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ABSTRACT 

The goal of the work reported here was to answer two important questions with regards 

to LTVV use for patients with ARDS: 1) How do we measure adoption? and 2) What are the 

drivers of provider adoption? To this end, I have demonstrated the influence of patient height, 

hypoxemia severity, and ARDS documentation on tidal volume selection for ARDS patients. I 

have shown evidence that the association of patient height with standardized tidal volume is not 

an ARDS-specific phenomenon, but instead is an effect of mechanical ventilation for hypoxemia. 

This finding suggests the clinician use of a simple height-based heuristic for tidal volume 

selection. Further, I have validated these associations in an international cohort, implying that my 

results are generalizable to the patient population worldwide. Then, I provide methods to 

measure ARDS recognition at both the population and individual clinician level that account for 

these effectors. Using this metric, I show that local team-based culture is a stronger driver of 

ARDS recognition than specific position within an interaction network, which raises questions 

about the previously utilized opinion leader targeting approach for adoption interventions. 

Finally, I demonstrate that different local cultures report different barriers to implementation and 

that engagement with the studied innovation should be considered when evaluating the 

importance of specific reported barriers. In summary, this work provides methods for the 

characterization of the adoption process as well as specific insights for the design of future 

implementation interventions.
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CHAPTER 1: Introduction 

The overall goal of evidence-based medicine is to provide the best possible patient care 

by integrating the results of medical research into everyday medical practice. Unfortunately, the 

adoption of evidence-based practices (EBPs) by healthcare teams is frequently not spontaneous 

and may require significant focused effort. The integration of anything new into a workflow 

becomes increasingly difficult when the stakes are high, the information sources are diverse, and 

the innovation is technologically complex (1). Medicine is a good example of a field that faces 

all three of these challenges and has struggled to rapidly and effectively implement advances. Of 

all the EBPs developed in medicine, only half are thought to have made it to widespread use, and 

even then, the transition took an average of 17 years (2). To help address this delay, this work 

focuses on developing analytical methods at the intersection of the fields of implementation 

science, clinical medicine, and data science. Due to the multidisciplinary nature of this work, 

reviews of implementation science and the studied pathology/treatment pair will be provided in 

this section and more specific summaries of the current literature will be detailed at the 

beginning of each relevant chapter.  

1.1 Implementation Science 

 The field of implementation science aims to address the gap in high quality healthcare 

delivery and promote the adoption of evidence-based practices (3). Implementation science is a 

new field, developing over the last 10-15 years, as the areas of healthcare quality and patient 

safety have gained traction on the local and national levels (3). So far, the focus within the field 

has been on qualitative methods when assessing barriers to adoption and designing 

implementation interventions. These methods include semi-structured interviews, focus groups, 
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theoretical frameworks, and surveys (3). However, these approaches can introduce biases and 

can lack both scalability and external validity.  

With the integration of the electronic health record into many healthcare practices, data 

on care delivery processes are readily available and growing every day, holding promise for 

quantitative analysis. However, data-driven methods for analyzing these data have largely 

focused on making patient care decisions - such as using the synthesis of population data to 

assess an individual patient’s risk for a procedure or medication (4,5). Very few studies have 

attempted to use these data to address issues of implementation and adoption. This work aims to 

help fill this gap and develop quantitative methods for measuring the implementation process 

and factors that may affect it. I employ computational methods that can be automated and 

integrated into the electronic health record in order to tackle issues of scalability. For a specific 

underutilized evidence-based practice, I focus on the use of low tidal volume ventilation in 

patients with acute respiratory distress syndrome. 

 

1.2 Acute Respiratory Distress Syndrome (ARDS) 

 Acute respiratory distress syndrome (ARDS) is a condition found in critically-ill patients, 

where the oxygen-gas exchange capabilities of the lung are dangerously compromised. 

Originally observed in injured soldiers during the Vietnam War, ARDS presents with the pattern 

of a patient who responds to initial resuscitation, only to succumb to respiratory failure much 

later (days to over a week) (6). Clinically, ARDS can look very similar to pulmonary edema 

from heart failure, but there is no evidence that heart failure is the source. ARDS is believed to 

be the result of immunologic damage to the pulmonary capillary endothelium (6). As the exact 
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mechanism of injury for ARDS is not yet known (6), ARDS is defined as a clinical syndrome 

and is diagnosed using the Berlin Definition (7): 

1. Hypoxemia: PaO2/FIO2* ≤ 300 mm Hg 

a. Mild: 200 < PaO2/FIO2  ≤ 300 

b. Moderate: 100 < PaO2/FIO2  ≤ 200 

c. Severe: PaO2/FIO2  ≤ 100 

2. Bilateral Infiltrates: involvement of both lungs on chest imaging (x-ray or computed 

tomography) 

3. Presence of at least one known risk factor from a predefined list: 

a. Direct lung injury: Pneumonia, aspiration of gastric contents, inhalational injury, 

pulmonary contusion, pulmonary vasculitis, drowning 

b. Indirect lung injury: Non-pulmonary sepsis, major trauma, pancreatitis, severe 

burns, non-cardiogenic shock, drug overdose, multiple transfusions/transfusion-

associated lung injury 

4. Rule out of cardiac origin of respiratory distress  

* PaO2: arterial partial pressure of O2, FIO2: fraction of inspired O2. PaO2/FIO2 is a measurement 

of the efficiency of oxygen transfer by the lungs into circulation.  

Introduced in 2012, the Berlin Definition of ARDS is the most recent effort to develop 

diagnostic criteria that are minimally invasive, clinically useful, and accurate to the underlying 

pathophysiology in a heterogeneous patient population. Classically, ARDS is associated with 

pulmonary histological changes – diffuse alveolar damage, hyaline membrane formation, and 

cell necrosis and/or fibrosis (6). Definitive methods for detecting these changes would include an 
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autopsy or a lung biopsy, both of which are invasive and only one of which is clinically useful. 

Recent definitions have moved away from invasive procedures to clinical criteria in order to 

allow for easier and faster diagnosis. The Berlin Definition was an extension of its 1994 

predecessor (the American-European Consensus Conference definition) by incorporating patient 

data as well as expert opinion. Under the Berlin Definition, the stages of hypoxemia correlate to 

mortality and duration of ventilation, with more severe hypoxemia bearing a higher risk of 

mortality and longer ventilation (7). Furthermore, the Berlin Definition is thought to be easier to 

implement, requiring only one lab value (to assess hypoxemia), imaging (lungs and heart), and 

chart review – data that are readily obtainable in the routine care of a critically-ill patient.  

ARDS imposes a high burden on multiple levels of patient care. First, for the individual 

patient, ARDS carries a mortality rate of 27-45% depending on the severity of hypoxemia (6). 

Furthermore, ARDS is not often an isolated entity; any one of the predefined risk factors on its 

own is serious enough to require a long hospital stay. The longer the hospital stay, the higher 

chance of a patient developing additional complications, such as nosocomial infections and 

pressure ulcers (8). These complications will require additional outpatient follow-up and care at 

the very least. Second, for the healthcare delivery system, ARDS is relatively common and 

costly. ARDS has an estimated incidence of 10.4% of intensive care unit (ICU) admissions (9), 

contributing about 3.6 million associated hospital days annually (10). Third, the treatment of 

ARDS – including invasive mechanical ventilation, prone positioning, and extracorporeal 

membrane oxygenation – is not simple. The interventions require large and experienced patient 

care teams and a significant face-to-face care time investment. Additionally, they have 

considerable effects on patient quality of life. ARDS represents an important public health 
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problem and any improvement in ARDS care would have a sizeable impact on patient outcomes 

and system burdens.  

 

1.3 Low Tidal Volume Ventilation (LTVV) 

One of the mainstays of ARDS treatment is low tidal volume ventilation (LTVV). Patients with 

ARDS often require invasive mechanical ventilation. In contrast to the natural breathing 

mechanism which uses negative pressures, mechanical ventilation uses positive pressures (11). 

As a result, the use of mechanical ventilation comes with a risk of pulmonary barotrauma – 

damage to the lung tissue as a result of the pressure differences in an enclosed body cavity (11). 

While the mechanisms of ventilator-associated barotrauma are not fully known, there is evidence 

to support overdistension of alveoli can lead to inflammatory changes and/or possible alveolar 

rupture. ARDS is a syndrome of compromised alveolar function thought to arise from 

inflammatory damage to the lungs; therefore, the goal of low tidal volume ventilation is to 

minimize additional ventilator-associated barotrauma and possible perpetuation of ARDS (12). 

This is accomplished by lowering the tidal volume – volume of a single breath – to avoid 

alveolar overdistension. 

Between 1998 and 2006, there have been nine major randomized controlled trials 

evaluating low tidal volume ventilation vs traditional tidal volume ventilation, seven of which 

were published by 2000 (13). The largest study was the ARMA study, which included 861 

patients from 10 different hospitals and was stopped prematurely due to the strength of the 

evidence for mortality reduction in patients receiving LTVV as opposed to traditional volumes 

(22% relative reduction) (12). In the ARMA study, low tidal volume ventilation was defined as 
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6.5 mL/kg predicted body weight (PBW) and traditional volumes were defined as 12.0 mL/kg 

PBW. Subsequent evaluation of the evidence of the nine trials has led to the incorporation of 

LTVV for ARDS into clinical guidelines (13). While the American Thoracic Society guideline 

defines LTVV as 4-8 mL/kg PBW, this work will define LTVV as 6.5 mL/kg PBW as that was 

the threshold used in the ARMA trial and our data comes from before the guideline publication. 

Despite the strength of the evidence for the benefits of LTVV for ARDS patients, the utilization 

of LTVV has remained as low as 19% of eligible patients (9,14–21), suggesting the need for 

further study into the barriers preventing LTVV use. 

1.4 Thesis Organization 

 The primary motivation of my thesis work is to develop our scientific understanding of 

how to design interventions that promote the adoption of evidence-based treatments. My guiding 

assumption is that interventions that leverage and integrate with the natural flow of information 

within the healthcare delivery system will have a better chance of success. In order to accomplish 

my goal, I addressed two critical questions: 

1. How do we measure adoption? 

2. What are the drivers of provider adoption? 

My thesis work focuses on answering these questions in the test case of LTVV use for 

patients with ARDS. Because the two questions are inextricably linked, addressing them requires 

iteration between the two.  

First, I explore the factors affecting LTVV use for ARDS patients using two different 

datasets: 700 patients from four Chicagoland hospitals (Chapter 2) and 3777 patients from the 

international LUNG SAFE dataset from 50 countries (Chapter 3). I introduce a novel hypoxemic 
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“control” cohort as a means of evaluating which factors affecting LTVV use are associated with 

ARDS in particular and which factors are a result of mechanical ventilation for hypoxemia. For 

ARDS patients, I show that both ARDS documentation in the patient’s chart and hypoxemia 

severity are associated with lower tidal volumes. Furthermore, I demonstrate in both cohorts that 

patient height has an association with tidal volumes and that taller patients have a better chance 

of receiving LTVV, regardless of whether they have ARDS or not. Surprisingly, in the ARDS 

cohort, patient height has a stronger association than hypoxemia severity or ARDS 

documentation. Finally, I show that these associations (patient height, hypoxemia severity, 

ARDS documentation) hold true for both datasets. These results suggest that a portion of LTVV 

is unintentional and a result of the effects of patient height. Thus, measuring LTVV utilization is 

not trivial. 

For this reason, in Chapter 4, I develop two models of clinician recognition of ARDS that 

estimate overall recognition rates while accounting for the effects of the previously mentioned 

factors. I focused on ARDS recognition because it is the prerequisite for LTVV use and prior 

studies suggest that belief in LTVV is very high. These models produce recognition rates that 

increase with hypoxemia severity, which is consistent with prior literature, what one would 

expect. In all three hypoxemia categories, the LUNG SAFE dataset had higher ARDS 

recognition rates as compared to the Chicago dataset. The two datasets had the closest 

recognition rates in the severe hypoxemia category, despite having different documentation rates. 

This discrepancy is potentially due to the fact that LUNG SAFE offered its site investigators 

additional training regarding ARDS diagnosis prior to the beginning of the study and the 
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Chicago sites did not. Given the higher difficulty of recognition, the biggest differences would be 

expected in the less severe categories, which I observe.   

In Chapter 5, I build on these recognition models and design a metric that tailors ARDS 

recognition rates for individual clinicians. The characteristics of the cared-for patient population 

can vary significantly between individual clinicians or even for the same clinician over time. To 

address this issue, I designed a metric that accounts for the diversity of each clinician’s cared for 

patient population, comparing expected recognition rates to observed recognition rates. I show 

that our metric is robust to several patient characteristics, such as height and hypoxemia severity. 

Having developed a more accurate metric of ARDS recognition, I evaluate in Chapter 6 

the association between ARDS recognition and a clinician’s position within interaction networks. 

Previous studies have identified socially popular individuals as opinion leaders within the social 

network and targeted them for adoption interventions. However, these interventions have had 

only moderate success. After accounting for clinician demographics, such as care-team 

membership or number of intensive care units worked in, I find no association between our 

ARDS recognition metric and several network position measures. Instead, the clinician 

demographics were stronger predictors of ARDS recognition. This finding suggests the effects of 

a local culture outweigh the idiosyncratic characteristics of the individual, raising questions 

about the opinion leader targeting approach for adoption interventions. 

In Chapter 7, I quantify the effects of local culture with a secondary analysis of 

previously published survey data. Prior surveys have been used to identify barriers to LTVV use 

by evaluating which barriers are named most often in specific questions or free text. When I split 

clinicians by the driving demographic characteristics (care-team, number of units worked in), I 
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find that those belonging to subgroups with higher recognition rates more often report difficulties 

with ARDS recognition or LTVV implementation than those belonging to subgroups with lower 

recognition rates. This finding suggests that providers that make a specific diagnosis or 

implement a specific treatment are more familiar with the difficulties of the process. Even if a 

minority of providers name something as a barrier, the barrier could still be significant as the few 

providers reporting it may be the ones engaging with the process more intentionally.  
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CHAPTER 2: Effectors of Tidal Volume Selection for ARDS Patients 

The work in this chapter was published in the following paper: Bechel MA, Pah AR, Shi H, 

Mehrotra S, Persell SD, Weiner S, et al. (2019) A quantitative approach for the analysis of 

clinician recognition of acute respiratory distress syndrome using electronic health record data. 

PLoS ONE 14(9): e0222826. https://doi.org/10.1371/journal.pone.0222826 

2.1 Introduction 

The common goal of many implementation science studies is to identify barriers to and 

facilitators of adoption and subsequent design of interventions promoting implementation. The 

primary methodologies in these studies have been largely qualitative methods - semi-structured 

interviews, focus groups, theoretical frameworks, and surveys (3). In spite of their strengths and 

the advances they have enabled, these methods can introduce significant biases such as the 

subjective reporting, the observer effect, and priming (Table 1). These biases can in some cases 

limit the generalizability of the results gleaned from these methods. Moreover, due to the high 

resource and time requirements of qualitative methodologies, adopting these methods at larger or 

lower-resource settings is often not an option. Clearly there is a need for quantitative and 

scalable methods. 
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Table 1: Bias definitions and examples 

Bias Definition Examples 

Subjective 

reporting 

Also called ‘recall bias’, it is the 

concept that humans are not perfect 

historians. A person may be more or 

less likely to report an 

exposure/experience given their 

own specific circumstances and 

experiences. 

- Individuals often report themselves as 

better at specific tasks than they 

objectively are. 

- An individual is more likely to report 

that delays in lab tests are a big problem 

if they do not like the lab staff for 

unrelated reasons.  

Observer 

effect 

Also called the ‘Hawthorne effect’, 

it is the tendency of people to 

change their behavior when they are 

the target of special interest and 

attention, regardless of the specific 

nature of the intervention they 

might be receiving. 

- Patients participating in clinical trials 

will do better than patients who receive 

the same treatment not in a trial setting.  

- The rate of surgical site infections 

decreases when the number is being 

recorded by the department and increases 

after the recording period ends. 

Priming 

A psychological process in which 

exposure to a stimulus activates a 

concept in memory that is then 

given increased weight in 

subsequent judgment tasks. 

- An individual over-reports the 

incidence of a disease after receiving 

training on how to identify that disease. 

- An individual answers ‘Strongly Agree’ 

on a survey question about systems 

barriers when they would not have 

mentioned systems barriers in an 

interview. 

 

 While surveys have been used to study the delay of LTVV use uptake (Ch 7), there has 

been progress towards the integration of quantitative methods through the use of the cohort 

comparison study. Specifically, these studies compare the characteristics of patients with ARDS 

who received LTVV and those that did not receive LTVV and attempt to identify effectors of 

ventilator management decisions (16,18,20–28). The commonly identified categories of potential 

effectors include: overall disease severity (16,18–20,23,24,26,27), severity of pulmonary illness 
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(16,18–21,24,26–28), gender/height (16,18,19,21,23,24,26–28), clinician recognition of ARDS 

(19,24,26,27), ICU team training/organization (16,18,21,22,24,26,27), and ARDS risk factors 

(16,18,21,22,24,26,27) (Table 2). However, the evidence is not clear because the studies have 

reported conflicting results (Figure 1). 

Table 2: Overall and pulmonary disease burden measurements 

Category Factor Description 

Overall  

disease 

burden 

Acute Physiology and 

Chronic Health 

Evaluation (APACHE) 

Clinical scoring system to predict risk of patient 

mortality based on physiological measures on day 

of admission to the ICU 

Sequential Organ 

Failure Assessment 

(SOFA) 

Clinical scoring system to predict risk of patient 

mortality based on physiological measures from six 

major organ systems within the same 24h period. 

Used to track a patient’s progress during an ICU 

stay. 

Charlson Comorbidity 

Clinical scoring system to predict 10-year survival 

in patients based on age and specific coexisting 

conditions such as AIDS, dementia, diabetes, etc. 

Mortality Probability 

Model 

Clinical scoring system to predict hospital mortality 

for ICU patients based on physiological 

measurements, diagnoses, and requirement of 

ventilation. 

Pulmonary  

disease 

burden 

PaO2/FIO2 

Ratio of partial pressure of arterial oxygen to 

fraction of inspired oxygen. Measurement of the 

efficiency of oxygen transfer across the pulmonary 

endothelium. 

Static compliance 
Measurement of lung tissue elasticity: the change in 

volume for any given applied pressure. 

Plateau Pressure 

A proxy for lung tissue elasticity: the pressure 

applied to the small airways and alveoli. Measured 

as the pressure during an inspiratory hold. 

Lung Injury Score 

Clinical scoring system to stratify severity of 

ARDS based on chest x-ray findings, PaO2/FiO2, 

and static compliance. 
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Figure 1: Cohort comparison studies for LTVV use for ARDS. 

Eleven studies (x-axis) have compared ARDS patients that receive LTVV versus those that do 

not. Different studies have reported associations (green) or lack of associations (pink) between 

LTVV use and several commonly evaluated effectors (y-axis). 

 

 For a few cases, there is consensus. For example, all studies that examine the role of 

SOFA (Sequential Organ Failure Assessment score) agree that while it has been shown to predict 

overall mortality in ICU patients (29), it is not a helpful predictor for LTVV use (18,19,24,28). 

In contrast, static compliance (measure of lung tissue elasticity) is reported as a good predictor of 

LTVV use in the minority of studies that examine it (16,24). The situation is less clear for most 

of the other effectors studied, with some factors being heavily studied and almost evenly divided 
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in conclusion, such as PaO2/FIO2 (part of the Berlin Criteria) and patient gender. The question 

then becomes which studies to consider when trying to generalize the findings and to do this, one 

usually considers the conditions under which the study took place.  

Table 3: ARDS cohort comparison study parameters 

Study 

Patients 

Enrolled 

(n) 

Study 

Sites  

(n) 

Academic 

(%) 

Risk 

Factor 

Limits? 

LTVV bins 

(mL/kg PBW) 

Significance 

Threshold  

Kalhan 88 1 100 No 
V̂T  ≤ 7.5 

7.5 < V̂T 
0.05 

Cooke 759 23 60 No 

V̂T ≤ 6.5 

6.5 < V̂T < 8.0 

V̂T ≥ 12.0 

0.05 

Umoh 250 3 100 No 
V̂T  ≤ 6.5 

V̂T  ≤ 8.5 
0.05 

Han 421 7 100 
Yes –  

sepsis only 

V̂T ≤ 6.5 

6.5 < V̂T ≤ 8.0 

8.0 < V̂T 

0.05 

Needham 

(2012) 
485 

4 

 
100 No 

V̂T  ≤ 6.5 

6.5 < V̂T 
0.05 

Oh 104 28 NR 

Yes –  

influenza 

only 

V̂T ≤ 7.0 

7.0 < V̂T ≤ 9.0 

9.0 < V̂T 

0.10 

Chen 111 1 NR No 
V̂T  ≤ 7.5 

7.5 < V̂T 
0.05 

Needham 

(2014) 
482 4 100 No 

V̂T  ≤ 6.5 

6.5 < V̂T 
0.05 

Weiss 362 4 100 No 
V̂T  ≤ 6.5 

6.5 < V̂T 
0.05 

Owyang 446 1 100 No 
V̂T  ≤ 8.0 

8.0 < V̂T 
0.01 

Spece 214 1 100 No 
V̂T  ≤ 6.5 

6.5 < V̂T 
0.05 

 NR: Not reported 

V̂T: standardized tidal volume (mL/kg predicted body weight).  

