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Abstract

Harnessing Web Information Sources to Predict Events

Mohammed A. Alam

Search engines and social media are two ubiquitous modes of accessing Web information,

and they dictate what information people view, influencing their thoughts and beliefs and

potentially shaping their opinions about news and facts. Network effects propagate the

beliefs, often magnified, disseminating information rapidly and leaving little time for fact

checks. This gives rise to a problem: it is not only information that spreads, but also

misinformation. The resulting far-reaching impacts include misinformed prognostications

that can lead to further ill effects.

Considerable attention has been given to the “cleanup” of the Web, focusing on the

common purpose of providing accountability to statements made online. However, the size

and the growth of the Web make it challenging to characterize Web information or to separate

facts from lies, resulting in people’s thoughts and actions that can be void of truth.

In this dissertation, we address the problem by using methods based on our thesis that

Web information sources can be harnessed to synthesize accurate predictions of events in

an attempt to arrive at the truth. Instead of validating every piece of information for

provenance, which can be recursive and quickly become intractable, we adopt an approach



4

that embraces noise in information and relies on the wisdom of crowds to derive accurate

predictions from data.

Toward our goal, we first characterize a particular bias of Web search engine results: the

degree to which differences across engines’ rankings correlate with features of the ranked

content, including point of view and advertisements. We develop PAWS—Platform for An-

alyzing Web Search engines—to study Google and Bing, and we find no evidence that the

engines emphasize results expressing positive orientation toward the engine company’s prod-

ucts. We do find that they emphasize particular news sites and that they also favor pages

containing their company’s advertisements, as opposed to competitors’.

Next, we use sports predictions from Twitter crowds to study methods for predicting

game outcomes. We show that the wisdom of crowds and machine learning can lead to

accurate predictions for certain games, and that features pertaining to the crowds can be

leveraged for the purpose of prediction. We test similar approaches using Earnings Per

Share and Revenue predictions from financial prediction platform, Estimize, and show that

our methods have potential applicability across domains for deriving the truth through pre-

dictions.
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CHAPTER 1

Introduction

Web search and use of social media are two of the most widely used means of accessing

information on the World Wide Web. These methods have become ubiquitous, and they

greatly influence what information is consumed by Web users. The sources of influence can

be as large as a search engine, such as Google, or as small as a person making a prediction

on microblogging service, Twitter. Such manners of accessing information influence not only

Web users’ knowledge, but also their thoughts and beliefs. Search engine results directly dic-

tate what information people view, potentially shaping their opinions about news and facts.

On social media, comments and statements that people view as posted by their friends and

others determine whom they believe and to what extent, directly or indirectly influencing

what beliefs they themselves subscribe to and their own prognostications. The beliefs propa-

gate further, often magnified, by the same mechanisms of information access, disseminating

information rapidly and leaving little time for fact checks and provenance determination.

This gives rise to a problem: it is not only information that spreads, but also misinfor-

mation. The problem is exacerbated by people’s tendency to distort the truth, sometimes

maliciously, sometimes simply owing to differences in interpretation of information. Due to

network effects, misinformation has the potential of far-reaching impact, while magnified

wrong beliefs can compound the ill effects of misinformation. The ill effects include, among

others, misinformed prognostications that can lead to further undesired effects.
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In this dissertation, we address the aforementioned problem by using methods based on

our thesis that Web information sources can be harnessed to synthesize accurate predictions

of events in an attempt to arrive at the truth. We adopt an approach that acknowledges

noise in information and relies on the wisdom of crowds (WoC) to derive accurate predictions

from data.

The size and the growth of the Web make it challenging to characterize Web information

or to separate facts from lies. The result is the shaping of people’s thoughts and actions

in a way that can be void of truth, and there is little doubt that the aggregate effect of

all the information and misinformation on the Web can have significant ramifications, as

was witnessed in the snowballing of opinions that culminated in the Tunisian and Egyptian

revolutions in 2011 credited for starting the “Arab Spring” in the Middle East. Informa-

tion propagation on the Web can have real-world outcomes of varying magnitudes, from

revolutions to sways in public opinion on elections to the understanding of markets and the

economy.

In this circumstance, considerable attention has been given to the “cleanup” of the Web,

whereby information can be separated from misinformation, and a certain level of trans-

parency can be attained regarding “true” facts [1, 2, 3], as “facts” often include misinfor-

mation peddled as such. The quest to discern facts in information has often taken the form

of studying bias on the Web, especially of search engines due to their role as a conduit of

information for Web users [4, 5, 6]. Bias has also been studied as competitive motives of

search engines to give preference to their own content as a manner of discriminating against

rivals [7]. Further, attention has also been given to information credibility of social media

[8, 9, 10].
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The efforts mentioned in the previous paragraph, among others, share the common pur-

pose of providing accountability to statements made online. Viewed in another way, the

purpose is to arrive at the truth. One approach the efforts can take is to validate every piece

of information and possibly trace its provenance. The approach is susceptible to becoming

intractable, as any additional information used to validate a particular piece of information

would ideally need to go through the same treatment, resulting in a recursive, fast-growing

ontology of information, each node of which would require its own validation.

In contrast to validating every piece of information, we adopt an approach that embraces

the presence of misinformation amidst information and seeks to arrive at prognostications

from data. In other words, it sidesteps the need to validate every piece of information and

instead aims to synthesize accurate predictions from all the available data. To this end,

we turn to social media and crowdsourced data in an attempt to extract the truth from it.

On the other hand, to assess the credibility of Web search, we study a particular type of

bias potentially present in search engine results. The goal of our two-fold approach is to

characterize data by understanding its inherent emphasis and to produce predictions that

help to surface the truth.

First, we develop methods that result in a system, PAWS—Platform for Analyzing Web

Search engines—for characterizing the content emphasis of Web search engine results: the

degree to which differences across search engines’ rankings correlate with features of the

ranked content, including point of view and advertisements. Using news search results from

Google and Bing for a set of query terms spanning different topics, we find no evidence

that the engines emphasize results that express positive orientation toward the engine com-

pany’s products [11]. We do find that the engines emphasize particular news sites and that
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they also favor pages containing their company’s advertisements, as opposed to competi-

tor advertisements [11]. While measuring search engine bias has become a popular task

[12, 13, 14, 15, 16], to our knowledge, PAWS is the first system to investigate how rela-

tive rankings correlate with important attributes of content including orientation (do search

engines favor positive news about their company’s products?) and advertisement (do search

engines drive traffic to their company’s sponsored links?).

Next, we use predictions from social network, Twitter, and financial prediction platform,

Estimize, to explore methods to synthesize accurate predictions of events. For this task,

we rely on WoC, the phenomenon—first noticed in 1906 [17]—that the average of various

estimates pertaining to a topic by a crowd of people tends to be more accurate than the

estimate by any one individual in the crowd, often matching or even exceeding the accuracy

of estimates by experts. The phenomenon has been confirmed [18] and replicated [19, 20,

21, 22] repeatedly over time, and recently popularized by a bestselling book [23] credited

for coining the phrase, “wisdom of crowds.” We explore the ranges of various features of

our data that are optimal for deriving accurate predictions of events while adhering to WoC

principles.

Our Twitter data comprises sports predictions for games of particular tournaments, and

we explore the principles of WoC to develop methods to use a relatively small subset of the

predictions to derive accurate predictions of game outcomes. Our Estimize data contains

financial predictions—Revenue and Earnings Per Share—of various companies, and we inves-

tigate which of the same tenets of WoC can be leveraged to produce Revenue and Earnings

Per Share predictions that rival those by Wall Street, which are also present in the Estimize

data. We hypothesize that predictions have the property that they record a person’s wager

on a future event, allowing verification of the prediction after the event has taken place and
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providing a measure of the person’s predictive ability as well as their emphasis, or a sort of

worth of their statements.

It is necessary to state that while success in leveraging our hypothesis for accurate pre-

dictions of game outcomes or accurate financial predictions can be monetized in the sports

betting market or the stock market, neither possibility motivates our work. Instead, we are

deeply interested in the scientific inquiry that is at the core of our work. We ask if people’s

predictions can be aggregated in order to synthesize all their voices into a singular predictive

voice. This question is central to our prediction task.

Through the research that we present in this dissertation, we are able to answer our

aforementioned question. We find that crowd predictions can indeed be used to arrive at

accurate predictions of events (See Sections 4.4 and 5.4). However, we find that the efficacy

of our methods is sensitive to the variations in the nature of the data, as evident in our

experiments with the sports data from Twitter (See Section 4.3). In our experiments, we

use the majority vote by relatively small groups of people to arrive at predictions, and we

also use Logistic and Linear Regression models to analyze the interplay of our data features.

We find that while some traits of our datasets are readily discernible, our experiments also

suggest that there are possibly nuanced relationships among the features that require further

study to reveal. Our experiments with the Estimize data further support these observations

(See 5.3). Overall, we show the plausibility of our task of synthesizing accurate predictions

from crowd predictions using WoC principles.

The remainder of this dissertation is organized as follows. In Chapter 3, we discuss our

research on Web search engine content bias. The next two chapters are devoted to our work

on predicting events. Specifically, Chapter 4 discusses our work on predicting sporting event

outcomes, and Chapter 5 details our work on making financial predictions. All three chapters
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are organized in sections in the same manner, starting with details of our dataset, followed

by a description of our methodology, followed next by a discussion of our experiments and

analysis and ending with a summary of our findings.

The contributions of our research are listed below.

1.1. Contributions

The contributions of the research we present in this dissertation can be summarized as

follows:

(1) In our research on search engine content bias, we find no evidence in our research on

search engine bias that Google or Bing favor results that express positive orientation

toward the engine company’s products.

(2) We do find that Google tends to favor smaller news outlets, and Bing favors bigger

ones.

(3) We also find that Google and Bing rank a page significantly higher than each other

when it contains the engine company’s advertisements, as opposed to competitor

advertisements.

(4) We present our system, PAWS, for the analysis of Web search engine bias.

(5) Our work on predicting events lends credibility to the applicability of crowd wisdom

in predicting.

(6) We also show the effectiveness of simple methods such as majority vote, averaging

of crowd estimates, and regression (Logistic and Linear).

(7) Our work indicates the presence of signal in crowd predictions, showing that it is

not all noise and that algorithmic extraction of signal is possible and has further

potential.
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CHAPTER 2

Review of Literature

The research centering on the verification of truth in Web information comprises efforts

that span a wide gamut of different aspects and objectives pertaining to information. The

efforts range from defining the boundaries of neutrality and bias of search engines to mea-

suring the credibility and the veracity of Web information sources to deriving predictions

and recommendations from social media. However, they all share the common goal of sifting

truth from lies. In this section, we break the literature down by the approaches of the re-

search works as they pertain to the underlying themes of our research: the characterization

of Web search engines and the prediction of event outcomes based on the wisdom of crowds

(WoC).

2.1. Web Search Engine Content Bias

Characterizing bias on the World Wide Web has long been the subject of research studies,

with “neutrality” of the Web being at the center of continual debate. Legal scholars have

debated whether search engines should be regulated to ensure neutrality [24, 25]. Much

research has been conducted on analyzing different aspects of bias.

Chelaru et al. [12] have performed sentiment analysis of search engine results, and so

have Demartini and Siersdorfer [13]. Mowshowitz and Kawaguchi have investigated bias

of search engines as evaluated against an “ideal” or “fair” distribution of search results as

approximated by the distribution produced by a collection of search engines [14, 15].



21

In [26], Kulshrestha et al. propose a generalizable search bias quantification framework

that measures the political bias in search results, while Epstein and Robertson find that

search engines can influence election outcomes [27].

Researchers have observed that there is no “control” engine available to provide a gold

standard ranking [14, 16]. As a result, bias measurement has remained an open domain of

exploration, with researchers striving to gain an understanding of what constitutes neutrality

as opposed to bias and to characterize search engines in light of such understanding.

Our goal is not to define or identify neutrality of Web search to compare search results

against. Instead, we investigate the tendency of Google and Bing to favor search results

that exhibit orientation toward the engine company’s products. Notable works that have

analyzed search result orientation include [7], in which the authors investigate if search

engines prioritize their own content over competitors’, though they do not find empirical

evidence of such behavior, and [5], which analyzes content bias in health-related search

results.

In addition to studying orientation, we assess the propensity of Google and Bing to prefer

certain news outlets to others, finding evidence of such preference. In [16], Azzopardi and

Owens look for bias in search engines toward news media providers, but do not find any

conclusive evidence. Other related works include [4], which explores not only content bias

in search engines, but also whether search engines drive Web traffic to well-established sites,

finding that search engines in China—the engine, Baidu, in particular—tend to drive traffic

to well-established sites. Also investigating site preferences of search engines, [28] finds

that search engines systematically exclude certain sites and certain types of site, though not

always intentionally.



22

We also study search engines’ tendency to prioritize advertisements (“ads”) for their own

vendor company’s services over competitors’. Ads are central in driving revenue for search

engines. As such, questions have arisen in regards to the role ads play, if any, in the behavior

of search engines. The very creators of the Google search engine express, in their seminal

paper from around the time of the launch of Google [29], that they expect advertising-funded

search engines to be inherently biased towards the advertisers and away from the needs of

the consumers. [6] studies how search engines allocate users across publishers and compete

with publishers to attract advertisers. The authors find search engines to be biased against

publishers that display many ads. Edelman and Lockwood [30] present evidence from as

recently as 2011 that search engines give higher rankings to their own services, such as e-mail

or maps, than they do to competitors’, which our research in [11] corroborates.

As of the time of a recent search of the literature, there do not appear to be many studies

of ads in relation to bias in search engines apart from the works mentioned in the previous

paragraph; most research surrounding ads pertain to other aspects of bias, such as racial

bias and discrimination in society as perpetuated by the presence of online ads. As such, our

research on Web search engine bias continues to be novel in that it investigates search engine

bias toward ads that may give the engine’s vendor company a commercial advantage.

2.2. Prediction of Events

We approach the task of predicting events by adopting a WoC approach to predict sport-

ing event outcomes using predictions on Twitter and to predict Revenue and Earnings Per

Share (EPS) pertaining to various companies’ stock releases using predictions on Estimize.
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As such, we start by discussing works related to WoC, subsequently reviewing studies per-

taining to sports predictions and financial predictions, following which we discuss works that

utilize Twitter and Estimize.

2.2.1. Wisdom of Crowds

The WoC phenomenon was originally proposed by Francis Galton in 1907 [17]. Since Gal-

ton’s work, the phenomenon has been studied extensively, reaffirmed by [18] and further

replicated by [19, 20, 21, 22]. Further studies using WoC are surveyed by Lorge et al. in

[31]. James Surowiecki’s 2005 book, The Wisdom of Crowds [23], popularizes the concept

and details its underpinnings, which have since also been studied by [32] and [33].

More recently, the efficacy of crowds smaller than originally thought required for WoC

to work has received considerable attention. Herzog and Hertwig have made the case for

fewer judgments [34], and Mannes et al. have subsequently found smaller crowds to fare

better [35, 36] and so have Kao and Couzin [37]. [38] explores identifying smaller crowds

in advance for predictions that beat those from larger crowds.

2.2.2. Sports Predictions

Numerous research works have explored the task of predicting sports, from soccer to cricket

to (American) football to basketball.

