM (Shown in the publication [59]). MDA–MB 231 invasion also

decreased in D–SCM supplemented with HpAb compared to D–SCM; however, invasion in

RPMI supplemented with rHp was similar to control RPMI. The addition of rHp to RPMI

and HpAb to D–SCM had no effect on MDA–MB 231 transendothelial migration. MDA–MB

231 cells cultured in rHp had a 1.5–fold increase in proliferation compared to RPMI by Day

5 of culture. From these results, rHp showed differing effects on metastatic cell phenotype,

suggesting other factors in the conditioned media contribute to the phenotypic effects.

Given these phenotypic changes in MDA–MB 231 metastatic processes, TF activity ar-

rays were employed to confirm the activity of TFs downstream of haptoglobin identified in

the network. Two TRACER arrays were performed to compare TF activity between i) RPMI

vs. RPMI+rHp (rHp TRACER) and ii) D–SCM vs. D–SCM+HpAb (HpAb TRACER). Re-

porters for the rHp and HpAb TF activity arrays were selected based on the TFs located

downstream of the Hp–CCR2 interaction in the network. Reporters with increases in TF

activity identified by TF actvity for cells cultured in D–SCM were also selected. The trans-

activation profiles of 16 TF reporters were measured over a period of 8hours. K–means

clustering of the TRACER profiles characterized the response to rHp and HpAb treatments

into 6 temporally distinct activity profiles (Fig. 2.16C,D). TF activity from 5 of 16 reporters

(STAT3, NF, PAX1, CRE, and SRF) correlated with recombinant haptoglobin addition, and

displayed increased activity with rHp treatment while having decreased activity with HpAb

treatment (Fig. 2.16C). Other reporters deviated from this trend, including SMAD3, SP1,

STAT1, and MEF1, suggesting that other secreted factors in D–SCM may contribute to
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Figure 2.16 | in vitro validation of haptoglobin as a secreted factor
mediating MDA–MB 231 migration. (a) Representative migration assay
images of MDA–MB 231 cells cultured in RPMI, RPMI supplemented with
recombinant haptoglobin (RPMI+rHp), D–SCM, and D–SCM supplemented
with haptoglobin antibody (D–SCM+HpAb) (scale bars=300µm). (b) Mi-
grating cell count of MDA–MB 231 cells cultured with RPMI, RPMI+rHp,
D–SCM, and D–SCM+HpAb (n=8). Letters above each data column indi-
cate statistical significance, with different letters signifying distinct statistical
groups (p¡0.05). (c) TF activity array data showing MDA–MB 231 TF activity
for cells cultured in D–SCM+HpAb normalized to activity for cells cultured in
D–SCM, and activity for cells cultured in RPMI+rHp normalized to activity
for cells cultured in RPMI (n=6 arrays). Significant changes in TF activity
for at least one time point indicated with an asterisk (*p¡0.05). TF reporters
showing both increased activity in rHp and decreased activity in HpAb are
indicated with a pound sign (#). (d) K–cluster line–graphs comparing TF
activity clusters of MDA–MB 231 cells cultured in RPMI vs. rHp and D–SCM
vs. D–SCM+HpAb.

altering the activity of these TF reporters. These TRACER results demonstrated that hap-

toglobin activated multiple TFs associated with increased metastatic activity, and validated

key TFs identified as downstream of Hp–CCR2 signaling from the network.
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2.4.5. A novel systems biology pipeline combining secretomic and TF data iden-

tifies influential factors mediating cell homing

Our novel systems biology approach of connecting secretomics data with functional TF activ-

ity data from TRACER allows narrowing of candidate factors to identify functional secreted

protein candidates involved in paracrine signaling. Immune cells reflective of the cell types

that recruit tumor cells to the pre–metastatic niche were used to generate the D–SCM con-

taining a mixture of functional secreted factors. My colleagues observed phenotypic changes

in MDA–MB 231 such as invasion, migration, transendothelial migration, and proliferation

in response to the immune cell secreted factors. Secretomics analysis of the media identi-

fied 144 candidate factors that mediate the phenotypic changes, and this list was shortened

through determining activated TFs within the cells. Using curated factor–receptor interac-

tions to connect secretomics and the most active TFs identified by TF activity, I identified

5 secreted factors that are predicted to induce the observed TF activity activation profiles

and MDA–MB 231 phenotype changes. D–SCM TF activity screens identified a cluster of

TFs that may be immediately downstream of secreted factors, given increases in activity on

a short 8–hour time span. The 6 enriched TFs targets, including GATA1, HIF1, SMAD3,

SRF, and STAT1/STAT3 proteins, have been associated with metastasis, and herein, I

demonstrate their role in mediating metastatic cell homing. TF activity allowed for a broad

evaluation of paracrine signaling between immune cells and metastatic cells, and connect-

ing together secretomics with TF activity data sets enabled the identification of functional

secreted factors associated with metastatic cell homing.

My systems biology pipeline allows for the identification of functional paracrine signaling

factors within a secretome and is poised to uncover new candidates for targeted therapies

against metastatic cell homing. More generally, connecting together secretomics and TF
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activity data may be employed to identify secreted factors relevant for paracrine signaling

that may underlie a variety of cell phenotypes.

2.4.6. Methods

2.4.6.1. MDA–MB 231 cell culture. The human breast adenocarcinoma cell line MDA

MB 231 was used for all in vitro experiments. MDA–MB 231 cells were routinely cultured on

tissue culture polystyrene flasks in RPMI 1640 media supplemented with 10% fetal bovine

serum (FBS), 1% penicillin–streptomycin solution, 1% non–essential amino acids, and 1%

sodium pyruvate (Life Technologies). Media was exchanged every other day. Once 80%

confluent, cells were harvested with TrypLE Express (Life Technologies) solution and counted

using a Trypan blue stain (Sigma Aldrich) and a Cell Countess automated hemocytometer

(Life Technologies). All cells were cultured in a humidified 5% CO2 incubator at 37C.

2.4.6.2. Splenocyte–conditioned medium. Splenocyte conditioned media preparation

Animal studies were performed in accordance with and approved by the Northwestern Uni-

versity Institutional Animal Care and Use Committee (IACUC). Immunodeficient NOD–scid

IL2Rgammanull (NSG) female mice (Jackson Labs) were injected with 2.0106 MDA MB

231BR cells labeled with tdTomato and F–luciferase reporters in the right mammary fat

pad.

Spleens were harvested 28 days later from tumor–bearing and tumor–free mice, ballooned

using injections of 0.38mg/mL solutions of liberase LT (Roche Diagnostics), and minced

using micro–scissors. Minced tissue was incubated at 37C for 20minutes, neutralized with

0.125M EDTA, and processed into cell suspensions using FACS buffer (1X PBS, 0.5% BSA,

2mM EDTA) and a 70µm cell sieve. Cell suspensions were centrifuged using a swinging

bucket rotor at 500g for 5minutes at 4C. The supernatant was removed and the cells was
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re–suspended in ACK buffer (Life Technologies) for 2minutes, neutralized with PBS and

re–centrifuged. The splenocyte pellet was re–suspended in RPMI 1640 and cells were counted

using a Trypan blue stain and a Cell Countess automated hemocytometer (Life Technologies).

Cells were plated at 106cells/mL of serum free RPMI 1640 media supplemented with 1%

penicillin–streptomycin, 1% non–essential amino acids, and 1% sodium pyruvate. All media

was conditioned for 48hours, filtered through a 0.22µm filtration unit (Millipore), and stored

at 80C until use.

2.4.6.3. Proteomics analysis. Proteins in SCM samples were concentrated for secre-

tomics analysis using a 3kDa Amicon cellulose centrifugal filter unit (Millipore). For each

concentrated conditioned media sample (three biological replicates), 5µg of protein was sol-

ubilized by adding 8M urea and incubating at 50C for 60min. Following denaturation,

proteins were solubilized and reduced by adding 10mM DTT (final concentration 1mM) and

incubating at 50C for 15min. After reduction, proteins were alkylated by adding 100mM

iodoacetamide (final concentration 10mM) and incubated in the dark at room temperature

for 15min. Protein samples were digested by diluting the 8M urea solution to 1M by adding

100mM ammonium bicarbonate and trypsin. Samples were digested at 37C overnight. The

digested samples were desalted using reverse phase C18 spin columns (Thermo Fisher Sci-

entific). After desalting, the peptides were concentrated in vaccuo until dry. After drying,

peptides were suspended in 5% acetonitrile and 0.1% formic acid. The samples were loaded

directly onto a 15cm long, 75µM reversed phase capillary column (ProteoPep II C18, 300,

5µm size, New Objective) and separated using a 200–minute gradient from 5% acetonitrile

to 100% acetonitrile on a Proxeon Easy n–LC II (Thermo Scientific). The peptides were

eluted into an LTQ Orbitrap Velos mass spectrometer (Thermo Scientific) with electrospray
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ionization at a 350nL/minute flow rate. The mass spectrometer was operated in data de-

pendent mode. For each MS1 precursor ion scan, the ten most intense ions were selected

for fragmentation by CID (collision induced dissociation). Additional parameters for mass

spectrometry analysis included setting the resolution of MS1 at 60,000, the normalized col-

lision energy at 35%, the activation time at 10ms, and the isolation width at 1.5. Charge

states +4 and higher were rejected.

The data were processed using Proteome Discoverer (version 1.4, Thermo Scientific) and

searched using an embedded SEQUEST HT search engine. The data were searched against a

mouse reference proteome (September 2013, uniprot.org). Additional search parameters were

as follows: (i) enzyme specificity: trypsin, (ii) fixed modification: cysteine carbamidomethy-

lation, (iii) variable modification: methionine oxidation and N–terminal acetylation, (iv)

precursor mass tolerance was10ppm, and (v) fragment ion mass tolerance was0.8Da. All the

spectra were searched against target/decoy databases and results were used to estimate the

q values with the Percolator algorithm embedded in Proteome discoverer 1.4. The peptide

identification was considered valid at q value¡0.1 and were grouped for protein inference

to satisfy the rule of parsimony. Further, each protein in the final identification list was

considered valid if supported with a minimum of one unique peptide.

Proteins were quantified using spectral counting42 and normalized spectral abundance

factors (NSAF)43,44. The NSAF normalization takes into consideration of the length of the

protein, which may result into higher spectral count per protein. Initially, the total number

of spectral counts (Spc) per protein was divided by the peptide length (L), and then divided

by the sum ( spc/L) of all the values in the sample. Proteins were determined significantly

changed if t–test on a significance level of 90% and if log2 fold change was greater than or
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equal to 1.5. The mass spectrometry data have been deposited to the ProteomeXchange

Consortium45 via the PRIDE partner repository with the dataset identifier PXD002051.

2.4.6.4. Transcription factor array setup. Cell arrays were performed as previously

described [39, 40]. Harvested MDA–MB 231 cells were suspended in RPMI media to a final

concentration of 50cells/µL. 400µL of this suspension was aliquoted into separate 1.5mL

Eppendorf tubes for viral infection. The aliquot was mixed with lentiviral vectors containing

TF reporter constructs16 at a multiplicity of infection (MOI) of approximately 10 virions

per cell. Cells and virus were mixed and plated at 2000 cells/well in a black, clear bottom,

384–well plate (Greiner Bio–One). Each TF reporter is represented with n=4 measurements

per array plate, and arrays were repeated a total of 6 times. After infection, cells were

incubated for 48hours.

To measure TF activity, D–luciferin (DLuc, RR Labs, Inc.) diluted in the appropriate

media was added to wells in excess at a final concentration of 2mM. After a 45–minute

incubation period with the DLuc, the luminescence was quantified using an IVIS Lumina

LTE imaging system (Caliper Life Sciences). Cells plated without virus infection served

as negative controls for non–enzymatic DLuc degradation. A positive control consisted of a

TA–FLuc reporter construct without any additional TF binding elements, which was used to

determine basal promoter activity. Luminescence was quantified using an IVIS Lumina LTE

imaging system (Caliper Life Sciences). All luminescence readings, measured in photon flux

(photons/second), were normalized to the TA luminescence. On Day 0, cells were treated

with either RPMI or D–SCM containing 2mM of DLuc and 10% FBS. Bioluminescence

imaging was conducted every 2hours, and 5 reads were taken in one day. Each TF reporter

is represented with n=4 measurements per array plate, and arrays were repeated a total of

6 times.
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Initial methodology to normalize and determine statistical significance was slightly mod-

ified. Array data was log2 transformed and filtered to eliminate all intensities below back-

ground (p¡0.05). The background was defined as the mean measured intensity in non–infected

cells subject to the same treatment at the same time and plate. At each time–point, the TA

control reporter and the control condition were used to normalize reporter activity to cal-

culate the fold–change between D–SCM vs. RPMI, rHp vs. RPMI, and HpAb vs. D–SCM,

respectively. Normalized values that were identified to be outliers (p¡0.003) for each reporter

were removed.

Normalized log2 TF activity fold–change of SCM, rHp, and HpAb were compared di-

rectly to control conditions using the limma package in R [56]. A linear model was fit to

the normalized log2 values for each TF and was used to generate estimated coefficients and

squared errors for each time point of the compared samples. The estimated coefficients and

squared errors were then used to compute moderated t–statistics, moderated F–statistics,

and log–odds of differential expression. Adjusted p–values were computed using the Ben-

jamini–Hochberg procedure to correct for multiple comparisons. TFs identified to be dif-

ferentially active had an adjusted p–value of less than 0.05. To generate heat–maps, the

replicate log2 fold–change for each condition and time–point was averaged. Normalized val-

ues were then clustered by k–means clustering with random starts. The sum–of–square error

was computed for each cluster using the group mean. The optimal number of clusters was

determined by maximizing the difference between the sum–of–square error of the computed

k–means model and permuted null models.

2.4.6.5. MetaCore analysis. All interaction networks were generated using MetaCore

(Thomson Reuters). The network to predict downstream TFs included the 144 identified

secreted factors in D–SCM and lists of all known human receptors and transcription factors
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obtained from MetaCore. In another network to determine functional interactions, we in-

cluded the D–SCM secreted factors, a list of all known human receptors, and significantly

active TFs from our TRACER screen. Secreted factors candidates were identified as ligands

showing direct interactions with a receptor and downstream TFs. The TFs were expanded

by one interaction to generate a list of downstream TFs.

2.4.6.6. in vitro validation of haptoglobin. Invasion, migration, transendothelial mi-

gration, MTS assays, and TRACER arrays were performed as described above. Recombinant

haptoglobin (rHp, ProSpec) was diluted in serum–free RPMI at a concentration of 2µg/mL.

Haptoglobin antibody (HpAb, Abcam) was added to SCM at a dilution of 1:250, and the

solution was incubated on ice for 30min before use. For arrays, rHp and HpAb solutions

were supplemented with 2mM of DLuc and added prior to bioluminescence imaging.
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CHAPTER 3

Improved methods for temporally-defined generation of

transcription factor networks

Work presented in this chapter is adapted from the following paper:

• Finkle J.D*., Wu J.J.*, Bagheri N.B. Windowed Granger Causal Inference Strategy

Improves Discovery of Gene Regulatory Networks. Proceedings of the National

Academy of Sciences. 2018.

3.1. Abstract

Discovery of gene regulatory networks (GRNs) is crucial for gaining insights into biolog-

ical processes involved in development or disease. Accurate inference of regulatory networks

from experimental data facilitates the rapid characterization and understanding of biological

systems. High-throughput technologies can provide a wealth of time-series data to better

interrogate the complex regulatory dynamics inherent to organisms, but many network in-

ference strategies do not effectively use temporal information. We address this limitation

by introducing Sliding Window Inference for Network Generation (SWING), a generalized

framework that incorporates multivariate Granger causality to infer network structure from

time-series data. SWING moves beyond existing Granger methods by generating windowed

models that simultaneously evaluate multiple upstream regulators at several potential time

delays. We demonstrate that SWING elucidates network structure with greater accuracy in

both in silico and experimentally-validated in vitro systems. We estimate the apparent time
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delays present in each system and demonstrate that SWING infers time-delayed, gene-gene

interactions that are distinct from baseline methods. By providing a temporal framework

to infer the underlying directed network topology, SWING generates testable hypotheses for

novel gene-gene influences.

3.2. Challenges of gene regulatory network inference

If the experimental sampling interval is less than or equal to the time delay between a

regulator and its downstream target, it is possible to employ Granger causality to incorporate

intrinsic delays that are often hidden from measurement [60]. Current implementations

of Granger causal network inference methods are limited; the inference (i) is conducted

pairwise, prohibiting simultaneous assessment of multiple upstream regulators, (ii) has a

single user-defined delay, which assumes a uniform delay between all regulators and their

targets, or (iii) requires each explanatory variable, assessed at multiple delays, to be selected

as a group [61, 62, 63, 64, 65]. Thus, their implementation has limited broad utility in

biological systems with heterogeneous time delays.

To allow for multiple time delays to affect downstream target nodes, we introduce an

extensible framework to infer GRNs from time-series data, termed Sliding Window Inference

for Network Generation (SWING). SWING embeds existing multivariate methods, both

linear and nonlinear, into a Granger causal framework that concurrently considers multiple

time delays to infer causal regulators for each node. SWING also uses sliding windows to

create many sensitive, but noisy, inference models that are aggregated into a more stable

and accurate network. We validate the efficacy of SWING on several in silico time-series

data sets, and existing in vitro data sets with corresponding gold standard networks. We

show that SWING performs network reconstruction more accurately than baseline methods,
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and demonstrate that this performance boost is partly attributed to inferring edges that

involve an identifiable time delay between upstream regulators and targets. In validation

studies analyzing networks derived from E. coli and S. cerevisiae, SWING infers networks

with distinct topologies, and can therefore be combined with other methods to improve

consensus models. The SWING framework is available for use and can be found on GitHub

(https://github.com/bagherilab/SWING).

3.3. Problem setup for inferring regulatory networks

SWING addresses the challenge of inferring regulatory networks from gene expression

data. Gene regulatory networks are directed graphs with N nodes, where each node repre-

sents a gene. An edge from gene gi to gene gj indicates that gi regulates the expression of

gj.

3.3.1. Time-series data for biological data is stacked

The time-series measurement of expression for gene, i, with T time points, is defined as

Gi = [g1i , g
2
i , . . . , g

T
i ]>. Thus, a time-series experiment is defined as T = [G1, . . . , GN ]. T is a

T×N matrix which provides an ordered sequence of values for each observed gene (columns)

at each time point (rows).

(3.1) T =


g11 . . . g1N
...

. . .
...

gT1 . . . gTN


For simplicity we describe the case where there are no replicates. However, if there are

multiple time series, P , of the same length for each gene, such as experiments with multiple
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biological replicates or experimental perturbations, they are stacked into a (T ·P )×N matrix

such that T = [T1, ...,Tp]
>.

3.3.2. SWING divides time-series using sliding window

SWING employs a fixed-length sliding window to divide time-series observations into en-

sembles of training data with the same measured features within each time series.

Given a time-series data set T , SWING creates Q consecutive windows. Q is defined as

(3.2) Q = (T − w + 1)/s,

where w is the window width, such that w ≤ T , and s is the step size between windows.

Both w and s are specified by the user. Each window Wq, where q ∈ {1, . . . , Q}, is a subset

of rows from the time-series data T , such that:

(3.3) Wq =



g
s(q−1)+1
1 . . . g

s(q−1)+1
N

g
s(q−1)+2
1 . . . g

s(q−1)+2
N

...
. . .

