
NORTHWESTERN UNIVERSITY

Enabling Robust and Secure Edge-to-Cloud Communications

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science

By

Kaiyu Hou

EVANSTON, ILLINOIS

June 2022

2

© Copyright by Kaiyu Hou 2022

All Rights Reserved

3

ABSTRACT

Enabling Robust and Secure Edge-to-Cloud Communications

Kaiyu Hou

Since the invitation of ARPANet in 1969, network protocols and communication sys-

tems have continued to emerge. Especially in the past decade, the prosperity of mobile

internet and cloud computing has resulted in a large number of network protocols and

communication systems, which have become critical infrastructure for our society. Avail-

ability and security, as two of the most important requirements for networks, are, however,

not always achieved due to misconfiguration or performance restrictions.

My dissertation focuses on enabling robust and secure edge-to-cloud communications

in large networked systems. Generally, a networked system consists of two major parts:

the edge access network and the centralized cloud network. In this dissertation, I will

introduce two of my projects. The former project secures configurations for the cellular

networks (the edge), while the latter secures and optimizes the communication channel

for the serverless networks (the cloud). Both projects target next-generation network

protocols, concentrating on practical solutions for real-world networked systems. They

have been validated via extensive analysis, implementations, and real-world evaluations.

4

Acknowledgements

First and foremost, I would like to express my deepest appreciation to my advisor

and my committee chair, Prof. Yan Chen, for guiding me through this wonderful journey

of my Ph.D. study. I am always impressed by his smartness, insight, and good taste in

research. In these five years, I received unwavering support from him in both my research

and daily life. I greatly appreciate the trust he had in me, which gives me the courage

and strength to overcome challenges and helps me eventually find my own way.

Meanwhile, I would like to express my sincere gratitude to my committees, Prof.

Fabián Bustamante, Dr. Vinod Yegneswaran from SRI International, and Prof. Hai Zhou.

Prof. Fabián Bustamante and Prof. Hai Zhou also served as my qualifying exam commit-

tees. Their suggestions and comments greatly improve the quality of this dissertation.

Prof. Fabián Bustamante was one of the first computer science professors who also

mentored my research. He was always approachable and helpful throughout my Ph.D.

study. The idea of the QFaaS project was inspired while I was working with him.

Dr. Vinod Yegneswaran was my mentor during my research internships at SRI Inter-

national and continued supervising me after my internships. I received tremendous help

from him, not only including high-level idea discussion but also hands-on guidance and

paper drafting. He has contributed a lot to the second part of this dissertation.

5

I worked very closely with Prof. Hai Zhou over the past five years and benefited greatly

from his unique insights into defining scientific problems. He was always there willing to

guide me. The first part of this dissertation was a joint work with him.

I would like to give special thanks to You Li, my colleague, collaborator, and friend,

who made my road to Ph.D. no longer lonely. For countless mornings, afternoons, and

nights, we were working together, exchanging thoughts, writing code, facing failures, and

sharing joys. I cannot imagine how difficult this road would be without his accompany.

I have the fortune of working with many talented researchers and exploring new ideas

with them, including Prof. Kai Bu, Prof. Simone Campanoni, Prof. Chunyi Peng, Prof. Xi-

aochun Wu, and Byungjin Jun, Xue Leng, Xing Li, Sen Lin, Bo Wu, Yinbo Yu.

In addition to my collaborators, there is also a long list of colleagues and friends,

who made my life at Northwestern University colorful and joyful, specifically, Xue Chen,

Xutong Chen, Xuechao Du, Yiding Feng, Weixin Jiang, Lin Jin, Mohammad Kavousi,

Xiangmin Shen, Mary Truong, Lingzhi Wang, Runqing Yang, Guannan Zhao, Qingyang

Zeng, and Tiantian Zhu.

I am grateful to the Computer Science Department, the beautiful Northwestern Uni-

versity campus, and the peaceful City of Evanston. I had a fairly good time there.

Finally, I thank all my family members. I would not have made it this far without the

love and support from them. I dedicate this dissertation to them.

6

Dedication

To my family.

7

Table of Contents

ABSTRACT 3

Acknowledgements 4

Dedication 6

Table of Contents 7

List of Tables 9

List of Figures 10

Chapter 1. Introduction 12

1.1. Summary of the Contributions 16

1.2. Organization of the Dissertation 17

Chapter 2. Discovering Cellular Network Emergency Call Vulnerabilities with

Formal Methods 18

2.1. Introduction 18

2.2. Challenges and Our Solutions 21

2.3. Specification of Emergency Call Systems 24

2.4. Verification of Emergency Call Systems 30

2.5. Recommendations 49

8

2.6. Seed-Assisted Specification Method 52

2.7. Discussion 55

2.8. Related Work 56

2.9. Chapter Summary 59

Chapter 3. Accelerating and Securing Serverless Cloud Networks with the QUIC

Protocol 60

3.1. Introduction 60

3.2. Background and Challenges 64

3.3. Modeling Serverless Networks 69

3.4. QFaaS: System Design 73

3.5. QFaaS: System Implementation 81

3.6. Evaluation 85

3.7. Related Work 95

3.8. Chapter Summary 98

Chapter 4. Conclusion 100

4.1. Future Work 101

References 104

9

List of Tables

2.1 Four scenarios of emergency call routing failures. 34

2.2 F-1 : Availabilities for GSM/3GPP UEs to dial emergency numbers

when no SIM card is present. 35

2.3 F-3 : Availabilities for roaming UEs to dial emergency numbers on the

normal panel. 37

3.1 Evaluated serverless function scenarios in the “Hello, Retail!”

application. 93

10

List of Figures

1.1 The architecture of IoT networked system. 13

2.1 Framework of seed-assisted specification method. 23

2.2 Processes of handling Emergency Setup and normal Setup signaling. 25

2.3 F-4 : UEs which cannot identify emergency numbers of China (e.g.,

110) when foreign SIMs are inserted. 38

2.4 Four sources used by UEs to identify emergency numbers. 40

2.5 Attack-1 : UE Screen Lock Bypassing attack on carrier US-I. 42

2.6 Attack-2 : Call Service DoS attack on carrier US-II. 44

2.7 (a) Wireshark log of the fake local emergency number list we pushed. (b)

UE identifies the normal number (224)-714-* as an emergency number. 46

3.1 Round-trips incurred by different transport protocols. 67

3.2 Serverless architecture in logic view. 70

3.3 Serverless architecture in network-centric view. 71

3.4 System design of QFaaS. 77

3.5 (a) Function image sizes and (b) image build time of QFaaS. 86

3.6 Single function end-user response latency. 88

11

3.7 Benefits of QFaaS under variant intra-cloud delays. 90

3.8 Benefits of QFaaS with the function chain library. 91

3.9 A reference architecture of the Hello, Retail! application. 92

3.10 End-user response latency in the Hello, Retail! application. 94

12

CHAPTER 1

Introduction

Computer networks have become an irreplaceable part of our society. Since the invita-

tion of ARPANet in 1969 [66, 120], network protocols and communication systems have

continued to emerge. Especially in the past two decades, the prosperity of mobile internet

and cloud computing has resulted in a large number of new network protocols, such as

new generations of cellular network protocols (e.g., LTE, 5G [1]), software-defined network

(SDN) protocols (e.g., OpenFlow [96], P4 [31]), transport protocols (e.g., SPDY [137],

QUIC [115]), security protocols (e.g., TLS 1.3 [50]), and application protocols (e.g.,

HTTP/3 [29]).

These network protocols make up a wide variety of large networked systems, typically

represented by national cellular network systems, Internet of Things (IoT) network sys-

tems, and cloud-native network systems. With enormous market prospects, these large

networked systems have become critical infrastructure in our daily lives. For instance, the

total number of cellular network subscriptions is estimated to be 8.6 billion in 2021 [123];

35 billion IoT devices have already been installed by 2021 [59], and its market share is

projected to surpass $1,500 billion by 2025 [132]; the cloud computing market had a value

of $133 billion in 2021 and is expected to reach $168 billion by 2025 [142].

Availability and security, as two of the most important requirements for communica-

tion systems, however, are not always achieved due to misconfiguration (§2) and perfor-

mance restrictions (§3). For instance, there are always complaints about the availability

13

Cell

Cell
Edge Controller

Cloud

Edge Access Network Centralized Cloud Network

End Devices

LTE/5G ...

Project 1: Secure Network Configuration Project 2: Secure/Optimize Communication Channel

Avaliablilty Authenticity Confidentiality Integrity

Serverless Management Application

Authenticity

Figure 1.1. The architecture of IoT networked system.

of cellular networks, especially the emergency service [138]. The instability of emergency

communication systems can lead to severe consequences [103]. Some cloud services lack

encryption on internal communications, leading to publicized security disasters [117, 78].

In this dissertation, I will focus on the following question: How can we enable robust

and secure edge-to-cloud communications in real-world networked systems? My disser-

tation tackles this question by addressing specific network availability and security chal-

lenges that we encounter in two projects from two different aspects of networked systems:

securing configurations for the edge network, and securing and optimizing communication

channels for the serverless cloud network.

In general, a large networked system can be divided into two major parts: the edge

access system and the centralized cloud/data center system. The former provides ubiqui-

tous connectivity for end-devices by utilizing mobile internet technologies, while the latter

provides flexible control and management plane leveraging cloud computing and data cen-

ter network (DCN) technologies. Taking the IoT system as an example (Figure 1.1), in

14

the IoT edge access network, with new wireless and mobile protocols, IoT end devices re-

ceive convenient, fast, and reliable network connections, continuously interacting with the

central management cloud. On the cloud side, various microservice and serverless cloud

applications offer centralized services to edges, such as big data processing and storage,

identity management, and event analysis and triggering. Although the evolution of both

parts has benefited from the development of next-generation network protocols, the use

of new technologies has also introduced availability and security vulnerabilities.

In the first project, we aim to systematically address the availability and security

problems in cellular networks. Formal methods have been widely adopted into network

protocol studies by researchers [141, 70, 72, 16, 26, 46, 2]. However, most works suffer

from modeling granularity and misrepresentation problems. To solve these difficulties, we

propose a seed-assisted specification method. It combines prior knowledge and adaptive

model construction in addition to protocol-based formal specifications. We take the cellu-

lar emergency call system as the case study and conduct the first research to thoroughly

investigate its availability and security vulnerabilities. We build a formal model based on

our proposed method. By running model checking, four public-unaware scenarios where

emergency calls cannot be correctly routed are discovered, and two new attacks leverag-

ing the privileges of emergency calls are found. We recommend a solution addressing all

those failures and attacks and show its correctness. Our proposed seed-assisted specifica-

tion method can be easily extended to analyze other communication systems which are

described by protocols in general.

In the second project, we design and implement the QFaaS system. It can simultane-

ously improve performance and provide security to serverless cloud networks. Serverless

15

computing has greatly simplified cloud programming. Nevertheless, internal network con-

nections between serverless functions are now initiated frequently, to support serverless

features such as agile autoscaling and function chains, raising communication latency. To

alleviate this cost, current serverless providers sacrifice security for network performance,

keeping internal function communications unencrypted [13, 23, 100, 63]. To address this

challenge, we first provide a new network-centric abstraction for serverless computing, fill-

ing in missing details about actual network flows in the widely used logic abstraction. This

abstraction inspired the design of the QFaaS system, where the QUIC protocol can be

seamlessly integrated into serverless platforms, to mitigate connection setup overheads

and provide secure communications. Our design explicitly ensures that existing serverless

applications can directly benefit from QFaaS without any application code modification.

Experiments demonstrate that QFaaS can reduce the end-user response time of single

functions and function chains by 28% and 40%, respectively.

Both projects target next-generation network protocols and aim to provide practical

solutions to address availability and security problems in real-world networked systems.

We emphasize the importance of real-world measurement and deployment in this disserta-

tion. These two projects have been validated via real-world evaluations, and correspond-

ing system implementations will be open-sourced to the public. Security is composed

of four cornerstones: availability, authenticity, confidentiality, and integrity. The first

project covers the availability and authenticity issues, while the second project provides

authenticity, confidentiality, and integrity to the network.

We value the cooperation with the industry and are committed to making real-world

impacts while conducting our research. Our study has attracted attention and received

16

positive feedback from the corresponding open-source communities. And we have actively

transited our work to commercial cellular network carriers and cloud service providers.

Three world-leading cellular network carriers have acknowledged our findings. And one

of the world-leading cloud providers is working on a PoC (proof-of-concept) deployment

of the proposed QFaaS system on its serverless platform.

1.1. Summary of the Contributions

This dissertation studies how to enable robust and secure communications for edge

access networks and centralized cloud networks. The primary contributions are as follows:

• Seed-assisted specification method for protocol-based communication

systems. We propose a seed-assisted specification method to solve both the mod-

eling granularity and misrepresentation problems. It leverages the prior knowl-

edge in model specification and integrates measurement results with a generalized

formal model. This method can be applied to networked systems described by

protocols in general.

• First thorough investigation of cellular network emergency call sys-

tems. We systematically explore availability and security pitfalls in cellular

network emergency call systems. We find 4 scenarios where emergency calls can-

not be routed and 2 new attacks that abuse emergency call privileges. A unified

solution is proposed for cellular network carriers.

• Network-centric modeling for serverless cloud computing. We provide a

network-centric abstraction model for serverless computing. It demonstrates the

17

actual network flows and bottlenecks in the serverless computing architecture,

filling in missing details in the widely used logic model.

• QFaaS system design, implementation, and evaluation. We first extend

the QUIC protocol into the domain of serverless platforms and propose the QFaaS

system. It provides low latency serverless function communication with improved

security. We implement the QFaaS prototype on the popular OpenFaaS platform.

It requires no code modification for existing serverless applications.

1.2. Organization of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, I first introduce the

challenges and our solutions of applying formal methods to cellular network studies. I then

present our thorough analysis of cellular emergency call systems, including specification,

verification, and recommendation, as the case study to illustrate our proposed method.

The seed-assisted specification method is formally explained at the end of this chapter.

In Chapter 3, I first discuss the network challenges in serverless cloud computing. I then

provide our modeling to the serverless network architecture. It is followed by the QFaaS

system design, prototype implementation, and evaluation. Chapter 4 summarizes this

dissertation and discusses future work and open research directions.

18

CHAPTER 2

Discovering Cellular Network Emergency Call Vulnerabilities

with Formal Methods

2.1. Introduction

In this project, we aim to systematically address the availability and security issues in

cellular emergency call systems and explain their underlying causal mechanisms in depth.

Public Safety Answer Points (PSAPs), such as the 911 call center in the U.S. and

the 112 emergency service center in Europe, receive millions of emergency calls each year.

Those calls are then dispatched to entities like police stations, fire stations, and ambulance

centers. Cellular network systems play critical roles in this service. For example, in the

U.S., there are an estimated 240 million emergency calls made to 911 each year, and more

than 80% of those calls are from cellular devices [103]. Considering the huge number of

emergency calls made through cellular networks and the potential impact of missing any

of them, the correctness of cellular emergency call services deserves a close investigation.

Unfortunately, as far as we know, there is no thorough research on this topic.

In 2019, a news report was widely spreading and had terrified the public in China.

During an emergency medical situation, a cellphone (referred to as UE, user equipment)

could not dial 120, the ambulance emergency number in China, even though a valid

domestic SIM card was inserted (§2.3.1). Similar complaints about the availability of

the cellular emergency call services can be found by skimming over public websites. In

19

fact, a cellular emergency call system can be unreliable and is subject to attacks. First,

it is difficult to unify the system design, as different countries have different emergency

numbers and different settings for historical reasons. Second, there exists no economic

incentive for the cellular network carriers or the UE device manufacturers to optimize

system implementation or correct existing errors.

Formal methods, including model checking [141, 70, 72] and symbolic analysis [16,

26, 46, 2], have been widely adopted by network researchers into network protocol studies.

Given a set of security properties and a specified model, formal verification tools can either

verify that the model upholds these properties or shed light on how the model violates

them. However, most works suffer from two major problems in formal specification:

modeling granularity and misrepresentation. First, the inappropriate level of granularity

either requires enormous efforts in building models or can lead to false positives. Second,

models specified from the protocols may not precisely represent the deployed systems, as

a real-world system is just an instance from generally broad protocols.

To solve these difficulties, we propose a seed-assisted specification method. It combines

prior knowledge and adaptive model construction in addition to protocol-based formal

specifications. Using the above-mentioned case in China as a starting point, we first man-

ually investigate its underlying causes. Instead of building a model of the whole system

and aimlessly checking it for possible vulnerabilities, we limit the scope to the problem we

want to explore: the routing failures of emergency calls. Therefore, we can include any

related details into our model, slice away unrelated ones, and, most importantly, control

the right level of granularity. Existing works aim to discover vulnerabilities in protocol

designs. We believe that discovering vulnerabilities in deployed systems is equally or even

20

more critical. In that sense, we augment our model by configurations measured from de-

ployed systems. As a benefit, we can ensure the counterexamples we found are practical

in the real world.

The rest of this chapter is organized as follows.

In §2.2, I first present the challenges of applying formal methods to cellular network

studies and our solutions to address these challenges.

In §2.3, following the proposed method, we specify the emergency call systems and

conduct the first research to systematically study the availability and security issues in

cellular emergency call systems. We have released our formal specifications as open source.

In §2.4, with this model, we systematically find 4 emergency call failure scenarios in

China. One of the major carriers has confirmed our findings. The public is unaware

of all these scenarios, while 2 of them are unknown to carriers. Moreover, we allow the

flexibility to incorporate other configurations as model constraints to check other systems.

We measure the emergency call configurations of two major U.S. carriers and find 2 new

attacks abusing privileges of emergency calls. One attack is the first reported attack, which

can bypass the screen password of UEs and make any calls. Another attack can block

calls to the targeted numbers. It does not affect calls to other numbers and keeps effective

longer than similar known attacks. We have reported them, and they are acknowledged

by corresponding carriers.

In §2.5, we recommend a solution addressing all those failures and attacks, and show

its correctness. We argue that lacking regulations or financial stimuli is another factor for

the prevalent weaknesses in emergency call systems.

21

In §2.6, we summarize step-by-step procedures for the proposed seed-assisted specifi-

cation method. This method can be easily extended to other systems which are described

by protocols in general.

Discussions and related work are presented in §2.7 and §2.8, respectively.

Chapter summary, presented in §2.9, concludes this chapter.

2.2. Challenges and Our Solutions

As opposed to manual investigation [85, 122, 71], the use of formal methods brings

a systematic and solid approach to cellular network research. In that sense, formal meth-

ods are introduced to protocol verification and have succeeded in cryptography-related

analysis, such as authentication and key agreement (AKA) protocols [2, 45].

Nevertheless, problems emerge when applying formal methods to general cellular net-

work protocols. Formal verification cannot be performed directly on human-language-

based protocols. These protocols need to be translated into formal models first (e.g.,

finite state machines). Meanwhile, a set of security properties are extracted from the

protocol requirements. The process of constructing formal models and properties is called

specification. The verification problem is to check whether models always follow their

corresponding properties. However, meaningful attacks and vulnerabilities are unlikely to

be found on an arbitrarily constructed specification without the guidance of strong prior

knowledge.

Formal verification then executes in iterations. Each time the model checker finds a

violation to the properties and returns a counterexample, researchers need to validate the

22

counterexample trace and determine whether it is feasible on a real-world system. Be-

cause there are always gaps between protocol definition, formal specification, and system

implementation, a violation to a model built on protocols alone may not reflect a real-

world problem. Researchers then have to exclude such an infeasible counterexample from

the model and proceed to the next iteration. Without incorporating the information of

real systems, the verification process can iterate forever until finding a non-trivial issue.

Therefore, there is still much room for improvement in the current approaches for

verifying cellular network protocols. Several works [70, 141, 140] lie in this field, yet

they all suffer from two major problems in specification: modeling granularity and mis-

representation.

• Modeling Granularity : In general, there is no golden rule to guide the granularity

of modeling. Coarse-grained specification leads to false counterexamples because

abstractions over-approximate the possible behaviors of a model. In contrast, the

uniform fine-grained specification requires enormous efforts to build a model and

has prohibitively large state space for model checkers.

• Misrepresentation: Protocols are generally broad and include many implemen-

tation options. Meanwhile, a real-world system is just an instance of protocols,

and every possible option in protocols becomes a fixed assignment on the sys-

tem. Therefore, models specified from protocols may not accurately represent

the deployed systems.

From our observation, security analysis for cellular network systems has the following

characteristics: i) an exposed critical security issue can attract widespread attention and

is worthy of efforts to investigate the underlying causes; ii) a systematic search of potential

23

Stage I: Insights Stage II: Specification Stage III: Verification

1 Seed	Collection

2 Seed	Reasoning

3 Testbed
Reproduction

6

5 Property
Extraction

4 Prior	Knowledge
Specification 9 Testbed	Validation

8 Counterexample
Interpretation

7 Formal
Verification

Adaptive	Model
Construction

Figure 2.1. Framework of seed-assisted specification method.

vulnerabilities under similar causes is important; and iii) some configurations of deployed

systems can be measured on-air or at the UE side. We believe that capturing these

characteristics is the key of conducting formal analysis on cellular network systems.

