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ABSTRACT

Vision-Based Automation for Accelerated Structural Interpretation in

Atomic-Resolution Microscopy

Eric Stephen Schwenker

At its core, the purpose of microscopy is to make objects and their underlying structures

visible under high magnification. With the remarkable progress of electron microscopy,

the sub-micron “high” magnification of light microscopy has been completely refashioned

to encompass subatomic length scales. Unfortunately, higher-magnification does little

to negate existing interpretability challenges present in images of crystal imperfections–

which comprise some of the most scientifically intriguing and technologically relevant ma-

terials images. And any sort of direct interpretation advantage that this localized imaging

affords, is quickly overwhelmed by the sheer volume of images that must be processed to

extrapolate effects to the bulk of the crystal. Fortunately, computer vision has emerged

as a tool for automated analysis and interpretation of images from large volumes of com-

plex and/or noisy visual inputs – conditions nearly synonymous with images collected

at atomic resolution. This thesis is focused on the development of vision-based automa-

tion pipelines with applications specific to structural interpretation of electron microscopy
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images. Moreover, it is shown that vision-based automation can be used to harmonize

the power and scaling of computation, with the quantitative insights now accessible via

experimental imaging, physics-based modeling and simulation, and even peer-reviewed

scientific literature.

We begin by exploring methods for quantifying image similarity in atomic-resolution

microscopy. Image similarity is an essential consideration in the general interpretation

efforts, as the intensity signals from the experimental micrograph often must be compared

to simulation to better understand acquisition parameters or validate proposed structures.

Second, we focus on the problem of determining 3D atomic structure from experimental

STEM and STM images and develop custom automation tools to find candidate structures

that are both energetically feasible and produce images consistent with what is observed

experimentally. Finally, we highlight the development of a pipeline for constructing self-

annotated microscopy datasets from scientific literature. It is our vision that the pipelines

developed here will help enable meaningful automation in the structural interpretation

of atomic-resolution microscopy images, both as a mechanism for suggesting plausible

structures that match experimental observations, and as a first step in translating recorded

scientific knowledge from existing images to future images unseen.
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CHAPTER 1

Introduction

The knowledge of three-dimensional structure and evolution of matter at the atomic

scale represents one of the most fundamentally important challenges to modern science

and technology. The positions and motions of atoms in a material form the basis for

all further study of its constituent properties and macroscopic behavior, and the pur-

suit of this understanding has been the driving force for decades of research in materials

characterization at the atomic level. Along the way, microscopy has provided a powerful

qualitative means for visualizing and interpreting structures, and now, with the incorpo-

ration of advanced electron optical components [10–13], scanning transmission electron

microscopy (STEM) has emerged as accurate quantitative visualization tools for atomic

structure [14]. Indeed, this has transformed atomic-resolution imaging into a nearly rou-

tine technique for structural analysis; however, the breadth, complexity and volume of

data generated in the course of imaging has expanded significantly, leaving potentially

valuable visual information from experiments vastly underutilized. And while computer

vision (CV) and deep learning (DL) have had an unprecedented impact on automation,

decision support, and smart search systems in complex, high-volume image applications

[15], the overarching atomic-scale structure problem from experimental imaging remains

elusive.
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Figure 1.1. The grand vision for structural interpretation pipelines in
atomic-resolution imaging. A left-to-center traversal illustrates a viable
path to structure prediction, starting from atomic-resolution images. A
right-to-center traversal highlights a workflow for information extraction
from scientific images scraped from journal articles. At the center, the
general term “structural insight” is used to encompass both 3D structure
prediction in addition to textual descriptions referencing important struc-
tural characteristics of the material system at hand. The chapters of this
thesis are aligned with this schematic along the bottom margin, to provide
greater context for how each study fits into this grand vision.

In recent years, global optimization algorithms [16–20] have been deployed to search

high-dimensional energy landscapes for plausible structures; however, the material struc-

ture in question is often complex and non-periodic at the atomic scale, so minimum energy

solutions will not always corroborate experimental findings. To obtain plausible structure

solutions for complex materials using global optimization, a new paradigm of analysis is

needed that integrates experimental characterization results with atomistic simulations

[21]. Because microscopy is primarily an image-based characterization method, the success

of this integration relies largely on methods from computer vision to quantify similarity

between image simulations of the proposed structures, and experimental targets. This

global optimization approach, driven by vision-based comparisons of simulation and ex-

perimental imaging data, is illustrated schematically in a left-to-center read of Figure 1.1,

and is one of the fundamental topics explored in this thesis.
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While computer vision addresses similarity in microscopy from the perspective of visual

appearance, visual appearance alone does not guarantee the identity of the underlying 3D

structure; more context is often necessary. As an anecdotal example, consider shadow art

[22], where 2D shadows cast by an assortments of everyday objects (often piles of trash)

can be configured to resemble the silhouette of any famous city skyline [23]. In structure

determination scenarios, atomistic simulation, which was the initial technique mentioned,

can serve as the additional context. But as alternative, consider that perhaps image

context could be enriched with the inclusion of characterization data and descriptions

from literature, as a vast majority of reported scientific knowledge based on experimen-

tal findings is presented in the form of a paper, patent, or thesis, etc. Unfortunately,

human efforts to extract this useful data across all relevant methods in which scientific

information is disseminated cannot possibly scale with current outputs, thus motivating

the need for automated information extraction and association by machines. Automated

data extraction has been explored in the chemistry and materials science spaces, notably

with the ChemDataExtractor (CDE) [24], and a machine learning (ML) tools to extract

synthesis parameters for oxide materials from literature [25]. Both the CDE and ML tools

use Natural Language Processing (NLP) as the backbone for automatically distinguishing

and resolving groups of words as concepts. Moreover, literature is often the first place

researchers turn to test if their ideas can be corroborated, contradicted, or even entirely

novel – so it makes sense to incorporate this knowledge in the automation loop.

In a mature form, literature-based knowledge would provide general information to

enhance the understanding of the structure in a general microscopy image. In this sense,

it is perhaps best described as explanatory image captioning, which is a current activate
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area of research in computer vision [26, 27]. In this work, we develop a pipeline to enable

large-scale image aggregation with literature-informed descriptions, using image captions

to propose informative labels. With annotated datasets constructed from scientific liter-

ature, users are well-positioned to train neural networks for classification and recognition

tasks specific to microscopy – tasks often otherwise inhibited by a lack of training data.

This literature-driven association of properties/concepts back to proposed structures from

experimental microscopy images is illustrated schematically in a right-to-center read of

Figure 1.1 and is another significant topic in this thesis.

It should be noted that the paths in Figure 1.1), outlining the main visions for this

work, complement each other. For example, on the left in Figure 1.1, global optimization-

driven structure search, constrained by energetic minimization and the similarity between

an experimental atomic-resolution microscopy image and a simulated image of a proposed

structure, can help identify possible atomic structures for captured image. Examples

of this structure solution pipeline are outlined in Chapter 4 and 5, with related image

similarity comparison scenarios addressed Chapter 3. Background information pertinent

to integrating computation with experiments is included in Chapter 2. Chapter 6 follows

from the right side of Figure 1.1, and details an approach to construct self-annotated

image datasets from literature. These self-annotated datasets could be used to train

deep learning (DL) models, the primary direction for future considerations discussed in

Chapter 7. Unlocking DL for these materials images would mean the ability to provide

rich domain context or even practical explanation to novel experimental images. All

things considered, elucidating materials structure and structure-properties relations (i.e.,

“structural insight”) lies at the heart of both paths.
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CHAPTER 2

Background and Methods

This chapter presents several topics that are fundamental to the study of vision-based

automation pipelines in this work. Section 2.1 covers a brief history of simulation in elec-

tron microscopy, as well as summarize the mathematical foundation for the computation

of a simulated electron microscopy image. Section 2.2 reviews some of the optimization

approaches used for determining 3D atomic structures, with an emphasis on how image

simulation can be integrated into the overall workflow. Section 2.3 is an overview of the

field of computer vision with mention of applications to general microscopy. Finally, sec-

tion 2.4 introduces natural language processing and the various ways it can be leveraged

to analyze text in captions of scientific journal articles.

2.1. Electron Microscopy Image Simulation

As a traditional materials characterization technique, electron microscopy often refers

to the classic broad-beam system developed by Ruska and Knoll in the early 1930’s [28, 29].

Since its conception, numerous improvements to both hardware and software components

have elevated electron microscopy from a qualitative imaging device, to a quantitative

characterization tool capable of providing chemical, structural, and electronic informa-

tion for materials with extraordinary precision [14]. The workhorse of quantitative elec-

tron microscopy is the aberration-corrected scanning transmission electron microscope

(STEM). Aberration correction creates a highly-focused, sub-nanometer electron probe,
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small enough to resolve inter-atomic spacings in most crystal structures. STEM operates

by scanning this probe across a specimen, and then assembling the scattered electron

signal serially into an image. At large collection angles, elastic “Rutherford” scattering

dominates. In this high-angle annular dark-field (HAADF) regime, scattering is approxi-

mately proportional to both atomic number, Z, and number of atoms in an atomic column.

Despite the simplicity of this description, real systems often show significant deviations

from a “Z-contrast” interpretation, and further consideration must be given to the finer

effects confounded in the image contrast [30]. Many of these are specimen-related factors

(e.g., sample thickness, lattice strain, defects, interface terminations, etc.) that change

the probe channeling conditions and introduce diffraction contrast effects. Detector ge-

ometry plays a role as well [31]. Several studies have addressed limitations of Z-contrast

interpretation [32–34]. In these instances, inferring structure from a small collection of

sample images represents an inverse problem with no unique solution. For progress to

be made on the inference end, the interpretation of image contrast requires comparison

against physics-based “forward modeling” simulations. In the following, I summarize the

mathematical framework underlying STEM image simulation.

2.1.1. STEM Image Simulation

There are a few widespread concepts throughout STEM image simulation, and the variety

of techniques that do exist, largely evolve from differences in approximation, or in the

allocation of computing resources. Fundamentally, imaging electrons can be modeled by

superimposing several planewaves to form a spherically convergent probe wavefunction, ψ,

and simulation involves the transmission of this probe through the specimen. The result
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is a modulated probe at the specimen’s exit surface, defined in context of the specimen

or slice j, as:

ψj+1(r) = ψj(r)tj(r) (2.1)

where r is a 2D vector of the probe position in the image plane, ψj(r) and ψj+1(r) are the

probe wavefunctions at the incident and exit surface, respectively, and t(r) is the specimen

transmission function. The transmission function captures the interaction between the

electrostatic potential of the specimen and the charge on the imaging electrons, as a single

scattering event, and is thus defined as:

tj(r) = exp (iσv(j)z (r)) (2.2)

where σ is a probe-specimen interaction parameter, and v
(j)
z (r) is the potential of the

slice j volume for a position r. This specimen potential is often modeled as a linear

superposition of potentials of each atom m in the slice j:

v(j)z (r) =
N∑
m=1

vzmδ(r− rm) (2.3)

where vzm(r) is the projected atomic potential, which is frequently tabulated and stored

prior to the calculation. This linear superposition of atom potentials assumes large sepa-

rations between atoms – which is not the case in a bonded solid. However, the effects of

bonding are usually small for high-angle scattering, which is one of the assumptions for

image simulation in this work. Finally, image formation (for a specific probe position) is

then a matter of taking the modulated wave function in diffraction space,

Ψ(j+1)(k) = FT{ψ(j+1)(r)} (2.4)
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and integrating the absolute square over a specified detector area

I(r) =

∫
kεD

|Ψ(j+1)(k, r)|2d2k (2.5)

where FT{ } is the Fourier transform, k, is a 2D coordinate vector in Fourier space

encoding detector angle, and D represents the space of all detector angles considered.

The result of this integration is the signal corresponding to a specific probe position. This

is repeated until the probe has sampled the entire specimen and a full image is recorded.

The value of the specimen/slice thickness has obvious implications related to the probe’s

transmission. In the most näıve scenario, the thickness of the specimen is ignored, which

means that quantitative accuracy is sacrificed for practical (3D) specimens. Accordingly,

this approach is referred to as the method of simulation for thin samples, and though this is

considerably limiting, there are instances where the image is subjectively the same as one

obtained from a much more expensive calculation [35]. The image simulation techniques in

this work (outlined below) make use of and/or extend these concepts to achieve improved

simulation accuracy or speed. The ultimate goal is to achieve an improvement in both,

but this is often the trade-off.
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Convolution. The convolution method refers to a simple incoherent imaging model

based on the principles of Fourier optics, which defines an image as a convolution be-

tween a point spread function (PSF) and an object function. In general terms, a PSF

describes the 2D intensity distribution of a point source image, and the object function

is a transmission function that carries information about the object. In the context of

microscopy simulation, the convolution method is an approximate linear imaging model,

assuming incoherent imaging, and is given by

I(r) = t∗(r,Z) ~ |ψ(r)|2 (2.6)

where r is the 2D probe position, and ψ(r) is the probe wavefunction (PSF) as before.

The object function, t∗(r,Z), represents approximate probabilities of scattering to large

detector angles (an approximate transmission function), and can be defined with partial

cross sections [35], or as a linear superposition of atomic numbers [36]

t∗(r,Z) =
N∑
m=1

Z1.7
m δ(r− rm) (2.7)

where Zm is the atomic number of the mth atom, and the Z1.7 dependence (a deviation

from the Z2 dependence predicted by Rutherford scattering) better captures the effects of

core electron screening, which is observed in peak single atom signals in HAADF STEM

[35]. This Z dependence scattering is the foundation of Z-contrast imaging, and generally,

the signal appears to vary between Z1.5 (lower Z) to Z1.7 (typical Z) with carbon (Z = 6)

serving as an approximate division between the two regimes. This convolution formulation

is convenient because with both input signals transformed into the frequency domain, the
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calculation of the image involves only multiplication. This provides a tremendous speed

advantage over other techniques, and though convolution is procedurally different than

the method for thin samples, it captures many of the same pertinent features [35]. Keep

in mind that neither convolution nor the method for thin samples are quantitatively ac-

curate for specimens exceeding a few nanometers in thickness; however, because of their

speed and the fact they can still provide valuable qualitative structural insight, they are

often some of the most practical simulation options.

Multislice. The multislice method of Cowley and Moodie [37] is widely used in STEM

image simulation to accurately account for both specimen thickness (up to a few thousand

angstroms), and plural scattering events. As the name implies, this method involves first

dividing the specimen into thin slices along the electron beam direction. And then, just

as in the method for thin samples, projected atomic potentials are used to define a trans-

mission function, and the probe wavefunction for a single position is transmitted through

a thickness. From here, a multiplication in Fourier space propagates the transmitted wave

to the next potential slice, and the sequence of transmission and propagation continues

until the wavefunction has made it all the way through the specimen. The propagation

step uses the Fresnel propagation operator:

p(k) = exp (iπλ|k|2t) (2.8)

where λ is the relativistic electron wavelength and t is the thickness of the slice. The

sequential transmission and propagation of the probe wavefunction can be written in a
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compact form using multiple Fourier transforms as:

ψ(j+1)(r) = FT−1{p(k)FT{ψ(j)(r)t(j)(r)}} (2.9)

where FT−1{ } is the inverse Fourier transform. Once the wavefunction has made it

through, the same integration over the collection angles in the diffraction plane are used

to extract pixel intensity value for the pixel in question. The multislice algorithm is com-

putationally efficient for simulation of conventional plane-wave TEM images of ordered

structures, but not for STEM, where the number of probes can easily exceed tens if not

hundreds of thousands for realistic sample sizes. To make matters worse, multislice is often

used to validate experimental results where there is a good deal of uncertainty surround-

ing the precise values for simulation parameters and atomic coordinate positions, so often

more than a single simulation is needed. Furthermore, if defects are involved, the cell size

for simulation must be artificially expanded to essentially isolate the defects from possi-

ble wrap-around errors [35]. Fortunately, the multislice approach itself is embarrassingly

parallel in the sense that there is no dependency between each probe as it is propagated

through the sample. Recently, to address issues of speed and scaling, hardware-based

approaches such hybrid CPU+GPU and multi-GPU approaches to solving the general

electron scattering problem [38–40] have begun to exploit various opportunities for data

parallelization. In this work, a more efficient formulation of the electron scattering prob-

lem, the plane wave reciprocal space interpolated scattering matrix algorithm (PRISM),

is used as a method to speed up the simulation process and maintain levels of accuracy

comparable or equivalent to multislice.
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PRISM. The main innovation of the plane wave reciprocal space interpolated scattering

matrix algorithm (PRISM) method [41] is in the handling of the probe wave function.

Instead of propagating a focused probe through the sample at all positions sequentially,

a subset of the plane waves is used to construct the converged probes, which are defined

for all positions across the sample at once. Then, using a Fourier interpolation factor to

select a subset of plane waves, these partial waves are propagated through the sample with

multislice. It is assumed that plane waves forming a complete plane wave basis set, can

be multiplied by their associated complex coefficients (after modulation) and summed

to generate the electron probe. There are markedly fewer plane waves to propagate

through the samples than individual probes, and this is the primary source of speed up.

Beyond this, PRISM shares slicing and computation of the projected potential steps with

multislice. In this work, PRISM is used for simulating HAADF STEM datasets.

2.1.2. STM Image Simulation

The development of accurate methods for STEM simulation were largely motivated by

the fact that experimental STEM images could be used to probe atomic-scale structural

details. Likewise, researchers also realized the potential of yet another powerful form

of microscopy for imaging finer electronic structure details at the surface of a sample:

scanning tunneling microscopy (STM). Probing electronic structure is possible on the

basis of the quantum mechanical principle of electron tunneling. In practice, a small bias

applied between a probe tip and a surface induces electron tunneling across the gap, and

variations in the tunneling current (constant height mode), or in the height to produce

the same tunneling current (constant current mode), are measured as the tip is rastered
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across the sample. This tunneling current is important because it is proportional to the

local density of states [42] and when viewed as an image, provides a glimpse of the atomic

and electronic structure of the material surface. However, interpretation of these images

without context from simulation, can lead to erroneous assumptions about the atomic

structure of the material.

The foundation of the STM image simulation is a density functional theory (DFT)

calculation. DFT calculates electronic wavefunctions for an optimized geometry, which

yields a number of key properties such as total energy, band structure, and most relevant

to STM calculations, the partial charge densities. The partial charge density data is

recorded in the PARCHG file - using VASP (Vienna Ab-initio Simulation Package [43]).

With this file as the primary input, a set of four parameters define a simulated image: (1)

electron density value (corresponds to a constant current value set before acquisition of the

experimental image), (2) its associated tolerance, and an (3) upper and (4) lower bound

on the vertical distance above and below the surface, respectively. The STM image is then

formed using the partial charge density data within the window defined by the electron

density value and the tolerance, where image intensity corresponds to the z-coordinate

at a given xy-grid point. This approach is consistent with the description given in the

seminal work by Tersoff and Hamann [42]. Because a DFT calculation is involved in its

own right, this image simulation approach that depends on the partial charge information

from a DFT calculation is not well-suited for situations where little is known about the

structure itself. With sufficient knowledge of the underlying structure though, modest

iteration within a parameter space influencing image appearance is feasible, and is a topic

explored in greater depth in this work.
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2.2. Global Optimization for the Nanostructure Problem

Historically, X-ray diffraction (XRD) has been the mainstay for building atomic models

of crystalline structures. With XRD, measured diffraction patterns are indexed relative

to known patterns to help deduce crystal structures, phases, orientations, etc. However,

XRD does not provide the resolution needed to observe local structural differences or

defect geometries on an atom-by-atom basis. Moreover, even popular characterization

techniques like pair distribution function (PDF) and X-ray absorption spectroscopy that

are sensitive to local structure changes, do not provide requisite resolution to truly probe

local structure. Refer to [44] and [45] for further details on XRD and PDF, respectively.

These shortcomings have since paved the way for direct atomic-resolution imaging

methods that utilize STEM, electron diffraction imaging, atom probe tomography, etc.;

yet in many cases, the experimental capacity to take measurements has exceeded the

ability to determine atomic structure from measurements in the first place. In other

words, this inability to obtain information about the positions of the atoms directly from

observation is less a challenge of instrument resolution and precision, and more a chal-

lenge inherent to the ill-posed, inverse problem that is the “nanostructure problem” [46].

Rather, the “nanostructure problem” is the problem of determining 3D atomic structures

from nanoscale observations, and because of the lack of analytical expressions, massive

computing costs for simulation, complexity of the objective, etc., unambiguously relat-

ing nanoscale observations to 3D structures is highly nontrivial. It is the nanostructure

problem which underlies or exacerbates many of the fundamental materials understand-

ing barriers addressed in this work. In the following, I provide an overview of global

optimization and related concepts.
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2.2.1. Global Optimization

Global optimization is found across a wide variety of quantitative disciplines as a way to

find the “best available” solution given an objective defined over a complex input domain

[47]. In the context of materials physics, global optimization is often used in conjunction

with atomistic or first-principles calculations, to match structural and energetic quanti-

ties for force fields and nanoclusters [48–51]. For determining 3D atomic structures (i.e.,

nanostructure problem), global optimization strategies tend to fall into a few different

categories based on how the structures are represented, updated, and assessed. These

strategies include, but are not limited to, minima-hopping [16], metadynamics [17], parti-

cle swarm [18], basinhopping [19], evolutionary algorithms [20], etc. In this work, rather

than single objective (typically, total energy) global optimization, we are concerned with

multi-objective optimization to determine structures which are not the globally lowest

energy solutions but are nonetheless experimentally relevant.

An overall high-level framework for global optimization applied to the nanostructure

problem is outlined in the flowchart in Figure 2.1. The specific strategy used in this work

is a custom, multiobjective variant of the basinhopping (BH) approach [19] that we call

“grand canonical” basinhopping. The multiobjective fitness measurements assess the qual-

ity of a proposed solution from both a simulated-to-experimental matching perspective, as

well as an energetic-feasibility perspective. Both the grand canonical assumption, as well

as the components of the multiobjective fitness measurements are explained in greater

detail in the following sections and are implemented in context of the FANTASTX (Fully

Automated Nanoscale To Atomistic Structures from Theory and eXperiments) software

package [52]. Starting with a single structure, or a population of candidate structures,
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Figure 2.1. The global optimization strategy applied to the nanostructure
problem. The user inputs are the initial candidate structure and the ex-
perimental characterization images. The candidate structure is modified
incrementally and subject to fitness evaluation for each time-step. Fit-
ness evaluation is multiobjective, involving (1) an image-based “match-to-
experiment”, and (2) energy calculations from structural relaxation. The
termination criterion is typically fitness and/or iteration-based.

global optimization proceeds as the simulated probes of nanostructure (e.g., simulated

STEM images of the candidate structures in many cases), are compared with the experi-

mental targets to determine the fitness of the proposed structure(s). If current solutions

do not register as high fitness, they are often rejected, and the previous global candidate

structure is recovered.



38

2.2.2. Grand Canonical Basinhopping

Basinhopping [19] is a Monte Carlo-like method where solutions evolve by taking random

steps (random perturbations of the current structure), that are accepted with probability

based on the Metropolis-Hastings criterion [53]:

Paccept = min {1, e−(Fnew−Fcurr)/T} (2.10)

where Fcurr and Fnew are the finesses of the current and new structures, respectively, and

T , is the system temperature at the current step. An energetic minimization step follows a

perturbation to ensure that the perturbation “hop” reaches a region around the minimum

of the potential energy surface “basin”. The energetic minimization step is usually a DFT

calculation, or an atomistic simulation based on empirical potentials [54, 55]. The size

of the system (number of particles), and the availability of an interatomic potential will

often dictate which is used. Standard perturbations for atomic structures in basinhopping

involve random steps, which are random fluctuations of the atomic position. In order to

address the uncertainty surrounding the stoichiometry of the system, this work considers

atom addition and subtraction operations under constant chemical potential µ (i.e., a

grand canonical ensemble). As part of the Metropolis-Hasting criterion (Eqn. 2.10), the

system temperature quantifies how often a less fit solution is accepted over a more fit

one, and is the sort of mechanism that allows a structure to “hop” out of local minima.

If the system temperature is zero, BH is greedy in that only solutions that improve

fitness will be accepted, which is sufficient if the structure is making a descent to a global

minimum. However, in order to assure that the structure can get there, solutions that are
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less desirable must be accepted and used along the way. This idea has strong parallels

to solution diversity in genetic search [56], with the intuitive justification being that a

completely homogeneous population of solutions are not capable of generating novelty in

solution space.