...

g
s(q−1)+w
1 . . . g

s(q−1)+w
N


If w = T then there is only one window and SWING performs network inference equiv-

alent to the base method. Additional parameters for window creation are described in the

SWING parameter selection.
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3.3.3. Edges are partitioned into several sub-edges defined by minimum and

maximum lag

Once the temporal windows are delimited, we apply multivariate Granger causality to gen-

erate training sets for inference algorithms. Traditional Granger causality models assess

pairwise predictions with a set delay between the variables. Previous methods expanded

the Granger models to be multivariate, but do not simultaneously compare multiple delays

between explanatory and response variables. Here we describe the formulation of a Granger

model that is both multivariate and includes multiple delays.

SWING utilizes a general statistical framework where weights between explanatory vari-

ables and a response variable are calculated using supervised learning algorithms. For each

window, Wq, we sequentially define a response vector for each gene, j, as yj = Wq,j, which is

the jth column of window Wq. The explanatory data is created based on two user-specified

parameters. The maximum lag, kmax, and minimum lag, kmin, define the number of time

points that can exist between the explanatory variables and the response. They are used to

define the user-allowed set of delays, L = {kmin, kmin + 1, . . . , kmax}.

|L| is the cardinality of the set L, and is used to calculate the maximum number of

explanatory variables. For most windows the number of user-allowed delays is |L|= kmax −

kmin + 1, but there will be fewer when q ≤ kmax. The explanatory data matrix for each

response vector is constructed by concatenating data from the delayed windows, and is

defined as

(3.4) X =


[Wq−kmin

, . . . ,Wq−kmax ] q > kmax

[Wq−kmin
, . . . ,W1] kmin < q ≤ kmax
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To maintain consistency between SWING and existing methods, if kmin = 0, the response

variable is excluded from the explanatory data, prohibiting self-edges within the same win-

dow. X has an augmented number of explanatory variables, corresponding to an explanatory

variable for each gene at each delay. The number of columns in X is N · |L| if kmin > 0,

or N · |L|−1 if kmin = 0. We did not include any self edges, regardless of delay, during our

testing, because the in silico and in vitro data was collected in a way that does not account

for self-edges.

3.3.4. Edge rank is aggregated using group average between different windows

SWING aggregates the results from several weak, but sensitive, windowed models to generate

a ranked list of edges. Each window generates an N × (N · |L|) adjacency matrix, A, of edge

scores where Ak
i,j is the inferred score for gene i as the upstream regulator of gene j with

delay k.

The time-series data are naturally left censored, as we cannot know measurements before

the experiment occurs. As such, depending on the user specified kmin and kmax, some

windows, particularly the earlier ones, will not infer interactions for larger values of k (e.g.

gq−2i → gqj cannot be inferred if q < 2). Therefore, each window Wq infers at most |L| scores,

for each gene pair.

In order to combine scores across multiple windows and different delays into a single

score gi → gj, SWING does two aggregations. Confidence values from windowed subsets are

aggregated into a single network by taking the mean rank of the edge at each delay k, and

then taking the mean rank of the edge across all delays. Additionally, community networks

estimated from multiple classifiers are built by computing the mean rank of edges outputted

from RF, LASSO, and PLSR. We use the edge rank because scores between window models
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and methods may not have equivalent distributions. The median of edge ranks may also be

used, but in preliminary testing it did not significantly change the results.

3.3.5. SWING graph generation uses resulting adjacency matrix and user-defined

cutoff

A directed SWING graph shows causal relationships between N nodes in a system and can

be represented by the adjacency matrix A in which each element Ai,j is the confidence that

an edge exists between parent node gi and child node gj. Given Q user-defined windows,

for each window, Wq, there are at most N2|L|−N possible edges that exist in the inferred

model. Therefore, the adjacency matrix for each window is

(3.5) Aq =


Akmin

1,1 . . . Akmax
1,N

...
. . .

...

Akmin
N,1 . . . Akmax

N,N

 ,

where Ak
i,j is the confidence of the interaction whereby the parent node gi is said to be

Granger causal of the child node gj with a delay of k time points. Self edges within the same

window are prohibited, and therefore values A0
i,i are set to 0. In this way, a network model

with N targets and at most N · |L| regulators is created for each window.

For each window, SWING estimates the confidence of each edge and generates a ranked

list of edges based on method-specific criteria. Specifically, RF uses the importance score

calculated with the mean squared error [66]; LASSO uses a stability selection metric [32],

and PLSR uses the variable importance in projection (VIP) score [67]. The rank of an edge

in each windowed model can be used as the confidence metric to compare across methods.

We compute a consensus model (SWING-Community) by calculating the mean rank across
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methods for each possible edge:

(3.6) Ai ,j =
RSWING−RF

i,j +RSWING−LASSO
i,j +RSWING−PLSR

i,j

3
,

where Ri,j are the ranks of the edge for each of the tested methods, and Ai,j is the average

rank of the edge gi → gj used as the confidence metric in the consensus network.

3.3.6. SWING parameter selection is defined by embedded inference methods

SWING is a generalized framework that can be used with any multivariate machine learning

inference method. In developing and testing SWING, we implemented three different existing

methods: RF, LASSO, and PLSR. Each algorithm requires different tuning parameters.

When using RF, we selected the number of trees, the maximum depth of the tree, and

the number of trees based on guidelines from the GENIE3 manuscript [66]. For LASSO,

we utilized two methods to select the regularization parameter [32]: for in silico studies,

we selected the regularization parameter based on the cross-validation score; for in vitro

data sets with comparatively less data, we selected the regularization parameter based on

sensitivity analysis for a single random subnetwork and evaluated all subnetworks with the

subsequent parameter. For PLSR, we selected the number of principal components to use

based on the elbow criterion [67].

In addition to the base methods specific parameters, SWING has user-selected parameters

that require knowledge of the system and data. For optimal performance, we suggest the

window size be selected such that T/2 ≤ w ≤ T , where T is the number of time points in the

time series. If w < T/2, increased noise can lead to inference of more false-positive edges.

In general, the step size can be set to s = 1, unless the user has an abundance of time points

and wishes to train on only a subset of the data.
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The in silico data from GNW is generated such that the perturbation is applied before

the simulation and removed at T/2. We therefore used w = 0.5T ≈ 10, to capture the

change in dynamics based on the perturbation. For consistency, we also used w = 0.5T = 7

for the in vitro E. coli SOS network inference.

The allowed delay range is specified by the user in setting kmax and kmin. We recommend

the user set these values based on the range of dynamics expected in the system, or by prior

delay analysis such as cross-correlation. Since kmax and kmin are integer values, they also

depend on the sampling interval of the experimental data. Specifying kmin = 0 allows

SWING to infer edges with no delay, as many existing methods do. When testing the in

silico networks we used kmax = 3 and kmin = 1, corresponding to an allowed delay range of

50 ≤ k ≤ 150 minutes based upon the in silico sampling strategy. This range is consistent

with the delays in the in silico data estimated using cross-correlation. If, however, the user

specifies null SWING parameters—specifically, w = T , kmax = 0, kmin = 0, and s = 1—there

is only a single window with no delays between the explanatory and response variables. This

condition corresponds to running the base methods independent of SWING.

3.3.7. In silico data generation by time-delayed SDEs emulating transcriptional-

translation delays

All in silico networks were created using GeneNetWeaver [68]. GNW creates a stochastic

differential equation (SDE) model from which time-series data are sampled. The kinetic

models incorporate Hill kinetics and include both transcriptional and translational compo-

nents. We generated time-series perturbations for 20 non-isomorphic, 10-node and 100-node

subnetworks from the curated E. coli and S. cerevisiae networks. Simulated data includes
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ten random combinations of perturbations which are uniformly sampled at 21 time points

with a maximum time of 1000 in arbitrary units.

3.3.8. Parameters for GNW subnetwork extraction

GeneNetWeaver (GNW) is designed to provide synthetic benchmarking data sets for the

assessment of network inference methods. GNW includes the networks used for assessment in

the DREAM4 challenge, as well as E. coli -derived and S. cerevisiae-derived gene regulatory

networks, which can be used to extract testable subnetworks [69]. These features make

GNW ideal for generating in silico gene expression data paired with an unambiguous gold

standard.

We extracted subnetworks from curated E. coli -derived and S. cerevisiae-derived net-

works included in GNW. For each model organism we extracted 20 non-isomorphic networks

with 10 and 100 nodes. All subnetworks were extracted with neighbors chosen via greedy

selection. The S. cerevisiae-derived subnetworks were extracted with 50% of the nodes cho-

sen from the strongly connected component. The curated E. coli -derived network does not

have one strongly connected component, and therefore E. coli -derived subnetworks were ex-

tracted starting with a randomly selected vertex. To ensure uniqueness of subnetworks, each

sequential network is randomly extracted and preserved only if it is non-isomorphic to all

previously extracted networks.

Time-series perturbation data was generated for each of the extracted subnetworks us-

ing the default DREAM4 challenge parameters included in GNW. Simulated data includes

ten random combinations of perturbations. Simulated experimental perturbations are ap-

plied immediately before the time-series data is sampled, and removed halfway through the

simulation.
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3.3.9. In silico predictions and scoring

We scored the inferred networks by calculating the mean increase in the area under the

precision-recall (AUPR) curve and the area under the receiver operator characteristic (AU-

ROC) curve for N networks as follows:

(3.7) S increase =

∑N
n=1 Sn,SWING − Sn,base

N
,

where Sn is the AUPR or AUROC for an individual network, n. For a stochastic method,

like RF, Sn, is the mean AUPR/AUROC over several trials, for an individual network.

3.3.10. Cross-correlation and lag analysis identifies time-delayed edges

Temporal cross-correlation has been used by multiple studies to describe how well two sig-

nals are correlated when one is shifted in time relative to the other [70][71]. Let Gi =

[g1i , g
2
i , . . . , g

T
i ] represent measurements of a single gene in a time-series data set. We calcu-

lated the pairwise cross-correlation, R, between a pair of signals, Gi and Gj, for a delay k

as:

(3.8) Rk
Gi,Gj

(t) =
σGiGj

(t)

σGi
σGj

σGi
, σGj

, and σGiGj
(t) refer to the standard deviation of Gi, standard deviation of Gj,

and cross-covariance of Gi and Gj at time t, respectively. The cross-covariance is defined by:

(3.9) σGiGj
(t) =

1

N − 1

N∑
t=1

(Gi,t−k − µGi
)(Gj,t − µGj

),

where µGi
and µGj

define the mean values of each time series.
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We applied several stringent criteria to evaluate time-delayed edges. We calculated the

two-sided p-value using the t-distribution equation and subsequently corrected the p-value

using the Bonferroni correction (the significant p-values were those less than α ≤ 0.05
m

where

m is the total number of edges evaluated) [72]. Since multiple experiments were evaluated

for each pairwise comparison, we filtered noisy lagged edges by removing edges in which the

sign of the lag differed in more than 10% of experimental perturbations. For E. coli and

S. cerevisiae in vitro data, we also incorporated prior knowledge regarding the sign of the

interaction into the lag selection. If multiple delays were significant, depending on whether

the parent positively or negatively regulated the target in the gold standard, we selected

the lag with the smallest p-value that maximized (0 < R < 1) or minimized (−1 < R < 0)

cross-correlation, respectively. We evaluated cross-correlation at k = {0, 10, 20, 30, 60, 90} in

E. coli and S. cerevisiae data sets.

3.3.11. In vitro data aggregation

We extracted in vitro gold standard networks for E. coli and S. cerevisiae from RegulonDb

and DREAM5 Yeast gold standards (Network4) respectively [25]. For E. coli, we extracted

the known set of TF and gene interactions from RegulonDb 9.0 [73]. To derive subnetworks

from parent gold standards, we performed MCODE clustering using modularity parameters

of 0.25 (E. coli) and 0.5 (S. cerevisiae), resulting in subnetworks where the number of

nodes in each module is between 3 and 145 (Tables 3.4 and 3.7). Gene ontology enrichment

analysis was performed using a cutoff for false discovery rate-corrected p <0.05 and the

goatools package [74].

Sources of time-series data sets for E. coli and S. cerevisiae are described in Tables 3.2 and

3.6. To run SWING, 10 minute time points were generated using cubic spline interpolation
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and this data was used to train both SWING and baseline methods [75]. Data interpolation

was not needed for lag analysis in Figs. 3.12A and 3.11. Time-series data sets were mean

centered.

3.3.12. Computational development

The SWING package was developed in Python 3.4.5 using the following major packages:

NumPy and SciPy [76], pandas [77], and NetworkX [78]. The RF, LASSO, and PLSR

algorithms use implementations available in scikit-learn [79]. Figures were generated using

seaborn and matplotlib [80]. The code for SWING can be found on GitHub:

(https://github.com/bagherilab/SWING).

3.4. In silico validation and parameter sweep of SWING

SWING integrates multivariate Granger causality and ensemble learning to infer inter-

actions from gene expression data. First, SWING subdivides time-series data into several

temporally-spaced windows based on user-specified parameters (Fig. 3.2A). For each window,

edges are inferred from the selected window and previous windows, representing interactions

with specific delays. This inference results in a ranked list of time-delayed, gene-gene in-

teractions for each window. (Fig. 3.2B). The ensemble of models is aggregated based on

edge rank into a static GRN (Fig. 3.2C). In silico and in vitro validation confirm notable

performance improvements.

3.5. SWING improves the inference of in silico GRNs

We applied SWING to reconstruct in silico GRNs simulated by GeneNetWeaver (GNW)

[68]. 20 subnetworks with 10 nodes and non-isomorphic topologies were extracted from

E. coli and S. cerevisiae networks included in GNW to use as gold standards. Networks
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Figure 3.1 | SWING improves inference of 10-node in silico networks.
(A) Changes in AUPR and AUROC in GNW networks. Score changes to in-
dividual networks are shown in grey. The mean (red) and median (black)
of each score distribution is shown. AUPR and AUROC increase when us-
ing SWING-RF or SWING-PLSR compared to their respective base method.
SWING-LASSO outperforms LASSO in the E. coli -derived networks. The ex-
pected score based on random for each metric is shown as a dashed line. n=20
networks, kmin = 1, kmax = 3, and w = 10 for all networks. p-values were
calculated using the Wilcoxon signed-rank test, ***p < 0.001, **p < 0.01,
*p < 0.05. (B) SWING and non-SWING methods are grouped according to
similarity of ranked predictions for 40 10-node in silico networks via PCA.
PC1 largely separates inference methods based on performance (Fig. 3.4),
while PC2 separates methods based on underlying base method. Networks
inferred by various SWING parameter selections cluster together according
to inference type, with SWING methods forming clusters distinct from corre-
sponding base methods.

were inferred from the generated time-series data using existing multivariate methods as

a basis for comparison. We employed RandomForest (RF), Least Absolute Shrinkage and

Selection Operator (LASSO), and Partial Least Squares Regression (PLSR) [22, 30, 67],

which represent the areas of sparse, nonlinear, and PLS-based regression. We implemented



87

A C

g1

g2

g4

g3

N 
G

en
es

g1

g2

g3

W Windows 

Regress every gene n for
each window k

B

w 
sa

m
pl

es

N×K-1 features

k - 1 kk - 2 k + 1

yn

Wk -2

X
wk,n

g1

g2

g3

Ti
m

e 
Se

rie
s 

fo
r

N 
G

en
es

window length, w
step size, s

G3

G2

G1

W1
gn

k

Allowable Delays
L = kmax - kmin = { 0 , 1 , 2 }N×

K-
1 

R
eg

ul
at

or
 S

co
re

s

g3g2g1 g3g2g1 g3g1

N Targets per Window

g2 g3g1 g2

g1g2g3g1g2g3g1

g3

g2

g1g2g3

Window time series data
from user-defined w and s

User 
Defined
kmin = 0
kmax = 2

W2 W3 W4

W1 W2 W3 W4

Wk -1 Wk

Summary
Statistic

g1→g2

g1
k→gk

2

g1
4→g4

2

g1
3→g3

2

g1
2→g2

2

g1
1→g1

2

g1
k -1→gk

2

g1
3→g4

2
g1

2→g3
2g1

1→g2
2

g1
k -2→gk

2g1
2→g4

2

g1
1→g3

2

Aggregate rankings for each 
gene pair (e.g. g1→g2)

Inferred
Score

Generate consensus network 
from high confidence edges

g3→g1
g1→g2
g4→g2
g4→g1
g1→g4
g3→g4
g2→g1

Consensus
Score

Consensus Score

User
Threshold
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maximum user-allowed time delays. (C) Edges from each window model are
aggregated into a single network representation of the biological interactions
between measured variables.

the SWING chassis and compared the performance of each SWING frontline method with its

base method: SWING-RF vs. RF, SWING-LASSO vs. LASSO, SWING-PLSR vs. PLSR.

To capture short-term dynamics consistent with simulated perturbations, we set the

window size to roughly half the duration of the time series. The minimum and maximum lags

were set to kmin = 1 and kmax = 3, which correspond to 50 and 100min. We compared the

group of inferred networks by calculating the mean increase in the area under the precision-

recall (AUPR) and area under the receiver operating characteristic (AUROC) curves of 40

in silico networks. Compared to respective baseline methods, SWING shows a statistically

significant increase in AUROC and AUPR for many of the 10-node networks (Fig. 3.1A and

Table 3.1) and across all of the 100-node networks (Fig. 3.3, Table 3.1). In particular, RF
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Figure 3.3 | Changes in AUPR and AUROC curve distributions for
100-node GNW networks. All networks and methods show a significant im-
provement in both the AUPR and AUROC when using SWING. Score changes
to individual networks are shown as grey lines. The mean (red) and median
(black) of each score distribution is shown. The expected score based on ran-
dom for each metric is shown as a dashed line. n=20 networks, kmin =1,
kmax =3, and w =10 for all networks. p-values are calculated using the
Wilcoxon signed-rank test, **** p < 0.0001, *** p < 0.001.

receives the most notable benefit from SWING; SWING-RF outperforms RF in 39 out of 40

in silico networks and application of SWING-RF results in the highest mean AUROC and

AUPR for in silico networks among tested methods.

3.6. SWING infers distinct edges in networks

No single method performs optimally across all data sets, partially due to biases in

predicting different network topologies. For example, E. coli -derived networks predominately
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Table 3.1 | Summary of SWING performance on in silico networks.
The change in mean AUPR and AUROC for 20 in silico 10 and 100-node
networks. p-values are calculated using the Wilcoxon signed-rank test.

AUPR AUROC
Dataset Method ∆ ∆ (%) p-value ∆ ∆ (%) p-value
Ecoli10 SWING-RF 0.151 98.1 1.20E-04 0.120 25.5 2.93E-04
Ecoli10 SWING-PLSR 0.072 35.7 3.90E-04 0.028 5.4 1.35E-01
Ecoli10 SWING-LASSO 0.023 13.1 1.37E-02 0.037 7.7 6.42E-03
Scerevisiae10 SWING-RF 0.139 50.4 1.20E-04 0.058 8.3 6.81E-04
Scerevisiae10 SWING-PLSR 0.102 35.1 1.40E-04 0.035 5.1 1.37E-02
Scerevisiae10 SWING-LASSO 0.001 0.6 6.54E-01 -0.002 0.0 7.94E-01
Ecoli100 SWING-RF 0.383 647.9 8.86E-05 0.134 19.1 8.86E-05
Ecoli100 SWING-PLSR 0.086 96.2 1.03E-04 0.028 3.7 8.86E-05
Ecoli100 SWING-LASSO 0.013 37.3 8.86E-05 0.052 9.1 8.86E-05
Scerevisiae100 SWING-RF 0.096 53.3 8.86E-05 0.040 6.1 8.86E-05
Scerevisiae100 SWING-PLSR 0.049 25.7 8.86E-05 0.016 2.4 8.86E-05
Scerevisiae100 SWING-LASSO 0.012 11.6 8.86E-05 0.020 3.6 8.86E-05

feature fan-out motifs, which RF infers with greater sensitivity. In contrast, S. cerevisiae-

derived networks contain more cascade motifs, which are inferred with greater sensitivity by

linear methods [25].