[39] explores predicting English Premier League soccer using 3 months worth of tweets

(Twitter messages) from Twitter. The work shows that Twitter can indeed be used for

predicting games, at least for the dataset it uses. It also shows that when combined with

historical data, the Twitter data can lead to higher prediction accuracies than if only the

Twitter data or only the historical data is used.
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Adopting a unique and interesting approach, the authors of [40] bet on the fact that

“people’s recognition knowledge of names is a proxy for their competitiveness.” They posit

that people are not familiar with the names of all teams, and they usually hear about a

team if the team is good and has a history of performing well. Based on this premise and

using data from three soccer tournaments and two tennis tournaments, the authors show

that predictions based on their hypothesis are similar to those based on official ranking and

that their heuristic performs well when compared with betting odds. The authors conclude

in favor of WoC, in that they claim that “aggregating across individual ignorance spawns

collective wisdom.”

Using team and player features, [41] predicts game outcomes for Twenty20 cricket at the

English county level using five years of data. The authors show that a simple method such

as Näıve Bayes is sufficient to predict game outcomes correctly two-thirds of the time and

outperforms gambling benchmarks.

In [42], the authors predict outcomes of football games from two seasons of the National

Football League (NFL) in the USA. They attempt to predict three types of outcome: winner

of game, winner of game with the spread (the phrase referring to the point spread that

encodes the handicap set for a team by bookmakers), and over/under (whether the total

points scored in the game will be over or under the over/under line set by bookmakers).

While they do not succeed in identifying a strategy that outperforms market efficiency, they

find simple features of Twitter data (such as unigrams in tweets pertaining to the home team

or the visiting team) to exceed the performance of game statistics features.

The authors of [43], in a season-long experiment, find that a crowd of football bettors

is systematically biased and performs poorly when predicting which team will win against a

point spread. Moreover, the crowd’s biases worsen over time. When asked to predict game
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outcomes by estimating point differentials, however, their predictions are unbiased and wiser,

showing the importance of the manner in which predictions are elicited.

[44] explores if the sentiment contained in tweets on Twitter can serve as meaningful

proxy to predict game outcomes. Additionally, the work inquires if, in the event tweet

sentiment does help with predicting game outcomes, the degree of sentiment can predict the

magnitude of outcomes. [45] looks at predicting games using the latest statuses of the home

team and the visiting team.

Our work is distinct from the aforementioned studies, in that we utilize tweets that

specifically predict which of two teams will win a game, from which we synthesize predictions

for game outcomes. [46] also uses predictions on Twitter, but the authors adopt a different

approach. While we count tweets predicting a team’s win toward that team, the authors

count tweets mentioning a team toward that team, as they consider tweet volume to be a

good indicator for team ranking. Additionally, they use the sentiment contained in tweets

and score predictions from the tweets as features for their prediction task, for which they

find Support Vector Machines to outperform Näıve Bayes and Logistic Regression.

2.2.3. Financial Predictions

In [47], the authors seek to compare Artificial Neural Networks with Logistic Regression for

the task of predicting Earnings Per Share, finding the former to perform slightly better than

Logistic Regression. [48] also uses Artificial Neural Networks to make financial predictions

– stock prices, to be precise.

In [49], the authors adopt a genetic algorithm approach to arrive at stock pick decisions.

Using stock votes from a widely used online financial newsletter, the authors use genetic
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algorithms to identify and rank “experts” in the crowd—in contrast to our WoC approach—

whose votes lead to stock pick decisions that are, on average, better than S&P 500 picks for

two time periods.

In one study similar to ours [50], Wang et al. rely on WoC for financial predictions, but

their approach differs from ours in that it combines deep learning and ensemble learning.

[51] studies prediction markets that leverage WoC for financial predictions and finds

that such markets have “proven to be uncannily accurate in predictions all types of events.”

In [52], the authors look at using Twitter in combination with WoC, which is similar to

our approach with sports predictions, but they use Twitter to source sentiment variations—

we source tweeters’ (Twitter users) predictions—that they combine with collective opinion

mining in news articles and financial market movements.

2.2.4. Predictions Using Estimize

The work in [53] examines the negative effects of “herding” on Estimize. The work monitors

the amount of information a user views before making an earning forecast, finding that

the more public information a user views, the less weight they put on their own private

information. This has the interesting effect that while it improves the accuracy of each

individual forecast, the accuracy of the consensus forecast decreases, since useful private

information is prevented from entering the consensus.

[54] examines the reliability of online biographies of Estimize users for financial predic-

tions. The authors investigate if the biographical information provided by Estimize con-

tributors are reliable, if the forecast quality is conditional on whether contributors provide

their biographical information and names, and if contributors who provide their biographical

information but withhold their identities make forecasts with different characteristics than



27

those who provide their biographical information and identities. They find that contributors

who reveal their biographical information are more active on the Estimize platform and issue

higher quality forecasts.

In [55], the authors examine consensus Revenue and EPS forecasts derived from Estimize

and find that they are more accurate than traditional Wall St. equity analysts’ consensus

forecasts. [56] assesses the value of crowdsourced earnings predictions, finding from more

than 51,000 predictions from Estimize that the predictions are incrementally useful in fore-

casting earnings and measuring the market’s expectations of earnings.

2.2.5. Predictions Using Twitter

Research works specific to Twitter include systems that recommend tweets [57], URLs [58],

hashtags (keyword-based labels popularized by Twitter and now prevalent across the Web)

[59], and users to follow [60]. Additionally, O’Banion and Birnbaum have worked on Twitter-

based prediction as well [61], to predict voting behavior, and Zaman et al. have worked

on predicting information spread on Twitter in [62]. Further, [63] studies the spread of

the practice of astroturfing1 on Twitter. [8, 9, 64, 65] present methods to measure the

credibility of content on Twitter. Also focusing on Twitter, Ghosh et al. have tried to find

topic experts [66], while Sikdar et al. have tried to establish ground truth [10].

Our effort differs from the aforementioned works using Twitter in that we predict event

outcomes as opposed to making recommendations or predicting behaviors pertaining to Twit-

ter users.

1https://en.wikipedia.org/wiki/Astroturfing
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CHAPTER 3

Web Search Engine Content Bias

In this chapter, we discuss our research on the content bias in Web search engines, Google

and Bing. Our research on measuring content bias of Web search is not premised on arguing

that engines should be free of editorial bias. Instead, our goal is to develop methods to

measure the differences between engine rankings, and provide these measurements to end

users. We present PAWS, a Platform for Analyzing Web Search engines. PAWS measures

content emphasis: the degree to which differences across search engines’ rankings correlate

with features of the ranked content [11].

To our knowledge PAWS is the first system to investigate how relative rankings correlate

with important attributes of content including orientation (do search engines favor positive

news about their company’s products?) and advertisement (do search engines drive traffic

to their company’s sponsored links?).

In our research, we do not find evidence that Google and Bing emphasize results that

express positive orientation toward the engine company’s products. We do find that the

engines emphasize particular news sites and that they also favor pages containing their

company’s advertisements, as opposed to competitor advertisements.

Section 3.1 of this chapter describes the dataset we use for our study. Section 3.2 describes

how PAWS gathers search engine results and analyzes search engines for content emphasis.

A key challenge faced by PAWS is to identify the orientations of result URLs at scale. To

this end, we present a new technique that we discuss in Section 3.2.2 for manually ranking
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Manually Selected Queries
android artificial intelligence net neutrality
chrome aung san suu kyi open source
gmail barack obama republicans
iphone china silicon valley
kinect christian silicon alley
lumia conservative smoking
macbook democrats steve jobs
microsoft gun control zombies
office hollywood
nexus 7 iran
microsoft islamic
surface liberal
windows 8 moon landing

Table 3.1.1. Manually selected queries

results by orientation that minimizes the expected number of human judgments required.

Section 3.3 presents PAWS’s analysis of content emphasis in news search on Google and Bing

followed by a summary of our findings in Section 3.4.

3.1. Dataset

For our study, we use data from news search results, i.e., new articles returned as results

for our search queries. News search is an ideal target for analyzing content emphasis, as the

results change frequently and often exhibit orientation toward a concept (e.g., good or bad

news, reviews, editorials, etc.). Further, for the query terms we use, news links are often

returned prominently even on the primary “Web” search pages of Google and Bing.

We use a total of 165 search query terms. 34 of these, shown in Table 3.1.1, are manually

selected, chosen to include controversial queries (e.g., religious and political terms) as well as

names of popular products, including several products of the engine companies themselves.

The product queries are shown in Table 3.3.1. The remaining 131 queries are selected from

daily trending queries or “Hot Searches,” as reported by Google Trends. We collect the top

10 queries among Hot Searches per day that are not already part of our set of queries. The



30

search results returned for our queries are collected from both Google and Bing as {header,

URL, snippet} triples over timeframe, T = 138 days, resulting in the 131 Hot Searches

queries and 51,634 unique result URLs. Additionally, HTML source code is collected for

every Webpage linked to by those URLs.

3.2. Methodology

One particular challenge for PAWS is to measure content bias in the absence of ground

truth, deviation from which would constitute bias. PAWS aims to measure how a search

engine’s rankings correlate with features of the ranked content. As other researchers have

observed, there is no “control” engine available to provide a gold standard ranking [16, 14].

Thus, PAWS measures relative differences across two primary providers of algorithmic search

results today, Google and Bing. PAWS does not explain why the differences arise (or which

engine is “responsible”).

For each pair (q, u) where result URL u is returned by an engine for query q, PAWS

calculates a score that indicates whether u tends to be ranked higher for q by Google than

by Bing. We refer to the score as GB(q, u), for Google-Bing score. More negative values

indicate that Google ranks a result more highly than Bing.

Because the majority of search result clicks occur on the first page of results [67], we

consider only these results in our experiments. As search results for a query may change

over time, we retrieve results for each query once a day, collecting the top 10 results shown

by the search engine. As such, the collected search results are balanced across the different

queries.
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Formally, let r(d, q, u, e) indicate the numeric ranking of each URL u returned on the

first page of results for query q on engine e on day d. For URLs u not returned for a given

d, q, e, we let r(d, q, u, e) = τ for a constant τ . Then GB is defined as:

(3.1) GB(q, u) =
∑
d∈D

r(d, q, u,Google)− r(d, q, u,Bing)

where the sum is computed over dataset D of days d, with each query performed once on

both engines each day. GB is computed over only “algorithmic” results, ignoring advertising

links on the result page. The constant τ allows GB to account for results returned on the

first page by one engine but not the other. In our experiments, we set τ = 20, although

altering the parameter by 50% in either direction has negligible impact on our results. In

fact, the correlation between the GB scores with τ = 20 and either τ = 15 or τ = 25 is

greater than 0.99.

PAWS measures content emphasis by computing the correlation between GB(q, u) and

features of the result u. Some features of interest – such as the site u originates from, or

whether u contains ads sponsored by the search engine – are relatively straightforward to

identify at scale using automated means. However, an additional goal of PAWS is to measure

how orientations (defined in the next section) in results vary with GB. Below, we discuss

why this task is challenging, and present the novel methods PAWS utilizes to perform the

task.

A key challenge for PAWS in addition to measuring content bias in the absence of ground

truth is to identify the orientations of result URLs at scale. We address this by presenting
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a new technique for manually ranking results by orientation using dynamic programming to

minimize the expected number of human judgments required.

3.2.1. Orientation Acquisition in PAWS

PAWS attempts to measure if GB(q, u) correlates with positive or negative orientation of

document u toward query concept q, where orientation is not the valence or relatedness of u

to q and is rather the sentiment expressed by u about q. For example, we may ask PAWS if

an engine is more likely to show documents reporting good news about a political party or

expressing negative views about a product.

Given the large size of the document sets we wish to analyze, automated techniques

for detecting orientation would be desirable. Although a variety of related work has been

performed on automatic sentiment classification, our task is particularly challenging because

a document’s orientation toward a product may be buried in a single sentence that differs

from the rest of the document’s orientation, and sometimes obtaining the orientation re-

quires world knowledge. Using a state-of-the-art sentiment analyzer,1 we obtained only -0.07

correlation with human ratings on our datasets.

For manual acquisition of orientation labels, crowdsourcing on platforms such as Amazon

Mechanical Turk is a typical approach. However, our controlled experiments show that

Workers (users who complete small tasks) on Amazon Mechanical Turk have difficulty with

the task. The responses are of low accuracy even when we ask questions redundantly or

restrict to the highest-rated Workers.

Due to the aforementioned challenges, we rely on collecting orientation judgments by

labeling instances ourselves. We then validate the labels by computing self-agreement and

1http://www.alchemyapi.com/products/features/sentiment-analysis/
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inter-annotator agreement with between ourselves on 40 rankings of results for 2 queries,

i.e., a total of 380 pairwise comparisons. The Kappa score for self-agreement was 0.617 and

for inter-annotator agreement, 0.385. The scores are dramatically better than our sentiment

analyzer and Amazon Mechanical Turk baselines, and are considered “fair” agreement, which

we believe to be adequate given the subjective nature of our task. The pairwise judgment

approach allows for ties in orientation, and produces a partial order of the documents for

each query q, avoiding the difficulties of defining a fixed orientation scale.

While this approach requires human judgment, and is, therefore, a manual process, the

effort is greatly reduced using a method we develop that uses dynamic programming to

minimize the expected number of human judgments required.

3.2.2. Efficient Ranking by Pairwise Judgments

Because the expert judgments that PAWS requires are expensive, we develop a novel ap-

proach that ranks documents by orientation while minimizing the expected number of man-

ual judgments. While previous work has considered production of total orders from pairwise

comparisons (e.g., [68]), these are ill-suited to PAWS because orientations are often indis-

tinguishable, i.e., the relative ranking of two search results based on their orientation is

subjective, thereby making it near impossible to infer a total order of ranked search results.

When the goal is to produce a total ordering of items, Thurstonian models [69] can be relied

on. In contrast, our goal is to produce a partial ordering of search results that capture the

pairwise ordering between results. Further, our focus is on prioritizing which comparison

question to ask next to a single annotator, rather than inferring a ranking of items from a

set of comparisons, and we assume our annotators to be noiseless. In contrast, Thurstonian
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models focus on multiple noisy annotators, from whose annotations an order or the proba-

bility distribution over an order is inferred. The Bradley-Terry model [70] is more related

to our task, whereby an annotator is asked to rank several items by pairwise comparison.

However, what results from the model is a total ordering as well, which is not a goal we

share in our ordering task. With the goal of producing a partial order of search results, we

compare our approach to Binary Search and find our method to slightly outperform Binary

Search. While a wide variety of work exists in this space and discussion of all of it is out

of scope for this minor contribution of the dissertation, our protocol for choosing questions

to minimize expected cost in a resource-constrained (i.e., single-annotator) setting of partial

(rather than total) orders is novel, to our knowledge.

Formally, we consider placing a new document d at the proper position within a (perhaps

empty) partial order O of other documents. Inserting d requires iteratively comparing it to a

selected element i ∈ O. If d is of the same orientation as i, the search terminates; otherwise,

the search continues in a smaller portion of O, depending on whether d is deemed more

positive or more negative than i. Without ties in O, Binary Search is optimal for the

insertion task. However, with ties we can sometimes expedite the search by checking larger

(i.e., more probable) portions of the partial order first. Our efficient algorithm exploits this

intuition.

Let EO[J |LB,UB, i] indicate the minimum expected number of judgments needed to

place a document d within O if we compare first with i ∈ O, given that the position of d

is known to lie between lower bound LB and upper bound UB, inclusive. The expression

EO can be decomposed into a sum over the possible outcomes of the comparison of d to i.

