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ABSTRACT

Active Intent Disambiguation, Control Interpretation, and Arbitration for Assistive

Robotics

Deepak Edakkattil Gopinath

The goal of this dissertation is to develop models, algorithms, and interaction proto-

cols to improve the efficacy and quality of Human-Autonomy Interaction (HAI) in the

domain of assistive robotics. In this domain, the most common control paradigm is that of

manual teleoperation using control interfaces such as joysticks, switch-based head arrays,

and sip-and-puff. However, manual teleoperation can become physically and cognitively

burdensome to the human due to the limitations of the control interface, inherent complex-

ities of the assistive machine, and motor impairments. Although introducing full robotics

autonomy could be a viable approach to ameliorate these challenges, a more attractive

control paradigm is that of shared autonomy in which the human and the autonomous

agent share control responsibilities, thereby ensuring that the human still has agency.

This dissertation focuses on two important aspects of a shared-autonomy assistive

system, namely, intent inference and control arbitration. In a shared autonomy human-

robot team, the autonomous agent’s ability to infer human intent accurately is critical for
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providing correct and timely assistance to the human. However, due to the sparsity, low

information content, and imperfections in the control signals, accurate intent inference is

rather difficult. To improve the autonomous agent’s ability to infer user intent this disser-

tation introduces the idea of intent disambiguation. Algorithms and protocols for intent

disambiguation are designed to alter or nudge the human’s decision-making context in a

principled manner so that the signals generated by the human contain more information

regarding underlying intent. Intent disambiguation algorithms endow the autonomous

agent with active learning capabilities. More meaningful and informative teleoperation

signals from the human enables the autonomous agent to perform accurate intent in-

ference which in turn improves the assistance provided to the human. In Chapter 5 a

heuristic approach for intent disambiguation that reasons over the space of control modes

is introduced. Building upon this idea, in Chapter 6 a more rigorous formalism of intent

disambiguation that is grounded in information-theoretic principles is presented.

Another important topic that this dissertation addresses is the question of how to

share robot control between the human and the autonomous agent. Upon successful

user intent inference the autonomous agent can rely on different types of autonomous

controllers to generate appropriate assistance towards the user’s intended goal. Yet, in

a shared control setting the autonomous control signal needs to be combined with the

human’s control signal in some fashion. Control sharing in a shared control assistive

system lies on a continuum with full manual teleoperation on one end of the spectrum

to fully autonomous solution on the other. How exactly should control be arbitrated

between the human and the autonomous agent is a critical question that impacts the

overall performance of the human-autonomy team. Implicitly, the question could be
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framed as a constrained optimization problem in which the optimization objective is to

balance both task-related metrics (such as successful task completion, minimizing effort,

and minimizing energy expenditure) and subjective metrics (such as satisfaction, sense

of agency, and user’s assistive preferences). To this end, in Chapter 7 we propose a

human-in-the-loop solution to this constrained optimization problem in which the human

uses an easy-to-understand, interpretable protocol to optimize the arbitration parameters

according to their own optimality criteria to achieve their desired outcomes.

In the assistive setting, robot teleoperation is facilitated using physical control inter-

faces. Autonomous agents benefit a great deal if they can make a distinction between

conceptual and physical aspects of interface operation. To address this problem, this

thesis introduces the notion of interface awareness into probabilistic models of interface-

mediated robot teleoperation. In Chapter 4, the autonomous agent relies on an interface-

aware robot teleoperation model to reason about user intent at the level of interface

signals and then provide appropriate types of modifications and corrections to faulty or

unintended interface operation that arise due to lack of motor skill, motor impairments

or inherent noise in the physical interface.

As a last contribution, Chapter 8 presents a software tool for conducting web-based

crowdsourced human-robot interaction experiments. Data collection in the domain of

assistive robotics can be an arduous task and the goal of this tool is to facilitate rapid

prototyping and testing of novel algorithms developed for assistive autonomous agents.

To summarize, the work presented in this dissertation tackles different challenges

that arise in human-autonomy interaction in the context of interface-mediated assistive
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robot teleoperation and proposes algorithms and protocols to improve the overall human

experience of interacting with an assistive robot.
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CHAPTER 1

Introduction

Robots are ubiquitous in modern society and have revolutionized the relationship be-

tween humans and machines. Robotics automation, particularly in industrial settings,

has resulted in enhanced manufacturing productivity, improved quality assurance, and

increased worker safety. As a result of robotics automation, manufacturing jobs are un-

dergoing a paradigm shift as workers can switch their focus to more creative aspects

of manufacturing such as engineering, programming, and management. However, com-

pared to a few decades ago, in the present day, robots have transitioned out of the rigid,

structured, and specialized industrial environments to the more rich, complex and unpre-

dictable day-to-day human environments and have impacted diverse domains of human

endeavor such as healthcare [101], entertainment [67], and home robotics [59].

The impact is even more significant in the domain of assistive and rehabilitation robot-

ics in which the potential to drastically enhance the quality of life for people suffering from

motor impairments is immense. Numerous assistive and rehabilitation machines rang-

ing from powered and smart wheelchairs [121], exoskeletons [130] and assistive robotic

arms [96] can help to promote independence, boost self-esteem [36] and extend mobility

and manipulation capabilities of motor-impaired individuals. These machines help such

individuals to regain a sense of agency and can revolutionize the way they interact with

society at large. The work presented in this thesis concerns this particular application

domain of robotics.
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The standard usage of these assistive machines still relies on manual teleoperation by

the human. Manual teleoperation refers to the fact that motion control of the robot is

fully entrusted with the human. In the assistive domain, manual teleoperation is typically

enacted through a control interface such as a joystick, switch-based head array or a sip-

and-puff. In such settings these assistive robots are complex mechanical devices without

any kind of intelligent capabilities and are treated as extensions of human motor abilities.

Although it is true that teleoperated assistive robots themselves can be a valuable tool

to enhance the quality of Activities of Daily Living (ADL) tasks [91], one of the most

difficult conundrums is that the greater the motor impairment of the end-user, the more

limited the control interfaces that are available for them to use [7]. The manual control

of these assistive machines can become physically and cognitively difficult due to the low-

dimensionality, sparsity and bandwidth of the control interface. The inherent complexity

in robot dynamics, uncertainties in the physical world, and the physical limitations of the

user add to the difficulty as well. There is clearly a need for improving the human-robot

interaction experience in the assistive setting for wider user adoption and efficacy of these

machines.

This thesis recognizes the need to address this gap and focuses on the development

of computational models, algorithms, and interaction protocols that aim to improve the

human-autonomy interaction in the assistive domain. A naive way to address this prob-

lem would be to introduce full robot autonomy ; the intelligence that enables robots to

accomplish a task independently without requiring explicit instructions from a human.

This holds considerable promise as a tool to offset (and in some cases restore) the above-

mentioned limitations. Advances in the fields of machine learning and artificial intelligence
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have helped to endow these assistive machines with better decision-making and prediction

capabilities when interacting with humans in real-world settings [123].

However, there is a growing consensus that the users of assistive technologies do not

prefer to cede full authority to the autonomous partner during task execution. Particu-

larly, for motor-impaired users, the need to retain a sense of agency using residual motor

function is important for improving self-belief and uplifting self-esteem [29]. Therefore,

in such cases, the introduction of shared control seeks to find a middle ground between

full teleoperation and full autonomy by offloading only some aspects of task execution to

the autonomy [43, 170].

1.1. Motivation

Shared-control describes a general approach for having an autonomous agent alongside

a human in the control loop of a machine, for example an assistive robot. In a shared-

control system, the primary function of the autonomous agent is to compensate for any

shortcomings in overall task performance, improve user experience, ensure safety, and to

offload the cognitive and physical burden of full manual control of the machine. The

task responsibility is split between the user and the autonomous agent usually with an

aim to reduce human effort in accomplishing the task. The exact nature of workload

distribution depends on the robotic platform, the domain, and user needs. For example, it

is possible that humans and autonomous agents complement each other’s capabilities and

coordinate their actions in a hierarchical fashion. In a smart wheelchair navigation task,

the human can be responsible for high-level actions such as selecting a navigation goal in

the world, and the autonomous agent can be entrusted to perform low-level planning and



27

control that would drive the wheelchair to the chosen navigation goal. Another paradigm

that can be adopted is a blending-based shared control framework in which the human

and autonomous agent actions are arbitrated at the control signal (or the policy) level

directly. In a blending-based shared control system, the control signals from the human

and the autonomous agent are issued in the same space. Yet another approach is to

adopt a turn-taking paradigm in which the autonomous agent and the human switch

roles intermittently. Turn-taking allows the human to take rest (important for long-term

continued use) and also provides an opportunity for the human to observe the autonomous

agent’s actions without any interference with their own actions potentially helping the

human to build better mental models of the autonomous agent’s behavior.

1.1.1. Intent Disambiguation

Regardless of the control allocation paradigm, the usefulness of shared-control human-

machine systems typically relies on the autonomous agent’s ability to infer the user’s

underlying needs and intentions as clearly as possible. Autonomous agents perform in-

tent inference in a passive manner by combining information available through various

sensor streams. Particularly in the assistive domain, inferring user intent becomes sig-

nificantly challenging as the user input is low-dimensional (due to inherent limitations

in the available control interfaces and motor abilities), filtered (due to electromechanical

filtering to reduce oscillations and noise), or sparse (due to physical limitations, motor

impairments and noisy actuation channels that result in signal dropouts). When the

information content available in sensor streams becomes sparse then it is helpful to de-

sign human-autonomy interaction protocols that can perform active intent inference. By
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adding an active element to the interaction, the autonomous agent is endowed with the

capability to alter or nudge the human’s decision-making context such that the humans

are coaxed to generate actions that will reveal the underlying intent to the autonomous

agent more clearly.

To that end, this thesis develops shared-control paradigms in which autonomous agents

are endowed with algorithms to perform intent disambiguation, which is a mechanism to

perform active inference of human internal state. This thesis presents two different formu-

lations of intent disambiguation: (a) a heuristic approach to disambiguate intent over the

space of control modes, and (b) an information-theoretic approach to disambiguate user

intent over the entire state space. Additionally, this thesis also presents new methods to

perform intent inference inspired by dynamic field theory, particularly effective for dealing

with sparse signals.

1.1.2. User-Driven Shared Control

Another critical design consideration for shared-control algorithms is the proper charac-

terization and customization of individual instances of human-autonomy teams. The need

for customization arises because users differ in their physical abilities, knowledge level,

preferences, and desired amount of assistance. Therefore, a one-size-fits-all approach is

unlikely to work for different end users. To address the problem of customization of

assistance levels, this thesis develops a lightweight, interpretable, and interactive verbal

procedure which leverages the human in the control loop to optimize for appropriate levels

of assistance according to user preference. The procedure allows for continual adjustment
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of assistance parameters as and when required by the user without having to retrain or

redesign the autonomous agent.

1.1.3. Interface-Level Intent Inference

During control-interface mediated robot teleoperation, the idiosyncrasies of the control

interface have a profound effect on how end users can communicate their intent effec-

tively. Each control interface relies on a unique physical activation mechanism and places

different physical and cognitive requirements on the end user’s capabilities. Mechanical

wear and tear can also degrade the quality of signal output from an interface. An au-

tonomous agent tasked with the responsibility of assisting the user during task execution

will benefit from utilizing more accurate models that capture the distinction between the

user’s conceptual understanding of how to use a control interface and the physical under-

standing (motor skill) of how to operate a control interface. To that end, this thesis also

introduces an interface-aware probabilistic teleoperation model to perform interface-level

intent inference.

To summarize, the high-level research questions this thesis aims to tackle are as follows:

• What algorithms and human-autonomy interaction protocols can improve the

autonomous agent’s ability to accurately infer intent when the human input is

low-dimensional and sparse?

• How can we identify and characterize the limitations in the control of and the

operation of a control interface and their impact on various downstream tasks in

the context of shared-control robot teleoperation?
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Figure 1.1. Key components of a shared-autonomy human-robot system.
Chapter 4 addresses the human’s interaction with the control interface.
Chapters 5 and 6 address various challenges related to intent inference
from low-dimensional control signals by developing new algorithms for in-
tent inference and disambiguation. The question of optimizing the arbitra-
tion function parameters is addressed in Chapter 7. Chapter 8 proposes
a crowdsourced solution to the problem of large-scale data collection for
human-robot interaction experiments.

• How can we leverage the human in the loop to optimize the arbitration parameters

in a shared control system with low computational overhead?

1.2. Dissertation Outline

This thesis starts with an in-depth discussion of related work and other helpful back-

ground material in Chapter 2. This sets the context in order to situate the specific prob-

lems addressed in the later chapters properly. Chapter 3 formalizes the shared-control

human robot system in which robot teleoperation is mediated using a control interface.
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Chapter 4 explores the idea of interface-awareness and investigates its role in im-

proving interface-level intent inference in the context of control-interface mediated robot

teleoperation.

Insights: The signal that emanates from the control interface during robot teleoperation

is masked by the physical and cognitive limitations of the user and the mechanical par-

ticularities of the interface which in turn have profound impact on various downstream

tasks that rely on this signal.

Contributions: This chapter introduces a generative model for the human’s physical

interaction with a control interface and distinguishes between the conceptual understand-

ing of and the physical aspect of operating a control interface. By reasoning over the

unobserved human intentions at the level of interface signals using model-based Bayesian

inference techniques, a new assistance system that provides customized modifications to

the measured interface signals is presented.

Results: This chapter presents a set of simulation-based results in which different variants

of the model are investigated. The results of a 10-person human subject study show

that the proposed assistance paradigms help to significantly reduce task completion time,

number of mode switches, cognitive workload, and improve overall user satisfaction when

operating the robot. The work presented in this chapter is done in equal collaboration

with Mahdieh Nejati Javaremi. The details of workload distribution is presented in the

chapter.

Chapter 5 addresses various challenges that arise when autonomous agents attempt to

perform user intent inference from limited bandwidth, low fidelity interface-level signals

generated by the human via the control interface. Particularly, the chapter develops
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algorithms and interaction protocols for autonomous agents to help themselves before

assisting end users.

Insights: This chapter introduces the notion of inverse legibility in which the assistance

provided by the autonomous agent is intended to extract more legible, intent-expressive

control commands from the human. These intent expressive commands are then used for

intent disambiguation via control mode selection.

Contributions: This chapter develops a heuristic metric to characterize control modes

according to their ability to disambiguate human intent. An interaction protocol is also

proposed in which the user is in control of when to activate the disambiguation algorithm.

Additionally, the chapter also presents a novel approach to intent inference inspired by

dynamic field theory.

Results: The results of an 8-person human subject study reveal that the disambiguation

system helps to significantly reduce task effort and is of greater utility for more limited

control interfaces and complex tasks.

Chapter 6 builds upon the need for intent disambiguation presented in Chapter 5 and

presents an algorithm for interface-aware intent disambiguation over environment states

that comprise of both robot locations as well as control modes.

Insights: The main insight presented in this chapter is that intent disambiguation can

be cast in information-theoretic terms and can be performed not just over the subset of

control modes but instead over the entire world state that comprises of robot location

as well. Additionally, by situating the algorithm within a turn-taking based shared-

autonomy paradigm the autonomous agent is able to help itself and enhance its ability to

infer user’s goal more accurately.
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Contributions: The chapter presents (a) an interface-aware intent disambiguation algo-

rithm grounded in information-theoretic principles and (b) a turn-taking based adaptive

assistance protocol that utilizes the intent disambiguation algorithm alongside blending-

based shared-control.

Results: This chapter presents results in two different settings. Pure simulation-based

results validate the design of the disambiguation metric. Results of a 9-person human

subject study in a simulated robot environment reveal that a turn-taking based shared

control paradigm endowed with the disambiguation capabilities results in lower task effort

as measured by objective metrics such as mode switches and task completion times.

Chapter 7 describes the idea of human in the loop optimization of shared control

parameters in the domain of assistive robotics.

Insights: The key insight in this work is that customization of shared-control assistance

for specific users is necessary due to the diversity in user needs. When framing the problem

of human-autonomy interaction as one of reward optimization, explicit representation of

the user’s reward function is not necessary as long as we can leverage the human in the

loop to optimize the arbitration parameters.

Contributions: The chapter presents an iterative verbal optimization protocol initiated

by the end-user to optimize the control arbitration parameters. This approach attempts

to address the human-AI value misalignment issue by directly giving the human agency

over how the autonomous agent should behave.

Results: The results in this study reveal surprising aspects of user preferences; particu-

larly in that the customized levels of assistance did not result in the most optimal task

performance as measured by task completion times and number of mode switches. That
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is, the true reward function that the human optimizes is likely more complex than a sim-

ple time-optimal or minimum-effort cost function, indicating the need to investigate the

exact specification of the true cost function that is being optimized by the human in a

shared control system. The work presented in this chapter is done in collaboration with

Siddarth Jain. The details of workload distribution is presented in the chapter.

Chapter 8 of this thesis also makes a software contribution in the form of a new

web-based software tool for crowd-sourced Human-Robot Interaction (HRI) experiments.

Insights: Development of novel HRI algorithms is only meaningful and useful if they

can be tested rigorously in a larger context. There are many factors that can limit

access to end-user evaluation, for example, their ability to travel to the research site,

scheduling conflicts, and health issues. At the time of the writing of this thesis, the

COVID-19 pandemic also raised significant health concerns for researchers to conduct

in-person research studies.

Contributions: This chapter presents RemoteHRI, a Javascript-based open-source soft-

ware framework for crowdsourced human-robot interaction experiments in a web-browser.

RemoteHRI uses state-of-the-art ReactJS framework to build standard simulated environ-

ments for HRI research and provides the researcher with a flexible set of software tools for

rapid prototyping and quick deployment of online experiments. The code implementation

of this project is primarily accomplished by Finley Lau.

Chapter 9 presents a discussion of future directions for the field.

To summarize, the work presented in this dissertation tackles different challenges

that arise in human-autonomy interaction in the context of interface-mediated assistive
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robot teleoperation and proposes algorithms and protocols to improve the overall human-

autonomy interaction experience.
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CHAPTER 2

Background and Related Work

This chapter presents an overview of existing literature that has informed the work

in this thesis. We will touch upon shared control in the human robot interaction, human

behavior modeling, intent recognition, approaches to task allocation, and autonomous

policy generation.

2.1. Shared Control in Human Robot Interaction

Traditionally, shared-control in human-machine systems is described as Levels of Au-

tonomy (LoA) [15, 143]. LoAs provide a principled taxonomy to classify human-machine

interaction by taking into consideration the decision-making responsibilities entrusted to

each party, how much information regarding the context is utilized, and also the types

of actions enacted by each agent [52, 53, 54]. LoAs range from full manual control of a

robot by the user (pure teleoperation) on one end to full autonomous control capable of

accomplishing a diverse set of tasks in a variety of environments (potentially containing

other humans as well) on the other. However, this is still a simplified way of understand-

ing shared-control systems, as the rich and multi-dimensional space of human-machine

interaction is reduced to a single dimension [114]. Depending on the roles played by the

participating agents in a shared-control system, there are multiple fine-grained notions of

semi-autonomous systems that exist such as collaborative control, mixed-initiative con-

trol, and supervisory control. Going beyond this uni-dimensional approach, Schilling et
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al. [140] advocate for a multidimensional perspective in characterizing shared control sys-

tems, particularly with an emphasis on quantifying emergent interaction patterns. The

authors present a number of other dimensions such as shared resources, adaptivity, and

predictability, to name a few, which are of importance.

Overall, in shared-control systems complementary abilities of humans and autonomous

agents are leveraged to jointly accomplish various tasks such that the human-autonomy

team is typically more capable than either the human or the autonomous agent on their

own. That is, the autonomous agent is typically in the control loop of the robot and

presumes tight coupling between the human and the agent for successful task accom-

plishment [40]. Abbink et al., in a recent survey paper, defined shared control as one

in which ”...humans(s) and robots(s) are interacting congruently in a perception-action

cycle to perform a dynamic task, that either the human or the robot could execute individ-

ually under ideal circumstances” [1]. However, the presumption that the human partner

could execute the task ideally is often violated. For example, in the domain of assistive

robotics, the end-user population consists of people with severe motor impairments as a

result of spinal cord or brain injuries or neuromotor degenerative diseases who therefore

have limits on their ability to control assistive robots. Shared control, as opposed to fully

autonomous solutions, is a viable approach to provide a sense of agency to the end user

by entrusting some level of robot control with them.

Research in shared control systems span a wide range of topics such as perception [83,

84, 86], inference [3, 129], user-behavior modeling [24, 169], and customization [32], to

name a few. The work in this thesis primarily concerns inference, personalization, and
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interaction modeling. The next section provides an overview of various applications of

shared control in human-machine systems.

2.2. Applications of Shared Control

Shared control for human-machine systems have applications in various domains. Nav-

igation assistance systems, often found in aviation systems [160, 161], semi-autonomous

vehicles [106], and smart wheelchairs [45, 78], are forms of shared control, in which

the human is typically responsible for providing the navigation goals and the underly-

ing autonomy is responsible for navigating to the specified goal in a safe and efficient

manner [46]. Such systems can rely on predefined maps of the world or could rely on

SLAM-like techniques [119] to build them on-the-fly. Shared control can be used for en-

suring safety of the human as well as the machine [25]. For example, in semi-autonomous

driving, autonomy can leverage its faster computing capabilities to detect and reason

about potentially unsafe features in the environment during navigation and provide au-

tomatic obstacle avoidance when appropriate thereby keeping the user safe [150]. Safety

protocols, such as obstacle avoidance are particularly important in situations where pure

robot teleoperation is hard due to complex dynamics of the system [134], lack of skill, or

inherent motor impairments. Within assistive robotics, the type and amount of assistance

will vary depending on the use case, the robotic platform, and the control interface used,

as well as user preferences. Autonomy can play the role of a teacher and can assist the

end user to enhance rehabilitation outcomes and facilitate skill development [111].

The standard usage of these assistive machines relies on manual teleoperation typ-

ically enacted through a control interface such as a joystick. However, the greater the
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motor impairment of the user, the more limited are the interfaces available for them

to use. These interfaces (for example, sip-and-puffs and switch-based head arrays) are

low-dimensional, discrete interfaces that can only operate in subsets of the entire control

space. These subsets are referred to as control modes. The dimensionality mismatch

between the interface and the robot’s controllable dimensions necessitates the user to

switch between control modes during teleoperation. This is known as mode switching and

has been shown to increase the cognitive and physical burden and to affect task perfor-

mance negatively [128]. In order to offset the drop in performance due to shifting focus

(also known as task switching) from the task at hand, due to switching between different

control modes, various mode switch assistance paradigms have been proposed. A simple

time-optimal mode switching scheme is shown to improve task performance [71]. Machine

learning techniques are utilized to learn mappings from robot state to control modes pre-

ferred by human users [85]. Robot operation in certain control modes can also help the

autonomous agent to infer the user’s intent more accurately and confidently, especially

in scenarios where the inference of user intent is exclusively informed by human’s control

commands issued via the limited control interfaces [64]. Additionally, the autonomous

agent can provide assistance in the form of filtering the noise induced in the system due to

interface operation. The source of noise could be electro-mechanical wear and tear of the

equipment or due to performance degradation as a result of cognitive or physical fatigue.

To that end, in this thesis, we introduce the notion of inverse legibility, in which

the assistive roles are switched (temporarily) and the human-generated actions help the

autonomous agent to deliver assistance more effectively [64]. Particularly to help with

mode switching, we introduce an intent disambiguation metric to characterize the intent
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disambiguation capabilities of a control dimension/control mode. By having the user

operate the robot in the disambiguating control mode, the control commands become

more intent-expressive and as a result the autonomous agent is able to infer the user’s

intent more accurately and subsequently step in and provide appropriate assistance.

Another important design consideration is that of customization of assistance to indi-

vidual user needs. The need for customization in the space of assistive and rehabilitation

robotics arises because a one-size-fits-all approach is unlikely to work for all end users.

Motor impairments vary significantly between people as the nature of injury or disease is

never the same. Therefore, in order to generalize better and to ensure higher user satisfac-

tion and adoption, this thesis presents a protocol for human-in-the-loop customization of

control allocation parameters. We utilize a blending-based shared control scheme in which

the linear blending factor is a function of the probability of the predicted goal (agnostic

to the type of intent inference algorithm used). We assume a parameterized piecewise-

linear function and develop an iterative procedure with which the user is able to tune the

parameters of the arbitration function to their own satisfaction and preference [65].

The next section discusses various approaches to human behavior modeling and inten-

tion recognition and their impact on improving the joint performance of the shared-control

human-machine system.

2.3. Human Behavior Modeling and Intent Inference for Shared Control

Teamwork in a shared-control system is enhanced when the team members understand

each other’s intentions and goals. However, there are particular challenges that arise

in HRI due to the differences in the mental and physical capabilities of humans and



41

robots [72]. Robots can deal with such challenges by maintaining models of human

cognition and behavior [89] spanning different timescales and levels. The main purpose

of behavior modeling is so that it can be used for prediction. Endowing the autonomous

agent with this predictive power can enable it to anticipate human needs and actions and

respond accordingly.

In [72] the authors utilize ‘Marr’s levels of analysis’ [110] to categorize models for

human behavior into three distinct categories, namely: computational, algorithmic, and

implementational. Categorization of human models using Marr’s level of analysis clari-

fies what aspects of human behavior are being modeled. Computational-level techniques

are ideal for scenarios that benefit from the knowledge of normative behavior that hu-

mans ought to exhibit. These models typically rely on simplistic assumptions of perfectly

rational behavior and treat human idiosyncrasies and deviations from the norm as ob-

servational noise. Algorithmic level analysis, on the other hand, seeks to delve into the

processing constraints that agents have and how they lead to systematic errors thereby

providing better insight into why agents deviate from normative behavior. However, the

algorithmic models typically work well over shorter timescales and therefore are not suited

for modeling human behavior that lasts over longer timescales.

Within the computational category, one of the most common methodologies is to

adopt simple probabilistic models that attempt to model very low-level short-time horizon

behaviors (such as reaching motions performed by humans during a manipulation task).

For example, the human could be modeled as a noisily optimal agent that noisily optimizes

a goal-dependent cost function [49]. Such a model is used by the autonomous agent to infer

user’s intent in which the predicted goal is the one with the lowest cost given the user’s
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control input. Optimality principles are particularly attractive because of their success in

the domain of motor control [167] and also because they provide a principled approach to

how agents ought to behave. This type of framework, however, requires well-defined cost

functions that provide succinct descriptions of the task at hand. Cost functions can be

hard-coded under assumptions of rationality, hand-designed by domain experts, or learned

from human demonstrations using techniques such as inverse reinforcement learning [175]

and inverse optimal control [51]. Data-driven approaches utilizing conventional machine

learning algorithms are also successfully used to recognize human behavior in a wide

variety of domains such as social robotics [112] and assistive robotics [63]. More recently,

data-driven approaches based on Koopman operators are used to learn models of joint

human-machine systems [24]. Koopman operator based approaches scale well to high-

dimensional spaces as the computational complexity does not grow with the amount of

data.

Recently, advances in deep learning have inspired a variety of approaches to trajectory

prediction in many application domains. Deep networks have high expressive power and

are usually trained using a supervised learning approach via gradient descent based back-

propagation. In general, to accomplish trajectory prediction, these networks take the

context information, which consists of environment state and user control signal (when

available) as input and predict the state and action trajectory for some amount of time

into the future. Network architectures such as variational auto-encoders [37], and con-

ditional variational auto-encoders [80], are designed so that they learn rich latent space

representations that encode the essential information needed for prediction. However,

many of these approaches require large amounts of data for proper training and suffer
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from generalizability issues. Additionally, in order to handle the non-stationarities of the

data generation process it is necessary to continually update and train the model which

comes with its own infrastructure and computational overhead.