Thus, we propose the seed-assisted specification method to solve both the modeling

granularity and misrepresentation problems. Different from general protocol formal anal-

ysis, we leverage the prior knowledge, which is gained from investigating existing security

issues and measuring real-world systems, to augment protocol-based specification. To

this end, we use an exposed critical security issue as the “seed”. The scope of verifi-

cation, i.e., what procedures to keep and their corresponding granularities, are decided

by investigation and reasoning on the seed. When constructing a model from protocols,

the implementation configurations and other flexibilities are distinguished and collected.

In that way, real-world situations can later be incorporated into the model to reflect

real-world systems.

Figure 2.1 shows the framework of the proposed method. It consists of 3 major stages

in 9 steps. Prior knowledge is gained from and verified in the Insights stage. In the

24

Specification stage, we specify the model, design security properties, and adapt real-world

configurations as model constraints. Counterexamples are generated in the Verification

stage by model checkers. With prior knowledge, we can interpret counterexamples as

availability issues or attacks on real-world systems and test their validities.

In the rest of this chapter, we first provide a case study, specifying cellular emergency

call systems and discovering their pitfalls, to illustrate each of the steps by examples (§2.3,

§2.4). We then formally explain each of the steps in §2.6. We believe it would be easier

than before to secure protocol-based systems from vulnerabilities by following these steps.

2.3. Specification of Emergency Call Systems

For our study, we take a security issue exposed in 2019 as the seed (§2.3.1) and aim

to systematically address the availability and security issues in cellular emergency call

systems. We give an in-depth explanation of their underlying mechanisms and provide

a solution to these vulnerability issues. In this section, we first manually investigate all

underlying causes of the seed (§2.3.2), then build a formal model for cellular emergency

call systems (§2.3.3).

2.3.1. The Seed: A Piece of Shocking News

In 2019, news about the failure of emergency calls attracted public attention [138]. As

reported by major Chinese media outlets, in an emergency medical situation, the victim

tried to dial 120, the ambulance emergency number, using her Meizu MX6 UE. A SIM

card with a valid subscription from carrier China Mobile was inserted in the UE. However,

all 120 phone calls made through that UE, no matter the ones from the locked screen

25

UE PSAP

User Dial
112/911, or

User Press
Emergency

Emergency Setup

"Dial 110 for Police, 119 for Fire,
120 for Ambulance..." (Repeat)

Busy Tone (Session Ended)

User Dial
110/119/120 Normal Setup Route to PSAP

Chinese Carriers

Number
Mapping

Call Session Established (Free of Charge)

Figure 2.2. Calls initiated by the Emergency Setup signaling can only re-
ceive a recorded instruction. Chinese Carriers only route calls initiated by
the normal Setup signaling.

emergency panel or the unlocked normal panel, could not reach the ambulance emergency

center. What she heard was only a repeated dialing instruction, as shown in Figure 2.2.

2.3.2. Stage I: Insights

Step 1: Seed Collection. We performed the seed collection from three aspects: cellular

network protocols, implementation details of UEs, and configurations of carriers.

The cellular network standard is developed by the 3GPP (3rd Generation Partnership

Project), which consists of more than one thousand documents. By leveraging the seed, we

do not need to investigate all of them. Instead, we narrow our reasoning and specification

to call setup protocols [8, 9, 10] and emergency call-related protocols [7, 11].

From news interviews with the victim, we were able to collect the UE technical speci-

fication and system image (referred to as ROM) version. We were also able to record the

procedure that she executed during the failure. Additionally, after this security issue was

exposed, the Meizu corporation announced that they had solved this problem by releasing

26

a ROM update. This ROM was also collected for investigation. Step 6: Adaptive Model

Construction presents more details about collecting information of UEs and carriers.

Step 2: Seed Reasoning. The 2G/GSM (Global System for Mobile Communications)

emergency call service is inherited from the traditional landline system for public safety.

In GSM, the normal Setup signaling is used to initiate normal phone calls, while the

Emergency Setup signaling initiates emergency calls [8]. Two widely used emergency

numbers, 112 (Europe) and 911 (North America), are listed as fixed emergency num-

bers [11]. When users dial them, UEs always send out emergency signaling.

When GSM was introduced in China in 1994, three separate emergency numbers, 110

(police), 119 (fire), and 120 (ambulance), had already been standardized and used for the

landline system. All emergency calls to them were directly routed to their correspond-

ing callees. The landline system uses the ITU (International Telecommunication Union)

signaling system. It does not support Emergency Setup [73].

To deploy GSM in China, the following compromise was accepted (Figure 2.2). When

UEs initiate the Emergency Setup signaling, (most likely when the users dial 112/911

or press the emergency button), carriers will not route these calls. Instead, carriers will

loop sound recording of instructions to notify users of the correct emergency numbers

in China. In contrast, call requests to 110/119/120 will be successfully routed if normal

Setup initiates them. At a glance, such a scheme is backward compatible with the legacy

processing system, while it does also “respond to” the Emergency Setup signaling to some

extent. This setting has been inherited by 3G/4G networks and is still active today.

We therefore speculated that when the victim dialed 120, Meizu MX6 falsely initiated

the call with the Emergency Setup signaling and was thus rejected by Chinese carriers.

27

Step 3: Testbed Reproduction. We reproduced the seed by using the same model UE

with the same ROM. MX6 supports two major Chinese carriers. We dialed all emergency

numbers with their SIMs under both the normal and the emergency panels. Calls from

MX6 could not be successfully routed to PSAPs under any of these situations. Packet

sniffer tools showed that MX6 used Emergency Setup to initiate these dials. We also used

other UEs to initiate calls to 110/119/120 with Emergency Setup. All of them failed.

These experiments proved that our seed reasoning is correct.

2.3.3. Stage II: Specification

Step 4: Prior Knowledge Specification. Following the idea of the seed-assisted

specification, we exploited the prior knowledge to decide whether to keep, drop, or abstract

a procedure or sub-procedure. Specifically, we are focusing on availability and security

issues surrounding emergency call systems. From the seed, we learned that the most

critical problem is related to routing: whether an emergency call can be routed and

how exactly it is routed. The whole routing process is decided by the NAS (non-access

stratum) layer protocol, which manages the communication session between the UE and

the network [10, 9]. Procedures on the NAS layer depend on the bearers established on

the RRC (radio resource control) layer [6]. However, we were not interested in modeling

the RRC layer as any call will fail if the RRC layer fails.

Among all procedures on the NAS layer, call control procedures are most important.

Meanwhile, the attach procedures are closely related to call control procedures. For in-

stance, attach status and session contexts will afterward impact call setup and connection.

The other procedures, such as handover procedures, detach procedures, and identification

28

procedures, do not have a direct impact on routing an emergency call. Therefore, the de-

tails of those procedures were abstracted away. We kept the skeletons of those procedures

to ensure our model can still depict the whole call process.

We further analyzed in detail the call control and the attach procedures. The seed

suggests that problems are likely to occur on occasions that normal procedures and emer-

gency procedures are different. So, we distinguished the details that make normal and

emergency calls different. For example, the available services are different depending on

if the UE is attached to the network in emergency mode; the routing process and the

response of the network are different depending on if the UE sends the call request in

emergency mode.

We built our formal model in TLA+ [81]. The model has two major components: the

UE and the network. Both components are flattened to avoid the hierarchical network

structure between layers. A message channel synchronizes their interactions. A total

of 36 configurable variables are included in our specification. Behaviors of the model are

characterized by 20 TLA+ procedures. The original model with no constraints yields 10.59

billion distinct states and has a maximal diameter of 26 transitions from the initial states.

The model, as well as corresponding model checking and counterexample interpretation

utilities, has been open-sourced online.1

Step 5: Property Extraction. There are two major categories of properties: safety

and liveness. Safety checking can guarantee the system never enters designated bad states,

while liveness checking is typically used to check availability.

1https://github.com/FormalCellular/EmergencyCall

29

We elaborated the requirement that emergency calls should be routed to correct PSAPs

with a Liveness Property ϕ1: If a user dials a local emergency number in China, the call

should eventually be routed to the corresponding PSAP. It states the basic availability

requirement for emergency call systems in both 3GPP protocols [11, 7] and telecommu-

nication regulations of China [101, 102].

We also detailed a Safety Property ϕ2: Any call should not be routed to a non-

corresponding callee. It has two implications. First, a call initiated by Emergency Setup

shall not be routed to non-PSAP destinations. It eliminates the chance of adversaries

leveraging emergency call privileges in normal dials. Second, a call made to a normal

number shall not be routed to PSAPs. It prevents the possibility that emergency call

systems interfere with normal calls.

Step 6: Adaptive Model Construction. We have found that using only the protocols

is insufficient to discover or reproduce vulnerabilities in real, deployed systems. In many

situations, a pitfall can only be reproduced on certain UEs and carriers. Their specific

configurations should be modeled as model constraints. A formal model built on proto-

cols is usually broad and lacking these details. Therefore, it is important to augment

information from other sources to a general model.

First, it is necessary to locate the key configurations which can affect the “seed”

problem. After Seed Collection and Seed Reasoning, we can locate a couple of key factors.

Their assignments are determined by the literature survey, code analysis, or measurement.

Next, if the model checking result is non-deterministic on the model, it usually indicates

some key variables are missing. We should refine the model further.

30

Specifically, a UE can be considered to be one instance of the protocols. Following this

idea, we analyzed the source files related to the telephony functionality from the Android

Open Source Project (AOSP) [62] and Meizu MX6 ROMs.

Emergency calls have many privileges defined by the protocols, such as authentication-

free registration and toll-free. Nevertheless, all of them rely on the configurations of carri-

ers. Some detailed configurations of carriers were acquired indirectly from packet sniffing.

We used QxDM [114], MTK Catcher [97], and MobileInsight [86] to sniff packets going

between UEs and carriers. For directly testing a particular response, we programmed our

UEs to send corresponding requests. For example, we programmed a UE without a valid

subscription to test how carriers respond to an emergency attach request. Other con-

figurations were partially inferred from the publicly available documentation by solution

providers, i.e., Cisco and Huawei [42, 41, 69]. In this chapter, we denote the original

model asM, and the adapted model asM∗. More details about model construction are

elaborated in the next section.

2.4. Verification of Emergency Call Systems

By performing the verification stage on our model (§2.4.1) and systematically find 4

emergency call failure scenarios similar to the seed (§2.4.2). Moreover, we measure the

emergency call system configurations from two major carriers in the U.S. and incorporate

them as model constraints. As a result, we find 2 new practical attacks (§2.4.3).

We verified all of the 4 failures and 2 attacks by real-world experiments on commercial

UEs and public cellular networks. One of the major Chinese carriers has confirmed these

31

4 failures. We also reported to the corresponding U.S. carriers about the 2 attacks, and

the carriers have acknowledged them.

2.4.1. Stage III: Verification

Step 7: Formal Verification. Model checking was executed with TLC [152] on an

8x3.6GHz machine with 64GB of RAM. Verifying the 4 failures took 195, 248, 694, and 328

seconds, respectively, while finding the 2 attacks took 508 and 309 seconds, respectively.

Step 8: Counterexample Interpretation. We took different approaches to interpret

the counterexamples found by availability analysis (§2.4.2) and security analysis (§2.4.3).

For availability analysis, we kept asserting that ϕ1 fails. Assignments to configuration and

condition variables were refined until we found the root cause of one issue. For security

analysis, any violation of ϕ2 could constitute a potential attack.

Step 9: Testbed Validation. For availability issues, we simply verified them with

off-the-shelf UEs and real-world carriers. For potential attacks, we constructed a threat

model and evaluated their feasibility using our hardware testbed.

§2.4.2 and §2.4.3 provide more details about the verification stage. In §2.4.2, we use

our formal model to systematically study the emergency call availability issues in China.

In §2.4.3, we augment system configurations of U.S. carriers as model constraints and

discover security vulnerabilities on them.

2.4.2. Availability Study: Routing Failures of Emergency Calls

Our methodology for failure discovery is explained in §2.4.2.1. We found 4 emergency call

failure scenarios in China. These scenarios are elaborated and discussed in §2.4.2.2.

32

2.4.2.1. Failure Discovery. The purpose of availability checking is not just to point

out that there exist failures in some scenarios. Rather, it attempts to undermine the

essential causes of the failures.

Initially, our model is augmented by the system constraints of carriers in China (Step

6). Here is how it looks like:

o
∆
= ∧ network_route_with_number_or_type = number

∧ network_emergency_numbers = {110, 119, 120}

∧ ...

which says the network routes calls based on the callee number instead of the Setup

message type; the network only recognizes 110,119,120 as emergency numbers.

Besides, the behavior of the model also depends on a set of condition variables, c,

which is the abstraction of a scenario. For example,

c
∆
= ∧ ue_sim_present = False (c1)

∧ ue_screen_locked = False (c2)

∧ user_dial_panel = normal_panel (c3)

∧ ...

The values of condition variables keep unchanged after model initialization. These values

contain the root cause of a failure when the model violates properties.

Our initial liveness property, ϕ1, states that: If a user dials a local emergency number

in China, the call should eventually be routed to the corresponding PSAP. The strength-

ened negation of it, ϕ∗
1, becomes: If a user dials a local emergency number in China, the

33

call should never be routed to the corresponding PSAP. If ϕ∗
1 is true, ϕ1 should definitely be

false. Checking the correctness of ϕ∗
1 has several benefits. i) ϕ∗

1 is now a safety property,

which significantly benefits the execution time of the model checker. ii) By checking the

safety property, we can avoid finding infinite loops in the model. Trivial loops in some

local procedures can thwart liveness checking, e.g., the case that users keep dialing and

hanging up; safety checking can bypass such problems. iii) Most importantly, only then

are we able to find the root cause, which always leads to emergency call failures.

We start by searching for a full assignment to all condition variables, c = c1∧c2∧· · ·∧

cn , and query the model checker on model M∗ for ϕ∗
1. In practice, we can find such an

assignment that satisfies ϕ∗
1 from our insights. But the assignment is indeed the smallest

cube, which leads to a very narrow real-world scenario. Then we attempt to remove a

ck from the current cube c. It can be removed if the cube after removal still satisfies ϕ∗
1.

The process terminates when no more condition can be removed. The resulting cube, c∗,

which describes an essential condition of a failure, is called condition core.

Then the condition core is ruled out from the model: M∗ ← M∗ ∧ ¬c∗. We iterate

on the process in the last paragraph to extract the next condition core.

The order of removing ck can decide the result of the current condition core. However,

will the order of removal impact the set of found condition cores? No, because the other

condition cores can still be found later, as any state s ∈ ¬c∗ is guaranteed to satisfy ϕ∗
1

and violate ϕ1.

2.4.2.2. Failure Scenarios. We found 4 meaningful scenarios that an emergency call

cannot be routed to a PSAP, denoted as F-1 , F-2 , F-3 , and F-4 . We have provided

a summary of condition cores and their real-world interpretations in Table 2.1. All these

34

Table 2.1. Four scenarios of emergency call routing failures in China. (found
via TLC, verified in the real world)

Failure
Scenario

SIM
Inserted

Roaming Localization
Voice

Subscripted

Dialed from
Normal
Panel

When an emergency number is dialed
in China, this call would
fail to be routed to a PSAP if ...

Affected
UEs

F-1 ✗ - - - - No SIM is inserted in the UE. All

F-2 ✔ ✗ ✗ - - The UE is not localized correctly. Partial

F-3 ✔ (✔) - ✗ - The SIM does not have a valid subscription. All

F-4 ✔ ✔ - (✔) ✗ The User dials from the emergency panel. Partial

”✔”, ”✗”, ”-” indicate True, False, no restriction, respectively. ”(✔)” indicates no re-
striction but only a True value makes the case non-trivial.

scenarios are public unawareness, while F-3 and F-4 are unknown to carriers. Note

that, we do not claim the search for failure scenarios is exhaustive.

F-1 : A call made in China cannot be routed to a PSAP if no SIM card is present.

Explanation: Chinese cellular network carriers refuse to route a call with the Emergency

Setup signaling. In the case that no SIM card is present, UEs will stay in limited service

state [6] and can only provide “emergency calls only” service. Those calls initiated by

Emergency Setup cannot be successfully routed to PSAPs in China.

Our experiment shows that all GSM/3GPP UEs we have tested fall into F-1 (Ta-

ble 2.2). We are not able to control the exact carrier a UE attaches to, as no SIM card is

present. Therefore, we perform our testing in multiple locations in three different cities.

Public Unawareness: We initially thought F-1 is common knowledge to the public.

After seeing discussions online and surveys offline, we believe a vast majority of the public

holds the opposite opinion.

This wrong impression might be due to the following reasons: i) most people do not

have a real experience of dialing an emergency number; ii) UEs will show “emergency calls

35

Table 2.2. F-1 : Availabilities for GSM/3GPP UEs to dial emergency num-
bers when no SIM card is present.

Number 110/119/120 112/911

City Beijing Hangzhou Wuhan Beijing Hangzhou Wuhan

Available ✗ ✗ ✗ ✗ ✗ ✗

only” on screens when users remove their SIMs, which misleads people that “emergency

call is available” without SIMs.

F-2 A call made in China cannot be routed to a PSAP if the UE does not have

correct localized configurations.

Explanation: Initially, UEs could not identify local emergency numbers, e.g., 110/119/120.

Hence, when the UE was in a geographic region where the subscribed carrier provides no

coverage, the UE could not utilize emergency channels from other carriers. To solve this

problem, starting from the era of 3G, 3GPP requires carriers around the world to store

emergency numbers of home countries in SIMs [5]. Since then, UEs can recognize local

emergency numbers when local SIMs are inserted.

This requirement negatively impacted the cellular emergency call system in China.

Before that requirement took effect, a call to emergency numbers of China was made

through normal Setup and could then be routed to PSAPs. However, after UEs identify

a dialed number as the emergency number, this call is initiated by Emergency Setup

and then fails in China. Consequently, UE device manufacturers have to take some

compromised solutions, called localization in this project.

Localization: We unpacked several ROMs of Android UEs that did not fall in F-2 and

investigated their source codes. We will summarize our findings in the following. When

36

1 <!--Condition: there are following values:

2 - 0: ecc only when no sim

3 - 1: ecc always

4 - 2: show ecc but send as normal -->

5 <!-- Add for China CTA -->

6 <Ecc="110" Condition="2" Plmn="460 FFF"/>

7 <Ecc="119" Condition="2" Plmn="460 FFF"/>

8 <Ecc="120" Condition="2" Plmn="460 FFF"/>

9 <!-- 3GPP 22.101 -->

10 <Ecc="112" Category="0" Condition="1" />

11 <Ecc="911" Category="0" Condition="1" />

Code 2.1. F-2 : Excerpt of ecc list.xml from Xiaomi Redmi 6A. Condition
2 is enforced when attached to a Chinese carrier (MCC 460) and dialed
number 110/119/120 (L6-L8).

the UE identifies that the user is dialing an emergency number of China and the UE is

attached to a Chinese carrier, the Android operating system (OS) will display “emergency

dialing” on the screen. Meanwhile, the OS will command the hardware to make a call

through normal Setup.

Different UE device manufacturers have their own implementations of this idea. Code

2.1 is a segment from the ecc list.xml file of the Xiaomi Redmi 6A. The localized Android

OS queries this file after the emergency number identification process. As shown in this

segment, if the UE is attached to a PLMN2 in China (MCC 460) and the dialing number

matches any of the three entries (L6-L8), the system will enforce condition 2, sending

normal Setup for this call. However, this solution has nothing to do with F-1 , because

normal Setup is disabled when the SIM card is not present.

2PLMN (public land mobile network) consists of an MCC (mobile country code) and an MNC (mobile
network code), corresponding to a carrier.

37

Table 2.3. F-3 : Availabilities for roaming UEs to dial emergency numbers
on the normal panel.

Subscription No Yes

SIM issued US-A US-T US-S US-V Either US

Attach To Emergency Call Only CN-T CN-M CN-U

Available ✗ ✗ ✗ ✗ ✔ ✔

The default AOSP source code does not provide this special modification. Therefore,

UEs using default AOSP or making mistakes in implementation (the seed case) are not

correctly localized. Emergency calls from them cannot get routed in China. Public news

shows that almost all major UE device manufacturers have made mistakes similar to the

seed case one after another in the past decade.

F-3 A call made in China from a roaming UE cannot be routed to a PSAP, if the

UE does not have a valid subscription.

Explanation: If a foreign SIM card is present, it is possible for the roaming UE to pass

the authentication and then attach to the network. An emergency call can still not be

made as normal call service is unavailable without a valid subscription. It means any users

who have not activated their roaming services beforehand have no access to emergency call

service in China. This scenario also applies to roaming UEs with the data-only roaming

plan [119]. As opposed to F-1 , roaming UEs fell in F-3 can use keys stored in the

SIMs to authenticate partnered carriers in China.

38

(a) Moto Z2 (b) Xiaomi 8 (c) Vivo x9s

Figure 2.3. F-4 : UEs which cannot identify emergency numbers of China
(e.g., 110) when foreign SIMs are inserted.

We tested SIMs from four major U.S. carriers3 (Table 2.3). Among them, UEs with

SIMs from carrier US-V can attach to carrier CN-T’s network without activating roaming

services. Emergency calls made from none of them can be routed.