We compare d to i (one judgment), and if the two are equal in orientation, no additional

judgments are required. If they are unequal, we add the minimum expected number of
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additional judgments required (in terms of EO), weighted by the probability of each outcome.

Thus, EO can be expressed recursively as:

(3.2) EO[J |LB,UB, i] = 1+

P ({LB, .., i− 1}) min
j
EO[J |LB, i− 1, j]+

P ({i+ 1, .., UB}) min
j
EO[J |i+ 1, UB, j]

where P (S) is the probability that the query document d belongs within S ⊆ O in the partial

order. In our implementation, we approximate these probabilities using the distribution of

documents in O.

At any step of the insertion, computing the comparison element i that minimizes the

expected number of judgments (assuming correct responses) is straightforward using dy-

namic programming and Equation 3.2. We experimentally evaluate our approach, denoted

as MinE[J ], utilizing several random orderings of the documents we hand-rank in our ex-

periments (see Section 3.3). The results are shown in Table 3.2.1. We allow a variable error

rate, where the comparison of documents di, dj belonging to i, j ∈ O is modeled as a numeric

random variable z selected from the density P (z) ∝ e−|z−i+j|/σ, where z > 1/2 indicates a

di > dj response, z < 1/2 indicates di < dj, otherwise di = dj. So, larger errors are less

likely than smaller ones, and the error rate increases with the parameter σ ≥ 0, with σ = 0

indicating perfect responses. The results show that MinE[J ] reduces the average number

of judgments required by 6.58% compared to Binary Search. We also find that MinE[J ] is

slightly more accurate (Table 3.2.1).
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Error Rate
0 0.25 0.50 1

Judgments
Binary Search 40.60 41.20 42.73 44.60
MinE[J] 37.13 38.00 40.07 42.80

Accuracy
Binary Search 1.00 0.99 0.98 0.92
MinE[J] 1.00 1.00 0.98 0.93

Table 3.2.1. Pairwise judgments and algorithm accuracy. MinE[J ] requires
6.58% fewer judgments on average than Binary Search and is slightly more
accurate for all error rates.

Query Extreme GB Uniform GB
android -0.53 -0.47
macbook -0.34 0.1
nexus 7 -0.3 0.16
microsoft office -0.29 0.11
xbox -0.15 -0.33
lumia -0.03 0.36
kinect -0.01 -0.01
windows 8 0.1 -0.06
chrome 0.3 -0.17
microsoft surface 0.33 -0.32
gmail 0.46 0.21
Avg. Google Products -0.02 -0.07
Avg. Microsoft Products -0.01 -0.05

Table 3.3.1. Spearman correlation between GB and orientation rank for prod-
uct queries. Positive values indicate Google’s results favor more positive ori-
entations toward the query. On average, we find no significant evidence of the
engines’ emphasizing positive orientations toward their company’s products.

3.3. Experiments and Analysis

This section discusses the experiments conducted using PAWS to investigate three as-

pects of result content: orientation toward the engine company’s products, presence of the

company’s advertisements (“ads”), and the site linked to by the result.

3.3.1. Orientation

The first experiment we perform involves orientation measurement on news search results

for 11 manually selected product-name queries. From the results for each query, we select
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Google Microsoft Facebook Other
Ads Ads Ads Ads

Average over q -0.02 0.06 0.05 0.01
(Std. Dev.) (0.08) (0.04) (0.06) (0.06)
Combined -0.01 0.05 0.06 0.01

Table 3.3.2. Spearman correlation of GB with the presence of ads by the
given company. “Average over q” lists the average of 34 correlation values,
one for each query. “Combined” lists the correlation when the results from
all 34 queries are combined into a single set. When compared against each
other, Google and Bing favor content containing their company’s own ads,
rather than competing ads. The difference between the combined correlation
coefficient for Google (-0.01) and that of Microsoft (0.05) and Facebook (0.06)
is significant at the p < 0.001 level (Fischer r-to-z transformation).

20 results to rank by orientation. We select them in two ways: Uniform GB: selection of 20

results approximately uniformly spaced in the set of all results, and Extreme GB: selection

of 10 results from each of the two ends of the set (i.e., the results most skewed toward being

returned by one engine rather than the other). The intuition behind the second set is that

the extremal documents are more likely to reflect content emphasis. We rank each set using

the manual ranking using MinE[J ] as described in the previous section.

The results are shown in Table 3.3.1. While the numbers vary between the two result

sets, in neither case does GB show that the engines emphasize positive orientations toward

their company’s own products. The fact that the average correlations are negative across all

queries indicates that Google slightly emphasizes negative results in general, on this dataset.

3.3.2. Advertisements

As our second experiment, we investigate whether the presence of ads in a document linked

to by a result URL for an engine or one of its competitors influences the URL’s position

in search results. Engines have a commercial interest in increasing traffic to their parent

company’s ads, which makes ads an important content feature to analyze.
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We define ads broadly to include not only online text and display advertisements, e.g.,

Google AdSense and Bing Ads, but also links to the search engine’s products and services,

e.g., YouTube, Google+, etc. To identify ads in each result in our dataset, we manually

construct regular expressions for ads by the two major publishers (Google and Microsoft,

and their third-party affiliates) and some other companies. We also identify the presence of

Facebook Like buttons.

We analyze the Spearman correlation between GB and a binary variable indicating the

presence of a given company’s ads. Table 3.3.2 shows the results. We see that the engines

rank a page significantly higher, relatively speaking, when it contains the engine company’s

ads, as opposed to competitor ads. Compared to Google, Bing also favors content with

Facebook Like buttons. The content emphasis on ads seen in this experiment, while not

large, may have a non-trivial impact when aggregated over billions of yearly searches.

3.3.3. Sites

The third experiment involves measurements of news search emphasis across different hosts.

We show that GB is, in fact, significantly non-uniform for a large number of hosts, indicating

that the two engines often prefer different hosts.

Starting with our complete results dataset, we normalize the host names, retaining the

suffix. We find 2,990 unique hosts. We focus our analysis on frequent hosts, i.e., those with

at least 50 distinct search results in the data.

Of the 150 frequent hosts, 31 have an average GB below 0.35, and 15 have an average

GB above 0.65. For frequent hosts, an average GB falling outside of the range [0.35, 0.65]

is statistically significant (p < 0.005, Monte Carlo simulation with 10,000 trials).
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Num. Average Std.
Host Results Norm. GB Err.
wnd.com 60 0.22 0.02
joystiq.com 117 0.23 0.02
ign.com 202 0.24 0.02
nationalreview.com 76 0.27 0.02
nbcnews.com 179 0.27 0.02
theverge.com 243 0.27 0.01
hollywoodlife.com 198 0.28 0.01
polygon.com 80 0.28 0.02
slate.com 110 0.28 0.02
siliconvalley.com 110 0.29 0.01
. . . . . . . . . . . .
societyandreligion.com 56 0.69 0.02
cnn.com 851 0.69 0.01
businessweek.com 328 0.70 0.01
upi.com 124 0.72 0.02
itechpost.com 84 0.72 0.02
i4u.com 57 0.74 0.02
ap.org 54 0.74 0.02
msn.com 333 0.75 0.01
betanews.com 95 0.76 0.02
softpedia.com 371 0.77 0.01

Table 3.3.3. Sites emphasis. Google tends to favor smaller news outlets while
Bing favors bigger ones.

We see that of the 150 frequent hosts, the 46 (or 31%) discussed above exhibit significantly

different ranking behavior in Google than in Bing. Table 3.3.3 lists the 20 hosts at the

extremes. We see that Google tends to give relatively higher rank to smaller news sites

that may be specialized or politically opinionated (whether conservative or liberal), e.g.,

wnd.com and slate.com. By contrast, Bing ranks larger US media outlets with a wider print

and television news presence relatively higher, e.g., ap.com and cnn.com. Also, Microsoft

content (msn.com) and that of its search engine partner (yahoo.com) are shown to rank

relatively higher in Bing than in Google in this experiment.
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Since our work on PAWS, further research has also explored Web search engine bias

[4, 5, 6, 7]. However, to the best of our knowledge, our work continues to be the only

instance of research to comparatively study search engine content emphasis.

3.4. Summary of Findings

In summary, the findings from our research on search engine content bias are as follow:

(1) We find no evidence in our research on search engine bias that Google or Bing favor

results that express positive orientation toward the engine company’s products.

(2) We do find that Google tends to favor smaller news outlets, and Bing favors bigger

ones.

(3) We also find that Google and Bing rank a page significantly higher than each other

when it contains the engine company’s ads, as opposed to competitor ads.
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CHAPTER 4

Sports Prediction With Twitter

In Chapter 1, we ask if people’s predictions can be aggregated in order to synthesize all

their voices into a singular predictive voice. One of the research tasks we undertake to answer

that question is to explore the possibility of predicting outcomes of sporting events, which

we discuss in this chapter. Specifically, we present methods for the prediction of outcomes of

games from three tournaments: the 2014 FIFA World Cup of soccer, the 2015 ICC Cricket

World Cup, and two seasons of NFL and NCAA football in the USA.

We explore the possibility and efficacy of predicting game outcomes using tweets on

Twitter containing predictions of game outcomes by tweeters. To that end, we rely on the

application of the wisdom-of-crowds (WoC) phenomenon. In the WoC setting, we study

the use of majority vote (MV) aggregation of predictions and compare the approach with

Logistic Regression (LR).

We find through experimentation that the predictive voices of a crowd can indeed be

synthesized into a singular prediction of an event. In other words, predictions crowdsourced

from Twitter do contain signal, and simple methods such as majority vote, averaging of crowd

estimates, and LR prove effective for the separation of such signal from noise. Further, our

research motivates questions surrounding our task that we slate for future research.

Section 4.1 of this chapter describes the dataset we use for our study. Section 4.2 de-

scribes our data features along with the methods we use. Section 4.3 presents our various

experiments and associated analysis followed by a summary of our findings in Section 4.4.
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4.1. Dataset

For our first study of prediction of events using Web information sources, we use data

from microblogging service, Twitter, a social network on the Web where short messages up to

240 characters in length known as tweets can be posted by its users. The users are commonly

known as tweeters. Twitter is a popular platform for people to voice their predictions on

about a variety of topics, sports being one of them. As such, and because the platform allows

any external computer program to connect to its services via its Application Programming

Interface (API), Twitter is a viable source for collecting information in the form of tweets.

We collect two kinds of tweet. Using regular expressions (regexes) handcrafted based

on variations of phrases that indicate a sporting team’s victory over another—e.g, “Brazil

will beat Argentina”, “Bangladesh gonna win,” “The Vikings will lose,” etc.—we collect

tweets that predict which of two teams will win a match (prediction tweet). We collect

such tweets pertaining to three sports tournaments: the 2014 FIFA World Cup (soccer), the

2015 ICC Cricket World Cup, and two seasons of the NFL (football) and the NCAA (college

football) from late 2014 to early 2016. We refer to all the prediction tweets collectively as the

predictions dataset, and refer to tweets pertaining to each tournament as the soccer dataset,

the cricket dataset, and the football dataset, respectively, the last collectively referring to the

NFL and the NCAA tweets. Details of the datasets are shown in tables in Section 4.3. We

also collect random tweets—up to 100 per tweeter—from the same tweeters whose tweets

constitute the predictions dataset. The random tweets form a body of text for each tweeter

that we subsequently use as their bag of words (BoW) in our methods. We refer to this

dataset as the BoW dataset and the tweets as BoW tweets.
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Sports Tournament Games Predictions Tweeters Singletons Non-singletons
2014 FIFA World Cup 36 32094 22225 14555 7670
2015 ICC Cricket World Cup 46 14378 5588 239 5349
2014-16 NFL and NCAA 173 27602 18127 1503 16624

Table 4.1.1. Predictions dataset. Singletons are tweeters with a single game
prediction in the dataset.

The motivation behind using Twitter as the source for predictions is two-fold: firstly,

tweets, including those that contain predictions, are abundantly available on Twitter; sec-

ondly, the platform’s character limit results in tweets that are succinct, allowing for relatively

straightforward identification and extraction of predictions without complicated use of Nat-

ural Language Processing (NLP) or Understanding (NLU).

4.2. Methodology

Our task pertaining to Twitter is to develop a method to synthesize accurate predictions

for the outcome of sporting events (games) from subsets of available predictions. The pursuit

tests our thesis that Web information can be harnessed to arrive at such predictions and

leverages the wisdom of crowds to do so.

Our reliance on a WoC setting motivates the use of groups and informs our methodology.

As such, for every game to be predicted, we generate groups of tweeters from our raw data

by randomly batching, for each group, an arbitrary number of tweeters who have predicted

the outcome of the game.

Therefore, the features of our data we subsequently use with our methods apply to the

groups, not to individual tweeters. The methods by which we compute the features are

described further into this section.

We begin the rest of this section by describing the models we apply to our data, followed

by a discussion of our features.
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4.2.1. Models

Implicit in our thesis that Web information can be harnessed to arrive at predictions of event

outcomes is the assumption that Web information contain signals that can be methodically

extracted for the purpose of prediction. While the task involving our Twitter data is to

synthesize event predictions, the goal of the task is to study if features of the data—features

devised using hypotheses based on our central thesis—can be leveraged to extract such signals

to arrive at accurate predictions.

To study the features of the data, we choose to use a simple approach: to aggregate

predictions by generating groups of arbitrary sizes and computing the MV prediction. A

prediction tweet predicts which of two sporting teams will win a game, so the MV prediction

is the winning-team prediction with the higher number of occurrence among the group

predictions.

The human aspect of MV is important to note. Alternate methods include machine

learning (ML) models such as bagging and boosting. With a bagging approach, a number

of different classifiers could be trained that would yield separate predictions for a game in

an ensemble setting that could then be aggregated to derive a singular prediction for the

outcome the game. Similarly, a boosting approach could utilize one of the features discussed

in Section 4.2.2, e.g., Credibilitygrp, whereby an aggregate of predictions weighted by the

feature could be used toward deriving a prediction for the game outcome. However, we are

interested in a WoC setting where the human members of a crowd—the tweeters—are the

classifiers whose predictions we aggregate to synthesize a prediction for the game outcome.

Specifically, for a group of predictions, grp, by T tweeters, the MajorityV otegrp of the

group is given by
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(4.1) MajorityV otegrp = argmax
team∈Teams

(|predsteam|)

where predsteam denotes predictions that predict a win by team team ∈ Teams, and

Teams = {team1, team2}, the set of two teams playing the game.

We consider the MV tantamount to the wisdom of the crowd, where the crowd is the

group of tweeters in question. Subsequently, we study the average values of the features

pertaining to the groups and how they correlate with the accuracy of predictions and with

each other.

We study the features of the data further by using a ML model, for which we choose to

use a model that is known to perform well in capturing the relationship among data features

while not requiring a very large body of data as is typically required by ML methods such as

deep learning. Furthermore, we use handcrafted features based on our hypotheses, instead

of relying on the ML model to learn features from the data. Therefore, we choose LR as the

ML model to use. An additional advantage of LR as our model of choice is that it is simple

enough to make it relatively easier than with some other models to ascertain if findings

from the use of the model are attributable to the data or to nuanced artifacts of the model

architecture.

4.2.2. Features

We start this section by discussing some of the hypotheses underlying the data features we

compute. One of our hypotheses is that people’s historic accuracy in predicting events may

indicate their future prediction accuracy. Specifically, the more accurate a tweeter’s past
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sports predictions are, the more they can be relied upon for future predictions. To test

this hypothesis, we introduce a credibility feature that captures the reliability of tweeters’

predictions.