2.2.3. Multiobjective Fitness Definition

Outside of a handful of design decisions pertaining specifically to the optimization strategy

– most of these involve the update and termination criterion – the fundamental decision

that is ubiquitous to all optimization is the definition of an objective, or what we refer

to as “fitness” in the solution space. In ideal optimization situations, there is a single

fitness quantity that can be measured from a solution, and that fitness is indicative of or

strongly correlated with the true objective. Moreover, the solution space is convex, and

optimization proceeds as a strict minimization or maximization of that fitness quantity. In

realistic problems , optimal decisions require a trade-off between conflicting objectives, and

by nature, the solution space is often non-convex and/or non-smooth. In context of the

nanostructure problem addressed in this work, we identify total energy and image-based

match-to-experiment as the two conflicting objectives to optimize. A grain boundary

image is perhaps the quintessential example of a conflict between these two objectives

when its structure is the target of global optimization. This is because a grain boundary

is a metastable system. A grain boundary image represents a snapshot of a transient

structure (albeit on a large time scale), and from a materials science perspective, this

happens to be the state under which many of these materials are used. However, if

minimizing the energy is the sole objective during global optimization, the structure will
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never appear as a solution during optimization. From an optimization perspective, this

means that energy is obviously important from a physical standpoint, but only to the

extent that the structure resembles what can be observed during imaging. This is the

crux of defining this multiobjective fitness.

Two popular strategies for evaluating candidate solutions based on a multiobjective

fitness are the weighted-sum and the Pareto-sampling approach. The weighted-sum ap-

proach is a classical strategy that involves assigning a relative importance (weight) to

each objective, and then combining the objectives into a single, scalar cost function. The

weighting can be set a priori, with sufficient domain knowledge and understanding of vari-

able scaling, but in many cases, the significance of the objectives cannot be determined

until the trade-offs between them are clearly understood. Moreover, penalty constraints

can be added in the form of a regularization term, or as commonly employed in physics-

based modeling – a subroutine to emulate the constraints of a physical model (e.g., im-

plement checks for bond lengths, coordination, etc.). This work utilizes a weighted-sum

approach to define fitness for a candidate structure as:

Ztotal = αEtotal + βdsimilarity (2.11)

where Ztotal is the fitness (objective) score, Etotal is total energy of the structure from

the energy minimization step, dsimilarity is the image similarity distance, and α, β are

the associated weights that are set based on the relative importance of the terms. A

major downside to the weighted-sum approach is the possibility of a true optimal solution

not being found/accepted, either because the fitness function excludes important aspects
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of the problem, or because of an inappropriate setting of the weights [57]. A Pareto-

sampling approach (multiple single objective pareto sampling, MSOPS [58]) addresses

the shortcomings associated with inappropriate weight settings by enabling all trade-

offs among combinations of multiple objectives to be evaluated (considering the multiple

objectives directly), and then sampling among the subset of solutions that cannot be

improved in one objective without sacrificing performance in at least one other. These

solutions that cannot be improved in a single objective without sacrificing others represent

the space of best possible tradeoffs and are referred to individually as Pareto solutions,

or collectively as a Pareto front. Pareto optimality originated from the concept of non-

inferiority in context of economics [59]. For an overview of Pareto approaches in context

of the broader field of multiobjective optimization, [59] is a good resource.
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2.3. Computer Vision in Electron Microscopy

Computer vision algorithms encompass a variety of tools that are characterized by

their ability to use low-level image processing primitives (e.g., edges, colors, etc.) to

observe images in a way that promotes reconstruction of physical properties, motion

tracking of individual objects, and in some cases even scene understanding on a semantic

level. For example, consider an algorithm that uses visual inputs to alert a 911 operator

of a person in distress, based on a series of connected visual concepts originating from

the localization of human joints in an image of a person lying unconscious on the ground

in a crowd (e.g., joints are connected via limbs, which together form a body, which can

assume a pose, which in some cases is indicative of a physical ailment). This sort of action

commands true understanding of the situation and is predicated on successful hierarchical

processing and fusion of visual information. And though deriving an understanding from

images and video is something that most humans can do in an almost effortless fashion,

such tasks can pose an immense challenge to machines. For a good overview of computer

vision as a discipline, refer to the lecture notes from Ying Wu’s advanced computer vision

course [1].

At the foundation of the computer vision (CV) hierarchy is image processing. Figure

2.2 provides a convenient visual illustration of the CV hierarchy. Image processing is not

vision by itself, but rather, the preprocessing that ensures an image is in a format suit-

able for vision. With the hope of developing electron microscopy into a truly quantitative

characterization technique, early adapters of image processing in the field of microscopy

recognized the importance of delineating between image processing that produces a more
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Figure 2.2. Hierarchical flow of processing steps that define a standard CV
problem. At the base of the hierarchy is image processing, the first step after
data collection. Image processing modifies characteristics of the image at
a pixel level for the purposes of highlighting specific image content. Low-
level vision builds on the processed image to begin extracting primarily
structural elements on the image, and finally, high-level vision uses the
inferred structure/geometry to perform recognition or segmentation with
the ultimate goal of achieving image-based understanding. Adapted from
[1]

pleasing visual image and that which respects true, unaltered image content [60]. Pro-

cessing to improve aspects of the image by applying linear operations that affect color,

contrast, and/or brightness is referred to as an enhancement. Common examples of this

include black level subtraction (subtracts a uniform signal background from the object)

and differential amplification (amplifies object signal relative to the background) [60]. As
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an alternative to enhancement, consider a class of optimization-based approaches that

attempt to return an image to some ideal, but faithful form, by inverting degradation.

Processing of this sort is referred to as restorative and perhaps the most common ex-

ample for electron microscopy is the Wiener filter. A traditional Wiener filter produces

an optimal estimate of the full uncorrupted microscopy image in the least squares sense,

assuming signal and noise are uncorrelated, and is used extensively for image denoising –

particularly in context of the powerful block-matching and 3D filtering (BM3D) denois-

ing [61]. For more information and mathematical rigor, refer to [62], as Wiener filters

represent a fundamental noise reduction approach with many variations.

After image processing, the first low-level vision tasks can be performed. Here, “low-

level” implies that images are viewed or modified directly on the level of their pixel values

(i.e., pixel-wise). Following Figure 2.2, the focus here is on image matching and optical

flow. Image matching, or what is referred to in this work as the task of quantifying image

similarity, was addressed, somewhat indirectly, for electron microscopy in the pioneering

works of Schiske [63] and later Gerchberg and Saxton [64], with the realization that a

wave function’s amplitude and phase at the exit surface of an object – which provides

the valuable structure information for the object - could be reconstructed using iterative

comparisons with intensity measurements. Assessment of the quality for each iteration

involved comparison of the amplitudes associated with the generation of an image can-

didate, with the amplitudes of the reference image using (mean) squared error (MSE),

which is pixel-wise image matching in its most basic form. However, as others have since

recognized, MSE is not always ideal for vision tasks because it quantifies errors between

the signals uniformly, which often does not map well to perceived visual quality [65, 66].
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More sophisticated methods for quantifying image similarity attempt to weight different

aspects of the error signal according to their visibility, or define similarity as a comparison

of image information, or features rather than just all individual pixels. The other form

of low-level vision notably found in electron microscopy involves techniques related to

“optical flow” [67, 68]. Optical flow is motion estimation from local spatio-temporal vari-

ations of pixel intensities in an image sequence and is the basis of dense particle or object

tracking [69, 70]. For example, quantification of motion can be used to implement spatial

corrections between adjacent images to account for beam induced motions in cryo-EM

[71] (i.e., image registration), or for image segmentation purposes (e.g., background flow

is often different from object flow in the foreground). Image similarity, registration, and

segmentation are covered in greater detail in subsequent sections.

As vision approaches “high-level” (Figure 2.2), the techniques and processes involved

tend to require some degree of image understanding, which builds on the higher-level

ways in which pixels are combined and interpreted. In materials science, several early

studies interested in high-level vision in the form of automatic microstructure recognition

or image parameter extraction began exploring tools like visual bag of words, texture

and shape statistics, and/or pre-trained convolutional neural networks (CNNs) to first

construct feature descriptors [72–74] for each image in the dataset. These approaches

often showed promising results over the specific classes of materials represented in the

imaging; however, in most cases, they were best suited for datasets of a modest size, and

were heavily overshadowed by some of the developments in deep learning that used deep

convolutional neural nets in an end-to-end fashion, not just for feature extraction, but to

obtain human-level accuracy on high-level imaging and video recognition tasks [75].
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Unsurprisingly, there was a marked increase in materials science studies using deep

CNNs as a means to locate atomic species and classify the type of defects [76, 77], analyze

CBED patterns [78], and automate particle extraction from raw cryo-EM micrographs

[78]. Recently, in an effort to create high quality micrographs of beam sensitive materials,

Ede and Beanland [79] train a CNN, in the context of a generative adversarial network

(GAN), to complete realistic scanning transmission electron micrographs from partial scan

data. In the most rudimentary form, filling in image pixel values over certain intervals is

a type of image processing called image inpainting, which is in essence interpolation (i.e.,

estimate a pixel value at a location, using a weighted averages of pixels’ neighborhoods).

However, in the context of a GAN framework, in which two neural networks improve their

respective performance task via competition, the inpainting and the learning associated

with generating an image that is both visually and physically realistic is more nuanced

and is thus considered a high-level vision task. Overall, deep learning and computer vision

are burgeoning areas of research within the materials science community as their potential

value to the field is becoming widely recognized. The following sections include dedicated

discussions on measuring image similarity, image registration, and deep learning with

CNNs to provide greater detail to some of the specific CV tools and techniques utilized in

this work. I would suggest for the reader to consult [80] and [81] for further discussion on

how CV is used to improve both microscopy data and materials information in electron

microscopy, as well as in biological and medical data, respectively.
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2.3.1. Image Matching

In computer vision, image matching is a fundamental low-level vision tasks, requiring

an objective that is high for images that are similar, and low for images that are not.

Throughout this work, image matching (the specific task of finding the single most ap-

propriate image to an image designated as a target), is referred to generally as quantifying

image similarity. In all contexts, the target is the image that is fixed or is considered the

image being matched to in various comparison scenarios.

The majority of the image similarity measurements in this work utilize low-level pixel-

wise comparisons, (i.e., only pixel-wise intensity information is considered). Contrast

this to a class of techniques which first extract image features and perform matching as

a vectorized comparison of features. The Earth Movers Distance (EMD) approach, de-

scribed below, functions as a higher-level vision task and is the only feature-based method

considered here. For more information on feature-based matching, refer to [82, 83]. The

following introduces various image similarity measurements explored in this work.

Mean Square Error. As a result of its computational simplicity and desirable opti-

mization characteristics (i.e., it is quadratic and convex), pixel-wise mean square error

(MSE) is a popular similarity measurement. MSE is expressed as:

MSE(X, Y ) =
1

np

∑
p

[X(p)− Y (p)]2 (2.12)

where X(p) and Y (p) are the image signals for all pixel values p, and np is the number of

total pixels in the image. Here, the choice of which image serves as the target is arbitrary
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from a measurement perspective since MSE is symmetric (i.e., the order of operations

does not matter). Image processing researchers and practitioners, particularly those in

the field of image quality assessment, sometimes scrutinize the use of MSE (and the re-

lated PSNR) in quantifying visual similarity because it is typically not the best indicator

of visual distortion [65] – but admittedly, this is highly application dependent [84]. A

popular MSE variant, the root MSE (RMSE), is nothing more than the square root of the

MSE value. RMSE has units that are directly interpretable meaning the RMSE has the

same unit as the unit on the pixel values, which could perhaps be beneficial if the values

of the pixels in the image are quantitatively expressive.

Structural Similarity Index. In an effort to incorporate image matching objectives

that quantify observable characteristics of the human visual system (HVS), the Structural

Similarity Index (SSIM) [85] is included in the following analyses. SSIM quantifies the

retention of signal structure between images (something the HVS is highly adapted to

extract), and in this context, is an average of the weighted multiplicative combination of

terms that represent luminance, contrast, and structure of a test block with respect to its

fixed reference. The expression for the mean SSIM (referred to here as just SSIM) is:

SSIM(X, Y ) =
1

nb

∑
b

[
2µX(b)µY (b) + C1

µX(b)2 + µY (b)2 + C1

]α
[

2σX(b)σY (b) + C2

σX(b)2 + σY (b)2 + C2

]β [
σXY (b) + C3

σX(b)σY (b) + C3

]γ (2.13)

where µX and µY and σX and σY are sample means and standard deviations for all pixel
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values within a given pair of blocks b, σXY is the sample cross correlation between the

blocks, C1, C2, C3 are small positive constants to avoid numerical instabilities, α, β, and

γ are weights given to the luminance, contrast, and structure terms, respectively, and nb

is the number of total blocks pairs in the image. The actual “structure” that is part of

the namesake, is represented by a loss of linear correlation (the third term weighted by

γ). Because SSIM technically serves as a full reference metric (i.e. it is formulated to

compare a given input against a pristine target), the X indexed values are considered to

reference the target image. Although from a measurement value standpoint, the target

designation is arbitrary because SSIM (like MSE) is symmetric.

Visual Information Fidelity. Visual information fidelity (VIF) [85, 86] incorporates

a statistical model of the HVS into the measurement of image similarity. Figure 2.3

provides a high-level overview of the information-theoretic approach underlying VIF. At

the foundation of the VIF measurement, is the calculation of two information quantities:

(1) mutual information between the target (i.e. the actual reference image) and output

of the target passed through the HVS channel (this is considered reference information

content), and (2) mutual information between the target and the output of the distorted

image passed through the HVS channel (this is considered distorted information content

and it is assumed that the distorted image can be modeled as the target passed through

a distortion channel). In this work, VIFP, a computationally simpler multi-scale pixel-

based implementation of VIF is used, but the concept illustrated in Figure 2.3 remains
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Figure 2.3. System diagram for visual information fidelity (VIF). In the-
ory, the distorted image is modeled as the reference image subject to some
distortion. In practice, a given distorted image is fed directly into the
HVS model and its relation to the reference via the distortion operation
is assumed. The final measurement is the ratio between two information
measures: the reference information content (i.e., the mutual information
between the actual and perceived target images), and the mutual informa-
tion between the actual target and distorted images. Adapted from [2]

the same. VIFP can be expressed as :

V IFP (X, Y ) =

∑
s

∑
b I(x(s, b); fHV S(y(s, b))∑

s

∑
b I(x(s, b); fHV S(x(s, b))

(2.14)

where x and y are arrays of pixels values inside a block, b, at a particular scale s, I(•; ◦)

is the mutual information between the inputs, and fHV S is the HVS channel applied to

an input. A “0” value for VIFP means that all information is lost to distortion. A value

of “1” means that the reference content is identical to the distortion. Values greater than

“1” imply that the contrast of the distortion channel is enhanced over the reference.
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Earth Movers Distance. The Earth Mover’s Distance (EMD) can be used to measure

the distance between images that are summarized by vector representations of their fea-

tures [87]. As such, EMD is considered a feature-based matching approach, and assumes

that the minimum work required to move the given image’s collection of features (i.e.,

piles of “earth”) across some distance into the collection of features associated with the

target (i.e., holes), is correlated with visual similarity between the images. The amount

of “earth” to move and the capacity of the available holes is variable, which means that

EMD allows for comparisons between sets of features that are different in size. The work

minimization that is the backbone of the EMD calculation is based on the classic trans-

portation problem from linear programming [88]. Let SX and SY be the collection of

weighted feature vectors the images and, D = [dij] be the ground distance matrix in

feature space, and F = [fij] be the flow matrix (i.e. specifying how much of one feature

is transported to another). With this, the objective is to find a flow that minimizes the

overall work:

WORK(SX , SY ,F) =
m∑
i=1

n∑
j=1

di,jfi,j (2.15)

subject to the normal constraints of a transportation problem [88]. Once the optimal

flow is determined as the solution to the transportation problem, EMD is defined as the

resulting work normalized by the total flow that occurs as part of the process:

EMD(SX , SY ) =

∑m
i=1

∑n
j=1 di,jfi,j∑m

i=1

∑n
j=1 fi,j

(2.16)

For microscopy images, there are many feasible ways to vectorize and weight the collections

of features, SX and SY . This is explored further in Chapter 3.
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Figure 2.4. Basic 2D planar transformations (linear transformations applied
with matrix multiplications to vertices/pixels) alongside a non-rigid (allows
local warping) and multimodal transformation. Adapted from [3].

2.3.2. Image Registration

The goal of image registration is to establish a one-to-one pixel-wise correspondence be-

tween two or more adjacent images. References to image registration in this work imply

the computation of 2D planar transformations - illustrated in Figure 2.4. Search strategies

to obtain the values parameterizing the ideal spatial correction necessary to bring the two

images into coincidence are often formulated as an optimization problem whose objective

makes use of an image similarity measurement. Mismatch of modality (i.e. registering a

pristine simulation with a real experimental image) is a significant problem in the context

of simulation-to-experimental image comparisons, which often involves rectifying sizable

differences in contrast, noise levels, structural uncertainty etc. In Figure 2.4, a multimodal

registration involves defining an appropriate transformation from the 2D planar “drawn”

smiley, to a realistic 3D photographed smiley.
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In general, the image registration methods implemented in this work are based on a

coarse-to-fine search strategy. The “coarse” search begins after the selection or simulation

of a candidate image patch (referred to as a reference window) and uses downsampling and

quantization (reduces the size and depth of pixel value in the images) to make the initial

comparisons relatively inexpensive. During this step, the target image is held fixed, and

a variant of cross-correlation is used to find the appropriate translation of the reference

window. In the literature, this approach is often called template matching [89]. A cross-

correlation computation involves moving a portion of the reference window over a target

and computing the sum of products at each location. The cross-correlation will be highest

at positions where the reference window is best aligned (most similar) to the target. If

rotational differences between the images exist, then an additional iterative step that con-

siders rotations of the reference window and the associated RMSE between pixel values

is used to determine the optimal rotation of the reference window. This transformation,

a combination of translation and rotation, is often referred to as a Euclidean transforma-

tion, because Euclidean distances are preserved (see Figure 2.4 for and example). The

fine search step then proceeds as an iterative optimization of a “similarity measure” on

the original (or upsampled) versions of the images. Depending on the upsampling and

interpolation techniques, subpixel translations as well as minor rotational offsets can be

computed.

Whenever the correspondence between the structures in the images cannot achieved

using a basic 2D planar transform (Figure 2.4), the next strategy to explore often involves

some form of localized stretching. These strategies belong to the realm of non-rigid

image registration and are beyond the scope of registration techniques considered in this
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work. To some extent, local modifications to the structure used in simulation of the

reference window images is one way to capture localized deformations, however, in the

broad literature on the topic, stretching operations are applied to the image directly,

and this sort of bottom-up modification to the imaged object is not as common. Non-

rigid registration techniques are perhaps most commonly utilized in the field of medical

imaging, and in particular, are well-studied in context of brain for capturing patterns of

functional activity, resolving smaller anatomical differences across structures, etc. [89].

For a more comprehensive overview of non-rigid registration techniques, refer to [90].

2.3.3. Deep Learning

Deep learning (DL) is a type of machine learning (i.e., a technique that “enables computer

systems to improve with experience and data” [91]) that uses deep, nested hierarchies to

facilitate the learning of complex representations. One of the workhorse DL architectures

is the convolutional neural network (CNN). In the most general sense, a CNN is a dedi-

cated sequence of linear and non-linear mathematical operations (layers) that transform

an input volume into an output volume of arbitrary spatial size. A raw 2D image is

perhaps the most common initial input for a CNN (the seminal work [75] is based on

2D imaging), and the intervening data, referred to as feature maps, evolve sequentially

through each layer to reveal a progression of higher-level abstractions of the initial input.

Generally, linear operations are applied to feature maps in a sliding window manner.

These operations, referred to as convolutions, multiply a portion of the feature map by a

set of critical weights. To introduce non-linearity and dimensionality reduction into the

system, the output feature map of the convolution is then typically fed to an activation
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layer, followed by some form of pooling. The activation layer uses a function (i.e., a

rectified linear unit (ReLU)), which applies a non-linearity that forces negative numbers

to zero, and the pooling layer downsamples the features in each window to a single value.

The final spatial size of the CNN output is dictated by the task. For example, in binary

image classification, the initial color image of size w × h × 3 is transformed to a single

column vector of size 2 × 1, which in some form represents the probability of each class.

CNNs are trained in the sense that, to the extent that the final values do not match

the anticipated (as measured by some objective), gradient methods are used to update

the weights of the network. Weight updates are repeated until the network has learned

the full transformation so that performance on the training set is adequate, yet general

enough for future unseen cases.

Unfortunately, one of the challenges associated with training a CNN for microscopy

or other general scientific applications, is obtaining a large labeled image dataset. To put

things in context, one of the most popular public benchmark datasets for object recog-

nition with natural images, ImageNet [92], contains over 14 million labeled images (each

containing often several labeled objects). For scientific images, proper image annotation

is often a highly nuanced task for experts only. To the extent that the task can be posed

in layman’s terms, there are resources available for crowdsourced data labeling. Of par-

ticular interest to this work, is crowdsourced data labeling through Amazon’s Mechanical

Turk. With this platform, we can post images for annotation and recruit a sizable work-

force to help in the construction of a dataset for CNN training.
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Object Recognition with YOLOv3. The goal of object recognition is to extend the

image-level classifications to specific objects within the image. This requires each object

first be identified and then referred to in some way by its location and class. Bounding

boxes are rectilinear polygon annotations - usually rectangles – that indicate that pres-

ence of an object (usually of a specific class) in an image. As such, an image that passes

through a CNN trained for object recognition will be transformed into a collection of

bounding boxes, which can then be further processed for the downstream task at hand.

The YOLO (You Only Look Once) [93] object detection algorithm is a popular method

for fast object detection that boasts great localization and classification accuracy on a

variety of public benchmarks. The object detection tasks in this work build on top of

YOLOv3 [94]. Specifically, in Chapter 6 we detail the use of a YOLOv3-based object

detection pipeline, which is constructed to locate and classify all of the individual image

components of figures scraped from scientific journal articles.

Image Segmentation with Adversarial Networks. In pixel-wise segmentation, the

goal is to assign each pixel of an input image to a specific class, and the output is of the

same spatial size as the input. This is despite several transformations within the network

which contract and expand the spatial size of the intervening data. The CV literature on

segmentation is rich, as this is one of the oldest and most popular problems in the field. As

such, I suggest interested readers begin with the overview of the traditional segmentation

approaches in Richard Szelski’s textbook [3], and then consult the literature for more

recent advances. Here, I discuss image segmentation from the perspective of adversarial

nets, which since their formal introduction in 2014 [15] have garnered much attention in
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the field of DL. Designing an adversarial net framework involves training a generative

model (usually a CNN), by forcing it to compete against a discriminative adversary (a

second CNN) which is also being trained, but in direct conflict with the generator. The

discriminator wants to be able to tell if the results from the generator are real or fake. If the

generator successfully fools the discriminator, then the distribution from which real data

arises is learned. This framework for CNNs to compete in an adversarial fashion is referred

to as a generative adversarial network (GAN) [15]. In its standard form, the generative

model of the GAN starts generating samples based on random noise. To incorporate

additional domain input in the design of both the generator and discriminator, it is

common to construct a “conditional” GAN. Here, conditioning on additional information

allows for more control over the data generation process, and in this form, the network is

referred to as a conditional GAN (i.e. cGAN) [95].

With the cGAN framework, it is possible to pose the image segmentation problem

as one of image-to-image translation. The adversarial image-to-image translation variant

mentioned in Chapter 7 as part of a future direction to pursue, is a cGAN based on the

popular pix2pix setup [96], which involves learning a custom mapping from input image to

output image in an end-to-end fashion (output is same size and resolution as input). This

is accomplished with a UNet [97] generator, taking an observed input image, X, alongside

some and random noise vector z, and learning the mapping to Y , the segmented image

(i.e., G : {X, z} → Y ). Trained in an adversarial way, the generator learns to create

valid image segmentations on unseen images that are as convincingly “real” as the ground

truth segmentations provided in the training set. After training is complete, the generator

functions as a custom filter that can be used to segment further images that are similar
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to the class of images presented during training. The particular segmentation problem

suggested in Chapter 7 involves the separation of image annotations (i.e., scale bars,

subfigure labels, geometric shapes to highlight important details, etc.) from microscopy

image content. This is a special case of the general microscopy image segmentation

problem (separate and classify all image content) that is essential if images from literature

are to be used in context of further image processing or CV pipelines.
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2.4. Natural Language Processing for Scientific Literature

With the explosion of web-based communications, vast amounts of information are

conveyed in the form of digital text. Even before the importance of digital text was

realized, linguists had been interested in how structural models of language [98], language

universals [99], and syntactic text parsing [100] (just to name a few) could be used to help

machines analyze and understand human language and intent. The eventual maturation

of these concepts in context of the availability of critical computational resources, created

the foundation for modern natural language processing (NLP).

In its most rudimentary form, NLP uses computerized rule-based approaches to make

sense of concepts in unstructured text. In practice, this involves the use of dictionary

lookups, handcrafted word features, and hand-coded language rules. When the language

is highly constrained, and the domain of applicability is narrow, rule-based approaches

can be quite effective [101–103]. In contrast, when topic and content are relatively uncon-

strained, (e.g., for general web-based communications such as articles, chat windows, etc.),

the overwhelming size and the inherent ambiguity of natural language renders rule-based

NLP inadequate as a standalone solution. As a result, the priorities in the field became

reoriented towards simple statistical approaches over complex rule-based analysis [104].