 

 Looking over Table 3, there are a few important differences between the studies. First, 

we must consider how the primary outcome (standardized tidal volume, V̂T) is defined. Some 
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studies opt for the ARMA cut off of 6.5 mL/kg PBW (16,18,21–24,27) while others choose 7.0 

or 7.5 (19,20,28) or even split patients into three categories instead of two (22,23,28). Second, 

the selection of patient cohorts have considerable variation as well. Some studies include all 

patients that meet the definition of ARDS (16,18,20–22,24–27), but others restrict to just those 

with a specific risk factor (23,28). Third, while most studies use a significance threshold of 0.05, 

there are two studies that deviate from this, one using the more relaxed 0.10 (28) and the other 

using the stricter 0.01 (26). Finally, the trends that each study is capturing may vary, given the 

diversity of study sites used. Studies that pull data from a single site may be focusing in on local 

cultural barriers, whereas other studies – such as Oh, which uses all 28 national hospitals in 

Korea – may only capture overriding trends given that variation between sites may balance out 

some effectors as non-significant.  

 All of this speaks to the diversity of institutional environments in which these studies are 

being conducted, which can have a considerable influence on the implementation of a new 

medical practice. If we consider the case of a more traditional study where the goal is to evaluate 

the success of a treatment against a disease process, the environment in which the treatment is 

given is controlled via patient selection and standardized protocols. In this case, the primary 

outcome is instead the success of a clinician vs the conditions they’re in (patient population, 

institutional organization, available resources, etc). Thus, it could be possible that some studies 

report certain factors as important while others do not. They may not be conflicting, but instead 

both true, for their circumstances. While it is possible that some studies are simply 

underpowered, with all of these sources of heterogeneity, the results of the cohort comparison 
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study can still be difficult to generalize. To build on their advancements and address this issue, 

we propose the inclusion of a novel control cohort to the methodology.  

 

 

2.2 Data Used in These Analyses 

2.2.1 Cohort development 

The development of the ARDS cohort used in this study has been previously described 

(21). It includes 362 patients who met the Berlin Definition of ARDS (7) via independent 

clinician review and were admitted to an ICU at one academic and three community hospitals in 

the Chicago region between June 24, 2013 and December 31, 2013.  

 For this study, we developed an additional cohort from the same time period and initial 

screening population at two of the same hospitals (one academic, one community): 388 patients 

with acute hypoxemic respiratory failure requiring mechanical ventilation with at least one 

instance of PaO2/FIO2 ≤ 300 but not with ARDS according to the above Berlin Definition 

(“control cohort”). The majority of patients (n=215 (55.4%)) did not have bilateral pulmonary 

involvement. We excluded patients with missing key information (predicted body weight 

[PBW], gender, tidal volumes), intubation duration less than 5.67 hours (the shortest duration of 

intubation in the ARDS cohort), and PBW less than 25 kg (Figure 2). This control cohort 

represents patients that would require mechanical ventilation, but in which LTVV would be not 

be indicated. At the time of data collection, LTVV was only studied and indicated as a 

ventilatory management strategy in patients with ARDS and it has since been shown that it is not 

an effective strategy for patients without ARDS (30). 
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Figure 2:Flow of patient screening and enrollment for control cohort 
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Patients were not actively recruited for either cohort, but instead all data was mined from 

the electronic health record. The ARDS and control cohorts were similar across several clinical 

and demographic measures (Supp Table 1). These cohorts are representative of the larger 

population of patients with ARDS and non-ARDS acute hypoxemic respiratory failure due to our 

broad inclusion criteria, and their similarity to larger cohorts (e.g., LUNG SAFE (9)) with 

respect to height, weight, and hypoxemia severity. This study was approved by the Northwestern 

University Institutional Review Board (STU00208049) with a waiver of consent on October 30, 

2018. 

2.2.2 Data Acquisition 

All patient data were obtained from the electronic health records serving the participating 

hospitals. We defined study entry as the start of ARDS for the ARDS cohort and the first 

instance of PaO2/FIO2 ≤ 300 in the control cohort. Study end was defined as the earlier of 

extubation, death, or ICU discharge. We recorded gender, height, and all PaO2/FIO2 and weights 

between ICU admission and study end. We recorded all tidal volumes (VT) and plateau pressures 

(Pplat) between intubation and study end where available (Pplat was not recorded at two hospitals). 

Note that 22% of the ARDS cohort and 44% of the control cohort only had one unique tidal 

volume over their study duration. We recorded which ICU the patient was treated in and whether 

an ARDS diagnosis was documented in the critical care physician’s notes. For the control cohort, 

we recorded whether or not bilateral infiltrates were present for all chest radiographs or 

computed tomography scans between intubation and study end. For data availability for both 

cohorts and all subgroups, see Supp Table 2. Patients who met cohort inclusion criteria but were 
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missing other data points were only excluded from analyses that required those missing data 

points.  

In this study, we used PBW as a gender-adjusted and gender-neutral measurement of 

height because LTVV thresholds are defined using PBW. Any references to patient height refer 

to PBW (kg) and any references to patient weight refer to a patient’s weight measured at ICU 

admission (kg). We calculated PBW according to the ARDS Network definition (see below) and 

defined LTVV as a standardized tidal volume (V̂T) ≤ 6.5 mL/kg PBW.  

 Predicted Body Weight Equations [7]: 

 Male:     PBW (kg) = 50 + 2.3*(height (in) – 60) 

 Female:  PBW (kg) = 45.5 + 2.3*(height (in) – 60) 

PBW is used when calculating LTVV thresholds because lung volume scales with patient height, 

not body mass. The nomenclature is unfortunate and potentially misleading, which led us to 

include it as a potential barrier to LTVV use (see 2.3.1). 

2.2.3 Significance Testing 

We used α = 0.01 instead of 0.05 to ensure the statistical strength of our findings (31) and 

applied the Bonferroni correction for multiple hypotheses. In the regression analyses (see Section 

2.3), there were 33 comparisons where V̂T was the dependent variable, thus we set p < 0.0003 

(0.01/33) as the threshold for statistical significance for these analyses. For the covariate 

analyses, the threshold was p < 0.005 (0.01/2). For the Kolmogorov–Smirnov tests in Model 

Approach #2, the threshold was p < 0.003 (0.01/3). 

2.3 Potential Factors in Tidal Volume Selection 

2.3.1 Factors assessed 
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We used the lowest standardized tidal volume (V̂T) (mL/kg PBW) for each patient as the 

dependent variable in both univariable and multivariable ordinary least squares (OLS) 

regressions. V̂T was used as a continuous variable. OLS regressions were implemented using the 

statsmodels (version 0.6.1) Python package. In the ARMA trial, LTVV was defined as V̂T ≤ 6.5 

mL/kg PBW, but is defined as a range of 4.0-8.0 mL/kg PBW in the current guidelines 

(published after data collection) (13). In the ARMA trial, “traditional” tidal volumes were 

defined as 12 mL/kg PBW. 

We determined the relationship between several factors and V̂T, choosing variables that 

have been identified previously in the literature as potential barriers or facilitators of LTVV use 

(15,23,32–35): first PaO2/FIO2 ≤ 300, lowest PaO2/FIO2, highest Pplat, patient weight at ICU 

admission, ARDS documentation in the patient chart, presence of bilateral infiltrates on chest 

imaging(control only), admitting ICU (ARDS only), and patient height (we used the gender 

neutral PBW). These factors comprise measures of illness severity (PaO2/FIO2, Pplat, radiographic 

findings), patient characteristics (height, weight), and physician behaviors (ARDS 

documentation, patient weight). While patient gender has been included in past studies (Figure 

1), we did not include it as a factor due to its covariance with height (23). ARDS documentation 

was defined as an attending physician writing ‘ARDS’, ‘acute respiratory distress syndrome’, 

‘ALI’, or ‘acute lung injury’ in the patient’s chart, because ARDS did not have a billing code at 

the time of data collection. Plateau pressure was included due to the previously reported practice 

of physicians not lowering tidal volumes in ARDS patients when Pplat ≤ 30 cm H2O (26,33). 

Patient weight was included due to the previously reported barrier of physicians using actual 

body weight instead of predicted body weight in the LTVV threshold calculation (26,32,33). 
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Note that we use a standardized tidal volume (V̂T) as opposed to the recorded tidal volume (VT) 

and PBW is included as a control variable. Since V̂T is already normalized for PBW, we 

expected no additional remaining relationship between PBW and V̂T. Input variables were 

rescaled between 0 and 1 to allow for comparison of regression coefficients. 

2.3.2 Univariable analysis 

The relationship between each factor and V̂T was investigated through univariable OLS 

regressions for the ARDS and control cohorts (Table 4). Standardized tidal volume (V̂T) 

decreased toward the LTVV threshold with worsening hypoxemia (lower PaO2/FIO2) and the 

presence of ARDS documentation in the ARDS cohort (p < 0.0003), but not in the control cohort 

(Figure 3, Table 4). In both cohorts, V̂T decreased with increasing PBW (gender neutral height, p 

< 0.0003, Figure 4 and Table 4) – a surprising result since V̂T already takes PBW into 

consideration. Plateau pressure, weight at ICU admission, PaO2/FIO2 at study start, admitting 

ICU (ARDS cohort only), and the presence of bilateral infiltrates (control cohort only) were not 

associated with significant changes in standardized tidal volume in any cohort or subgroup 

(Table 4, Figure 5). 

Table 4: Predictors of lowest V̂T (mL/kg PBW) (β-coefficient [99% CI]) 

Factor 
ARDS Control 

Pooled 

Documented 

univariable multivariable univariable univariable 

Predicted body weight 
-3.8* 

[-4.7, -2.8] 

-3.7* 

[-4.8, -2.7] 

-5.1* 

[-6.0, -4.1] 

-3.2* 

[-5.2, -1.2] 

PaO2/FIO2 ratio 

(lowest) 

1.3* 

[0.4, 2.4] 

1.1 

[0.3, 1.9] 

0.8 

[-0.1, 1.6] 

2.3 

[-0.3, 4.9] 

Documentation 
-1.3* 

[-1.9, -0.6] 

-1.2* 

[-1.9, -0.6] 

-1.2 

[-2.3, -0.2] 
 

PaO2/FIO2 ratio (first) 
0.7 

[-0.19, 1.5] 

 0.3 

[-0.6, 1.1] 

1.2 

[-0.9, 3.2] 

Pplat (highest) 
-2.2 

[-4.1, -0.3] 

 -1.5 

[-3.2, 0.1] 

-3.5 

[-6.0, -1.0] 
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ICU admission weight 
0.12 

[-1.8, 2.0] 

 -0.4 

[-1.7, 0.9] 

-0.6 

[-3.3, 2.2] 

Bilateral infiltrates**  
 -0.5 

[-0.9, 0.0] 
 

Admitting ICU 
-0.9 

[-1.9, 0.1] 

 
  

* p < 0.0003 
** At least once after hypoxemia onset. 

Empty cells indicate category was not used due to data being unavailable or not relevant. 

 

 

 

Figure 3:Effects of lowest PaO2/FIO2 ratio on standardized tidal volume (V̂T) and ARDS 

documentation in ARDS and control cohorts. 

Top panels show patients with ARDS documented in their chart (purple diamonds) and non-

documented patients (tan circles). Gray areas indicate LTVV range from current guidelines (13), 

with dashed line at 6.5 mL/kg PBW from currently recommended threshold. Solid lines show 

linear (V̂T) fits for scatter plot data (shaded regions, 95% confidence bands). Bottom panels show 

probability of documentation as calculated from logistic regression (solid line with shaded 

regions, 95% confidence bands). Reported beta coefficients are for standardized inputs.  * p < 

0.0003, ** p < 0.0005. 
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Figure 4: Effects of predicted body weight (gender neutral height) on standardized tidal 

volume (V̂T) and ARDS documentation in ARDS and control cohorts. 

Top panels show patients with ARDS documented in their chart (purple diamonds) and non-

documented patients (tan circles). Gray areas represent LTVV range from current guidelines 

(13), with dashed line at 6.5 mL/kg PBW at current recommended threshold. Solid lines show 

linear (V̂T) fit for scatter plot data (shaded regions, 95% confidence bands).  Bottom panels show 

probability of documentation as calculated from logistic regression (solid line with shaded 

regions, 95% confidence bands). Reported beta coefficients are for standardized inputs. * p < 

0.0003. 
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Figure 5: Cohort and subgroup definitions 

 

2.3.3 Covariate Analysis 

The factors demonstrating a significant association with V̂T in the univariable analyses 

were evaluated for covariance with each other using OLS regression. Three factors were 

evaluated for covariance: PBW, lowest PaO2/FIO2, and documentation of ARDS. PBW was not 

associated with increasing documentation probability (Figure 4) in both cohorts, which was 

anticipated. Documentation and lowest PaO2/FIO2 were significantly correlated (p < 0.005) in 

both cohorts (Figure 3). This association was also anticipated as sicker patients are easier to 

recognize. To test the strength of the documentation and lowest PaO2/FIO2 association, we 

repeated the univariable analysis on the three major subgroups (ARDS non-documented, control 

non-documented, and pooled documented) (Figure 5). Only PBW was associated with lower V̂T 

in all three subgroups (Table 4, Table 5). There was no association between PBW and lowest 

PaO2/FIO2 in both cohorts. 

Table 5:Predictors of lowest V̂T(mL/kg PBW) in non-documented subgroups (β-coefficient 

[99% CI]) 

Factor 
ARDS non-documented Control non-documented 

univariable univariable 

Predicted body weight 
-4.0* 

[-4.9, -3.0] 

-5.0* 

[-6.0, -4.1] 

PaO2/FIO2 ratio (lowest) 
0.9 

[-0.1, 1.9] 

0.5 

[-0.4, 1.3] 

PaO2/FIO2 ratio (first) 
0.3 

[-0.6, 1.2] 

-0.05 

[-1.0, 0.9] 

Pplat (highest) 
-1.0 

[-3.1, 1.1] 

-0.4 

[-2.0, 1.2] 

ICU admission weight 
0.1 

[-1.8, 2.1] 

-0.4 

[-1.7, 0.9] 
* p < 0.0003 
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2.3.4 Multivariable analysis 

Significant factors from the univariable analyses were included in multivariable 

regressions comprised of all possible linear combinations of the factors and appropriate 

interaction terms. Seven models were constructed using all combinations of PBW, 

Documentation, and lowest P/F ratio as independent variables and a P/F ratio Documentation 

interaction term (Table 6). In each model, the continuous variables were scaled between 0 and 1. 

AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion) were calculated 

for each model to select the “best” model. AIC and BIC were calculated using the python 

package statsmodels (version 0.6.1). 

Table 6: Multivariable models of lowest standardized tidal volume (mL/kg PBW) in ARDS 

cohort 

Model AIC BIC 

V̂T ~ PBW 1043.818 1051.095 

V̂T ~ lowest_PF 1090.127 1097.404 

V̂T ~ Documentation 1085.523 1092.799 

V̂T ~ PBW + lowest_PF 1026.321 1037.236 

V̂T ~ PBW + Documentation 1015.874 1026.789 

V̂T ~ PBW+ lowest_PF +Documentation 1006.425 1020.979 

V̂T ~ PBW + lowest_PF  + Documentation 

+ Documentation:lowest_PF 
1008.166 1026.358 

  AIC: Akaike Information Criterion for goodness of fit 

  BIC: Bayesian Information Criterion for goodness of fit 

 

In the ARDS cohort, the multivariable regression model that included PBW, lowest 

PaO2/FIO2, and documentation as independent variables with no interaction terms resulted in the 
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lowest AIC and BIC (Table 6). In this model, PBW and documentation were significantly 

correlated with V̂T (p < 0.0003), while lowest PaO2/FIO2 was not. Of these variables, PBW had 

the greatest effect on V̂T (β -3.7, 99% CI -4.8 – -2.7). For the control cohort, only PBW was 

associated with V̂T, and therefore no multivariable analysis was performed. 

2.3.5 Sensitivity Analyses 

To test the robustness of our cohort definitions, we conducted two sensitivity analyses: 1) 

patients with a study duration longer than 12 hours, and 2) patients within the 2.5-97.5 

percentiles of PBW. The first sensitivity cohort is intended to capture clinician behavior, which 

may require longer time scales, such as a shift change and/or patient rounds. The second 

sensitivity cohort aimed to evaluate a potential disproportionate effect of PBW outliers on linear 

trends. Neither sensitivity analyses yielded any difference in the regression results. 

2.4 Discussion 

We quantified the potential impact of patient characteristics and physician behaviors on 

the decision-making behavior for tidal volume selection by physicians for patients with ARDS 

and a novel control cohort. These analyses have allowed us to establish several important 

findings. 

First, we corroborated prior studies’ findings that height, hypoxemia severity, and ARDS 

documentation are associated with the use of lower tidal volumes in ARDS patients (9,23,27,33–

35). We found no evidence for an association between other clinical factors - such as plateau 

pressure or patient weight - and lower tidal volume use, which have been identified as potential 

barriers to LTVV use in prior studies (15,23,27,33). These barriers may still have an impact at 
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the level of the individual physician, but the lack of generalizability to the entire physician 

population makes them suboptimal for future intervention targets at this site. 

Second, our analyses provide additional insight into the previously established 

relationships between patient height and LTVV use (23,35). The most common lowest VT 

reported in the ARDS and control cohorts were identical (450, 500, and 600 mL), and constitute 

51% and 63% of the tidal volumes for the ARDS and control cohorts, respectively. This 

prevalence of a small number of lowest VT suggests that clinicians are not following the 

canonical relationship between height and lung size originally established in animal studies (36), 

but instead use a simpler heuristic based on where the patient falls on the height spectrum of 

their particular gender. This theory is supported by the idea that humans select fast and frugal 

heuristics under time and knowledge limitations (37), which would both be present in clinical 

medicine and heightened in critical care. The utilization of this heuristic would translate to a 

general use of a lower standardized tidal volume (V̂T) for taller patients that is closer to or, in 

some cases, below the LTVV threshold; which would lead to our observation of the strong 

relationship between PBW and V̂T, despite that V̂T already includes PBW in its calculation. Our 

findings are strong evidence that at least some delivery of LTVV may be unintentional - i.e., 

solely of a default VT (450, 500, or 600 mL) - and not based on ARDS recognition or other 

clinical decision-making factors. While evidence for this physician behavior phenomenon has 

been previously reported in ARDS patient cohorts (27,35), our findings observe this behavior in 

a diverse control cohort, implying that the simpler tidal volume selection heuristic use is not 

restricted to ARDS patients alone. 
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Alternative explanations for the association between height and LTVV use in both 

cohorts include some physicians believing in LTVV for patients in the control cohort or some of 

those patients being classified by physicians as having ARDS. Supporting the latter possibility, 

4.2% of control cohort patients had a physician-documented diagnosis of ARDS. Nonetheless, 

these alternative explanations are less likely because of the low ARDS documentation rate, low 

use of LTVV in both cohorts, and the strong correlation between PBW (gender neutral height) 

and V̂T in both cohorts. Another alternative explanation is physicians using a non-linear 

relationship between tidal volume and PBW, but this is less likely given the low variability in 

chosen tidal volumes in both cohorts. Our results suggest that the relationship between PBW 

(gender neutral height) and V̂T should be accounted for when measuring LTVV use and when 

designing implementation strategies to improve LTVV use. 

This analysis has several limitations. First, it was conducted in a single metropolitan area, 

so we were unable to address regional or national differences. Second, we were limited to the 

patient data recorded in the EHR, which may be overlooked by physicians in lieu of other 

information, such as a visual estimation of height (38). Third, we did not evaluate physician 

knowledge of ARDS or LTVV, specifically the Berlin criteria and what standardized tidal 

volume threshold they believe qualifies as LTVV. Alternative LTVV thresholds may be justified 

by the layout of the ARDS Network tidal volume table, which appears to suggest that tidal 

volumes ranging from 4 to 8 mL/kg PBW qualify as LTVV (7). Finally, we acknowledge that it 

is possible that our application of the Berlin definition may have been biased, leading to 

misclassification of ARDS or control status—this could also explain why some patients 

classified as control were documented by their physicians as having ARDS. 
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CHAPTER 3:  

Effectors of Tidal Volume Selection for ARDS Patients - LUNG SAFE  

The work in this chapter is being prepared for publication with contributions from Luís A. Nunes 

Amaral, Curtis H. Weiss, and the LUNG SAFE consortium. 