To determine if SWING methods provide distinct information from RF, LASSO, and

PLSR, we ran principal component analysis (PCA) on ranked edge lists predicted by SWING

and the corresponding base methods (Fig. 3.1B). We discarded PC1 because it largely

explains the overall performance of each inference method (58% variance explained; Fig.

3.4). Clustering of results in PC2 and PC3 seems to explain biases toward specific network

motifs [25]. Along PC2, edge rankings appear to separate based on the internal base method

(15% variance explained), while along PC3, SWING edge rankings appear to separate from

those of their base methods (5% variance explained). These results suggest that SWING

recovers connectivities that are distinct from those recovered from RF, LASSO, and PLSR.
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Figure 3.4 | SWING and non-SWING methods are grouped according
to similarity of ranked predictions for 40 10-node in silico networks
via principal component analysis. The first (58% variance explained) and
second (15% of variance explained), and the second and third (5% of variance
explained) principal components are shown. The first principal component
largely separates inference methods based on performance, while the second
component separates methods based on underlying base method. The second
and third principal components seem to explain motif biases. Networks in-
ferred by various SWING parameter selections cluster together according to
inference type, with SWING methods forming clusters distinct from corre-
sponding base methods.

Given that it is difficult to determine a priori which methods perform optimally in

different contexts, deriving a community network is a good strategy for robustly improving

predictions [25]. We evaluated the performance of SWING-Community, which combines

SWING-RF, SWING-LASSO, and SWING-PLSR predictions by calculating the mean rank

across all methods for each possible edge. We note that SWING-Community outperforms

RF, resulting in a 52% and 8% mean increase in AUPR and AUROC, respectively, suggesting

that SWING infers distinct and complementary networks (Fig. 3.5).
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3.7. SWING improves network inference by promoting time-delayed edges

Endogenous reactions, such as protein translation, post-translational modifications, translo-

cation, or oligomerization are often not accounted for in the inference model. However, even

if underlying network kinetics are linear (or approximately linear), the resulting dynamics

can appear delayed when not all nodes are observed (Fig. 3.6A). Delayed behavior in gene

expression and protein translation has been established in several studies [71, 81].

We estimated the apparent time delay of each interaction in a 10-node GNW network by

calculating the pairwise peak cross-correlation between time series of all true regulator and

target combinations. The majority of true interactions within GNW networks have a time

delay between 0 and 150min (Fig. 3.6B). We observe that SWING is more likely to promote

edges with an identifiable delay within the range of user-specified parameters (Fig. 3.7A).

Across all in silico networks, SWING-RF promotes 65.8% of true edges with a delay versus

55.4% of true edges without a delay (p =0.018), and SWING-PLSR promotes 67.0% of true

edges with a delay versus 47.1% of true edges without a delay (p =6e-6)(Fig. 3.7B).
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Figure 3.6 | Identification of delays in DREAM 4 in silico networks.
(A) Real biological systems require additional steps, such as translation, whose
kinetics determine the delay between upstream gene expression and down-
stream nodes. The physical time required for these steps can be expressed as
a delay, τ , and must be accounted for when inferring GRNs from gene expres-
sion data. (B) The τ for each edge in five DREAM 4 in silico networks was
calculated using the cross-correlation function. τ = 0 minutes was calculated
for around 25% of the interactions, indicating no delay could be identified.
A large fraction of interactions have 50 ≤ τ < 150 min, indicating that the
kinetics of the model result in a delay. Larger values of τ may be due to the
kinetics, but very high values are likely due to noise.

Many of the promoted edges with an identifiable delay are highly ranked by base methods

RF and PLSR. In general, delayed true edges ranked in the first quartile by the base method

are likely to be promoted, while those ranked lower are no more likely to be promoted than

nondelayed true edges (Fig. 3.7B). While SWING is more likely to promote true edges

with a delay, the magnitude of this promotion is not consistent across the different base

methods or networks. SWING-RF promotes true edges with an apparent time delay by an

average of 7.50 ranks relative to true edges without an apparent time delay (p =4.75e-3)

for S. cerevisiae-derived networks. In contrast, SWING-PLSR promotes true edges with an

apparent delay by an average of 7.78 ranks relative to true edges without an apparent time

delay (p =6.89e-5) for E. coli -derived networks (Fig. 3.7B). In one example, S. cerevisiae
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Figure 3.7 | SWING promotes edges with apparent time delays be-
tween genes. (A) The inferred rank using SWING versus the respective
control methods. All true edges for the 20 networks are plotted. Edges that
present below the diagonal line are promoted by SWING, and those that
present above are demoted. For all methods and networks, SWING is sig-
nificantly more likely to promote an edge with apparent lag. (B) Distribution
of true edge rank changes when using SWING for lagged and not lagged edges.
The median true edge promotion of lagged edges is significantly greater for E.
coli networks when SWING is run using PLSR, but significantly greater for
S. cerevisiae networks when SWING is run using RF. p-values are calculated
using the Mann-Whitney U test, **** p < 0.0001, ** p < 0.01 . n=292 for E.
coli and n=257 for the S. cerevisiae.

Network 12, SWING-RF improves the AUROC from 0.539 to 0.872, a 61.7% increase relative

to the base method. Compared to RF the edge ranking for SWING-RF promotes many true

edges, and all of the true edges with a delay are promoted by SWING (Fig. 3.8A).

To demonstrate how SWING promotes delayed edges, we highlighted the true edge be-

tween Gene 2 (G2) and Gene 1 (G1) in S. cerevisiae Network 12. G2 is the only node
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Figure 3.8 | SWING promotes time-delayed edges and increases corre-
lation between genes. (A) Edge rank comparison for S. cerevisiae network
12 when using SWING-RF compared to RF (blue = promoted edges, red =
demoted edges, grey = false edges, green = G2 → G1 analyzed in panel B).
Edges for which a time delay could be estimated are labeled. (B) Improved
correlation between G2 and G1 when a lag is artificially introduced.

upstream of G1, and the input data includes an experiment where only G2 is perturbed,

thus the delay between G2 stimulation and G1 response is unambiguously isolated (Fig.

3.9A). We estimated the delay between G2 and G1 as two time points, or 100min. We

shifted the G1 time series by two time points to show that the Pearson correlation of the

resulting time series notably increases (Fig. 3.8B).
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3.8. SWING infers apparent time-delayed edges with greater sensitivity in the

E. coli SOS network

We applied SWING to an in vitro 8-node E. coli GRN that activates with DNA dam-

age [82, 62]. The SOS network contains several complex interactions, including multiple

cascades and feedback loops generated by a combination of transcriptional activators and

repressors. We computed the mean of three replicates for each time point following DNA

damage inducing Norfloxacin treatment [83].

The sampling strategy for the in vitro SOS data is different from that of the in silico

GNW data. Due to fewer time points, we were restricted to assessing interactions with

shorter possible time delays. Using w = 0.5T = 7, kmin = 0, and kmax = 1, SWING-RF

infers the network more accurately than other reported inference algorithms including RF,

LASSO, TSNI [83], and BANJO [84]. Because RF is a stochastic method, we ran both

RF and SWING-RF 50 times on the SOS network. On average, SWING-RF increases the

AUPR from 0.286 to 0.356 (24.6%, p =1.41e-13) and the AUROC from 0.756 to 0.819 (8.3%,

p =5.28e-34). To assess promotion of time-delayed edges, we calculated the mean edge ranks
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Figure 3.10 | SWING promotes edges with apparent time delays and
increases correlation between genes. The true network structure is pro-
vided in SI Appendix, Fig. 3.9B. (A) Edge rank comparison for E. coli SOS
network when using RF and SWING-RF (blue=promoted edges, red=demoted
edges, black=no change, grey=false edges, green=lexA → umuDC analyzed
in panels B and C). We report the lag for edges with an apparent time delay.
(B) Time series for lexA and umuDC show better alignment when umuDC
is shifted by one time period. (C) Improved correlation between lexA and
umuDC the time series of umuDC is shifted by one time period.

across all 50 runs and compared the resulting lists. Though SWING-RF demotes some true

edges, it promotes all three edges that exhibit a time delay (Fig. 3.10A). We highlight the

edge between lexA and umuDC (Fig. 3.9B), which has an estimated lag of 6min. When

the umuDC time series is shifted by this amount the correlation between lexA and umuDC

increases from 0.709 to 0.928 (Fig. 3.10B). These findings reaffirm that SWING improves

network inference, in part, by promoting edges with identifiable delays.
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Table 3.2 | E. coli data set for RegulonDB lag analysis. References,
time-points, and conditions of datasets used for aggregate gene regulatory
network analysis.

Strain/Condition Time Points Citation
MG1655 control t=10,20,30,40,50 [85]
MG1655 cold stress t=10,20,30,40,50 [85]
MG1655 heat stress t=10,20,30,40,50 [85]
MG1655 oxidative stress t=10,20,30,40,50 [85]
EMG2 LB 0pt02percent glucose t=150,180,210,240,270,300,330,360,480 [25]
EMG2 LB 0pt04percent glucose t=150,180,210,240,270,300,330,360,480 [25]
MG1655 wt untreated t=0,30,60,90,120 [25]
MG1655 wt MMC 2pt5ug t=0,30,60,90,120 [25]
MG1655 wt UV 500en t=0,30,60,90,120 [25]
BW25113 uninduced t=0,30,60,120,180 [25]
BW25113 norflaxacin t=0,30,60,120,180 [25]
BW25113 D recA t=0,30,60,120,180 [25]
BW25113 U ccdB t=0,30,60,120,180 [25]
BW25113 D recA norflaxacin t=0,30,60,120,180 [25]
BW25113 D recA U ccdB t=0,30,60,120,180 [25]
MG1655 U lacZ t=0,30,60,90 [25]
MG1655 U ccdB t=0,30,60,90 [25]
EMG2 LB norf 25ng t=0,12,24,36,48,60 [86]

3.9. SWING accurately infers RegulonDB modules with time-delayed edges

We curated microarray data to infer time-delayed edges from experimentally validated

GRNs in E. coli (Fig. 3.12A) and S. cerevisiae (Fig. 3.11). This curated data was aggregated

across 18 data sets for E. coli and 8 data sets for S. cerevisiae, where data was unevenly

sampled for time intervals that range from 5 to 120min (Table 3.2). To assess the landscape

of apparent time delays present in these gene expression data, we performed pairwise cross-

correlation lag selection between experimentally-confirmed edges [70]. We reveal that of

2870 experimentally confirmed edges, only 23.7% exhibit an apparent time delay of 0 and

13.7% exhibit a time delay of at least 10min. Surprisingly, only 37.4% of confirmed edges

exhibited pairwise correlation (R >0.7, p <1e-5; Fig. 3.12A).
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Figure 3.11 | Cross-correlation analysis of time-delayed interactions
derived in S. cerevisiae. Circular diagram depicts experimentally validated
interactions and gene ontologies present in each module. Blue edges depict
edges displaying time-delayed interactions (time delay of 10 minutes or greater)
inferred using pairwise cross-correlation from curated microarray data.

To determine whether lag is associated with modularity and function, we clustered the

E. coli and S. cerevisiae network into smaller modules using MCODE [87] and performed

gene ontology enrichment analysis. Several modules, such as those associated with catabolic

processes and metal ion binding, are enriched with time-delayed edges of at least 10min

(Tables 3.3 and 3.4). Transcription factors are known to regulate genes on a global or

combinatorial scale tend to exhibit similar time delays (Table 3.5).

To determine if SWING more accurately infers network structure in diverse contexts, we

performed cubic spline interpolation to generate evenly sampled time-series gene expression

at 10min intervals and benchmarked SWING-Community performance against an ensemble

model of RF, LASSO and PLSR (R/L/P) base for each clustered module using this dataset.

SWING-Community outperformed R/L/P in subnetworks in which more than 10% of edges
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Table 3.3 | Lagged edge analysis of 35 E. coli subnetworks from Reg-
ulonDB. We highlight lagged edges with apparent time delays of 10 minutes
or greater.

Cluster ID Total # Edges # of Lagged Edges (k ≥ 10m) % Lagged Edges
0 125 8 6%
1 542 138 25%
2 193 14 7%
3 113 24 21%
4 13 4 31%
5 299 87 29%
6 55 5 9%
7 132 11 8%
8 65 8 12%
9 71 2 3%
10 124 29 23%
11 106 8 8%
12 76 6 8%
13 203 17 8%
14 36 3 8%
15 56 2 4%
16 18 8 44%
17 102 8 8%
18 141 15 11%
19 36 3 8%
20 30 1 3%
21 32 7 22%
22 86 10 12%
23 27 12 44%
24 204 25 12%
25 167 20 12%
26 94 14 15%
27 45 3 7%
28 43 3 7%
29 34 2 6%
30 271 33 12%
31 114 19 17%
32 29 8 28%
33 29 1 3%
34 23 0 0%
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Figure 3.12 | Application of SWING on time-delayed gene regulatory
network modules in E. coli. (A) Circular diagram depicts experimen-
tally validated interactions and gene ontologies present in each module (Reg-
ulonDb). Blue edges depict time-delayed interactions inferred using pairwise
cross-correlation from curated microarray data. (B) SWING-Community, with
w = 4, kmin = 1, kmax = 1 applied to RegulonDb subnetworks that are and are
not enriched with time-delayed edges (fraction of delayed edges is greater than
10%, n =12 subnetworks; fraction of delayed edges is less than 10%, n =14
subnetworks). (C) SWING-Community and RF/LASSO/PLSR (R/L/P) en-
semble method applied to tdcABC regulon, which is the module found to have
the highest enrichment of time-delayed edges (44% edges with a time delay of
10min or greater).

are time-delayed (N=12 clusters, 9 clusters with fewer then 10 genes, or fewer than 3 tran-

scription factors were removed from analysis, p =0.031; Fig. 3.12B). As an example, we

identified time-delayed properties of key regulators of the tdcABC E. coli operon that are

responsible for the transport of threonine and serine during anaerobic growth [91]. In par-

ticular, our analysis identifies two global transcription factors that bind combinatorially to
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Table 3.4 Gene ontological analysis of E. coli subnetworks in RegulonDB

Cluster ID Gene Ontology Significance (Corrected P-Value) # of Genes in GO Size of GO Category
1 putrescine catabolic process 4.86E-05 7 110
2 iron ion homeostasis 9.24E-25 20 74
3 metal ion binding 0.008352298 20 41
3 oxidation-reduction process 0.002072459 18 41
4 rhamnose metabolic process 1.72E-10 5 6
5 ATP-binding cassette (ABC) transporter complex 0.004500043 8 43
5 chemotaxis 4.42E-05 7 43
6 purine nucleotide biosynthetic process 5.01E-20 12 25
7 cellular response to DNA damage stimulus 2.28E-16 30 63
8 organic phosphonate catabolic process 2.20E-12 8 40
9 glycogen metabolic process 0.000432348 4 29
10 tryptophan catabolic process 0.027249226 3 37
11 cellular amino acid biosynthetic process 0.028322085 9 50
13 translation 2.29E-06 12 40
13 intracellular ribonucleoprotein complex 7.77E-08 11 40
14 DNA replication 0.000287344 6 16
15 arginine biosynthetic process 1.17E-18 11 33
16 propionate catabolic process, 2-methylcitrate cycle 3.84E-06 4 10
17 drug transmembrane transport 0.000254503 7 47
18 bacterial-type flagellum organization 1.70E-06 8 53
19 leucine biosynthetic process 1.16E-06 5 16
20 galactose metabolic process 1.20E-09 5 10
21 D-galacturonate catabolic process 0.009971194 3 13
22 carbohydrate transport 5.04E-12 16 37
23 L-threonine catabolic process to propionate 1.47E-12 6 8
25 oxidation-reduction process 1.07E-05 24 54
26 response to copper ion 1.32E-07 6 20
27 sulfate assimilation 8.24E-09 7 29
28 nucleoside transport 0.005095171 3 14
29 fatty acid metabolic process 1.94E-27 16 21
30 oxidation-reduction process 2.21E-11 32 59
32 D-gluconate metabolic process 2.80E-12 7 13
33 cellular amino acid biosynthetic process 1.90E-07 10 19
34 aromatic amino acid family biosynthetic process 8.37E-23 13 20

induce activity in the tdcABC operon. Crp and fnr are global regulators that respond to

glucose starvation and anaerobic growth respectively [92, 93].

Interestingly, lag analysis identifies 10 and 20min time delays between crp and target

genes in the E. coli tdcABC operon. While the precise delay identified by our analysis is not

consistent with that observed in experiments, studies confirm that a delay exists between crp

induction and the induction of several target genes due to post-translational modification

[94, 95]. Of 32 edges in the gold standard, SWING identifies 27 true-positive (TP) edges

and 5 false-positive (FP) edges (85% TP) while the ensemble model predicts 24 true-positive

edges and 8 false-positive edges (75% TP). In this example, SWING-Community infers both

time-delayed and non time-delayed edges more sensitively than the R/L/P ensemble model.
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Table 3.5 Lagged edge analysis of E. coli transcription factors from Regu-
lonDB. We highlight lagged edges with apparent time delays of 10 minutes or
greater.