In this thesis, we adopt a diverse set of approaches to model human behavior focussing

on simplicity and computational feasibility. In the chapter on human-driven customization

(Chapter 7) of shared control parameters [65], we rely on ideas from optimal control

theory [97] to model human behavior. We assume that humans act optimally with respect

to an unknown (to the autonomy) reward function, but then entrust the human with the

responsibility to optimize the control allocation parameters directly. On the other hand,

in the work on mode switch assistance for intent disambiguation (Chapter 5), the assumed

teleoperation model is one in which the human optimizes for shortest path to goal given

the constraints of the control interface. In Chapter 6, we model human teleoperation of

the robot as a interface-dependent Markov Decision Process in which the reward function

simultaneously optimizes the Manhattan distance to the goal and the number of mode

switches executed during teleoperation.

In general, computational approaches are well suited for situations in which one is pri-

marily concerned about what the human is doing without necessarily reasoning about the

underlying causes for the behavior. In the algorithmic category, Hidden Markov Models

(HMMs) and other Markov-based approaches are common choices for modeling human

behavior [93]. HMMs are powerful due to their ability to express latent variables and

can be used for efficient online inference of hidden states given a set of observations. An

extension of HMMs that can be useful for modeling human-robot collaboration is the

Partially Observable Markov Decision Process (POMDP) framework [155]. In a POMDP
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setting, the human is typically modeled as noisily optimizing a reward function and picks

actions at every timestep according to the optimal policy. For example, POMDP based

models are used for assessing the human partner’s trust in the autonomous partner [35].

POMDPs in which human intent is treated as a latent state can be used the autonomous

agent for performing model-based intent inference. By performing online inference on

these latent states, the autonomous agent can incorporate human intentions into its own

decision making process thereby implicitly taking into account the user’s preferences and

goals. In general, inference over latent variables in a POMDP framework is performed via

Bayesian methods in which a prior distribution over the latent variables is updated via

Bayes Theorem upon receiving new evidence [48]. The choice of likelihood function typi-

cally encodes the human’s actions/preferences given the state. A generalization of HMMs,

known as Dynamic Bayesian Networks (DBNs), have also been used successfully to model

human-robot collaboration. DBNs are attractive due to their ability to handle multi-

variate, mixed-observability variables and to represent temporal interdependencies [120].

DBNs have been successfully utilized to model human beliefs, desires, and learning which

can then be used for intent prediction and understanding cognitive phenomena such as

concept learning [156]. In general, modeling approaches that rely on Bayesian networks

offer principled ways to incorporate all the variables that are relevant to describe the

phenomena and to reason about them.

Most research aimed at advancing teleoperation systems has focused on creating novel

devices that improve upon various aspects of the teleoperation system, such as improved
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signal decoding in a brain machine interface [148], haptic feedback for increased trans-

parency [2], or improved fixed mappings from user inputs to control commands in a re-

dundant body machine interface [127]. Little work in assistive robotics has distinguished

between the intended versus the produced command signal measured through the in-

terface. Work in driver behavior modeling has investigated higher-level (action-level)

inference, for example, to classify and predict driver actions [125]. Another work con-

siders the uncertainty in human grasp intent to provide appropriate autonomous robotic

grasp plans [18]. Unlike the work presented in Chapter 4, they assume that the human is

physically capable of producing their intended commands and the source of uncertainty

is due to detection noise. Previous work has modeled a person’s internal beliefs about a

dynamic system, and uses a dynamics transfer function in order to provide the assistance

that leads to a desired human action or learning outcome [131, 133]. In these works, it is

assumed that any suboptimal human command is due to a mismatch between their inter-

nalized and the true dynamics model, plus there is no control sharing—the autonomous

agent alone is issuing commands based on the inferred user intent.

2.4. Intent Disambiguation and Information Gathering in Shared Control

Shared-control systems often require a good estimate of the human’s intent—for ex-

ample, their intended reaching target in a manipulation task or a target goal location in a

navigation task [105]. Intent can be explicitly communicated by the user [38] via various

modalities such as laser pointers, click interfaces, and in some cases natural language [33].

Intent can also be inferred from the user’s control signals and other environmental cues

using various algorithms [87]. However, when the autonomous agent relies on control
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signals emanating from the control interfaces to perform intent inference it becomes par-

ticularly hard due to the low bandwidth, sparsity, and dimensionality of these interface

signals.

The idea behind intent disambiguation is to alter the context such that the human

is nudged in some manner to assist the autonomous agent in its intent inference capa-

bility. The intent disambiguation algorithms presented in Chapters 5 and 6 leverage the

underlying synergies that are inherent in human-autonomy cooperation. In the context

of human-human cooperative teams, the notion of shared intentionality—one in which

all parties involved in a collaborative team share the same intention or goal and have a

joint commitment towards it—is crucial to make task execution more seamless and effi-

cient [163, 164]. This principle is relevant to successful human-robot interaction as well.

From the robot’s perspective, the core idea behind our intent disambiguation approach is

one of “Help Me, Help You”—that is, if the user can help the autonomous agent with in-

tent inference via more intent-expressive actions, then the autonomous agent, in turn, can

provide appropriate task assistance more swiftly and accurately. In human-robot inter-

action, the legibility and predictability of robot motion to the human is investigated [47]

with various techniques to generate legible robot motion proposed [75]. Our work instead

investigates the idea of inverse legibility [64] in which the assistance scheme is intended

to bring out more legible intent-expressive control commands from the human.

Eliciting more legible and information-rich control commands from the user to im-

prove intent estimation is closely related to active learning in which a learning agent

seeks to identify data samples that will maximally inform it about the true hypothesis

that it attempts to learn. Designing optimal control laws that maximize information gain
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can be accomplished by having the associated reward structure reflect some measure of

information gain [10]. Autonomous robots designed for exploration and data acquisition

tasks can benefit from exploring more information-rich regions in the environment. If the

spatial distribution of information density is known a priori, information maximization

can be accomplished by maximizing the ergodicity of the robot’s trajectory with respect

to the underlying information density map [115, 116]. Intent disambiguation is closely

related to the ideas presented by Brooks et al. [28] in which the authors seek to balance

information gathering actions with goal-oriented actions within a shared autonomy con-

text. The objective of this work is to identify autonomous actions to quickly ascertain

the user’s goal, whereas in the disambiguation algorithm presented in Chapter 6, we op-

timize over future states from which subsequent human actions will result in information

gathering about the latent goal.

Probing algorithms have been designed to elicit information-rich signals in a collabora-

tive workspace setting, for example, an autonomous car interacting with a human driver at

a traffic intersection [138]. In the context of reinforcement learning, information-theoretic

approaches based on mutual information maximization have been used to train agents to

hide and share intentions in a cooperative/adversarial multi-agent setting [152]. Coaxing

humans to generate information rich signals in an interaction setting is also related to how

teachers engage in showing as opposed to simply doing behavior when interacting with

a learner [73, 74]. In such settings, showing behavior is distinct from simply doing be-

cause the former explicitly optimizes for the student’s confidence in what is being taught.

The disambiguation algorithms presented in Chapter 5 and Chapter 6 elicit the human
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to show their latent goal implicitly by identifying states in which their doing behavior is

maximally informative and thus amounts to showing.

2.5. Approaches to Task Allocation in Shared Control

In a shared-control setting, task responsibility is split between the human and the

autonomous agent. Different approaches exist for control allocation that depend on the

application domain, user preferences, and robot platform.

The most common methods to share control between the human and autonomous

system include (a) hierarchical methods in which the human selects the high-level goal and

the autonomous agent generates the low-level control, (b) control partitioning schemes,

and (c) blending the user controls and the autonomy commands. In the hierarchical

paradigm, control allocation typically occurs at the task level in which high-level task

goals are entrusted with the human and the autonomy takes care of the low-level control

of the robot [5, 173]. For example, in the assistive domain, smart wheelchair users use a

click-based interface [146] to select a desired destination in the world or a laser pointer [38]

to point to a desired navigation goal. The autonomous agent can then generate the global

as well as local plans utilizing any state-of-the-art motion planners. In the domain of

table-top manipulation users use natural language [22, 137] to specify the desired grasp

or manipulation target which then combined with object recognition [21] and motion

planning modules can produce the desired robot trajectory [23]. In the domain of robotic

wheelchair research, the high-level goals typically are navigation goals [145], while control

partitioning, for example, places the control of speed with the user and heading with the

autonomy [144].
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Blending-based approaches seek to arbitrate between human and autonomy actions

at the control signal level (or the policy level) directly [44, 104, 108]. A commonly used

arbitration scheme is one in which the final control command issued to the robot is a linear

combination of human and autonomy control commands. The arbitration itself should be

contextual and depends on the autonomous agent’s confidence in itself and in the user

as well as on the particulars of the user [49]. The blending parameter can be fixed or

a parameterized function of the context and the autonomy’s confidence in its prediction

of the user’s intent [68]. By casting shared-control allocation in a broader theoretical

framework, a mathematical model for probabilistic shared control in complex dynamic

environments is proposed in [165]. In this work, the interactive relationship between the

human, autonomy and the environment is modeled as a undirected graphical model. The

paper also introduces the notion of an interaction function between the operator and

the autonomy that captures the “agreeability” between the human and autonomy. For

specific forms of the interaction function, linear blending is recovered as a special case of

the more general framework. Another approach to arbitration is to treat the interaction

function as an all-or-nothing-at-all pass through filter. This approach, commonly referred

to as a Maxwell’s demon approach in the literature [20, 60], blocks the human control

signal if it disagrees with the autonomous control signal with respect to some pre-defined

metric. The metric is designed such that it quantifies the human control signal’s impact

on the future safety of the system or efficiency in successfully completing the task. Control

blending paradigms often are employed for behaviors like obstacle avoidance [34].

Control sharing in the case of robotic arms most commonly involves user-specification

of a target (such as an object) [82] or pose correction [16], and autonomous generation of
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robot control commands. Approaches that partition the control space may, for example,

place the control of end-effector position in the vertical direction with the human and

in the x − y plane with the autonomy [50]. Control blending is less straightforward—

because the user rarely is able to issue a control signal with high enough dimensionality

to cover all control dimensions of the robot (e.g. 6D)—but recently is gaining interest.

Moreover, there are approaches which study specifically the customization of how this

control blending happens [103]. The amount of control blending often is determined

using an arbitration function that is based, for example, on the autonomy’s confidence in

its prediction of the user’s goal [48]. Our work similarly employs an arbitration function

to dictate the amount of control sharing.

Optimization techniques are adopted to generate different strategies for control shar-

ing; for example, formulating the problem as a POMDP and inferring a distribution over

goals [89], using pseudo-navigation functions for collaborative control [58] or concate-

nating energy-optimal motion primitives to create optimal trajectories [102]. Although

these approaches result in improved task performance (completion time, control effort),

the assistance schemes are mixed in terms of user acceptance. In particular, there are

instances of assistance resulting in higher user dissatisfaction [89], and users preferring to

be in control and more cautious [102]. In other studies users find the assistance at times

to be uncooperative and tolerate a loss of control only for a significant improvement in

performance [172].

In an attempt to construct more realistic reward functions, others, inspired by de-

sign research, incorporate a measure of “discomfort” into the optimization reward func-

tion [69]. However, the specific form of the reward function is platform dependent and
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is not generalizable to all assistive devices. Despite an improvement in task performance,

none of the above reward function formulations were able to guarantee high user satis-

faction (with the exception of domain-specific discomfort [69]). The need for higher user

satisfaction is crucial for the acceptance of robot autonomy by the end users in the assis-

tive domain. This gap motivates our approach to engage the end user in the optimization

procedure.

2.6. Models for Autonomous Policy Generation

Mathematical models are also widely used for learning policies responsible for gener-

ating the autonomous agent’s control actions. In addition to successful task completion,

autonomy would benefit from its actions that are legible, natural, and safe. Learning from

Demonstration (LfD) [8] provides a framework to learn autonomous policies directly from

user-provided demonstration data. For example, imitation learning paradigms can be

utilized to develop end-to-end systems that can directly map high dimensional states to

actions [17]. A more generalizable approach is to cast the problem within the framework

of inverse reinforcement learning in which the goal of the algorithm is to recover the user’s

reward function [175]. Policies that optimize long-term accumulated reward (solution to

the forward reinforcement learning (RL) problem) improve the robustness and general-

ization capabilities of the autonomous agent. Closely related to the RL approach is to

utilize a control-theoretic framework to derive optimal policies for a given task. Standard

optimal control theory techniques are model-based; that is, they presume the existence

of a dynamics model and solve for the optimal policy with respect to a specified cost

function [97]. State-of-the-art RL techniques, on the other hand, can be model-free and
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can resort to sampling-based techniques to derive optimal policies [171]. In Chapter 7,

the autonomous agent utilizes an LfD algorithm to learn task-specific control policies.

Planning-based approaches such as probabilistic road maps [92] and rapidly exploring

random trees [99] are also widely used for generating motion plans (for both robotic

manipulators as well as mobile robots). In addition to task accomplishment, in order

to enhance user experience robot motion plans typically need to possess various other

desired characteristics. Interaction dynamics in a shared-control system can become more

seamless if the autonomous agent is able to make its intentions legible to the user. To that

end, researchers have attempted to mathematically define legibility and predictability of

robot motion [47]. Similarly, safety is of paramount importance when robots work in close

proximity to humans. Therefore, behaviors such as obstacle avoidance are incorporated

into navigation plans [151]. For this purpose, the on-board perception system relies

on object detection and recognition models to identify objects of interest and obstacles

thereby characterizing favorable and unfavorable parts of the state space of the robot

during navigation [118].

Potential fields based approaches are also effective as they are computationally light-

weight and produce more intuitive trajectories that correspond to straight line paths in

Euclidean space [95]. More recent work have incorporated ideas from differential geom-

etry to treat obstacles as local deformation in the geometry of the workspace and aims

to derive motion policies directly in a curved Riemannian workspace [132]. The effect of

the obstacle is to curve the geodesics (straight line paths) around itself as determined by

the local curvature induced by the obstacle [109]. Chapters 5 and 6 utilize potential field
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approaches to generate autonomous control commands which then get combined with

human control commands within a blending-based shared control arbitration paradigm.
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CHAPTER 3

Formalizing Control Interface Mediated Assistive Robotic

Manipulation

Shared control assistive robotics consist of four main actors: human, control inter-

face, robot, and the autonomous agent. The work in this thesis investigates different

aspects of the interplay between these actors; with a focus on (a) algorithms to improve

the autonomous agent’s ability to infer human intent via intent disambiguation algo-

rithms, (b) characterization of interface-level stochasticity to provide assistance to handle

unintended interface operation, and (c) customization of control arbitration parameters

based on user preference.

This chapter provides a detailed overview of the commercially available control inter-

faces and delves deeper into some unique limitations that arise in manual teleoperation

due to constraints imposed by these control interface. We will also discuss how the no-

tion of control modes arise as a consequence of the dimensionality mismatch between the

control interface and the control space of the robot. Additionally, this chapter provides a

unifying mathematical framework based on coupled dynamic Bayesian Networks to reason

about various phenomena that arise in human-autonomy interaction in shared autonomy

settings.
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Figure 3.1. Commercially used control interfaces for assistive robot tele-
operation. (Left) Joystick - 2D/3D, (Center) Switch-based Head Array -
1D/2D, and (Right) Sip-and-Puff - 1D.

3.1. Formalizing Control Interfaces and Control Modes

We will first describe how to characterize different control interfaces and illustrate how

control modes arise. We will then present a framework to formalize robot teleoperation

using limited control interfaces.

3.1.1. Overview

In the domain of assistive robotics, the motor impairments that arise due to spinal cord or

brain injuries and neuro-degenerative diseases place huge restrictions on the type and kind

of control interfaces that are available for the subjects to use. The most popular control

interfaces that are commercially available are joysticks, sip-and-puffs, and switch-based

head arrays (Figure 3.1). The primary factor that determines the control interface that

is available for use by an end user is their level of motor impairment. It is typically the

case that the greater the motor impairment of the user, the more limited are the interfaces

available for them to use.
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Let us now look at some of the features that characterize a given control interface.

Each control interface can be characterized by its dimensionality, which is the maxi-

mum number of controllable dimensions that can be simultaneously activated, and the set

of interface-level actions that are available. Depending on the interface, the set of

interface-level actions can be either be continuous or discrete. End users utilize the

control interface to realize their task-level intentions (for example, move the robot forward

or rotate the robot end-effector downwards) and consequently communicate them to the

autonomous agent (and the robot) by executing the corresponding interface-level actions.

Typically, the mapping between task-level actions and interface-level actions is prede-

fined and deterministic. Users become proficient at using the interface and memorize the

mapping via repeated practice.

From the perspective of the autonomous agent, the incoming interface-level actions

that the user generates contain information regarding the user’s task-level intentions (or

in other words, interface-level actions can be treated as noisy observations of the human’s

latent intent) and can be used for performing intent inference. Lastly, these interface-level

actions received by the autonomous agents are mapped to low-level control commands

(joint velocities, end-effector velocities, wheel velocities, et cetera) that are applied to the

robot controllers which then result in robot motion (or a mode switch).

The commercially available interfaces shown in Figure 3.1 are of lower (or equal)

dimensionality when compared to the dimensionality of the assistive robots. An impli-

cation of this is that if the dimensionality of the robot control space is greater than

the dimensionality of the interface, it would necessitate the control space of the robot

to be partitioned into smaller subsets for full control of the robot. Each such subset
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is referred to as a control mode. By ensuring that the union of control modes spans

the robot’s entire control space, users can achieve full control of the robot. For a given

interface-robot combination, the total number of control modes will depend on the dimen-

sionality of the robot control space and also of the control interface. This dimensionality

mismatch between the interface and the robot’s controllable dimensions requires the user

to switch between control modes during manual teleoperation. This is referred to as

mode switching. Mode switching increases the physical and cognitive burden as the

user needs to switch attention from the task controlling the robot to the task of switching

modes [9, 117].

Therefore, for high-dimensional robot control using low-dimensional interfaces users

are required to execute two types of task-level actions, namely, (a) control actions that

result in robot motion, and (b) mode switch actions that result in transition of the

current active control mode to the desired mode. End users execute these task-level

actions via pre-specified interface-level actions (such a button presses on a joystick, or a

hard puff in a sip-and-puff device). Due to the mechanical and physical constraints, it is

usually the case that users are unable to execute both control actions and mode-switch

actions simultaneously.

In general, for a given state, the set of available task-level control actions and mode-

switch actions depend on the state and also the mode-switching paradigm. Three most

commonly used mode switching paradigms are: direct, unidirectional cyclic, bidirec-

tional cyclic. Each of the paradigms differ as follows:
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• Direct: The user can switch to any control mode directly from any other control

mode. Typically, joysticks utilize this paradigm, in which each control mode is

assigned to a single button that can be pressed independently.

• Unidirectional Cyclic: There is a pre-specified ordering of control modes that

the user can step through sequentially one at a time without skipping any con-

trol mode in the ordered set. Therefore, at any given mode, the user can only

transition to the “next” mode in the order. At the end of ordered set a mode

switch will typically result in a wraparound to the control mode that occupies

the first position in the ordered set.

• Bidirectional Cyclic: Similar to unidirectional cyclic, except that the user can

switch to the “previous” mode in the order and wraparound happens in both

directions as well.

3.1.2. Formalizing Interface-Mediated Robot Teleoperation

Let Q denote the robot state space and K denote the set of controllable dimensions of

the robot. Let d be the dimensionality of the control interface such that d < |K|. Due

to the dimensionality mismatch, the control space is partitioned into a set of control

modes denoted as M, such that
⋃
m = K, where each m ∈ M is a subset of K. The

full state space of the interface-robot system is then denoted as S = Q×M. Note that

|m| ≤ d ∀ m ∈M; that is, all dimensions that constitute a control mode m are accessible

through the control interface.

Let A be the set of all task-level actions available for the interface-robot combination.

A can be decomposed as Aq × Am, where Aq is the set of task-level control actions
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and Am is the set of mode switch actions. Task-level control actions bring about state

transitions in the robot state space Q and result in robot motion. Mode switch actions

result in transitions in M and determine the active control mode; or in other words,

the dimension(s) in which robot motion is possible. Let ∆ denote the mode-switching

paradigm, and therefore the subset of actions (primarily the mode switch actions) available

in a given state (q,m) ∈ Q×M is denoted as A(q,m,∆) ⊂ A.

Let Φ be the set of all interface-level actions. We introduce two variables φi ∈ Φ (in-

tended interface-level action) and φm ∈ Φ (measured interface-level action) to distinguish

between what interface-level action the user intended to execute via the interface and

the actual interface-level action that gets measured. Note that this distinction becomes

important because φi captures the cognitive aspect of using a control interface; that is,

the mental knowledge of what needs to be done with the interface to achieve a particular

task-level action, whereas φm encodes the physical aspect of operating an interface. φm,

in general, is different from the intended interface-level action, φi, because of various fac-

tors such as motor noise, and electro-mechanical wear and tear in the interface, that can

corrupt the signal and also the user’s ability to execute φi.

Let us ground this presented formalism in a specific example. Consider the end-

effector control of a 3-DoF robotic arm using a 1D sip-and-puff device with a bidi-

rectional cyclic mode-switching paradigm. The robot state space Q is R3. Under

the assumption that the robot is operated in the task space, K corresponds to {x, y, z},

with |K| = 3. Since the interface is one dimensional d = 1; we have d < |K|. The

dimensionality mismatch requires K needs to be partitioned into three subsets or con-

trol modes, such that each control mode allows for robot control in the single dimension
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containing in the mode. Therefore, the set of modes M = {{x}, {y}, {z}}. Note that⋃
m = K and |m| ≤ d ∀ m ∈ M. The full state space of the robot-interface sys-

tem is R3 × M. Let us denote x as the Right-Left, y as the Forward-Backward

and z as the Up-Down directions. The set of all task-level control actions Ac consist

{moveRight,moveLeft,moveForward,moveBackward,moveUp,moveDown}.

The set of all control-level mode-switch actions Am consists of actions denoted as msm,

which represent a mode-switch (ms) action that would lead to a transition to mode

m ∈M; that is, Am = {ms{x},ms{y},ms{z}}.

In this example, since each mode corresponds to a single dimension of the robot’s

control space, in a given state (q,m), effectively there are only two task-level control

actions available; (a) move robot in the positive direction along the dimension in m ∈M,

denoted as movePos, which corresponds to moveRight, moveForward, and moveUp

actions in {x}, {y}, and {z} respectively, and (b) move robot in the negative direction

along the dimension corresponding to m, denoted as moveNeg, which corresponds to

moveLeft, moveBackward, and moveDown actions in {x}, {y}, and {z} respectively.

Likewise, since the interface is 1D and the mode-switching paradigm is bi-directional

cyclic there are only two mode-switch actions available; (a) switch mode to the ‘next’

mode in sequence (msm+1), denoted as modeNext, which corresponds to ms{y}, ms{z},

and ms{x} mode switch actions in {x}, {y}, and {z} respectively and (b) switch mode to

the ‘previous’ mode in the sequence (msm−1), denoted as modePrev, which corresponds

to ms{z}, ms{x}, and ms{y} mode switch actions in {x}, {y}, and {z} respectively. The

set of all interface-level actions available for the 1D sip-and-puff are (a) Hard Puff (b)

Hard Sip (c) Soft Puff (d) Soft Sip. One possible mapping between interface-level
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actions and task-level controls actions and mode switch actions can be (a) Hard Puff

−→ modeNext, (b) Hard Sip −→ modePrev, (c) Soft Puff −→ movePos, (d) Soft

Sip −→ moveNeg.

3.2. Human-Autonomy Interaction as Coupled Perception-Action Loops

In the assistive domain, robot teleoperation is typically enacted through a control

interface. The actions executed by the human may depend on a variety of factors such as

the partial observations of the environment, internal goals and desires, task specifications,

constraints of the control interface, and so on and so forth. Upon taking an action

the environment state evolves due to the inherent stochastic dynamics and the process

repeats in time. In essence, the interaction between the human and the environment

can be thought of as a perception-action loop unfolding in time. Most typically,

humans plan their action in the task space which then gets mapped into interface-level

actions and subsequently to low-level control actions. In a similar fashion, the autonomous

agent also receives partial information about the environment state (which includes the

robot and the human) through various types of sensors such as cameras, joint encoders,

and interface signals from control interfaces. The autonomous agent can then perform

inference over latent variables such as the user’s intended goal and preferences, and take

different interventions to control the robot alongside the human to achieve various desired

outcomes. This interaction between the autonomous agent and the environment is yet

another perception-action loop unfolding in time.

Perception-action cycle is considered to be the fundamental logic of the central nervous

system, in which perception and action processes are closely interlinked [41]. Perception



62

leads to action, and action leads to perception. In the context of Human-Autonomy

Interaction (HAI), as the perception-action loop unfolds, the human and the autonomous

agent interact with each other via explicit and implicit exchange of information. Both

agents continually infer the other’s latent states and goals. For example, in situations in

which the human goal is not explicitly specified, the autonomous agent has to infer the

human’s internal goal from available sensor data. Similarly, the human might not be fully

aware of the autonomous agent’s collaboration strategy and will have to infer its decision-

making logic to effectively cooperate and coordinate with it. This joint interaction can

be modeled as coupled perception-action loops. Within this coupled system, one agent’s

environment subsumes the other agent. In order to motivate how the notion of perception-

action loops can be used to describe HAI in a shared-control setting, let us consider a

concrete example of assistive robotic manipulation.

Consider a scenario in which a motor-impaired human and an autonomous agent

jointly control an assistive robotic arm to perform table-top manipulation. For simplicity,

let us assume that shared control is achieved via a linear control blending paradigm

in which the human’s low-level control command and the autonomous agent’s low-level

control command are linearly combined to produce a final control command that is issued

to the robot controllers. Let us also assume that the assistive robotic arm is mounted on a

wheelchair in which the person is seated. The task is to reach for and grasp certain objects

(the true target is only known to the human) on a table. The perception component with

respect to the human is as follows. From the seated position, the person is able to see

and perceive various aspects of the environment such as the positions and orientations

of the various table-top objects, the shape and color of the objects, and the pose of the
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robot’s end-effector. The human’s line of sight could be obstructed due to occlusion from

the robot and other factors and as a result the human only receives partial information

regarding the true state of the environment. Based on observations about the world state,

and their intentions, the human will execute actions in order to bring about a change in the

environment. These actions are relayed to the robot via the control interface and the low-

level motor controller that converts interface-level actions into low-level control signals.

This constitutes the perception-action loop involving the human and the environment.

Now let us analyze the same scenario from the perspective of the autonomous agent.

In the shared control assistive domain, the role of the autonomous agent is defined: it is

to assist the human towards their desired goal by sharing robot control responsibilities

with the human. Let us assume that the autonomous agent obtains partial observations

about the environment state via on-board cameras. Additionally, the control signals that

are generated by the human via the control interface also function as sensory inputs to

the autonomous agent. Fusing all these sensory inputs, the autonomous agent is able to

infer the user’s latent intentions and execute appropriate assistive actions alongside the

human to bring about change in the environment. This constitutes the perception-action

loop involving the autonomous agent and the environment. Since both the human and

the autonomous agent interact with the same physical system (the assistive robot and the

other objects in the world), they implicitly exchange information regarding each other’s

control strategies, preferences, as well as intentions.