F-4 A roaming UE cannot initiate an emergency call in China by the emergency

panel, even with a valid subscription.

Explanation: In this scenario, a visitor, whose SIM is issued by a country which uses

different emergency numbers from China, cannot make emergency calls on the emergency

3The four major carriers in the U.S. are AT&T (US-A), Verizon (US-V), T-Mobile (US-T), and Sprint
(US-S). The three major carriers in China are China Mobile (CN-M), China Unicom (CN-U), and China
Telecom (CN-T).

39

panel. Even though she has a valid SIM card inserted to avoid F-1 ; is using a UE with

localization to avoid F-2 ; and has subscribed to roaming service to avoid F-3 , the

emergency service is still unavailable when she dials without unlocking the screen. F-4

best demonstrates the power of formal methods. It is hard to discover without systematic

formal analysis. Yet it is easy to reproduce once found (Figure 2.3).

Reasoning: The purpose of the emergency panel is to allow users to dial emergency

numbers without unlocking the screen. Nevertheless, emergency numbers differ from

country to country. There are four sources for UEs to determine emergency numbers

(Figure 2.4) [11]. First, two fixed emergency numbers, 112 and 911, are always identified

as emergency numbers by UEs. Second, six common emergency numbers are stored in the

UE default emergency number set. As shown in Case 1, if no SIM is present, those numbers

are identified as emergency numbers. Third, local emergency numbers are stored on SIMs

issued by local carriers. When a SIM is inserted, the UE default emergency number set

will no longer be effective. Fourth, to notify a roaming UE with local emergency numbers,

carriers can push the local emergency number list when UEs attach to them. Nevertheless,

our measurement shows that none of the Chinese carriers push this list, which leads to the

failure stated by F-4 . More details about the local emergency number list are discussed

in §2.4.3.

Please notice this failure cannot be mitigated by simply pushing the local emergency

number list. Otherwise, if roaming users call emergency numbers on the normal panel,

these calls will be initiated by Emergency Setup and thus fail.

Outside China. Similar problems can happen beyond China. Any countries that have

multiple emergency numbers or have an emergency number other than 112/911 can also

40

Local Emergency
Numbers in SIM

110 119 120

Case 1: No SIM Card Case 2: SIM Card Present

Local Emergency
Number List

MCC:	234	(UK) 999

Default Emergency
Number Set in UE

000	08	110	999	118	119 MCC:	234	(UK) 999

Fixed Emergency
Numbers

911	112

Figure 2.4. Four sources used by UEs to identify emergency numbers. In-
serting a SIM card will invalidate the UE default emergency number set.

suffer from this problem. For instance, a thread on a Japanese forum discusses such a

case: one cannot dial 110, the police emergency number in Japan, through SoftBank ’s

network [76].

2.4.3. Security Study: Abuse of Emergency Call Privileges

We leverage the formal model to discover potential attacks in §2.4.3.1 and define the

threat model in §2.4.3.2. We find 2 new attacks. Both of them can have significant

impacts on major U.S. carriers. They are introduced in §2.4.3.3 and §2.4.3.4. In §2.4.3.5,

we demonstrate ways to deploy these attacks in the real world.

2.4.3.1. Attack Discovery. We augment the general model of emergency call systems,

M, with our measured configurations of two major U.S. carriers (denoted as US-I/US-II

for anonymity). These two carriers use two distinct sets of configurations when routing

calls with Emergency Setup. US-I determines the destination of a call only by the dialed

number, while US-II routes a call to PSAPs provided Emergency Setup initiates it.

41

To find potential attacks, we assume an adversary who can impersonate one legitimate

entity to inject messages within the channel between UEs and the network. Neverthe-

less, the adversary does not have any capability beyond a budget fake base station. For

instance, the adversary cannot route calls from a victim UE to a real-world callee.

We use TLC to check whether those two augmented models satisfy the safety property

ϕ2. In fact, ϕ2 is violated by both models. For carrier US-I, the adversary can bypass

screen locking and SIM card locking to make phone calls. Nowadays, many individuals

and companies use the incoming phone number to verify the identity of the caller. The

adversary can impersonate the victim by launching this attack. For carrier US-II, the

adversary can block calls from US-II’s subscribers to any phone numbers in a specific

area. These calls will not be routed to correct destinations. This violation can be used to

launch a denial-of-service (DoS) attack.

Both of the two sophisticated attacks leverage the local emergency number list feature.

We can precisely specify this feature in fine grain because we have prior knowledge coming

from the reasoning of the seed case and measurement results on each of the two carriers.

A general, abstract specification of protocols is unlikely to reveal these attacks.

2.4.3.2. Threat Model. We assume the adversary can set up a malicious base station,

i.e., eNodeB, to send sophisticated messages. We will discuss how to achieve this with

existing techniques in §2.4.3.5. We also assume the adversary is geographically close to the

victim’s UE, where the adversary can impersonate the legitimate eNodeB of the targeted

carrier by broadcasting messages with higher signal power. The message parameters

related to carrier information can be learned by signal sniffing and analysis tools, such

as QxDM and MobileInsight. In the UE screen lock bypassing attack, we assume the

42

Malicious
eNodeB

Victim UE
US-I

Core Network
US-I

Callee
(224)-714

Local Emergency
Number: (224)-714

Call: (224)-714
Emergency Setup

Caller
Check

Screen Locked

Emergency Panel Dial: (224)-714

Trustworthy Session Established

Routed to (224)-714
Caller: Victim UE

Figure 2.5. Attack-1 : UE Screen Lock Bypassing attack on carrier US-I.
The adversary can bypass the password of the victim’s UE and dial any
number on behalf of the victim.

adversary can physically touch the victim’s UE, while strong passwords protect both the

UE and its SIM card.

2.4.3.3. Attack 1: UE Screen Lock Bypassing.

Attack-1 The adversary can dial any normal number on the emergency panel of the

victim’s UE and get routed to the callee, if the UE is a subscriber of carrier US-I.

Objective of the Adversary: The adversary wants to initiate a normal call from the

victim’s UE to impersonate the owner of this UE. From the callee’s viewpoint, the caller

ID (phone number) belongs to the victim. However, when the screen is locked, the UE

will block any phone calls it believes not to be an emergency number. The adversary may

not be able to simply put the victim’s SIM into another compromised UE because either

i) the victim uses a virtual SIM, or ii) a password protects this SIM.

Attack Description: Figure 2.5 shows the attack process. 1○ The adversary puts the

desired number in the local emergency number list and pushes the list to the victim’s UE

through a malicious eNodeB. Possible ways to push this list will be discussed in §2.4.3.5.

43

2○ The adversary dials the desired number on the emergency panel without unlocking the

UE. Now the OS will accept the adversary dialed number as an emergency number and

command the hardware to send out an emergency call. 3○ As for carrier US-I, calls are

routed base on the dialed numbers. Consequently, this call will be routed to the desired

callee as if it is a normal call.

Attack Consequence: Many customer service centers today use incoming caller IDs as

the identification of callers. Now the adversary can impersonate the victim on those calls.

Besides, financial institutions, as well as other online companies, rely on caller IDs as an

important source of two-phase authentication. Now the adversary is possible to get the

temporary identification code by making a phone call.

Attack Novelty: This attack can achieve similar consequences as the already known

caller ID spoofing attack [57, 49]. The latter forges the phone number of a trusted caller

by falsifying the information transmitted to callees. Nevertheless, the found attack is

indeed a different attack, whether in principle or in effect. As for Attack-1 , the caller

ID shown on the callee side is not forged. Therefore, the found attack can bypass any

state-of-the-art defense mechanisms for caller ID spoofing, i.e., callee-end defense [49]

and in-network defense [130]. Additionally, the adversary could also receive call-backs

from the callee for confirmation. To launch this attack, the adversary will need to access

the victim’s UE physically. However, to the best of our knowledge, this is the first attack

that can bypass the screen password and make phone calls.

2.4.3.4. Attack 2: Call Service DoS.

Attack-2 The adversary can block phone calls made to a set of any phone numbers in

a specific area, if the caller UE is a subscriber of carrier US-II.

44

Malicious
eNodeB

Victim Caller
US-II

Core Network
US-II

Victim Callee
(224)-714

Local Emergency
Number: (224)-714

Call: (224)-714
Emergency Setup

Normal Panel Dial: (224)-714

Routed to
PSAP

Number Identification PSAP
Wrong

Destination

No Calls

Figure 2.6. Attack-2 : Call Service DoS attack on carrier US-II. The ad-
versary can block phone calls to target phone numbers in a specific area.
Calls to these numbers will be falsely routed to PSAPs.

Objective of the Adversary: The adversary wants to block phone calls to designated

normal numbers within a region. She controls a malicious eNodeB and can broadcast

messages with higher signal power. Thus, victims’ UEs in that region will attach to

her eNodeB. Additionally, she wants to i) avoid blocking other numbers, and ii) prevent

always turning on the eNodeB to reduce the chance of being discovered.

Attack Description: Figure 2.6 presents the attacking steps. 1○ Similar to Attack-1,

the adversary pushes the fake local emergency number list to the victim’s UE. Now the

list stores the numbers which the adversary wants to block. 2○ Emergency number iden-

tification takes precedence over any other call-related processes [11]. When the victim

dials these numbers on the normal panel, the OS will accept dialed numbers as emer-

gency numbers and command the hardware to send them out with the Emergency Setup

signaling. 3○ Unlike carrier US-I, US-II disregards the dialed numbers. All phone calls

through Emergency Setup will be routed to the PSAP. Thus, in effect, all calls made to

these numbers are failed.

45

Attack Consequence: This attack can be used to obtain illegal economic benefits.

For example, the adversary may want to disable phone calls from potential customers to

business competitors. In addition, the adversary can get faster service by blocking others’

competing calls to that service.

The adversary has an alternative way to leverage this vulnerability. She can broadcast

a forged local emergency number list with popular numbers stored in it. All phone calls

to those numbers from the subscribers of US-II will then be falsely routed to the local

PSAP, which becomes a distributed denial-of-service (DDoS) attack to the local PSAP.

Attack Novelty: Comparing with existing call service DoS attacks [85, 70, 60, 127],

the newly found attack has two different characteristics. First, it stays effective even

after the malicious eNodeB is turned off. Second, the newly found attack only blocks the

calls to a targeted set of phone numbers while keeps the calls to other phone numbers

unaffected.

2.4.3.5. Deployment of Attacks. Background. NAS layer protocols are there to

establish and maintain the communication session between the UE and the core network.

Among those, the session establishment related procedures are called attach or registra-

tion. The local emergency number list is an optional Information Element (IE) in the

Attach Accept message (for 2G-4G) and the Registration Accept message (for 5G).

Within a local emergency number list, emergency numbers, together with their types and

lengths, can occupy no more than 50 Bytes. The UE only stores the latest local emergency

number list it receives from the network, meaning the previous list will be overwritten if

a new list comes in [10].

46

(a) Wireshark Log (b) UE Screenshot

Figure 2.7. (a) Wireshark log of the fake local emergency number list we
pushed. It contains (224)-714-*. (b) UE identifies the normal number
(224)-714-* as an emergency number. We are dialing this number on the
emergency panel without unlocking the UE.

Carrier US-I does not push the local emergency number list. Note the 911, the emer-

gency number in the U.S., is always identified as an emergency number by UEs because

it is a 3GPP fixed emergency number (Figure 2.4).

Implementation. We use USRP B210 [104] as the eNodeB hardware. It is driven by

OpenAirInterface (OAI) [110], an open-source cellular network protocol stack emulator.

The hardware and software suite supports the essential functionalities of the 4G core

network and the eNodeB. The dedicated hardware costs about $1,200. The original OAI

lacks implementation of the local emergency number list ; only a stub interface is provided.

We implemented this feature within the Attach Accept message. Figure 2.7 (a) shows

the Wireshark decoded a NAS message we pushed to our UEs. This message contains the

local emergency number list IE, which has one fake emergency number, (224)-714-*, in it.

47

Deployment. Both attacks are relying on the fake local emergency number list pushed

by a malicious eNodeB. Although non-emergency Attach Accept messages are protected

by encryption in 4G, ways to set up malicious cellular base stations and push fake mes-

sages are plenty [68, 83, 127]. However, enforcing any of them may violate the Federal

Communications Commission’s (FCC) regulation [56] and may block real-world phone

services. For that reason, to show the proof of concept, we provide a new in-lab solution,

called dual-SIM leakage, to launch these attacks. Only our controlled UEs will be affected

by our malicious signal. Using existing ways of pushing fake messages, a real attacker can

launch these attacks more easily. Next, we will discuss these ways.

The dual-SIM leakage of the local emergency number list is a vulnerability we find

on the dual-SIM UEs. To be specific, the last received local emergency number list will

overwrite the previous one, no matter which SIM we are using to make calls. Therefore,

for our experiment, we utilize it by inserting two SIMs in a UE. One SIM is from the

tested carrier (US-I or US-II), and the other is our customized SIM. The malicious local

emergency number list is pushed on the experimental-licensed spectrum by our eNodeB.

Only with our customized SIM can the UEs attach to our eNodeB. The broadcast signal

will not affect other UEs. Then we make calls from the commercial SIM. Our experiment

follows the setup mentioned in this section and validates the effectiveness of the proposed

attacks. Figure 2.7 shows that the UE identifies the normal number (224)-714-* as an

emergency number and dials it out without unlocking the screen.

An attacker can use other exposed cellular network vulnerabilities to launch the pro-

posed attacks in the real world. i) Force 2G fall back: Lin [68] first demonstrated how

to practically force a UE redirecting from a 4G eNodeB to a 2G base station. 2G does

48

not provide network side encryption. The attacker can then push the fake local emer-

gency number list to the victim UE. After the UE reattach to a legitimate 4G eNodeB,

the fake list is still effective, as carrier US-I does not send a new list to overwrite it. ii)

Force emergency attach: Yu et al. [151] proposed a method that can force a UE to set

up emergency attach procedures. Emergency attach procedures have the privilege to skip

authentication. In this case, the Attach Accept message is not encrypted, and the local

emergency number list can be forged into it. iii) Malicious Wi-Fi and fake DNS: 3GPP

has allowed interconnections with non-3GPP access networks. Specifically, local emer-

gency numbers can be provided through DNS queries within non-3GPP access [4]. By

setting up a malicious Wi-Fi AP and forging fake DNS responses [122], fake local emer-

gency numbers are then pushed to the victim UE. In the emerging 5G, such non-3GPP

interconnections can be more prevalent.

Limitations of the Attacks. We noticed a misimplementation on Qualcomm SoCs

(System-on-Chips): they truncate an emergency number of more than 6 digits to its

first 6 digits. The protocol does not limit the length of each emergency number in the

local emergency number list. Although most common emergency numbers are 3 digits

long, longer emergency numbers are widely used for some special local services, such as

maintain rescue and marine guard. It is indeed a bug and a violation of clearly defined

protocols. However, this bug does weaken the effect of our attacks on those UEs using

Qualcomm SoCs. The misimplementation only happens to Qualcomm SoCs. Huawei and

MediaTek SoCs do not truncate emergency numbers.

The carrier US-II has local emergency number list IE in the Attach Accept message

with 911 in it; even 911 is a 3GPP fixed emergency number. Because of this setting,

49

US-II can sometimes escape from the proposed attack depending on the message pushing

frequency and mechanism.

2.5. Recommendations

We propose a solution addressing all failures and attacks in §2.5.1 and show its correct-

ness in §2.5.2. In §2.5.3, we argue that lacking regulations or financial stimuli is another

factor for the prevalent weaknesses in emergency call systems.

2.5.1. Proposed Technical Solution

We devise a solution consisting of 4 stages. It will be the carriers’ responsibility to take

these actions. The overhead of the solution is marginal.

1○ Pushing Local Emergency Number List. We suggest that all official local emergency

numbers should be included in the local emergency number list. Pushing this list to

serviced UEs shall be mandatory for carriers. A list containing 3 emergency numbers

only takes 12 extra Bytes during attach procedures. Upon receiving the correct list, the

malicious list pushed by the adversary will be overwritten.

2○ Accepting Emergency Setup. Following the discussion above, all emergency calls

that distinguishable by UEs should always raise the Emergency Setup signaling instead

of the normal Setup signaling, to indicate the case of emergency. Hence, it is the carriers’

responsibility to handle Emergency Setup properly. On the other hand, it is favorable that

carriers can route calls to local emergency numbers sent through normal Setup properly in

cases UEs cannot detect them. Besides, carriers should allow emergency attach regardless

of the subscription status of UEs.

50

3○ Emergency Numbers in SIMs. A traveler just roamed to a new country may not

know the local emergency numbers there. Instead, she may dial an emergency number

in her home country. If the home emergency numbers are hardcoded into the SIM issued

by her home carrier, the UE will deem them equivalently as other emergency numbers.

Local carriers can handle these calls properly by following the routing indications from

her home carrier [7].

4○ Filtering Non-emergency Numbers. Making an emergency call is a privilege and

can bypass authentications of users to UEs or of UEs to networks. Only emergency traffics

should be allowed on the emergency channel. Network carriers should apply filters to block

other traffics on the emergency channel. A possible way would be binding the filtering

rules to the location: only calls made to the fixed, local, or home emergency numbers

are allowed to be routed to the corresponding PSAPs, while other calls initiated by the

Emergency Setup signaling should be rejected.

2.5.2. Correctness of the Proposed Solution

We show the correctness of the proposed technical solution in principle, by our formal

model, and by the testbed.

F-1 / F-2 : Now that carriers correctly route Emergency Setup, users in these scenar-

ios can access the emergency service. Such an improvement is also backward compatible

with already localized UEs because carriers are still able to handle emergency requests

initiated by normal Setup.

F-3 / F-4 : According to our solution, UEs download the local emergency number list

when they attach to the network. As a result, the local emergency number identification

51

is available. Users can now dial local emergency numbers no matter on the normal panel

or the emergency panel. Besides, calls to emergency now can be routed to PSAPs, no

matter roaming users dial home or local emergency numbers.

Attack-1 : The adversary now cannot successfully dial any normal numbers from the

emergency panel because of the added filter on the network side. Notice that there are

no additional benefits for the adversary to dial an emergency number from the emergency

panel.

Attack-2 : Pushing the correct local emergency number list can overwrite the previ-

ously stored malicious list. In addition, the non-emergency filter rejects calls to PSAPs

with normal numbers. It solves the potential DDoS threat to PSAPs.

We translated the solution into formal conditions. TLC proved that under these

conditions, availabilities of emergency calls are now maintained in the 4 failure scenarios,

and the 2 attacks are no longer possible. Please note, a formal specification cannot capture

all information of real-world systems, so such a correctness proof is not complete. As a

matter of fact, an interruption that happened to the physical layer can cause interruptions

on any upper layers.

We also implemented a prototype on our testbed. Under the prototype, none of those

availability issues and attacks can still affect the emergency call system. Nevertheless,

as our testbed does not have the same capabilities to a real-world carrier, emergency

calls on the testbed cannot really be routed to local PSAPs. We are collaborating with

corresponding carriers regarding the deployment of the complete solution.

52

2.5.3. Social Economic Solutions

Cellular emergency call systems are technically complicated, yet this does not explain the

extreme prevalence of attacks and reliability issues of these systems. We believe the root

cause is the lack of motivation for carriers. Emergency call services are free of charge for

end-users, which means the carriers may not put enough effort into testing and improving

them. For those users who do not have a valid subscription or their subscribed carrier

has no service in that region, it is even impossible for them to accuse other carriers.

We argue that cellular network features, which have high social impacts but make

no profits, e.g., emergency calls, shall be seriously considered and clearly defined by

protocol designers. It is the social responsibility of the protocol committee to the public.

Meanwhile, stronger regulations by authorities are also critical in solving this problem.

2.6. Seed-Assisted Specification Method

This section summarizes all steps in the framework of the seed-assisted specification

method.

Stage I. Insights

Step 1: Seed Collection. A seed is an exposed issue on a security-critical system. In

this step, all relevant information about this issue should be collected, such as the course

of events and the circumstance when it happened. It can be collected from sources like

official disclosures, news reports, and related protocols. In addition, specific modeling

information is of great interest, including the system configurations, initial conditions,

and execution procedures that lead to the issue.

53

Step 2: Seed Reasoning. The related parts in protocols should be looked through to

find the execution path that raises this exposed issue. Although a protocol usually suggests

a broad implementation and configuration space, the information in Step 1 can help us

to determine those configuration assignments. Sometimes, real-world measurements and

investigations are also essential to portray the execution path. Reasoning can also help

distinguish the essential procedures causing the issue and how they correlate to the whole

system.

Step 3: Seed Reproduction. If the seed reasoning is correct, it would be possible to

reproduce the security issue on the testbed. The test environment needs to be augmented

with the configuration assignments to simulate the real-world system. If the issue cannot

be reproduced following the reasoning, the reasoning result in Step 2 needs to be revised.

Stage II. Specification

Step 4: Prior Knowledge Specification. With the prior knowledge from Stage I, the

security researcher can then specify the model,M, in the appropriate level of granularity.