In particular, machine learning methods based on probabilities were gaining traction, and

despite some notable skepticism towards probabilistic language models [105], this makes

sense: utilizing the overabundance of real language data, statistical models can learn

the most discriminative representations for languages and the most common formalisms

[104]. This statistical approach had a staying interest up until the early 2010’s when it

was gradually replaced by neural machine translation (see [106] for a seminal example),
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which used large neural networks (NNs) to read a sentence in one language and output

the correct translation directly in another language. NNs have achieved impressive accu-

racy across a variety of NLP tasks including automatic speech recognition [107], visual

question answering [108], sentiment analysis [109], etc. The popular Word2Vec [110] uses

NNs to project large sparse vector representations of words into a lower-dimensional space

that preserves semantic relationships. This has powerful implications for assigning textual

descriptions to collections of words or phrases that are further explored it this work.

In the realm of physical science, scientific literature has been the primary target do-

main for the development of NLP tools. This is largely a byproduct of both abundance,

and the fact that these journal articles use a systematic and highly-formalized scien-

tific language to communicate ideas. Some of these first tools for NLP in this domain

are designed to tackle “Chemical Entity Recognition”, which involves the identification

of molecular structure information from both structure tables and prose in the “Exper-

iments” or “Synthesis” sections of scientific articles [24, 111, 112]. These basic tools

established exclusive grammars related to chemistry documents and have been refined to

handle arbitrary chemical and biological entities in scientific and technical document such

as patents [113, 114], as well as extended to the field of materials science for creating au-

togenerated materials property databases [115]. Eventually, these specialized rule-driven

material-informatics parsers were usurped by machine learning-based methods applied

to more general unstructured text [116, 117]. The ability to robustly process textual

data from literature opens the door for the creation of literature-trained machine learning

pipeline [117, 118], which is an underlying motivation for this work. Here I outline NLP

tasks that are used in the construction of one for these pipelines.
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2.4.1. Rule-Base Caption Assignment

Figures are the standard means for displaying visually meaningful data in scientific arti-

cles. Moreover, figures are almost always accompanied by a caption – which can be very

rich with descriptive information pertaining to specific elements of the figure. In fact, a

reader can often get a good impression of the full article with only a careful inspection of

the figures and captions. However, for a computer, the task of recognizing how the words

of the caption text map to each individual image or collection of images in the full figure

(e.g. caption assignment), is ambiguous at best. Here, we detail elements of the approach

used in this work for caption assignment by means of rule-based sentence parsing. Much

of this approach involves the create of custom extensions for standard NLP tools provided

by the spaCy NLP library for Python [119].

In particular, this approach is based heavily on the use of custom regular expressions.

Regular expressions are sequences of characters that describe patterns of text to extract

during search. Regular expressions are used at the beginning of caption assignment to

identify instances where a specific component of the figure (i.e., a subfigure) is being

referenced. These instances are referred to as subfigure tokens and the pattern of an

open parenthesis, followed by a collection of internal alphabetic or numerical characters,

proceeded by some closing of the opening punctuation, is one of several pattern options

considered when defining subfigure tokens. Consider the caption text after subfigure to-

kenization, as outlined in Table 2.1. In the example in Table 2.1, the bolded subfigure

tokens are recognized within the caption, and are classified to determine whether further

enumeration is necessary to figure out the number of subfigures implied. For example, the

(a) and (b) token belongs to the parenthesis 02 and alpha 02, where parenthesis
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Table 2.1. Example subfigure tokenization of a caption text revealing the
token classification and the corresponding implied subfigures.

Caption text (raw)

(a) and (b) TEM images of 1.93 wt% Ru–WSe2. (c) HRTEM image of 1.93 wt%
Ru–WSe2. (d, e) The enlarged area denoted in (c) corresponds to the HRTEM
images of WSe2. (f) HAADF-STEM image of 1.93 wt% Ru–WSe2. (g - i) The EDS
mapping of Ru, W, and Se, respectively.

Text adapted from: Inorg. Chem. Front., 2019, 6, 1382-1387

Subfigure tokens:

Token Token class Subfigures implied
(a) and (b) parenthesis 02 and alpha 02 [ a , b ]
(c) parenthesis 02 none alpha 01 [ c ]
(d, e) parenthesis 02 comma alpha 02 [ d , e ]
(c) parenthesis 02 none alpha 01 [ c ]
(f) parenthesis 02 none alpha 01 [ f ]
(g - i) parenthesis 02 dash alpha 03 [ g , h , i ]

refers to the opening punctuation, 02 signifies punctuation both before and after the in-

ternal character, and is the internal delimiter between characters inside the punctuation,

alpha is the internal character type, and the final 02 denotes the number of explicit char-

acters that are present in the token. This token, with and as the internal delimiter, only

references two subfigures. Tokens that do not have an internal delimiter, or have commas

separating each of the characters are interpreted similarly where each subfigure is given in

the token explicitly. This is in contrast to cases where the dash is the internal delimiter,

signifying that subfigures appearing in the interval are implied and should be included

when text is assigned to the given token. The (g - i) token at the bottom of Table 2.1 is

a good example of this, as it actually references subfigures g, h, and i.
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Table 2.2. Example of a custom sentence-level regex applied to a POS-
tagged caption, and the resulting text strings assigned to each subfigure.

Caption text (custom POS tagging)

(‘(a) and (b)’, ‘CAP’),(‘TEM images’, ‘NC’),(‘of’, ‘IN’),(‘1.93

wt% Ru{WSe2’, ‘NC’), ... ,(‘(d, e)’, ‘CAP’),(‘The enlarged area’,

‘NC’),(‘denoted’, ‘IR’),(‘in’, ‘IN’),(‘(c)’, ‘CAP’),(‘corresponds’,

‘IR’),(‘to’, ‘IN’),(‘the HRTEM images’, ‘NC’),...

Pattern #1:

("CAP", "!", "NC", "IN", "*", ".")

What does this mean? Start with a caption delimiter and do not record any text until
a noun chunk is found that contains a proposition immediately after. From there,
include all text until a full stop is detected

Text assigned to (a and b) from Pattern #1

(a) TEM images of 1.93 wt% Ru-WSe2
(b) TEM images of 1.93 wt% Ru-WSe2

From here, subfigure tokens become the anchor points around which caption text is

distributed. To distribute the caption text, the sentence is again tokenized, but this time

by assigning the proper part-of-speech (POS) to each word. This is a common preprocess-

ing step in NLP pipelines referred to as POS tagging. For this custom implementation of

POS tagging, subfigure tokens (CAP) are identified alongside standard POS tags, such as

singular noun (NN), verb (VB), preposition (IN), etc. In addition to the custom tagging

of subfigure tokens, noun phrases are further consolidated into noun chunks (NC), and a

tag for internal referencing is added, which marks an instance where a subfigure tokens is

mentioned within the scope of another. With the caption now a sequence of customized
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POS tokens, each sequence is matched against a dictionary of common sentence patterns

to find all the text associated with the discussion of a given subfigure. In addition to

looking for sequences of POS tokens, these patterns utilize include all “*”, and exclude

until “!” wildcards, and a general maximum count on the number of subfigure tokens in a

given sentence as a means to achieve both flexibility and specificity when assigning text to

a subfigure. Consider the POS-tagged caption text in Table 2.2. Pattern #1 is provided

as an example of an encoded sentence structure that is common in figure captions. The

interpretation of the encoded pattern itself is provided in Table 2.2. The text surrounding

the (a) and (b) token fits this pattern, and as a result, is parsed accordingly.

2.4.2. Statistical Topic Modeling

Caption assignment is based heavily on POS tagging, however, by itself, POS tagging is

not sufficient for understanding what is actually being described by the text. One way

to start understanding the relationship between individual words and the main idea of a

body of text is through a technique called topic modeling. Topic modeling is a statistical

methodology that clusters documents into groups, such that documents within a given

group are related by common themes, or “topics”, and would be considered similar to a

human observer. The field itself can be traced to a few seminal works that approach the

general problem of trying to automatically organize, summarize, and understand large

electronic archives [120–123]. In this work, topic modeling is used to further enhance the

descriptive power of an image’s assigned caption text, by providing a more general context

for the presence of the caption text. For example, a caption might only discuss how a

material functions as a “highly-promising anode material because it is energy dense”.
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The context of this being in reference to “Li-ion batteries” is an example of the type of

description that might evolve for this image if topic modeling is considered.

Latent Dirichlet Allocation (LDA) [123], the primary method considered for topic

modeling in this work, involves parameter optimization associated with two important

representations: (1) a “topic”, which is a multinomial probability distribution over a col-

lection of words, and (2) a “document”, which is modeled as a collection of topics. LDA

uses a maximum likelihood approach to provide estimates of two parameters that address

both “topic” and “document” probabilities, respectively. These parameters happen to be

distributed according to a Dirichlet distribution, part of the technique’s namesake, which

rather than sampling from the space of all real numbers, it is sampling over a probability

simplex. By fitting these parameters to the document set, the topic distributions and are

learned from data. One of the main challenges of this technique from a generalization

standpoint, is that LDA demands that the number of topics be specified a priori. The

number of topics is often only determined after utilizing a combination of human assess-

ment and statistical tools. Jelodar et al. [124] provide a useful overview highlighting

the multitude of ways in which LDA has impacted sematic data mining for information

retrieval, social media analysis, recommendation systems, etc.

In this work, LDA is applied to the abstract texts of scientific journal articles using

gensim [124], a popular open-source NLP library designed specifically for topic modeling.

Abstracts are useful for topic modeling because the information they provide is highly

contextualized, and each abstract tends to cover a singular topic. Models developed in this

study are trained on a corpus of nearly 15,000 abstract texts related to nanomaterials, with

both short abstracts and under/overused words filtered out to avoid reinforcing inaccurate
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word associations in the language model. This is not an uncommon preprocessing step for

NLP. As further preprocessing, all of the documents in the corpus are then transformed

into bag of words (BoW) vectors, which are vectors that represent the number of times a

word within the predefined vocabulary appears in an image. After this, the BoW vectors

are fed into the LDA model, along with indication of the number of topics. Once a model

is trained, it can be used to infer topic distributions on unseen text. If a name is given

to a particular topic (either manually or by some automated assignment approach) and

an image is associated with the text of the document, then this can provide additional

contextual annotation to images. The process used to automatically assign a single word

or short phrase to describe each topic is discussed in the next section.

2.4.3. Neural Network Word Embeddings

LDA topic models are constructed from large amounts of raw, unannotated text that have

been vectorized using a BoW approach. The BoW approach provides perhaps the simplest

form of numerical text representation: a vector of word counts. One notable drawback

to this technique is that word order is ignored, which can have a significant influence

on the meaning or expectation of the sentence. Interestingly, the development of what

is now a popular word embedding technique, “Word2Vec” [125], showed that the word

vectors obtained from training a simple neural network to predict single missing words

from surrounding context, or vis-versa, had what seemed like almost magical powers:

semantics were captured in mathematical manipulations of the vectorized words. The

seminal example is that king – man + woman gives a vector answer that is very close to

the vector representation for the word queen [126]. The “Word2Vec” style embeddings
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have even been extended to the materials science domain. Following the process outlined

in “Word2Vec” [125], Tshitoyan et al. [127] show that the king/queen-style arithmetic

example has an analogous counterpart in the materials science domain: ferromagnetic –

NiFe + IrMn antiferromagnetic.

The specific use case of “Word2Vec” in this study involves a computation of the cosine

similarity between a collection of embedded words to all the embedded words contained

in the predefined corpus. In particular, the LDA model infers topic distributions on

documents, where each topic distribution is a linear combination of keywords. These

keywords form a collection of words that are averaged and compared to all words in

the corpus. The top-N most similar words, based on “Word2Vec” embeddings, provide

informative labels to describe the LDA topic for the text. This is powerful because when

the text can be explicitly assigned to a given image, the semantics implied by not only

the paper, but the several thousands of papers in the field that are part of the corpus,

help label this image. The downside to this is that there is a tendency to miss novelty

as the words returned will bias contexts where the specific word is usually found, as

opposed to the actual specificity described in the paper. For example, nanoparticles are

commonly used in papers describing possible cancer treatments. If this represents the most

prototypical use case for that particular word in the corpus, then all is fine. If the paper

is talking about nanoparticle processing for optical applications, it is straightforward to

see how this all can become misleading. That is why it is extremely important to view

both LDA and “Word2Vec” as mechanisms for providing informed context to automated

labeling approaches, but also to be aware of their scope and limitations.
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CHAPTER 3

Quantifying Image Similarity for Automation in STEM

The task of quantifying image similarity between simulation and experi-
ment is an essential component of automated microscopy interpretation
and analysis. This work uses an extensive dataset of simulated atomic-
resolution microscopy images to evaluate the effectiveness of common pre-
processing techniques alongside both direct-pixel and feature-based image
similarity measurements. The dataset, titled atomagined, is open source
(https://doi.org/10.18126/szeq-yde5) and contains > 200,000 simulated
images with added synthetic noise to emulate distortion conditions com-
mon to the STEM imaging mode. The choice of preprocessing techniques
and image similarity measurements are important prerequisites for au-
tomation in microscopy interpretation that is commensurate with current
hardware, simulation, and acquisition process improvements.

3.1. Introduction

With the arrival of aberration-corrected electron optics, transmission electron mi-

croscopy (TEM) including scanning transmission electron microscopy (STEM) have be-

come indispensable tools for nanoscale materials analysis. TEM/STEM images provide an

unprecedented view of both the static and dynamic structure of matter with single-atom

sensitivity [12, 128–131]. However, in many cases, the image itself is only the starting

point into quantitative structural insight. It is often necessary to consider comparisons

with simulated images to determine how experimental contrast should be interpreted

[132], and an enhanced capacity to collect and store atomic-resolution images has only

exacerbated the severity of the bottleneck faced when the comparisons are manual.
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Initial efforts to establish automation in microscopy analysis have focused on the devel-

opment of image features to capture the shape, location, and overall appearance of perti-

nent aspects of the image [133, 134]. DeCost et al. [72] extended this feature development

approach by applying a “bag of visual words” paradigm [135], to classify microstructure

image data. Somnath et al. used a combination of singular value decomposition (SVD)

denoising with pattern matching to identify individual atomic coordinate positions and

defects [136]. Recently, convolutional neural networks (CNNs) [137], trained to identify

local chemical and structural states in unprocessed STEM images [76, 138], have been

combined with various object detectors to create automated defect recognition tools [77].

While these studies have all advanced the status quo for feature recognition and image

classification in atomic-resolution microscopy, they have not explicitly addressed the role

that various preprocessing, image similarity measurements, and distortion types play in

the task of measuring image similarity.

In general, there are two main approaches to measuring image similarity: (1) direct-

pixel and (2) feature-based approaches. Direct-pixel approaches quantify similarity pixel-

by-pixel. For feature-based approaches, the image is processed as a set of feature vectors,

and comparisons are performed in feature space. With recent improvements in the iden-

tification of atomic coordinate positions [139], feature-based approaches that make use of

coordinate and intensity information are of particular interest as a natural extension to

existing methods of automated analysis which capture and process these positions [77].

Here, we evaluate several direct-pixel similarity measurements, alongside a feature-

based approach, on an extensive dataset of simulated high-angle annular dark-field (HAADF)

STEM images. This dataset decouples (image) acquisition-related noise components from
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local structure changes, making it useful for testing the susceptibility of preprocessing

methods and similarity measurements to conditions frequently realized in experimental

imaging. Matching accuracy, ranking accuracy, and feature-based representations are

discussed in relation to the development of automated search and comparison tools.

3.2. Methods

3.2.1. Image Similarity Measurements

The goal of measuring image similarity is to be able to quantify the visual likeness between

a pair of images. Throughout this study, image similarity is reported as a distance.

This means that small distance values indicate the highest-degree of similarity, with zero

distance indicating a perfect match. The upper-bound on the distance (when it exists)

depends on preprocessing and often on image size. In the simplest form, pixel values are

considered explicitly (pixel-based approach) and the measure of likeness is a calculation

of the mean of the squared differences (i.e., errors) between pairs of corresponding pixels.

This mean squared error (MSE) is a popular similarity measurement because it satisfies

convexity, differentiability, and is computationally fast. However, the strength of the

error signal is often not sufficient for quantifying image likeness in accord with human

perception. To this end, a method such as the structural similarity index measure (SSIM)

[85] is explored. SSIM processes spatially proximate pixels as patches and quantifies

the likeness between patches based on a multiplicative combination of patch statistics

(e.g., luminance, contrast, and structure). This work leverages the scikit-image [140]

implementation of SSIM, which is tuned to measure the mean of the scores between

corresponding 39 × 39 pixel patches (∼3.9Å × 3.9Å).



71

The final pixel-based approach explored is visual information fidelity (VIF) [141]. VIF

is considered an information-theoretic method; i.e., it is rooted in classical information-

theoretic concepts such as information entropy, mutual information, etc. Specifically, VIF

represents the ratio of two information measures, one that attempts to quantify the loss

of information solely to the human visual system (HVS) in the reference image, and the

other which attempts to quantify the loss of information due to distortion (in the dis-

torted, or corresponding image being compared). This measurement uses a combination

of multiscale decompositions, distortion models, and models of the HVS. Figure 2.3 pro-

vides a concise system level overview of the VIF measurement. The pixel-domain variant

[141], provided by the authors of the original VIF measure, is referred to as VIFP. Refer

to [85] and [86] for more theory behind SSIM and VIF, respectively. Registration for

all direct-pixel comparisons is performed using a combination of iterative rotation with

normalized-cross correlation template matching in scikit-image [140].

To contrast the direct-pixel image comparisons, we engineered a feature-based ap-

proach based on nearest neighbor distance and integrated intensity for each atomic column

in an image. Feature-based comparisons have an advantage over direct-pixel comparisons

in that registration is not a prerequisite for matching. First, to transform an image into a

set of atomic column-based features, the (x, y) coordinates for all of the atomic columns

are recorded. For each of the P columns in the image, the (k−1) nearest neighbor column

distances are arranged in ascending order, and every entry within the vector is normalized

by the kth entry. In this form, a 2D M × N image becomes a P × (k − 1) collection of

features, where k is set to 25 for testing. This collection of image features is the SX in

Eq. 2.15 (SY is constructed from the image being compared to SX).
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This work relies on a technique called earth movers distance (EMD) to compute image

similarity between image features (Eq. 2.16). Conceptually, EMD quantifies the mini-

mum “cost” to transport the weights of a distributing set of features into a receiving set,

based on the location of the distributing features, and the relative distance and capacity

of each receiving features to store a portion of the weight. Specifically, EMD measures

the minimum distance between the two collections, allowing weights associated with each

feature to be permuted and partially distributed. For this study, distances between fea-

tures were defined in “city-block” space [142] (i.e., movements are constrained along one

dimension of space at a time when transporting weights). The integrated intensity of an

atomic column is the “weight” assigned to the feature. In general, the (x, y) coordinates

anchoring the positions of the features are not limited to intensity peaks. Other objects

such as diffraction peaks or particle centroids, could be represented in feature spaces, as

long as it their coordinates can be extracted consistently across images.

3.2.2. Image Preprocessing

Raw imaging data is highly susceptible to missing values, noise, and inconsistencies in

the acquisition process. In addition, without calibrating the detector used to form the

image, the true values from experiments are unknown. As a result, preprocessing is impor-

tant for improving data quality, and ensuring that conclusions drawn from comparisons

characterize the data accurately. Two common preprocessing techniques explored are

normalization and standardization. Normalization transforms the min/max values of the

numeric range to a scale between 0 and 1. In figures, we refer to normalization by specify-

ing the “[0,1]” bounds it enforces. Standardization, on the other hand, involves rescaling
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the collection of numeric values to have a zero mean and unit variance. In figures, we

refer to standardization using “[µ,σ]” to represent the mean/variance criteria it enforces.

3.2.3. Dataset Construction

Structure Prototypes and Supercells. Crystal structure data for inorganic com-

pounds were obtained via the Inorganic Crystal Structure Database (ICSD) [143]. 500

unique structure prototypes were selected at random from entries in the ICSD and were

rotated 4 times such that the resulting viewing angle coincided with a unique projection

along a random integer combination [uvw] direction (integers are restricted to a range

[-2,2]). The result is a collection of 2,000 distinct oriented supercells (composition +

viewing angle) with dimensions 25 × 25 × 25 Å. The chemistry of the structure pro-

totypes, symmetry information, etc., are all summarized as part of the full atomagined

dataset hosted by the Materials Data Facility (MDF), and are accessible via [144].

Image Simulations and Synthetic Distortions. Each oriented supercell is the in-

put to HAADF image simulation performed using the Prismatic simulation code [39, 41].

The output 3D scattering signal, is integrated radially within a range of 100-150 mrad,

to create a virtual detector image. Three benchmark conditions, namely pristine, clean,

and experiment (presented in Figure 3.1), represent the output of a perfect image sim-

ulation, a proxy for a denoised experimental image, and a proxy for a raw experimental

image, respectively, and are used to test combinations of preprocessing and similarity

measurements.
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Figure 3.1. The pristine condition is a raw STEM image simulation, and
the clean and experiment conditions refer to simulations with increasing
amounts of postprocessed distortion. The clean condition mimics a de-
noised experimental image, and the experiment condition mimics a raw
experimental image, without noise reduction.

Several different classes of distortions, applied to images of structures present in the

benchmark conditions, are used for image similarity measurements. Here, distortion is

a general term used to describe noise applied to the image simulation process (“image

distortion”) and/or the input structure used as input to the simulation (“input structure

distortion”). The distortion types are illustrated in Figure 3.2, and were chosen to mimic

some of the most commonly observed distortions in HAADF STEM images (see Section

3.5.2). The background, shot, and blur distortions in Figure 3.2 are all considered image

distortions because they affect the size, shape and/or relative position of the pixel inten-

sity distribution. The background distortion mimics STEM imaging under the condition

of long probe tails, and is applied by adding a constant value to all pixels in the image and

clipping on the high intensity end. This compresses the pixel intensity distribution (shifts

the mode) in the direction of brighter pixel values. In most atomic-resolution HAADF

STEM images, a majority of pixels in the image belong to the “background”, thus the po-

sition of the mode (the most frequently occurring intensity value) is an important feature

of this distortion type. The shot distortion adds signal-dependent Poisson noise, applied
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Figure 3.2. The image panels show examples of the background, shot, blur,
and point defect distortion types. At the bottom of each panel is a histogram
illustrating how the distortion concentration alters the distribution of pixel
values from the clean and experiment benchmark conditions.

as “electrons per probe” dose. Higher levels of distortion, corresponding to smaller doses,

produce increasingly discretized images with larger dynamic ranges (i.e., fewer distinct

pixel values in an image when dose is smaller, divided by dose, will have less unique pixels

values that span a greater total range). The blur distortion emulates the spreading of the

atomic column intensities from beam broadening and/or source size effects. This increase

in the pixel intensity values in the vicinity of the atomic columns is visible in the pixel

intensity distribution as a heavier right tail. Finally, the point defect distortion, generated

with the same image postprocessing conditions as the clean benchmark, is applied as a

localized structure modifications to the input supercell (i.e., an “input structure distor-

tion”). Moreover, despite visible degradation of the local geometry with increasing levels

of point defect distortion, the distortion is a local pixel rearrangement, therefore the pixel

intensity distribution is unaffected.
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Dataset Splits. When two images are compared, the target image is considered to be

the image that is fixed, or rather, is the image being matched to. This is consistent with

the mention of target images in the descriptions of image matching from Section 2.3.1.

Because the target image designation can change depending on the specific scenario, the

dataset is split according to the benchmark and distortion classifications. The split for the

benchmark class contains a total of 6,000 images, which is formed from the 2,000 unique

oriented supercells simulated to include the pristine, clean, and experiment benchmark

conditions. The distortion split of the dataset contains a total of 4,000 images constructed

from 400 unique oriented supercells selected at random, simulated with the four distortion

types (Figure 3.2) at two concentration levels, and an additional condition that combines

the experiment-type benchmark image with two concentration levels of the defect-style

distortion (400 × [(4 × 2) + (1 × 2)] =4,000). An exhaustive comparison between all

images across both the benchmark and distortions splits involves a total of 6,000 × 4,000

= 24,000,000 comparisons.
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3.3. Results and Discussion

We examine a series of relevant scenarios that address the suitability and/or capabil-

ity of the preprocessing and image similarity measurements introduced: (1) constrained

image matching (i.e., a database search), (2) structure and parameter refinement, and

(3) feature-based matching and clustering.

3.3.1. Constrained Image Matching and Retrieval

For constrained image matching, images from the pristine and experiment benchmark

classes were registered, separately, against all images belonging to a given distortion class.