Transcription Factor Total # Edges # of Lagged Edges (k ≥ 10m) % Lagged Edges
crp 466 129 28%
fnr 286 34 12%
csgd 24 7 29%
fis 166 6 4%
torr 11 6 55%
lexa 52 5 10%
iscr 27 5 19%
arca 155 4 3%
gntr 11 4 36%
narl 120 3 3%
soxs 32 3 9%
fliz 19 3 16%
oxyr 32 2 6%
cysb 28 2 7%
argp 13 2 15%
fur 117 1 1%
cpxr 55 1 2%
narp 50 1 2%
pdhr 35 1 3%
purr 29 1 3%
rcsb 20 1 5%
fadr 18 1 6%
evga 15 1 7%
mraz 15 1 7%
arac 13 1 8%
leuo 12 1 8%
basr 12 1 8%
lrp 69 0 0%
phob 54 0 0%
mode 46 0 0%
phop 39 0 0%
argr 35 0 0%
mara 31 0 0%
nagc 30 0 0%
fhla 29 0 0%
gade 26 0 0%
gadx 26 0 0%
rob 20 0 0%
nac 18 0 0%
metj 15 0 0%
ydeo 15 0 0%

The false-positive edges inferred by SWING-Community are also within the subset of false-

positive edges inferred by the base community method.
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Table 3.6 S. cerevisiae data set for DREAM5 lag analysis

Strain/Condition Time Points Citation
Y262 Wild type cells, oxidative stress t=0,30,60,100,140,180 [88]
Y262 Wild type cells, DNA damage stress t=0,30,60,100,140,180 [88]
Y262 Wild type cells, oxidative decay t=0,5,10,15,20,30,40,50,60 [88]
Y262 Wild type cells, DNA damage decay t=0,5,10,15,20,30, 40, 50, 60 [88]
IFO0233 Wild type cells, control t = 830,834,838,842,846,850,854,858,862,866,870 [89]
IFO0233 Wild type cells, phenelzine treatment t = 874,878,882,886,890,894,898,902,906,910,914,918,922,926,930,934,938,942,946,950,954,958,962,966,970,974,978,982,986,990,994,998,1002,1006,1010,1014,1018 [89]
BF264-15Dau Wild type cells, YEP medium t = 30,38,46,54,62,70,78,86,94, 102,110,118,126,134,142,150,158,166,174,182,190,198,206,214,222,230,238,246,254,262 [90]
BF264-15Dau D CLB1 cells, YEP medium t = 30,38,46,54,62,70,78,86,94, 102,110,118,126,134,142,150,158,166,174,182,190,198,206,214,222,230,238,246,254,262 [90]

Table 3.7 Gene ontological analysis of S. cerevisiae subnetworks

Cluster ID Gene Ontology Significance (Corrected P-Value) # of Genes in GO Size of GO Category
0 glycogen metabolic process 0.008232665 4 59
2 oxidation-reduction process 2.07E-22 87 223
3 transcription, DNA-templated 0.032096568 23 93
4 D-gluconate metabolic process 2.80E-12 7 13
5 carbohydrate transport 9.24E-29 53 299
5 carbohydrate metabolic process 3.18E-25 59 299
5 cytoplasm 0.034127985 94 299
6 iron ion homeostasis 8.10E-23 21 111
6 ion transport 4.93E-09 22 111
6 transport 6.25E-06 46 111
7 sulfate assimilation 6.26E-09 7 28
7 sulfur compound metabolic process 2.51E-08 7 28
8 oxidation-reduction process 0.016750762 22 68
9 lipid metabolic process 7.45E-20 16 22
10 cellular amino acid biosynthetic process 3.55E-08 19 95
11 membrane 2.92E-07 20 173
12 cellular response to DNA damage stimulus 6.90E-17 30 61
14 phosphate ion transport 1.32E-10 8 54
16 glyoxylate catabolic process 0.001176962 3 9
17 response to arsenic-containing substance 1.40E-05 3 3
19 biotin biosynthetic process 3.46E-12 6 6
20 cyanate catabolic process 1.40E-05 3 4
21 glycerol metabolic process 0.00127654 3 3
23 aromatic compound catabolic process 1.91E-08 5 6
25 potassium-transporting ATPase activity 1.83E-08 4 5
27 NAD biosynthetic process 1.15E-06 4 5
28 phage shock 0.000280394 3 6
30 thiamine transport 7.01E-05 3 6
31 cellular amino acid biosynthetic process 2.49E-12 13 20
32 nucleobase-containing small molecule metabolic process 0.013445757 2 3
35 zinc II ion transport 0.003916298 3 6

3.10. SWING performance is robust across parameters

SWING adds user-defined parameters to baseline methods, which are necessary for win-

dow creation and time-delay inference. The selection of these parameters is both context

and data specific. We conducted parametric sensitivity analysis of SWING as a function of

window size, combinations of kmin and kmax, and experimental sampling interval in context

of the in silico networks and the E. coli SOS network (Figs. 3.14-3.13). While SWING out-

performs baseline methods over a wide range of window sizes (Fig. 3.14), the performance of

a single network may differ from other networks, suggesting that the optimal window size is
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Figure 3.13 | Barplots show the lag distribution each sampling inter-
val for each aggregated in silico data sets. For example, the sampling
interval 333 indicates that samples were taken at t=0, 333, 666, and 999.
Lag was calculated using cross-correlation for 40 10-node networks, 20 E coli -
derived and 20 S. cerevisiae-derived. True edges for which no apparent lag
was calculated are labeled as “N/A”.

partially dependent on the underlying inference method and network structure. Therefore,

user-specified SWING parameterskmin, kmax, and wshould be chosen based on the data, and

are discussed in detail in Supporting Information: Sensitivity Analysis. Overall SWING

outperforms baseline methods for a wide range of possible parameters (Figs. 3.14-3.15).
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SWING-RF, SWING-LASSO, SWING-PLSR compared to baseline
methods (RF, LASSO, PLSR respectively) for each window size
change (white dot = mean, black bar = median). The percent change
of AUPR and AUROC from non-SWING methods was calculated for each
network (100 trials, 40 10-node networks). The red line indicates the AU-
ROC/AUPR for one example network as w changes. For SWING methods,
the following parameters were used: kmin = 1, and kmax = 3 (kmax was ad-
justed accordingly to be the largest allowed value when w was 19, 20, and
21).

3.11. Discussion

Tight regulation of gene expression is critical to maintaining robust responses to perturba-

tions and environmental disturbances, and misregulation of intracellular signaling dynamics

can lead to a wide variety of diseases. For this reason, uncovering the topology of GRNs is
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Figure 3.15 | Results of sensitivity analysis on in vitro SOS data using
SWING-RF. (A) Heatmaps show performance change of a three parameter
scan (w, kmin, and kmax) of the in vitro SOS network. Red denotes that
SWING-RF performed better than the RF baseline method with the indicated
parameters while blue denotes that SWING-RF performed worse than the RF
baseline method. Parameter combinations that are not possible are shown
in grey. (B) Boxplots show AUPR and AUROC distributions for 50 trials
of SWING-RF at each window size, w, with kmin = 0, kmin = 1. These
plots show an example of the variance AUPR/AUROC scores for each RF
realization, for the row outlined in A (black = baseline distribution using RF;
blue = distributions with a significantly lower score than the baseline; red
= distributions with a significantly higher score than the baseline; grey =
distributions with no significant score difference than the baseline. p-values
are calculated with a paired t-test. Values are considered significant with
p < 0.05).

of fundamental interest to the scientific community, since the resulting maps can be used

to identify interventions to control cellular phenotypes. Many current methods disregard

temporal information and are limited in their ability to accurately infer network topology.
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Indifference to time delays will be the Achilles heel of many systems biology strategies. We

developed a general temporal framework for network inference that accurately uncovers the

regulatory structures governing complex biological systems by accounting for these funda-

mental delays. SWING improves upon existing Granger methods by generating an ensemble

of windowed models that simultaneously evaluate multiple upstream regulators at several

potential time delays. We validate its utility and performance in several in silico (Fig. 3.1A)

and in vitro (Figs. 3.10 and 3.12B) systems.

3.11.1. Consideration of time delays improves SWING performance and should

be integrated in experimental design

Our in silico and in vitro results demonstrate that promoted edges were enriched for those

with apparent time delays (Fig. 3.7B), suggesting that network inference is improved, in

part, by accounting for temporal information. We support this finding by demonstrating

that SWING-RF promotes an edge with a distinct and singular delay (Fig. 3.8A). We also

used SWING to predict directed edges of several E. coli sub-networks using cubic spline

interpolated microarray datasets. Through cross-correlation analysis, we estimate time-

delayed interactions in in silico, E. coli, and S. cerevisiae networks, and show that SWING

performs better than baseline methods in modules with more frequent time-delayed edges,

such as the tdcABC regulon.

Interestingly, the apparent time delay only partially explains improved performance, as

SWING also promotes edges without apparent time delays in in silico and in vitro networks.

This discrepancy may arise from our conservative approach for identifying time delays; a

more liberal approach could assign time delays to a greater fraction of the promoted edges.
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However, it is particularly challenging to estimate time delays for genes with multiple regula-

tors using cross-correlation. More complex algorithms that incorporate additional informa-

tion (i.e., nonlinearity and partial correlation) could improve time delay estimation between

regulators and targets [96].

An additional consideration involves interactions that occur faster than the sampling

interval. These interactions will not exhibit a delay in the time series, and will resist inference

and estimation of time delay regardless of methodology. This bottleneck can be managed

by designing experiments with shorter sampling intervals. The choice of sampling interval is

context specific, and we recommend sampling with sufficient frequency to capture dynamics

of interest.

3.11.2. SWING outperforms common network inference algorithms across scales

SWING outperforms common network inference algorithms–RF, LASSO, and PLSR–but is

limited by computational expense. Since SWING constructs a larger explanatory matrix

and executes multivariate comparisons between multiple time delays, it is more expensive

than the aforementioned methods. Fortunately, SWING is trivially parallelizable and can be

implemented on any multicore processing system. We conducted similarly derived 100-node

in silico networks and found that SWING increased the AUPR and AUROC for all three

methods (Fig 3.3), including SWING-LASSO, which had no significant difference for the

10-node networks (Fig. 3.1A). Remarkably, every single network was inferred with greater

accuracy, indicating that SWING has notable benefits for larger inference tasks (Fig 3.3,

Table 3.1).
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3.11.3. SWING is an extensible framework

Compared to other time-delayed inference algorithms, SWING is a flexible and extensible

framework that is not limited to using a single statistical method. The SWING frame-

work was implemented with RF, LASSO, and PLSR; it can be easily expanded to use other

multivariate inference algorithms, including those that utilize prior information and hetero-

geneous data types [97]. Additional improvements can be made by incorporating complex

weighting of methods for consensus analysis that leverage known weaknesses and biases of in-

ference methods. Methods that involve empirical optimization of combination weights, such

as those assessed in the DREAM challenge, are expected to substantially improve SWING

performance [98].

Although we implemented SWING to infer interactions from gene expression data, the

same Granger causality principles can be applied to a wide variety of contexts with temporal

dynamics. Provided sufficient time-series data, we expect SWING to identify regulatory

relationships in related intracellular signaling pathways, as well as broader fields such as

ecology, social sciences, and economics. As the sensitivity/specificity of experimental tools

increases and the cost of implementation decreases, we expect longer and higher resolution

time-series data to become widely available. We expect this increase in time resolution to

further improve the accuracy of SWING-based network inference, especially as the com-

munity continues to build on the SWING chassis. The SWING framework, with currently

implemented methods, is available on GitHub:

(https://github.com/bagherilab/SWING).
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CHAPTER 4

Flow cytometry-based characterization and screening of several

megakaryocyte culture conditions from CD34+ cells derived from

umbilical cord blood

Work presented in this chapter is adapted from the following paper under review:

• Wu, J.J., Abbott, D.A., Terzioglu, M.K., Ranjan, R., Mahmud, D., Issa, H.,

Bagheri, N., Mahmud, N., and Miller, W.M. Multi-Phase Ex Vivo Generation of

Platelet-like Particles from CD34+ Cord Blood Cell-Derived Megakaryocytes.

4.1. Abstract

Generating platelets in culture from alternative cell sources may provide a platform to-

ward donor-independent platelet transfusions. We present an augmented differentiation pro-

tocol that pre-expands the number of hematopoietic stem and progenitor cells (HSPCs) to-

ward the megakaryocyte (MK) lineage using valproic acid (VPA), before generating platelet-

like particles (PLPs). We show that the length of primary pre-expansion culture (P0) affects

CD41a+CD42b+ expression in secondary culture (P1) and that VPA significantly increases

the numbers of MKs and PLPs produced compared to pre-expanded cells without VPA.

Our strategy generated 500 MKs and 104 CD41a+CD42b+ PLPs per input CD34+ cell.

We found that increasing pre-expansion time from 6 to 8 days and initial HSPC expansion

concomitantly resulted in upregulation of p21Cip/Waf1 and p16INK4 protein levels, while

VPA treatment decreased the extent of upregulation. We demonstrate that the resulting
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PLPs exhibit functional activity. Notably, we report substantial donor-to-donor variability

across expanded and unexpanded cultures. We investigated the extent to which total MK

production could be predicted by early culture characteristics. Correlation analysis showed

that %CD41a+ and %CD34+ CD41a+ early in culture, as well as early indicators of total

and CD34+ cell expansion, are predictive factors of MK yields in secondary culture. Our

multi-phase culture strategy provides the basis for additional experimentation to further

enhance MK and PLP yields.

4.2. Multi-step production of CD41a+CD42b+ cells from CB CD34+ cells.

Platelets are derived from megakaryocytes (MKs) and play major roles in hemostasis,

inflammation, thrombosis, and vascular biology[3, 99, 100, 101]. Patients who undergo radi-

ation, myelosupressive chemotherapy, or stem cell transplantation often suffer from throm-

bocytopenia and rely on platelet transfusions as supportive therapy. More than 2 million

platelet transfusions are performed each year in the US, however platelet transfusions are

expensive, have the potential for adverse reactions, and are a limited resource dependent

on blood bank infrastructure for supply and distribution, as units are solely derived from

volunteer donors [102]. Generating platelets from alternative sources such as banked stem

cells would provide a platform towards donor-independent platelet transfusions.

Multiple strategies have been explored to generate platelet-like particles (PLPs) from

human stem cell sources such as umbilical cord blood (CB), adult growth-factor-mobilized

peripheral blood, embryonic stem cells, and induced pluripotent stem cells (iPSCs) [103,

104, 105]. Currently, strategies using unexpanded primary cells as starting material have

produced insufficient numbers of PLPs for potential clinical use. Augmenting differentiation

protocols by pre-expanding the number of hematopoietic stem and progenitor cells (HSPCs)
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and directing them toward the MK lineage could increase PLP yield. However, whether

expanded HSPCs differ in terms of MK production and PLP generation has not been eval-

uated. Strategies involving co-culture, inflammatory cytokines, or small molecule inhibitors

have been shown to improve proliferation of donor HSPCs, yet many of these agents reduce

MK differentiation of expanded cells and were not shown to improve MK or PLP yields

[9, 106]. Adding histone deacetylase inhibitors, such as valproic acid (VPA), has been shown

to increase the numbers of CD34+ and CD34+ CD90+ cells in a xenotransplant model, but

whether augmenting ex vivo PLP-producing cultures with a pre-expansion phase improves

MK and PLP yields has not been explored [107].

An essential, but often overlooked, component of generating PLPs ex vivo is charac-

terization of donor heterogeneity for MK maturation and terminal stages of PLP release.

Due in part to asynchronous maturation of hematopoietic cells in culture, differences in the

peak output of various donor samples remains an important consideration for developing

processes that yield meaningful levels of PLP production. Donor heterogeneity of CB units

in terms of cell recovery and graft potency has been reported by several others [108]. For

instance, transplant data suggests that CD34+ progenitor graft content correlates with speed

of engraftment and long-term survival [109, 110, 111, 112]. However, no studies to date have

characterized the effect of CB sample heterogeneity on subsequent MK and PLP yields ex

vivo. Identifying CB units with high and low MK potential early in the 20-day culture

process can save expensive resources and provides the potential to intervene during culture.

We characterized several aspects of a novel serum-free, stroma-free, multi-phase process

to produce PLPs from CD34-selected CB cells (Fig. 4.1). Our multi-phase culture strategy

expands the number of CD34+ cells towards the MK lineage, thus increasing numbers of

mature MKs and PLPs per input CD34+ cell several-fold in a donor-dependent manner.
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We showed that pre-expansion with VPA increases MK production and ploidy, although

with lower MK purity. We also characterized the synchrony, quantity, and functionality of

PLPs collected over several days. Our results suggest that VPA increases MK production in

part by decreasing levels of p21Cip/Waf1 and p16INK4 in pre-expanded cells. Finally, we

demonstrate the ability to distinguish donor samples with high- versus low-MK potential,

and show that high potential units generate up to 4 times more MKs per input CD34+ cell

than low potential units in secondary culture. Overall, this work addresses several challenges

of generating MKs and PLPs ex vivo.

± VPA Pre-expansion

Day 0
86 1210 14

Secondary Culture

20

P0 P1

Secondary Culture

P1

± VPA Pre-expansion Secondary CultureE8

E6

E0

Figure 4.1 | Timeline of ex vivo MK culture process illustrating du-
rations of pre-expansion and secondary culture phases of E0, E6, E8
culture conditions. Green bar represents the duration of fragmentation step
when orbital shaking is applied to MK cultures.

4.3. Valproic acid (VPA) pre-expansion increases the number of CD34+ cells

for subsequent culture steps.

CB-derived CD34-selected cells were pre-expanded using cytokines Flt3-ligand, TPO,

SCF, IL-3 in combination with VPA, which has been previously reported to expand CD34+

CD90+ primitive, transplantable HSPCs in culture[107]. We compared the HSPC output

of pre-expansion protocols with VPA (VPA+) to E6 and E8, in which the P0 period spans
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6 and 8 days, respectively to E6 and E8 vehicle-expanded controls (VPA) and E0 controls

without pre-expansion (Fig. 4.1). We monitored surface expression of CD34, CD41a, and

CD42b throughout pre-expansion (P0) and secondary (P1) culture stages. On day 8, a higher

proportion of cells was CD34+ in VPA+ cultures compared to VPA and E0 controls (Fig.

4.2). E6 and E8 VPA treatment maintained similar proportions of CD34+ CD41a+ cells,

while pre-expansion without VPA significantly decreased the proportion of CD34+ CD41a+

cells compared to E0 control (Fig. 4.3). E6 pre-expanded cultures yielded significantly higher

peak CD34+ cell levels compared to E0 cultures, while E8 trended towards yielding higher

peak CD34+ cell levels (Fig. 4.3). VPA treatment also increased the mean proportion and

absolute production of CD34+ cells compared to E0 culture, suggesting that a larger pool of

primitive HSPCs persist throughout the culture (Fig. 4.4). With respect to vehicle controls,

E6 and E8 VPA treatment significantly increased production of CD34+ cells by day 8 (Fig.

4.5) and expansion of the primitive CD34+ CD90+ cell subpopulation (Fig. 4.5). E6 and E8

pre-expansion increased peak production of CD34+ cells (Fig. 4.4) and total nucleated cells

(TNC) (Fig. 4.5) compared to E0, though significant differences between VPA and VPA+

treatments were only found for E8 CD34+ cells. These results suggest that subsets of CD34+

, CD34+ CD41a+, and CD34+ CD90+ cells derived from CD34+ CB cells can be greatly

expanded and maintained with VPA pre-expansion.

4.4. Length of primary pre-expansion culture (P0) affects CD41a+CD42b+

expression in secondary culture (P1) under static and shear conditions.

The pre-expanded cell cultures were re-suspended in secondary culture (P1) geared to-

wards MK progenitor proliferation and maturation as described [9]. In P1, numbers of

CD41a+CD42b+ MKs per P0 CD34+ input cell and %CD41a+CD42b+ cells progressively
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Figure 4.2 | Flow cytometry density plots showing representative ex-
pression. CD34 (x-axis) and CD41a (y-axis) on Day 8 (summative P0+P1)
of culture for E0, E6, E8 and VPA+, VPA- treatments.

increased in all cultures until a peak day, then subsequently declined (Fig. 4.6). On average,

E0 control cultures peaked on day 14 and quickly declined, while E6 and E8 VPA+ cultures

tended to peak 2-3 days later and maintain high levels for extended periods in P1. E8 pre-

expansion without VPA treatment decreased MK production and peak %CD41a+CD42b+

relative to E0 controls and E6 pre-expansion (Fig. 4.7), suggesting that pre-expanding

HSPCs without VPA is detrimental to MK production. In contrast, E8 VPA+ pre-expansion

significantly increased production of CD41a+CD42b+ MKs per CD34+ input cell compared

to E0 and E8 VPA- and exhibited peak %CD41a+CD42b+ cells intermediate between E0

and E8 VPA, suggesting that VPA partially rescues the effect of extended pre-expansion

on MK commitment and proliferation. While E6 pre-expansion without VPA significantly
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Figure 4.3 | VPA enhances proportion of CD34+ cells. A. Bar graphs
represent the mean (± SEM) percentage of CD34+ cells for E0, E6, E8 and
VPA+, VPA- treatments on day 8 (P0+P1) as measured by flow cytometry.
E0: 35 ± 4; E6 VPA+: 41 ± 5; E6 VPA-: 25 ± 5; E8 VPA+: 60 ± 2; E8
VPA-: 40 ± 10; E0: n=6, E6: n=3, E8: n=6; (E0 vs. E6 VPA+)*, (E0 vs.
E8 VPA+)*, (E6 VPA+ vs. E6 VPA-)**, E8 VPA+ vs. E8 VPA-: p = 0.12,
(E6 VPA+ vs. E8 VPA+)**, (E0 vs E6 VPA-)**, (E0 vs E8 VPA-)**. (p <
0.05)*, (p < 0.01)**. B. Bar graphs represent the mean (± SEM) percentage
of CD34+CD41+ cells for E0, E6, E8 and VPA+, VPA- treatments on Day
8 (P0+P1) as measured by flow cytometry. E0: 5.1 ± 1.0; E6 VPA+: 4.9
± 0.5; E6 VPA-: 1.5 ± 0.5; E8 VPA+: 6.6 ± 1.8; E8 VPA-: 2.5 ± 1.4; E0:
n=6, E6: n = 3; E8: n = 6; (E6 VPA+ vs. E6 VPA-)***, (E8 VPA+ vs. E8
VPA-)*, E0 vs E6 VPA-: p=.13, (E0 vs E8 VPA-)*. (p <0.05)*, (p <0.01)**,
(p <0.001)***. C. Bar graphs represent the mean (± SEM) peak production
of CD34+ cells per input P0 CD34+ cell for E0, E6, E8 and VPA+, VPA-
treatments (P0+P1) as measured by flow cytometry and cell counts. E0: 73.0
± 17; E6 VPA+: 165 ± 36; E6 VPA-: 166 ± 36; E8 VPA+: 275 ± 94; E8
VPA-: 192 ± 33; E0 and E6: n=9, E8: n = 6; (E0 vs. E6 VPA+)*, E0
vs. E8 VPA+: p=0.13, (E0 vs E6 VPA-)*, (E0 vs E8 VPA-)*. (p <0.05)*
(p <0.01)** (p <0.001)***

reduced peak %CD41a+CD42b+ cells, MK production per P0 CD34+ input cell was similar

for E6 VPA+ and VPA (Fig. 4.7). As an added effect, we observed that placing cultures

under shear to induce PLP release in P1 culture also improved or sustained MK purity (Fig.

