
NORTHWESTERN UNIVERSITY

Distributed Optimization Methods In Large-Scale Systems With Realistic

Constraints

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Electrical Engineering

By

Charikleia Iakovidou

EVANSTON, ILLINOIS

September 2022

2

© Copyright by Charikleia Iakovidou 2022

All Rights Reserved

3

ABSTRACT

Distributed Optimization Methods In Large-Scale Systems With Realistic Constraints

Charikleia Iakovidou

Originally motivated by the emergence of networked systems lacking central coordi-

nation such as multiprocessors, wireless sensor networks and smart grids, the study of

distributed optimization algorithms has been an active field of research spanning multiple

decades. More recently, the rapid growth in the availability of high-dimensional datasets

has posed the problem of learning efficiently and securely from data located across thou-

sands of devices. In addition, distributed optimization for networks of mobile agents has

been gaining significant traction over the last few years due to advancements in robotics

and autonomous vehicles research. However, large-scale learning and mobile agent sys-

tems have inherent challenges that are typically overlooked in distributed optimization

literature. This thesis aims to address some of these concerns.

In the first part of this thesis, we propose and analyze a first order distributed method

(S-NEAR-DGD) which utilizes cost-efficient stochastic gradient approximations and can

4

tolerate inexact communication to alleviate the problems of excessive gradient compu-

tation costs and communication bottlenecks in large-scale Machine Learning. S-NEAR-

DGD is based on a class of flexible deterministic algorithms (NEAR-DGD) that permit

adjusting the amounts of communication and computation performed to best accommo-

date the application environment. Under strong convexity and Lipschitz gradient conti-

nuity, we show the linear convergence of S-NEAR-DGD to an error neighborhood of the

optimal solution. Moreover, we provide numerical results demonstrating that S-NEAR-

DGD is robust to types of inexact communication which may cause other state-of-the-art

methods to diverge.

In the second part of this thesis, we consider the setting of nonconvex distributed opti-

mization which features prominently in machine learning applications. Obtaining conver-

gence guarantees is particularly challenging for nonconvex problems. Utilizing novel Lya-

punov functions and under weaker assumptions compared to existing works on the same

topic, we prove convergence of the iterates of the NEAR-DGD method to critical points.

Moreover, we employ results stemming from dynamical system theory to demonstrate

that NEAR-DGD almost always avoids strict saddle points and thus likely converges to

minimizers. Our numerical results are promising and indicate that NEAR-DGD performs

competitively against state-of-the-art methods.

In the last part of this thesis, we consider the multi-agent rendezvous problem, i.e.

guiding of a group of agents to a common meeting point, with applications in multi-robot

and multi-vehicle networks. We treat rendezvous as a distributed consensus optimiza-

tion problem and develop a fully asynchronous algorithm that can handle any number of

agents and spaces of any dimension, and which provably converges to an arbitrarily small

5

neighborhood of the optimal rendezvous point. Our method is robust to outdated infor-

mation and to potentially erroneous displacements caused by the continuously moving

nature of robotic agents.

6

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my advisor, Profes-

sor Ermin Wei. I am thankful for her mentorship, encouragement and all the academic and

professional opportunities she has provided me with over the years. Under her guidance

I have grown both as a researcher and as a person.

I would like to extend my sincere thanks to my committee members, Professor Randall

Berry and Professor Randy Freeman, for their support in both research and academic

matters. Their feedback and suggestions have been invaluable in improving this thesis.

I would also like to thank the staff of the Electrical & Computer Engineering Depart-

ment for always being eager to provide help and answer my questions.

Many thanks to my friends and family for being there for me; without their support

this thesis would not have been completed. Finally, I would like to thank the instructors,

staff and fellow students at my dojo, Thousand Waves; I am deeply grateful for having

had the opportunity to train with them for the past three years.

7

Table of Contents

ABSTRACT 3

Acknowledgements 6

Table of Contents 7

List of Tables 9

List of Figures 10

Chapter 1. Introduction 12

1.1. Summary of distributed optimization algorithms 15

1.2. Challenges in Distributed Large-Scale Machine Learning I: Computational &

Communication Constraints 19

1.3. Challenges in Distributed Large-Scale Machine Learning II: Nonconvex

Optimization 24

1.4. Challenges in Distributed Mobile Agent Systems: The Case of the

Rendezvous Problem 27

Chapter 2. S-NEAR-DGD: A Flexible Distributed Stochastic Gradient Method for

Inexact Communication 32

2.1. Algorithm Development 32

2.2. Convergence Analysis 37

8

2.3. Numerical results 59

2.4. Summary 65

Chapter 3. Nested Distributed Gradient Methods for Non-Convex Optimization

With Second Order Guarantees 66

3.1. Convergence Analysis 66

3.2. Numerical Results 97

3.3. Summary 102

Chapter 4. Asynchronous Distributed Rendezvous With Probabilistic Guarantees 105

4.1. Algorithm Development 105

4.2. Convergence Analysis 109

4.3. Numerical Results 124

4.4. Summary 126

References 129

9

List of Tables

2.1 Summary of NEAR-DGD-based methods. (D) and (R) denote

deterministic and random error vectors respectively. 37

2.2 Quantized consensus step variations 60

10

List of Figures

2.1 Error plots, ∆ = 10 (left) and ∆ = 105 (right) 61

2.2 Dependence on network type and size. Function value error averaged over

the last τ iterations out of T total iterations (top left), steps/gradient

evaluations until termination (top right), total cost until termination

when communication is cheaper than computation (bottom left), and

when communication and computation have the same cost (bottom

right). 64

3.1 Distance to f ⋆ (left) and to saddle point (right) 99

3.2 Objective function error as a function of cumulative application cost

(per node) 100

3.3 Performance of distributed optimization methods for a 2-hidden layer

NN classifying the MNIST dataset, network size N = 10 103

3.4 Performance of distributed optimization methods for a 2-hidden layer

NN classifying the MNIST dataset, network size N = 30 104

4.1 Network topology (left) and Poisson parameter values λi for agents

i = 1, 2, 3, 4, 5 (right). 126

11

4.2 Distance of average position x̄t = n−1
∑n

i=1 xi,t at time t ∈ [0, T] to

the solution x⋆ of Problem 1.0.1 (left, solid blue line), distance to

rendezvous (left, dashed orange line) and gradient norm ∇Fα(Xt) where

Xt = [x′1,t, ..., x5,t]
′ (left, dotted green line) and velocity norms for agents

i = 1, 2, 3, 4, 5 in the interval t ∈ [0, 200] seconds (right). 127

4.3 Trajectory snapshots for time instances t = 0 (top left), t = 45.24 (top

right), t = 114.61 (bottom left) and t = 294.07 (bottom right). The

agents i = 1, 2, 3, 4, 5 are color-coded as in Fig. 4.1 and the optimal

solution x⋆ of Problem 1.0.1 is plotted with a red “x” marker. 128

12

CHAPTER 1

Introduction

Beginning with the seminal works [162, 163, 17], the development and analysis of dis-

tributed optimization algorithms has been an active research area for over three decades.

The need to harness the computing power of multiprocessors to solve increasingly complex

problems and the emergence of a multitude of networked systems that lack central coordi-

nation such as wireless sensor networks [5, 123, 51, 94, 122, 131, 173, 45, 76, 75, 59,

142, 44], multi-robot and multi-vehicle networks [12, 24, 117, 139, 187, 136, 28, 29,

188] and power systems [105, 61, 96, 83, 129, 120, 71, 78, 151, 174, 180, 56], necessi-

tated the design of optimization algorithms that can be implemented in a distributed man-

ner. More recently, the proliferation of datasets coupled with storage constraints, growing

computation costs and privacy concerns, has sparked significant interest in decentralized

optimization for machine learning [67, 137, 41, 21, 81, 178, 101, 147, 20, 91, 90].

The diversity of the applications of distributed optimization makes a ”one size fits

all” approach unlikely to achieve optimal performance in every setting. Moreover, the

distinct constraints inherent in different types of distributed systems are typically over-

looked during algorithm design. The goal of this thesis is to develop and study efficient

optimization methods that take into consideration the special requirements and limita-

tions present in distributed systems and their emerging applications. For the rest of this

work, we focus on the setting where the nodes of a connected, undirected network G(V , E),

with V = {1, 2, ..., n} denoting the set of nodes and E = {(i, j) : i ∼ j} the set of edges,

13

collaborate to solve the following composite optimization problem

(1.0.1) min
x∈Rp

f(x) =
n∑
i=1

fi(x),

where x ∈ Rp and fi : Rp → R.

Node i ∈ V has unique private access to the function component fi. In addition, due

to the absence of a shared memory, each node maintains a local copy xi ∈ Rp of the global

variable x. Problem 1.0.1 can then be reformulated to what is commonly referred to as

the consensus optimization problem [17] in the literature

min
x∈Rnp

f(x) =
n∑
i=1

fi(xi)

s.t. (W ⊗ Ip)x = x,

(1.0.2)

where x = [x′1, x
′
2, ..., x

′
n]′ ∈ Rnp is the column-wise concatenation of local variables xi,

W ∈ [0, 1)np×np is a matrix constructed in such a way that the constraint in Problem 1.0.2

is satisfied iff xi = xj for all pairs (i, j) ∈ E , and Ip is the identity matrix of dimension p.

We will be referring to W as the consensus matrix throughout this work.

Problems 1.0.1 and 1.0.2 are equivalent. However, unlike problem 1.0.1, the consensus

problem is separable with respect to the variables xi ∈ Rp and thus can be solved in a

decentralized fashion. A model of distributed computation where each component of the

decision vector is evaluated by a different processor was proposed as far back as in [162,

163, 17], while the first comprehensive analysis of a distributed (sub)gradient method for

solving problem 1.0.2 in a distributed manner was published in [111]; starting from initial

point x0 = [(x1,0)
′, ..., (xn,0)

′]′ ∈ Rnp, the system iterates of Distributed (Sub)Gradient

14

Descent (DGD) [111], can be expressed as

(1.0.3) xk+1 = Zxk − α∇f(xk),

where Z = W ⊗ Ip, Ip is the identity matrix of dimension p, ⊗ denotes the Kronecker

product operation, α is a positive steplength, ∇f(xk) = [(∇f1(x1,k))′, ..., (∇fn(xn,k))
′]′

and xi,k the local decision variable at node i and iteration count k.

The building blocks of DGD and distributed optimization algorithms in general can

be observed in (1.0.3); every iterate combines the local optimization of functions fi (a

gradient step in the case of DGD) with a communication or consensus step, where nodes

update their local variables by forming weighted averages with those of their neighbors

(term Zxk in (1.0.3)). Moreover, distributed optimization algorithms can be classified by

the order in which computation and consensus are combined to produce an update; DGD

is an example of an algorithm employing the Combine-Then-Adapt (CTA) strategy [141],

where local iterates are first combined into a weighted average followed by an adaptation

(computation) step. Conversely, the distributed gradient method known as diffusion [35]

employs the Adapt-Then-Combine (ATC) strategy, where gradient steps are locally exe-

cuted first and their results are combined in a weighted average. The system updates in

this case can be written as

(1.0.4) xk+1 = Z(xk − α∇f(xk)).

The NEAR-DGD method proposed in [13] generalizes (1.0.4) by combining a gradient

step with an arbitrary number of nested consensus rounds in a single iteration of the

15

algorithm. The iterates of NEAR-DGD are given by

xk = Zt(k)yk(1.0.5)

yk+1 = xk − α∇f(xk),(1.0.6)

where Zt(k) = Wt(k) ⊗ Ip and {t(k)} is a sequence defining the number of consensus

rounds t(k) executed at the kth iteration of the algorithm. The strength of NEAR-DGD

in comparison to other distributed optimization methods lies in its flexible structure,

as the sequence {t(k)} can be tuned on a case-by-case basis to best accommodate the

underlying application and system properties.

The rest of the Introduction is organized as follows: in the next section we briefly

summarize some of the main classes of distributed optimization algorithms. Section 1.2

concerns the problems of communication bottlenecks and excessive computation costs

frequently arising in large-scale machine learning applications. In Section 1.3, we delve

into the topic on nonconvex distributed optimization, which is prominent in modern large-

scale machine learning systems and where deriving convergence guarantees is a challenging

task. Finally, in Section 1.4, we focus on the problem of multi-agent rendezvous in robotics

and investigate the particular type of asynchrony inherent in networks of mobile agents.

1.1. Summary of distributed optimization algorithms

Distributed optimization algorithms can be roughly divided into the following cate-

gories: (sub)gradient algorithms, primal dual methods, Newton-based methods and the

Alternating Direction Method of Multipliers (ADMM). We summarize some of the high-

lights for each category in the paragraphs below.

16

• (Sub)gradient algorithms

As with DGD, these methods rely on first order information to optimize

local functions fi. Examples include a projected consensus algorithm for con-

strained optimization, [112], distributed Nesterov gradient methods [74], diffu-

sion algorithms where consensus is applied on local gradients instead of local

variables [35, 141], distributed proximal gradient methods [34] and gradient

methods with multiple nested consensus steps [13]. When functions fi are con-

vex, distributed first order methods generally converge to a neighborhood of the

optimal solution of problem 1.0.2 with constant steplengths and require dimin-

ishing steplengths for exact convergence.

A special mention should be made of a class of distributed first order algo-

rithms sometimes referred to as ”gradient tracking” (GT) methods [113, 43, 146,

184, 130, 177]. Gradient tracking methods maintain an additional variable that

converges over time to the true descent direction of problem 1.0.1, i.e. instead

of taking a step towards ∇fi(xi), node i progressively moves in the direction of

∇f(xi) =
∑n

i=1∇fi(xi). These methods have been shown to admit a primal-dual

interpretation [113, 176] and are capable of achieving exact convergence to the

solution of problem 1.0.2 with constant steplengths when the functions fi are

convex.

• Primal dual methods

The observation that problem 1.0.2 is a nonlinear optimization problem with

linear constraints led to the development of distributed primal-dual algorithms

[188, 79, 99, 18, 98, 73, 82]. These methods aim to locate the saddle points

17

of a(n augmented) Langrangian function, such as

(1.1.1) Lρ(x,y) = f(x) + ⟨y,Ax⟩+
ρ

2
∥x∥2A,

where y is the dual variable, A is matrix suitably chosen to enforce consensus (eg.

A = I − Z) and ρ a tunable parameter (eg. ρ = 0 for non-augmented Lagrangian

methods).

Primal-dual algorithms typically update both the primal variable x and the

dual variable y at every iteration until convergence is reached. Like gradient

tracking methods, distributed primal-dual algorithms provably achieve exact con-

vergence with constant steplengths for convex objective functions.

• Newton-based methods

The Newton method iterates for centralized optimization can be written

as [16]

(1.1.2) xk+1 = xk − α(∇2f(xk))
−1∇f(xk),

where ∇2f(xk) is the Hessian matrix of f at xk.

Newton methods typically enjoy superior convergence rates compared to gra-

dient methods at the cost of having to compute the inverse of the second-order

term ∇2f(xk). A number of works employ second-order information in order to

achieve fast convergence in the distributed setting, including primal-dual meth-

ods [73, 169] and distributed Newton methods that bypass the difficulty of

calculating the Hessian inverse (∇2f(x))−1 by replacing it with a suitable ap-

proximation [103, 97, 52].

18

• The Alternating Direction Method of Multipliers (ADMM)

Consider the problem

min
y,z

f(y) + g(z)

s.t. Fy +Dz = c,

(1.1.3)

where y ∈ Rn, z ∈ Rm, F ∈ Rp×n, D ∈ Rp×m and c ∈ Rp.

While the objective function of problem 1.1.3 is separable with respect to y

and z, the linear constraint Fy + Dz = c is coupled. The Alternating Direction

Method of Multipliers [23] is a dual decomposition-based method that solves

problems of the form of 1.1.3 using the augmented Lagrangian

(1.1.4) Lρ(y, z, λ) = f(y) + g(z)− ⟨λ, Fy +Dz − c⟩+
ρ

2
∥Fy +Dz − c∥22,

where λ is the dual variable and ρ a tunable parameter.

Each iteration of ADMM consists of three steps performed in a Gauss-Seidel-

like order; a minimization of Lρ with respect to of y, followed by a minimization

with respect to z and an update of the dual variable λ to satisfy the optimality

conditions of problem 1.1.3. Distributed variants of ADMM with convergence

guarantees have been proposed in [72, 107, 167, 168].

• Other methods

Instances include coordinate descent algorithms [67, 137, 18, 60, 121],

flocking-based methods [124] and distributed adaptations of Nesterov’s dual av-

eraging algorithm [51].

19

In the next section, we focus on two major challenges in large-scale Machine Learning

systems, namely communication bottlenecks and the increasing cost of gradient eval-

uations. After a summary of the existing literature, we outline our contributions on

extending the NEAR-DGD method (1.0.5) (1.0.6) to accommodate these challenges.

1.2. Challenges in Distributed Large-Scale Machine Learning I:

Computational & Communication Constraints

1.2.1. Literature review

1.2.1.1. Distributed optimization algorithms with quantized communication.

The amount of communication between nodes has long been identified as a major perfor-

mance bottleneck in decentralized computing, especially as the volume and dimensionality

of available data increase [135, 82]. Limiting inter-node communication without overly

sacrificing accuracy is an active research topic, and popular solutions include applying

quantization techniques [135, 3, 132], which compress information so it can be transmit-

ted with fewer bits, or sparsification methods [166, 4], which aim to decrease the number

of transmitted bits while simultaneously enforcing vector sparsity (other approaches can

be found in [81, 165]). While sparsification methods yield substantial gains in prac-

tice [4], they increase the variance of the information exchanged via the communication

channel [166] and for this reason we do not investigate them in this work. Moreover, in

any practical setting where the bandwidth of the communication channel is limited, the

information exchanged cannot be represented by real-valued vectors with arbitrary pre-

cision. This limitation can prevent algorithms from converging to the true optimal value

20

of Problem (1.0.2) [47, 46, 128, 10]. Both of these concerns motivate us to design dis-

tributed optimization methods where nodes receive inexact/quantized information from

their neighbors.

Multiple works in the literature focus on studying the effects of quantized communi-

cation on the convergence of distributed algorithms and on the design of methods robust

to quantization error. An energy-based analysis of distributed incremental algorithms

under quantized communication which characterized the dependency of the error induced

by quantization on the quantization interval was first established in [132]. The conver-

gence properties of DGD [111] when both communication and storage are quantized were

later studied in [110], while [88] investigates the behavior of the same algorithm under

deterministically quantized communication. The distributed dual averaging method [51]

under both deterministic and probabilistic quantization of transmitted information was

studied in [182]. Various works focus on distributed averaging (consensus) algorithms

in conjunction with bandwidth-limited communication resulting from the application of

deterministic quantization schemes [109, 77, 102, 53], probabilistic/randomized tech-

niques [10, 32] and dynamic communication protocols [54].

A number of different approaches have been proposed to guide distributed algorithms

with inexact communication towards optimality, such as using weighted averages of in-

coming quantized information and local estimates [135, 46], designing custom quantiz-

ers [84, 47, 128], employing encoding/decoding schemes [3, 135, 179], and utilizing error

correction terms [189, 84, 47]. Among these, only [128, 84] achieve exact convergence

with linear rate by employing dynamic quantizers which require the tuning of additional

parameters and global information at initialization. Moreover, neither of these methods

21

allow for adjusting the amounts of computation and communication executed at every

iteration.

1.2.1.2. Stochastic gradient in distributed optimization. Consider a supervised

learning setup [22], where the goal is to construct a model of the relationship between an

input variable X and an output variable Y from measured instances (xk, yk), k = 1, ...,M .

Let fw be a function parametrized by a vector w which serves as an estimate of the true

mapping from X to Y . Moreover, let l(ỹ, y) be a loss function representing the cost of the

model erroneously predicting ỹ instead of the true value y. The empirical risk EM(fw) of

the chosen model is the average value of the loss function across all M existing samples

and is given by the expression

(1.2.1) EM(fw) =
1

M

M∑
k=1

l(fw(xk), yk).

Minimizing empirical risk with respect to the parameter vector w is a basic machine

learning tool; however, as is evident from Eq. (1.2.1), the computational cost of doing so

scales unfavorably with the number of available samples M . As a consequence, the price

of a gradient evaluation can become prohibitive in large-scale systems. This problem was

partially mitigated by the introduction of Stochastic Gradient Descent (SGD) [22, 190]

and mini-batching gradient algorithms [80, 50, 89, 62, 11], which rely on calculating

an approximation of the true gradient at every iteration by appropriately subsampling

the original dataset. Various studies and analyses on stochastic gradient based meth-

ods have been conducted in centralized settings [22, 62], federated learning (client-server

model) [101, 190] and distributed settings over general topologies [90, 106, 126], which

22

is the setting this thesis adopts. Existing results indicate that general network topolo-

gies have potential advantages over client-server architectures [90]. Other works have

demonstrated that certain distributed stochastic methods achieve a variance reduction

effect similar to mini-batching [125, 148, 127, 145] (for more comparisons between dis-

tributed and centralized stochastic methods, we refer interested readers to [106, 126]).

Finally, the authors of [144] conduct an extensive cost-benefit analysis of distributed

stochastic algorithms but only for a limited number of network topologies.

There exists an extensive body of work on distributed stochastic optimization over

general networks. Existing approaches include stochastic variants of DGD [154, 149,

90], stochastic diffusion algorithms [160, 106, 127], primal-dual methods [33, 82, 65],

gradient-push algorithms [114, 148], the dual-averaging method [51], accelerated dis-

tributed algorithms [57] and stochastic distributed gradient tracking methods [104, 125,

145, 175, 87]. While some of these methods reach exact convergence (in expectation)

with linear rates (eg. stochastic variants of gradient tracking, exact diffusion), they achieve

this by utilizing variance reduction techniques that may have excessive memory require-

ments. Moreover, all of the aforementioned algorithms have a fixed structure and lack

adaptability to diverse environments.

1.2.2. Contributions

In Chapter 2, we propose and analyze the Stochastic-NEAR-DGD (S-NEAR-DGD) method,

a distributed algorithm which utilizes stochastic gradient approximations and can toler-

ate noisy communication to conserve bandwidth and computational resources. Our main

contributions are summarized as follows:

23

(1) S-NEAR-DGD is based on a class of flexible algorithms (NEAR-DGD) [13] which

permits adjusting the amounts of computation and communication performed

during a run of the method. It is, thus, to the best of our knowledge, the only

distributed method using stochastic gradient approximations and quantized com-

munication that can be tailored on a case-by-case basis to balance convergence

accuracy and total application cost in a diverse set of environments;

(2) We study various techniques for handling communication errors and investigate

their effects on the convergence of distributed algorithms. We empirically demon-

strate that Gradient Tracking (GT) methods may diverge in the presence of noise

in the communication channel, unless the appropriate error correction is imple-

mented. Conversely, purely primal methods such as S-NEAR-DGD appear to be

more robust to noisy communication;

(3) We provide theoretical results which prove that S-NEAR-DGD converges to a

neighborhood of the optimal solution with linear rate. Parts of the results have

appeared in our previous works [15] and [70], where we considered deterministic

quantization and stochastic gradient errors separately. We note that the com-

munication errors considered in Chapter 2 are stochastic and include the ones

in [15] as a special case. The stochastic nature calls for an error correction mech-

anism to prevent the communication errors from accumulating, which requires

new analysis.

The next section is dedicated to another challenge arising in decentralized large-scale

Machine Learning (ML) systems, which is closely related to the recent popularity of

artificial Neural Networks (NN) given their superior performance in ML tasks. Namely,

24

we focus on the setting where the objective function f : Rp → R or Problem (1.0.1)

is nonconvex, and where the obtainment of convergence guarantees can be particularly

difficult. After reviewing the existing literature on this topic, we outline our contributions.

1.3. Challenges in Distributed Large-Scale Machine Learning II: Nonconvex

Optimization

Problems 1.0.1 and 1.0.2 are common in large-scale decentralized machine learn-

ing [67, 137, 21], where the data is distributed over multiple networked computing units.

Nonconvex objective functions feature prominently in machine learning applications, at-

tracting significant interest in the development and analysis of distributed optimization

methods for nonconvex problems [31]. The convergence of DGD when the function f of

Problem1.0.1 is nonconvex has been studied in [186]. NEXT [95], SONATA [143, 40],

xFilter [152] and MAGENTA [68], are some examples of distributed methods that uti-

lize gradient tracking and can handle nonconvex objectives. Other approaches include

primal-dual algorithms [64, 66] (we note that primal-dual and gradient tracking algo-

rithms are equivalent in some cases [113]), the perturbed push-sum method [159], zeroth

order methods [63, 158], and stochastic gradient algorithms [19, 90, 157, 153].

Providing second order guarantees when Hessian information is not available is a chal-

lenging task. As a result, the majority of the works listed in the previous paragraph

establish convergence to critical points only. A recent line of research leverages existing

results from dynamical systems theory and the structural properties of certain problems

(which include matrix factorization, phase retrieval and dictionary learning, among oth-

ers) to demonstrate that several centralized first order algorithms converge to minimizers

25

almost surely when initialized randomly [85]. Specifically, if the objective function sat-

isfies the strict saddle property, namely, if all critical points are either strict saddles or

minimizers, then many first order methods converge to saddles only if they are initial-

ized in a low-dimensional manifold with measure zero. Using similar arguments, almost

sure convergence to second order stationary points of Problem 1.0.2 is proven in [40] for

DOGT, a gradient tracking algorithm for directed networks, and in [66] for the first order

primal-dual algorithms GPDA and GADMM. The convergence of DGD with constant

steplength to a neighborhood of the minimizers of Problem 1.0.2 is also shown in [40].

The conditions under which the Distributed Stochastic Gradient method (D-SGD), and

Distributed Gradient Flow (DGF), a continuous-time approximation of DGD, avoid sad-

dle points are studied in [155] and [156], respectively. Finally, the authors of [159] prove

almost sure convergence to local minima under the assumption that the objective function

has no saddle points.

Given the diversity of distributed systems in terms of computing power, connectiv-

ity and energy consumption, among other concerns, the ability to adjust the relative

amounts of communication and computation on a case-by-case basis is a desirable at-

tribute for a distributed optimization algorithm. While some existing methods are de-

signed to minimize overall communication load (for instance, the authors of [152] employ

Chebyshev polynomials to improve communication complexity), all of the methods listed

above perform fixed amounts of computation and communication at every iteration and

lack adaptability to heterogeneous environments.

26

1.3.1. Contributions

In Chapter 3, we extend the convergence analysis of the NEAR-DGD method, originally

proposed in [13], from the strongly convex to the nonconvex setting. NEAR-DGD is a

distributed first order method with a flexible framework, which allows for the exchange of

computation with communication in order to reach a target accuracy level while simulta-

neously maintaining low overall application cost. We study two instances of NEAR-DGD:

a variant performing a fixed number of consensus rounds at every iteration (NEAR-DGDt),

and a time-varying variant where the number of consensus rounds executed increases by

one at every iteration (NEAR-DGD+). We design custom Lyapunov functions which

track the progress on Problem 1.0.1 and the distance to consensus for both cases, and

demonstrate under weaker assumptions compared to similar works in the literature that

NEAR-DGDt converges to the set of critical points of our defined Lyapunov function and

to approximate critical points of the function f of Problem 1.0.1, while NEAR-DGD+

converges to the set of critical points of f . Moreover, we show that the gap between the

limit points of NEAR-DGDt and the critical points of f can become arbitrarily small by

appropriate selection of algorithm parameters. Finally, we employ recent results based on

dynamical systems theory to prove that both variants almost surely avoid strict saddles.

Our analysis is shorter and simpler compared to other works due to the convenient form

of our Lyapunov functions.

27

1.4. Challenges in Distributed Mobile Agent Systems: The Case of the

Rendezvous Problem

The “rendezvous” problem, first studied in [6], concerns steering a group of robots

to a common meeting point using exclusively local information, such as the positions or

headings of other robots located within a sensing radius. Rendezvousing is an important

component in a multitude of complex cooperative control applications, such as search

and rescue [30], mine countermeasure [181], area exploration and monitoring [138, 2],

refueling and recharging of unmanned ground vehicles (UGVs), unmanned aerial vehicles

(UAVs) and autonomous underwater vehicles (AUVs) [140, 100, 86], target tracking

[116], herding [119] and emergency evacuation [39], to name a few.

The authors of [6] proposed the so-called “circumcenter” algorithm to guide a group

of robots capable of mutually observing the positions of other robots in their proximity

to a rendezvous location on the 2-dimensional plane. Specifically, robots continuously

and asynchronously execute cycles consisting of the following steps: i) observation of the

positions of neighboring robots, ii) calculation of target positions based on most recent

observations and iii) movement towards the target positions. The robots are restricted

in the distance they can cover within one cycle, and are unable to modify their directions

until a new cycle begins. The synchronous and asynchronous versions of the circumcenter

algorithm, again for the 2-dimensional plane, were later elaborated on in [92] and [93],

respectively. The authors of [92, 93] adopt a ”stop and go” strategy composed of a

“sensing” period where agents observe their surroundings, and a “maneuvering” period

where agents move to a target point and then rest. Moreover, restrictions are imposed on

the distances agents can cover and the total time they can travel within each phase. The

28

synchronous version of the circumcenter algorithm was studied under weaker assumptions

in [37], while the authors of [38] proposed a class of synchronous circumcenter algorithms

for switching topologies and arbitrary dimensional spaces that are robust to link failures

and capable of maintaining edges between neighboring robots over time by restricting

their motion range and defining a set of allowable graphs.