 

3.1 Introduction 

The Large Observational Study to Understand the Global Impact of Severe Acute 

Respiratory Failure (LUNG SAFE) dataset is one of the largest datasets on hypoxemic and 

ARDS patients. It includes data from 459 ICUs in 50 countries, collected over the course of four 

weeks in the winter of 2014. The primary goal of the analysis was to evaluate worldwide 

epidemiological trends in ARDS incidence, outcomes, and treatment. To accomplish this goal, 

each study site screened all ICU patients for acute hypoxemic respiratory failure, defined as all 

of the following: 1) PaO2/FIO2 ≤ 300, 2) new pulmonary abnormalities on chest imaging, and 3) 

ventilatory support. If patients met the inclusion criteria, they were entered into the study and 

data were recorded on days 1, 2, 3, 5, 7, 10, 14, 21, and 28 with a standardized case report form 

(Appendix B) that collected chemistries, imaging, ventilator settings, ARDS adjunct therapies, 

and SOFA score. The presence of ARDS was determined post-data collection via computer 

algorithmic application of the Berlin Definition (9). 

The initial analysis focused solely on patients that had developed ARDS on study day 1 

or 2. It reported the prevalence of ARDS in the ICU population as 10.4% of ICU admissions and 

23.4% of mechanically-ventilated patients. Additionally, the study reported on factors associated 

with lower standardized tidal volumes. Rather than a traditional cohort comparison study, which 

compares those that received LTVV and those that did not, the LUNG SAFE study evaluated 
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differences in tidal volume between different groups of patients split on disease severity, 

ventilator modes, and demographics. They report significant differences in standardized tidal 

volumes between: a) mild and severe hypoxemia and b) spontaneous and non-spontaneous 

ventilator modes. They also report a non-significant difference in standardized tidal volumes 

between those patients with and without a plateau pressure ≥ 30 cm H20. Furthermore, they 

report no effect of clinician recognition on selected tidal volumes, which was assessed at study 

entry and end (Ch 4).  

We sought to expand on this analysis and explore the external validity of our results from 

Chapter 2. We repeat our methods in this chapter on the LUNG SAFE dataset, developing a 

novel control cohort from the same screened population as the ARDS cohort in order to evaluate 

the effectors of tidal volume selection. Specifically, we seek to assess if the previously 

demonstrated relationships between standardized tidal volume and patient height, ARDS 

documentation, and hypoxemia hold at the international level or if these are specific to the 

Chicago hospitals.  

3.2 Data Used in These Analysis 

3.2.1 Cohort Development 

 The ARDS cohort used in this chapter includes all patients in the LUNG SAFE dataset 

designated as having ARDS (n=2707). The algorithm used in the LUNG SAFE study to define 

ARDS is as follows: 

1. Presence of acute hypoxemic respiratory failure: 

a. PaO2/FIO2 ≤ 300 mm Hg AND 

b. New pulmonary abnormalities on chest imaging AND 
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c. Ventilatory support including continuous positive airway pressure (CPAP), 

expiratory positive pressure (EPAP), or positive end-expiratory pressure (PEEP) 

of 5 cm H20 or more. 

2. Acute time course:  

a. Onset of #1 within 1 week of initial insult OR 

b. Worsening respiratory symptoms within 1 week 

3. Bilateral infiltrates: involvement of both lungs on chest imaging (x-ray or computed 

tomography) 

4. Rule out of cardiac origin of respiratory distress  

 

 For the control cohort, we included all patients that met the requirements for acute 

hypoxemic respiratory failure (#1 in the above algorithm) and therefore study entry, but did not 

meet the additional criteria (#2-4) for ARDS (n=1261). The control cohort represents a group of 

patients for which LTVV was not indicated. This study was designated by the Northwestern 

University Institutional Review Board as exempt on July 14, 2017 (STU 00205441). 

 

3.2.2 Data Acquisition 

Data were collected on days 1, 2, 3, 5, 7, 10, 14, 21, and 28 with a standardized case 

report form (Appendix B) as close to 10 am local time as possible (9). Site investigators were 

responsible for the integrity of the data, which underwent quality control screening to evaluate 

for outliers and errors (9). Data availability for each variable is available in Supp Tables 3 and 4. 

All data used in my thesis work were managed and maintained by the LUNG SAFE consortium. 
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Per the secondary analysis agreement, no data were released to me and all analysis scripts were 

sent to and implemented by a consortium-appointed data steward. 

 

3.2.3 Significance Testing 

As in Chapter 2, we used α = 0.01 and applied the Bonferroni correction for multiple 

hypotheses. In the regression analyses (see Section 3.3), there were 111 comparisons where V̂T 

was the dependent variable, thus we set p < 0.00009 (0.01/111) as the threshold for statistical 

significance for these analyses. For the covariate analyses, the threshold was p < 0.001 (0.01/10).  

 

3.3 Potential Factors in Tidal Volume Selection 

 

3.3.1 Factors assessed 

 We included all factors from the previous analysis (Ch 2) as independent variables in 

OLS regressions, except for admitting ICU and bilateral infiltrates (first PaO2/FIO2 ≤ 300, lowest 

PaO2/FIO2, highest Pplat, patient weight at ICU admission, ARDS documentation in the patient 

chart, and patient height [PBW]). Admitting ICU was not an available data point. The bilateral 

infiltrates variable was instead replaced with involved chest x-ray quadrants (ranged 0 to 4). 

Additionally, ARDS documentation was handled differently. During data collection, site 

investigators were asked about the possible presence of ARDS in patients at two time points: 

study entry and study end. At study entry, site investigators were asked to select all potential 

sources of the patient’s hypoxemia from a list that included ARDS. At study end, site 

investigators were asked if the patient ever had ARDS during their hospital course. Thus, we 
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used three documentation variables: documentation beginning (study entry), documentation end 

(study end), and documentation both (ARDS indicated at both entry and end).  

  We included four additional variables that were available in the LUNG SAFE 

dataset: Sequential Organ Failure Assessment (SOFA) score, region, ventilator modality, and 

study age. Region refers to the geographical region the patients were located in (Africa, Asia, 

Europe, North America, Oceania, or South America). Ventilator modality refers to the ventilator 

modality that the patient was documented as being on most often via the daily collection sheet. 

Study age measures at what point during the study a patient was enrolled and is calculated as the 

number of days that have passed between the start of data collection at a particular site and the 

enrollment of a specific patient. Finally, due to the entry and end assessment of ARDS 

documentation, several variables were assessed in the format of: study entry, study end, most 

severe measurement during study. These include: PaO2/FIO2, chest x-ray quadrants, plateau 

pressure, and SOFA.  

 

3.3.2 Univariable analysis 

The relationship between each factor and V̂T was investigated through univariable OLS 

regressions for the ARDS and control cohorts (Table 7). Standardized tidal volume (V̂T) 

decreased toward the LTVV threshold with worsening hypoxemia (lowest PaO2/FIO2) in the 

ARDS cohort, but not in the control (Figure 6, Table 7). Standardized tidal volumes decreased 

with increasing height (PBW) in both cohorts (p<0.00009, Figure 7, Table 7). Additionally, in 

the ARDS cohort, standardized tidal volumes decreased with increasing quadrants on chest x-ray 
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(entry, end, highest), ARDS documentation (beginning, end, both), and higher plateau pressure 

(highest) (p<0.00009, Table 7).  

 

 

Table 7: Predictors of lowest V̂T (mL/kg PBW) (β-coefficient [95% CI]) 

Factor 
ARDS Control Documented** 

univariable multivariable univariable univariable 

Predicted body weight 
-4.2* 

[-4.7,-3.8] 

-4.1* 

[-4.5, -3.6] 

-7.6* 

[-8.5, -6.7] 

-4.2* 

[-4.9, -3.4] 

PaO2/FIO2 ratio      

    Entry 
0.64* 

[0.35, 0.93] 
 

0.26 

[-0.23, 0.75] 

0.72 

[0.18, 1.3] 

    End 
0.10 

[-0.38, 0.58] 
 

-0.58 

[-1.5, 0.31] 

-0.40 

[-1.2, 0.37] 

    Lowest 
1.3* 

[0.94, 1.6] 

1.2* 

[0.90, 1.53] 

0.54 

[0.02, 1.1] 

1.4* 

[0.81, 2.0] 

Documentation     

    Entry 
-0.39* 

[-0.54, -0.24] 
 

-0.12 

[-0.57, 0.33] 
 

    End 
-0.41* 

[-0.56, -0.26] 
 

-0.43 

[-0.72, -0.14] 
 

    Both 
-0.39* 

[-0.55, -0.23] 

-0.33* 

[-0.48, -0.18] 

-0.59 

[-1.1, -0.1] 
 

Pplat     

    Entry 
-1.0 

[-1.7, -0.34] 
 

-0.28 

[-1.1, 0.58] 

-0.54 

[-1.5, 0.40] 

    End 
-1.2 

[-1.9, -0.47] 
 

-0.57 

[-1.5, 0.39] 

-0.8 

[-1.6, 0.084] 

    Highest 
-1.5* 

[-2.3, -0.87] 
 

-1.1 

[-2.1, -0.19] 

-1.2 

[-2.1, -0.25] 

Chest imaging 

quadrants 
    

    Entry 
-0.49* 

[-0.65, -0.33] 
 

-0.42 

[-0.79, -0.05] 

-0.79 

[-1.2, -0.36] 

    End 
-0.69* 

[-1.0, -0.39] 
 

-0.56 

[-1.2, 0.05] 

-0.43 

[-0.96, 0.11] 

    Highest 
-1.4* 

[-1.7, -1.1] 
 

-0.77 

[-1.2, -0.36] 

-1.5* 

[-2.1,-0.86] 

SOFA     

    Entry 0.1  0.21 0.57 
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[-0.44, 0.64] [-0.53, 0.96] [-0.31, 1.5] 

    End 
0.0 

[-0.53, 0.58] 
 

0.95 

[0.04, 1.9] 

0.52 

[-0.43, 1.5] 

    Highest 
-0.39 

[-0.88, 0.09] 
 

0.25 

[-0.52, 1.0] 

0.23 

[-0.6, 1.1] 

ICU admission weight 
-1.2 

[-2.0, -0.51] 
 

-0.52 

[-1.8, 0.78] 

-2.7 

[-4.1, -1.3] 

Study Age 
-0.38 

[-1.3, 0.56] 
  

0.29 

[-0.89, 1.5] 

Region 
-0.8 

[-1.1, -0.52] 
 

1.7 

[0.86, 2.5] 
 

Modality 
0.18 

[-0.15, 0.50] 
 

0.02 

[-0.53, 0.56] 

-0.51 

[-1.1, 0.13] 
* p < 0.00009 ** Documentation both 

Empty cells indicate category was not used due to data being unavailable or not relevant. 

 

Figure 6: Effects of lowest PaO2/FIO2 ratio on standardized tidal volume (V̂T) and ARDS 

documentation in ARDS and control cohorts. 

Top panels show patients with ARDS documented in their chart (purple diamonds) and non-

documented patients (tan circles). Gray areas indicate LTVV range from current guidelines(13), 
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with dashed line at 6.5 mL/kg PBW from currently recommended threshold. Solid lines show 

linear (V̂T) and logistic (documentation) fits for scatter plot data (shaded regions, 95% 

confidence bands). Reported beta coefficients are for standardized inputs. 

 

Figure 7: Effects of predicted body weight (gender neutral height) on standardized tidal 

volume (V̂T) and ARDS documentation in ARDS and control cohorts. 

Top panels show patients with ARDS documented in their chart (purple diamonds) and non-

documented patients (tan circles). Gray areas represent LTVV range from current guidelines(13), 

with dashed line at 6.5 mL/kg PBW at current recommended threshold. Solid lines show linear 

(V̂T) and logistic (documentation) fits for scatter plot data (shaded regions, 95% confidence 

bands). Reported beta coefficients are for standardized inputs. 

 

3.3.4 Covariate Analysis 

The factors demonstrating a significant association with V̂T in the univariable analyses 

were evaluated for covariance with each other using OLS regression. Eight factors were 

evaluated for covariance: lowest PaO2/FIO2, PBW, chest x-ray quadrants (entry, end, highest), 



47 

 

 

 

ARDS documentation (entry, end), and Pplat (highest). Lowest PaO2/FIO2, highest chest x-ray 

quadrants, chest x-ray quadrants at study end, highest Pplat, and ARDS documentation at study 

end were all covariate with each other (p<0.00009). ARDS documentation at study entry was 

correlated with chest x-ray quadrants at study entry. PBW was not associated with any severity 

markers or documentation (Figure 7), which was anticipated.  

 To test the strength of the documentation covariant associations, we split the ARDS and 

control cohorts into three major subgroups (ARDS non-documented, control non-documented, 

and pooled documented) and then repeated the univariable analysis (Figure 8, Table 7, Table 8). 

We used all three definitions of documentation. In all documentation subgroups, lower V̂T were 

associated with increasing patient height (PBW), highest quadrants on chest x-ray, and lowest 

PaO2/FIO2 (p<0.00009, Table 8, Supp Tables 5 and 6). Chest x-ray quadrants at study entry were 

associated with lower V̂T in the documentation entry and end subgroups, but not in the 

documentation both subgroup (p<0.00009, Table 8, Supp Tables 5 and 6). ICU admission weight 

was associated with lower V̂T in the documentation end subgroup only. PBW was associated 

with lower V̂T in all versions of the ARDS non-documented and control non-documented 

subgroups (p<0.00009, Table 8, Supp Tables 5 and 6). No other factors were correlated with 

lower V̂T in the end and both versions of the ARDS non-documented and control non-document 

subgroups. Chest x-ray quadrants at study entry and lowest PaO2/FIO2 were associated with 

lower V̂T in the entry version of ARDS non-documented subgroup (p<0.00009, Supp Tables 5 

and 6). 
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Figure 8: Cohort and subgroup definitions using the both definition of documentation 

 

Table 8: Predictors of lowest standardized tidal volume (mL/kg PBW) in non-documented 

subgroups (β-coefficient [95% CI]) 

Factor 
ARDS non-documented Control non-documented 

univariable univariable 

Predicted body weight 
-4.0* 

[-4.7, -3.2] 

-6.8* 

[-7.8, -5.8] 

PaO2/FIO2 ratio    

    Entry 
0.37 

[-0.11, 0.85] 

0.25 

[-0.27, 0.77] 

    End 
0.35 

[-0.57, 1.3] 

-0.43 

[-1.4, 0.51] 

    Lowest 
0.86 

[0.33, 1.4] 

0.43 

[-0.14, 1.0] 

Pplat   

    Entry 
-0.95 

[-1.8, 0.33] 

-0.21 

[-1.3, 0.85] 

    End 
-0.95 

[-2.0, 0.06] 

0.06 

[-1.0, 1.2] 

    Highest 
-1.1 

[-2.1, -0.15] 

-0.28 

[-1.3, 0.80] 

Chest imaging 

quadrants 
  

    Entry 
0.0 

[-0.30, 0.30] 

-0.13 

[-0.56, 0.29] 
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    End 
-0.34 

[-0.93, 0.25] 

-0.23 

[-0.88. 0.43] 

    Highest 
-0.51 

[-1.1, 0.04] 

-0.56 

[-1.0, -0.09] 

SOFA   

    Entry 
0.11 

[-0.85, 1.1] 

-0.47 

[-1.3, 0.33] 

    End 
-0.13 

[-1.1, 0.84] 

0.31 

[-0.75, 1.4] 

    Highest 
-0.18 

[-1.0, 0.65] 

-0.47 

[-1.3, 0.39] 

ICU admission weight 
-0.33 

[-1.3, 0.65] 

-0.70 

[-2.1. 0.70] 

Study Age 
-1.53 

[-2.9, -0.16] 

-1.6 

[-3.0, -0.22] 

Region   

Modality 
0.25 

[-0.27, 0.77] 

0.03 

[-0.58, 0.65] 
* p < 0.00009 

Empty cells indicate category was not used due to data being unavailable or not relevant. 

 

3.3.5 Multivariable analysis 

Significant factors from the univariable analyses were included in multivariable 

regressions comprised of all possible linear combinations of the factors and appropriate 

interaction terms. Due to the limited data availability of chest x-ray quadrant data (Supp Tables 3 

and 4) and its covariance with lowest PaO2/FIO2, the factors included in the multivariable 

analysis were lowest PaO2/FIO2, PBW, and documentation both. We chose documentation both 

rather than entry or end because it was the strictest version of documentation and thus, the 

closest to our previous analysis (Chapter 2), which required a documented diagnosis of ARDS by 

an attending physician in the patient’s chart. The documentation question at study entry was not 

specifically about ARDS, but about hypoxemia with ARDS as one of many selectable answers. 
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The documentation question at the end was more specific, but phrased in a reflective nature that 

may not reflect the physician’s recognition state during the disease course.  

Seven models were constructed using all combinations of PBW, documentation, and 

lowest PaO2/FIO2 as independent variables and a lowest PaO2/FIO2 Documentation interaction 

term (Table 9). In each model, the continuous variables were scaled between 0 and 1. AIC 

(Akaike Information Criterion) and BIC (Bayesian Information Criterion) were calculated for 

each model to select the “best” model. AIC and BIC were calculated using the python package 

statsmodels (version 0.6.1). 

 

Table 9: Multivariable models of lowest standardized tidal volume (mL/kg PBW) in ARDS 

cohort 

Model AIC BIC 

V̂T ~ PBW 9868 9880 

V̂T ~ lowest_PF 10110 10122 

V̂T ~ Documentation 10142 10154 

V̂T ~ PBW + lowest_PF 9803 9820 

V̂T ~ PBW + Documentation 9840 9858 

V̂T ~ PBW+ lowest_PF +Documentation 9786 9809 

V̂T ~ PBW + lowest_PF  + Documentation 

+ Documentation:lowest_PF 
9788 9817 

  AIC: Akaike Information Criterion for goodness of fit 

  BIC: Bayesian Information Criterion for goodness of fit 

 

In the ARDS cohort, the multivariable regression model that included PBW, lowest 

PaO2/FIO2, and documentation as independent variables with no interaction terms resulted in the 

lowest AIC and BIC (Table 9). In this model, all independent variables were significantly 

correlated with V̂T (p < 0.00009). Of these variables, PBW had the greatest effect on V̂T (β -4.1, 

95% CI -4.5 – -3.6). For the control cohort, only PBW was associated with V̂T, and therefore no 

multivariable analysis was performed. 
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3.3.6 Sensitivity analyses 

As a sensitivity analysis, we restricted the cohort to only patients that were on ventilator 

modes in which the tidal volumes given were controlled by the ventilator (n=407 for ARDS, 

n=213 for control) and repeated all analyses. With the exception of the study end documentation 

subgroup, the only factor significantly associated with V̂T was PBW in all other cohorts and 

subgroups (Supp Table 6). In the study end documentation subgroup, PBW and highest chest x-

ray quadrants were correlated with V̂T (Supp Table 6).  

3.4 Discussion 

In order to test the external validity of our findings in Chapter 2, we repeated our 

methods on the larger, international LUNG SAFE dataset. The secondary analysis corroborated 

all of our major conclusions from the Chicago-based assessment. First, as expected, we find that 

hypoxemia severity and ARDS documentation are associated with lower standardized tidal 

volumes in the ARDS cohort, but not in the control cohort. We also confirm the relationship 

between hypoxemia severity and ARDS documentation. These results support prior evidence that 

ARDS under-recognition is a barrier to LTVV use (9,18–21,24,27,33,34,39,40) and more 

hypoxemic patients are easier to recognize (9,27). Second, we confirm our unexpected result of 

taller heights (higher PBW) with lower standardized tidal volumes in both the ARDS and control 

cohorts. The reproducibility of this result in an international cohort further reinforces our 

previous theory of clinicians opting for a simpler heuristic when estimating tidal volumes for 
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ventilated patients. Overall, this secondary analysis provides evidence that the conclusions of our 

previous analysis are generalizable to other sites and conditions, particularly that PBW should be 

considered when estimating LTVV use. 

The results of this chapter differed from our Chicago hospital analysis in two cases. First, 

hypoxemia severity was still associated with lower standardized tidal volumes in all 

documentation subgroups, which was not the case in the Chicago hospitals. There are a few 

possible explanations for this difference. First, our Chicago hospital analysis could be 

underpowered to capture this relationship, as it had significantly less ARDS patients (2507 vs 

361). Second, the relationship between hypoxemia severity and standardized tidal volumes could 

be stronger in certain ventilator modalities. Our Chicago hospital analysis was restricted to 

volume assist controlled patients only. While the relationship between hypoxemia severity and 

standardized tidal volumes was not present in the VAC subgroup sensitivity analysis, the VAC 

subgroup is smaller than our Chicago cohort. Third, the same best fit multivariable model was 

selected in both the Chicago hospital and the LUNG SAFE datasets, but the strength of the 

associations for each variable differed. Hypoxemia severity and documentation maintained a 

significant association with standardized tidal volumes in the LUNG SAFE model, which was 

not the case for the Chicago hospital dataset. It is likely that this is also the result of the Chicago 

hospital analysis being underpowered.  