This thesis contributes a formalized framework that represents our insight that HAI

is a coupled perception-action loop, and casts this representation as a Causal Bayesian

Network (CBN) (Figure 3.2). The nodes of the network represent the relevant variables
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Figure 3.2. Our model of Human-Autonomy Interaction as a coupled
perception-action loop that unfolds in time represented as a causal Bayesian
network. The nodes represent various relevant variables that interact with
each other at discrete time steps. The beige nodes are variables associ-
ated with the human whereas the dark pink nodes are associated with the
autonomous agent.

(latent and observed) pertaining to both the human and the autonomous agent, and the

edges represent the probabilistic influence they have on each other [124]. In Figure 3.2,

st refers to the world state that includes the robot state, active mode state, and other

objects and agents in the environment. sth and sta denote the internal state of the human
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and the autonomous agent respectively. These capture the intentions, preferences and

strategies deployed by the human and the autonomous agent during interaction. oth and

ota are the noisy observations of the true world state that are accessible to the human and

the autonomous agent respectively. ath represents the task-level actions executed by the

human. φti and φtm are the intended and measured interface-level actions. φtm is accessible

to the autonomous agent (indicated by the red edge) and allows it to infer the latent

internal state of the human. uth denotes the low-level human control command as a result

of transforming the φtm. uta represents the autonomous agent’s control command typically

generated via some autonomous policy. utf denotes the arbitrated control command that

results in the evolution of the world state from st to st+1. Note that this CBN represents

one of the many different ways in which a human and an autonomous agent could interact.

Knowledge about the variables in the model is represented as probabilistic distribu-

tions thereby making the model amenable to information-theoretic analysis by which we

can quantify the information dynamics that unfolds during HAI. Once information flow

is quantified, the autonomous agent’s behavior can be designed with an aim to shape the

information flow in the joint system towards desired specifications and outcomes. By

characterizing the information dynamics in HAI using the proposed framework, we can:

(1) Develop a framework that will provide a systematic and principled approach

to the design of the autonomous agent, in which its actions are interpreted as

appropriately timed interventions with an aim to modulate the information flow

between the human and the autonomous agent, thereby improving overall task

performance.
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(2) Bring different aspects of HAI, such as intent inference, skill acquisition, control

arbitration, transparency, and cooperation under a single umbrella in order to

shed light on the more fundamental low-level descriptors and characteristics of

human-autonomy teaming.

The subsequent chapters present solutions to address various challenges that arise in

HAI, such as intent estimation and disambiguation, interface awareness, and customized

optimization of arbitration function in an attempt to facilitate uninterrupted information

flow between the agents partaking in this coupled perception-action dance.
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CHAPTER 4

Interface-Aware Intent Inference for Customized Handling of

Unintended Actions in Assistive Robots

The following chapter presents an assistance system that reasons about a user’s in-

tended actions during control interface mediated robot teleoperation and provides ap-

propriate interventions for modifying unintended behavior. The key contribution of this

chapter is the mathematical formalization of the notion of interface awareness in assistive

robot teleoperation models. We accomplish this by making a clear distinction between

the user’s intended and measured interface-level actions. The results of a human-subject

study suggest that the customized assistance paradigms helped to significantly reduce

objective task effort, reduce cognitive workload and user frustration and improve overall

satisfaction. The work presented in this chapter was done in equal collaboration between

Deepak Gopinath and Mahdieh Nejati Javaremi.1

4.1. Introduction

In shared-control human-machine systems, the end-users are partially responsible for

the control of the robot. In the assistive domain, users exert this agency using different

kinds of control interfaces. The choice of interface is typically determined by the extent

1The individual contribution breakdown is as follows: 1) Gopinath developed the code for human-subject
study and testing environment, performed analysis of simulation data, and was the proctor for the study.
2) Nejati developed the resources and code for the training environments, sip-and-puff teleoperation suite,
prepared the surveys on Qualtrics, and performed the statistical analysis of the study data. 3) Gopinath
and Nejati equally contributed to model refinement, experiment design, and manuscript writing.
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of motor impairment and the residual motor function. These interfaces essentially act

as conduits by which information regarding the user’s intentions flow into the robot

and the assistive autonomous agent. In addition to its utility as a control signal, the

interface signal often is used in various other capacities by the autonomous agent, such as

input to an inference engine. This implies that any deviations—in magnitude, direction

or timing—between the signal intended by the human and the signal measured by the

autonomous agent can have rippling effects throughout the system pipeline. Deviations

between intended and produced human motions have been extensively studied [39, 56, 88,

168] and can arise due to cognitive as well as physiological factors [4]. For motor-impaired

people, inherent physical limitations can increase the likelihood of accidental deviations

from intended commands, which can lead to unwanted robot behavior. Therefore, in

a shared autonomy system it is important for the autonomous agent to make decisions

based on intended—as opposed to measured and executed—interface actions to improve

the quality and efficacy of the interaction.

Critically in this domain, the mechanism by which the human signal is generated is

often ignored and assumed to be a black box. However, operating a control interface

and successfully teleoperating a robot requires the user to be able to physically activate

the interface—whether via button presses, joystick deflections, or screen taps—and have

a good grasp of the control mappings between interface-level actions and the task-level

actions. Typically, models that reason about human behavior within this context do

not represent the activation mechanisms of the interface or the control mappings. The

following example will highlight why it is important to reason about these factors if we

are to design an assistive functionality for an autonomous agent.
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Let us reconsider the interface-robot system presented in Section 3.1.2. In order to

successfully teleoperate the robot, the user should know about the predefined control

mappings; that is, the user should have a thorough conceptual understanding of what

interface-level physical action they should execute in order to achieve a particular task-

level action. A novice user might not remember the control mappings properly and

could choose a wrong interface-level action to accomplish a desired task-level action. It

could also be that they have perfect knowledge of what interface-level action needs to be

executed, however, due to motor deficits, lack of motor skills, or even fatigue, they are

unable to execute it properly. Lastly, there is also the possibility of equipment malfunction

that can introduce signal noise, despite the user having perfect knowledge of the control

mappings and motor skills to execute the correct interface-level action. All of these

issues highlight the need for explicit modeling of the user’s physical interaction with the

interface and that interface-awareness is a key component to the design of successful

assistive shared-autonomy algorithms.

The contributions of this chapter are threefold:

• Modeling the User’s Physical Interface Operation: We mathematically formu-

late the user’s physical interaction with the interface during teleoperation and

characterize various factors that affect how the intended user inputs get altered

through the interface before being measured by the autonomous agent. User-

specific models of the user’s understanding of the true control mappings and

stochastic deviations are built from data collected from individuals to customize

the assistive algorithms.
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• Model-Based Inference of Intended Input : Using the interface-aware teleopera-

tion model and prior knowledge of the user’s high-level behavior encoded as a

task-level action policy, probabilistic reasoning is used to infer the user’s latent

intended interface-level actions to deduce unintended deviations from expected

behavior.

• Customized Interface-Level Assistance: We formulate two methods to provide ap-

propriate modifications to the measured human control input in an online fashion.

The assistance algorithms are personalized because the user-specific probabilis-

tic models encode the unique characteristics of a particular user’s interaction

behavior with the robot.

4.2. Interface-Aware Bayesian Intent Inference and Assistance

In this section, we will describe the mathematical model of the user’s physical interac-

tion with a control interface during robot teleoperation and the assistive algorithm that

uses this model to provide customized assistance.

4.2.1. Modeling the User’s Physical Interface Operation

Figure 4.1 depicts the generative probabilistic graphical model of a user’s physical inter-

action with a control interface during robot teleoperation at any time t.

Let st represent the world state and at represents the action primitives that are defined

in the task space that the user intends to execute at time step t. ut is the low-level control
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Figure 4.1. Probabilistic graphical model depicting user-robot interaction
via a control interface. Teleoperation is typically modeled simply as at →
ut (dashed edge). We additionally capture physical interaction with the
interface (green nodes).

commands (velocities or torques issued to the robot). φti ∈ Φ is the intended interface-

level physical action initiated by the user that aims to achieve at and is unobservable to

the autonomous agent.

The set of available interface-level physical actions depends on the physical modality

used for activating an interface. The set of interface-level physical actions for commonly

used interfaces are presented in Table 4.1. φtm ∈ Φ is the measured interface-level phys-

ical action produced by the user and is fully observed by the autonomous agent. The

novel contribution of this model is in (a) the explicit modeling of the interface-dependent

physical mechanisms that generate uth and (b) in distinguishing the latent φti from the

measured φtm. In a noise-free setting, φti and φtm are equivalent. However, in practice,

φtm may deviate from φti due to biases resulting from motor-impairment, stress or equip-

ment malfunction, to name a few. Modeling this distinction is important because the
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Sip and Puff Head Array 2D joystick

Soft Puff, Soft Sip,
Hard Puff, Hard Sip

Press Left But-
ton/Right But-
ton/Back Button

Push Joystick at an
angle θjoy in the 2D
plane, Press Button

Table 4.1. Interface-level actions for commonly used control interfaces.

user wants φti to cause the world state st to transition to st+1 whereas in actuality φtm is

responsible for transition. This discrepancy can lead to transitions into undesirable world

states which can increase user frustration.

We model the interactions between these variables using a probabilistic graphical

model. Specifically, p(φti|at
)

captures the user’s internal model of the true control map-

ping (which is static and deterministic and denoted as f). Users acquire this internal

model via training. p(φtm|φti
)

captures the stochastic deviations in the user’s interface-

level physical actions when using the control interface and can be interpreted as a user

input distortion model. p(φti|at
)

and p(φtm|φti
)

can be personalized by fitting the distribu-

tions to user-specific data. This model can be used by the autonomous agent to improve

its understanding of the human partner, which in turn can enhance its decision making ca-

pabilities. Note that, we can incorporate partial observability of the world by introducing

an observation variable with a corresponding observation function that determines how

the observations are generated from the state st. The world state could be partially ob-

servable due to various reasons; for example line of sight occlusions, lack of transparency

of the autonomous agent’s actions, limited sensing capabilities, among others.
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4.2.2. Bayesian Inference of at from φtm

In a shared control scenario, the signal emanating from the interface (φtm) is accessible to

the autonomous agent. In the previous section, we established how the intended task-level

action gets altered through the interface due to various noise factors. If the autonomous

agent needs to be effective, the assistance provided by it should augment the human’s

intended actions and not the measured actions. Therefore, the specific question we seek

to address is as follows: Given the measured interface-level physical action issued by the

user φtm what is the probability distribution over the task-level actions, at? More precisely,

we are interested in estimating the probability distribution p
(
at|φtm

)
. Concretely, using

Bayes theorem, we have

(4.1) p
(
at|φtm

)
∝ p
(
φtm|at

)
p
(
at
)

Marginalizing p
(
φtm|at

)
over φti we have,

(4.2) p
(
φtm|at

)
=
∑
φti∈Φ

p
(
φtm, φ

t
i|at
)

Due to the conditional independence of at and φtm Equation 4.2 becomes

(4.3) p
(
φtm|at

)
=
∑
φti∈Φ

p
(
φtm|φti

)
p
(
φti|at

)
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and plugging Equation 4.3 in Equation 4.1 we have,

(4.4) p
(
at|φtm

)
= ηp

(
at
) ∑
φti∈Φ

p
(
φtm|φti

)
p
(
φti|at

)
where η is the normalization factor. We also have

(4.5) p
(
at
)

=
∑
st∈S

p
(
at|st

)
p
(
st
)

and combining Equation 4.5 with Equation 4.4 we have

(4.6) p
(
at|φtm

)
= η

∑
st∈S

p
(
at|st

)
p
(
st
)[∑

φti∈Φ

p
(
φtm|φti

)
p
(
φti|at

)]
.

4.2.3. Interpreting Conditional Probability Distributions

Each one of the three conditional probability distributions that appear in the right hand

side of Equation 4.6 have intuitive interpretations.

p
(
at|st

)
is the control policy the user maintains internally. A novice user’s control

policy could be a random policy initially, due to lack of familiarity with or understanding

of how the system works. With training, the user’s policy will gradually stabilize and

converge to an optimum—with respect to an internal cost function [79, 81, 98]. For

example, when performing table-top manipulation with an assistive robotic arm, the user

may initially give actions that lead the robotic arm into singularities that need to be

corrected with additional actions (less optimal); but as they become more experienced,

they will learn to accomplish the task by avoiding such configurations (more optimal).
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Additionally, the user might try to execute actions to minimize the task completion time

and the number of mode switches performed (additional criteria to optimize).

p
(
φti|at

)
captures the user’s internal model of the true control mapping (denoted as

f) from task-level action primitives to the intended interface-level physical actions. Users

acquire an internal model of this mapping (which is static and deterministic) via train-

ing [126]. For example, when using a 2-DoF linearly proportional joystick to control a

2-D wheelchair, the control-mapping from the action primitive to interface-level physical

actions is intuitive to most people (to move the wheelchair forward, deflect the joystick

forward; to move forward faster, deflect the joystick forward more). However, using the

same interface to control a 2-D lunar lander (from the OpenAI Gym suite) can be less in-

tuitive (pushing the joystick in one direction fires the vertical thruster, while pushing the

joystick in the other direction fires the horizontal thruster). However, using a sip-and-puff

interface can be less intuitive because the physical actions (regulating air pressure while

blowing into and sipping from a tube) do not have a one-to-one correspondence to the

task-level action primitives and are less transparent to the user.

Lastly, p
(
φtm|φti

)
captures the stochastic deviations of the measured interface-level

physical actions from the intended interface-level physical actions. This conditional prob-

ability distribution can be interpreted as the user input distortion model. These deviations

can be due to fatigue, delayed or faulty memory retrieval, or features of the interface.

These conditional probabilities can be personalized by fitting the distributions to user-

specific data.
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4.2.4. Customized Handling of Unintended Physical Actions

The motivation for our framework described in Section 4.2.2 is to improve the control of

complex robotic machines with limited interfaces used by people with motor-impairments.

Equation 4.6 can be used within a shared-control assistive paradigm to infer the human’s

true task-level intent (concurrently the intended interface-level action) and, if necessary,

provide assistance to reduce the cognitive and physical burden of dealing with uninten-

tional deviations during robot teleoperation.

The inference and assistance scheme is outlined in Algorithm 1. Using Equation 4.6, at

every time step t we compute the likelihood of at ∈ A conditioned on the observed φtm (line

2). The action primitive corresponding to the maximum of the distribution is inferred to

be the intended action atinferred, and using the true control mapping function f we compute

φtinferred (lines 3-4). In Algorithm 2, the autonomy intervenes only if (a) φtinferred is

different from φtm and (b) the uncertainty of prediction, computed as the entropy H of the

distribution, is less than a predefined threshold ε. Otherwise, φtm will be passed through

the control pipeline unaltered. The appealing characteristic of the proposed control-

sharing algorithm is that the user is maximally in control, which potentially can improve

user satisfaction and acceptance [26]. Most notably, our assistance system remains as

close to the manual system as possible and does not rely on augmenting the human-

robot team with high fidelity sensors to improve prediction accuracy. Furthermore, when

the autonomy steps in, it does so only to provide commands closest to the user’s true

intentions (which they were unable to issue correctly themselves).

We implement and evaluate two assistive shared-control paradigms.
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Algorithm 1 Infer Intended Commands

1: function infer intended command(t, φtm)
2: compute p

(
at|φtm

)
. equation 4.6

3: atinferred ←− argmax
(
(p
(
at|φtm

))
4: φtinferred ←− f

(
atinferred

)
. true control mapping

5: return φtinferred

Algorithm 2 Handle Unintended Commands

1: function handle unintended commands(t, φtm)
2: φtinferred = infer intended command(t, φtm)
3: if φtinferred 6= φtm then

4: if H
(
p
(
at|φtm

))
< ε then . uncertainty is low

5: if filtered then
6: φtmodified = 0
7: else if corrective then
8: φtmodified = φtinferred

9: else
10: return φtm
11: else
12: return φtm
13: return φtmodified

4.2.4.1. Filtered autonomy. If φtm is deemed as unintended with certainty, filter (block)

this command, φtmodified = 0, i.e., no motion or mode switching occurs.

4.2.4.2. Corrective autonomy. If φtm is deemed as unintended with certainty, correct

this command, φtmodified = φtinferred, i.e., resulting in application of the inferred intended

action.

4.3. Simulation-Based Algorithm Evaluation

In order to gain a deeper insight into how different hyper-parameters—such as noise

levels in p
(
φti|at

)
and p

(
φtm|φti

)
—affect the overall performance of our proposed assistance

algorithm, we designed a simulation-based experiment. We chose a path-navigation task
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for this simulation-based evaluation (shown in Figure 4.3) and assumed that an sip-and-

puff (SNP) interface was being used for robot teleoperation. The domain of task-level and

interface-level actions for an SNP are defined in Section 4.4.1. Task-level action primitives

(at) and intended interface-level physical actions (φti) were sampled from the generative

model shown in Figure 4.1. φti was corrupted according to p(φtm|φti) to generate φtm. In

our simulations, we assumed the existence and knowledge of a fully deterministic optimal

policy (i.e. p(at|st) is known).

4.3.1. Simulation Setup

The human teleoperation of the robot using the control interface was modeled as a Markov

Decision Process where the world state st ∈ S was defined as a 3-tuple (ptn, θ
t,mt), where

pn ∈ [p0 . . . pN+1] denoted discrete locations that represented the way-points (including

the start and the end) of the path, N was the number of turns, θt ∈ [0,−π/2, π/2] was

the discrete orientations available to the point robot and mt ∈ [m1,m2,m3] denoted the

currently active mode. The action space A was identical to the space defined at the

end of Section 4.2.1. For a perfect agent, p(φti|at) and p(φtm|φti) are delta distributions

(due to lack of any distortion or noise). In reality due to various factors such as stress,

fatigue or hardware issues, the variance of these distributions will be higher. In our

simulations, the distributions p(φti|at) and p(φtm|φti) were modeled as mixture distributions

comprised of a delta and a uniform distribution. The weight factor (wuniform) used for the

mixture distributions was treated as a scalar simulation parameter.2 In our simulations,

2wuniform = 0.0 and wuniform = 1.0 denote a pure delta and uniform random distribution, respectively.
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Parameter Range of Values

N - Number of Turns [1,2,3]
Assistance Type [Filtered, Corrective, No Assis-

tance]
wuniform in p(φi|a) [0.1, 0.3, 0.5, 0.7]
wuniform in p(φm|φi) [0.1, 0.3, 0.5, 0.7]

Table 4.2. Ranges of different simulation parameters.

(a) (b)

Figure 4.2. Total number of state transitions for two different noise levels
in p(φi|a) - 0.1 (left) 0.7 (right).

the amount of random noise injected into p(φti|at) and p(φtm|φti) was treated as a scalar

simulation parameter. Table 4.2 indicates the ranges of all simulation parameters.

4.3.2. Simulation Results

We evaluate the performance of our assistance algorithm as measured by the total number

of state transitions during a trial, under different assistance conditions and investigated

the effect of different levels of random noise in p(φti|at) and p(φtm|φti) on the amount of

assistive interventions and accuracy of intent prediction.
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p(φti|at) noise
p(φtm|φti) noise

0.1 0.3 0.5 0.7

0.1 5.7 21.1 41.0 54.9
0.3 0.0 7.4 13.3 24.9
0.5 0.0 0.0 5.6 6.6
0.7 0.0 0.0 0.0 0.0

Table 4.3. Percentage of Assistive Interventions (in %).

p(φti|at) noise
p(φtm|φti) noise

0.1 0.3 0.5 0.7

0.1 92.9 100.0 100.0 100.0
0.3 72.2 82.4 100.0 100.0
0.5 58.8 51.3 76.5 100.0
0.7 45.4 40.6 36.1 74.4

Table 4.4. Prediction Accuracy of Intended Commands (in %).

Figure 4.2 reveals that a more accurate internal model (where p(φti|at) has low cor-

ruption noise), in general, will help the user to perform better. For a given p(φti|at),

the corrective assistance paradigm has the highest performance, followed by filtered and

no-assistance. The difference in performance between the assistance paradigms decreases

as the noise in p(φti|at) increases, illustrating the need for proper training and acquisition

of accurate internal models. These insights guide our experimental design explained in

detail in the next section. Tables 4.3 and 4.4 indicate the percentage of assistive inter-

ventions and prediction accuracy are more sensitive to noise in p(φti|at) than p(φtm|φti),

once again reinforcing the need for proper training for the user so that they acquire a

good understanding of the true control mapping from task-level actions to interface-level

physical actions.
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4.4. Experimental Design

We conducted a human-subject study (n = 10) to evaluate our inference algorithm

and assistance paradigms in terms of overall task performance and user preference. All

participants gave their informed, signed consent to participate in the experiment which

was approved by Northwestern University’s Institutional Review Board. Each study ses-

sion consisted of three phases. Phase 1: Training and data collection to model p
(
φti|at

)
,

Phase 2: Training and data collection to model p
(
φtm|φti

)
, and Phase 3: Assistance evalu-

ation phase in which the subjects controlled a 3D point robot in a simulated navigation

environment using the SNP interface under three different assistance conditions.

4.4.1. Experimental Testbed

For the evaluation task, we designed a simulated navigation environment with three con-

trol dimensions (Figure 4.3) [66]. Participants operated a 1D SNP interface. We chose the

1D SNP interface for reasons of difficulty and accessibility as this often is the only device

accessible to those with severe motor impairments. The subjects used the SNP to operate

the 3D point robot’s motion along two translational dimensions denoted as x, y and a

rotational θ dimension, one at a time. The dimensionality mismatch between the control

interface and the robot necessitated the control space to be partitioned into smaller sub-

sets called control modes. Motion was restricted only along those dimensions that belong

to the currently active control mode. The subject used the interface to activate different

modes by switching between them. The set A of task-level action primitives consisted

of (a) clockwise mode switch, (b) counter-clockwise mode switch, (c) positive direction

motion, and (d) negative direction motion. The set Φ of interface-level physical actions
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available for a sip-and-puff comprised of (a) hard sip, (b) soft sip, (c) hard puff, and

(d) soft puff. The true correspondence between at and φti was deterministic (denoted as

f(·)) and predefined. When using an SNP the likelihood of generating unintended control

actions was quite high because of (a) the same input modality was used for both robot

motion control as well as mode switching, (b) inherent difficulty in breath regulation, and

(c) factors such as fatigue, stress, and saliva gathered in the straw.

4.4.2. Learning Personalized Distributions

We designed two tasks to capture the personalized distributions p
(
φti|at

)
and p

(
φtm|φti

)
from user data.

4.4.2.1. Personalized Internal Control Mapping Model. Participants were first

trained on the true control mapping (f(·)) during a standardized training phase. The

training consisted of three phases: (a) learning about the action primitives (at) for the

3D experimental task-space (Figure 4.3), (b) learning about the interface-level physical

actions (φt) available through the interface, and lastly (c) learning the mapping between

φt and at. The training was followed by six blocks of testing trials. During testing, the

user was shown a graphical depiction of at, and instructed to select the correct φt. Each

block consisted of all the available actions in a randomly balanced order. A training

refresher was provided between blocks. To account for the effect of time-induced stress on

p
(
φti|at

)
, each trial in each of the three blocks had a time limit of five seconds. Stress can

affect memory retrieval, and time constraints have been shown to be the main limitation

of working memory since processing and storage compete for limited resources [14]. The

distribution p
(
φti|at

)
was modeled using data collected during the testing phase in which
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Figure 4.3. An example trial in the human-subject study navigation envi-
ronment. Feedback regarding the current active mode was displayed on the
screen (on the top right corner).

we assumed that the user’s internal model is quasi-stationary. The subjects repeated the

training and the testing protocol until they met a minimum level of proficiency. This

was to ensure that when subject performed the simulation study in Phase 3, they had a

good understanding of what interface-level physical actions were needed to generate the

required task-level actions (or equivalently low-level control commands) to successfully

complete the trial.

4.4.2.2. Personalized User Input Distortion Model. Participants were trained on

the operation of the control interface in order to ensure a good understanding of physical

aspects of using the interface. During training, participants were asked to issue different

interface-level actions and were provided feedback on how they performed. During test-

ing, the user was shown an interface-level action on the screen (e.g., “Soft Puff”) as a

prompt and asked to generate the same action through the interface, with no feedback on
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performance. Similar to the experiment in Section 4.4.2.1, to monitor the effect of time-

induced stress on p
(
φti|φtm

)
, each trial had a time limit of five seconds. The distribution

p(φtm|φti) was modeled using the data collected during this testing phase.

4.4.3. Assistance Evaluation

In the evaluation task, the subject controlled the motion of the 3D point robot along

predefined paths from a start pose to a goal pose (Figure 4.3. For each trial the start

and end positions were randomized. The initial control mode was selected at random,

and restricted to be different than the mode corresponding to the optimal first action

in order to normalize the difficulty of starting the trial in different configurations and

ensure balance across action types. Users performed the evaluation task under three

conditions: (1) no assistance, (2) filtered assistance, and (3) corrective assistance. The

subject was required to rotate the point robot to the target orientation at one of the

corners (highlighted in violet). Subjects were prompted to complete the task with the

least number of mode switches and in a timely manner. A trial was deemed successful

if the robot was at the goal pose within the allotted time limit (50 seconds). Subjects

performed six blocks (two blocks per assistance condition) of six trials each. In total, we

collected 360 trials (120 trials per assistance condition). After each block, the subjects

were required to respond to a NASA-TLX questionnaire.

4.5. Results

We analyze group performances using the non-parametric Kruskal-Wallis test and per-

form the Conover’s test post-hoc pairwise comparisons to find the strength of significance.

For all figures, ∗ : p < 0.05, ∗∗ : p < 0.01, and ∗∗∗ : p < 0.001.
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Figure 4.4. Objective task performance metrics grouped by assistance con-
dition. (a) Total trial time with maximum trial time capped at 50s. (b)
Distance to the goal at the end of trials. (c) Percentage of successful trials.
(d) Total number of mode switches during successful trials. The optimal
number of mode switches was 5 for all trials. All metrics improve signifi-
cantly with the corrective assistance condition.

4.5.1. Objective Task Performance Metrics

To evaluate the effectiveness of our algorithm on overall task performance, we compare (a)

the total task completion times, (b) the remaining distance to the desired goal position at
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the end of each trial, (c) the percentage of successful trials under each assistance condition,

and (d) the total number of mode switches for successful trials, across the three conditions

(Figure 4.4).

As seen in Figure 4.4a, the total trial time is shortest under corrective assistance,

increases with the no assistance, and is largest under the filtered assistance paradigm.

One likely reason for the latter observation is that under filtered assistance, the repeated

issuance of suboptimal mode switch commands is repeatedly blocked, while under no

assistance consecutive suboptimal mode switches passes through the control pipeline un-

affected and eventually results in transition into the desired control mode. For example,

in our experimental setup, two counter-clockwise mode switches is equivalent to a single

clockwise mode switch, and vice versa. Under the corrective scheme, if the autonomous

agent is confident in its prediction, it will automatically correct the sub-optimal com-

mands, and therefore no time is lost due to the unintended commands.

Figures 4.4b-4.4c show the remaining distance to goal at the end of the trial and

the percentage of trials successfully finished by each subject, respectively. Both of these

metrics improve significantly under the corrective assistance condition. With corrective

assistance, almost all users have a 100% success rate, therefore it is expected that the

distance to goal will be zero.

The filtered and corrective assistance paradigms are comparable when looking at the

total number of mode switches during successful trials (Figure 4.4d). Both assistance

conditions are optimal with respect to the number of mode switches, which is five for all

trials. Under no assistance, despite successful task completion, the number of executed

mode switches is up to three times the optimal number.
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Figure 4.5. An example trial in the human-subject study navigation envi-
ronment. Feedback regarding the current active mode was displayed on the
screen (on the top right corner).