A different line of works leverages the connection between rendezvousing and what is

known as “consensus” in the distributed computing literature [162, 17, 163]; namely the

exchange of values between neighboring agents and the formation of weighted averages

of local and neighbor values with the aim of reaching agreement between agents. Indeed,

the rendezvous problem can be viewed as a consensus problem where agent positions

serve as the local decision variables, a fact that has been previously noted in the litera-

ture [118, 27]. Without explicitly mentioning consensus, the authors of [36] propose an

asynchronous Center-Of-Gravity (COG) algorithm for robotic systems, which similarly

to [6], operate in “Look-Compute-Move” cycles corresponding to sensing the environ-

ment (positions of neighboring robots), computing the COG of the observed robots and

moving towards the computed point in a straight line, respectively. Two distinct mo-

tion models are considered: an “undisturbed motion model” where robots always reach

their destinations, and a “sudden stop model”, where robots are guaranteed to move a

minimum distance towards the goal point. The convergence of a class of asynchronous

consensus processes which includes the sudden stop model of [36] as a special case was

subsequently shown in [58] using paracontractions theory. In the same year, the authors of

[25] proposed a consensus protocol utilizing column stochastic matrices that is capable of

achieving rendezvous called “Consensus-Based Rendezvous” (CRB); they later provided

29

probabilistic convergence guarantees for CRB in the presence of stochastic noise with

bounded variance in [26]. In [171], consensus schemes are employed to reach rendezvous

under asynchronous and intermittent communication over switching and directed graphs;

the robots operate in sensing-computing-moving cycles with deterministically bounded

length, and do not rest or change direction within a cycle. The work [108] considers

event-triggered rendezvous for two-wheeled robots under time-varying communication de-

lays; however, the proposed controller relies on one-dimensional consensus protocols and

hence each motion coordinate is updated separately at a different time.

Finally, a special mention should be made of the challenge of maintaining network

connectivity while rendezvousing, due to the fact that the existence of edges usually

depends on distance-based criteria. Graph maintenance is out of the scope of this thesis,

but examples of approaches for tackling this issue can be found in [27, 38, 150, 185, 48].

1.4.1. Contributions

In Chapter 4, we propose a fully asynchronous algorithm for distributed multi-agent ren-

dezvous and derive its convergence properties. Our work adopts a fundamentally different

approach to the rendezvous problem with respect to existing works in the following ways:

(1) We wish to handle the simultaneous optimization of local position-dependent cost

functions related to the background application alongside rendezvousing; hence,

we model the rendezvous problem as a consensus optimization problem rather

than as a consensus problem. Under the assumption of strong convexity, we

define the optimal rendezvous point x⋆ in an arbitrary p-dimensional space to be

30

the solution of Problem 1.0.1, i.e.

x⋆ = arg min
x
f(x) =

n∑
i=1

fi(x),

where fi : Rp → R is the local cost function assigned to agent i ∈ V .

Note that by setting fi = 0, the consensus optimization problem , i.e. Problem

1.0.2 which is equivalent to Problem 1.0.1, reduces to the standard consensus

problem. While there exists an extensive literature on asynchronous distributed

optimization algorithms (eg. [97, 133, 134, 64, 161, 72, 121]), these works have

not been developed for the mobile agent setting and do not provide convergence

guarantees for the type of asynchrony we study.

(2) We model the asynchronous activations of agents as the arrivals of local indepen-

dent Poisson processes, i.e. agent i ∈ V is associated to a local Poisson clock with

parameter λi. The parameters λi can be different for each agent, thus allowing

for heterogeneity in update frequencies.

(3) With regard to agent mobility, our setting is most similar to the one described

in [171]. We assume that agents randomly alternate between two non-overlapping

states: i) an “active” state, where they can perform computations, read and

broadcast messages and adjust their velocities; and ii) a “inactive” state where

they listen for messages from other agents which are stored in local buffers. These

states roughly correspond to the “computing” and “moving” phases described in

the previous section. In line with existing works on rendezvousing, our agents

are unable to change their directions during inactive states. Moreover, they

never become stationary, unless they explicitly set their velocities equal to zero.

31

Unlike [171], we do not impose deterministic bounds on the duration of inactive

states and unlike [93, 36] we do not restrict agent motion range.

In addition to our novel approach, our algorithm enjoys the following properties:

(1) It provably converges to an arbitrarily small small neighborhood of the optimal

rendezvous point while achieving approximate rendezvous;

(2) It is fully asynchronous and can handle outdated information.

We provide probabilistic convergence guarantees for our algorithm in Section 4.2 of Chap-

ter 4. We conduct our analysis in discrete time; moreover, our analysis is simple and

intuitive and does not rely on complex mathematical tools.

32

CHAPTER 2

S-NEAR-DGD: A Flexible Distributed Stochastic Gradient

Method for Inexact Communication

2.1. Algorithm Development

2.1.1. Notation & Assumptions

In this Chapter, all vectors are column vectors. We use uppercase boldface letters for

matrices. We will use the notation 1n for the vector of ones of dimension n. The element

in the i-th row and j-th column of a matrix H will be denoted by hij, and the p-th element

of a vector v by [v]p. The transpose of a vector v will be denoted by vT . We will use ∥ · ∥

to denote the l2-norm, i.e. for v ∈ Rp ∥v∥ =
√∑p

i=1 [v]2i , and ⟨v, u⟩ to denote the inner

product of two vectors v, u. Finally, we define Ni to be the set of neighbors of node i, i.e.,

Ni = {j ∈ V : (i, j) ∈ E}.

We adopt the following standard assumptions on the local functions fi and the con-

sensus matrix W of Problem 1.0.2.

Assumption 2.1.1. (Local Lipschitz gradients) Each local objective function fi

has Li-Lipschitz continuous gradients, i.e. ∥∇fi(x)−∇fi(y)∥ ≤ Li∥x− y∥, ∀x, y ∈ Rp.

Assumption 2.1.2. (Local strong convexity) Each local objective function fi is

µi-strongly convex, i.e. fi(y) ≥ fi(x) + ⟨∇fi(x), y − x⟩+ µi
2
∥x− y∥22, ∀x, y ∈ Rp.

33

Assumption 2.1.3. (Consensus matrix) The matrix W ∈ Rn×n has the following

properties: i) symmetry, ii) double stochasticity, and iii) wi,j > 0 iff (i, j) ∈ E or i = j

and wi,j = 0 otherwise.

Since W is symmetric it has n real eigenvalues, which we order by λn ≤ λn−1 ≤ ... ≤

λ2 ≤ λ1 in ascending order. Assumption 2.1.3 implies that λ1 = 1 and λ2 < λ1 for any

connected network. The remaining eigenvalues have absolute values strictly less than 1,

i.e., −1 < λn. Moreover, the equality (W ⊗ Ip)x = x holds if and only if xi = xj for all

(i, j) ∈ E [111]. For the rest of this chapter, we will refer to the absolute value of the

eigenvalue with the second largest absolute value of W as β, i.e. β = max {|λ2|, |λn|}.

2.1.2. The S-NEAR-DGD method

To accommodate bandwidth-limited communication channel, we assume that whenever

node i ∈ {1, ..., n} needs to communicate a vector v ∈ Rp to its neighbors, it sends

an approximate vector Tc [v] instead, i.e., Tc [·] is a randomized operator which modifies

the input vector to reduce the bandwidth. Similarly, to model the availability of only

inexact gradient information, we assume that instead of the true local gradient ∇fi (xi),

node i calculates an approximation Tg [∇fi (xi)], where Tg [·] is a randomized operator

denoting the inexact computation. We refer to this method with inexact communication

and gradient computation as the Stochastic-NEAR-DGD (S-NEAR-DGD) method.

Each node i ∈ {1, ..., n} initializes and preserves the local variables xji,k and yi,k.

At iteration k of S-NEAR-DGD, node i calculates the stochastic gradient approximation

gi,k−1 = Tg
[
∇fi

(
x
t(k−1)
i,k−1

)]
and uses it to take a local gradient step and update its internal

variable yi,k. Next, it sets x0i,k = yi,k and performs t(k) nested consensus rounds, where

34

Algorithm 1: S-NEAR-DGD at node i

Initialization: Pick x
t(0)
i,0 = yi,0

for k = 1, 2, ... do

Compute gi,k−1 = Tg
[
∇fi

(
x
t(k−1)
i,k−1

)]
Update yi,k ← x

t(k−1)
i,k−1 − αgi,k−1

Set x0i,k = yi,k
for j = 1, ..., t(k) do

Send qji,k = Tc
[
xj−1
i,k

]
to neighbors l ∈ Ni and receive qjl,k

Update xji,k ←
∑n

l=1

(
wilq

j
l,k

)
+
(
xj−1
i,k − q

j
i,k

)
end

end

during each consensus round j ∈ {1, ..., t(k)} it constructs the bandwidth-efficient vector

qji,k = Tc
[
xj−1
i,k

]
, forwards it to its neighboring nodes l ∈ Ni and receives the vectors qjl,k

from neighbors. Finally, during each consensus round, node i updates its local variable

xji,k by forming a weighted average of the vectors qjl,k, l = 1, ..., n and adding the residual

error correction term
(
xj−1
i,k − q

j
i,k

)
. The entire procedure is presented in Algorithm 1.

Let x
t(0)
0 = y0 = [y1,0; ...; yn,0] be the concatenation of local initial points yi,0 at nodes

i = 1, ..., n as defined in Algorithm 1. The system-wide iterates of S-NEAR-DGD at

iteration count k and j-th consensus round can be written compactly as,

yk = x
t(k−1)
k−1 − αgk−1,(2.1.1a)

xjk = xj−1
k + (Z− Inp)qjk, j = 1, ..., t(k),(2.1.1b)

where x0
k = yk, Z = (W ⊗ Ip) ∈ Rnp×np, gi,k−1 = Tg

[
∇fi

(
x
t(k−1)
i,k−1

)]
, qji,k = Tc

[
xj−1
i,k

]
for

j = 1, ..., t(k) and gk−1 and qjk are the long vectors formed by concatenating gi,k−1 and

qji,k over i respectively.

35

Moreover, due to the double stochasticity of W, the following relations hold for the

average iterates ȳk = 1
n

∑n
i=1 yi,k and x̄jk = 1

n

∑n
i=1 x

j
i,k for all k and j,

ȳk = x̄
t(k−1)
k−1 − αḡk−1,(2.1.2a)

x̄jk = x̄j−1
k , j = 1, ..., t(k),(2.1.2b)

where ḡk−1 = 1
n

∑n
i=1 gi,k−1.

The operators Tc [·] and Tg [·] can be interpreted as Tc
[
xj−1
i,k

]
= xj−1

i,k + ϵji,k, and

Tg
[
∇fi

(
x
t(k−1)
i,k−1

)]
= ∇fi

(
x
t(k−1)
i,k−1

)
+ ζi,k, where ϵji,k and ζi,k are random error vectors.

We list our assumptions on these vectors and the operators Tc [·] and Tg [·] below.

Assumption 2.1.4. (Properties of Tc [·]) The operator Tc [·] is iid for all i =

1, ..., n, j = 1, ..., t(k) and k ≥ 1. Moreover, the errors ϵji,k = Tc
[
xj−1
i,k

]
− xj−1

i,k have zero

mean and bounded variance for all i = 1, ..., n, j = 1, ..., t(k) and k ≥ 1, i.e.,

ETc
[
ϵji,k
∣∣xj−1
i,k

]
= 0, ETc

[
∥ϵji,k∥

2
∣∣xj−1
i,k

]
≤ σ2

c ,

where σc is a positive constant and the expectation is taken over the randomness of Tc.

Example 1. (Probabilistic quantizer)

An example of an operator satisfying Assumption 2.1.4 is the probabilistic quantizer

in [182], defined as follows: for a scalar x ∈ R, its quantized value Q [x] is given by

Q [x] =

⌊x⌋ with probability (⌈x⌉ − x) ∆

⌈x⌉ with probability (x− ⌊x⌋) ∆,

36

where ⌊x⌋ and ⌈x⌉ denote the operations of rounding down and up to the nearest integer

multiple of 1/∆, respectively, and ∆ is a positive integer.

It is shown in [182] that E
[
x−Q [x]

]
= 0 and E

[
|x−Q [x]|2

]
≤ 1

4∆2 . For any vector

v = [vi]i={1,...,p} in Rp, we can then apply the operator Q element-wise to obtain Tc [v] =[
Q [vi]

]
i={1,...,p}

in Rp with ETc
[
v − Tc [v]

∣∣v] = 0 and ETc
[
∥v − Tc [v]∥2

∣∣v] ≤ p
4∆2 = σ2

c .

Assumption 2.1.5. (Properties of Tg [·]) The operator Tg [·] is iid for all i = 1, ..., n

and k ≥ 1. Moreover, the errors ζi,k = Tg
[
∇fi

(
x
t(k−1)
i,k−1

)]
−∇fi

(
x
t(k−1)
i,k−1

)
have zero mean

and bounded variance for all i = 1, ..., n and k ≥ 1,

ETg

[
ζi,k

∣∣∣xt(k−1)
i,k−1

]
= 0, ETg

[
∥ζi,k∥2

∣∣∣xt(k−1)
i,k−1

]
≤ σ2

g ,

where σg is a positive constant and the expectation is taken over the randomness of Tg.

Assumption 2.1.5 is standard in the analysis of distributed stochastic gradient meth-

ods [154, 114, 125, 90].

We make one final assumption on the independence of the operators Tc [·] and Tg [·],

namely that the process of generating stochastic gradient approximations does not affect

the process of random quantization and vice versa.

Assumption 2.1.6. (Independence) The operators Tg [·] and Tc [·] are independent

for all i = 1, ..., n, j = 1, ..., t(k) and k ≥ 1.

Before we conclude this section, we note that there are many possible choices for

the operators Tc [·] and Tg [·] and each would yield a different algorithm instance in the

family of NEAR-DGD-based methods. For example, both Tc [·] and Tg [·] can be identity

37

Method Communication Computation

NEAR-DGD [13], NEAR-DGDtc,tg [14] Tc
[
xji,k

]
= xji,k Tg

[
∇fi

(
x
t(k)
i,k

)]
= ∇fi

(
x
t(k)
i,k

)
NEAR-DGD+Q [15] Tc

[
xji,k

]
= xji,k + ϵj+1

i,k (D) Tg
[
∇fi

(
x
t(k)
i,k

)]
= ∇fi

(
x
t(k)
i,k

)
SG-NEAR-DGD [70] Tc

[
xji,k

]
= xji,k Tg

[
∇fi

(
x
t(k)
i,k

)]
= ∇fi

(
x
t(k)
i,k

)
+ ζi,k+1 (R)

S-NEAR-DGD Tc
[
xji,k

]
= xji,k + ϵj+1

i,k (R) Tg
[
∇fi

(
x
t(k)
i,k

)]
= ∇fi

(
x
t(k)
i,k

)
+ ζi,k+1 (R)

Table 2.1. Summary of NEAR-DGD-based methods. (D) and (R) denote
deterministic and random error vectors respectively.

operators as in [13]. We considered quantized communication using deterministic (D)

algorithms (e.g. rounding to the nearest integer with no uncertainty) in [15], while a

variant of NEAR-DGD that utilizes stochastic gradient approximations only was presented

in [70]. This chapter unifies and generalizes these methods. We summarize the related

works in Table 2.1, denoting deterministic and random error vectors with (D) and (R),

respectively.

2.2. Convergence Analysis

In this section, we present our theoretical results on the convergence of S-NEAR-DGD.

We assume that Assumptions 2.1.1-2.1.6 hold for the rest of this chapter. We first focus

on the instance of our algorithm where the number of consensus rounds is constant at

every iteration, i.e., t(k) = t in (2.1.1b) for some positive integer t > 0. We refer to this

method as S-NEAR-DGDt. Next, we will analyze a second variant of S-NEAR-DGD,

where the number of consensus steps increases by one at every iteration, namely t(k) = k,

for k ≥ 1. We will refer to this new version as S-NEAR-DGD+.

Before our main analysis, we introduce some additional notation and a number of

preliminary results.

38

2.2.1. Preliminaries

We will use the notation F jk to denote the σ-algebra containing all the information gener-

ated by S-NEAR-DGD up to and including the k-th inexact gradient step (calculated us-

ing using gk−1) and j subsequent nested consensus rounds. This includes the initial point

x0 = y0, the vectors {xlτ : 1 ≤ l ≤ t(τ) if 1 ≤ τ < k and 1 ≤ l ≤ j if τ = k}, the vectors

yτ for 1 ≤ τ ≤ k, the vectors {qlτ : 1 ≤ l ≤ t(τ) if 1 ≤ τ < k and 1 ≤ l ≤ j if τ = k} and

the vectors gτ for 0 ≤ τ ≤ k− 1. For example, F0
k would denote the σ-algebra containing

all the information up to and including the vector yk generated at the k-th gradient step

(notice that F0
k contains the inexact gradient gk−1, but not gk), while F lk would store all

the information produced by S-NEAR-DGD up to and including xlk, generated at the lth

consensus round after the k-th gradient step using gk−1.

We also introduce 4 lemmas here; Lemmas 2.2.1 and 2.2.2 will be used to show that

the iterates generated by S-NEAR-DGDt are bounded and to characterize their distance

to the solution of Problem (1.0.1). Next, in Lemmas 2.2.3 and 2.2.4 we prove that the

total communication and computation errors in a single iteration of the S-NEAR-DGDt

method have zero mean and bounded variance. These two error terms play a key role in

our main analysis of convergence properties.

The following lemma is adapted from [115, Theorem 2.1.15, Chapter 2].

Lemma 2.2.1. (Gradient descent) Let h : Rd → R be a µ-strongly convex function

with L-Lipschitz gradients and define x⋆ := arg minx h(x). Then the gradient method

39

xk+1 = xk − α∇f (xk) with steplength α < 2
µ+L

, generates a sequence {xk} such that

∥xk+1 − x⋆∥2 ≤
(

1− 2αµL

µ+ L

)
∥xk − x⋆∥2 .

Lemma 2.2.2. (Convexity and smoothness) The global function f : Rnp → R,

f (x) = 1
n

∑n
i=1 fi(xi) is µ-strongly convex and L-smooth, where µ = mini µi and L =

maxi Li. In addition, the average function f̄ : Rp → R, f̄(x) = 1
n

∑n
i=1 fi(x) is µf̄ -strongly

convex and Lf̄ -smooth, where µf̄ = 1
n

∑n
i=1 µi and Lf̄ = 1

n

∑n
i=1 Li.

Proof. This is a direct consequence of Assumptions 2.1.1 and 2.1.2. □

Lemma 2.2.3. (Bounded communication error) Let Ect,k := xtk − Ztyk be the

total communication error at the k-th iteration of S-NEAR-DGDt, i.e. t(k) = t in (2.1.1a)

and (2.1.1b). Then the following relations hold for k ≥ 1,

ETc
[
Ect,k
∣∣F0

k

]
= 0, ETc

[∥∥Ect,k∥∥2 ∣∣F0
k

]
≤ 4nσ2

c

1− β2
.

Proof. Let Z̃ := Z − Inp. Setting x0
k = yk and applying (2.1.1b), the error Ect,k

can be expressed as Ect,k = xt−1
k + Z̃qtk − Ztx0

k. Adding and subtracting the quantity∑t−1
j=1

(
Zt−jxjk

)
=
∑t−1

j=1

(
Zt−j

(
xj−1
k + Z̃qjk

))
(by (2.1.1b)) yields,

Ect,k = Z̃
(
qtk − xt−1

)
−

t−2∑
j=1

(
Zt−jxjk

)
+

t−1∑
j=2

(
Zt−jxj−1

k

)
+

t−1∑
j=2

(
Zt−jZ̃qjk

)
+ Zt−1Z̃

(
q1
k − x0

k

)
,

40

where have taken the (t − 1)th term out of −
∑t−1

j=1

(
Zt−jxjk

)
and the 1st term out of∑t−1

j=1

(
Zt−j

(
xj−1
k + Z̃qjk

))
.

We observe that
∑t−2

j=1

(
Zt−jxjk

)
=
∑t−1

j=2

(
Zt−j+1xj−1

k

)
, and after rearranging and com-

bining the terms of the previous relation we obtain,

Ect,k =
t∑

j=1

(
Zt−jZ̃

(
qjk − xj−1

k

))
.(2.2.1)

Let djk = qjk−xj−1
k . Noticing that djk =

[
ϵji,k; ...; ϵ

j
n,k

]
as defined in Assumption 2.1.4, it

follows that ETc

[
djk

∣∣∣F j−1
k

]
= 0 for 1 ≤ j ≤ t. Due to the fact that F0

k ⊆ F1
k ⊆ ... ⊆ F j−1

k ,

applying the tower property of conditional expectation yields,

ETc

[
djk

∣∣∣F0
k

]
= ETc

[
ETc

[
djk

∣∣∣F j−1
k

] ∣∣∣F0
k

]
= 0.(2.2.2)

Combining the preceding relation with (2.2.1) and due to the linearity of expectation, we

obtain ETc
[
Ect,k
∣∣F0

k

]
= 0. This completes the first part of the proof.

Let Dj
k = Zt−jZ̃djk. By the spectral properties of Z, we have

∥∥∥Zt−jZ̃∥∥∥ = max
i>1
|λt−ji ||λi − 1| ≤ 2βt−j.

41

We thus obtain for 1 ≤ j ≤ t,

ETc

[∥∥Dj
k

∥∥2 ∣∣∣F0
k

]
≤ 4β2(t−j)ETc

[∥∥djk∥∥2 ∣∣∣F0
k

]
= 4β2(t−j)ETc

[
ETc

[∥∥djk∥∥2 ∣∣∣F j−1
k

] ∣∣∣∣F0
k

]

= 4β2(t−j)ETc

[
n∑
i=1

ETc

[∥∥ϵji,k∥∥2 ∣∣∣F j−1
k

] ∣∣∣∣F0
k

]

≤ 4β2(t−j)nσ2
c ,

(2.2.3)

where we derived the second inequality using the tower property of conditional expectation

and applied Assumption 2.1.4 to get the last inequality.

Assumption 2.1.4 implies that for i1 ̸= i2 and j1 ̸= j2, ϵ
j1
i1,k

and ϵj2i2,k and by extension

dj1k and dj2k are independent. Eq. (2.2.2) then yields ETc

[〈
Dj1
k , D

j2
k

〉 ∣∣∣∣F0
k

]
= 0. Combining

this fact and linearity of expectation yields ETc

[∥∥Ect,k∥∥2 ∣∣F0
k

]
= ETc

[∥∥∥∑t
j=1D

j
k

∥∥∥2 ∣∣∣∣∣F0
k

]
=

∑t
j=1 ETc

[∥∥Dj
k

∥∥2 ∣∣∣∣∣F0
k

]
. Applying (2.2.3) to this last relation yields,

ETc

[∥∥Ect,k∥∥2 ∣∣F0
k

]
≤ 4nσ2

c

t∑
j=1

β2(t−j) ≤ 4nσ2
c

1− β2
,

where we used
∑t

j=1 β
2(t−j) =

∑t−1
j=0 β

2j = 1−β2t

1−β2 ≤ 1
1−β2 to get the last inequality.

□

Lemma 2.2.4. (Bounded computation error) Let Egk := gk−1−∇f
(
xtk−1

)
be the

computation error at the k-th iteration of S-NEAR-DGDt. Then the following statements

42

hold for all k ≥ 1,

ETg
[
Egk
∣∣F tk−1

]
= 0, ETg

[
∥Egk∥

2
∣∣F tk−1

]
≤ nσ2

g .

Proof. We observe that Egk = [ζ1,k; ...; ζn,k] as defined in Assumption 2.1.5. Due to

the unbiasedness of Tg [·], we obtain

ETg
[
Egk
∣∣F tk−1

]
= ETg

[
gk−1 −∇f

(
xtk−1

) ∣∣F tk−1

]
= 0,

For the magnitude square of Egk we have,

∥Egk∥
2 =

∥∥gk−1 −∇f
(
xtk−1

)∥∥2 =
n∑
i=1

∥ζi,k∥2 .

Taking the expectation conditional to F tk−1 on both sides of the equation above and using

Assumption 2.1.5 establishes the desired results. □

We are now ready to proceed with our main analysis of the convergence properties of

S-NEAR-DGD.

2.2.2. Main Analysis

For simplicity, from this point on we will use the notation E [·] to denote the expected

value taken over the randomness of both Tc and Tg. We begin our convergence analysis

by proving that the iterates generated by S-NEAR-DGDt are bounded in expectation

in Lemma 2.2.5. Next, we demonstrate that the distance between the local iterates

produced by our method and their average is bounded in Lemma 2.2.6. In Lemma 2.2.7,

we prove an intermediate result stating that the distance between the average iterates of

43

S-NEAR-DGDt and the optimal solution is bounded. We then use this result to show

the linear of convergence of S-NEAR-DGDt to a neighborhood of the optimal solution in

Theorem 2.2.8, and we characterize the size of this error neighborhood in terms of network

and problem related quantities and the precision of the stochastic gradients and the noisy

communication channel. We prove convergence to a neighborhood of the optimal solution

for the local iterates of S-NEAR-DGDt in Corollary 2.2.9. We conclude our analysis by

proving that the average iterates of S-NEAR-DGD+ converge with geometric rate to an

improved error neighborhood compared to S-NEAR-DGDt in Theorem 2.2.10.

Lemma 2.2.5. (Bounded iterates) Let xk and yk be the iterates generated by S-

NEAR-DGDt (t(k) = t in Eq. (2.1.1b) and (2.1.1a)) starting from initial point y0 = x0 ∈

Rnp and let the steplength α satisfy

α <
2

µ+ L
,

where µ = mini µi and L = maxi Li.

Then xk and yk are bounded in expectation for k ≥ 1, i.e.,

E
[
∥yk∥2

]
≤ D +

(1 + κ)2nσ2
g

2L2
+

2(1 + κ)2nσ2
c

α (1− β2)L2
,

E
[∥∥xtk∥∥2] ≤ D +

(1 + κ)2nσ2
g

2L2
+

2(1 + κ)2nσ2
c

α (1− β2)L2
+

4nσ2
c

1− β2
,

where D = 2E
[
∥y0 − u⋆∥2

]
+ 2 (1 + 4ν−3) ∥u⋆∥2, u⋆ = [u⋆1;u

⋆
2; ...;u

⋆
n] ∈ Rnp, u⋆i =

arg minx fi(x), ν = 2αµL
µ+L

and κ = L/µ is the condition number of Problem 1.0.2.

44

Proof. Consider,

∥yk+1 − u⋆∥2 =
∥∥xtk − αgk − u⋆

∥∥2
=
∥∥xtk − α∇f(xtk)− u⋆ − αEgk+1

∥∥2
=
∥∥xtk − α∇f(xtk)− u⋆

∥∥2 + α2
∥∥Egk+1

∥∥2 − 2α
〈
xtk − α∇f(xtk)− u⋆, Egk+1

〉
,

where we used (2.1.1a) to get the first equality and added and subtracted α∇f (xtk) and

applied the computation error definition Egk+1 := gk−∇f (xtk) to obtain the second equality.

Taking the expectation conditional to F tk on both sides of the inequality above and

applying Lemma 2.2.4 yields,

E
[
∥yk+1 − u⋆∥2

∣∣∣F tk] ≤ ∥∥xtk − α∇f(xtk)− u⋆
∥∥2 + α2nσ2

g .(2.2.4)

For the first term on the right-hand side of (2.2.4), after combining Lemma 2.2.1 with

Lemma 2.2.2 and due to α < 2
µ+L

we acquire,

∥∥xtk − α∇f(xtk)− u⋆
∥∥2 ≤ (1− ν)

∥∥xtk − u⋆
∥∥2 ,

where ν = 2αµL
µ+L

= 2αL
1+κ

< 1.

45

Expanding the term on the right hand side of the above relation yields,

∥∥xtk − u⋆
∥∥2 =

∥∥Ect,k + Ztyk − Ztu⋆ + Ztu⋆ − u⋆
∥∥2

=
∥∥Ect,k∥∥2 +

∥∥Zt (yk − u⋆)−
(
I − Zt

)
u⋆
∥∥2 + 2

〈
Ect,k,Ztyk − u⋆

〉
≤
∥∥Ect,k∥∥2 + (1 + ν)

∥∥Zt (yk − u⋆)
∥∥2

+
(
1 + ν−1

) ∥∥(I − Zt
)
u⋆
∥∥2 + 2

〈
Ect,k,Ztyk − u⋆

〉
≤
∥∥Ect,k∥∥2 + (1 + ν) ∥yk − u⋆∥2 + 4

(
1 + ν−1

)
∥u⋆∥2 + 2

〈
Ect,k,Ztyk − u⋆

〉
,

where we added and subtracted the quantities Ztyk and Ztu⋆ and applied the communi-

cation error definition Ect,k := xtk − Ztyk to get the first equality. We used the standard

inequality ±2⟨a, b⟩ ≤ c∥a∥2 + c−1∥b∥2 that holds for any two vectors a, b and positive

constant c > 0 to obtain the first inequality. Finally, we derived the last inequality using

the relations ∥Zt∥ = 1 and ∥I − Zt∥ < 2 that hold due to Assumption 2.1.3.