We also explore the effects of tweeters’ lemmingness: the degree to which a tweeter is

similar to others in predicting games. The feature is motivated by our hypothesis that

contrarians—those whose predictions typically oppose the mainstream or herd mentality—

may be better predictors. However, we choose to use the more straightforward measure of

the opposite of lemmingness: the tweeters’ tendency to follow the crowd, hence the name of

the feature.

For our study, we rely on the application of the WoC phenomenon. One of the four

requirements for WoC to work as observed by Surowiecki [23] is diversity, which posits that

the estimates by the different individuals in a crowd must be void of systematic bias. In other

words, diversity of predictions or estimates is an essential tenet of WoC. Therefore, we use

two features pertaining to diversity: the diversity of predictions and the similarity of tweeters

as measured by the similarities of the words they use in their tweets. A related feature that

we also use is the homogeneity of predictions, which measures the skew of predictions toward

the MV prediction.

This section continues with detailed descriptions of our features, and the features are

also summarized in Table 4.2.1.

4.2.2.1. Feature Credibilitygrp. Intuitively, a tweeter’s past performance in predicting

games should indicate how much they can be relied on for future predictions. Addition-

ally, one of the four conditions for the WoC phenomenon to work, as listed by Surowiecki in
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Feature Description
Credibilitygrp Average accuracy
Credibilitymax Maximum accuracy

Lemmingnessgrp Average tendency to agree with others on predictions
PredictionDiversitygrp 1 – Average Pairwise Cosine Similarity of predictions

BoWSimilaritygrp Average Pairwise Cosine Similarity of Bags of Words
PredictionHomogeneitygrp Skew of predictions toward majority vote

NumPredictionsgrp Average number of predictions of tweeters
NumPredictionsmax Maximum number of predictions of tweeters

GroupSizegrp Group size

Table 4.2.1. Features used for Twitter task

[23], is decentralization. The particular type of decentralization that Surowiecki describes re-

quires that the participants supplying estimates in a WoC setting are able to “specialize and

draw on local knowledge.” In our Twitter setting, a tweeter’s knowledge and understanding

of sports constitute their local knowledge, and their specialization informs their degree of

expertise.

The notions discussed in the previous paragraph are the motivation for the computation

of a tweeter’s credibility, Credibilityt, based on their prediction history. It is necessary to

describe the method by which we determine, at scale, the prediction contained in a tweeter’s

tweet, which we subsequently validate against the actual outcome of the game their predic-

tion pertains to. As stated in Section 4.1, we utilize handcrafted regexes to identify tweets

that contain predictions for games. Due to the simple but stringent structure of our regexes,

we expect them to perform well in retrieving relevant tweets using the Twitter API. Never-

theless, it is important to assess the efficacy of our method, which we accomplish by manually

inspecting a sample of random tweets for correctness. For every dataset pertaining to the

three sports that comprise our domain for the prediction task at hand, we isolate a random

sampling of 100 tweets. We then read the tweet to determine the prediction contained in it,
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thereafter comparing it with the actual outcome of the game it pertains to. Upon such man-

ual comparisons, we find the cricket, soccer, and football datasets to contain, respectively,

17%, 7%, and 8% tweets among the sampled sets containing predictions that contradict the

prediction determined computationally. As such, we consider the aforementioned percent-

ages to be the amount of noise in the datasets. Further, considering the sample count of 100

per dataset, we conclude that the sampled sets approximate the distribution of noisy and

non-noisy tweets in the entire datasets. We consider the noise percentages to be low enough

to consider our datasets informative for our prediction task at hand.

To proceed with feature descriptions, Credibilityt, in turn, informs the computation of

Credibilitygrp, which measures the credibility of a group of tweeters and is the average of the

individual credibility measures of every tweeter in the group. Given the short span of time

over which the sports tournaments in our prediction dataset occur, we consider it unlikely for

a tweeter to improve in their predictive ability over the course of a tournament. As such, our

computation of the Credibilityt of a tweeter is agnostic of time: to compute the Credibilityt

of a tweeter, we use all their predictions available in the prediction dataset except for the

game for which their Credibilityt is to be used to predict its outcome.

Credibilityt is the ratio of the number of correct predictions by a tweeter over all their

predictions. For games with a tied outcome, the tweeter is awarded partial credit for their

prediction, as the prediction dataset contains only predictions of a team’s victory over an-

other and not of tied games.

Specifically, for every tweeter, t ∈ T tweeters with a prediction for every game, g ∈ G

games in the prediction dataset, their Credibilityt with respect to g is given by
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(4.2) Credibilityt =
correctg′∈g\G + 1

2
partialg′∈g\G

|g \G|

where correctg′∈g\G denotes the number of correct predictions by t in all games in G

except for game g, and partialg′∈g\G denotes the number of partially-correct predictions for

those same games. Additionally, Credibilityt is smoothed as follows using smoothing prior,

m, and smoothing strength λ:

(4.3) SmoothedCredibilityt =
Credibilityt|G|+ λm

|G|+ λ

Therefore, for a group of predictions, grp, by T tweeters, the Credibilitygrp of the group

is given by

(4.4) Credibilitygrp =

∑
t∈T

SmoothedCredibilityt

|T |

The higher the Credibilitygrp of a group of tweeters is, the more credible they are

considered to be.

4.2.2.2. Feature Credibilitymax. Credibilitymax is measured using tweeters’ individual

credibility measures and is simply the maximum of those measures.

Therefore, for group of tweeters, T , using Equation 4.3, Credibilitymax is given by
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(4.5) Credibilitymax = max
t∈T

(SmoothedCredibilityt)

4.2.2.3. Feature Lemmingnessgrp. We hypothesize that people who express more con-

trarian views may exhibit better accuracy in their predictions than those who hold more

mainstream views. In other words, people who tend to exhibit more herd mentality—a be-

havior known to be common to lemmings, as they show a tendency to follow the actions

of other lemmings—may be less accurate in their predictions. Therefore, we measure the

lemmingness of a group of tweeters, Lemmingnessgrp, by averaging the individual lemming-

ness of every tweeter in the group, Lemmingnesst, which measures the degree to which the

tweeter is similar to other tweeters in predicting for the same games. For this measurement,

we identify the MV prediction by the other tweeters and the delta between the number of

MV predictions and the remaining predictions. If the target tweeter’s prediction matches

the MV prediction, we award the tweeter with a score equal to the ratio of the delta and

the number of total predictions (by the other tweeters); if the target tweeter’s prediction

differs from the MV prediction, we subtract the same ratio from the tweeter’s score. In the

case of equally split predictions among the other tweeters, we leave the target tweeter’s score

unchanged.

Specifically, for every tweeter, t ∈ T tweeters with a prediction for every game, g ∈ G

games in the prediction dataset, their Lemmingnesst with respect to g is given by

(4.6) Lemmingnesst =
|predsmatcht | − |preds¬matcht |
|predsmatcht |+ |preds¬matcht |
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where predsmatcht denotes the set of predictions by the other tweeters that match the

prediction by t, and preds¬matcht denotes the set of those that do not.

Therefore, for a group of predictions, grp, by T tweeters, the Lemmingnessgrp of the

group is given by

(4.7) Lemmingnessgrp =

∑
t∈T

Lemmingnesst

|T |

The higher the Lemmingnessgrp of a group of tweeters is, the more they have agreed

with other tweeters in their past common predictions.

One key condition required by the WoC phenomenon is diversity of opinion. The notion

is that with predictions from a diverse crowd, each individual prediction is likely to be

erroneous to some degree, but the errors cancel each other out, resulting in an aggregate

that is remarkably close to the truth. As such, we devise several features to measure different

aspects of diversity. The features are discussed below.

4.2.2.4. Feature PredictionDiversitygrp. This feature measures the diversity of a group

of tweeters by averaging the individual prediction diversity of each tweeter in the group,

PredictionDiversityt: a measure of how different the game predictions by the tweeter are

as compared to those by other tweeters in the group. PredictionDiversityt is computed

using the Bag of Predictions (BoP) of every tweeter. The BoP is a ternary vector of length

equal to the number of games in the prediction dataset. Each slot in the vector corresponds

to a game and has a 1 if the tweeter has predicted the first team to win—games are named

using the format FirstTeam-SecondTeam, and the names are held constant throughout our
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methodology—a –1 if the tweeter has predicted the second team to win, and a 0 if the tweeter

has not predicted for the game. The PredictionDiversityt of a tweeter is computed as 1

minus the average Pairwise Cosine Similarity between the BoP vectors of the tweeter and all

other tweeters, the Cosine Similarity computed pairwise between the tweeter’s BoP vector

and that of every other tweeter.

Specifically, for every tweeter, t ∈ T tweeters with a prediction for every game, g ∈ G

games in the prediction dataset and a BoP vector, vt, their PredictionDiversityt is given by

(4.8) PredictionDiversityt =

1−
∑
t′∈T ′

CosineSimilarity(vt, vt′)

|T ′|

where vt denotes the BoP vector of tweeter t, vt′ denotes the BoP vector of every other

tweeter t′ ∈ T , and T ′ = t \ T .

Therefore, for a group of predictions, grp, by T tweeters, the PredictionDiversitygrp of

the group is given by

(4.9) PredictionDiversitygrp =

∑
t∈T

PredictionDiversityt

|T |

The higher the PredictionDiversitygrp of a group of tweeters is, the more diverse the

tweeters in the group are in their predictions.

4.2.2.5. Feature BoWSimilaritygrp. This feature measures the diversity of a group of

tweeters by averaging a particular similarity measure of each tweeter, BoWSimilarityt:

how similar the use of words in tweets by the tweeter is to that of other tweeters in the
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group. It is computed using the BoW of every tweeter. The BoW of a tweeter is a binary

vector of length equal to the vocabulary observed in the entire BoW dataset, which is the

set of all unique words in all tweets except for a certain set of twenty-five stop words. Each

slot in the BoW vector corresponds to a word in the vocabulary and has a 1 if the tweeter

has used the word and a 0 otherwise. The BoWSimilarityt of a tweeter is computed as the

average Pairwise Cosine Similarity between the BoW vectors of the tweeters and all other

tweeters, the Cosine Similarity computed pairwise between the tweeter’s BoW vector and

that of every other tweeter.

Specifically, for every tweeter, t ∈ T tweeters with a prediction for every game, g ∈ G

games in the prediction dataset and a BoW vector, vt, their BoWSimilarityt is given by

(4.10) BoWSimilarityt =

∑
t′∈T ′

CosineSimilarity(vt, vt′)

|T ′|

where vt denotes the BoW vector of tweeter t, vt′ denotes the BoW vector of every other

tweeter t′ ∈ T , and T ′ = t \ T .

Therefore, for a group of predictions, grp, by T tweeters, the BoWSimilaritygrp of the

group is given by

(4.11) BoWSimilaritygrp =

∑
t∈T

BoWSimilarityt

|T |

The higher the BoWSimilaritygrp of a group of tweeters is, the more similar the uses

of words in tweets by the tweeters in the group are.
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4.2.2.6. Feature PredictionHomogeneitygrp. For a group of predictions by different tweet-

ers for a particular game, this feature measures the homogeneity of the predictions: how

skewed the predictions are toward the MV prediction. It is computed as the ratio between

the number of MV predictions to the number of total predictions in the group.

Specifically, for a group of predictions, grp, by T tweeters, the PredictionHomogeneitygrp

of the group is given by

(4.12) PredictionHomogeneitygrp =
max(|predsteam1|, |predsteam2|)
|predsteam1|+ |predsteam2|

where predsteam1 denotes the set of predictions that predict team1 to win the game, and

predsteam2 denotes the set of predictions that predict team2 to win.

4.2.2.7. Feature NumPredictionsgrp. This feature counts, for a group of tweeters, the av-

erage number of game predictions made by the tweeters in the group. It is computed by aver-

aging the individual game prediction counts of every tweeter in the group, NumPredictionst.

Specifically, for every tweeter, t ∈ T tweeters with a prediction for every game, g ∈ G

games in the prediction dataset, their NumPredictionst is given by

(4.13) NumPredictionst = |G|

Therefore, for a group of predictions by T tweeters, the NumPredictionsgrp of the group

is given by
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(4.14) NumPredictionsmax =

∑
t∈T

NumPredictionst

|T |

4.2.2.8. Feature NumPredictionsmax. This feature counts, for a group of tweeters, the

maximum number of game predictions made by the tweeters in the group. It is the maximum

value of the individual game prediction counts of every tweeter in the group, NumPredictionst.

Using Equation 4.13, for a group of predictions by T tweeters, the NumPredictionsmax

of the group is given by

(4.15) NumPredictionsmax = max
t∈T

(NumPredictionst)

4.2.2.9. Feature GroupSizegrp. For a group of predictions by different tweeters for a par-

ticular game, this feature is simply the size of the group of predictions.

Specifically, for a group of predictions, grp, by T tweeters, GroupSizegrp of the group is

given by

(4.16) GroupSizegrp = |grp|

4.3. Experiments and Analysis

In this section, we discuss experiments performed separately using each of the three

sports datasets: the soccer, cricket, and football datasets. Early exploratory experiments
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All Games Top Games
No. of Games 46 30
No. of Predictions 14378 13701
No. of Tweeters 5588 5559
No. of Singletons 239 511
No. of Non-singletons 5349 5048
Global Singleton Credibilityt 0.43
Global Prediction Homogeneity 0.74

Table 4.3.1. Cricket dataset details. The dataset ranges from February 6, 2015
to March 27, 2015. Singletons are tweeters with a single game prediction in
the dataset.

show that our prediction methods perform differently for the different datasets, leading us

to observe that while all three datasets pertain to sports, the nature of the signals present in

the data vary among the particular sports. Therefore, we perform the experiments discussed

below separately for the three datasets and report our observations.

4.3.1. Predicting Cricket

4.3.1.1. Majority Vote. We begin with a set of experiments to explore the use of MV

to predict cricket game outcomes. First, we predict the winning team for all 46 games in

the dataset. We refer to these games as All Games. Next, we predict the winning team for

only games for which the dataset contains 90 or more predictions. There are 30 such games

in the dataset, and we refer to them as the Top Games. Table 4.3.1 shows basic statistics

pertaining to the two datasets.

Using All Games and the Top Games, for each game, g ∈ G, we generate groups of

tweeter predictions of size, n ∈ N = {1, 2, 3, 5, 7, 9}. For each group size, n, we select

n predictions per game without replacement, repeating the process to yield 10 groups per

game. The reason for the repetition is to allow for 10 iterations of prediction per group
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Accuracy Metric All Games Top Games

Average Max Min Average Max Min
No. of Correct Predictions 24.88 33 14 18.70 23 12
No. of Partially Correct Predictions 0.95 1 0 0.92 1 0
No. of Wrong Predictions 15.87 31 8 10.38 17 6
No. of Total Predictions 41.70 46 30 30.00 30 30
Percentage of Correct Predictions (%) 60 75 30 62 77 40

Table 4.3.2. Cricket prediction accuracy. Counts shown for all 46 games on
the left (All Games with 2,502 predictions) and the top 30 games on the right
(Top Games: those with 90 or more predictions, totaling 1,800 predictions).
Averages are computed over 60 iterations.

size across all the games in the dataset. However, when All Games are used, for the set of

16 games not among the Top Games, certain larger group sizes limit the number of groups

to fewer than 10, resulting in those particular games being omitted from the prediction

iterations pertaining to the responsible group sizes. With the Top Games, however, given

the range of N and the prediction count threshold of 90, every game yields 10 groups. With

10 iterations of prediction per group size, we have a total of 60 iterations of prediction per

dataset.