Instead of building a model for the whole protocol with all possible details, we suggest

limiting the scope to just explore the similar security issues and only expatiate related

state transactions. Nevertheless, the specification should follow the protocols and provide

flexibility to support all the possible options provided by the protocols.

Step 5: Property Extraction. Model checkers can verify whether M satisfies a given

security property ϕ: M |= ϕ. ϕ can be extracted from either the protocols or regulations

and should be able to reveal the execution path of the seed issue. In other words, the

seed is a violation of ϕ. One can also extract other security properties to find other

vulnerabilities.

54

Step 6: Adaptive Model Construction. We treat real-world system configurations col-

lected from Step 1 as the observed model constraint, o. The adaptive modelM∗ is then

the conjunction of M and o. This step assures the security issues reported by M∗ to

be practical for real-world systems. The general specificationM can be reused on other

verification tasks to the same protocol by re-applying model constraints with the config-

urations from other implementations. The benefits of adaptive model construction are

more than being accurate and being universal. The construction can also control the size

of searching space for model checkers, reducing the execution time of verification.

Stage III. Verification

Step 7: Formal Verification. The verification problem is to check whether M |= ϕ

holds. If it does, the model checker returns with no counterexamples. Otherwise, it returns

with a counterexample π, which is a trace of state transitions. The initial condition, c,

can be extracted from the first state.

Step 8: Counterexample Interpretation. Not all counterexamples are feasible and

meaningful. To interpret and reproduce a counterexample, it needs a decomposition of

the counterexample into procedures, and then needs a close look into every procedure. If

a π can be interpreted and reproduced without external intervention, we conclude it is

a failure. If it is not a failure, but we can assume a reasonable attacker to practice the

external intervention, we conclude it is an attack.

Step 9: Testbed Validation. We should try to reproduce each failure or attack that

is potentially feasible on the testbed. If it is not reproducible, it means either we have

mistakes or have over-approximation in our specification, leading to a false-positive coun-

terexample. In both cases, we need to go back to the specification stage to revise the

55

model and rerun verification. Finally, all failures and attacks reported by the model

checker are valid in the real world.

Any systems characterized by human-language-based standards or protocols can ben-

efit from our proposed method because inappropriate granularity and misrepresentation

are inevitable in applying formal analysis. Therefore, the proposed method can be gen-

eralized to verify other security-critical systems and infrastructures [33], such as smart

grids [125], intelligent transportation systems [147], and critical financial services [52].

In these systems, even small issues can have widespread consequences. In-depth investi-

gations are always desired, including building formal models, running formal verification,

and reasoning about deployed systems to reveal potential vulnerabilities.

2.7. Discussion

Protocols. We limit our study to the GSM/3GPP series cellular network protocols. In

reality, 3GPP protocols have become the de facto and are the only solution for the 4G

and the emerging 5G. The CDMA/3GPP2 series protocols have been announced their

ending in the 3G era [12]. In the era of 2G/3G, 3 major carriers in China and the U.S.,

namely CN-T, US-V, and US-S, support CDMA, while all others support GSM/3GPP.

Nevertheless, those three have also converged to GSM/3GPP series protocols in the era

of 4G/5G and announced to terminate CDMA supports recently [144, 131].

UEs. CDMA based networks do not use the 3GPP Emergency Setup signaling. We

noticed some UEs with only CDMA support can successfully connect to PSAPs in China

without a SIM inserted. However, the problem remains for all UEs that are compatible

56

with both GSM and CDMA networks (include a vast majority of UEs on the market).

Details about how the emergency call works for CDMA are out of the scope of this project.

Thanks to the AOSP project, for android UEs, we can investigate the source code to

cross-validate the correctness of our findings from measurement and formal verification.

The same methodology does not apply to Apple iPhones.

Ethics Concerns. Our work does not present ethical issues as we handle neither personal

data nor human subjects. We run attack experiments in a responsive and controlled

manner. All UEs and SIMs are under our control. Only UEs with our customized SIMs

inserted can attach to our station.

2.8. Related Work

This section summarizes closely related work from two aspects. §2.8.1 introduces

related work about applying formal methods to cellular networks. §2.8.2 discusses existing

efforts to secure emergency call systems.

2.8.1. Formal Methods on Cellular Networks

Various formal verification techniques have been applied to security research on cellular

network protocols and systems. We classify them into three categories.

Model Checking verifies correctness properties by exhaustively traversing the state

space. Several previous works [141, 140, 70] have examined the security issues in 4G

protocols with model checkers. Tu et al. [141, 140] focused on the reliability problems

in protocol interactions. Random sampling was performed over all scenarios to cover a

full permutation of usage scenarios in interaction space. Hussain et al. [70] exploited

57

vulnerabilities in the NAS procedures by abstracting and modeling NAS protocols. Their

framework, LTEInspector, does not cover the emergency call systems with proper model-

ing granularity, and thus cannot find failures and attacks reported by this chapter. Both of

them rely on manual model construction, using lots of standard documents as references.

The whole state space may be prohibitively large, especially for those systems involving

cryptographic algorithms. The Symbolic Analysis employs predefined reduction rules to

save efforts in verification. A lot of works [2, 16, 26, 46] applied modern symbolic

provers, like ProVerif [30] and Tamarin [25], on AKA protocols used in 3G, 4G, and 5G.

Nevertheless, cryptography-related procedures constitute only a small portion of cellular

network protocols, and these methods cannot be generalized to other procedures.

Software Analysis aims to directly verify the implementations, as that can save time

and efforts of building a model manually. For instance, Pi et al. [112] extracted binary

codes from a Qualcomm baseband and performed static analysis and debugging. Yu

et al. [151] ran software model checking on open-source cellular protocol emulators.

However, one implementation is only a single instance of the protocols, so it can not

reflect other implementations. In comparison, our approach is based upon protocols. It

targets problems on a higher level and can be adapted to many instances.

2.8.2. Security of Emergency Call Systems

Emergency call systems have many privileges; they also have large impacts on society.

Nevertheless, to the best of our knowledge, there is currently no work that formally

analyzes the correctness or finds vulnerabilities of emergency call systems on either their

designs or implementations.

58

Authorities usually make orders and standards to enforce local carriers to provide

emergency call services. For example, FCC, the communication authority of the U.S.,

has issued orders [54, 55] to specify the requirements of wireless 911 calls. Ministry of

Industry and Information Technology, the communication authority of China, has also

published industry standards [101, 102], requiring the connectivity of emergency calls

under the no-SIM condition. These documents, however, are more concentrated on func-

tionalities than the security aspects of the system. Besides, these documents may state

at a very high level, becoming ambiguous and incomplete.

Not much research literature focuses on emergency call systems. RFC 5096 [135]

summarized the security threats that cellular emergency call systems might encounter

in a conceptual manner. Those threats include leakage and falsification of location and

personal information, as well as abuse of anonymity and priority privileges. However, no

concrete attacks or defense approaches are discussed in it. The chance of the DDoS attack

on 911 services by leveraging the anonymity privilege has been mentioned in [65, 109].

Based on the estimation in [65], with 6,000 bots, 911 emergency services in a U.S. state

can be blocked for a whole day. Rebahi et al. [118] proposed an attack in the current

3GPP’s scheme that an adversary can impersonate PSAPs.

The wireless emergency alert (WEA) system, also known as the public warning system

(PWS) or the earthquake and tsunami warning system (ETWS), broadcasts alert to all

UEs in a geographic area. This system is not within our research scope. It is worth

to mention that the message authentication of WEA has been discussed for years [3].

However, this feature has not been fully settled in protocols even today, leading to multiple

fake alert attacks [83, 70].

59

2.9. Chapter Summary

This work concentrates on how to use formal methods on cellular networks. In par-

ticular, we systematically explore availability and security pitfalls in cellular emergency

call systems. We demonstrate in the chapter a novel way of specification, called seed-

assisted specification, which can be applied to systems described by protocols in general.

We emphasize the importance of prior knowledge in building the model, and we explain

how it helps determine the critical processes and the granularity of the model. Then we

describe how to integrate measurement results with a generalized formal model, such that

a variety of scenarios can all be verified on real systems. From formal verification, we find

4 scenarios in China that emergency calls cannot be routed to PSAPs. Meanwhile, we

find 2 new attacks in the U.S. that abuse emergency call privileges. We propose a unified

solution for carriers. It can address the problems we have discovered and any similar

problems we can foresee.

60

CHAPTER 3

Accelerating and Securing Serverless Cloud Networks with the

QUIC Protocol

3.1. Introduction

In this project, we aim to design and implement a QUIC-based serverless computing

framework, which can improve the serverless network performance and provide security

to internal communications.

The rapid evolution of lightweight virtualization technology has spawned the rise of

the serverless cloud computing paradigm [24, 75, 36]. In serverless computing platforms,

cloud providers assume responsibility for all server-related management tasks, including

both hardware resource allocation and software runtime preparation. Cloud software

developers are thus free to simply focus on designing small discrete stateless functions

and orchestrating them together for their high-level business logic.

Among the major allures of serverless computing is agile autoscaling. It allows service

providers to quickly launch new function instances in response to end-user requests, while

saving operational costs. Since auto-scaled instances can be quickly destroyed by cloud

providers, tenants only pay for the actual function execution time and do not need to

reserve resources for burst requests. Because of both efficiency and economic advantages,

serverless computing garners extensive attention from industry and is expected to become

61

the dominant cloud computing paradigm [75]. Its market share is projected to surpass

$21 Billion by 2025 [93].

Serverless computing is fundamentally a network-based cloud computing paradigm.

Thus, optimizing the performance and security of serverless networking is arguably as

crucial as existing research efforts on other aspects such as performance optimization of

serverless platforms [13, 149, 34, 128, 133, 74, 108, 146] and security management of

cloud functions [124, 15, 47].

Furthermore, the zero trust security model has gained considerable momentum among

cloud security communities [94, 121]. Under this principle, any entities, even within

the same internal network, should not be trusted by default. Therefore, fully encrypting

all internal connections is now the best practice for major cloud providers [21, 61, 99].

Although initiating reliable transportation and encryption introduces extra delays, it is

not the dominant performance bottleneck in traditional cloud computing: i) transmission

delay within the data center is negligible compared to execution times; ii) connection

setup latency of TCP and TLS can be simply mitigated by using persistent connections.

However, many leading commercial serverless providers and open-source serverless

frameworks still use bare (unencrypted) TCP connections between functions, leaving a

potential attack surface [13, 23, 100, 63]. This is due to new challenges that arise

specifically in serverless networks. First, with serverless computing, a function instance

can be initialized in milliseconds (less than 125 ms for cold-start on AWS [13]) and only

processes a small sliver of the computational task (849 ms median execution times on

Azure [126]). The latency introduced by TCP and TLS handshakes, even at the sub-

millisecond-scale, should no longer be ignored [74]. Second, with the scale-zero-to-infinity

62

feature [36], function instances are quickly scaled up and down by cloud providers. It is

thus tough to maintain persistent connections between ephemeral functions. Third, as

serverless functions are commonly chained together to form task-specific workflows [124],

cumulative handshakes exacerbate the end-to-end latency.

We raise the following question in this project: Can we seamlessly enable secure and

accelerated network communications for serverless cloud applications? To address this

question, we design and implement a novel solution based on the emerging QUIC protocol,

called QFaaS, which can simultaneously improve performance and provide security to

existing serverless platforms without the requirements of any tenant code modification.

QUIC [115] is a new transport protocol that has steadily gained popularity in wide-

area Internet traffic [145], particularly for web and video streaming applications [82].

QUIC combines the advantages of both TLS 1.3 and UDP to provide a secure and reliable

transport layer with 0-RTT (round-trip time) connection setup cost, i.e., data packets

may be sent without an explicit handshake. QUIC has also been successfully extended to

some other scenarios, such as IoT meshes [51, 80], satellite communications [139], and

Tor transports [27, 28]. Due to the inherent advantages of reduced handshake costs while

providing a secure network, it is appealing to adapt this new protocol to securely address

communication performance bottlenecks in emerging serverless networks.

The rest of this chapter is organized as follows.

In §3.2, I introduce the background of serverless computing and connection encryption,

followed by the new challenge in serverless networks, connection setup latency.

63

§3.3 proceeds by first providing a network-centric view of serverless applications, filling

in missing details about actual network flows in the widely used logic view. This inspired

the design of our QFaaS system.

The QFaaS system design is presented in §3.4, where the QUIC protocol can be seam-

lessly integrated into serverless platforms, to mitigate connection setup overheads and

provide secure communications. Our design explicitly ensures that existing serverless ap-

plications can be migrated to QFaaS without any code modification. In addition, serverless

applications can be further accelerated by using our function chain library and always-on

0-RTT design.

In §3.5, we implement the QFaaS prototype into OpenFaaS, the most popular open-

source serverless platform. The entire system code will be made publicly available. And

the system is designed to be easily extensible to contemporary commercial and open-

source serverless platforms.

Our experimental highlights in §3.6 include: i) QFaaS can reduce the single function

and function chain response latency by 28% and 40% respectively compared with the state-

of-the-art serverless platforms. ii) Upon deploying a real-world serverless application to

QFaaS, the end-user response time is reduced by 50 ms. iii) In certain scenarios, QFaaS

was even faster than other platforms using only insecure TCP connections.

Related work about serverless computing and QUIC is presented in §3.7.

Chapter summary, presented in §3.8, concludes this chapter.

64

3.2. Background and Challenges

Serverless computing and cloud computing connection encryption are introduced in

§3.2.1 and §3.2.2, respectively. In §3.2.3, I discuss the connection setup latency as the

new challenge in serverless networks.

3.2.1. Serverless Computing

In serverless computing, traditional applications are decomposed into small code slices,

called functions. These stateless functions then can be orchestrated by tenants to perform

their high-level business logic, which is also known as the function-as-a-service (FaaS)

model. In comparison with the infrastructure-as-a-service (IaaS) model, in FaaS, it is no

longer incumbent upon the tenants to manage the life cycle of virtual machines (VMs) or

the deployment of software stacks. Cloud platform providers undertake all server-related

tasks, such as launching VMs, provisioning container clusters, and preparing programming

runtimes. From the tenants’ perspective, the cloud development and deployment tasks

are not server-centric, and thus called “serverless”.

The rapid evolution of virtualization technology, especially container technology, is

the basis for the emergence of serverless computing. The FaaS model introduces a novel

capability to cloud computing: agile auto-scaling without explicit tenant provisioning.

Specifically, stateless functions are usually deployed in lightweight virtualized environ-

ments, such as containers. They can be initialized within just a few milliseconds. There-

fore, serverless providers can quickly scale the number of running function instances in

response to changes in incoming request patterns, in a manner that is automatic, contin-

uous, and completely transparent to tenants. This feature also provides certain inherent

65

economic advantages. Since the allocated resources can be released soon by the cloud

providers when they are not in use, tenants will not be charged for idle time and only

pay for actual function execution time, i.e., billing-based-on-usage model. In effect, the

price of handling one thousand burst requests in parallel is roughly the same as the price

of handling one thousand requests at low density.

Meanwhile, backend-as-a-service (BaaS) is another important component of serverless

computing [75]. Cloud providers can provide stateful services, such as data storage,

event logging, and identity management, to cater to the rapid development of serverless

applications.

3.2.2. Connection Encryption for Zero Trust

Cyber threats emanate not only from tenacious attackers outside the data center but

also other insidious entities sharing infrastructure within the same data center. Due to

the lack of encryption on internal communication, early-stage data centers exposed extra

attacking surfaces to adversaries, leading to several publicized security disasters [117, 78].

Consequently, the zero trust security model came into being. In the zero trust model,

no entities should trust each other by default; hence authentication and encryption are

always desired. This model has gained popularity in most cloud computing paradigms,

such as IaaS and newly-emerging microservices, which dedicates TLS encryption to all

connections to be the best practice [21, 61, 99].

Nevertheless, even in those leading commercial serverless platforms, due to the network

performance restriction (detailed in §3.2.3) and the early stage of development, the lack

of traffic encryption between internal serverless communications is still the status quo.

66

For instance, dedicated traffic encryption is provided by default to most services within

AWS data centers [20, 21]. However, for the Lambda serverless computing service [18],

AWS only provides traffic encryption in connections between end-users and the Lambda

function invoker. The connections between the function invoker and function workers

remain unencrypted [23, 13]. Other popular commercial providers, such as Google Cloud

and Azure, also do not encrypt the function invoker to function worker connections. In

addition, Azure does not require encryption in the gateway to function invoker connec-

tions [100] and Google Cloud even allows end-users to trigger serverless functions through

the gateway via insecure HTTP requests [63].

Traffic encryption is also not prevalent in open-source serverless platforms. For exam-

ple, OpenFaaS [88], the most popular open-source serverless platform, disables all traffic

encryption by default. Users must manually enable TLS 1.2 encryption which significantly

impacts its network performance, as we show in the evaluation (§3.6).

Virtual Private Cloud (VPC) is the prevalent solution for IaaS network security. It

provides a virtual isolated networking environment in public clouds. However, VPC has

several drawbacks when applied to serverless platfroms. First, the initialization perfor-

mance of VPC cannot meet the rapid scaling requirements of serverless compute environ-

ments. For instance, the initialization of AWS VPC interfaces takes 15 to 90 seconds, and

this cost has to incur per cold-start serverless function call. With this realization, AWS

disables tenant VPC for Lambda by default, and hyperplane VPC interface sharing was

recently announced; however, that still incurs a one-second overhead [19]. We make the

case that such delays are prohibitive for serverless functions that initialize and execute at

millisecond scales. Additionally, the economic advantages of serverless computing come

67

ServerServerServerClient Client Client Server Client

(a) TCP
Handshake

(b) TCP+TLS 1.2
Handshake

(C) QUIC 1-RTT
Handshake

(d) QUIC 0-RTT
Handshake

Scheme TCP TCP + TLS 1.2 QUIC 1-RTT QUIC 0-RTT

New Session 1 3 1 -

Recover Session 1 2 1 0

Figure 3.1. Round-trips incurred by different transport protocols:
(a) insecure TCP incurs 1 extra RTT; (b) in TCP+TLS 1.2, the encrypted
request is sent after 3 RTTs; (c) in QUIC 1-RTT mode (new session estab-
lishment), the encrypted request is sent after 1 RTT; (d) in QUIC 0-RTT
(session resumption), the encrypted request is sent immediately.

from efficient hardware multiplexing among tenants. However, exploiting this architec-

tural flexibility limits opportunities for pre-binding tenant VPCs to hardware resources.

Finally, VPC is arguably targeted more toward traffic isolation than encryption. Specifi-

cally, cloud providers typically enforce traffic encryption between VMs (e.g., AWS EC2) in

the same VPC but not other services due to the hardware and design restrictions [21, 61].

Therefore, VPC is not the off-the-shelf solution for serverless encryption.

3.2.3. Connection Setup Latency: New Challenge

Internal communication delay was not a significant problem in traditional monolithic

applications. Threads within the same process shared the same view of virtual address

68

spaces and inter-process communication (IPC) provided convenient mechanisms (e.g.,

signals, pipes, and shared memory) for different processes to exchange data efficiently.

Cloud computing paradigms increased flexibility in application design and deployment,

by breaking up monolithic application stacks into independent services. Nevertheless,

there was often some additional cost associated with such flexibility.

In practice, disparate services are commonly deployed in isolated VMs for ease of

management. Internal messages between them now must go through a complete network

stack, raising communication latency. Such distributed service orchestration also intro-

duces connection setup latency. Specifically, TCP and TLS are used to provide reliable

and secure connections between VMs. Both of them require extra round-trips when initi-

ating new connections, as shown in Figure 3.1 (a) and (b). But such initialization delays

were not a severe drawback in cloud computing until the advent of serverless computing.

First, maintaining persistent connections among services can partially mitigate the con-

nection setup latency. Though this solution cannot eliminate the delay after launching

a new VM, the connection setup latency is still negligible when compared with the VM

initiation time. Second, TCP, the dominant protocol for reliable network communication,

has been ossified into the OS kernel and is not easily replaceable. Thus, other problems

in cloud computing, like scheduling, elastic scaling, and storage, were prioritized over

optimizing connection setup latency.

In contrast, the scale-zero-to-infinity feature of serverless exponentially magnifies the

disadvantages of connection setup latency. To be specific, in serverless computing, i) since

the initiation and execution times for function instances are minuscule, the connection

setup time is no longer negligible. ii) In addition, the number of running function instances

69

rapidly scale up and down in response to the request changes. It is now not possible to

maintain persistent connections between these stateless function instances. iii) Finally, as

functions are usually chained together to form task-specific workflows, connection setup

costs are incurred at each hop of the function chain, significantly compounding the non-

negligible delay. To address these challenges, always keeping at least one instance of each

function alive could be a compromise solution (which became an option on AWS Lambda

recently). However, such a solution largely increases the tenants’ cost and violates the

serverless philosophy to some extent. Meanwhile, it still suffers from burst requests. We

believe that there is now a greater urgency to prioritize the optimization of connection

setup latency in cloud network communications.

3.3. Modeling Serverless Networks

To identify potential network bottlenecks in serverless computing, the first challenge

is to identify network connections in its architecture. Though the logic abstract model

of serverless platforms is commonly used, important details were missed with respect to

network modeling (§3.3.1). We address the limitations by providing a new abstraction

of the serverless architecture through the network-centric view (§3.3.2). This model will

guide our QFaaS system design.