Due to the fact that F0
k ⊆ F tk, combining the preceding three relations and taking the

expectation conditional on F0
k on both sides of (2.2.4) yields,

E
[∥∥yk+1 − u⋆

∥∥2∣∣∣F0
k

]
≤
(
1− ν2

)
∥yk − u⋆∥2 + α2nσ2

g + (1− ν)E
[∥∥Ect,k∥∥2 ∣∣F0

k

]
+ 4ν−1

(
1− ν2

)
∥u⋆∥2 + 2(1− ν)E

[〈
Ect,k,Ztyk − u⋆

〉 ∣∣F0
k

]
≤
(
1− ν2

)
∥yk − u⋆∥2 + α2nσ2

g + (1− ν)
4nσ2

c

1− β2
+ 4ν−1

(
1− ν2

)
∥u⋆∥2 ,

46

where we applied Lemma 2.2.3 to get the last inequality. Taking the total expectation on

both sides of the relation above and applying recursively over iterations 0, 1, . . . , k yields,

E
[∥∥yk − u⋆

∥∥2] ≤ (1− ν2)k E [∥y0 − u⋆∥2
]

+ α2ν−2nσ2
g

+ (ν−2 − ν−1)
4nσ2

c

1− β2
+ 4

(
ν−3 − ν−1

)
∥u⋆∥2

≤ E
[
∥y0 − u⋆∥2

]
+ α2ν−2nσ2

g +
4ν−2nσ2

c

1− β2
+ 4ν−3 ∥u⋆∥2 ,

where we used
∑k−1

h=0 (1− ν2)h ≤ ν−2 to get the first inequality and ν > 0 to get the

second inequality.

Moreover, the statement ∥yk∥2 = ∥yk − u⋆ + u⋆∥2 ≤ 2 ∥yk − u⋆∥2 + 2 ∥u⋆∥2 trivially

holds. Taking the total expectation on both sides of this relation, yields,

E
[∥∥yk∥∥2] ≤ 2E

[
∥yk − u⋆∥2

]
+ 2 ∥u⋆∥2

≤ 2E
[
∥y0 − u⋆∥2

]
+ 2α2ν−2nσ2

g +
8ν−2nσ2

c

1− β2
+ 2

(
1 + 4ν−3

)
∥u⋆∥2 .

(2.2.5)

Applying the definitions of D and κ to (2.2.5) yields the first result of this lemma.

Finally, the following statement also holds

∥∥xtk∥∥2 =
∥∥Ect,k + Ztyk

∥∥2
=
∥∥Ect,k∥∥2 +

∥∥Ztyk∥∥2 + 2
〈
Ect,k,Ztyk

〉
≤
∥∥Ect,k∥∥2 + ∥yk∥2 + 2

〈
Ect,k,Ztyk

〉
,

where we used the non-expansiveness of Z for the last inequality.

47

Taking the expectation conditional on F0
k on both sides of the preceding relation and

applying Lemma 2.2.3 yields,

E
[∥∥xtk∥∥2 ∣∣∣F0

k

]
≤ 4nσ2

c

1− β2
+ ∥yk∥2 .

Taking the total expectation on both sides of the relation above, applying (2.2.5) and the

definitions of D, ν and κ concludes this proof.

□

We will now use the preceding lemma to prove that the distance between the local

and the average iterates generated by S-NEAR-DGDt is bounded. This distance can

be interpreted as a measure of consensus violation, with small values indicating small

disagreement between nodes.

Lemma 2.2.6. (Bounded distance to average) Let xti,k and yi,k be the local it-

erates produced by S-NEAR-DGDt at node i and iteration k and let x̄tk :=
∑n

i=1 x
t
i,k and

ȳk :=
∑n

i=1 yi,k denote the average iterates across all nodes. Then the distance between

the local and average iterates is bounded in expectation for all i = 1, ..., n and k = 1, 2, ...,

namely,

E
[∥∥xti,k − x̄tk∥∥2] ≤ E

[∥∥xtk −Mxtk
∥∥2] ≤ β2tD

+
β2t(1 + κ)2nσ2

g

2L2
+

2β2t(1 + κ)2nσ2
c

α2 (1− β2)L2
+

4nσ2
c

1− β2
,

and

E
[∥∥yi,k − ȳk∥∥2] ≤ E

[
∥yk −Myk∥2

]
≤ D +

(1 + κ)2nσ2
g

2L2
+

2(1 + κ)2nσ2
c

α2 (1− β2)L2
,

48

where M =
(

1n1Tn
n
⊗ Ip

)
∈ Rnp is the averaging matrix, constant D is defined in Lemma 2.2.5,

κ = L/µ is the condition number of Problem 1.0.2, L = maxi Li and µ = mini Li.

Proof. Observing that
∑n

i=1

∥∥xti,k − x̄tk∥∥2 = ∥xtk −Mxtk∥
2
, we obtain,

(2.2.6)
∥∥xti,k − x̄tk∥∥2 ≤ ∥∥xtk −Mxtk

∥∥2 , i = 1, ..., n.

We can bound the right-hand side of (2.2.6) as

∥∥xtk −Mxk
∥∥2 =

∥∥Ect,k + Ztyk −Mxk −Myk + Myk
∥∥2

=
∥∥Ect,k +

(
Zt −M

)
yk −Mxk + MZtyk

∥∥2
=
∥∥(I −M) Ect,k

∥∥2 +
∥∥(Zt −M

)
yk
∥∥2 + 2

〈
(I −M) Ect,k,

(
Zt −M

)
yk
〉

≤
∥∥Ect,k∥∥2 + β2t ∥yk∥2 + 2

〈
(I −M) Ect,k,

(
Zt −M

)
yk
〉
,

(2.2.7)

where we applied the definition of the communication error Ect,k of Lemma 2.2.3 and added

and subtracted Myk to obtain the first equality. We used the fact that MZt = M to

get the second equality. We derive the last inequality from Cauchy-Schwarz and the

spectral properties of Zt = Wt ⊗ Ip and M =
(

1n1Tn
n

)
⊗ Ip; both Wt and 1n1Tn

n
have a

maximum eigenvalue at 1 associated with the eigenvector 1n, implying that the null space

of Wt − 1n1Tn
n

is parallel to 1n and ∥Zt −M∥ =
∥∥∥Wt − 1n1Tn

n

∥∥∥ = βt.

Taking the expectation conditional to F0
k on both sides of (2.2.7) and applying Lemma 2.2.3

yields,

E
[∥∥xtk −Mxk

∥∥2 ∣∣∣F0
k

]
≤ 4nσ2

c

1− β2
+ β2t ∥yk∥2 .

49

Taking the total expectation on both sides and applying Lemma 2.2.5 yields the first

result of this lemma.

Similarly, the following inequality holds for the yk iterates,

(2.2.8) ∥yi,k − ȳk∥2 ≤ ∥yk −Myk∥2 , i = 1, ..., n.

For the right-hand side of (2.2.8), we have,

∥yk −Myk∥2 = ∥(I −M)yk∥2 ≤ ∥yk∥2 ,

where we have used the fact that ∥I −M∥ = 1.

Taking the total expectation on both sides and applying Lemma 2.2.5 concludes this

proof.

□

The bounds established in Lemma 2.2.6 indicate that there are at least three factors

preventing the local iterates produced by S-NEAR-DGDt from reaching consensus: errors

related to network connectivity, represented by β, and errors caused by the inexact com-

putation process and the noisy communication channel associated with the constants σg

and σc respectively.

Before presenting our main theorem, we state one more intermediate result on the

distance of the average ȳk iterates to the solution of Problem (1.0.2).

50

Lemma 2.2.7. (Bounded distance to minimum) Let ȳk := 1
n

∑n
i=1 yi,k denote the

average of the local yi,k iterates generated by S-NEAR-DGDt under steplength α satisfying

α <
2

µf̄ + Lf̄
,

where µf̄ = 1
n

∑n
i=1 µi and Lf̄ = 1

n

∑n
i=1 Li.

Then the following inequality holds for k = 1, 2, ...

E
[
∥ȳk+1 − x⋆∥2

∣∣∣F tk] ≤ ρ
∥∥x̄tk − x⋆∥∥2 +

α2σ2
g

n
+
αρL2∆x

nγf̄
,

where x⋆ = arg minx f(x), ρ = 1 − αγf̄ , γf̄ =
µf̄Lf̄

µf̄+Lf̄
, L = maxi Li, ∆x = ∥xtk −Mxtk∥

2

and M =
(

1n1Tn
n
⊗ Ip

)
∈ Rnp is the averaging matrix.

Proof. Applying (2.1.2a) to (k + 1)th iteration we obtain,

ȳk+1 = x̄tk − αgk,

where ḡk = 1
n

∑n
i=1 gi,k = 1

n

∑n
i=1

(
ζi,k+1 +∇fi

(
xti,k
))

. Let hk = 1
n

∑n
i=1∇fi

(
xti,k
)
.

Adding and subtracting αhk to the right-hand side of the preceding relation and tak-

ing the square norm on both sides yields,

∥ȳk+1 − x⋆∥2 =
∥∥x̄tk − αhk − x⋆∥∥2 + α2 ∥hk − ḡk∥2 + 2α

〈
x̄tk − αhk − x⋆, hk − ḡk

〉
=
∥∥x̄tk − αhk − x⋆∥∥2 +

α2

n2

∥∥∥∥∥
n∑
i=1

ζi,k+1

∥∥∥∥∥
2

− 2α

n

n∑
i=1

〈
x̄tk − αhk − x⋆, ζi,k+1

〉
.

51

Moreover, let ρ̃ =
αγf̄

1−2αγf̄
> 0. We can re-write the first term on the right-hand side of

the inequality above as,∥∥∥x̄tk − αhk − x⋆∥∥∥2 ≤ (1 + ρ̃)
∥∥x̄tk − α∇f̄ (x̄tk)− x⋆∥∥2 + α2

(
1 + ρ̃−1

) ∥∥hk −∇f̄ (x̄tk)∥∥2
≤
(
1− αγf̄

) ∥∥x̄tk − x⋆∥∥2 + α2
(
1 + ρ̃−1

) ∥∥hk −∇f̄ (x̄tk)∥∥2 ,
where we added and subtracted the quantity α∇f̄ (x̄tk) and used the relation ±2⟨a, b⟩ ≤

c∥a∥2 + c−1∥b∥2 that holds for any two vectors a, b and positive constant c to obtain the

first inequality. We derive the second inequality after combining Lemmas 2.2.2 and 2.2.1

that hold due to α < 2
µf̄+Lf̄

and x⋆ = arg minx f̄(x).

We notice that E
[
ζi,k+1

∣∣F tk] = 0 and that

E

∥∥∥∥∥
n∑
i=1

ζi,k+1

∥∥∥∥∥
2 ∣∣F tk

 = E

[
n∑
i=1

∥ζi,k+1∥2
∣∣F tk
]

+ E

[∑
i1 ̸=i2

⟨ζi1,k+1, ζi2,k+1⟩
∣∣F tk
]
≤ nσ2

g ,

due to Assumption 2.1.5 and the linearity of expectation. Combining all of the preceding

relations and taking the expectation conditional on F tk, yields,

E
[∥∥ȳk+1 − x⋆

∥∥2∣∣F tk] =
(
1− αγf̄

) ∥∥x̄tk − x⋆∥∥+ α2
(
1 + ρ̃−1

) ∥∥hk −∇f̄ (x̄tk)∥∥2 +
α2σ2

g

n

(2.2.9)

Finally, for any set of vectors vi ∈ Rp, i = 1, ..., n we have

∥∥∥∥∥
n∑
i=1

vi

∥∥∥∥∥
2

=

p∑
h=1

(
n∑
i=1

[vi]h

)2

≤ n

p∑
h=1

n∑
i=1

[vi]
2
h = n

n∑
i=1

∥vi∥2 ,

where we used the fact that ±2ab ≤ a2 + b2 for any pair of scalars a, b to get the first

inequality and reversed the order of summation to get the last equality. We can use this

52

result to obtain,

∥∥∥hk −∇f̄ (x̄tk) ∥∥∥2 =
1

n2

∥∥∥∥∥
n∑
i=1

(
∇fi

(
xti,k
)
−∇fi

(
x̄tk
))∥∥∥∥∥

2

≤ n

n2

n∑
i=1

∥∥∇fi (xti,k)−∇fi (x̄tk)∥∥2
≤ L2

n

n∑
i=1

∥∥xti,k − x̄tk∥∥2
=
L2

n

∥∥xtk −Mxtk
∥∥2 ,

where we used Assumption 2.1.1 to get the second inequality.

Substituting the immediately previous relation in (2.2.9), observing 1+ρ̃−1 =
(
1− αγf̄

)
/αγf̄

and applying the definition of ρ yields the final result.

□

We have now obtained all necessary results to prove the convergence of S-NEAR-DGDt

to a neighborhood of the optimal solution in the next theorem.

Theorem 2.2.8. (Convergence of S-NEAR-DGDt) Let x̄tk := 1
n

∑n
i=1 x

t
i,k denote

the average of the local xti,k iterates generated by S-NEAR-DGDt from initial point y0 and

let the steplength α satisfy,

α < min

{
2

µ+ L
,

2

µf̄ + Lf̄

}
,

where µ = mini Li, L = maxi Li, µf̄ = 1
n

∑n
i=1 µi and Lf̄ = 1

n

∑n
i=1 Li.

53

Then the distance of x̄tk to the optimal solution x⋆ of Problem (1.0.2) is bounded in

expectation for k = 1, 2, ...,

E
[∥∥x̄tk+1 − x⋆

∥∥2] ≤ ρE
[∥∥x̄tk − x⋆∥∥2]+

αβ2tρL2D

nγf̄

+
α2σ2

g

n
+
αβ2t (1 + κ)2 ρσ2

g

2γf̄
+

4αρL2σ2
c

(1− β2) γf̄
+

2β2t (1 + κ)2 ρσ2
c

α (1− β2) γf̄
,

(2.2.10)

and

E
[∥∥x̄tk − x⋆∥∥2] ≤ ρkE

[
∥x̄0 − x⋆∥2

]
+
β2tρL2D

nγ2
f̄

+
ασ2

g

nγf̄
+
β2t (1 + κ)2 ρσ2

g

2γ2
f̄

+
4ρL2σ2

c

(1− β2) γ2
f̄

+
2β2t (1 + κ)2 ρσ2

c

α2 (1− β2) γ2
f̄

,

(2.2.11)

where x̄0 = 1
n

∑n
i=1 yi,0, ρ = 1 − αγf̄ , γf̄ =

µf̄Lf̄

µf̄+Lf̄
, κ = L/µ is the condition number of

Problem 1.0.2 and the constant D is defined in Lemma 2.2.5.

Proof. Applying (2.1.2b) to the (k + 1)th iteration yields,

x̄jk+1 = x̄j−1
k+1, j = 1, ..., t,

which in turn implies that x̄jk+1 = ȳk+1 for j = 1, ..., t.

Hence, the relation
∥∥x̄tk+1 − x⋆

∥∥2 = ∥ȳk+1 − x⋆∥2 holds. Taking the expectation con-

ditional to F tk on both sides of this equality and applying Lemma 2.2.7 yields,

E
[∥∥x̄tk+1 − x⋆

∥∥2 ∣∣∣F tk] ≤ ρ
∥∥x̄tk − x⋆∥∥2 +

α2σ2
g

n
+
αρL2∆x

nγf̄
,

where ∆x = ∥xtk −Mxtk∥
2
.

54

Taking the total expectation on both sides of the relation above and applying Lemma 2.2.6

yields,

E
[∥∥x̄tk+1 − x⋆

∥∥2] ≤ ρE
[∥∥x̄tk − x⋆∥∥2]+

αβ2tρL2D

nγf̄
+
α2σ2

g

n

+
αβ2t(1 + κ)2ρσ2

g

2γf̄
+

4αρL2σ2
c

γf̄ (1− β2)
+

2β2t(1 + κ)2ρσ2
c

α (1− β2) γf̄
.

(2.2.12)

We notice that ρ < 1 and after applying (2.2.12) recursively and then using the bound∑k−1
h=0 ρ

h ≤ (1− ρ)−1 we obtain,

E
[∥∥x̄tk − x⋆∥∥2] ≤ ρkE

[
∥x̄0 − x⋆∥2

]
+
αβ2tρL2D

nγf̄ (1− ρ)
+

α2σ2
g

n(1− ρ)

+
αβ2t(1 + κ)2ρσ2

g

2γf̄ (1− ρ)
+

4αρL2σ2
c

γf̄ (1− β2) (1− ρ)
+

2β2t(1 + κ)2ρσ2
c

α (1− β2) γf̄ (1− ρ)
.

Applying the definition of ρ completes the proof.

□

Theorem 2.2.8 indicates that the average iterates of S-NEAR-DGDt converge in ex-

pectation to a neighborhood of the optimal solution x⋆ of Problem (1.0.1). We have

quantified the dependence of this neighborhood on the connectivity of the network and

the errors due to imperfect computation and communication through the terms contain-

ing the quantities β, σg and σc, respectively. We observe that the 2nd and 3rd error terms

in (2.2.11) scale favorably with the number of nodes n, yielding a variance reduction effect

proportional to network size. Our bounds indicate that higher values of the steplength α

yield faster convergence rates ρ. On the other hand, α has a mixed effect on the size of the

error neighborhood; the 2nd term in (2.2.11) is associated with inexact computation and

increases with α, while the last term in (2.2.11) is associated with noisy communication

55

and decreases with α. The size of the error neighborhood increases with the condition

number κ as expected, while the dependence on the algorithm parameter t indicates that

performing additional consensus steps mitigates the error due to network connectivity

and the errors induced by the operators Tg [·] and Tc [·].

In the next corollary, we will use Theorem 2.2.8 and Lemmas 2.2.7 and 2.2.5 to show

that the the local iterates produced by S-NEAR-DGDt also have bounded distance to the

solution of Problem (1.0.1).

Corollary 2.2.9. (Convergence of local iterates (S-NEAR-DGDt) Let xti,k

and yi,k be the local iterates generated by S-NEAR-DGDt at node i and iteration k from

initial point x0 = y0 = [y1,0; ...; yn,0] ∈ Rnp and let the steplength α satisfy

α < min

{
2

µ+ L
,

2

µf̄ + Lf̄

}
,

where µ = mini µi, L = maxi Li, µf̄ = 1
n

∑n
i=1 µi and Lf̄ = 1

n

∑n
i=1 Li.

Then for i = 1, ..., n and k ≥ 1 the distance of the local iterates to the solution of

Problem (1.0.2) is bounded, i.e.

E
[∥∥xti,k − x⋆∥∥2] ≤ 2ρkE

[
∥x̄0 − x⋆∥2

]
+ 2β2t

(
1 +

C

n

)
D +

2ασ2
g

nγf̄

+
β2t (1 + κ)2 (n+ C)σ2

g

L2
+

8(n+ C)σ2
c

1− β2
+

4β2t(1 + κ)2(n+ C)σ2
c

α2(1− β2)L2
,

and,

E
[∥∥yi,k − x⋆∥∥2] ≤ 2ρkE

[
∥x̄0 − x⋆∥2

]
+ 2

(
1 +

β2tC

n

)
D +

2ασ2
g

nγf̄

+
(1 + κ)2 (n+ β2tC)σ2

g

L2
+

8Cσ2
c

1− β2
+

4(1 + κ)2 (n+ β2tC)σ2
c

α2(1− β2)L2
,

56

where C = ρL2

γ2
f̄

, ρ = 1−αγf̄ , γf̄ =
µf̄Lf̄

µf̄+Lf̄
, x̄0 =

∑n
i=1 yi,0 and the constant D is defined in

Lemma 2.2.5.

Proof. For all i ∈ {1, ...n} and k ≥ 1, the following relation holds for the xti,k iterates,

∥∥xti,k − x⋆∥∥2 =
∥∥xti,k − x̄tk + x̄tk − x⋆

∥∥2
≤ 2

∥∥xti,k − x̄tk∥∥2 + 2
∥∥x̄tk − x⋆∥∥2 ,(2.2.13)

where we added and subtracted x̄tk to get the first equality.

Taking the total expectation on both sides of (2.2.13) and applying Lemma 2.2.6,

Theorem 2.2.8 and the definition of C yields the first result of this corollary.

Similarly, for the yi,k local iterates we have,

∥yi,k − x⋆∥2 = ∥yi,k − ȳk + ȳk − x⋆∥2

≤ 2 ∥yi,k − ȳk∥2 + 2 ∥ȳk − x⋆∥2

= 2 ∥yi,k − ȳk∥2 + 2
∥∥x̄tk − x⋆∥∥2 ,

(2.2.14)

where we derive the first equality by adding and subtracting ȳk and used (2.1.2b) to obtain

the last equality.

Taking the total expectation on both sides of (2.2.14) and applying Theorem 2.2.8,

Lemma 2.2.6 and the definition of C completes the proof. □

Corollary 2.2.9 concludes our analysis of the S-NEAR-DGDt method. For the remain-

der of this section, we derive the convergence properties of S-NEAR-DGD+, i.e. t(k) = k

for k ≥ 1 in (2.1.1a) and (2.1.1b).

57

Theorem 2.2.10. (Convergence of S-NEAR-DGD+) Consider the S-NEAR-

DGD+ method, i.e. t(k) = k for k ≥ 1. Let x̄kk = 1
n

∑n
i=1 x

k
i,k be the average iterates

produced by S-NEAR-DGD+ and let the steplength α satisfy

α < min

{
2

µ+ L
,

2

µf̄ + Lf̄

}
.

Then the distance of x̄kk to x⋆ is bounded for k = 1, 2, ..., namely

E
[∥∥x̄kk − x⋆∥∥2] ≤ ρkE

[
∥x̄0 − x⋆∥2

]
+
ηθkαρL2D

nγf̄
+
ασ2

g

nγf̄

+
ηθkα (1 + κ)2 ρσ2

g

2γf̄
+

4ρL2σ2
c

(1− β2) γ2
f̄

+
2ηθk (1 + κ)2 ρσ2

c

α (1− β2) γf̄
,

where η = |β2 − ρ|−1
and θ = max {ρ, β2}.

Proof. Replacing t with k in (2.2.10) in Theorem 2.2.8 yields,

E
[∥∥x̄k+1

k+1 − x
⋆
∥∥2] ≤ ρE

[∥∥x̄kk − x⋆∥∥2]+
αβ2kρL2D

nγf̄
+
α2σ2

g

n

+
αβ2k (1 + κ)2 ρσ2

g

2γf̄
+

4αρL2σ2
c

(1− β2) γf̄
+

2β2k (1 + κ)2 ρσ2
c

α (1− β2) γf̄
.

Applying recursively for iterations 1, 2, . . . , k, we obtain,

E
[∥∥x̄kk − x⋆∥∥2] ≤ ρkE

[
∥x̄0 − x⋆∥2

]
+ S1

(
αρL2D

nγf̄
+
α (1 + κ)2 ρσ2

g

2γf̄
+

2 (1 + κ)2 ρσ2
c

α (1− β2) γf̄

)
+ S2

(
α2σ2

g

n
+

4αρL2σ2
c

(1− β2) γf̄

)
(2.2.15)

where S1 =
∑k−1

j=0 ρ
jβ2(k−1−j) and S2 =

∑k−1
j=0 ρ

j.

58

Let ψ = ρ
β2 . Then S1 = β2(k−1)

∑k−1
j=0 ψ

j = β2(k−1) 1−ψk

1−ψ = β2k−ρk
β2−ρ ≤ ηθk. Applying this

result and the bound S2 ≤ 1
1−ρ = 1

αγf̄
to (2.2.15) yields the final result. □

Theorem 2.2.10 indicates that S-NEAR-DGD+ converges with geometric rate θ =

max {ρ, β2} to a neighborhood of the optimal solution x⋆ of Problem 1.0.1 with size

(2.2.16) lim
k→∞

supE
[∥∥x̄kk − x⋆∥∥2] =

ασ2
g

nγf̄
+

4ρL2σ2
c

(1− β2) γ2
f̄

.

The first error term on right-hand side of Eq. (2.2.16) depends on the variance of the

gradient error σg and is inversely proportional to the network size n. This scaling with n,

which has a similar effect to centralized mini-batching, is a trait that our method shares

with a number of distributed stochastic gradient algorithms. The last error term depends

on the variance of the communication error σc and increases with β, implying that badly

connected networks accumulate more communication error over time.

Conversely, Eq. (2.2.11) of Theorem 2.2.8 yields,

lim
k→∞

supE
[∥∥x̄tk − x⋆∥∥2] =

ασ2
g

nγf̄
+

4ρL2σ2
c

(1− β2) γ2
f̄

+
β2tρ

γ2
f̄

(
L2D

n
+

(1 + κ)2σ2
g

2
+

2(1 + κ)2σ2
c

α(1− β2)

)
.

(2.2.17)

Comparing (2.2.16) and (2.2.17), we observe that (2.2.17) contains three additional error

terms, all of which depend directly on the algorithm parameter t. Our results imply that

S-NEAR-DGDt generally converges to a worse error neighborhood than S-NEAR-DGD+,

and approaches the error neighborhood of S-NEAR-DGD+ as t→∞.

59

2.3. Numerical results

2.3.1. Comparison to existing algorithms

To quantify the empirical performance of S-NEAR-DGD, we consider the following regu-

larized logistic regression problem for the classification of the mushrooms dataset [49],

min
x∈Rp

f(x) =
1

M

M∑
s=1

log(1 + e−bs⟨As,x⟩) +
1

M
∥x∥22,

where M = 8124 is the total number of samples, A ∈ RM×p is a feature matrix, p = 118

is the problem dimension and b ∈ {−1, 1}M is a vector of labels.

We evenly distributed the samples among n = 14 nodes and assigned to node i the

function fi(x) = |Si|−1
∑

s∈Si
log(1 + e−bs⟨As,x⟩) +M−1∥x∥22, where Si is the set of sample

indices accessible to node i. We modeled the network as a connected, random graph

generated using the Erdős-Rényi model [55] with edge probability 0.5. To construct the

stochastic gradient approximations each node randomly samples with replacement B = 16

indices from its local distribution and computes a mini-batch gradient (we note that due

to the finite number of samples, these gradients satisfy Assumption 2.1.5). To simulate the

inexact communication operator Tc [·] we implemented the probabilistic quantizer in [182],

described in Example 1.

Moreover, we tested a number of different approaches to handle the communication

noise, summarized in Table 2.2. Specifically, variant Q.1 is the scheme S-NEAR-DGD

uses in step (2.1.1b), and includes a consensus step using the quantized variables qji,k and

the addition of the error correction term
(
xj−1
i,k − q

j
i,k

)
. Variant Q.2 considers a more näıve

approach, where a simple weighted average of the noisy variables qi,k is calculated without

60

the addition of error correction. Finally, in variant Q.3 we assume that node i either does

not have access to its local quantized variable qi,k or prefers to use the original quantity

xj−1
i,k whenever possible and thus computes the weighted average using its original local

variable and noisy versions from its neighbors. For algorithms that perform consensus

step on gradients instead of the decision variables, similar schemes were implemented.

We compared S-NEAR-DGDt with t = 2 and t = 5, to versions of DGD [111, 154],

Table 2.2. Quantized consensus step variations

Variant name Consensus update

Q.1 xji,k ←
∑n

l=1

(
wilq

j
l,k

)
+
(
xj−1
i,k − q

j
i,k

)
Q.2 xji,k ←

∑n
l=1

(
wilq

j
i,k

)
Q.3 xji,k ← wiix

j−1
i,k +

∑
l∈Ni

(
wilq

j
l,k

)
EXTRA [146] and DIGing [113] with noisy gradients and communication. All methods

use the same mini-batch gradients at every iteration and exchange variables that are

quantized with the same probabilistic protocol. We implemented the consensus step

variations Q.1, Q.2 and Q.3 for all methods1. All algorithms shared the same steplength

α = 1. Our results averaged over 20 trials of the experiment are shown in Fig. 2.1 (we note

that smaller steplengths yield similar data trends). We plot the squared error ∥x̄k − x⋆∥2

against the number of iterations for quantization parameter values ∆ = 10 (left) and

∆ = 105 (right). The most important observation in Fig. 2.1 is that the GT methods

(EXTRA, DIGing), diverge without error correction in Q.2 and Q.3 regardless of the

quantization resolution. This aligns with recent findings indicating that GT methods

are more sensitive to the network topology, which directly affects the quantization error,

1Combining DIGing with Q.1 and using the true local gradients instead of stochastic approximations
recovers the iterates of Q-NEXT [84]. However, the authors of [84] accompany their method with a
dynamic quantizer that we did not implement for our numerical experiments.