Utilizing each group for MV prediction (the winner of the game) using Equation 4.1, we

make 2,502 predictions for All Games and 1,800 predictions for the Top Games.

We evaluate the accuracy of the predictions by counting the number of correct predictions,

the number of partially correct predictions (for tied games that tweeters predicted one team

would win), and the number of wrong predictions. These accuracies are shown in Table

4.3.2.

As mentioned before, predicting with different sports datasets is observed in exploratory

experiments to yield different levels of performance, which leads us to assume such differences

are manifest due to differences in the tweeter predictions for individual games. As such, it is
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Feature All Games Top Games

Average Max Min Average Max Min
Credibilitygrp 0.48 0.54 0.35 0.54 0.54 0.53
Lemmingnessgrp 0.27 0.50 0.06 0.34 0.53 0.18
PredictionDiversitygrp 0.64 0.95 0 0.7 0.95 0
BoWSimilaritygrp 0.21 0.36 0 0.23 0.38 0

Table 4.3.3. Cricket feature value average. The averages are computed over
60 iterations, each yielding an average over All Games on the left and the Top
Games on the right.

important to have enough tweeter predictions per game in order to capture the characteristics

of predictions pertaining to that particular game, which is the motivation for the Top Games.

Selecting 90 predictions as the minimum threshold results in a sizable set of games to predict

for, hence the choice of 90.

The percentages on the bottom line of Table 4.3.2 appear to corroborate the assumption

that having more tweeter predictions per game is likely to yield better MV accuracy. To

study the effect further, we look at the average values of the features pertaining to the

tweeter predictions. The averages are first computed over the games, the resulting averages

then averaged once more over the 60 iterations.

We observe that for both the All Games and the Top Games datasets, the value of

Credibilitygrp hovers around 0.50, which indicates a lack of predicting expertise among tweet-

ers when the credibility of their predictions is measured solely based on their history of pre-

dictions. However, in the limited dataset of the Top Games, the feature has a higher value.

A possible explanation for such gain, besides the possibility that it is so because of noise, is

the presence of relatively more tweets per game in the dataset than in the All Games dataset

when considered in the context of a noticeably low global Credibilitygrp of singletons: tweeters

who have a single tweet in the prediction dataset. While a tweeter’s credibility, Credibilityt,
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is otherwise computed based on their prediction history, a singleton’s credibility is computed

based on the overall prediction performance of all singletons in the dataset. Because of the

higher number of tweets and the distribution of non-singletons between the two datasets,

the Top Games contain more predictions per non-singleton, thereby likely diverging their

Credibilitygrp from the global singleton Credibilityt toward a more realistic value.

We further notice that the value of Lemmingnessgrp is very low, indicating that tweeters

have a tendency to disagree with the majority vote when predicting when measured across

games—they are more contrarian. It may appear paradoxical, as most tweeters’ disagreeing

with one prediction essentially forms a majority vote in favor of the other prediction. How-

ever, it is still plausible that a significant number of tweeters disagree with the majority vote

in enough games for this effect to be observed in aggregate across all their predictions for

various games. This is an effect we first notice in our preliminary explorations of the data

and warrants further investigation.

We acknowledge that the aforementioned effect related to Lemmingnessgrp may be the

reason for our next observation that the prediction diversity of tweeters across either dataset

is considerably high, as evident in the value of PredictionDiversitygrp. It could be argued

that for tweeters to disagree with the majority often, yet not form their own majority vote,

they would have to have be diverse among themselves in their predictions, i.e., sometimes

agree with other tweeters with whom they co-predict games and, at other times, disagree.

We also note that value of PredictionDiversitygrp is noticeably high for both datasets, which

would be commensurate with the diversity requirement of the WoC phenomenon. We further

note that the delta in PredictionDiversitygrp between the two datasets correlates with the

delta in the percentage of correct predictions in that both have higher values for the Top

Games than for All Games.
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Feature Pair All Games Top Games

Coeff. p-value Coeff. p-value
Correct predictions : Credibilitygrp 0.42 0 0 1
Correct predictions : Lemmingnessgrp 0.23 0.09 0.13 0.32
Correct predictions : PredictionDiversitygrp -0.17 0.20 0.03 0.81
Correct predictions : BoWSimilaritygrp -0.17 0.18 -0.08 0.53
Credibilitygrp : Lemmingnessgrp 0.33 0.01 0.29 0.03
Credibilitygrp : PredictionDiversitygrp -0.13 0.31 0.01 0.95
Credibilitygrp : BoWSimilaritygrp -0.07 0.58 -0.03 0.84
Lemmingnessgrp : PredictionDiversitygrp 0.03 0.81 -0.06 0.67
Lemmingnessgrp : BoWSimilaritygrp 0.07 0.58 -0.13 0.32
PredictionDiversitygrp : BoWSimilaritygrp 0.97 0 0.94 0

Table 4.3.4. Cricket feature pair correlation. Coeff. is Pearson’s Correlation
Coefficient, computed over 60 iterations.

The observations discussed thus far about the features do not readily indicate any influ-

ence of the features, if any, on the number of correct predictions. To study the relationship

between the correct predictions and the features further, we compute pairwise Pearson’s

Correlation Coefficient (“correlation”) along with the related p-value between the number

of correct predictions and every feature. We also compute the pairwise correlation between

every feature pair to gain further insight into the relationship among the features.

Per Table 4.3.4, Credibilitygrp has fairly strong correlation with the number of correct

predictions, and the correlation is statistically significant with p < 0.05. The extreme differ-

ence in values of the correlation coefficient and the p-value between All Games and the Top

Games, however, is intriguing for the feature pair. Turning to Table 4.3.3 for insight, we

notice that the values of Credibilitygrp have a small range, which may explain the intriguing

effect. However, we slate such effects as warranting further study in future investigations.

Also noteworthy is the correlation between Lemmingnessgrp and the number of cor-

rect predictions. Though shy of being statistically significant, the correlation contradicts
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the possibility of less lemmingness (more contrarianness) of tweeters leading to more accu-

rate predictions. The effect of lemmingness is more pronounced in the correlation between

Lemmingnessgrp and Credibilitygrp, which suggests that the more lemming a tweeter is, the

more accurate their predictions are, which lends support to the aforementioned correlation

between lemmingness and the number of correct predictions.

Finally, we note that PredictionDiversitygrp and BoWSimilaritygrp show an extraordinar-

ily strong and statistically significant correlation. The suggestion implicit in the correlation

is counterintuitive, as it suggest that tweeters with similar use of vocabulary in their tweets

tend to predict differently. While that is not implausible, the strong correlation is surprising

and warrants further study.

4.3.1.2. Logistic Regression. In addition to performing MV experiments, we perform LR

to further study our data features and their relationships and to utilize them to predict game

outcomes. The features used for LR are listed in Table 4.2.1.

Similarly to our approach with the MV experiments, we perform the LR experiments

first on All Games, then on the Top Games. For each game in either dataset, we use LR

to predict game outcomes using the same groups of prediction that we use to predict game

outcomes in the MV experiments. The feature values pertaining to each group are averaged

to form a row in the data used for LR, thereby generating multiple rows per game, each

corresponding to a prediction to be made by LR.

It is important to understand one further detail about the LR experiments. The LR

predictions are made in the manner of cross validation, in that a separate LR model is

trained to predict every game, for which the game is held out from the training data. In

other words, each LR model is trained on the grouped data mentioned in the previous
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All Games Top Games

LR MV LR MV
Average 0.67 0.61 Average 0.66 0.61

Table 4.3.5. Cricket Logistic Regression (LR) results: Average accuracies. LR
accuracy averages are compared to Majority Vote (MV) accuracy averages.

paragraph comprising all games except the one to be predicted for. Specifically, for every

game g ∈ G, predictions about the outcome of g are held out, and the LR model is trained

on all predictions pertaining to every game g \ G. The resulting LR models are later used

to predict game outcomes during the LR experiments.

Table 4.3.5 lists the LR accuracies. Also listed in the same table are MV accuracies for

predictions made using all the predictions in the prediction dataset for a game (whole-set MV

predictions, for the purpose of this discussion). In other words, while the MV experiments

use the same number of predictions per group as used for the LR experiments, the whole-set

MV predictions utilize the entire crowd of tweeters whose predictions are available per game.

We observe that LR performs better than MV for both All Games and the Top Games.

For a more detailed view, Table 4.3.6 lists the top five LR accuracies along with their MV

counterparts and corresponding averages. On average, LR is 7.78% more accurate for All

Games and 12.64% more accurate for the Top Games. When compared against the top

five MV accuracies, the corresponding LR accuracies are respectively 1.08% and 6.59% more

accurate on average for the two datasets, as shown in Table 4.3.7. The complete table (Table

7.0.1) is available in the Appendix.
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Game All Games Game Top Games

LR MV LR MV
bangladesh-scotland 1 0.98 new zealand-scotland 1 0.91
pakistan-ireland 0.97 0.85 india-zimbabwe 0.98 0.91
new zealand-afghanistan 0.97 0.90 australia-scotland 0.98 0.92
india-zimbabwe 0.97 0.87 pakistan-zimbabwe 0.97 0.75
australia-scotland 0.97 0.92 pakistan-united arab emirates 0.97 0.88
Average 0.97 0.90 Average 0.98 0.87

Table 4.3.6. Cricket Logistic Regression (LR) results: Top 5 LR accuracies.
The top 5 LR accuracies are compared to the corresponding Majority Vote
(MV) accuracies.

Game All Games Game Top Games

LR MV LR MV
bangladesh-scotland 1 0.98 australia-scotland 0.98 0.92
australia-scotland 0.97 0.92 new zealand-scotland 1 0.91
new zealand-afghanistan 0.97 0.90 india-zimbabwe 0.98 0.91
new zealand-scotland 0.95 0.95 south africa-pakistan 0.97 0.90
west indies-ireland 0.82 0.90 new zealand-afghanistan 0.92 0.89
Average 0.94 0.93 Average 0.97 0.91

Table 4.3.7. Cricket Logistic Regression (LR) results: Top 5 MV accuracies.
The top 5 Majority Vote (MV) accuracies are compared to the top 5 LR
accuracies.

4.3.2. Predicting Soccer

4.3.2.1. Majority Vote. To predict outcomes of soccer games, we follow the same struc-

ture of experiments as with predicting for cricket. First, we predict the winning team for all

36 games in the dataset or All Games. Next, we predict the winning team for only games

for which the dataset contains 90 or more predictions, the Top Games. There are 30 such

games in the dataset. Table 4.3.8 shows basic statistics pertaining to the two datasets.

Using the Soccer dataset, we make 2,013 predictions for All Games and 1,800 predictions

for the Top Games. Prediction accuracies are shown in Table 4.3.9.
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All Games Top Games
No. of Games 36 30
No. of Predictions 32094 31928
No. of Tweeters 22225 22211
No. of Singletons 14555 14639
No. of Non-singletons 7670 7572
Global Singleton Credibilityt 0.43
Global Prediction Homogeneity 0.73

Table 4.3.8. Soccer dataset details. The dataset ranges from June 13, 2014 to
June 26, 2014. Singletons are tweeters with a single game prediction in the
dataset.

Accuracy Metric All Games Top Games

Average Max Min Average Max Min
No. of Correct Predictions 13.72 20 9 11.10 16 7
No. of Partially Correct Predictions 8.38 9 2 8.40 9 2
No. of Wrong Predictions 11.45 20 4 10.50 17 5
No. of Total Predictions 33.55 36 30 30.00 30 30
Percentage of Correct Predictions (%) 41 61 26 37 53 23

Table 4.3.9. Soccer prediction accuracy. Counts shown for all 36 games on
the left (All Games with 2,013 predictions) and the top 30 games on the right
(Top Games: those with 90 or more predictions, totaling 1,800 predictions).
Averages are computed over 60 iterations.

MV prediction accuracy is not remarkable for either All Games or the Top Games. In

fact, the very low accuracy of MV prediction for the Top Games may appear to indicate

that minority vote is more indicative of correct predictions. However, further analysis is

warranted before arriving at a conclusion. As such, we look at the average values of the

features pertaining to the tweeter predictions.

We note that an extremely low values of Lemmingnessgrp, indicating the tweeters are

very contrarian (See discussion in Section 4.3.1), may be the reason behind the considerably

large PredictionDiversitygrp values.
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Feature All Games Top Games

Average Max Min Average Max Min
Credibilitygrp 0.45 0.49 0.40 0.48 0.49 0.48
Lemmingnessgrp 0.03 0.10 0 0.04 0.12 0
PredictionDiversitygrp 0.72 1 0 0.77 1 0
BoWSimilaritygrp 0.26 0.44 0 0.29 0.42 0

Table 4.3.10. Soccer feature value average. The averages are computed over
60 iterations.

We observe that for both the All Games and the Top Games datasets, the value of

Credibilitygrp, with values near 0.50, indicate a lack of predicting expertise among tweet-

ers when the credibility of their predictions is measured solely based on their history of

predictions.

In Table 4.3.11, Credibilitygrp shows a much larger correlation with the number of correct

predictions for All Games than does any other feature, and it it also statistically significant

with a p < 0.05. Therefore, the prediction accuracies in Table 4.3.9 may be assumed to be

mostly driven by Credibilitygrp.

We also notice a noticeable but negative correlation between Lemmingnessgrp and the

number of correct predictions, indicating that the more contrarian the tweeters are, the

more accurate they likely are. The observation lends further support, though weakly, to the

notion of contrarians being better predictors and may have also contributed to the number

of correct predictions.

The surprisingly strong correlation we observe between PredictionDiversitygrp and BoWSimilaritygrp

for cricket is also observed for soccer, and may require a deeper exploration of why such may

be the case for predictions on Twitter.
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Feature Pair All Games Top Games

Coeff. p-value Coeff. p-value
Correct predictions : Credibilitygrp 0.31 0.02 -0.04 0.77
Correct predictions : Lemmingnessgrp -0.18 0.18 -0.02 0.88
Correct predictions : PredictionDiversitygrp -0.12 0.35 -0.22 0.09
Correct predictions : BoWSimilaritygrp -0.08 0.57 -0.26 0.05
Credibilitygrp : Lemmingnessgrp 0.06 0.63 -0.10 0.46
Credibilitygrp : PredictionDiversitygrp -0.30 0.02 -0.13 0.32
Credibilitygrp : BoWSimilaritygrp -0.32 0.01 -0.18 0.17
Lemmingnessgrp : PredictionDiversitygrp -0.11 0.41 -0.25 0.05
Lemmingnessgrp : BoWSimilaritygrp -0.12 0.36 -0.26 0.04
PredictionDiversitygrp : BoWSimilaritygrp 0.96 0 0.96 0

Table 4.3.11. Soccer feature pair correlation. Coeff. is Pearson’s Correlation
Coefficient, computed over 60 iterations.

All Games Top Games

LR MV LR MV
Average 0.61 0.57 Average 0.49 0.52

Table 4.3.12. Soccer Logistic Regression (LR) results: Average accuracies. LR
accuracy averages are compared to Majority Vote (MV) accuracy averages.

4.3.2.2. Logistic Regression. As with the other two sports datasets, in addition to per-

forming MV experiments, we perform LR to further study our soccer data features and their

relationships and to utilize them to predict game outcomes. The features used for LR are

listed in Table 4.2.1.