Finally, this analysis has its own unique limitations. First, the LUNG SAFE dataset is not 

a complete medical record pull, as the Chicago hospital dataset was. Patients only have a single 

data collection per day around 10 am on a subset of their length of stay. It is possible that 

changes in tidal volumes or other important variables were missed in the interim. Second, while 
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we found no relationship between region and tidal volumes, regional differences in tidal volume 

effectors could still exist. By combining all regions together, it is possible that some effectors 

balanced each other out, resulting in no association with tidal volume selection.  

Lastly, there are two additional analyses that were performed in the Chicago hospital 

analysis that were not included in the LUNG SAFE assessment. First, we did not perform a 5-

95% sensitivity analysis to account for outliers in PBW. However, the LUNG SAFE dataset has 

already undergone quality control screening for outliers, and thus the presence of outliers is less 

likely to be an issue. Second, we did not evaluate the most common tidal volumes (non-

standardized) in the LUNG SAFE cohorts, which would have further informed our hypothesis of 

unintentional LTVV use as the result of a default tidal volume. 
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CHAPTER 4: Models of ARDS Recognition 

Portions of the work in this chapter was published with contributions from Adam R. Pah, Hanyu 

Shi, Sanjay Mehrotra, Stephen D. Persell, Shayna Weiner, Richard G. Wunderink, Luís A. 

Nunes Amaral, and Curtis H. Weiss.  

 

All portions of the work in this chapter labeled as ‘LUNG SAFE’ are in preparation for 

publication with contributions from Luís A. Nunes Amaral, Curtis H. Weiss, and the LUNG 

SAFE consortium. 

 

 

4.1 Introduction 

A hallmark of healthcare quality improvement is the consistent measurement of an 

outcome (ex: number of infections, checklist use, etc.). In the case of LTVV use for ARDS, 

measurement of an outcome is challenging for multiple reasons. First, delivering LTVV is a two-

step process requiring the recognition of ARDS, and then the selection and adjustment tidal 

volumes based on patient response. Both steps in this process can be affected by patient 

characteristics, as we and others have demonstrated (9,16,18,20,21,23,24,26–28,34). Second, 

while previous studies have employed a LTVV threshold or physician documentation of ARDS 

as surrogates for physician recognition of ARDS, these proxies can have limitations.  

The gold standard for measuring physician recognition of ARDS would be to directly ask 

physicians if a patient has ARDS. There are advantages and disadvantages to this approach. On 

one hand, it mitigates the issue of subjective reporting by asking a clinician directly about a 

specific patient. Furthermore, when paired with patient care data collection, the evaluation of 

potential effectors of clinician recognition is more robust than one can achieve with a traditional 

survey. Conversely, there are some key limitations in this methodology for evaluating clinician 

recognition of ARDS. First, this approach is labor and resource intense as well as disruptive to 
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clinical practice, making it an infeasible solution for widespread implementation. Second, this 

approach intensifies the issue of the observer effect, which is largely unavoidable with 

prospective data collection that includes clinical judgement questions. Asking a question 

specifically about ARDS can introduce the idea that ARDS is a focus of the data collection, even 

if clinicians were not previously aware. This knowledge in turn can make them more likely to 

diagnose ARDS than they would otherwise. Third, this approach primes clinicians. Once a 

clinician has collected all the data necessary to diagnose ARDS for a study, they will potentially 

integrate that process into their everyday practice, leading to an inflated measured ARDS 

recognition rate.  

An alternative method is to collect physician documentation of ARDS or LTVV delivery 

from electronic health records (EHR). While this approach is more scalable, it suffers from the 

drawback that physicians may recognize ARDS but not document it in their notes, or choose not 

to deliver LTVV despite this recognition. Furthermore, as we demonstrated in previous chapters, 

tidal volume selection can be affected by patient characteristics, such as height, that are a result 

of being mechanically ventilated for hypoxemia rather than an ARDS diagnosis.  

In order to try to overcome the limitations of these approaches, we sought to use data 

science methods on EHR data and build an estimate of physician recognition of ARDS that could 

be widely implemented. We use tidal volume selection as a proxy for physician decision-making 

behavior and build two models of physician recognition of ARDS. In these models, we account 

for the effectors of tidal volume selection discussed in previous chapters. Given this 

standardization, our approach allows for the comparison of clinician recognition in our two 

rather different datasets.  
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4.2 Data Used in These Analyses 

4.2.1 Chicago hospitals 

In the Chicago hospitals, documentation was assessed by manual chart review of 

attending physicians’ notes. A patient was considered to be documented if any attending caring 

for them discussed the possibility of ARDS or ALI (Acute Lung Injury, former name for ARDS) 

in one of their notes.  

4.2.2 LUNG SAFE  

Site investigators were asked about the possible presence of ARDS in patients at two time 

points: study entry and study end. At study entry, site investigators were asked to select all 

potential sources of the patient’s hypoxemia from a list that included ARDS. At study end, site 

investigators were asked if the patient ever had ARDS during their hospital course. A patient was 

considered documented in our analysis if the site investigator answered positively at both time 

points. As part of a substudy, all site investigators were offered additional training on chest x-ray 

interpretation for diagnosis of ARDS.  

4.3 Models of Recognition 

  We used two approaches to characterize physician recognition of ARDS. To this 

end, we split the two main cohorts (ARDS and control) into three major subgroups: 1) ARDS 

non-documented, 2) Control non-documented, and 3) Pooled documented (Figures 5, 8). All 

patients in the pooled documented subgroup met the criteria for documentation, which was 

dependent on the dataset. All patients in the non-documented subgroups do not meet these 
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criteria. Our two approaches are based on the assumption that the physician behaviors observed 

in the ARDS non-documented subgroup represent a mixture of patient-care scenarios in which 

patients are either recognized by their physician as having ARDS or not recognized as having 

ARDS.  If a patient in the ARDS non-documented subgroup was recognized by their physician 

as having ARDS, we assume the physician tidal volume selection would be the same as the tidal 

volume selection seen in the pooled documented subgroup. If a patient in the ARDS non-

documented subgroup was not recognized as having ARDS, we assume the physician tidal 

volume selection would be the same as for control non-documented subgroup. Therefore, the 

non-documented ARDS subgroup patients can be viewed as a mixture of the pooled documented 

subgroup and the non-documented control subgroup. 

4.3.1 Naïve Bayes  

We used a Naïve Bayes model for classifying patients in the non-documented ARDS 

subgroup as either recognized or unrecognized by their care teams. We used multivariate kernel 

density estimation (KDE) to characterize the PBW vs V̂T clusters for the pooled documented and 

non-documented control subgroups (Figures 9, 11, 13). Classifying a patient in the non-

documented ARDS subgroup as recognized or unrecognized was based on the following 

conditional probabilities leveraging Bayes Theorem: 

𝑃(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑒𝑑|𝑃𝐵𝑊, �̂�𝑇)

𝑃(𝑐𝑜𝑛𝑡𝑟𝑜𝑙|𝑃𝐵𝑊, �̂�𝑇)
=  

𝑃(𝑃𝐵𝑊, �̂�𝑇|𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑒𝑑) ∗ 𝑃(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑒𝑑)

𝑃(𝑃𝐵𝑊, �̂�𝑇|𝑐𝑜𝑛𝑡𝑟𝑜𝑙) ∗ 𝑃(𝑐𝑜𝑛𝑡𝑟𝑜𝑙)
 

In the absence of a reasonable prior for P(documented) and P(control), we assign each 

term 0.5, assuming equal probability of belonging or not belonging to each subgroup. We were 

able to define a boundary in the PBW vs V̂T space where P(documented | PBW, V̂T) = P(control | 

PBW, V̂T) (Figures 9,11,13, black line). Below this boundary, P(documented | PBW, V̂T) is 
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greater than P(control | PBW, V̂T) and the patient was classified as ‘recognized’. Above this 

boundary, P(documented | PBW, V̂T) is less than  P(control | PBW, V̂T) and the patient was 

classified as ‘unrecognized’. Due to the size discrepancy between the non-documented control 

and pooled documented subgroups, we bootstrapped (100 iterations) the “non-documented” 

control subgroup and repeated this analysis to produce confidence bands (Figures 10, 12, 14).  

 

4.3.1.1 Chicago hospital results 

The KDE clusters for the pooled documented and control non-documented subgroups as well 

as the estimated probability equality line are shown in Figure 9. The peaks of male and female 

PBW (gender neutral height) frequency (Figure 9, bottom panel) align with the two peaks in the 

pooled documented subgroup (Figure 9, middle panel). Physician recognition of ARDS 

calculated for each ARDS severity category was: mild, 26%; moderate, 32%; severe, 57% (Table 

10). 
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Figure 9: Kernel Density Estimation for control non-documented and pooled documented 

patients in Chicago hospitals. 

Heatmaps of kernel density estimated probability density for data from control non-documented 

(yellow, top panel) and documented (purple, middle panel) subgroups. Solid line shows 
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boundary separating region with unequal probability of belonging to documented (below line) 

and non-documented control (above line). (Bottom panel) Normalized gender frequency across 

PBW for combined patient population of documented and control non-documented. Male and 

female peaks align with high density regions in above heatmaps. 

 

 

Figure 10: Naïve Bayes boundary between recognized and unrecognized regions with 95% 

confidence intervals from bootstrapping 

Scatter plot shows pooled documented patients (purple diamonds) and control non-documented 

patients (tan circles). Size of marker represents number of data points. Solid line shows boundary 

separating region with unequal probability of belonging to documented (below line) and non-

documented control (above line) with 95% confidence bands from bootstrapped data (shaded 

region). 

 

Table 10: Rates of physician recognition of ARDS by hypoxemia severity in Chicago 

hospitals 

Severity 

ARDS 

Documented 

Recognition 

Approach #1: Approach #2: 

n % 
Naïve Bayes 

(%) 

Mixture Model 

(% [99% CI]) 

Mild 

  200 < PaO2/FIO2 ≤ 300 
5 6 26 

22 

[9, 42] 

Moderate 8 7 32 34 
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  100 < PaO2/FIO2 ≤ 200 [19, 49] 

Severe 

  PaO2/FIO2 ≤ 100 
24 30 57 

67 

[41, 100] 

 

 

 

 

4.3.1.2 LUNG SAFE results 

The KDE clusters for the pooled documented and control non-documented subgroups as 

well as the estimated probability equality line are shown in Figure 11. Physician recognition of 

ARDS calculated for each ARDS severity category was: mild, 54%; moderate, 64%; severe, 82% 

(Table 11). 
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Figure 11: Kernel Density Estimation for control non-documented and pooled documented 

patients in LUNG SAFE. 

Heatmaps of kernel density estimated probability density for data from control non-documented 

(yellow, top panel) and documented (purple, bottom panel) subgroups. Solid line shows 

boundary separating region with unequal probability of belonging to documented (below line) 

and non-documented control (above line). 

 

 

 

 

 

Figure 12: Naïve Bayes boundary between recognized and unrecognized regions with 95% 

confidence intervals from bootstrapping – LUNG SAFE cohort.  

Solid line shows boundary separating region with unequal probability of belonging to 

documented (below line) and non-documented control (above line) with 95% confidence bands 

from bootstrapped data (shaded region). 

 

Table 11: Rates of physician recognition of ARDS by hypoxemia severity in LUNG SAFE 

Severity ARDS Recognition 
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Documente

d 

Naïve Bayes 

(%) 

LUNG SAFE 

study (9) 

n % 
(% [95% CI]) 

Mild 

  200 < PaO2/FIO2 ≤ 300 
92 24 54 

51.3 

[47.5, 55.5] 

Moderate 

  100 < PaO2/FIO2 ≤ 200 
347 40 64 

65.3 

[62.4, 68.1] 

Severe 

  PaO2/FIO2 ≤ 100 
353 70 82 

78.5 

[74.8, 81.8] 

 

  

For the VAC subgroup, KDE clusters for the pooled documented and control non-

documented subgroups as well as the estimated probability equality line are shown in Figure 13. 

The overall documentation and recognition rates are lower for the VAC subgroup than the full 

cohort (Table 12). Physician recognition of ARDS calculated for each ARDS severity category 

was: mild, 48%; moderate, 57%; severe, 65% (Table 12). 
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Figure 13: Kernel Density Estimation for control non-documented and pooled documented 

patients in LUNG SAFE (VAC subgroup) 

Heatmaps of kernel density estimated probability density for data from control non-documented 

(yellow, top panel) and documented (purple, bottom panel) subgroups. Solid line shows 

boundary separating region with unequal probability of belonging to documented (below line) 

and non-documented control (above line). 
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Figure 14: Naïve Bayes boundary between recognized and unrecognized regions with 95% 

confidence intervals from bootstrapping – LUNG SAFE cohort (VAC subgroup) 

Solid line shows boundary separating region with unequal probability of belonging to 

documented (below line) and non-documented control (above line) with 95% confidence bands 

from bootstrapped data (shaded region). 

 

Table 12: Rates of physician recognition of ARDS by hypoxemia severity in LUNG SAFE 

VAC subgroup 

Severity 

ARDS 

Documented 

Recognition 

Naïve Bayes 

(%) 

n % 

Mild 

  200 < PaO2/FIO2 ≤ 300 
18 29 48 

Moderate 

  100 < PaO2/FIO2 ≤ 200 
53 42 57 

Severe 

  PaO2/FIO2 ≤ 100 
69 60 65 
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4.3.2 Mixture Model 

In the second model, we incorporate V̂T, hypoxemia severity (lowest PaO2/FIO2), and 

PBW with the goal of calculating the fraction of recognized patients in each Berlin Definition 

ARDS severity category (mild, moderate, and severe).[5] To calculate physician recognition of 

ARDS, we estimated the fraction of patients recognized by physicians in each severity category 

(𝑓𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛
𝑖 ) from the following set of equations: 

 

𝑃𝐴𝑅𝐷𝑆(�̂�𝑇, 𝑃𝐵𝑊 𝑑𝑎𝑡𝑎 | 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦) = 𝑓𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛
𝑖  𝑃𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑑 𝐴𝑅𝐷𝑆(�̂�𝑇, 𝑃𝐵𝑊 𝑑𝑎𝑡𝑎) + (1 − 𝑓𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛

𝑖 ) 𝑃𝑛𝑜𝑛−𝐴𝑅𝐷𝑆(�̂�𝑇 , 𝑃𝐵𝑊 𝑑𝑎𝑡𝑎 | 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦) 

 

where severity can take the values “mild,” “moderate,” or “severe,” as set forth in the 

Berlin Definition (7) and we defined the difference between the probability density 

functions as the L1 norm: 

Δ =  ∑ |𝑃𝐴𝑅𝐷𝑆 − 𝑓𝑖 ∗ 𝑃𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑑 𝐴𝑅𝐷𝑆 + (1 − 𝑓𝑖) 𝑃𝑛𝑜𝑛−𝐴𝑅𝐷𝑆| 

where the sum extends over all bins for values of �̂�𝑇 and PBW. 

 

We determined the optimal value of  𝑓𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛
𝑖  by minimizing ∆. Since the 

corresponding optimization problem is formulated as a linear programming problem, we used 

CPLEX (version 12) as a solver. To determine the uncertainty in our estimates of 𝑓𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛
𝑖 , we 

used bootstrapping to generate 1000 samples for PARDS (V̂T, PBW | severity) and repeated the 

optimization for the bootstrapped samples. As a result, we generated distributions for the optimal 

value of 𝑓𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛
𝑖 for each hypoxemia severity category and tested the null hypothesis that 
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these data were drawn from the same distributions with a Kolmogorov–Smirnov test (Python 

package scikit-learn (version 0.18.1)). The threshold was p < 0.003 (0.01/3). 

4.3.2.1 Chicago hospitals results 

This approach yielded a mean (99% confidence interval) physician recognition of ARDS: 

22% (9%-42%) for mild; 34% (19%-49%) for moderate; and 67% (41%-100%) for severe (Table 

10, Figure 15). All three recognition distributions were significantly different from each other (p 

< 0.003) when compared via a Kolmogorov–Smirnov test.  

 

Figure 15: Distributions of 𝒇𝒓𝒆𝒄𝒐𝒈𝒏𝒊𝒕𝒊𝒐𝒏
𝒊  from CPLEX analysis of bootstrapped data 

 

4.3.2.2 LUNG SAFE results 

 Due to computational limitations of the LUNG SAFE consortium, this model was not 

able to be repeated on the LUNG SAFE dataset. 
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4.4 Discussion 

Our prior analysis shows that hypoxemia severity and patient height (PBW) are 

significant drivers of tidal volume selection in both the Chicago hospital and LUNG SAFE 

cohort. In this chapter, we developed two ARDS recognition models that account for these 

factors. These models allow us to compare ARDS recognition rates in the two cohorts and 

provide insights into the effects of sources of potential biases.  

 First, our models are able to capture the previously reported association between 

hypoxemia severity and ARDS recognition. In both datasets, the estimated recognition rates 

increase with increasing hypoxemia severity. Furthermore, the rates of severe recognition in both 

cohorts are similar to each other, with the Chicago hospital cohort to the LUNG SAFE VAC 

subgroup severe recognition rates being closest. This similarity is expected given that the 

Chicago hospital cohort was restricted to patients on volume assist control ventilator modes. 

However, the documentation rates between the cohorts are rather different, providing evidence 

that documentation alone is a limited ARDS recognition metric.  

 Second, our analysis allows us to evaluate the effects of the observer effect and priming 

on ARDS recognition. The Chicago hospital dataset was pulled from the electronic health record 

with no contact with any clinicians, whereas the LUNG SAFE data collection required data entry 

and assessment by a site investigator. The LUNG SAFE protocol has the potential to introduce 

observer effect and priming biases, which we would expect to see as an increase in ARDS 
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recognition. We see an increase in ARDS recognition in the LUNG SAFE cohort as compared to 

the Chicago hospital cohort, particularly in the mild and moderate hypoxemia categories. We 

would expect these categories to be preferentially affected as compared to severe hypoxemia 

because patients with milder hypoxemia are harder to recognize at baseline (9,27). Thus, we can 

conclude that there is an effect that is inflating ARDS recognition rates in the LUNG SAFE 

cohort and the question becomes whether it is the observer effect, priming, or both.  

 We believe that priming is the primary source of ARDS recognition increase in the 

LUNG SAFE cohort as opposed to the observer effect. Study age, which measures the 

enrollment date of a patient relative to their particular study site, showed no association with 

tidal volumes in the LUNG SAFE cohort. If the observer effect was responsible for the increase 

in ARDS recognition, we would expect to see some association of tidal volumes with study age, 

either positive or negative. If there were a negative effect, one could postulate that it represents 

an initial additional focus on ARDS recognition, with decay as the study progressed. A positive 

effect could be interpreted as an increasing clinician awareness as the study continues. However, 

we see neither, suggesting that priming as a more plausible source. All participating clinicians 

were offered additional training on the radiological diagnosis of ARDS as part of a substudy. 

Such training would give clinicians additional awareness about ARDS and how to diagnose it, 

leading to an overall increase in ARDS recognition, which we see. The authors of the initial 

LUNG SAFE analysis acknowledge this as a limitation of their estimate of ARDS recognition 

and that it could potentially represent a best case estimate (9).  

 There are a few limitations to our analysis. First, we did not collect what proportion of 

physicians elected to participate in the training substudy, which would inform the strength of our 
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above conclusion regarding priming vs observer effects. However, the terms of the secondary 

analysis agreement stipulate that we are not permitted to analyze data on the study site level, so 

additional assessment of the observer effect would be rather limited. Additionally, we were not 

able to repeat the mixture model on the LUNG SAFE dataset, which includes both hypoxemia 

severity and patient height which is an improvement from the Naïve Bayes approach. Thus, the 

mixture model had the possibility of producing different results in the LUNG SAFE dataset, 

given that the LUNG SAFE dataset showed stronger associations between hypoxemia severity 

and tidal volumes than were found in the Chicago hospital analysis. This limitation is mitigated 

by the fact that in the Chicago hospital analysis, both the Naïve Bayes and mixture model 

approaches yielded similar recognition estimates and the possibility that the Chicago hospital 

analysis was simply too underpowered to capture the hypoxemia severity effects. Finally, we do 

not account for the other effectors of ARDS recognition reported in the initial analysis 

(pneumonia or pancreatitis as the inciting risk factor, younger patient age, nurse-to-patient ratios, 

and physician-to-patient ratios). This exclusion could also contribute to the differences in 

estimated recognition rates between the two datasets.  
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CHAPTER 5: Quality of care performance metrics 

The work in this chapter is in preparation for publication with contributions from Adam R. Pah, 

Luís A. Nunes Amaral, and Curtis H. Weiss.  