4.8). Orbital shaking increased mean peak %CD41a+CD42b+ for E8 VPA+ without signif-

icantly affecting overall MK production (Fig. 4.8 and 4.9). In contrast, culturing E0 cells
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Figure 4.4 | VPA maintains larger pool of CD34+ cells in UCB. A.Line
graphs represent time-course of flow cytometry analysis of mean (± SEM)
%CD34+ cells during 20 days (P0 + P1) of culture (n=9 for E0 and E6;
n=6 for E8). Line graphs represent time-course of mean (± SEM) cumulative
production of CD34+ cells per CD34+ P0 input cell during 20 days (P0 + P1)
of culture (n=9 for E0 and E6; n=6 for E8).

under orbital shear decreased MK production and did not increase peak %CD41a+CD42b+.

Taken together, the results suggest that culturing VPA-pre-expanded cells under shear would

be permissive towards continuous PLP harvest.

We assessed several qualities of P1 cells related to MK maturity, such as the degree of

polyploidization and proplatelet-forming ability. MKs from all conditions exhibited increased

cytoplasmic size, multi-lobular nuclei, and the ability to form -tubulin-positive long filaments

with bulbous tips at terminal ends (Fig. 4.10). At the peak of maturity, we found no

qualitative difference between conditions in terms of proplatelet morphology (Fig. 4.10),

suggesting that pre-expansion and VPA treatment do not decrease MK proplatelet formation.

Regarding polyploidization, we found that E6 VPA+ and E8 VPA+ pre-expansion yielded a

significantly greater proportion of CD41a+ cells with >4N ploidy compared to E0 CD41a+

cells (Fig. 4.11). E8 VPA+ pre-expanded cultures also produced a greater proportion of

polyploid CD41a+ MKs than E6 VPA+, despite a shorter duration in P1 culture. Thus, CB
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Figure 4.5 | Cultures pre-expanded with VPA for 8 days showed
greater expansion of CD34+ , CD34+ CD90+, and total nucleated
cells. A. Bar chart shows significant changes in Day 8 CD34+ cell production
per P0 input CD34+ cell for VPA+ and VPA- conditions for E0, E6, and E8
pre-expansions. E0: 40 ± 9; E6 VPA+: 22 ± 4; E6 VPA-: 28 ± 10; E8 VPA+:
63 ± 14; E8 VPA-: 36 ± 7. (E0 vs E8 VPA+)*, n=6, n=6, (E8 VPA+ vs
E8 VPA-) p=0.16, n=6, n=6. (p <0.05)*. B. Bar chart shows significant
difference in fold expansion of CD34+ CD90+ cells in P0 for VPA+ vs. VPA-
conditions for E6 and E8 pre-expansions. E6 VPA+: 51 ± 11; E6 VPA-: 5 ±
1; E8 VPA+: 88 ± 22; E8 VPA-: 11 ± 4. (E6 VPA+ vs E6 VPA-)**, n=9,
n=8, (E8 VPA+ vs E8 VPA-)**, (E6 VPA+ vs E8 VPA+)*, (E6 VPA- vs E8
VPA-) p=0.12, n=8, n=8. (p <0.05)*, (p <0.01)**. C. Bar chart shows sig-
nificant changes in peak cumulative TNC per P0 input CD34+ cell for VPA+
and VPA- conditions for E0, E6, and E8 pre-expansions. E0: 426 ± 84; E6
VPA+: 1247 ± 198; E6 VPA-: 1377 ± 231; E8 VPA+: 2215 ± 519; E8 VPA-:
1430 ± 186 viable TNC per CD34+ cell. (E0 vs E6 VPA+)**, (E0 vs E8
VPA+)**, (E6 VPA+ vs E8 VPA+) p = 0.17, (E0 vs E6 VPA-)**, (E0 vs E8
VPA-)**. (p <0.05)*, (p <0.01)**, (p <0.001)***.

CD34+ cells pre-expanded either in the presence or absence of VPA display characteristic

hallmarks of MK maturity.

4.5. E8 VPA+ pre-expanded cultures produce greater numbers of PLPs than

VPA- conditions.

We noticed a great deal of variability in the timing of the peak and the extent of PLP

release with E0 and VPA ± pre-expanded cultures (Fig. 4.12). We sampled PLP release

every 24 hours from continuously shaken E0, E6, and E8 cultures and found that E8 VPA+
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Figure 4.6 | Pre-expansion with VPA increases CD41a+CD42b+ ex-
pression and cell production during P1 culture. A.Line graphs represent
time-course of mean (± SEM) CD41a+CD42b+ MKs generated per input P0
CD34+ cell (n=9 for E0 and E6; n=6 for E8). B. Line graphs represent time-
course for mean (± SEM) %CD41a+CD42b+ of live cell population quantified
by flow cytometry (n=9 for E0 and E6; n=6 for E8).

cultures trended towards producing greater numbers of PLPs per P0 CD34+ input cell than

E6 pre-expansion or E8 VPA cultures (Fig. 4.12). The peak number of PLPs collected

per MK counted on the previous day in culture tended to be greater for E0 than for E6

and E8 pre-expansions, although with substantial donor variation (Fig. 4.13). Additionally,

the E8 VPA+ condition trended towards increased PLP release efficiency compared to E8

VPA- (Fig. 4.13). This suggests that VPA treatment partially rescues the negative effect of

pre-expansion on PLP release.

The number of CD41a+CD42b+ PLPs in culture represents the combined effects of

production and degradation. To measure PLP degradation, we separated MKs from PLPs

via centrifugation on days 15 and 17 for E0/E6 and E8 cultures, respectively, and placed

isolated PLPs in fresh media supplemented with P1 cytokines in orbital shear conditions.

After 24 hours, less than 10% of CD41a+CD42b+ PLPs originally isolated were observed to

be CD41a+CD42b+ for all conditions (Fig. 4.13). This suggests that the PLPs measured

each day were not carried over to the next day. Thus, we estimated the cumulative number
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Figure 4.7 | Pre-expansion with VPA increases peak CD41a+CD42b+
expression and cell production during P1 culture. A. Bar graphs rep-
resent mean (± SEM) peak CD41a+CD42b+ MKs generated per input P0
CD34+ cell for each culture condition (n=9 for E0 and E6; n=6 for E8).
E0: 189 ± 49; E6 VPA+: 250 ± 66; E6 VPA-: 216 ± 56; E8 VPA+: 505
± 119; E8 VPA-: 119 ± 11. (E0 vs E8 VPA+) p=.14, (E8 VPA+ vs E8
VPA-)*, (E6 VPA+ vs E8 VPA+)*, (E0 vs E8 VPA-) p=.14. (p <0.05)*
(p <0.01)** (p <0.001)*** B. Bar graphs represent mean (± SEM) peak
%CD41a+CD42b+ cells as measured by flow cytometry (n=9 for E0 and E6;
n=6 for E8). E0: 43 ± 5; E6 VPA+: 21 ± 2; E6 VPA-: 15 ± 2; E8 VPA+: 28
± 4; E8 VPA-: 12 ± 1. (E0 vs E6 VPA+)***, (E6 VPA+ vs E6 VPA-)***,
(E0 vs E8 VPA+)***, (E8 VPA+ vs E8 VPA-)***, (E0 vs E6 VPA-)***, (E0
vs E8 VPA-)**. (p <0.05)* (p <0.01)** (p <0.001)***

of PLPs we could harvest per P0 CD34+ cell by assuming harvest every 24 hours with

complete recovery of MKs and progenitor cells after each harvest. Cumulatively, E8 VPA+

pre-expanded cultures produced around 104 CD41a+CD42b+ PLPs per P0 input CD34+

cell, which is significantly greater than E8 VPA- cells and trends towards being greater

than E0 cultures (Fig. 4.13). Similar PLP production per P0 CD34+ cell in E0 and E8

VPA+ cultures is surprising because E0 cultures generally produced substantially fewer

MKs overall, suggesting trade-offs between numbers of resulting MKs produced and PLPs

released. Greater PL3P release in E0 and E8 VPA+ cultures than E6 VPA+ cultures was
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Figure 4.8 | Effect of shear on pre-expanded cells. A. Line graphs repre-
sent time-course of mean (± SEM) %CD41a+CD42b+ cells (n=9 for E0 and
E6; n=6 for E8) comparing shear vs. static VPA+ conditions. B. Line graphs
represent time-course of mean (± SEM) viable CD41a+CD42b+ MKs per P0
CD34+ input cell comparing shear vs. static VPA+ conditions.

also observed using a microfluidic reactor (Fig. 4.14). Video analysis revealed that E8

VPA+ conditions released more PLPs per 5-minute interval than E6 VPA+ MKs, but less

than E0 MKs for the same donor (Fig. 4.14). Taken together, VPA has a positive effect on

overall PLP release compared to pre-expanded VPA- cultures and potentially unexpanded

E0 cultures.

4.6. PLPs derived from VPA+ pre-expanded cultures exhibit functional

activity.

Thrombin-activated PLPs from VPA+ pre-expanded cultures exhibited characteristic

spreading of -tubulin and F-actin on fibrinogen-coated surfaces similar to E0 PLPs and

donor platelets (Fig. 4.15). Activated PLPs were on average, much larger than donor

platelets. To quantitatively determine whether culture-derived PLPs had functional activity

comparable to donor platelets, we stained PLPs for PAC1 and CD62P before and after

activation with thrombin (Fig. 4.16). Overall, CD41a+CD42b+ PLPs derived from VPA+
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Figure 4.9 | Effect of shear on individual pre-expanded donors. A.
Violin plots represent peak %CD41a+CD42b+ of each donor sample for E0,
E6, E8 conditions under static and orbital shear conditions (shear stress = S,
white dot = median, black bars = 25/75 quantiles, gray lines = same donor).
Median (Interquartile Range or IQR): E0: 39 (36-49); E0-S: 41 (35-56); E6
VPA+: 19 (17-24); E6-S VPA+: 23 (19-33); E6 VPA-: 14 (11-20); E6-S
VPA-: 26 (15-30); E8 VPA+: 31 (26-34); E8-S VPA+: 35 (32-39); E8 VPA-:
11 (9-13); E8-S VPA-: 20 (13-25). (E6 VPA+ vs E6-S VPA+) p=6.03E-
02, n=9, n=9, (E6 VPA- vs E6-S VPA-)*, n=9, n=8, (E8 VPA+ vs E8-S
VPA+)**, n=6, n=6, (E8 VPA- vs E8-S VPA-)**, n=6, n=6. B. Violin plots
represent peak CD41a+CD42b+ MKs per P0 CD34+ input cell (production)
for each donor sample for E0, E6, E8 conditions under static and orbital shear
conditions (shear stress = S, white dot = median, black bar = 25/75 quantiles,
gray lines = same donor). E0: 160 (50-255); E0-S: 80 (37-229); E6 VPA+:
218 (133-234); E6-S VPA+: 222 (163-287); E6 VPA-: 162 (118-293); E6-S
VPA-: 203 (74-340); E8 VPA+: 403 (342-537); E8-S VPA+: 429 (278-603);
E8 VPA-: 123 (97-133); E8-S VPA-: 156 (145-202).

conditions did not differ significantly from E0 PLPs or donor platelets in terms of PAC1

and CD62P binding (Fig. 4.17). To measure ADP-dependent functional activity under

shear conditions, we flowed PLPs through a fibrinogen-coated open channel microreactor
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Figure 4.10 | VPA pre-expansion does not appear to have an effect
on ability to form proplatelets. Representative fluorescence confocal mi-
croscopy images of proplatelet formation by MKs cultured from all conditions
for donor CB560 (40X). Colors used: Blue—DAPI, Red—F-actin, Green—B-
tubulin. The scale bar represents 80 µ m.

with and without ADP. PLPs isolated from all culture conditions produced calcein-labeled

aggregates after 15 minutes (Fig. 4.18). We observed much less aggregation without ADP

in a similar time-frame, confirming stimulus-specific aggregation. Altogether, this suggests

that VPA pre-expansion primarily affects early-to-mid processes HSPC proliferation, MK

differentiation, and PLP release and has limited effects on the functionality of released

PLPs.
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Figure 4.11 | VPA pre-expansion increases polyploidization of CD41+

cells. A. Bar graphs represent the mean ( ± SEM) percent of CD41+ cells
that are high ploidy (>4N) on day 16 (P0+P1) for all conditions (N=6).
Polyploidization quantified using flow cytometry and p-values were calculated
using paired t-test. E0: 7.2 ± 0.4 (n=6), E6 VPA+: 12 ± 1 (n=6), E6 VPA-
10 ± 2 (n=3), E8 VPA+ 14.8 ± 0.3 (n=6), E8 VPA- 12 ± 4 (n=2). (E0 vs
E6 VPA+)*, (E0 vs E8 VPA+)**, (E6 VPA+ vs E8 VPA+)**. B. Smoothed
histogram shows gating and representative distribution of PI flow cytometry
staining of CD41+ cells for E0, E6 VPA+, E8 VPA+ for donor CB560.

4.7. p16INK4 and p21Cip/Waf1 are upregulated in pre-expansion conditions

and downregulated with VPA treatment.

We hypothesized that VPA affects MK proliferation, differentiation, and polyploidization

in processes related to cell cycle and senescence, potentially targeting endogenous inhibitors

of cyclin-dependent kinases, p16INK4 and p21Cip/Waf1. We performed RT-qPCR com-

paring P0 input CD34+ cells prior to culture with VPA+ and VPA pre-expanded cells at
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Figure 4.12 | PLPs were collected from all conditions over multiple
days. A. Line graphs represent number of CD41a+CD42b+ platelet-like-
particles (PLPs) quantified by flow cytometry per P0 CD34+ input cell col-
lected over the course of the orbital shear phase for E0 (n=9), E6 (n=9), E8
(n=6). Each line represents a separate CB unit.

day 20 and showed that overall transcript levels of p16INK4 and p21Cip/Waf1 were signifi-

cantly decreased with VPA+ treatment on day 20 (Fig. 4.19). We then measured p16INK4

and p21Cip/Waf1 using intracellular flow cytometry on day 11 and found that longer pre-

expansion substantially increased p16INK4 and p21Cip/Waf1 protein levels in CD41 cells

and CD41-low cells (Fig. 4.20), which contain HSPCs and early MK populations, respec-

tively, while VPA treatment generally decreased the proportion of cells expressing p16INK4

and p21Cip/Waf1 in these compartments early in P1 culture.

Histograms of p16INK4 and p21Cip/Waf1 for a single donor show that average expres-

sion of these proteins is substantially increased with pre-expansion, but reduced with VPA

addition (Fig. 4.21 and 4.22). Together, this suggests that pre-expansion of HSPCs without

VPA causes a proportion of cells to become senescent by increasing cyclin-dependent kinase

(CDK) inhibitors p16INK4 and p21Cip/Waf1, thus lowering MK and cell division potential,

and that VPA partially offsets the increase in p16INK4 and p21Cip/Waf1 expression.
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Figure 4.13 | VPA increases PLP output compared to pre-expanded
control. A. Bar graphs represent the mean (± SEM) peak CD41a+CD42b+
PLPs collected per input MK (number of PLPs at t / number of MKs at t-1)
quantified by flow cytometry. E0: 46 ± 12 (n=6); E6 VPA+: 14 ± 2 (n=6);
E6 VPA-: 18 ± 5 (n=6); E8 VPA+: 21 ± 6 (n=3); E8 VPA-: 10 ± 3 (n=3).
(E0 vs E6 VPA+)*, (E0 vs E6 VPA-)* B. Line graph shows percent isolated
CD41a+CD42b+ PLPs remaining as a function of incubation time (PLPs at
t / PLPs at t0). Each line represents PLPs generated from a separate donor
sample (n=3) quantified by flow cytometry. C. Bar graph shows cumulative
CD41a+CD42b+ PLPs collected per 104 P0 CD34+ input cell (scale: 1x104).
E0: 0.6 ± 0.2 (n=6); E6 VPA+: 0.4 ± 0.5 (n=6); E6 VPA-: 0.3 ± 0.8 (n=6);
E8 VPA+: 1.0 ± 0.2 (n=3); E8 VPA-: 0.2 ± 0.1 (n=3). (E8 VPA+ vs E8
VPA-)*.

4.8. Substantial variability in P1 MK production can be predicted via early

culture characteristics.

To improve efficiency of the culture process, we investigated whether the extensive vari-

ability observed in MK production for different CB units could be predicted using factors

observed at earlier time-points. We observed that production of CD34+ cells and MKs for

different CB units varied greatly across multiple conditions, affecting both HSPC expansion

and MK differentiation rates (Fig. 4.23). To delineate whether MK cultures belonged to a
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Figure 4.14 | E8 VPA condition releases more PLPs per interval than
that of E6 VPA, though unexpanded cells releases most PLPs per
interval. A. Fluorescence microscopy images show calcein-stained CD61+
selected MKs extending proplatelets under uniform shear conditions. Colored
arrows point to extended proplatelets. B. Line graphs represent number of
cumulative calcein-stained PLPs released and counted per 5-minute time in-
terval in a microfluidic bioreactor for one donor comparing E0 and E6/E8
VPA+ pre-expanded conditions.

high-performing or low-performing group, MK production, purity, and TNC production tra-

jectories for each CB unit were clustered using K-means. Clustering revealed two phenotypes

that we named High-MK and Low-MK (Fig. 4.24).

A linear mixed-effect model was implemented to determine whether CB units belonging

to the High-MK group displayed significantly greater MK production than those in the Low-

MK group. Within the E6 VPA+ condition, High-MK cultures produced 4.6-fold more MKs
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Figure 4.15 | PLPs derived from VPA pre-treated cells display char-
acteristic spreading. Fluorescence confocal microscopy images (40x) show
morphology of PLPs isolated from cultured MKs (E0, E6 VPA+, E8 VPA+)
compared to that of donor platelets on coated surfaces: BSA, fibrinogen (Fib),
fibrinogen with thrombin activation (Fib+T). Scale bar represents 50 µ m.

in P1 culture than Low-MK cultures (Fig. 4.25 p=0.003). The effect of donor variability

was attenuated within the E8 VPA+ condition for which High-MK cultures produced 1.9-

fold more MKs in P1 than Low-MK cultures (Fig. 4.25, Fig. 4.24; trending p=0.08).