3.3.1. Logic Model

General discussion about serverless architectures is commonly framed in the context of the

logic view, shown in Figure 3.2. Under this abstraction, a unified API Gateway contin-

uously listens for end-user requests. Upon receiving a function invocation, Gateway first

70

\
FD

API
Gateway

Storage
Service

Task
Scheduler

Serverless Application

End-User

FC

FA FB

: Functions : Backend Services: Events

Figure 3.2. Serverless architecture in logic view. Gateway forwards
end-user requests to corresponding functions. Functions chained together
with backend services compose a serverless application. However, network
details are missing: i) function results are returned through Gateway, ii)
functions are chained through Gateway, i.e., no direct connections between
end-users and ephemeral function instances, and between two instances.

executes permission authentication and scales corresponding function instances. Gate-

way then forwards the user request to a function instance behind it. Functions chained

together with backend services compose an integrated serverless application and perform

cloud tenants’ business logic.

While the logic model largely simplifies the connection details, such that one can

quickly understand the essential concepts of serverless computing, it does not reflect

actual network flows. There are two important details missed: i) after the end-user sends

a function request to Gateway, the response of this function (FA or FC) is returned through

Gateway instead of directly by the function; ii) in function chains, when a function (e.g.,

FA) sends a request to another function (FB), this request must also go through Gateway.

Because only Gateway can launch new instances of functions, and knows the destination

address of their running instances.

71

API
Gateway

End-User

1

8
Function
Invoker

Function B
Go-lang Runtime

Req Handler

W
o

rke
r 2

Function A
Python Runtime

Req Handler

W
o

rke
r

1

FA

FA FB

2 FA

7 FA FB

3 FB

6 FB

4 FB

5 FB

Gateway Workers

: Request : Response : Inner Channel
1 FA

8 FA

Figure 3.3. Serverless architecture in network-centric view. Gate-
way components run permanently, expose function interfaces, manage run-
ning workers, and dispatch requests. Workers run on ephemeral containers,
host request handler and different language runtime for functions. The re-
quest handlers can only be connected by Gateway.

3.3.2. Network-centric Model

To address the aforementioned limitations, we provide a new abstraction of the serverless

architecture through the network-centric view (Figure 3.3). In this model, the serverless

architecture is divided into two parts: the gateway subsystem and the workers subsystem.

• Components in the gateway subsystem expose static function interfaces to end-

users, manage running workers, and dispatch requests to corresponding functions.

These services are all stateful and run on permanent machines. In existing server-

less platforms, corresponding modules may have variant names. For example, in

AWS, they are called frontend and worker manager; in OpenFaaS, they are called

api-gateway and faas-netes controller. Regardless of the names, they provide

the same functionality.

72

• Workers are ephemeral containers that comprise the request handler, the func-

tion runtime, and tenant functions. The request handler provides the internal

communication ability for workers. It receives trigger requests from Gateway and

sends function results back to Gateway. The function runtime provides isolated

software stacks and programming language libraries to execute tenant functions.

Therefore, tenant functions are decoupled from the management of ingress net-

work connections. Hence, the request handler can be designed independently by

serverless providers.

Figure 3.3 shows an example where an end-user requests the service of function FA,

while FA chained together with FB provides the service to the end-user. In this example,

• (➊—➑) the end-user sends FA a request (➊) and receives responses of FA—FB

(➑) from the direct connection with API Gateway. In the process, Gateway acts

as a transport layer server, listening and responding to user requests. Message

flow details behind it are transparent to the end-user.

• (➋—➐) API Gateway forwards the FA trigger event to Function Invoker. After

the FA worker is initialized, Function Invoker sets a connection to the request

handler in FA worker, sends request data (➋), and receives responses (➐). In this

process, Function Invoker plays the role of the transport layer client to initiate

this connection. The request handler plays the role of the transport layer server.

• (➌—➏) FA needs the response of FB . Nevertheless, instead of sending a request

directly to a worker of FB , FA will send the FB request (➌) and receive responses

of FB (➏) from Gateway. FA does not need to care about any scheduling details

73

of FB . In this process, Gateway acts as a transport layer server again, even

though the connection is internal.

• (➍—➎) Function Invoker initializes a worker for FB , sets up a connection to its

request handler, sends request data (➍), and receives responses (➎).

In current serverless platforms, HTTP (including REST-API and gRPC) is commonly

used application layer protocols for connections to API Gateway (➊—➑, ➌—➏) and re-

quest handlers (➋—➐, ➍—➎). These application layer protocols rely on TCP and TLS

protocols underneath to provide reliable and secure transport communications. For secu-

rity concerns, connections involved API Gateway (➊—➑, ➌—➏), which exposes interfaces

to outside, are mandatorily encrypted by most providers (§3.2.2). For other connections

in Figure 3.3, the data exchange between request handlers and functions in the same

worker is through IPC with negligible overhead. API Gateway and Function Invoker are

usually deployed in different machines. But they can maintain a persistent connection to

mitigate the connection setup overhead.

3.4. QFaaS: System Design

QFaaS leverages the emerging QUIC protocol to accelerate and secure serverless com-

puting. §3.4.1 introduces QUIC and emphasizes its benefits for serverless. The QFaaS sys-

tem architecture is described in §3.4.2. It requires no code modification for existing server-

less applications. Designs in §3.4.3 and §3.4.4 further accelerate serverless networking.

74

3.4.1. QUIC Protocol for Serverless Networks

QUIC has been quickly and widely adopted in the wide-area Internet after demonstrating

the ability to mitigate several drawbacks of TCP (e.g., performance, evolvability). After

2017, more than 7% of Internet traffic (a major part of Google’s egress traffic) is under

QUIC [82]; in 2021, 5.1% of all websites over the world are using QUIC [145]. QUIC

has been standardized by IETF (Internet Engineering Task Force) in RFC 9000 in May

2021 [115]. And IETF is working on “HTTP over QUIC” towards the next-generation

HTTP, HTTP/3 [29]. With rising demand for low latency applications, QUIC gains

growing popularity and is likely to outpace TCP on the Internet in the near future.

We think that QUIC can likewise evolve communications in serverless computing as it

provides a robust pathway to improve security and performance. On the one hand, cloud

users seamlessly benefit from the security of QUIC as it is coupled with the latest TLS 1.3

protocol to provide always-on encryption by design. On the other hand, QUIC can achieve

0-RTT shaving both transport and cryptography handshakes, meaning the first encrypted

data packet could be sent before any handshake happens. First, QUIC mitigates the

handshake overhead in the TCP protocol, as it provides a reliable multiplexing transport

on top of UDP instead of TCP. Second, QUIC further leverages the 0-RTT resumption

feature in TLS 1.3. Consequently, QUIC only requires 1 extra round-trip (1-RTT mode)

to set up the connection when the client never connected to the server before (Figure 3.1

(c)). The first encrypted data packet can be sent immediately (0-RTT mode) if the client

cached the server information in previous connections (Figure 3.1 (d)). Thus, QUIC

has the potential to greatly reduce the connection setup latency in serverless computing,

75

especially when new function instances are instantly scaled up and chained together to

support burst requests.

We notice that QUIC is even better suited for serverless computing environments than

the Internet in some respects. First, enabling QUIC requires modifications on both client-

and server-side software to install relevant libraries with compatible versions, which is

challenging when the two sides are controlled by different entities. In serverless computing,

as cloud providers prepare all the software stacks, including networking-related stacks,

software compatibility is no longer an issue. We can further leverage this capability to

ensure the always-on 0-RTT (§3.4.4). Second, the 0-RTT replay attack is another concern

when using QUIC on the Internet [35]. If it is possible to monitor connections and sniff

packets in the middle, the adversary can potentially resend the first client packet to trigger

the related request twice on the server-side. Though performing this attack requires strict

conditions, which are harder to achieve inside a data center, we further implement a

more secure QFaaS prototype by sending all non-idempotent requests through 1-RTT to

mitigate the threat of the 0-RTT replay attack (§3.5.2).

In addition to security and low latency, using QUIC in serverless networks can also

provide many of the same benefits as using it on the Internet. For example, QUIC supports

stream multiplexing within one connection. It avoids head-of-line blocking delay due to

the TCP’s sequential delivery. Besides, as QUIC runs in the user space instead of the

kernel, the transport layer is now more malleable to meet evolving application demands

with frequent updates, such as a notable recent breakthrough: Pluginized QUIC [48].

TCP Fast Open (TFO) [148] is a potential competitor of QUIC [37]. It allows the

application data attached in the client SYN packet to avoid the TCP handshake latency

76

if the SYN packet contains an identifier (TFO cookie) from the last connection. Though

TLS 1.3 (0-RTT) over TFO provides the same theoretically round-trip performance as

QUIC, because of several deep-rooted privacy and performance flaws, TLS over TFO has

been disabled on all modern browsers (e.g., Chrome, Firefox, and Edge) and is not yet

actively used by most popular operating systems after 10 years [134]. First, TFO relies on

an unencrypted unique cookie in the TCP header, which leads to severe tracking concerns

on the public Internet. In addition, enabling TFO requires updating all middleboxes in

data centers, such as firewalls, proxies, and security devices, to support a non-originally

designed TCP option. Nevertheless, these network core devices are ossified in the network

and rarely updated. Consequently, failed TFO requires an ordinary TCP SYN retry,

leading to TFO actually increasing round-trips. In contrast, QUIC runs over UDP and

only requests updates on end devices. Besides, only the first data packet (MTU) will

benefit from the TFO, while the whole client initialized messages can benefit from the

QUIC 0-RTT feature. Therefore, we use QUIC instead of TFO for QFaaS.

3.4.2. QFaaS System Architecture

We first identify connections that affect the serverless network performance and can be

seamlessly optimized without tenants’ code modification. In our network-centric view,

API Gateway to Function Invoker connections and request handler to language runtime

connections could be persistent or through IPCs. The connection between end-users and

Gateway (➊—➑) is initialized by end-users and could also be persistent. The connection

77

Function A

Python Runtime

Request Handler
(REST-API HTTP Server)

API Gateway (REST-API HTTP Server)

QUIC Client

QUIC Server

P
yt

h
o

n

Function Invoker (HTTP Client)Gateway
Containers

W
o

rk
er

C
o

n
ta

in
er

Function B

Go-lang Runtime

Request Handler
(REST-API HTTP Server)

QUIC Server

G
o

W
o

rk
er

C

o
n

ta
in

er

QFaaS 0-RTT Store

Figure 3.4. System design of QFaaS. QUIC client and QUIC servers
are integrated into Function Invoker and worker request handlers to replace
the TCP/TLS client and servers. This modification is transparent to cloud
tenants and ensures the activation of the QUIC 0-RTT feature.

from the function to Gateway (➌—➏) is initialized by functions. In contrast, the connec-

tions from Gateway to workers (➋—➐, ➍—➎), which are fully controlled by providers,

expose opportunities to optimize serverless networks.

First, function workers are instantaneously launched and teared down in response to

requests. We cannot simply use persistent connections to mitigate the connection setup

latency. Second, this overhead will be multiplied when functions are chained together or

the number of running instances is quickly scaled up. Thus, these serverless-introduced

bottlenecks drive major cloud providers to sacrifice security for performance, keeping

➋—➐, ➍—➎ unencrypted (§3.2.2).

To accelerate serverless networking while maintaining security, we introduce the design

of QFaaS, as shown in Figure 3.4. In this design, we integrate the QUIC client into

Function Invoker and also integrate the QUIC servers into the worker request handlers

(to replace the TCP and TLS client and servers, respectively). All function requests that

78

go through Gateway to workers would now benefit from the efficiency and security of the

QUIC protocol.

On the one hand, QUIC embraces full encryption by default and employs the latest

TLS 1.3 protocol. As a result, connections from Gateway to workers would benefit from

security improvements provided by TLS 1.3. On the other hand, this QFaaS design

can ensure the activation of the QUIC 0-RTT feature. To enable 0-RTT connection

resumption, QUIC leverages QUIC connection tokens and TLS session caches stored on

the client-side. In serverless architecture, Gateway runs on stateful machines and plays

the role of the QUIC client in QFaaS. We integrate the QFaaS 0-RTT Store into the

Gateway to maintain and manage connection-specific information. Therefore, serverless

applications under this design can further benefit from the 0-RTT feature.

Moreover, QFaaS design does not request any changes to tenants’ function code. In

serverless computing, all running containers, as well as the code of Gateway and request

handlers, are provided and controlled by cloud providers. Modifications are totally trans-

parent to cloud tenants and end-users.

3.4.3. Function Chain Library

An inquisitive reader might wonder why we did not further replace the connection initi-

ated from the function to Gateway (➌—➏) with QUIC? This is because such a connection

is function code related and programming-language specific. Specifically, Gateway usually

exposes URLs or REST APIs for functions. End-users can invoke a function by sending

an HTTP request to the corresponding URL. Similarly, when a tenant wants to invoke a

79

function (FB) by another function (FA) to form a function chain, the tenant also must ini-

tiate an HTTP request by the function code in FA and follows the programming language

practices. For example, AWS, Azure, Google Cloud, and OpenFaaS all suggest Python

users form function chains by leveraging the Python Requests library [77]. Therefore,

such connections are not fully controlled by the cloud providers and cannot be optimized

as described in §3.4.2.

One alternative way to enable QUIC at ➌—➏ is to provide QUIC server at Gateway

and ask developers to integrate a QUIC client in their function code. Nevertheless, this

design requires significant code modification and also requires developers to be familiar

with QUIC client configurations.

Recent advancements in platform specific libraries allows for an improved design.

For fine-grained access control and ease of use, some serverless platforms, such as AWS

Lambda, now provide libraries under different languages for tenants to form function

chains [22]. With such libraries, developers can directly call the platform API to invoke

another function instead of explicitly sending an HTTP request by code.

Leveraging this idea, we provide a QFaaS function chain library to enable QUIC at

➌—➏, requiring slight tenant code modification. This chain library has QUIC as its

underline transport layer protocol. We integrate the QUIC server into Gateway to accept

function requests through QUIC. Thus, all function chain traffic invoked by the library

will benefit from the short latency and security of QUIC. Currently, this library supports

Python3 and Go-lang, which are two popular programming languages used in all major

serverless platforms. The code modification to adapt this library is minimal. For instance,

80

the Python developers only need to import the library and switch their Requests call to

the QFaaS chain library call, which are only 2 lines of code modification.

This design also has three side benefits. First, Gateway now has the ability to accept

QUIC requests. It is now possible for end-users to initiate a request by QUIC and further

accelerate the ➊—➑ connection. Second, this new ability will not interfere with existing

TLS Gateway functionalities, as QUIC listens on the UDP port while TLS listens on the

TCP port. Third, the system can now be more easily integrated with current serverless

security and access control mechanisms [15, 47, 124].

3.4.4. Always-on 0-RTT QUIC

QUIC is initially designed for the wide-area Internet, where connection peers are controlled

by different entities. On the contrary, in serverless networks, providers can fully admin-

istrate the platform. Leveraging this ability, we propose the Always-on 0-RTT QUIC

design, which ensures the activation of 0-RTT even for completely cold-start functions.

In the QUIC protocol, if the client has never connected to the server, the first request

will use 1-RTT mode, due to the lack of pre-knowledge with the server. QUIC clients

rely on the QUIC connection token and TLS session cache from previous handshakes to

enable 0-RTT. The token is used for servers to identify and verify the 0-RTT connection

from clients. The TLS session cache is indeed the TLS pre-shared key (PSK) [50, 90],

which is the basis for 0-RTT encryption.

We introduce a QFaaS 0-RTT Generator component. When launching a cold-start

worker (QUIC server), the Generator will put a valid Function Invoker (QUIC client)

token into the worker, so the 0-RTT connection from Function Invoker can be accepted.

81

In addition, the Generator will also produce a unique PSK and insert it into both sides,

which will then be used for 0-RTT encryption. As this process is a part of workers’

environment setup, it will not introduce extra delay. After the handshake process is

complete, the server will provide a new token and session to the client for the next 0-

RTT connection using the QUIC protocol. These will be stored in the QFaaS 0-RTT

Store (§3.4.2). This design utilizes the advantages of serverless computing and is fully

compatible with the QUIC protocol.

3.5. QFaaS: System Implementation

We implemented the QFaaS prototype on OpenFaaS (§3.5.1) and enabled the QUIC

0-RTT feature on the system (§3.5.2). The QFaaS design is easy to be extended to other

platforms (§3.5.3).

3.5.1. QFaaS Prototype on OpenFaaS

We implemented our QFaaS into the popular OpenFaaS [88] serverless platform. Open-

FaaS is currently the leading open-source serverless platform (sorted by the GitHub stars

[111]). It uses Docker containers to host all components and Kubernetes (K8s) to simplify

container deployment and management.

We extended quic-go [89] for our prototype. quic-go supports the recently standard-

ized IETF QUIC [115]. It is implemented in Go-lang, the same language as OpenFaaS

and K8s, which makes them easier to be integrated. quic-go also provides an HTTP/3

[29] implementation by assembling QUIC with the Go-lang HTTP package (net/http).

We primarily modified two components of OpenFaaS: faas-netes and of-watchdog.

82

faas-netes is the Function Invoker component in the OpenFaaS platform that resides

on Gateway. It controls the life cycle of worker containers by sending commands to the K8s

master. It also works as an HTTP client, forwarding function requests to corresponding

workers through standard HTTP messages. We modified faas-netes, integrating a quic-

go HTTP/3 client module and coordinating it with the remaining parts. All function

requests then are proxied and encrypted by QUIC when they are forwarded to workers.

All these modifications only introduce a minimal increase (15 MB) to the size of compiled

faas-netes container images.

of-watchdog is a tiny HTTP server, working as the request handler inside the function

worker container. of-watchdog uses an internal IP address and is only reachable within

the K8s cluster. It receives incoming function requests from faas-netes and passes them

on to the function. We reformed the HTTP server module in of-watchdog to the quic-go

HTTP/3 server such that it can accept QUIC connections from faas-netes and decrypt

HTTP/3 messages. After attaching related packages for HTTP/3 and QUIC, the size of

of-watchdog executable file only increased by 3 MB.

Besides of-watchdog, an OpenFaaS worker container also contains a language runtime

and the tenant function code. As the runtime is independent to of-watchdog, QFaaS

inherently support tenant function code in various languages with its one-size-fits-all of-

watchdog implementation. There is no need to modify a specific runtime.

To support QFaaS function chain library, we also installed a QUIC server into the

OpenFaaS api-gateway. It will receive and respond to all function invoke requests from

the function chain library and end-users using a QUIC client. This modification does not

interfere with exiting Gateway functionalities as it listens on the UDP port.

83

3.5.2. QUIC 0-RTT Activation

To further enable the QUIC 0-RTT feature, we also implemented the QFaaS 0-RTT

Store in faas-netes to maintain and manage the QUIC connection tokens and TLS

session caches for QUIC 0-RTT connections. With this implementation, scenarios, such

as the function warm-start, resuming suspended workers, and processing non-continuous

requests, will benefit from the performance of QUIC 0-RTT. We further implemented

the QFaaS 0-RTT Generator in the K8s control component. It generates and distributes

the 0-RTT connection information when a cold-start worker is launching. Therefore, the

cold-start scenario will be accelerated by QUIC 0-RTT.

The replay attack [35] is a major security threat when using QUIC’s 0-RTT mode. Un-

der sophisticated settings, an adversary could potentially replay the first 0-RTT message

to trigger the corresponding action twice on the server [50]. To be specific, man-in-the-

middle (MITM) sniffing and packet replay are two necessary conditions for the QUIC

0-RTT replay attack. On the one hand, internal data-center networks have different char-

acteristics than the public wide-area Internet. Both conditions may be harder to achieve

inside a data center. One the other hand, to provide a higher security level, following the

suggestions of [115, 50], we provided a more secure QFaaS option, which mandatorily

sends all non-idempotent [116] requests (e.g., POST) through 1-RTT. This option further

mitigates the threat of the 0-RTT replay attack. Users can make choices in QFaaS based

on their security needs. Additionally, recent cryptography research [64] also shows that

it might be possible to support perfect forward secrecy during the 0-RTT key exchange

process. We will show in our evaluation that even when operating in 1-RTT mode, QFaaS

84

is still considerably faster than OpenFaaS because it still requires fewer RTTs than the

TCP+TLS scheme.

3.5.3. Platform Universality

The QFaaS design is not only effective for OpenFaaS but can also be easily extended

to other serverless platforms. This is because the network-centric model we provided is

universal to prevalent serverless architectures. For instance, network flows in Lambda also

follow this model. Specifically, AWS revealed the Lambda architecture in [13]. Unlike

Google Cloud or OpenFaaS, Lambda uses microVMs instead of containers for function

workers, where each worker also contains a request handler (called λ shim) that listens

to HTTP requests from the Lambda Frontend. Thus the QFaaS design can be directly

applied in the Lambda architecture, i.e., by integrating the QUIC server and client into the

λ shim and Frontend, and maintaining the QFaaS 0-RTT Store at Frontend. In addition,

Lambda now provides libraries for access control and function chains [22]. QFaaS function

chain library can be implemented into it to further accelerate chain communications.