 

5.1 Introduction 

Audit and feedback is a common approach to changing healthcare practices that has been 

shown to have a positive impact, whether on its own or included as part of a multifaceted 

intervention (41). In the case of increasing LTVV use for patients with ARDS, there has been 

one study that evaluated audit and feedback as an interventional strategy. In 2005, Wolthuis et al. 

investigated the utility of providing group feedback to ICU physicians and nurses on 

standardized tidal volumes being delivered in their units (42). Comparing pre and post-

intervention standardized tidal volumes, they observed an overall decrease for both ARDS and 

non-ARDS patients that was sustained 6 and 12 months after the intervention (42). Their goal 

was to lower standardized tidal volumes below 8.0 mL/kg PBW, which they do achieve, but the 

authors also note that standardized tidal volumes under 6.0 mL/kg PBW are still rarely used. In 

this intervention, feedback was provided as a group on a whole unit basis.  

Audit and feedback is most effective when there is a specific target and action plan (41). 

Yet, individual clinician statistics on LTVV use have not been used in an intervention strategy, 

potentially due to the complex nature of ARDS diagnosis and LTVV implementation. However, 

individual statistics that adjust for different environments are a mainstay in other fields, such as 

sports. Baseball (43) and hockey (44) both have extensive repertoires of metrics that account for 

factors such as stadium size and difficulty of schedules. It stands to reason that if the contributing 

factors can be quantified, the same could be done for clinicians. In this chapter, we present our 
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method for an ARDS recognition metric for the individual clinician that accounts for relative 

diagnostic difficulty of the clinician’s cared-for patient population.  

 

5.2 Data Used in these Analyses 

We have previously described the development of the ARDS cohort used in this chapter, 

which includes 361 patients who met the Berlin Definition of ARDS via independent clinician 

review and were admitted to an ICU at one academic and three community hospitals in the 

Chicago region between June 24, 2013 and December 31, 2013 (45). All patient data was 

obtained from the electronic health records serving the participating hospitals. We defined study 

entry as the start of ARDS and study end was defined as the earlier of extubation, death, or ICU 

discharge. We recorded gender, height, and all PaO2/FIO2, tidal volumes, and clinician notes 

between ICU admission and study end where available (see Supp Tables 2,3, and 4 for data 

availability). 

5.3 Clinician Recognition Calculation 

For each clinician, we sought to calculate LTVV utilization in a manner that would 

account for the variable difficulty of each clinician’s cared for patient cohort. The influence of 

patient hypoxemia severity and height on tidal volume delivery has been reported both in this 

specific patient cohort (45) and in prior studies (9,16,18,21,23,24,26,33–35). Therefore, we 

constructed a recognition metric which compares an individual clinician’s observed ARDS 

recognition (using our Naïve Bayes recognition model from Chapter 4, Figure 16A) to that 

clinician’s expected ARDS recognition given their specific patient cohort (Figure 16B). We 

make the assumption that ARDS recognition is the major barrier to LTVV delivery because 
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96.4% of clinicians reported “strong” or “very strong” belief in the evidence of LTVV use for 

patients with ARDS in the survey. Figure 16C shows three hypothetical clinicians and their 

patient populations as examples of how the observed and expected recognitions can vary. 

Clinicians were paired with patients in the above ARDS cohort that they cared for (46) and only 

the data that occurred during those that specific clinician’s patient contact was used in the 

recognition metric calculation. 

 

Figure 16: ARDS recognition metric that compares observed recognition to expected 

recognition 

A) Model used to calculate observed recognition based on the standardized tidal volume and 

predicted body weight space. Patients are considered recognized below the boundary line and 

unrecognized above. B) Stepwise function used for calculation of expected recognition. The 

probability of recognition varies with hypoxemia severity. C) Three example clinicians and 

cared-for patient populations. All physicians are observed recognizing two patients, but have 

different expected recognition rates.  

 

5.3.1. Observed Recognition 

Previously, we developed a model of physician recognition of ARDS, which accounts for 

the effect of patient height on tidal volume delivery. Using a comparison of tidal volume delivery 

in ARDS and control hypoxemic patients, this model divides the predicted body weight (PBW) 
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vs standardized tidal volume (mL/kg PBW) space into “recognized” and “not recognized” 

regions (Fig 16A). Mapping each clinician’s patient population to the space, we calculated their 

observed recognition (Nobs) as the number of patients in the “recognized” region. 

 

 

5.3.2. Expected Recognition 

To establish a baseline expected recognition rate for each clinician, we calculated the 

number of patients recognized if the clinician was performing at the clinician population average, 

using the following equation: 

𝑁exp({ℎ1, ℎ2, … ℎ𝑁𝑗
})  =  𝑓𝑙𝑜𝑜𝑟 [∑ 𝑅(ℎ𝑖)

𝑁𝑗

𝑖=1
]    [Eq 1] 

where: 

hi: hypoxemia of patient i  

i: hypoxemia severity category (mild, moderate, or severe) according to the Berlin 

Definition (7) 

Nexp: number of patients expected to be recognized 

 R(hi): recognition rate (Fig 16 B) 

 Nj: number of patients cared for by physician j 

The recognition rates (R(hi)) in Eq 1 are for the whole ARDS cohort by hypoxemia 

severity, which we estimated via mixture model in our previous chapter 4; 22% for mild, 34% 

for moderate, and 67% for severe. Expected recognition is rounded down to the nearest patient to 

account for the binary nature of ARDS recognition.  
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5.3.3. Recognition Metric 

In order to estimate the relative likelihood of the observed and expected recognition scenarios, 

we simulated each clinician’s patient population. Each patient in a clinician’s patient population 

was treated as an independent event with a recognition probability equal to the recognition rate 

(R(hi)) appropriate for their hypoxemia severity (Fig 16B). Each patient was classified as either 

recognized or not recognized at the end of the iteration according to this recognition probability. 

This process was simulated 1000 times to produce a probability distribution for each potential 

value of recognized patients for each physician (0 to Nj). The recognition metric (R) was 

calculated as the difference between cumulative likelihoods of the observed number of 

recognized patients (Nobs) and the expected number of recognized patients (Nexp) (Eq 2). The 

cumulative likelihood was used to ensure that clinicians recognizing more patients than expected 

would have positive values, while clinicians recognizing less patients would have negative 

values. Clinicians performing at the expected level would be graded at a 0. 

𝑅 = 𝑃(≤ 𝑁𝑜𝑏𝑠) − 𝑃(≤ 𝑁𝑒𝑥𝑝)    [Eq 2] 

 

5.4 Metric Robustness Evaluation 

We used univariable ordinary least squares (OLS) regression to assess the robustness of 

our recognition metric to key independent variables including predicted body weight, hypoxemia 

(lowest PaO2/FIO2), total number of patients treated, and mortality proportion within each 

clinician’s treated cohort. For predicted body weight, we used summary statistics of the 

clinician’s cared for population (mean, median, proportions in the central, single standard 
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deviation, and second standard deviation ranges) and for hypoxemia, we used the proportion of 

the patient population meeting severe hypoxemia criteria (PaO2/FIO2 ≤ 100).  

 For all clinician types, our metric showed no correlation with PBW, hypoxemia, or 

mortality proportion. In respiratory therapists, there was a small positive relationship between 

recognition and total number of patients treated (β=0.015, p<0.00007, Figure 17).  

 

Figure 17: Respiratory therapists who cared for more ARDS patients had a higher rate of 

ARDS recognition. 

Each marker represents a single respiratory therapist who cared for ARDS patients in our cohort. 

 

5.5 Demographic associations 

To evaluate associations between clinician recognition and clinician characteristics, we 

used OLS regression with our recognition metric as the dependent variable and demographic 

characteristics as independent variables. Demographic univariable analysis was performed first, 

as demographics have been previously shown to affect network connections (homophily 

principle) (47). Demographic variables included: ICU team (MD/RN only), age, gender, year of 
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training completion (ordinal and before/after ARDSnet), day/night shift (RN/RT only), and 

number of physical ICUs worked in (RT only).  

For physicians, pulmonary and critical care (PCCM) team membership showed a 

significant association with higher recognition (β=0.63, p<0.00007, Figure 18). For respiratory 

therapists, working in a greater number of physical ICUs was associated with higher recognition 

rates (β=0.040, p<0.00007, Fig 19). Nurses showed no correlation between any demographic 

variables and recognition.  

 
Figure 18: Attending physicians ARDS Recognition (R) for different ICU care teams 
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Figure 19: Respiratory therapists who worked in more ICUs had higher rates of ARDS 

recognition 

 

 

5.5.1 Sensitivity Analyses 

All robustness and demographic regressions were repeated using two alternative 

recognition measures previously used in the literature. First, the proportion of worked shifts 

during which the clinician delivered LTVV (defined at ≤ 6.5 mL/kg PBW) and second, the 

proportion of patients that a clinician cared for that received LTVV at any point during their 

disease course. All results were consistent with our recognition metric. 

 

5.5.2 Statistical Significance 

We used α = 0.01 instead of 0.05 to ensure the statistical strength of our findings (31) and 

applied the Bonferroni correction for multiple hypotheses. For each clinician type, there were 

134 to 140 comparisons in this thesis work where our recognition metric was the dependent 
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variable, thus we set p < 0.00007 (0.01/140) as the threshold for statistical significance for these 

analyses. 

 

5.6 Discussion 

In previous chapters, we quantify the impact of effectors of tidal volume selection and 

develop models for estimating ARDS recognition on a population level. Having identified ARDS 

recognition as the primary barrier to LTVV use, we build an ARDS recognition metric that 

allows for measurement at the individual clinician level. With this metric, we assess the impact 

of clinician demographic factors on ARDS recognition and establish a few important findings.  

 First, we find that ICU team membership predicts ARDS recognition, specifically that 

those physicians belonging to the pulmonology and critical care team outperform their peers. 

This result is logical given that ARDS is a pulmonary condition and therefore, those on the 

pulmonology and critical care team have the most training with regards to this specific 

syndrome. One potential confounding factor could be amount of exposure to patients with 

ARDS, which would prime pulmonologists. However, in this cohort, it is not the pulmonology 

and critical care team that cares for the most ARDS patients, but instead the surgical team. 

Furthermore, we did not find an association between total patients cared for and ARDS 

recognition for individual physicians. Finally, the hypothesis that training background is the 

etiology of this difference is further supported by the fact that the lowest performing team is 

cardiology. The cardiology critical care team is the only ICU care team which does not have 

additional intensivist training; the rest traditionally undergo additional dedicated intensivist 
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fellowship training. These results suggest the presence of a local team-based culture around 

ARDS and associated ventilator management  

 Second, this concept of a local team-based culture is reinforced with the associations 

found in the respiratory therapists and nurses. Respiratory therapists have increasing ARDS 

recognition scores with increasing number of ICUs worked in. This result is consistent with the 

local team-based culture etiology. Working in many different ICUs would provide respiratory 

therapists with more potential exposure to different teams and the opportunity to sample from 

different ideologies. An alternative explanation for this association could be the presence of a 

physical ICU systems barrier or facilitator. However, this explanation is unlikely because 

physician ICU teams are not assigned to a physical ICU and furthermore, we find no associations 

between ARDS recognition and nurse ICU teams, which are assigned to a physical ICU.  

 Limitations of this work are focused on a lack of systems knowledge. First, we do not 

know how respiratory therapists are scheduled or assigned to patients. We know that RTs are not 

assigned to a physical ICU in the way that nurses are and can work in many different ones. 

However, there is a possibility that we are instead capturing a measure of seniority, interpersonal 

popularity, or clinical performance. Second, we do not know if physician ICU teams are 

employing different tools that may affect their ability to recognize ARDS. For example, specific 

LTVV ventilator protocols have been shown to improve the use of LTVV in the past (18) and if 

one team has one and the others do not, that could affect the results. This limitation is mitigated 

by the fact that ICU physician teams are not expected to work in isolation and have ready access 

to other specialty services through consults.  
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CHAPTER 6: Network Analysis 

The work in this chapter is in preparation for publication with contributions from Adam R. Pah, 

Luís A. Nunes Amaral, and Curtis H. Weiss.  

 

6.1 Introduction 

 A network is defined as a collection of nodes that are connected in some fashion (47). 

There are many systems that are crucial to our everyday lives that can be thought of as networks: 

transportation, telephones, and even metabolism. The connections within networks can serve as 

routes of transmission and exchange for a variety of things, such as physical goods or 

information. In this same vein, the spread of new ideas, commonly referred to as “diffusion of 

innovation”, can also be thought of as a type of transmission (1,48). To this end, communication 

and social networks have been examined in implementation science as both potential 

barriers/facilitators of innovation spread, but also as route for interventions that promote 

adoption. However, as mentioned previously, implementation science has focused on qualitative 

methods quantitative methods and that trend extends to the integration of network science.  

 The impact of clinician interpersonal networks has been limited. The major reason for 

this low impact is that when networks are obtained, they are often not used for intervention 

development. A 2012 review that examined 62 studies on social networks of healthcare 

professionals between 1950 and 2011 revealed that 61 studies only visualized and described the 

network (49). Only one study went on to use the results of the social network analysis to inform 

the development of an intervention to change practice; Anderson et al. used social network 

analysis to identify “educationally influential” individuals to target for the increase of 

personalized electronic order sets (50). However, Anderson et al is not as isolated as the 2012 

review would suggest, but instead is an example of a more common approach that try to leverage 
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interpersonal networks in intervention design. The 2012 review required studies to build and 

describe a network in order to be included, but more often, networks are not built but assumed. 

Instead, typically studies only attempt to identify opinion leaders by surveys or asking leadership 

and then implementation interventions revolve around those opinion leaders. The theory behind 

this approach is that opinion leaders are well-respected and well-positioned within their own 

communities and therefore best situated to enact change.  

While not fully leveraging the information contained in the network, the targeting of 

opinion leaders has had some success promoting the uptake of evidence-based practices in 

medicine (Figure 20). Twenty-two studies have used opinion leader targeting over the last forty 

years and some common patterns have emerged (50–69). The preferred method of identifying 

opinion leaders is via survey (51–54,56–60,62–65,69). The studies are pretty evenly split 

between inpatient and outpatient settings, with the fields of OBGYN and cardiology being 

particularly common. There are two clusters of studies where the same protocol was tested in 

different fields yielding the same results: 1) all publications by Stross and 2) Majumbar 2006-

2008 and McAlister 2009 (on which Majumbar was an author). Almost all of the studies have 

used patient outcomes as the measure of success, with three opting for clinician-focused 

assessments (50,53,60), such as the use of electronic order sets and clinician knowledge 

assessments. The majority of studies report an improvement with the use of opinion leader 

targeting (Figure 20), which the majority comparing against no intervention as a control 

(50,52,54,56,60–64,66–68). Seven studies included opinion leader targeting as part of a larger, 

multifaceted quality improvement intervention (53,59,64,66–69).  
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Figure 20: Studies using opinion leader targeting as an intervention to increase use of 

evidence-based practices. 

 

Despite these advances, there are still limitations to the opinion leader targeting approach 

and room for improvement as far as integrating social network analysis into the design of 

implementation interventions. First, opinion leaders are often compared to a control condition of 

no intervention and thus it is difficult to parse out the specific impact of opinion leaders versus 

simply instituting an intervention at all. Second, the overall gain of opinion leader targeted 

interventions is relatively modest. In a 2011 Cochrane review of 18 opinion leader focused 

interventions, the median risk difference for opinion leader intervention groups versus their 

controls was 0.12, representing a 12% increase in evidence-based practice compliance (49). 

Third, it is difficult to assess what the etiology of this limited success may be, as the particular 

role and involvement of opinion leaders is often not described in detail or left up to the discretion 

of each individual opinion leader(49). Finally, as mentioned previously, the identification of an 

opinion leader is rather limited approach to social network analysis as it focuses on only one 
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aspect of the information flow surrounding patient care, so it is unclear how much influence the 

opinion leader themselves actually has.  

There is evidence to support performing a thorough social network analysis, as network 

structures and conditions that form the network can influence the spread of innovation. First, the 

theory of structural holes postulates that new information or ideas will be accepted more readily 

in networks where one’s neighbors are not as well connected (Figure 21B) (47). Conversely, 

networks that are highly cohesive will form an echo chamber effect and make the introduction of 

a new norm very difficult (Figure 21A) (47). We see evidence for this in the use of evidence-

based practices by physicians in studies out of Italy examining both self-reported and observed 

evidence-based practice use (70,71). Second, a physician’s position within a interaction network 

has previously been tied to their propensity to use evidence-based medicine, with variation based 

on the number of their connections (72) and which opinion leader they are connected to (73). 

Finally, one must consider the principle of homophily, in which people preferentially form ties 

with those that are most similar to themselves (47). Considering this, opinion leader 

interventions may always be limited to the particular group that that leader belongs to (gender, 

race, training background, etc), but it is difficult to assess that if no further analysis is completed 

beyond identification. By electing to only identify an opinion leader, the analysis is simplified, 

but one may miss these important other influential factors.  
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Figure 21: Examples of a tightly connected network (A) and one with structural holes (B) 

 

In this chapter, we explore the potential effects of network factors on the use of LTVV 

for patients with ARDS. In this specific physician population, we have evidence to suggest that 

physician-physician interactions play a role in the adoption of innovations. In previous work at 

our academic site, knowledge of the availability of a new lab test was released to two physicians 

rather than being advertised publicly and the orders for this new lab test were tracked over the 

next 244 days (74). A persuasion agent-based model was able to very closely replicate the 

experimentally obtained results (Figure 22), suggesting that a peer-to-peer contact and 

conversion process was taking place. This analysis was conducted on a low burden (easier to 

adopt) innovation in a single ICU, specifically using shared work shifts as a means of contact. In 

this chapter, we expand on this prior analysis by examining a more complex innovation (LTVV) 

across multiple ICUs as well as multiple contact types. Specifically, we will assess potential 

associations between clinician position within interaction networks and use of LTVV for ARDS 

patients and compare the effect of these associations to that of other potential adoption drivers.  
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Figure 22: Persuasion agent-based model accurately predicts physician adoption of new lab 

test. Originally published in Weiss Poncela-Casasnovas et al (74). Included here with permission 

from the authors 

 

6.2 Data Used in These Analysis 

We have previously described the survey used in this chapter (46), which includes all 

physicians, fellows, ICU nurses, and respiratory therapists that cared for the ARDS patient 

cohort described above. The survey was administered between October 2014 and June 2015 and 

had a 69.3% response rate (83 physicians, 307 nurses, 77 respiratory therapists) (46). The survey 

included questions on attitudes towards innovation in general and LTVV, barriers and facilitators 

to LTVV use, relationships with other clinicians in the ICU, and clinician demographics. 
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6.3 Network Creation 

 We built two categories of networks: formal and informal. For the formal networks, only 

attending physicians were included as nodes. Physicians were connected if they both wrote a 

note on the same patient on the same day. These formal networks represent the documented flow 

of patient care through the hospital (Figure 23).  

 

Figure 23: Formal physician interaction network 

Each circle indicates an individual physician. Individuals are connected if they authored a note 

on the same patient on the same day. Size of marker represents number of ARDS patients cared 

for. Marker position is kept constant across network visualizations. 

 

 Informal networks were built using the survey results and included physicians, nurses, 

and respiratory therapists as nodes, but only a single node type in each network (physician only, 

nurse only, RT only). Clinicians were connected using the four connection questions:  
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 1) Please write down the names of up to five critical care physicians with whom you 

work in your ICU whose input you regularly seek to help you make good clinical decisions based 

on the best available evidence. 

 2) Please write down the names of up to five critical care physicians with whom you 

work in your ICU who regularly seek your input to help them make good clinical decisions based 

on the best available evidence. 

 3) Please write down the names of up to five critical care physicians with whom you 

work in your ICU who you consider to be your friends. 

 4) Please write down the names of up to three critical care physicians with whom 

you work in your ICU who you think tend to be the first to use new therapies or diagnostic tests. 

  

Questions 1 and 2 were used to build a professional connections network; question 3 was 

used for the friendship network (Figure 24); question 4 was used for the innovation network 

(Figure 25). Connections were included even if they were not bidirectional, but directed and 

undirected versions of all networks were created. Questions 1 and 2 also had a frequency 

component, which was used to build weighted and unweighted versions of the professional 

network. Due to the phrasing of the questions, only within-ICU ties were included for physician 

and nurse informal networks. 
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Figure 24: Physician friendship interaction network 

Each circle indicates an individual physician. Individuals are connected if they were named on 

the survey friendship question. Size of marker represents number of ARDS patients cared for. 

Marker position is kept constant across network visualizations. 

 

 

Figure 25: Physician innovation interaction network 

Each circle indicates an individual physician. Individuals are connected if they were named on 

the survey innovation question. Size of marker represents number of ARDS patients cared for. 