Differences between High-MK and Low-MK cultures were still seen when taking into account

overall production of MKs from P0 CD34+ cells (Fig. 4.25; E6, p=0.009; E8, p=0.2). We

investigated whether paired, corresponding E0 cultures in the same Low-MK and High-MK

groups displayed the same distinctions. E0 cultures of the High-MK CB group produced

twice as many MKs as the Low-MK group (Fig. 4.26; trending p=0.07). Thus, clustering of
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Figure 4.16 | PAC1 and CD62P activation of VPA-PLPs appear to
be similar to E0. Histograms of (i) PAC-1, and (ii) CD62P fluorescence
intensity for resting and activated (with thrombin) PLPs from E0, E6 VPA+,
and E8 VPA+ for a representative culture compared to donor platelets. Gray
histograms represent isotype staining. (iii) Dot plot for CD42b (y-axis) vs.
CD41a (x-axis) fluorescence from E0, E6 VPA+, E8 VPA+ PLPs, and donor
platelets. Gates were set based on isotype staining.
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Figure 4.18 | Aggregation assay reveals that all derived PLPs aggre-
gate in response to ADP agonist. A. In situ fluorescence microscopy
shows culture-derived PLPs and donor platelets forming clots after 15 minutes
of directional flow in an open-channel reactor coated with 60 ng/ml fibrinogen
with 20 uM ADP (+ADP; left) and without ADP (ADP; right). Scale bar
represents 50 µm.
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Figure 4.19 | Transcript levels of p21 and p16 decrease with VPA
treatment. Bar chart shows mean (± SEM) relative transcript levels of p21
and p16 measured by real-time quantitative PCR for samples of E6 and E8
cultures pre-expanded with or without VPA on day 20 (summative P0+P1)
of culture (n=3 for E6-derived cells, n=2 for E8-derived cells). Statistical
significance *p<0.05 vs. day 0 control. **p<0.01 vs. day 0 control

production trajectories for individual CB units is similar for different culture processes and

appears to be a cell-intrinsic property.

We investigated to what extent MK production and purity could be predicted by donor

early culture characteristics. Correlation analysis for E0, E6 VPA+, and E8 VPA+ condi-

tions in which we aggregated pairwise correlations between 38 observed variables revealed

multiple factors measured in P1 and P0 that correlated with overall MK production (E0:

n=10, E6: n=20, E8: n=17, Fig. 4.27).

Significantly, we observed a positive correlation between CD41a+ cell production early

in P1 culture and peak MKs subsequently produced in culture (Fig. 4.28). Additionally,
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Figure 4.20 | Protein levels of p21 and p16 increase with greater pre-
expansion and decrease with treatment of VPA. Paired plots show flow
cytometry measurements of intracellular p16INK4 (p16) and p21Cip/Waf1
(p21) protein levels. Percent p16+ or p21+ of CD41 cells and CD41-low cells
for E6 and E8 VPA+ and VPA- treatments, and E0 for cumulative day 11 of
culture (n=3 donors).
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Figure 4.21 | P16 gating strategy showing subpopulations of CD41+

cells that are p16+. Representative flow cytometry plots of intracellular
p16INK4 (p16) vs surface CD41a for one donor. Gates show partitions for
CD41, CD41-low, and CD41+ cells, as well as p16-low, p16-high. Adjacent
histogram shows median levels of p16.

peak purity of CD41a+CD42b+ cells correlated with initial %CD41+ cells as early as day

0 of P1 (Fig. 4.28B) with greater correlation on days 3 and 5 in P1 (Fig. 4.28C and

Fig. 4.27). This suggests that cell populations are pre-committed towards their current

trajectory of producing more or less MKs regardless of VPA treatment or pre-expansion.

Interestingly, peak TNC production is negatively correlated with MK commitment (Fig.

4.28D), suggesting that greater peak TNC production is indicative of greater rates of non-

MK cell differentiation (Fig. 4.27). Thus, we identified multiple variables related to MK

commitment and growth capability which are also correlated to MK production (Fig. 4.29).
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Figure 4.22 | P21 gating strategy showing subpopulations of CD41+

cells that are p21+. A. Representative flow cytometry plots of intracellular
p21Cip/Waf1 (p21) vs surface CD41a for one donor. Gates show partitions
for CD41, CD41-low, and CD41+ cells, as well as p21-low, p21-high. Adjacent
histogram shows median levels of p21.

4.9. Discussion

In this study, we demonstrate a multi-phase culture system to generate PLPs from CB-

derived CD34+ cells. In particular, we tested two pre-expansion periodswith and without

VPAto investigate and highlight relative improvements in fold-expansion with VPA and

the subsequent improvement in MK and PLP yields. Many aspects of MKs and PLPs

were extensively characterized during culture to show that VPA pre-expansion primarily

affected early cell division, MK differentiation, and proplatelet extension and release, while

minimally affecting PLP production and functionality. This reflects previous observations
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Figure 4.23 | Extensive donor heterogeneity can be clustered into
high-MK and low-MK groups. A. Violin plots represent CD34+ cell fold
change on cumulative day 6 (E6) or day 8 (E8) of culture of VPA-treated
conditions for each CB unit (E6: n=20, E8: n=16). White dot = median,
black bars = 25/75 quantiles, gray lines = same donor. E6 VPA+: 18 (12-
28); E8 VPA+: 43 (28-55). B. Violin plots represent peak CD41a+CD42b+
MK production in P1 culture per P0 input CD34+ cell for E0 and VPA-treated
conditions for each CB unit (E0: n=9, E6: n=16, E8: n=16); E0: 160 (50-255);
E6 VPA+: 234 (122-354); E8 VPA+: 245 (195-342). C. Violin plots represent
peak CD41a+CD42b+ MK production in P1 culture per P1 input cell for E0
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Figure 4.24 | K-means clustering of pre-expanded growth. Heatmap
shows the aggregated data matrix that clustered 3 variables from 6 time-points
and 2 conditions for N = 12 cultures from different donor samples.

that a proportion of functional CD42b+ particles released from culture-derived MKs are pre-

PLPs (larger than donor platelets) rather than PLPs (comparable in size to donor platelets)

[113].
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Figure 4.25 | Linear mixed effect modeling shows significant differ-
ence between high and low MK groups in E6 and E8 expansions.
Line graphs shows clustering and significant changes between high- and low-
MK groups during P1 culture for E6 and E8 VPA+ conditions. Thick lines
represent the means of the High-MK (square) and Low-MK (triangle) group.
N=5 (low-MK), N=7 (high-MK).

Compared to other studies using CB or adult peripheral-blood-derived CD34+ cells, we

demonstrate several-fold higher MK/PLP yields. Our modified E8 VPA+ pre-expansion

process generated on average 500 mature CD41a+CD42b+ MKs per starting input CD34+

cell, which is several-fold more MKs than for respective VPA and unexpanded controls.

Others using CB or adult CD34+ cells have demonstrated at most 130 MKs per input

CB-derived cell and 50 MKs per adult-derived cell respectively [9, 114, 115, 116, 117,

13]. Additionally, our method generated PLPs at efficiencies similar to, or better than,

other reported methods utilizing orbital shaking. We generated 20 PLPs/MK and about

104 CD41a+CD42b+ PLPs cumulatively per P0 CD34+ input cell with continuous orbital
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Figure 4.26 | Linear mixed effect modeling shows significant difference
between high and lower MK groups in E0 expansion. Line graph
shows clustering and significant changes between high- and low-MK groups
for cultures that have a paired E0 condition. Thick lines represent the means
of the High-MK (square) and Low-MK (triangle) group. N=3 (high-MK),
N=3 (low-MK).

shaking, highlighting the potential of these pre-expanded CB cells to produce PLPs. The

highest reported yield of PLPs per input MK or HSPC is 3.4x10ˆ4 PLPs per input HSPC,

but this reflects the number of CD41+ , rather than CD41a+CD42b+, PLPs [103]. The co-

expression of CD42b in CD41+ PLPs is a critical attribute of functional platelets. Studies

utilizing iPSCs or immortalized MK cell lines have generated 5-18 PLPs per input MK

progenitor [118, 36, 119, 37]. In a recent study, Ito and colleagues improved PLP yields to 70-

80 PLPs per input MK progenitor with a turbulence-based bioreactor, which indicates that

downstream PLP collection may be greatly improved with better downstream processing.

VPA pre-expansion can be used in conjunction with perfusion or turbulent bioreactors that

recapitulate physical forces in endogenous blood flow, thus increasing numbers of PLPs per

input MK [37].
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Figure 4.27 | Correlation analysis between culture response variables.
Panel of scatterplots showing correlations between several culture response
variables for different culture conditions.
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Figure 4.28 | Correlation analysis between culture response variables.
A. Scatterplot shows correlations between peak MK production and CD41+

cell production on day 5 in P1 culture for E0, E6 VPA+, E8 VPA+ culture
conditions. B. Correlation between peak %CD41a+CD42b+ and %CD41+

on day 0 of P1 culture. C. Correlation between peak %CD41a+CD42b+ and
%CD41+ on day 5 of P1 culture. D. Correlation between peak TNC production
per P1 input cell and %CD41+ on day 0 of P1 culture.

Previous studies show that HDAC inhibitors (5-Azacitidine, trichostatin A, suberoy-

lanilide hydroxamic acid, VPA, and combinations thereof) broadly affect global gene expres-

sion of pre-expanded CD34+ cells, especially affecting genes related to HSPC maintenance

[107]. Since our study established that early stages of culture involving HSPC maintenance
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Figure 4.29 | Correlation network between culture response variables
shows influential factors of MK culture. Correlation network shows po-
tentially influential factors of MK culture between explanatory variables (green
nodes) and response variables (blue nodes). Lines indicate that the significance
of the Pearson correlation is p < 0.05 and the color of the line indicates whether
the correlation is positive (green) or negative (red).

tend to be affected rather than later stages that involve PLP potency, we hypothesized

that VPA primarily affected processes such as cell-cycle and recognition of senescence. In

the context of MK differentiation, p21Cip/Waf1 is considered critical for establishing senes-

cence, whereas p16INK4 is involved more in the maintenance of senescence [120]. We found

that increasing pre-expansion time and thus initial HSPC expansion concomitantly caused

upregulation of p21Cip/Waf1 and p16INK4 protein levels, while VPA treatment with pre-

expansion decreased the extent of upregulation. Thus, VPA treatment during a critical early

window has enduring effects on p16INK4 and p21Cip/Waf1 expression in resulting progeny,

which facilitates higher MK and PLP yields. p16INK4 belongs to a family of proteins that



141

function as antagonists of cyclin D-Cdk4/6, blocking phosphorylation of Rb family members

and subsequent entry into S phase, while p21Cip/Waf1 restrains entry into S phase by in-

hibiting cyclin E-Cdk2 [121]. Studies in human diploid fibroblasts show that p21Cip/Waf1

accumulates progressively in aging cells and decreases when senescence is achieved [121, 122].

The effect of VPA towards reducing levels of p21Cip/Waf1 and p16INK4 has been corrob-

orated in other contexts; In the context of cellular reprogramming, adding VPA increases

the reprogramming efficiency of iPSC cells by attenuating the effect of senescence pathways

[123, 124]. We found that p21Cip/Waf1 and p16INK4 were upregulated during P1 culture

after substantial pre-expansion, which suggests that HSPC pre-expansion in an ex vivo en-

vironment, especially in the absence of VPA, may lead to early induction of senescence due

to extrinsic factors and imperfect recapitulation of the microenvironment and HSPC niche.

Our study suggests that targeting p21Cip/Waf1 and p16INK4 using small molecules in pre-

expansion and secondary culture protocols may substantially improve yields of MKs and/or

PLPs.

Understanding donor variability and skewing towards the MK lineage of CB-derived

cells is important for developing more efficient MK differentiation strategies and could also

inform other studies that assess graft potency and subsequent in vivo platelet production

after transplantation. A number of studies have analyzed maternal and neonatal factors

associated with differences in CB CD34+ cells [3, 99] but did not analyze subsequent effects

on differentiation especially towards the MK lineage. Our results show that donor samples

can be divided into high- and low-MK-producers, and that these divisions appear to be

cell-intrinsic since unexpanded CB cells and pre-expanded CB cells display similar donor

clustering of heterogeneity in MK yields. Further, we showed that high %CD41a+ and

%CD34+ CD41a+ early in culture are predictive of high peak MK purity and production.
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This provides a platform for future studies into donor heterogeneity, but it is currently

unclear what differences may be driving high MK production in the high-production donors.

Single-cell sequencing studies have found a cluster of unipotent cells, identified by CD41

within CD34+ CD38+ IL-3RdimCD45RA myeloid progenitors in adult mobilized peripheral

blood, that exhibit robust differentiation into MKs while lacking potential towards other

lineages [125]. Our study suggests that this population might be overrepresented in certain

CB donor samples, thus giving these samples higher potential to produce MKs and PLPs.

Our protocols provide the basis for additional experimentation with each step to further

augment MK and PLP yields. For example, building on the protocol by combinatorically

adding other small molecules such as UM171 or SR-1 may further promote HSPC prolif-

eration and differentiation in culture [126, 127]. Downstream PLP collection can also be

improved. VPA pre-expansion can be used in conjunction with perfusion bioreactors that

recapitulate shear forces in endogenous blood flow, thus increasing the number of PLPs per

input MK [128, 129, 130] Further studies are needed to ascertain whether higher MK and

PLP production can be achieved in large scale with other forms of shear-inducing technolo-

gies. Nevertheless, these results demonstrate the feasibility of a scalable process to generate

PLPs from HSPCs using a modified pre-expansion protocol.

4.10. Methods

4.10.1. Cell culture

Fresh human CB collections were obtained from the Placental Blood Program of the New

York Blood Center (New York, NY) according to guidelines established by the University

of Illinois at Chicago Institutional Review Board. Low density CB cells were isolated using

Ficoll-Paque (1.077 g/ml) (Amersham Biosciences, Uppsala, Sweden). CD34+ cells were
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immunomagenetically enriched using the MACS CD34 progenitor kit (Miltenyi Biotech,

Auburn, CA) as described previously1. Purified CD34+ cells (90% CD34+ ) were seeded

at 4 10ˆ4cells/ml in tissue culture-treated (TC) well plates in 6 well plates in 2.5 ml of

Iscoves modified Dulbecco’s medium (IMDM) (Biochrom) in serum-free medium (Sigma, St.

Louis, MO) and supplemented with 100 ng/ml stem cell factor (SCF), 100 ng/ml FLT-3

ligand (FL), 100 ng/ml thrombopoietin, and 50 ng/ml interleukin 3 (IL-3). All cytokines

were purchased from Peprotech (Rocky Hill, NJ). Cells were treated with 1 mM valproic

acid and added media and cytokine supplements as above except IL-3 at 16 hours and

incubated for another 6 or 8 days at 37C in a fully humidified atmosphere of 5% CO2,

then transferred to secondary culture. In secondary culture, unselected cells were suspended

in cytokine cocktails as described2. Briefly, cells were resuspended in 78% IMDM (Gibco,

Carlsbad, CA) + 20% BIT 9500 Serum Substitute (STEMCELL, Vancouver, BC, Canada)

+ 1% Glutamax (Gibco) + 1 µg/mL low-density lipoproteins (Calbiochem) + 100 U/mL

(Pen/Strep), supplemented with 100 ng/mL thrombopoietin (Tpo), 100 ng/mL stem cell

factor (SCF), 2.5 ng/mL interleukin (IL)-3 (R&D Systems, Minneapolis, MN), 10 ng/mL

IL-6, and 10 ng/mL IL-11 and seeded in TC-treated T-flasks at 50,000 cells/mL. Cells were

cultured in a fully humidified chamber at 37 C, 5% CO2, and 5% O2 for 5 days. On day

5 of secondary culture, cells were pelleted and resuspended in fresh IMDM + 20% BIT

supplemented with 100 ng/mL Tpo, 100 ng/mL SCF, 10 ng/mL IL-3, 10 ng/mL IL-9, and

10 ng/mL IL-11. Cells were cultured at 20% O2 thereafter. On day 7 cells were pelleted

and resuspended in fresh IMDM+20% BIT supplemented with 100 ng/mL Tpo, 100 ng/mL

SCF, and 6.25 mM nicotinamide (Sigma) and seeded at 200,000/mL on TC-treated dishes.
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4.10.2. Cell Counting

Cells were counted using cetrimide and the Multisizer 3 (BD). The absolute number of

MKs was determined as the product of the live cell count and the percentage of cells that

were CD41a+. The absolute number of mature MKs was calculated as the product of the

live cell count and the percentage of cells that were CD41a+CD42b+. Cell counts were

normalized to input CD34+ cell population (Day 0) to determine the fold increase of specific

cell populations. MK production was determined as the number of CD41a+CD42b+ cells

normalized to the number of starting CD34+ cells.

4.10.3. Polyploidization analysis

MK ploidy was analyzed on Day 16 of cumulative culture. Cells were labeled with FITC-

conjugated anti-CD41, incubated for 20 minutes at 4C, fixed with 0.5% paraformaldehyde

(Fisher Scientific, Waltham, MA) for 15 minutes and then washed with PBS. Cells were

then permeabilized with 75% methanol (Sigma Aldrich) for 1.5 hours at 4C and washed

with PBS+2% BSA(Fisher Scientific). Finally, cells were treated with 1 µg/ml RNAse

(Sigma) and propidium iodide/RNase solution (Becton Dickinson), and then incubated for

30 minutes in the dark at room temperature before flow cytometry analysis.

4.10.4. Flow cytometry analysis for MK differentiation

20,000 cells were collected and centrifuged at 340xg for 3 minutes, then resuspended in

phosphate buffered saline (PBS) + 2% BSA (Fisher Scientific). Cells were stained with fluo-

rescein isothiocyanate (FITC)-conjugated mouse monoclonal (clone 581) anti-human-CD41

antibody, phycoerythrin (PE)-conjugated mouse monoclonal (clone HIP8) anti-human-CD34

antibody, and APC-conjugated mouse anti-human-CD42b antibody (clone HIP1) at 4C, in
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the dark for 20 minutes. All antibodies for flow cytometry stains were obtained from BD

Biosciences (Franklin Lakes, NJ). Cells were then washed twice and stained with 5 µg/ml

DAPI for 10 minutes before acquisition.

4.10.5. Aggregation assay

A single-channel reactor was coated with 60 ng/ml fibrinogen for 1 hour at 37C, 5% CO2.

PLPs in HT buffer were labeled with 1 µM Calcein AM for 15 min at 37C and then microin-

jected upstream of the viewing area at a concentration of 40x106 PLPs/ml. CaCl2 (to 2mM)

was added to PLPs, expired platelets, and HT buffer running solution before injecting with

pump controlled syringes (NE-300, New Era Pump Systems Inc.) at a rate of 1.5 µl/second

with or without addition of ADP (to 25 µM).

4.10.6. Aggregation assay open channel reactor fabrication

A single channel polydimethylsiloxane reactor was fabricated similarly to methods previously

described with only the channel present and the slits removed.

4.10.7. Microfluidic shear analysis

CD61+ selected MKs were seeded on a polydimethylsiloxane USRB reactor with 5µm slits as

previously described. Briefly, MKs at a density of 50,000/mL were stained for 15 min with 1

µM Calcein AM at 37C. 25,000 stained MKs were microinjected into the tubing upstream of

slits and subsequently exposed to a center channel flow rate of 1.5 µL/min and a combined

outer channel flow rate of 0 µL/min. Proplatelet and PLP formation were observed and

recorded for 30 minutes inside the incubator using a Lumascope v500 microscope (Etaluma).