The distortion class image with the smallest similarity distance was considered a “match”

to the given benchmark target. This search was repeated for each different class in the

distortion split. If the match contained an identical structure as the target, it was con-

sidered a true positive (TP) match. Naturally, a false positive (FP) is then an image of

the incorrect underlying identified as the match. Matching is considered “constrained” in

the sense that a TP match exists for each target, and it implies that the comparisons are

made between images that have been registered, or can be registered in a straightforward

manner, using scaling metadata with out-of-the-box registration algorithms. In other

words, it is an attempt to ensure high matching quality and eliminate potential artifacts

of sub-optimal registration.

The results of this constrained image matching depend heavily on the choice of pre-

processing technique and image similarity measurement (and much less on the specific

distortion class). For this reason, we do not further distinguish the specific distortion

class for each target, but rather, present the results across all distortion classes for a fixed
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Table 3.1. Constrained image matching results across all distortion classes,
grouped according to preprocessing technique within a fixed pristine and
experiment benchmark class.

pristine experiment

[0,1] [µ,σ] [0,1] [µ,σ]

MSE 0.79 0.99 0.04 0.99

SSIM 0.81 0.99 0.65 0.99

VIFP 1.00 N/A 0.99 N/A

EMD 0.79 0.90 0.89 0.91

benchmark class. Table 3.1 shows the matching accuracy scores for the task (i.e., the ratio

of TP matches found for each pristine and experiment target to the whole population of

targets). Again, the matching choices for each target were restricted to all images within

a given distortion class. VIFP appears to be a robust option for HAADF STEM image

matching, resulting in the highest matching accuracy scores for both the pristine and

experiment images as target, and standardization (where applicable) enhances matching

accuracy across the board – though it is likely not the most intuitive choice for preprocess-

ing because it introduces negative values into a construct (imaging) which lacks definite

meaning or interpretation for values in this range. With standardization, traditional,

direct image similarity measurement techniques such as MSE and SSIM are competitive

with an information-theoretic method such as VIFP which employs mathmatical models

of the HVS as a component of the measurement.

It seems the success of standardization over normalization for MSE and SSIM may be

rationalized using the concept of Weber (object) contrast [145] (i.e., the ratio of the ob-

ject/background luminance difference to background luminance). Weber contrast provides
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a way to quantify the visibility of the object in the image, relative to the background. Em-

pirically, we observe that the value of the numerator in the Weber contrast measurement

(one way to enhance the overall contrast) tends to improved with standardization. We

leave further quantitative assessment of Weber contrast an avenue for further exploration

because, strictly speaking, the extension of standard contrast measurements to accommo-

date negative background luminance is non-trivial, and negative background luminance

is exceedingly common across in many of the standardized HAADF STEM images. The

improvements with standardization are not as drastic for EMD and the above hypoth-

esis is generally less applicable because only groups of raw pixel values for the columns

themselves are considered (i.e., integrated intensity) in the measurement. It is apparent,

at least for these trials where registration is easily solved, that the feature-based EMD

comparisons are not practical for such detailed comparisons without fine-tuning - that is,

without further tuning some of the hyper-parameters associated with the construction of

the features (e.g., number of nearest neighbors, choice of weights for each feature, etc.).
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Figure 3.3. Grid showing the anticipated ordering of the similarity distances
for each distortion class, relative to the experiment benchmark (leftmost
column). Traversing the grid from left-to-right within a row (distortion
class) provides a visualization of increasing similarity distance.

3.3.2. Structure and Parameter Refinement

For structure and/or acquisition parameter refinement, structure refers to the oriented

supercell that is the input to an image simulation, and parameters are experimental

acquisition parameters or forward model parameters that can be used in simulation to

recreate aspects of an observed image. This scenario assumes that the imaged structure is

mostly known, and the purpose is to quantify the extent to which parameters of an image

simulation, microscope acquisition conditions, or small changes to the input structure file

used simulated an image, impact certain quantitative aspects of image similarity. For

example, to better characterize the thickness of an imaged structure, one approach is to
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Table 3.2. Ranking accuracy results, grouped according to preprocessing
technique within a fixed distortion class.

background shot blur point defect

[0,1] [µ,σ] [0,1] [µ,σ] [0,1] [µ,σ] [0,1] [µ,σ]

MSE 0.67 0.01 0.02 0.69 0.71 0.95 0.32 0.92

SSIM 0.93 0.01 0.00 0.73 0.98 0.98 0.56 0.97

VIFP 1.00 N/A 0.93 N/A 1.00 N/A 0.95 N/A

EMD 0.78 0.43 0.01 0.15 0.57 0.35 0.90 0.95

sample intensity configurations produced by simulating images at varying thicknesses with

lateral positions fixed, and determine which thickness produces column intensities that are

most consistent with the observed experiment. If aspects of the structure are in question

(i.e., the interface region of a grain boundary, or the structure in the region surrounding

a point defect), then sampling structural configurations to match an experimental image

is necessary, where both lateral positions of the simulated structure, and thickness is

varied. In both cases, the similarity measurement must adequately quantify what are

often visually subtle changes in the statistics of the image, in order to rank the image

appropriately against several other images containing similar subtle changes.

Figure 3.3 demonstrates the anticipated ordering of image similarity distances for a

comparison with the experiment benchmark. The images in the leftmost column are

the experimental benchmark targets (duplicated for visual purposes) and the subsequent

columns to the right contain images of the same structure with progressively higher sim-

ilarity distance (organized to show a different distortion class across each row). If the

image similarity distance between the left panel and the successive panels in a row is

strictly increasing, then the individual trial is a success. Ranking accuracy, or the ratio of
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Figure 3.4. The effects of normalization and standardization on the pixel
intensity distributions provide a means to begin rationalizing how prepro-
cessing has an effect on ranking accuracy. Here, standardization reduces
the distance between the modes of dissimilar distributions, which decreases
the likelihood of ranking success across a given trial.

“success” trials, to the total number of attempted trials, is used to quantify performance

on this ordering task.

Table 3.2 provides the ranking accuracy (by distortion class) for each image similarity

measurement and the associated preprocessing techniques with the experiment benchmark

as the target. Overall, normalization results in lower MSE and SSIM ranking accuracy

compared to standardization, except for in the case of background distortion. Figure 3.4

illustrates how normalization, applied to images of the dataset with different levels of back-

ground noise, reinforces separation and proper ordering of the histogram modes, whereas

standardization appears to collapse the positions of the modes (or at least reduces the

distance between the modes of dissimilar distributions), which to some extent, negates the

influence of this important feature on the overall similarity measurement. As mentioned
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in the discussion of Figure 3.2, it is the position of the mode that encodes the amount

of this particular “background” distortion, so it follows that the relative repositioning

of the modes due to preprocesssing is likely problematic. This is similar to performance

decrease for shot distortion ranking accuracy with MSE and SSIM when normalization is

used, that is to say that the distortion amount is related to the dynamic range of pixel

values (the way it is applied), and normalization negates this range feature.

Overall, VIFP achieves the highest scores for all distortions affecting the the struc-

ture of the actual image (i.e., blur, shot, background) and not the imaged structure, as

in the point defect condition. For the point defect condition, SSIM provides the greatest

accuracy when standardization is used, and the feature-based approach with EMD is com-

petitive (tying the VIFP ranking accuracy). The strength of the feature-based approach

in this scenario is in its ability to achieve commensurate ranking accuracy for the point

defect class (the kind of distortion that it is designed for) without registration. This has

interesting implications not only for situations where registration is non-trivial, but also

for clustering and partial matching – topics explored in the next section. There are also

differences to consider in the comparison techniques when it comes to profiling real time

execution (refer to the supplementary information – Section 3.5.1).
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3.3.3. Feature-Based Matching and Clustering

Throughout the previous scenarios, a feature-based image representation with EMD has

shown the capacity for effective similarity comparisons between images with different

concentrations of point defects, but subpar matching and ranking accuracy performance

across the other distortion conditions tested suggests that it is not the most sensible

choice when registration is tractable. However, to the extent that registration is non-

trivial (e.g., it is not uncommon for atomic-scale images to contain regions of a local

nanostructured phases, grain boundaries, or dislocation cores, etc.), the “in-the-wild”

search capabilities that feature-based representation with EMD offers appears promising

for matching based on partial similarities (partial-matching), and/or for clustering similar

atomic columns based on relative intensity of the columns and/or local coordination. The

scenario involving twin boundaries in [110] CdTe (Figure 3.5a) underscores the value of

feature-based approach for partial-matching. In the absence of an exact matching twin

boundary structure in the dataset, the ideal TP match is the image containing the correct

corresponding bulk structure. In this situation, feature-based representation with EMD

is the only comparison method successful in immediately identifying the TP match, and

beyond this, a similar diamond cubic Si structure that was present in the dataset. The

[110] CdTe was eventually returned with VIFP and SSIM comparisons, but it was not

considered the actual closest match.

Additionally, making use of the fact that each image is transformed into a set of

features before an image similarity measurement with EMD, provides for a way to cluster

the atomic columns into structurally, and sometimes chemically, meaningful groups. For

example, Figure 3.5b highlights snapshots of three different oriented supercells. In the
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Figure 3.5. (a) The image grid shows the first three images returned (read-
ing down each column) for the image similarity measurements tested when
the twin boundary image is the target. The feature-based approach with
EMD has the useful characteristic of being able to identify structures that
are not identical but contain similar parts (first image), and match across
different scales without scaling or alignment between the images being com-
pared (second image). The pixel-based approaches show some success in
finding the associated bulk structure, but appear more vulnerable to FP’s
that show similarity on a pixel level, but do not correspond structurally to
the target. (b) Clustering with the ”atomic column” features shows promise
in its ability to group similar atomic columns in a chemically and/or func-
tionally logical way, and also in (c) identifying useful structural correspon-
dences between experiments and image simulations.

complex bromide compound (left image of Figure 3.5b), each atom type that gives rise to

a distinct atomic column in the image is given a separate group (color) when clustered in

the feature space. For the phosphate compound (center) and chlorine trifluoride (right),

atoms of the same chemical species are even further divided into separate groups based

on their local coordination. The images in Figure 3.5c illustrate the clustering of an

experimental image alongside the clustering of a proposed simulation with the columns
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assigned to groups consistently across the images (i.e., top columns belong to the bulk

of grain 1, bottom columns belong to the bulk of grain 2, and columns in the middle

are part of the interface). This sort of clustering is useful because it facilitates a degree

of automation in the comparison of specific regions of an image, enabling one to isolate

critical regions (i.e., carry out structure-based image segmentation), and compare images

on the basis of these regions. In other words, the value of developing feature-based

comparisons is rooted in their flexibility to function as both a means for useful image

comparison across scale and orientation (when used with EMD), as well as a mechanism

for automatically clustering atomic-resolution images into chemically and/or structurally

relevant parts.

3.4. Conclusion

The present study demonstrates the effectiveness of various image preprocessing and

comparison techniques in context of a large simulated dataset of atomic-resolution HAADF

STEM images. This is accomplished by exploring a series of relevant comparison scenar-

ios: (1) constrained image matching, (2) structure and parameter refinement, and (3)

feature-based matching and clustering. First, in constrained image matching, VIFP with

normalization achieves the highest matching accuracy scores for both the pristine and ex-

periment images as targets, but MSE and SSIM with standardization are also competitive,

achieving equivalent (or near equivalent) matching accuracy. Though standardization is

not the most intuitive preprocessing technique for images because it introduces negative

pixel values into the imaging construct, for the dataset tested, it proves especially effec-

tive for comparisons with MSE and SSIM. The magnitude of the pixel-wise error and the
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concept of object contrast, both affected by standardization, provide likely explanations

for the enhanced MSE and SSIM performance. Second, for structure and/or acquisition

parameter refinement scenarios (i.e., sampling different intensity or structural configura-

tions), VIFP again achieves the highest ranking accuracy scores for all distortions that

affect the specific pixel values encoding a fixed structure (e.g., blur, counts, background).

When the structure being imaged (simulated) is modified and the difference in the actual

local atomic structure is the feature to be quantified in the image comparison, SSIM with

standardization as preprocessing provides the greatest accuracy, and the feature-based

approach with EMD is competitive (tying the VIFP ranking accuracy). Finally, we high-

light some of the advantages of using a feature-based image representation with EMD as

both a means for matching based on partial similarities, or for clustering similar atomic

columns based on relative intensity of the columns and/or local coordination.

A quantitative image similarity measurement is the missing link to establishing auto-

mated interpretation strategies requiring comparisons (i.e., comparison between regions

within an image, across frames, to physics-based simulation, to images published across

literature, etc.), and all image similarity and preprocessing methods tested have certain

conditions under which their performance is optimal or near-optimal. It is therefore impor-

tant to understand how a given situation mimics one of the comparison scenarios outlined

in order to decided which comparison and preprocessing method most appropriate.
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3.5. Supplementary Information

3.5.1. Timing Considerations

Table 3.3. Profile of execution time for image comparison techniques and registration.

comparison/operation MSE SSIM VIFP EMD registration
average time (sec) 1.31E-4 4.62E-3 1.75E-2 1.96 1.98

Timing (i.e., profiling real time execution) - recorded in Table 3.3 - is another impor-

tant consideration in the assessment of image comparison techniques. The times recorded

represent an average time for each operation on a single thread of an Intel Broadwell

processor, taken after a minimum of 4.5 million measurements. Under these conditions,

the current VIFP implementation is ∼3.7x slower and ∼133x slower than SSIM and

MSE, respectively. Depending on the size of the dataset over which the comparisons are

made, this could have significant timing consequences. Another consideration is that a

full direct-pixel comparison that requires registration is on the same order of magnitude

(timing-wise) as a comparison in feature space using EMD. The time recorded for EMD

assumes that the average set of features for an image are 343 x 24, which means that a

typical image contains 343 atomic columns and is represented in nearest neighbor space

looking at the 24 closest neighbors. The time recorded for EMD does not include the

time it takes to construct the features. This can be done as a separated process offline.

Any significant deviation from average number of atomic columns will have an impact

on the timing as the measurement can be very slow (exponential worst case complexity),

especially for image with many atomic columns.
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3.5.2. Image Simulation and Synthetic Distortion

The approach for creating idealized STEM noise and distortions was originally developed

by Colin Ophus in MATLAB. The Python version, STEMnoise.py, is available as part of

the atomagined dataset [144]. In addition to a raw image simulation, the input values

given in the description of each distortion, can be used in STEMnoise.py to replicate the

distortion conditions tested in the atomagined dataset. The ‘–1’ or ‘–2’ appended to the

distortion name indicates a lower or higher concentration of the specified distortion, re-

spectively.

Table 3.4. Distortion condition descriptions with corresponding
STEMnoise.py inputs at low and high concentration levels.

distortion name description STEMnoise.py input array
(1: low conc., 2: high conc.)

pristine raw simulation for pristine structure ∅
clean trace amounts of distortion

(e.g., denoised experimental image)
[0.8, 400, 0.75, 2]

experiment higher concentration of distortion
(e.g., raw experimental image)

[2.8, 400, 1.25, 10]

blur source size broadening effect with
Gaussian blur

1: [1.8,400,0.75,2]
2: [2.8,400,0.75,2]

shot noise to capture Poisson characteris-
tics of the signal

1: [0.8,100,0.75,2]
2: [2.8,40,0.75,2]

background constant additive background (from
long tails of STEM probe)

1: [0.8,400,0.75,6]
2: [0.8,400,0.75,10]

point defect point defect in center of view, + lo-
cal relaxation around defect

1: defect-1 + [0.8,400,0.75,2]
2: defect-2 + [0.8,400,0.75,2]

combination combination of multiple distortions 1: defect-1 + [1.8,100,1.00,6]
2: defect-2 + [2.8,100,1.25,6]

https://github.com/MaterialEyes/atomagined/blob/master/helper/STEMnoise.py
https://github.com/MaterialEyes/atomagined/blob/master/helper/STEMnoise.py
https://github.com/MaterialEyes/atomagined/blob/master/helper/STEMnoise.py
https://github.com/MaterialEyes/atomagined/blob/master/helper/STEMnoise.py
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CHAPTER 4

Fusing Atomic-Scale Image Simulations into Experiments

To fully leverage the power of image simulation to corroborate and ex-
plain patterns and structures in atomic resolution microscopy, an initial
correspondence between the simulation and experimental image must be
established at the outset of further high accuracy simulations or calcula-
tions. Furthermore, if simulation is to be used in context of highly au-
tomated processes or high-throughput optimization, the process of finding
this correspondence itself must be automated. In this work, we intro-
duce ingrained, an open-source automation framework which solves for
this correspondence and fuses atomic resolution image simulations into
the experimental images to which they correspond. We describe herein
the overall ingrained workflow, focusing on its application to interface
structure approximations, and the development of an experimentally ra-
tionalized forward model for scanning tunneling microscopy simulation.

4.1. Introduction

Materials image simulations are becoming an integral part in the structural analysis

of complex materials systems. Having a three-dimensional atomistic structure of a ma-

terials system is valuable, both for understanding and for property prediction through

first principles simulations. For scanning transmission electron microscopy (STEM), the

electron-matter interactions governing the image formation process are well-codified in nu-

merical “multislice” simulations [37], and the combination of aberration-corrected STEM

images with these multislice simulations have been used effectively in a variety of con-

texts for structural determination with atomic precision [146–151]. Image simulations

have also proven useful in scanning tunneling microscopy (STM) in order to help solve for



91

surface structure or adsorption geometries [6, 152–154]. The success of these “simulation-

to-experiment” comparisons is in their ability to link information about the underlying

mechanisms generating the experimental observation to parameters and/or specific struc-

tures used in simulation. However, to utilize simulation for this purpose, a mapping

between simulation and the visual or measurable expectation from experiment must be

explicitly established (i.e., pixels from one image are mapped to corresponding pixels in

another). This process creating this mapping is referred to as image registration.

Image registration workflows are often divided into coarse and fine alignment steps

[155]. Coarse alignment typically involves identifying salient points and their correspon-

dences (so-called landmarks) across images. With landmarks in place, a point-set regis-

tration algorithm such as the iterative closest point (ICP) [156] ensures that the distance

between corresponding landmarks is minimized, and thus roughly aligned. Landmark

identification is used in both pycroscopy [157], and the ‘TurboReg’ plugin for ImageJ

[158] (image processing platforms for microscopy) as a recommended initial step before full

registration is executed. In many contexts, this landmark selection procedure is manual,

so the overall coarse registration is technically considered a semi-automated procedure.

There are ways to fully automate the selection and pairing of landmarks borrowing from

computer vision (SIFT + RANSAC [159, 160]), but this is generally expensive. In addition

to landmarks, intensity correlation is another approach to semi-automated coarse align-

ment, and fortunately, it does not rely on artificial markers placed in the field of view.

In the simplest cases, an approach such as phase cross-correlation [161] can automati-

cally remove translation (and rotation [162]) offset in images collected from pre-aligned

sensors, or from images collected in rapid succession as part of an image stack (video).



92

These are the initial steps taken by the popular SmartAlign [163] tool, which provides

general-purpose image processing for atomic-resolution time-series data from STEM.

In cases where registration is cast as a two-step procedure, an affine linear transfor-

mation is often sufficient for initial coarse alignment. This assumes that major spatial

discrepancies between images can be corrected by a combination of rotation, translation,

scaling, and shear. For the final “fine alignment” step, a straightforward intensity-based

approach proceeds as an iterative optimization of a “similarity measure” which takes into

account the explicit pixel values in each image [164], and in some cases, even subpixel

shifts [165, 166]. If the proper alignment cannot be achieved with rigid deformations, a

non-rigid registration approach can resolve local discrepancies in image content with a

set of local deformations. Non-rigid registration has been used for purposes ranging from

scan instability corrections in STEM imaging [167], to registration of MRI brain images

to help capture brain shift during surgery [168]. The above examples use registration to

compensate for spatial discrepancies that exist between two images, with the assumption

that the objects in the images are similar enough to be overlayed on top of each other.

Here registration can provide a quantitative measure of how the structures differ, or a

means to direct comparison. Contrast this with registration needs for simulated materials

characterization images that are used to corroborate experimental finding. With this, the

goal often involves more than just a solution for a single spatial transformation, but also,

the flexibility to modify the structure and/or imaging parameters to the forward model

in the loop (i.e., structure and parameter iteration are valuable additions to the overall

registration framework).



93

In most standard contexts, registration of a simulated materials characterization im-

age with an experimental image is considered separate from the forward simulation itself.

This is a sufficient approach when enough is known about the parameters of the forward

model to produce a reasonably appropriate image, but this is often not trivial. For ex-

ample. STM measurements are routinely used to probe thin film surface morphology

at atomic resolution. Simulations of STM images from density functional theory (DFT)

charge densities using the Tersoff and Hamann approximation [42] often accompany these

measurements in order to explore various surface geometries in a systematic way, but

can be challenging to match to experiment because the overall appearance of the image

is greatly influenced by small changes in parameters such as the charge density value to

construct the isosurface or the vertical distance of orbitals below the surface that are

considered to be accessible by the STM tip. These parameters are difficult to determine

quantitatively from experimental conditions and DFT results, and thus a decoupled for-

ward modeling and registration paradigm involving manual trial-and-error is less than

ideal for these characterization techniques. In fact, if one knows all the optimal parame-

ters to create a simulated image that matches an experimental image (i.e., has the correct

pixel size, atomic structure, etc.), then many of the popular image processing and com-

puter vision tools such as OpenCV and Hyperspy (in addition to others already been

mentioned), could be used to facilitate 2D correlation-based registration between a fixed

pair of images. But knowing these parameters, or even constructing an initial structural

model so that a simulated image can be created, is often not trivial.
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In this study we introduce ingrained, an automated framework for image registration

which allows for the fusion of atomic-resolution materials imaging simulations into the

experimental images to which they correspond. The framework is modular, allowing for

plug-and-play implementation of forward models for image simulations when an experi-

mental complement exists, and provides tools for programmatic construction of periodic

bicrystal interfacial structures from materials database queries. In addition to a frame-

work overview, we outline two valuable use cases for image registration with ingrained :

(1) an experimentally-informed initial bicrystal structure for further interface structure

refinement through heuristic search algorithms (e.g. basin hopping or genetic algorithm),

or high-accuracy structure refinement with multislice and high-angle annular dark-field

STEM comparisons); and (2) an experimentally-rationalized forward model for STM im-

age simulation that involves fine-tuning of imaging parameters. The ingrained toolkit has

recently been used to support the identification of rectangular hydrogenated borophene –

synthesized for the first time – from STM images [7]. Examples and instructions to access

ingrained are available on GitHub (https://github.com/MaterialEyes/ingrained).

4.2. Methods

4.2.1. Ingrained Framework Overview

The ingrained framework requires an experimental atomic-resolution microscopy image

as input. Conventional preprocessing operations such as Wiener filtering are often useful

for simple restoration of the original image if it has undergone significant degradation

during acquisition. The main components of the ingrained framework are depicted in

Figure 1. The first step is structure initialization, where initial input parameters are
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Figure 4.1. The series of panels provides an overview of the ingrained frame-
work applied to an experimental interface image. The user input, which
comprises an experimental image, configuration file, and initial set of pa-
rameters, is processed sequentially by the structure initialization, forward
modeling, and image registration modules. The resulting output is a simula-
tion with the best fit inside the experimental image (i.e., the ‘fused image’),
and a final structure with a parameterized fit-to-experiment.

used to assemble a starting structure (a bicrystal in this instance, but other non-interface

structures are possible). Next, a forward model produces a simulated image of the starting

structure, which is fused with the experimental image after an iterative optimization

procedure which registers the two images. The only manual step in the workflow, outside

of potential image preprocessing, involves setting up the parameters and/or constraints

used for structure initialization and forward modeling - no landmarks or manual image

manipulation are necessary to achieve suitable image registration. The final registration

result is a simulated image with a parameterized fit-to-experiment, as well as the structure

approximation (i.e., the structure that was used as the basis for the matching simulation).