QFaaS can also be easily migrated to other open-source serverless platforms. Taking

Apache OpenWhisk [136] as an example, the ➋—➐ and ➍—➎ connections are essentially

the connections between OpenWhisk Controller and Code Invoker that we can use QUIC

to secure and accelerate. Additionally, we can apply the design of QFaaS function chain

library into special trigger events supported by OpenWhisk.

Our work was built on the foundations of other open-source projects, such as OpenFaaS

and quic-go. We will completely open-source the QFaaS system, including code, datasets,

85

trace generators, and measurement platforms upon publication. Meanwhile, we are work-

ing for integrating QFaaS as an official plugin in the OpenFaaS platform. Moreover, one

of the world-leading cloud providers is working on a PoC (proof-of-concept) deployment

of QFaaS on its serverless service.

3.6. Evaluation

This section answers the following questions about QFaaS.

• What are our testbed and experiment settings (§3.6.1)?

• Will QFaaS introduce extra overheads in building function images (§3.6.2)?

• How does QFaaS perform on a single function in comparison with TCP and

TCP+TLS in cold-start and warm-start scenarios (§3.6.3)?

• How does the length of function chains impact QFaaS performance (§3.6.4)?

• And how well do the benefits transfer to real-world serverless applications (§3.6.5)?

3.6.1. Testbed and Experiment Settings

We evaluate the performance of QFaaS system using several synthetic serverless functions

and a real-world commercial serverless application Hello, Retail! [106, 105]. These syn-

thetic functions are designed to cover different scenarios independently, including simple

echo functions, functions with large content data, and function chains with variant lengths

[150]. Hello, Retail! is a popular open-source serverless application used in many recent

serverless studies [47, 124, 15, 107]. We use it to assess the benefits that QFaaS can

deliver in real world.

86

Python 3 Go-lang Java 11
0

100

200

300
Fu

nc
tio

n
Im

ag
e

Si
ze

 (M
B)

79

37

270

73

31

264

73

31

264

(a)
QFaaS
OpenFaaS(TCP)
OpenFaaS(TCP+TLS)

Python 3 Go-lang Java 11
0

20

40

60

Fu
nc

tio
n

Bu
ild

 T
im

e
(s

)

27 30

52

28
33

53

29
33

54

(b)

Figure 3.5. (a) Function image sizes and (b) image build time using
different of-watchdogs and language runtimes.

We compare the performance of QFaaS with respect to OpenFaaS, using TLS 1.2, for

inter-component communications. We also measure the performance of OpenFaaS using

only bare TCP connections between components as a reference. Because TCP does not

encrypt and decrypt packets, it has a much shorter OS processing delay in comparison

to secure protocols. However, TCP-only OpenFaaS does not provide any security for the

cloud platform. We find that our QFaaS design is even faster than TCP-only OpenFaaS

in some scenarios, while providing additional security.

All experiments were performed on our K8s cluster with 1 master node and 3 follower

nodes. The K8s system components were deployed in the master node. All OpenFaaS

related components were running in the follower nodes and each node has a 4x2.9 GHz

CPU with 8 GB of RAM. All Docker images were pre-pulled to avoid the influence of

external network variations. We also enabled the K8s local DNS agent feature to improve

cluster DNS performance.

The network delay within a typical data center has been found to be around 0.5 ms

in prior studies [87, 113, 67]. Hence, in the following experiments, we set the default

87

delay between cluster nodes to 0.5 ms to simulate the data center network. In addition,

intra network delay is also potentially very small. We thus specifically measure the case

of zero network delays. We further note that the delay within a public cloud could be

longer than 0.5 ms. For example, the real-time AWS intra-regional delay varies from 1 ms

to 3 ms [95]. We will also show the benefits of QFaaS against different intra-cloud delays.

AWS users might notice that the latency between two EC2 VMs could be as small as 0.1

ms. This is because AWS tends to deploy VMs belonging to the same tenant to the same

host machine [146]. But in serverless computing, multi-tenants share the same Gateway.

The internal delay is closer to the intra-regional average delay. We keep all MTU, TCP,

TLS, and QUIC settings as default.

3.6.2. Function Image Overheads

Using QFaaS does not require any application code modification. To migrate existing

OpenFaaS application functions to QFaaS, cloud providers only need to rebuild the func-

tion container image on top of the modified of-watchdog. This process can be done

automatically and is transparent to tenants. The function image size and function build

time overheads are given in Figure 3.5 (a) and (b), respectively.

Results: Figure 3.5 (a) indicates that QFaaS only slightly increases the container

image size by 3 MB among each different language runtimes. The increased size is due

to the additional libraries for QUIC server support. As shown in Figure 3.5 (b), QFaaS

only introduces negligible addition time in building functions comparing with OpenFaaS.

88

GET POST
Request Method

0

10

20

30

40
R

es
po

ns
e

La
te

nc
y

(m
s)

(a) Non-Continuous Request

GET POST
Request Method

0

10

20

30

40
(b) Continuous Request

OpenFaaS(TCP)
QFaaS
QFaaS(POST1RTT)
OpenFaaS(TCP+TLS)

GET POST
Request Method

10

20

30

40

50

R
es

po
ns

e
La

te
nc

y
(m

s)

(c) Initial Request

GET POST
Request Method

20

30

40

50

(d) Large Response Body (1MB)

Figure 3.6. Single function end-user response latency: (a) non-
continuous requests require connection resumption. QFaaS shows the
same performance as insecure OpenFaaS (TCP) and is 28% better than
OpenFaaS (TCP+TLS). (b) continuous requests have no connection
setup overhead. They perform identically; when an (c) initial request is
sent to a newly launched function, if no session caches, QFaaS is still 11%
faster; for (d) large responses, QFaaS is slightly slower than OpenFaaS
(TCP) due to encryption, but is 21% faster than OpenFaaS (TCP+TLS).

3.6.3. Single Function Performance

We measure the response latency of several synthetic single functions to show the ben-

efits of QFaaS under different scenarios independently (Figure 3.6). Response latency

represents the time interval between the end-user sending the request and receiving the

89

complete function response. For GET requests, we compare the latency between Open-

FaaS (TCP), QFaaS, and OpenFaaS (TCP+TLS). For POST requests, we also measure

the latency of QFaaS with mandatory 1-RTT enabled, i.e., QFaaS (POST1RTT) (check

§3.5.2 for more details). In Figure 3.6 (a), (b), and (c), we all use a simple echo function

to avoid the jitter in function execution. The function used in Figure 3.6 (d) returns a

large response body of 1 MB when called. We repeated each experiment 100 times.

Results: As shown in Figure 3.6 (a), we first measure the scenario that end-user

requests sending in the no-continuous pattern. In this case, whether TCP, TLS, or QUIC,

connection resumption is required. For GET requests, QFaaS performs the same as in-

secure OpenFaaS (TCP) and is 28% better than OpenFaaS (TCP+TLS). For POST

requests, QFaaS working in 1-RTT mode is still 14% faster than OpenFaaS (TCP+TLS)

and achieves the same benefits as it performs on GET in 0-RTT mode. In Figure 3.6

(b), end-users continuously send requests to avoid any connection resumption. All these

implementations perform identically. It indicates that QFaaS does not bring additional

overhead for this scenario.

In Figure 3.6 (c), we measure the first request latency when a function instance is

newly launched. In this scenario, we let the QUIC client in faas-netes have no server

session cache corresponding to the new function worker, thus working in 1-RTT mode. In

this case, QFaaS is still 11% faster than OpenFaaS (TCP+TLS).

Figure 3.6 (d) shows the scenario when the function returning a large body. The

end-user needs to wait for several packets before getting the complete response. In this

90

0 0.5 1 1.5 2 2.5 3
Internal Delay (ms)

20

40

60

80

R
es

po
ns

e
La

te
nc

y
(m

s) OpenFaaS(TCP+TLS)
OpenFaaS(TCP)
QFaaS

Figure 3.7. Benefits of QFaaS under variant intra-cloud delays.
QFaaS is always faster (17% reduction) than OpenFaaS (TCP+TLS) when
the internal delay is 0. The response latency difference increases as delays
increase. QFaaS starts to be faster than OpenFaaS (TCP) when the delay
is greater than 0.5 ms.

scenario, QFaaS is slightly slower than the insecure OpenFaaS (TCP) due to traffic en-

cryption and decryption overhead. But it is still 21% faster than OpenFaaS (TCP+TLS)

when the size of the response body is 1 MB.

Variant Intra-Cloud Delays. We show the benefits of QFaaS under different cloud

internal delays in Figure 3.7. When the internal network delay is 0, QFaaS is still 17%

faster than OpenFaaS (TCP+TLS) as it can reduce the number of upper layer handshakes.

As the internal delay increases, the response latency will also increase. But the latency

increase in QFaaS is always smaller than that of its opponents.

Results: Specifically, QFaaS maintains its advantages over OpenFaaS (TCP+TLS)

as the internal delay increases. Their latency difference reaches 19 ms when the internal

delay increases to 3 ms. QFaaS becomes faster than insecure OpenFaaS (TCP) after the

internal delay is greater than 0.5 ms and is 13% faster than OpenFaaS (TCP) when the

internal delay is 3 ms.

91

1 2 3 4 5 6
Length of Function Chain

0

50

100

150

200
R

es
po

ns
e

La
te

nc
y

(m
s) OpenFaaS(TCP+TLS)

OpenFaaS(TCP)
QFaaS

Figure 3.8. Benefits of QFaaS with the function chain library. The
latency difference between QFaaS and OpenFaaS (TCP+TLS) increases as
the chain’s length increases and reaches 85 ms (40%) when the length is 6.

3.6.4. Function Chain Performance

In serverless applications, functions are commonly chained together to perform a complete

task flow. We measure the benefits of using QFaaS function chain library in different

lengths of function chains in Figure 3.8. The experiment design follows the nested function

chain implementation in ServerlessBench [150]. In a function chain, the end-user invokes

the ingress function; one function invokes another function and returns until got the

response of the invoked function.

Results: As shown in the result, comparing with OpenFaaS (TCP), regardless of the

length of the function chain, QFaaS always has the similar end-user response latency as the

insecure OpenFaaS (TCP). QFaaS always performs better than OpenFaaS (TCP+TLS),

and their latency difference increases as the chain’s length increases. QFaaS is 85 ms

(40%) faster than OpenFaaS (TCP+TLS) when the chain length is 6.

92

: Ingress Functions: Access Services : Database Functions : Pure Functions : Impure Functions: Invoke Functions : Email: Database Services

API

Gateway

End-User Other Clients

ƒ12: Purchase

Product

ƒ13: Get

Price

ƒ14: Authorize

Credit Card

ƒ15: Publish

Result

ƒ1: Browser

Products
ƒ2: Create

Product

ƒ7: Register

Photographer

ƒ3: Request

Photo

ƒ5: Record

Assignment

ƒ4: Message

Photographer

ƒ8: Acquire

Photo

ƒ10: Photo

Success

ƒ11: Photo

Report

Product

Catalog

Credit Card

Registry

Photographer

RegistryPhoto Storage

ƒ6: Assign

Photographer

ƒ9: Receive

Photo

Chain 3 Chain 2

Chain 1

Figure 3.9. A reference architecture of the Hello, Retail! appli-
cation. Rectangles represent serverless functions and are categorized into
different colors by their attributes. They form 3 major function chains (see
Table 3.1 for details).

3.6.5. Real-world Application Performance

To better understand how QFaaS works in production environments, we conducted ad-

ditional experiments on a real-world serverless application Hello, Retail!. It implements

a functional retail platform constructed by a set of serverless functions and back-end ser-

vices. Figure 3.9 shows the reference architecture of Hello, Retail!. Please note, this figure

uses the serverless login view instead of the actual network-centric view, to highlight the

application’s abstract structure. We ported the entire Hello, Retail! application to the

OpenFaaS platform as described in prior work [47, 124]. It is also deployed into QFaaS

without any code modification.

As shown in Figure 3.9, Hello, Retail! consists of 15 functions. These functions form 3

major function chains. Table 3.1 lists all scenarios we used in our experiments, covering the

most representative scenarios in this application. In terms of whether a function accesses

backend services and whether it invokes a function chain, we classify the scenarios as:

• Pure Functions: The function only communicates with the Gateway.

• Database Functions: The function will access back-end services, e.g., database.

93

Table 3.1. Evaluated serverless function scenarios in the “Hello, Retail!”
application.

Scenarios Function Function Name Method Function Function Name Method

Pure Functions ƒ10 Photo Success GET ƒ15 Publish Result POST

Database Functions ƒ1 Browse Products GET ƒ7 Register Photographer POST

Chain Functions

ƒ3 Request Photo POST Invoking a function chain: ƒ3 → ƒ4 → ƒ5 → ƒ6.

ƒ8 Acquire Photo POST Invoking a function chain: ƒ8 → ƒ9 → ƒ10 → ƒ11.

ƒ12 Purchase Product POST Invoking a function chain: ƒ12 → ƒ13 → ƒ14 → ƒ15.

• Chain Functions: The ingress function that sequences a function chain.

• Chain Functions with Function Chain Library: Chain functions adopting

the QFaaS function chain library.

Table 3.1 lists all scenarios we used in our experiments, covering the most representa-

tive scenarios in this application. Following the preceding experiment setting in Figure 3.6

(a), we measured the end-user response latency by sending non-continuous function re-

quests. Figure 3.10 shows the results.

Results: (a) For pure functions, ƒ10 is invoked by GET messages, and ƒ15 is invoked

by POST messages. QFaaS and QFaaS (POST1RTT) can achieve a similar acceleration

as they performed in single function evaluations (Figure 3.6). (b) For database functions,

though the performance boosts are diluted by the extra connections with databases or

third-party services, QFaaS can still achieve 7%-12% latency reduction against OpenFaaS

(TCP+TLS) while keeping comparable performance as insecure OpenFaaS (TCP). (c)

For the 3 chain functions, QFaaS remains to outperform OpenFaaS (TCP+TLS) by 14%-

25% working in 0-RTT mode and 6%-10% working in 1-RTT mode. Additionally, QFaaS

bonuses multiply to attain up to 50 ms latency reduction, which would perceptibly improve

user experience. (d) To take full advantage of QFaaS, we integrated the function chain

94

10 15
Function

10

20

30

40

50
R

es
po

ns
e

La
te

nc
y

(m
s)

(a) Pure Functions

1 7
Function

35

75

115

155
(b) Database Functions

OpenFaaS(TCP)
QFaaS
QFaaS(POST1RTT)
OpenFaaS(TCP+TLS)

Chain 1 (3) Chain 2 (8) Chain 3 (12)
Function

80

120

160

200

240

R
es

po
ns

e
La

te
nc

y
(m

s)

(c) Chain Functions

Chain 3 (12)
Function

80

120

160

200

240
(d) w/ Chain Library

Figure 3.10. End-user response latency in the Hello, Retail! ap-
plication. (a) Pure Functions: QFaaS achieved the same results as in
Figure 3.6. (b) Database Functions: QFaaS is 12% faster than OpenFaaS
(TCP+TLS); QFaaS (POST1RTT) is faster by 7%. (c) Chain Functions:
14%-25% latency reduction provided by QFaaS and up to 50 ms reduction
in one request; 6%-10% latency reduction with QFaaS (POST1RTT). (d)
Chain Functions with Function Chain Library: Chain 3 gaining a
21% performance boost.

library to ƒ12. Since the natural language efficiency distinction, where the original Hello,

Retail! is written in NodeJS and the QFaaS function chain library is implemented in

Go-lang, for comparison fairness, we translated origin Chain 3 (ƒ12) in Go-lang. It shows

a 21% latency reduction on average.

95

The results on Hello, Retail! demonstrate that cloud tenants can instantly gain the

benefits of QFaaS as synthetic serverless functions (§3.6.3). We therefore believe serverless

computing platforms will be more attractive for existing cloud applications when the low-

latency requirement can be met.

3.7. Related Work

This section summarizes closely related work from two aspects. §3.7.1 introduces

research efforts about serverless computing. §3.7.2 provides a brief history of QUIC and

existing projects about extending QUIC to other broader network scenarios.

3.7.1. Serverless Computing Research

The rising prominence of serverless computing has attracted recent research interest in

wide-ranging topics. We summarize related work in the following closely related cate-

gories: security and access control, virtualization optimization, scaling and scheduling,

and performance benchmarks.

Security and Access Control. Trapeze [15] uses a language-based dynamic information

flow control (IFC) to secure the serverless functions. Each serverless function in Trapeze

is wrapped by a security IFC shim to share data stores and exchange messages. Valve [47]

employs function level information flow control to restrict unexpected function behaviors

through the network. WILL.IAM [124] encodes absolute and conditional information

flows into a graph to disallow access policy violations at the ingress. Nevertheless, these

works all rely on a solid secure transport layer provided by the serverless platforms. We

96

believe that our work is complementary to existing research on serverless security and

access control.

Virtualization Optimization. There are always trade-offs between efficiency and se-

curity. Docker containers impose minimal initial overhead but weaker resource isolation.

In contrast, traditional virtual machine technologies provide strong resource isolation

but require much higher overhead. Several research efforts have attempted to develop

lightweight virtualization techniques to optimize the efficiency-security trade-off. AWS

Firecracker [13] and SEUSS [34] devised lightweight VMs (microVMs) to accelerate func-

tion initialization. For instance, AWS Firecracker [13] removes unnecessary features like

BIOS, PCI, and multi-OS support from traditional VMs. SEUSS uses unikernel snap-

shots to accelerate VM initialization. On the other hand, gVisor [149] is a new security-

oriented container design to guarantee strong isolation between the host OS and contain-

ers. SCONE [17] utilizes the Intel SGX trusted computing to provide a secure container

mechanism. All of these designs can initialize a serverless function at the millisecond scale

but make the adverse impact of connection setup latency more significant. The approach

adopted by QFaaS is fundamentally different but is also complementary to them.

Scaling and Scheduling. The cold-start problem is a major drawback of serverless

computing [75]. To achieve the low cold-start latency, vigorous approaches are proposed.

SAND [14] used fine-grained application sandboxing and hierarchical message bus mech-

anisms. FnSched [133] mitigated the resource contention between collocated functions

by dynamically regulating the CPU shares. Nightcore [74] combined multiple techniques

in platform design, including a fast path for internal function calls, efficient threading

for I/O, and function executions with dynamically computed concurrency hints. Obetz

97

et al. [108] and Archipelago [128] proposed to use graph analysis to schedule function

initialization in an efficient way. QFaaS solves the code start problem from a different

angle from existing efforts. It can be combined with aforementioned approaches to better

tame this problem.

Serverless Performance Benchmarks. Many benchmark suites, such as Serverless-

Bench [150], SPEC-RG [143], FAASDOM [91], and PanOpticon [129], were designed

for serverless platforms to characterize metrics such as communication efficiency, stateless

overhead, and performance isolation from different ways. Research literature, includ-

ing [79, 92, 84, 146, 58], measured the performance differences about elasticity, latency,

reliability, I/O, and cost for major commercial serverless platforms such as AWS, Google,

Azure, and IBM. Our evaluation design mainly draws on their work to demonstrate the

benefits of QFaaS in accelerating serverless networking.

3.7.2. QUIC: Evolution and Extensions

The first design of the QUIC protocol was released by Google in 2013 [38], that was

informed by their experiments with the SPDY protocol [137]. This QUIC edition was

later called gQUIC (Google QUIC) and brought to the IETF in 2015. Google joined the

IETF team to provide a standardized protocol implementation called IETF QUIC, which

has been incorporated into the Chrome browser since Oct. 2020 [39] and released as

RFC 9000 [115] in May 2021. Major Internet service providers have all joined to provide

their own QUIC implementation based on the IETF standard by different programming

languages, such as quic-go (Go, Google) [89], MsQuic (C, Microsoft) [98], mvfst (C++,

Facebook) [53], and quiche (Rust, Cloudflare) [44].

98

After its success in the wide-area Internet, such as web surfing and video streaming,

QUIC has recently been extended to other broader network scenarios. Kumar et al. [80]

utilized QUIC in IoT scenarios and have shown that QUIC largely benefits the connec-

tion migration for IoT devices. Thomas et al. [139] demonstrate that compared with

TLS, QUIC can halve the page load time over the public satellite communication sys-

tem. Cicconetti et al. [40] preliminarily evaluated the benefits of using QUIC in end-user

to FaaS Gateway connections in the mobile network scenario. Research literature, such

as [27, 28], integrated QUIC into the Tor network and provided empirical evaluation

to show network acceleration. To the best of our knowledge, QFaaS is the first work to

extend QUIC into the domain of serverless cloud platforms.

3.8. Chapter Summary

In this project, we raise the challenge of accelerating communications while provid-

ing security in emerging serverless cloud networks. To that end, we first abstract the

network communications model for serverless computing systems and then propose an

extension of the QUIC protocol, called QFaaS, that provides low latency serverless func-

tion communication with improved security. We implement the QFaaS prototype on the

popular OpenFaaS platform such that it requires no code modification for cloud tenants

to gain network performance boosts and security benefits. QFaaS function chain library

and always-on 0-RTT designs can further accelerate serverless networking. Our evalua-

tions on synthetic serverless functions and real-world serverless applications demonstrate

that QFaaS can reduce the end-user response latency by 28% (in 0-RTT mode) and 14%

(in 1-RTT mode) with negligible overheads compared to OpenFaaS using TCP+TLS.