Marker position is kept constant across network visualizations. 
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6.4 Network Characterization 

Using graph theory, we quantified different aspects of a node’s position within a network. 

For each node in every network version, we calculated 8 node network characteristics: 

betweenness, closeness, degree, katz centrality, k-shell embeddedness, participation, role, and 

community membership (Table 13). All centrality characteristics (betweenness, closeness, 

degree, and katz) were calculated using the Networkx Python package (version 1.11), except 

embeddedness which was calculated manually (75). Participation, role, and community 

membership were calculated with netcarto (v 1.15). All characteristics were normalized for the 

number of nodes in the network, except community, which was treated as a categorical variable. 

Table 13: Node network-related characteristics 

Node Characteristic Description Calculation 

Betweenness 

(also called 

‘brokerage’) 

Node placement on paths 

between other nodes 𝑥𝑖 =
1

𝑛2
∑

𝑛𝑠𝑡
𝑖

𝑔𝑠𝑡𝑠𝑡
 

xi: betweenness of node i 

n: number of nodes in network 

𝑛𝑠𝑡
𝑖 : number of geodesic paths from s to t 

that pass through i.  

gst: number of geodesic paths between s 

and t 

Closeness Distance from all other 

nodes in the network 
𝑥𝑖 =

𝑛 − 1

∑ 𝑔𝑠𝑡𝑠𝑡
 

xi: closeness of node i 

n: number of nodes in network 

gst: number of geodesic paths between s 

and t 

Degree Number of connections to 

other nodes. Can be 

calculated as in and out 

degree for directed 

networks. 

𝑥𝑖 = ∑ 𝐴𝑖𝑗

𝑗

 

xi: degree of node i 

Aij: adjacency matrix of node i 

 

Katz Centrality Measure of centrality that 

includes not only a node’s 
𝑥𝑖 = 𝛼 ∑ 𝐴𝑖𝑗𝑥𝑗 + 𝛽

𝑗
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degree, but the degree of its 

immediate neighbors as 

well. 

xi: Katz centrality of node i 

Aij: adjacency matrix of node i 

α, β: positive weighting constants 

K-shell 

embeddedness  

Measures the hierarchy of a 

node within a network. K-

shell embeddedness is the 

maximal subgraph of the 

network having minimal 

degree of at least k, but not 

k+1 

Process: 

- prune all nodes with degree ≤ k  

- in new graph, prune all nodes with 

degree ≤ k 

- iteratively prune until no nodes exist 

with degree ≤ k 

- all nodes pruned have a k-shell 

embeddedness of k. 

Community A group of nodes that are 

more connected than would 

be expected by random 

chance. 

Maximization of modularity as defined 

by: 

𝑀 ≡  ∑ [
𝑙𝑠

𝐿
− (

𝑑𝑠

2𝐿
)2]

𝑁𝑀

𝑠=1

 

NM: number of communities 

L: number of links in network 

ls: number of links in community s 

ds: sum of degrees of nodes in community 

s 

Participation Measure of connections 

node has to communities 

other than its own 
𝑃𝑖 = 1 − ∑(

𝑘𝑖𝑠

𝑘𝑖

𝑁𝑀

𝑠=1

)2 

Pi: participation of node i 

NM: number of communities 

kis: links to node i in community s 

ki: total degree of node i 

Role* (76) There are 7 distinct roles 

depending on the location 

of a node within the 

participation/in-community 

degree z-score space. They 

include: ultra-peripheral 

(R1), peripheral (R2), non-

hub connector (R3), non-

hub kinless (R4), provincial 

hub (R5), connector hub 

(R6), and kinless hub (R7). 

  
* Figure originally published in Guimerá et al. (76) Reproduced here with author permission. 
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6.5 Association between network position and ARDS recognition 

Significant demographic variables were included as a fixed effect in multivariable OLS 

regressions with node network characteristics as an additional independent variable. Each node 

network characteristic was evaluated in a separate regression. No node network variables for any 

clinician or network type showed any association with recognition.  

In physicians, the ICU team membership appeared to be the dominant variable. In Figure 

26, the clusters of tightly connected nodes correspond to ICU teams. 
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Figure 26: Physician ARDS recognition clusters by ICU team across different interaction 

networks 

Each circle indicates an individual physician. Size of marker represents number of ARDS 

patients cared for. Marker position is kept constant across network visualizations. ARDS 
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recognition is represented via color Markers are colored by adjusted ARDS recognition rate 

(colorbar). Dotted circles indicate ICU teams. 

 

6.5.1 Sensitivity Analyses 

All network characteristic regressions were repeated using two alternative recognition 

measures previously used in the literature. First, the proportion of worked shifts during which the 

clinician delivered LTVV (defined at ≤ 6.5 mL/kg PBW) and second, the proportion of patients 

that a clinician cared for that received LTVV at any point during their disease course. All results 

were consistent with our recognition metric. 

 

6.6 Discussion 

In this chapter, we explored the potential influence of a clinician’s position within 

interaction networks on their ability to integrate evidence-based practices into their work. 

Previous literature suggests that the structures of interaction networks can enhance or inhibit the 

diffusion of innovations (70–72) and that these networks can be leveraged for adoption 

interventions through the targeting of opinion leaders (52–69). Our analysis has allowed us to 

evaluate the applicability of this prior research to our specific clinical environment and reach a 

few important conclusions. 

First, an individual clinician’s position within the interaction networks does not have an 

association with their ability to recognize ARDS. For physicians, their ICU team membership 

(i.e. training background) has a much stronger effect and once this is accounted for, individual 

network-based characteristics show no association. This finding is consistent with prior literature 

that shows that physicians tend to form tightly knit communities that do not promote the 
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integration of new ideas (77). Instead, as the structural hole theory states, these dense 

communities will instead encourage the status quo, which is what we observe in our data. The 

dominance of the local culture effect is further supported by the results of the formal network 

analysis, which allows for contact between different ICU teams and still shows no association 

between ARDS recognition and metrics such as the participation coefficient that would capture 

exposure to physicians from different teams.  

Second, this lack of association does not vary with the type of network evaluated. Valente 

et al describes ten different ways to identify opinion leaders (78) and a variety of these have been 

used in prior opinion leader targeting interventions (50–69). To address this, we used multiple 

types of contact (professional, friendship, innovation, formal work) and built a variety of 

possible networks (directed/undirected, weighted/unweighted). Even with this variety, we see no 

association between network-based characteristics and ARDS recognition. This result aligns with 

the prior literature findings that opinion leader targeting interventions have variable success in 

different situations and even when they are successful, the improvement is only moderate (49). 

Our analysis suggests that this mitigation of success may be due to the effects of local culture 

and which group the opinion leader belongs to. If the opinion leader belongs to the majority, the 

success of an opinion leader focused intervention will likely be greater than if they are somehow 

more isolated.  

There are limitations to this approach. First, the majority of the networks were built using 

self-reported interactions, which are potentially biased by subjective reporting. However, this 

mitigated by the fact that the results do not change between directed and undirected networks or 

when we use the formal network for physicians. Moreover, this survey-based approach is simply 
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the state of the field at the moment and was employed in the majority of prior studies that 

identified opinion leaders (51–54,56–60,62–65,69). Second, the informal physician networks 

assessed are small and therefore, the analysis may be underpowered. However, the networks 

described here are relatively large on the scale of hospitals and ICUs and therefore represent a 

dataset which would have particularly good chances of showing an association if one existed. 

Furthermore, the dominance of team membership is also found in the formal network, which is 

larger, making the network size less likely to be a contributing factor. Finally, our assessment of 

associations between network-related characteristics and ARDS recognition tested for 

unidirectional relationships only. It is possible that there are relationships between network 

position and the absolute magnitude of ARDS recognition.  
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CHAPTER 7: Survey Analysis 

The work in this chapter is in preparation for publication with contributions from Adam R. Pah, 

Luís A. Nunes Amaral, and Curtis H. Weiss.  

 

7.1 Introduction 

There have been three main survey studies that have specifically examined the barriers 

and facilitators of LTVV for ARDS patient (32,33,46). Each one has expanded on its 

predecessor(s) and brought new insights to this implementation challenge.  

Rubenfeld et al. collected their data in 2004, soon after the ARMA trial, and had the goal 

of capturing the wisdom gained from the initial introduction of LTVV for ARDS patients into 

the clinical care system (33). The survey was distributed specifically to nurses and respiratory 

therapists that had participated in the ARMA trial, as identified by research coordinators at each 

site. The survey instrument consisted of ten coded questions about specific barriers to LTVV use 

and three open-ended response items requesting feedback in general, on the most common error 

witnessed, and recommendations for future implementation. The barriers were ranked by average 

impact reported and percent of respondents ranking the barrier as important.  

For barriers to the initiation of LTVV, respondents identified the most important barriers 

as physician unwillingness to relinquish control of the ventilator, physician under-recognition of 

ARDS, and physician perceptions of LTVV contraindications. For barriers to the continuation of 

LTVV, respondents identified care team concerns for patient comfort, including tachypnea, 

hypercapnia, acidosis, and hypoxemia.  

In the free response items, respondents frequently commented on sedation use and rapid 

decrease of the tidal volume as challenges. They also reported issues of clinicians using dry 

weight instead of PBW and focusing on Pplat as the target instead of tidal volume. Their 
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recommendations included the use of specific ventilator protocols, clinician education, and 

quantitative tools for assessing patient discomfort.  

While the study was an important first step toward assessing the implementation 

environment, the authors acknowledge that significant limitations included that participants were 

not asked how often these barriers changed practice, the participant pool was restricted to trial 

participants only, and there was no assessment of provider experience, knowledge, or actual 

practice.  

A year later, Dennison et al. built on this first survey by issuing it to physicians, nurses, 

and respiratory therapists and including knowledge assessment items (32). The goal of this study 

was two-fold. First, expand the survey instrument by adding in questions and organizing into 

subscales of attitudes, behaviors, knowledge (barriers), ICU organization, and knowledge (test). 

Second, evaluate differences in responses between participant types (profession and level of 

experience). The authors note that physicians report the least amount of barriers to LTVV use 

and higher knowledge test scores when compared with nurses or RTs.  

Experience also appeared to play a role. When subdivided into interns, residents, fellows, 

and attendings, interns reported the most issues with barriers and performed the worst on the 

knowledge test, while fellows and attendings had opposite results. This pattern was maintained 

in the nurses, when they were divided into categories of those with more or less than 10 years of 

experience. For specific barriers, the authors noted that a minority (42%) of participants report 

that teams discussed tidal volumes in terms of mL/kg PBW and recommend that having PBW 

readily calculated and available in clinical flow would be helpful. For limitations, the authors 
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acknowledge that the study was conducted at a single site and disproportionately internal 

medicine respondents. 

A decade later, Weiss et al. added to these studies by being the first to correlate survey 

responses with actual LTVV use (46). Distributed to attending physicians, fellows, nurses, and 

respiratory therapists at four Chicago hospitals, the survey results confirmed Dennison’s findings 

that physicians reported less barriers than nurses or respiratory therapists. In fact, physicians 

exhibited strong support of LTVV use for patients with ARDS with 96.4% reporting that they 

believed the evidence for LTVV was ‘strong’ or ‘very strong’ and 80.7% disagreed that they 

would only give LTVV if they were certain that their patient had ARDS. The LTVV use metric 

employed was the percent of eligible ARDS patients that a clinician initiated LTVV on during a 

6 month period a year prior to the survey distribution.  

There were no significant correlations found between LTVV initiation and physician item 

responses. For nurses and respiratory therapists, the only question that showed a correlation with 

LTVV initiation was “What percentage of your patients with ARDS have contraindications to 

receiving low tidal volume ventilation?” and the two groups reported opposite associations (RNs 

positive and RTs negative). The authors note that the overall rate of LTVV use was small and 

that the delay between the patient data and survey collections could potentially contribute to 

these null results.  

In this chapter, I report a secondary analysis on the dataset of Weiss et al with the goal of 

quantifying the effects of the clinician demographic factors discussed in Chapter 5. With the data 

available, I compare the reported barriers, attitudes, and experiences between demographic 

groups that have diverging ARDS recognition rates. In contrast to Dennison et al, I demonstrate 
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that those who report more barriers actually recognize ARDS more often and discuss the 

potential etiologies and implications of this result. 

 

7.2 Methods 

In order to evaluate any association between reported attitudes and experiences and our 

recognition metric, the rest of the survey questions (non-demographic, non-network) were 

filtered for those that showed a maximum range of responses (Appendix C). A Kruskal-Wallis 

H-test was used to evaluate differences in recognition between categories of survey answer 

(Python Scipy package version 0.18.1). 

 Furthermore, clinicians were split according to significant demographic variables (PCCM 

vs not for physicians, high (>4) and low (≤4) number of ICUs worked in for RTs) and their 

responses from the same filtered question pool were assessed for differences between 

demographic groups using a Mann-Whitney U test (Python Scipy package version 0.18.1). There 

were 20 questions for physicians evaluated, thus the significance threshold was p < 0.0005 

(0.01/20). For RTs, there were 12 questions evaluated and the threshold was set at p<0.0008 

(0.01/12). 

7.3 Results 

No survey questions showed a significant trend between specific answers and clinician 

recognition.  

The only question that showed a difference between PCCM and non-PCCM physicians 

was: “How long does it usually take from the time a patient clinically develops ARDS to the 

time you receive all the information needed to make a diagnosis of ARDS?”. Answers included: 
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< 6 hours, 6-12 hours, 12-24 hours, 24-48 hours, and >48 hours. For those taking care of ARDS 

patients in our cohort, only PCCM physicians reported times over 12 hours and only 2 (0.08%) 

non-PCCM physicians on service reported times over 6 hours (Figure 27). For RTs, no questions 

showed a significant difference between high and low number of ICUs, but all RTs who 

answered ‘Disagree’ to “It is easy to initiate and administer LTVV” performed above 

expectation (Figure 29).  

 
Figure 27: Physician reported time to diagnosis by ICU care team 

ICU average reported times to receipt of all information necessary to make an ARDS diagnosis. 

White bars represent all survey responders while dark bars are restricted to only physicians who 

took care of patients in our cohort. 
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Figure 28: Respiratory therapist ARDS recognition rates and responses to ease of LTVV 

administration question 

 

7.4 Discussion 

In this chapter, we evaluate reported barriers, attitudes, and experiences in order to assess 

potential drivers of the local culture division we observed previously. It is important to delve into 

the specific barriers as the type of difference observed would have an effect on potential 

intervention design. For example, if a systems barrier exists, that may require an organizational 

restructuring, whereas a difference in attitudes would most benefit from an intervention focused 

on clinician education and engagement. The results of our analysis provide evidence to support 

our prior assumption of ARDS recognition as a major barrier to LTVV use. Furthermore, our 

findings have important implications for the assessment of implementation barriers in future 

studies.  

 First, the survey results suggest that ARDS recognition is a more significant barrier than 

systems or attitudes. The only question that top performing physicians answer differently than 
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their peers focuses on delays related to the synthesis of all clinical data points necessary to make 

the diagnosis of ARDS. When asked about issues with availability of each individual data point 

(lab values, imaging, etc), there is no difference observed in the answers, implying that it is not 

the result of a difference in workplace environment. Furthermore, we see no difference in 

reported attitudes from top performers toward the benefits or appropriateness of LTVV use for 

patients with ARDS. These results imply that the process of making the diagnosis is particularly 

challenging, which is consistent with the fact that the physician’s primary role in LTVV delivery 

is the diagnosis of ARDS. The actual delivery of LTVV usually is the responsibility of the 

respiratory therapist. To this end, we see that respiratory therapists who disagree with the idea 

that LTVV delivery is easy all have above average ARDS recognition rates.  

 Both of these findings speak to a possibility of disproportionate engagement. For both 

physicians and respiratory therapists, those that perform better are reporting more difficulties. 

Those that recognize ARDS less often report no issues with the process, implying that perhaps 

they are not actually attempting the process. If a clinician does not diagnose or treat a particular 

condition, they would report no difficulties doing so because they don’t experience those 

difficulties. Furthermore, while there is a survey question that asks about the providers’ 

experience with not making an ARDS diagnosis promptly, there is no difference in the answers 

of top performers. This finding is still consistent with the theory of disproportionate engagement, 

because providers actually making the diagnosis may make it promptly and lack of a diagnosis is 

not necessarily the same as a delayed diagnosis.  

These results have important implications for how barriers to evidence-based practice use 

are assessed. As described above, prior approaches have focused on barriers that the majority of 
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providers report as important. Our analysis suggests that this method may be confounded by 

differing levels of clinician engagement and barriers reported by a minority of provider may be 

more reflective of real-world experiences. Thus, provider engagement should be included as an 

influential factor in the analysis of potential barriers to implementation.  

 Limitations of this analysis focus on specific survey items. As with prior surveys, our 

analysis of the magnitude of each barrier is limited. We did not ask respondents to rank barriers 

with respect to each other, so it is possible that the survey captures a heterogenous experience 

under a single answer. Furthermore, while the survey included questions about how often 

physicians experienced barriers, the answers were not specific time frames, but more general 

options like ‘frequently’ or ‘rarely’, which can have variable definitions. These limitations are 

mitigated by the fact that the question with differences between provider groups actually does 

utilize specific time frames, asking the respondents quantify the delay in terms of hours. 



105 

 

 

 

References 

1.  Rogers EM, Singhal A, Quinlan MM. Diffusion of innovations. In: An Integrated 

Approach to Communication Theory and Research, Third Edition. 3rd ed. The Free Press; 

2019. p. 415–33.  

2.  Balas E, Boren S. Managing clinical knowledge for health care improvement. Yearb Med 

Informatics 2000. 2000;65–70.  

3.  Bauer MS, Damschroder L, Hagedorn H, Smith J, Kilbourne AM. An introduction to 

implementation science for the non-specialist. BMC Psychol [Internet]. BMC Psychology; 

2015;3(1):1–12. Available from: http://dx.doi.org/10.1186/s40359-015-0089-9 

4.  Bellazzi R, Ferrazzi F, Sacchi L. Predictive data mining in clinical medicine: A focus on 

selected methods and applications. Wiley Interdiscip Rev Data Min Knowl Discov. 

2011;1(5):416–30.  

5.  Mathew JP, Taylor BS, Bader GD, Pyarajan S, Antoniotti M, Chinnaiyan AM, et al. From 

bytes to bedside: Data integration and computational biology for translational cancer 

research. PLoS Comput Biol. 2007;3(2):0153–63.  

6.  Cutts S, Talboys R, Paspula C, Ail D, Premphe EM, Fanous R. History of acute 

respiratory distress syndrome. Lancet. 2016;4:547–8.  

7.  Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al. Acute 

respiratory distress syndrome: the Berlin Definition. JAMA [Internet]. 2012 Jun 20 [cited 

2014 Jul 10];307(23):2526–33. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/22797452 

8.  Herridge MS, Moss M, Hough CL, Hopkins RO, Rice TW, Bienvenu OJ, et al. Recovery 

and outcomes after the acute respiratory distress syndrome (ARDS) in patients and their 

family caregivers. Intensive Care Med. Springer Berlin Heidelberg; 2016;42(5):725–38.  

9.  Gattinoni L, Haren F Van, Larsson A, Mcauley DF, Ranieri M. Epidemiology, Patterns of 

Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive 

Care Units in 50 Countries. 2016;  

10.  Gordon D. Rubenfeld, M.D., Ellen Caldwell, M.S., Eve Peabody, B.A., Jim Weaver, 

R.R.T., Diane P. Martin, Ph.D., Margaret Neff, M.D., Eric J. Stern, M.D., and Leonard D. 

Hudson MD. Incidence and outcomes of acute lung injury. N Engl J Med [Internet]. 2006 

Jan 26;354(4):416-417-417. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/24957809 

11.  Raiko D, Heller D. Barotrauma and Mechanical Ventilation. In: StatPearls [Internet]. 

Treasure Island, FL: StatsPearls Publishing; 2019. Available from: 

https://www.ncbi.nlm.nih.gov/books/NBK545226/#_NBK545226_pubdet_ 

12.  ARDS Network. Ventilation With Lower Tidal Volumes As Compared With Traditional 

Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. N 

Eng J Med. 1301;342(4):1301–8.  

13.  Fan E, Del Sorbo L, Goligher EC, Hodgson CL, Munshi L, Walkey AJ, et al. An official 

American Thoracic Society/European Society of intensive care medicine/society of 

critical care medicine clinical practice guideline: Mechanical ventilation in adult patients 

with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195(9):1253–

63.  



106 

 

 

 

14.  Villar J, Blanco J, Añón JM, Santos-Bouza A, Blanch L, Ambrós A, et al. The ALIEN 

study: Incidence and outcome of acute respiratory distress syndrome in the era of lung 

protective ventilation. Intensive Care Med. 2011;37(12):1932–41.  