61

Figure 2.1. Error plots, ∆ = 10 (left) and ∆ = 105 (right)

compared to purely primal methods [183]. For coarse quantization (∆ = 10, Fig. 2.1,

left), S-NEAR-DGD5 combined with Q.1 slightly outperforms the remaining methods

in terms of convergence accuracy. When the quantization is fine (∆ = 105, Fig. 2.1,

right), we observe that the choice of consensus variant has no effect on the performance of

the primal methods (DGD, S-NEAR-DGD), making S-NEAR-DGD the most attractive

option when quantized versions of the local variables, necessary for the implementation

of Q.1, are not available. When ∆ = 10−5, S-NEAR-DGD5, EXTRA and DIGing overlap

as the number of iterations increases under variant Q.1.

2.3.2. Scalability

To evaluate the scalability of our method and the effect of network type on convergence

accuracy and speed, we tested 5 network sizes (n = 5, 10, 15, 20, 25) and 5 different network

62

types: i) complete, ii) random (connected Erdős-Rényi, edge probability 0.4), iii) 4-cyclic

(i.e. starting from a ring graph, every node is connected to 4 immediate neighbors), iv)

ring and v) path. We compared 2 instances of the NEAR-DGDt method, i) t = 1 and

ii) t = 7. We opted to exclude NEAR-DGD+ from this set of experiments to facilitate

result interpretability in terms of communication load. We set α = 1 and ∆ = 102 for all

instances of the experiment, while the batch size for the calculation of the local stochastic

gradients was set to B = 16 in all cases. Different methods applied to networks of identical

size selected (randomly, with replacement) the same samples at each iteration.

Our results are summarized in Figure 2.2. In Fig. 2.2, top left, we terminated all

experiments after T = 2 · 104 iterations and plotted the normalized function value error

(f (x̄k)− f (x⋆)) /f(x⋆), averaged over the last τ = 103 iterations. We observe that net-

works with better connectivity converge closer to the true optimal value, implying that the

terms inversely proportional to (1−β2) dominate the error neighborhood in Eq. (2.2.17).

Adding more nodes improves convergence accuracy for well-connected graphs (complete,

random), possibly due to the ”variance reduction” effect on the stochastic gradients dis-

cussed in the previous section. For the remaining graphs, however, this beneficial effect

is outweighed by the decrease in connectivity that results from the introduction of addi-

tional nodes and consequently, large values of n yield worse convergence neighborhoods.

Increasing the number of consensus steps per iteration has a favorable effect on accuracy,

an observation consistent with our theoretical findings in the previous section.

For the next set of plots, we analyze the run time and cost of the algorithm until

termination. The presence of stochastic noise makes the establishment of a termination

criterion that performs well for all parameter combinations a challenging task. Inspired

63

by [170], we tracked an approximate time average f̄ of the function values f (x̄k) using

Welford’s method for online sample mean computation, i.e. f̄k = f̄k−1+ f(x̄k)−f̄k−1

k
, for k =

1, 2, ..., with f̄0 = f (x̄0). We terminate the algorithm at iteration count k if
∣∣∣ f̄k−f̄k−1

f̄k−1

∣∣∣ < ϵ,

where ϵ is a tolerance parameter.

In Figure 2.2, top right, we graph the number of steps (or gradient evaluations) until

the termination criterion described in the previous paragraph is satisfied for ϵ = 10−5.

We observe a similar trend to Figure 2.2, top left, indicating that poor connectivity has

an adverse effect on both accuracy and the rate of convergence, although the latter is not

predicted by the theory. Increasing the number of consensus steps per iteration reduces

the total number of steps needed to satisfy the stopping criterion. Finally, in the bottom

row of Fig. 2.2 we plot the total application cost per node until termination, which we

calculated using the cost framework first introduced in [13],

Cost = cc ×#Communications + cg ×#Computations,

where cc and cg are constants representing the application-specific costs of communication

and computation respectively.

In Fig. 2.2, bottom right, the communication is a 100 times cheaper than computation,

i.e. cc = 0.01 · cg. Increasing the number of consensus steps per iteration almost always

yields faster convergence in terms of total cost, excluding some cases where the network is

already reasonably well-connected (eg. complete graph). In Fig. 2.2, bottom left, the costs

of computation and communication are equal, i.e. cc = cg, and increasing the number of

consensus steps per iteration results in higher total cost in all cases.

64

Figure 2.2. Dependence on network type and size. Function value error
averaged over the last τ iterations out of T total iterations (top left),
steps/gradient evaluations until termination (top right), total cost until ter-
mination when communication is cheaper than computation (bottom left),
and when communication and computation have the same cost (bottom right).

In Figure 2.2, bottom, the costs of computation and communication are equal, i.e.

cc = cg, and increasing the number of consensus steps per iteration results in higher total

cost for all cases.

65

2.4. Summary

We proposed a first order method (S-NEAR-DGD) for distributed optimization over

fixed, undirected networks, that can tolerate stochastic gradient approximations and noisy

information exchange to alleviate the loads of computation and communication. The

strength of our method lies in its flexible framework, which alternates between gradient

steps and a number of nested consensus rounds that can be adjusted to best match the

application requirements. Our analysis indicates that S-NEAR-DGD converges in ex-

pectation to a neighborhood of the optimal solution when the local objective functions

are strongly convex and have Lipschitz continuous gradients. We have quantified the

dependence of this neighborhood on algorithm parameters, problem-related quantities

and the topology and size of the network. Empirical results demonstrate that our algo-

rithm performs comparably or better than state-of-the-art methods, depending on the

implementation of the quantized consensus.

66

CHAPTER 3

Nested Distributed Gradient Methods for Non-Convex

Optimization With Second Order Guarantees

3.1. Convergence Analysis

In this section, we generalize the convergence properties of the NEAR-DGD method

(1.0.5), (1.0.6) from the strongly convex [13] to the nonconvex setting. Before stating our

results, we introduce some additional notation and list our assumptions for the remainder

of this chapter.

3.1.1. Notation

In this Chapter, all vectors are column vectors. We will use the notation v′ to refer to the

transpose of a vector v. The average of the vectors vi ∈ Rp contained in v = [v′1, ..., v
′
n]′ ∈

Rnp will be denoted by v̄, i.e. v̄ = 1
n

∑n
i=1 vi. We use uppercase boldface letters for

matrices and will denote the element in the ith row and jth column of matrix H with hij.

We will refer to the ith (real) eigenvalue in ascending order (i.e. 1st is the smallest) of a

matrix H as λi(H). We use the notation 1n for the vector of ones of dimension n. We

will use ∥ · ∥ to denote the l2-norm, i.e. for v ∈ Rp we have ∥v∥ =
√∑p

i=1 [v]2i where [v]i

is the i-th element of v. The inner product of vectors v, u will be denoted by ⟨v, u⟩. The

symbol ⊗ will denote the Kronecker product operation. Finally, we define the averaging

matrix M :=
(

1n1′n
n
⊗ Ip

)
.

67

Assumption 3.1.1. (Consensus matrix) The matrix W ∈ Rn×n of Problem 1.0.2

has the following properties: i) symmetry, ii) double stochasticity, iii) wij > 0 if and only

if (i, j) ∈ E or i = j and wij = 0 otherwise and iv) positive-definiteness.

We can construct a matrix W̃ satisfying properties (i)− (iii) of Assumption 3.1.1 by

defining its elements to be max degree or Metropolis-Hastings weights [172], for instance.

Such matrices are not necessarily positive-definite, so we can further enforce property (iv)

using simple linear transformations (for example, we could define W = (1−δ)−1(W̃−δIn),

where δ < λ1(W̃) is a constant). For the rest of this work, we will be referring to the 2nd

largest eigenvalue of W as β, i.e. β = λn−1(W).

We also adopt the following standard assumptions for the global function f : Rnp → R

of Problem 1.0.2. Note that unlike other works on this topic (eg. [186, 40]), we do not

make any assumptions on the local functions fi : Rp → R.

Assumption 3.1.2. (Lipschitz gradients) The global objective function f : Rnp →

R has L-Lipschitz continuous gradients, i.e. ∥∇f(x)−∇f(y)∥ ≤ L∥x−y∥, ∀x,y ∈ Rnp.

Assumption 3.1.3. (Coercivity) The global objective function f : Rnp → R is

coercive, i.e. limk→∞ f(xk) =∞ for every sequence {xk} such that ∥xk∥ → ∞.

We need one more assumption to guarantee the convergence of NEAR-DGD. Namely,

we require that the Lyapunov functions we will employ in our analysis are ”sharp” around

their critical points, up to a reparametrization. This property is formally summarized

below.

68

Definition 1. (Kurdyka- Lojasiewicz (KL) property) [9] A function h : Rp →

R∪{+∞} has the KL property at x⋆ ∈ dom(∂h) if there exists η ∈ (0,+∞], a neighborhood

U of x⋆, and a continuous concave function ϕ : [0, η)→ R+ such that:

(1) ϕ(0) = 0;

(2) ϕ is C1 (continuously differentiable) on (0, η);

(3) for all s ∈ (0, η), ϕ′(s) > 0; and

(4) for all x ∈ U ∩ {x : h(x⋆) < h(x) < h(x⋆) + η}, the KL inequality holds:

ϕ′(h(x)− h(x⋆)) · dist(0, ∂h(x)) ≥ 1.

Proper lower semicontinuous functions which satisfy the KL inequality at each point of

dom(∂h) are called KL functions.

In the next subsection, we provide first order guarantees (i.e. show convergence to

critical points) for two instances of the NEAR-DGD method. First, we study a variant of

NEAR-DGD where a fixed number of consensus rounds are executed at every iteration, i.e.

t(k) = t for some t ∈ N+ in Eq. (1.0.5), and to which we will refer as NEAR-DGDt. Next,

we examine a variant of NEAR-DGD where the number of consensus rounds increases

by 1 at every iteration, i.e. t(k) = k in Eq. (1.0.5). We will refer to this latter variant as

NEAR-DGD+.

3.1.2. First order guarantees

We begin this subsection with a general result which will be necessary for proving the

convergence of the iterates of NEAR-DGD. Namely, we outline a number of sufficient

69

conditions related to the KL property under which a sequence achieves local convergence

(namely, it converges if initialized from a suitable neighborhood).

Lemma 3.1.4. (Local convergence) Suppose the function h : Rp → R is a KL

function and let ϕ, U and η be the objects in Def. 1. Moreover, suppose that there exists a

sequence {xk}, a sequence {νk} and a point x⋆ ∈ Rp such that i) h(x⋆) ≤ h(xk) < h(x⋆)+η

for all k ≥ 0; and ii) if for some index τ ≥ 0 the point xτ ∈ {xk} satisfies the KL inequality

with respect to x⋆, then the following inequality holds

(3.1.1) ∥xτ+1 − xτ∥ ≤ c(ϕ(lτ)− ϕ(lτ+1)) + ντ ,

where lτ = h(xτ)− h(x⋆) and c is a positive constant.

Finally, suppose that
∑∞

k=0 νk ≤ ν̄ where ν̄ is a non-negative constant, and that the

initial point x0 ∈ Rp and the constants c and ν̄ satisfy

cϕ(l0) + ∥x0 − x⋆∥+ ν̄ < r,

where B(x⋆, r) ⊂ U .

Then the sequence {xk} is finite, i.e.
∑∞

k=0 ∥xk+1 − xk∥ <∞, and thus, convergent.

Proof. We prove the result by induction. Since ∥x0 − x⋆∥ ≤ r and h(x⋆) ≤ h(x0) <

h(x⋆) + η the KL inequality holds at x0 and (3.1.1) holds for τ = 0. Let us assume that

xk ∈ B(x⋆, r) up to and including some index τ > 0, which implies that the KL inequality

and by extension (3.1.1) hold for all k ≤ τ . We apply the triangle inequality twice to

70

obtain

∥xτ+1 − x⋆∥ ≤ ∥xτ+1 − x0∥+ ∥x0 − x⋆∥

=

∥∥∥∥∥
τ∑
j=0

(xj+1 − xj)

∥∥∥∥∥+ ∥x0 − x⋆∥

≤
τ∑
j=0

∥xj+1 − xj∥+ ∥x0 − x⋆∥.

Applying Eq. (3.1.1) to the preceding relation and evaluating the resulting telescoping

sum yields

∥xτ+1 − x⋆∥ ≤ c (ϕ (l0)− ϕ (lτ+1)) +
τ∑
j=0

νj + ∥x0 − x⋆∥

≤ cϕ (l0) + ∥x0 − x⋆∥+ ν̄ < r.

Hence, xτ+1 ∈ U , which in turn implies that xk ∈ U for all k ≥ 0. Combined with

h(x⋆) ≤ h(xk) < h(x⋆) + η for all k ≥ 0, we conclude that the KL inequality holds for all

k ≥ 0 and thus we can sum Eq. (3.1.1) from k = 0 to infinity to obtain

∞∑
k=0

∥xk+1 − xk∥ ≤ cϕ(l0) + ν̄ <∞.

Hence, the sequence {xk} is finite and Cauchy (convergent). □

3.1.2.1. First order guarantees for NEAR-DGDt. We now present our theoretical

results on the convergence of NEAR-DGDt, i.e. t(k) = t in (1.0.5) for some t ∈ N+. We

introduce the following Lyapunov function, which will play a key role in our analysis,

(3.1.2) Lt (y) = f
(
Zty

)
+

1

2α
∥y∥2Zt −

1

2α
∥y∥2Z2t .

71

Assumption 3.1.5. (KL Lyapunov function) The Lyapunov function Lt : Rnp →

R is a KL function.

Assumption 3.1.5 covers a broad range of functions, including real analytic, semial-

gebraic and globally subanalytic functions (see [8] for more details). For instance, if the

function f is real analytic, then Lt is the sum of real analytic functions and by extension

KL.

We note that using (3.1.2), we can express the xk iterates of NEAR-DGDt as,

xk+1 = xk − α∇Lt (yk) .(3.1.3)

We will demonstrate that the sequence of {yk} iterates of NEAR-DGDt generated by

Eq. (1.0.6) converges to a critical point of the Lyapunov function Lt (3.1.2). We begin

our analysis by showing that the sequence {Lt(yk)} is non-increasing in the following

Lemma.

Lemma 3.1.6. (Sufficient Descent) Let {yk} be the sequence of NEAR-DGDt

iterates generated by (1.0.6) and suppose that the steplength α satisfies α < 2/L, where

L is defined in Assumption 3.1.2. Then the following inequality holds for the sequence

{Lt(yk)},

Lt (yk+1) ≤ Lt (yk)− ρ ∥yk+1 − yk∥2 ,

where ρ = (2α)−1 mini (λ
t
i(Z) (1 + (1− αL)λti(Z))) > 0.

72

Proof. Combining (1.0.5) and (3.1.2), we obtain for k ≥ 0,

Lt(yk) = f(xk) +
1

2α
⟨yk,xk⟩ −

1

2α
∥xk∥2.(3.1.4)

Let dx := xk+1 − xk. Assumption 3.1.2 then yields f(xk+1) ≤ f(xk) + ⟨∇f(xk),dx⟩ +

L
2
∥dx∥2 = f(xk)− 1

α
⟨yk+1−xk,dx⟩+L

2
∥dx∥2, where we acquire the last equality from (1.0.6).

Substituting this relation in (3.1.4) applied at the (k + 1)th iteration, we obtain,

Lt(yk+1) ≤ f(xk)−
1

2α
⟨yk+1 − xk,dx⟩

+
L

2
∥dx∥2 +

1

2α
⟨yk+1,xk+1⟩ −

1

2α
∥xk+1∥2

= Lt(yk)−
1

2α
⟨yk,xk⟩+

1

2α
∥xk∥2

− 1

α
⟨yk+1 − xk,dx⟩+

L

2
∥dx∥2 +

1

2α
⟨yk+1,xk+1⟩ −

1

2α
∥xk+1∥2,

where we obtain the equality after further application of (3.1.4). After setting dy :=

yk+1 − yk and re-arranging the terms, we obtain,

Lt(yk+1) ≤ Lt(yk)−
1

2α
⟨yk,xk⟩

+
1

α
⟨yk+1,xk⟩ −

1

2α
⟨yk+1,xk+1⟩ −

(
1

2α
− L

2

)
∥dx∥2

= Lt(yk)−
1

2α
∥yk∥2Zt

+
1

α
⟨yk+1,yk⟩Zt − 1

2α
∥yk+1∥2Zt −

(
1

2α
− L

2

)
∥dx∥2

= Lt(yk)−
1

2α
∥dy∥2Zt −

(
1

2α
− L

2

)
∥dx∥2.

Let H := (2α)−1Zt (I + (1− αL)Zt), which is a positive definitionnite matrix due to

Assumption 3.1.1 and the fact that α < 2/L. Moreover, ∥dx∥2 = ∥dy∥2Z2t by Eq. (1.0.5).

73

We can then re-write the immediately previous relation as Lt(yk+1) ≤ Lt(yk)− ∥yk+1 −

yk∥2H. Applying the definition of ρ = λ1(H) concludes the proof. □

An important consequence of Lemma 3.1.6 is that NEAR-DGDt can tolerate a bigger

range of steplengths than previously indicated (α < 2/L vs. α < 1/L in [13]). Moreover,

Lemma 3.1.6 implies that the sequence {Lt(yk)} is upper bounded by Lt(y0). We use

this fact to prove that the iterates of NEAR-DGDt are also bounded in the next Lemma.

Lemma 3.1.7. (Boundedness) Let {xk} and {yk} be the sequences of NEAR-DGDt

(t(k) = t) iterates generated by (1.0.5) and (1.0.6), respectively, from initial point y0 and

under steplength α < 2/L. Then the following hold: i) the sequence {Lt(yk)} is lower

bounded, and ii) there exist universal positive constants Bx and By such that ∥xk∥ ≤ Bx

and ∥yk+1∥ ≤ By for all k ≥ 0 and t ∈ N+.

Proof. By Assumption 3.1.3, the function f is lower bounded and therefore Lt is

also lower bounded (sum of lower bounded functions). This proves the first claim of this

Lemma.

To prove the second claim, we first notice that Lemma 3.1.6 implies that the sequence

{Lt(yk)} is upper bounded by Lt(y0). Let us define the set X0 := {Zty0, t ∈ N+}. The

set X0 is compact, since ∥Zty0∥ ≤ ∥y0∥ for all t ∈ N+ due to the non-expansiveness of Z.

Hence, by the continuity of f and the Weierstrass Extreme Value Theorem, there exists

x̂0 ∈ X0 such that f(x0) ≤ f(x̂0) for all x0 ∈ X0. Moreover, Assumption 3.1.1 yields

∥y0∥2Zt(I−Zt) ≤ ∥y0∥2 for all positive integers t, and therefore Lt(y0) ≤ L̂ for all t ∈ N+,

where L̂ = f(x̂0) + (2α)−1∥y0∥2.

74

Since L̂ ≥ Lt(y0) ≥ Lt(yk) ≥ f(Ztyk) = f(xk) for all k ≥ 0 and t > 0, the sequence

{f(xk)} is upper bounded. Hence, by Assumption 3.1.3, there exists positive constant Bx

such that ∥xk∥ ≤ Bx for k ≥ 0 and t > 0. Moreover, Assumption 3.1.2 yields f(yk+1) ≤

f(xk) + ⟨∇f(xk),yk+1 − xk⟩ + L
2
∥yk+1 − xk∥2 = f(xk) − α∥∇f(xk)∥2 + α2L

2
∥∇f(xk)∥2 =

f(xk)−α
(
1− αL

2

)
∥∇f(xk)∥2 ≤ f(xk), where we obtain the first equality from (1.0.6) and

last inequality from the fact that α < 2/L. This relation combined with Assumption 3.1.3

implies that there exists constant By > 0 such that ∥yk+1∥ ≤ By for k > 0 and t > 0,

which concludes the proof. □

Next, we use Lemma 3.1.7 to show that the distance between the local iterates gener-

ated by NEAR-DGDt and their average is bounded.

Lemma 3.1.8. (Bounded distance to mean) Let xi,k and yi,k be the local NEAR-

DGDt iterates produced under steplength α < 2/L by (1.0.5) and (1.0.6), respectively,

and define the average iterates x̄k := 1
n

∑n
i=1 xi,k and ȳk := 1

n

∑n
i=1 yi,k. Then the distance

between the local and the average iterates is bounded for i = 1, ..., n and k = 1, 2, ..., i.e.

∥xi,k − x̄k∥ ≤ βtBy, and ∥yi,k − ȳk∥ ≤ By,

where By is a positive constant defined in Lemma 3.1.7.

Proof. Multiplying both sides of (1.0.5) with M =
(

1n1′n
n
⊗ Ip

)
yields x̄k = ȳk. More-

over, we observe that ∥vk −Mvk∥2 =
∑n

i=1 ∥vi,k − v̄k∥
2 for any vector v ∈ Rnp. Hence,

∥xi,k − x̄k∥ = ∥xi,k − ȳk∥ ≤ ∥xk −Myk∥

≤
∥∥Ztyk −Myk

∥∥ ≤ βt∥yk∥,

75

where we derive the last inequality from the spectral properties of Z and M (we note that

the matrix 1n1′
n/n has a single non-zero eigenvalue at 1 associated with the eigenvector

1np).

Similarly, for the local iterates yi,k we obtain,

∥yi,k − ȳk∥ ≤ ∥yk −Myk∥ = ∥(I −M)yk∥ ≤ ∥yk∥.

Applying Lemma 3.1.7 to the two preceding inequalities completes the proof. □

We are now ready to state the first Theorem of this section, namely that there exists

a subsequence of {yk} that converges to a critical point of Lt.

Theorem 3.1.9. (Subsequence convergence) Let {yk} be the sequence of NEAR-

DGDt iterates generated by (1.0.6) with steplength α < 2/L. Then {yk} has a convergent

subsequence whose limit point is a critical point of (3.1.2).

Proof. By Lemma 3.1.7, the sequence {yk} is bounded and therefore there exists a

convergent subsequence {yks}s∈N → y∞ as s → ∞. In addition, recursive application of

Lemma 3.1.6 over iterations 0, 1, ..., k yields,

Lt (yk) ≤ Lt (y0)− ρ
k−1∑
j=0

∥yj+1 − yj∥2 ,

where the sequence {Lt (yk)} is non-increasing and bounded from below by Lemmas 3.1.6

and 3.1.7.

Hence, {Lk (yk)} converges and the above relation implies that
∑∞

k=1 ∥yk+1 − yk∥2 <

+∞ and ∥yk+1 − yk∥ → 0. Moreover, ∥xk+1 − xk∥ = ∥yk+1 − yk∥Z2t ≤ ∥yk+1 − yk∥

76

by the non-expansiveness of Z and thus ∥xk+1 − xk∥ → 0. Finally, Eq. 3.1.3 yields

∥∇Lt (yk) ∥ = α−1∥xk+1 − xk∥ → 0. We conclude that ∥∇Lt (yks)∥ → 0 as s → ∞ and

therefore ∇Lt (y∞) = 0. □

We note that Assumption 3.1.5 is not necessary for Theorem 3.1.9 to hold. However,

Theorem 3.1.9 does not guarantee the convergence of NEAR-DGDt; we will need As-

sumption 3.1.5 to prove that NEAR-DGDt converges in Theorem 3.1.11. Before that, we

introduce the following two preliminary Lemmas that hold only under Assumption 3.1.5.

Lemma 3.1.10. (Bounded difference under the KL property) Let xk and yk be

the NEAR-DGDt iterates generated by (1.0.5) and (1.0.6), respectively, under steplength

α < 2/L. Moreover, suppose that the KL inequality with respect to some point y⋆ ∈ Rnp

holds at yk, i.e.,

(3.1.5) ϕ′(Lt(yk)− Lt(y⋆))∥∇Lt(yk)∥ ≥ 1.

Then the following relation holds,

∥vk+1 − vk∥ ≤
1

αρ
(ϕ (lk)− ϕ (lk+1)) ,

where ∥vk+1 − vk∥ can be ∥xk+1 − xk∥ or ∥yk+1 − yk∥ and lk := Lt(yk)− Lt(y⋆).

Proof. Lemma 3.1.6 yields ρ ∥yk+1 − yk∥2 ≤ Lt (yk)−Lt (yk+1) = lk− lk+1 for k ≥ 0.

We can multiply both sides of this relation with ϕ′ (lk) > 0 to obtain ρϕ′ (lk) ∥yk+1 − yk∥2 ≤

−ϕ′ (lk) (lk+1 − lk) ≤ ϕ (lk)−ϕ (lk+1) , where we derive the last inequality from the concav-

ity of ϕ. In addition, using Eq. 3.1.3, we can re-write (3.1.5) as α−1ϕ′(lk)∥xk+1−xk∥ ≥ 1.

77

Combining these relations, we acquire,

αρ ∥yk+1 − yk∥2

∥xk+1 − xk∥
≤ ϕ (lk)− ϕ (lk+1) .

Observing that ∥xk+1 − xk∥ ≤ ∥yk+1 − yk∥ due to the non-expansiveness of Z and re-

arranging the terms of the relation above yields the final result. □

Next, we combine our previous results to prove the global convergence of the yk iterates

of NEAR-DGDt in Theorem 3.1.11.

Theorem 3.1.11. (Global Convergence) Let {yk} be the sequence of NEAR-DGDt

iterates produced by (1.0.6) under steplength α < 2/L and let y∞ be a limit point of a

convergent subsequence of {yk} as defined in Theorem 3.1.9.

Then under Assumption 3.1.5 the following statements hold: i) there exists an index

k0 ∈ N+ such that the KL inequality with respect to y∞ holds for all k ≥ k0, and ii) the

sequence {yk} converges to y∞.

Proof. We first observe that by Lemma 3.1.6 the sequence {Lt(yk)} is non-increasing,

and therefore Lt(y∞) ≤ Lt(yk) for all k ≥ 0. Moreover, by Lemma 3.1.10 the inequality

∥yk+1 − yk∥ ≤ (αρ)−1 (ϕ (lk)− ϕ (lk+1)) holds for all yk satisfying the KL inequality with

respect to y∞, where lk = Lt(yk)−Lt(y∞). If Assumption 3.1.5 holds, then the objects U

and η in Def. 1 exist and by the continuity of ϕ, it is possible to find an index k0 satisfying

78

the following relations,

(αρ)−1ϕ (Lt(yk0)− Lt(y∞)) + ∥yk0 − y∞∥ < r,

Lt(yk) ∈ [Lt(y∞),Lt(y∞) + η), ∀k ≥ k0,

where B(y∞, r) ⊂ U .

The global convergence of NEAR-DGDt follows from applying Lemma 3.1.4 on the

sequence {yk}k≥k0 with h = Lt, c = (αρ)−1, {νk} = {ν̄} = {0} and y⋆ = y∞. Since

y∞ is the limit point of a subsequence of {yk} and {yk} is convergent, we conclude that

{yk} → y∞. □

Since Z is a non-singular matrix, Theorem 3.1.11 implies that the sequence {xk} also

converges. Moreover, using arguments similar to [7], we can prove the following result on

the convergence rate of {xk}.

Lemma 3.1.12. (Rates) Let {xk} be the sequence of iterates produced by (1.0.5),

x∞ = Zty∞ where y∞ is the limit point of the sequence {yk} and suppose ϕ(s) = cs1−θ in

Assumption 3.1.5 for some constant c > 0 and θ ∈ [0, 1) (for a discussion on ϕ, we direct

readers to [8]). Then the following hold:

(1) If θ = 0, {xk} converges in a finite number of iterations.

(2) If θ ∈ (0, 1/2], then constants c > 0 and Q ∈ [0, 1) exist such that ∥xk − x∞∥ ≤

cQk.

(3) If θ ∈ (1/2, 1), then there exists a constant c > 0 such that ∥xk−x∞∥ ≤ ck−
1−θ
2θ−1 .

Proof. i) θ = 0: From the definition of ϕ and θ = 0 we have ϕ′(lk) = c(1− θ)l−θk = c.

Let I := {k ∈ N : xk+1 ̸= xk} (by the non-singularity of Z, it also follows that yk+1 ̸= yk

79

for k ∈ I). Then for large k the KL inequality holds at yk and we obtain ∥∇Lt(yk)∥ ≥ c−1,

or equivalently by (3.1.3), ∥xk+1 − xk∥ ≥ αc−1. Application of Lemma 3.1.6 combined

with the fact that ∥xk+1 − xk∥ ≤ ∥yk+1 − yk∥ yields Lt(yk+1) ≤ Lt (yk)− ρα2c−2. Given

the convergence of the sequence {Lt}, we conclude that the set I is finite and the method

converges in a finite number of steps.

ii) θ ∈ (0, 1): Let Sk :=
∑∞

j=k ∥xj+1 − xj∥ where x∞ = Zty∞. Since ∥xk − x∞∥ ≤ Sk,

it suffices to bound Sk. Using Lemma 3.1.10 with y⋆ = y∞ and for k ≥ k0, where k0 is

defined in Theorem 3.1.11, we obtain,

Sk ≤
1

αρ

∞∑
j=k

(ϕ(lj)− ϕ(lj+1)) =
1

αρ
ϕ(lk) =

1

ν
l1−θk ,(3.1.6)

where ν = αρ/c.