146

4.10.8. qRT-PCR

Total RNA was extracted using Trizol (Invitrogen, Carlsbad, CA) from CB CD34+ cells (Day

0) or the culture product of CD34+ cells pre-expanded with or without VPA and obtained on

cumulative day 20 of culture in the presence of cytokines. Relative transcript levels from pre-

culture (Day 0) and Day 20 (E6 and E8) culture were determined by real-time quantitative

PCR. Transcription into cDNA was performed using oligo (dT)18 primers and Superscript II

reverse transcriptase (Invitrogen) according to the manufacturers instructions. (C1000 BIO

RAD). Briefly, 2.5 µg of total RNA from all samples were used to reverse transcribe into

cDNA. All PCR reactions used SYBR green PCR Master Mix (Applied Bio systems, Foster

City, CA, USA) to a final volume of 20 µl as described previously4. PCR cycling conditions

were standard except for annealing/elongation temperature, which ranged between 57C and

62C and was chosen based on preliminary primer optimization experiments. To quantitate

the expression level, each cDNA sample was analyzed in triplicate in the ABI 7500 Fast

System (Applied Bio systems) and a negative control (lacking cDNA template) was included

in each assay. GAPDH was used an internal calibrator (control gene), the standard curve

method was used for relative mRNA quantitation and final values are presented relative to

the pre-culture sample (D0). The primer sequences used in the real-time PCR assays are as

follows: GAPDH forward primer:

5-TGCACCACCAACTGCTTAGC-3,

reverse primer: 5-TCTTCTGGGTGGCAGTGATG-3,

p21 forward primer: 5-GGTCTGACCCCAAACACCTTC-3,

reverse primer: 5-AACGGGAACCAGGACACACATG-3,

p16 Forward primer: 5-CATAGATGCCGCGGAAGGT-3,

reverse primer 5-CTAAGTTTCCCGAGGTTTCTCAGA-3.
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4.10.9. Intracellular flow cytometry

Cultures were sampled on cumulative day 11 of culture. 105 cells were washed, then in-

cubated with PE-conjugated anti-CD34, APC-conjugated anti-CD41 for 20 minutes, then

washed twice. Samples were fixed with 0.5% formaldehyde and incubated at RT for 15

minutes, washed twice, then incubated with 70% cold methanol for 30 minutes at 4C then

washed twice. To block non-specific protein interactions, cells were incubated with 1X PBS

containing 10% normal goat serum with 0.3M glycine along with anti-p21Cip/Waf1 (1/100;

ab109520; Abcam) or anti-p16INK4 antibody (1/270; ab108349; Abcam) for 30 minutes

at RT. Cells were washed twice then incubated with secondary antibody anti-rabbit IgG-

Alexa488 (1/2000; Abcam) for 30 minutes at RT. Controls were created by staining fixed

samples with secondary antibody only. Samples were then washed, resuspended, and ac-

quired via flow cytometry.

4.10.10. Platelet-like particle (PLP) preparation and analysis

On Day 7 of secondary culture, MK cultures were placed on an orbital shaker (Scilogex,

model SK-0180-E) set to 50rpm in an incubator at 5% CO2and 20% O2 at a density of

600,000 cells/ml in a 100 x 20 mm polystyrene tissue culture dish (Corning). At each time-

point, a 500 µl sample was transferred to a conical tube. 100 µl of the sample was added to

cetrimide and counted with a Multisizer 3 (BD) to determine live cell concentration (nuclei

3 um). 400 µl of sample was labeled with FITC-conjugated anti-CD41, APC-conjugated

anti-CD42, and DAPI (5 µg/ml) to assess the ratio of CD41a+CD42b+ PLPs to live cells.

PLPs collected from the orbital shaker were tested for functional activity based on the

externalization of P-selectin and PAC1 binding after activation with thrombin using flow

cytometry. Briefly, PLP samples were centrifuged for 300xg for 10 minutes at RT to pellet
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large MKs. Prostaglandin E1 (Cayman Chemicals) was added to a final concentration of 140

uM to the upper phase then transferred into a Falcon tube. The supernatant was centrifuged

for 2200 xg for 20 minutes at RT to pellet platelets, then rested for 20 minutes, before adding

CaCl2 to 2 mM. PLPs were then stained, fixed, and analyzed by flow cytometry for P-

selectin externalization and PAC-1 binding. Anti-Y1-PE (Becton Dickinson) and iso-FITC

were used as isotype controls. PLPs were identified as CD41+ CD42+events that fell in the

side scatter versus forward scatter gate corresponding to fresh platelets isolated from whole

blood or recently expired platelets from apheresis units. Expression of activation markers

was compared to an unactivated, stained sample.

4.10.11. PLP degradation analysis

PLP samples in media containing at least 4x106 CD41a+CD42b+ PLPs and MKs were

isolated on day 14 of overall culture. Samples were spun down at 300xg to pellet MKs. The

upper phase was transferred to a 6-well TC plate (Corning) then adjusted to a concentration

of 2x106 CD41a+CD42b+ PLPs/3 ml of media, and placed on a 50-rpm orbital shaker

for 24 hours at 37C, 5% CO2. Flow cytometry was performed by staining PLP samples

with anti-CD41a+-FITC, anti-CD42b+-APC, and 5 µg/ml DAPI, then CountBright beads

were added (Thermofisher) to determine the ratio of CD41a+CD42b+ PLPs to beads, and

confirm that all MKs were removed from the shaking culture.

4.10.12. Confocal microscopy

MKs and PLPs were seeded on glass chamber slides (Nunc) that were coated with 1% BSA

or 60 ng/ml fibrinogen (Innovative Research). To induce activation, PLPs were rested for

20 minutes then mixed with thrombin for a final concentration of 0.5 U/mL. To prepare



149

slides for immunocytochemistry, the cell solution was removed from each well and cells were

fixed with 3.7% formaldehyde solution for 10 minutes, washed, then permeabilized with

0.3% Triton X. Image iT-FX signal enhancer (Thermofisher Scientific) was added to each

well for 30 minutes, washed twice, then cells were stained with mouse anti- tubulin primary

antibody overnight. After washing twice, cells were incubated with 1% Alexa 488-goat-

anti-mouse secondary antibody (Jackson Immunoresearch) and 2% normal goat serum for 1

hour, washed twice, then incubated with TRITC phalloidin, washed twice, then incubated

with 1 ug/ml DAPI. Fluoromount-G (Thermofisher Scientific) was applied and the slide was

allowed to cure for 24 hours. Slides were imaged using a 40X oil objective on a SP5 II Laser

Scanning Confocal Microscope (Leica).

4.10.13. Immunofluoresence staining and microscopy

For analysis of platelet activation, glass chamber slides (Nunc) were coated with BSA or fib-

rinogen. Cell and PLP suspensions added to each well in the presence or absence of 3U/mL

thrombin for 1h at 37 C, 5% CO2. Slides were fixed with 3.7% paraformaldehyde and perme-

abilized with 0.3% Triton X-100 before staining with 5µg/mL mouse anti--tubulin primary

antibody, and 140µg/mL of FITC-conjugated goat anti-mouse secondary antibody. After

removing the secondary antibody, cells were incubated with TRITC-phalloidin, washed, and

stained with DAPI nuclear stain (Invitrogen) to confirm the presence or absence of DNA.

Proplatelet and PLP slides were imaged using a 40X objective, respectively, on an Spinning

Disk Confocal Microscope (Leica).
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4.10.14. k-means clustering

A combined data matrix was generated for (3) measured variables at each day (6 time-points)

for both E6 and E8 cultures (2 conditions): %CD41a+CD42b+, Viable MK production per

input P1 TNC cell, and Viable TNC production per input P1 TNC. Each measured variable

was z-scored within each category across all cultures and time-points to weight variables

equally. Measured variables were concatenated into a 12x36 (6 time-points * 2 conditions

* 3 variables = 36 columns) matrix, where the rows represent each culture, and columns

represent the measured variables on each day for E6 and E8 cultures. K-means clustering

was performed to determine whether the culture belonged to a high-MK group or low-MK

group using k=110 centroids, n˙init=1000 (number of centroid initializations), max˙iter=3000

(number of iterations in a single run) and the scikit learn package (python version 2.7). The

optimal number of clusters (k=2) was selected based on the elbow rule.

4.10.15. Statistics

Data representing cell viability; and CD34, CD41a, and CD42b expression are presented as

mean±standard error. Two-tailed paired t-tests were performed to determine whether treat-

ments had a statistically significant effect on paired donor samples. and a value of p <0.05

was considered statistically significant. Pearson correlation coefficient (R) was used to mea-

sure the association between two variables. We used R (version 3.5) and lme4 to perform a

linear mixed effects analysis modeling the relationship between %CD41a+CD42b+, Viable

MK production per input P1 TNC cell, and Viable TNC production per input P1 TNC and

whether the culture belonged to a high-MK group or low-MK group. As fixed effects, we

entered one of the three measured variables, such as Viable MK production per input P1

TNC cell, and day into the model. As random effects, we had intercepts for each culture
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unit for the effect on the measured variable. Visual inspection of residual plots did not

reveal any obvious deviations from homoscedasticity or normality. P-values were obtained

by likelihood ratio tests of the full model with the effect (high-MK or low-MK assignment

taken into account) against the model without the effect (high-MK or low-MK assignment

removed).
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CHAPTER 5

Ex vivo cultures for megakaryocyte differentiation described by

time-course models

Work presented in this chapter is adapted from the following paper in preparation:

• Wu, J.J., Abbott, D.A., Mahmud, N., Miller, W.M., and Bagheri, N. Gaussian

Mixture Models and Machine Learning Predict Megakaryocytic Growth and Differ-

entiation Potential Ex Vivo.

5.1. Abstract

The ability to analyze single cells via flow cytometry has impacted a wide range of biologi-

cal and medical applications, such as enabling the classification of immune and hematopoietic

cells during cellular differentiation. Manual analysis of temporal trends is time-consuming

and subjective for flow cytometry datasets. Thus we have developed a novel computa-

tional algorithm to quantify and predict temporal trends of developing cell subpopulations

in flow cytometry data, called Topographical Extraction of Gaussian Models (TEGM). We

propose a way to segment time-series flow cytometry data and extract additional features

from samples. We applied our method to a novel gold standard dataset comprised of 720

features from 80 perturbations of 54 samples, with 7 time-point measurements, capturing

ex vivo MK differentiation and maturation of hematopoietic cells from donors with varying

potential to generate CD41+CD42+ cells. We demonstrate the ability for TEGM to iden-

tify latent donor heterogeneity using the training set. TEGM predicted peak CD41+CD42+
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maturation purities of megakaryocyte cultures derived from diverse individual donors that

were highly concordant with actual peak culture outcomes (p=7.4e-09, R = 0.87). The re-

sulting model captured continuous progression of cell development processes represented by

cell surface markers (CD34, CD41, and CD42), and predicts MK differentiation and mat-

uration potential in culture of a given CB unit in a separate validation set. We applied

the TEGM computational framework to generate additional quantitative metrics capturing

subtle aspects of megakaryocyte differentiation.

5.2. Introduction to flow cytometry analysis

Flow cytometers provide high-dimensional quantitative measurements of light scatter

and fluorescence emission properties of thousands of single cells in each sample [131, 132].

Flow cytometry is routinely used in both research and clinical settings to study abnormal

cell structure and function, and diagnose and monitor human disease [133, 134]. A key step

in the traditional analysis of flow cytometry data is the grouping of individual cell events

into discrete populations on the basis of similarities in light scattering and fluorescence [135].

This analysis is usually accomplished by sequential manual partitioning or “gating” of cell

events into populations through visual inspection of plots in one or two dimensions at a time.

Manual flow gating and analysis is subjective, time-consuming, and is ill-suited for finding

relationships in high-dimensional data [132, 136].

Several researchers have developed automatic clustering techniques to assist in flow

cytometry analysis, based on K-means, T-SNE models, and statistical mixture models

[134, 137, 138]. These applications have been primarily focused on using statistical clus-

tering to identify rare subpopulations within a single patient sample. For example, viSNE

and SPADE project high dimensional measurements into a two dimensional map, allowing
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several cell subpopulations to be compared and contrasted without gating [138, 139]. Pseu-

dotime algorithms, such as Wanderlust and Monocle, identify the underlying developmental

trajectory from single flow cytometry samples [140, 141]. There is currently no algorithm

that incorporates multiple time series flow cytometry measurements. Additionally, very few

algorithms couple gating frameworks to machine-learning models that learn patterns pre-

dictive of response variables. We have developed a framework that incorporates time-series

flow cytometry datasets into Gaussian mixture models (GMMs) for automatic gating and

quantification. We demonstrate the application of this framework by predicting endpoint

surface markers and CD41+CD42+ cell production using early surface markers and metadata

in the context of ex vivo MK differentiation. We demonstrate that the resulting model auto-

matically gates relevant populations represented by cellular surface markers, CD34, CD41,

and CD42, and accurately predicts megakaryocytic culture potential of a given donor.

5.3. TEmporal Gaussian Models (TEGM) is a framework for time-series flow

cytometry analysis and identifies populations using unbiased, automated

segmentation of each time-point data using Gaussian mixtures

First, we describe how our hierarchical feature extraction approach extracts quantitative

information from time-series flow cytometry data. This process is divided into two main

parts: segmentation (Fig. 5.3A, 5.3B) and feature extraction (Fig. 5.3C, 5.3D).

Before running the segmentation algorithm, samples encompassing time-series flow cy-

tometry measurements of 54 cultures are collected as described previously in Chapter 4 (see

subsection: “Flow cytometry analysis for MK differentiation”). Time-points were taken

on several days (Days 0, 3, 5, 7, 9, 11) for 54 cultures for several surface markers (CD34,

CD41, CD42) and a viability marker (4’,6-diamidino-2-phenylindole; DAPI), and adjusted
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for compensation. Compensation normalization was applied to several variables (CD34,

CD41, CD42) based on multiple voltage settings as previously described [142].

5.3.1. Development of GMM at each time-point organizes data into representa-

tive populations

To segment the point-clouds into discrete cell populations (Fig. 5.3B), we first identify the

number of cell populations and also the boundary that encapsulates each cell population.

All distributions of cells within a given flow cytometry sample are assumed to be effectively

modeled by a mixture of Gaussian multivariate probability distributions. A summary of the

algorithm is described in Algorithm 5.1.

Formally, given an input which is a M by d matrix representing the aggregate point-

cloud for a single flow cytometry dataset at a given time-point, where M is the number of

cells, and d is the number of measurements per single cell (Algorithm 5.1), the output of

our algorithm is a C by F matrix where C is the number of conditions and F is the number

of extracted features. First, the algorithm assigns a cluster to each cell by finding param-

eters such that the goodness of fit of the estimated probability distribution (described by

parameters µ,σ,α, K) against the observation dataset X is maximized (P (X|µ,σ,α, K)).

The previously described EM algorithm is used to estimate the parameters for the mixture

of Gaussian distributions [143]. In a mixture of Gaussian distributions where there are K

number of mixture components (indexed by k), N is the Gaussian probability density func-

tion of a random variable and α = α1, ..., αK are mixing probabilities where
∑K

k=1 αk = 1.

Thus the posterior probability of the generative model representing the probability of the

data given the fitted model parameters is:
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Figure 5.1 | Summary of TEGM segmentation and feature extraction
algorithm. Feature extraction algorithm is summarized for each condition
and time-point. Features, eigenfeatures, and betweenPopulation features are
extracted from the dataset and stored for learning.

P (X|µ, σ, α,K) =
K∑
k=1

αkN (X|µk, σ
2
k)

The result of fitting the GMM is that each datapoint now has a posterior probability asso-

ciated with belonging to any of the mixture components with an estimated µk and σk.

Means of mixture components across multiple timepoints and conditions are aggregated

so that features extracted from each “type” of population can be compared. To assign

a population “type”, populations across multiple timepoints and conditions are grouped

by location of the mean centroid. This classification allows us to compare features from
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populations of the same “type”, for example, all populations that have a mean centroid in

the high CD41/high CD42/low CD34/high FSC/mid SSC/low DAPI region will be classified

as Population 1, which corresponds to the mature MK populations, allowing all features of

mature MK populations across from different conditions and time-points to be compared to

one another. Formally, the points belonging to each mixture component are denoted as PL

which is a subset of points P indexed by a label L. We performed hierarchical clustering

on the mean centroid of each cluster with a cut-off distance of Hd=0.3 to determine the

similarity of each cluster in Euclidean space and subsequently population labels for each

cluster. Points are only assigned to a population if the posterior probability of belonging to

the cluster is greater than 0.99. If the posterior probability is greater than 0.99 for multiple

mixture components, the point is assigned to the component that scored the highest posterior

probability.

5.3.2. Eigenfeatures define quantitative features of cellular differentiation

Eigenfeatures are extracted from each population based on a covariance matrix σ of the

given points (Fig. 5.3C).

Σi =



cov(x1, x1) cov(x1, x2) cov(x1, x3) . . . cov(x1, xd)

cov(x2, x1) cov(x2, x2) cov(x2, x3) . . . cov(x2, xd)

... ... ... ... ...

cov(xd, x1) cov(xd, x2) cov(xd, x3) . . . cov(xd, xd)


The covariance matrix Σ for any Gaussian is symmetric and positive definite, and can be

decomposed using eigendecomposition (eig, python):

Σ−1 = (QΛQ)−1
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where Q is an orthogonal matrix whose columns are eigenvectors, and Λ is a diagonal ma-

trix with diagonal entries denoting the eigenvalues. These values are used for subsequent

calculations for machine-learning as described below.

Additionally, other features that recapitulate manual gating and betweenPopulation fea-

tures are extracted. All extracted features are organized in a C by F matrix where C is the

total number of conditions and F is the total number of features.

5.3.3. Machine learning identifies relative importance of extracted features

gradient–boosted regression tree ensembles combine weak classifiers to produce strong pre-

dictions for continuous variables (Fig. 5.3D). To determine the variable importance of each

feature, we minimize the squared-error loss function:

L(r, f(Q)) =
F∑

j=1

(rj − f(Wj))
2

where r is the response variable (peak CD41+CD42+), f is a regression function of trees

with features W = (W1,W2, ...WF ). The gradient boost algorithm aims to iteratively min-

imize the expected square error loss, with respect to f , on weighted versions of the train-

ing data. gradient–boosted regression trees models were fitted using the GBM R package

(https://CRAN.R-project.org/package=gbm) with a squared error loss function.

We performed a grid search on parameters that optimized the loss function on a training

dataset consisting of 75% of the donors: A total of 2,000-10,000 trees were fitted with

an interaction depth from 2 to 5, a shrinkage parameter from 0.001 to 0.01, and a bag

fraction from 0.5 to 0.9. The permutational variable importance, which is proportional to

the amount of variance reduced in the response variable when a factor is selected as a node

in a gradient–boosted Tree, was calculated. We reserved 25% of the data as a test set to
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assess model accuracy. Model accuracy was assessed by the Qc2 score and p-value comparing

actual versus predicted peak percent CD41+CD42+. This is calculated by:

Qc2 = 1−
∑N

i=1(ŷ − yi)2∑N
i=1(yi − ȳ)2

where yi is the actual value of peak percent CD41+CD42+ in the test set, ŷ is the predicted

value of the statistic in the test set, and ȳ is the mean of the actual values in the test set.

5.4. Results

We describe a model framework to segment a time-series flow cytometry dataset, ex-

tract novel features that incorporate temporal trends, and predict selected response vari-

ables. We tested model predictions on a novel dataset comprised of 720 measurements from

54 perturbed samples, with 7 time-point measurements, capturing ex vivo MK differentia-

tion and maturation of hematopoietic cells from donors with varying potential to generate

CD41+CD42+ cells. The number of events for each sample ranges from 5,000 to 12,000.