4.5.2. Perceived Workload

We use the raw NASA-TLX as a subjective measure of perceived workload [70]. Larger

TLX scores indicate higher perceived workloads. During corrective assistance, the au-

tonomous agent offloads some of the subject’s cognitive burden by correcting unintended

actions—as evident by the significant reduction in the user’s perceived workload (Fig-

ure 4.5). During filtered assistance, although the autonomous agent gives feedback by

way of blocking unintended actions, the user is still responsible for issuing all correct

commands.

4.5.3. User Acceptance of Assistive Autonomy

We evaluate user preferences and acceptance of our assistive paradigms using a survey

questionnaire (Figure 4.6). The statements are rated on a 7-point Likert scale from
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Figure 4.6. Average user response to post-task questionnaire. The bars
indicate standard deviation.

strongly disagree (1) to strongly agree (7). Although some of the objective measures of

task performance between filtered assistance and no assistance are comparable, the users

rate that the filtered assistance helps them complete the task more efficiently and is easier

to operate than under no assistance. Overall, the participants show a strong preference for

the corrective assistance. This strong preference for corrective assistance is unsurprising

because, for the study environment at any given state, there was only a single optimal

action to be executed. If the user issued an action different from the optimal action it was

immediately corrected and thus progress towards task completion was never impeded.

4.6. Discussion

Our results suggest that each of the assistance paradigms have unique advantages that

are crucial for end users of assistive devices. In shared control, the user is partially in con-

trol of the robot at all times. This means that robot teleoperation using a control interface
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is a necessary skill that end-users should possess. Learning teleoperation skills requires

appropriate types of feedback and since the filtered paradigm blocks all user inputs that do

not correspond to optimal actions, a user operating the interface under this condition can

learn to issue the correct commands progressively. That is, the filtered paradigm will play

the role a strict teacher. The filtered paradigm can also be used within a rehabilitative

setting as a teleoperation training paradigm to assist in maximal skill acquisition. By con-

trast, the corrective paradigm might help users who have plateaued in their teleoperation

skill, or in cases where efficient and successful task completion is critical. For example,

consider a scenario in which a wheelchair user is trying to cross a busy cross-walk with

only a few seconds remaining before the cross-walk light turns red. One can imagine that

this will be a high stress situation which can potentially result in unintended operation of

the control interface. If the autonomous agent in the wheelchair interprets the unintended

commands as the true intended commands by the user, these could result in wheelchair

motions that might cause accidents. If the wheelchair is endowed with the ability to

reason about the intended goal (which is to cross the street safely) then by relying on

the corrective paradigm, the user will be able to cross the street safely as unintended

commands will be modified properly. With corrective assistance a person with a recent

motor impairment could begin to operate an assistive device earlier in their rehabilitation

journey despite the lack of skill in interface operation, thereby accelerating their mobility

independence. When used in tandem within an adaptive shared-control framework, the

filtered and the corrective assistance paradigms have the potential to improve the overall

quality of assistive device operation while also encouraging skill development and making

independent operation of the device more accessible.
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One of the limitations of the interface-aware teleoperation model presented in this

chapter is that it assumes that the subject’s internal model is stationary. For simplicity,

we ignore how learning can improve the internal model thereby changing the baseline

performance. Likewise, fatigue and hardware related issues (such as accumulation of saliva

in the sip-and-puff straw) can add time-varying noise to the input distortion model during

the course of interface operation. There are two possible ways to address this problem.

We could rely on online learning strategies in which model parameters are tweaked on-

the-fly as new data becomes available. Secondly, we could also model hyperparameters

related to skill-level and fatigue into the model and jointly infer them as well given that

we have sufficiently accurate models for learning and fatigue dynamics.

Another observation that is not reflected in the analysis presented is how subjects

alter their control strategies depending on the assistance condition. For example, in the

corrective assistance condition, some subjects quickly realize that even a ‘wrong’ command

is promptly corrected by the assistance system resulting in the optimal action. This is fine

as long as such a strategy is adopted for quick gains, however, in the long run resorting

to such strategies to ‘exploit’ the autonomous agent’s assistance can degrade their own

ability and understanding of how to operate the robot. To mitigate this, the assistance

system could keep track of the statistics of the commands issued by the user and decide

to temporarily deactivate the corrective assistance functionality to ensure that the user

does not exploit the feature.
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4.7. Conclusions

This chapter presented a probabilistic graphical model of control interface mediated

robot teleoperation that distinguished between intended versus measured user interface

actions. Additionally, this chapter introduced two assistance paradigms that reason about

stochastic deviations in user input and provide customized assistance in a shared-control

framework. The efficacy of the assistance paradigms were evaluated both in simulation and

via a 10-person human subject study. Our results indicated that the assistance conditions

were helpful in improving various objective task metrics such as task completion times,

number of mode switches performed, final distance to goal, and percentage of successful

trials. More importantly, the assistance paradigms also reduced the perceived cognitive

workload and user frustration, and improved overall user satisfaction.
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CHAPTER 5

An Algorithmic Framework for Intent Disambiguation via Mode

Switching: A Heuristic Approach

This chapter introduces the idea of intent disambiguation in the context of assistive

robotics. In an assistive shared autonomy system, the effectiveness of an autonomous

agent’s assistance depends on how well it can infer the user’s intent. The challenge in

these systems, however, is that the sensory input that the autonomous agent relies on

for intent inference is highly limited due to the inherent physical limitations of the end-

user as well as the idiosyncrasies (low-dimensionality, small bandwidth, sparsity) of the

control interfaces used for robot teleoperation. With intent disambiguation algorithms

the autonomous agent seeks to extract intent expressive signals from the user which in

turn helps the autonomous agent to infer intent more accurately and subsequently offer

more effective assistance.

This chapter presents a heuristic approach for intent disambiguation by leveraging the

fact that goal-oriented robot control when restricted to different control modes can contain

different levels of intent expressiveness. To facilitate disambiguation, the disambiguation

metric developed in this chapter enforces an ordering on the set of control modes according

to their ability to disambiguate human intent. The initial simulation-based analysis of

the algorithm reveals that the choice of belief update algorithms has a huge impact on

the effectiveness of the disambiguation algorithm. Hence as a secondary contribution, this
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chapter also presents a novel intent inference algorithm inspired by dynamic field theory

that works in conjunction with the disambiguation scheme. We also present results from

an eight person human subject study as well as simulation results that investigate the

usefulness of the proposed algorithm.

5.1. Introduction

Assistive and rehabilitation machines—such as robotic arms and smart wheelchairs—

have the potential to transform the lives of millions of people with severe motor impair-

ments [101]. With rapid technological advancements in the domain of robotics these

machines have become more capable and complex, and with this complexity the control

of these machines has become a greater challenge.

The standard usage of these assistive machines relies on manual teleoperation typically

enacted through a control interface. However, the greater the motor impairment of the

user, the more limited are the interfaces available for them to use. These interfaces

(for example, sip-and-puffs and switch-based head arrays) are low-dimensional, at times

discrete, and can typically only operate in subsets of the entire control space (referred to

as control modes). The dimensionality mismatch between the interface and the robot’s

controllable dimensions necessitates the user to switch between control modes during

teleoperation and this has been shown to impact the cognitive and physical burden of

operation and to affect task performance negatively [71].

The introduction of an intelligent autonomous agent to these assistive machines can

alleviate some of the above-mentioned issues. More specifically, with shared autonomy

the task responsibility is shared between the user and the underlying autonomous agent.
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However, for the autonomous agent to be effective, it needs to have a good understanding

of the user’s needs and intentions. That is, intent inference is critical to ensure appropriate

assistance.

In this work, we consider use-case scenarios in which the autonomous agent’s infer-

ence of user intent is exclusively informed by the human’s control commands issued via

the control interface. As an example, in the domain of assistive robotic manipulation,

these control commands are typically mapped to the end-effector (or joint) velocities and

result in robot motion. Motion carries information regarding underlying intent. However,

intent inference becomes particularly challenging when the user input is low-dimensional

and sparse—as is the case with the more limited interfaces available to those with se-

vere motor impairments—because the robot motion will likely be more discontinuous

and jagged, and carries less direct information regarding the underlying human intent.

While to augment the human-robot system with high-fidelity sensors could enhance the

autonomous agent’s intent inference capabilities, for reasons of user adoption and cost,

within the assistive domain we intentionally design the assistance add-ons to be as in-

visible and close to the manual system as possible. The need for intent disambiguation

arises as the autonomous agent needs to reason about all possible goals before issuing

appropriate assistance commands.

The key insight in this chapter is that for goal-oriented robot teleoperation control

commands in certain control modes are more intent expressive than others and therefore

may help the autonomous agent to improve inference accuracy. This is the notion of

inverse legibility in which human-generated actions help the autonomous agent to infer

the human’s intent unambiguously.
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Figure 5.1. Illustration of goal disambiguation along various control dimen-
sions. Any motion of the end-effector (green) along the y-axis will not help
the system to disambiguate the two goals (A and B). However, motion along
the x-axis provides cues as to which goal.

Consider the hypothetical reaching experiment illustrated in Figure 5.1. Since the

spatial locations of the goals are maximally spread along the horizontal axis, any hu-

man control command issued along the horizontal dimension conveys a great amount of

information about the intended goal to an observer. In other words, motion along the

horizontal dimension is more intent expressive and will help to draw accurate inference

more quickly and confidently. This approach to more seamless human-robot interaction

exploits the underlying implicit information exchange between partners that are inherent

to task execution with shared intentions. The idea is that, more accurate inference en-

ables the autonomous agent to assist the human more effectively, and thereby improve

overall task performance. This is important especially in assistive robotics, wherein the

purpose of the autonomous agent is to bridge gaps in control proficiency that result from

human impairments and limited control interfaces. The main contributions of this work

are as follows:
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(1) We develop a control mode selection algorithm which selects the control mode for

the user, in which the user-initiated motion will help the autonomy to maximally

disambiguate intent by eliciting more intent expressive control commands from

the human.

(2) We present results from a pilot study conducted to evaluate the efficacy of the

disambiguation algorithm.

(3) We propose a novel field-theoretic approach to intent inference based on ideas

from dynamic field theory in which the time evolution of the probability distri-

bution over goals is specified as a continuous-time constrained dynamical system

that obeys the principle of maximum entropy in the absence of user control com-

mands.

5.2. Mathematical Formalism for Intent Disambiguation

This section develops a heuristic disambiguation metric to induce an ordering on

the set of control modes according to their ability to disambiguate human intent and

frames intent disambiguation as a problem of determining the control mode that is able

to maximally disambiguate between goals.

5.2.1. Notation

Let G be the set of all candidate goals with ng = |G| and gi refers to the ith goal with i ∈

[1, 2, . . . , ng]. A goal in this context represents the human’s underlying intent. Specifically,

in assistive robotic manipulation, as the robotic arm first must reach toward and grasp

discrete objects in the environment, intent inference is the estimation of the belief over
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all possible discrete goals (objects) in the environment. At any time t, the autonomous

agent maintains a probability distribution over goals denoted by p(t) such that p(t) =

[p1(t), p2(t), . . . , png(t)]T where pi(t) denotes the probability associated with goal gi. The

probability pi(t) represents the robot’s belief that goal gi is the human’s intended goal.

Let K be the set of all controllable dimensions of the robot and ki represents the

ith control dimension where i ∈ [1, 2, . . . , nk] with nk = |K|. The limitations of the

control interface necessitate K to be partitioned into control modes. Let M be the set

of all control modes with nm = |M|. Additionally, let mi be the ith control mode where

i ∈ [1, 2, . . . , nm]. Each control mode mi is a subset of K such that
nm⋃
i=1

mi = K.1

In this work, we assume a kinematic model for the robot and the kinematic state (the

robot’s end-effector pose) at any time t is denoted as xr(t) ∈ R3 × S3 and consists of a

position and orientation component, where S3 is the space of all unit quaternions. The

pose for goal g ∈ G is denoted as xg ∈ R3 × S3. The low-level control command issued

by the human via the control interface is denoted as uh and is mapped to the Cartesian

velocity of the robot’s end-effector.2 For a 6-DoF robotic arm, uh ∈ R6. The autonomous

control policy generates an autonomy control command which is denoted as ua ∈ R6.

The control command issued to the robot, which is a synthesis of uh and ua is denoted as

uf ∈ R6. The control command that corresponds to a unit velocity vector along control

dimension k ∈ K is denoted as ek.

1Note that a dimension k ∈ K can be an element of multiple control modes.
2Note that, in the formalism presented in this chapter, we ignore interface-level actions and reason about
intent directly using the low-level control commands. Interface-aware intent disambiguation is presented
in Chapter 6.
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5.2.2. Disambiguation Metric

The disambiguation metric developed in this section is a heuristic measure that char-

acterizes the intent disambiguation capabilities of robot motion along particular control

dimensions within particular control modes. Specifically, we define disambiguation metric

Dk ∈ R ∀ k ∈ K. We further explicitly denote disambiguation measures for both positive

and negative motions along k as D+
k and D−k respectively. We also define a disambiguation

metric Dm ∈ R for each control mode m ∈M.

By virtue of design, the disambiguation metric Dm is a measure of how useful user

initiated robot motion in control mode m would be to the autonomous agent’s ability to

perform intent inference. In this work the computation of Dk depends on four features

(denoted as Γk, Ωk, Λk, and Υk), that capture different aspects of the shape of a projec-

tion of the probability distribution over intent. These projections and computations are

described in detail in Section 5.2.3 and Section 5.2.4, and as pseudocode in Algorithm 3.

5.2.3. Forward Projection of p(t)

The first step in the computation of Dk is a model-based forward projection of the prob-

ability distribution p(t) from the current time ta to times tb and tc (Algorithm 3, line 4)

where ta < tb < tc.
3 We consider two future times in order to compute short-term (tb) and

long-term (tc) evolutions of the probability distribution. The application of unit velocity

ek results in probability distributions p+
k (tb) and p+

k (tc), and −ek results in p−k (tb) and

3UpdateIntent() in Line 4 is implemented using Equation 5.7 discussed in detail in Section 5.4.2. Sim-
ulateKinematics() assumes that the end-effector kinematics is same as that of a point-like robot. All
parameters which affect the computation of p(t) are denoted as Θ.
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Algorithm 3 Intent Disambiguation

Require: p(ta),xr(ta),∆t, ta < tb < tc,Θ
1: for k = 0 . . . nk do
2: Initialize Dk = 0, t = ta, uh = ek

3: while t ≤ tc do
4: pk(t+ ∆t)← UpdateIntent(pk(t),uh; Θ)
5: xr(t+ ∆t)← SimulateKinematics(xr(t),uh)
6: if t = tb then
7: Compute Γk,Ωk,Λk

8: if t = tc then
9: Compute Υk

10: t← t+ ∆t
11: Compute Dk

p−k (tc), where the subscript k captures the fact that the projection is the result of the

application of a control command only along control dimension k.

5.2.4. Features of Dk

To compute the disambiguation metric for a control dimension, we design four features

that encode different aspects of the shape of the probability distribution as it evolves

under motion in a specific control dimension k. For each control dimension k, each of

the four features is computed for projections along both positive and negative directions

independently. The four features are computed in lines 7 and 9 in Algorithm 3.

1) Maximum: The maximum of the projected probability distribution pk(tb) is a

good measure of the robot’s overall certainty in accurately predicting human intent. The

maximum of the distribution is given by

(5.1) Γk = max
1≤i≤ng

pik(tb)
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(i.e., the statistical mode of this discrete distribution). A higher value implies that the

robot has a greater confidence in its prediction of the human’s intended goal.

2) Pairwise separation: More generally, disambiguation accuracy benefits from a larger

separation, Λk, between goal probabilities. The quantity Λk is computed as the sum of

the pairwise distances between the ng probabilities.

(5.2) Λk =

ng∑
i=1

ng∑
j=i

|pik(tb)− p
j
k(tb)|

Λk is particularly helpful if the difference between the largest probabilities fails to disam-

biguate.

3) Difference between maxima: Disambiguation accuracy benefits from greater dif-

ferences between the first and second most probable goals. This difference is denoted

as

(5.3) Ωk = max(pk(tb))−max(pk(tb) \max(pk(tb)))

and Ωk becomes particularly important when the distribution has multiple modes and a

single measure of maximal certainty (Γk) alone is not sufficient for successful disambigua-

tion.

4) Gradients: Γk,Ωk, and Λk are local measures that encode shape characteristics of

the short-term temporal projections of the probability distribution over goals. However,

the quantity pk(t) can undergo significant changes upon long-term continuation of motion

along control dimension k. The spatial gradient of pk(t) encodes this propensity for change
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and is approximated by

∂pk(t)

∂xk
' pk(tc)− pk(tb)
xk(tc)− xk(tb)

where xk is the component of robot’s projected displacement along control dimension

k. The greater the difference between individual spatial gradients, the greater will the

probabilities deviate from each other, thereby helping in disambiguation. In order to

quantify the “spread” of gradients we define Υk as

(5.4) Υk =

ng∑
i=1

ng∑
j=i

∣∣∣∂pik(t)
∂xk

− ∂pjk(t)

∂xk

∣∣∣
where |·| denotes the absolute value.

5) Computation of Dk and Dm: The individual features Γk, Ωk, Λk, and Υk are

combined to compute Dk in such a way that, by design, higher values of Dk imply greater

disambiguation capability for the control dimension k. More specifically,

(5.5) Dk = w · (Γk · Λk · Ωk)︸ ︷︷ ︸
short-term

+ (1− w) ·Υk︸ ︷︷ ︸
long-term

where w is a task-specific weight that balances the contributions of the short-term and

long-term components. In our implementation, w is empirically set to 0.5. Equation 5.5

is computed twice, once in each of the positive (ek) and negative directions (−ek) along

k, and the results (D+
k and D−k ) are then summed to compute Dk.

The computation of Dk is performed for each control dimension k ∈ K. The disam-

biguation metric Dm for control mode m then is calculated as

Dm =
∑
k∈m

Dk
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and the control mode with highest disambiguation capability m∗ is given by m∗ =

argmaxmDm and k∗ = argmaxkDk gives the control dimension with highest disambigua-

tion capability k∗. Disambiguation mode m∗ is the control mode the autonomous agent

chooses for the human to better estimate their intent.

5.3. Simulation-Based Analysis of the Impact of Choice of Intent Inference

on Disambiguation

This section presents some of the preliminary simulation-based analysis results in

which we qualitatively investigate whether the proposed disambiguation algorithm selects

control modes that are useful for intent disambiguation for a given goal configuration.

Additionally, we also evaluate the impact of certain simplification assumptions in our

algorithm and how different choices of intent inference mechanisms affect the accuracy

(in terms of picking the most useful mode for disambiguation) of the algorithm.

5.3.1. Heuristic-Based Confidence Functions

Confidence functions based on distance measures and alignment between the human and

the autonomous agent’s control commands provide interpretable, simple, and computa-

tionally lightweight methods to maintain estimates over the user’s intended goal. In order

to investigate how different choices of intent inference methods affect the accuracy of the

disambiguation algorithm, we start with simple choices of confidence functions. Simula-

tion based analysis is performed using these confidence functions which reveals areas of

improvement. Informed by the simulation results, a more robust and accurate inference
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method based on dynamic field theory (used in the human-subject study experiment) is

proposed in the next section.

We implement two confidence functions for the simulation-based analysis reported in

Section 5.3.2 and 5.3.3. A simple proximity-based confidence function used extensively in

the literature [48, 49] is

C1: c(xr,xg) = max(0, 1− ‖xr − xg‖
R

)

where xr is the current position of the robot, xg is the location of goal g, R is the radius

of a sphere beyond which the confidence is always 0 and ‖·‖ is the Euclidean norm. We

refer to this confidence function as C1.

A weakness of C1 is that it only considers current position and ignores any cues

regarding human intent present in the control command itself. A confidence function

that instead incorporates the human’s control command will contain more information.

One such function aims to capture the “directedness” of the human control command

towards a goal position. We refer to this as C2 and is given by,

C2: c(xr,xg,uh) = uh · (xg − xr)

where uh is the human control command.

5.3.2. Impact of Choice of Confidence Function

In order to qualitatively assess the soundness of our algorithm, we perform simulations in

which k∗ is computed at 2000 uniformly sampled points in the workspace of a simulated

version of the robotic arm described in Section 5.5. The workspace is approximated as a
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Figure 5.2. Tasks for simulation analysis. From Left to Right: Easy, Hard,
Hardest.

1.2×0.6×0.7m3 volume in front of the robot. Three different goal configurations were used

for simulations. Since the target orientations are the same for all goals, disambiguation

only happens in the translational dimensions and therefore is reduced to a 3D problem.

Confidence functions C1 (R = 0.3m) and C2 are evaluated using a goal configuration

shown in Figure 5.2 (middle column).

Figure 5.3 shows the results of the simulation. For the goal configuration used in the

simulation, the goal positions are spread out maximally along the x and z axes. Intuitively,

the system will be able to infer the human’s intent quicker if the human control command

is either along the x or the z axis. Table 5.1 further reports the number of times the

algorithm picked each of the three control dimensions, for each confidence function.

These results shed light on the efficacy of a confidence function in properly capturing

human intent. The choice of confidence functions can greatly affect the computation of

k∗ and m∗, and so the effectiveness of our disambiguation algorithm is intimately linked

to the inference methodology of different choices of confidence function.

Under confidence function C1 the information is equally spread throughout all control

dimensions (Table 5.1), because C1 contains less information with respect to the user’s
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Figure 5.3. Control dimensions best able to disambiguate intent. Using
confidence functions C1 (top row) and C2 (bottom row). Left column: k∗

is X. Middle Column: k∗ is Y. Right Column: k∗ is Z. Magenta spheres
indicate the goal locations (intent).

Best control dimension distribution
Confidence Function X Y Z NULL

C1 579 615 446 360
C2 1711 93 196 0

Table 5.1. Best control dimension distribution for two different confidence
functions.

selected motion and therefore also their intended goal. Furthermore, C1 has “null” spaces

where all confidences are identically equal to zero—and therefore neither disambiguation

nor intent inference is possible. By contrast, using C2, x is identified as the preferred

dimension in 1711 out of 2000 samples, and z in 196 of the remaining 289 samples, which

indicates that the confidence function along with the disambiguation algorithm is able to
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ng 3 4 5
Accuracy% 89.24 87.09 86.11

Table 5.2. Disambiguation accuracy for off-axis motions

select the optimal disambiguating dimensions over 95% of the time. The algorithm picked

y only when the robot is directly in front of a goal.

5.3.3. Robustness of Computing Dm from Dk

In our algorithm, the computation of Dm (Equation 5.2.4) only considers motion pro-

jected along orthogonal dimensions: the axes of each dimension k contained in mode m.

However, the user can generate a control command in any arbitrary direction within the

control mode; that is, the robot can be moved along any direction spanned by the control

dimensions in m. In order to assess the robustness of computing Dm only using the or-

thogonal dimensions, we perform simulations in which m∗ is computed for 500 uniformly

spaced locations in the robot workspace. At each of those points, 100 random control

commands feasible in m∗ are generated and applied to perturb the robot. Finally, at each

of these perturbed positions the best control mode is once again computed.

If the best mode in the perturbed position is indeed mode m∗, then the simplification

does not adversely affect the identification of the disambiguating mode. Table 5.2 sum-

marizes the number of times a match occurs for different configurations of the workspace

(with ng = 3, 4, and 5). While the simplification does hold for 85-90% of off-axis motions,

we also observe a trend where performance drops as the number of goals increases. Intu-

itively this makes sense because disambiguation between goals will become harder with a

larger number of goals in the scene and it becomes necessary to consider potential robot

motions that are not just along the orthogonal dimensions.
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5.3.4. Discussion

Our simulation results indicate a strong correlation between the intent inference power of a

given confidence function and the disambiguation power of our algorithm. It is unsurpris-

ing that confidence functions which are information-poor approximations of human intent

also perform less robustly when disambiguating between those approximations. Moreover,

the algorithm could be used to pre-compute the disambiguating modes offline. Informed

by the findings of the simulation results presented, in the next section, we introduce a

novel intent inference mechanism that draws inspiration from dynamic field theory. The

proposed inference mechanism aims to overcome the limitations of heuristic confidence

functions by incorporating memory via recurrent interactions terms as well as robustness

to noise in the external input.

5.4. Intent Inference

Since the disambiguation power of our algorithm is closely linked to the fidelity of the

underlying intent inference mechanism, in this section, we propose a novel intent inference

scheme inspired by dynamic field theory. By having the autonomous agent maintain a

probability distribution over goals, we implicitly model the human as a Partially Observ-

able Markov Decision Process (POMDP) in which all the uncertainty in the user’s state

is concentrated in the user’s intended goal. By maintaining and updating a probability

distribution over goals the autonomous agent can reason about the human’s latent state

(internal goal) during trial execution. Inference over goal states typically is done using

a recursive Bayesian belief update which determines how the distribution evolves over

time. Here, we introduce a novel approach to compute the time evolution of a probability
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distribution over goals as a constrained dynamical system which serves as an alternative

to the recursive Bayesian update scheme.

5.4.1. Dynamic Field Theory

In Dynamic Field Theory (DFT) [142], variables of interest are treated as dynamical state

variables. To represent the information about these variables requires two dimensions:

one which specifies the value the variables can attain and the other which encodes the

activation level or the amount of information about a particular value. These activation

fields (also known as dynamic neural fields) are analogous to probability distributions

defined over a random variable.

Following Amari’s formulation [6] the dynamics of an activation field φ(x, t) are given

by

(5.6) τ
∂φ(x, t)

∂t
=

∫
dx′b(x− x′)σ(φ(x′, t))− φ(x, t) + h+ S(x, t)

where x denotes the variable of interest, t is time, τ is the time-scale parameter, b(x −

x′) is the interaction kernel, σ(φ) is a sigmoidal nonlinear threshold function, h is the

constant resting level, and S(x, t) is the external input. The interaction kernel mediates

how activations at all other field sites x′ drive the activation level at x. Two types of

interactions are possible: excitatory (when interaction is positive) which drives up the

activation, and inhibitory (when the interaction is negative) which drives the activation

down.
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Historically, dynamic neural fields were conceived to explain cortical population neu-

ronal dynamics based on the hypothesis that the excitatory and inhibitory neural inter-

actions between local neuronal pools form the basis of cortical information processing.

These activation fields possess unique characteristics that make them ideal candidates

for modeling the time evolution of p(t). First, a peak in the activation field can be

sustained even in the absence of external input due to the recurrent interaction terms.

Second, information from the past can be preserved over much larger time scales quite eas-

ily by tuning the time-scale parameter thereby endowing the fields with memory. Third,

the activation fields are robust to disturbance and noise in the external input [141]. We

harness these characteristics to specify a model for smooth temporal evolution of p(t) in

the next section.

5.4.2. Field-Theoretic Intent Inference

Our insight is to use the framework of dynamic neural fields to specify the time evolution

of the probability distribution p(t), in which we treat the individual goal probabilities

pi(t) as constrained dynamical state variables such that pi(t) ∈ [0, 1] and Σ
ng

1 p
i(t) = 1.

We refer to this approach as the field-theoretic intent inference.

The full specification of the field is given by

(5.7)
∂p(t)

∂t
=

1

τ

[
−P T

ng×ng
· p(t)︸ ︷︷ ︸

goal transition dynamics

+
1

ng
· 1ng︸ ︷︷ ︸

rest state

]
+ λng×ng · σ(ξ(uh; Θ))︸ ︷︷ ︸

excitatory + inhibitory

where time-scale parameter τ determines the memory capacity and decay behavior,

P ng×ng is the state transition matrix for the embedded Markov chain that models the
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goal transitions as jump processes, 1ng is a vector of dimension ng containing all ones,

uh is the human control input and Θ represents all other task-relevant features, λ is the

control matrix that controls the excitatory and inhibitory aspects, ξ is a function that

encodes the nonlinearity through which human control commands and task features affect

the time evolution, and σ is a biased sigmoidal nonlinearity given by σ(ξ) = 1
1+e−ξ − 0.5.