Moreover, Eq. 3.1.3 yields ∥∇Lt (yk)∥ = α−1 ∥xk+1 − xk∥ = α−1 (Sk − Sk+1). Using

this relation and the definition of ϕ, we can express the KL inequality as,

(3.1.7) µl−θk (Sk − Sk+1) ≥ 1,

where µ = α−1c(1− θ).

If θ ∈ (0, 1/2], raising both sides of the preceding inequality to the power of γ =

1−θ
θ

> 1 and re-arranging the terms yields µγ (Sk − Sk+1)
γ ≥ l1−θk . Due to the fact

that Sk − Sk+1 = α∥∇Lt(yk)∥ → 0, there exists some index k such that Sk − Sk+1 >

(Sk − Sk+1)
γ and µγ (Sk − Sk+1) ≥ l1−θk . Combining this relation with (3.1.6), we obtain

νSk ≤ µγ (Sk − Sk+1)⇔ Sk+1 ≤
(

1− ν
µγ

)
Sk.

80

If θ ∈ (1/2, 1), raising both sides of (3.1.6) to the power of θ/(1 − θ) > 1 yields

S
θ/(1−θ)
k ≤ ν−θ/(1−θ)lθk. After substituting this relation in (3.1.7) and re-arranging we

obtain 1 ≤ C (Sk − Sk+1) (S
θ/(1−θ)
k)−1, where C = µν−θ/(1−θ). Define h : (0,+∞) → R

to be h(s) = s−θ/(1−θ). The preceding relation then yields 1 ≤ C(Sk − Sk+1)h(Sk) ≤

C
∫ Sk

Sk+1
h(s)ds = Cζ−1

(
Sζk − S

ζ
k+1

)
, where ζ = (1 − 2θ)/(1 − θ) < 0. After setting

C̃ = −C−1ζ > 0 and re-arranging, we obtain C̃ ≤ Sζk+1 − S
ζ
k . Summing this relation over

iterations k = k0, ..., t−1 yields (t−k0)C̃ ≤ Sζt −S
ζ
k0
⇔ St ≤

(
(t− k0)C̃ + Sζk0

)1/ζ
≤ ct1/ζ ,

for some c > 0. □

We conclude this subsection with one more result on the distance to optimality of the

local xi,k iterates of NEAR-DGDt and their average x̄k = 1
n

∑n
i=1 xi,k as k →∞.

Corollary 3.1.13. (Distance to optimality) Suppose that {yk} → y∞ and let

x∞ = Zty∞. Moreover, let x̄∞ = ȳ∞ = 1
n

∑n
i=1 x

∞
i . Then x̄∞ is an approximate critical

point of f ,

∥∇f(x̄∞)∥ ≤ βt
√
nLBy

where By is a positive constant defined in Lemma 3.1.7.

Proof. We observe that M∇f(My∞) = 1
n
·1n⊗∇f(ȳ∞) and hence ∥M∇f(My∞)∥ =

n−1∥1n⊗∇f(ȳ∞)∥ = (
√
n)−1∥∇f(ȳ∞)∥, where we obtain the last equality due to the fact

that ∥1n ⊗ v∥2 = n∥v∥2 for any vector v.

Moreover, y∞ is a critical point of (3.1.2) and therefore satisfies∇Lt(y∞) = Zt∇f(Zty∞)+

1
α
Zty∞− 1

α
Z2ty∞ = 0. From the double stochasticity of Z, multiplying the above relation

with M yields M∇Lt(y∞) = M∇f(Zty∞) = 0. After combining all the preceding results,

81

we obtain,

∥∇f(x̄∞)∥ =
√
n∥M∇f(My∞)−M∇f(Zty∞)∥

≤
√
nL∥My∞ − Zty∞∥ ≤ βt

√
nL∥y∞∥,

where used the spectral properties of M and Assumption 3.1.2 to get the first inequality

and the spectral properties of Z to get the second inequality. Applying Lemma 3.1.7

yields the result of this Corollary. □

We have now concluded our work on the first order guarantees for the NEAR-DGDt

variant. Next, we provide similar guarantees for NEAR-DGD+; while our proof has a

similar structure to our proof for NEAR-DGDt, the time-variant nature of NEAR-DGD+

requires the design of a new Lyapunov function. It is also necessary to establish that the

iterates of NEAR-DGD+ achieve consensus exponentially fast, which is not the case with

NEAR-DGDt.

3.1.2.2. First order guarantees for NEAR-DGD+. We now analyze the convergence

of NEAR-DGD+, i.e. t(k) = k in (1.0.5). Specifically, we will demonstrate that the

sequence of {xk} iterates of NEAR-DGD+ generated by Eq. (1.0.5) converges to a critical

point of the function f : Rp → R of Problem 1.0.1 locally at the agent level. Similar

results for nonconvex problems have been established for the DGD method (1.0.3) under

diminishing steplength [186]; however, unlike [186] we do not require that the gradients

of f : Rnp → R are universally bounded.

82

In the same vein as the previous subsection, we define the following Lyapunov function

that we will use thoughout our convergence analysis to track the progress of the NEAR-

DGD+ iterates,

(3.1.8) L∞(y) = f(My).

Assumption 3.1.14. (KL Lyapunov function (NEAR-DGD+)) The Lyapunov

function L∞ : Rnp → R is a KL function.

We begin our analysis by demonstrating that the xk iterates of NEAR-DGD+ gener-

ated by (1.0.5) achieve consensus with a linear rate.

Lemma 3.1.15. (Bounded distance to consensus (NEAR-DGD+)) Suppose

that t(k) = k in (1.0.5) and let Ak := (Zk −M)yk = (I −M)xk be the distance to

consensus, and Bk = Zkyk−u⋆, where u⋆ ∈ critf which is guaranteed to be non-empty by

Assumption 3.1.3. Then if the steplength in (1.0.6) satisfies α < (β−1− 1)/L, where β is

the second biggest eigenvalue of W, the distance to consensus decays with linear rate, i.e.

∥Ak∥ ≤ µkC, where µ = β(1 + αL) < 1 and

C = max

{
∥A0∥+ αL∥B0∥

1 + αL
, ∥B0∥+

∥u⋆∥
αL

}
.

Proof. Combining (1.0.5) and (1.0.6) at the kth iteration with t(k) = k yields

(3.1.9) yk = Zk−1yk−1 − α∇f(Zk−1yk−1).

83

We multiply Eq. (3.1.9) with Zk −M and take the norm on both sides to obtain

∥Ak∥ ≤ ∥(Zk −M)Ak−1∥+ α∥(Zk −M)∇f(Zk−1yk−1)∥

≤ βk∥Ak−1∥+ αβkL∥Bk−1∥,
(3.1.10)

where we used the triangle inequality and the fact that ZM = M to get the first inequality,

and applied Assumptions 3.1.1 and 3.1.2 to get the second inequality.

For the quantity Bk, Eq. (3.1.9) yields

∥Bk∥ ≤ ∥ZkBk−1∥+ α∥Zk∇f(Zk−1yk−1)∥

+ ∥(Zk − I)u⋆∥ ≤ (1 + αL)∥Bk−1∥+ ∥u⋆∥,

where we added and subtracted Zku⋆ and applied the triangle inequality to get the first

inequality, and obtained the second inequality from Assumptions 3.1.1 and 3.1.2.

Let R := ∥B0∥+ (αL)−1∥u⋆∥. Applying the preceding relation recursively yields

∥Bk∥ ≤ (1 + αL)k∥B0∥+ ∥u⋆∥
k−1∑
j=0

(1 + αL)j

= (1 + αL)k∥B0∥+
((1 + αL)k − 1)∥u⋆∥

αL
≤ (1 + αL)kR.

Next, we substitute the relation above in (3.1.10) to obtain

∥Ak∥ ≤ βk∥Ak−1∥+ αβk(1 + αL)k−1LR.

84

We will now prove the claim of this lemma by induction. The claim holds trivially for

k = 1. Assuming ∥Ak−1∥ ≤ βk−1(1 + αL)k−1C, the preceding relation yields

∥Ak∥ ≤
(
β(1 + α)

)k (βk−1 + αL

1 + αL

)
C.

Since β < 1, the claim holds for all k ≥ 1. □

Next, we utilize the diminishing distance to consensus established in Lemma 3.1.15 to

show that the sequence of the Lyapunov function values {L∞(yk)} is non-increasing.

Lemma 3.1.16. (Sufficient descent (NEAR-DGD+)) For NEAR-DGD+, let

the steplength in (1.0.6) satisfy

α < min

{
1 +
√

5

2L
,
β−1 − 1

L

}

Then the following relations hold for k ≥ 0

(3.1.11a) L∞(yk+1) ≤ L∞(yk) + µ2kC1 − C2∥∇f(Myk)∥2M

(3.1.11b) L∞(yk+1) ≤ L∞(yk) + µ2kC1 − C3∥∇f(xk)∥2M,

where C1 = αL2C2

2
(1 + αL), µ ∈ (0, 1) and C > 0 are defined in Lemma 3.1.15, C2 =

α
2
(1 + αL− α2L2) and C3 = α

2

(
1− α2L2

1+αL

)
.

85

Proof. Let ∇1,k = ∇f(Myk) and ∇2,k = ∇f(xk). Substituting (1.0.6) in (3.1.8) for

the (k + 1)th iteration we obtain

L∞(yk+1) = f(Myk − αM∇f(xk))

≤ f(Myk)− α⟨∇1,k,∇2,k⟩M +
α2L

2
∥∇2,k∥2M

≤ L∞(yk) +
α

2
(1 + αL)∥∇1,k −∇2,k∥2M −

α

2
∥∇2,k∥2M

− α

2
(1 + αL)∥∇1,k∥2M + α2L∥∇1,k∥M∥∇2,k∥M

= L∞(yk) +
α

2
(1 + αL)∥∇1,k −∇2,k∥2M

− α

2
∥∇1,k∥2M

(
∥∇2,k∥2M
∥∇1,k∥2M

− 2αL
∥∇2,k∥M
∥∇1,k∥M

+ (1 + αL)

)
= L∞(yk) +

α

2
(1 + αL)∥∇1,k −∇2,k∥2M

− α

2
∥∇2,k∥2M

(
(1 + αL)

∥∇1,k∥2M
∥∇2,k∥2M

− 2αL
∥∇1,k∥M
∥∇2,k∥M

+ 1

)
.

We first notice that ∥∇1,k − ∇2,k∥2M ≤ L2∥Ak∥2 ≤ µ2kL2C2 by Assumption 3.1.2 and

Lemma 3.1.15. Moreover, consider the 2nd degree polynomials P1(z) = z2−2αLz+(1+αL)

and P2(z) = (1 + αL)z2 − 2αLz + 1. If α < 1+
√
5

2L
, then 4α2L2 − 4(1 + αL) < 0 and

P1(z), P2(z) > 0 for all z ∈ R with minz P1(z) = 2α−1C2 and minz P2(z) = 2α−1C3.

Applying the definitions of C1, C2 and C3 to the preceding relation yields the final result

of this lemma. □

Lemma 3.1.16 combined with Assumption 3.1.3 implies that the average iterates of

NEAR-DGD+ form a compact set. Given that distance to consensus diminishes by

Lemma 3.1.15, we conclude that the xk iterates of NEAR-DGD+ also belong to a compact

set for all k ≥ 0. This result is formally stated in the following Lemma.

86

Lemma 3.1.17. (Boundedness (NEAR-DGD+)) Let {xk} be the sequence of

iterates generated by Eq. (1.0.5) with t(k) = k and suppose the steplength in Eq. (1.0.6)

satisfies α < min{(1 +
√

5)/(2L), (β−1 − 1)/L}. Then there exists positive constant B+
x

such that ∥xk∥ ≤ B+
x for all k ≥ 0.

Proof. The triangle inequality yields

∥xk∥ ≤ ∥xk∥M + ∥(I −M)xk∥

≤ ∥xk∥M + µkC

≤ ∥xk∥M + C,

where we invoked Lemma 3.1.15 to obtain the second inequality.

Moreover, Lemma 3.1.16 implies that the sequence {L∞(yk)} = {f(Myk)} = {f(Mxk)}

is bounded, and hence by Assumption 3.1.3 the norm ∥xk∥M is bounded for all k ≥ 0.

We conclude that a constant B+
x > 0 exists such that ∥xk∥ ≤ B+

x for all k ≥ 0. □

In the next Theorem we show that the sequence of iterates of NEAR-DGD+ have at

least one subsequence that converges to a critical point of L∞. This fact combined with

Lemma 3.1.15 implies that the local iterates xi,k of such convergent subsequence of {xk}

converge to critical points of the function f or Problem 1.0.1.

Theorem 3.1.18. (Subsequence convergence (NEAR-DGD+)) Let {xk} be the

sequence of iterates generated by Eq (1.0.5) with t(k) = k and suppose the steplength in

Eq. (1.0.6) satisfies α < min{(1 +
√

5)/(2L), (β−1 − 1)/L}. Then if the set of critical

points of f(x) =
∑n

i=1 fi(x) is non-empty, {xk} has a subsequence converging to a point

x∞ = x̄∞ ⊗ 1n ∈ Rnp where x̄∞ ∈ critf .

87

Proof. By Lemma 3.1.17, the sequence {xk} is bounded, and thus has at least one

subsequence converging to some point x∞. By Eq. (3.1.11b) of Lemma 3.1.16 and

the convergence of {L∞(yk)} we have ∥∇f(xk)∥M → 0, which yields M∇f(x∞) =

(n−1
∑n

i=1∇fi(x∞i))⊗ 1n → 0. Finally, Lemma 3.1.15 guarantees that

xj,k → n−1

n∑
i=1

x∞i = x̄∞,

for all j ∈ {1, ..., n}. □

Theorem 3.1.18 does not guarantee the convergence of the iterates of NEAR-DGD+;

to establish this result, we first prove the following intermediate Lemma on the distance

between two consecutive iterates of the NEAR-DGD+ method under Assumption 3.1.14.

Lemma 3.1.19. (Bounded difference (NEAR-DGD+)) Suppose that for some

index k ≥ 0, the point yk satisfies the KL inequality with respect to some y⋆. Then there

exists a positive constant Q such that

∥xk+1 − xk∥ ≤
α

C2

(ϕ(lk)− ϕ(lk+1)) + µkQ

where lk = L∞(yk)−L∞(y⋆), C2 > 0 is defined in Lemma 3.1.16 and µ ∈ (0, 1) is defined

in Lemma 3.1.15.

Proof. Let dx = xk+1 − xk and recall that Ak = (I −M)xk. The triangle inequality

yields

∥dx∥ ≤ ∥dx∥M + ∥Ak+1∥+ ∥Ak∥

≤ α∥∇f(xk)∥M + µk(µ+ 1)C.

(3.1.12)

88

where we applied Lemma 3.1.15 to get the last inequality.

We proceed by deriving a bound for the first term on the right-hand side of the

equation above. Eq. (3.1.11a) of Lemma 3.1.16 directly yields

∥∇f(Myk)∥2M ≤ C−1
2 (L∞(yk)− L∞(yk+1)) + µ2kC1C

−1
2 .

We multiply the preceding relation with ϕ′(lk) > 0 to obtain

ϕ′(lk)∥∇f(Myk)∥2M ≤ −C−1
2 ϕ′(lk)(lk+1 − lk) + µ2kC1C

−1
2 ϕ′(lk)

≤ C−1
2 (ϕ(lk)− ϕ(lk+1)) + µ2kC1C

−1
2 ϕ′(lk),

where the last inequality follows from the concavity of ϕ.

Note that we can re-write the KL inequality for L∞ as ϕ′(lk)∥∇f(Myk)∥M ≥ 1.

Combining this with the inequality above yields

∥∇f(Myk)∥M ≤ C−1
2 (ϕ(lk)− ϕ(lk+1)) + µ2kC1C

−1
2 ϕ′(lk).

Moreover, the following inequality follows from Lemma 3.1.15 and Assumption 3.1.2

∥∇f(xk)∥M ≤ ∥∇f(Myk)∥M + ∥∇f(xk)−∇f(Myk)∥M

≤ ∥∇f(Myk)∥M + µkCL.

Combining the two preceding relations yields

∥∇f(xk)∥M ≤ C−1
2 (ϕ(lk)− ϕ(lk+1)) + µ2kC1C

−1
2 ϕ′(lk) + µkCL.

89

Since ϕ is continuously differentiable and lk is bounded by Lemma 3.1.16, there exists

constant Bϕ such that ϕ′(lk) < Bϕ for all k ≥ 0. Substituting everything in Eq. (3.1.12)

and setting Q = µC1C
−1
2 Bϕ + CL+ (µ+ 1)C yields the final result. □

We are now ready to combine Lemmas 3.1.4 and 3.1.19 in order to establish the global

convergence of the {xk} iterates of NEAR-DGD+ in the following Theorem.

Theorem 3.1.20. (Global convergence (NEAR-DGD+)) Let {xk} be the se-

quence of NEAR-DGD+ iterates produced by (1.0.5) with t(k) = k and suppose the

steplength in Eq. (1.0.6) satisfies α < min{(1+
√

5)/(2L), (β−1−1)/L}. Moreover, let x∞

be a limit point of a convergent subsequence of {xk} as defined in Theorem 3.1.18. Then

under Assumption 3.1.14 the following statements hold: i) there exists an index k0 ∈ N+

such that the KL inequality with respect to x∞ holds for all k ≥ k0, and ii) the sequence

{xk} converges to x∞.

Proof. We first note that L∞(yk) = L∞(xk) for all k ≥ 0 by the construction of

L∞. Lemma 3.1.16 implies that the sequence {L∞(xk)} is non-increasing, and therefore

L∞(x∞) ≤ L∞(xk) for all k ≥ 0. Moreover, by Lemma 3.1.19 the following inequality

holds for all xk that satisfy the KL inequality with respect to x∞,

∥xk+1 − xk∥ ≤ αC−1
2 (ϕ(lk)− ϕ(lk+1)) + µkQ,

where lk = L∞(xk)− L∞(x∞), µ ∈ (0, 1) and C2, Q > 0.

90

If Assumption 3.1.5 holds, then the objects U and η in Def. 1 exist and by the conti-

nuity of ϕ, it is possible to find an index k0 satisfying the following relations,

αC−1
2 ϕ (L∞(xk0)− L∞(x∞)) + ∥xk0 − x∞∥+

µk0Q

1− µ
< r,

L∞(xk) ∈ [L∞(x∞),L∞(x∞) + η), ∀k ≥ k0,

where B(x∞, r) ⊂ U .

The global convergence of NEAR-DGD+ follows from applying Lemma 3.1.4 on the

sequence {xk}k≥k0 with h = L∞, c = αC−1
2 , {νk} = {µk+k0Q} and x⋆ = x∞. Since x∞

is the limit point of a subsequence of {xk} and {xk} is convergent, we conclude that

{xk} → x∞. □

We have completed our analysis of the first-order convergence properties of NEAR-

DGDt and NEAR-DGD+, the two instances of NEAR-DGD under examination. In the

next subsection we provide second order guarantees for the same two variants.

3.1.3. Second order guarantees

In this subsection, we provide second order guarantees for the two variants of the NEAR-

DGD method (1.0.5), (1.0.6) we studied in Subsection 3.1.2, namely NEAR-DGDt (t(k) =

t in Eq. (1.0.5) for some t ∈ N+) and NEAR-DGD+ (t(k) = k in Eq. (1.0.5)). Specifically,

using recent results stemming from dynamical systems theory, we will prove that those

two variants almost surely avoid strict saddles when initialized randomly. We begin by

listing a number of relevant assumptions, definitions and theoretical results.

Assumption 3.1.21. (Differentiability) The function f is C2.

91

We note that Assumption 3.1.21 implies that the Lyapunov functions (3.1.2) and (3.1.8)

are also C2.

Definition 2. (Differential of a mapping) [Ch. 3, [1]] The differential of a map-

ping g : X → X , denoted as Dg(x), is a linear operator from T (x) → T (g(x)), where

T (x) is the tangent space of X at point x. Given a curve γ in X with γ(0) = x and

dγ
dt

(0) = v ∈ T (x), the linear operator is defined as Dg(x)v = d(g◦γ)
dt

(0) ∈ T (g(x)). The

determinant of the linear operator det(Dg(x)) is the determinant of the matrix represent-

ing Dg(x) with respect to an arbitrary basis.

Definitions 3-4, Theorems 3.1.22-3.1.23 and Corollaries 3.1.25-3.1.25 are adapted from

[85].

Definition 3. (Unstable fixed points) The set of unstable fixed points A⋆g of a

mapping g : X → X is defined as A⋆g = {x ∈ X : g(x) = x,maxi |λi(Dg(x))| > 1}.

Definition 4. (Strict saddles) The set of strict saddles X ⋆ of a function f : X → R

is defined as X ⋆ = {x⋆ ∈ X : ∇f(x⋆) = 0, λ1(∇2f(x⋆)) < 0}.

Theorem 3.1.22. (Stable Center Manifold Theorem)[Theorem 1, [85]] Let x⋆

be a fixed point for the Cr local diffeomorphism g : X → X . Suppose that X = Xs ⊕ Xu,

where Xs is the span of the eigenvectors corresponding to eigenvalues of magnitude less

than or equal to one of Dg(x⋆), and Xu is the span of the eigenvectors corresponding to

eigenvalues of magnitude greater than one of Dg(x⋆). Then there exists a Cr embedded

diskW cs
loc that is tangent to Xs at x⋆ called the local stable center manifold. Moreover, there

exists a neighborhood B of x⋆, such that g(W cs
loc) ∩B ⊂ W cs

loc, and ∩k=0
∞ g−k(B) ⊂ W cs

loc.

92

Theorem 3.1.23. (Non-convergence to unstable fixed points) [Theorem 2, [85]]

Let g be a C1 mapping from X → X and det(Dg(x)) ̸= 0 for all x ∈ X . Then

the set of initial points that converge to an unstable fixed point has measure zero, i.e.,

µ({x0 : limxk ∈ A⋆g}) = 0, where A⋆g is the set of unstable fixed points of g.

Corollary 3.1.24. (Non-convergence to saddle points) [Corollary 1, [85]] Un-

der the same conditions as Theorem 3.1.23, and in addition assume X ⋆ ⊂ A⋆g where X ⋆ the

set of strict saddles of a function f , then µ(Wg) = 0 where Wg = {x0 : limk g
k(x0) ∈ X ⋆}

and gk(x0) is the k-fold composition of the mapping g (k steps) starting from initial point

x0.

Corollary 3.1.25. (Gradient descent converges to minimizers) [Corollary 2, [85]]

Let g(xk) = xk−α∇f(xk) be the gradient descent algorithm, where f ∈ C2 and ∥∇2f(x)∥2 ≤

L. Then if α < 1/L, the stable set of the strict saddle points has measure zero, meaning

µ(Wg) = 0.

We can express the kth iterate of NEAR-DGD as a mapping applied either on the xk

or the yk iterates produced by Equations (1.0.5) and (1.0.6) respectively as follows,

(3.1.13a) gxk(x) = Zt(k)(x− α∇f(x))

(3.1.13b) gyk(y) = Zt(k)y − α∇f(Zt(k)y).

with Dgyk(y) = Zt(k)
(
I − α∇2f(Zt(k)y)

)
and Dgxk(x) = Zt(k)(I − α∇2f(x)).

93

To to utilize Theorem 3.1.22 for establishing the non-convergence of NEAR-DGD to

strict saddles, we first need to confirm that the mappings in Eq. (3.1.13) are diffeomor-

phisms. In the following Lemma we show that this is indeed the case for any fixed value

of the sequence {t(k)}.

Lemma 3.1.26. (Diffeomorphism) Let the steplength in Eq. (3.1.13a) and Eq.

(3.1.13b) satisfy α < 1/L. Then the mappings gxk , g
y
k : Rnp → Rnp are diffeomorphisms

for any positive integer value value t(k).

Proof. It suffices to show that det(Dgyk(y)) ̸= 0 for all y ∈ Rnp and det(Dgxk(x)) ̸= 0

for all x ∈ Rnp. For some vector v ∈ Rnp, let λi(∇2f(v)) be the eigenvalues of the Hessian

∇2f(v). Assumption 3.1.2 implies that λi(∇2f(v)) ≤ L for all i ∈ {1, ..., np}. Moreover,

the determinants of both Dgxk and Dgyk can be decomposed in the form det (Dgk(·)) =

det(Zt(k)) det(I − α∇2f(v)) =
(∏

i λ
t(k)
i (Z)

)
(
∏

i(1− αλi(∇2f(v))). Thus, det (Dgk(·)) >

0 by the positive-definiteness of Z and α < 1/L. □

We continue our analysis by proving that the NEAR-DGDt variant almost surely

avoids the strict saddles of the Lyapunov function (3.1.2).

Theorem 3.1.27. (Convergence to 2nd order stationary points (NEAR-

DGDt)) Let {yk} be the sequence of iterates generated by NEAR-DGDt under steplength

α < 1/L. Moreover, let us define the set of unstable fixed points A⋆g of NEAR-DGDt

and the set of strict saddles Y⋆ of the Lyapunov function (3.1.2) following Def. 3 and 4,

respectively. Then if the Lyapunov function Lt (3.1.2) satisfies the strict saddle property

(i.e. its critical points are either minima or strict saddles), the sequence {yk} converges

almost surely to a 2nd order stationary point of Lt.

94

Proof. We first observe that NEAR-DGDt is expressed as the mapping gyt : Rnp →

Rnp for fixed t ∈ N+, which is a diffeomorphism by Lemma 3.1.26. Hence, to prove almost

sure avoidance of strict saddles with Theorem 3.1.23 it suffices to show that Y⋆ ⊂ A⋆g.

Every critical point y⋆ of (3.1.2) satisfies ∇Lt(y⋆) = 0, i.e.

Zt∇f(Zty⋆) +
1

α
Zty⋆ − 1

α
Z2ty⋆ = 0.

Since Z is positive-definite and by thus non-singular, we can multiply both sides of the

equality above with αZ−t and re-arrange the resulting terms to obtain y⋆ = gyt (y
⋆), which

confirms that y⋆ is a fixed point of NEAR-DGDt.

The Hessian of Lt (3.1.2) at y⋆ is given by,

∇2Lt(y⋆) = Zt∇2f(Zty⋆)Zt +
1

α
Zt(I − Zt)

=
1

α
(I −Dgyt (y⋆))Zt.

(3.1.14)

We define the matrix P := αZ− t
2∇2Lt(y⋆)Z− t

2 . Using the positive-definiteness of Z, we

obtain from (3.1.14)

I −Dgyt (y⋆) = α∇2Lt(y⋆)Z−t = Z
t
2PZ− t

2 ,

which implies that (I −Dgyt (y⋆)) and P are similar matrices and have identical spectrums.

Moreover, the matrix Z− t
2 is symmetric by Assumption 3.1.1. Hence, P and (α∇2Lt(y⋆))

are congruent and by Sylvester’s law of inertia [Theorem 4.5.8, [69]] they have the same

number of negative eigenvalues. Given that ∇2Lt(y⋆) has at least one negative eigenvalue

95

by Def. 4, we conclude that so does P and there exists index i such that 1−λi(Dgyt (y⋆)) < 0

or λi(Dg
y
t (y

⋆)) > 1. Applying Corollary 3.1.24 completes the proof. □

We conclude our convergence analysis by demonstrating that the NEAR-DGD+ vari-

ant locally avoids the strict saddles of the function f : Rp → R of Problem 1.0.1 almost

surely providing that the steplength α in Eq. (1.0.6) is chosen within an appropriate range.

Theorem 3.1.28. (Convergence to SOS (NEAR-DGD+)) Suppose that the

function f(x) =
∑n

i=1 fi(x) of Problem 1.0.1 has a non-empty set of minimizers and

satisfies the strict saddle property. Moreover, suppose that f is C2 and has Lf -Lipschitz

continuous gradients. Then under steplength satisfying

α < min

{
1 +
√

5

2L
,
β−1 − 1

L
,
n

Lf

}

in Eq. (1.0.6), the sequences of the local {xi,k} iterates of the NEAR-DGD+ method gen-

erated by Eq. (1.0.5) with t(k) = k almost surely converge to a minimizer of f .

Proof. First, we observe that NEAR-DGD+ can be viewed as a successive application

of the mappings

gxk(x) = Zk(x− α∇f(x)), k = 1, 2,

Let v1, ..., vn be the eigenvectors of W with corresponding eigenvalues 0 < λ1 ≤ ... < λn,

where vn = 1n and λn = 1. Any vector u ∈ Rn can be written as u =
∑n

i=1 aivi for some

real coefficients ai ∈ R with an = 1
n
1Tnu. Multiplying u with Wk and taking the limit

96

k →∞ yields,

lim
k→∞

Wku = lim
k→∞

(
n∑
i=1

aiW
kvi

)

= lim
k→∞

(
n∑
i=1

aiλ
k
i vi

)
=

(
1

n
1Tnu

)
1n,

due to λki → 0 for i ̸= n.