Table 4.3.12 lists the LR accuracies. Also listed in the same table are accuracies for

whole-set MV predictions. An important point to note about the results is that it omits tied

games, as our chosen methodology used for counting predictions by the LR model lends an

unfair advantage to the model over MV predictions.

The LR accuracies offer interesting insights into sports prediction. We see in Table 4.3.13

that the top five LR accuracies are significant higher than their MV counterparts for both
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Game All Games Game Top Games

LR MV LR MV
mexico-cameroon 0.90 0.92 spain-netherlands 0.82 0.22
japan-colombia 0.88 0.82 belgium-russia 0.77 0.25
italy-uruguay 0.79 0.42 ghana-usa 0.77 0.44
ghana-usa 0.73 0.41 usa-germany 0.75 0.36
spain-netherlands 0.73 0.28 nigeria-argentina 0.67 0.37
Average 0.81 0.57 Average 0.75 0.33

Table 4.3.13. Soccer Logistic Regression (LR) results: Top 5 LR accuracies.
The top 5 LR accuracies are compared to the corresponding Majority Vote
(MV) accuracies.

All Games and the Top Games. However, as Table 4.3.14 shows, LR accuracy is significantly

worse than MV accuracy when compared with the top five MV accuracies. We recall the

scenario with cricket, where LR predictions have higher accuracy regardless of which end of

the accuracy spectrum they are compared with MV accuracies in. Soccer presents a different

scenario, as more evident in the complete table of accuracies (Table 7.0.2, tied games not

shown) shown in the Appendix. Firstly, we observe that LR accuracies for All Games and

the Top Games lag behind the corresponding MV accuracies with average accuracy of 0.47

vs. 0.47 and 0.49 vs. 0.52, respectively. In other words, the higher-than-MV performances

demonstrated by LR are limited to certain games. Secondly, we observe that the accuracies

are strongly inversely correlated with a correlation coefficient of -0.87. We hypothesize that

the effects we discuss in this paragraph may be a result of the nature of the sport, how

people predict soccer games, and the occasional “upsets,” whereby a team majority-voted to

win unexpectedly loses the game. The effects are fascinating, one that we consider a good

candidate for future research.
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Game All Games Game Top Games

LR MV LR MV
mexico-cameroon 0.90 0.92 belgium-algeria 0.05 0.89
belgium-algeria 0.65 0.85 portugal-ghana 0.1 0.76
portugal-ghana 0.70 0.83 switzerland-france 0.08 0.75
japan-colombia 0.88 0.82 germany-portugal 0.35 0.61
switzerland-france 0.67 0.78 korea-algeria 0.33 0.58
Average 0.76 0.84 Average 0.18 0.72

Table 4.3.14. Soccer Logistic Regression (LR) results: Top 5 MV accuracies.
The top 5 Majority Vote (MV) accuracies are compared to the corresponding
LR accuracies.

4.3.3. Predicting Football

4.3.3.1. Majority Vote. To predict outcomes of football games, we follow the same struc-

ture of experiments as with predicting for cricket and for soccer. However, we omit 3 games

from all our predictions, as the games appear in the dataset from both football seasons,

thereby comprising predictions that are not from the same timeframe. Therefore, first, we

predict the winning team for all 170 games in the dataset or All Games. Next, we predict

the winning team for only games for which the dataset contains 90 or more predictions, the

Top Games. There are 9 such games in the dataset after omitting the 3 aforementioned

games. Table 4.3.15 shows basic statistics pertaining to the two datasets.

Using the Football dataset, we make 3,416 predictions for All Games and 540 predictions

for the Top Games. Prediction accuracies are shown in Table 4.3.16.

MV prediction accuracy is not remarkable for either All Games or the Top Games.

Looking at the average values of the features pertaining to the tweeter predictions, we

note that PredictionDiversitygrp is considerably high among Top Games predictions. A



69

All Games Top Games
No. of Games 173 12
No. of Predictions 27602 25837
No. of Tweeters 18127 11445
No. of Singletons 1503 4740
No. of Non-singletons 16624 6705
Global Singleton Credibilityt 0.375
Global Prediction Homogeneity 0.698

Table 4.3.15. Football dataset details. The dataset ranges over two NFL and
NCAA seasons spanning from December 18, 2014 to February 6, 2016. Single-
tons are tweeters with a single game prediction in the dataset.

Accuracy Metric All Games Top Games

Average Max Min Average Max Min
No. of Correct Predictions 22.78 95 1 1.63 4 0
No. of Wrong Predictions 34.15 112 6 7.37 9 5
No. of Total Predictions 56.93 170 9 9.00 9 9
Percentage of Correct Predictions (%) 36 56 11 18 44 0

Table 4.3.16. Football prediction accuracy. Counts shown for all 170 games on
the left (All Games with 3416 predictions) and the top 9 games on the right
(Top Games: those with 90 or more predictions, totaling 540 predictions).
Averages are computed over 60 iterations.

PredictionDiversitymax of 0.85 suggests that there are sets of tweeters who co-predicted cer-

tain games and were very diverse within their respective groups. This raises the question of

whether diversity results in high accuracy of predictions for football.

4.3.3.2. Logistic Regression. Tables 4.3.18 and 4.3.19 do show some very high LR ac-

curacies for both All Games and the Top Games, and in both tables. However, the feature

correlations in Table 4.3.20 raise questions about noise in the data.

We observe significantly strong correlation between the number of correct predictions

and both Credibilitygrp and Lemmingnessgrp. Further, a group’s lemmingness has perfect
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Feature All Games Top Games

Average Max Min Average Max Min
Credibilitygrp 0.12 0.36 0.02 0.27 0.28 0.27
Lemmingnessgrp 0.19 0.70 0 0.10 0.28 -0.05
PredictionDiversitygrp 0.20 0.87 0 0.50 0.85 0
BoWSimilaritygrp 0.12 0.51 0 0.35 0.57 0

Table 4.3.17. Football feature value average. The averages are computed over
60 iterations.

Game All Games Game Top Games

LR MV LR MV
vikings-49ers 1 0 lions-cowboys 1 0.08
titans-browns 1 0 ravens-patriots 1 0.09
rams-vikings 1 0 seahawks-packers 1 0.05
dolphins-bills 1 0 packers-cowboys 0.98 0.22
dolphins-jets 1 0 cardinals-panthers 0.98 0.01
Average 1 0 Average 0.99 0.09

Table 4.3.18. Football Logistic Regression (LR) results: Top 5 LR accuracies.
The top 5 LR accuracies are compared to the corresponding Majority Vote
(MV) accuracies.

correlation with their credibility, as does their prediction diversity with their use of vocabu-

lary. Reflecting on such observations, we conclude that such surprising correlations are likely

merely artifacts of the lack of predictions across most games, as LR is trained on 170 games

for All Games, all but 12 of which has fewer than 90 prediction tweets. In other words, we

are led to consider the training data for LR noisy.

Considering the possibility of noise in the data, yet observing high LR accuracies for

certain games, it not readily discernible if the high LR accuracies when MV predictions lag

so far behind are strokes of luck given perhaps unexpected game “upsets” or if LR is able

to actually learn to detect signal given the prediction-rich Top Games. We note that when
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Game All Games Game Top Games

LR MV LR MV
bengals-bills 1 1 florida state-oregon 0.33 0.52
buccaneers-falcons 1 1 ohio state-alabama 0.37 0.51
rams-bengals 1 1 seahawks-patriots 0.65 0.5
jaguars-ravens 0.33 1 bengals-colts 0.85 0.26
colts-falcons 0.29 1 packers-cowboys 0.98 0.22
Average 0.72 1 Average 0.64 0.40

Table 4.3.19. Football Logistic Regression (LR) results: Top 5 MV accuracies.
The top 5 Majority Vote (MV) accuracies are compared to the corresponding
LR accuracies.

Feature Pair All Games Top Games

Coeff. p-value Coeff. p-value
Correct predictions : Credibilitygrp 0.95 0 -0.06 0.66
Correct predictions : Lemmingnessgrp 0.95 0 0.17 0.21
Correct predictions : PredictionDiversitygrp 0.29 0.02 -0.22 0.10
Correct predictions : BoWSimilaritygrp 0.29 0.03 -0.19 0.15
Credibilitygrp : Lemmingnessgrp 1 0 -0.54 0
Credibilitygrp : PredictionDiversitygrp 0.46 0 -0.13 0.34
Credibilitygrp : BoWSimilaritygrp 0.45 0 -0.09 0.48
Lemmingnessgrp : PredictionDiversitygrp 0.44 0 -0.12 0.36
Lemmingnessgrp : BoWSimilaritygrp 0.44 0 -0.06 0.64
PredictionDiversitygrp : BoWSimilaritygrp 1 0 0.93 0

Table 4.3.20. Football feature pair correlation. Coeff. is Pearson’s Correlation
Coefficient, computed over 60 iterations.

evaluated based on the top five Top Games, LR has robust performance whether the games

are sorted by LR accuracy or MV accuracy.

We conclude that the observations with football predictions show that sports domains

indeed have their own characteristics and quirks when looked at through the prediction task

at hand. It is probably fair to assume that additional features that capture the characteristics

of the teams and further traits of the tweeters are likely to yield more insight into how to

predict games given a sport. We find it difficult to dismiss the observations as simply
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All Games Top Games

LR MV LR MV
Average 0.54 0.50 Average 0.8 0.25

Table 4.3.21. Football Logistic Regression (LR) results: Average accuracies.
LR accuracy averages are compared to Majority Vote (MV) accuracy averages.

artifacts of noise data, and are left encouraged to slate future research to investigate these

observations and the interactions of features in further detail.

The surprising strong correlation we observe between PredictionDiversitygrp and BoWSimilaritygrp

for cricket is also observed for football, and may require a deeper exploration of why such

may be the case for predictions on Twitter.

4.4. Summary of Findings

In summary, the findings from our research on predicting events are as follow:

(1) The results of our experiments lend credibility to the applicability of crowd wisdom

in predicting. We find that the predictive voices of a crowd can indeed be synthesized

into a singular prediction of an event.

(2) Our experiments also suggest that there are possibly nuanced relationships among

our data features, as we observe in their pairwise correlations, that require further

study to reveal.

(3) We also observe that LR and MV exhibit disparate performances for the Top Games

in soccer, and that there is stark contrast between their performances for All Games

and the Top Games. Are these effects attributable to our methods, or could they

be due to the finicky nature of the sport? The Top Games have more tweets per

game, indicating popularity. Could unexpected and surprising game outcomes then
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have a role to play whereby popular predictions are proven wrong? We slate such

inquiries for future research.

(4) The role of credibility continues to show importance, yet it is difficult to confirm.

It warrants further study as well.

(5) Contrarianness and diversity appear salient in more than one occasion and deserve

further study rather than being discredited due to the overall nature of the dataset.

(6) Simple methods such as majority vote, averaging of crowd estimates, and LR prove

notably effective for our tasks.

(7) Our work indicates the presence of signal in crowd predictions, showing that it is

not all noise and that algorithmic extraction of signal is possible and has further

potential.
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CHAPTER 5

Financial Prediction With Estimize

Motivated by the inspiring results of our experiments with predicting sporting even out-

comes, we study the application of similar approaches to financial predictions. Continuing

to rely on the wisdom-of-crowds (WoC) phenomenon, we turn to predictions made on Es-

timize that we aggregate using majority vote and Linear Regression to synthesize accurate

predictions of Revenue and Earnings Per Share (EPS) pertaining to various companies’ stock

releases.

Our experiments corroborate our findings from the previous chapter, in that our methods

perform well in deriving Revenue and EPS predictions from Estimize data.

Similarly to the previous chapter, Section 5.1 of this chapter describes the dataset we

use for our study. Section 5.2 describes our data features along with the methods we use.

Section 5.3 presents our various experiments and associated analysis followed by a summary

of our findings in Section 5.4.

5.1. Dataset

For our second study of prediction of events using Web information sources, we use data

from Estimize, a platform that crowdsources earnings and economic estimates from indepen-

dent and amateur analysts as well as those from hedge funds and brokerages. Specifically,

the data consists of predictions of Revenue and EPS from various analysts for the stock

releases (releases) of various companies.
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Training Dataset Test Dataset
Analysts 2098 4185
Releases 2863 1222
Revenue Predictions 52244 40989
EPS Predictions 54648 59242
Total Predictions 106892 100231

Table 5.1.1. Estimize training and test datasets. The data ranges from Janu-
ary, 2012 to August 2016.

A platform such as Estimize can be subjected to manipulation by injection of predictions

by users with malicious intent. As such, preprocessing of the data is performed in order

to remove suspicious values: those within three Standard Deviations from the Mean. In

addition, the platform commonly has repetitive entries by the same person for the same

release, in which case, all but the latest is discarded.

The data also contains metadata pertaining to the analysts and the companies, such as

analysts’ biographical data and the industry a company belongs in, among others. However,

such metadata is not used for our study. Additionally, the Estimize data contains Revenue

and EPS predictions by Wall St.

The preprocessed Estimize data is then sorted in increasing chronological order, from the

release with the earliest prediction to that with the latest. The timestamp used for a release

is the one for the latest prediction for that release. The data is then partitioned into training

and test partitions, ensuring that entire releases fall in either partition.

5.1.1. Grouping

As discussed later in Section 5.2.4, we use group sizes in range N = [1, 13]. Using our

preprocessed Estimize data, we form datasets comprised of grouped predictions that we use

for training and testing of our models. Each row of a dataset corresponds to a group formed

by randomly batching n ∈ N different predictions from the predictions available for the same
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release in the preprocessed data. For each n, we use Reservoir Sampling to identify up to m

unique groups. Depending on n, the number of possible groups may be fewer than m, hence

the relaxed requirement on how many groups are identified. The resulting datasets form our

training dataset (training set) and test dataset (test set). Table 5.1.1 shows details of the

datasets.

The Estimize data is sourced courtesy of Dr. Ned Smith, a faculty member of the Kellogg

School of Management at Northwestern University.

5.2. Methodology

Our task pertaining to Estimize is to develop a method to synthesize accurate financial

predictions for releases from subsets of available predictions. Similarly to our task using

Twitter data, this pursuit also tests our thesis that Web information can be harnessed to

arrive at such predictions and also leverages the WoC to do so.

We begin the rest of this section by describing the models we apply to our data, followed

by a discussion of our features.

5.2.1. Models

Similarly to our task with Twitter, we start by using majority vote (MV) to make predictions,

and we use two variations of it. We also use machine learning (ML), for which we choose

to use a model that is similar to Logistic Regression, but outputs continuous values as

predictions as opposed to binary predictions as is required for game predictions with Twitter

data. Therefore, our ML model of choice for the Estimize task is Linear Regression (LR).
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5.2.2. Näıve Wisdom of Crowds

As we discuss shortly, our LR model is used with predictions by small groups of analysts. In

order to compare our MV prediction performances models with those of our LR model, we

test MV using two methods. One of the MV methods we use utilizes all available analysts

to predict for a release. We call it Näıve WoC.

5.2.3. Selective Wisdom of Crowds

For our other method of MV, we use the same number of analysts as used by the LR model,

i.e., MV predictions are made using groups of the same sizes as used by LR, each group

formed by randomly selecting analysts. We call this method Selective WoC.