The following sections provide additional input and implementation details.
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4.2.2. Structure Initialization

Depending on the nature of the imaged structure and its associated imaging modality,

the ingrained framework offers two methods for structure initialization. In the simplest

case, a database query tool can be used to programmatically download chemical structure

files from the Materials Project (MP) database [169] based on chemical formula and space

group information provided by the user in a configuration file (JSON format). With this,

if the goal is to register a bulk crystalline structure to the experimental image and the user

specifies a viewing direction, the structure is also rotated to the prescribed orientation

as part of the initialization. The second method of structure initialization involves the

automatic construction of bicrystal interfaces. In this mode, the configuration information

specifies the composition and viewing orientation for two crystal structure files (grains) in

the image, as well as constrain certain dimensions of the “over lattice” constructed around

the overall composite bicrystal. In both the single structure query and the bicrystal

construction, the user specifies orientation by providing the uvw projection direction (i.e.,

direction from viewpoint to screen), the uvw upwards direction (i.e., upwards direction on

the screen) and the tilt angle, which is a misorientation applied after the previous vector

constraints have been satisfied. The required construction parameters include: min/max

depth, min/max width, interface width, etc. Currently, the size of the over lattice (which

defines the simulation cell for the bicrystal) is controlled by these restrictions on the real-

space dimensions. Image recognition tools aimed at identifying chemistry, scaling, and

orientation information from the images directly is an avenue of further research that

could enhance the automation in this step.
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Proceeding in this bicrystal mode, the information in the configuration file is used to

construct two oriented grains that are combined into a single bicrystal structure, satisfying

periodicity conditions through application of uniform strain (i.e., small discrepancies in

individual dimension requirements are removed by strain). This is necessary, particularly

for interface structures with low symmetry, as it is otherwise intractable to create atomic

structures that are small (for computational efficiency in simulations) but remain periodic

in at least two dimensions (required for some simulation approaches). The procedure for

ensuring periodicity involves estimating repeat length from the grains, and then using the

near-coincidence site lattice approach (CSL) with subspace search outlined in Buurma et

al. [170] to determine the appropriate dimensions for the subsuming over lattice. The

bicrystal can then be used in materials modeling context and for image simulation.

4.2.3. Forward Modeling

All the previous configuration parameters are specific to the assembly of the initial struc-

ture. Note that this structure initialization feature is not required and can be bypassed

in situations where an initial structure and/or partial charge density data (STM simu-

lations) is already provided. The relevancy of this initialization step is entirely dictated

by the input structure requirements of the proceeding forward modeling step. In general,

the forward model simulates an image from an atomistic structure and requires a set of

simulation parameters. These simulation parameters are kept separate from the struc-

ture initialization parameters (where applicable) because they are specific to the forward

model being implemented.
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Currently, the ingrained toolkit provides forward modeling options for both high-angle

annular dark-field (HAADF) STEM image simulation, as well as for STM. HAADF STEM

image simulation is performed as a simple convolution of the atomic coordinates with a

point spread function for the microscope, using Kirkland’s incostem code [35]. The specific

parameters that control image formation based on physical principles (i.e., defocus, sam-

ple thickness, etc.) are consistent with the parameters discussed in [35]. This convolution

approach is convenient because the calculation of an image is performed as a simple mul-

tiplication. This provides a tremendous speed advantage over other more quantitatively

accurate techniques and in many cases, is capable of capturing many of the same pertinent

features [35]. One should note, however, that convolution is in some cases not quantita-

tively accurate, especially in reproducing the contrast between different elements. The

ability of ingrained to distinguish between different structural models is directly limited

by the accuracy of image simulations. To improve the accuracy of the image simulations,

the multislice or the more computationally efficient PRISM approach can be employed

using other STEM simulation codes such as Prismatic [39, 41]. The interface of additional

python-based image simulations codes with ingrained is straightforward. Alternatively,

the initial correspondence obtained using ingrained with convolution simulation should

be carefully checked with more accurate image simulation approaches. Refer to Sections

2.1.1 and 2.1.2 for further details and limitations.
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For the STM mode, we developed a forward model to generate a simulated STM

image from electronic charge densities data. Experimentally, the constant current STM

images are obtained by moving the tip in parallel lines across the surface while the tip

height is adjusted height to maintain a constant current using a feedback loop. Based

on the Tersoff and Hammann approximation [42], the surface charge densities near the

Fermi level correlate to the tunneling current observed in the experimental STM images.

The simulated images generated by the STM forward model are the isosurfaces of charge

densities near the Fermi level plotted when observed from the top view. The energy-

selected charge density file from a DFT calculation (in the PARCHG file format in VASP

[43, 171]) which contains the volumetric data of the partial charge densities in the entire

slab structure, is the only required input structure. Beyond this, there are four modeling

parameters required to simulate an STM image: electron density value (r val) and an

associated tolerance (r tol), and the vertical distance above (z above) and below the sur-

face (z below), which constrain the electron densities assumed to be available to the STM

tip. The simulated STM image shows the x − y grid points where the electron densities

are within the specified isosurface density range (r val ± r tol) and the brightness at

each grid point corresponds to its height. Several distinct simulated STM images can be

generated from one PARCHG file with different combinations of these input parameters.

Ingrained performs constrained optimization of these model parameters together with im-

age processing parameters such as shear, strain, pixel size, sigma for Gaussian blur, etc.,

to provide a final STM simulation.
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In an experimental setup, the charge densities accessed by the STM tip changes with

applied bias voltage. This tunneling current varies according to the density of states at the

energy level which corresponds to the bias voltage. To address this, we recommend writing

the partial charge densities from the DFT calculation at the energy window corresponding

to the bias voltage. Since scanning transmission spectroscopy (STS) results adequately

locate the band edges and a DFT calculation identifies the valence band edge (highest

occupied state), the correspondence can be reasonably ascertained for negative bias. For

positive bias, the fact that DFT with local or semilocal functionals tend to underestimate

the band gap may cause errors with the correspondence, but hybrid functionals or a rigid

shift of the bands can mitigate these errors. Multiple images can be used at different

imaging voltages in order to confirm the ingrained -derived atomic structure – i.e., the

voltage-dependence of STM images provides an opportunity for a more reliable ingrained

interpretation. The optimization for different voltages are independent and hence can be

carried out in separate instances of ingrained.

The above STEM/STM simulations techniques all represent approximate forward

models with well-known limitations. It is important that the users understand both

the nuances of the experimental data they are trying to fit to (e.g., only reproducible

STM images obtained with multiple, independently prepared tip should be considered),

as well as the simulation techniques that comprise the ingrained registrations, before mak-

ing any conclusions about the results. Ultimately, ingrained is a tool to assist in finding

a plausible atomistic correspondence between simulation and experiment. For electronic

structure or more precise chemical information interpretation, more detailed theoretical

analysis is required.
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4.2.4. Image Registration

With ingrained, image registration is cast as an iterative optimization problem. It is

assumed that scaling discrepancies between the experiment and simulation are minimal,

which is reasonable when a raw microscopy image containing scaling metadata is available.

The iterative optimization is local in the sense that it is restricted to solutions that are

close to the initial guess, so a multi-start approach is recommended.

After an image is simulated, the first step of image registration is coarse alignment,

which implies that both the simulated and experimental images are downsampled (num-

ber of actual pixels reduced) and quantized (number of unique pixel values reduced). The

alignment step itself is actually an iterative procedure that takes patches of the experi-

mental image that are highly correlated with and the same size as the simulation, and

attempts to find one with zero translative offset relative to the simulation. Zero transla-

tive offset implies that no additional offset in the x or y direction is needed to improve

the fit between the experimental image patch and the simulation. The translative offset

is computed using an efficient phase cross-correlation function from scikit-image [140],

which finds a position of maximum correlation between the two images in the frequency

domain (i.e., maximum correlation yields minimum translative offset). In this step, it is

assumed that two atomic resolution images presented at the same scale with no translative

offset between them, is a sufficient proxy for geometric consistency at the boundary of the

simulation and experimental image. This is based on observation and holds for all cases

presented in the results. If an experimental patch is found that satisfies the conditions

of coarse alignment, a fine alignment step is applied to the simulation and experiment at

native (higher) resolution. The purpose of this step is to search experimental patches in
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the local vicinity of the matching coordinates from coarse alignment, to find the higher

resolution experimental patch with minimum translative offset. After the fine alignment

step, the quality of the registration is assessed based on a custom objective function and

the entire process is repeated for a new parameter set until the objective satisfies the

convergence criteria set by the overall optimizer. Powell’s method [172] is the default op-

timizer for registration, but, in theory, any derivative-free optimization method included

as part of SciPy [173] could be used with very minimal revision to the current setup.

With this, the goal of optimization is to find a set of parameters for the forward model,

θ, that produce a simulated image that can be arranged inside the experimental image in

such a way that minimizes the objective, referred to as the the “mismatch”:

M(θ) = αdtrans(θ) + βdsim(θ) (4.1)

where dtrans(θ) is the translation offset computed during fine alignment, dsim(θ) is the sim-

ilarity distance (the default is one minus the Structural Similarity Index Measure (SSIM)

[85]), which quantifies the visual similarity between the simulation and experiment patch,

and α, β are weights chosen to balance importance of each criteria (α = 0.1, β = 1 are

default values). This mismatch balances the importance of geometric consistency across

the boundary of the simulated image, dtrans (i.e., the atomic columns at the boundaries of

the simulation are the same size, shape, and have the same orientation as the experimen-

tal columns they are replacing), and image content consistency within the boundaries of

the simulated image dsim(θ) (i.e., the shapes and relative intensities are aligned and self-

consistent across images). With the default weights and the default SSIM similarity for

dsim(θ), we find the following approximate interpretation of the mismatch values to hold



103

for many of the samples observed: for M ≥ 1, a significant translative offset with respect

to the simulation/experiment boundary exists, usually due to scaling discrepancies or lo-

cal distortions; for 1 > M ≥ 0.5, smaller translative offsets, if any, remain (typically, at

least one of the bulk regions is well aligned with its respective experimental counterpart);

for M < 0.5, translative offset is increasingly rare, and the similarities between simulation

and experiment image content is often noticeable. The solutions with mismatch values

< 0.2 represent the highest quality matches. In some cases, values this low are not at-

tainable as much of this is influenced by the quality of the initial experimental input and

level of structural disorder in the images sample. These observations are summarized

in Figure 4.2. To provide additional confidence in the mismatch measurement’s capac-

ity to adequately assess fit-to-experiment, we conducted image similarity experiments on

the atomagined synthetic STEM dataset [144] (see Section 3.3 for more details). Using

this SSIM-based mismatch, 99% of the 2000 simulated STEM target images (postpro-

cessed to mimic experimental noise conditions) were matched to a pristine simulation of

the correct structure from a population of 4000 candidate images. The 4000 candidate

choices contained a variety of images of the same crystalline structures (as the target)

at different viewing angles. With the very small number of false positive matches, we

are confident that the mismatch values are reliable at selecting the proper orientation of

a given crystalline target if multiple are tested as part of the registration. We also ad-

dress the suitability the defined mismatch for different crystalline structures of the same

material in context of results presented for CdTe grain boundary systems below.
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Figure 4.2. Sequence of images illustrating how mismatch values are indica-
tive of the fit-to-experiment (with the default α = 0.1, β = 1 weights). (a)
Mismatch values > 1 implies a significant translative offset with respect to
the simulation/experiment boundary (d trans). In this case it is due to a
scaling discrepancy. (b) Mismatch values between 0.5 and 1 are usually
indicative of alignment between one or both grains and the respective bulk
regions in the experiment, however, the positioning of the simulated inter-
face relative to experimental interface is often unsuitable. (c) Mismatch
values < 0.5 often reveal a suitable geometric fit. (d) With very low mis-
match values (< 0.2), details such as the size of the atomic columns and
the amount of blur begin to resemble levels found in the experimental image.

Finally, we note that if the interface can be obtained by a simple geometric combina-

tion of the grains, the resulting structure potentially matches across all portions of the

image. However, this is often not the case, and further local structure operations are

often needed to match the geometry of the interface more precisely. The use of atom-

istic modeling such as with DFT or interatomic potentials can aide the determination of

relaxations at the interface. In addition, further structural sampling to refine the stoi-

chiometry and configurations at the interface can be performed using iterative sampling

methods such as Monte Carlo, basin hopping, and genetic algorithms. Moreover, a truly

accurate representation of sample depth would involve further comparison with multislice

simulations. Therefore, the process of obtaining these ingrained structures is considered

an approximation or initial step, as opposed to exact structure determination.



105

4.2.5. Output

While the optimization proceeds, the default setting is for the current parameter set and

mismatch score to print to screen (and is also recorded in a progress.out file so that

specific iterations can be revisited). An example of the optimization progress information

provided is included in the following snippet:

Iteration 1:

• pix_size (Å) : 0.125

• interface width (Å) : 0.0

• defocus (Å) : 1.0

• (x, y) shear (frac) : (0.0, 0.0)

• (x, y) stretch (frac) : (0.0, 0.0)

• img_size (pixels) : (285, 171)

>>> mismatch : 0.6228565824012005

Iteration 2:

Warning - Solution contains significant translative offset (dtrans = 8)

• pix_size (Å) : 0.4

• interface width (Å) : 0.0

• defocus (Å) : 1.0

• (x, y) shear (frac) : (0.0, 0.0)

• (x, y) stretch (frac) : (0.0, 0.0)

• img_size (pixels) : (129, 129)

>>> mismatch : 2.186105511593367

At the end of the optimization, both the structure whose image was simulated, and the

parameters used to fuse the images together are accessible. These parameters are valuable

because they codify the transformation needed to go from an atomic structure to a simu-

lated image, that now has an explicit association to the experimental image. In the next

sections, we highlight applications involving structure and simulation/experiment corre-

spondence output from ingrained. Further tools are included as part of the main repository

that allow users to create videos from selected iterations recorded in progress.out.
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4.3. Results - Applications of Ingrained

The following examples showcase the capabilities of ingrained as both a tool for finding

useful approximations of the structures in experimental imaging (for grain boundary and

interfaces in particular), as well as for the development of experimentally-rationalized

forward models in materials imaging. The case presented for forward model development

involves STM simulation.

4.3.1. Case #1: Coherent and incoherent grain boundaries in CdTe

In this first example, we show one of the more straightforward structure initializations:

a coherent {111} twin boundary in cadmium telluride (CdTe). The configuration file

specifies a viewing direction along <110> and zinc-blende “F-43m” to form the bulk (to

distinguish it from wurtzite and other less common metastable phases included in the MP

database). In general, twin boundaries are extremely common in crystalline materials, and

often form readily in response to thermal stress or applied deformation [174]. Figure 4.3a

illustrates the resulting structure alongside both the final fused image and the interface

comparison that results from the optimized fit-to-experiment. Because the crystals share

a common plane of lattice points and mirror each other on either side of the interface, the

resulting structure requires no strain to achieve coincidence along the width or depth and

matches all portions of the image. For this reason, both the overall mismatch and dsim

values for the interfaces are particularly low (e.g., < 0.20).
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Figure 4.3. (a) The experimental image for the first collection of CdTe re-
sults contains a coherent {111} twin boundary viewed along the <110>
direction. The final structure is given with the periodicity along the width
highlighted. The fused image has a very low mismatch score, indicating a
high-quality fusion, which is confirmed in a comparison of the simulated
and experimental interfaces. (b) The experimental image for the second
collection of CdTe results contains an incoherent [110]‖[110] tilt boundary
with 82° misorientation angle. The quality of the resulting structure – as
far as matching the bulk regions – is high, and even with the natural am-
biguity of the interface structure, the simulation at the interface maintains
close visual resemblance. The experimental images were obtained from the
authors of [4]

In the second example, we again use zinc-blende CdTe viewed along the <110> direc-

tion, but since the interface is now incoherent, the over lattice must be strained along the

width to create a structure that is both computationally useful (in context of energetic

calculations) but still fully periodic. Here, the magnitude of the strain is ∼1 %. For-

tunately, because the viewing direction is common and the compound identical for both

grains, like the twin boundary, this structure can also be constructed without strain along
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the depth. By observing diffraction patterns of the bulk crystalline regions, the misori-

entation angle between the crystals is measured at 82 degrees and is used to specify the

tilt of the top in relation to the bottom. Figure 4.3b highlights a remarkable fit between

simulation and experiment at the conclusion of image registration, notwithstanding the

unresolved structural details of the experimental interface. Guo et al.[4] use this initial

structure to explore the role of Se and Cl segregation in the reduction of midgap states

in CdSeTe, and even after DFT relaxation is used to further optimize the interface, the

initial correspondence established by ingrained is still applicable. It is also pertinent to

mention that registration of wurtzite and trigonal CdTe structures were attempted in the

bulk regions of the <110> zinc-blende CdTe in Figure 4.3b, and the closest mismatch

to the correct CdTe bulk was 0.56 (wurtzite along <211>), which is nearly triple the

mismatch scores for simulations of the correct zinc-blende structure which all scored in

the range of 0.20, depending on the region of the experimental image selected for fitting.

4.3.2. Case #2: Interphase interfaces and significant localized strain

In the previous CdTe examples, both crystalline grains were identical, and except for the

presence of in-plane tilt in the incoherent case, this greatly simplified construction of the

periodic over lattice. The collection of results in Figure 4.4a demonstrates how ingrained

can be used to confirm the geometric compatibility of a specific boride precipitate/Ni

matrix interface in an experimentally observed structure [5], where lattice mismatch must

be resolved along both the width and depth dimensions. A M3B2-type precipitate/Ni in-

terface (where “M” a transition metal element i.e., Cr, W, Mo, etc.) can be constructed
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from the tetragonal (P4/mbm) Mo3B2 structure available in the Materials Project data-

base. The specific structure tested in Figure 4.4a is the interface between (010) Mo3B2

and (1-30) Ni (viewed along <001> in each respective crystal). The ability to program-

matically test geometric compatibility between different crystal phases in context of an

experimentally observed structure is particularly useful for studies investigating complex

interphase interfaces. Despite an excellent geometric fit (mismatch = 0.262), one can ob-

serve that the light-heavy pattern of column intensities in the experimental image, is not

well-reproduced in the simulation. This suggests that the Mo3B2 structure, though a good

candidate from the perspective of geometric compatibility, is likely not consistent with the

chemistry of the structure observed. It is possible that these intensity discrepancies would

be resolved with higher accuracy multislice simulations, or perhaps this suggests that the

sample has mixed cations in the M-site. Once a structure is suggested by ingrained, sam-

pling of different cation orderings can be performed on the structure, which do not affect

the overall alignment. The final collection of results, illustrated in Figure 4.4b, is based

on a HAADF STEM image of a low-angle grain boundary in a thin Si nanowire [175].

Notice a significant amount of localized strain, blurring at the interface, and the reduced

spatial resolution and signal levels (compared with some of the experimental images pre-

sented in the previous examples). Image registration, as implemented, only accounts for

rigid affine transformation between the simulation and experiment. Therefore, a coarse

association between simulation and experiment can still be made, but only to the extent

that a rigid transformation applied to simulation can capture some these distinctly local-

ized distortions. In the case of the Si nanowire in Figure 4.4b, the overall fit is perhaps
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Figure 4.4. (a) The experimental image associated with the final registra-
tion contains an interface of an interphase M3B2 boride precipitate in a
Ni-based super alloy ([001]M3B2//[001]Ni). The overall mismatch score re-
flects excellent geometric consistency across the boundary and within the
image despite some inconsistencies in the relative intensities of the atomic
columns. The experimental image was obtained from the authors of [5]
(b) The final registration for a tilt grain boundary in Si [01-1]//[1-10] illus-
trates the difficulty in fitting a simulation with rigid affine transformations
when the experimental image to be matched to contains significant local
distortion and structural ambiguity at the interface.

adequate given the conditions, however, the similarity distance at the interface is unsur-

prisingly high (dsim = 0.724). Though further local structure manipulations and energetic

calculations are necessary to better capture the non-rigid characteristics and distortions

observed particularly around the interface, this does not diminish the value of having

an experimentally-informed approximate structure on which to base further analysis of

the observed system. In addition, further improvements can be made to ingrained in the

future to capture local distortions as measured using geometric phase analysis.
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Figure 4.5. High resolution STM image showing a pristine Cu2O (111) sur-
face is used as the experimental input to the ingrained framework. A DFT
calculation for the proposed candidate structure, in the center, is used to
create a simulated image of the surface, and ingrained confirms that the pro-
posed structure is in fact consistent with experimental image, as described
in [6].

The results in Figure 4.4a and 4.4b illustrate that the efficacy of ingrained is, unsurpris-

ingly, limited by the information on composition, accuracy of the image simulation, and

quality of the experimental image. Further improvement to the results may be possible

by: iterative structural search to determine compositions; the use of energetic informa-

tion such as density functional theory or interatomic force fields to improve the structural

model, especially at interfaces; multislice simulations to improve image simulations; sam-

pling multiple regions of the same interface, image denoising, or using machine learning

approaches to improve information extraction from experimental images.

4.3.3. Case #3: STM mode and parameter optimization for Cu2O (111)

In the previous structure initialization cases, the registration of the HAADF STEM sim-

ulation to experiment was used to verify the geometry of a plausible bicrystal structure,

much of which was decided by the selection of the specific grain chemistries, orientations,
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and tilt outside of the ingrained optimization. Updates to the forward modelling pa-

rameters had minimal effects on the geometric appearance of the imaged structure. This

is because the observed intensity peaks were always consistent with the presence of an

atomic column in the atomistic structure, and the image formation parameters only re-

ally served to adjust the height and width of those peaks. This was the assumption when

convolution imaging was basis of the forward model. For other imaging modalities, the

observed intensity is not always consistent with the presence of an explicit atomic column

at that site, and what is visible instead complicates the interpretation of the intensities

in the image. For example, artifacts such as halos, and shade-off, commonly observed in

phase contrast microscopy, complicate edge interpretation in that the appearance of an

edge in the image does not necessarily mean that a true object edge exists at that location

[176]. In these instances, a simulated fit-to-experiment is necessary for rationalizing the

image output of the forward model.

In this example, we examined STM images of a pristine Cu2O(111) surface and pro-

posed structure variants from Zhang et al. [6]. Using ingrained in combination with the

DFT calculated partial charge densities, we were able to confirm that the atomic struc-

ture of the pristine (111) surface of a Cu2O bulk crystal was consistent with experimental

image. The partial charge densities (PARCHG) near the Fermi level of a surface slab can

be obtained through DFT calculations using widely used VASP code. Figure 4.5 shows

the experimental image, proposed structure, and the final image fusion with the optimized

imaging parameters. The parameterized fit between simulation and experiment is similar

to what was outlined in Zhang et al. [6].
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Figure 4.6. Progression of snapshots taken in the course of ingrained STM
optimization shows improvements in both image structure (parameteriza-
tion of the forward model) and in overall registration, suggesting that mini-
mizing mismatch values is sufficient for capturing fit-to-experiment. The op-
timized STM simulation from ingrained and excellent experimental match
was taken as evidence in support of a proposed borophane structure [7].

4.3.4. Case #4: STM mode drives materials discovery

The prior STM case provided validation of ingrained based on a known structure. When

an initial structure is unknown, a multi-start approach, which implies that a variety of

initial parameter configurations are tested on a population of candidate structures, can

be used as means to filter out or focus in on certain structures of interest. In the case of

STM, partial charge density information from several DFT calculations is the requisite

“population” input, and the structures exhibiting the smallest mismatch values are in-

terpreted as the most likely candidates. For example, Figure 4.6 depicts a progression of

visual image improvements obtained through iteration of the ingrained, during the search

for a hydrogenated borophene structure [7]. Among several candidate structures, the

rectangular-2H model reported in the study, showed the lowest mismatch which helped

support its identification as the structure of rectangular borophane. Again, ingrained pro-

vides only the means for a constructive starting point, and in this specific case, techniques

such as scanning tunneling spectroscopy (STS), inelastic electron tunneling spectroscopy
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(IETS), in-situ local work function measurement of synthesized sample, and further DFT

calculations were all utilized in addition to the ingrained STM simulation, to confirm and

augment any intuitions favored by the suggested atomistic correspondence. This case is

included, not just as a way to illustrate the capabilities of ingrained in the realm of mate-

rials discovery, but also as an example of the sort of added rigor that the authors expect

for users to begin making conclusions about precise chemical information from this tool.

4.4. Conclusion

Formulating materials imaging simulations in such a way as to corroborate funda-

mental and nuanced aspects of experimental imaging is a critical challenge that must be

addressed to fully harness the power of simulation and modeling in context of materials

characterization. The ingrained framework presented here is a tool for atomic-resolution

imaging that helps establish this simulated fit-to-experiment in an automated and robust

way, using a coarse-to-fine image registration approach cast as an iterative optimization

problem. Through examples of STEM images of grain boundaries and interfaces, and

STM images of a surface, we showcase the power of ingrained, not only in its ability to

forge an explicit association between simulation and experiment, but also in its versatility

(i.e., numerous different imaging tasks can be improved with this approach). All the code

for ingrained and the example cases explored in this work is available on GitHub. It is

our hope that both computational researcher and microscopists alike will find practical

use cases to add to the existing collection of examples outlined.



115

CHAPTER 5

Determining CdTe Grain Boundary Structures

Polycrystalline CdTe-based photovoltaics have had a major commercial
impact in recent years. Despite this, an inability to adequately model
highly-disordered grain boundary structures observed under atomic-resolution
imaging has proved a hindrance to the understanding of device efficiency.
Within the FANTASTX (Fully Automated Nanoscale To Atomistic Struc-
tures from Theory and eXperiment) framework [52], we leverage a grand
canonical form of basin-hopping optimization, along with simulation and
comparison of high-angle annular dark-field (HAADF) scanning trans-
mission electron microscopy (STEM) images to experiment, to propose
a collection of plausible high-angle grain boundary structures in CdTe.
First principles density functional theory (DFT) calculations of energetic
and electronic properties of these grain boundaries along with multi-slice
STEM simulations suggest that this inexpensive materials modeling ap-
proach, coupled with automated image comparison, is of benefit in the
further study of realistic grain boundary and interface structures.