Our design of ξ is informed by what features of the human control input and envi-

ronment effectively capture the human’s underlying intent. We choose the directedness of

the robot motion towards a goal, the agreement between the human and the autonomous

agent’s commands, and the proximity to a goal. The directedness component looks at the

shortest straight line path towards a goal g, whereas the agreement serves as an indicator

of how similar (measured as a dot product) the human and the autonomous agent’s signals

are to each other. One dimension i of ξ is defined as

ξi(uh; Θ) =
1 + η

2︸ ︷︷ ︸
directedness

+uroth · urota,gi︸ ︷︷ ︸
agreement

+ max(0, 1−
∥∥xgi − xr∥∥

R
)︸ ︷︷ ︸

proximity

where η =
utrans
h ·(xgi−xr)trans

‖utrans
h ‖‖(xgi−xr)trans‖ , ua,gi is the robot autonomy command for reaching goal

gi, trans and rot refer to the translational and rotational components of uh, uh or x, R

is the radius of the sphere beyond which the proximity component is always zero, ‖·‖ is

the Euclidean norm and Θ = {xr,xgi ,ua,gi} At every time-step, constraints on pi(t) are

enforced such that p(t) is a valid probability distribution. The most confident goal g∗ is

computed as g∗ = argmaxi p
i(t) ∀ i ∈ [1, . . . , ng].
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5.4.3. Field-Theoretic Intent Inference for Assistive Robotics

In this work we assume that the autonomous agent’s inference of user intent solely relies

on user issued low-level robot control commands. In the domain of assistive robotics, it

is quite often the case that the user input is highly discontinuous (due to fatigue, motor

impairments, stoppage for mode switches, et cetera). Therefore, it is important to reason

about belief over goals also in the absence of useful information.

According to the principle of maximum entropy, in the absence of testable information

(no control commands issued by the user and a uniform global prior), the belief should

converge to a uniform distribution over time. In the absence of uh, using Equation 5.7 and

an appropriately chosen time-scale parameter τ , p(t) converges to a uniform distribution

by correctly ignoring outdated information. The rate at which the distribution decays to

a uniform distribution is controlled by τ .

By contrast, the standard discrete-time recursive belief update equation as imple-

mented in [87] is

p(gt|uth) = ηp(uth|gt)
∑
gt−1∈G

p(gt|gt−1)p(gt−1|ut−1
h )

where η is a normalization factor, p(uth|gt) is a likelihood function, and p(gt|gt−1) is the

goal transition probability. In the recursive belief update, when uh = 0 and the likelihood

function is uniform, it can be shown that the posterior distribution over goals converges

to the stationary distribution of the goal transition matrix. The stationary distribution

is not necessarily uniform and can introduce unwanted biases in the inference.
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Figure 5.4. Inference comparison: Goal probabilities (blue and orange lines)
for (A) Memory-based prediction, (B) Recursive Bayesian belief update and
(C) Field-theoretic inference in a scene with two goals. Black rectangu-
lar boxes indicate times of zero control velocity, with varying effects on
the inference schemes: (A) little change (since the cost function is purely
distance-based), and convergence to (B) the stationary distribution of the
goal transition matrix P and (C) the uniform distribution as dictated by
the principle of maximum entropy.

Knowledge of task-level semantics can provide informative global priors that can fur-

ther improve the accuracy of the inference mechanism. Our field-theoretic approach ad-

ditionally can encode a task-level global prior in the ‘rest state’ term. For example, in

a pick-and-place task, the initial goal distribution could be biased towards the object

that needs to be picked. In order to evaluate the performance of our field-theoretic in-

ference approach a quantitative comparison to (a) memory-based prediction [49] and (b)

recursive belief updating [87] was implemented using point robot simulation in R3. The

human was modeled as issuing a control command that noisily optimizes a straight-line

path towards the intended goal. Signal dropout was simulated by randomly zeroing out

control commands and τ was set to be 10. Additionally, uh was set to be zero for a

randomly chosen section of each trial in order to compare the convergence behavior of

different approaches. The number of goals varied between three and five. Goal transitions
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were randomly sampled every five to eight time steps. The average length of the simu-

lated trajectories was 615 time steps and 500 trials were simulated. Inference accuracy

was computed as the fraction of total trial time (excluding when uh = 0) for which an

algorithm correctly inferred the ground truth goal.

Results for field-theoretic inference outperformed memory-based prediction signifi-

cantly (87.46% vs. 59.15% respectively) and were comparable to recursive belief updating

(87.43%). Figure 5.4 shows an illustrative example of goal inference using the various

methods. One can see that when there is no control command issued, the field-theoretic

approach alone converges to a uniform distribution in agreement with the principle of

maximum entropy.

5.5. Study Methods

In this section, we describe the study methods used to evaluate the efficacy of the

disambiguation algorithm.

Participants: For this study eight subjects were recruited (mean age: 31 ± 11, 3 males

and 5 females). All participants gave their informed, signed consent to participate in

the experiment, which was approved by Northwestern University’s Institutional Review

Board.

Hardware: The experiments were performed using the MICO 6-DoF robotic arm (Kinova

Robotics, Canada), specifically designed for assistive purposes. The software system was

implemented using the Robot Operating System (ROS) and data analysis was performed

in MATLAB. The subjects teleoperated the robot using two different control interfaces:

a 2-axis joystick and a switch-based head array, controlling the 6D Cartesian velocity of
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the end-effector (Figure 5.5). An additional button was provided to request the mode

switch assistance.

The joystick generated 2D continuous control signals. Under joystick control the full

control space was partitioned into five control modes that were accessed via button presses.

The switch-based head array consisted of three switches embedded in a headrest, operated

via head movements, and generated 1D discrete signals. Under head array control the full

control space was partitioned into seven control modes. The back switch was used to cycle

between the different control modes, and the switches to the left and right controlled the

motion of the robot’s end effector in the positive and negative directions along a selected

control dimension.

Tasks: Two different categories of tasks were evaluated.

Single-step: The aim was to reach one of five objects on the table, each with a pre-

specified target orientation (Figure 5.6, Left).

Figure 5.5. A 2-axis joystick (left) and switch-based head array (center) and
their control mapping and operational paradigms (right). v and ω indicate
the translational and rotational velocities of the end-effector, respectively.
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Figure 5.6. Study tasks performed by subjects. Left: Single-step reaching
task. Right: Multi-step pouring task.

Multi-step: Each trial began with a full cup held by the robot gripper. In the first

stage, the subjects were required to pour the contents of the cup into one of two containers,

and subsequently in the second stage, the cup was to be placed at one of the two specified

locations and with a particular orientation (Figure 5.6, right).

Switching Paradigms: Two kinds of mode switching paradigms were evaluated in the

study.

Manual : During task execution the user performed all mode switches.

Disambiguation: The user either performed a mode switch manually or requested a

switch to the disambiguation mode. The user was free to issue disambiguation requests

at any time during the task execution, upon which the algorithm identified and switched

the current control mode to the best disambiguation mode m∗ by invoking Algorithm 3.

During the trial, the user also was allowed to switch control modes using a manual mode

switch at any time as well. The only requirement was that, the user request disambigua-

tion at least once during the task execution.

Shared Control: Control-level assistance was always active for both mode switch assis-

tance paradigms (manual and disambiguation). We used a blending-based shared-control
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paradigm in which the final robot control command was a linear composition of the hu-

man control command and an autonomous control command. The amount of assistance

was directly proportional to the probability of the most confident goal g∗, and thus to the

strength of the intent inference. The probability distribution over goals, p(t), was updated

using Equation 5.7 as outlined in Section 5.4.2 and the most confident goal was computed

as gargmaxi p
i(t). Therefore, if intent inference improved as a result of goal disambiguation,

more assistance would be provided by the autonomous agent.

Specifically, the autonomous control policy generated control command ua ← fa(xr)

where fa(·) ∈ Fa, and Fa was the set of all control behaviors corresponding to different

tasks. Fa could be derived using a variety of techniques such as Learning from Demon-

strations [8], motion planners [76] or navigation functions [135].

In our implementation, the autonomous agent’s control command ua,g was generated

using a simple potential field which was defined in all parts of the state space [95]. Every

goal g was associated with a potential field γg which treated g as an attractor and all other

goals in the scene as repellers. The autonomy command was computed as a summation

of the attractor and repeller velocities and operated in the full 6D Cartesian space. For

potential field γg, the attractor velocity is given by

ẋattractr = xg − xr
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where xg is the location of goal g.4 The repeller velocity was given by

ẋrepelr =
∑
i∈G\g

xr − xgi
µ(
∥∥xr − xgi∥∥2

)

where ẋr indicated the velocity of the robot in the world frame, µ controlled the magnitude

of the repeller velocity and ‖·‖ is the Euclidean norm. The autonomy command associated

with goal g was then computed as a summation of these attractor and repeller velocities

and was given by

ua,g = ẋattractr + ẋrepelr .

γg operated in the full six dimensional Cartesian space, and treated position and orienta-

tion as independent potential fields.

Under blending, the final control command uf issued to the robot was computed as

(5.8) uf = α · ua,g∗ + (1− α) · uh

where g∗ was the most confident goal. Similar to uh, the autonomy command ua,g∗ ∈ R6

was mapped to the 6D Cartesian velocity of the end-effector. The blending factor α was

a piecewise linear function of the probability p(g∗) associated with g∗ and was given by

α =


0 p(g∗) ≤ ρ1

ρ3(p(g∗)−ρ1)
ρ2−ρ1 if ρ1 < p(g∗) ≤ ρ2

ρ3 ρ2 < p(g∗)

4In position space, the ‘–’ operator computes the difference between the goal position and current robot
position in R3. In orientation space, the ‘–’ operator computes the quaternion difference between the
goal orientation and the current robot orientation.
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with ρi ∈ [0, 1] ∀ i ∈ [1, 2, 3] and ρ2 > ρ1. In our implementation, we empirically set

ρ1 = 1.2
ng
, ρ2 = 1.4

ng
and ρ3 = 0.7.

Study protocol: A within-subjects study was conducted using a fractional factorial de-

sign in which the manipulated variables were the tasks, control interfaces, and the switch-

ing paradigm conditions. Each subject underwent an initial training period that lasted

approximately 30 minutes. The training period consisted of three phases and two different

task configurations. The subjects used both interfaces to perform the training tasks.

Phase One: The subjects were asked to perform a simple reaching motion towards a

single goal in the scene. This phase was intended for the subjects to get familiarized with

the control interface mappings and teleoperation of the robotic arm.

Phase Two: Subjects were asked to perform a simple reaching motion towards a single

goal in the scene in the presence of blending-based autonomous assistance.

Phase Three: Subjects were able to explore the disambiguation request feature during

a reaching task to observe the effects of the mode switch request and subsequent change in

robot assistance. Multiple objects were introduced in the scene. Subjects were explicitly

informed that upon a disambiguation request the robot would select a control mode that

would help the autonomy determine the subject’s intended goal and thereby enable it to

assist the user more effectively.

During the testing phase, each subject performed both tasks using both interfaces

under the Manual and Disambiguation paradigms. All trials started in a randomized

initial control mode and robot position. The ordering of control interfaces and paradigms

was randomized and counterbalanced across all subjects. Three trials were collected for

the Manual paradigm and five trials for the Disambiguation paradigm. On an average,
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Figure 5.7. Flow chart depicting user action sequence during a single trial.
The user could issue a (a) velocity control command, resulting in intent
inference followed by generation of an autonomy signal and then blended
control signal, and causes robot motion or (b) manual mode switch or (c)
disambiguation request, both resulting in a control mode switch.

each trial lasted approximately 10-40s depending on the starting position of the robot

and the specified reaching target. At the start of each trial, pi(t) for i ∈ [1, 2, . . . , ng] was

initialized as 1
ng

. During the trial as the user teleoperated the robot, p(t) was updated

according to Equation 5.7 online at each time step. Figure 5.7 captures how a single trial

unfolds in time.
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Metrics: The objective metrics used for evaluation included the following.

• Number of mode switches : The number of times a user switched between various

control modes during task execution. This metric captures one of the main factors

that contributes to the cognitive and physical effort required for task execution

in assistive robotic manipulation [71].

• Number of disambiguation requests : The number of times a user pressed the

disambiguation request button.

• Number of button presses : The sum of Number of mode switches and Number of

disambiguation requests.

• Skewness : A higher-order moment used to quantify the asymmetry of any distri-

bution. Used to characterize how much the temporal distribution of disambigua-

tion requests deviates from a uniform distribution.

• Task completion time: Time taken to complete the task successfully. This metric

is an indicator of how well the human and the autonomous agent work together.

Additionally, at the end of each testing phase, subjective data was gathered via a

brief questionnaire. Users were given the following statements regarding the usefulness

and capability of the assistance system to rate according to their agreement on a 7-point

Likert scale.

• Q1 - Control modes chosen by the system made task execution easier.

• Q2 - The robot and I worked together to accomplish the task.

• Q3 - I liked operating the robot in the control modes chosen by the system.

Subjects were also asked to indicate their preference in the following questions.

• Q4 - Which interface was the hardest to operate?
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Figure 5.8. Average number of button presses, Disambiguation and Manual
paradigms. Left: Grouped by control interfaces. Right: Grouped by tasks.

• Q5 - For which interface was the assistance paradigm the most useful?

• Q6 - Which one of the schemes do you prefer the most?

• Q7 - Which one of the schemes is the most user-friendly?

5.6. Results

In this section we present results from our human-subject study. The study results in-

dicate that the disambiguation request system is of greater utility for more limited control

interfaces and more complex tasks. Subjects demonstrate a wide range of disambigua-

tion request behaviors with a common theme of relying on disambiguation assistance
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Figure 5.9. Temporal pattern of button presses for joystick (left) and head
array (Right) during the multi-step task on a trial-by-trial basis for all
subjects. For each subject, each light gray horizontal line represents a
single trial. Eight trials per subject, for each interface.

earlier in the trials. Furthermore, the survey results show that operating the robot in

the disambiguating mode make task execution easier and that users prefer the Disam-

biguation paradigm to the Manual paradigm. Statistical significance is determined using

the Wilcoxon Rank-Sum test in where (***) indicates p < 0.001, (**) p < 0.01, and (*)

p < 0.05.
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Impact of Disambiguation: A statistically significant decrease in the number of button

presses is observed between the Manual and Disambiguation paradigms when using the

head array (Figure 5.8, left). Due to the low-dimensionality of the head array and cyclical

nature of mode switching, the number of button presses required for task completion is

inherently high. The disambiguation paradigm is helpful in reducing the number of button

presses likely due to higher robot assistance that is present in the disambiguating control

mode. For the joystick, statistically significant differences between the two paradigms

are observed for the number of manual mode switches (p < 0.05). However, this gain is

offset by the button presses that are required to make disambiguation requests. When

grouping by task, the general trend of a decrease in the number of button presses is

more pronounced for the more complex multi-step task (Figure 5.8, right). Although not

statistically significant, we also observe that the autonomy has a slightly higher control

authority (as measured by α) during the disambiguation trials (α = 0.27 ± 0.16) when

compared to the manual trials (α = 0.25± 0.16).

These results suggest that disambiguation is more useful as the control interface be-

comes more limited and the task becomes more complex. Intuitively, intent prediction

becomes harder for the robot when the control interface is lower dimensional as it does

not reveal a great deal of information about the user’s underlying intent. By having the

users operate the robot in the disambiguating control mode, the autonomous agent is able

to elicit more intent-expressive control commands from the human which in turn helps in

accurate goal inference and subsequently appropriate assistance.

Temporal Distribution of Disambiguation Requests: In Figure 5.9 the frequency

and density of button presses (disambiguation requests plus mode switches) are much
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Table 5.3. Skewness of the temporal distribution of disambiguation requests.

Single-step Multi-step
Joystick 0.63 0.57

Head Array 0.35 0.22

higher for the more limited control interface (head array). We observe that a higher

number of disambiguation requests correlates with the more limited interface and complex

task. The subjects also demonstrate a diverse range of disambiguation request behaviors,

in regards to both (a) when the disambiguation requests are made and (b) with what

frequency (e.g., Subject 1 vs. Subject 2, Joystick). The variation between subjects

is likely due to different factors such as the user’s comfort in operating the robot and

understanding of the disambiguating mode’s ability to recruit more assistance from the

autonomy.

The temporal distribution of disambiguation analyzes when the subject requested

assistance during the course of a trial. The skewness of the temporal distribution of

disambiguation requests reveals a higher concentration of requests during the earlier parts

of a trial (Table 5.3) for both interfaces and tasks.5 However, under head array control the

temporal distribution is less skewed, indicating that the need for disambiguation request

persists throughout the trial, likely due to the extremely low-bandwidth of the interface.

Performance: No statistical difference is observed in task completion times between

the Manual and Disambiguation paradigms (Figure 5.10). However, the variance in the

task completion times in general is lower under the Disambiguation conditions (with the

5A uniform temporal distribution corresponds to a trial in which the disambiguation requests are uni-
formly spread out during the course of task execution. The skewness of a uniform distribution is zero.
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Figure 5.10. Task completion times. Disambiguation and Manual
paradigms. Left: Grouped by control interfaces. Right: Grouped by tasks.

exception of single-step), indicating more consistent task performance when disambigua-

tion requests are utilized. The task success is 92.50% (148 out of 160 trials) and 97.92%

(94 out of 96 trials) for the Disambiguation and Manual paradigms respectively. 13 out

of the 14 unsuccessful trials occur during the more complex multi-step task. Figure 5.11

provides illustrative examples of the time evolution of goal probabilities and demonstrates

how operation in the disambiguating mode can very quickly elevate one goal probability

above the threshold for providing autonomy assistance. Figure 5.11 (right) demonstrates

how, at times, subjects do not leverage the capabilities of the disambiguating mode and
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immediately perform a manual mode switch, without ever issuing any control commands

in the disambiguating mode.

User Survey: Table 5.4 summarizes the results of the user survey. Users agree that task

execution is easier during disambiguation trials (Q1, 4.88±0.95) and that operation under

disambiguating modes is enjoyable (Q3, 5.00±1.15). User responses strongly validate the

effectiveness of the blending-based shared control scheme (Q2, 6.19±0.75). Unsurpris-

ingly, all users feel that it is harder to control the robot using the head array (Q4) and

rate the utility value of the disambiguation paradigm to be higher for robot control with

the head array (Q5). Although the subjects overwhelmingly prefer the Disambiguation

to the Manual paradigm (Q6) only four out of the eight subjects find the Disambiguation

paradigm to be user-friendly (Q7). One possible explanation is a lack of transparency

regarding why the autonomous agent chose the disambiguating mode.
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Table 5.4. Subjective Survey Results

Across Tasks Single-step Multi-step
Q1 4.88 ± 0.95 4.88 ± 0.99 4.88 ± 0.99
Q2 6.19 ± 0.75 6.25 ± 0.89 6.13 ± 0.64
Q3 5.00 ± 1.15 5.25 ± 1.28 4.75 ± 1.03
Q4 Head Array Head Array Head Array
Q5 Head Array Head Array Head Array
Q6 Disambiguation Disambiguation Disambiguation
Q7 Disamb/Manual Disamb/Manual Disamb/Manual

5.7. Discussion

The disambiguation algorithm presented in this chapter can be utilized in any human-

robot system in which there is a need to disambiguate between the different states of

a discrete hidden variable (for example, a set of discrete goals in robotic manipulation

or a set of landmarks in navigation tasks). The disambiguation algorithm assumes the

existence of a discrete set of parameters (for example, control modes for robotic manipu-

lation or natural language based queries for navigation) that can help the intent inference

mechanism to precisely converge to the correct solution. Although the disambiguation

algorithm is task-agnostic—because it relies exclusively on the shape features of the prob-

ability distribution over the hidden variable—the disambiguation is only as good as the

efficacy of the inference algorithm that is used. In our experience, the choice of cost

functions and domain-specific heuristics used for inference need to be appropriate for the

task at hand. During our implementation development, the efficacy of the disambigua-

tion algorithm degraded when we used only a subset of the four features to inform the

disambiguation metric. This only reinforces the need for a combination of different shape

features for successful disambiguation.
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Another observation from the subject study is how often participants submitted a

disambiguation request and then chose not to operate in the selected mode—effectively

not letting the robot help them. This under-utilization phenomenon is illustrated in

Figure 5.11 (right). One possible explanation is the subject’s lack of understanding of

how their control commands can help the robot to understand their intent. It is likely

that a good grasp of the assistance mechanism is critical for providing intent-expressive

control commands to the autonomy—underlining the need for extensive and thorough

training for greater transparency in the human-robot interaction, so that the human has

a clear understanding of how and why the autonomous agent chooses a specific assistance

strategy.

The training can be made more effective in a few different ways. For example, the

subjects could be explicitly informed of the task relevant features (directedness, proximity

et cetera) that the autonomous agent relies on for determining the amount of assistance

to offer. Knowledge of these features might motivate the users to leverage the assistance

offered when operating in the disambiguating mode more.

The inherent time delays associated with the computation of the disambiguation mode

(approximately 2-2.5s) might have been a cause for user frustration. Half of the subjects

did report that the disambiguation system was not user-friendly. To improve upon this

delay, a large set of disambiguating modes could be precomputed for different parts of

the workspace, goal configurations, and goal priors ahead of time, which then could be

available as a lookup table during task execution. Automated mode switching schemes

that eliminate the need for manual button presses altogether might also be a viable option

for significantly reducing task effort.
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5.8. Conclusions

In this chapter, we presented the idea of intent disambiguation assistance via control

mode selection for a shared-control assistive robotic arm. The aim of the control mode

selection algorithm was to elicit more intent-expressive control commands from the user by

placing control in those control modes that maximally disambiguate between the various

goals in a scene. A pilot user study was conducted with eight subjects to evaluate the

efficacy of the disambiguation system. The study results indicated a decrease in task effort

in terms of the number of button presses when the disambiguation system was active.

As the last contribution, we also presented a novel intent inference mechanism inspired

by dynamic field theory that works in conjunction with the proposed disambiguation

algorithm.

Informed by the findings and shortcomings of the work presented in this chapter, in

the next chapter a more refined algorithmic framework to perform intent disambiguation

is presented.
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CHAPTER 6

Information Theoretic Intent Disambiguation via Contextual

Nudges for Assistive Shared Control

In the previous chapter, a heuristic was designed to evaluate the intent disambigua-

tion capabilities of different control modes and the users were responsible for activating

the algorithm during their interaction with the autonomous agent. This chapter further

develops the ideas presented in Chapter 5 and formalizes the notion of interface-aware

intent disambiguation by rigorously grounding it in information-theoretic principles. The

disambiguation metric proposed in this chapter enables the autonomous agent not only to

reason about the disambiguation capabilities of control modes but also of the entire state

space that constitutes robot location as well. This chapter also proposes a turn-taking

based Human-Autonomy Interaction (HAI) protocol in which the autonomous agent acti-

vates the proposed disambiguation algorithm during its turn when the uncertainty about

its prediction of user intent is high. We present results from a nine person human subject

study which suggest that disambiguation (a) helps to significantly reduce task effort, as

measured by number of mode switches, task completion times, and number of turns exe-

cuted by the human and (b) enables the autonomous agent to provide accurate assistance
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with greater confidence and contribution to the overall control signal. The work pre-

sented in this chapter was done in collaboration between Deepak Gopinath and Andrew

Thompson.1

6.1. Introduction

A fundamental problem in robotics is that of state estimation from noisy sensor

data [13]. The primary goal of any state estimation algorithm is to reduce the un-

certainties that arise from noisy measurements and this can become particularly hard due

to limited information channels and associated hardware constraints. In HAI scenarios,

usually, state estimation performed by the autonomous agent not only involves estimation

of the environment state, but also of the unobserved latent human state that encodes their

goals, beliefs, and intentions. Particularly, in the domain of shared autonomy assistive

robots, the effectiveness of an assistive autonomous agent depends on how well it is able

to infer the user’s intentions unambiguously from the control interface signals that are

generated by the human.

In Chapter 5 we motivated the need for intent disambiguation in the context of human-

machine interaction as a strategy to improve the autonomous agent’s ability to infer

human intent from low-dimensional, low-bandwidth signals generated via limited control

interfaces. In this chapter, we frame intent disambiguation as a problem of optimally

nudging the user’s environment (decision making context) such that their subsequent

control interface actions are guaranteed to result in maximal information gain regarding

1The individual contribution breakdown is as follows: 1) Development of the initial idea, disambiguation
metric, and code was done by Deepak Gopinath, who was also the primary proctor for the subject
study. 2) Andrew Thompson assisted in study protocol design and preparation, and benchmarking the
computational efficiency of the algorithm.
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the user’s latent intentions. In this work, we also explicitly incorporate the impact of the

control interface’s inherent noisy characteristics on information gain.

The key contributions of this chapter are three-fold:

(1) We propose an interface-aware information-theoretic framing of the problem of

intent disambiguation.

(2) We propose a turn-taking based HAI protocol in which the autonomous agent

utilizes the proposed disambiguation metric to help itself when uncertain about

its prediction of human intent.

(3) We present results from a nine person human subject study that evaluated the

effectiveness of the proposed disambiguation metric and turn-taking based pro-

tocol.

The proposed disambiguation metric and turn-taking based interaction protocol is

validated in simulation as well as with a human subject-study.

6.2. Intent Disambiguation as an Algorithm for Nudging

When the autonomous agent uses the intent disambiguation algorithm to nudge the

robot into maximally disambiguating states, it is an example of how a decision-making

context is altered to indirectly affect the decisions taken by the human. This phenomenon,

known as nudging, is extensively studied in the sphere of behavioral economics [157],

public policy [55], smart technologies [113], and business marketing [90]. Originally

proposed by Thaler and Sunstein in [158], nudging is the mechanism by which any aspect

of the choice architecture is modified in an attempt to influence peoples’ behaviors in a

predictable manner. Choice architecture refers to the organization and presentation of
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the choices that a decision maker have. Note that, nudging is not same as introducing

an arbitrary number of constraints, but rather it is an attempt to influence the decision

maker’s choice without limiting the choice set or making other alternatives more costly.

In the domain of robotics, applications of nudge theory have been explored in the context

of social robotics, particularly with respect to the ethics and morality of nudging human

when they interact with robots [136, 153]. More recently, a computational account of

optimal nudging was proposed in [31], in which nudging was framed as modifications to

the costs of different cognitive operations.

In the case of human-autonomy interaction scenario discussed in this chapter, the

context is the environment state in which the human is required to generate actions.

Altering context amounts to changing some aspects of the environment state. Moreover,

the context change is initiated by the autonomous agent. That is, the autonomous agent

intervenes to alter the context in specific ways in order to influence the human to act

in a certain manner. In the case of control interface mediated robot teleoperation, a

contextual nudge could be a change to the active mode, or in the robot location, or both.

In Chapter 5, we focus on nudges that are restricted to mode changes, whereas in the

formulation presented in this chapter the changes to the context affect both the robot

location and mode. Additionally, nudges are introduced not only to help the human

make better decisions, but also to help the autonomous agent itself which in turn will

benefit the human.
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6.3. Assistance via Turn Taking

In a shared autonomy system in which both the human and the autonomous agent

control the same physical device at the same time, for the human to isolate the autonomous

agent’s contribution to the overall control signal can become hard as feedback is limited.