5.2.4. Linear Regression

To elaborate on the ML part of our task, our goal is to train a ML model on our data that

learns to identify relatively small groups of analysts per release whose predictions can be

aggregated to produce a prediction for that release. We identify such groups experimentally

by training a LR model on a dataset comprising groups of analysts of sizes in range, N =

[1, 13], formed by batching analysts from the raw data. Specifically, the LR model learns

to predict the magnitude of error in the prediction for a release by each group, upon which

the groups are sorted by their error to identify those with the least predicted errors. Once

a set of candidate groups (groups to be aggregated) is identified, we experiment again with

differently sized sets or subgroups of the candidate groups to arrive at a final prediction,

which is simply an average of the predictions by the candidate groups chosen to predict for

the release.
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Feature Name Feature Description Computed For
Credibilitygrp Group δg Rev, EPS

Contrariannessgrp Group Contrarianness Rev, EPS
PredictionDiversitygrp Diversity of Predictions Rev, EPS, Combined

AnalystBoPDiversitygrp Diversity of Analysts’ BoP Rev, EPS, Combined
AnalystBoPSizeDiversitygrp Diversity of Analysts’ BoP Sizes Rev, EPS, Combined
AnalystBoDPDiversitygrp Diversity of Analysts’ BoPD Rev, EPS
PredictionHomogeneitygrp Homogeneity of Predictions Rev, EPS

GroupSizegrp Group Size —
CrowdPredictiongrp Average of Predictions by Group Rev, EPS
WallStPredictiongrp Prediction by Wall St. Rev, EPS

Actualgrp Actual Value Rev, EPS
(Label) NormalizedErrorgrp Group Normalized Error Rev, EPS

Table 5.2.1. Estimize Features

5.2.5. Features

Our inquiry into synthesizing accurate financial predictions from subsets of crowd predictions

is founded on the same hypotheses underlying our task using Twitter data, resulting in

similar features measuring em credibility, contrarianness, and diversity. We also find the

Estimize dataset to be particularly suitable to the application of WoC, in that the the

dataset comprises numeric estimates from crowds of people, which the WoC phenomenon

has been observed to perform well on. The viability of WoC motivates the use of groups

of analysts for prediction, and the features we compute apply to the groups rather than to

individual analysts. For example, when measuring credibility, we are interested mainly in

the average credibility of a group of analysts.

We continue this section with a description of the features. Each feature is computed

for both Revenue and EPS, the two prediction types. For certain features, a third instance

of the feature is computed that combines Revenue and EPS information. The features are

shown in Table 5.2.1.
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5.2.5.1. Feature Credibilitygrp. The credibility of a group of analysts is computed using

the credibility measurement of every individual analyst in the group, Credibilitya, which

is our metric for measuring an analyst’s expertise by assessing their history of predictions.

Unlike with the credibility measure used for the Twitter task, the credibility of an individual

analyst is not agnostic of time, as the Estimize data spans a much longer period of time

than does the Twitter data, allowing analysts to possibly improve in their predictions over

time. As such, an analyst’s history of predictions is limited to only their past predictions.

Credibilitya at a given time is the ratio of the cumulative prediction error made by an

analyst over all their past predictions to the cumulative total of the actual prediction values.

Subsequently, for every group of analysts, the group’s expertise Credibilitygrp is computed

as an average of the analysts’ Credibilitya.

Specifically, for every analyst, a ∈ A analysts with a prediction each for every release,

r ∈ R releases in the dataset prior to time, t, their Credibilitya at time t is given by

(5.1) Credibilitya =
1

|R|
∑
r∈R

|predar − truer|
|truer|+ 1e−6

where predar denotes the analyst’s prediction for the rth prior release, truer denotes the

actual value of the same release, and the second component in the denominator prevents

division by zero. Additionally, Credibilitya is smoothed as follows using smoothing prior,

m, and smoothing strength, λ:

(5.2) SmoothedCredibilitya =
Credibilitya|R|+ λm

|R|+ λ
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Therefore, for a group of predictions, grp, by A analysts, Credibilitygrp is given by

(5.3) Credibilitygrp =

∑
a∈A

Credibilitya

|A|

and is computed separately for both Revenue and EPS.

The higher the Credibilitygrp of a group of analysts is, the less cumulative error they

have made in their past predictions of Revenue or EPS.

5.2.5.2. Feature Contrariannessgrp. Similarly to credibility measurement, the contrar-

ianness of a group of analysts is computed using the contrarianness measurement of ev-

ery individual analyst in the group, Contrariannessa, based on their past predictions.

Contrariannessa, at a given time, is the degree to which an analyst has differed in the

past from other analysts in predicting the same releases. At the time of an analyst’s pre-

diction for a release that is also predicted for by other analysts, the feature is the average

of the differences between the analyst’s predictions for prior releases and the other ana-

lysts’ average predictions for the same releases. Subsequently, for every group of analysts,

the group’s contrarianness Contrariannessgrp is computed as an average of the analysts’

Contrariannessa.

Specifically, for every analyst, a ∈ A analysts with a prediction each for every release,

r ∈ R releases prior to time, t, each release with predictions by A′ other analysts, where A′

may be different for different r, their Contrariannessa at time, t is given by

(5.4) Contrariannessa =

∑
r∈R
|predar − 1

A′

∑
a′∈A′

preda′r|

|R|
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where predar denotes the analyst’s prediction for the rth prior release, and preda′r denotes

the prediction by every analyst, a′ ∈ A′ for the same release. Additionally, Contrariannessa

is smoothed as follows using smoothing prior, m, and smoothing strength, λ:

(5.5) SmoothedContrariannessa =
Contrariannessa|R|+ λm

|R|+ λ

Therefore, for a group of predictions, grp, by A analysts, Contrariannessgrp is given by

(5.6) Contrariannessgrp =

∑
a∈A

Contrariannessa

|A|

and is computed separately for both Revenue and EPS.

The higher the Contrariannessgrp of a group of analysts is, the more contrarian they

have been in their past predictions of Revenue or EPS.

5.2.5.3. Feature PredictionDiversitygrp. For a group of predictions by different analysts

for a particular release, this feature measures the diversity of the predictions.

Specifically, for a group of predictions, grp, by A analysts, PredictionDiversitygrp of the

group is the Variance of the predictions and is given by

(5.7) PredictionDiversitygrp =

∑
a∈A

(preda − µgrp)2

|A|
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where preda denotes the prediction by every analyst, a ∈ A, and µgrp denotes the average

of all predictions in grp. Additionally, PredictionDiversitygrp is smoothed as follows using

smoothing prior, m, and smoothing strength, λ:

(5.8) SmoothedPredictionDiversitygrp =
PredictionDiversitygrp|A|+ λm

|A|+ λ

and is computed separately for Revenue and EPS.

The higher the SmoothedPredictionDiversitygrp of a group of Revenue or EPS predic-

tions is, the more variance there is in the predictions.

5.2.5.4. Feature AnalystBoPDiversitygrp. For a group of predictions by different analysts

for a particular release, this feature measures the diversity of the group of analysts based

on the diversity of every individual analyst as compared to the other analysts in the group.

It is computed in two steps using the Bag of Predictions (BoP) of every analyst, which is

a binary vector that has a 1 for every release predicted by the analyst and a 0 otherwise.

First, for every analyst in the group, their individual diversity is computed as the smoothed

average of the Cosine Similarities between the BoP of the analyst and the BoP of every other

analyst in the group. Next, AnalystBoPDiversitygrp is computed as the smoothed average

of the diversity measures of all the analysts in the group.

Specifically, for a group of predictions, grp, by A analysts, for every analyst, a ∈ A with

a BoP vector, va, their individual diversity AnalystBoPDiversitya is given by

(5.9) AnalystBoPDiversitya =

∑
a′∈A′

CosineSimilarity(va, va′)

|A′|
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where va denotes the BoP vector of every analyst a ∈ A, and va′ denotes the BoP vector

of every analyst a′ ∈ A′ other analysts in the group. Additionally, AnalystBoPDiversitya

is smoothed as follows using smoothing prior, m, and smoothing strength, λ:

(5.10) SmoothedAnalystBoPDiversitya =
AnalystBoPDiversitya|A′|+ λm

|A′|+ λ

Therefore, AnalystBoPDiversitygrp of the group is given by

(5.11) AnalystBoPDiversitygrp =

∑
a∈A

SmoothedAnalystBoPDiversitya

|A|

Additionally, AnalystBoPDiversitygrp is smoothed as follows using smoothing prior, m,

and smoothing strength, λ:

(5.12) SmoothedAnalystBoPDiversitygrp =
AnalystBoPDiversitygrp|A|+ λm

|A|+ λ

and is computed for Revenue, EPS, and a combination of both, for which the analyst

vectors used have 1 for releases for which the analyst has predicted both Revenue and EPS

and 0 otherwise.

The higher the SmoothedAnalystBoPDiversitygrp of a group of Revenue or EPS pre-

dictions is, the more diverse the analysts who made those predictions have been in their

past common predictions.
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5.2.5.5. Feature AnalystBoPSizeDiversitygrp. For a group of predictions by different

analysts for a particular release, this feature, similarly to AnalystBoPDiversitygrp, measures

the diversity of the analysts based on the diversity of every individual analyst as compared

to the other analysts in the group. However, unlike with AnalystBoPDiversitygrp, the

diversity of every individual analyst is not computed using their BoP, but the size of their

BoP. As such, the computation of the feature is more straightforward and is simply the

Variance of the BoP sizes of the analysts.

Specifically, for a group of predictions, grp, by A analysts, with every analyst, a ∈ A

with a BoP vector, va, AnalystBoPSizeDiversitygrp is given by

(5.13) AnalystBoPSizeDiversitygrp =

∑
a∈A

(|va| − µ|va∈A|)
2

|A|

where |va| is the BoP size of every analyst, a ∈ A, and µ|va∈A| is the average BoP size

of all the analysts in the group. Additionally, AnalystBoPSizeDiversitygrp is smoothed as

follows using smoothing prior, m, and smoothing strength, λ:

(5.14) SmoothedAnalystBoPSizeDiversitygrp =
AnalystBoPSizeDiversitygrp|A|+ λm

|A|+ λ

and is computed separately for Revenue, EPS, and a combination of both, for which the

analyst vectors used have 1 for releases for which the analyst has predicted both Revenue

and EPS and 0 otherwise.
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The higher the SmoothedAnalystBoPSizeDiversitygrp of a group of Revenue or EPS

predictions is, the more diverse the analysts who made those predictions have been in their

past common predictions.

5.2.5.6. Feature AnalystBoDPDiversitygrp. For a group of predictions by different an-

alysts for a particular release, this feature, similarly to AnalystBoPDiversitygrp, measures

the diversity of the analysts based on the diversity of every individual analyst as compared

to the other analysts in the group, and is computed in the same two-step method. However,

instead of using the BoP of every analyst, it uses the Bag of Directional Predictions (BoDP)

of every analyst. BoDP differs from BoP in that it is ternary as opposed to binary, using 1

to indicate releases for which predictions are equal to or higher than the prediction by Wall

Street, –1 to indicate releases for which predictions are lower than that by Wall Street, and 0

to indicate releases for which there are no predictions. First, for every analyst in the group,

their individual diversity is computed as the smoothed average of the Cosine Similarities

between the BoDP of the analyst and the BoDP of every other analyst in the group. Next,

AnalystBoDPDiversitygrp is computed as the smoothed average of the diversity measures

of all the analysts in the group.

Specifically, for a group of predictions, grp, by A analysts, for every analyst, a ∈ A with

a BoDP vector, va, their individual diversity AnalystBoDPDiversitya is given by

(5.15) AnalystBoDPDiversitya =

∑
a′∈A′

CosineSimilarity(va, va′)

|A′|
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where va denotes the BoDP vector of every analyst, a ∈ A, and va′ denotes the BoDP vec-

tor of every analyst, a′ ∈ A′ other analysts in the group. Additionally, AnalystBoDPDiversitya

is smoothed as follows using smoothing prior, m, and smoothing strength, λ:

(5.16) SmoothedAnalystBoDPDiversitya =
AnalystBoDPDiversitya|A′|+ λm

|A′|+ λ

Therefore, AnalystBoDPDiversitygrp of the group is given by

(5.17) AnalystBoDPDiversitygrp =

∑
a∈A

SmoothedAnalystBoDPDiversitya

|A|

Additionally, AnalystBoDPDiversitygrp is smoothed as follows using smoothing prior,

m, and smoothing strength, λ:

(5.18) SmoothedAnalystBoDPDiversitygrp =
AnalystBoDPDiversitygrp|A|+ λm

|A|+ λ

and is computed separately for both Revenue and EPS.

The higher the SmoothedAnalystBoDPDiversitygrp of a group of Revenue or EPS pre-

dictions is, the more diverse the analysts who made those predictions have been directionally

in their past common predictions.

5.2.5.7. Feature PredictionHomogeneitygrp. For a group of predictions by different ana-

lysts for a particular release, this feature measures the homogeneity of the predictions with

respect to their direction in comparison with the prediction by Wall St.
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Specifically, for a group of predictions, grp, by A analysts, the PredictionHomoge-

neitygrp of the group is the ratio of the maximum number of predictions that are directionally

equivalent to the total number of predictions. Let count(x) be the number of predictions in

grp that are equal to x. Then, PredictionHomogeneitygrp is given by

(5.19) PredictionHomogeneitygrp =
max{count(1), count(0), count(−1)}

|A|

where 1, 0, and –1 denote, respectively, a prediction higher than that by Wall St., a pre-

diction equal to that by Wall St., and a prediction lower than that by Wall St. Additionally,

PredictionHomogeneitygrp is smoothed as follows using smoothing prior, m, and smoothing

strength, λ:

(5.20) SmoothedPredictionHomogeneitygrp =
PredictionHomogeneitygrp|A|+ λm

|A|+ λ

and is computed separately for both Revenue and EPS.

The higher the SmoothedPredictionHomogeneitygrp of a group of Revenue or EPS

predictions is, the more homogeneous the predictions are.

5.2.5.8. Feature GroupSizegrp. For a group of predictions by different analysts for a par-

ticular release, this feature is simply the size of the group of predictions.

Specifically, for a group of predictions, grp, by A analysts, the GroupSizegrp of the group

is given by
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(5.21) GroupSizegrp = |group|

Three features of the data inform a set of Prediction Features: For a particular release,

they are predictions made by the analysts, predictions made by Wall St., and the actual

value of Revenue or EPS of the release. These features are discussed below.

5.2.5.9. Feature CrowdPredictiongrp. For a group of predictions by different analysts for

a particular release, this feature is the wisdom of the crowd and measures the prediction by

the crowd as the average of the predictions by the analysts.

Specifically, for a group of predictions, grp, by A analysts, the CrowdPredictiongrp of

the group is given by

(5.22) CrowdPredictiongrp =

∑
a∈A

preda

|A|

where preda denotes the prediction by every analyst, a ∈ A.

CrowdPredictiongrp is computed separately for both Revenue and EPS.

5.2.5.10. Feature WallStPredictiongrp. For a group of predictions by different analysts

for a particular release, this feature is simply the prediction by Wall St for the release.

Specifically, for a group of predictions, grp, by A analysts, the WallStPredictiongrp of

the group is given by



89

(5.23) WallStPredictiongrp = predWallSt

where predWallSt denotes the prediction by Wall St. for the release.

WallStPredictiongrp is computed separately for both Revenue and EPS.

5.2.5.11. Feature Actualgrp. For a group of predictions by different analysts for a partic-

ular release, this feature is simply the value of the Revenue or the EPS of the release.

Specifically, for a group of predictions, grp, by A analysts, the Actualgrp of the group is

given by

(5.24) Actualgrp = actual

where actual denotes the actual value of the Revenue or the EPS of the release.