5.1. Introduction

Cadmium Telluride (CdTe) solar cell technologies have had a major commercial im-

pact in recent years [177], as its direct band gap (∼1.5 eV), high absorption coefficient

(>5×105 cm−1), and general ease of processing (e.g., high-deposition rates, substrate

flexibility, facile doping), have enabled energy conversion efficiencies exceeding 22% in

polycrystalline cells [178]. However, the interfaces in the polycrystalline cells greatly in-

fluence the mechanical, electronic, and transport properties of the materials systems, and

despite improvements in spatial resolution and depth estimation for imaging crystalline

materials [179], it is exceedingly difficult to determine the atomic structure of interfaces
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from experiments alone. First-principles methods such as density functional theory (DFT)

can supplement experimental results in a way that enables improved structure determi-

nation [180–182], but an extension of such methods for simulating long-range behavior

across interfaces of practical size is not straightforward. And though machine learning

has played a significant role in the development of crystal structure and material property

descriptors [183] to extend length scales and serve as proxy for expensive calculations

[184–186], reliable descriptors and data-driven modeling paradigms are lacking for inter-

facial systems. Further work is needed to transform existing trial-and-error approaches to

CdTe device modeling [187], in order to generate interfacial structures that can be tested,

in part, by comparison to observational evidence from scanning transmission electron

microscopy (STEM) images – a valuable probe of atomic structure and chemistry.

Bottlenecks preventing the facile generation and comparison of candidate structures

include (1) energy calculations for interfaces and (2) STEM image simulation. For ener-

getic modeling of practical interfaces, interatomic potentials provide a computationally

efficient alternative to electronic structure methods such as DFT, while often capturing

the same essential physics. Global structural optimization schemes based on energetic

minimization sample a space of low energy solutions and are often sufficient if the task is

to find the most stable structures. This is problematic if the system of interest contains

possible metastable configurations, as is the case with the interfaces in grain boundary

systems, because these schemes work to minimize energy, often without regard to the

‘observable’ similarity between the experimental image and a simulated image based on

the proposed structure. Therefore, an additional constraint that involves STEM image
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simulation and subsequent comparison with experiment, ensures that the space of struc-

tures explored is consistent, to some extent, with observation. For electron microscopy

simulations, enforcing true quantitative consistency typically requires simulations based

on the popular multislice method of Cowley and Moodie [37], where intensity is calculated

as an electron beam is propagated through slices of a sample. Unfortunately, transmis-

sion and propagation of the electron beam must be computed for each probe position,

requiring computation times that are not amenable to extensive iteration. Moreover, of

the modern available solutions [39, 41, 188], image convolution provides perhaps the most

convenient, often qualitatively informative alternative, supporting simulation times that

are commensurate with energy calculations using interatomic potentials. Once the image

is simulated, recent advances in computer vision (CV) applied to atomic-resolution to-

mography [189], microscopy image search (Chapter 3), crystalline defect recognition [76],

and nanoparticle optimization [51], that have shed light on the potential for automated

image assessment in complex structure optimization problems.

With image simulation and energy calculation schemes in order, it is necessary to

codify the rules of iteration such that realistic structure solutions can be obtained. Bas-

inhopping [19] (BH), an iterative random search technique that tries to find the global

minimum of an objective function, has been successfully applied to real materials sys-

tems to solve for complex minimum-energy atomic and molecular structures using DFT

[183, 184], density functional tight binding [190], and empirical potentials [55]. First, a

random point is chosen in the space of possible structure solutions, and from there, BH at-

tempts to improve the structure by small perturbations (i.e., “hopping”), in the positions

of atoms. Over numerous iterations, BH progresses towards better structure solutions. In
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this study, we leverage a grand canonical form of BH, which allows for atom addition and

subtraction operations at the interface, along with simulation and matching of HAADF

STEM images to experiment, to propose a collection of plausible high-angle grain bound-

ary structures in CdTe thin films. DFT calculations are performed for a select number of

pareto-optimal candidate structures to demonstrate how structures obtained from cheaper

interatomic potential method of evaluation, yield qualitatively consistent DFT energies.

Finally, we further validate the structures obtained by performing multislice simulations

and comparing the resultant simulated images with experimental images.

5.2. Methods

A (13◦)(110)‖(001) CdTe bicrystal was constructed as a model grain boundary us-

ing wafer bonding as described in [191]. The HAADF STEM image of the CdTe grain

boundary in Figure 5.1a shows the extent of the disorder in the interfacial region, and

serves as the experimental input for BH structure optimization. In BH optimization,

atomic configurations of high-angle CdTe grain boundary structures are iteratively mod-

ified and evaluated in order to find a collection of solutions with both low energy and

high simulated-to-experiment image similarity. The BH optimization is part of a package

under development at the Center for Nanoscale Materials at Argonne National Labora-

tory, titled FANTASTX (Fully Automated Nanoscale to Atomistic Structure from The-

ory and eXperiments) [52], which performs structure search based on a combination of

energetic information from DFT or empirical potentials, and similarity measurements be-

tween simulations and experimental inputs from microscopy, scattering, and spectroscopy

modalities.
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Figure 5.1. (a) Experimental HAADF STEM image of a (13°)(110)‖(001)
CdTe grain boundary system. (b) A quasi-periodic CdTe grain bound-
ary structure. The bulk portions are consistent with orientation estimates
from the experimental image. The highlighted interface (Int1) indicates the
specific volume region over which the optimization occurs. (c) Simulated
convolution HAADF STEM image of the initial grain boundary structure
with an optimized fit to the experimental image (see Chapter 4)

5.2.1. Initialization

The initialization procedure incorporates orientation information for the bulk crystalline

regions of the experimental image, to find quasi-periodic boundaries around a bicrystal

structure (Figure 5.1b). Strict periodicity requirements are relaxed to provide reasonable

computational efficiency in the downstream modeling and simulation steps. The volume

region containing 8% of the total length of the bicrystal above and below the central plane

between the two bicrystals is considered the interfacial region. For the bicrystal structure

in Figure 5.1b, this is 12Å in width (6Å above and below the interface). The final step
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of initialization is to solve for the spatial correspondence (image registration) between

the new bicrystal and the experimental image, which ensures that the bulk portions of

the structure are aligned to the experimental image, leaving the interface region as the

area for refinement. With this, the structure in Figure 5.1b becomes the initial candidate

solution, and its simulated image in Figure 5.1c, is used as the starting point for image

comparisons. Initial structure creation and the correspondence-to-experiment tasks are

accomplished using the the ingrained toolkit, as outlined in Chapter 4.

5.2.2. Update Steps

After the initial structure is generated, new potential candidates are obtained in two

different ways. One is through a jump operation, which is a random displacement of

individual or groups of atoms considered part of the interface region defined in Figure 5.1b.

With a jump, a given atom is displaced according to a uniform distribution anywhere in

a cube, centered on the current atomic coordinate that extends in all three directions

for a distance (edge length) plus and minus the jump size, in this case, between -3Å and

+3Å, which is an approximate average bond length when considering all pairs of elements.

Jumps that displace an atom outside the interface boundary (into the bulk) are forbidden.

Because the simulations are grand canonical, the other way a new candidate structure

is obtained is through an atom addition or subtraction operation. In these scenarios, an

atom of a random type is inserted or removed from the interface region, while the rest of

the structure remains fixed. A 0.8 Å minimum distance constraint and periodic boundary

conditions are enforced for both the jump and add/subtract operations. The completion

of an update step constitutes what is referred to as a BH step.
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5.2.3. Evaluation of Candidate Structures

After a BH step, evaluation of the candidate structure involves two calculations: (1)

the total grand canonical energy of the relaxed structure, and (2) the similarity distance

between a simulated HAADF STEM image of the candidate structure, and the original

experimental image. For the energy calculation, the candidate structures is relaxed using

the Stillinger-Weber (SW) potential for CdTe evaluated with LAMMPS [192], and the

total energy, considering the grand canonical approach, is computed as:

Etotal = Erelaxed − µCdNCd − µTeNTe (5.1)

where Erelaxed is the total energy of the relaxed interfacial structure, µCd and µTe are

Cd and Te chemical potentials, set to mimic a Cd-rich synthesis environment, and NCd

and NTe are the numbers of Cd and Te atoms in the model, respectively. At the Cd-rich

limit, the grain boundary is assumed to be in equilibrium with metallic Cd and bulk

CdTe. Therefore, µCd = µ
0(bulk)
Cd and µTe = µCdTe - µ0

Cd, where µCdTe is the total energy

of the bulk CdTe evaluated with the SW potential, and µ
0(bulk)
Cd is the binding energy of

elemental Cd metal. In this convention, Etotal is zero for stoichiometric bulk CdTe.

A HAADF STEM image is simulated using a convolution model (see Section 5.2.4),

and the similarity distance, dSSIM , between the simulated image, Isim, and the original

experimental image, Iexp, is calculated using Structural Similarity Index (SSIM) [85] as:

dSSIM = 1− SSIM(Iexp, Isim) (5.2)
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SSIM values range between 0 and 1, with 1 indicating a perfect match. The choice of SSIM

for an image similarity measurement is based on the findings from Chapter 3, which show

that SSIM provides an appropriate balance of efficiency and performance for comparisons

between HAADF STEM simulations and experimental images.

With this setup, the overall image similarity objective is a minimization of the dif-

ference between simulated and experimental images, which we call similarity distance.

Ultimately, to represent the complete objective of the problem (minimize energy and sim-

ilarity distance), we construct the main objective function as a weighted summation of

the energy and image similarity contributions.

Ztotal = αEtotal + βdSSIM (5.3)

where Ztotal is the objective score and α and β are the weights associated with Etotal and

dSSIM from Equation 5.1 and Equation 5.2, respectively (a restatement of Eqn. 2.11)

All calculations use weights of α = 1, β = 200, which given the approximate range of

Etotal values from 150-200 eV, and the approximate range of dSSIM values from 0.25-0.65,

places a ∼20-45% weight on the image similarity measurement in the overall objective

decision. Prior attempts at an equal weighting of the variables heavily favored dSSIM

solutions (i.e., structures matching an image well in projection), but with disregard for

coordination chemistry. After each update step, the change in objective due to structure

updates is computed, and a candidate structure is accepted or rejected as a global solution

based on the metropolis criterion with T = 0.1. If the structure is not accepted, the

existing global configuration serves as the starting point for the next step taken. This

continues until 50,000 BH steps elapse without an improvement to the global solution.
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Table 5.1. Input parameters for HAADF STEM simulation codes.

parameter incostem
(convolution)

autostem
(multislice)

V0 (kV) 200 200
Cs3 (mm) 0.002 0.001844
Cs5 (mm) 0 -0.7503

df (Å) 1.5 -28.17
apert (mrad) 29 29
spec trans func Nx, Ny (pix) N/A 1024, 1024
probe wave func Nx, Ny (pix) N/A 512, 512
min,max angles (mrad) 90, 175 90, 175

slice thickness (Å) 13.66 1.706

total sample depth (Å) 13.66 204.9
temperature in degrees (K) N/A 300
# of configurations N/A 25

source size (FWHM in Å) 1.50 0.78

5.2.4. Image Simulations

Kirkland’s incostem and autostem codes are used for convolution and multislice image

simulations, respectively [35]. The parameters for each simulation type are provided in

Table 5.1. Parameter settings for the multislice image are informed primarily from the

summary of image acquisition parameters provided by the STEM software. The convolu-

tion parameter settings differ from multislice largely because of the need to compensate

for realistic depth effects and general blurring that occurs as a result of averaging over

several thermal configurations in the multislice calculations.
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5.2.5. Density Functional Theory (DFT) Calculations

DFT calculations are performed using the Vienna Ab Initio Simulation Package (VASP)

[171] with supplied Projector augmented wave (PAW) potentials [43]. The generalized gra-

dient approximation (GGA) exchange correlation functionals parameterized by Perdew-

Burke-Ernzerhof (PBE) [193, 194] was used. A kinetic energy cutoff of 343 eV was used.

The Brilluoin zone was sampled with the Γ point for dislocation core models. All atomic

positions are relaxed to give an energy convergence of 10−5 eV/atom.

5.3. Results and Discussion

The optimization progress is shown in Figure 5.2a. In addition to the solution ob-

tained at algorithm termination (211,153 BH steps), we are also interested in solutions

that reside on the pareto front, the leading edge of the solution space (i.e., the space

containing solutions as function of their objectives). These pareto-optimal solutions can-

not be improved in a single objective without penalty to another. From the existing

pareto-optimal solutions, the final collection of critical structures selected included the

solution with (1) minimum energy, (2) minimum similarity distance, and (3) minimum

main objective score Ztotal (i.e., the best “energy solution”, the best match-to-experiment

“matching solution”, and the best “objective solution”, respectively). Figure 5.2b shows

the critical structures alongside other BH solutions plotted in a favorable region of the

solution space. The energies (denoted with γGB) are given as interfacial energy per unit

area (mJ/m2) to compare with values reported in Sen et al. [187] for high-angle CdTe

grain boundaries. The values in this study are substantially higher (∼3-4x), however that

is to be expected given the magnitude of the disorder at the interface.
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Figure 5.2. (a) Plot illustrating the progress of the objective value as op-
timization proceeds. The green points track the solution with the current
best objective value. Convolution HAADF STEM images show both the
initial structure and solution with the best objective value (objective solu-
tion) after termination. (b) Plot highlighting the critical solutions and their
associated simulated images in solution space. The purple points represent
pareto-optimal solutions. In addition to the objective solution (green star),
both the blue and red stars represent pareto-optimal solutions with the best
energy (energy solution) and best match-to-experiment (matching solution).

In order to further examine the energetic and electronic properties of the critical struc-

tures, we perform DFT calculations. These calculations are expensive, as each structure

contains nearly 1200 atoms. The DFT-relaxed energy solution is presented in Figure 5.3a,

with two bulk and two interface regions highlighted. The simulated STEM images for the

starting and optimized structures are shown in Figure 5.3b, revealing a rearrangement of

atoms in the optimized interface “Int1” region. This rearrangement occurred for the in-

terfaces of the remaining critical structures. Further, we computed the electronic density

of states (DOS) for each structure and projected them onto the bulk and interface region

atoms, which is shown for the energy solution in Figure 5.3c. Each calculation leads to
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Figure 5.3. (a) The DFT-relaxed structure with bulk and interface divisions
of the interface highlighted. (b) The simulated STEM images (convolution)
before and after DFT relaxation. (c) The computed electronic density of
states for the energy solution.

a qualitatively similar DOS, indicating a similarity in electronic structure for each of the

critical solutions highlighted in Figure 5.2b. There are some mid-gap states that originate

mostly from the interface atoms, as has been studied and reported in the past [4, 195].

Upon comparing the energetics of the three solutions following DFT relaxation, we ob-

served that the energy solution had the lowest total DFT energy, while the objective and

matching solutions were 0.3 meV/atom (∆γGB = 5.0 mJ/m2) and 1.1 meV/atom (∆γGB

= 18.3 mJ/m2) higher in energy, respectively. Despite the interface atom rearrangement

due to DFT relaxation and the known limitations of the SW potential [196], the energy

ordering of the three structures remained the same, meaning the significantly cheaper

interatomic potential method of energy evaluation were qualitatively correct.
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Figure 5.4. A panel of STEM images highlighting the combinations of
energy-relaxation and image simulation techniques applied to the final
matching solutions. (a) The initial experiment image. (b) A convolution
simulation of the original matching solution from BH, referred to as the “BH
+ convolution” image. (c) A convolution simulation of the matching solu-
tion after DFT relaxation, referred to as the “DFT + convolution” image.
(d) A multislice simulation of the matching solution after DFT, referred
to as the “DFT + multislice” image. The “matching∗” designation is used
to separate the initial matching structure from the DFT-relaxed matching
structure, which is often differs due to a rearrangement of interface atoms.

The multislice method is widely accepted as a quantitatively accurate approach for

simulating contrast in HAADF STEM images. The convolution images used to compute

the similarity distance in the main objective (Ztotal) capture the approximate appearance

of the STEM images; however, they do not replicate the depth-specific contrast modu-

lations that occur, particularly near the interface. To this end, we applied Kirkland’s

multislice code [35] to the critical solutions after DFT relaxation in the hope that a
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more quantitative simulation was capable of replicating certain intensity features of the

experimental image. The simulation parameters were set in accordance with the known

experimental microscope/acquisition settings (see 5.2.4). Figure 5.4 highlights combina-

tions of energy-relaxation and image simulation techniques applied to the final matching

solution, and Table 5.2 shows an increase in the similarity distance (i.e., more mismatch)

moving from the convolution image of all of the critical solutions “BH + convolution”, to

the final multislice image of the DFT-relaxed solutions “DFT + multislice”. This general

trend of increasing similarity distance from “BH + convolution” to “DFT + multislice” so-

lutions within the structures tested is expected; DFT leads to a rearrangement of interface

atoms, and the multislice calculation incorporates realistic sample depth and microscope

settings - neither of these additional steps were explicitly considered in the optimization

loop. Table 5.2 also confirms that across the combinations of energy-relaxation and image

simulation techniques applied, the ordering of the similarity distances between the three

structures (i.e., dmatchingSSIM < dobjectiveSSIM < denergySSIM ) remained the same. In general, the preser-

vation of the ordering for energy, similarity distance, and intensity correlation across the

interface substantiates the value of cheaper energetic and image simulation proxies in the

context of iterative structure optimization; the similarity of the electronic DOS across the

pareto solutions tested further suggests that perhaps the BH solutions chosen from the

pareto front are representative of the true grain boundary structure corresponding to the

input experimental STEM image.
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Table 5.2. Similarity distances for selected energy-relaxation and image
simulation techniques applied to critical structures.

BH + convolution DFT + convolution DFT + multislice

dmatchingSSIM 0.236 0.281 0.348

dobjectiveSSIM 0.257 0.301 0.355

denergySSIM 0.267 0.358 0.402

5.4. Conclusion

Iterative optimization, with physically motivated energetic and image similarity objec-

tives as proxies for expensive higher-fidelity calculations, is used to propose a collection of

plausible high-angle grain boundary structures. The ordering of the proposed structures,

both energetically and in terms of the similiarty distance measured from the associated

image simulation to the experiment, is preserved after both DFT relaxation, which leads

to further atom rearrangement at the interface, and multislice simulation, which provides

a better model of image contrast. This implies that the significantly cheaper interatomic

potential method of energy evaluation with image convolution as the basis for comparison

is qualitatively correct for this system. Additionally, the solutions examined lead to a

qualitatively similar DOS, and reveal the presence of some previously observed mid-gap

states that originate mostly from the interface atoms. Perhaps this indicates that not

only is there a similarity in electronic structure among structures on the optimization’s

pareto front, but also that the structures discovered are in fact representative of the true

grain boundary structure corresponding to the input experimental STEM image.
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CHAPTER 6

Constructing Self-Labeled Microscopy Datasets from Literature

Due to recent improvements in image resolution and acquisition speed,
materials microscopy is experiencing an explosion of published imaging
data. The standard publication format, while sufficient for data ingestion
scenarios where a selection of images can be critically examined and cu-
rated manually, is not conducive to large-scale data aggregation or anal-
ysis, hindering data sharing and reuse. Most images in publications are
part of a larger figure, with their explicit context buried in the main body
or caption text; so even if aggregated, collections of images with weak or
no digitized contextual labels have limited value. To solve the problem of
curating labeled microscopy data from literature, this work introduces the
EXSCLAIM! Python toolkit for the automatic EXtraction, Separation,
and Caption-based natural Language Annotation of IMages from scien-
tific literature. We highlight the methodology behind the construction of
EXSCLAIM! and demonstrate its ability to extract and label open-source
scientific images at high volume.

6.1. Introduction

Journal articles have long been the standard for communicating important advances

in scientific understanding. As sophisticated measurement and visualization tools render

scientific communication more intricate and diverse, the visual presentation of scientific

results as figures in these articles is noticeably more complex [197]. With this complexity,

which is often a byproduct of the “compound” layout of the figures (i.e., figures con-

taining multiple embedded images, graphs, and illustrations, etc.), the meaning of each

standalone image is not always apparent. The result is that individual images are not

only unsearchable, but the effort required to extract them into a machine-readable format
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is significant. This plays a major factor in the relative scarcity of general materials char-

acterization images in the development and testing of new algorithms in deep learning

(DL), an emerging field characterized by the use of deep neural networks – hierarchical,

multi-layered structures of processing elements – to learn representations of input data

(often images) that reveal important characteristics of its content or overall appearance.

The current surge of interest in DL stems from recent success in applications such as facial

recognition [198], self-driving cars [199], and complex game playing [200]. Much of this

success is the byproduct of having large labeled datasets available for training [201], and in

order for current materials imaging classification and recognition tasks [202–209] to reap

the benefits afforded by DL pipelines, having access to substantial labeled data is crucial.

Fortunately, the incentive to publish is nearly ubiquitous across all scientific disciplines,

and with a mechanism for automatic dataset construction that includes both separating

out individual images from compound figures, as well as providing concise annotations

describing key aspects or classification of the image content, much more of the scientific

imaging data in literature could be utilized for training and developing DL models.

The effort to automate the construction and labeling of datasets from general web

data has garnered broad attention from the computer vision, language technologies, and

even chemistry/materials informatics communities [210–213]. In chemistry and materials

informatics, most of the focus has been on the development of text-mining tools adapted

for “chemistry-aware” natural language processing (NLP), and have been used to cre-

ate datasets of material properties and synthesis parameters from journal article text

[24, 25, 115, 127, 214]. For imaging datasets, standard computer vision approaches take

the top images retrieved from a keyword query of an image search engine (e.g., Google,
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Flikr, etc.) and train classifiers to further populate datasets based on a keyword [213]. Un-

fortunately, this approach is problematic for scientific figures because of their compound

layout. Current works that address this layout problem (what we refer to as problem

of “figure separation”) rely on hand-crafted rule based approaches [215–218], or adapt

neural-networks to interpret figure separation as an object detection problem [219, 220].

While hand-crafted techniques generally work well for sharp image boundaries, and neu-

ral networks capture irregular image arrangements, neither of these methods are designed

such that explicit references to the caption text are considered as part of the separation.

This is problematic for both figure separation and labeling because when the two are not

consistent with each other (i.e., there are more/fewer images than subfigure labels) the

intended description for an image is not always clear. Despite efforts to advance figure

separation and summarization related to automatic dataset creation [215, 216, 221–224],

tools that do this in query-to-dataset fashion, capable of extracting individual images

from figures, classifying image content, recognizing scaling information, and assigning a

relevant descriptive label based on specific user search requirements, are currently lacking.

In this work, we present a tool for the automatic EXtraction, Separation, and Caption-

based natural Language Annotation of Images (EXSCLAIM!) for scientific figures and

demonstrate its effectiveness in constructing a self-labeled electron microscopy dataset of

nanostructure images. The EXSCLAIM! tool is developed around materials microscopy

images, but the approach is applicable to other scientific domains that produce high-

volumes of publications with image-based data (e.g., graphs, illustrations, etc.) as the

basis for assigning keyword labels is dictated by user search terms.
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Figure 6.1. An overview of the EXSCLAIM! pipeline. The journal scraper
extracts raw figure/caption pairs from journal articles, the caption distribu-
tor divides caption text into segments that are consistent with the images in
the figure, reducing them to single keywords if possible (i.e., self-labeling),
and the figure separator computes bounding boxes that separate and clas-
sify the individual images from the full figure. The dataset constructor
processes all prior information to create a structured self-labeled dataset.

6.2. Methods

6.2.1. Design Overview

The main goal of the EXSCLAIM! toolkit is to provide researchers with a collection of

modules that (1) enable comprehensive keyword searches for scientific figures within open-

source journal articles, and (2) facilitate the extraction and pairing of images from within

figures, to the appropriate descriptive keywords and phrases from caption text. Figure 6.1

provides an overview of the pipeline, highlighting the role that the journal scraper, caption

distributor, figure separator, and dataset constructor modules serve in transforming search

queries made to scientific journal platforms, into structured self-labeled image datasets.
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The search queries define the scope and extent of the search, and are JSON objects with

attributes populated by the user. Attributes such as keywords, synonyms, journal family,

etc. are required, along with total number of journal articles to extract content from. The

above modules incrementally populate a separate output JSON object, which provides a

final record of the relevant figure URLs, bounding boxes that encode the size and location

of the individual images on the figure, and proper sequences of caption text to serve as

labels for the images. The dataset constructor then uses this output file to construct a

high-quality self-labeled image dataset.