99

We find that the performance benefits of QFaaS linearly increases with the length of the

function chain, providing a reduction of 85 ms when the chain length is 6. This was

also validated against the real-world Hello, Retail! application, where QFaaS obtained a

maximum 50 ms reduction in latency. Overall, our findings validate that QFaaS deliv-

ers a compelling performance and security enhancement to the ecosystem of open-source

serverless platforms.

100

CHAPTER 4

Conclusion

In this dissertation, I elaborate on a research question about enabling robust and secure

edge-to-cloud communications in real-world networked systems and tackle this question by

addressing specific research challenges encountered in two projects. These two projects

cover two aspects of networked systems from edge to cloud. The first project secures

the edge access network, while the second project secures the centralized cloud network.

Both projects target next-generation network protocols and emphasize the importance of

measurement, deployment, and validation on real-world networked systems.

Specifically, in the first project, we proposed a seed-assisted specification method to

systematically study the availability and security problems in cellular network protocols.

This proposed method combines prior knowledge and adaptive model construction to

address the modeling granularity and misrepresentation problems in protocol specifica-

tions. We take the cellular emergency call system as the case study and conduct the first

thorough research on it. As a result, we systematically find four availability issues and

two new attacks. In the second project, we abstract the network communication model

for serverless cloud computing and identify the network challenge in existing serverless

platforms. We provide the QFaaS design to address the challenge, which requires no

code modification for existing serverless applications. Evaluation of the QFaaS prototype

shows that our design can significantly improve the serverless network performance with

enhanced security.

101

4.1. Future Work

We will continue our research in both securing edge access networks and optimizing

the serverless cloud networks.

Secure Configuration Space Search for Network Protocols. Large network pro-

tocols, such as cellular network protocols, have many flexible configuration options to fit

different deployment scenarios and carrier requirements. But not every possible config-

uration combination is correct and secure. To meet the agile deployment and evolution

of networked systems, configurations are updated frequently. Although it would be ideal

to check each configuration in real-time before enforcement, it is impractical due to the

time-consuming formal verification process. Meanwhile, network systems usually have

multiple participants. One participant can check if its own system is correctly configured.

But the correctness of the entire system depends on the configuration of all participants.

Therefore, we propose the idea called secure configuration space. Any configurations

are guaranteed to be secure if they lie in this space. It has three advantages. First, the

corresponding secure configuration space for a protocol can be generated offline. We can

now verify a new configuration with negligible time by just SAT querying if this config-

uration resides in the space. Second, the verification can now support multi-participant

network systems if the configuration of all participants meets the requirements of the

secure configuration space. Third, if the current configuration is insecure, we can identify

a secure configuration in the space with the minimum revision requirement to correct

the insecure one. We plan to leverage recent breakthroughs ([32, 43]) in incremental

induction-based model checking to search the secure configuration space, where the space

can be transformed from the inductive invariant constructed in the verification process.

102

Predictive Clean-Slate Serverless Routing. As we discussed in §3.3, in current

serverless computing platforms, function chains are formed by indirect connections through

the unified gateway. Such a design greatly increases the internal function communication

delay and affects the network’s isolation. We plan to leverage data-plane programming

and function chain prediction to develop an intelligent, clean-slate network architecture

for serverless network communication. Data-plane programming can precisely control the

message forwarding between function instances to avoid indirect connections through the

unified gateway. The function chain performance thus benefits from direct connection and

shortest-path routing. With function chain prediction, the forwarding rules are issued in

advance to further improve performance by mitigating cold-start issues. This design also

enhances traffic isolation and improves network security in multi-tenant clouds.

Specifically, the proposed research has two challenges: enabling direct connections by

data-plane programming and pre-installing forwarding rules by function chain prediction.

For the first challenge, programmable network technologies, such as OpenFlow [96]

and P4 [31], have flourished in the last decade. It can provide two capabilities to the

serverless platform. First, it can quickly and dynamically adjust the network topology and

forwarding paths while the network is running. Leveraging this capability, we can create

a direct forwarding path when a function chain is created and destroy this path when

the corresponding function instances are scaled down. Second, programmable networks

can control the packet routing in a fine-grained. It provides a more powerful routing

capability than traditional IP routing. Even if a function instance does not know the

internal address of another ephemeral instance, it can still directly send packets to the

instance with carefully designed routing algorithms, such as source address routing.

103

For the second challenge, the performance of serverless computing also suffers from

the notorious cold-start problem [14, 74, 34]. When a new function instance is created

in response to the end-user’s request, the cloud providers need to allocate the hardware

resource and prepare the software runtime for this new function instance. This process

introduces extra delays to serverless applications. Similarly, installing dynamic forwarding

rules to enforce direct forwarding paths also introduces delays. We propose pre-installing

forwarding rules by function chain prediction to alleviate this drawback. Compared to

existing work about resource predicting and scheduling in cloud computing, function

chains usually have fixed patterns to follow the high-level business logic of serverless

applications. Therefore, function chain prediction could be easier and yield more accurate

results than traditional cloud computing resource prediction.

104

References

[1] 3rd Generation Partnership Project (3GPP). http://www.3gpp2.org.

[2] 3GPP. Formal Analysis of the 3G Authentication Protocol. Technical Report (TR)
33.902, 3rd Generation Partnership Project (3GPP), 2001. Version 4.0.0.

[3] 3GPP. Public Warning System (PWS) requirements. Technical Specification (TS)
22.268, 3rd Generation Partnership Project (3GPP), 2019. Version 16.3.0.

[4] 3GPP. Access to the 3GPP Evolved Packet Core (EPC) via non-3GPP access net-
works; Stage 3. Technical Specification (TS) 24.302, 3rd Generation Partnership
Project (3GPP), 2020. Version 16.4.0.

[5] 3GPP. Characteristics of the Universal Subscriber Identity Module (USIM) appli-
cation. Technical Specification (TS) 31.102, 3rd Generation Partnership Project
(3GPP), 2020. Version 16.4.0.

[6] 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Con-
trol (RRC); Protocol specification. Technical Specification (TS) 36.331, 3rd Gener-
ation Partnership Project (3GPP), 2020. Version 16.1.1.

[7] 3GPP. IP Multimedia Subsystem (IMS) emergency sessions. Technical Specification
(TS) 23.167, 3rd Generation Partnership Project (3GPP), 2020. Version 16.2.0.

[8] 3GPP. Mobile radio interface Layer 3 specification; Core network protocols; Stage
3. Technical Specification (TS) 24.008, 3rd Generation Partnership Project (3GPP),
2020. Version 16.5.0.

[9] 3GPP. Non-Access-Stratum (NAS) protocol for 5G System (5GS); Stage 3. Tech-
nical Specification (TS) 24.501, 3rd Generation Partnership Project (3GPP), 2020.
Version 16.5.1.

[10] 3GPP. Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS);
Stage 3. Technical Specification (TS) 24.301, 3rd Generation Partnership Project
(3GPP), 2020. Version 16.5.1.

http://www.3gpp2.org

105

[11] 3GPP. Service aspects; Service principles. Technical Specification (TS) 22.101, 3rd
Generation Partnership Project (3GPP), 2020. Version 17.2.0.

[12] 3GPP2. 3rd Generation Partnership Project 2. http://www.3gpp2.org, 2008.

[13] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf
Neugebauer, Phil Piwonka, and Diana-Maria Popa. Firecracker: Lightweight virtu-
alization for serverless applications. In Proceedings of the 17th USENIX symposium
on networked systems design and implementation (NSDI), 2020.

[14] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,
Andre Beck, Paarijaat Aditya, and Volker Hilt. Sand: Towards high-performance
serverless computing. In 2018 Usenix Annual Technical Conference (USENIX ATC),
2018.

[15] Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk, Mooly Sagiv,
Thomas Schmitz, and Keith Winstein. Secure serverless computing using dynamic
information flow control. Object-Oriented Programming, Systems, Languages and
Applications (OOPLSA), October 2018.

[16] Myrto Arapinis, Loretta Mancini, Eike Ritter, Mark Ryan, Nico Golde, Kevin Re-
don, and Ravishankar Borgaonkar. New privacy issues in mobile telephony: fix and
verification. In Proceedings of the 2012 ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 205–216. ACM, 2012.

[17] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’keeffe, Mark L Still-
well, et al. Scone: Secure linux containers with intel sgx. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI),
2016.

[18] AWS. Lambda – Serverless Computing. https://aws.amazon.com/lambda/,
2014.

[19] AWS. Announcing improved VPC networking for AWS Lambda functions. https:

//aws.amazon.com/blogs/compute/announcing-improved-vpc-networking-f

or-aws-lambda-functions/, 2019.

[20] AWS. Amazon Web Services: Overview of Security Processes. https://d0.awss

tatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf, 2020.

http://www.3gpp2.org
https://aws.amazon.com/lambda/
https://aws.amazon.com/blogs/compute/announcing-improved-vpc-networking-for-aws-lambda-functions/
https://aws.amazon.com/blogs/compute/announcing-improved-vpc-networking-for-aws-lambda-functions/
https://aws.amazon.com/blogs/compute/announcing-improved-vpc-networking-for-aws-lambda-functions/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf

106

[21] AWS. Data protection in Amazon EC2 - encryption in transit. https://docs.a

ws.amazon.com/AWSEC2/latest/UserGuide/data-protection.html#encryptio

n-transit, 2021.

[22] AWS. Lambda, AWS Boto3. https://boto3.amazonaws.com/v1/documentatio

n/api/latest/reference/services/lambda.html, 2021.

[23] AWS. Security Overview of AWS Lambda: An In-Depth Look at AWS Lambda
Security. https://d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-S

ecurity.pdf, 2021.

[24] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche
Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander Slomin-
ski, et al. Serverless computing: Current trends and open problems. In Research
Advances in Cloud Computing. Springer, 2017.

[25] David Basin, Cas Cremers, Jannik Dreier, and Ralf Sasse. Symbolically analyzing
security protocols using tamarin. ACM SIGLOG News, 4(4):19–30, 2017.

[26] David Basin, Jannik Dreier, Lucca Hirschi, Saša Radomirovic, Ralf Sasse, and
Vincent Stettler. A formal analysis of 5G authentication. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security (CCS),
pages 1383–1396. ACM, 2018.

[27] Lamiaa Basyoni, Aiman Erbad, Mashael Alsabah, Noora Fetais, and Mohsen
Guizani. Empirical performance evaluation of quic protocol for tor anonymity net-
work. In Proceedings of the 15th International Wireless Communications & Mobile
Computing Conference (IWCMC). IEEE, 2019.

[28] Lamiaa Basyoni, Aiman Erbad, Mashael Alsabah, Noora Fetais, Amr Mohamed,
and Mohsen Guizani. Quictor: Enhancing tor for real-time communication using
quic transport protocol. IEEE Access, 9:28769–28784, 2021.

[29] M. Bishop. Hypertext Transfer Protocol Version 3 (HTTP/3). RFC Draft, IETF,
February 2021.

[30] Bruno Blanchet. Modeling and verifying security protocols with the applied pi cal-
culus and proverif. Foundations and Trends in Privacy and Security, 1(1-2):1–135,
2016.

[31] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rex-
ford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al. P4:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/data-protection.html#encryption-transit
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/data-protection.html#encryption-transit
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/data-protection.html#encryption-transit
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lambda.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lambda.html
https://d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf
https://d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf

107

Programming protocol-independent packet processors. ACM SIGCOMM Computer
Communication Review, 44(3):87–95, 2014.

[32] Aaron R Bradley. Sat-based model checking without unrolling. In International
Workshop on Verification, Model Checking, and Abstract Interpretation, pages 70–
87. Springer, 2011.

[33] Elgin M Brunner and Manuel Suter. International CIIP handbook 2008/2009: An
inventory of 25 national and 7 international critical information infrastructure pro-
tection policies. Center for Security Studies (CSS), ETH Zurich, 2008.

[34] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger, and
Jonathan Appavoo. Seuss: skip redundant paths to make serverless fast. In Pro-
ceedings of the 15th European Conference on Computer Systems (EuroSys), 2020.

[35] Xudong Cao, Shangru Zhao, and Yuqing Zhang. 0-rtt attack and defense of quic
protocol. In 2019 IEEE Globecom Workshops (GC Wkshps). IEEE, 2019.

[36] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. The
rise of serverless computing. Communications of the ACM, 62(12):44–54, 2019.

[37] Shan Chen, Samuel Jero, Matthew Jagielski, Alexandra Boldyreva, and Cristina
Nita-Rotaru. Secure communication channel establishment: Tls 1.3 (over tcp fast
open) vs. quic. In European Symposium on Research in Computer Security (ES-
ORICS). Springer, 2019.

[38] Chromium Blog. Experimenting with QUIC. https://blog.chromium.org/2013/

06/experimenting-with-quic.html, 2013.

[39] Chromium Blog. Chrome is deploying HTTP/3 and IETF QUIC. https://blog

.chromium.org/2020/10/chrome-is-deploying-http3-and-ietf-quic.htmll,
2020.

[40] Claudio Cicconetti, Leonardo Lossi, Enzo Mingozzi, and Andrea Passarella. A pre-
liminary evaluation of quic for mobile serverless edge applications. In 22nd IEEE
International Symposium on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2021.

[41] Cisco. MME Administration Guide, Emergency Bearer Services. https://www.ci

sco.com/c/en/us/td/docs/wireless/asr_5000/21-5_N5-8/MME/21-5-MME-Adm

in/21-5-MME-Admin_chapter_010010.html, 2016.

https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://blog.chromium.org/2020/10/chrome-is-deploying-http3-and-ietf-quic.htmll
https://blog.chromium.org/2020/10/chrome-is-deploying-http3-and-ietf-quic.htmll
https://www.cisco.com/c/en/us/td/docs/wireless/asr_5000/21-5_N5-8/MME/21-5-MME-Admin/21-5-MME-Admin_chapter_010010.html
https://www.cisco.com/c/en/us/td/docs/wireless/asr_5000/21-5_N5-8/MME/21-5-MME-Admin/21-5-MME-Admin_chapter_010010.html
https://www.cisco.com/c/en/us/td/docs/wireless/asr_5000/21-5_N5-8/MME/21-5-MME-Admin/21-5-MME-Admin_chapter_010010.html

108

[42] Cisco. MME Administration Guide, Local Emergency Numbers List. https://ww

w.cisco.com/c/en/us/td/docs/wireless/asr_5000/21/MME/b_21_MME_Admin/

b_21_MME_Admin_chapter_011111.pdf, 2016.

[43] Koen Claessen and Niklas Sörensson. A liveness checking algorithm that counts. In
2012 Formal Methods in Computer-Aided Design (FMCAD), pages 52–59. IEEE,
2012.

[44] Cloudflare. quiche: Savoury implementation of the QUIC transport protocol and
HTTP/3. https://github.com/cloudflare/quiche, 2018.

[45] Piergiuseppe Bettassa Copet, Guido Marchetto, Riccardo Sisto, and Luciana Costa.
Formal verification of lte-umts and lte–lte handover procedures. Computer Standards
& Interfaces, 50:92–106, 2017.

[46] Cas Cremers and Martin Dehnel-Wild. Component-Based Formal Analysis of 5G-
AKA: Channel Assumptions and Session Confusion. In Proceedings of the 26th Net-
work and Distributed Systems Security (NDSS) Symposium, 2019.

[47] Pubali Datta, Prabuddha Kumar, Tristan Morris, Michael Grace, Amir Rahmati,
and Adam Bates. Valve: Securing function workflows on serverless computing plat-
forms. In Proceedings of The Web Conference, 2020.

[48] Quentin De Coninck, François Michel, Maxime Piraux, Florentin Rochet, Thomas
Given-Wilson, Axel Legay, Olivier Pereira, and Olivier Bonaventure. Pluginizing
quic. In Proceedings of the annual conference of the ACM Special Interest Group on
Data Communication (SIGCOMM), 2019.

[49] Haotian Deng, Weicheng Wang, and Chunyi Peng. CEIVE: Combating Caller ID
Spoofing on 4G Mobile Phones Via Callee-Only Inference and Verification. In Pro-
ceedings of the 24th Annual International Conference on Mobile Computing and
Networking (MobiCom), 2018.

[50] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446,
IETF, August 2018.

[51] Lars Eggert. Towards securing the internet of things with quic. In Workshop on
Decentralized IoT Systems and Security (DISS), 2020.

[52] European Central Bank. Standards for Securities Clearing and Settlement in the
European Union. Technical report, CESR, 2004.

https://www.cisco.com/c/en/us/td/docs/wireless/asr_5000/21/MME/b_21_MME_Admin/b_21_MME_Admin_chapter_011111.pdf
https://www.cisco.com/c/en/us/td/docs/wireless/asr_5000/21/MME/b_21_MME_Admin/b_21_MME_Admin_chapter_011111.pdf
https://www.cisco.com/c/en/us/td/docs/wireless/asr_5000/21/MME/b_21_MME_Admin/b_21_MME_Admin_chapter_011111.pdf
https://github.com/cloudflare/quiche

109

[53] Facebook. mvfst: An implementation of the QUIC transport protocol. https:

//github.com/facebookincubator/mvfst, 2019.

[54] Federal Communications Commission, USA. Revision of the commission’s rules to
ensure compatibility with enhanced 911 emergency calling ssystems, September
2002. 17 FCC Rcd 19012 (25).

[55] Federal Communications Commission, USA. Wireless E911 location accuracy re-
quirements, April 2015. 30 FCC Rcd 2990 (4).

[56] Federal Communications Commission, USA. 800 MHz Cellular Service. https:

//www.fcc.gov/wireless/bureau-divisions/mobility-division/800-mhz-c

ellular-service, 2019.

[57] Federal Communications Commission, USA. Caller ID Spoofing. https://www.fc

c.gov/consumers/guides/spoofing-and-caller-id, 2020.

[58] Kamil Figiela, Adam Gajek, Adam Zima, Beata Obrok, and Maciej Malawski. Per-
formance evaluation of heterogeneous cloud functions. Concurrency and Computa-
tion: Practice and Experience, 30(23):e4792, 2018.

[59] Nick Galov. How Many IoT Devices Are There in 2021? https://techjury.n

et/blog/how-many-iot-devices-are-there, 2021.

[60] Nico Golde, Kévin Redon, and Jean-Pierre Seifert. Let me answer that for you:
Exploiting broadcast information in cellular networks. In Presented as part of the
22nd USENIX Security Symposium (USENIX Security), pages 33–48, 2013.

[61] Google. Encryption in Transit in Google Cloud. https://cloud.google.com/s

ecurity/encryption-in-transit, 2017.

[62] Google. Android Open Source Project. https://source.android.com, 2020.

[63] Google. Google Cloud Security Whitepapers. https://cloud.google.com/secur

ity/overview/whitepaper, 2021.

[64] Felix Günther, Britta Hale, Tibor Jager, and Sebastian Lauer. 0-rtt key exchange
with full forward secrecy. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques (Eurocrypt). Springer, 2017.

[65] Mordechai Guri, Yisroel Mirsky, and Yuval Elovici. 9-1-1 ddos: attacks, analysis
and mitigation. In 2017 IEEE European Symposium on Security and Privacy (Eu-
roS&P), pages 218–232. IEEE, 2017.

https://github.com/facebookincubator/mvfst
https://github.com/facebookincubator/mvfst
https://www.fcc.gov/wireless/bureau-divisions/mobility-division/800-mhz-cellular-service
https://www.fcc.gov/wireless/bureau-divisions/mobility-division/800-mhz-cellular-service
https://www.fcc.gov/wireless/bureau-divisions/mobility-division/800-mhz-cellular-service
https://www.fcc.gov/consumers/guides/spoofing-and-caller-id
https://www.fcc.gov/consumers/guides/spoofing-and-caller-id
https://techjury.net/blog/how-many-iot-devices-are-there
https://techjury.net/blog/how-many-iot-devices-are-there
https://cloud.google.com/security/encryption-in-transit
https://cloud.google.com/security/encryption-in-transit
https://source.android.com
https://cloud.google.com/security/overview/whitepaper
https://cloud.google.com/security/overview/whitepaper

110

[66] Michael Hauben. History of arpanet. Site de l’Instituto Superior de Engenharia do
Porto, 17, 2007.

[67] Zach Hill, Jie Li, Ming Mao, Arkaitz Ruiz-Alvarez, and Marty Humphrey. Early
observations on the performance of windows azure. In Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing (HPDC),
2010.

[68] Lin Huang. LTE REDIRECTION: Forcing Targeted LTE Cellphone into Unsafe
Network. In Proceedings of the 7th Annual HITB Security Conference (HITBSec-
Conf), 2016.

[69] Huawei. CloudEC V600R019C00 Feature Guide, Emergency Call. https://supp

ort.huawei.com/enterprise/en/doc/EDOC1100059085/e0804ebc/emergency-c

all, 2019.

[70] Syed Hussain, Omar Chowdhury, Shagufta Mehnaz, and Elisa Bertino. LTEInspec-
tor: A systematic approach for adversarial testing of 4G LTE. In Proceedings of the
25th Network and Distributed Systems Security (NDSS) Symposium, 2018.