To estimate the autonomous agent’s control contribution requires either a good mental

model of the autonomous agent’s policy and understanding of the control arbitration

scheme, or mentally subtracting away the effect of their own issued controls. In human-

human interaction, it has been established that humans rely on theory of mind mechanisms

to explain other agents’ actions. Humans could rely on such theory of mind explanations

to make sense of the autonomous agent’s behavior as well [11, 12]. However, all of these

assume access to observations that are not corrupted by the human’s own actions. In

turn-taking, the bulk of the autonomous agent’s actions are executed during its own turn

without any contribution from the human and as a result it becomes easier for an observer

to infer the latent assistance strategies from uncorrupted trajectory rollouts initiated by

the autonomous agent.

In general, turn taking is one of more common HAI protocols used in a variety of

robotics subfields. Fluency in HAI based on information flow is studied [147, 159].

Assistive robots utilize turn-taking as an interaction paradigm for therapy of children with

autism spectrum disorder [149]. Conversational turn-taking robots that rely on gestures

and natural language modalities are extensively used to understand social dynamics of

human-robot interaction [100]. An additional motivation for the target domain is that

turn-taking could provide a natural framework which affords periods of rest for the human.

Taking sufficient rest becomes particularly important (especially with limited interfaces
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such as a sip-and-puff) as continuous manual teleoperation is physically taxing and can

quickly result in fatigue.

6.4. Mathematical Formalism

In this section, we present the mathematical formulation of our interface-aware in-

formation theoretic intent disambiguation algorithm. A probabilistic graphical model of

limited control-interface mediated robot teleoperation is presented in Section 6.4.1. In

Section 6.4.2 we describe the recursive Bayesian intent estimation algorithm used by the

autonomous agent to determine the user’s intended goal. We also present a turn-taking

based human-autonomy interaction protocol that will embed the disambiguation algo-

rithm as a part of the autonomous agent’s interaction strategy.

6.4.1. Modeling Limited Control-Interface Mediated Robot Teleoperation

Figure 6.1 depicts the probabilistic graphical model of control interface mediated robot

teleoperation by a goal-directed human.

We model the human teleoperating the robot towards a goal g ∈ G using a limited

control interface as an interface dependent goal-directed Markov Decision Process

(MDP) denoted by the tuple (S,A, T ,Rg, γ, ρ0,∆), whereRg : S×A×S → R is the goal-

dependent reward, γ ∈ [0, 1) is the discount factor, ∆ is an interface-dependent parameter

that determines the mode-switching behavior and ρ0 is the initial state distribution. We

model the robot-interface system as a deterministic dynamical system with a transition

function T : S × A → S, where S = Q ×M is the state space that comprises of the

robot location (Q) and the set of control modes (M). A is the set of all task-level actions.
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A can be decomposed as Aq × Am where Aq is the set of task-level control actions and

Am is the set of control-level mode switch actions. As a result, T is a hybrid dynamical

system consisting of Tq : Q×Aq → Q, which determines how the task-level control actions

result in motion or equivalently changes to the robot location and Tm : M×Am → M

which determines how control-level mode switch actions determine the current active

mode. Additionally, we also define two feature extractors Ψq(s) = q and Ψm(s) = m

∀s = (q,m) ∈ S. Additionally, we also have G ⊂ Q, so that goals are defined as desired

locations for the robot.

We solve for the goal-dependent optimal policy (which is a mapping from state s to

a distribution over actions a), denoted as πgoptim using standard value iteration and treat

the goal-dependent human’s stochastic policy, p(a|s, g) to be an ε-greedy policy that can

be written as

(6.1) p(a|s, g) = (1− ε)πgoptim + επunif

where πunif is a uniform policy and ε ∈ (0, 1).

6.4.2. Recursive Bayesian Goal Inference

At any time t, the human’s true intended goal is latent and unobservable to the au-

tonomous agent and as such it maintains a belief over goals denoted as btg. The process

of goal inference amounts to computing the posterior over goals given the history of mea-

sured interface-level actions, φ0:t
m and states s0:t. More precisely, we can use Bayesian
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f Υ

Figure 6.1. Probabilistic graphical model depicting a specific user’s goal di-
rected interactions with the robot via the control interface at single time
step t. The nodes and edges that model the physical aspect of controlling
the interface are highlighted in green. In this graphical depiction st sub-
sumes both qt (the robot state) as well as mt (the control mode). φti and φtm
are the intended and measured interface-level physical actions respectively.
These variables encode the specific physical activation mechanisms needed
to generate a signal using an interface. More details on interface-level phys-
ical actions to be found in Section 4.2.1 of Chapter 4

inference to compute the posterior btg = p(gt|φ0:t
m , s

0:t) as

(6.2) btg ∝ p(gt|φ0:t−1
m , s0:t)p(φtm|gt, φ0:t−1

m , s0:t)

and using the conditional independence assumptions encoded in the model shown in

Figure 6.1 we can remove the dependence of p(φtm|gt, φ0:t−1
m , s0:t) in Eq. 6.2 on φ0:t−1

m and

s0:t−1. Then Eq. 6.2 becomes,

(6.3) btg ∝ p(gt|φ0:t−1
m , s0:t)p(φtm|gt, st).
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Marginalizing over at and φti we can express Eq. 6.3 as

(6.4) btg = η · p(gt|φ0:t−1
m , s0:t)

∑
at∈A

∑
φti∈Φ

p(φtm|φti)p(φti|at)p(at|st, gt)

with η is the normalization factor. p(φti|at) capturing the user’s internal model of the true

mapping (denoted as f) between task level actions and interface-level physical actions.

p(φtm|φti) is the user input distortion model, which captures the stochastic deviations of

the measured interface-level physical actions from the intended interface-level physical

actions. p(gt|φ0:t−1
m , s0:t) can be recast as,

p(gt|φ0:t−1
m , s0:t) =

∑
gt−1∈G

p(gt, gt−1|φ0:t−1
m , s0:t)

=
∑
gt−1∈G

p(gt|gt−1, φ0:t−1
m , s0:t)p(gt−1|φ0:t−1

m , s0:t)

=
∑
gt−1∈G

p(gt|gt−1) p(gt−1|φ0:t−1
m , s0:t−1)︸ ︷︷ ︸
bt−1
g

(6.5)

under the assumption that gt only depends on gt−1 and that the state at time t does

not influence the goal at time t−1. Combining Eq. 6.5 with Eq. 6.4 the recursive Bayesian

update for goal inference is given by

(6.6) btg = η

[ ∑
gt−1∈G

bt−1
g · p(gt|gt−1)

]∑
at∈A

∑
φti∈Φ

p(φtm|φti)p(φti|at)p(at|st, gt).
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Under the assumption that the goal transition probability is a delta distribution, the

above equation can be further simplified as

(6.7) btg = η · bt−1
g

∑
at∈A

∑
φti∈Φ

p(φtm|φti)p(φti|at)p(at|st, gt).

6.4.3. Disambiguation Metric

We formalize intent disambiguation as a characterization of the states in the state space

S according to their potential to extract interface signals φm from the user that provide

the most information about the latent goal g ∈ G. Intent disambiguation is particularly

useful when the measured control signals, φm are very noisy and sparse. An autonomous

agent that uses the intent disambiguation algorithm can nudge the robot into maximally

disambiguating state(s), such that subsequent actions executed by the user will help the

autonomous agent accurately infer human intent.

In order to perform intent disambiguation, the autonomous agent needs to have a

notion of the amount of information contained in φtm about gt conditioned on the current

state and the past history.

To be precise, at any given time t, if φ0:t−1
m and s0:t−1 represent the history of interface-

level actions and states that the autonomous agent have observed, then the conditional

mutual information, I(φtm; gt|φ0:t−1
m , s0:t−1, st) between φtm and gt conditioned on φ0:t−1

m

and s0:t−1 and the current state st measures the amount of information obtained about

gt by observing φtm. Using the standard definition of conditional mutual information we
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then have

(6.8) I(φtm; gt|φ0:t−1
m , s0:t−1, st) =∑

φtm∈Φ

∑
gt∈G

p(φtm, g
t|φ0:t−1

m , s0:t−1, st)log
p(φtm|gt, φ0:t−1

m , s0:t−1, st)

p(φtm|φ0:t−1
m , s0:t−1, st)

.

The term p(φtm, g
t|φ0:t−1

m , s0:t−1, st) can be rewritten as

(6.9) p(φtm, g
t|φ0:t−1

m , s0:t−1, st) = p(gt|φ0:t−1
m , s0:t−1, st)p(φtm|gt, φ0:t−1

m , s0:t−1, st).

By using the conditional independence assumptions encoded in the model, we can further

simplify p(φtm|gt, φ0:t−1
m , s0:t−1, st) to p(φtm|gt, st) and p(φtm|φ0:t−1

m , s0:t−1, st) as p(φtm|st) by

removing the dependence on φ0:t−1
m , s0:t−1. Therefore, Eq. 6.8 becomes

(6.10) I(φtm; gt|φ0:t−1
m , s0:t−1, st) =∑

gt∈G

p(gt|φ0:t−1
m , s0:t−1, st)

∑
φtm∈Φ

p(φtm|gt, st)log
p(φtm|gt, st)
p(φtm|st)

Marginalizing over gt−1 the first term on the right hand side of Eq. 6.10 can be ex-

pressed as

∑
gt∈G

p(gt|φ0:t−1
m , s0:t−1, st) =

∑
gt∈G

∑
gt−1∈G

p(gt, gt−1|φ0:t−1
m , s0:t−1, st)

=
∑
gt∈G

∑
gt−1∈G

p(gt|gt−1, φ0:t−1
m , s0:t−1, st)p(gt−1|φ0:t−1

m , s0:t−1, st)(6.11)
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and under the assumptions that the goal transition probability only depends on the pre-

vious goal, that the state at time t does not have an influence on the belief over gt−1

(violates causality), Eq. 6.11 can be simplified as

(6.12)
∑
gt∈G

p(gt|φ0:t−1
m , s0:t−1, st) =

∑
gt−1∈G

p(gt−1|φ0:t−1
m , s0:t−1)

∑
gt∈G

p(gt|gt−1).

By combining Eq. 6.12 with Eq. 6.10 we finally have

(6.13) I(φtm; gt|φ0:t−1
m , s0:t−1, st) =∑

gt−1∈G

p(gt−1|φ0:t−1
m , s0:t−1)

∑
gt∈G

p(gt|gt−1)
∑
φtm∈Φ

p(φtm|gt, st)log
p(φtm|gt, st)
p(φtm|st)

=
∑
gt−1∈G

bt−1
g

∑
gt∈G

p(gt|gt−1)
∑
φtm∈Φ

p(φtm|gt, st)log
p(φtm|gt, st)
p(φtm|st)

.

Note that the quantity on the right hand side of Eq. 6.13 is the expectation of the Kullback-

Leibler divergence between p(φtm|gt, st) and p(φtm|st) and therefore Eq. 6.13 is equivalent

to

(6.14) I(φtm; gt|φ0:t−1
m , s0:t−1, st) = Egt−1∼bt−1

g ,gt∼p(gt|gt−1)DKL

[
p(φtm|gt, st)|p(φtm|st)

]

and can be estimated using Monte Carlo techniques by generating samples according to

the generative model in Figure 6.1.
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For an arbitrary state s ∈ S and a given history of interface actions (φ0:t−1
m ) and states

(s0:t−1) we define the full disambiguation metric D : S → R as

(6.15) D(s) = I(φtm; gt|φ0:t−1
m , s0:t−1, s)− λ

∑
gt−1∈G

bt−1
g ·

∥∥gt−1 −Ψq(s)
∥∥ .

The first term on the right hand side is the conditional mutual information described

earlier and the second term can be interpreted as a regularization term with λ being

the regularization coefficient. The regularization term helps the optimizer to navigate

an ill-defined optimization landscape which can occur if the mutual information term is

identical for all states in the optimization domain. In our implementation, Q is the space

of robot position in which case the regularization term ‖gt−1 −Ψq(s)‖ is the distance

from the robot position q to the goal position gt−1. And hence, the optimizer favors

disambiguating states that are closer to the goal region. Note that D(s) is a conditional

metric that depends on the history of interface actions and states.

The maximally disambiguating state s∗ is the optimizer of Eq.6.15 and is given by

(6.16) s∗ = argmax
s∈S

D(s)

Note that, the transition from the current state st−1 to s∗ could be (a) only a mode

switch, (b) only a change in robot location, or (c) a combination of a mode switch and a

change in robot location.

Simulation-based Validation of D(s): We compared how well D(s) was able to match

an intuitive ground truth for what a maximally good disambiguating state should be. For

a local neighborhood of each s ∈ S, we computed s∗ using Eq. 6.16 and compared it to
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a ground truth that was computed by picking the state in the same neighborhood that

provided maximum expected difference between first and second maxima of btg over a

single time step. We ran a total of 100 simulations for |G| ranging from 3 to 30 (in steps

of 3), and |S| = 200 and the match percentage was 100%.

6.5. Shared Control via Contextual Nudges

We propose an adaptive assistance strategy for the autonomous agent. During its

turn (a) if the autonomous agent is not confident, it computes s∗ in a local neighborhood

of the current state and nudges the robot to s∗ and (b) if confident in its prediction of

the human intent it transitions the robot towards the predicted goal. Within a shared-

control system, at any time t after having observed φ0:t−1
m and s0:t−1, the autonomous

agent could choose to nudge the robot into s∗. The autonomous agent can use any kind

of autonomous controller to generate an autonomous control command, denoted as uta to

accomplish robot motion from st−1 to s∗ during its turn. Subsequent actions (φtm) executed

by the human from s∗ will extract maximum information regarding gt and by doing so, the

agent implicitly helps itself to provide accurate assistance in the future. A threshold on

intent prediction confidence (as measured by entropy of the belief distribution over goals)

determines whether to follow the first or the second strategy at each time step. With

this strategy, during its turn, the autonomous agent can continue to contribute to task

progress, in addition to providing control-blending based assistance during the human’s

turn. Robot motion and mode switches executed by the autonomous agent during its turn

can also provide valuable information to the human about the assistance strategies used

by the autonomous agent, therefore potentially improving transparency and cooperation.
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Algorithm 4 Turn-Taking Interaction with Active Intent Disambiguation

Require: t = 0
1: if human-turn then
2: ath ∼ p(a|st, gt) . task-level action [human]
3: φti ∼ p(φti|at) . intended interface action [human]
4: φtm ∼ p(φtm|φti) . measured interface action [human]
5: uth = Υ(φtm) . control command corresponding to φtm
6: Update btg using Eq. 6.4 . Bayesian belief update
7: uta = Ξ(argmaxg b

t
g) . control signal to achieve inferred goal, g′

8: utf = α · uta + (1− α) · uth . shared autonomy via control blending

9: st+1 ∼ T u(st, utf ) . state transition using blended control signal
10: t = t+ 1
11: if autonomy-turn then
12: if H(btg) > κ then . if not confident, nudge into disambiguating state
13: Compute s∗ using Eq. 6.16
14: st+1 = s∗

15: else . if confident, nudge towards inferred goal
16: st+1 = (β · g′ + (1− β) ·Ψq(s

t),Ψm(st))

The turn-taking based interaction protocol is outlined in Algorithm 4. Task execution

begins with the human. Lines 2-4 show how a human generates task-level actions (ath) and

utilizes a control interface to generate interface-level actions (φtt and φtm) which then get

converted to low-level robot control commands (uth) via a transformation function denoted

as Υ (Line 5). The autonomous agent utilizes a goal-dependent policy (Ξ) to generate

the autonomous command denoted as uta (Line 7). Blending based shared control is avail-

able during the human’s turn with the blending factor α determined by the autonomous

agent’s confidence in its prediction of human intent (Line 8). The blending factor α is a

strictly non-decreasing piecewise linear function of the probability p(g′) associated with
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the inferred goal g′ and is given by

α =


0 p(g′) ≤ ρ1

ρ3(p(g′)−ρ1)
ρ2−ρ1 if ρ1 < p(g′) ≤ ρ2

ρ3 ρ2 < p(g′)

with ρi ∈ [0, 1] ∀ i ∈ [1, 2, 3] and ρ2 > ρ1. In our implementation, we empirically set

ρ1 = 1.1
ng
, ρ2 = 1.2

ng
and ρ3 = 0.8. Note that, higher confidence in prediction results in higher

values of α. The arbitrated command, utf then results in robot state transition according

to a transition function T u. During the autonomous agent’s turn (Line 11) depending on

the confidence of its prediction of intended goal (as measured by the entropy of the belief

distribution) the autonomous agent does one of two things, (a) if prediction uncertainty is

high (Line 12), then the agent nudges the robot to a maximally disambiguating state (s∗)

in the local neighborhood of the current state (Lines 13-14), (b) if prediction uncertainty

is low, then the agent moves the robot along the direction from the current location

(Ψq(s
t)) to the inferred goal location by a distance determined by β, leaving the active

mode unchanged (Ψm(st)) in Line 16. After the autonomous agent successfully nudges the

robot to the target state, the turn is handed back to the human and the task execution

continues until goal is achieved.

6.6. Illustration of the Intuitiveness of D(s)

In this section, we provide an illustration of how the proposed disambiguation metric

matches our intuitions of what the maximally disambiguating states are for different priors

over goals in a simple environment. The simulated environment under consideration is

a 2D gridworld with three goal locations in which the robot state space Q is the (x, y)
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Figure 6.2. Mode switching diagram for 2D grid world with a 1D sip-and-
puff interface using a bi-directional mode switching paradigm.

coordinate of each grid cell (Figure 6.5). The simulated teleoperation interface is a 1D

interface with bi-directional mode-switching capabilities. 2

Since the dimensionality of the interface is lower than the dimensionality of the robot

the control space is partitioned into two modes: specifically, M = {Horizontal,Vertical},

allowing for motion along x and y dimensions respectively. The action space A con-

sist of Ac = {move-positive,move-negative} that consists of actions that allow pos-

itive and negative motion along the active dimension at any given time and Aq =

{switch-right, switch-left} which consists of mode-switch actions that result in mode switches.

Note that for an ordered setM, switch-right results in a transition from mode mi to mi+1

with wrap around to the first element of the set and switch-left results in a mode transition

from mi to mi−1 with wraparound to the last element of the ordered set. In this scenario

2Note that we are just exploring one possible configuration of goals in this illustrative example. The
proposed metric is applicable for any configuration as well as number of goals.
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Figure 6.3. Learned policy using value iteration for the each of the goals in
the goal configuration shown in Figure 6.5.

with just two control modes a mode switch in one mode simply results in a transition to

the other mode (Figure 6.2).

We model the simulated human as an MDP described in Section 6.4.1 and use value

iteration [154] to obtain a goal-dependent policy, p(a|s, g). The reward function R is
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Figure 6.4. Top Row: D(s) computed for all states in the grid world for
uniform prior for each mode. Bottom Row: D(s) computed for all states in
the grid world for nonuniform prior for each mode. Note that λ was set to
be 0.0 to highlight the contribution from the mutual information term.
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designed to minimize the distance travelled (according to Manhattan distance) as well

as the number of mode switches executed. The optimal policy shown in Figure 6.3 is

obtained using value iteration. Upon inspection, we can see that following the policy

from any states results in straight line paths and minimal number of mode switches.

The top row of Figure 6.4 shows the disambiguation metric computation for all states

(visualized for each mode separately) for a uniform prior over goals and λ = 0.

Figure 6.5. Goal configuration
used for simulation using a 15
× 30 2D grid.

Within the bounds of the goal region, we see that

the maximally disambiguating states for the Horizon-

tal mode correspond to the states that are aligned with

goal B along the y dimension; which meets our sanity

check as any movement left in these states would suggest

goal A, any movement right would suggest goal C and

a mode switch to vertical motion would suggest goal C.

Similarly, the maximally disambiguating states for the

Vertical mode are states that are aligned with goal C

along the x dimension and in this case we once again see

that any movement up suggests goal A, any movement

down suggests goal B and a mode switch to horizontal

motion would suggest goal C. Since no two goals have the same action mapped to them,

they allow for maximal goal disambiguation.

We also see that in Figure 6.4 (top and bottom) there are states in which the dis-

ambiguation metric is identically equal to zero (dark blue color). Under the assumption

that the human approximately behaves like the MDP policy shown in Figure 6.3, we can
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see that for any states outside of the horizontal and the vertical limits of the goal region,

there is a high likelihood that the human would choose the same action in those states

regardless of the intended goal. As the actions are indistinguishable, an observer will not

be able to determine (from executed actions alone) the true intended goal with certainty.

In the bottom row of Figure 6.4, the priors are non-uniform with the probability

associated with goal C set to be zero. This simulates a scenario in which the history

of states and actions have already caused the Bayesian update of belief to assign zero

probability to goal C. Effectively, it becomes a question of disambiguating between goals

A and B. The disambiguation metric computed for this scenario correctly ignores goal C

completely.

6.7. Experimental Design

Each study session consisted of four phases: Phase 1: Training and data collection

to model p
(
φti|at

)
. Phase 2: Training and data collection to model p

(
φtm|φti

)
. Phase 3:

Familiarization with teleoperation, control blending and turn-taking based interaction

protocol. Phase 4: Algorithm evaluation. In Phase 4, the subjects performed a navigation

task using a 3D point robot using the sip-and-puff interface towards pre-defined goals

under two experimental conditions. In total, we collected 432 trials (216 per evaluation

condition). We conducted a human subject study (n = 9) to evaluate our turn-taking

based interaction protocol that deploys the disambiguation algorithm. All participants

gave their informed, signed consent to participate in the experiment which was approved

by Northwestern University’s Institutional Review Board.
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Figure 6.6. Simulated navigation environment. Both clockwise as well as
counter-clockwise mode switches are possible. The mode switch display
highlights the current active mode. The shaded 3x3 grid around the robot
denotes the optimization domain for computing the maximally disambiguat-
ing state s∗.

6.7.1. Experimental Setup

We designed a simulated navigation environment (Figure 6.6) in which subjects operate a

1D sip-and-puff (SNP) device to (a) control a 3 Degrees-of-Freedom (DoF) point robot’s

motion along two translational (x, y), and one rotational (θ) dimensions, one at a time

towards a pre-defined goal, gtrue (shown in red) and (b) to perform mode switches. We

opted for SNP, as it is one of the most information limited interfaces used by people with

severe motor impairments. For this environment,M = {Horizontal,Vertical, Rotational}.

In order to compute s∗ the continuous 3D robot state space was discretized into a 10×10×8

grid that represented 10×10 x-y grid locations and eight discrete orientations for each cell.
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Note that this discretization was for the computation of D(s) only; the robot positions,

velocities, and goal positions were all continuous valued.

In order to facilitate seamless turn-taking between the subject and the autonomous

agent, a text display presented the subject with information regarding the state of interac-

tion and the environment’s boundary transitions from blue to red over a fixed time period

(∼3-4s) to remind the subjects that they should hand over the turn. At the beginning of

the subject’s turn they were allowed to wait hence providing time for planning, or simply

rest. Handover to the autonomous agent was triggered by not issuing any commands

for ∼1.5-2s whenever the subject deems it is appropriate. During the subject’s turn, a

linear control blending based assistance was present. The autonomous control policy was

generated using the algorithm developed by Huber et al., in [77] and operated in the full

3D space.

6.7.2. Training protocol

Learning Personalized Distributions: Data collection for learning the model for the inter-

face operation (estimating the distributions p(φm|φi) and p(φi|a) was done according to

the procedures described in Section 4.4.2.

Familiarization with environment and robot control: Participants first were trained on the

physical mechanism of operating the interface. Subsequently, they became familiarized

with the environment and gained practice in both robot teleoperation as well as in inter-

acting with the autonomous agent via control blending during the turn-taking process.
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6.7.3. Algorithm Evaluation

In the evaluation task, the subject controlled the motion of a 3-DoF point robot to reach

a 3-D goal (Figure 6.6). The number of the goals varied from three to four. For each trial,

the starting position of the robot was randomized and diametrically opposite from the

goal region. A trial always started and ended with the subject’s turn. Subjects performed

the evaluation task under two conditions: (a) Disambiguation and (b) Control.

Disambiguation Condition: During the autonomous agent’s turn, the procedure outlined

in Lines 12-16 of Algorithm 2 was activated with the constraint that the optimization

domain for computing s∗ was a local neighborhood grid of size 3×3 centered around the

state st at the beginning of the autonomous agent’s turn. λ was set to be 1.0.

Control Condition: During the autonomous agent’s turn, the robot was nudged towards

the goal with the highest probability by issuing autonomous control commands. If multiple

goals were tied for highest probability, then the mean of all those tied goals was the target

of the nudge. The distance nudged was sampled randomly from within the fixed size local

neighborhood used in the Disambiguation condition.

A trial was deemed successful if the robot’s pose coincided with the red goal (both

position and orientation) within a predefined threshold. Subjects performed six blocks of

eight trials each. After each block, the subjects were asked to respond to a NASA-TLX

questionnaire and a post-task survey in which they were queried about their subjective

evaluation of how well the autonomous agent was able to assist them during the task.

We further evaluated the effectiveness of the disambiguation algorithm according to the

following metrics.
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Figure 6.7. (a) Percentage of time that autonomy assistance is engaged
during a trial. (b) Strength of autonomy assistance (as measured by the
blending factor α) during a trial. Box plots show median and quartiles.
The black dots represent the individual data points.

Assistance Engagement: Fraction of time the autonomous agent activates assistance

towards the true goal (α > 0 with g′ = gred) during the human’s turn in a trial.

Strength of Assistance: Average value of the blending factor α over all time steps

when both goal inference is correct and blending assistance is active.

Number of Mode Switches: The number of human-initiated mode switches; a sig-

nificant contributor to the cognitive and physical effort required for task execution.

Human Effort: Fraction of total trial time that subjects spent operating the robot in

order to accomplish the task.

Task Completion Time: Total time taken to complete the task successfully.
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Figure 6.8. (a) Number of mode switches executed by the subject during a
trial. (b) Number of human turns per trial.

6.8. Results

We analyze group performances using the non-parametric Kruskal-Wallis test and per-

form the Conover’s test post-hoc pairwise comparisons to find the strength of significance.

For all figures, ∗ : p < 0.05, ∗∗ : p < 0.01, and ∗∗∗ : p < 0.001.

Figure 6.7a shows the fraction of time the autonomous agent activates blending as-

sistance towards the correct goal during the human’s turn. For any time t if α > 0 and

g′ = gtrue then assistance is activated. We do not observe any statistically significant dif-

ference between the two experimental conditions. However, in Figure 6.7b the strength of

assistance offered by the autonomous agent towards the correct goal as measured by the

average value of the blending factor α over a trial, is higher for Disambiguation compared

to the Control condition (p < 0.01). Since α is an non-decreasing function of the proba-

bility associated, higher values of alpha implies that p(g′) is higher as well. This indicates

that in the Disambiguation condition, autonomous agent is able to be more confident in its
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Figure 6.9. (a) Fraction of total trial time that subjects spent operating the
robot. (b) Total task completion time per trial.

prediction of true goal and therefore provide stronger assistance (greater control contribu-

tion by the autonomous agent to the overall control signal) without overtly engaging with

the human for more time. Figure 6.10 illustrates how the goal probability associated with

the true goal (in red) increased rapidly during the human’s turn immediately following

the autonomous agent’s turn during which it nudged the robot into s∗. Additionally, the

overall task success for Disambiguation condition (93.05%) was higher than the Control

condition (90.2%).