Hence, successive applications of gxk(x) as k → ∞ converge to the mapping gx∞ given

by

gx∞(x) = M(x− α∇f(x)).

The mapping gx∞ is not a diffeomorphism due to the positive semi-definiteness of M.

However, by Lemma 3.1.15 we have ∥(I −M)xk∥ → 0, and applying gx∞ to x̄∞ = Mx∞

yields

gx∞(x̄∞) = Mx̄∞ − αM∇f(x̄∞) = x̄∞ − αM∇f(x̄∞).

Let x̄∞ = n−1
∑n

i=1 x
∞
i ∈ Rp so that Mx̄∞ = x̄∞ ⊗ 1n. The preceding relation implies

that the mapping induced by gx∞ on x̄∞ is equivalent to the standard centralized gradient

descent method with steplength αn−1, i.e.

gx∞

x̄∞

x̄∞

...

x̄∞

=

x̄∞

x̄∞

...

x̄∞

− α

n

∑n
i=1∇fi(x̄∞)∑n
i=1∇fi(x̄∞)

...∑n
i=1∇fi(x̄∞)

= (x̄∞ − α

n
∇f(x̄∞))⊗ 1n.

97

Applying Corollary 3.1.25 completes the proof. □

3.2. Numerical Results

3.2.1. Quadratic problem

We evaluate the empirical performance of NEAR-DGD on the following regularized qua-

dratic problem,

min
x∈Rp

f(x) =
1

2

n∑
i=1

(
∥x∥2Qi

)
+

1

4
∥x∥4DI

,

where I ∈ {1, ..., p} is some positive index and Qi ∈ Rp×p and DI ∈ Rp×p are diagonal

matrices constructed as follows: qijj < 0 if j = I and qijj > 0 otherwise, and DI =

c · eIe′I , where c > 0 is a constant and eI is the indicator vector for the I th element. It

is easy to check that f has a unique saddle point at x = 0 and two minima at x⋆ =

±1
c

(√∑n
i=1−qiII

)
eI . We can distribute this problem to n nodes by setting fi(x) =

1
2
∥x∥2Qi + 1

4n
∥x∥4DI

. Moreover, each fi has Lipschitz gradients in any compact subset of

Rp.

We set p = I = 4 for the purposes of our numerical experiment. The matrices Qi

were constructed randomly with qijj ∈ (−1, 0) for j = I and qijj ∈ (0, 1) otherwise, and

the parameter c of matrix DI was set to 1. We allocated each fi to a unique node

in a network of size n = 12 with ring graph topology. We tested 6 methods in total,

including DGD [111, 186], DOGT (with doubly stochastic consensus matrix) [40], and 4

variants of the NEAR-DGD method: i) NEAR-DGD1 (one consensus round per gradient

evaluation), ii) NEAR-DGD5 (5 consensus rounds per gradient evaluation), iii) a variant

of NEAR-DGD where the sequence of consensus rounds increases by 1 at every iteration,

and to which we will refer as NEAR-DGD+, and iv) a practical variant of NEAR-DGD+,

98

where starting from one consensus round/iteration, we double the number of consensus

rounds every 100 gradient evaluations. We will refer to this last modification as NEAR-

DGD+
100. All algorithms were initialized from the same randomly chosen point in the

interval [−1, 1]np. We manually tuned the steplength to α = 10−1 to achieve the fastest

possible convergence rates, and used the same value for all methods for fairness.

In Fig. 3.1, we plot the objective function error f(x̄k)−f ⋆ where f ⋆ = f(x⋆) (Fig. 3.1a)

and the distance ∥x̄k∥ of the average iterates to the saddle point x = 0 (Fig. 3.1b) versus

the number of iterations/gradient evaluations for all methods. In Fig. 3.1a, we observe

that convergence accuracy increases with the value of the parameter t of NEAR-DGDt, as

predicted by our theoretical results. NEAR-DGD1 performs comparably to DGD, while

the two variants of NEAR-DGD paired with increasing sequences of consensus rounds

per iteration, i.e. NEAR-DGD+ and NEAR-DGD+
100, achieve exact convergence to the

optimal value with faster rates compared to DOGT. All methods successfully escape the

saddle point of f with approximately the same speed (Fig. 3.1b). We noticed that the

trends in Fig. 3.1b were very sensitive to small changes in problem parameters and the

selection of initial point.

In Fig. 3.2, we plot the objective function error f(x̄k) − f ⋆ versus the cumulative

application cost (per node) for all methods, where we calculated the cost per iteration

using the framework proposed in [13],

Cost = cc ×#Communications + cg ×#Computations,

99

(a) Objective function error (b) Distance to x = 0 (saddle)

Figure 3.1. Distance to f ⋆ (left) and to saddle point (right)

where cc and cg are constants representing the application-specific costs of one commu-

nication and one computation operation, respectively. In Fig. 3.2a, the costs of com-

munication and computation are equal (cc = cg) and DOGT outperforms NEAR-DGD+

and NEAR-DGD+
100 since it requires only two communication rounds per gradient evalu-

ation to achieve exact convergence. Conversely, in Fig. 3.2b, the cost of communication

is relatively low compared to the cost of computation (cc = 10−2cg). In this case, NEAR-

DGD+ converges to the optimal value faster than the remaining methods in terms of total

application cost.

3.2.2. Neural Networks

We conclude the Numerical Results section of this chapter by assessing the performance of

NEAR-DGD on the classification of the MNIST dataset [42] with a feed-forward Neural

100

(a) cg = 1, cc = 1 (b) cg = 1, cc = 10−2

Figure 3.2. Objective function error as a function of cumulative application
cost (per node)

Network (NN) trained in a decentralized manner. We report results for the following meth-

ods: i) NEAR-DGD1, ii) NEAR-DGD2, iii) DGD [111, 186] and iv) DOGT [40] with a

doubly-stochastic matrix. We note that methods (i) and (iii) have the same iteration cost

as they perform the same amount of computation and communication at every iteration,

and the same is true for methods (ii) and (iv). For the purposes of our experiment, we

implemented a 2-hidden layer NN in Python with layer dimensions (784, 128, 64, 10) and

with cross-entropy as the loss function. We used the sigmoid activation function for the

first two layers and the softmax activation function for the output layer.

The training set for MNIST contains 6 · 104 samples in total, which we shuffled and

evenly distributed among n agents connected in a network with ring graph topology.

All nodes computed full gradients using all 6 · 104/n samples at their disposal at every

iteration. The weights and biases of each layer were randomly initialized at the same point

101

for all methods (i)− (iv), and grid search was used to find the maximum learning rate α

that allows each method to successfully converge. At every iteration of each algorithm

we computed the average model, i.e. the model whose parameters are the averages of the

local parameters at each node, and tracked the following performance-related metrics:

(1) the value of the loss function for the average model calculated in a forward pass

using all 6 · 104 training samples as input;

(2) the testing accuracy of the average model using all 104 samples in the testing set

as input; and

(3) the consensus violation, i.e. the sum of the distances (l2 norms) of the local

models to the average model over all nodes and model parameters.

Finally, we repeated the experiment for two different network sizes, n = 10 (Fig. 3.3) and

n = 30 (Fig. 3.4).

The values of the metrics (1), (2) and (3) for network size n = 10 and methods (i)-(iv)

are plotted in Figures 3.3a, 3.3b and 3.3c, respectively. The two variants of NEAR-DGDt

and DGD were able to reach convergence with learning rate α = 10−3, while DOGT re-

quired a smaller learning rate (α = 10−4) and as a result is the slowest method to converge,

although it achieves the smallest consensus error out of all methods (Fig. 3.3c). DGD,

NEAR-DGD1 and NEAR-DGD2 perform equally well with respect to loss function value

and testing accuracy (Figures 3.3a and 3.3b), however NEAR-DGD2 outperforms DGD

and NEAR-DGD1 in the consensus violation metric (3.3c), demonstrating the advantage

of performing additional consensus rounds and confirming our theoretical analysis.

Our results for metrics (1), (2) and (3), network size n = 30 and methods (i)-(iv) are

plotted in Figures 3.4a, 3.4b and 3.4c. All methods converged with learning rate α = 10−3

102

in this instance, with NEAR-DGD2 converging the fastest out of all methods and DOGT

the slowest (Figures 3.4a and 3.4b). In terms of agreement between nodes, NEAR-DGD2

and DOGT achieve the lowest consensus error (Fig. 3.4c), with NEAR-DGD2 yielding a

smoother curve. DGD and NEAR-DGD1 performed comparably in all cases.

3.3. Summary

NEAR-DGD [13] is a distributed first order method that permits adjusting the amounts

of computation and communication carried out at each iteration to balance convergence

accuracy and total application cost. We have extended to the nonconvex setting the anal-

ysis of two variants of NEAR-DGD: i) NEAR-DGDt, which performs a fixed number of

communication rounds at every iteration controlled by the parameter t, and ii) NEAR-

DGD+, a time-varying instance of NEAR-DGD that increases the number of consensus

rounds executed by 1 at every iteration. Given a connected, undirected network with

general topology, and the relatively mild assumptions of function coercivity, Lipschitz

gradient continuity and satisfaction of the Kurdyka- Lojasiewicz (KL) property in the en-

tire domain, we have shown that NEAR-DGDt converges to the set of critical points of a

custom Lyapunov function which approaches the set of first order stationary points of the

original problem as t increases, and that NEAR-DGD+ converges to first order station-

ary points of the original problem while its iterates achieve consensus exponentially fast.

Moreover, using recent results from dynamical systems theory, we were able to establish

almost sure avoidance of strict saddles for both variants. Our numerical results confirm

our theoretical analysis and demonstrate that NEAR-DGD can perform favorably against

state-of-the-art methods for nonconvex problems.

103

(a) Loss function value (aver-
age model)

(b) Testing accuracy (average
model)

(c) Consensus violation

Figure 3.3. Performance of distributed optimization methods for a 2-hidden
layer NN classifying the MNIST dataset, network size N = 10

104

(a) Loss function value (aver-
age model)

(b) Testing accuracy (average
model)

(c) Consensus violation

Figure 3.4. Performance of distributed optimization methods for a 2-hidden
layer NN classifying the MNIST dataset, network size N = 30

105

CHAPTER 4

Asynchronous Distributed Rendezvous With Probabilistic

Guarantees

4.1. Algorithm Development

For the rest of this Chapter, we focus on the case of fixed, undirected network topolo-

gies, implicitly assuming connectivity maintenance. We adopt point models for the agents,

and do not consider interagent and agent-obstacle collisions. Moreover, we assume that

all agents satisfy the following conditions:

C1: Agents have access to a global, fixed coordinate system;

C2: Each agent can store a number of packets equal to the size of its neighborhood;

C3: Agents can instantaneously evaluate gradients, read stored packets and broadcast

messages over the network;

C4: Agents are not equipped with sensors capable of detecting the positions of other

agents; conversely, this information can only be obtained via the communication channel.

Each agent i ∈ V is initially located at position xi,0 ∈ Rp with its direction gi,0 set

at gi,0 = 0 to enforce stillness. Moreover, each agent arbitrarily initializes the stored

positions xbj,0 of its neighbors for all pairs (i, j) ∈ E (eg. xbj,0 can be set equal to zero

or the actual position of agent j if available or any other value). All agents know in

advance the following global parameters: a velocity parameter c > 0 which serves as a

scaling factor for all agents’ velocities and a parameter α > 0 that controls the accuracy

106

of the rendezvous. In line with existing works utilizing Poisson clocks for the analysis of

asynchronous distributed algorithms [133, 97], we define each local agent activation, i.e.

each arrival of a local Poisson clock, to be an iteration count k = 1, 2, ... of the algorithm.

We assume that only a single agent can be active at each iteration count.

If agent i is active at the kth iteration count then it performs the following actions: i)

it immediately senses its current position xi,k and broadcasts it to its neighbors, effectively

setting xbi,k = xi,k; and ii) it reads from its buffer the outdated values xbj,k−1 for (i, j) ∈ E

(if there are multiple values for xbj,k−1 in its buffer, we assume agent i can deduce which

is the most recent one) and sets its velocity (controller input) equal to c · gi,k where gi,k is

computed using the equation below

(4.1.1) gi,k = xwi,k − α∇fi(xwi,k)− xi,k,

where xwi,k = wiixi,k +
∑

j ̸=iwijx
b
j,k−1 and wi,j is the element in the ith row and jth column

of a matrix W ∈ Rn×n satisfying the following assumption.

Assumption 4.1.1. (Consensus matrix) The matrix W ∈ Rn×n has the following

properties: i) symmetry; ii) double stochasticity; iii) wij > 0 if and only if (i, j) ∈ E or

i = j and wij = 0 otherwise; and iv) positive-definiteness.

Conversely, if agent i is inactive during the kth iteration count, it continues to move in

the most recently calculated direction (or remains still if it has never been activated) and

inactively listens for incoming messages from neighbors. In the absence of collisions and

other disturbances, it follows that regardless of the state of agent i (active or inactive),

107

its position at kth iteration will be

xi,k = xi,k−1 + c · δt(k) · gi,k−1,

where δt(k) is the elapsed (continuous) time between the kth and the (k − 1)th iteration,

xi,k−1 is the position of agent i at the (k − 1)th iteration, and gi,k−1 is the direction of

agent i at the (k − 1)th iteration. The entire procedure is summarized in Algorithm 2.

Algorithm 2: Asynchronous distributed rendezvous for continuously moving
agents at node i

Initialization: position xi,0 ∈ R, neighbor positions xbj,0 for (i, j) ∈ E , direction

gi,0 = 0, velocity parameter c > 0, proximity parameter α > 0;
for k = 1, 2, ... do

if i is active at k then
sense current position xi,k = xi,k−1 + c · δt(k) · gi,k−1;

broadcast xi,k to neighbors, i.e. set xbi,k = xi,k;

read received neighbor positions xbj,k−1 for all (i, j) ∈ E ;

calculate new direction gi,k using Eq. (4.1.1);
set velocity equal to c · gi,k;

else
continue moving in the direction gi,k−1;
inactively listen for messages from neighbors;

end
end

For simplicity, we assume that the space dimension p is equal to 1 for the remainder of

this Chapter. We note, however, that the analysis can be directly extended to any value

of p. We define the function F : Rn → R

F (X) =
n∑
i=1

fi(xi),

108

where X = [x1, ..., xn]′ ∈ Rn is the column-wise concatenation of the variables xi for i ∈ V .

We adopt the following standard assumptions on the function F .

Assumption 4.1.2. (Lipschitz gradients) The function F has L-Lipschitz contin-

uous gradients.

Assumption 4.1.3. (Strong convexity) The function F is µ-strongly convex.

Moreover, let Φk = diag(ϕ11,k, ..., ϕnn,k) ∈ Rn×n be a diagonal selection matrix, such

that ϕii,k = 1 if agent i is active at iteration k and ϕjj,k = 0 for j ̸= i. We then can

compactly express the iterates of Algorithm 2 as

Xk = Xk−1 + cδt(k)(Xw
k−1 − α∇F (Xw

k−1)−Xb
k−1) (position)(4.1.2)

Xb
k = ΦkXk + (I − Φk)X

b
k−1 (buffer)(4.1.3)

Xw
k = Φk(WdXk + (W −Wd)X

b
k−1) + (I − Φk)X

w
k−1 (consensus),(4.1.4)

where Wd = diag(w11, ..., wnn) ∈ Rn×n is the diagonal of the consensus matrix W and

Xk = [x1,k, ..., xn,k]
′ ∈ Rn, Xb

k = [xb1,k, ..., x
b
n,k]

′ ∈ Rn and Xw
k = [xw1,k, ..., x

w
n,k]

′ ∈ Rn are the

column-wise concatenations of the position variables xi,k, the stored positions xbi,k known

to neighbors and the “consensual” positions xwi,k at iteration k, respectively. We note that

the variables xwi,k are calculated only during active states to update the directions gi,k

using Eq. (4.1.1).

In the next section, we derive the convergence properties of Algorithm 2. Namely,

we demonstrate that agents converge to an arbitrarily small neighborhood of the optimal

solution x⋆ of Problem 1.0.1 while achieving approximate rendezvous.

109

4.2. Convergence Analysis

We begin this section by defining the following function that will play a key role in

our analysis,

(4.2.1) Fα(X) = F (WX) +
1

2α
∥X∥2W−W 2 ,

where ∥ · ∥ denotes the l2-norm, i.e. ∥X∥2 =
∑n

i=1 x
2
i for X = [x1, ..., xn]′ ∈ Rn.

The function Fα is the sum of a strongly convex and a convex function and therefore

strongly convex. We will demonstrate that the iterates of Algorithm 2 converge to the

unique minimizer X⋆ of Fα.

We also define the distance metric ∆α(X, Y) = X − Y − α(∇F (X) − ∇F (Y)) for

any two vectors X, Y ∈ Rn and the following quantities we will invoke throughout our

analysis

(4.2.2)

E⋆k = Xk −X⋆ (distance to optimality)

Ewk = WXb
k −Xw

k (consensus error)

Ebk = Xk −Xb
k (buffer error).

Using the notation above, we can re-write Equations (4.1.2)-(4.1.4) as

Xk = Xk−1 + cδt(k)Qk−1(4.2.3)

Xb
k = Xb

k−1 + ΦkEbk−1 + cδt(k)ΦkQk−1(4.2.4)

Xw
k = Xw

k−1 + cδt(k)ΦkWdQk−1 + ΦkWdEbk−1 + ΦkEwk−1,(4.2.5)

110

where Qk = −αW−1∇Fα(Xk) + Ebk + ∆α(WXb
k,WXk) + ∆α(Xw

k ,WXb
k). In the next

subsection, we state a number of preliminary results necessary for our main analysis.

4.2.1. Preliminaries

The function Fα (4.2.1) is the sum of functions with Lipschitz continuous gradients, and

therefore also has Lipschitz continuous gradients. We explicitly calculate the Lipschitz

constant of Fα in the following Lemma.

Lemma 4.2.1. (Lipschitz gradients) The function Fα : Rn → R has Lα-Lipschitz

continuous gradients, where Lα = L+ α−1(1− β) and β is the smallest eigenvalue of the

consensus matrix W .

Proof. For any pair X, Y ∈ Rn we have

∥∇Fα(X)−∇Fα(Y)∥ = ∥W (∇F (WX)−∇F (WY) + α−1(I −W)(X − Y))∥

≤ L∥X − Y ∥+ α−1∥(I −W)(X − Y)∥,

where we used the non-expansiveness of W twice and applied the triangle inequality to

get the second inequality.

Observing that the maximum eigenvalue of I −W is 1− β concludes the proof. □

Due to the randomness of the Poisson clocks associated with each agent, in order to

derive convergence guarantees for Algorithm 2 it is necessary to examine the expected

values of the errors in Eq. (4.2.2). We calculate the expectations for various quantities of

interest that emerge in the analysis of Algorithm 2 in the next Lemma.

111

Lemma 4.2.2. (Expectations) Recall that λi is the Poisson clock parameter of

agent i and consider the (continuous) time δt(k) elapsed between the kth and (k − 1)th

global clock ticks and the selection matrix Φk = diag(ϕ11,k, ..., ϕnn,k) at the kth global clock

tick. The following relations hold for all k ≥ 1 and deterministic vectors X ∈ Rn,

E[cδt(k)|Fk−1] = c̃, E[c2δ2t (k)|Fk−1] = 2c̃2,(4.2.6)

E[∥ΦkX∥2|Fk−1] ≤ Π∥X∥2, E[∥(I − Φk)X∥2|Fk−1] ≤ (1− π)∥X∥2,(4.2.7)

E[c2δt(k)2∥ΦkX∥2|Fk−1] ≤ 2c̃2Π∥X∥2,E[c2δt(k)2∥(I − Φk)X∥2|Fk−1] ≤ 2c̃2(1− π)∥X∥2,

(4.2.8)

where Fk−1 is the sigma-algebra containing the history of the method up to and including

the (k − 1)th iteration, c̃ = c (
∑n

i=1 λi)
−1
, Π = maxj λj (

∑n
i=1 λi)

−1
is the maximum acti-

vation probability among agents and π = minj λj (
∑n

i=1 λi)
−1

is the minimum activation

probability among agents.

Proof. Eq. (4.2.6) follows directly from δt(k) being an exponential random variable

with parameter
∑

i λi. Let pi = λi (
∑

i λi)
−1 be the activation probability of agent i.

To prove Eq. (4.2.7), we observe that Φ2
k = Φk and hence for any deterministic X =

[x1, ..., xn]′ ∈ Rn we have

E[∥ΦkX∥2|Fk−1] =
n∑
i=1

E[ϕii,k|Fk−1]x
2
i =

n∑
i=1

pix
2
i ≤ Π∥X∥2,

112

and

E[∥(I − Φk)X∥2|Fk−1] = E[∥X∥2 − ∥ΦkX∥2|Fk−1] =
n∑
i=1

(1− pi)x2i ≤ (1− π)∥X∥2,

proving Eq. (4.2.7).

We now prove Eq. (4.2.8). Let ti be an exponential random variable denoting the

time between interarrivals for the ith agent, i.e. ti is an exponential random variable with

parameter λi. If node i is inactive at the kth global clock tick, the quantity ϕii,kδt(k)

satisfies

P(ϕii,kδt(k) = 0|Fk−1) = P(ϕii,k = 0|Fk−1) = 1− pi.

If agent i is active at the kth global clock tick, then for any positive scalar τ we have

P(0 < ϕii,kδt(k) ≤ τ |Fk−1) = P(ti = min{t1, ..., tn}, ti ≤ τ |Fk−1).

Let ψi be the pdf of ti and let λ̄ =
∑

i λi. The preceding relationship yields

P(ti = min{t1, ..., tn}, ti ≤ τ |Fk−1) =

∫ τ

0

ψi(τ − s)
∏
j ̸=i

P(tj > τ − s)ds

=

∫ τ

0

λie
−λi(τ−s)

∏
j ̸=i

e−λj(τ−s)ds

= λie
−λ̄τ
∫ τ

0

eλ̄sds = pi

(
1− e−λ̄τ

)
.

113

Hence the pdf of ϕii,kδt(k) conditioned on Fk−1 and τ > 0 is

d
(
pi(1− e−λ̄τ)

)
dτ

= λie
−λ̄τ ,

which yields the expectation

E[ϕii,kδt(k)2|Fk−1] = λi

∫ ∞

0

τ 2e−λ̄τdτ

= −λi
(
τ 2

λ̄
e−λ̄τ +

2

λ̄3
(λ̄τe−λ̄τ + e−λ̄τ)

) ∣∣∣∣∞
0

=
2λi
λ̄3

= 2piλ̄
−2.

Hence, for any deterministic vector X ∈ Rn we have

E[c2δt(k)2∥ΦkX∥2|Fk−1] = c2
p∑
i=1

E[δt(k)2ϕii,k|Fk−1]x
2
i = 2c̃2

p∑
i=1

pix
2
i ≤ 2c̃2Π∥X∥2,

and

E[c2δt(k)2∥(I − Φk)X∥2|Fk−1] = E[c2δt(k)2(∥X∥2 − ∥ΦkX∥2)|Fk−1]

= c2
p∑
i=1

E[δt(k)2 − δt(k)2ϕii,k|Fk−1]x
2
i

= 2c̃2
p∑
i=1

(1− pi)x2i ≤ 2c̃2(1− π)∥X∥2,

thus proving Eq. (4.2.8). □

The following Theorem has been adapted from [164].

Theorem 4.2.3. (Conditional form of Jensen’s inequality)[[164], Ch. 7, The-

orem 10] Let (Ω,G, P) be a probability space and let g be a convex function over (−∞,+∞)

and X be a random variable such that X and g(X) have finite expectations. If B is any

114

sub-sigma field of G, then

g(E[X|B]) ≤ E[g(X)|B] a.s.

The following result is a variation of the standard convergence result for the iterates of

the centralized gradient descent method (eg. [[115], Theorem 2.1.15]), and we will employ

it in our main analysis to determine a suitable range for the proximity parameter α.

Lemma 4.2.4. (Contraction) Under Assumptions 4.1.2 and 4.1.3, consider the

difference ∆α(X, Y) = X − Y − α(∇F (X) − ∇F (Y)) for any two vectors X, Y ∈ Rn.

Then if α < 2/(µ+ L), the following inequality holds

∥∆α(X, Y)∥2 ≤ γ2∥X − Y ∥2,

where γ2 = 1− 2αµL
µ+L

.

Proof. Taking the squared norm of ∆α(X, Y) yields

∥∆α(X, Y)∥2 = ∥X − Y ∥2 + α2∥∇F (X)−∇F (Y)∥2 − 2α⟨X − Y,∇F (X)−∇F (Y)⟩

≤ ∥X − Y ∥2 + α2∥∇F (X)−∇F (Y)∥2

− 2αµL

µ+ L
∥X − Y ∥2 − 2α

µ+ L
∥∇F (X)−∇F (Y)∥2,

where we used [[115], Theorem 2.1.12] to bound the inner product in the first equality.

Observing that the coefficient of the term ∥∇F (X) − ∇F (Y)∥2 is strictly negative

concludes the proof. □

115

We conclude this subsection with the following Lemma adapted from [125]. We will

use Lemma 4.2.5 in the next subsection to show that Algorithm 2 acts like a contractive

operator on the expectations of the errors listed in Eq. (4.2.2).

Lemma 4.2.5. [[125], Lemma 5] Let S = [sij] ∈ R3×3 be a nonnegative, irreducible

matrix with sii < λ∗ for some λ∗ > 0 for i = 1, 2, 3. Then ρ(S) < λ⋆ iff det(λ∗I −S) > 0.

4.2.2. Main analysis

We begin our analysis by deriving an upper bound for the displacement (up to a scaling

factor) Qk−1 between two consecutive iterates Xk and Xk−1 in Eq. (4.2.3) with respect to

the errors E⋆, Eb and Ew defined in Eq. (4.2.2). As a result of Lemma 4.2.6, we obtain a

range for the proximity parameter α of Algorithm 2.

Lemma 4.2.6. (Displacement) Let Qk = −αW−1∇Fα(Xk)+Ebk+∆α(WXb
k,WXk)+

∆α(Xw
k ,WXb

k) and suppose that the parameter α satisfies α < 2/(µ + L). Then for all

k ≥ 1 we have

∥Qk∥ ≤ αβ−1Lα∥E⋆k∥+ (1 + γ)∥Ebk∥+ γ∥Ewk ∥,

where β is the smallest eigenvalue of the consensus matrixW , Lα is defined in Lemma (4.2.1)

and γ =
√

1− 2αµL
µ+L

where L and µ are defined in Assumptions 4.1.2 and 4.1.3, respec-

tively.

116

Proof. Taking the norm of Qk and applying the triangle inequality yields

∥Qk∥ ≤ α∥W−1∇Fα(Xk)∥+ ∥Ebk∥+ ∥∆α(WXb
k,WXk)∥+ ∥∆α(Xw

k ,WXb
k)∥

≤ αβ−1∥∇Fα(Xk)∥+ ∥Ebk∥+ ∥∆α(WXb
k,WXk)∥+ ∥∆α(Xw

k ,WXb
k)∥,

where the last inequality holds due to the spectral properties of W .

Applying the Lipschitz gradient continuity of Fα and Lemma 4.2.1 on the first term

of the preceding relation and Lemma 4.2.4 on the last two terms concludes the proof. □

Next, we derive a bound on the expected distance to optimality with respect to the ex-

pected errors defined in Eq. (4.2.2) at the previous iteration. We derive similar results for

the buffer error and the consensus error defined in Eq. (4.2.2) in Lemmas 4.2.8 and 4.2.9,

respectively.

Lemma 4.2.7. (Distance to optimality) Suppose that the parameter α in (4.1.2)

satisfies α < 2/(µ+L). Then the expected norm of the distance to optimality E⋆k = Xk−X⋆

satisfies the following relation for all k ≥ 1

E[∥E⋆k∥] ≤ (
√

1 + 2c̃2 − 2c̃+ c̃γ)E[∥E⋆k−1∥] + c̃(1 + γ)E[∥Ebk−1∥] + c̃γE[∥Ewk−1∥],

where c̃ = c (
∑

i λi)
−1 and γ =

√
1− 2αµL

µ+L
.

117

Proof. Subtracting X⋆ from (4.2.3) and taking the norm on both sides yields

∥E⋆k∥ ≤ ∥E⋆k−1 − αcδt(k)W−1∇Fα(Xk−1)∥+ cδt(k)∥Ebk−1∥

+ cδt(k)∥∆α(WXb
k−1,WXk−1)∥+ cδt(k)∥∆α(Xw

k−1,WXb
k−1)∥

≤ ∥E⋆k−1 − αcδt(k)W−1∇Fα(Xk−1)∥+ cδt(k)(1 + γ)∥Ebk−1∥+ cδt(k)γ∥Ewk−1∥,

(4.2.9)

where we applied Lemma 4.2.4 to get the last inequality.