5.4.1. TEGM gating identifies primary cell populations in well-defined ex vivo

data-set

To determine if our Gaussian Mixture Model approach captured well-defined populations,

we first identified the mean and covariance matrices of fluorescent bead populations. TEGM

accurately separated bead populations from mixed cell and debris solutions, showing that

well-defined clusters may be identified by the approach (Fig. 5.4A). Next, we applied the

TEGM framework to identify megakaryocyte cells in a mixed population and generated a

quad gating framework to recapitulate manual gating (Fig 5.4B). Even when encountering

continuous and discrete flow cytometry profiles, TEGM identified 2 populations via BIC
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Qt2

Figure 5.2 | Notation table of TEGM. Table describing list of notations
used to describe TEGM steps.

model comparison. The Bayesian information criteron (BIC) was used to identify the optimal

number of parameters for each multivariate GMM fit. We selected the smallest number of
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Figure 5.3 | Major steps implemented by TEGM package integrate
automated gating and feature extraction of time-series flow cytome-
try data and machine learning prediction versus manual analysis. A)
Time-series flow cytometry data is pre-processed and compensated. B) Popu-
lations of flow cytometry data are segmented using Gaussian Mixture Model-
ing. C) Features are extracted from segmented populations. D) Features are
placed in a machine-learning framework for prediction and evaluation of factor
importance.

components for the GMM that minimized the BIC. To define the quad gating strategy,

for each time-series, we identified populations that were CD34-, CD41-, and CD42- and

fitted quad gates to the corner of the negative populations, then we propagated the gating

boundaries to the entire time-series for each condition.

To determine if our approach was comparable to manual analysis, we tested whether

TEGM and the proxy quad gating strategy was able to identify comparable percentages of

key populations of cells (CD34+/-, CD41+/-, CD42+/-). We then calculated the percentage
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of events in each TEGM-fitted quadrant and compared them to expert-defined manual quad

gating (Fig. 5.4C). Gating of CD41+ cells is the most dissimilar between automated and

manual forms of gating, and percentage of CD41+ in the automated case is often a slight

underestimate of true CD41 percentage. This may be due to the continuous distribution of

CD41% commitment in some cases. Notably, the estimation of the percentage of CD34+ and

CD42+ cells is within 1% of manual gating estimates. We then used TEGM to define levels of

CD34%, CD41+CD42+, and Viability for all conditions in the dataset (7 donors each for E5

and E8 conditions pictured in Fig. 5.4D-F) over time. TEGM identified several trajectories

that reflect the donor heterogeneity of the overall samples in terms of loss of CD34+, and

gain and loss of CD41+CD42+. TEGM also identified the lack of donor heterogeneity for

Viability, which did not vary much between donors over time (within 15% CV). Thus, TEGM

is an automated segmentation procedure based on GMMs and hierarchical clustering, which

extracts subpopulation information within aggregated sets of timepoints, with one of the

subpopulations being live DAPI-low/CD34-/CD41+/CD42+ megakaryocytes.

Next, features are constructed based on eigenfeatures for each flow cytometry time-

course dataset using resulting GMM models and clustering. Features that can be obtained

by manual gating, or apparent descriptors, are extracted and compared to gold standards to

demonstrate accurate gating. Derived descriptors, such as eigenfeatures describing dispersion

of all subpopulations, and rate of differentiation of subpopulations, are used to construct an

explanatory matrix for a compendium of machine–learning algorithms. Overall, the final

learning matrix for the gradient–boosted tree consists of 730 columns (features) and 65 rows

(samples).
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Figure 5.4 | TEGM automated gating identifies bead and cell pop-
ulations in well-defined cell populations. A) TEGM clustering and co-
variance measurements of fluorescent beads projected onto 2D, demonstrating
that TEGM identifies clusters of multiple populations. The cluster of beads,
fluorescing in all channels is identified by cluster Debris Filter 2 (red). Each
color represents a different population defined by TEGM. Each concentric cir-
cle represents 1, 2, 3, 4 standard deviations from the mean of the population.
B) Example of automated quad-gating behavior of discrete and continuous
populations emulating expert-defined manual gating. GMMs are able to iden-
tify separate and continuous populations using Bayesian Information Crite-
rion (BIC) model comparison. C) TEGM automated gating is comparable
to expert-defined manual gating. Error = TEGM Marker positive divided by
Expert Determined Marker positive (n=359). Automated feature extraction
based on TEGM quad gating of D) CD34+ human stem and progenitor cell
(HSPC) primitive lineage marker E) CD41+CD42b+ maturation markers and
F) viability (DAPI) markers showing dynamic differences in differentiation
kinetics for 14 culture conditions of 7 donor samples (n=7 for E5 and E7).

5.4.2. TEGM introduces a new method to use FC data for prediction of cell

responses

We evaluated the effectiveness of the integrated pipeline in predicting culture outcome by

training a gradient–boosted tree model (GBM) with features derived from automated gating
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Figure 5.5 | Gradient–boosted trees identify top TEGM features. Tree
model trained on TEGM–extracted features improves prediction as measured
by correlation for 3 non-overlapping 20–test cultures. A) Simple correlation
and linear regression model shows that final CD41+CD42+ percentage cannot
be predicted by early CD41+ percent alone. B) GBM model for predicting
maximum CD41+CD42+ of each donor shows that correlation between pre-
diction and actual values is improved with TEGM approach (N=20x3 itera-
tions of testing data). C) Permuted null model shows that TEGM–extracted
features and performance are not due to random noise (N=20x500 iterations
of permuted null models) D) AUROC curve for GBM trained to predict bi-
nary outcomes (greater or less than 20% CD41+CD42+) show that TEGM
approach incorporating eigenfeatures (black) is more accurate than TEGM
approach without eigenfeatures (red).
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and feature extraction as described above. We extracted several features that were correlative

of peak percent CD41+CD42+, that alone cannot be used to predict culture outcome with

high specificity, but are more effective in combination (Fig. 5.5A and 5.5B). To determine

whether TEGM is able to predict peak percent CD41+CD42+ commitment based on early

factors, we evaluated the GBM model based on 3 independent selections of training and test

sets to predict the response value (peak percent CD41+CD42+). The correlation between

predicted and actual response was significantly positively correlated (p=7.4e-09, R = 0.87)

compared to a shuffled null model which had a negatively correlated trend (Fig. 5.5B).

We compared this to a null model with permuted rows to show that noise in the dataset

does not significantly bias the correlation of the results (Fig. 5.5C; p=1.4e-06, R=-0.11).

To determine if TEGM is able to leverage the features to predict binary outcomes (greater

than or less than 20% peak CD41+CD42+), we compared two feature sets derived from

TEGM, a feature set with and without eigenfeatures (Fig. 5.5D). We show that while

TEGM extraction of manually derived features (without eigenfeatures) has high accuracy

in predicting binary outcomes (AUROC = 0.71), TEGM with eigenfeatures significantly

increases the performance of the algorithm (AUROC = 0.92).

5.4.3. TEGM identifies culture factors that correspond to and potentially govern

cell responses

Overall, we identified several influential early culture factors that are predictive of peak

CD41+CD42+ commitment. We calculated the Variable Importance of each selected feature

to determine which extracted features may improve performance. As previously described,

Variable Importance of a feature is proportional to the amount of variance reduced in the re-

sponse variable when the feature is selected as a decision tree node. Early CD41+ percentage
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Figure 5.6 | TEGM reveals influential culture factors using relative
influence. A) Influential culture factors calculated using the Variable Impor-
tance statistic. B) Dot plot shows the size and direction of variable interaction
using partial dependence plots. Red indicates a negative interaction and blue
indicates a positive interaction. The size of the circle reflects the strength of
interaction effects.

on Day 5 is highly predictive of peak CD41+CD42+ commitment and is the most influential

feature for performance as determined by Variable importance (Fig. 5.6A). We note that

this is fairly late in culture, because peak CD41+CD42+ commitment often occurs on Day
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9 to Day 11, so this feature may have limited potential to provide the user with opportu-

nities for intervention. Interestingly, the rate of differentiation within the first three days

is also highly influential. Viability and CD34 percentage are comparatively less influential

for peak CD42+ percentage (Fig. 5.4A). Eigenfeatures such as Covariance, Variance, and

Eccentricity of related populations (particularly the CD34+CD41+ population) also appear

to be influential in the top 10 influential variables for prediction.

Combinatorial effects of various culture factors are known to perturb performance. Thus,

many anticipated predictor variables tend to be involved in a variety of interaction effects of

varying types and strength. TEGM is able to uncover two-way non-linear and linear interac-

tion effects within the constructed GBM. Partial dependence plots were used to graphically

examine the dependence of predictive models on subsets of selected features. To calculate

partial dependence, we performed a previously described method that varies two selected

variables within a GBM while averaging the effects of other variables. Fig. 5.4B displays

the strengths of the interaction effects involving each of the 10 predictor variables. These

interaction effects suggest that CD41%+ D5, Mean MFI Rate CD41 D0-D3, and CD34%+

D3 substantially interact with other variables. Strongly positive interactions between Mean

MFI Rate CD41 Day 0-3 and CD41%+ on Day 5 suggest that the strong presentation of

both factors is highly indicative of strong peak CD42%+ maturation. Interestingly, variables

that account for maturation, such as factors related to CD41+%, negatively interact with

factors related to progenitor status (CD34 percentage). A high CD34%+ early in culture

combined with an high differentiation rate dampens the effect of peak CD42%+ maturation.

Additionally, early viability percentage did not have substantial interaction effects with MK

maturation and progenitor status.
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5.5. Discussion

We provide a flow cytometric analysis method that can be used as a tool to predict

responses (i.e. the peak percent commitment of a differentiating culture) from explanatory

variables. This method compares both temporal trends of eigenfeatures and variability of

metadata (such as population counts) with integrated eigenfeatures. This method can be

used with different sets of related flow-cytometry data, providing versatile and applicable

analysis to other cell differentiation protocols. We note a few important considerations

required to successfully implement this method: several variables involving experimental

technique can affect data clarity, such as cellular toxicity related to the protocol, the time of

exposure to antibodies, the number of flow cytometry machines on which the cells are assayed,

and the type of cellular differentiation. As several have noted, these factors can greatly affect

the consistency and presentations of the results [144]. We did not test the robustness of

our computational methods to perturbations in the form of noise (either chemically-derived

or instrumentation) or by using different types of flow cytometry machines (benchtops or

different styles). Thus, we recommend benchmarking this technique with an internal gold

standard before utilizing this method to identify novel classes or subsets of any response

variable.

Flow cytometry is an important tool in molecular biology that is applicable for assessing

cellular differentiation [145, 146, 147]. One of the biggest challenges to investigate the surface

marker function in cell differentiation studies is to have reliable methods for detection of

population events, especially tracking populations over time. The ideal approach should be

selected depending on cell type and experimental needs, and should have high efficiency,

low bias, and be easy to use and reproducible. A rapid, robust and reliable method that

can be used to efficiently quantify donor heterogeneity based on time-series flow cytometry
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is not only valuable for data analysis, but also can be an important tool in designing new

interventions to improve cellular differentiation.

Automated gating techniques have been shown to overcome some of the major limitations

of manual analysis, but several challenges remain. A major challenge is the consistent la-

belling of cell populations across multiple samples in the presence of biological variability and

heterogeneity [148]. If the variability is small, cells from different samples can be clustered

as one dataset. However, when the variability increases, it becomes necessary to map corre-

sponding clusters from different samples. While some techniques, such as BayesFlow [149],

FLAME [150], HDPGMM [148], and ASPIRE [147] already incorporate such a mapping,

many other techniques (including TEGM presented in this thesis) do not model this step.

TEGM identifies populations that are assumed to be consistently Gaussian, which suffices for

relatively well-defined populations such as ex vivo cell differentiation, but suffers in contexts

where whole blood samples across multiple centers are processed. The FlowMapFriedman-

Rafsky algorithm was developed as a post-processing step to fill this gap [151], but mapping

cell types across samples still remains a challenging issue. Again, standardization will be

crucial, especially when comparing data between multiple centres or over time. Additionally,

TEGM needs to be augmented with additional flow cytometry analysis tools that enable the

analysis of flow cytometry data with greater complexity.

One challenge of this algorithm concerns the identification of very rare cell types, which

are easily mistaken for noise by many clustering algorithms. TEGM utilizes a tree-based

approach to identify features that are and are not helpful for classification using the Variable

Importance metric. With the traditional clustering algorithms, it is recommended to ensure

that only relevant markers are used for the clustering —thus, TEGM represents a substantial

improvement. Markers that vary little or that indicate properties not relevant for cell type
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identification (for example, viability markers) are best left out, as these will only contribute

noise to the feature extraction. Others have utilized an adapted distance measure, which

assigns different importance scores to different markers, which can in some cases also be

helpful in removing variables that are not important [148]. We have not yet benchmarked

our framework against other techniques, as this is ongoing work.

5.6. Conclusion and Summary

We have developed a novel computational algorithm to quantify and predict temporal

trends of developing cell subpopulations in flow cytometry data, called Topographical Ex-

traction of Gaussian Models (TEGM). We applied our method to a novel time-series flow cy-

tometry dataset comprised of 720 features from 80 perturbations of 54 samples, with 7 time-

point measurements, capturing ex vivo MK differentiation and maturation of hematopoietic

cells from donors with varying potential to generate CD41+CD42+ cells. We demonstrate

the ability for TEGM to identify latent donor heterogeneity using the training set. TEGM

predicted peak CD41+CD42+ maturation purities of megakaryocyte cultures derived from

diverse individual donors that were highly concordant with actual peak culture outcomes

(p=7.4e-09, R = 0.87). The resulting model captured continuous progression of cell de-

velopment processes represented by cell surface markers (CD34, CD41, and CD42), and

predicts MK differentiation and maturation potential in culture of a given CB unit in a sep-

arate validation set. We applied the TEGM computational framework to generate additional

quantitative metrics capturing subtle aspects of megakaryocyte differentiation. This method

overcomes limitations of prior established methods such as those that employ non-automated

gating, to evaluate the effects of differentiation, and provides substantial improvements in

automated flow cytometry detection methods.
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CHAPTER 6

Conclusions and Future Outlook

The bottlenecks for producing clinically relevant numbers of PLPs include the limited

understanding of transcription factor networks controlling MK commitment, limited expan-

sion and differentiation of input cells, and insufficient platelet production from differentiated

megakaryocytes. I have elucidated enhanced methods for megakaryocyte production from

CD34+ umbilical cord blood cells (CB) and platelet release that takes a step towards ad-

dressing the aforementioned bottlenecks. While these methods enable improved generation

of megakaryocytes and platelet–like–particles with comparable morphology and function, we

still fall short of generating clinically relevant amounts of platelets for transfusion.

Overall this thesis presents a novel culture strategy, as well as possible mechanisms of MK

differentiation. A key finding is that we can transiently expand the number of CD34+ cells

and increase the total number of CD41a+CD42b+ mature MKs and PLPs per input CD34+

cell by several fold compared to cultures without pre–expansion and previous reports by

others. I showed that extending the pre–expansion culture to 8 days in the presence valproic

acid (VPA) greatly increased MK and PLP production in secondary culture. To provide

mechanistic insights, I hypothesized that VPA affects cell cycle and senescence pathways that

involve cyclin–dependent kinases, p16INK4 and p21Cip/Waf1, and showed that p16INK4

and p21Cip/Waf1 levels are substantially increased with pre–expansion, but to a lesser extent

with VPA addition. I also demonstrated that the resulting CD41a+CD42b+ PLPs aggregate

under in vitro shear conditions in an ADP–dependent manner. Uniquely, I was able to build
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a model capable of distinguishing between CB units with high–and low–MK–potential using

statistical modeling and show that variability in culture performance can be predicted using

factors observed earlier in culture.

More generally, this culture strategy and associated insights provide unique perspectives

towards several important aspects of ex vivo platelet generation, such as the effects of stem

and progenitor cell pre–expansion and donor heterogeneity. I expect that this combina-

tion of hematopoietic progenitor cell expansion and the generation of megakaryocytes and

platelet–like–particles—in combination with computational analysis to identify sources of

heterogeneity will have an impact on several in the field that have noticed donor–to–donor

variation in mouse and human MKs. My work has the potential to be translated into strate-

gies that effectively generate culture–derived platelets at a clinically relevant scale.

In the future, I would like to identify cytokine combinations that optimize the commit-

ment and proliferation of MKs (expanded or unexpanded) in culture. I have started this

work with a preliminary screen by systematically varying several factors explored in this

thesis such as O2 and cytokine level.

I screened 30 conditions probing fed–batch media dilution and explored various dosages

of our previously published cytokine treatment regimens at various lengths of low O2 in-

cubation. Several promising conditions that increase MK purity or production level were

identified systematically (Fig. 6.1). For example, it appears that longer incubation periods

in low O2 perturbs both the purity and production of CD41a+CD42b+ (Fig. 6.1). Regime

2, which utilizes higher doses of IL–3, IL–6, and IL–11 greatly improves TNC production

(Fig. 6.2) at the expense of MK purity (Fig. 6.1).

As noted by others [152], fed–batch media dilution in general enables rapid expansion

of HSPCs within our culture (Fig. 6.2). Titrating cytokines in fed–batch dilution schemes
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Figure 6.1 | Screen of conditions of UCB not included in published
work. Screen of 30 conditions varying length of low O2 period and cytokine
regimes 1–7 identifies desirable culture conditions in terms of MK purity and
peak MK production.

could result in higher MK production (Fig. 6.3). Thus, our goal is to optimize cultures

along the axis of MK purity and overall culture growth to consistently generate 1000 MKs

per input CD34+ cell at high (> 50%) purity. It is possible to screen several conditions

involving cytokine–dosage optimization, fed–batch vs. full resuspension, extended low O2

screen to identify conditions that optimize MK production.

Studies exploring optimization of ex vivo megakaryocyte cultures in the future should

aim to:
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Figure 6.2 | Fed–batch cytokine regimes enable greater proliferation
of TNCs. Cytokine Regimes 2–7 which utilize fed–batch method of feeding of
various levels of cytokines results in greatly increased TNC growth compared
to Regime 1 (control with no dilution and resuspension) at 5 day O2 level.

1) Develop a flow cytometry–based screening approach focused on screening megakary-

ocytic features, such as polyploidization or CD42b expression.
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Figure 6.3 | Peak MK production under explored conditions is several
fold greater than control. Peak MKs produced per input CD34+ cell tends
to be highest with dilution of lower concentration of cytokines except in 15–day
extended low O2.
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2) Conduct small scale screens perturbing oxygen level and small molecule regimen to

affect signaling pathways and epigenetic regulators, and measure the outcome on downstream

megakaryocyte development and cell cycle.

3) Employ high–throughput flow cytometry analysis tools to identify hits and experi-

mentally validate results in focused culture scenarios where standard well–plates or flasks

are used.

This involves greatly scaling down current approaches to culture MKs into 96–well plates.

Screening requires the consideration of certain factors such as optimizing cell density, timing

of incubations, reagent additions, media changes, and toxicity of small molecule conditions.

Additionally, mechanosensory modalities may be applied, such as using plate vortexing to

stimulate platelet–like–particle (PLP) production in microplates. Various intensities and

durations that promote PLP release and maintain platelet viability under these modalities

would need to be optimized. Thus, exploration of factors perturbing a variety of gene

regulatory networks, and careful observation of response under various donor backgrounds

has the potential of enabling clinically significant production of donor–independent platelets,

which would broadly impact cancer treatment and other forms of care.
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