A statistically significant decrease in the number of mode switches is observed between

the Disambiguation and Control conditions as seen in Figure 6.8a. In Figure 6.8b We also

observe that subjects perform a fewer number of turns under the Disambiguation condition

as compared to the Control condition. In Figure 6.9a we also observe a statistically

significant decrease in the amount of time the subjects spent operating the robot in
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the Disambiguation condition, measured as a fraction of total trial time.Overall, task

completion time is also lower under the Disambiguation condition (Figure 6.9b).
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Figure 6.10. Evolution of goal probabilities
for a Disambiguation trial. The black verti-
cal line indicates the start of the human turn
after the autonomous agent nudged the ro-
bot into s∗ during in the previous turn. Note
that at the start of the trial the probabili-
ties associated with the green and red goals
coincide.

Fewer mode switches, fewer number of

turns, and faster trial times likely correlate

with less human effort. In the Disambigua-

tion condition, the subject is able to ex-

ecute actions that are maximally informa-

tive about the true goals because the au-

tonomous agent nudges the robot into max-

imally disambiguating states. Task com-

pletion time is shorter because the au-

tonomous agent is able to infer human intent

with more confidence and therefore provide

stronger and more accurate assistance towards the true goal. Manual mode switches be-

come unnecessary once control blending is activated by the autonomous agent, the robot

is also able to move in all three dimensions simultaneously.

6.8.1. Subjective Task Metrics

We use the raw NASA-TLX as a subjective measure of perceived workload [70]. Although

the mean score for the Disambiguation condition (32.75) is slightly lower than the Control

(34.45) condition, we do not observe a statistically significant difference. We evaluate user

preferences and acceptance of our shared-control assistive paradigms using a questionnaire

(Figure 6.11). The statements are rated on a 7-point Likert scale from strongly disagree



158

(1) to strongly agree (7). Overall, the subjects rate the Disambiguation condition higher

than the Control condition when it comes to the agent’s ability to figure out the human’s

intended goal faster. However, subjects think that it is in the Control condition that the

autonomous agent is more effective in helping them move towards the desired goal.

6.9. Discussion

The computation of the disambiguation metric critically depends on whether it can be

empirically estimated from a generative model. Our results indicate that despite having an

approximate model for human behavior (one in which the human is assumed to minimize

path distance to goal and the number of mode switches), the autonomous agent was able

to leverage the model and successfully compute reasonably good disambiguating states.

Performance would likely improve further if more accurate models of human behavior—

learned from large amounts of data using state-of-the art machine learning techniques—are

used in conjunction with the proposed disambiguation algorithm.

Although turn-taking allows the user to observe the autonomous agent’s actions and

acquire a mental model of the autonomous agent’s policy, sufficient training and priming

is important so that the subject’s expectation of the autonomous agent’s policy is close to

the true policy. With more training and practice, the human-autonomy team can achieve

common ground faster and the human will be incentivized to work in a cooperative manner

and leverage the assistance offered by the autonomous agent.

In Eq. 6.16, the domain over which the optimization occurs can vary depending on

whether the autonomous agent wants to move the robot in a small neighborhood from the
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Somewhat Disagree Neutral Somewhat Agree Agree

Autonomy was able to figure out where 
 I wanted to go more easily after its turn.

Autonomy helped me move the robot towards 
 the desired goal more effectively after its turn.

Autonomy's assistance helped me complete 
 the task more efficiently.

condition

Control

Disamb

Figure 6.11. Average user response to post-task survey questions. The bars
indicate standard deviation.

current position or whether it plans to execute large scale motions. In the small neigh-

borhood condition, the idea is that the autonomous agent’s actions would be interpreted

by the user as small nudges as opposed to a complete takeover of user control. Disam-

biguation over the entire state space might, however, reduce human effort significantly

by reducing the overall number of turns and also the fraction of total time the human

operates the device. It might be beneficial to allow the user to pick the optimization

domain depending on their preference. Yet another algorithmic modification would be to

reason over larger time horizons; but this would come at a higher computational cost.



160

Prior task structure can be leveraged to further simplify the computation of the dis-

ambiguation metric. For example, in an assistive robotic arm, although the full task space

is six dimensional, prior constraints on task execution (the subject reaches for an object

before grasping it) essentially will help to accomplish disambiguation in the three dimen-

sional translation space. Disambiguation is especially useful during the earlier parts of

task execution when the uncertainty in inference is the highest; and in a typical manipu-

lation task, moving in translation space to perform a reaching motion happens earlier.

6.10. Conclusions

This chapter has presented a novel interface-aware intent disambiguation algorithm

grounded in information-theoretic principles. The primary goal of this algorithm was to

elicit maximally informative control signals from the user by placing them in states that

have the highest disambiguation capabilities as determined by the metric. The chapter

also introduced a turn-taking based human-autonomy interaction protocol in which the

autonomous agent utilized the proposed disambiguation metric to extract information

rich actions from the human when uncertain about its prediction of human intent. The

efficacy of both the proposed algorithm and protocol was evaluated via a nine person

human subject study. The results indicated that the disambiguation system resulted in

a statistically significant decrease in task effort in terms of the number of manual mode

switches executed and the fraction of time the users spent operating the robot.
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CHAPTER 7

Human-in-the-loop Optimization for Shared Autonomy

This chapter addresses the question of leveraging the human in the loop of a human-

robot team to optimize the parameters of the control arbitration scheme in a shared

autonomy setting. The key contribution of this chapter is the mathematical formaliza-

tion of user-driven optimization of shared autonomy in assistive robotics as a nonlinear

optimization problem, in which the optimizer is the human in the loop. By framing the

problem in such terms, we leave the exact nature of the user’s reward function unspecified.

The results of a 17-person subject study reveal that all subjects were able to converge to a

valid setting of the assistance parameters, thereby suggesting the existence of individual-

ized optimal solutions. Most interestingly, the amount of assistance that users optimized

for did not always correspond to optimal objective task performance as measured by task

completion time and number of mode switches performed. The work presented in this

chapter was done in collaboration between Deepak Gopinath and Siddarth Jain. 1

1The individual contribution breakdown is as follows: 1) Gopinath developed the mathematical framework
and formalism, ported and implemented the SEDs algorithm for LfD and did the code development
for the shared autonomy pipeline, was the primary proctor for the human-subject study, analyzed the
data/generated the plots. 2) Jain assisted with subject recruitment, proctoring the experiment, LfD
data collection, assisted with figure generation and writing the related works section of the published
manuscript. Additionally, many thanks to Jessica Presperin Pedersen, OTR/L, ATP/SMS, for recruiting
the SCI subjects, and to Samuel Schlesinger for assistance during the subject study.



162

7.1. Introduction

For people with severe motor impairments as a result of spinal cord or brain injuries,

assistive machines such as robotic arms or powered wheelchairs are crucial for reducing

their dependence on caretakers and increasing the ability to perform activities of daily

living. Since users differ in their physical abilities and desired amount of assistance,

customization of the amount of assistance is critical for successful adoption of assistive

shared control systems. A blanket solution that targets the average end user will likely

remain suboptimal in the individual case and therefore user-specific optimization of the

parameters that influence the overall human autonomy interaction is an important area

of investigation.

To start off, pre-defined assistance levels (as defined by different parameter presets)

can be good starting points, but may not remain optimal for the user in the long term.

For example, the subjects’ motor abilities will likely change—either degrade (e.g., due to

degenerative disease) or improve (e.g., due to successful rehabilitation). As a result, the

need for assistance may increase or decrease. One way to accomplish customization is

to tune the system parameters which will bring about a change in the final human-robot

team behavior. A straightforward choice of optimality criterion is to consider task-related

performance metrics such as task completion time and effort. Such metrics, however, may

not capture user-related metrics like comfort, preference, or satisfaction.

Our insight is that if we entrust the responsibility of customization to the users, they

are given the opportunity to tune the system in such a way that the optimal interaction—

according to their personal optimality criterion—will emerge. Moreover, the user-driven

customization of assistance can be user-dependent in addition to being task-dependent.
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By doing so, we also empower the user with the ability to directly influence the

overall experience of interacting with the autonomous agent, which can potentially help

to improve personal satisfaction and self-esteem.

To ground our formalism, in this chapter we present a first implementation of a cus-

tomizable blending-based shared control system, in which the reasoning between the user

control and the autonomous agent’s control is a parameterized function of autonomous

agent’s confidence in its inference of human intent. Our interactive user-driven customiza-

tion system maps verbal cues from the human to changes in these parameter values.

The contributions of this chapter are three-fold:

• We ground the problem of user-driven customization of shared control arbitration

parameters as a non-linear policy optimization problem in which reasoning be-

tween the user control and the autonomous agent’s actions is a tunable function

of confidence in the autonomous agent’s ability to infer human intent.

• We present a lightweight interactive user-driven customization system that maps

verbal cues from the end user to progressively fine-grained discrete adjustments

of the parameter values.

• Lastly, we also present results from a 17-person (uninjured and spinal cord in-

jured) subjects study that evaluated the customization system.

7.2. Proposed Framework

Principles from optimal control theory have been successfully used to account for

different aspects of human motor control such as arm trajectory formation, posture control

and locomotion [61, 162, 167]. The underlying motivation in using optimal control theory
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is that biological systems have evolved to produce motor commands that optimize motor

behavior with respect to the task at hand [162]. The extension of this reasoning is that

the optimizing principles are operating over control commands to the robot effector rather

than motor commands to the human muscles, when a human operates an assistive robot

to replace their lost motor function,

We frame the customization formalism within the language of policy optimization (or

equivalently, optimal control theory) not only because of this biological parallel, but also

because it allows for the analysis of the effects of the various design decisions and the

components of a shared control system in a rigorous manner.

7.2.1. Mathematical Formalism

Let qt be the robot state at time t. The low-level control command issued by the human

to the robot is denoted as uth and by the autonomous agent according to a predefined

set of autonomous policies is denoted as uta.
2 Let θt be the set of tunable arbitration

parameters that will affect the manner in which control is shared between the human

and the autonomous agent and consequently the final control command utf that results

in robot motion.

At any time t, the control signal from the autonomous agent is generated according

to goal-dependent policy fg(·) ∈ Fg,

(7.1) uta ← fg∗(q
t)

2In this chapter, we ignore interface-level effects altogether and directly reason in the space of low-level
control commands.
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where Fg is the set of all control behaviors corresponding to different goals (denoted as

g), and g∗ is the user’s inferred goal at time t. Numerous options exist for class of policy

generation functions; in this work, we employ a Learning from Demonstration approach

described in detail in Section 7.2.7.

In the previous chapters, we saw that we can model the human as an Markov Decision

Process (MDP) optimizing a reward function defined in the task-level state and action

space. The policy is defined as mapping from states to distributions over task-level actions.

These task-level actions are transformed into interface-level actions and then into low-level

control commands via deterministic mapping functions. In this chapter, we ignore all the

intermediate transformations and directly reason about human intent in the space of low-

level control commands. Most importantly, in this chapter, although we model the human

as optimizing an interface dependent goal-directed MDP, we leave the reward function

unspecified and hence the autonomous agent does not rely on an a priori rational model

of human behavior.

The shared control system makes use of an arbitration function β(·), parameterized

by θt

(7.2) utf ← βθt(u
t
h,u

t
a)

to arbitrate between the control commands from the human and the autonomous agent’s

policy to produce the final control command utf executed by the robot.

A key insight in our formulation is that, for a time–varying arbitration function β(·),

the parameters θ themselves can be functions of time and therefore may be interpreted
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as control signals. The transition function for the world state can be written as

(7.3) qt+1 = T u(qt,θt;uth,uta)

where T u is, in general, a nonlinear function. In Equation 7.3, uth,u
t
a are treated as given

and θt is treated as a control signal. That is, by altering θt the resulting state at the next

time step would be different. The problem of finding the optimal θt that will generate the

optimal human-robot interaction experience for the user and task performance (according

to the reward function) thus may be formulated as a policy optimization problem over θt.

Policy optimization approaches assume that the existence of a reward function. In

general, let Rh denote the reward function that the human optimizes. The discounted

N -step total return Gt
h can be simply written as

(7.4) Gt
h =

∑
k=t,k=t+N

Rh(q
k,θk;ukh,u

k
a)

The true reward function could depend on additional factors such as user satisfaction,

motivation et cetera. The optimization domain for the tunable parameters θt can be

denoted as Θt.

7.2.2. User-Driven Policy Optimization

Typically in a policy optimization setting, the optimization is performed over control

signals that drive state transitions. That is, the optimization objective is find a policy

(a mapping from states to actions) that maximizes the total return. In our scheme, the

control commands from the human and the autonomous agent (uth and uta) are treated

as given quantities and the objective is to optimize the arbitration parameters θt.
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In this chapter, we, furthermore, make no attempt to determine the exact nature of

the reward function Rh. There might be a number of unmeasurable latent factors that

could influence the structure of the human’s reward function, and determining the exact

mathematical form for the reward, likely, is an intractable problem. Making any kind

of approximation to simplify the reward function in turn will affect the robustness and

efficacy of the assistive system. Since we do not want to reduce the assistive capabilities

of our system, and we have a human in the loop, our insight is that the optimization can

be performed by the user themselves, instead of adopting off-the-shelf policy optimization

algorithms. Thus, there is no need to concretely define Rh for an optimizer; instead the

representation of the reward function is maintained by the end user as they optimize the

parameters θt until the desired behavior is achieved. In this user-driven customization

system, the overall effect of parameter optimization is that of changing the assistance

offered by the robot.

The details of the optimization domain and procedure are presented in Sections 7.2.3

and 7.2.4. Robot policy learning is accomplished offline using a Learning from Demon-

stration algorithm described in Section 7.2.7.

7.2.3. Command Arbitration

In our implementation, the arbitration function β(·) that reasons between the human and

the autonomous agent control signals is a linear blending function given by,

(7.5) βθ(u
t
h,u

t
a) , (1− αθ) · uth + αθ · uta

where αθ ∈ [0, 1] is itself a function parameterized by θ.3 Note that αθ = 0 corresponds
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Figure 7.1. A prototypical arbitration function, parameterized by θ = {θ1, θ2, θ3}.

to full teleoperation, and αθ = 1 to full autonomy.

The majority of arbitration functions αθ can be reduced to the functional form pictured

in Figure 7.1, characterized by a set of three parameters {θ1, θ2, θ3} and independent

variable ct[48]. Computation of ct is described in Section 7.2.5. The parameter set

determines:

• θ1: The minimum value of ct above which control blending is performed.

• θ2: The value of ct above which α is maximum and constant.

• θ3: The maximum value of α for any value of ct.

Note that θ3 = 0 corresponds to constant teleoperation (irrespective of the value of ct).

The relationship between ct and αθ is linear between θ1 and θ2, and the slope of this

linear relation determines how aggressively the robot assumes control. The parameter

bounds are such that ∀i, θti ∈ [0, 1] and θ1 ≤ θ2. In the study presented in this chapter,

the parameters are tuned only between tasks and are unchanged during task execution;

that is, θti = θt0i , ∀t ∈ [t0, tf ], where t0 and tf denote the start and end of a trial.

Essentially, the parameters are constant functions of time. These constraints specify the

3The time index t is dropped from θt for brevity in notation.
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optimization landscape for the parameters and in Section 7.2.4 we will see how the user

performs constrained optimization of the arbitration parameters through an interactive

procedure. The arbitrated signal utf is the velocity of the end-effector in Cartesian space,

which eventually is converted to joint-space velocities via inverse kinematics.

7.2.4. User-Driven Optimization of the Arbitration Parameters

In our interactive user-driven optimization procedure, verbal commands from the user are

mapped to systematic changes in θ by the system operator. Note that, in this imple-

mentation we do not focus on how this optimization procedure is facilitated. One could

imagine an AI system with natural language processing capabilities replacing the system

operator altogether.

A change in assistance level can be achieved by modulating one or more of the θi ∈ θ,

according to θi = θi ± δθi. In our implementation, at initialization δθi = 0.1. The value

of δθi is adaptive, and is halved if a request to increase assistance is immediately followed

by a request to decrease and vice versa (in order to avoid oscillatory behavior). After

each optimization step, the user observes the change in the behavior of the shared-control

system which then informs their next optimization step. Note that the reward function

that is being optimized is internally represented by the user and influences the magnitude

and direction of the optimization step.

Table 7.1 provides a few example mappings between common verbal cues, the param-

eters changed and the values of δθ. We chose to modulate more than one parameter at a

time as it helps to make the change in assistance level more perceivable to the user.
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Verbal Cue Parameters Changed Amount of change
“More” θ3 ↑, θ2 ↓, θ1 ↓ δθ ← δθ
“Less” θ3 ↓, θ2 ↑, θ1 ↓ δθ ← δθ
“Little More” θ3 ↑, θ2 ↓, θ1 ↑ δθ ← 1

2
δθ

“Little Less” θ3 ↓, θ2 ↑, θ1 (no change) δθ ← 1
2
δθ

Table 7.1. Mappings from verbal cues to parameters changed
(↑ indicates a positive δθ and ↓ denotes a negative δθ)

7.2.5. Intent Inference

In our implementation, the variable ct that influences the value of α is the autonomous

agent’s confidence in its inference of the user’s intended goal. The confidence ct is com-

puted at each time step that the human provides a control signal, i.e. whenever uth 6= ∅.

In our implementation, ct is computed as

(7.6) ct , w1(uth · uta) + w2(e−d)

where d is the Euclidean distance between the end effector and an inferred target location

at time t, and ct ∈ [0, 1]. The first term in (7.6) provides a measure of agreement or

alignment between the user-generated commands and the commands generated from the

autnomous policy.4 The second term encodes the nearness to the target. Parameters w1

and w2 are task-specific weights.

At each execution step this confidence measure is computed for all candidate goals

in the scene, g ∈ G, resulting in a distribution of confidences ctg ∈ C over the candidate

goals.5 To compute these confidences, each control behavior fg generates a command

4Commands ut
h and ut

a are first smoothed using a moving average filter (0.6s), so that small command
changes do not affect the confidence measure drastically.
5In the pilot study the candidate goals are objects placed at predefined positions in front of the robot.
Our system also is able to autonomously perceive object positions using an onboard perception system
and can use these as candidate goals.
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Figure 7.2. Study tasks performed by SCI participant. Left to right: Simple
Reaching (R), Reaching for Grasping (RfG), Reaching for Scooping (RfS).

(where fg aims to reach candidate goal g) which is used in the calculation of ctg according

to (7.6). The candidate goal that has the highest computed confidence is selected as the

inferred goal and is denoted as a g∗. That is,

(7.7) g∗ = argmaxg∈Gc
t
g

7.2.6. Control Interface and Mapping

The human control command uth is enacted via a 3-axis joystick operated under two

different mapping paradigms (Table 7.2). In this work, we treat the interface as noiseless

and that the user’s intended task-level actions are deterministically mapped to interface-

level actions and subsequently to low-level control signals without any deviations. The

joystick signals are mapped to the translational and rotational velocities of the end-effector

in Cartesian space. The first paradigm uses only two of the three axes (no twist)—because

many end users lack the hand function to perform twisting—and accordingly defines four

2D modes to cover the six control dimensions of the robot arm. We refer to this as the

2D mapping paradigm. The second uses all three of the joystick axes under two 3D modes

and is referred to as the 3D mapping paradigm.
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Control Mappings
Mode 3D 2D
1 vx, vy, vz vx, vy
2 ωx, ωy, ωz vx, vz
3 — ωx, ωy
4 — ωz

Table 7.2. Operational paradigms for the teleoperation interface.

7.2.7. Derivation of the Autonomy Policy

The autonomous agent’s control command uta is generated from an autonomous control

policy. While any number of techniques may be employed to derive the behavior functions

in Fg, there are some limitations on the form that fg(·) should take. Attempting to return

the robot to a pre-planned path (as many planners do) is less effective in shared-control

systems where the deviations from the planned paths occur as a result of user initiated

actions—this likely would be unwelcome to the user. Instead replanning would need to

happen fast enough not to stall the task execution. We, therefore, advocate the use of

real-time control policies which are defined in all parts of the state space.

Our current implementation favors dynamical systems formulations. The autonomous

robot policies are learned from human demonstrations using an approach known as Stable

Estimator of Dynamical Systems (SEDS) [94]. In SEDS, the target poses are modeled

as attractors of a dynamical system. For each task or goal g, a set of demonstrations are

collected by kinesthetically moving the robot. For the purposes of model-learning using

SEDS, the world state is represented as a concatenated tuple (qt, q̇t) consisting of the

joint angles and velocities, where qt ∈ T6 (six-dimensional torus) and q̇t ∈ R6. For each

task, the SEDS algorithm learns the parameters of a time-independent dynamical system
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which models the joint velocities as a function of joint angles. So

(7.8) q̇(t)← fg(q(t))

and uta , K(q̇(t)) where K(·) is the forward kinematics of the robot arm (since human

teleoperation and control blending both happen in the end-effector Cartesian space). The

dynamical system ensures the existence of the policy over the entire workspace, and that

the robot trajectories follow the general contour of the task demonstrations.

7.3. Study Methods

The experiments were performed using the MICO robotic arm (Kinova Robotics,

Canada) specifically designed for assistive purposes. The system was implemented using

the Robot Operating System (ROS) and model learning was performed using MATLAB.

The maximum end effector translational velocity along any axis was capped at 20 cm/s.

7.3.1. Task Descriptions

Three tasks were developed for the study (Fig. 7.2).

Simple Reaching (R): The user teleoperated the robotic arm to reach a single object

(coffee carafe) placed in front of the robotic arm. The purpose of this task was to get the

user accustomed to the control interface and to the different assistance levels provided by

the system. At the end of the task, the assistance level that the user preferred was noted.

Reaching for Grasping (RfG): The user teleoperated the robotic arm to reach one of two

objects on the table with a pose suitable for grasping, as the robot arm provided assistance.

There was a near object (mug) and a far object (box), each of which required a different
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Figure 7.3. Task completion time (top row) and number of mode switches
(bottom row) for uninjured vs. SCI subjects (first column), Task 1 vs. Task
2 for uninjured subjects only (second column), Task 1 vs. Task 2 for SCI
subjects only (third column).

orientation of the gripper for grasping (side and top, respectively) and accordingly also

different approach trajectories during reaching.

Reaching for Scooping (RfS): The user teleoperated the robotic arm to reach for one of

two objects on the table with a pose suitable for a scooping motion, as the robot arm

provided assistance. There was a near object and a far object (both bowls), each of which

required a different approach trajectory. For this task, the end effector of the robotic arm

was fitted with a spoon which had to be inserted into the bowl.

7.3.2. Study Protocol and Metrics

Subjects: For this exploratory study 17 subjects were recruited—13 uninjured control

subjects (mean age: 26 ± 4, eight males and five females) and four spinal cord injury
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(SCI) subjects (mean age: 35±14, all males, C3-C5 injury levels). Seven of the uninjured

subjects (five males, two females) and three of the SCI subjects used the 3D interface

paradigm, and the remaining subjects used the 2D paradigm. All participants gave

their informed, signed consent to participate in this experiment, which was approved by

Northwestern University’s Institutional Review Board.

Protocol: Each user performed all three tasks. The purpose of the practice task (R) was

to get the user accustomed to the control interface and assistance system. Data was then

collected on the remaining two tasks (RfG, RfS). The order of presentation for the RfG

and RfS tasks was randomized and balanced across subjects, to avoid ordering effects.

Before the RfG and RfS trials, the user was first asked to operate the system in full

teleoperation mode (tel) and also under three predefined assistance levels (min, mid and

max ). After this phase, the subject was given the option to customize the assistance level.

Changes in assistance levels were communicated verbally to the system operator resulting

in the parameter changes as outlined in Table 7.1. The user then tested the customized

assistance level by executing the task. This customization procedure was repeated until

the user was satisfied and lasted on an average 10 and a maximum of 15 minutes, resulting

in assistance level custom. Data collection began only after this customization process

was completed. Three trials were collected for min, max and custom assistance levels.6

A typical session lasted approximately 1-1.5 hours. For the first (non-practice) task, the

baseline from which customization began was the mid level assistance, with level custom

being the result after customization. For the second task, customization began at this

6For one SCI participant one less trial was recorded for min assistance level during the first task due to
a clerical error.
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level custom from the first task as the baseline, with the option to further customize

resulting in level custom for the second task.

Metrics: A number of objective metrics were evaluated this study. Task Completion time

is the amount of time spent accomplishing a task. Mode Switches refers to the number of

times the subject switched between the various modes of the control interface (Table 7.2).

Mode switches additionally, is an indirect measure of the effort put forth by the user. At

the end of the study, subjective data was gathered via a brief questionnaire. Users were

given statements about the assistance system to rate on a 7-point Likert scale (1 is low,

7 is high), according to their agreement. The questions primarily concerned the utility

value of the assistance system (U1 ), the system’s accuracy in goal perception (CA1 ) and

its understanding of what the user was trying to accomplish (CA2 ), and the contribution

from the user (CO1 ) and the system (CO2 ) in task accomplishment.

7.4. Results

Here we report the results of our pilot study.7 An improvement in task performance

with customization is demonstrated, and a number of other interesting observations are

noted. Task performance metrics for different assistance levels (denoted by min, max and

custom in the plots) and teleoperation (tel) are analyzed across different subject groups,

tasks and control interfaces. Note that the custom assistance level always lies in between

(or is equal to) min and max. Statistical significance is determined by Welch t-tests

for Figures 7.3-7.4 and two sided Wilcoxon Rank-Sum Test for Figure 7.5, where (***)

indicates p < 0.001, (**) p < 0.01, and (*) p < 0.05.

7The video of the study can be found at http://argallab.smpp.northwestern.edu/index.php/

publications/

http://argallab.smpp.northwestern.edu/index.php/publications/
http://argallab.smpp.northwestern.edu/index.php/publications/
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7.4.1. Observations across Uninjured and SCI subjects

Insight into Reward Function: In this study, 17 subjects perform 34 rounds of customiza-

tion in total. For seven customization rounds the mean custom task completion time is

greater (by at least one standard error) than that of max. Similarly, the number of mode

switches for custom is greater than that of max for 14 customization rounds. This indi-

cates that subjects are not always optimizing for standard performance metrics—because

there does exist a parametrization (max ) which is known to the subjects and performs

better with respect to these metrics. This provides insight that the true reward func-

tion that the user is optimizing likely is more complex than a simple time-optimal or

minimum-effort reward function.

Task Performance: In Figure 7.3 (first column), the difference between uninjured and SCI

subjects’ task completion times drops steadily from tel to custom assistance levels. The t-

tests reveal that while the difference between uninjured and SCI is statistically significant

for tel (p = 5.1e-4), min (p = 6.5e-5) and max (p = 0.027), this difference disappears

with the custom (p = 0.096) assistance level. That is, with customized assistance, the

performance of SCI subjects is statistically equivalent to that of uninjured subjects. The

variance in the data also decreases with customized assistance, showing the performance

to become more consistent.

Interestingly, for mode switches there is no statistical difference between uninjured

and SCI subject data for any of the assistance levels. This suggests that the number of

mode switches is primarily determined by the nature of the task and control interface,

and not the state of injury. However, SCI subjects do take more time than uninjured

subjects to perform the same number of mode switches.
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7.4.2. Observations across Tasks

Figure 7.3 (second and third columns) shows how task completion times and number of

mode switches change between the first and second task for uninjured and SCI subjects. A

statistically significant difference in performance only is observed for custom assistance,

for both groups. Interestingly, SCI subjects show an improvement in task completion

times (p = 7.8e-3) and mode switches (p = 8.9e-3) between the first and second tasks,

whereas uninjured subjects exhibit a performance decrease. These changes in performance

can be explained by the changes in assistance amount that result from the between-task

customization (discussed further in Section 7.4.4).