15.  Young MP, Manning HL, Wilson DL, Mette S a., Riker RR, Leiter JC, et al. Ventilation 

of patients with acute lung injury and acute respiratory distress syndrome: Has new 

evidence changed clinical practice?*. Crit Care Med [Internet]. 2004 Jun [cited 2014 Sep 

8];32(6):1260–5. Available from: 

http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00003246-

200406000-00003 

16.  Needham DM, Colantuoni E, Mendez-Tellez P a, Dinglas VD, Sevransky JE, Dennison 

Himmelfarb CR, et al. Lung protective mechanical ventilation and two year survival in 

patients with acute lung injury: prospective cohort study. BMJ [Internet]. 2012 Jan [cited 

2014 Sep 8];344(April):e2124. Available from: 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3320566&tool=pmcentrez&re

ndertype=abstract 

17.  Weinert CR, Gross CR, Marinelli WA. Impact of randomized trial results on acute lung 

injury ventilator therapy in teaching hospitals. Am J Respir Crit Care Med. 

2003;167(10):1304–9.  

18.  Umoh NJ, Fan E, Mendez-Tellez P a, Sevransky JE, Dennison CR, Shanholtz C, et al. 

Patient and intensive care unit organizational factors associated with low tidal volume 

ventilation in acute lung injury. Crit Care Med [Internet]. 2008;36(5):1463–8. Available 

from: http://www.ncbi.nlm.nih.gov/pubmed/18434907 

19.  Chen YF, Lim CK, Ruan SY, Jerng JS, Lin JW, Kuo PH, et al. Factors associated with 

adherence to low-tidal volume strategy for acute lung injury and acute respiratory distress 

syndrome and their impacts on outcomes: An observational study and propensity analysis. 

Minerva Anestesiol. 2014;80(11):1158–68.  

20.  Kalhan R, Mikkelsen M, Dedhiya P, Christie J, Gaughan C, Lanken PN, et al. Underuse of 

lung protective ventilation: Analysis of potential factors to explain physician behavior*. 

Crit Care Med [Internet]. 2006 Feb [cited 2014 Sep 8];34(2):300–6. Available from: 

http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00003246-

200602000-00003 

21.  Weiss CH, Baker DW, Weiner S, Bechel M, Ragland M, Rademaker A, et al. Low Tidal 

Volume Ventilation Use in Acute Respiratory Distress Syndrome. Crit Care Med 

[Internet]. 2016;V:1–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27035237 

22.  Cooke CR, Watkins TR, Kahn JM, Treggiari MM, Caldwell E, Hudson LD, et al. The 

effect of an intensive care unit staffing model on tidal volume in patients with acute lung 

injury. Crit Care. 2008;12(6):R134.  

23.  Han S, Martin GS, Maloney JP, Shanholtz C, Barnes KC, Murray S, et al. Short women 

with severe sepsis-related acute lung injury receive lung protective ventilation less 

frequently: an observational cohort study. Crit Care [Internet]. BioMed Central Ltd; 

2011;15(6):R262. Available from: 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3388675&tool=pmcentrez&re

ndertype=abstract 

24.  Needham DM, Yang T, Dinglas VD, Mendez-Tellez PA, Shanholtz C, Sevransky JE, et 



107 

 

 

 

al. Timing of low tidal volume ventilation and intensive care unit mortality in acute 

respiratory distress syndrome:A Prospective Cohort Study. Am J Respir Crit Care Med. 

2015;191(2):177–85.  

25.  Jiang M, Chen Y, Liu M, Rosenbloom ST, Mani S, Denny JC, et al. A study of machine-

learning-based approaches to extract clinical entities and their assertions from discharge 

summaries. J Am Med Informatics Assoc. 2011;18(5):601–6.  

26.  Owyang CG, Kim JL, Loo G, Ranginwala S, Mathews KS. The effect of emergency 

department crowding on lung-protective ventilation utilization for critically ill patients. J 

Crit Care [Internet]. Elsevier Inc.; 2019;52:40–7. Available from: 

https://doi.org/10.1016/j.jcrc.2019.03.008 

27.  Laura J. Spece, Ellen S. Caldwell, Lindee S. Tull CLH. Rate of Low Tidal Volume 

Ventilation Use Remains Low in Patients with Acute Respiratory Distress Syndrome 

Despite Improvement Efforts at a Single Center. J Crit Care. 2019;(206):72–6.  

28.  Kyu D, Goo M, Young E, Lim J. Low – tidal volume mechanical ventilation in patients 

with acute respiratory distress syndrome caused by pandemic influenza A / H1N1 

infection ☆. J Crit Care [Internet]. Elsevier Inc.; 2013;28(4):358–64. Available from: 

http://dx.doi.org/10.1016/j.jcrc.2013.03.001 

29.  Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The 

SOFA (Sepsis-related Organ Failure Assessment) score to describe organ 

dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the 

European Society of Intensive Care Medicine. Intensive Care Med [Internet]. 

1996;22(7):707–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8844239 

30.  Simonis FD, Serpa Neto A, Binnekade JM, Braber A, Bruin KCM, Determann RM, et al. 

Effect of a Low vs Intermediate Tidal Volume Strategy on Ventilator-Free Days in 

Intensive Care Unit Patients Without ARDS: A Randomized Clinical Trial. JAMA - J Am 

Med Assoc. 2018;320(18):1872–80.  

31.  Colquhoun D. An investigation of the false discovery rate and the misinterpretation of P 

values. R Soc Open Sci. 2014;1–15.  

32.  Dennison CR, Mendez-Tellez P a, Wang W, Pronovost PJ, Needham DM. Barriers to low 

tidal volume ventilation in acute respiratory distress syndrome: survey development, 

validation, and results. Crit Care Med [Internet]. 2007;35(12):2747–54. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/17901838 

33.  Rubenfeld GD, Cooper C, Carter G, Thompson BT, Hudson LD. Barriers to providing 

lung-protective ventilation to patients with acute lung injury. Crit Care Med [Internet]. 

2004 Jun [cited 2014 Sep 8];32(6):1289–93. Available from: 

http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00003246-

200406000-00008 

34.  Mikkelsen ME, Dedhiya PM, Kalhan R, Gallop RJ, Lanken PN, Fuchs BD. Potential 

reasons why physicians underuse lung-protective ventilation: a retrospective cohort study 

using physician documentation. Respir Care [Internet]. 2008;53(4):455–61. Available 

from: http://rc.rcjournal.com/content/53/4/455.short 

35.  Walkey AJ, Wiener RS. Risk factors for underuse of lung-protective ventilation in acute 

lung injury. J Crit Care [Internet]. Elsevier Inc.; 2012 Jun [cited 2014 Sep 

8];27(3):323.e1-9. Available from: 



108 

 

 

 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3223550&tool=pmcentrez&re

ndertype=abstract 

36.  Tenney SM, Bartlett D. Comparative Quantitative Morphology of the Mammalian Lung: 

Trachea. Nature. 1967;3(May):130–5.  

37.  Gilovich T, Griffin D, Kahneman D, editors. Heuristics and Biases in Application. In: 

Heuristics and Biases. New York: Cambridge University Press; 2012. p. 559–81.  

38.  Sasko B, Thiem U, Christ M, Trappe H, Ritter O, Pagonas N. Size matters : An 

observational study investigating estimated height as a reference size for calculating tidal 

volumes if low tidal volume ventilation is required. 2018;v:1–14.  

39.  Matthay and Hopkins. Ventilation With Lower Tidal Volumes As Compared With 

Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress 

Syndrome. N Engl J Med. 2000;342(18):1301–8.  

40.  Checkley W, Brower R, Korpak A, Thompson BT. Effects of a clinical trial on 

mechanical ventilation practices in patients with acute lung injury. Am J Respir Crit Care 

Med. 2008;177(11):1215–22.  

41.  Thomson O’Brien MA, Oxman AD, Davis DA, Haynes RB, Freemantle N, Harvey EL. 

Audit and feedback: effects on professional practice and health care outcomes. Cochrane 

Database Syst Rev [Internet]. 2000;(2):Cd000259. Available from: 

http://onlinelibrary.wiley.com/store/10.1002/14651858.CD000259/asset/CD000259.pdf?v

=1&t=ih288cbv&s=fc810a7fce1ffd8eea98f7eb281739c50c752a2b 

42.  Wolthuis EK, Korevaar JC, Spronk P, Kuiper MA, Dzoljic M, Vroom MB, et al. 

Feedback and education improve physician compliance in use of lung-protective 

mechanical ventilation. Intensive Care Med. 2005;31(4):540–6.  

43.  Field L, Help O, Calculator BS, Stats QA, Stats D, Stats O, et al. Baseball Stats 101. 1999;  

44.  NHL Stats Glossary.  

45.  Bechel MA, Pah AR, Shi H, Mehrotra S, Persell SD, Weiner S, et al. A quantitative 

approach for the analysis of clinician recognition of acute respiratory distress syndrome 

using electronic health record data. PLoS One. 2019;14(9):1–16.  

46.  Weiss CH, Baker DW, Tulas K, Weiner S, Bechel M, Rademaker A, et al. A critical care 

clinician survey comparing attitudes and perceived barriers to low tidal volume ventilation 

with actual practice. Ann Am Thorac Soc. 2017;14(11):1682–9.  

47.  Newman MEJ. Networks: An Introduction [Internet]. Vol. 23, Cambridge Quarterly of 

Healthcare Ethics. 2014. Available from: 

http://www.journals.cambridge.org/abstract_S0963180113000479 

48.  Valente TW, Palinkas LA, Czaja S, Chu K, Brown CH. Social Network Analysis for 

Program Implementation. 2015;1–18.  

49.  Flodgren G, Parmelli E, Doumit G, Gattellari M, Ma OB, Grimshaw J, et al. Local opinion 

leaders: effects on professional practice and health care outcomes ( Review ). Cochrane 

Database Syst Rev. 2011;(8).  

50.  Anderson JG, Jay SJ, Perry J, Anderson MM. Diffusion of Computer Applications Among 

Physicians : A Quasi-Experimental Study. Clin Sociol Rev. 1990;8(1):116–127.  

51.  Stross JK, Hiss RG, Watts CM, Davis WK, Macdonald R. Continuing education in 

pulmonary disease for primary-care physicians. Am Rev Respir Dis. 1983;127(6):739–46.  

52.  Stross JK, Bole GG. Evaluation of an educational program for primary care practitioners, 



109 

 

 

 

on the management of osteoarthritis. Arthritis Rheum. 1985;28(1):108–11.  

53.  Hong SW, Ching TY, Fwng JPM, Seto WL. The employment of Ward opinion leaders for 

continuing education in the hospital. Med Teach. 1990;12(2):209–17.  

54.  Hodnett ED, Kaufman K, O’Brien-Pallas L, Chipman M, Watson-MacDonell J, 

Hunsburger W. A Strategy to Promote Research-Based Nursing Care: Effects on 

Childbirth Outcomes. Res Nurs Heal. 1996;19(1):13–20.  

55.  Leviton LC, Goldenberg RL, Baker CS, Schwartz RM, Freda MC, Fish LJ, et al. Methods 

to encourage the use of antenatal corticosteroid therapy for fetal maturation. A 

randomized controlled trial. J Am Med Assoc. 1999;281(1):46–52.  

56.  Elliott TE, Murray DM, Oken MM, Johnson KM, Braun BL, Elliott BA, et al. Improving 

cancer pain management in communities: Main results from a randomized controlled trial. 

J Pain Symptom Manage. 1997;13(4):191–203.  

57.  Soumerai SB, McLaughlin TJ, Gurwitz JH, Guadagnoli E, Hauptman PJ, Borbas C, et al. 

Effect of local medical opinion leaders on quality of care for acute myocardial infarction. 

J Am Med Assoc. 1998;279(17):1358–63.  

58.  Guadagnoli E, Soumerai SB, Gurwitz JH, Borbas C, Shapiro CL, Weeks JC, et al. 

Improving discussion of surgical treatment options for patients with breast cancer: Local 

medical opinion leaders versus audit and performance feedback. Breast Cancer Res Treat. 

2000;61(2):171–5.  

59.  Berner ES, Suzanne Baker C, Funkhouser E, Heudebert GR, Allison JJ, Fargason CA, et 

al. Do local opinion leaders augment Hospital quality improvement efforts? A randomized 

trial to promote adherence to Unstable Angina Guidelines. Med Care. 2003;41(3):420–31.  

60.  Sisk JE, Greer AL, Wojtowycz M, Pincus LB, Aubry RH. Implementing evidence-based 

practice: Evaluation of an opinion leader strategy to improve breast-feeding rates. Am J 

Obstet Gynecol. 2004;190(2):413–21.  

61.  Cabana MD, Slish KK, Evans D, Mellins RB, Brown RW, Lin X, et al. Impact of 

physician asthma care education on patient outcomes. Pediatrics. 2006;117(6):2149–57.  

62.  Majumdar SR, Tsuyuki RT, McAlister FA. Impact of opinion leader-endorsed evidence 

summaries on the quality of prescribing for patients with cardiovascular disease: A 

randomized controlled trial. Am Heart J. 2007;153(1):22.e1-22.e8.  

63.  Majumdar SR, Johnson JA, McAlister FA, Bellerose D, Russell AS, Hanley DA, et al. 

Multifaceted intervention to improve diagnosis and treatment of osteoporosis in patients 

with recent wrist fracture: A randomized controlled trial. Cmaj. 2008;178(5):569–75.  

64.  Althabe F, Buekens P, Bergel E, Belizán JM, Campbell MK, Moss N, et al. A behavioral 

intervention to improve obstetrical care. N Engl J Med. 2008;358(18):1929–40.  

65.  McAlister FA, Fradette M, Majumdar SR, Williams R, Graham M, McMeekin J, et al. 

The enhancing secondary prevention in coronary artery disease trial. Cmaj. 

2009;181(12):897–904.  

66.  Curtis JR, Nielsen EL, Treece PD, Downey L, Dotolo D, Shannon SE, et al. Effect of a 

quality-improvement intervention on end-of-life care in the intensive care unit a 

randomized trial. Am J Respir Crit Care Med. 2011;183(3):348–55.  

67.  Scales DC, Dainty K, Hales B, Pinto R, Fowler RA, Adhikari NKJ, et al. A multifaceted 

intervention for quality improvement in a network of intensive care units: A cluster 

randomized trial. JAMA - J Am Med Assoc. 2011;305(4):363–72.  



110 

 

 

 

68.  Berwanger O, Guimarães HP, Laranjeira LN, Cavalcanti AB, Kodama AA, Zazula AD, et 

al. Effect of a multifaceted intervention on use of evidence-based therapies in patients 

with acute coronary syndromes in Brazil: The BRIDGE-ACS randomized trial. JAMA - J 

Am Med Assoc. 2012;307(19):2041–9.  

69.  Lomas J, Enkin M, Anderson GM, Hannah WJ, Vayda E, Singer J. Feedback to 

Implement Practice Guidelines Delivery After Previous Cesarean Section. 2013;  

70.  Mascia D, Vincenzo F Di, Iacopino V, Fantini MP, Cicchetti A. Unfolding similarity in 

interphysician networks : the impact of institutional and professional homophily. 2015;1–

8.  

71.  Fattore G, Frosini F, Salvatore D, Tozzi V. Social network analysis in primary care: The 

impact of interactions on prescribing behaviour. Health Policy (New York). 2009;92(2–

3):141–8.  

72.  Sykes TA, Venkatesh V, Rai A. Explaining physicians’ use of EMR systems and 

performance in the shakedown phase. J Am Med Informatics Assoc. 2011;18(2):125–30.  

73.  Nair HS, Manchanda P, Bhatia T. Asymmetric social interactions in physician prescription 

behavior: The role of opinion leaders. J Mark Res. 2010;47(5):883–95.  

74.  Weiss CH, Poncela-Casasnovas J, Glaser JI, Pah AR, Persell SD, Baker DW, et al. 

Adoption of a High-Impact Innovation in a Homogeneous Population. Phys Rev X 

[Internet]. 2014;4(4):41008. Available from: 

http://www.scopus.com/inward/record.url?eid=2-s2.0-

84921455313&partnerID=tZOtx3y1 

75.  Poncela-Casasnovas J, Spring B, McClary D, Moller AC, Mukogo R, Pellegrini CA, et al. 

Social embeddedness in an online weight management programme is linked to greater 

weight loss. J R Soc Interface [Internet]. 2015;12(104):20140686–20140686. Available 

from: http://rsif.royalsocietypublishing.org/cgi/doi/10.1098/rsif.2014.0686 

76.  Guimerà R, Amaral LAN. Cartography of complex networks: modules and universal 

roles. J Stat Mech [Internet]. 2005;2005(P02001):nihpa35573. Available from: 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2151742&tool=pmcentrez&re

ndertype=abstract 

77.  Mascia D, Cicchetti A. Physician social capital and the reported adoption of evidence-

based medicine: Exploring the role of structural holes. Soc Sci Med [Internet]. Elsevier 

Ltd; 2011;72(5):798–805. Available from: 

http://dx.doi.org/10.1016/j.socscimed.2010.12.011 

78.  Valente TW, Pumpuang P. Identifying opinion leaders to promote behavior change. 

Health Educ Behav [Internet]. 2007 Dec [cited 2014 Aug 7];34(6):881–96. Available 

from: http://www.ncbi.nlm.nih.gov/pubmed/17602096 

 

 



111 

 

 

 

Appendix A: Supplementary Information 

Supp Table 1: Demographics of cohorts and subgroups from Chicago hospital dataset 

 

 

Supp Table 2: Data availability for Chicago hospital dataset 
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Supp Table 3: Data availability for LUNG SAFE full cohort 

 ARDS Control Documented 

 All Non-documented All Non-documented 

Factor  Both End Entry  Both End Entry Both End Entry 

Predicted Body Weight 2584 899 991 1774 1193 887 903 1107 760 1768 896 

PaO2/FIO2            

   Entry 2584 899 991 1774 1190 885 901 1104 760 1767 896 

   End 1621 531 594 1098 642 469 476 597 483 1124 568 

   Lowest 2584 899 991 1774 1192 887 903 1106 760 1767 896 

Documentation            

   Entry 2584 899 991 1774 1193 887 903 1107    

   End 2507 899 991 1718 1155 887 903 1076    

   Both            

Chest imaging quadrants            

   Entry 2527 871 961 1726 1011 740 754 932 750 1715 880 

   End 1261 412 461 860 496 364 374 453 375 875 444 

   Both 2566 889 981 1761 1133 840 854 1052 754 1754 886 

SOFA score            

   Entry 1493 473 527 1016 624 461 468 577 449 1049 524 

   End 966 338 370 653 373 271 275 343 299 649 343 

   Highest 1888 601 669 1266 781 565 573 724 582 1337 679 

ICU admission weight 2554 888 980 1750 1173 875 890 1090 753 1743 887 

Study Age  899 991 1774  887 903 1107 760 1768 896 

Region 2584    1193       

Modality 2445 818 907 1664 1119 824 839 1037 732 1705 863 
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Supp Table 4: Data availability for LUNG SAFE VAC subgroup 

 ARDS Control Documented 

  Non-documented  Non-documented    

Factors All Both End Entry All Both End Entry Both End Entry 

Predicted Body Weight 399 126 132 271 203 154 155 184 139 301 147 

PaO2/FIO2            

   Entry 399 126 132 271 203 154 155 184 139 301 147 

   End 248 68 73 167 103 74 74 91 87 195 93 

   Lowest 399 126 132 271 203 154 155 184 139 301 147 

Documentation            

   Entry 399 126 132 271 203 154 155 184    

   End 385 126 132 258 203 154 155 184    

   Both            
Chest imaging quadrants            

   Entry 393 123 129 265 169 125 126 152 137 293 145 

   End 215 62 67 145 102 80 81 92 73 160 80 

   Highest 398 125 131 270 191 144 145 173 138 299 146 

SOFA score            

   Entry 224 63 69 147 106 74 74 92 84 174 91 

   End 132 45 49 87 47 33 33 40 47 91 52 

   Highest 260 76 82 172 122 88 88 108 95 200 102 

ICU admission weight 396 126 132 270 201 152 153 182 137 298 145 

Study Age  126 132 271  154 155 184 139 301 147 

Region 399    203       
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Supp Table 5: Predictors of lowest V̂T (mL/kg PBW) in LUNG SAFE documentation variation subgroups, all modalities (β-

coefficient [95% CI]) 

 ARDS Non-documented Control Non-documented Documented 

Factors End Entry End Entry End Entry 

Predicted Body 

Weight 
-4* -4.21* -7.62* -6.86* -5.27* -5.82* 

 [-4.69, -3.31] [-4.77, -3.65] [-8.66, -6.58] [-7.74, -5.98] [-5.9, -4.65] [-6.7, -4.94] 