For the first term in (4.2.9) we have

∥E⋆k−1 − αcδt(k)W−1∇Fα(Xk−1)∥ = ∥E⋆k−1 + cδt(k)(WXk−1 −Xk−1 − α∇F (WXk−1))∥

= ∥(1− cδt(k))(E⋆k−1) + cδt(k)∆α(WXk−1,WX⋆)∥

≤ (|1− cδt(k)|+ cδt(k)γ)∥E⋆k−1∥,

where the second equality follows from the optimality of X⋆ and we obtain the last

inequality by applying the triangle inequality and Lemma 4.2.4.

Substituting the preceding relation back in (4.2.9) yields

∥E⋆k∥ ≤ (|1− cδt(k)|+ cδt(k)γ)∥E⋆k−1∥+ cδt(k)(1 + γ)∥Ebk−1∥+ cδt(k)γ∥Ewk−1∥.

We take the expectation conditional on Fk−1 on both sides of the preceding relation and

apply Eq. (4.2.6) of Lemma 4.2.2 to obtain

E[∥E⋆k∥|Fk−1] ≤ (E[|1− cδt(k)||Fk−1] + c̃γ)∥E⋆k−1∥+ c̃(1 + γ)∥Ebk−1∥+ c̃γ∥Ewk−1∥.

118

Eq. (4.2.6) of Lemma 4.2.2 yields E[(1− cδt(k))2|Fk−1] = E[1 + c2δ2t (k)− 2cδt(k)|Fk−1] =

1 + 2c̃2 − 2c̃, and thus by Theorem 4.2.3 applied on the convex function g(x) = −
√
x

we have E[|1 − cδt(k)||Fk−1] ≤
√

1 + 2c̃2 − 2c̃. Substituting this bound in the preceding

relation and taking the total expectation on both sides completes the proof. □

Lemma 4.2.8. (Buffer error) Under parameter α < 2/(µ + L) in (4.1.2), the

following relation holds for the buffer error Ebk = Xk −Xb
k for all k ≥ 1

E[∥Ebk∥] ≤
√

1− π
(
1 + c̃

√
2(1 + γ)

)
E[∥Ebk−1∥]

+ αβ−1c̃
√

2(1− π)LαE[∥E⋆k∥] + c̃
√

2(1− π)γE[∥Ewk ∥],

where π = minj λj (
∑

i λi)
−1 is the minimum activation probability among agents, c̃ =

c (
∑

i λi)
−1, γ =

√
1− 2αµL

µ+L
, β is the smallest eigenvalue of the consensus matrix W and

Lα is defined in Lemma 4.2.1.

Proof. Subtracting (4.2.4) from (4.2.3) yields

Ebk = (I − Φk)Ebk−1 + cδt(k)(I − Φk)Qk−1.

After taking the norm on both sides of the preceding relation and applying the triangle

inequality, we obtain

∥Ebk∥ ≤ ∥(I − Φk)Ebk−1∥+ cδt(k)∥(I − Φk)Qk−1∥.

Taking the expectation conditional on Fk−1 on both sides of the relation above and in-

voking Eq. (4.2.7) and (4.2.8) of Lemma 4.2.2 and Theorem 4.2.3 applied on the convex

119

function g(x) = −
√
x yields,

E[∥Ebk∥|Fk−1] ≤
√

1− π∥Ebk−1∥+ c̃
√

2(1− π)∥Qk−1∥

≤
√

1− π∥Ebk−1∥+ c̃
√

2(1− π)
(
αβ−1Lα∥E⋆k∥+ (1 + γ)∥Ebk∥+ γ∥Ewk ∥

)
,

where we applied Lemma 4.2.6 to get the last inequality.

Taking the total expectation on both sides of the preceding relation concludes the

proof. □

Lemma 4.2.9. (Consensus error) Under parameter α < 2/(µ+L) in (4.1.2), the

following relation holds for the consensus error Ewk = WXb
k −Xw

k for all k ≥ 1

E[∥Ewk ∥] ≤ (
√

1− π + c̃(1−m)
√

2Πγ)E[∥Ewk ∥]

+ (1−m)
√

Π(1 + c̃
√

2(1 + γ))E[∥Ebk−1∥] + αβ−1c̃(1−m)
√

2ΠLαE[∥E⋆k−1∥],

where π = minj λj (
∑

i λi)
−1 is the minimum activation probability among agents, m is

the smallest diagonal element of the consensus matrix W , Π = maxj λj (
∑

i λi)
−1 is the

maximum activation probability among agents, c̃ = c (
∑

i λi)
−1, γ =

√
1− 2αµL

µ+L
, β is the

smallest eigenvalue of the consensus matrix W and Lα is defined in Lemma 4.2.1.

Proof. Multiplying Eq. (4.2.4) with W and subtracting Eq. (4.2.5) yields

Ewk = (I − Φk)Ewk−1 + (W −Wd)ΦkEbk−1 + cδt(k)(W −Wd)ΦkQk−1,

where we used the fact that Φk and Wd are diagonal and their multiplication is commu-

tative.

120

Taking the norm on both sides of the preceding relation and applying the triangle

inequality yields

∥Ewk ∥ ≤ ∥(I − Φk)Ewk ∥+ ∥(W −Wd)ΦkEbk−1∥+ cδt(k)∥(W −Wd)ΦkQk−1∥

≤ ∥(I − Φk)Ewk ∥+ (1−m)∥ΦkEbk−1∥+ cδt(k)(1−m)∥ΦkQk−1∥,

where the last inequality follows from the fact that the spectral radius of a non-negative

matrix is bounded by its maximum row sum [[69], Lemma 8.1.21].

We take the expectation conditional on Fk−1 on both sides of the relation above and

apply Eq. (4.2.7) and Eq. (4.2.8) of Lemma 4.2.2 in conjuction with Theorem 4.2.3 applied

for the convex function g(x) = −
√
x to obtain

E[∥Ewk ∥|Fk−1] ≤
√

1− π∥Ewk ∥+ (1−m)
√

Π∥Ebk−1∥+ c̃(1−m)
√

2Π∥Qk−1∥

≤ (
√

1− π + c̃(1−m)
√

2Πγ)∥Ewk ∥+ (1−m)
√

Π(1 + c̃
√

2(1 + γ))∥Ebk−1∥

+ αβ−1c̃(1−m)
√

2ΠLα∥E⋆k−1∥,

where we invoked Lemma 4.2.6 to get the last inequality.

Taking the total expectation on both sides of the preceding relation completes the

proof. □

We conclude our theoretical results with the following Theorem which proves the

convergence of Algorithm 2.

121

Theorem 4.2.10. (Convergence) Under Assumptions 4.1.1-4.1.3, suppose that α <

2/(µ+ L) in Eq. (4.1.2) and that the quantity c̃ = c (
∑

i λi)
−1 satisfies

(4.2.10) c̃ < min

{
2(1− γ)

2− γ2
,

1−
√

1− π
(1 + γ)

√
2(1− π)

,
1−
√

1− π
(1−m)γ

√
2Π

}
,

where γ =
√

1− 2αµL
µ+L

, π = minj λj (
∑

i λi)
−1 is the minimum activation probability among

agents, Π = maxj λj (
∑

i λi)
−1 is the maximum activation probability among agents and

m is the smallest diagonal element of the consensus matrix W .

Then there exist positive constants C and B and a scalar ρ ∈ (0, 1) such that if c̃ < C,

the distance to optimality E⋆k = Xk − X⋆ where X⋆ = arg minX Fα(X), the buffer error

Ebk = Xk −Xb
k and the consensus error Ewk = WXb

k −Xw
k satisfy

E[∥E⋆k∥] ≤ ρkB, E[∥Ebk∥] ≤ ρkB, E[∥Ewk ∥] ≤ ρkB.

Proof. Combining Lemmas 4.2.7-4.2.9 we construct the following system of linear

inequalities
E[∥E⋆k∥]

E[∥Ebk∥]

E[∥Ewk ∥]

 ≤M

E[∥E⋆k−1∥]

E[∥Ebk−1∥]

E[∥Ewk−1∥]

 ,

where the matrix M ∈ R3×3 is given by

M =

√

1 + 2c̃2 − 2c̃+ c̃γ c̃(1 + γ) c̃γ

αβ−1c̃
√

2(1− π)Lα
√

1− π
(
1 + c̃

√
2(1 + γ)

)
c̃
√

2(1− π)γ

αβ−1c̃(1−m)
√

2ΠLα (1−m)
√

Π(1 + c̃
√

2(1 + γ))
√

1− π + c̃(1−m)
√

2Πγ

 .

122

We will show that the spectral radius ρ(M) of M satisfies ρ(M) < 1 for small enough c̃.

The determinant of I −M is

det(I −M) = (1−m11)

(
(1−m22)(1−m33)−m23m32

)
−m12

(
m21(1−m33) +m23m31

)
−m13

(
m21m32 + (1−m22)m31

)
.

We first note that all elements of M are positive and that mii < 1 for i = 1, 2, 3 due to

Eq. 4.2.10 . Moreover, it is easy to verify that the following relation holds for any positive

scalar u

1− u ≤
√

1 + 2u2 − 2u ≤ 1− u+ u2,

and thus we can construct a lower bound LB for det(I −M) as follows,

det(I −M) ≥ LB = mL(1−m22)(1−m33)−mUm23m32

−m12

(
m21(1−m33) +m23m31

)
−m13

(
m21m32 + (1−m22)m31

)
,

where mU = c̃(1− γ) and mL = c̃(1− γ − c̃).

We observe that the quantity c̃−1LB is a 3rd degree polynomial of c̃, i.e. it can be

written in the form c̃−1LB = P (c̃) = a0 + a1c̃+ a2c̃
2 + a3c̃

3, where the coefficients a0 and

123

a3 are given by

a0 = (1− γ)(1 +
√

1− π)2 > 0

a3 = −2γ(1−m)(1 + γ)
√

Π(1− π) < 0.

To prove ρ(M) < 1 using Lemma 4.2.5, it suffices to guarantee that P (c̃) > 0 in the range

of c̃. Due to a3 < 0, there exists a positive scalar x such that P (x) < 0. Moreover, we have

P (0) = a0 > 0 and P (c̃) is continuous in the interval [0, x]. Hence, by the Intermediate

Value Theorem the polynomial P (c̃) has at least one root r in the interval (0, x) such

that P (c̃) > 0 in [0, r), and a range of small enough values of c̃ such that both c̃ < r and

Eq. 4.2.10 is satisfied is guaranteed to exist (we note that the closed form of this range

can be calculated with the cubic root formula). Hence, det(I −M) ≥ LB = c̃−1P (c̃) > 0

and ρ(M) < 1 by Lemma 4.2.5, which implies that for all k ≥ 1 we have
E[∥E⋆k∥]

E[∥Ebk∥]

E[∥Ewk ∥]

 ≤Mk

∥E⋆0∥

∥Eb0∥

∥Ew0 ∥

 ,

or for Ek being any of E⋆k , Ebk, Ewk

E[∥Ek∥] ≤ (ρ(M))k
√
∥E⋆0∥2 + ∥Eb0∥2 + ∥Ew0 ∥2.

Setting ρ = ρ(M) and B =
√
∥E⋆0∥2 + ∥Eb0∥2 + ∥Ew0 ∥2 concludes the proof. □

We note that Theorem 4.2.10 implies both component-wise convergence to zero in the

mean sense for the errors E⋆k , Ebk and Ewk due to ∥v∥1 ≤
√
n∥v∥ for all vectors v ∈ Rn, and

124

convergence in probability to zero for their norms by the Markov inequality, i.e. for Ek

being any of the errors E⋆k , Ebk and Ewk and all ϵ > 0 we have

P (∥Ek∥ > ϵ) ≤ ρkB

ϵ
→ 0.

4.3. Numerical Results

We evaluated the performance of Algorithm 2 on a 2-dimensional quadratic problem

(4.3.1) min
x∈R2

n∑
i=1

(
1

2
∥x∥2Qi + bix

)
,

where the function fi(x) = 1
2
∥x∥2Qi + bix is assigned to agent i ∈ V .

Each vector bi ∈ R2 for i = 1, ..., n was randomly initialized in the interval [−1, 1].

The matrices Qi ∈ R2×2 were generated as follows: for each agent i ∈ V we generated a

random orthonormal matrix Oi ∈ R2×2 and set Qi = ξi · Oi · diag([1, κ]′) · (Oi)−1, where

ξi ∈ (0, 1) is a random seed unique to each agent and κ = L/µ = 102 is the global

condition number of Problem 4.3.1. We opted for a network of size n = 5 with random

graph topology (Erdős–Rényi with edge probability 0.5) shown in Fig. 4.1a.

To construct the local Poisson clocks, we randomly initialized the rates λi (arrivals per

second) for each agent by sampling the positive side of the standard normal distribution,

resulting in the values shown in Fig. 4.1b. Let ti,j be the time of the jth activation of agent

i; then ti,j = ti,j−1 + si, where si is a random sample from an exponential distribution

with parameter λi. The global clock was created by merging and sorting the activation

times ti,j for all i ∈ V and values of j. We terminated the experiment after T = 2 · 103

125

seconds. The agents were randomly initialized on the 2-dimensional plane within the

interval [−15, 15] (in meters). We set α = 2/(µ+ L) and c = 5 · 10−2 in Eq. (4.1.2).

The results of a typical run of the experiment are shown in Figures 4.2 and 4.3. In

Fig. 4.2a, we plot the following quantities over the entire duration of the experiment:

i) the distance between the solution x⋆ ∈ R2 of Problem 1.0.1 and the average position

x̄t ∈ R2 at time t ∈ [0, T], i.e. x̄t = n−1
∑n

i=1 xi,t where xi,t ∈ R2 is the position of

agent i ∈ V at time t (solid blue line); ii) the distance to rendezvous over time, i.e.

the average 1
n

∑n
i=1 ∥x̄t − xi,t∥2 of the distances between the local positions xi,t and x̄t

(dashed orange line); and iii) the gradient norm ∥∇Fα(Xt)∥ of the function Fα 4.2.1 where

Xt = [x′1,t, ..., x
′
2,t]

′ ∈ R2n is the column-wise concatenation of the local positions xi,t. Our

numerical results confirm our theoretical analysis, namely that the system-wide iterates

Xt ∈ Rnp of Algorithm 2 converge to the minimum of Fα with linear rate, while the local

iterates xi,t ∈ Rp converge to a neighborhood of the optimal solution x⋆ of Problem 1.0.1

while achieving approximate rendezvous. In Fig. 4.2b we plot the norms of each agent’s

velocity for t ∈ [0, 200], i.e. ∥c · gi,t∥. We observe in Fig. 4.2b that agents naturally

decrease their velocities as they approach rendezvous and the optimal solution x⋆ of

Problem 1.0.1; moreover, agents that are activated more frequently have smoother velocity

curves. Finally, to facilitate the visual interpretation of our results, we have plotted

snapshots of the trajectories of all agents for time instances t = {0, 45.24, 114.61, 294.07} in

Figure 4.3. The agents are color-coded as in Fig. 4.1, and the solution x⋆ of Problem 1.0.1

is plotted with a red “x” marker.

126

(a) Network topology (b) Poisson parameters λi

Figure 4.1. Network topology (left) and Poisson parameter values λi for
agents i = 1, 2, 3, 4, 5 (right).

4.4. Summary

We considered a generalized consensus optimization version of the multi-agent ren-

dezvous problem, where each agent is associated with a local cost function and the op-

timal rendezvous point minimizes the sum of the local cost functions. In our setting,

agents randomly and independently alternate between two non-overlapping states: i) an

active state, where they can sense their current positions, broadcast messages to their

neighbors, access their local buffers where outdated information from their neighbors is

stored, and adjust their velocities; and ii) an inactive state, where they continue to move

towards the direction they calculated in their most recent active state and passively lis-

ten for messages. We proposed a fully asynchronous distributed algorithm for reaching

rendezvous over fixed, undirected networks of mobile agents that is robust to outdated

127

(a) Distances to optimality
and to rendezvous and gradi-
ent norm of Fα

(b) Agent velocities

Figure 4.2. Distance of average position x̄t = n−1
∑n

i=1 xi,t at time t ∈
[0, T] to the solution x⋆ of Problem 1.0.1 (left, solid blue line), distance to
rendezvous (left, dashed orange line) and gradient norm ∇Fα(Xt) where
Xt = [x′1,t, ..., x5,t]

′ (left, dotted green line) and velocity norms for agents
i = 1, 2, 3, 4, 5 in the interval t ∈ [0, 200] seconds (right).

information and erroneous displacements caused by inactive states, and provided prob-

abilistic guarantees for its convergence; namely we have shown that under appropriate

selection of parameters, our algorithm converges in the mean sense to an arbitrarily small

neighborhood of the optimal rendezvous point while achieving approximate rendezvous.

Our numerical simulations have confirmed our theoretical findings.

128

(a) t = 0 (b) t = 45.24

(c) t = 114.61 (d) t = 294.07

Figure 4.3. Trajectory snapshots for time instances t = 0 (top left), t =
45.24 (top right), t = 114.61 (bottom left) and t = 294.07 (bottom right).
The agents i = 1, 2, 3, 4, 5 are color-coded as in Fig. 4.1 and the optimal
solution x⋆ of Problem 1.0.1 is plotted with a red “x” marker.

129

References

[1] Absil, P.-A., Mahony, R., and Sepulchre, R. Optimization Algorithms on
Matrix Manifolds. Princeton University Press, Princeton, NJ, 2008.

[2] Acevedo, J. J., Arrue, B. C., Maza, I., and Ollero, A. A decentralized
algorithm for area surveillance missions using a team of aerial robots with differ-
ent sensing capabilities. In 2014 IEEE International Conference on Robotics and
Automation (ICRA) (2014), pp. 4735–4740.

[3] Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic, M. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. In Advances
in Neural Information Processing Systems (2017), pp. 1709–1720.

[4] Alistarh, D., Hoefler, T., Johansson, M., Khirirat, S., Konstantinov,
N., and Renggli, C. The convergence of sparsified gradient methods. In Proceed-
ings of the 32nd International Conference on Neural Information Processing Systems
(Red Hook, NY, USA, 2018), NIPS’18, Curran Associates Inc., p. 5977–5987.

[5] Alpcan, T., and Bauckhage, C. A distributed machine learning framework.
In Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held
jointly with 2009 28th Chinese Control Conference (Dec 2009), pp. 2546–2551.

[6] Ando, H., Oasa, Y., Suzuki, I., and Yamashita, M. Distributed memoryless
point convergence algorithm for mobile robots with limited visibility. IEEE trans-
actions on robotics and automation 15, 5 (1999), 818–828.

[7] Attouch, H., and Bolte, J. On the convergence of the proximal algorithm for
nonsmooth functions involving analytic features. Math. Program. 116, 1–2 (Jan.
2009), 5–16.

[8] Attouch, H., Bolte, J., Redont, P., and Soubeyran, A. Proximal alter-
nating minimization and projection methods for nonconvex problems: An approach
based on the kurdyka- lojasiewicz inequality. Math. Oper. Res. 35, 2 (May 2010),
438–457.

130

[9] Attouch, H., Bolte, J., and Svaiter, B. F. Convergence of descent meth-
ods for semi-algebraic and tame problems: proximal algorithms, forward–backward
splitting, and regularized Gauss–Seidel methods. Mathematical Programming 137,
1-2 (Feb. 2013), 91–129.

[10] Aysal, T., Coates, M., and Rabbat, M. Distributed Average Consensus With
Dithered Quantization. IEEE Transactions on Signal Processing 56, 10 (Oct. 2008),
4905–4918.

[11] Bach, F., and Moulines, E. Non-asymptotic analysis of stochastic approxima-
tion algorithms for machine learning. In Proceedings of the 24th International Con-
ference on Neural Information Processing Systems (USA, 2011), NIPS’11, Curran
Associates Inc., pp. 451–459.

[12] Beard, R. W., and Stepanyan, V. Information consensus in distributed multi-
ple vehicle coordinated control. In 42nd IEEE International Conference on Decision
and Control (IEEE Cat. No.03CH37475) (Dec 2003), vol. 2, pp. 2029–2034 Vol.2.

[13] Berahas, A. S., Bollapragada, R., Keskar, N. S., and Wei, E. Balancing
Communication and Computation in Distributed Optimization. IEEE Transactions
on Automatic Control 64, 8 (Aug. 2019), 3141–3155.

[14] Berahas, A. S., Bollapragada, R., and Wei, E. On the convergence of
nested decentralized gradient methods with multiple consensus and gradient steps,
2020.

[15] Berahas, A. S., Iakovidou, C., and Wei, E. Nested distributed gradient
methods with adaptive quantized communication, 2019.

[16] Bertsekas, D. Nonlinear programming. Athena Scientific 48 (01 1995).

[17] Bertsekas, D. P., and Tsitsiklis, J. N. Parallel and Distributed Computation:
Numerical Methods. Prentice-Hall, Inc., USA, 1989.

[18] Bianchi, P., Hachem, W., and Franck, I. A stochastic coordinate descent
primal-dual algorithm and applications. In 2014 IEEE International Workshop on
Machine Learning for Signal Processing (MLSP) (Sep. 2014), pp. 1–6.

[19] Bianchi, P., and Jakubowicz, J. Convergence of a multi-agent projected sto-
chastic gradient algorithm for non-convex optimization. IEEE Transactions on Au-
tomatic Control 58, 2 (2013), 391–405.

131

[20] Bijral, A. S. Data Dependent Convergence for Distributed Stochastic Optimiza-
tion. arXiv:1608.08337 [cs, math, stat] (Aug. 2016). arXiv: 1608.08337.

[21] Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A.,
Ivanov, V., Kiddon, C., Konečný, J., Mazzocchi, S., McMahan, H. B.,
Overveldt, T. V., Petrou, D., Ramage, D., and Roselander, J. Towards
federated learning at scale: System design, 2019.

[22] Bottou, L. Large-scale machine learning with stochastic gradient descent. In Pro-
ceedings of COMPSTAT’2010 (Heidelberg, 2010), Y. Lechevallier and G. Saporta,
Eds., Physica-Verlag HD, pp. 177–186.

[23] Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. Distributed
Optimization and Statistical Learning via the Alternating Direction Method of Mul-
tipliers. Foundations and Trends in Machine Learning 3, 1 (2010), 1–122.

[24] Bullo, F., Cortés, J., and Martinez, S. Distributed Control of Robotic Net-
works: a Mathematical Approach to Motion Coordination Algorithms. Princeton
University Press, 2009.

[25] Caicedo-Nunez, C., and Zefran, M. Consensus-based rendezvous. In 2008
IEEE International Conference on Control Applications (2008), IEEE, pp. 1031–
1036.

[26] Caicedo-Nunez, C., and Zefran, M. Probabilistic guarantees for rendezvous
under noisy measurements. In 2009 American Control Conference (2009), IEEE,
pp. 5180–5185.

[27] Cao, M., Morse, A. S., and Anderson, B. D. O. Reaching a consensus in a
dynamically changing environment: A graphical approach. SIAM journal on control
and optimization 47, 2 (2008), 575–600.

[28] Cao, Y., Stuart, D., Ren, W., and Meng, Z. Distributed containment control
for multiple autonomous vehicles with double-integrator dynamics: Algorithms and
experiments. IEEE Transactions on Control Systems Technology 19, 4 (July 2011),
929–938.

[29] Cao, Y., Yu, W., Ren, W., and Chen, G. An overview of recent progress in
the study of distributed multi-agent coordination. IEEE Transactions on Industrial
Informatics 9, 1 (Feb 2013), 427–438.

132

[30] Cardona, G. A., and Calderon, J. M. Robot swarm navigation and victim de-
tection using rendezvous consensus in search and rescue operations. Applied sciences
9, 8 (2019), 1702–.

[31] Chang, T.-H., Hong, M., Wai, H.-T., Zhang, X., and Lu, S. Distributed
Learning in the Nonconvex World: From batch data to streaming and beyond. IEEE
Signal Processing Magazine 37, 3 (May 2020), 26–38.

[32] Charron-Bost, B., and Lambein-Monette, P. Randomization and quantiza-
tion for average consensus. arXiv:1804.10919 [cs] (Apr. 2018). arXiv: 1804.10919.

[33] Chatzipanagiotis, N., and Zavlanos, M. M. A Distributed Algorithm for
Convex Constrained Optimization Under Noise. IEEE Transactions on Automatic
Control 61, 9 (Sept. 2016), 2496–2511.

[34] Chen, A., and Ozdaglar, A. A fast distributed proximal-gradient method.
pp. 601–608.

[35] Chen, J., and Sayed, A. H. Diffusion adaptation strategies for distributed opti-
mization and learning over networks. IEEE Transactions on Signal Processing 60,
8 (Aug 2012), 4289–4305.

[36] Cohen, R., and Peleg, D. Convergence properties of the gravitational algorithm
in asynchronous robot systems. SIAM journal on computing 34, 6 (2005), 1516–1528.

[37] Conte, G., and Pennesi, P. The rendezvous problem with discontinuous control
policies. IEEE transactions on automatic control 55, 1 (2010), 279–283.

[38] Cortes, J., Martinez, S., and Bullo, F. Robust rendezvous for mobile au-
tonomous agents via proximity graphs in arbitrary dimensions. IEEE transactions
on automatic control 51, 8 (2006), 1289–1298.

[39] Czyzowicz, J., Gasieniec, L., Gorry, T., Kranakis, E., Martin, R., and
Pajak, D. Evacuating robots via unknown exit in a disk. In Distributed Computing
(Berlin, Heidelberg, 2014), F. Kuhn, Ed., Springer Berlin Heidelberg, pp. 122–136.

[40] Daneshmand, A., Scutari, G., and Kungurtsev, V. Second-order guarantees
of distributed gradient algorithms. SIAM Journal on Optimization 30, 4 (2020),
3029–3068.

[41] Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M.,
aurelio Ranzato, M., Senior, A., Tucker, P., Yang, K., Le, Q. V.,
and Ng, A. Y. Large scale distributed deep networks. In Advances in Neural

133

Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1223–1231.

[42] Deng, L. The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine 29, 6 (2012), 141–142.

[43] Di Lorenzo, P., and Scutari, G. Next: In-network nonconvex optimization.
IEEE Transactions on Signal and Information Processing over Networks 2, 2 (2016),
120–136.

[44] Dimakis, A. G., Kar, S., Moura, J. M. F., Rabbat, M. G., and Scaglione,
A. Gossip algorithms for distributed signal processing. Proceedings of the IEEE 98,
11 (Nov 2010), 1847–1864.

[45] Dimakis, A. G., Sarwate, A. D., and Wainwright, M. J. Geographic Gossip:
Efficient Aggregation for Sensor Networks. Proceedings of International Conference
on Information Processing in Sensor Networks (2006), 69–76.

[46] Doan, T. T., Maguluri, S. T., and Romberg, J. Convergence rates of dis-
tributed gradient methods under random quantization: A stochastic approximation
approach. IEEE Transactions on Automatic Control (2020), 1–1.

[47] Doan, T. T., Maguluri, S. T., and Romberg, J. Fast convergence rates of
distributed subgradient methods with adaptive quantization. IEEE Transactions on
Automatic Control (2020), 1–1.

[48] Dong, Y., and Xu, S. Rendezvous with connectivity preservation problem of lin-
ear multiagent systems via parallel event-triggered control strategies. IEEE trans-
actions on cybernetics 52, 5 (2022), 2725–2734.

[49] Dua, D., and Graff, C. UCI machine learning repository, 2017.

[50] Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research 12 (07
2011), 2121–2159.

[51] Duchi, J. C., Agarwal, A., and Wainwright, M. J. Dual averaging for
distributed optimization: Convergence analysis and network scaling. IEEE Trans-
actions on Automatic Control 57, 3 (March 2012), 592–606.

[52] Eisen, M., Mokhtari, A., and Ribeiro, A. Decentralized quasi-newton meth-
ods. IEEE Transactions on Signal Processing PP (04 2016).

134

[53] El Chamie, M., Liu, J., and Başar, T. Design and analysis of distributed
averaging with quantized communication. IEEE Transactions on Automatic Control
61, 12 (Dec 2016), 3870–3884.

[54] El Chamie, M., Neglia, G., and Avrachenkov, K. Reducing communication
overhead for average consensus. In 2013 IFIP Networking Conference (May 2013),
pp. 1–9.

[55] Erdős, P., and Rényi, A. On random graphs. Publicationes Mathematicae 6
(1959), 290–297.

[56] Falcao, D. M., Wu, F. F., and Murphy, L. Parallel and distributed state
estimation. IEEE Transactions on Power Systems 10, 2 (May 1995), 724–730.

[57] Fallah, A., Gurbuzbalaban, M., Ozdaglar, A., Simsekli, U., and Zhu,
L. Robust distributed accelerated stochastic gradient methods for multi-agent net-
works, 2019.

[58] Fang, L., and Antsaklis, P. Asynchronous consensus protocols using nonlinear
paracontractions theory. IEEE transactions on automatic control 53, 10 (2008),
2351–2355.

[59] Feng Zhao, Jaewon Shin, and Reich, J. Information-driven dynamic sensor
collaboration. IEEE Signal Processing Magazine 19, 2 (March 2002), 61–72.

[60] Fercoq, O., Qu, Z., Richtárik, P., and Takáč, M. Fast distributed coordi-
nate descent for non-strongly convex losses. In 2014 IEEE International Workshop
on Machine Learning for Signal Processing (MLSP) (Sep. 2014), pp. 1–6.