7.4.3. Observations across Control Interfaces

Figure 7.4 (first column) shows the task completion times and mode switches for subjects

using the 2D and 3D interfaces. Different operational modes do not seem to have an effect

on task completion times, as both groups are statistically equivalent—despite the fact that

for mode switches the difference between the 2D and 3D interfaces is significant. The

second column of Figure 7.4 shows a within-interface performance comparison between

tel and the different assistance levels. For all levels assistance significantly helps to reduce

the number of mode switches during task execution.

The comparable task completion times may be explained by the fact that easier control

compensates for time lost during mode switches. That is, due to the greater number of

mode switches required for the 2D interface compared to the 3D interface, more time

is taken performing mode switches. However, the number of dimensions simultaneously
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Figure 7.4. Left Column: Task completion time (top) and number of mode
switches (bottom) for the 2D vs. 3D interfaces. Right Column: Within-
interface assistance comparison for the 2D (top) and 3D (bottom) interfaces.

controlled is less for the 2D interface compared to the 3D interface, which makes the

control easier.
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Figure 7.5. Relative change in assistance parameters during customization
for Uninjured vs. SCI subjects (left) and 2D vs. 3D interfaces (right).

7.4.4. Relative Change in Parameters during Customization

Figure 7.5 shows the change in amount of assistance (parameter values) during customiza-

tion for uninjured and SCI subjects. While SCI subjects on average increase the amount

of assistance (p = 0.020) during the second phase of customization, uninjured subjects

choose to reduce the amount of assistance (p = 0.006). By contrast, there are no notice-

able changes in the amount of assistance when using the 2D versus 3D interface. Injury

thus seems to be the primary factor in how subjects choose to change the customized

assistance level, and the mapping paradigm seems to have little effect. Furthermore, it is

interesting that uninjured subjects choose to reduce assistance in spite of an associated

decrease in task performance.
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Figure 7.6. User responses on perceived utility, contribution and capability.

7.4.5. User Survey

Users rate (Fig. 7.6) the utility value of the assistance system fairly high (mean = 5.9±0.8)

indicating that in general having assistance is favored. The users also think that the

system is able to perceive goals accurately (mean = 5.1±1.8) and the inability to estimate

human intent is fairly low (mean = 3.1 ± 1.1). The users also feel that they play an

important part in accomplishing the task (mean = 5.5 ± 1.0), almost comparable to the

contribution from assistance (mean = 5.1 ± 1.6), maybe indicating that they are not

prepared to relinquish control altogether.

7.5. Discussion

One of the key findings of the study presented in this chapter is that individuals seek

to optimize for rewards that are more complex than simple time-optimal or minimum-

effort reward functions. Reward learning is a promising area of research in which the

objective is to learn the human’s reward function from data. Numerous algorithms have
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been developed to perform learning from suboptimal data [30], include active queries from

the human to accelerate learning [107] et cetera. Despite all the progress, the perils of

reward misspecification is still high [122]. That is, if the autonomous agent optimizes its

behavior for a misspecified model of human behavior, it could have a detrimental effect on

the human-robot interaction. Rather than opting for expensive data collection procedures

to model human behavior and the relevant underlying latent factors to learn the reward

structure, in this work, we simplify the problem by removing the need to determine the

exact nature of the reward function. By circumventing this step and leveraging the human

in the loop to be the optimizer, by way of the interactive verbal optimization procedure

the user is still able to achieve high levels of task performance and satisfaction. The light-

weight aspect of the procedure makes it flexible and robust to changes to user preferences

that can happen over different time scales. A machine learning based approach may re-

quire infrastructure that can collect data, train models and update model parameters in

an online fashion, but potentially incurring prohibitive costs. A simple analogy would be

apt here; consider the air conditioning system in a car and imagine a scenario in which

you could talk to the system by saying ‘a little cooler’, ‘a little warmer’ etc., to adjust the

temperature setting. Depending on the day, your mood, what you are wearing etc., you

might prefer a different temperature setting. A fully autonomous solution would require

massive sensing capabilities that can infer the user’s state and then make adjustments

to the air conditioning system according to the inferred preference. However, a simpler

solution would be to just have the user be in control and change the temperature them-

selves. The slight cognitive and physical overhead in the latter approach is offset by more
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precision in the desired outcome, higher user satisfaction and even more important in the

context of a shared control system, the feeling of being in control.

7.6. Conclusions

In this work, we formalized human robot interaction in shared autonomy within the

framework of policy optimization. Furthermore, we introduced a system for user-driven

customization as a constrained nonlinear policy optimization problem within this frame-

work. Unlike standard policy optimization procedures in which the form of the reward

function is assumed to be known, in this work no such assumptions were made. Instead,

the end user was allowed to directly perform the optimization procedure. The aim was

that this will lead to higher user satisfaction, and an increased sense of agency, which

was crucial for the acceptance of novel technologies in the assistive domain. An inter-

active user-driven customization procedure was developed to ground the formalism and

the results of the user study were presented. Results showed that all subjects were able

to converge to an optimal assistance paradigm and an improvement in task performance

with customization also was demonstrated.
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CHAPTER 8

A JavaScript Framework for Crowdsourced Human-Robot

Interaction Experiments: RemoteHRI

This chapter presents a software tool that was developed in light of the COVID-19

pandemic to facilitate Human-Robot Interaction (HRI) research remotely. Software infras-

tructure is a critical piece for conducting proper research in this space of human-autonomy

interaction and is often neglected in favor of pure algorithmic research. In this chapter,

we present RemoteHRI, a JavaScript-based software framework for conducting HRI ex-

periments in a web browser. Built with HRI researchers in mind, RemoteHRI includes a

flexible set of software tools that allows for rapid prototyping and quick deployment of a

wide range of laboratory-like experiments that can be run online. RemoteHRI uses the

state-of-the-art ReactJS 1 framework to build standard HRI stimulus environments such

as grid worlds, differential drive cars, and robotic arms. As a result, the researcher can

solely focus on the experimental design thereby saving valuable time and effort. Code

for RemoteHRI is available at https://github.com/argallab/RemoteHRI. The work

presented in this chapter was done in equal collaboration between Deepak Gopinath and

Finley Lau.2

1https://reactjs.org/
21. Gopinath was responsible for envisioning the entire software pipeline, identifying use-cases and
functionality, and worked on adding new environments. 2. Lau was the primary software developer and
was responsible for implementing both the client and the server side applications.

https://github.com/argallab/RemoteHRI
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8.1. Introduction

Evaluating progress in science and engineering heavily depends on proper experimen-

tation protocols. In the HRI domain, experiments are needed both to understand the

human decision-making process while interacting with autonomous agents and to evalu-

ate the success of robotics autonomy algorithms in interacting with humans and other

agents.

In an ideal situation, researchers conduct HRI experiments with robotic systems in

the real world. These provide researchers with rich data that encodes the sensing and

actuating complexities of robot operation and human interaction in the real world. How-

ever, designing and conducting HRI experiments on real robotic systems come with a

great deal of challenges, especially in the academic setting.

First, real robotic systems are expensive, and academic labs rarely own multiple robots

of the same type. This drastically limits the number of studies that could be run in

parallel, thereby making data collection extremely slow. Second, subject recruitment for

academic studies can suffer from biases due to lack of diversity in the recruitment pool.

Third, in-person subject studies typically require researchers to be in close physical contact

with the subjects. However, in light of the COVID-19 pandemic, it became advisable to

maintain stricter social distancing protocols due to health concerns, rendering an in-

person study practically impossible. Particularly, in the sub-domain of assistive robotics,

the end-user population (people with motor-impairments as a result of trauma or neuro-

degenerative disease) can belong to high-risk immunocompromised groups and as such

participation in an in-person study can pose significant health risks.
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By contrast, simulation-based experiments are less expensive and can help to design

more targeted in-person studies. By conducting experiments online, researchers can par-

allelize data collection and achieve greater diversity in the recruitment pool. Furthermore,

online settings remove the need for in-person supervision, alleviating the health risks of

being in close proximity to others. Exploratory HRI studies conducted in a simulated en-

vironment can also provide strong priors, in terms of baseline models for human behavior

and initial evaluation of robotics algorithms. These studies additionally inform resourceful

design of a real-world experiment. However, the realism of a simulator is closely related

to the quality and accuracy of the underlying physics engine used by the simulation. As

a result, the human-robot interaction that unfolds in a simulated HRI experiment could

have systematic biases.

Performing human subject studies in a simulated environment is not novel. For ex-

ample, jsPsych [42] is a popular JavaScript library used by researchers in the field of

psychology to perform simple online behavioral experiments. However, the stimulus plu-

gins available in jsPsych do not cover the full space of rich and complex stimuli needed

for HRI. The field of HRI research currently lacks a comprehensive software framework

for conducting simulation-based experiments and relies on one-off solutions developed for

specific projects, leading to wasted time and repeated effort. Although primarily used

for reinforcement learning research, OpenAI Gym [27] provides a suite of simulated envi-

ronments that are widely used for HRI experiments [20, 139]; however, the JS interface

needed for crowd-sourced browser-based online studies is still under development.

RemoteHRI provides HRI researchers a set of tools to design and conduct common

HRI studies in a seamless manner. The framework is designed with the researcher in
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mind, specifically focusing on ease of use and rapid prototyping. RemoteHRI derives its

inspiration from frameworks such as jsPsych and supports flexible experiment design, an

easy-to-use researcher interface, and prepackaged standard HRI stimulus environments.

RemoteHRI uses ReactJS for client-side rendering, which allows for increased flexibility,

speed, and ease of development through its management of state and structural organi-

zation of components (groups of elements displayed on the screen) as compared to vanilla

JavaScript.

The key features of RemoteHRI are as follows:

• Researcher-Centered Design: RemoteHRI was built with researchers from

different backgrounds and programming experience in mind and provides a low

entry point for easily prototyping and building HRI experiments, without having

to develop the client-side application (which typically requires researchers to learn

to use graphics APIs, and physics libraries) or the server-side application.

• Modular/Extensible: RemoteHRI is highly modular in that the different ap-

plications of the framework operate independently of each other and may be

replaced with an equivalent module. For example, the RemoteHRI server could

be replaced with a custom-built server without affecting the client-side applica-

tion. Furthermore, implementation of different stimulus types follows predefined

template types and therefore the framework can be easily extended to work with

new types of stimuli.

• Unified Researcher Interface: Regardless of the specific experimental domain

or design choice, the researcher specifies experimental flow through a single JSON

file, which we refer to as the Experiment.json file (discussed more in detail in
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Section 8.4). RemoteHRI provides a GUI interface and a set of utility functions

allowing researchers to quickly generate the Experiment.json files.

• Plug and Play: RemoteHRI experiments are completely controlled by the Ex-

periment.json file. By specifying the stimuli and their respective properties used

in the experiment in the Experiment.json file, researchers can create entire ex-

periments without changing the client-side application.

8.2. HRI Experiment Design

HRI researchers may have varying goals for their experiments. Two possible purposes

are, (a) data collection experiments (for example, human teleoperation data of robotic

manipulators to build data-driven computational models of human decision making) [174]

or (b) algorithm evaluation experiments (for example, evaluation of a shared control robot

policy for assistive robotic manipulators) [65].

A quick analysis of different types of experiments conducted in the field of HRI reveals

various commonalities in experimental design [19, 62, 88, 166]. We identify four different

phases in the majority of these experiments:

• Consenting Phase: This is common for any experiment done in an academic

setting. During this phase, the researcher describes the experiment in detail to

the subject either in writing or verbally. After evaluating the risks and benefits of

the experiment, the subject chooses whether to participate in the study. During

this phase, researchers typically also collect non-identifiable demographic and

subject-specific information, such as age, gender, and race.
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• Training Phase: In the training phase, the participant gets familiarized with

the experimental setup. This phase also helps researchers establish a baseline

performance, which could be a useful measure in data analysis.

• Testing Phase: The testing phase typically consists of multiple blocks of exper-

imental trials under different experimental conditions. This phase may serve to

collect data (for example, human teleoperation data of robotic manipulators to

build data-driven computational models of human decision making) or to evalu-

ate an algorithm’s performance (for example, evaluation of a shared control robot

policy for assistive robotic manipulators).

• Survey Phase: The participant is presented with questions related to their

experience of interacting with the robotic system during the study.

Note that in a given experiment, possibly with the exception of the consenting phase,

phases may occur multiple times in no particular order. RemoteHRI recognizes the need

for such combinatorial flexibility in experimental design and offers researchers an easy

approach to specify any experimental flow.

8.3. Framework Modules

RemoteHRI consists of two main software modules: (a) the client-side application and

(b) the server-side application. Participants interact with the client-side application in

their browsers during an experiment, while the server-side application ensures the proper

delivery of experiment content. In the following subsections, we will describe the details

of the client-side and the server-side applications.
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Figure 8.1. Examples of active stimuli in RemoteHRI. Left : DiscreteGrid-
World stimulus with static obstacles. Middle: DifferentialDriveRobot stim-
ulus with static obstacles for navigation tasks. Right : RoboticArm stimulus
for reaching tasks. The goal states are indicated in green.

8.3.1. Client

The client-side application is responsible for presenting the stimulus for each trial during

the course of the experiment. In RemoteHRI we consider two main classes of stimuli:

• Passive: A passive stimulus is an environment in which a participant ‘passively’

observes the presented stimuli (audio/video/text). For example, participants

could be shown images of two different humanoid robots and asked which one

has more human-like features. Participant responses to a passive stimulus depend

on the stimulus type and can take many forms such as single answer/multiple

choice, multiple answer/multiple choice, 5- or 7-point Likert scale, or free text

response. RemoteHRI provides a suite of common passive stimuli such as videos,

audio recordings, image and text displays, surveys/questionnaires, et cetera.

• Active: An active stimulus is an environment in which there is at least one

entity that is actuated by the participant via some form of control input, by
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an autonomous agent, or both. We refer to a stimulus containing only a human-

controlled entity as H-Active and a stimulus containing only an autonomy-controlled

entity as A-Active. A stimulus environment containing entities controlled by

both a human and an autonomous agent is referred to as HA-Active. An ac-

tive stimulus environment may have one or more active entities. RemoteHRI

includes implementations of some of the standard active environments used in

simulated HRI experiments, such as discrete grid-worlds with simulated point

robots, differential-drive robots, and planar robotic arms. The implementation

of these standard environments is shown in Figure 8.1.

Environments can also be classified based on whether an active agent is operating in a

static (S-Env) or dynamic (D-Env) environment. For example, a human-controlled point

robot operating in a discrete grid-world with moving obstacles is an H-Active/D-Env

stimulus whereas an autonomy-controlled planar robotic arm performing reaching motion

towards a fixed goal location is an A-Active/S-Env stimulus.

RemoteHRI comes with standard implementations of planning and control algorithms

to autonomously control agents in an active environment. Similarly the framework also

implements simple algorithms such as random walks and periodic motion for the control

of dynamic aspects of the environment. The researcher can readily activate any of these

implemented algorithms in the Experiment.json file.

Implementation details: The ReactJS client-side application consists of a modular

component structure allowing variable display of stimuli on the screen (Figure 8.2).

An experiment is rendered through a React component called Content, which repre-

sents the space on the browser screen belonging to the experiment’s content. Depending
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on the specification in the Experiment.json file, this content can take the form of vari-

ous stimulus components, such as DiscreteGridWorld, DifferentialDriveRobot, or Roboti-

cArm. Each of these stimulus components contains the same child component structure

(Header/Instructions, StimulusView, Continuation), providing for consistency and ease

of implementation for new stimulus types. The header/instructions component specifies

each trial’s title and instructions for the participant. The stimulus view renders the spec-

ified stimulus, such as the grid world, differential-drive robot world, or robotic arm world.

The continuation component specifies how the participant may proceed to the next trial

after completion of a trial, such as by clicking a button or pressing any key.

Since the client-side application is only involved with taking a JSON specification for

a trial and rendering the appropriate stimulus on the screen, all experimental flow logic

can be abstracted to the server application. This allows for the modular plug-and-play

feature of RemoteHRI, as researchers can easily use the provided client-side application

without modification to render their experiments.

8.3.2. Server

The experiment flow for each participant in an experiment is managed by the server

application. It is built using the Nodus Ponens framework, a light, full-stack framework

for running high-level reasoning and cognitive science experiments in Node.js.3

The key features of the RemoteHRI server are as follows:

• Experimental Flow Management: By using the specification in the Experi-

ment.json file, the server is able to construct a list of stimuli trials to present to

3Code available at https://www.npmjs.com/package/nodus-ponens. Designed by Sangeet Khemlani. Dis-
tributed under the Creative Commons License.
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Figure 8.2. Diagram showing structural rendering layout of the client-side
application.

each participant. It handles randomization and construction of the unique order

in which trials are presented to a particular participant. In addition to assigning

a unique ID to each participant, it also keeps track of where participants are in

the experiment in order to correctly serve subsequent trials.

• Data Collection: The server collects both incomplete and complete data on

a trial-per-trial basis. After a participant finishes a trial, the server stores the

collected data from the client-side application into a JSON file containing all

information collected from the current trial as well as any previous ones.

• Session Management: The server keeps track of a participant’s experiment

data through browser sessions. Notably, this allows for participants to reconnect
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Figure 8.3. Diagram showing communication between the client-side appli-
cation and the server. 1) Client sends initial request to server for experiment
name. 2) Client sends request to start experiment. 3) Client sends request
for first trial. 4) Server responds with JSON data for first trial. 5) Client
sends collected trial data back to server, along with request for next trial.

to an experiment and continue from where they left off, if a researcher specifies

that this is allowed.

8.4. Experiment Specification

Experiment.json: This JSON file completely specifies an experiment. It contains infor-

mation about experiment structure as well as trial specifications.

• Experiment Structure: RemoteHRI provides functionality to group trials

through block-level organization. It also exposes boolean flags to specify whether

blocks should be shuffled as well as whether trials within a block should be shuf-

fled. It also allows for specification of trials (such as pre/post block survey

questionnaires) preceding and following a trial block, regardless of whether the

trials inside of the block are shuffled.

• Trial Specifications: The Experiment.json file contains information relevant to

rendering the starting state of the stimulus presented in each trial. For example,

in a grid world stimulus, the Experiment.json file would specify the width and
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height of the world and the starting positions of all objects in the world (Fig-

ure 8.4). Each stimulus type has its own JSON schema to completely specify its

state.

The Experiment.json file can be generated by any means to create a JSON file. This

can include manually writing a file, a GUI-based tool provided through RemoteHRI, or

scripts in any programming language that can write to a JSON file. This allows for

flexibility and scalability for the researcher to create an experiment, regardless of their

programming experience or the scale of their experiment.

The Experiment.json file also allows for minimal configuration when extending Re-

moteHRI with a new stimulus type. Due to the freedom in schema provided by JSON

files, a researcher only needs to implement the client-side rendering of their new stimulus

using ReactJS and decide what properties may be specified in the Experiment.json file.

Figure 8.4. Snapshot of an example Experiment.json file specification for
a grid-world experiment. The configuration specified corresponds to the
DiscreteGridWorld in Figure 8.1.
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8.5. Conclusions

In this chapter, we presented RemoteHRI, a JavaScript framework for designing and

deploying crowdsourced HRI experiments online. We anticipate that RemoteHRI can

also help in lowering the barrier to entry for HRI research and increase equity in terms

of broadened participation from underrepresented HRI researchers. Future extensions of

RemoteHRI will include functionality to use custom input devices such as joysticks and

sip-and-puffs [57] in addition to standard keyboard and mouse input. This specifically

targets the subdomain of assistive robotics in which studies with motor-impaired subjects

are of paramount importance for the successful adoption of assistive technologies. Future

iterations of the framework will also include 3D simulated environments.
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CHAPTER 9

Final Words

The work presented in this dissertation touches upon three distinct aspects of a shared-

autonomy assistive system, namely (a) the intent inference capabilities of the autonomous

agent, (b) the interaction between the human and the control interface, and (c) the design

of the arbitration scheme for control sharing.

9.1. Nudging for Human-AI Alignment

Intent inference is of paramount important in any shared autonomy assistive system

that does not have transparent human goals as the primary goal of an assistive autonomous

agent is to help the user achieve their desired goals and intentions. Chapters 5 and 6

attempt to tackle a particularly thorny problem faced by autonomous agents, which is

that of successfully inferring intent from limited control signals that are generated by the

user. The limitations arise due to various reasons such as (a) inherent physical constraints

in the expressivity of the control interface as a result of unique physical form factors, (b)

lack of motor skills due to insufficient practice and experience, and (c) motor limitations

that arise due to spinal cord or brain injuries.

The key idea behind intent disambiguation developed in these chapters is that it is a

mechanism by which the autonomous agents could alter the context in which users are

issuing their task-related actions. For example, simply by placing the user’s control in a

different control mode or by moving a robot to a different location, the signals generated
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by the human carry new meaning and information and as a result the autonomous agent

can perform intent inference more accurately. Such a nudge in the context does not

restrict the set of actions available to the user. This is important in order to retain as

much agency as possible with the user. As a downstream consequence of such a contextual

nudge, the user receives more assistance in return. The effectiveness of this strategy could

further be enhanced by making the user aware of whether they are being nudged by the

autonomous agent.

Quite often, an autonomous agent’s ability to assist the user is limited by the lack of

fidelity of the models of human behavior that are available for it to use. Although data-

driven methods based on state-of-the-art machine learning algorithms offer the promise of

the development of generalized robotics capabilities, the applicability of these methods is

severely limited by the availability of data or how laborious data collection and curation

can be. On other hand, autonomous agents could easily be endowed with hand-engineered

models of human behavior designed by domain experts using limited amounts of data and

strong priors. Typically, the gap between these models and the actual human behavior

could be large, thereby resulting in low utility value of these models for the autonomous

agent. The notion of nudging can again be leveraged in such scenarios to bridge the gap

between the model predictions and human behavior by nudging the humans to behave in

accordance to the model output. Effective training protocols that incentivize humans to

be cooperative can help them meet the autonomous agent’s capabilities halfway and as a

result bring a great deal of benefit to the overall human-robot team.
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Nudging is applicable at the conceptual level as well and it could be utilized to bridge

the gap between what the user already knows about the technological possibilities of as-

sistive robotics and what the future might be like. User-centric iterative design processes

are highly encouraged in a domain such as assistive robotics because technological success

is closely tied to how useful they are to the end user. Quite often researchers spend valu-

able time and effort in building algorithms and robot functionalities that end up having

very low user acceptance and adoption rates. Hence, it is very important to generate

minimum viable solutions that can be quickly prototyped and deployed. These minimum

viable solutions typically utilize heuristics-based approaches that are easy to implement

and therefore can act as conceptual nudges on the end user. They provide a sneak peek

into the innovative possibilities of assistive technology and can encourage the user to

adopt them even in the short term. Additionally, minimum viable solutions informed by

heuristics from other fields such as cognitive science, psychology, and behavioral econom-

ics can become instrumental to making incremental progress when data-driven methods

are not applicable.

9.2. Interface Awareness in Human-Robot Interaction

The notion of interface awareness in assistive robotics was initially explored by Nejati

et al., in [88] in which the usage characteristics of different interfaces are investigated in

various command-following and trajectory-following tasks. In Chapter 4 we take the idea

of interface awareness a step further by explicitly modeling the physical activation aspect

of interface within a model of robot teleoperation in order to improve the intent inference

capabilities of the autonomous agent. The ideas introduced in Chapter 4 go beyond the
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realm of assistive robotics and are applicable to any situation in which there is any kind

of intermediate physical mechanism that facilitates human-machine interaction. For ex-

ample, in the domain of autonomous driving, if we want to fully characterize how humans

drive, in addition to the modeling the driver’s cognitive decision making processes, it is

also necessary to evaluate how well they are physically able to turn the steering wheel

or physically press a gas pedal using their foot. Noise in the motor system that arises

due to lack of motor control or motor skill can alter how human intentions get communi-

cated to the external world that includes the autonomous agent. In order to extract the

true signal from the noise the autonomous agent will have to explicitly model the noise

characteristics. Quite often, physical aspects of interface usage are overlooked in the HRI

domain because we assume that humans are always physically capable of executing the

necessary physical actions when operating an interface. The model presented in Chapter 4

makes a clear distinction between conceptual knowledge of doing a task and the physical

aspect of actually executing the task. Without the conceptual understanding, the human

would not know what motor skill to activate in the first place. However, even if the con-

ceptual understanding is thorough, unless the human can physically perform the action,

the resulting change in environment might be undesired. Even in non-assistive domains,

autonomous agents could be designed to smooth out errors and imprecisions that arise

due to the noise in physical activation when a human controls a machine.

The work presented in this dissertation scratches the surface of what is possible in the

domain of human-autonomy interaction. It is my hope that researchers will strive to find

a balance between pushing the envelope in terms of computational modeling, algorithm

and engineering design on one hand and building useful technologies that have direct
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impact on improving the lives of the end user on the other hand. To that end, not only

should researchers be aware of the limitations of the technologies that are being developed

but also realize that fully algorithmic decision-making solutions may not have the highest

utility value for the human, in which case it is simply better to have the human be in

control of the decisions.
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[78] Hüntemann, A., Demeester, E., Vander Poorten, E., Van Brussel, H.,
and De Schutter, J. Probabilistic approach to recognize local navigation plans
by fusing past driving information with a personalized user model. In 2013 IEEE
International Conference on Robotics and Automation (2013), IEEE, pp. 4376–4383.

[79] Ito, M. Internal model visualized. Nature 403, 6766 (2000), 153–154.

[80] Ivanovic, B., Leung, K., Schmerling, E., and Pavone, M. Multimodal deep
generative models for trajectory prediction: A conditional variational autoencoder
approach. IEEE Robotics and Automation Letters 6, 2 (2020), 295–302.

[81] Jagacinski, R. J., and Miller, R. A. Describing the human operator’s internal
model of a dynamic system. Human Factors 20, 4 (1978), 425–433.

[82] Jain, A., and Kemp, C. C. EL-E: an assistive mobile manipulator that au-
tonomously fetches objects from flat surfaces. Autonomous Robots 28, 1 (2010),
45–64.

[83] Jain, S., and Argall, B. Automated perception of safe docking locations with
alignment information for assistive wheelchairs. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems (2014), IEEE, pp. 4997–5002.

[84] Jain, S., and Argall, B. Grasp detection for assistive robotic manipulation. In
2016 IEEE International Conference on Robotics and Automation (ICRA) (2016),
IEEE, pp. 2015–2021.



210

[85] Jain, S., and Argall, B. Robot learning to switch control modes for assistive
teleoperation. In RSS 2016 Workshop on Planning for Human-Robot Interaction:
Shared Autonomy and Collaborative Robotics (2016).

[86] Jain, S., and Argall, B. Estimation of surface geometries in point clouds for the
manipulation of novel household objects. In Proceedings of the RSS 2017 Workshop
on Spatial-Semantic Representations in Robotics, Cambridge, MA, USA (2017),
vol. 16.

[87] Jain, S., and Argall, B. Recursive Bayesian human intent recognition in shared-
control robotics. In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (2018), IEEE, pp. 3905–3912.

[88] Javaremi, M. N., Young, M., and Argall, B. D. Interface operation and
implications for shared-control assistive robots. In 2019 IEEE 16th International
Conference on Rehabilitation Robotics (ICORR) (2019), IEEE, pp. 232–239.

[89] Javdani, S., Srinivasa, S. S., and Bagnell, J. A. Shared autonomy via
hindsight optimization. In Proceedings of the Robotics Science and Systems (RSS)
(2015).

[90] Johnson, E. J., Shu, S. B., Dellaert, B. G., Fox, C., Goldstein, D. G.,
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