PaO2/FiO2       

   Entry 0.35 0.52 0.25 0.18 0.49 0.74 

 [-0.11, 0.81] [0.18, 0.86] [-0.3, 0.81] [-0.3, 0.66] [0.13, 0.85] [0.21, 1.28] 

   End 0.23 0.31 -0.65 -0.44 -0.26 -0.46 

 [-0.61, 1.08] [-0.3, 0.91] [-1.73, 0.43] [-1.28, 0.39] [-0.79, 0.27] [-1.29, 0.37] 

   Lowest 0.87 1.08* 0.46 0.44 1.1* 1.46* 

 [0.37, 1.37] [0.69, 1.46] [-0.16, 1.07] [-0.07, 0.95] [0.69, 1.51] [0.87, 2.05] 

Chest imaging 

quadrants 
      

   Entry -0.03 -0.39 -0.19 -0.34 -0.89* -0.88* 

 [-0.32, 0.25] [-0.59, -0.19] [-0.65, 0.26] [-0.71, 0.02] [-1.17, -0.62] [-1.3, -0.46] 

   End -0.29 -0.74 -0.43 -0.53 -0.73 -0.66 

 [-0.84, 0.26] [-1.12, -0.35] [-1.2, 0.34] [-1.1, 0.03] [-1.1, -0.37] [-1.22, -0.1] 

   Highest -0.61 -1.17* -0.62 -0.69 -1.46* -1.64* 

 [-1.13, -0.09] [-1.55, -0.78] [-1.12, -0.11] [-1.1, -0.29] [-1.82, -1.09] [-2.22, -1.07] 

SOFA score       

   Entry 0.03 0.07 -0.4 0.13 0.49 0.5 

 [-0.85, 0.9] [-0.61, 0.75] [-1.32, 0.51] [-0.57, 0.83] [-0.11, 1.08] [-0.4, 1.4] 

   End -0.04 -0.09 0.35 0.85 0.47 0.52 
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 [-0.96, 0.88] [-0.79, 0.6] [-0.72, 1.43] [-0.06, 1.76] [-0.18, 1.12] [-0.36, 1.4] 

   Highest -0.25 -0.43 -0.36 0.08 0.07 0.18 

 [-1.01, 0.51] [-1.04, 0.18] [-1.32, 0.6] [-0.65, 0.82] [-0.5, 0.64] [-0.65, 1.01] 

ICU admission 

weight 
-0.33 -0.9 -0.41 -0.52 -1.9* -2.21 

 [-1.26, 0.61] [-1.77, -0.04] [-1.9, 1.07] [-1.78, 0.74] [-2.81, -0.98] [-3.64, -0.78] 

Study Age -1.26 -0.98 -1.43 -1.56 -0.08 0.66 

 [-2.6, 0.07] [-2.1, 0.14] [-2.89, 0.03] [-2.8, -0.33] [-0.9, 0.75] [-0.51, 1.82] 

modality 0.26 0.3 0.16 -0.04 -0.21 -0.2 

 [-0.23, 0.76] [-0.09, 0.69] [-0.49, 0.81] [-0.58, 0.49] [-0.62, 0.21] [-0.83, 0.43] 
* p < 0.00009  

Empty cells indicate category was not used due to data being unavailable or not relevant. 
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Supp Table 6: Predictors of lowest V̂T (mL/kg PBW) in LUNG SAFE documentation variation subgroups, VAC subgroup (β-

coefficient [95% CI]) 

 ARDS Non-documented Control Non-documented Documented 

Factors End Entry End Entry End Entry 

PBW -2.8* -4.11* -6.22* -8.67* -7.17* -4.96* 

 [-3.63, -1.96] [-4.87, -3.35] [-7.48, -4.96] [-10.08, -7.25] [-8.2, -6.13] [-6.18, -3.75] 

PaO2/FiO2       

Entry 0.81 0.9 0.38 0.2 0.76 0.65 

 [-0.07, 1.7] [0.26, 1.54] [-0.5, 1.27] [-0.7, 1.11] [0.04, 1.48] [-0.31, 1.61] 

End 0.6 0.91 -0.67 -0.91 0.36 0.05 

 [-0.75, 1.95] [-0.26, 2.08] [-2.48, 1.15] [-2.81, 0.98] [-0.78, 1.49] [-1.3, 1.39] 

Lowest 0.92 0.99 0.18 0.23 0.95 0.8 

 [-0.02, 1.85] [0.29, 1.7] [-0.74, 1.1] [-0.72, 1.18] [0.14, 1.77] [-0.28, 1.88] 

Chest imaging 

quadrants 
      

Entry 0.11 -0.21 0.18 -0.21 -1.09 -0.87 

 [-0.48, 0.71] [-0.6, 0.18] [-0.52, 0.88] [-0.93, 0.51] [-1.65, -0.52] [-1.68, -0.07] 

End -0.71 -0.86 -0.04 -0.11 -1.23 -1.46 

 [-2.03, 0.61] [-1.59, -0.13] [-0.96, 0.89] [-0.99, 0.77] [-1.89, -0.57] [-2.5, -0.42] 

Highest -0.03 -0.5 0.04 -0.26 -1.67* -1.71 

 [-0.87, 0.82] [-1.06, 0.06] [-0.75, 0.82] [-1.07, 0.54] [-2.39, -0.96] [-2.74, -0.68] 

SOFA score       

Entry 0.32 -0.05 -1.51 -1.02 0.08 0.3 

 [-0.84, 1.47] [-1.06, 0.96] [-3.13, 0.1] [-2.45, 0.41] [-0.92, 1.09] [-1.07, 1.68] 
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End -0.3 -0.65 0.71 0.61 -0.18 0.79 

 [-1.8, 1.2] [-1.81, 0.51] [-1.45, 2.87] [-1.3, 2.52] [-1.5, 1.13] [-1.01, 2.6] 

Highest -0.34 -0.48 -0.85 -0.67 -0.57 -0.61 

 [-1.51, 0.83] [-1.4, 0.43] [-2.28, 0.58] [-1.96, 0.62] [-1.57, 0.43] [-2.12, 0.9] 

ICU admission 

weight 
-0.04 -0.83 -0.39 -0.83 -1.05 0.3 

 [-1.53, 1.45] [-2.02, 0.35] [-2.32, 1.55] [-2.85, 1.19] [-2.38, 0.28] [-1.5, 2.1] 

Study Age -0.28 -0.56 -0.76 -0.88 -1 -0.64 

 [-1.83, 1.27] [-1.7, 0.58] [-2.61, 1.09] [-2.68, 0.91] [-2.72, 0.72] [-2.91, 1.63] 
* p < 0.00009  

Empty cells indicate category was not used due to data being unavailable or not relevant. 
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Appendix B: LUNG SAFE Case Report Form
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Appendix C: Weiss et al Physician Survey 

This survey asks questions about your current ICU practice. For 
each of these questions, please think about your responses in the 

context of the ICU where you spend most of your time (i.e., not 
including working part-time or moonlighting in other ICUs). 

 
Please indicate your response by placing an “X” in the appropriate 

box. 
 
 
Part 1 
 
The first group of questions refers to how you use daily sedation interruption 
(sometimes called daily sedation holidays) for your intubated patients. 
 
1. What percentage of your intubated patients are appropriate for daily sedation 
interruption based on the best available evidence? 
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9
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9
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10
0 

☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 

 
 
2. How strong do you believe the evidence is that your intubated patients will benefit 
from daily sedation interruption? 
 

Very 
strong 

Strong 
Neither 

strong nor 
weak 

Weak 
Very 
weak 

☐ 5 ☐ 4 ☐ 3 ☐ 2 ☐ 1 

 
 
3. In your opinion, how large is the clinical benefit of daily sedation interruption? 
 

Very large Large Moderate Small 
Very 
small 

☐ 5 ☐ 4 ☐ 3 ☐ 2 ☐ 1 
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4. What percentage of your intubated patients have contraindications to receiving daily 
sedation interruption? 
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☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 

 
 
 
5. Please state your level of agreement or disagreement with the following statement:  
 
I will only order/administer sedation interruption if I am certain my intubated patient is an 
appropriate candidate. 
 

Strongly 
agree 

Agree Disagree 
Strongly 
disagree 

☐ 1 ☐ 2 ☐ 3 ☐ 4 

 
 
Part 2 
 
The next group of questions refers to how you use spontaneous breathing trials (SBTs) 
for your intubated patients who are eligible for liberation from mechanical ventilation 
(sometimes called “weaning”). 
 
6. How long would you wait to perform an SBT once a patient first appears clinically 
ready to attempt one? 
 

No wait 
(immediate 

SBT) 
12 hours One day Two days 

Three or 
more 
days 

☐ 5 ☐ 4 ☐ 3 ☐ 2 ☐ 1 

 
 
7. Please state your level of agreement or disagreement with the following statement:  
 
I will order/administer an SBT even if I think I might have to re-intubate a patient after 
weaning and extubation. 
 

Strongly 
agree 

Agree Disagree 
Strongly 
disagree 
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☐ 4 ☐ 3 ☐ 2 ☐ 1 
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Part 3 
 
The next group of questions refers to how you use low tidal volume ventilation (LTVV, 
sometimes called lung protective ventilation) for your patients with acute respiratory 
distress syndrome (ARDS). 
 
8. What percentage of your patients with ARDS warrant treatment with LTVV based on 
the best available evidence? 
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9. How strong do you believe the evidence is that your patients with ARDS will benefit 
from LTVV? 
 

Very 
strong 

Strong 
Neither 

strong nor 
weak 

Weak 
Very 
weak 

☐ 5 ☐ 4 ☐ 3 ☐ 2 ☐ 1 

 
 
10. In your opinion, how large is the benefit of LTVV in reducing mortality for your ARDS 
patients? 
 

Very large Large Moderate Small 
Very 
small 

☐ 5 ☐ 4 ☐ 3 ☐ 2 ☐ 1 

 
 
11. What percentage of your patients with ARDS have contraindications to receiving 
LTVV? 
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12. Please state your level of agreement or disagreement with the following statement: 
 
I will only order/administer LTVV if I am certain my patient has ARDS. 
 

Strongly 
agree 

Agree Disagree 
Strongly 
disagree 

☐ 1 ☐ 2 ☐ 3 ☐ 4 

 
 
Part 4 
 
The next questions ask about other aspects of your practice. They do not refer only to 
patients with ARDS or those eligible for liberation from mechanical ventilation. 
 
13. I am bothered if I have to re-intubate a patient after weaning and extubation. 
 

Very 
much 

Quite 
a bit 

Somewhat 
A 

little 
bit 

Not 
at all 

☐ 5 ☐ 4 ☐ 3 ☐ 2 ☐ 1 
 
 
14. If I start a patient on empirical antibiotics, I will continue them until I am certain the 
patient does not have an infection. 
 

Always Usually Sometimes Rarely Never 

☐ 5 ☐ 4 ☐ 3 ☐ 2 ☐ 1 
 
 
15. It feels like I made a mistake if I have to re-intubate a patient after weaning and 
extubation. 
 

Strongly 
agree 

Agree Disagree 
Strongly 
disagree 

☐ 1 ☐ 2 ☐ 3 ☐ 4 
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16. If I start a patient on empirical antibiotics, I will discontinue them after about 48 
hours if there is no clear evidence of infection (e.g., negative blood cultures, no 
pulmonary infiltrate, etc.). 
 

Always Usually Sometimes Rarely Never 

☐ 5 ☐ 4 ☐ 3 ☐ 2 ☐ 1 
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Part 5 
 
The next two questions ask about how you view new therapies and diagnostic tests. 
 

 Always Usually Sometimes Rarely Never 

17. I wait until a new therapy or 
diagnostic test has been used for a 
while by other people before 
changing my own practice 

☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5 

18. If a new therapy or diagnostic 
test looks beneficial, I will use it even 
if more studies are needed to know 
with certainty that it is better than the 
current standard of care 

☐ 5 ☐ 4 ☐ 3 ☐ 2 ☐ 1 

 
 
Part 6 
 
Next, we want you to tell us about factors in the ICU where you usually practice that 
may contribute to delays in prompt diagnosis or treatment. 
 
First, we are going to ask you about patients who may be eligible for daily sedation 
interruption. 
 
Please state your level of agreement or disagreement with the following statements: 
 

 Strongly 
agree 

Agree Disagree 
Strongly 
disagree 

19. It is easy for me to obtain all the 
information I need to determine whether a 
patient is eligible for daily sedation 
interruption. 

☐ 4 ☐ 3 ☐ 2 ☐ 1 

20. It is easy to make sure a patient is 
scheduled to receive or has received 
daily sedation interruption. 

☐ 4 ☐ 3 ☐ 2 ☐ 1 

21. It is easy to order daily sedation 
interruption. ☐ 4 ☐ 3 ☐ 2 ☐ 1 
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22. How long does it usually take from the time a patient becomes clinically ready for 
daily sedation interruption to the time you identify or are notified they are ready for daily 
sedation interruption? 
 

Less 
than 6 
hours 

6 to 
just 

under 
12 

hours 

12 to 
just 

under 
24 

hours 

24 to 
just 

under 
48 

hours 

More 
than 
48 

hours 

☐ 5 ☐ 4 ☐ 3 ☐ 2 ☐ 1 
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For questions 23 to 26, please describe how often the following issues delay patients 
receiving daily sedation interruption: 
 

 Very 
frequently 

Frequently Sometimes Rarely Never 

23. Providers placing too 
much emphasis on relative 
contraindications to daily 
sedation interruption. 

☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5 

24. Delay in you being notified 
that a patient is eligible for 
daily sedation interruption. 

☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5 

25. Not promptly recognizing 
that a patient is eligible for 
daily sedation interruption 
even when all data are 
available and the criteria 
appear to be met. 

☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5 

26. The time from ordering 
daily sedation interruption to 
your patient receiving it. 

☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5 

 
 
Now we are going to ask you about patients who may be eligible for a spontaneous 
breathing trial (SBT). 
 
Please state your level of agreement or disagreement with the following statements: 
 

 Strongly 
agree 

Agree Disagree 
Strongly 
disagree 

27. It is easy for me to obtain all the 
information I need to determine whether 
a patient is eligible for an SBT. 

☐ 4 ☐ 3 ☐ 2 ☐ 1 

28. It is easy to make sure a patient is 
scheduled to receive or has received an 
SBT. 

☐ 4 ☐ 3 ☐ 2 ☐ 1 

29. It is easy to order an SBT. ☐ 4 ☐ 3 ☐ 2 ☐ 1 
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30. How long does it usually take from the time a patient becomes clinically ready for an 
SBT to the time you identify or are notified they are ready for an SBT? 
 

Less 
than 6 
hours 

6 to 
just 

under 
12 

hours 

12 to 
just 

under 
24 

hours 

24 to 
just 

under 
48 

hours 

More 
than 
48 

hours 

☐ 5 ☐ 4 ☐ 3 ☐ 2 ☐ 1 
 

 
 
 
 
 
 
For questions 31 to 34, please describe how often the following issues delay patients 
receiving an SBT: 
 

 Very 
frequently 

Frequently Sometimes Rarely Never 

31. Providers placing too 
much emphasis on relative 
contraindications to an SBT. 

☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5 

32. Delay in you being notified 
that a patient is eligible for an 
SBT. 

☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5 

33. Not promptly recognizing 
that a patient is eligible for an 
SBT even when all data are 
available and the criteria 
appear to be met. 

☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5 

34. The time from ordering an 
SBT to your patient receiving 
it. 

☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5 
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Part 7 
 
Now we are going to ask you about patients who may have ARDS. 
 
Please state your level of agreement or disagreement with the following statements: 
 

 Strongly 
agree 

Agree Disagree 
Strongly 
disagree 

35. It is easy for me to obtain all the 
information I need to determine whether 
a patient has ARDS. 

☐ 4 ☐ 3 ☐ 2 ☐ 1 

36. It is easy to make sure a patient is 
receiving LTVV. ☐ 4 ☐ 3 ☐ 2 ☐ 1 

37. It is easy to order LTVV. ☐ 4 ☐ 3 ☐ 2 ☐ 1 
 
 
38. How long does it usually take from the time a patient clinically develops ARDS to the 
time you receive all the information needed to make a diagnosis of ARDS? 
 

Less 
than 6 
hours 

6 to 
just 

under 
12 

hours 

12 to 
just 

under 
24 

hours 

24 to 
just 

under 
48 

hours 

More 
than 
48 

hours 

☐ 5 ☐ 4 ☐ 3 ☐ 2 ☐ 1 
 

 

  



139 

 

 

 

For questions 39 to 43, please describe how often the following issues delay the 
diagnosis of ARDS and/or the decision to treat a patient with LTVV: 
 

 Very 
frequently 

Frequently Sometimes Rarely Never 

39. Obtaining a chest 
radiograph and being notified 
of the results. 

☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5 

40. Obtaining an arterial blood 
gas and being notified of the 
results. 

☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5 

41. Finding time to review all 
the patient’s records and 
decide whether to make a 
diagnosis of ARDS. 

☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5 

42. Not promptly recognizing 
that a patient has ARDS even 
when all data are available 
and the criteria appear to be 
met. 

☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5 

43. The time from ordering 
LTVV to your patient receiving 
it. 

☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5 

 
 
Part 8 
 
Now we are going to ask questions about communication in your ICU. 
 

 Very 
high 

quality 

High 
quality 

Average 
Low 
quality 

Very low 
quality 

44. Rate the quality of 
collaboration you have with 
nurses in your ICU. 

☐ 5 ☐ 4 ☐ 3 ☐ 2 ☐ 1 

45. Rate the quality of 
collaboration you have with 
respiratory therapists in your 
ICU. 

☐ 5 ☐ 4 ☐ 3 ☐ 2 ☐ 1 
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Part 9 
 
We want to know how physicians talk to each other to share information and to get 
advice. We are asking this information for research purposes only; this information is 
critical to understand professional network structure and dynamics, and to design future 
interventions to improve the care of mechanically ventilated patients. Remember, all 
information you give us is confidential. 
 
46. Please write down the names of up to five critical care physicians with whom you 
work in your ICU whose input you regularly seek to help you make good clinical 
decisions based on the best available evidence. Also, please indicate how often you 
seek their input by placing an X in the appropriate box. 
 

Name of colleague 
(First and last name) 

Several 
times per 

week 

Once 
per 

week 

Few 
times per 

month 

Once 
per 

month 

Less than 
once per 

month 

 ☐ 5 ☐ 4 ☐ 3 ☐ 2 ☐ 1 

 ☐ 5 ☐ 4 ☐ 3 ☐ 2 ☐ 1 

 ☐ 5 ☐ 4 ☐ 3 ☐ 2 ☐ 1 

 ☐ 5 ☐ 4 ☐ 3 ☐ 2 ☐ 1 

 ☐ 5 ☐ 4 ☐ 3 ☐ 2 ☐ 1 
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47. Please write down the names of up to five critical care physicians with whom you 
work in your ICU who regularly seek your input to help them make good clinical 
decisions based on the best available evidence. Also, please indicate how often they 
seek your input by placing an “X” in the appropriate box. 
 

Name of colleague 
(First and last name) 

Several 
times per 

week 

Once 
per 

week 

Few 
times per 

month 

Once 
per 

month 

Less than 
once per 

month 

 ☐ 5 ☐ 4 ☐ 3 ☐ 2 ☐ 1 

 ☐ 5 ☐ 4 ☐ 3 ☐ 2 ☐ 1 

 ☐ 5 ☐ 4 ☐ 3 ☐ 2 ☐ 1 

 ☐ 5 ☐ 4 ☐ 3 ☐ 2 ☐ 1 

 ☐ 5 ☐ 4 ☐ 3 ☐ 2 ☐ 1 

 
 
48. Please write down the names of up to three critical care physicians with whom you 
work in your ICU who you think tend to be the first to use new therapies or diagnostic 
tests. 
 

Name of colleague 
(First and last name) 
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49. Please write down the names of up to five critical care physicians with whom you 
work in your ICU who you consider to be your friends. 
 

Name of colleague 
(First and last name) 

 

 

 

 

 

 
 
Part 10 
 
50. What is your age? 
 

Under 25 25-34 35-44 45-54 55-64 65 or older 

☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5 ☐ 6 

 
 
51. What is your gender? 
 

Male Female 

☐ 1 ☐ 2 

 
 
52. What was your position from July 1, 2013 until June 30, 2014? 
 

Attending physician Fellow Nurse Respiratory therapist 

☐ 1 ☐ 2 ☐ 3 ☐ 4 
  



143 

 

 

 

53. From July 2013 until June 2014, were you working in the same ICU as you are 
currently? 
 

Yes No 

☐ 1 ☐ 2 

 
 
54. What year did you complete your fellowship training? 
 

Still in 
training 

2009-
2014 

2004-
2008 

1999-
2003 

1994-
1998 

1989-
1993 

1984-
1988 

1983 or 
earlier 

☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5 ☐ 6 ☐ 7 ☐ 8 
 
 

 