[61] Giannakis, G. B., Kekatos, V., Gatsis, N., Kim, S., Zhu, H., and Wol-
lenberg, B. F. Monitoring and optimization for power grids: A signal processing
perspective. IEEE Signal Processing Magazine 30, 5 (Sep. 2013), 107–128.

[62] Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L.,
Kyrola, A., Tulloch, A., Jia, Y., and He, K. Accurate, large minibatch sgd:
Training imagenet in 1 hour.

[63] Hajinezhad, D., Hong, M., and Garcia, A. ZONE: Zeroth-Order Nonconvex
Multiagent Optimization Over Networks. IEEE Transactions on Automatic Control
64, 10 (Oct. 2019), 3995–4010.

135

[64] Hong, M. A Distributed, Asynchronous, and Incremental Algorithm for Nonconvex
Optimization: An ADMM Approach. IEEE TRANSACTIONS ON CONTROL OF
NETWORK SYSTEMS 5, 3 (2018), 11.

[65] Hong, M., and Chang, T.-H. Stochastic Proximal Gradient Consensus Over
Random Networks. IEEE Transactions on Signal Processing 65, 11 (June 2017),
2933–2948.

[66] Hong, M., Razaviyayn, M., and Lee, J. Gradient primal-dual algorithm con-
verges to second-order stationary solution for nonconvex distributed optimization
over networks. In Proceedings of the 35th International Conference on Machine
Learning (Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018), J. Dy and
A. Krause, Eds., vol. 80 of Proceedings of Machine Learning Research, PMLR,
pp. 2009–2018.

[67] Hong, M., Razaviyayn, M., Luo, Z., and Pang, J. A unified algorithmic
framework for block-structured optimization involving big data: With applications
in machine learning and signal processing. IEEE Signal Processing Magazine 33, 1
(2016), 57–77.

[68] Hong, M., Zeng, S., Zhang, J., and Sun, H. On the Divergence of Decentral-
ized Non-Convex Optimization. arXiv:2006.11662 [cs, math] (June 2020). arXiv:
2006.11662.

[69] Horn, R. A., and Johnson, C. R. Matrix analysis, 2nd ed ed. Cambridge
University Press, Cambridge ; New York, 2012.

[70] Iakovidou, C., and Wei, E. Nested distributed gradient methods with stochas-
tic computation errors. 2019 57th Annual Allerton Conference on Communication,
Control, and Computing (Allerton) (2019), 339–346.

[71] Irisarri, G., Wang, X., Tong, J., and Mokhtari, S. Maximum loadability
of power systems using interior point nonlinear optimization method. IEEE trans-
actions on Power Systems 12, 1 (1997), 162–172.

[72] Iutzeler, F., Bianchi, P., Ciblat, P., and Hachem, W. Asynchronous dis-
tributed optimization using a randomized alternating direction method of multipli-
ers. In 52nd IEEE Conference on Decision and Control (Dec 2013), pp. 3671–3676.

[73] Jadbabaie, A., Ozdaglar, A., and Zargham, M. A distributed newton
method for network optimization. In Proceedings of the 48h IEEE Conference on
Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference
(Dec 2009), pp. 2736–2741.

136

[74] Jakovetic, D., Xavier, J., and Moura, J. M. F. Fast Distributed Gradient
Methods. IEEE Transactions on Automatic Control 59, 5 (2014), 1131–1146.

[75] Johansson, B., Rabi, M., and Johansson, M. A simple peer-to-peer algorithm
for distributed optimization in sensor networks. 4705–4710.

[76] Kar, S., and Moura, J. M. F. Distributed Consensus Algorithms in Sensor
Networks With Imperfect Communication: Link Failures and Channel Noise. IEEE
Transactions on Signal Processing 57, 1 (2009), 355–369.

[77] Kashyap, A., Basar, T., and Srikant, R. Quantized Consensus. In 2006 IEEE
International Symposium on Information Theory (Seattle, WA, July 2006), IEEE,
pp. 635–639.

[78] Kekatos, V., and Giannakis, G. B. Distributed robust power system state
estimation. IEEE Transactions on Power Systems 28, 2 (2013), 1617–1626.

[79] Kia, S. S., Cortés, J., and Mart́ınez, S. Distributed convex optimization via
continuous-time coordination algorithms with discrete-time communication. Auto-
matica 55 (2015), 254 – 264.

[80] Kingma, D., and Ba, J. Adam: A method for stochastic optimization. Interna-
tional Conference on Learning Representations (12 2014).

[81] Konečný, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T.,
and Bacon, D. Federated learning: Strategies for improving communication effi-
ciency, 2016.

[82] Lan, G., Lee, S., and Zhou, Y. Communication-efficient algorithms for de-
centralized and stochastic optimization. Mathematical Programming 180, 1 (Mar.
2020), 237–284.

[83] Lavei, J., Rantzer, A., and Low, S. Power flow optimization using positive
quadratic programming. IFAC Proceedings Volumes 44, 1 (2011), 10481–10486.

[84] Lee, C.-S., Michelusi, N., and Scutari, G. Finite rate quantized distributed
optimization with geometric convergence. In 2018 52nd Asilomar Conference on
Signals, Systems, and Computers (2018), IEEE, pp. 1876–1880.

[85] Lee, J. D., Panageas, I., Piliouras, G., Simchowitz, M., Jordan, M. I.,
and Recht, B. First-order methods almost always avoid strict saddle points. Math-
ematical Programming 176, 1 (July 2019), 311–337.

137

[86] Li, B., Page, B. R., Hoffman, J., Moridian, B., and Mahmoudian, N.
Rendezvous planning for multiple auvs with mobile charging stations in dynamic
currents. IEEE Robotics and Automation Letters 4, 2 (2019), 1653–1660.

[87] Li, H., Zheng, L., Wang, Z., Yan, Y., Feng, L., and Guo, J. S-diging: A
stochastic gradient tracking algorithm for distributed optimization. IEEE Transac-
tions on Emerging Topics in Computational Intelligence (2020), 1–13.

[88] Li, J., Chen, G., Wu, Z., and He, X. Distributed subgradient method for multi-
agent optimization with quantized communication: J. LI ET AL. Mathematical
Methods in the Applied Sciences 40, 4 (Mar. 2017), 1201–1213.

[89] Li, M., Zhang, T., Chen, Y., and Smola, A. J. Efficient mini-batch training
for stochastic optimization. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (New York, NY, USA, 2014),
KDD ’14, Association for Computing Machinery, p. 661–670.

[90] Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., and Liu, J.
Can decentralized algorithms outperform centralized algorithms? a case study for
decentralized parallel stochastic gradient descent. In Advances in Neural Informa-
tion Processing Systems (2017), I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30, Curran Associates, Inc.,
pp. 5330–5340.

[91] Lian, X., Zhang, W., Zhang, C., and Liu, J. Asynchronous Decentralized
Parallel Stochastic Gradient Descent. arXiv:1710.06952 [cs, math, stat] (Oct. 2017).
arXiv: 1710.06952.

[92] Lin, J., Morse, A. S., and Anderson, B. D. O. The multi-agent rendezvous
problem. part 1: The synchronous case. SIAM journal on control and optimization
46, 6 (2007), 2096–2119.

[93] Lin, J., Morse, A. S., and Anderson, B. D. O. The multi-agent rendezvous
problem. part 2: The asynchronous case. SIAM journal on control and optimization
46, 6 (2007), 2120–2147.

[94] Ling, Q., and Tian, Z. Decentralized sparse signal recovery for compressive sleep-
ing wireless sensor networks. IEEE Transactions on Signal Processing 58, 7 (July
2010), 3816–3827.

[95] Lorenzo, P. D., and Scutari, G. Next: In-network nonconvex optimization.
IEEE Transactions on Signal and Information Processing over Networks 2, 2 (2016),
120–136.

138

[96] Low, S. H. Convex relaxation of optimal power flow—part i: Formulations and
equivalence. IEEE Transactions on Control of Network Systems 1, 1 (2014), 15–27.

[97] Mansoori, F., and Wei, E. Superlinearly convergent asynchronous distributed
network newton method. In 2017 IEEE 56th Annual Conference on Decision and
Control (CDC) (Dec 2017), pp. 2874–2879.

[98] Mansoori, F., and Wei, E. A flexible framework of first-order primal-dual algo-
rithms for distributed optimization, 2019.

[99] Mansoori, F., and Wei, E. A general framework of exact primal-dual first order
algorithms for distributed optimization, 2019.

[100] Mathew, N., Smith, S. L., and Waslander, S. L. Multirobot rendezvous
planning for recharging in persistent tasks. IEEE transactions on robotics 31, 1
(2015), 128–142.

[101] McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and y Arcas,
B. A. Communication-efficient learning of deep networks from decentralized data,
2016.

[102] Minghui Zhu, and Martinez, S. On the convergence time of distributed quan-
tized averaging algorithms. In 2008 47th IEEE Conference on Decision and Control
(Cancun, Mexico, 2008), IEEE, pp. 3971–3976.

[103] Mokhtari, A., Ling, Q., and Ribeiro, A. Network newton distributed opti-
mization methods. IEEE Transactions on Signal Processing 65, 1 (Jan 2017), 146–
161.

[104] Mokhtari, A., and Ribeiro, A. Dsa: Decentralized double stochastic averaging
gradient algorithm. J. Mach. Learn. Res. 17, 1 (Jan. 2016), 2165–2199.

[105] Molzahn, D. K., Dörfler, F., Sandberg, H., Low, S. H., Chakrabarti,
S., Baldick, R., and Lavaei, J. A survey of distributed optimization and control
algorithms for electric power systems. IEEE Transactions on Smart Grid 8, 6 (Nov
2017), 2941–2962.

[106] Morral, G., Bianchi, P., and Fort, G. Success and Failure of Adaptation-
Diffusion Algorithms With Decaying Step Size in Multiagent Networks. IEEE Trans-
actions on Signal Processing 65, 11 (June 2017), 2798–2813.

139

[107] Mota, J., Xavier, J., Aguiar, P., and Püschel, M. D-admm: A
communication-efficient distributed algorithm for separable optimization. IEEE
Transactions on Signal Processing 61 (02 2012).

[108] Mu, B., Zhang, K., Xiao, F., and Shi, Y. Event-based rendezvous control for
a group of robots with asynchronous periodic detection and communication time
delays. IEEE transactions on cybernetics 49, 7 (2019), 2642–2651.

[109] Nedic, A., Olshevsky, A., Ozdaglar, A., and Tsitsiklis, J. On Distributed
Averaging Algorithms and Quantization Effects. IEEE Transactions on Automatic
Control 54, 11 (Nov. 2009), 2506–2517.

[110] Nedic, A., Olshevsky, A., Ozdaglar, A., and Tsitsiklis, J. N. Distributed
subgradient methods and quantization effects. In 2008 47th IEEE Conference on
Decision and Control (Cancun, Mexico, 2008), IEEE, pp. 4177–4184.

[111] Nedić, A., and Ozdaglar, A. Distributed subgradient methods for multi-agent
optimization. IEEE Transactions on Automatic Control 54, 1 (Jan 2009), 48 –61.

[112] Nedic, A., Ozdaglar, A., and Parrilo, P. Constrained Consensus and Opti-
mization in Multi-Agent Networks. IEEE Transactions on Automatic Control 55, 4
(Apr. 2010), 922–938.

[113] Nedich, A., Olshevsky, A., and Shi, A. Achieving geometric convergence for
distributed optimization over time-varying graphs. SIAM Journal on Optimization
27, 4 (1 2017), 2597–2633.

[114] Nedić, A., and Olshevsky, A. Stochastic gradient-push for strongly convex
functions on time-varying directed graphs. IEEE Transactions on Automatic Control
61, 12 (2016), 3936–3947.

[115] Nesterov, Y. Introductory Lectures on Convex Programming Volume I: Basic
course. 212.

[116] Oh, H., Kim, S., Shin, H.-S., White, B. A., Tsourdos, A., and Rabbath,
C. A. Rendezvous and standoff target tracking guidance using differential geometry.
Journal of intelligent & robotic systems 69, 1-4 (2012), 389–405.

[117] Oh, S., Zelinsky, A., Taylor, K., et al. Autonomous battery recharging for
indoor mobile robots. In Proceedings of the australian conference on robotics and
automation (2000).

140

[118] Olfati-Saber, R., Fax, J. A., and Murray, R. M. Consensus and cooperation
in networked multi-agent systems. Proceedings of the IEEE 95, 1 (2007), 215–233.

[119] Parasuraman, R., Kim, J., Luo, S., and Min, B.-C. Multipoint rendezvous
in multirobot systems. IEEE transactions on cybernetics 50, 1 (2020), 310–323.

[120] Parker, C., Morrison, I., and Sutanto, D. Application of an optimisation
method for determining the reactive margin from voltage collapse in reactive power
planning. IEEE Transactions on Power Systems 11, 3 (1996), 1473–1481.

[121] Peng, Z., Xu, Y., Yan, M., and Yin, W. Arock: an algorithmic framework for
asynchronous parallel coordinate updates. SIAM Journal on Scientific Computing
38, 5 (2016), A2851–A2879.

[122] Predd, J. B., Kulkarni, S. B., and Poor, H. V. Distributed learning in
wireless sensor networks. IEEE Signal Processing Magazine 23, 4 (July 2006), 56–
69.

[123] Predd, J. B., Kulkarni, S. R., and Poor, H. V. A collaborative training
algorithm for distributed learning. IEEE Transactions on Information Theory 55,
4 (April 2009), 1856–1871.

[124] Pu, S., and Garcia, A. A Flocking-based Approach for Distributed Stochastic
Optimization. arXiv:1709.07085 [math] (Sept. 2017). arXiv: 1709.07085.

[125] Pu, S., and Nedić, A. Distributed stochastic gradient tracking methods. Mathe-
matical programming 187, 1-2 (2020), 409–457.

[126] Pu, S., Olshevsky, A., and Paschalidis, I. C. Asymptotic network indepen-
dence in distributed stochastic optimization for machine learning: Examining dis-
tributed and centralized stochastic gradient descent. IEEE Signal Processing Mag-
azine 37, 3 (2020), 114–122.

[127] Pu, S., Olshevsky, A., and Paschalidis, I. C. A sharp estimate on the tran-
sient time of distributed stochastic gradient descent, 2020.

[128] Pu, Y., Zeilinger, M. N., and Jones, C. N. Quantization Design for Dis-
tributed Optimization. IEEE Transactions on Automatic Control 62, 5 (May 2017),
2107–2120.

[129] Purchala, K., Meeus, L., Van Dommelen, D., and Belmans, R. Useful-
ness of dc power flow for active power flow analysis. In Power Engineering Society
General Meeting, 2005. IEEE (2005), IEEE, pp. 454–459.

141

[130] Qu, G., and Li, N. Harnessing smoothness to accelerate distributed optimization.
IEEE Transactions on Control of Network Systems PP (04 2017), 1–1.

[131] Rabbat, M., and Nowak, R. Distributed optimization in sensor networks. In
Proceedings of the 3rd international symposium on Information processing in sensor
networks (2004), ACM, pp. 20–27.

[132] Rabbat, M., and Nowak, R. Quantized incremental algorithms for distributed
optimization. IEEE Journal on Selected Areas in Communications 23, 4 (Apr. 2005),
798–808.

[133] Ram, S. S., Nedić, A., and Veeravalli, V. V. Asynchronous gossip algorithms
for stochastic optimization. In Decision and Control, 2009 held jointly with the 2009
28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE
Conference on (2009), IEEE, pp. 3581–3586.

[134] Ram, S. S., Nedić, A., and Veeravalli, V. V. Asynchronous gossip algo-
rithm for stochastic optimization: Constant stepsize analysis. In Recent Advances
in Optimization and its Applications in Engineering. Springer, 2010, pp. 51–60.

[135] Reisizadeh, A., Mokhtari, A., Hassani, H., and Pedarsani, R. An exact
quantized decentralized gradient descent algorithm. IEEE Transactions on Signal
Processing 67, 19 (2019), 4934–4947.

[136] Ren, W., Beard, R. W., and Atkins, E. M. Information consensus in mul-
tivehicle cooperative control. IEEE Control Systems Magazine 27, 2 (April 2007),
71–82.

[137] Richtárik, P., and Takáč, M. Parallel coordinate descent methods for big data
optimization. Mathematical Programming 156, 1-2 (2016), 433–484.

[138] Roy, N., and Dudek, G. Collaborative robot exploration and rendezvous: Al-
gorithms, performance bounds and observations. Autonomous Robots 11, 2 (2001),
117–136.

[139] Rubenstein, M., Ahler, C., and Nagpal, R. Kilobot: A low cost scalable
robot system for collective behaviors. In Robotics and Automation (ICRA), 2012
IEEE International Conference on (2012), IEEE, pp. 3293–3298.

[140] Rucco, A., Sujit, P. B., Aguiar, A. P., Borges de Sousa, J., and
Lobo Pereira, F. Optimal rendezvous trajectory for unmanned aerial-ground
vehicles. IEEE transactions on aerospace and electronic systems 54, 2 (2018), 834–
847.

142

[141] Sayed, A. Diffusion adaptation over networks. Academic Press Library in Signal
Processing 3 (05 2012).

[142] Schizas, I. D., Ribeiro, A., and Giannakis, G. B. Consensus in ad hoc
wsns with noisy links—part i: Distributed estimation of deterministic signals. IEEE
Transactions on Signal Processing 56, 1 (Jan 2008), 350–364.

[143] Scutari, G., and Sun, Y. Distributed nonconvex constrained optimization over
time-varying digraphs. Math. Program. 176, 1–2 (July 2019), 497–544.

[144] Shamir, O., and Srebro, N. Distributed stochastic optimization and learning. In
2014 52nd Annual Allerton Conference on Communication, Control, and Computing
(Allerton) (Monticello, IL, USA, Sept. 2014), IEEE, pp. 850–857.

[145] Shen, Z., Mokhtari, A., Zhou, T., Zhao, P., and Qian, H. Towards more
efficient stochastic decentralized learning: Faster convergence and sparse commu-
nication. In Proceedings of the 35th International Conference on Machine Learning
(Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018), J. Dy and A. Krause,
Eds., vol. 80 of Proceedings of Machine Learning Research, PMLR, pp. 4624–4633.

[146] Shi, W., Ling, Q., Wu, G., and Yin, W. Extra: An exact first-order algo-
rithm for decentralized consensus optimization. SIAM Journal on Optimization 25,
2 (2015), 944–966.

[147] Smith, V., Forte, S., Ma, C., Takáč, M., Jordan, M. I., and Jaggi, M.
CoCoA: A General Framework for Communication-Efficient Distributed Optimiza-
tion. 49.

[148] Spiridonoff, A., Olshevsky, A., and Paschalidis, I. C. Robust asynchro-
nous stochastic gradient-push: Asymptotically optimal and network-independent
performance for strongly convex functions. Journal of Machine Learning Research
21, 58 (2020), 1–47.

[149] Srivastava, K., and Nedic, A. Distributed Asynchronous Constrained Stochas-
tic Optimization. IEEE Journal of Selected Topics in Signal Processing 5, 4 (Aug.
2011), 772–790.

[150] Su, H., Wang, X., and Chen, G. Rendezvous of multiple mobile agents with
preserved network connectivity. Systems & control letters 59, 5 (2010), 313–322.

[151] Sun, A. X., Phan, D. T., and Ghosh, S. Fully decentralized ac optimal power
flow algorithms. In Power and Energy Society General Meeting (PES), 2013 IEEE
(2013), IEEE, pp. 1–5.

143

[152] Sun, H., and Hong, M. Distributed non-convex first-order optimization and
information processing: Lower complexity bounds and rate optimal algorithms.
In 2018 52nd Asilomar Conference on Signals, Systems, and Computers (2018),
pp. 38–42.

[153] Sun, H., Lu, S., and Hong, M. Improving the sample and communication com-
plexity for decentralized non-convex optimization: Joint gradient estimation and
tracking. In Proceedings of the 37th International Conference on Machine Learning
(13–18 Jul 2020), H. D. III and A. Singh, Eds., vol. 119 of Proceedings of Machine
Learning Research, PMLR, pp. 9217–9228.

[154] Sundhar Ram, S., Nedić, A., and Veeravalli, V. V. Distributed Stochastic
Subgradient Projection Algorithms for Convex Optimization. Journal of Optimiza-
tion Theory and Applications 147, 3 (Dec. 2010), 516–545.

[155] Swenson, B., Murray, R., Kar, S., and Poor, H. V. Distributed stochastic
gradient descent: Nonconvexity, nonsmoothness, and convergence to local minima.
arXiv:2003.02818 [math.OC] (Aug. 2020).

[156] Swenson, B., Murray, R., Poor, H. V., and Kar, S. Distributed gradient
flow: Nonsmoothness, nonconvexity, and saddle point evasion. arXiv:2008.05387
[math.OC] (Aug. 2020).

[157] Tang, H., Lian, X., Yan, M., Zhang, C., and Liu, J. d2: Decentralized
training over decentralized data. In Proceedings of the 35th International Conference
on Machine Learning (Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018),
J. Dy and A. Krause, Eds., vol. 80 of Proceedings of Machine Learning Research,
PMLR, pp. 4848–4856.

[158] Tang, Y., and Li, N. Distributed zero-order algorithms for nonconvex multi-
agent optimization. In 2019 57th Annual Allerton Conference on Communication,
Control, and Computing (Allerton) (2019), pp. 781–786.

[159] Tatarenko, T., and Touri, B. Non-convex distributed optimization. IEEE
Transactions on Automatic Control 62, 8 (2017), 3744–3757.

[160] Towfic, Z. J., and Sayed, A. H. Adaptive Penalty-Based Distributed Stochastic
Convex Optimization. IEEE Transactions on Signal Processing 62, 15 (Aug. 2014),
3924–3938.

[161] Tsianos, K. I., Lawlor, S., and Rabbat, M. G. Consensus-based distributed
optimization: Practical issues and applications in large-scale machine learning. In

144

2012 50th Annual Allerton Conference on Communication, Control, and Computing
(Allerton) (Oct 2012), pp. 1543–1550.

[162] Tsitsiklis, J. Problems in Decentralized Decision Making and Computation. Mas-
sachusetts Institute of Technology, Department of Electrical Engineering and Com-
puter Science, 1984.

[163] Tsitsiklis, J., Bertsekas, D., and Athans, M. Distributed asynchronous
deterministic and stochastic gradient optimization algorithms. IEEE Transactions
on Automatic Control 31, 9 (Sep. 1986), 803–812.

[164] Tucker, H. G. A graduate course in probability. Academic Press, 1967.

[165] Vogels, T., Karimireddy, S. P., and Jaggi, M. Powersgd: Practical low-
rank gradient compression for distributed optimization. In Advances in Neural In-
formation Processing Systems (2019), H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’ Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32, Curran Associates, Inc.,
pp. 14259–14268.

[166] Wangni, J., Wang, J., Liu, J., and Zhang, T. Gradient sparsification for
communication-efficient distributed optimization. In Proceedings of the 32nd Inter-
national Conference on Neural Information Processing Systems (Red Hook, NY,
USA, 2018), NIPS’18, Curran Associates Inc., p. 1306–1316.

[167] Wei, E., and Ozdaglar, A. Distributed alternating direction method of multi-
pliers. In 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) (Dec
2012), pp. 5445–5450.

[168] Wei, E., and Ozdaglar, A. On the o(1/k) convergence of asynchronous dis-
tributed alternating direction method of multipliers. 2013 IEEE Global Conference
on Signal and Information Processing, GlobalSIP 2013 - Proceedings (07 2013).

[169] Wei, E., Ozdaglar, A., and Jadbabaie, A. A distributed newton method
for network utility maximization–i: Algorithm. IEEE Transactions on Automatic
Control 58, 9 (Sep. 2013), 2162–2175.

[170] Welford, B. P. Note on a method for calculating corrected sums of squares and
products. Technometrics 4, 3 (1962), 419–420.

[171] Xiao, F., and Wang, L. Asynchronous rendezvous analysis via set-valued con-
sensus theory. SIAM journal on control and optimization 50, 1 (2012), 196–221.

145

[172] Xiao, L., Boyd, S., and Kim, S.-J. Distributed average consensus with least-
mean-square deviation. Journal of Parallel and Distributed Computing 67, 1 (2007),
33–46.

[173] Xiao, L., Boyd, S., and Lall, S. A scheme for robust distributed sensor fusion
based on average consensus. In Proceedings of the 4th international symposium on
Information processing in sensor networks (2005), IEEE Press, p. 9.

[174] Xiao, Y., Bandi, C., and Wei, E. Supply function equilibrium in power mar-
kets: Mesh networks. In Signal and Information Processing (GlobalSIP), 2016 IEEE
Global Conference on (2016), IEEE, pp. 861–865.

[175] Xin, R., Khan, U. A., and Kar, S. Variance-reduced decentralized stochastic
optimization with accelerated convergence. IEEE Transactions on Signal Processing
68 (2020), 6255–6271.

[176] Xu, J., Tian, Y., Sun, Y., and Scutari, G. Accelerated primal-dual algorithms
for distributed smooth convex optimization over networks, 2019.

[177] Xu, J., Zhu, S., Soh, Y. C., and Xie, L. Augmented distributed gradient
methods for multi-agent optimization under uncoordinated constant stepsizes. In
2015 54th IEEE Conference on Decision and Control (CDC) (Dec 2015), pp. 2055–
2060.

[178] Yang, T. Trading computation for communication: Distributed stochastic dual co-
ordinate ascent. In Advances in Neural Information Processing Systems 26, C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds. Curran
Associates, Inc., 2013, pp. 629–637.

[179] Yi, P., and Hong, Y. Quantized Subgradient Algorithm and Data-Rate Analysis
for Distributed Optimization. IEEE Transactions on Control of Network Systems
1, 4 (Dec. 2014), 380–392.

[180] Yi, P., Hong, Y., and Liu, F. Initialization-free distributed algorithms for op-
timal resource allocation with feasibility constraints and application to economic
dispatch of power systems. Automatica 74 (2016), 259 – 269.

[181] Yordanova, V., and Griffiths, H. Synchronous rendezvous technique for
multi-vehicle mine countermeasure operations. In OCEANS 2015 - MTS/IEEE
Washington (2015), pp. 1–6.

146

[182] Yuan, D., Xu, S., Zhao, H., and Rong, L. Distributed dual averaging method
for multi-agent optimization with quantized communication. Systems & Control
Letters 61, 11 (Nov. 2012), 1053–1061.

[183] Yuan, K., Xu, W., and Ling, Q. Can primal methods outperform primal-
dual methods in decentralized dynamic optimization? IEEE Transactions on Signal
Processing 68 (2020), 4466–4480.

[184] Yuan, K., Ying, B., Zhao, X., and Sayed, A. H. Exact diffusion for dis-
tributed optimization and learning—part i: Algorithm development. IEEE Trans-
actions on Signal Processing 67, 3 (Feb 2019), 708–723.

[185] Zegers, F. M., Guralnik, D. P., and Dixon, W. E. Event/self-triggered
multi-agent system rendezvous with graph maintenance. In 2021 60th IEEE Con-
ference on Decision and Control (CDC) (2021), pp. 1886–1891.

[186] Zeng, J., and Yin, W. On nonconvex decentralized gradient descent. IEEE Trans-
actions on Signal Processing 66, 11 (2018), 2834–2848.

[187] Zhou, K., and Roumeliotis, S. I. Multirobot active target tracking with com-
binations of relative observations. IEEE Transactions on Robotics 27, 4 (Aug 2011),
678–695.

[188] Zhu, M., and Martinez, S. On distributed convex optimization under inequality
and equality constraints. IEEE Transactions on Automatic Control 57, 1 (Jan 2012),
151–164.

[189] Zhu, S., Soh, Y. C., and Xie, L. Distributed parameter estimation with quan-
tized communication via running average. IEEE Transactions on Signal Processing
63, 17 (2015), 4634–4646.

[190] Zinkevich, M., Weimer, M., Smola, A., and Li, L. Parallelized stochastic
gradient descent. vol. 23, pp. 2595–2603.

	ABSTRACT
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. Summary of distributed optimization algorithms
	1.2. Challenges in Distributed Large-Scale Machine Learning I: Computational & Communication Constraints
	1.3. Challenges in Distributed Large-Scale Machine Learning II: Nonconvex Optimization
	1.4. Challenges in Distributed Mobile Agent Systems: The Case of the Rendezvous Problem

	Chapter 2. S-NEAR-DGD: A Flexible Distributed Stochastic Gradient Method for Inexact Communication
	2.1. Algorithm Development
	2.2. Convergence Analysis
	2.3. Numerical results
	2.4. Summary

	Chapter 3. Nested Distributed Gradient Methods for Non-Convex Optimization With Second Order Guarantees
	3.1. Convergence Analysis
	3.2. Numerical Results
	3.3. Summary

	Chapter 4. Asynchronous Distributed Rendezvous With Probabilistic Guarantees
	4.1. Algorithm Development
	4.2. Convergence Analysis
	4.3. Numerical Results
	4.4. Summary

	References