6.2.2. Journal Scraper

This module performs the first extraction step in the pipeline. It is responsible for re-

trieving figure/caption pairs from articles that fit the parameters of the search query, and

uses the Python Requests library [225] to handle all of the HTTP requests. First, arti-

cle URLs are extracted from a collection of individual searches formed from all possible

combinations of search field keywords and associated synonyms. With an ordered list of

open-source article URLs, the scraper contains a method that sends further GET requests

to retrieve each article and its figure/caption pairs. Finally, the output JSON is populated

with all the general article information returned during the extraction steps, including the

full caption data for each figure, and URLs to the articles and their associated figures –

providing basic provenance to the data workflow. Full article text can also be included

if desired. Currently, the journal scraper has the functionality to parse open-source jour-

nals from the Nature, American Chemical Society (ACS) and Royal Society of Chemistry

(RSC) families by default, but is designed in such a way that users can create new parsers
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with straightforward modifications of the base “journal family” class. The reason these

three were chosen as defaults is related to both their impact and the fact that their con-

tents are served in fundamentally different ways. Nature and ACS have static content,

while RSC’s content is served dynamically. Consequently, with this collection of default

parsers, we cover two common ways information could be obtained from a website, which

leaves the door open for this tool to be easily extended to any open source journal. All the

figure and caption extraction is performed directly from the HTML version of the article

and does not require PDF downloads. This is a design choice based on the observation

that most open-source content is available directly from the HTML text and the ability to

download the information in PDF form is more of a convenience rather than a necessity.

6.2.3. Caption Distributor

With all figure and caption information recorded, the next step is to distribute subse-

quences of the caption text to the respective subfigure that they reference. This first

involves sentence tokenization with Parts-of-Speech (POS) tagging. POS tagging decon-

structs sentence text into small units (tokens), which are given a tag that identifies their

part-of-speech in the sentence. For this, the natural language processing (NLP) tok-

enization tools from the spaCy library [119] are extended to properly assign “subfigure

identifier” tags, to patterns that indicate the presence of a subfigure description. This is

achieved through custom rule-based matching and includes all alphanumeric symbols as

well as directional phrases such as “top right” or “bottom left”, etc. With this custom

tagging, the “(a)” in a phrase such as “(a) Nanoparticles deposited on . . . ”, is properly

interpreted as the subfigure identifier instead of a determiner surrounded by parenthesis.
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Figure 6.2. The left panel is the initial figure before annotation, the
right is a copy that has been properly annotated according to the Master-
Dependent-Inset (MDI) model. The presence of a subfigure label is neces-
sary for an image to be given a “master image” designation. Because the
master image corresponding to subfigure label “b” governs two distinct im-
ages (illustration and graph), it is classified as a parent. Additional image
features such as the scale bar and scale bar label are also identified.

From there, a regular expression style of pattern matching is performed on the list of

the custom POS tags, with a dictionary of reference sequences collectively representing

a “standard syntax” for typical subfigure image descriptions in caption text. Refer to

Chapter 2 for a specific example of POS-tagging performed on caption text (Table 2.1),

and for the “standard syntax” pattern matching used to extract proper image descriptions

(Table 2.2). Finally, words from the initial search query that appear in the segment of

caption text for an image are designated as “keywords” for the image.
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6.2.4. Figure Separator

A scientific figure is often composed of multiple individual images that must be separated

before further processing and pairing with the caption text. This figure separation step

involves subdivision of the extracted figures into “master images”, according to what we

establish as the Master-Dependent-Inset (MDI) modeling paradigm. In the MDI para-

digm, the master image is defined relative to a subfigure label (e.g., “(a)”, “(b)”,etc.), and

the subfigure label is the functional element bridging the visual image content to the text

describing it. All visual components (i.e., all images, drawings, clarifying annotations)

belonging to the complete entity referenced by the subfigure label, are collectively referred

to as the “master image”. In addition to defining the master images in context of the full

figure, the figure separator both classifies the image according to the nature of the image

content (e.g., microscopy, diffraction, graph etc.), and extracts scaling information that

is present in the form of a scale bar on images within the figure.

Figure 6.2 provides a detailed view of the MDI model applied to a standard figure.

Both insets and scaling information are shown in subfigure “(a)”, and subfigure “(b)” is

useful for demonstrating the need for a “master image” classification, as it is clear that

it is referencing more than one distinct image. Moreover, when a master image contains

multiple dependent images, it is classified as a parent. The detection and classification of

master images is the primary task of the figure separator, which follows a two-stage frame-

work outlined in Jiang et al. [226]. The first stage identifies subfigure labels within the

compound figure. This is achieved using a combination of object localization (YOLOv3-

style object detector [94]) and object recognition (ResNet-152 [227]) neural networks. In
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the second stage, a binary mask is created to provide visual anchors for the subfigure lo-

cations in the full figure. The binary mask is then concatenated with the standard RGB

input channels and fed into the master image detection module. Taken together, these

neural networks locate and classify master images within the figure, while preserving the

association between master images and their respective subfigure labels.

After the master images are detected, localized, and classified, the final step is to

extract scaling information, which also relies on a two-stage neural network. First an

object detection neural network (Faster R-CNN [228]) is used to detect the bounding

boxes of scale bar labels and scale bar lines that exist in a given figure. Next, the detected

scale bar labels are fed into a Convolutional Recurrent Neural Network (CRNN [229]) in

order to perform text recognition, making the scale bar label text machine readable. The

result of the CRNN is processed by a rule-based search to ensure the output is a valid

scale bar label (i.e., a number followed by a unit). Multiple scale bar lines and scale bar

labels in a single figure are matched by assigning the scale bar labels to scale bar lines

greedily based on the distance between the center of their respective bounding boxes.

Each matched scale bar-scale bar label pair is assigned to the subfigure in which it is

contained. Using the length in pixels of the scale bar line and the subfigure and the scale

bar label text, the real space size of the subfigure can be determined.

6.2.5. Dataset Constructor

The above modules incrementally transform the search query into a JSON output struc-

ture, which contains all the information necessary to create a dataset annotated from

caption descriptions in the literature. The dataset constructor allows users to process
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URLs, bounding boxes, and annotation information in the saved JSON output, to gather

the appropriate figures, extract their individual images, and align the keyword labels.

The separated images can then be stored locally along with a .csv that contains row

entry descriptions and keywords for each image. This mode of operation lends itself to

users looking for quick access to custom data curation. For more ambitious users, addi-

tional features exist for easy connection to a local MongoDB server. Postprocessing tools

aimed at further interpreting and removing the pixel annotations (e.g., subfigure labels,

scale bars, and any additional text, symbols, or shapes added to further clarify the image

content) are under active development.

6.2.6. Crowdsourcing Figure Annotation with Mechanical Turk

In order to achieve sufficient accuracy, the above models must be trained on images that

are deemed as proper references, or have been verified as representing the correct way

to locate and classify master images (i.e., ground truth). Because the demands of this

task are unique in that figure separation does not fall explicitly within the canon of

standard computer vision training tasks, we needed an approach to scale the annotation

effort to ensure the best accuracy on the figure separation task. For this, we used the

crowdsourcing platform from Amazon called Mechanical Turk (MTurk). Though proper

interpretation of a scientific image often requires an expert to understand the nuances of

the image content, identifying where the master images are located, as well as their proper

classification, can be formulated so that those without a rigorous science background can

annotate the images with only a very modest amount of instruction. As such, we designed

a custom figure annotation GUI (snapshots of the GUI are included in the supplementary



140

information) within the MTurk platform, and asked workers to draw bounding boxes

around each master image in the dataset, and then classify them. This allowed us to

quickly create a dataset of > 3000 MDI annotated figures (∼ 18,000 separate images).

The basis for training the current version of the figure separator involves augmentation

of a random sampling of 2000 of the annotated images from MTurk and is described in

more detail in Jiang et al. [226].

6.3. Results and Discussion

There are several components of the EXSCLAIM! pipeline that must be considered in

evaluating overall performance. Here, we (1) validate classification accuracy for the figure

separator using precision and recall metrics obtained on a reference dataset, (2) examine

the various scenarios for how caption text is assigned, quantifying accuracy for the case

where a single keyword is used to describe the image, and finally (3) provide suggestions

for how to create new labels or general topics to associate with images that are left un-

or under-annotated. In total, the results emphasize the attention placed on accuracy and

extensibility of the EXSCLAIM! toolkit.

6.3.1. Validation of the Figure Separator on MTurk Dataset

To validate the classification and bounding box prediction accuracy of the figure separa-

tor, 784 figures (3555 separated images) from the crowdsourced MTurk dataset – withheld

during training – were used as part of the validation set. The validation dataset is avail-

able from the Materials Data Facility [230, 231] (DOI: 10.18126/a6jr-yfoq [232]). The

results are shown in Figure 6.3. Images were scraped from Nature publishing sources (the
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Figure 6.3. The confusion matrices highlight the nature of the mistakes
made in each classification scenario at two confidence thresholds (a) no
threshold, and (b) high-threshold for N=3555 images. In both cases, the
precision scores are adequate, particularly in the case of the microscopy,
graph, and diffraction images. Recall suffers across the board as correctness
is emphasized over completeness in the design of the pipeline. Images in
(c) highlight some of the more easily rationalized examples of false positive
microscopy classifications. DOIs for articles containing the example images
(left to right): 10.1038/ncomms14925, 10.1038/srep08722,
10.1038/ncomms4631.

code for the scrapers is easily extendable to other journal sources), and positive predictive

value (precision), which is loosely the correctness of the positive classification, is always

prioritized over a measure of completeness, such as recall. Confusion matrices summariz-

ing important aspects of the classification performance are given in both a “no threshold”

(Figure 6.3a) and “high-threshold” (Figure 6.3b) condition. In the “no threshold” condi-

tion, the most likely classification in the final output of the neural network is accepted,
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regardless of its magnitude. In the “high-threshold” condition, only classifications with

values of magnitude greater than or equal to 0.99 are accepted. In this context, the

threshold is a proxy for classification confidence in the figure separator. Both microscopy

and graph classification with “no threshold” and “high-threshold” specification are favor-

able from a precision perspective with all scores more than 0.80 – and furthermore, the

“high-threshold” precision for graphs is ∼0.98.

One of the primary use cases for the EXSCLAIM! toolkit is the construction of self-

labeled datasets, and in the assumption of data abundance (i.e., the opportunity cost

of passing up on an image is low), the low recall values from false negatives (particu-

larly diffraction images identified as microscopy images) are not as detrimental to the

integrity of the set as images that are incorrectly identified as an image type they are not

(i.e., false positives). Figure 6.3c highlights some of the interesting false positive trends

where a sizable population of diffraction, illustration, and parent classes are being incor-

rectly assigned as microscopy images. In the case of the diffraction example (left), the

diffraction patterns show periodicity resembling atomic-resolution microscopy images, so

the microscopy assignment seems logical. The false positive for an illustration (middle)

maintains some features commonly associated with a microscopy image, such as a darker

background, and even the coloring of the graphene sheet resembles a texture present in

microscopy images, but globally is clearly not a microscopy image. Finally, the parent

on the far right (Figure 6.3c) actually does contain a microscopy image, but because

the image below it does not contain a subfigure label and is “semantically” tied to the

microscopy image in “a”, the most appropriate classification for this image is “parent”.
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6.3.2. Sample Query: Electron Microscopy Images of Nanostructures

We illustrate the utility of EXSCLAIM! for labeling materials imaging datasets with an ex-

ample of electron microscopy images of nanostructures. Open source Nature articles were

collected from a “Sort By Relevance” search related to the collection of queries formed

from the following lists of keywords: (“electron microscope”, “electron microscopy”),

and (“nanoparticle”, “nanosheet”, “nanoflake”, “nanorod”, “nanotube”, “nanoplate”,

“nanocrystal”, “nanowire”, “nanosphere”, “nanocapsule”, “nanofiber”). This specific

query mimics a wildcard-style search for nanostructures imaged in an electron microscopy

modality and returned a total of 13,450 open-source articles with 83,504 figure-caption

pairs. For the purpose of quantifying overall retrieval performance on microscopy images,

which involves both an assessment of image classification and keyword labeling accuracy,

we restrict the following quantitative measurements to articles in the top 10% of the rel-

evancy ranked list, which is a reasonable simplification because the labels defined by the

search query (“nanoparticle, “nanowire”, etc.) depend on the presence of the keyword in

the caption, and the median keyword frequency decays exponentially across article rank

(refer to the supplementary information). This collection of articles has a yield of 29,096

separate images. The full dataset returned from this search query of nanostructure images

is available from the Materials Data Facility [230, 231] (DOI: 10.18126/v7bl-lj1n [233]).

Graphs and microscopy images are among the most popular image types for this

specific search query. The abundance of microscopy images is expected, as a result of

including microscopy-relevant keywords as a separate word family, whereas the high fre-

quency of graphs is most likely a result of how authors choose to format scientific results.

Figure 6.4a highlights the distribution of predicted image types in the top 10% of retrieved
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Figure 6.4. The example query is used to extract electron microscopy im-
ages of general nanostructures from Nature journals. The bar plot in (a)
shows the distribution of image types extracted at two different thresh-
olds. The bar plots in (b) and (c) further subdivide the population of high
confidence microscopy images. In (b), the distribution of label types are
recorded. In this context, single and multi-label refer the existence of a
keyword label. Label unassigned (uas) means that caption text has been
distributed to the image, but no keyword label from the initial query exists.
Caption unassigned (uas) refers to a scenario where the caption distributor
was not able to confidently distribute a proper substring to caption text.
The bar plot in (c) represents the distribution of labels in the top 10% of
retrieved microscopy images and provides a estimate of the joint proba-
bility that an image classified as microscopy and given the corresponding
subsequent label is a true microscopy image represented by the given label.

articles, and indicates the threshold used to assign the classification with further color-

coded divisions of each bar. These thresholds (“no threshold” and “high-threshold”) again

act as proxy for classification confidence and are consistent with the definitions given in

the evaluation of the figure separator on the MTurk dataset. Within both graphs and

microscopy images, 75% of the total population receives a high-level of confidence associ-

ated with the prediction of its image type (i.e., high-threshold condition), which is likely a

consequence of having a more precisely defined image type. This distribution of predicted
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image types in Figure 6.4a is useful for quantifying the approximate number or percentage

of high-confidence extractions (image classification) that one could expect to obtain for a

given query. Moreover, taken with the results on the MTurk images from Figure 6.3, it is

likely that a large fraction of the high-confidence classifications, particularly in the case

of microscopy images and graphs, are actual instances of microscopy images or graphs

because of the high precision scores.

Beyond just image classification confidence, it is important to start examining both

the frequency and quality of the processed caption text from the caption distributor,

because it is this text that is used to ultimately describe the image content (i.e., it is

the difference between constructing a generic dataset of microscopy images vs. a highly

specific dataset of atomic resolution microscopy images of Ag nanoparticles). First, we

examine the frequency at which the processed text is assigned to images and look further at

the nature of the text extracted (e.g., is it a single keyword? multiple keywords? sentence

or phrase?). Figure 6.4b identifies four categories of possible image labeling. The “label

uas” (label unassigned) represents a population of the separated images that have received

a portion of the caption text as a description, but do not contain any of the keywords

from the search query. If this is problematic from a throughput perspective, it is advised

to include more search terms as part of the user query. Fortunately, with the modular

design of the pipeline, any of the modules can be re-run on existing extraction results,

so this inclusion of more words to increase the percentage of assigned labels could be

resolved in an efficient manner (i.e., doesn’t require user to start dataset construction from

scratch). The “caption uas” (caption unassigned) category, contains separated images

that have not received a portion of the caption text at all. These captions left unassigned
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typically have sentence structure complexities, such as multiple compound subjects, or

long intervening phrases, etc., that make caption distribution somewhat ambiguous. And

while the percentage of “caption uas” images is somewhat high, this is to some degree

intentional, as the data abundance assumption and “no information is better than bad

information” design principles underscore many of the extraction steps in the pipeline for

the purposes of keeping the data clean. Also, the current regular expression approach

taken in caption distribution provides users with the ability to extend or fine tune the

system to better suit individual use cases. The final conditions, identified in Figure 6.4b,

are the single and multi-label conditions, which represent images containing assigned

caption text with explicit reference to one or more of the keywords from the search query.

The single-label condition is further broken down in Figure 6.4c, and its relation to

the initial full set of extracted microscopy images is emphasized with the gray coloring

in Figure 6.4a (∼24% of the images in the high-threshold group have a single keyword

label). The bar chart shows the distribution of images assigned to each keyword, as

well as a measure of the joint probability of both the predicted microscopy classification

and keyword as being correctly identified. The average joint probability of the positive

microscopy/keyword prediction computed across all classes is ∼87%, which means that of

the 1909 single-label microscopy images, 1660 are true microscopy images with appropriate

keyword labels. Across the entirety of the extracted images (beyond the results for the

top 10% recorded here), there are approximately 4300 microscopy images with a single

keyword explicitly related to the query. With the ∼ 87% joint probability of the positive

microscopy/keyword prediction, we would expect a full dataset for this search query
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to contain approximately 3725 high-confidence microscopy images with the appropriate

keyword label.

Current caption distribution prioritizes identification of appropriate keywords over

language correctness, so only keyword accuracy is factored into the ground truth com-

parisons in Figure 6.4. There are, however, many examples where both the keywords

are successfully extracted, and the distributed caption is grammatically sufficient, and

this even extends to scenarios where the caption text assignment contains non-contiguous

segments. For example, in Figure 6.5a, the distributed caption uses all the text from

the subfigure identifier “(b)” to the period signifying the end of the sentence, however

Figure 6.5b-c show that the current method is capable of parsing the sentence at a higher

structural level and pick out the structurally closest sequence of text, even when it is not

linearly the closest. For example, in the Figure 6.5c, the subject of the sentence “TEM

images” is not matched to the linearly closest descriptions (adjectives) or even closest

preposition, but rather, to the preposition at the end of the sentence. Structurally, this

makes sense and is the proper division of this caption text.

6.3.3. Extraction of Scaling Information from Images

Magnification of objects is fundamental to microscopic imaging. With suitable estimation

of object magnification, achieved by recognizing and interpreting the scale bar length and

accompanying text in the separated subfigure images, researchers can begin quantifying

image content based on size. In addition, searches through resulting databases can be re-

fined to a particular size range, giving users greater control over results. Further modeling

can combine scale and caption information to associate keyword terms with dimensions.
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Figure 6.5. The extracted images contain both a keyword label shared with
the initial query, as well as a grammatically sufficient sequence of distributed
caption text. Some caption distribution examples are simple, as in (a),
where all the distributed words are linearly connected. However, the cur-
rent caption distributor is also designed to capture more complex structural
dependence relationships (b-c) where the subject is separated from the text
completing the full consistent description.

To quantify the accuracy of the scale detection step, 440 figures containing 920 scale bar

lines and scale bar labels from the MTurk dataset, withheld during training, were used.

The predicted pixel length of the scale bar line differed from the ground truth value by a

mean absolute error of 5.4%. This level of error is similar to that of humans performing

the task and negligible when determining the approximate scale of the image. Scale bar

label recognition overall is 92% accurate (both number and unit) (See Figure 6.9 in the SI)

when the confidence threshold is 0.2. This is a reasonable accuracy given the variance in

the quality of the scale bar text itself. It is not uncommon for authors to leave the default

scale bar text untouched when a microscopy image is included as part of a compound

figure – this is problematic because the native text size is often too small for high quality
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visualization, and there are many instances where the color of the text is similar to the

image content it sits on top of (i.e., recognition suffers from very low contrast). Refer

to some of the examples included in the supplementary information which support these

general observations. The supplementary information also includes confusion matrices to

summarize the prediction results breaking each label down by number and unit.

6.3.4. Self-Labeling with NLP Tools

We have demonstrated the effectiveness of the EXSCLAIM! tool in situations where key-

words are extracted from the caption text, and we even show that in some situations

when the structure of the caption is complex, the caption distributor is still capable of

extracting sentences and phrases in a way that preserves the intended meaning. However,

in the current setup, keywords are defined explicitly by the initial query, so any other

related topics that are prominent in the returned set, but not explicitly specified within

the query, are ignored. The advantage of treating the problem of dataset construction in

this manner is that it ensures a high degree of relevance in the images that are assigned a

keyword label, but it does limit the scope of the self-labeling task in general. To this end,

we first suggest including more search terms in the query (synonyms in particular), to

better capture the breadth of language used to describe the concepts that the user deems

important. Here though, we also explore how NLP tools can be leveraged to transform the

phrases or sentences of the distributed caption text into a series of relevant, hierarchical

labels for each image they are referencing. Specifically, the outlined approach involves

the use of two popular techniques in NLP: word embeddings and topic modeling from

documents. This gives users another option of generalizing this labeling to other scientific
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Figure 6.6. (a) Word embedding examples for a Word2Vec model trained
on abstract and introduction texts from the nanostructure query. (b) LDA
topic modeling applied to the introduction and abstract texts reveals some
of the most popular technological applications of nanostructures. The
Word2Vec topic name and human-assigned topic name represent further
attempts to summarize the words of the topics into more concise titles. (c)
Distribution of topics assigned to a group of 4237 abstracts collected from
a query of American Chemical Society (ACS) journals for Li-ion batteries.

topics that are not explicitly part of the initial query.

Word Embeddings. The goal of word embeddings is to create vector space represen-

tations for individual words in such a way that similar words are located close to one

another in vector space. EXSCLAIM! leverages the popular unsupervised Word2Vec tech-

nique [110] to learn high quality word vectors for the images returned in the nanostructure

query, using the 26,683 abstract and introductory paragraphs (i.e., all text before methods

are described) from the source articles. Constraining the language to the topics present
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in the searched articles is appropriate for the goal of image self-labeling. For a more com-

prehensive embedding of the materials science literature with an information discovery

focus, refer to [127]. To demonstrate how Word2Vec can be used for word associations

in context of the abstracts and introduction texts, Figure 6.6a highlights simple word

lookup examples. Without being explicitly associated, “nanoparticles” and “nanowire”

are placed in close proximity to their abbreviations, “nps” and “nw”, respectively. Addi-

tionally, 3D “nanoparticles” are closely associated with another 3D nanostructure, such as

a “nanocrystal”, and “nanowire” is placed near a similar 2D “nanorod”. The “angstrom”

unit of length is placed closely to “nanometer” and “micrometer”, and interestingly, in

this case, scale is even preserved in the ordering (i.e. angstrom is closer in scale to a

nm than micrometer). These sorts of quantitative relationships are not uncommon and

are described in further detail in the original paper [110]. The “tem” and “cnt” lookups

provide further demonstrative evidence of the Word2Vec’s effectiveness in creating some

notion of proper word associations and context.

Topic Modeling. When all the abstract and introductory texts related to the gen-

eral nanostructures search query are collected together, certain topics (groups of related

words) arise from both high-frequency word occurrences and common word orderings.

Perhaps unsurprisingly, these topics reveal many of the popular technological applica-

tions of nanostructured materials, and when not explicitly included as part of the search

query word families, can provide meaningful extra context. Figure 6.6b illustrates how

Latent Dirichlet Analysis (LDA) [123], a popular technique used for topic modeling, is

used in context of the nanostructure query. The word clouds, provided to visualize the
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LDA output, illustrate the unsupervised clustering of related words into topics. Unfortu-

nately, LDA does not provide a topic name to the words it clusters together. To this end,

we illustrate how the trained Word2Vec model can be used to create topic names and

how they closely mirror and/or are quickly resolved into rational human-suggested titles.

For example, the topic containing “catalyst”, “metal”, “oxide”, “graphene”, “reaction”,

etc. is given the Word2Vec topic name of “catalyst”, “pt”, which is easily understood

to represent the general class of “catalysis materials”. To demonstrate that the LDA

has indeed learned topics in some appropriate fashion, we collected 4137 abstract and

introduction texts from a search query of ACS journal family for “Li-ion batteries” and

observed that the majority of the documents were categorized explicitly as belonging to

batteries, or the highly related/overlapping catalysis category.

Hierarchical Label Assignment. The task of resolving sentences or phrases into rele-

vant image labels is handled using Word2Vec and LDA topic modeling at multiple struc-

tural levels. Figure 6.6 provides examples of how an image/caption pair is transformed

into a series of hierarchical labels that describe and provide context for the image content.

In all examples, the “caption” labels are determined using an iterative word dropout ap-

proach that removes words furthest away (measured by cosine similarity) from the center

of the current group. The “abstract” labels are the 2-3 words closest to the center of

the combination of abstract and caption words, and typically provide context for the im-

age that is not found explicitly in the caption. Finally, the LDA model trained on the

abstracts and introduction texts, assigns the best “topic” label to the document contain-

ing the image, if a confidence threshold of 0.80 is exceeded. Figure 6.6 provides several
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Figure 6.7. (a-g) Examples of hierarchical label assignment for images con-
taining a properly distributed caption. For each image, the caption la-
bels are limited to caption text only. Conversely, the abstract labels
are free to draw additional relevant words from the abstract text, and
the topic labels come from the human-assigned topic names from the
LDA topic summaries. — DOIs for articles containing the example im-
ages (natural reading order): 10.1038/s41598-019-40198-1,10.1038/s41467-
019-12142-4, 10.1038/s41467-019-12885-0, 10.1038/s41598-019-55803-6,
10.1038/srep17716, 10.1038/am2016167, 10.1038/srep42734..

compelling examples of how this approach can provide useful contextual labels for the

images from language outside that found explicitly in the distributed caption. For ex-

ample, we learn things that we can confirm visually, such as the fact that nanorods are

elongated and cylindrical (Figure 6.6a). We also learn things that an expert might know

that are useful for understanding the function of the image content, such as the facts that:

Fe/FeO nanocrystals function as nanotherapeutics (Figure 6.6b); RuIrZnOx-U nanoboxes

are synthetic as opposed to biological catalysts (Figure 6.6c); austenite grains describe
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the “microstructure” of the image (Figure 6.6d); nanocrystals are MA lead halide per-

ovskite (numerical characters get stripped in the text preprocessing, so ‘mapbbr’ refers to

for MAPbBr3) (Figure 6.6f), and even in Figure 6.6e where the abstract context is more

redundant than unique or complimentary, the topic provides useful context for where the

specific image content appears from an application perspective.

There are a few subtle issues with some of the assigned labels that are a result of

some of the known shortcomings in Word2Vec model training. Most notably is that in

some cases, similarity is more indicative of how interchangeable/related words are, as

opposed to measuring their actual likeness. For example, the nanoboxes in Figure 6.6c

are inaccurately labeled as photocatalysts and should be described as electrocatalysts.

While these words are highly related and often found in interchangeable contexts (i.e.,

[photocatalysts/electrocatalysts] facilitate water-splitting . . . etc.), they can present cer-

tain instances where the suggested labeling in problematic. Overall, the combination of

Word2Vec modeling with LDA topic discovery provides a solid backbone for self-labeling

imaging effort. Future work will involve finding ways to use language components and

the imaging analysis jointly to describe image content.

6.4. Conclusion

We present EXSCLAIM!, a software pipeline for the automatic EXtraction, Separation,

and Caption-based natural Language Annotation of Images from scientific figures. In this

work, we detail the specific extraction tools and provide quantitative measures of perfor-

mance for image classification and keyword labeling accuracy on both a crowdsourced-

labeled dataset, and an extracted dataset of nanostructure figures from Nature family
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journals. In addition, we provided discussions and useful model implementations aimed

at assigning image labels from complete sentence text. Successful consolidation and self-

labeling of images from scientific literature sources will not only enhance the navigation

and searchability of images spanning materials, medical, and biological domains, but is a

vital first step towards introducing scientific imaging to the canon of training datasets for

state-of-the art deep learning and computer vision algorithms.
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6.5. Supplementary Information

6.5.1. Data Availability

A dataset used to validate the classification and bounding box prediction accuracy of

the figure separator component of the EXSCLAIM! pipeline, as presented in Figure 6.3,

can be found via the Materials Data Facility (https://doi.org/10.18126/a6jr-yfoq). A

dataset illustrating how a sample query submitted to the EXSCLAIM! pipeline can be

used to construct a sizable labeled dataset (> 280,000 images) of microscopy images from

literature can be found via the Materials Data Facility (https://doi.org/10.18126/v7bl-

lj1n). Analysis of image extraction and keyword relevance associated with this dataset is

presented Figure 6.4 of the manuscript.

6.5.2. Keyword Frequency Across Retrieved Articles

6.5.3. Accuracy of Scale Bar Label Detection

6.5.4. Word2Vec and LDA Training

Word2Vec (from gensim library[234]) was trained on a corpus of 26,683 abstract and

introduction paragraphs from the source articles of the nanostructure query. The follow-

ing parameters were used for training: min count = 25, size = 200, iter = 500. For

the LDA topic modeling, abstract and introduction text was transformed into a corpus of

TFIDF vectors and LdaMulticore was used with num topics=7, id2word=custom dictionary,

passes=64, workers=4. The number of topics was selected based on coherence score

(u mass), which assess the quality of the learned topics.
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Figure 6.8. The explicit keywords (part of the nanostructure query) were
counted in each retrieved article, and the median value of the keyword
frequency for each ranked decile was plotted to highlight the exponential
decay of keyword occurrences across the full retrieved dataset. This implies
that articles returned in the top 10% have the greatest chance of being
assigned a keyword label directly from the query.

6.5.5. MTurk GUI for Annotating Figure Separation Training Data

A snapshot of the graphical use interface (GUI) that is accessible via the MTurk worker

platform (https://www.mturk.com/worker) is included in Figure 6.10. MTurk workers

with an extensive record of positive work on the platform can access and complete the

MDI annotation “HITS” (Human Intelligence Tasks) posted to the site. For more details

on the MDI model, see Figure 6.2. Workers can select the categories at the bottom that

are used to describe the objects in the figure, and after drawing a bounding box around

the object, they are asked to either further classify the image, or transcribe the text

(if applicable). When one of the members of the EXSCLAIM! project reviews the HIT

submitted by the worker, if directions are not followed, or it is clear that the task was

completed in a rushed or careless fashion, the HIT is rejected. This helps ensure the

quality of the training dataset created for this task of figure separation.
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Figure 6.9. The plot in (a) shows how accuracy varies as a function of
confidence threshold, including the number of images present at a given
threshold. For all thresholds shown, there are at least 500 samples. When
the confidence level associated with the scale bar label detection is ∼0.6,
the overall accuracy (percentage of scale bar number and unit labels that
are correct) is > 0.95. The confusion matrices in (b) and (c) highlight the
accuracy of the predicted number and unit components for the scale bar la-
bel recognition. Labels for mm and cm were not adequately represented in
the training set, so they are not part of the test set. Both number and scale
recognition accuracy is high at the 0.2 threshold (∼92% and 99% respec-
tively for the labels shown). The examples in (d) show common instances
of the low-resolution and low-contrast conditions that are responsible for a
majority of the prediction errors.
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Figure 6.10. Screenshot of MTurk interface used for MDI annoation of fig-
ures used as training data for the figure separator.
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CHAPTER 7

Summary and Future Directions

In this thesis, I present a collection of vision-based automation tools that
can be used to assist in the prediction of materials structures and as-
sociated structural characteristics from experimental and simulated mi-
croscopy images. These automation tools are powerful because they elim-
inate many of the scaling bottlenecks related to manual image comparison
found in traditional microscopy interpretation workflows. In particular, I
focus on interpretation workflows involving atomic-resolution STEM and
STM imaging modalities, as well as those involving general materials mi-
croscopy images scraped from open-source scientific literature. The goal
of each workflow is to assist in the search of plausible structures to best
explain experimental observations. With the developed tools, there is the
potential to both realize structure in a direct sense, using image simula-
tion and atomistic modeling, as well as in a more indirect sense, using
images curated from literature as the foundation for deep learning or im-
age retrieval tasks that attempt to make sense of observed structures in
the context of learned patterns or existing published images. Here I sum-
marize the main topics covered within the chapters of this thesis, and
in the end, I provide several directions to take for both extending and
improving the overall robustness of the tools developed.

7.1. Summary

One of the primary research challenges of this thesis involves quantifying the simi-

larity between experimentally observed images and simulated materials characterization

images. In Chapter 3, we introduce multiple image comparison scenarios in materials

microscopy to test similarity measurements, and suggest ways in which pixel value dis-

tributions, in combination with a consideration of the search goal, can be used to inform

preprocessing and comparison strategies. When the goal of search is to return images
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that contain identical or near-identical structures to the image that is used as the request

for comparison (i.e., the query), visual information fidelity in the pixel domain (VIFP),

with normalization as the preprocessing method, achieves the highest matching accuracy

scores; however, simple pixel-wise mean square error (MSE) or structural similarity index

measure (SSIM) with standardization as the preprocessing method are competitive.

In the event that registration cannot be addressed in a straightforward manner (i.e.,

out-of-the-box rigid registration algorithms fails), we go on to show how features, con-

structed to capture the local geometry information surrounding each distinct atomic col-

umn, can be used both as a basis for scale-invariant image comparison, and as a way to

consolidate similar atomic columns in a chemically and/or functionally logical way (e.g.,

group atomic columns with similar coordination or atomic columns that are all part of an

interface). Finally, in addition to matching structures contained in the images, we provide

tools for the creation of idealized STEM distortions and begin to decouple the possible

roles that each distortion type plays in further image comparison scenarios.

As mentioned above, in order to focus on quantitative aspects of pixel-level matching

highlighted in Chapter 3, assumptions were made to remove registration as a factor in

the image similarity comparison. The specific problem of image registration for atomic-

resolution imaging is explored in Chapter 4, in context of the ingrained toolkit. With

ingrained, registration is used to find a proper mapping between the simulated image

(both the underlying structure and associated simulation parameters) and the experi-

mental image. Structure initialization for bicrystal interfaces is the introductory use case

for the ingrained toolkit. In this case, ingrained iteratively optimizes the misorientation

between two grain structures (obtained with programmatic queries of online materials
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structure databases), alongside a set of image simulation parameters, to produce a bicrys-

tal structure whose simulated image is the best match to the experiment. Conversely, the

STM use case introduces an experimentally-rationalized forward model for STM image

simulation that relies on ingrained for fine-tuning of important imaging-related parame-

ters. The term “experimentally-rationalized” implies that since the STM intensities for

a single structure vary widely with small changes in the simulated imaging parameters,

the mapping between the simulation and experiment is essential for justifying a proposed

structure. In this sense, image registration is part of the forward model itself. Already, the

STM use case has proven impactful as it was recently used with first-principles modeling

to help determine the structure of hydrogenated borophane. [7].

Even when a satisfactory registration result is obtained (i.e., the interface cases pre-

sented in Figures 4.3 and 4.4), the final structure itself often needs further refinement

because there is no mechanism to programmatically add structural features and/or de-

fects to compensate for any localized disorder that exists in the experimentally observed

structure. This acknowledgment does not diminish the demonstrated capabilities of the

ingrained toolkit, but rather, motivates the global structure search methods introduced

in Chapter 5. In Chapter 5, a proposed registration solution from ingrained is used as the

starting point in a global structure search workflow that incorporates image simulation

and atomistic modeling together for the purpose of (1) enforcing visual consistency be-

tween simulation and experimental observation (similar to ingrained), and (2) assessing

energetic feasibility in the form of atomistic calculations. Both of these components, image

matching and structural feasibility assessment, are incorporated into the search objective

function. Specifically, in Chapter 5, we show that a global structure search workflow
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can be used to propose a collection of plausible high-angle grain boundary structures in

cadmium telluride (CdTe). In addition, we use first principles calculations of energetic

and electronic properties of these grain boundaries along with multislice calculations, to

suggest that this global optimization workflow is of benefit in the further study of real-

istic grain boundary structures. This work in Chapter 5 is a critical component of the

FANTASTX software package [52], one of the core theory and modelling capabilities of

the Center for Nanoscale Materials at Argonne National Laboratory, which provides a

framework to determine atomistic-level structures from multi-modal experimental and

theoretical data.

The final topic of this dissertation is a departure from the preceding chapters that

follow bottom-up approaches to construct structure interpretation pipelines by combin-

ing atomistic modeling with image simulation. In Chapter 6, we introduce EXSCLAIM!,

a tool for the automatic EXtraction, Separation, and Caption-based natural Language

Annotation of IMages from scientific figures. Drawing from both the depth and diversity

of open-source imaging content available in the scientific literature, EXSCLAIM! allows

users the ability to construct high-quality self-annotated imaging datasets at volumes con-

ducive to meaningful experimentation with deep learning algorithms, and thus ascertain

structural insight from microscopy in a top-down, data-driven way. In Chapter 6, we sum-

marize the main components of the pipeline, highlighting the role that natural language

processing (NLP) and computer vision play in the construction of the components, and

providing examples that illustrate the pipeline’s overall effectiveness. We conclude with

a case study that shows how the combination of word vectorizations and topic modeling

can be used to further refine the procedure for assigning keywords to extracted images.

https://www.anl.gov/cnm/theory-and-modeling-capabilities
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7.2. Future Directions

This thesis established an important foundation for future vision-based automation

projects in materials microscopy. Each of the following directions extends one or more

of the concepts or tools explored in prior chapters. In some cases, particularly with

ingrained (Chapter 4) and EXSCLAIM! (Chapter 6), the directions identified are already

being addressed in context of new spinoff projects that use these software tools.

7.2.1. CNN-based Peak Detection

In the atomic-resolution images explored in Chapter 3, the positions and intensities of

the atomic columns (i.e., “peaks”), were used to construct the image features. In the

presentation of the methods, peak finding was trivialized by the fact that the coordinates

of the atoms (and therefore the columns) could be found directly from the structures that

were simulated in order to create the synthetic dataset. In order for the feature-based

comparison results to translate to comparisons with real experimental images, successful

peak detection both is critical, and non-trivial. Using morphological and thresholding

operations, e.g., from off-the-shelf packages such as scikit-image, is often not reliable, and

thus require a good deal of parameter tuning to reduce false positive and false negative

peak detections. Given the abundance of open-source CNN-based architectures currently

available, in conjunction with the fact that this work established the infrastructure for

creating large-scale synthetic datasets of atomic-resolution microscopy images, it would be

worth training a CNN for peak-detection on these images so that feature-based matching

approaches that rely on peaks could be adequately utilized on a wide-variety of experi-

mental atomic-resolution microscopy images.
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Figure 7.1. Microscopy images from literature are queried with the images
presented on the left, and the top matches obtained using MSE comparisons
with features computed used the default ResNet-101 backbone are presented
on the right. The default ResNet-101 backbone is trained on millions of
“natural” images from the popular ImageNet database [8]

7.2.2. Image Similarity Comparisons with CNN-based Features

In recent years, interest in hand-crafted feature-based approaches for image retrieval have

subsided in favor of CNN-based approaches. With CNNs, image features are not explicitly

defined, but rather, are learned in the course of training a network, and fortunately,

training a network for generic image classification or recognition tasks on natural scenes

can often yield feature representations that are fundamental enough to vision itself to be

effective for more specialized recognition or retrieval tasks. This is the basis of what is

referred to as transfer learning, and its value is remarkably apparent even with a simple

anecdotal case applied to microscopy image retrieval. In Figure 7.1, we show how a

simple forward pass of the ResNet-101 architecture trained on natural images, can be

used to perform meaningful microscopy image retrieval with simple MSE comparisons on

the fixed-length features that are output. We propose further investigation of CNNs for

feature representation that involve fine-tuning of layers in the convolutional base.
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7.2.3. Multi-start Strategies and Resource Allocation for ingrained

The optimization strategy that underlies the image registration in ingrained is local in

the sense that it restricts the search to points that are close to the starting location. The

optimization is not global so that if the desired solution is not close to the starting point,

we do not obtain the global minimum in the objective function. One way this is typically

dealt with is to implement a multi-start strategy that terminates the current optimization

if progress stagnates, and restarts the optimization at a new starting location. The

examples presented in Chapter 4 are the result of several manual randomized restarts, so in

order to improve automation in the process, these restarts should be incorporated directly

into the optimization workflow. For example, a new starting location could be selected

at random when a local minimum is detected, or a memory-based strategy that retains

prior solutions or portions of solutions that are deemed beneficial could be implemented.

In addition to a multi-start strategy, overall optimization progress would benefit from

a restructuring of the code that includes (1) multi-core or multi-thread approaches to

better exploit concurrency, and (2) the ability to quantify optimization progress so that

computation resources can be appropriately allocated. Fortunately, being an optimization

problem that involves many distinct runs to explore a relatively large space of input

parameters, the ingrained optimization strategy is “embarrassingly parallel”, which makes

(1) and (2) more straightforward to address.



167

7.2.4. Accelerated image simulation algorithms for global optimization

Despite several oversimplifying assumptions, convolution is the default microscopy image

simulation method for both ingrained (Chapter 4) and the grand canonical basinhopping

procedure outlined in Chapter 5. In both cases, but particularly in the latter, even a

lenient convergence criterion requires several of thousands if not hundreds of thousands of

function evaluations, so simulation execution time is an essential consideration. There are

two main directions that could be followed to address the current speed and/or accuracy

concerns when image simulation is part of the optimization process. One is to reformulate

the expensive multislice calculation (considered a simulation gold standard), to reduce the

number of operations and/or the cost associated with each operation, which was approach

taken in the original PRISM method [39, 41]. A multithreaded form of the PRISM

method (calculations for each probe positions took advantage of a multithreaded work

dispatch) was used to construct the atomagined simulated microscopy dataset introduced

in (Chapter 3). The next possible direction involves hardware-specific accelerations with

graphics processing units (GPU). Using GPUs to accelerate microscopy image simulation

has been well-addressed [38–40, 188], however, to be of most use to the global optimization

efforts, that is, for the entirety of the image simulation, energy calculations, and the

governing optimization to benefit most from GPU acceleration, GPU-specific structure

reorganizations of the current codes are likely necessary.
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7.2.5. EXSCLAIM! Version 2.0

Here we cover some of the new features and testing planned for upcoming releases of

EXSCLAIM!

Further Proof-of-Concept. To provide a clear example of how EXSCLAIM! is intended

to function in the scientific literature ecosystem as far as its capacity to extract images at

high-volume for deep learning applications, we propose using extracted image/keyword

pairs to train a CNN for steel microstructure classification. The idea here is to show how

the image/keyword pairs returned from queries of Nature, ACS, and RSC journal articles,

either by themselves, or augmented with an existing experimental dataset [203], can be

used as a basis for image classification performance enhancement. This is not a focus on a

specific architecture, but rather, an attempt to show the performance benefit of training

with a significant body of literature-based imaging data.

Development of a Web-Based GUI. In its current form, EXSCLAIM! can be instan-

tiated from the command line or from a Python script, however, the visualization of the

results, and customization of the parsers and components require some degree of famil-

iarity with programming concepts, which may be challenging for novice users. To this

end, we propose developing a web-based Graphical User Interface (GUI) to simplify the

construction of a user query, improve the visualization and manipulation of the imaging

results, and finally, to provide options for exporting the generated datasets in formats

amenable to deep learning pipelines or for database storage (export to a database). A
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majority of these functionalities are available in the current command line version avail-

able on GitHub, however the GUI will hopefully attract researchers interested in using

EXSCLAIM!, that would otherwise not go through the effort of downloading the software

and learning how to use the command line interface.

Robust Caption Assignment with Deep NLP. In its current form, the caption dis-

tributor module of EXSCLAIM! is rule-based. As detailed in (Chapter 6), this means that

the decisions underlying the extraction and pairing of strings of text to the images they

describe uses both proximity to the caption delimiting elements with patterns in part-of-

speech (POS) sequences to obtain appropriate descriptions of the images. In NLP, this

grouping of words following POS tagging is referred to as “chunking” and is part of a

general collection of “sequence labeling” NLP tasks. The current rule-based chunking

approach adopted in EXSCLAIM! is consistent with early NLP systems and works to the

extent that the dictionary of chunks (POS sequences) is representative of real caption

sentence syntax. From testing the first version of the tool, we find that improvements are

necessary, as the way authors describe images in the caption, despite being a relatively

small body of text, is considerably complex. The presence of long noun phrases (what we

refer to a noun chunks in Chapter 6) or the abundance of non-adjacent dependencies, are a

few contributors to the overall complexity. State-of-the art approaches to solving sequence

labeling problems now often involve variants of either a recurrent neural network (RNNs)

or transformer-based architectures. Both are specifically designed to handle sequential

data and employ concepts such as memory and attention when training on massive text

corpora to achieve impressive results on a variety of higher-level language understanding
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Figure 7.2. An annotated atomic-resolution HAADF STEM image of rutile
TiO2 (original image on the left), adapted from [9], with filtering results
that illustrate various attempts to separate the annotations drawn on the
image (foreground) from the true image content (background). Adaptive
thresholding appears to oversegment the image, while Wiener filtering with
adaptive thresholding requires considerabel fine tunin. The pix2pix (cGAN
approach) with minimal training produces the most accurate segmentation
among the variants tested.

tasks – earning them the distinction of being considered “deep NLP”. Going forward, we

propose adopting deep NLP methods into EXSCLAIM!, with the hope of being able to

construct the best topical phrases and/or summaries of the imaging content. Part of this

might also involve extending the scope of the text beyond the caption to also include the

full-body text.

Image Annotation Segmentation and Inpainting. In addition to the descriptive

text assigned to an extracted image from the caption, researchers often use image anno-

tations as a way to further clarify the identity or function of an object within an image.

These annotations, overlaid directly on top of the image content, can take the form of

circles, rectangles, arrows, text, etc, and could be used to clarify a visualization or indicate

heightened importance. In the short term, these annotations are considered problematic,
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out of a concern that their presence might promote false positive correlations to improve

classification or recognition performance in context of training a CNN. For example, an

“(a)” in the upper left corner may have some weight in the final classification decision if

a majority of the images of that specific class happen to be the first image in a figure.

To both avoid promoting false positive correlations when during training, as well as es-

tablish a foundation for image annotation interpretation tools going forward, we propose

addressing image annotation segmentation (i.e., identifying which pixels contain raw im-

age content, and which pixels are the result of human annotation). Preliminary efforts

are already underway to use conditional generative adversarial networks (cGANs), specif-

ically the popular pix2pix setup [96], to construct custom “annotation” filters that can be

used to identify portions of an image that contain additional human annotation on top of

the raw microscopy output. Figure 7.2 shows some preliminary results of using pix2pix

to segment the annotations from the image, and the approach appears promising relative

to traditional filtering approaches. Once the annotation locations are identified on the

image, they can either be ignored, to avoid the possibility of promoting false positive

correlations, or inpainted over. Inpainting algorithms would fill in missing image pixels

with values that attempt to appropriately complete the image.

Graph Digitization. Within the current scope of EXSCLAIM!, much of the focus has

been on how the tool could be used to amass datasets of microscopy images as a way

to facilitate meaningful experimentation with deep learning algorithms further down the

pipeline. The current scope has largely ignored the potential contributions of graphical
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data. Extracting underlying numerical data from graphs (graph digitalization), and pair-

ing it with its associated caption text, would be valuable to those looking to perform

further analysis directly on the data themselves. In the literature, identifying distinct

instances of objects that all belong to the same class (e.g., a plotted line) in an image is

a task referred to as instance segmentation. This is another important step in the effort

to make EXSCLAIM! a general tool for image-based information curation in scientific

literature.
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temperatures via semi-supervised relationship extraction,” Scientific data, vol. 5,
p. 180111, 2018.

[116] S. Mysore, Z. Jensen, E. Kim, K. Huang, H. S. Chang, E. Strubell, J. Flanigan,
A. McCallum, and E. Olivetti, “The materials science procedural text corpus: An-
notating materials synthesis procedures with shallow semantic structures,” 2019.

[117] E. Kim, Z. Jensen, A. Van Grootel, K. Huang, M. Staib, S. Mysore, H. S. Chang,
E. Strubell, A. McCallum, S. Jegelka, and E. Olivetti, “Inorganic materials synthesis
planning with literature-trained neural networks,” Journal of Chemical Information
and Modeling, 2020.

[118] C. J. Court and J. M. Cole, “Magnetic and superconducting phase diagrams and
transition temperatures predicted using text mining and machine learning,” npj
Computational Materials, 2020.

[119] “spacy.” https://spacy.io.

https://www.nextmovesoftware.com/leadmine.html
https://spacy.io


180

[120] G. Salton and J. McGill, Michael, “Information retrieval: an introduction,” in In-
troduction to modern information retrieval, 1983.

[121] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman,
“Indexing by latent semantic analysis,” Journal of the American Society for Infor-
mation Science, 1990.

[122] T. Hofmann, “Probabilistic latent semantic indexing,” 1999.
[123] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal of

Machine Learning Research, 2003.
[124] H. Jelodar, Y. Wang, C. Yuan, X. Feng, X. Jiang, Y. Li, and L. Zhao, “Latent dirich-

let allocation (lda) and topic modeling: models, applications, a survey,” Multimedia
Tools and Applications, 2019.

[125] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word rep-
resentations in vector space,” 2013.

[126] T. Mikolov, W. T. Yih, and G. Zweig, “Linguistic regularities in continuous space-
word representations,” 2013.

[127] V. Tshitoyan, J. Dagdelen, L. Weston, A. Dunn, Z. Rong, O. Kononova, K. A.
Persson, G. Ceder, and A. Jain, “Unsupervised word embeddings capture latent
knowledge from materials science literature,” Nature, 2019.

[128] C. Kisielowski, B. Freitag, M. Bischoff, H. Van Lin, S. Lazar, G. Knippels, P. Tiemei-
jer, M. van der Stam, S. von Harrach, M. Stekelenburg, et al., “Detection of single
atoms and buried defects in three dimensions by aberration-corrected electron mi-
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