Actualgrp is computed separately for both Revenue and EPS.

5.2.5.12. Feature NormalizedErrorgrp. For a group of predictions by different analysts

for a particular release, this feature is the target or label for the ML model to learn to predict

and is a normalized measurement of error. The error measured is the delta between the

crowd prediction and the actual value for the release, which is then normalized by dividing

it by the actual value.

Specifically, for a group of predictions, grp, by A analysts, the NormalizedErrorgrp of

the group is given by
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Feature Suites
All features (in Table 5.2.1)
Only non-Revenue features
Only non-EPS features
Only non-Credibility features
Only non-Contrarianness features
Only non-Diversity features
Only non-Homogeneity features

Table 5.2.2. Ablation Study Feature Suites

(5.25) NormalizedErrorgrp =

∑
a∈A

preda

|A| − actual
actual

Using Equations 5.22 and 5.24, the NormalizedErrorgrp can be rewritten as

(5.26) NormalizedErrorgrp =
CrowdPredictiongrp − actual

actual

5.2.6. Ablation Study

The purpose of an ablation study is to assess the importance of individual features by

contrasting the performances of a trained model when it is trained and tested on data that

includes the feature and on data that excludes the feature. A variant of the method is

to leave out an entire set of feature at a time if certain features can be grouped into a

common category based on some aspect of the features. We perform several rounds of model

training, each round performing an ablation study by leaving one feature out a time from

a suite of features. Table 5.2.2 lists the suites of features used. Additionally, each round

of ablation study is performed using several sizes for how many candidate groups with the

lowest predicted error is to be used to aggregate their predictions into a final prediction.
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5.2.7. Error Measurements

To gauge the performance of our trained model, we measure accuracy, which we define in

terms of the error measurements we discuss below. Each of then provides a measure of

accuracy of the prediction by a group.

5.2.7.1. Directional Accuracy. For the task of synthesizing accurate financial predictions

from the wisdom of crowds, we consider predictions by Wall St. a good benchmark to

compare to, as Wall St. is renowned for their robustly accurate financial predictions. As

such, if a group’s prediction is on the same side (higher or lower) of the actual value, we

consider the prediction to have an important attribute of accuracy: directional correctness.

We define Directional Accuracy (“DirAcc”) for a group’s prediction to be a count in [0, 1]

such that it is 1 when the prediction is directionally correct and 0 otherwise. The value

has two convenient properties: it serves as a binary indicator of directional accuracy and

can also be summed across releases for a cumulative measure of directional accuracy. For a

prediction, predgrp, by a group for a release, r, if the actual value for the release is actual

and the Wall St. prediction is predWallSt, DirAcc is given by

(5.27) DirAcc =


1, if (predgrp − actual)(predWallSt − actual) >= 0

0, otherwise

5.2.7.2. Absolute Error. Absolute Error (AE) is the absolute value of the delta between

a group’s prediction and the actual value for a release. For a prediction, predgrp, by a group

for a release, r, the actual value for which is actual, AE is given by
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(5.28) AE = |predgrp − actual|

5.2.7.3. 1% Error. We define 1% Error (1%Error) for a group’s prediction to be a count

in [0, 1] such that it is 1 when the prediction is within 1% of the actual value—the absolute

value of the delta between a group’s prediction and the actual value for a release is less than

or equal to 1% of the actual value—and 0 otherwise. For a prediction, predgrp, by a group

for a release, r, with an actual value, actual, 1%Error is given by

(5.29) 1%Error =


1, if predgrp − actual <= actual × 1%

0, otherwise

5.2.7.4. 5% Error. We define 5% Error (5%Error) for a group’s prediction to be a count

in [0, 1] such that it is 1 when the prediction is within 5% of the actual value—the absolute

value of the delta between a group’s prediction and the actual value for a release is less than

or equal to 5% of the actual value—and 0 otherwise. For a prediction, predgrp, by a group

for a release, r, with an actual value, actual, 5%Error is given by

(5.30) 5%Error =


1, if predgrp − actual <= actual × 5%

0, otherwise

5.2.7.5. 10% Error. We define 10% Error (10%Error) for a group’s prediction to be a

count in [0, 1] such that it is 1 when the prediction is within 10% of the actual value—the
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absolute value of the delta between a group’s prediction and the actual value for a release

is less than or equal to 10% of the actual value—and 0 otherwise. For a prediction, predgrp,

by a group for a release, r, with an actual value, actual, 10%Error is given by

(5.31) 10%Error =


1, if predgrp − actual <= actual × 10%

0, otherwise

5.3. Experiments and Analysis

Based on our ablation studies, we test the performance of predictions for Estimize using

a subset of all the features listed in Table 5.2.1. The features we use are those that show

to yield the best performances in the ablation study. They are further informed by the

correlation coefficients resulting from LR performed with all features. Also, if our selected

features include Wall St. predictions, we repeat our experiments with those features omitted

in order to study the influence of Wall St. predictions on our models.

Additionally, we compare the results with those achieved by using all features of the data.

We begin by looking at results from experiments performed for Revenue predictions.

5.3.1. Revenue Prediction

5.3.1.1. Selected Features. Table 5.3.1 shows the prediction performances when all 13

groups sizes are used.

We also want to study the effect of group size on the predictions, which is the motivation

behind the use of the different group sizes. In preliminary experiments, we observe prediction
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Model Directional
Accuracy

1%
Error

5%
Error

10%
Error

Beats Wall
St. in AE

Naive WoC 0.84 0.31 0.82 0.96 –
Selective WoC 0.93 0.34 0.83 0.97 0.57
LR 0.91 0.35 0.83 0.97 0.57
LR (Sans Wall St.) 0.93 0.34 0.82 0.97 0.57
Wall St. – 0.32 0.82 0.96 –

Table 5.3.1. Estimize Revenue prediction performances with the best features:
All group sizes. Performances are shown as ratio of average number of cor-
rect predictions to average number of total predictions (average of 485.38)
across 13 different group sizes in range N = [1, 13]. Features used are
Credibilitygrp EPS, Credibilitygrp Revenue, AnalystBoDPDiversitygrp Revenue,
WallStPredictiongrp EPS, and WallStPredictiongrp Revenue.

performances using groups sizes in the range eight to 12 to stand out with small amounts

of data. Incidentally, Kao and Couzin observe the same effect in their research [37], about

which one of the authors comment in a subsequent interview, “there’s a small optimal group

size of eight to 12 individuals that tends to optimize decisions.” However, we do not observe

the same effect in our Revenue predictions.

Both WoC and LR perform well overall, notably in Directional Accuracy—the prediction

is considered accurate if it is on the same side of the Wall St. prediction as the actual release

value. LR appears to outperform the other predictions, albeit by a narrow margin. While

LR outperforms the other models in all the error categories, we note the presence of 1%

Error among them, as it represents the least error. We also note that LR trades that level

of performance off with Directional Accuracy. It is not apparent, though, if such tradeoff is

an artifact of noise or have significance.

Looking closely at the results in Table 5.3.1, we first note the features that achieved the

LR results. We observe that the results—the best among all our trials with different subsets

of features—require only a few features and that they pertain mostly to credibility and Wall

St. predictions. This does not surprise us, as relying on the credibility of the predicting
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crowd is one of the core tenets of our thesis. The role of the Wall St. predictions is not

apparent, but we presume it serves as an anchor for the LR model to learn, guiding its

prediction when the Wall St. prediction is taken into account in conjunction with the crowd

predictions.

We also notice the presence of a diversity feature in the subset of features in discussion.

The specific diversity feature here is AnalystBoDPDiversitygrp, which measures the diversity

of the directional predictions of the analysts in a group. As diversity is one of the pillars of

the WoC, as put forth by Surowiecki in [23], this feature also seems perfectly reasonable to

be included in the feature subset. We are curious to know if the directionality aspect of the

predictions that this feature pertains to is important in that directional diversity results in

the canceling effect of predictions that is thought to be behind the WoC phenomenon. We

slate the inquiry as future work.

Selective WoC, which uses the same number of resources (analysts) used by LR, outper-

forms Naive WoC, and by a large margin in Directional Accuracy. Such effects are interesting

and warrant further study in future research.

One surprising observation is that Wall St. predictions do not outperform WoC or LR

on any metric, though we recognize its performance difference with the other models to be

small.

Lastly, we look at the last column in the table, which captures the ratio of predictions

for which Selective WoC and LR outperform Wall St. in Absolute Error (AE). The 1%

through 10% Error metrics provide some margin for accuracy and may favor one metric or

another depending on how close to and which side of a thresholds the accuracy is. AE gives

a different aspect of accuracy in that it capture the absolute cumulative delta between model
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Model Directional
Accuracy

1%
Error

5%
Error

10%
Error

Beats Wall
St. in AE

Naive WoC 0.84 0.31 0.82 0.96 –
Selective WoC 0.93 0.34 0.83 0.97 0.57
LR 0.90 0.32 0.82 0.96 0.57
LR (Sans Wall St.) 0.90 0.33 0.83 0.96 0.57
Wall St. – 0.32 0.82 0.96 –

Table 5.3.2. Estimize Revenue prediction performances with all features: All
group sizes. Performances are shown as ratio of average number of correct
predictions to average number of total predictions (average of 485.38) across
13 different group sizes in range N = [1, 13]. All features are used.

predictions and actual release values. We note that all three models represented in the last

column has close to 60% accuracy as measured by AE.

Overall, the performances may be interpreted to lend credibility to the notion that it is

plausible to identify data features that allow aggregation of a subset of crowd predictions

to make predictions for domains such as that pertaining to Estimize. Further, these results

show that WoC, if applied selectively, may be sufficient for the prediction task, lending

further credibility to the WoC phenomenon.

5.3.1.2. All Features. The results shown thus far are based on features identified in the

ablation study as those that perform the best. We now compare the results with those

achieved by using all features of the data as listed in Table 5.2.1.

Table 5.3.2 shows Estimize prediction performances when all groups are used.

The lack of selectiveness in the features used seems to have an adverse effect on the

LR predictions, though the differences are small. Considering that the loss in accuracy is

seen across all metrics, it seems reasonable to conclude that identifying a subset of optimal

features to use for prediction is preferred to using all available features.
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We perform some additional experiments to study certain features in isolation by assess-

ing their impact on performance. We find that, contrary to our observations in preliminary

experiments pertaining to the Twitter task, contrarianness does not seem to have an effect

on prediction accuracy. The same can be stated for diversity features other than the one

discussed in this section and for homogeneity.

5.3.2. EPS Prediction

5.3.2.1. Selected Features. Table 5.3.3 shows the prediction performances when all 13

groups sizes are used.

WoC and LR both perform slightly better than Wall St. predictions, but do not exhibit

strong performance overall except in Directional Accuracy. We immediately notice that,

unlike LR performance for Revenue prediction, LR appears to do better, though only slightly,

when Wall St. predictions are omitted as opposed to when they are included. Once again,

such minor differences may not be significant, but the effect is observed across all metrics.

More noteworthy is the set of features for which LR yields the accuracies, which are

the best from several experiments that test different sets of feature combinations. We note

that contrarianness features are present in the subset of features that yield the accuracies

in discussion. This reinvigorates the question of whether contrarians are better predictors.

Also, credibility features are part of the feature subset as well, as was the case with Revenue

predictions. It appears credibility may be a strong indicator of prediction accuracy. Further

investigation into its influence may reveal more insights.

We note once again that Wall St. lags behind other models, though only by a small

margin.
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Model Directional
Accuracy

1%
Error

5%
Error

10%
Error

Beats Wall
St. in AE

Näıve WoC 0.69 0.09 0.38 0.61 –
Selective WoC 0.74 0.10 0.39 0.62 0.57
LR 0.72 0.10 0.39 0.61 0.57
LR (Sans Wall St.) 0.73 0.11 0.40 0.61 0.57
Wall St. – 0.10 0.37 0.60 –

Table 5.3.3. Estimize EPS prediction performances with the best features:
All group sizes. Performances are shown as ratio of average number of correct
predictions to average number of total predictions (average of 654.62) across
13 different group sizes in range N = [1, 13]. Features used are Credibilitygrp

EPS, Credibilitygrp Revenue, Contrariannessgrp EPS, and Contrariannessgrp
Revenue.

Model Directional
Accuracy

1%
Error

5%
Error

10%
Error

Beats Wall
St. in AE

Näıve WoC 0.69 0.09 0.38 0.61 –
Selective WoC 0.74 0.10 0.40 0.62 0.57
LR 0.73 0.10 0.39 0.61 0.57
LR (Sans Wall St.) 0.74 0.10 0.39 0.61 0.57
Wall St. – 0.10 0.37 0.60 –

Table 5.3.4. Estimize EPS prediction performances with all features: All group
sizes. Performances are shown as ratio of average number of correct predictions
to average number of total predictions (average of 654.6) across 13 different
group sizes in range N = [1, 13]. All features are used.

5.3.2.2. All Features. Table 5.3.4 shows EPS prediction performances when all features

from Table 5.2.1 are used.

When the performances are evaluated using the group size aggregation categories men-

tioned earlier, we do not observe any noteworthy effect of the aggregations in our EPS

predictions, as is also the case with Revenue predictions.

Finally, additional experiments to study certain features in isolation by assessing their

impact on performance do not show any other features to have significant influence on

prediction accuracy.
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5.4. Summary of Findings

In summary, the findings from our research on synthesizing financial predictions are as

follow:

(1) LR and MV consistently outperform Wall St. across all metrics and for both Rev-

enue and EPS, even though the performance differences are small. Given a bench-

mark such as Wall St., we conclude our methods certainly demonstrate viability and

lend support to our thesis that people’s predictions can be aggregated in order to

synthesize all their voices into a singular predictive voice.

(2) The fraction of times LR and WoC beat Wall St. in cumulative absolute error is

encouraging and lends further support to our thesis and methods.

(3) Credibility, contrarianness, and diversity all stand out as important feature types.

We believe further study of the pertinent features will prove very insightful.

(4) The high performance of our models in directional prediction is noteworthy, as being

closer to the actual value than Wall St. is not a trivial feat.
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CHAPTER 6

Future Work and Conclusion

In this dissertation, we present research that we conducted to test our thesis that Web

information sources can be harnessed to predict event outcomes. Our work is motivated by

the need to sift information from misinformation in order to arrive at the truth when faced

with noisy Web information that may lead to misbeliefs and wrong prognostications. We

adopt an approach to solve the problem that acknowledges the presence of misinformation

amidst information and investigates methods to derive at accurate predictions of events in

order to arrive at the truth.

As part of our two-fold approach, we first measure a particular bias: the content emphasis

of Web search engines, Google and Bing. We define content emphasis as the degree to which

differences across search engines’ rankings correlate with features of the ranked content. We

find no evidence of emphasis in the search engines’ rankings that express positive orientation

toward the engine company’s products. We do find, however, that Google slightly emphasizes

negative results in general, on our dataset. We also find that the engines emphasize particular

news sites over others, with Google showing a tendency to favor smaller news outlets while

Bing favoring bigger ones. Compared to Google, Bing also favors content with Facebook

Like buttons. Furthermore, both engines favor pages containing their own vendor company’s

advertisements as opposed to competitors’ advertisements. Along with the aforementioned

findings, our contributions from this research include a first-of-its-kind system, PAWS, a

Platform for Analyzing Web Search engine.
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For the second part of our research, we rely on predictions crowdsourced from the Web

to synthesize accurate predictions of event outcomes. