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ABSTRACT

Enhancing Safety and Robustness for Mission-critical Systems

with Formal Methods

You Li

Mission-critical systems are those imperative systems whose failures can result in cat-

astrophic consequences. Traditional techniques, such as manual investigation and testing,

cannot ensure the absence of errors and security vulnerabilities within these systems. This

dissertation leverages formal methods to comprehensively examine several mission-critical

systems and their essential components. For each of these systems, we either provide a

rigorous mathematical proof of its correctness, or use concrete reasoning to identify the

underlying security issues.

In the first part of this dissertation, we devise a method to prove that two systems are

functionally equivalent modulo any timing differences. This method is based on symbolic

model checking and induction, so it can generate a refinement mapping in addition to

the verification result. In the second part, we propose an SAT-based attacking algorithm

against sequential logic encryption, which does not require a working chip as the oracle.

This study has established a new foundation for the security analysis of logic encryption.
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The third part investigates whether logic encryption can resist I/O attacks on deep neu-

ral networks. Our findings suggest that existing defence mechanisms are susceptible to

quantitative analysis techniques.
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CHAPTER 1

Introduction

“The purpose of abstraction is not to be vague, but to create a new semantic

level in which one can be absolutely precise.”

- Edsger W. Dijkstra

Mission-critical systems are those imperative systems whose failures could lead to

catastrophes [41]. Examples of mission-critical systems include but are not limited to au-

tonomous vehicles, flight control systems, power grids, and data centers. The complexity

of modern mission-critical systems is consistently growing. As a result, they are typi-

cally comprised of multiple key components, such as operating systems, network devices,

databases, integrated circuits, and AI modules.

Traditionally, the correctness of mission-critical systems and their sub-modules are

verified through manual investigation or testing. However, such methods are often in-

exhaustive on complex systems and thus cannot ensure the absence of errors. On the

other hand, the security study on mission-critical systems has devolved into a perpetual

cat-and-mouse chase between attackers and defenders. Due to the lack of formal security

guarantees, research outcomes in this field are usually transitional and short-lived.

Formal methods refer to those mathematically rigorous reasoning techniques, such as

model checking, constraint solving, mathematical deduction, and abstract interpretation.

Given a formal specification of the underlying system and a set of correctness properties,
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a formal verification algorithm typically returns a proof of correctness if the specification

satisfies all the properties, or a counterexample if it violates any of the properties. In this

dissertation, we apply formal methods to verify and analyze the correctness, safety, and

robustness of mission-critical systems and their sub-modules. In each of the subsequent

chapters, we concentrate on two common problems surrounding formal methods:

• How to improve the scalability of formal methods when applied to large and complex

mission-critical systems;

• How to select appropriate abstract domains for the underlying mission-critical systems

to improve the precision and effectiveness of formal methods.

In the following, we provide a brief overview of the subsequent chapters.

1.1. Sequential Equivalence Checking

In high-level design explorations, many useful optimizations transform a circuit into

another with different operating cycles for a better trade-off between performance and

resource usage. How to efficiently check their equivalence is critical and challenging since

most existing equivalence checkers are designed for cycle-accurate circuits.

Chapter 2 presents SE3, an efficient sequential equivalence checker without assumption

on cycle-accuracy, latch mapping, or I/O interface of the checked circuits. It proves the

equivalence of two circuits by computing an equivalence relation between the states of

the two circuits and utilizes syntax abstraction to accelerate this process. Experimental

results show that SE3 is significantly faster than state-of-the-art sequential equivalence

checking algorithms.
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This exact checker can also be used to confirm the correctness of mission-critical

systems. From the initial design specification to the final implementation, the development

process of a complex system goes through multiple abstraction levels. SE3 can be adopted

to ensure that functional equivalence is maintained at any refinement step between two

consecutive abstraction levels. Additionally, SE3 generates an equivalence relation, or

refinement mapping, alongside the verification result. This information can facilitate

design and verification engineers to locate errors or gain insights into the design.

1.2. Oracle-less SAT-based Attack on Logic Encryption

Integrated circuits are indispensable components of most mission-critical systems.

Logic encryption is a promising approach to protecting the intellectual properties of inte-

grated circuits, preventing hardware trojans, and securing sensitive data. In Chapter 3,

we thoroughly evaluate the security of sequential logic encryption using formal analysis.

Our findings refute the belief that an oracle circuit is required to launch an I/O attack

on sequential logic encryption.

Existing I/O attacks against logic encryption require query access to an oracle circuit.

We presents OLSAT, an oracle-less logic decryption method. OLSAT only requires a very

high-level specification of the victim chip, usually provided for marketing or technical

support. An essential enabler of OLSAT is a synthesis-based sequential logic decryp-

tion algorithm called LIM. This algorithm introduces only a minimal overhead in every

iteration and allows the flexibility to explore the error matrix along both dimensions. Ex-

periments show that OLSAT can efficiently attack logic-encrypted benchmarks without
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oracle access. Besides, LIM can solve 20% more ISCAS’89 benchmarks than state-of-the-

art sequential logic decryption algorithms.

1.3. Security Analysis for Logic Encryption on Deep Neural Networks

Deep Neural Networks (DNNs) have achieved tremendous success in various applica-

tions. They are also integrated into numerous mission-critical systems. However, DNNs

are susceptible to model piracy and adversarial attack if a malicious end-user has full

access to the model parameters. Recently, a logic encryption scheme called HPNN has

been proposed. HPNN utilizes hardware root-of-trust to prevent end-users from accessing

the model parameters.

Chapter 4 exploits quantitative formal analysis to investigate whether logic encryption

is secure on deep neural networks. Specifically, we present a systematic I/O attack that

combines algebraic and learning-based approaches. Our attack incrementally extracts key

values from the network to minimize sample complexity. Besides, it employs a validation

and correction procedure to ensure the correctness of the extracted key values. Our

experiments demonstrate the accuracy and efficiency of the presented attack on large

networks and complex architectures. Consequently, we conclude that HPNN and a broad

category of other logic encryption schemes are insecure on deep neural networks.
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CHAPTER 2

Sequential Equivalence Checking

for Non-Cycle-Accurate Design Transformations

2.1. Introduction

With the growing demand for high-performance integrated circuits, design engineers

and optimization tools tend to perform more aggressive sequential transformations to

meet the timing and throughput goals. For instance, retiming techniques move logic

across flip-flops to meet timing constraints; pipelining techniques introduce additional

pipeline stages, trading off latency for throughput; pre-computation techniques prepare

the results earlier to remove their computations from the critical path. Other examples

of sequential transformations include unrolling, resource reallocation, clock gating, and

memory partitioning. A design after such transformations may no longer be cycle-accurate

with the original one. Additionally, there may not exist a one-to-one latch mapping

between the two circuits because these transformations can change the functionalities of

the flip-flops.

Recently, adaptive pipelining [23, 61] is proposed to enable dynamic scheduling, i.e.,

the period of each iteration is a variable depending on the inputs and the previous execu-

tions. Moreover, the latency-intensive (LI) design methodology has emerged to tolerate

the arbitrary timing of individual hardware modules. Under the relaxed timing require-

ments, engineers can design highly customized hardware modules with variable latencies.
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Sequential equivalence checking is the key enabler of sequential design transformations. It

finds application in various stages of the IC design flow [76], for example, in checking if an

RTL model conforms to the functional specification it seeks to implement or determining

if a derivative RTL or gate-level model is functionally equivalent to a validated model.

Co-simulation is also widely used in such scenarios but has limited functional coverage.

In comparison, formal sequential equivalence checking is a comprehensive and rigorous

approach that allows verification engineers to prove the consistency of two designs over

any number of cycles.

Several formal sequential equivalence checking algorithms have been proposed [17,

45, 7, 80, 64], yet nearly all of them have restricted use cases. Some algorithms assume

that a complete latch mapping is provided by the user [17]. Others assume that the two

designs are structurally similar and that pairs of internal nodes exist that have identical

functionalities [45, 7, 80]. Kairos [64] can handle almost all types of transformations,

but it requires both designs under verification to follow a valid-ready interface protocol.

In this chapter, we propose SE3 (Syntax-Encoded Stuttering Equivalence Check-

ing for SEquential Circuits), a general and efficient algorithm based on symbolic model

checking. SE3 formulates the sequential equivalence checking problem for any transfor-

mations [65] as checking whether the output sequences of the two designs under verifi-

cation are alignable given a set of corresponding initial states and any input sequences.

Nevertheless, the consequent formula involves an alternation of universal and existential

quantifiers. Eliminating the internal existential quantifier can result in a formula that is

exponential in size.
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SE3 tackles this issue by searching for a reversed inductive invariant on a product

machine of two designs, bypassing the need for quantifier elimination. Additionally, SE3

maintains a frame structure similar to IC3 [10]. This allows the algorithm to learn new

clauses incrementally and enables high flexibility in expressing complex equivalence rela-

tions. Moreover, SE3 leverages syntax abstraction [37] to capture the equivalence relations

among the internal nodes. Thus, the algorithm concentrates on high-level, coarse-grained

relations at the beginning of the verification process and gradually shifts to finer-grained

relations through iterative refinement.

We demonstrate the capability and efficiency of SE3 with a case study and a bench-

mark suite. SE3 is significantly faster than Kairos on equivalent test cases and scales

well regarding word size. Besides, SE3 is capable of discovering concise and essential

inductive invariants, which may guide design engineers to understand the nature of the

transformations or locate errors in future transformations.

Our main contributions are:

•We devise a formal property to determine whether two designs are observational equiv-

alent modulo stuttering;

• We utilize the reversed inductive invariant to bypass the quantifier alternation issue

within the property;

• We adapt the IC3 symbolic model checking framework to achieve incremental verifica-

tion;

• We embed syntax abstraction to the stuttering equivalence checking algorithm, so that

SE3 can discover equivalence relations among state variables and internal nodes at various

granularities;



17

Listing 1 Euclidean Algorithm A

procedure gcdA(x, y)
while (x− y) ̸= 0 do

x← (x− y) > 0 ? (x− y) : x
y ← (y − x) > 0 ? (y − x) : y

output x

Listing 2 Euclidean Algorithm B

procedure gcdA(x, y)
while (x− y) ̸= 0 do

x← (x− y) > 0 ? (x− y) : y
y ← (x− y) > 0 ? y : x

output x

• We evaluate SE3 against state-of-the-art sequential equivalence checking algorithms.

2.2. Background

2.2.1. A Running Example

We use the Euclidean algorithm as the running example throughout this chapter. To

compute the greatest common divisor of two integers, the algorithm iteratively subtracts

the smaller integer from the greater one until they become equal. Listing 1 shows an RTL

implementation of the algorithm. Two subtractors are initiated in parallel, and only one

integer is updated depending on the results. Suppose an engineer then decides to allocate

only one subtractor and adjusts the implementation accordingly. As shown in Listing 2,

only one subtractor is initiated in a clock cycle.

The two implementations are identical in function but different in timing. If

x equals 6 and y equals 2 initially, both circuits will take 2 cycles to reach con-

vergence. On the other hand, if the initial values of x and y are 6 and 10,

gcdA will take 3 cycles ⟨(6, 10), (6, 4), (2, 4), (2, 2)⟩, while gcdB will take 6 cycles
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⟨(6, 10), (10, 6), (4, 6), (6, 4), (2, 4), (4, 2), (2, 2)⟩. It can be seen that gcdB has a variable

latency relative to gcdA, and there exists no latch mapping or equivalent internal nodes

between the two designs.

2.2.2. Preliminaries

We consider standard first-order logic. A term is a variable or a function symbol. A

predicate is an expression applied to a tuple of terms and evaluates to a Boolean value.

An atom is a Boolean variable or a predicate symbol. The terms with non-Boolean values

are also referred to as words. A formula is built over atoms with propositional logic. A

literal is an atom or its negation. A cube is a conjunction of literals, while a clause is a

disjunction of literals.

A transition systemM is defined as a tuple ⟨X, I, T ⟩, whereX is a set of state variables,

X ′ is the corresponding set of next-state variables, I(X) is a formula representing the

initial condition, and T (X,X ′) is a formula representing the transition relation. It is a

common practice to model input variables as additional state variables [1, 19, 37] such

that X = Xstate∪Xin. The next-state variables X
′
in are unconstrained or controlled by an

external specification. A state s is a full assignment to all state variables. We write s |= ϕ

if s satisfies a formula ϕ modulo the underlying theory, and s is a ϕ-state. A formula ψ

implies another formula ϕ, ψ ⇒ ϕ, if all state satisfying ψ also satisfies ϕ. A finite or

infinite path is a state sequence such that the first state is an I-state and all consecutive

steps satisfy T (X,X ′). A path is a ϕ-path if all states along the path are ϕ-states. A

reachable lasso-shaped path [11] (a lasso, in shorthand) is a finite run from an initial state

followed by a loop.
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A sequence σ stutters at step k if it keeps the same value for indices k and k + 1.

For instance, the sequence ⟨a, b, b, c, · · · ⟩ stutters at step 2. We define ♮σ the stutter-free

sequence of σ, which eliminates all stuttering steps in σ. We let σ ≃ ρ mean ♮σ = ♮ρ [1].

For instance, ♮⟨a, b, b, c⟩ = ⟨a, b, c⟩, and ⟨a, b, b, c⟩ ≃ ⟨a, b, c, c⟩.

2.2.3. The IC3 Model Checking Algorithm

IC3 [10] is the state-of-the-art symbolic model checking algorithm for hardware verifica-

tion. Given a safety property P (X), IC3 checks whether M |= P , i.e., all paths of M are

P -paths. In this regard, it tries to find an inductive invariant, Inv, such that

(a) I ⇒ Inv, (b) Inv ∧ T ⇒ Inv′, (c) Inv ⇒ P.(2.1)

Once an Inv is found, IC3 completes the proof.

During its execution, IC3 maintains a sequence of frames F0(X), · · · , Fk(X) such

that

∀i < k : (a) F0 = I, (b) Fi ∧ T ⇒ F ′
i+1, (c) Fi ⇒ P.(2.2)

Additionally, the algorithm ensures that each frame is a conjunction of clauses, and

clauses(Fi) ⊆ clauses(Fi+1), where clauses(Fi) denotes the set of all clauses that consti-

tute Fi. The algorithm attempts to learn new clauses from the reachability information

of the system and add them to the sequence of frames until one of the frames is proved

to be an inductive invariant.
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In the following, we give a high-level description of the algorithm. At the beginning

of every iteration, k is incremented by 1, and a new frame Fk = P is attached to the

sequence. The algorithm queries

SAT?(Fk ∧ T ∧ ¬P ′)(2.3)

for a new bad state s ∈ Fk. If (2.3) is satisfiable, a new proof obligation ⟨k, s⟩ is added to

a priority queue. Whenever the priority queue is non-empty, IC3 pops the top element of

the queue and queries

SAT?(Fi ∧ T ∧ s′).(2.4)

If (2.4) is satisfiable, there must exist another bad state t ∈ Fi, which is a predecessor of

s. A new obligation ⟨k − 1, t⟩ is added to the queue. If (2.4) is unsatisfiable, s can be

safely excluded from Fi without affecting the conditions of the frames. Thus, a new clause

c = ¬s is conjoined to Fi+1. The unsatisfiability of (2.4) guarantees that c is relatively

inductive to Fi, i.e., Fi ∧ c ∧ T ⇒ c′ is a tautology.

If (2.3) is unsatisfiable, all states in Fk must be more than 1 step away from bad

states. Before IC3 starts a new iteration, it pushes every c ∈ clauses(Fi) to clauses(Fi+1)

if c is relatively inductive to Fi+1. During this process, if two consecutive frames Fi and

Fi+1 become identical, they must satisfy all the conditions of an inductive invariant, i.e.,

Inv = Fi, and that finishes the algorithm.
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2.2.4. Syntax Abstraction

Syntax abstraction [37] creates an abstract space using a subset of the terms present in the

original model. An abstract state is a partition assignment which captures Boolean values

of atoms and equality relations among the words of each sort. For example, in Listing 1,

the concrete state (6, 3) may correspond to the abstract state ((x−y) > 0) ∧ ¬((y−x) >

0) ∧ {x | y, x− y | y − x}, where vertical bars divide terms into equivalence classes.

Syntax abstraction removes irrelevant bit-level details, thus facilitating the reasoning

of equivalence relations at a coarse granularity. An abstract space it creates can be

iteratively refined in a counterexample-guided abstraction refinement (CEGAR) fashion:

once a spurious counterexample is found, new terms are introduced to eliminate it. Hence,

syntax abstraction can be closely integrated with a model checking algorithm, where

the former provides the domain for reasoning and the latter provides the guidance for

refinement.

2.3. Problem Definition and Analysis

2.3.1. Problem Definition

Our objective is to check the observational equivalence of two systems, i.e., whether their

externally observable behaviors are always identical. More specifically, we aim to devise

an efficient symbolic model checking algorithm for the following property: starting from

any pair of corresponding initial states, the stutter-free output sequences produced by the

two systems are identical given the same input sequence.
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2.3.2. Product Machine for Stuttering

As the first step to solving the problem, we devise an automated reasoning mechanism

that checks whether two output sequences are equivalent modulo stuttering. It is based

on the observation that inserting stuttering steps to the faster sequence is the dual of

eliminating stuttering steps from the slower sequence. Hence, we build a product ma-

chine for stuttering, M×, to mimic the process of inserting stuttering steps. The product

machine converts the problem of checking alignability [65] to the problem of finding a

feasible auxiliary input sequence. Denote the two systems under verification as MA and

MB, where MA runs no slower than MB. The state space S× of M× is a Cartesian prod-

uct SA × SB, and every state s ∈ S× is a pair (u, v) where u ∈ SA and v ∈ SB. The

transition relation T× is composed of two branches, Tsyn and Tstu, both of which are also

product machines. Tsyn specifies the behavior that MA and MB move synchronously:

Tsyn(u, v, u
′, v′) ≜ TA(u, u

′) ∧ TB(v, v′), while Tstu specifies the behavior that MA stutters

and MB moves forward: Tstu(u, v, u
′, v′) ≜ (u = u′) ∧ TB(v, v′). T× uses a dummy input,

sel, to select its next state from the two branches1:

T×(u, v, sel, u
′, v′) ≜ ∨ ((sel = 0) ∧ Tsyn(u, v, u′, v′))

∨ ((sel = 1) ∧ Tstu(u, v, u′, v′)).
(2.5)

We define the observational equivalence property to be P×(u, v) ≜ valid ⇒ (uout =

vout). The valid signal is only necessary when the output registers can turn into an

unstable observable state. We use (ia, ib) ∈ I× to denote that two initial states from both

1By adding a third branch, our method can be generalized to the case that both systems can be faster
than the other.
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systems are related by the initial correspondence I×. By default, I× contains the pair

of reset states. For some applications, it might be more convenient to directly initialize

the corresponding pairs of state variables with the same input values. In our running

example, this means setting I× to the formula (xA = xB) ∧ (yA = yB). Advanced users

can also write customized specifications for I× and P×.

From a specific initial state, the state sequence produced by MA or MB is either a

finite or an infinite path. We convert all finite paths to infinite ones by adding a self-loop

to the final states. Notice that final states can usually be distinguished symbolically with

termination conditions, valid signals, or as the deadlock states in deadlock-free systems.

Facilitated by M×, we can check if two systems are observational equivalent modulo

stuttering by checking the following condition:

Definition 1. Two systems MA and MB are observational equivalent modulo stutter-

ing if and only if there exists a P×-lasso on M× from every pair (u1, v1) ∈ I×.

Definition 1 suggests a naive solution. GivenM× and P×, one can check if they satisfy

the correctness property:

∀(u1, v1) ∈ I×, ∀k > 0, ∃sel1, · · · , selk :

T×(ui, vi,seli, ui+1, vi+1)⇒ (ui+1, vi+1) ∈ P×.

(2.6)

Intuitively, the property requires that for all pairs within the initial correspondence,

there exists a fair path such that all pairs along the path satisfy observational equiva-

lence. The existence of a lasso-shaped fair path can be verified by a fairness checking
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algorithm [20]. Nevertheless, an exponential number of pairs may exist in I×, and enu-

merating all those pairs is computationally intractable even when the fairness checking

algorithm is incremental. Another way to deal with the quantifier alternation problem is

to eliminate all the internal existential quantifiers. However, an equisatisfiable formula

without existential quantifiers can be exponential in size.

2.3.3. Inductive Invariant for Equivalence modulo Stuttering

A conventional inductive invariant proves that a transition system always satisfies a safety

property P by showing ¬P -states are never reachable from the initial states. We devise

a new type of inductive invariant to prove that two systems are observational equivalent

modulo stuttering:

Definition 2. Inv× is an inductive invariant modulo stuttering for M× and P× if it

satisfies all of the following conditions:

• I× ⇒ Inv×, (2.7a)

• ∀s ∈ Inv× : (s ∧ Tsyn ⇒ Inv′×) ∨ (s ∧ Tstu ⇒ Inv′×), (2.7b)

• Inv× ⇒ P×. (2.7c)

Lemma 1. MA and MB are observational equivalent modulo stuttering if and only if

there exists an Inv× for M× and P×.

Proof. Only-if part: We show the existence constructively. From Definition 1, if the

two systems are equivalent modulo stuttering, there exists a P×-lasso from every state

s1 ∈ I×. Let Inv× be the formula that contains exactly all pairs along these lassos.
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If part: Consider an arbitrary s1 ∈ I×. From (2.7a), s1 ∈ Inv×; recursively applying

condition (2.7b) shows that there exists an Inv×-lasso from s1; all pairs along the lasso

are P×-pairs (2.7c). Because a P×-lasso exists for every pair in I×, MA and MB are

equivalent modulo stuttering. □

Various methods can infer inductive invariants for a transition system [10, 53]. Nev-

ertheless, due to the disjunction operator in (2.7b), these methods cannot be applied

directly for the inference of Inv×. For example, a key procedure in IC3 is to check if a

clause c is relatively inductive to a frame Fi, i.e., Fi ∧ c ∧ T ⇒ c′ is a tautology. It can

be verified that if two clauses c1 and c2 are both relatively inductive to Fi, their con-

junction c1 ∧ c2 is also relatively inductive to Fi. This property allows IC3 to learn new

clauses incrementally while maintaining the structure of the frame sequence. However, if

two clauses both meet condition (2.7b), their conjunction may not meet the same con-

dition. This limitation disallows us from adopting existing inductive invariant inference

algorithms to our problem.

2.3.4. The Reversed Approach

To address the above issue, we tackle the problem from the opposite direction. In specific,

we switch the roles of I× and ¬P×. Additionally, we reverse the directions of both Tsyn

and Tstu by switching their current states and next states, yielding T ◦
syn and T ◦

stu. Thus,

the reversed inductive invariant for observational equivalence modulo stuttering can be

defined as follows:

Definition 3. Inv◦× is a reversed inductive invariant modulo stuttering for M× and

P× if it satisfies all of the following conditions:



26

• ¬P× ⇒ Inv◦×, (2.8a)

• ∀sa, sb ∈ Inv◦× :

(sa ∧ T ◦
syn ∧ s′) ∧ (sb ∧ T ◦

stu ∧ s′)⇒ (s′ ∈ Inv◦×′), (2.8b)

• Inv◦× ⇒ ¬I×. (2.8c)

Notice that there is no longer a disjunction operator in Definition 3. The next lemma

states the correlation between Inv× and Inv◦×.

Lemma 2. When Inv◦× = ¬Inv×, Inv× is an inductive invariant modulo stuttering

if and only if Inv◦× is a reversed inductive invariant modulo stuttering.

Proof. (2.7a) (resp. (2.7c)) is the contrapositive statement of (2.8c) (resp. (2.8a)).

The negation of (2.7b) is equisatisfiable to: ∃s ∈ Inv×, s′a, s′b ∈ ¬Inv× : (s ∧ Tsyn ∧ s′a) ∧

(s∧ Tstu ∧ s′b), which in turn is equisatisfiable to the negation of (2.8b). Hence, (2.7) and

(2.8) are equisatisfiable when Inv◦× = ¬Inv×. □

Theorem 3. MA and MB are observational equivalent modulo stuttering if and only

if there exists an Inv◦× for M× and P×.

Proof. Readily follows from Lemma 1 and Lemma 2. □

Intuitively, the existence of Inv◦× guarantees that a counterexample tree, whose leaf

nodes are all ¬P×-states and whose root node is an I×-state, cannot exist.

Based on the above observations, we devise a method to search for a reversed induc-

tive invariant modulo stuttering. We embed our method into IC3’s general framework
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(Section 2.2.3). In the remainder of this section, we highlight some key procedures we

adapt from IC3. An overall description is left in the next section.

• Similar to (2.2), our method maintains a sequence of frames, where F ◦
0 = ¬P× and

F ◦
i ⇒ ¬I×. One exception is (2.2b). If two states sharing the same parent state are both

F ◦
i -states, that parent state must be an F ◦

i+1-state:

∀sa, sb ∈ F ◦
i :

(sa ∧ T ◦
syn ∧ s′) ∧ (sb ∧ T ◦

stu ∧ s′)⇒ (s′ ∈ F ◦
i+1

′).

(2.9)

Hence, F ◦
i is an over-approximation of those states which are at most i steps away from

¬P×.

• Our method extracts new proof obligations through the query:

SAT? (F ◦
k ∧ T ◦

syn ∧ I ′×) ∧ (F ◦
k
∗ ∧ T ◦

stu ∧ I ′×).(2.10)

Notice that F ◦
k and F ◦

k
∗ represent two different sets of variables. If it is satisfiable, two

new states s ∈ F ◦
k and s∗ ∈ F ◦

k
∗ are extracted and added to the queue of proof obligations.

•When the original IC3 discharges a proof obligation, if the query to (2.4) is satisfiable, a

predecessor t of s is extracted and added to the priority queue. We mimic that procedure

by querying

SAT? (F ◦
i ∧ T ◦

syn ∧ s′) ∧ (F ◦
i
∗ ∧ T ◦

stu ∧ s′).(2.11)

This procedure allows our method to find candidate bad states that are more than 1 step

away from I×, thus diversifying the clauses in the sequence of the frames.
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• When a query to (2.11) is unsatisfiable, the newly produced clause c = ¬s must be

relatively inductive modulo stuttering to Fi, i.e., for any state s̄,

(2.12) (F ◦
i ∧ T ◦

syn ∧ s̄′) ∧ (F ◦
i
∗ ∧ T ◦

stu ∧ s̄′)⇒ (s̄′ ∈ c′).

Hence, c can be conjoined to F ◦
i+1 without violating any of the frame structure conditions

including (2.9).

2.4. Algorithm

2.4.1. The SE3 Algorithm

The core procedures of SE3 are displayed in Algorithm 1. SE3 is designed to retain

several desirable features of IC3: a) organizing clauses in a sequence of relatively inductive

frames to enable fully incremental verification (Line 18; 30); b) generalizing clauses to

accelerate convergence (Line 29); c) propagating clauses to increase the chance of finding

an inductive invariant (Line 16-18); and d) being compatible with counterexample-guided

abstraction refinement workflows (Line 9, 26, 11-12). From a high-level perspective, SE3

adapts the general framework of IC3 (Section 2.2.3) and combines it with the reversed

invariant finding strategy [74] as well as the implicit abstraction technique [18]. Due to

the similarity, we build our correctness proof on top of that in the IC3 paper [10]:

Theorem 4. Upon termination, Check returns True if and only if the systems in

M× are observational equivalent modulo stuttering.

Proof. (Sketch) According to Theorem 3, the decision of observational equivalence

modulo stuttering is reduced to the searching of an Inv◦×. When both invocations of
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Algorithm 1 SE3 Algorithm for Stuttering Equivalence Checking

1: procedure Check(I×, T
◦
×, P×) → bool:

2: if SAT?(I× ∧ ¬P×) or SAT?(I ′× ∧ T ◦
× ∧ ¬P× ∧ ¬P ∗

×) then
3: return False ▷ concrete counterexample found
4: F ◦

0 ← ¬P×
5: k ← 1, F ◦

k ← ¬I×
6: while True do
7: while SAT?(I ′× ∧ T ◦

× ∧ F ◦
k ∧ F ◦∗

k ) do
8: ⟨s, s∗⟩ ← the extracted states inside F ◦

k and F ◦∗
k

9: ⟨ŝ, ŝ∗⟩ ← the abstraction of ⟨s, s∗⟩ as partitions of terms
10: if not (Block(k, ŝ) or Block(k, ŝ∗)) then
11: if the abstract counterexample is spurious then
12: refine the abstract space with more terms
13: else return False ▷ concrete counterexample found
14: k ← k + 1, F ◦

k ← ¬I×
15: for i← 1 to k − 1 do
16: for each clause c ∈ F ◦

i do ▷ clause propagation
17: if not SAT?(¬c′ ∧ T ◦

× ∧ F ◦
i ∧ F ◦∗

i ) then
18: add c to F ◦

i+1
19: if F ◦

i = F ◦
i+1 then

20: return True ▷ inductive invariant found, equivalence proved

21: ▷ Displayed as recursive function for simplicity; actual implementation uses priority queue. ◁
22: procedure Block(i, ŝ) → bool:
23: if i = 0 or ŝ⇒ ¬P× then return False ▷ bad state reached
24: while SAT?(ŝ′ ∧ T ◦

× ∧ F ◦
i−1 ∧ F ◦∗

i−1) do
25: ⟨t, t∗⟩ ← the extracted states inside F ◦

i−1 and F ◦∗
i−1

26: ⟨t̂, t̂∗⟩ ← the abstraction of ⟨t, t∗⟩ as partitions of terms
27: if not (Block(i− 1, t̂) or Block(i− 1, t̂∗)) then
28: return False ▷ blocking fails on both branches
29: c← the clause generalized from ¬ŝ
30: add c to F ◦

1 , · · · , F ◦
i

31: return True ▷ blocking succeeds

Block return False at Line 10, there is an abstract counterexample where all paths

lead to ¬P× states. If Check returns False at Line 3, a trivial counterexample is found;

if it returns False at Line 13, a concrete counterexample corresponding to the abstract

one is found. In both cases, a valid Inv◦× cannot exist. On the other hand, if Check
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returns True, Line 20 must have been reached. This implies that two consecutive frames

are identical and a valid Inv◦× is found. □

In general, if the word-level models under verification reside in an infinite space, there

are no complexity bounds for a model checking algorithm. However, if all variables in

the models are constant-sized bit vectors, SE3 will eventually terminate because both

the abstraction refinement process and the frame sequence converging process are strictly

monotonic.

2.4.2. Syntax-Guided Abstraction and Refinement

An appropriate abstract space can guide the model checking algorithm to find a concise

and essential inductive invariant. Our insight is that an equivalence relation can usually be

expressed by terms within either data-intensive or control-intensive models. Besides, the

clause and frame structure of IC3 allows the expression of not only one-to-one mappings

between terms but also the relations among terms described by logic formulas acrossing

time domains.

The SE3 algorithm maintains a set of terms that are currently used to depict the

abstract space. Once a counterexample is found, it is validated through SMT queries [37].

If it is confirmed to be spurious, SE3 investigates the unsat core and adds new terms to

the set to eliminate the counterexample. SE3 prioritizes state variables and I/O variables

over internal nodes and constants. If none of the above work, SE3 will also attempt to

add primed variables, trying to capture the correlations between clock cycles. With this

strategy, SE3 iteratively refines the granularity of its reasoning domain until an inductive

invariant or a concrete counterexample is found.
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2.5. Experimental Results

2.5.1. Experimental Setup

We implemented the SE3 algorithm in Python, using Boolector [57] as the backend SMT

solver. Our implementation takes two RTL-level or gate-level Verilog designs as the inputs.

It supports 2-branch (one design being no slower than the other) and 3-branch (no timing

constraint) modes.

All evaluations are conducted on a Linux machine with a 3.2GHz CPU. Each instance

runs on a single thread. We set a 4GiB memory limit and a 7,200-second timeout for all

experiments.

In the first part of our evaluation, we compare the performance of SE3 and Kairos [64]

and investigate their underlying mechanisms in a case study. We choose nuXmv [18] and

AVR [36] as the backend model checkers for Kairos, because they won the first and

the third place in the prestigious HWMCC’20 contest [66]. Both nuXmv and AVR are

word-level safety property checkers based on implicit predicate abstraction and syntax

abstraction, respectively.

For the case study, we manually write 4 RTL-level Verilog implementations of our

running example. Fig. 2.1 shows their pseudo-code. Among those, (a) and (b) correspond

to Listing 1 and Listing 2 respectively, while (c) is an alternative implementation of

the running example. We intentionally add a fourth implementation, (d), which is not

equivalent modulo stuttering to any of the rest implementations.

In the second part of our evaluation, we assess the capability and characteristics of SE3

in a realistic setting. We leverage a high-level synthesis (HLS) tool, Xilinx Vivado HLS, to



32

generate pairs of non-cycle-accurate RTL designs. The HLS workflow is a combination of

software compilation and hardware optimization. Because a commercial HLS tool contains

almost all kinds of sequential transformations, it is an excellent source to emulate realistic

design transformations and generate a variety of designs with guaranteed correctness.

We select 7 high-level hardware specifications from the HLSynth benchmark suite [59]

for HLS. Our selection is based on two rules: i) the benchmark is a standalone module,

and ii) at least 6 different RTL-level implementations with different timing can be gen-

erated from the benchmark using Vivado HLS. Table 2.2 provides a summary of those

benchmarks. We generate 3 specifications for each benchmark with the word size set to 8,

16, and 32 bits, respectively. For each specification, we generate 6 designs with different

timing, thus yielding a total of 15 pairs of designs. We utilize HLS pragmas, including

pipeline, initiation interval, resource allocation, latency, unroll, flatten, merge, partition,

balance, etc., to control a design’s timing. Eventually, we obtained a total of 315 pairs

as our test cases. Because nuXmv is almost always faster than AVR when paired with

Kairos, we only compare with Kairos/nuXmv in the second part.

2.5.2. Case Study

Table 2.1 compares the execution time (s) of Kairos and SE3 on the test cases shown in

Fig. 2.1. The first two test cases check designs that are equivalent modulo stuttering. Even

though Kairos uses word-level model checkers as its backend, its performance deteriorates

quickly as the word size grows. On the contrary, the execution time of SE3 grows more

slowly.
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Test Case Algorithm 3bit 4bit 5bit 6bit 8bit 16bit 32bit

(a) vs. (b)
Kairos/nuXmv 0.41 4.13 163.3 − − − −

equiv.
Kairos/AVR 18.17 323.4 − − − − −

SE3 0.04 0.05 0.06 0.06 0.07 0.19 0.51

(a) vs. (c)
Kairos/nuXmv 0.44 3.25 315.0 − − − −

equiv.
Kairos/AVR 10.9 96.06 − − − − −

SE3 0.23 0.29 0.44 0.80 1.34 4.42 13.63

(a) vs. (d)
Kairos/nuXmv 0.05 0.07 0.08 0.11 0.13 0.30 0.74

non-equiv.
Kairos/AVR 1.02 4.07 17.99 38.96 239.1 294.1 570.2

SE3 1.32 1.77 2.53 3.27 4.77 8.24 36.75

Table 2.1. Comparing SE3 and Kairos for efficiency under different word sizes.

We believe that Kairos is over-conservative when aligning two sequences. As illustrated

in Fig. 2.2(a), Kairos enforces both designs to execute when none of them or both of them

reach a valid state; it stalls the faster design if exactly one of them reaches a valid state.

Such an alignment pattern hinders the underlying model checker from finding a concise

inductive invariant.

The last test case in Table 2.1 checks a pair of non-equivalent designs. Kairos/nuXmv

turns out to be faster than SE3 in finding a counterexample. It is because Kairos prunes

out all alignment patterns except one. In this regard, Kairos and SE3 are complementary

to each other. A hybrid sequential equivalence checking engine can run the two algorithms

in parallel to achieve optimal performance.

Fig. 2.2(c) and 2.2(d) showcase the inductive invariants for gcdA vs. gcdB and gcdA

vs. gcdC , respectively. Because gcdA vs. gcdC is harder to prove, SE3 introduced primed

terms during refinements to capture the relations between the current and the next state

variables.
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if x > y then
x← x− y

else if y > x then
y ← y − x

(a) gcdA

if x > y then
x← x− y

else
swap x and y

(b) gcdB

msb←
the highest bit of y
if msb = 0 and
x > y ∗ 2 then

x← x− y ∗ 2
else if x > y then

x← x− y
else swap x and y

(c) gcdC

▷ Possible over-
flow in y ∗ 2 ◁

if x > y ∗ 2 then
x← x− y ∗ 2

else if x > y then
x← x− y

else
swap x and y

(d) gcdD (incorrect)

Figure 2.1. Loop bodies of 4 implementations of the gcd running example.

5, 18
5, 13
5, 8
5, 3
2, 3
2, 1
1, 1

5, 18
18, 5
13, 5
8, 5
3, 5
5, 3
2, 3
3, 2
1, 2
1, 1

(a)

5, 18

5, 13
5, 8
5, 3

2, 3

2, 1
1, 1

5, 18
18, 5
13, 5
8, 5
3, 5
5, 3
2, 3
3, 2
1, 2
1, 1

(b)

∨ (P× ∧ {xA, yB} ∧ {yA, xB})
∨ (P× ∧ {xA, xB} ∧ {yA, yB})

(c)

∨ (P× ∧ {xA, yC} ∧ {yA, xC})
∨ (P× ∧ {xA, xC | yA, yC})
∨ (P× ∧ {x′A, y′C | y′A, x′C})
∨ (P× ∧ {x′A, x′C | y′A, y′C})
∨ (P× ∧ {x′A, x′C , y′A, y′C})
∨ (P× ∧ {xA, y′C | yA, x′C , yC})
∨ (P× ∧ {xA, y′C | yA, x′C | yC})

(d)

Figure 2.2. Analysis of equivalence relations found by SE3 and Kairos.
Alignments of state sequences starting from (5, 18) for gcdA vs. gcdB by
(a) Kairos and (b) SE3 (bold states are the valid states); the inductive
invariants in partition assignment representation found by SE3 for (c) gcdA
vs. gcdB and (d) gcdA vs. gcdC .

2.5.3. Experimental Results

The outcomes of our experiments are shown in Fig. 2.3. Either in the 3-branch mode

or the 2-branch mode, SE3 can solve more equivalent test cases than Kairos within any

period. We also observe that both the 2-branch and the 3-branch modes can solve some

extra test cases than the other modes within the same period. Specifically, the 2-branch
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Name Description # Nodes # Regs
gcd GCD Algorithm 60-115 6-11

euclid Alternative GCD Algorithm 58-109 6-11
counter Bidirectional Counter with Limit 96-164 6-14
diffeq Differential Equation Solver 86-170 6-15
barcode Barcode Reader 93-187 8-18
ellipf Fifth Order Elliptical Wave Filter 135-210 11-21
kalman Kalman Filter 157-229 8-26

Table 2.2. A summary of high-level benchmarks. The number of nodes and
registers are counted by terms.
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SE3 (T+D) SE3 (T) SE3 (D) Kairos
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Figure 2.3. The number of solved instances over time (seconds) under differ-
ent word sizes. T refers to the 3-branch mode and D refers to the 2-branch
mode.

mode is more efficient when a design is always faster, while the 3-branch mode can cope

with the general situation. Hence, a combination of the two modes running in parallel

can solve the largest number of test cases.

We notice that Kairos is closer to SE3 in terms of execution time on two benchmarks:

barcode and ellipf. These benchmarks produce outputs periodically, triggering the valid

signal frequently. Kairos can leverage this additional information to accelerate its com-

putation.
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Finally, we analyze the statistics during SE3’s execution (Fig. 2.4). Thanks to the

close integration of the model checking algorithm and syntax abstraction, the number of

total frames and SMT queries are almost unchanged with respect to the word size. The

average time spent per SMT query moderately increases as the word size grows, and this

accounts for the trend shown in Table 2.1.

T8 T16 T32 D8 D16D32

10

20

# Frames

T8 T16 T32 D8 D16D32

101

102

103

# SMT Queries

T8 T16 T32 D8 D16D32

101

102

103

Time per Query (ms)

Figure 2.4. Statistics of SE3 under different word sizes.

2.6. Related Work

Mitering is the standard technique to check if two designs are combinationally equiv-

alent. A miter composes the designs under verification by connecting their corresponding

inputs. Then an SAT/SMT solver is queried to check if there exists an input pattern for

the two designs to produce different output patterns. Chauhan et. al. attempts to reduce

sequential equivalence checking problems to combinational ones [17]. They iteratively

unroll both designs until their periods are both 1. The validity of this approach is based

on two assumptions: both designs have fixed periods, and a latch mapping is provided by

the user. These assumptions may not hold after significant transformations.
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Most algorithms on sequential equivalence checking [45, 7, 80] utilize structural simi-

larities between the designs to verify their equivalence. They either use SAT/BDD sweep-

ing to identify and compress equivalent internal nodes and combine them into equivalent

classes, or use random simulation and counterexample-guided refinement to partition the

classes. The algorithms terminate when all corresponding output nodes from both designs

are proven to be equivalent. Otherwise, they launch a sequence of rewriting and retiming

steps and repeat the whole process. However, a fixed one-to-one mapping of internal

nodes from both designs may not exist. Moreover, rewriting and retiming rely heavily on

heuristics, which are incomplete methods. In comparison, our proposed method enables

high flexibility to express the correlations between internal signals. Additionally, it is

based on model checking and guarantees soundness and completeness.

2.7. Conclusion

In this chapter, we propose SE3, an efficient algorithm for non-cycle-accurate equiv-

alence checking. SE3 first reduces the sequential equivalence checking problem to the

problem of checking the alignablity of observable sequences. It then solves the prob-

lem by finding reversed inductive invariants on a syntax abstracted space. Experimental

results confirm the effectiveness and correctness of SE3.
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CHAPTER 3

SAT-based Sequential Logic Decryption without an Oracle

3.1. Introduction and Motivation

3.1.1. Adversarial Model of Logic Encryption

Since proposed in 2015, the SAT attack [78] has established the status quo for logic

encryption. The algorithm of the SAT attack is both rigorous and exhaustive. It provides

solid guarantees on both termination and the correctness of the returned key. Although

there exist defense mechanisms thwarting this attack [87, 83], it is pointed out that

there are inherent trade-offs among SAT resilience, structural robustness, and locking

efficiency [90]. Therefore, the SAT attack still poses a significant and realistic threat to

logic encryption.

To launch the SAT attack, an adversary needs to simultaneously access i) an encrypted

netlist of the circuit and ii) a working chip as the oracle circuit. In reality, an adversary can

acquire the encrypted netlist through a rogue insider within the design house or recover

it from a physical layout obtained from an offshore foundry or an assembly facility [88].

On the other hand, it is challenging for the adversary to acquire a working chip in many

Behavioral
Specification RTL

High-level
Synthesis

Design &
Integration

Netlist

Logic
Design Layout

Physical
Design

Wafer
Fabrication

Chip w/o key

Testing &
Packaging

Chip w/ key

Key
Embedding

Public Domain Design House Foundry Assembly Facility Design House

Figure 3.1. IC design flow with logic encryption.
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scenarios. For example, a) a chip may be designed for mission-critical applications or is

fully customized, so a working chip cannot be purchased from the open market; b) it may

be too late to start reverse engineering after a chip is on the market, because the market

opportunity has already expired; and c) if the adversary targets IP blocks or sub-modules,

a corresponding working chip does not present.

For this sake, researchers have devised various oracle-less attacks on logic encryption,

including synthesis-based attacks[3, 49], testing-based attacks [49, 30], machine-learning-

based attacks [15, 4] and structural attacks [89, 44]. However, these methods are either

limited to specific use cases and locking schemes, or cannot guarantee termination and

the correctness of extracted keys. Does there exist a logic decryption method that enjoys

the same advantages as the SAT attack, while it does not require an oracle circuit?

3.1.2. Leveraging Behavioral Specification for Logic Decryption

Figure 3.1 depicts the general IC design flow with logic encryption. The design house

introduces key-controlled protection logic into the circuit during logic or physical design.

Once the fabricated chip is returned to the design house, they are activated by applying

the pre-selected key. Without knowing a correct key, an adversary cannot fully recover

the original functionalities of the chip.

Logic encryption can effectively protect design efforts, particularly those within the

logic and physical design stages. On the other hand, it is a common situation that the

behavioral specification of the chip lies in the public domain or is publicly accessible.

For instance, a) the functionalities of various families of chips are common knowledge.

These families include but are not limited to data converter IC, interface and protocol IC,
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driver and controller IC, and signal processing IC. b) To facilitate their customers to build

products, it is a common practice for design houses to release data sheets and development

guides as well as to provide application and technical support. A behavior model can

be reconstructed from this information. c) High-level synthesis is widely adopted by

custom ASIC designs nowadays [73]. The high-level specifications in C++/SystemC are

usually online accessible, especially those used for machine learning, data processing, and

hardware acceleration. d) Leading IP vendors, including Synopsys and ARM, release

transaction-level models (TLM) in accompany with their IP blocks[79]. These behavioral

models enable fast prototyping, simulation, and verification for existing and potential

customers.

At a glance, an adversary can treat such a behavioral specification as an oracle to

launch the SAT attack. Nevertheless, most of these specifications are either un-timed or

non-cycle-accurate to the corresponding working chip. Even worse, some specifications

have variable periods due to the high-level languages they use. Hence, neither combina-

tional nor sequential SAT attacks can utilize them as oracles.

3.1.3. Overview

This chapter presents OLSAT, a novel and rigorous sequential logic decryption method

based on formal methods. OLSAT assumes that the adversary has access to an en-

crypted netlist and a corresponding behavioral specification, which is not necessarily

cycle-accurate to the original design. OLSAT first utilizes high-level and logic synthe-

sis tools to automatically convert the behavioral specification to a netlist automatically.

Timing and logic variations are permitted in this process. Subsequently, a clock cycle
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alignment between the encrypted and the synthesized netlist is automatically generated

on the fly. Thus, an SAT or SMT solver can be applied to find a correct key.

A key enabler of OLSAT is a novel parameter synthesis mechanism called LIM (Less-

Is-More). For each DIP, the original sequential SAT attack duplicates the whole unrolled

netlist and adds it to the solver as an I/O constraint to key values. LIM instead distills

just a single cube of wrong keys from each I/O constraint. It improves the scalability

of sequential SAT attacks on large circuits that require deep unrolling. Moreover, this

simple and flexible mechanism ensures the feasibility of OLSAT.

Our main contributions are:

•We discover that logic encryption is still vulnerable to I/O attack even when the adver-

sary cannot obtain a working chip;

• We propose LIM, a flexible and efficient sequential logic decryption algorithm;

• We devise OLSAT, an oracle-less SAT attack that can automatically align two non-

cycle-accurate designs on the fly;

• We conduct extensive experiments to evaluate the feasibility and performance of LIM

and OLSAT.

3.2. Background

3.2.1. Preliminaries

A combinational encrypted netlist Ce is defined as a tuple ⟨X,K, Y ⟩, where X represents

the primary inputs, K the key inputs, and Y the primary outputs. We use Co to denote

the oracle circuit corresponding to Ce. If a correct key Kc is inserted, Ce and Co should

exhibit the same behavior given any input sequence.
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A variable or its negation is called a literal. A conjunction of literals is called a cube,

and a disjunction of literals is called a clause. A clause is the negation of a cube and vise

versa. A pattern is an assignment to all corresponding variables and it can be described

as a cube. A sequence is a series of patterns. A Boolean formula is in conjunctive normal

form (CNF) if it is a conjunction of clauses. A formula F implies another formula G,

written as F ⇒ G, if all assignments satisfying F also satisfy G. I is an implicant of a

formula F if I is a cube and I ⇒ F . Ip is a prime implicant if it is minimal, i.e., dropping

any literals from Ip will result in a non-implicant.

A sequence σ stutters at step k if it keeps the same value for indices k and k + 1.

For instance, the sequence ⟨a, b, c, c, · · · ⟩ stutters at step 3. Two sequences are equivalent

modulo stuttering if they become identical after all stuttering steps are eliminated.

3.2.2. Problem Definition

Before we start formulating the sequential decryption problem, we first give a formal

definition of whether two sequential circuits are observationally equivalent [1]:

Definition 4 (Observational equivalence). Two circuits are observationally equivalent

if and only if their output sequences are equivalent modulo stuttering for every input

sequence.

The problem of non-cycle-accurate sequential logic decryption is thus defined as fol-

lows:
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Problem 1 (Non-cycle-accurate sequential logic decryption). Given an encrypted

netlist Ce and a corresponding reference circuit Cb, find a correct key Kc such that Ce(Kc)

and Cb are observationally equivalent.

3.2.3. SAT Interface

We use SAT [ψ] to denote a SAT query to formula ψ. It returns satisfiable if there

exists an assignment to all variables in F such that ψ evaluates to true, and unsatisfiable

otherwise. Furthermore, we use SAT [ψ].model(X) to denote the value of variable X

within a satisfiable assignment.

Many modern SAT solvers support unsat core extraction. We write an unsat core

query as SAT [ψ, γ], where ψ is a CNF formula and γ is a set of assumption clauses. If

ψ ∧ γ is satisfiable, both SAT [ψ, γ] and the normal SAT query SAT [ψ ∧ γ] will return a

satisfiable assignment. However, if ψ ∧ γ is unsatisfiable, SAT [ψ, γ] will return an unsat

core β in addition to the unsatisfiable result. β is a subset of γ such that ψ ∧ β is still

unsatisfiable. Some SAT solvers can ensure that β is minimal for most of the time [27].

3.2.4. The SAT Attack Algorithm

Algorithm 2 The SAT Attack Algorithm [78]

1: Input: encrypted netlist Ce, oracle circuit Co

2: Output: a correct key pattern Kc

3: M ← Ce(X,K1, Y1) ∧ Ce(X,K2, Y2)
4: while SAT [M ∧ (Y1 ̸= Y2)] do
5: Xd ← SAT [M ∧ (Y1 ̸= Y2)].model(X)
6: Yd ← Co(Xd)
7: M ←M ∧ Ce(Xd, K1, Yd) ∧ Ce(Xd, K2, Yd)
8: Kc ← SAT [M ].model(K1)
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Figure 3.2. Redundancy in SAT attack. In every iteration, the whole netlist is
duplicated and added to the solver.

The SAT attack algorithm (Algorithm 2) requires an encrypted netlist Ce and a cor-

responding running oracle circuit Co. It first constructs a product machine M with two

copies of the encrypted netlist (line 3). In each iteration, it queries a SAT solver on the

product machine for a differentiating input pattern (DIP) Xd: given such an input pat-

tern, there exists two different key patterns K1 and K2 that produce two different output

patterns Y1 and Y2 (line 5). At least one of these key patterns must be incorrect. The

algorithm then queries the oracle for the corresponding correct output Yd (line 6). Xd and

Yd together with a fresh copy of the encrypted netlist form a new I/O constraint on key

pattern. This I/O constraint is conjoined to both copies in the product machine (line 7),

and the algorithm starts a new iteration. The algorithm terminates when no more DIPs

can be found (line 4). Then a correct key Kc can be extracted through another SAT query

(line 8).

3.3. LIM: Synthesis-based Logic Decryption

3.3.1. Redundancy in SAT Attack

In the SAT attack, each DIP duplicates the whole encrypted netlist to form a new I/O

constraint (Figure 3.2). As a consequence, clauses pile up quickly within the SAT solver.
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Although modern SAT solvers are equipped with clause learning and clause deletion

mechanisms [52], a growth of such a magnitude will eventually overwhelm them. It is

observed that the execution time of each SAT query increases super-linearly with respect

to the number of DIPs [75].

The SAT attack is essentially a covering process: it terminates when I/O constraints

eliminate exactly all wrong keys. From this perspective, the constraint mechanism of the

SAT attack is highly redundant. For example, a) there is redundancy within a single I/O

constraint, because with fixed Xd and Yd, it is unnecessary to keep the original structure

of the encrypted netlist. b) There is redundancy across multiple I/O constraints, because

they may use identical internal nodes or cover the same prime implicant multiple times.

All the observations above suggest that constraints should not be multiplied beyond

necessity. KC2 [75] is a pioneering work in this direction. It applies a set of sweeping and

reduction techniques to compress I/O constraints. While KC2 can reduce up to 80% of

the clauses for each I/O constraint, it still suffers from the drawbacks caused by netlist

duplication.

3.3.2. Parameter Synthesis

Table 3.1. The advance of symbolic verification and logic decryption.

SAT SMT BMC UMC ParamSynth
Symbolic DPLL Nelson Unrolling ITP IC3-based

Verification (1960) (1979) (2001) (2003) (2015)
Logic [78] [6] [33] [75, 70]

LIM
Decryption (2015) (2019) (2017) (2019)

The last decade has witnessed the rapid advance of logic decryption. We noticed that

almost every symbolic formal verification method induces a corresponding logic decryption
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method. Table 3.1 shows representative methods from both categories and the earliest year

they were proposed. Initially, symbolic verification problems are encoded as SAT [24] and

SMT [56] problems. Clarke et al. [21] proposed bounded model checking to verify a system

within a limited number of time steps. Unbounded model checking algorithms [53, 32, 10]

were later proposed to remove such a limit.

Recently, a new formal verification method called parameter synthesis has emerged.

Given a parameterized transition system and a safety property in temporal logic, parame-

ter synthesis aims to find the set of all correct patterns of the parameters, under which the

system satisfies the property. Existing solutions [19, 8] utilize IC3, an unbounded sym-

bolic model checking algorithm to deal with infinite state transition systems. SAT-based

sum-of-product logic synthesis [63, 72] is a special case of parameter synthesis, where the

property is a user-specified Boolean formula and the parameters are the Boolean variables

within the formula.

The SAT attack can extract a correct key only after it finds out and excludes all

incorrect keys. The problem of finding all incorrect keys is similar to parameter synthesis:

the key variables can be considered as parameters, while the behavioral equivalence to

the oracle circuit can be treated as the safety property. However, the adversary in the

SAT attack has only query access to the oracle. Hence, parameter synthesis cannot be

directly applied to logic decryption.

3.3.3. The LIM Algorithm

The pseudo-code of the LIM algorithm is shown in Algorithm 3. The algorithm maintains

a CNF formula W , which blocks all wrong keys discovered so far (line 3). In every
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Algorithm 3 The LIM Algorithm

1: Input: encrypted netlist Ce, oracle circuit Co

2: Output: a correct key pattern Kc

3: W ← True

4: M ← Ce(X,K1, Y1) ∧ Ce(X,K2, Y2)
5: while SAT [W ∧M ∧ (Y1 ̸= Y2)] do
6: Xd ← SAT [W ∧M ∧ (Y1 ̸= Y2)].model(X)
7: Yd ← Co(Xd)
8: Kw ← SAT [W ∧ Ce(Xd, K, Y ) ∧ (Y ̸= Yd)].model(K)
9: K◦

w ← SAT [W ∧ Ce(Xd, K, Yd), {Kw}]
10: W ← W ∧ ¬K◦

w

11: Kc ← SAT [W ].model(K)

iteration, it finds a DIP in a similar way as the original SAT attack (line 6). Then the

algorithm finds a wrong key Kw that is not yet excluded by the key condition W and

falsifies the current I/O constraint (line 8).

Afterward, Kw is generalised to a cube to cover a large number of wrong keys (line 9).

In specific, {Kw} is a set of unit clauses: each unit clause corresponds to a literal in Kw.

With {Kw} enforced to K, the SAT query in line 9 must be unsatisfiable. Moreover, a

SAT solver as described in Section 3.2.3 should return a minimal unsat coreK◦
w, which is a

prime implicant of the formula ¬W∧¬Ce(Xd, K2, Yd). In other words, K◦
w is an irreducible

cube distilled from both the current I/O constraint and all the previously generalised

cubes. For those SAT solvers that cannot ensure K◦
w is minimal, we iteratively drop

literals from it and check unsatisfiability until no literals can be dropped anymore. At the

end of an iteration, the key condition W is updated by the negation of K◦
w. Finally, when

no more DIPs can be found, a correct key is extracted from the remaining keys within W

(line 11).

Lemma 5. Upon termination, formula W excludes exactly all incorrect keys.
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Proof. Soundness part: A Kw produced in line 8 must be an incorrect key, because

the output pattern Y generated by Xd and K is in consistent with the reference output

Yd. By the same reasoning, all K◦
w cubes contain only incorrect keys.

Completeness part: If there exists an incorrect key not yet excluded byW , the SAT query

on line 5 will be satisfiable. In this case, the algorithm is not terminated, which conflicts

with the condition. □

Theorem 6. The LIM algorithm will eventually terminate and return a correct key.

Proof. Termination part: In every iteration, at least one incorrect key will be discov-

ered and conjoined to W . Hence, the algorithm will eventually terminate.

Correctness part: From Lemma 5, the algorithm must return a correct key if there exists

such a key for Ce and Co. □

3.3.4. Simplifying Key Conditions

LIM periodically execute the following two procedures to ensure that all cubes are irre-

ducible and irredundant, i.e., no literals can be further dropped without eliminating a

correct key, and no generalised cubes can be dropped without uncovering a wrong key.

With a little abuse of terminology, we say that a clause is irreducible (resp. irredundant)

in W , if the cube formed by its negation is irreducible (resp. irredundant) in ¬W .

Syntactic Subsumption: Because W gets stronger after every iteration, more recently

produced clauses are likely to subsume earlier produced ones. A clause c1 is removed from

W if there exists another clause c2, such that all literals in c2 also present in c1.

Essential Minterm: A clause is irredundant if it excluded at least one wrong key that

is not excluded by any other clauses. We eliminate all redundant clauses from W in a
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fully incremental approach by leveraging the assumption mechanism of the SAT solver.

Specifically, for each clause ci = li,1∨· · ·∨ li,n inW , we reserve an auxiliary variable ai and

add the new clause c′i = ai∨ li,1∨ · · ·∨ li,n instead of the original clause to the SAT solver.

Notice that if a unit clause ai is within the assumption clauses, the corresponding clause

c′i is voided. On the other hand, if ¬ai is within the assumption clauses, c′i is reduced to

ci.

To check if a clause cp is irredundant, LIM queries a SAT solver for the following

problem:

SAT [

|W |∧
i=1

c′i,

p−1∧
i=1

¬ai ∧ ap ∧
|W |∧

i=p+1

¬ai ∧
|cp|∧
j=1

¬lp,j].(3.1)

In other words, LIM checks whether there exists a key within the cube ¬cp (
∧|cp|

j=1 ¬lp,j)

that is not excluded by any other clauses (
∧p−1

i=1 ci ∧
∧|W |

i=p+1 ci). LIM iterates through all

clauses in W to check if they are irredundant. If any query to (3.1) is unsatisfiable, a unit

clause ap is added to the SAT solver to permanently disable the corresponding clause c′p.

Theorem 7. All clauses in W are irreducible and irredundant.

Proof. Irreducible part: The generalisation procedure in line 9 ensures that the most

recent clause is irreducible. The syntactic subsumption procedure ensures that all previous

clauses are also irreducible.

Irredundant part: The essential minterm procedure ensures that all the clauses are irre-

dundant. □
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3.3.5. Extension to Sequential Logic Decryption

The original SAT attack assumes the adversary to have access to all flip-flops through

the scan chain. However, such access can be disabled. For example, the design house

can request the assembly facility to blow down the anti-fuses on the scan chain [22].

Because the adversary cannot read or write data to the flip-flops, the observability and

the controllability over the victim oracle circuit are reduced. On the other hand, sequential

logic encryption schemes [16, 29] embed additional finite-state machines to the original

circuit. To activate an encrypted circuit, a user must apply a correct input sequence to

the primary inputs cycle-by-cycle. Starting from the reset state, this input sequence leads

the circuit to reach the protected initial state, from which the circuit resumes its original

functionality.

The standard approach for sequential SAT attack is through unrolling [33, 70]. Sup-

pose that the unrolling diameter is k. Then the encrypted netlist is duplicated for k times,

and each secondary output (the input signals of the flip-flops) of a copy is merged with

the corresponding secondary input of the next copy (the output signals of the flip-flops).

This unrolling process can also be conducted implicitly with a bounded model checker.

For the disabled scan chain scenario, the key is fixed across all clock cycles. For the

sequential encryption schemes, the adversary can formulate the protected initial state as

the key. In particular, the adversary can modify the encrypted netlist, such that the key

is loaded to the flip-flops upon initialization. Notice that in both cases, the key space

remains unchanged regardless of the unrolling diameter. The unrolling process is termi-

nated when either of the three conditions can be satisfied [33]: i) Unique Key: under the

current key constraints, only 1 key is remaining; ii) Combinational Equivalence: all the
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remaining keys are within the same equivalent class even if the circuit was combinational,

i.e., the secondary inputs and outputs are treated as primary ones; iii) Unbounded Model

Checking: an unbounded model checker cannot find an differentiable input sequence given

any of the remaining keys.

The sequential LIM algorithm adopts a similar unrolling scheme. It has two main ad-

vantages over the naive sequential SAT attack. For one, it fosters information exchange

across different unrolling diameters, because the current cube can learn from all the pre-

vious cubes (line 9). For another, the overhead introduced by a new key constraint is

insensitive to the unrolling diameter. In comparison, the size of a key constraint in the

naive sequential SAT attack is proportional to the unrolling diameter. Finally, sequential

LIM is orthogonal to the unrolling optimization techniques [42], i.e., any advance of those

techniques can also benefit our method.

3.4. OLSAT: Oracle-less SAT Attack

Figure 3.3 shows the general workflow of OLSAT. As Section 3.1.3 mentions, OLSAT

assumes that the adversary cannot acquire an oracle circuit. Instead, the adversary is

able to obtain a behavioral specification of the victim circuit. This specification is au-

tomatically synthesized to an RTL design with a high-level synthesis tool (e.g., Xilinx

Vivado and Cadence Stratus). Afterward, the RTL design is mapped to logic gates with

a logic synthesis tool. In the remainder of this paper, we refer to the synthesized netlist

as Cb and the expected behavior of the victim circuit as Ce(Kc).

The behavioral specification could be untimed or have only limited timing information.

Additionally, the synthesis process can introduce uncertainties in timing. As a result, Cb
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Figure 3.3. The general workflow of OLSAT.

and Ce(Kc) are likely to be non-cycle-accurate. Furthermore, Cb could have a variable

period with respect to Ce(Kc), because a high-level synthesis tool can create a control

logic that is fundamentally different from the one within Ce.

The OLSAT algorithm brings up two main components to tackle the timing challenge.

The first component is an automatic alignment mechanism. It attempts to insert stut-

tering steps on the fly to maintain the observational equivalence between Cb and Ce(Kc).

We formalize the observational equivalence constraints as CNF formulas so that they are

compatible with SAT solvers. The second component is the LIM key condition synthesis

algorithm. With LIM, the size of the key condition is agnostic to the unrolling diame-

ter, while the format of the key condition is irrelevant to the observational equivalence

constraints. These benefits ensure feasibility and scalability for the OLSAT algorithm.
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3.4.1. Automatic Alignment of Clock Cycles

Definition 4 states a criteria to determine whether two circuits are observationally equiv-

alent: given any particular input sequence, the output sequences of the two circuits are

identical after removing all stuttering steps. We observe that removing a stuttering step

from one sequence is the dual of inserting a stuttering step to the other sequence at the

corresponding location. For simplicity of presentation, we first assume that the behavioral

specification Cb is always no slower than the implementation Ce(Kc). In other words, for

any input sequence, the period of the implementation is always no shorter than that of the

specification. This assumption is realistic because the former is not limited by resource

constraints.

From the above discussions, we can derive the following lemmas:

Lemma 8. Consider two observationally equivalent circuits C1 and C2, where C1

is always no slower than C2 and they are both deadlock-free. For every specific input

sequence, there exists a way to halt C1 during its execution, such that the output sequences

of both circuits are identical.

Proof. We prove the existence by construction. Consider the following strategy:

Automatic Alignment Strategy: Each time C1’s output pattern has changed, halt C1;

resume C1 once C2’s output pattern is also changed.

To show that the output sequences of the two circuits are identical, we split the

output sequence of C2 into segments: the first step in a segment is a critical step (whose

output pattern is different from the previous step), and the rest of the steps in that

segment are stuttering steps (whose output pattern is the same as the previous step).
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The above strategy is to process the segments of C1’s output sequence successively. For

every segment, it attaches dummy stuttering steps until it matches the corresponding

segment of C2. □

Lemma 9. C1 and C2 are observationally equivalent if and only if the automatic

alignment strategy presented in Lemma 8 produces identical output sequences for any input

sequences.

Proof. Only If part: From Lemma 8, if the two circuits are observationally equiva-

lent, they will always produce identical output sequences when the automatic alignment

strategy is adopted.

If part: After removing all stuttering steps, two initially identical sequences are still

identical. Hence, by Definition 4, two circuits are observationally equivalent if their output

sequences are always identical given any input sequences. □

Lemma 8 and Lemma 9 suggest a method to check whether two circuits are observa-

tionally equivalent. Specifically, we build a product machine consisting of two branches,

C1 and C2. The behavior of the product machine is determined by a controller, which

checks the states of the product machine for the following condition:

(C1.out
′ ̸= C1.out) ∧ (C2.out

′ = C2.out),(3.2)

where Ci.out and Ci.out
′ represent the output patterns of Ci in the current and the next

clock cycle, respectively. The controller halts C1 only when the condition is satisfied.

In our implementation, halting is realized by adding a multiplexer and a feedback path
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for every flip-flop of C1. When Equation 3.2 returns True, the multiplexers selects the

feedback path, so that C1 remains in its current state. Furthermore, we add a miter to the

product machine to detect whether the output sequences of C1 and C2 are identical. The

miter outputs True if C1 and C2 output distinct patterns at any clock cycle. Finally, we

add a bounded fairness constraint [28], which enforces both C1 and C2 to move forward at

least once in every k consecutive steps. To check whether the two circuits are observational

equivalent, one can call a model checker on the product machine, and use the miter output

as the safety property.

The above discussions assume that one circuit is always no slower than the other.

In fact, the same method can be extended to the general case that both circuits can be

faster than one another at anytime. Particularly, the controller need to maintain another

condition that is symmetric to Equation 3.2, and halt C2 according to its return value.

The idea of checking observational equivalence through automatic synchronization is

first proposed by Kairos [64]. Our method is different from Kairos in the following aspects:

a) Kairos requires both circuits to follow a valid-ready interface protocol. It utilizes the

valid signal for synchronization and equivalence checking. In comparison, our method

does not make such an assumption1. b) Kairos cannot deal with the situation where one

circuit is trapped in a deadlock state. In that situation, even though the output sequences

are indeed different, Kairos cannot detect it. Our construction does not have the same

issue. c) Kairos relies on clock gating for synchronization. Consequently, the resulting

hardware cannot be encoded as CNF formulas. On the contrary, our construction is fully

synchronous and can be directly checked by a SAT solver.

1It still requires C1 and C2 to decide when to consume a new input pattern.
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3.4.2. The OLSAT Algorithm

The automatic alignment mechanism bridges the timing gap between Cb and Ce(Kc).

According to Lemma 9, when the miter’s output is enforced True, the two netlists are

guaranteed to be observationally equivalent. To put differently, by controlling the miter’s

output, the adversary obtains white-box access to the oracle circuit. At a glance, this

allows the adversary to immediately extract the correct key. Nevertheless, due to the

universal quantifier in the problem (∃Kc s.t. ∀ input sequences: miter’s output = True),

it is still necessary to cover all incorrect keys before a correct one can be extracted.

The working principle of the OLSAT algorithm (Algorithm 4) is similar to that of the

sequential LIM algorithm. The algorithm maintains a global formula of key condition

W throughout its execution. It builds a product machine modulo stuttering Ms with

the automatic alignment mechanism. Initially, the unrolled product machine Mu has a

diameter of 1, so it is identical to Ms.

During every iteration of the inner loop (line 6 - line 10), W is strengthened until it

blocks exactly all incorrect keys activating the miter (Y1 ̸= Y2) up to the current unrolling

diameter. Detailed explanations for this procedure can be found in Section 3.3.3. OLSAT

then checks whether termination has reached. As described in Section 3.3.5, this is equiv-

alent to check whether the miter will always output a False regardless of the unrolling

diameter. However, checking this condition directly is very time-consuming [42]. In this

regard, we exploit a trial-and-error (TE ) strategy to improve its efficiency. Specifically,

OLSAT first extracts a potentially correct key Kp from W (line 11). It then queries

an unbounded model checker for the above-mentioned termination condition on just Kp

(line 12). Because the searching space is reduced to a single key, the model checking
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Algorithm 4 The OLSAT Algorithm

1: Input: encrypted netlist Ce, synthesized netlist Cd

2: Output: a correct key pattern Kc

3: W ← True

4: Ms,Mu ← Ce(X,K, Y1)× Cd(X, Y2) ▷ Construct product machine with automatic
alignment

5: while True do
6: while SAT [W ∧Mu ∧ (Y1 ̸= Y2)] do
7: Xd ← SAT [W ∧Mu ∧ (Y1 ̸= Y2)].model(X)
8: Kw ← SAT [W ∧Mu ∧ (X = Xd) ∧ (Y1 ̸= Y2)]

.model(K)
9: K◦

w ← SAT [W ∧Mu ∧ (X = Xd) ∧ (Y1 = Y2),
{Kw}]

10: W ← W ∧ ¬K◦
w

11: Kp ← SAT [W ].model(K)
12: if UMC [Ms ∧ (K = Kp) ∧ (Y1 ̸= Y2)] = False then
13: Kc ← Kp; break
14: Mu ←Mu∥Ms ▷ unrolling

15: return Kc

efficiency is significantly improved. Notice that TE is not applicable to the sequential

SAT attack, because a model checker cannot decide the correctness of a key with only

query access to the oracle circuit.

Theorem 10. The OLSAT algorithm will eventually terminate and return a correct

key.

Proof. Termination part: In every iteration, at least one incorrect key will be discov-

ered and conjoined to W . Hence, the algorithm will eventually terminate.

Correctness part: From Lemma 9 and Theorem 16, the algorithm must return a correct

key if a Kc exists such that Cb and Ce(Kc) are observationally equivalent. □
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Figure 3.4. A demonstration of white-box attack against logic encryption. (a) A
3-input AND-tree protected by input-XOR encryption [90]. (b) The correspond-
ing error matrix. Shadowed entries with underscores have incorrect outputs.

3.4.3. White-box Attack Against Logic Encryption

The error matrix is a powerful tool to analyze the complexity of an attacking algorithm

against a logic encryption scheme. Each row in the error matrix represents an input

pattern, each column represents a key pattern, while each entry represents whether the

output pattern of the encrypted netlist deviates from the correct output pattern. In the

original SAT attack, every query to the oracle circuit can reveal only one row of the error

matrix. Existing logic encryption schemes [87, 83] exploit this limitation to thwart the

SAT attack. They ensure that the error rate is exponentially small in the number of input

patterns. Formally speaking, for every column representing an incorrect key, there is only

a limited number of incorrect entries.

OLSAT gives the adversary another degree of freedom when traversing the error ma-

trix. We use a case study to demonstrate the capability of the white-box attack. Figure 3.4

(b) plots the error matrix of an AND-tree protected by input-XOR encryption. If the ad-

versary can discover the dominant row (X = 111), it will immediately cover all incorrect

keys. Facilitated by OLSAT, the white-box attack exploits SAT-based model enumeration
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to locate the dominant row quickly. Specifically, it randomly chooses a K∗ and queries

SAT [Ms ∧ (K = K∗)∧ (Y1 ̸= Y2)].model(X) for a new assignment X∗. If such an assign-

ment does not exist, K∗ must be correct. Otherwise, it conjoins ¬X∗ to the formula and

repeats the query. Because the number of satisfiable rows for a given K∗ is exponentially

smaller than the number of feasible DIPs, the white-box attack is exponentially faster

than the SAT attack in this example. The white-box attack can be adapted to defeat

other encryption schemes.

3.5. Experiments

We built a prototype for LIM and OLSAT in Python. We chose Boolector [57] and

Z3 [25] as the backend SMT solvers, because we observed that they are more efficient

on circuit benchmarks in terms of SAT solving and unsat core extraction, respectively.

We employed the property-directed reachability command [31] in Berkeley ABC for un-

bounded model checking. All experiments were conducted on a Linux machine with a

3.2GHz CPU, and every instance was executed on a single thread. We set a memory limit

of 4GiB and a timeout limit of 3,600 seconds for all experiments.

3.5.1. Evaluating LIM for Sequential Logic Decryption

We compared LIM against the state-of-the-art sequential logic decryption algorithms,

including the KC2 command [75] in NEOS and the RANE decryption suite [70]. We

used the default settings of the oracle-guided sequential SAT attack for both algorithms.

Since neither of them selects UMC as a termination condition (see Section 3.3.5 for
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Table 3.2. Statistics of ISCAS’89 sequential benchmark circuits.

Circuit #PI #PO #FF #Gate Circuit #PI #PO #FF #Gate
s208 11 2 8 96 s713 35 23 19 393
s298 3 6 14 119 s820 18 19 5 289
s344 9 11 15 160 s832 18 19 5 287
s349 9 11 15 161 s838 34 1 32 446
s382 3 6 21 158 s953 16 23 29 395
s386 7 7 6 159 s1196 14 14 18 529
s400 4 6 21 164 s1238 14 14 18 508
s444 3 6 21 181 s1423 17 5 74 657
s510 19 7 6 211 s1488 8 19 6 653
s526 3 6 21 193 s1494 8 19 6 647
s526n 3 6 21 194 s5378 35 49 179 2779
s641 35 24 19 379 s9234 19 22 228 5597

details), we also disabled UMC for LIM to foster fair comparisons. We incremented the

rolling diameter by 1 in each step and set an upper limit of 100 steps for all algorithms.

Table 3.2 lists the ISCAS’89 [12] benchmark circuits we used for performance evalua-

tion. We encrypted these circuits with two prevalent logic locking schemes: i) randomly

inserting key-controlled XOR gates to the combinational part of a circuit [78], and ii) the

HARPOON sequential logic locking scheme [16], which requires an unlocking input se-

quence to steer a circuit from its reset state to its actual initial state. Prior study [70] has

discovered that case ii) can be reduced to case i) by treating the initial state as the key.

We constructed three encrypted instances with different encryption overheads for each

benchmark circuit. In particular, we used the default CMOS cells library in Yosys [82]

to measure the overheads after technology mapping.

Table 3.3 compares the execution time of the three algorithms on XOR-encrypted

instances. It can be seen that the overall performances of the algorithms are similar. On

the other hand, Figure 3.5 compares the three algorithms by the number of decrypted
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Table 3.3. A comparison of execution time (seconds) for KC2, RANE, and LIM
on XOR-encrypted sequential benchmark circuits.

Overhead 5% 10% 15%
Method KC2 RANE LIM KC2 RANE LIM KC2 RANE LIM
s208 − − − − 0.6 1.8 − − −
s298 0.1 0.7 1.6 − − − 1.2 2.4 4.7
s344 0.4 0.6 1.6 0.3 0.9 2.7 0.5 1.1 3.6
s349 0.1 0.4 1.1 0.1 0.5 1.5 1.0 1.1 4.1
s382 106 120 47.1 104 63.1 34.2 − − −
s386 0.1 0.8 1.0 0.2 0.9 2.3 0.3 0.7 4.1
s400 88.6 62.6 27.0 − − 278 − − 2772
s444 − 3507 − − − − − − −
s510 1.8 3.6 12.1 0.7 1.4 13.4 39.1 34.7 861
s526 − − − − 1451 2839 − − −
s526n 80.8 − − − 92.9 2014 − − −
s641 0.5 1.2 3.1 0.4 − 4.9 − − −
s713 0.4 2.6 3.2 1.5 3.3 7.1 − − −
s820 3.1 4.7 8.7 6.8 6.9 12.4 16.6 10.8 22.0
s832 1.8 2.9 7.2 7.3 6.6 15.3 12.5 9.7 27.3
s838 − − − − − − − − −
s953 − − 12.8 − − 18.4 − − 57.6
s1196 0.5 3.7 3.7 1.1 − 6.7 6.0 5.2 15.8
s1238 0.5 1.8 3.5 1.3 3.8 11.8 2.0 4.1 13.3
s1423 − 1912 575 − − 1884 − − −
s1488 8.1 10.1 36.0 22.2 14.1 99.2 187 44.9 229
s1494 4.0 5.5 21.8 94.4 28.2 125 91.8 19.9 187
s5378 − − − − − − − − −
s9234 − − − − − − − − −

instances over time. It displays how many instances out of 72 can be decrypted (the

vertical axis) by each algorithm if all instances are assigned the same timing budget (the

horizontal axis). LIM is initially slower than the other two but eventually stands out.

After 3,600 seconds, it decrypts 23% and 17% more instances than KC2 and RANE,

respectively. Because it displays a similar trend, we omit the table of the HARPOON
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Figure 3.5. Comparing the number of decrypted instances over time.

Table 3.4. Execution time (seconds) of OLSAT on XOR-encrypted sequential
benchmark circuits.

Overhead 5% 10% 15% Overhead 5% 10% 15%
s208 2.4 31.9 605 s713 62.0 998 820
s298 0.9 18.3 901 s820 13.8 77.2 706
s344 1.0 6.3 683 s832 17.8 43.0 409
s349 0.9 10.8 1566 s838 − − −
s382 365 − 1079 s953 38.8 1350 −
s386 0.6 114 131 s1196 619 16.4 601
s400 296 1170 − s1238 5.0 11.4 706
s444 155 − − s1423 − − −
s510 207 174 − s1488 46.0 146 −
s526 − − − s1494 339 804 −
s526n − − − s5378 − − −
s641 3.9 634 669 s9234 − − −

experiments. LIM can decrypt 13% more instances than either of the rest algorithms

within 3,600 seconds on HARPOON-encrypted instances.

We further investigated why LIM is faster on hard instances. Figure 3.6 visualizes the

decryption progresses of 4 instances that LIM performs better than the other algorithms.



63

0 20 40 60
0

10

20

30

40
Un

ro
llin

g 
Di

am
et

er
(a) s400 (5%)

0 1000 2000 3000
0

10

20

30

40

(b) s400 (15%)

0 1000 2000 3000
Time (seconds)

0

5

10

15

20

Un
ro

llin
g 

Di
am

et
er

(c) s1423 (5%)

0 1000 2000 3000
Time (seconds)

0

10

20

(d) s1423 (10%)

RANE
Success

KC2
Timeout

LIM
Out of Memory

Figure 3.6. Decryption progress (unrollong diameter) vs. execution time for 4
selected instances.

It displays how long (the horizontal axis) each algorithm takes to eliminate all incorrect

keys within a certain unrolling diameter (the vertical axis). LIM is initially slower as

it can only eliminate a small cube of incorrect keys in one iteration. On the contrary,

KC2 and RANE can rule out many incorrect keys with a single I/O constraint. However,

since KC2 and RANE must duplicate the whole unrolled circuit for each I/O constraint,

clauses pile up quickly within the SAT solver. As the number of steps grows, LIM takes

significantly less time than the other algorithms for every iteration. In conclusion, LIM

is more sustainable on hard instances which demand many iterations to solve.
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Table 3.5. Statistics of high-level synthesized benchmark circuits.

Circuit #PI #PO #FF #Gate
euclid 8 5 11 - 22 231 - 315
gcd 8 5 11 - 37 255 - 766

barcode 9 10 17 - 35 279 - 591
counter 6 5 17 - 34 357 - 469
numeric 12 13 15 - 30 506 - 623
fuzzy 13 5 33 - 51 669 - 963
diffeq 20 13 27 - 42 864 - 1073
ellipf 32 33 33 - 63 1339 - 1433
kalman 22 9 14 - 69 1507 - 1909
wavef 32 33 72 - 108 1788 - 2183

3.5.2. Evaluating OLSAT for Oracle-less Attack

This section evaluates the capability of OLSAT on a variety of benchmarks. We used the

same settings as Section 3.5.1 except that we restored UMC as a termination condition.

For every instance in Table 3.3, we inserted a stalling logic to extend its period by a

constant. Existing I/O attacks cannot be applied to this scenario without knowing this

constant exactly, because the oracle circuit Co and the encrypted netlist Ce are different

in timing. Table 3.4 summarizes the results of OLSAT on these instances. OLSAT can

decrypt 64% of the instances within 3,600 seconds, and the average execution time of

decrypted instances is 694.5 seconds. Meanwhile, as shown in Table 3.3, LIM can decrypt

68% of the instances within 3,600 seconds, and the average execution time of decrypted

instances is 41.6 seconds. Although the results in Table 3.4 are not directly comparable

with those in Table 3.3, we emphasize that most instances solvable by LIM are also solvable

by OLSAT. We also observed that the TE strategy significantly reduces the execution

time of UMC. This improvement is vital because UMC can dominate the total execution

time on those instances which require a large unrolling diameter.
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Table 3.6. Execution time (seconds) of OLSAT on high-level synthesized sequen-
tial benchmark circuits.

Latency Small Medium Large
Overhead 3% 5% 10% 3% 5% 10% 3% 5% 10%
euclid 0.7 97.8 6.3 1.6 8.9 − 19.9 1547 −
gcd 23.0 − − 504 − 1.2 11.7 3569 −

barcode 2.0 907 − 7.0 42.4 181 − 5.1 −
counter 191 13.1 7.8 3.4 14.2 6.0 2.0 43.7 3.2
numeric 2.9 1437 48.7 2.0 − 203 3.6 1.3 −
fuzzy 34.7 − − 1.8 − − − 45.8 −
diffeq 2.3 61.4 140 2.6 3.1 − − − −
ellipf 12.9 13.3 257 640 − − − 5.5 5.7
kalman 130 8.6 − − 9.1 − − − −
wavef − − − 239 219 − − − 142

We designed another experiment to assess OLSAT in a more realistic setting. Con-

cretely, we used a high-level synthesis tool, Xilinx Vivado HLS, to synthesize a set of

behavioral designs from the HLSynth benchmark suite [59] to RTL designs. We utilized

HLS pragmas, including pipeline, initiation interval, resource allocation, latency, unroll,

flatten, partition, balance, etc., to control an RTL design’s timing. For each behav-

ioral design, we generated 4 RTL designs with distinct latencies. Afterwards, we applied

Yosys [82] to map them to gate-level netlists. We treated the netlist with the smallest

latency as the reference netlist Cd. Each of the remaining netlists of the same behavioral

design is encrypted by the XOR encryption scheme with different encryption overheads.

As such, we constructed 9 instances of the encrypted netlist Ce for every behavioral de-

sign. Table 3.6 shows the execution time of OLSAT on the realistic test cases. Given a

timing budget of 3,600 seconds, OLSAT successfully decrypts 73%, 67%, and 40% of the

instances encrypted with 3%, 5%, and 10% of overheads, respectively.
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3.6. Conclusion

This chapter presents LIM, a synthesis-based attack against sequential logic encryp-

tion. Facilitated by LIM, it further presents OLSAT, an SAT-based I/O attack that does

not require oracle access. Experiment results confirm that both LIM and OLSAT are

realistically applicable. The chapter suggests a new method to explore the error matrix

of an encrypted circuit. It also necessitates new defense techniques for logic encryption.
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CHAPTER 4

Evaluating the Security of Logic Encryption

on Deep Neural Networks

4.1. Introduction

The past decade has witnessed the broad deployment of Deep Neural Networks (DNNs)

on hardware systems. Despite their successes, DNN models are suffering from IP piracy

as well as security and privacy threats. Adversaries are motivated to extract the pa-

rameters of a DNN model for two main reasons. First, training a new DNN model is

expensive. a) Deep learning tasks are data-hungry, while the data can be proprietary or

requires enormous effort to collect. b) Performing model training involves high expertise,

including selecting model architectures, training algorithms, and hyper-parameters. c)

The final training process demands substantial computational resources and a long time.

Second, the exposure of the model parameters poses severe threats to the security and

confidentiality of the model, even if that model is deployed elsewhere by other end-users.

With access to a leaked model, an adversary can launch a) the evasion attack [9] and the

data poisoning attack [77] to abuse or deceive the victim DNN model, or b) the model

inversion attack [34] to reconstruct sensitive training examples.

Logic encryption [71, 78] is a well-established technique to protect the intellectual

property of an integrated circuit. It embeds binary key bits to the circuit netlist (a net-

work of logic gates). The original functionality of a logic-encrypted circuit can be fully
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restored only when a correct key is inserted. Logic encryption achieves four objectives

simultaneously [90]: i) locking robustness, which ensures that decryption is prohibitively

expensive; ii) structural security, which ensures that recovering the original functionality

by removing or bypassing a submodule of the encrypted network is impossible; iii) en-

cryption efficiency, which ensures that only a small number of key bits (in the magnitude

of hundreds) and minimum overheads are required for encryption; and iv) end-to-end

protection, which ensures that even a malicious insider or an end-user who possesses a

working chip cannot duplicate the circuit without authorization.

Various techniques are proposed to protect the intellectual property of DNNs. Un-

fortunately, most of them cannot be applied to hardware accelerators (e.g., TPU, NPU,

GPGPU, and dedicated AI acceleration chips) without sacrificing security and efficiency.

For example, DNN watermarking [2, 39] cannot prevent illegal private usage because it

does not alter the functionality of the network. Input, output, and convolutional kernel

obfuscations [58, 38] are susceptible to removal attack or unauthorized reproduction by

the end-user, because the key bits are not entangled with learnable parameters. Public-key

encryptions [85] will incur large overheads on hardware accelerators.

Recently, Chakraborty et. al. proposed Hardware Protected Neural Network (HPNN) [14],

which employs logic encryption to protect the intellectual property of a DNN model.

HPNN selects a small subset of neurons in the hidden layers of the DNN as the key-

protected neurons. A key bit is associated with every such neuron, controlling whether

to flip the sign of the pre-activation value. A DNN model is trained as a function of a

pre-selected key pattern. In this way, model parameters and key bits are closely entan-

gled. The key is stored on hardware in a tamper-proof memory [5] or a Trusted Platform
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Module (TPM) [62]. A combination of a hardware accelerator, a key storage module,

and a correct key serves as a license to access the service provided by the IP owner. A

DNN model and its future parameter updates can be released publicly on cloud platforms

in an MLaaS fashion. Subscribers who have acquired valid licenses can fully restore the

functionality of the DNN model. On the contrary, a model’s prediction accuracy will be

severely degraded without a correct key.

This chapter studies whether logic encryption is secure on DNNs. Our investigations

reveal that logic-encrypted DNNs are still vulnerable to I/O attacks. Specifically, a mali-

cious end-user can query a working network for a set of selected input samples and utilize

the observed outputs to infer the key values. In this way, it can replicate the DNN model

without the permission of the IP owner.

We propose a systematic attack algorithm for all feasible DNN logic encryption schemes

we can foresee. Our attack is based on two observations: i) reversing a ReLU activation

function over the y-coordinate does not change the location of its critical point; ii) the

location of a critical point is determined collectively by the key values of the preceding

layers.

The attack algorithm leverages divide-and-conquer to minimize sample complexity.

Starting from the first hidden layer, it targets one layer in every iteration. For each hidden

layer, the algorithm attempts to infer the value of a key bit by moving along the coordinate

in the hidden space. If such an attempt fails, it initiates a learning-based attack to predict

the key value. Once all the key values are extracted for a hidden layer, the algorithm

executes a rigorous validation and correction procedure to fix errors. According to our
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experiments, the attack algorithm can scale to large DNNs and generalize to complex

network architectures.

Our main contributions are:

•We establish a theoretical framework for security analysis of logic-encrypted deep ReLU

networks;

•We develop an algebraic approach to infer the value of a single key bit when the network

is contractive;

• We propose a learning-based approach as well as a validation and correction procedure

to extract the key values of a hidden layer when the network is expansive;

• We evaluate accuracy, scalability, and generality for the attack algorithm on practical

networks.

4.2. Background

4.2.1. Preliminaries

A deep neural network can be represented as a function f : X → Y , which takes inputs

from the input space X ⊆ RP and returns outputs to the output space Y ⊆ RQ. A

k-layer deep neural network [13] f is an alternating sequence of linear transformations

and non-linear activation functions:

(4.1) f = fk+1 ◦ σ ◦ fk ◦ · · · ◦ σ ◦ f1.

In the above equation, the i-th hidden layer is given by a linear transformation fi

followed by an element-wise ReLU activation function σ. Specifically, fi(xi−1) = A(i)xi−1+
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Table 4.1. Notations used throughout this chapter.

Notation Description
f ◦ g function composition
M1M2 matrix multiplication
c ·M scalar multiplication
M1 ∗M2 element-wise multiplication
f : X → Y a deep neural network
X ⊆ RP input space of f
Y ⊆ RQ output space of f
k total number of hidden layers of f
f1, · · · , fk hidden layers of f
fk+1 output layer of f
ϕ ReLU activation function
σ element-wise ReLU activation function
di dimension of the i-th hidden layer
A(i) ∈ Rdi×di−1 weight matrix of the i-th hidden layer
b(i) ∈ Rdi bias vector of the i-th hidden layer
m(i) ∈ {0, 1}di activation pattern vector of the i-th hidden layer
zi ∈ Rdi pre-activation hidden state of the i-th hidden layer
xi ∈ Rdi post-activation hidden state of the i-th hidden layer
ηi,j j-th neuron on the i-th hidden layer
hi,j the (bent) hyperplane induced by ηi,j
Ki,j ∈ {0, 1} key value of ηi,j (if it is key-protected)

Â(i) product weight matrix of a layer-i linear region

b̂(i) product bias vector of a layer-i linear region
O the oracle network corresponding to f
K∗ a correct key within the equivalent class
K ′

i,j ∈ [−1, 1] floating-point version of K
θ (quantization) error tolerance

b(i) is an affine transformation, in which the post-activation hidden state xi−1 ∈ Rdi−1 is

a di−1-dimensional vector, the weights A(i) ∈ Rdi×di−1 is a di by di−1 matrix, and the

biases bi ∈ Rdi is a di-dimensional vector. Notice that the final output layer fk+1 is not

followed by activation functions. All parameters consisting A(i) and b(i), i ∈ 1, · · · , k + 1,

are learnable parameters that can be updated during training.
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Figure 4.1. The Rectified Linear Unit (ReLU) activation function. The function
is at the critical point if its input equals 0.

The above formulation assumes that all the hidden layers are fully connected layers. In

reality, a convolutional neural network can have convolutional layers andmaximum pooling

layers, but they can also be represented as linear transformations locally. Additionally,

a softmax layer, softmax (xk+1) ∈ RQ × RQ, can be attached to the output layer. In this

case, given an input example x ∈ X , we call xk+1 the logits of f(x) and y = softmax (xk+1)

the output vector of f(x).

Each component of σ is a ReLU activation function [55] defined as ϕ(z) = max(z, 0).

ReLU has established itself as the default choice for deep learning because DNNs with

ReLUs can be optimized more easily [67]. As shown in Figure 4.1, a ReLU is a piecewise

linear function. We denote the j-th neuron in the i-th hidden layer as ηi,j. It computes

xi,j = ϕ(A
(i)
j xi−1 + b

(i)
j ), where A

(i)
j is the j-th row of A(i) and b

(i)
j is the j-th element of

b(i). Particularly, we refer to zi,j = A
(i)
j xi−1 + b

(i)
j as the pre-activation value of ηi,j. We

say that ηi,j is at its critical point if zi,j = 0. Moreover, a neuron is inactive if zi,j ≤ 0

and is active if zi,j > 0.

We summarize the notations used in this chapter in Table 4.1.
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Figure 4.2. The implementation of HPNN on a hardware accelerator. A flipping
unit is embedded to the j-th neuron of the i-th hidden layer. The pre-activation
value of the protected neuron is negated when the key value equals 1.

4.2.2. HPNN Implementation

The actual implementation of HPNN is depicted in Figure 4.2. HPNN embeds several

flipping units into the hardware accelerator, with each unit governing the functionality of

an associated neuron in a hidden layer. A flipping unit takes as inputs i) the pre-activation

value of the associated neuron, and ii) a key bit that determines whether to negate the

pre-activation value. Throughout the training phase, the weights and the biases of the

deep neural network are updated as functions of not just the training data but also the

key values.

4.2.3. Adversary Model

We use the standard adversary model for logic encryption [78, 90]. The adversary is an

end-user who can either download the model architecture and all the parameters from a

cloud platform or receive them from the IP owner. The adversary cannot read or probe

the key from an instance of the hardware accelerator because it is stored in a tamper-proof
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memory or a trusted platform module. Despite this, once the model is installed onto the

hardware, the adversary can query the model with arbitrary inputs a reasonable number

of times. It can then observe the logits or the output vector produced by the model.

Compared to the assumptions in the HPNN paper [14], our adversarial model is even

weaker, given that we do not require the adversary to have access to a subset of labeled

data.

4.2.4. Adversarial Goal

The adversary aims to obtain a correct key, denoted as K∗. When such a key is embedded

into the hardware, the encrypted DNN model should be functionally equivalent to the

original model. Once the adversary acquires such a key, it can replicate and distribute

the DNN model without permission from the IP owner. Additionally, the adversary can

compromise a remote mission-critical system that uses the same DNN model by launching

an adversarial attack on the local model.

4.3. Mathematical Investigations

In this section, we establish a theoretical framework for DNN security analysis. Some

of the notions used in this section are adapted from explainable AI [35, 84, 40] and model

extraction [43, 13, 69] studies.

4.3.1. Formal Analysis of HPNN

Consider a key-protected neuron in a DNN encrypted by HPNN. The following lemma

elaborates how the key bit modifies the behaviour of that neuron:
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Figure 4.3. Activation patterns of deep ReLU networks. Left: statuses of ReLU
activation functions of a 2-layer DNN. Right: the corresponding activation pat-
terns. The dashed path is a sensitizable path from an intermediate node to the
output node.

Lemma 11. Flipping a key bit Ki,j ∈ {0, 1} has the same effect as negating A
(i)
j and

b
(i)
j while keeping the remaining parameters unchanged.

Proof. Let us focus on the neuron ηi,j, whose pre-activation value zi,j = (−1)Ki,j(A
(i)
j xi−1+

b
(i)
j ). This value equals A

(i)
j xi−1 + b

(i)
j when Ki,j = 0, or −A(i)

j xi−1 − b(i)j when Ki,j = 1.

In contrast, Ki,j affects none of the other neurons (and thus no other parameters) in the

same layer. □

In other words, a key bit determines whether to reverse the corresponding row signs

of the associated matrices. An adversary can thus recover the correct key value by query-

ing the oracle model with carefully selected input examples. We discuss the detailed

approaches in Section 4.4.

4.3.2. Formal Analysis of Deep ReLU Networks

Consider a DNN f : RP → RQ. Each neuron ηi,j on a hidden layer of f induces a (P−1)-

dimensional bent hyperplane in the input space. A bent hyperplane hi,j consists of such

points in the input space that the ReLU activation function within ηi,j is at its critical
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x0

x1

Figure 4.4. Geometric view of hyperplanes of the 2-layer DNN in Figure 4.3.
Each dashed line (resp. bent solid line) is induced by a ReLU in the first (resp.
second) hidden layer.

point. A hyperplane induced by a neuron in the first hidden layer is indeed “flat”. In

seek of conciseness, we refer to both flat and bent hyperplanes as “hyperplanes” in the

rest of this chapter. Figure 4.4 shows the hyperplanes of a 2-layer DNN.

The hyperplanes of a DNN splits the input space into disjoint linear regions. For an

input example x0 ∈ X , one can compute the pre-activation values for all neurons through

a single forward pass. We use an activation pattern vector m(i) ∈ {0, 1}di to represent

the activation statuses for all the neurons in the i-th hidden layer (Figure 4.3). The j-

th element of that vector, m
(i)
j , is 1 if A

(i)
j xi−1 + b

(i)
j > 0, otherwise it is 0. Two input

examples are within the same linear region if they share the same activation patterns

across all hidden layers.

Each linear region is associated with a unique affine transformation from the input

space. Given the activation patterns of a linear region, one can recursively compute the

weights and the biases of the transformation, layer by layer:
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M
(i)
j,: = m

(i)
j , Â

(1) = A(1), b̂(1) = b(1),(4.2)

Â(i) = A(i)(Â(i−1) ∗M (i−1)),(4.3)

b̂(i) = A(i)(b̂(i−1) ∗m(i−1)) + b(i).(4.4)

In the above equations, ∗ denotes element-wise multiplication between matrices, and

M (i) is the mask matrix obtained by broadcasting m(i) to all columns of Â(i). Intuitively,

according to the activation patterns, the above recursive formulas select either the inactive

or the active region for all ReLU activation functions. We refer to Â(i) (resp. b̂(i)) as the

product weight matrix (resp. product bias vector) of a level-i linear region.

It can be seen that the linear regions exhibit a hierarchical structure: a linear region

in one layer depends upon its predecessor regions in the previous layers. Hence, we can

derive the following lemma:

Lemma 12. The hyperplane induced by ηi,j is exclusively determined by A(1), · · · , A(i−1),

b(1), · · · , b(i−1) as well as A
(i)
j and b

(i)
j sans the row sign associated to A

(i)
j and b

(i)
j .

Proof. The hyperplane induced by ηi,j consists of those points x0 in the input space

such that A
(i)
j xi−1 + b

(i)
j = 0, where xi−1 = (Â(i−1)x0 + b̂(i−1)) ∗m(i−1) if i > 1. According

to the definition of m(i) and Formulas 4.2-4.4, xi−1 only depends on x0 itself and the

weights and biases of layers 1 through i− 1. Moreover, reversing the signs of A
(i)
j and b

(i)
j

simultaneously does not change the above equations. □
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Lemma 12 suggests a method to validate the key values of layers 1 through i − 1.

Recall that a key bit of HPNN on layer i modifies the weights and biases of the same

layer by reversing a row sign, thus conserving all hyperplanes on layer i. Hence, without

information of the key bits on layer i, the adversary can still confirm that all the key

bits of the previous layers are correct if every hyperplane computed from the white-box

network exactly matches a hyperplane inferred from the oracle network.

Furthermore, even without the information from the white-box network, the adversary

can infer which layer a hyperplane belongs to:

Lemma 13. Let two hyperplanes hp,m, hq,n be induced by neurons ηp,m and ηq,n, re-

spectively. The fact that hq,n bends at the intersection of the two hyperplanes while hp,m

remains flat implies p < q. That neither hyperplane bends at the intersection implies

p = q.

Lemma 13 has been discovered and proved in prior literature [69]. With a little abuse

of terminology, we refer to every flat piece of a bent hyperplane as a boundary.

As stated in Section 4.2.3, an adversary can only access the output nodes of a DNN. In-

tuitively, the existence of a boundary can be revealed by observing the non-linear changes

from the output nodes. This is not the case if the boundary is covered by subsequent

layers. The following lemma discusses when a boundary is sensitizable to an output:

Lemma 14. Consider a set of compatible activation patterns and the corresponding

linear region. In addition, consider a boundary of the hyperplane induced by ηi,j on the
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linear region. This boundary is sensitizable to an output node y, if there exists a con-

secutive neural path from ηi,j (exclusive) to y such that all neurons along the path are

active.

Proof. The neuron ηi,j must be active on one side of the boundary and inactive on

the other. On its active side, a change in its pre-activation value zi,j can be propagated

to y along the assumed path. Propagation along the same path is blocked on its inactive

side. This difference causes non-linearity across the boundary, which can be observable

from y. □

A set of activation patterns are compatible if the linear region associated with them is

not vacant. In the example shown in Figure 4.3, the last neuron in the first hidden layer

is observable from y, because there exists a consecutive 1-path to y from this neuron. In

a modern DNN architecture [51], most neurons in hidden layers have multiple successor

neurons. Consequently, it is very unlikely that an intermediate neuron has no sensitizable

path to any output nodes.

4.4. Algorithm

4.4.1. Overview

We present a logic decryption algorithm for deep ReLU networks with guaranteed cor-

rectness. Our attack is launched consecutively on every hidden layer of a network. Once

it completes the extraction and validation for all key bits in a hidden layer, the attack is

repeated on the next layer.

We construct two approaches to determine the value of a key bit. The first approach

infers Ki,j by moving along the coordinate of ηi,j in the hidden state space (Section 4.4.3).
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The second approach extracts key values through a learning process (Section 4.4.4). Be-

cause the first approach is more accurate and lightweight, the second approach is initiated

only when necessary. Extracted key values of a hidden layer are confirmed when they al-

together pass a rigorous validation process (Section 4.4.5). As such, the final key returned

by the algorithm is guaranteed to be correct.

4.4.2. Finding Critical Points of a Neuron

Algorithm 5 The Critical Point Searching Function

1: Input: white-box network f , a neuron ηi,j,
decrypted key values of preceding layers K∗

1 , · · · , K∗
i−1

2: Output: a witness x◦(ηi,j) ∈ X of the hyperplane
induced by ηi,j

3: Collect points in the input space along a straight line until for two neighboring points
xl and xr,
sign(zi,j(xl)) ̸= sign(zi,j(xr)) ▷ pre-activation value

4: xm ← the middle point of xl and xr
5: while |zi,j(xm)| > δ do ▷ precision
6: xl ← xl if sign(zi,j(xl)) = sign(zi,j(xm)) else xm
7: xr ← xr if sign(zi,j(xr)) = sign(zi,j(xm)) else xm
8: xm ← the middle point of xl and xr
9: return xm

Our attack relies on an essential utility function, whose goal is to find a witness x◦ ∈ X

to a designated hyperplane. Recall that a hyperplane generally has P − 1 dimensions. As

a result, a 1-dimensional line is likely to intersect with the hyperplane at least once [86].

In addition, as stated in Lemma 12, the hyperplane of a neuron is exclusively determined

by the key bits in the preceding layers. Because our algorithm proceeds layer by layer,

the current information in the white-box network f is sufficient for the goal.
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The critical point search function is displayed in pseudo-code in Algorithm 5. It starts

by randomly selecting a straight line in the input space. Afterwards, it draws random

samples along the line and tracks the pre-activation values zi,j of the associated neuron

ηi,j. Once it detects two consecutive samples that yield opposite signs for zi,j, it performs

a standard binary search on the line segment between the two samples (Line 5-8). Upon

completion, it finds a sample on the designated hyperplane.

4.4.3. Key Inference with Basis Vector

Algorithm 6 The Key Value Inference Function

1: Input: white-box network f , oracle network O, key-protected neuron ηi,j, decrypted
key values of preceding layers K∗

1 , · · · , K∗
i−1

2: Output: K∗
i,j

3: x◦ ← search critical point(ηi,j)
4: Observe m(1), · · · ,m(i−1) with a forward pass from x◦

5: Compute Â(i) according to Formulas 4.2-4.3
6: ei,j ← the j-th standard basis vector in Rdi

7: Find a vi,j using least squares s.t. Â(i)vi,j = ei,j
8: if vi,j does not exist then
9: return ∅

10: if O(x◦) ̸= O(x◦ + ϵ · vi,j) then
11: return 0
12: if O(x◦) ̸= O(x◦ − ϵ · vi,j) then
13: return 1
14: return ∅

Consider the pre-activation hidden space of the i-th hidden layer, Rdi . Let ei,j denote

the j-th standard basis vector of Rdi and let z◦i,j ∈ Rdi denote an intermediate critical

point of ηi,j. With a sufficiently small ϵ [13], it is guaranteed that the ϵ-neighborhood of

z◦i,j does not intersect with any hyperplanes induced by other neurons. In other words,

all the points in this neighborhood are within the same linear region. Moving along ei,j
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within the neighborhood can only change zi,j but not any other pre-activation values of

the same hidden layer because, by definition, ei,j is parallel to the j-th coordinate of Rdi

and orthogonal to any other coordinates. Therefore, we can derive the following lemma:

Lemma 15. Let ei,j represent the j-th standard basis vector of Rdi, vi,j ∈ RP represent

a pre-image of ei,j, and x◦(ηi,j) ∈ RP represent a critical point of ηi,j. Then K∗
i,j = 0

implies that O(x◦(ηi,j)−ϵ·vi,j) = O(x◦(ηi,j)), and K∗
i,j = 1 implies that O(x◦(ηi,j)+ϵ·vi,j) =

O(x◦(ηi,j)).

Proof. If K∗
i,j = 0, the pre-activation value zi,j(x) is within the inactive region of the

ReLU activation function (Figure 4.1) for both x1 = x◦(ηi,j) and x2 = x◦(ηi,j) − ϵ · vi,j.

Besides, moving along vi,j does not change any other pre-activation values of the same

hidden layer, as ei,j is orthogonal to other coordinates in the hidden space. Because all

elements of zi remain unchanged, the oracle network must produce identical outputs for

both input samples.

The same reasoning applies to the K∗
i,j = 1 case. □

Algorithm 6 illustrates how we implement the key value inference procedure. It starts

by finding a critical point x◦ of the targeted neuron (Line 3). Then it computes the

product weight matrix associated with the level-i linear region where x◦ is located (Line 4-

5). Given the product weight matrix Â(i), we are able to compute the pre-image vector

vi,j ∈ RP for ei,j. In practice, we find the pre-image with least squares (Line 7), which is a

built-in function provided by statistics and deep learning frameworks such as SciPy [81]

and PyTorch [60]. Finally, the algorithm determines the key value through queries to

the oracle network (Line 10-13). Notice that the statements on Line 10 and Line 12
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are contra-positive to their counterparts in Lemma 15. In some rare cases (e.g., when

the condition of Lemma 14 does not hold), all the three values obtained from the oracle

queries are close to each other. In that circumstance, we attempt to find another x◦ and

start over the entire procedure.

However, there is still a caveat in the above discussions: a vi,j may not exist for

a specific x◦ (Line 8). First, a deep neural network can be expansive [68] in certain

locations. In a nutshell, if dl < di for some l < i, then vi,j does not exist for every

ei,j because Â(i) is not an onto mapping. Second, inactive neurons reduce the chance of

finding a vi,j. For a randomly initialized network, about half of the neurons on a hidden

layer are inactive for a given input example. The situation worsens when the network

encounters a “dying ReLU” problem [50]. Hence, we need a complementary approach to

address these issues.

4.4.4. Learning-based Attack

Suppose that K∗
i contains ∅ elements, i.e., the key bits on the current hidden layer are

not settled by the key inference algorithm. We perform a supervised learning attack on

these remaining key bits.

To convert an HPNN-encrypted network model to a continuous function, we substitute

every flipping unit (Figure 4.2) with a scalar multiplication operator. This operator

multiplies the pre-activation value zi,j with a floating point number K ′
i,j ∈ [−1, 1] before

the ReLU activation function. Then we create a training dataset using the oracle network.

Specifically, we randomly generate a set of unlabeled input examples x1 · · · xn ∈ X and

query the oracle for the corresponding outputs. During the training process, we fix all
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the weights and biases of the white-box network. Moreover, for all the key bits in the

preceding layers and the non-∅ key bits in the i-th layer, we enforce K ′
i,j to be −1 or 1 if

the original Ki,j is 1 or 0, respectively. Upon termination, we replace a ∅ with 0 if K ′
i,j

is a positive number and with 1 otherwise.

The learning-based approach cannot guarantee absolute correctness for the extracted

key values. Meanwhile, a single bit of error is devastating to our attack on subsequent

layers. In this regard, we must validate the correctness of K∗
i before proceeding to the

next layer.

4.4.5. Validating Extracted Key Values

Algorithm 7 The Key Vector Validation Function

1: Input: white-box network f , oracle network O, decrypted key values of the current
layer K∗

i , decrypted key values of preceding layers K∗
1 , · · · , K∗

i−1

2: Output: true or false ▷ pass or fail the validation
3: overlaps ← 0
4: for 1 ≤ j ≤ di+1 do
5: x◦(ηi+1,j)← search critical point(ηi+1,j)
6: if non linearity(O(x◦(ηi+1,j)), δ) then▷ the oracle network encounters a hyper-

plane at the same place
7: overlaps = overlaps + 1

8: return overlaps/di+1 > θ ▷ reach the threshold

From Lemma 12, the hyperplane induced by ηi+1,j is uniquely determined by the key

values on layers 1 through i. Moreover, Lemma 14 proves that portions of hyperplanes

are nearly always sensitizable to the outputs. Leveraging these facts, we can devise an

algorithm to check the correctness of K∗
i . Intuitively, if K∗

i is correct, for a level-(i + 1)

hyperplane of the white-box network, we can almost always find the exact hyperplane of

the oracle network at the same location in the input space. On the contrary, if K∗
i is
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incorrect, it is almost impossible to find any hyperplanes with the oracle network at that

location, given the high dimensionality of the input space.

Algorithm 7 displays the key vector validation algorithm. For each neuron in the

(i + 1)-th layer, the algorithm searches a witness x◦ ∈ X to its induced hyperplane

(Line 5). It then samples a set of points within the δ-neighborhood of x◦(ηi+1,j), queries

the oracle for the corresponding outputs, and verifies whether all the outputs are on the

same linear surface (Line 6). There must exist a hyperplane crossing the δ-neighborhood

if those points belong to more than one linear region.

The number of overlaps can be over-estimated when i) a boundary of the white-box

network overlaps with an unrelated boundary of the oracle network, and can be under-

estimated when ii) a boundary is not sensitizable to the outputs. We tolerate these

uncertainties with a threshold θ. However, the exact value of θ is unimportant as we are

unlikely to encounter either of the problems on a real network. In practice, it is sufficient

to conclude that K∗
i is correct if we find overlaps for a few neurons. Validating the key

vector for the last hidden layer requires special treatment, as its next layer (the output

layer) has no ReLU activation functions. However, we can directly compare the outputs

of the two networks for a set of input samples. It is possible because all remaining key

bits are already determined at the time.

4.4.6. The DNN Decryption Algorithm

Algorithm 8 summarizes our main procedure, the DNN decryption algorithm. Starting

from the first hidden layer, the algorithm sequentially iterates through all key-protected

layers. For every layer, it traverses all key-protected neurons in an attempt to infer its key
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Algorithm 8 The DNN Decryption Algorithm

1: Input: white-box network f , oracle network O
2: Output: a correct key K∗

3: Let K∗ be a 2-D array with k rows
4: for 1 ≤ i ≤ k do ▷ hidden layers
5: for 1 ≤ j ≤ di do ▷ neurons
6: if ηi,j is key-protected then
7: K∗

i,j ← key value inference(ηi,j)
8: K∗

i ← learning attack(K∗
i )

9: while not key vector validation(K∗
i ) do

10: K∗
i ← error correction(K∗

i )

11: return K∗

value (Line 7). Nevertheless, such an attempt may fail for a subset of neurons on some

hidden layers. In that case, the algorithm initiates the learning-based attack to extract

the key values of these neurons (Line 8).

The algorithm checks the key values K∗
i before it moves to the next hidden layer

(Line 9). If K∗
i cannot pass the validation, the algorithm enters an error correction

procedure (Line 10). Concretely, it first computes the confidence level for each key bit,

which is defined as the absolute value of K ′
i,j. A higher confidence level implies that the

learned key value is more likely to be correct. Throughout its execution, the procedure

maintains a counter of Hamming Distance, whose initial value is 1. In ascending order of

the confidence level, the procedure attempts to flip each bit within the limit of Hamming

Distance. The counter is incremented by 1 if all attempts fail for the current Hamming

Distance.

The next theorem proves the correctness of the DNN decryption algorithm.
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Theorem 16. The DNN decryption algorithm will eventually terminate. Upon ter-

mination, it will always return a correct key.

Proof. Termination: The key vector validation procedure can execute at most

2|Ki| times for the i-th hidden layer, because the error correction procedure eliminates

one incorrect assignment to Ki each time. Other procedures can execute a finite number

of times.

Correctness: Each row of K∗ can be confirmed only when it passes the rigorous

key vector validation process. This mechanism ensures that the finalK∗ is correct. □

In the following, we briefly analyze the sample complexity of the proposed algo-

rithm. The overall complexity is dominated by the key value inference and the

key vector validation procedures. The former procedure is called for a total of

|K| times. The latter can be executed for at most Σi2
|Ki| times. In reality, the

key value inference is likely to settle all key bits on a hidden layer. In cases where

key value inference does not work well, the learning attack procedure can recover

a large proportion of key bits. Combined with the error correction procedure, our

algorithm can usually find a correct assignment to the remaining key bits in a small

number of attempts. On the other hand, the utility function search critical point re-

quires O(log(dist/δ)) forward passes on the white-box network, where dist represents the

distance between the initial points and δ is the error threshold. The learning attack

is initiated once for every hidden layer. This attack takes a far smaller dataset than

the original learning task of the DNN, because it only targets a subset of K as op-

posed to all the elements within the A(i) and b(i) matrices. Overall, the sample complex-

ity of the DNN decryption algorithm is O(log(dist/δ) · Σi2
|Ki|) in the worst case, and
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O(log(dist/δ) · (|K| + |K|c|K|)) in the average case. Here c ≪ 1 is a small constant rep-

resenting the average probability that either key value inference or learning attack

fail on a key bit.

4.4.7. Discussions

Our attack can be generalized to a broad category of logic encryption methods on DNNs.

As far as we can foresee, a defender can also a) modify a single element within the weight

or bias matrices instead of the pre-activation value; or b) embed key bits to convolutional

or max-pooling layers rather than fully connected layers; or c) choose another arithmetic

operator instead of the negation operator. Unlike HPNN, none of these methods ensures

that all key bits in a hidden layer are mutually dependent. Therefore, they are less robust

than HPNN.

Case a): Modifying elements of A
(i)
j or b

(i)
j changes the geometry of hi,j. On the contrary,

such a modification does not change the geometry of hi,k, k ̸= j. As a result, an adversary

can leverage a divide-and-conquer strategy on each neuron to significantly reduce the

sample complexity.

Case b): Similarly, the adversary can tackle one kernel in a convolutional layer or one

patch in a maximum pooling layer at a time.

Case c): Suppose that the defender chooses to multiply the pre-activation value by a

positive number when the key value is 1. Due to the distributive law of multiplication

and the property of the ReLU function, an adversary can propagate a positive operand

to all the successor neurons in the next hidden layer. It can then focus on a single neuron

in the next hidden layer to decrypt the key bits within the fan-in cone.
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Table 4.2. Configurations of the DNNs. (Conv: convolutional layer, MP: maxi-
mum pooling layer, FC: fully connected layer.)

DNN Network Architecture # Neurons # Learnable Parameters
ProtoNet FC3 330 218,058
LeNet∗ Conv-MP-Conv-MP-FC3 8,094 61,706
AlexNet Conv-MP-Conv-MP-Conv3-MP-FC3 716,554 44,428,106

Our attack assumes that the underlying DNN uses double precision (FP64) or single

precision (FP32) floating-point numbers. However, there is a growing trend to use FP16

or even FP8 in industry [54]. The employment of low-precision numbers can adversely im-

pact the accuracy and reliability of the key value inference and key vector validation

procedures. We leave this problem for future investigation.

4.5. Experiments

4.5.1. Implementation

We implement the DNN decryption algorithm with PyTorch [60]. We exploit paral-

lelism to accelerate the speed of our attack. Specifically, we initiate multiple instances of

search critical point and key value inference procedures for multiple neurons on

the same hidden layer simultaneously. Regarding the error correction procedure, we

make several guesses of the key vector at a time and execute key vector validation to

validate them in parallel. Besides, we use the built-in Jacobian matrix for any computa-

tions related to the product weight matrix Â(i) to achieve high efficiency.

As for the learning-based attack, we substitute each K ′
i,j with a sigmoid function.

The sigmoid function has a [−1, 1] range, which coincides with that of K ′
i,j. We choose

the mean squared error between the output vectors of the encrypted network and the

oracle network as the loss function. The initial values of the sigmoid functions are set
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to 0. During training, we periodically settle down those key bits that have reached the

confidence threshold.

4.5.2. Experimental Setup

We assess the proposed algorithm on the following DNN architectures: a) ProtoNet, a

multilayer perceptron trained on the MNIST [26] dataset; b) LeNet∗, a ReLU variant

of LeNet-5 [48] trained on the MNIST dataset; and c) an AlexNet [47] trained on the

CIFAR-10 [46] dataset. Detailed configurations of these networks are shown in Table 4.2.

We conduct all experiments on a Linux workstation with a 2.4GHz CPU and an Nvidia

RTX A6000 graphics card.

We apply HPNN to encrypt the abovementioned DNNs. Given a specific key size, we

i) equally distribute the key bits to all designated hidden layers, ii) embed key bits to a

random subset of neurons for every hidden layer, and iii) assign a value to every key bit

uniformly at random. After that, we train the DNN models as functions of the keys until

they converge. We launch two types of attacks on the resulting DNN models: a) a mono-

lithic learning-based attack, which only applies the method described in Section 4.4.4;

and b) the proposed comprehensive DNN decryption algorithm (Algorithm 8).

We use four metrics to measure the effectiveness and efficiency of the attacks: a) accu-

racy, which is the percentage of correct predictions on the testing dataset; b) fidelity [43],

which is the percentage of exactly recovered key bits; c) execution time; and d) query

complexity, which is the total number of queries made to the oracle network. Extracting

a model with high accuracy could facilitate IP piracy, whereas extracting a model with

high fidelity also enables adversarial attacks. Table 4.3 shows our evaluation results.
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Table 4.4. Breakdown of the execution time (seconds) of the DNN decryp-
tion algorithm. (KVI: key value inference, LA: learning attack, V/EC: the
key vector validation / error correction loop.) A parenthesized value in-
dicates that the attempt is failed or does not pass the validation.

DNN
Key First FC Layer Second FC Layer
(bits) KVI LA V/EC KVI LA V/EC

32 0.13 − 0.031 0.023 − 0.001
ProtoNet 64 0.13 − 0.086 0.030 − 0.002

128 0.23 − 0.089 0.033 − 0.002
32 0.053 − 0.036 (0.049) 6.34 0.004

LeNet∗ 64 0.053 − 0.036 (0.045) 7.35 0.004
128 0.058 − 0.037 (0.043) (9.86) 0.018
64 (12.81) 54.59 1.62 (4.27) 45.10 0.080

AlexNet 128 (12.96) (77.85) 25.44 (4.43) 58.48 0.080
256 (13.39) (77.65) 648.38 (4.92) (77.43) 4.94

4.5.3. The Monolithic Learning-based Attack

For every network model, this attack first generates a set of input examples and then

queries the oracle network for corresponding output vectors. It terminates when either i)

all key bits have reached the confidence threshold, or ii) the limit of the training epoch

is reached.

Table 4.3 shows the experiment results of the two attacks on DNN logic encryption.

The original accuracy is measured with the correct key inserted. As for the baseline

accuracy, we randomly generate 16 incorrect keys for every network model and then

compute the average of their accuracy.

The monolithic learning-based attack alone is already sufficiently powerful when the

key size is small. However, as the key size grows, this attack becomes less effective. Inter-

estingly, we observe that the baseline accuracies of AlexNet are relatively high, meaning
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the network can still make accurate predictions even when the randomly generated incor-

rect keys are inserted. We believe this is because AlexNet uses the dropout technique to

reduce redundancy and improve generalization. Such techniques can enhance the robust-

ness and resist the impacts of incorrect keys.

We tried to i) increase the limit for the training epoch and ii) increase the number of

input examples. Nevertheless, none of them improves the performance of the monolithic

learning-based attack on those instances with relatively large key sizes. We resort to the

DNN decryption algorithm for large key sizes.

4.5.4. The DNN Decryption Attack

With the orchestration of the key value inference procedure, the learning-based attack, the

key vector validation procedure and the correction loop, our proposed algorithm succeeds

on all the instances with a 100% fidelity.

Table 4.4 breaks down the total execution time. As shown in the table, the portion of

total execution time consumed by each procedure depends on the network architecture.

In particular, as ProtoNet is highly contractive (784 input nodes and 256/64 neurons for

the first/second fully connected (FC) layer), key value inference can easily decrypt all

of the three instances. On the other hand, both LeNet∗ and AlexNet contain expansive

convolutional layers. However, this problem does not prevent key value inference be-

cause the FC layers are still contractive with respect to the size of the input space. As

a result, key value inference can still recover the key bits in the first hidden layer of

LeNet∗. Nevertheless, this procedure cannot fully recover the key bits in the other FC

layers due to inactive neurons.
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We also notice that the learning-based attack is more reliable when integrated into

the DNN decryption algorithm because it only targets a single hidden layer at a time.

The learning-based attack makes at most 3 bits of an error on any hidden layers. Hence,

it leaves a small search space for error correction.

Given that the convolutional layers are deep and expansive, why not encrypt those

layers instead of the FC layers? First, Section 4.4.7 points out that encryptions on the

convolutional layers are vulnerable to the divide-and-conquer strategy. Second, we observe

that it is less key-efficient to encrypt the convolutional layers. For instance, embedding

64 key bits to the convolutional layers of LeNet∗ reduces the accuracy by merely 4.7%,

whereas embedding the same number of key bits to the FC layers reduces the accuracy

by 49.1%.

4.6. Related Work

4.6.1. Logic Decryption for Integrated Circuits

The most powerful I/O attack against conventional logic encryption is the SAT attack [78]

and its SMT variant [6]. In every iteration, it i) calls a SAT solver for a distinguishing

input pattern, ii) queries the oracle circuit for the corresponding output pattern, and iii)

adds the I/O pair and a fresh copy of the circuit to the SAT solver as a new constraint.

The attack terminates when no more distinguishing input patterns exist, and a correct

key can be extracted from the solver afterwards. At a glance, the same method can

be applied to our problem. Unfortunately, a deep ReLU network should be encoded as

mixed-integer linear programming formulas rather than Boolean formulas. Due to this

gap, it is unrealistic to attack a DNN monolithically.
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4.6.2. Model Extraction for Deep ReLU Networks

Differential attacks [43, 13, 69] consistently query an oracle network to recover the

weights and biases of the original network. While these studies provide valuable insights

into deep ReLU networks, even the state-of-the-art implementation [13] requires more

than 221 queries to partially reconstruct a DNN with less than 1,000 neurons. They are

also struggling with DNNs which have more than three hidden layers.

4.7. Conclusion

This paper presents the first attack on logic-encrypted DNN. It combines algebraic

and learning-based approaches to extract a correct key of a victim DNN. Experimental

results show that the attack can scale to large DNNs and generalize to complex network

architectures. Therefore, the hardware security research community needs to develop new

techniques to protect DNNs with hardware root-of-trust.



96

References

[1] Mart́ın Abadi and Leslie Lamport. The existence of refinement mappings. Theoretical
Computer Science, 82(2):253–284, 1991.

[2] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turn-
ing your weakness into a strength: Watermarking deep neural networks by backdoor-
ing. In USENIX Security 2018, pages 1615–1631.

[3] Abdulrahman Alaql, Domenic Forte, and Swarup Bhunia. Sweep to the secret: A
constant propagation attack on logic locking. In AsianHOST 2019, pages 1–6.

[4] Lilas Alrahis, Satwik Patnaik, Muhammad Shafique, and Ozgur Sinanoglu. Omla:
An oracle-less machine learning-based attack on logic locking. IEEE Transactions on
Circuits and Systems II: Express Briefs, 69(3):1602–1606, 2021.

[5] Ross Anderson. Physical Tamper Resistance. John Wiley & Sons, 2020.

[6] Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, and Avesta Sasan.
Smt attack: Next generation attack on obfuscated circuits with capabilities and
performance beyond the sat attacks. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 97–122, 2019.

[7] Jason Baumgartner et al. Scalable sequential equivalence checking across arbitrary
design transformations. In ICCAD 2006, pages 259–266.

[8] Shoham Ben-David, Baruch Sterin, Joanne M Atlee, and Sandy Beidu. Symbolic
model checking of product-line requirements using sat-based methods. In ICSE 2015,
volume 1, pages 189–199.

[9] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel
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