[71] Syed Rafiul Hussain, Mitziu Echeverria, Omar Chowdhury, Ninghui Li, and Elisa
Bertino. Privacy attacks to the 4g and 5g cellular paging protocols using side channel
information. In Proceedings of the 26th Network and Distributed Systems Security
(NDSS) Symposium, 2019.

[72] Syed Rafiul Hussain, Mitziu Echeverria, Imtiaz Karim, Omar Chowdhury, and Elisa
Bertino. 5GReasoner: A Property-Directed Security and Privacy Analysis Frame-
work for 5G Cellular Network Protocol. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (CCS), pages 669–684.
ACM, 2019.

[73] ITU-T. ISDN user-network interface layer 3 specification for basic call control. Itu-t
recommendation, International Telecommunication Union, 1998. Q.931.

[74] Zhipeng Jia and Emmett Witchel. Nightcore: efficient and scalable serverless com-
puting for latency-sensitive, interactive microservices. In Proceedings of the 26th
ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2021.

[75] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag Khan-
delwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Yadwad-
kar, et al. Cloud programming simplified: A berkeley view on serverless computing.
arXiv preprint 1902.03383, 2019.

https://support.huawei.com/enterprise/en/doc/EDOC1100059085/e0804ebc/emergency-call
https://support.huawei.com/enterprise/en/doc/EDOC1100059085/e0804ebc/emergency-call
https://support.huawei.com/enterprise/en/doc/EDOC1100059085/e0804ebc/emergency-call

111

[76] Kakaku BBS. I cannot make emergency calls such as 110 (in Japanese). https:

//bbs.kakaku.com/bbs/J0000024343/SortID=21105988/, 2017.

[77] Kenneth Reitz. Requests: HTTP for Humans. https://docs.python-requests.

org/en/master/, 2011.

[78] Hannah Kuchler. Hackers find suppliers are an easy way to target companies.
https://www.ft.com/content/b4807a14-5097-11e4-8645-00144feab7de, 2015.

[79] Jörn Kuhlenkamp, Sebastian Werner, Maria C Borges, Dominik Ernst, and Daniel
Wenzel. Benchmarking elasticity of faas platforms as a foundation for objective-
driven design of serverless applications. In Proceedings of the 35th Annual ACM
Symposium on Applied Computing (SAC), 2020.

[80] Puneet Kumar and Behnam Dezfouli. Implementation and analysis of quic for mqtt.
Computer Networks, 150:28–45, 2019.

[81] Leslie Lamport. Specifying systems: the TLA+ language and tools for hardware and
software engineers. Addison-Wesley Longman Publishing Co., Inc., 2002.

[82] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,
Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. The
quic transport protocol: Design and internet-scale deployment. In Proceedings of
the annual conference of the ACM Special Interest Group on Data Communication
(SIGCOMM), 2017.

[83] Gyuhong Lee, Jihoon Lee, Jinsung Lee, Youngbin Im, Max Hollingsworth, Eric Wus-
trow, Dirk Grunwald, and Sangtae Ha. This is Your President Speaking: Spoofing
Alerts in 4G LTE Networks. In Proceedings of the 17th Annual International Con-
ference on Mobile Systems, Applications, and Services (MobiSys), pages 404–416.
ACM, 2019.

[84] Hyungro Lee, Kumar Satyam, and Geoffrey Fox. Evaluation of production serverless
computing environments. In 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD). IEEE, 2018.

[85] Chi-Yu Li, Guan-Hua Tu, Chunyi Peng, Zengwen Yuan, Yuanjie Li, Songwu Lu, and
Xinbing Wang. Insecurity of voice solution VoLTE in LTE mobile networks. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS), pages 316–327. ACM, 2015.

https://bbs.kakaku.com/bbs/J0000024343/SortID=21105988/
https://bbs.kakaku.com/bbs/J0000024343/SortID=21105988/
https://docs.python-requests.org/en/master/
https://docs.python-requests.org/en/master/
https://www.ft.com/content/b4807a14-5097-11e4-8645-00144feab7de
https://www.ft.com/content/b4807a14-5097-11e4-8645-00144feab7de

112

[86] Yuanjie Li, Chunyi Peng, Zengwen Yuan, Jiayao Li, Haotian Deng, and Tao Wang.
Mobileinsight: Extracting and analyzing cellular network information on smart-
phones. In Proceedings of the 22nd Annual International Conference on Mobile
Computing and Networking (MobiCom), pages 202–215, 2016.

[87] Shuhao Liu, Hong Xu, and Zhiping Cai. Low latency datacenter networking: A
short survey. arXiv preprint 1312.3455, 2013.

[88] OpenFaaS Ltd. Openfaas: Serverless functions, made simple. https://www.open

faas.com/, 2016.

[89] Lucas Clemente, et. al. quic-go: A QUIC implementation in pure Go. https:

//github.com/lucas-clemente/quic-go, 2016.

[90] M. Thomson, S. Turner. Using TLS to Secure QUIC. RFC 9001, IETF, May 2021.

[91] Pascal Maissen, Pascal Felber, Peter Kropf, and Valerio Schiavoni. Faasdom: A
benchmark suite for serverless computing. In Proceedings of the 14th ACM Interna-
tional Conference on Distributed and Event-based Systems (DEBS), 2020.

[92] Maciej Malawski, Kamil Figiela, Adam Gajek, and Adam Zima. Benchmarking het-
erogeneous cloud functions. In European Conference on Parallel Processing (Euro-
Par). Springer, 2017.

[93] Markets and Markets. Serverless Architecture Market by Service Type (Automation
and Integration, Monitoring, API Management, Security, Analytics, and Design and
Consulting), Deployment Model, Organization Size, Vertical, and Region - Global
Forecast to 2025. https://www.marketsandmarkets.com/Market-Reports/ser

verless-architecture-market-64917099.html, 2020.

[94] Stephen Paul Marsh. Formalising trust as a computational concept. University of
Stirling, 1994.

[95] Matt Adorjan. AWS Latency Monitoring. https://www.cloudping.co/grid,
2021.

[96] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peter-
son, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling
innovation in campus networks. ACM SIGCOMM computer communication review,
38(2):69–74, 2008.

[97] MediaTek. MTK Catcher. https://www.finetopix.com/showthread.php

/40844-MTK-Catcher, 2014.

https://www.openfaas.com/
https://www.openfaas.com/
https://github.com/lucas-clemente/quic-go
https://github.com/lucas-clemente/quic-go
https://www.marketsandmarkets.com/Market-Reports/serverless-architecture-market-64917099.html
https://www.marketsandmarkets.com/Market-Reports/serverless-architecture-market-64917099.html
https://www.cloudping.co/grid
https://www.finetopix.com/showthread.php/40844-MTK-Catcher
https://www.finetopix.com/showthread.php/40844-MTK-Catcher

113

[98] Microsoft. MsQuic: Cross-platform, C implementation of the IETF QUIC protocol.
https://github.com/microsoft/msquic, 2019.

[99] Microsoft. Azure encryption overview. https://docs.microsoft.com/en-us/az

ure/security/fundamentals/encryption-overview, 2021.

[100] Microsoft. Azure security baseline for Azure Functions. https://docs.microso

ft.com/en-us/security/benchmark/azure/baselines/functions-security-b

aseline, 2021.

[101] Ministry of Industry and Information Technology, China. Technical requirement of
routing and implementation for inter-network emergency call service, September
2005. YD/T 1406-2005.

[102] Ministry of Industry and Information Technology, China. Technical requirement
and testing methods for general function of mobile telecommunication terminal,
December 2011. YD/T 2307-2011.

[103] Nation Emergency Number Association. 9-1-1 Statistics. https://www.nena.org

/page/911Statistics, 2018.

[104] National Instruments, Ettus Research. Universal Software Radio Peripheral (USRP)
B210 SDR Kit (70 MHz - 6GHz). https://www.ettus.com/all-products/UB

210-KIT/, 2020.

[105] Nordstrom. Towards a serverless event-sourced nordstrom. https://youtu.be/W

cCErxLKR7g, 2017.

[106] Nordstrom Technology. Hello, retail! https://github.com/Nordstrom/hello

-retail, 2019.

[107] Matthew Obetz, Anirban Das, Timothy Castiglia, Stacy Patterson, and Ana Mi-
lanova. Formalizing event-driven behavior of serverless applications. In European
Conference on Service-Oriented and Cloud Computing (ESOCC). Springer, 2020.

[108] Matthew Obetz, Stacy Patterson, and Ana Milanova. Static call graph construction
in aws lambda serverless applications. In Proceedings of the 11th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud), 2019.

[109] Andreea Ancuta Onofrei, Yacine Rebahi, and Thomas Magedanz. Preventing Dis-
tributed Denial-of-Service Attacks on the IMS Emergency Services Support through
Adaptive Firewall Pinholing. The International Journal of Next Generation Network
(IJNGN), 2(1), 2010.

https://github.com/microsoft/msquic
https://docs.microsoft.com/en-us/azure/security/fundamentals/encryption-overview
https://docs.microsoft.com/en-us/azure/security/fundamentals/encryption-overview
https://docs.microsoft.com/en-us/security/benchmark/azure/baselines/functions-security-baseline
https://docs.microsoft.com/en-us/security/benchmark/azure/baselines/functions-security-baseline
https://docs.microsoft.com/en-us/security/benchmark/azure/baselines/functions-security-baseline
https://www.nena.org/page/911Statistics
https://www.nena.org/page/911Statistics
https://www.ettus.com/all-products/UB210-KIT/
https://www.ettus.com/all-products/UB210-KIT/
https://youtu.be/WcCErxLKR7g
https://youtu.be/WcCErxLKR7g
https://github.com/Nordstrom/hello-retail
https://github.com/Nordstrom/hello-retail

114

[110] OpenAirInterface Software Alliance. Openairinterface 5G Wireless Implementation.
https://www.openairinterface.org/, 2020.

[111] OpenFaaS Ltd. GitHub: openfaas/faas. https://github.com/openfaas/faas,
2021.

[112] Peter Pi, XiLing Gong, and Gmxp. Exploring Qualcomm Baseband via ModKit. In
CanSecWest conference, 2018.

[113] Diana Popescu, Noa Zilberman, and Andrew Moore. Characterizing the impact of
network latency on cloud-based applications’ performance. Computer Laboratory
technical reports, 2017.

[114] Qualcomm. QUALCOMM eXtensible Diagnostic Monitor (QxDM). https://ww

w.qualcomm.com/documents/qxdm-professional-qualcomm-extensible-diagn

ostic-monitor, 2020.

[115] QUIC Working Group. QUIC: A UDP-Based Multiplexed and Secure Transport.
RFC 9000, IETF, 2021.

[116] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee.
Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, IETF, June 1999.

[117] Raphael Satter, Christopher Bing, Joseph Menn. Hackers used SolarWinds’ domi-
nance against it in sprawling spy campaign. https://www.reuters.com/articl

e/global-cyber-solarwinds/hackers-at-center-of-sprawling-spy-campaig

n-turned-solarwinds-dominance-against-it-idUSKBN28P2N8, 2020.

[118] Yacine Rebahi, Andreea Ancuta Onofrei, and Thomas Magedanz. Security in the
Emergency Services Support for the IP Multimedia Subsystem (IMS). 5th Interna-
tional Week on Management of Networks and Services, Venice, Italy, 2009.

[119] Red Pocket Mobile. Red Pocket Global Internet Data Plans. https://www.redp

ocket.com/global, 2020.

[120] Larry Roberts. The arpanet and computer networks. In A history of personal work-
stations, pages 141–172. 1988.

[121] Scott W Rose, Oliver Borchert, Stuart Mitchell, and Sean Connelly. Zero trust
architecture. Special Publication, National Institute of Standards and Technology
(NIST SP), Gaithersburg, MD, 2020.

https://www.openairinterface.org/
https://github.com/openfaas/faas
https://www.qualcomm.com/documents/qxdm-professional-qualcomm-extensible-diagnostic-monitor
https://www.qualcomm.com/documents/qxdm-professional-qualcomm-extensible-diagnostic-monitor
https://www.qualcomm.com/documents/qxdm-professional-qualcomm-extensible-diagnostic-monitor
https://www.reuters.com/article/global-cyber-solarwinds/hackers-at-center-of-sprawling-spy-campaign-turned-solarwinds-dominance-against-it-idUSKBN28P2N8
https://www.reuters.com/article/global-cyber-solarwinds/hackers-at-center-of-sprawling-spy-campaign-turned-solarwinds-dominance-against-it-idUSKBN28P2N8
https://www.reuters.com/article/global-cyber-solarwinds/hackers-at-center-of-sprawling-spy-campaign-turned-solarwinds-dominance-against-it-idUSKBN28P2N8
https://www.redpocket.com/global
https://www.redpocket.com/global

115

[122] David Rupprecht, Katharina Kohls, Thorsten Holz, and Christina Pöpper. Breaking
LTE on layer two. In Proceedings of the 2019 IEEE Symposium on Security &
Privacy (S & P), 2019.

[123] S. O’Dea. Number of mobile (cellular) subscriptions worldwide from 1993 to 2021.
https://www.statista.com/statistics/262950/global-mobile-subscriptio

ns-since-1993/, 2021.

[124] Arnav Sankaran, Pubali Datta, and Adam Bates. Workflow integration alleviates
identity and access management in serverless computing. In Annual Computer Se-
curity Applications Conference (ACSAC), 2020.

[125] Takuro Sato, Daniel M Kammen, Bin Duan, Martin Macuha, Zhenyu Zhou, JunWu,
Muhammad Tariq, and Solomon Abebe Asfaw. Smart grid standards: specifications,
requirements, and technologies. John Wiley & Sons, 2015.

[126] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry, Paul Ba-
tum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ri-
cardo Bianchini. Serverless in the wild: Characterizing and optimizing the serverless
workload at a large cloud provider. In 2020 USENIX Annual Technical Conference
(USENIX ATC), 2020.

[127] Altaf Shaik, Ravishankar Borgaonkar, N Asokan, Valtteri Niemi, and Jean-Pierre
Seifert. Practical attacks against privacy and availability in 4G/LTE mobile com-
munication systems. In Proceedings of the 23rd Annual Network and Distributed
System Security (NDSS) Symposium, 2016.

[128] Arjun Singhvi, Kevin Houck, Arjun Balasubramanian, Mohammed Danish Shaikh,
Shivaram Venkataraman, and Aditya Akella. Archipelago: A scalable low-latency
serverless platform. arXiv preprint 1911.09849, 2019.

[129] Nikhila Somu, Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. Panopti-
con: A comprehensive benchmarking tool for serverless applications. In 2020 In-
ternational Conference on Communication Systems & NETworkS (COMSNETS).
IEEE, 2020.

[130] Jaeseung Song, Hyoungshick Kim, and Athanasios Gkelias. iVisher: Real-Time De-
tection of Caller ID Spoofing. ETRI Journal, 36(5):865–875, 2014.

[131] Sprint. What this means to you after April 30, 2019. https://www.sprint.com

/en/support/account/oma-slot.html, 2019.

https://www.statista.com/statistics/262950/global-mobile-subscriptions-since-1993/
https://www.statista.com/statistics/262950/global-mobile-subscriptions-since-1993/
https://www.statista.com/statistics/262950/global-mobile-subscriptions-since-1993/
https://www.sprint.com/en/support/account/oma-slot.html
https://www.sprint.com/en/support/account/oma-slot.html

116

[132] Statista. Forecast end-user spending on IoT solutions worldwide from 2017 to 2025.
https://www.statista.com/statistics/976313/global-iot-market-size/,

2019.

[133] Amoghvarsha Suresh and Anshul Gandhi. Fnsched: An efficient scheduler for server-
less functions. In Proceedings of the 5th International Workshop on Serverless Com-
puting, 2019.

[134] Erik Sy, Tobias Mueller, Christian Burkert, Hannes Federrath, and Mathias Fischer.
Enhanced performance and privacy for tls over tcp fast open. Proc. Priv. Enhancing
Technol., 2020(2):271–287, 2020.

[135] T. Taylor, H. Tschofenig, H. Schulzrinne, and M. Shanmugam. Security Threats
and Requirements for Emergency Call Marking and Mapping. RFC 5069, IETF,
January 2008.

[136] The Apache Software Foundation. OpenWhisk, Open Source Serverless Cloud Plat-
form. https://openwhisk.apache.org/, 2016.

[137] The Chromium Projects. SPDY: An experimental protocol for a faster web. http:

//www.chromium.org/spdy/spdy-whitepaper, 2010.

[138] THE PAPER. Father fell to the ground with cerebral haemorrhage, mother’s mobile
phone cannot make emergency calls. Meizu said: possible a system problem (in
Chinese). https://www.thepaper.cn/newsDetail_forward_3749664, 2019.

[139] Ludovic Thomas, Emmanuel Dubois, Nicolas Kuhn, and Emmanuel Lochin. Google
quic performance over a public satcom access. International Journal of Satellite
Communications and Networking, 37(6):601–611, 2019.

[140] Guan-Hua Tu, Yuanjie Li, Chunyi Peng, Chi-Yu Li, and Songwu Lu. Detecting
problematic control-plane protocol interactions in mobile networks. IEEE/ACM
Transactions on Networking, 24(2):1209–1222, 2016.

[141] Guan-Hua Tu, Yuanjie Li, Chunyi Peng, Chi-Yu Li, Hongyi Wang, and Songwu Lu.
Control-plane protocol interactions in cellular networks. In Proceedings of the an-
nual conference of the ACM Special Interest Group on Data Communication (SIG-
COMM), pages 223–234. ACM, 2014.

[142] Lionel Sujay Vailshery. Cloud applications market size worldwide from 2013 to 2025.
https://www.statista.com/statistics/475670/cloud-applications-marke

t-size-worldwide/, 2022.

https://www.statista.com/statistics/976313/global-iot-market-size/
https://openwhisk.apache.org/
http://www.chromium.org/spdy/spdy-whitepaper
http://www.chromium.org/spdy/spdy-whitepaper
https://www.thepaper.cn/newsDetail_forward_3749664
https://www.statista.com/statistics/475670/cloud-applications-market-size-worldwide/
https://www.statista.com/statistics/475670/cloud-applications-market-size-worldwide/

117

[143] Erwin Van Eyk, Joel Scheuner, Simon Eismann, Cristina L Abad, and Alexandru
Iosup. Beyond microbenchmarks: The spec-rg vision for a comprehensive serverless
benchmark. In Companion of the ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE), 2020.

[144] Verizon Wireless. CDMA Network Retirement. https://www.verizonwireless.

com/support/knowledge-base-218813/, 2019.

[145] W3Techs. Usage statistics of QUIC for websites. https://w3techs.com/technol

ogies/details/ce-quic, 2021.

[146] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael Swift.
Peeking behind the curtains of serverless platforms. In 2018 USENIX Annual Tech-
nical Conference, 2018.

[147] Bob Williams. Intelligent transport systems standards. Artech House, 2008.

[148] Y. Chen, J. Chu, S. Radhakrishnan, A. Jain. TCP Fast Open. RFC 7412, IETF,
December 2014.

[149] Ethan G Young, Pengfei Zhu, Tyler Caraza-Harter, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. The true cost of containing: A gvisor case study.
In Proceedings of the 11th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud), 2019.

[150] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu, Pingchao
Yang, Chenggang Qin, and Haibo Chen. Characterizing serverless platforms with
serverlessbench. In Proceedings of the 11th ACM Symposium on Cloud Computing
(SoCC), 2020.

[151] Yinbo Yu, You Li, Kaiyu Hou, Yan Chen, Hai Zhou, and Jianfeng Yang. CellScope:
Automatically Specifying and Verifying Cellular Network Protocols. In Proceedings
of the ACM SIGCOMM 2019 Conference Posters and Demos, pages 21–23. ACM,
2019.

[152] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking tla+ specifica-
tions. In Advanced Research Working Conference on Correct Hardware Design and
Verification Methods, pages 54–66. Springer, 1999.

https://www.verizonwireless.com/support/knowledge-base-218813/
https://www.verizonwireless.com/support/knowledge-base-218813/
https://w3techs.com/technologies/details/ce-quic
https://w3techs.com/technologies/details/ce-quic

	ABSTRACT
	Acknowledgements
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. Summary of the Contributions
	1.2. Organization of the Dissertation

	Chapter 2. Discovering Cellular Network Emergency Call Vulnerabilities with Formal Methods
	2.1. Introduction
	2.2. Challenges and Our Solutions
	2.3. Specification of Emergency Call Systems
	2.4. Verification of Emergency Call Systems
	2.5. Recommendations
	2.6. Seed-Assisted Specification Method
	2.7. Discussion
	2.8. Related Work
	2.9. Chapter Summary

	Chapter 3. Accelerating and Securing Serverless Cloud Networks with the QUIC Protocol
	3.1. Introduction
	3.2. Background and Challenges
	3.3. Modeling Serverless Networks
	3.4. QFaaS: System Design
	3.5. QFaaS: System Implementation
	3.6. Evaluation
	3.7. Related Work
	3.8. Chapter Summary

	Chapter 4. Conclusion
	4.1. Future Work

	References

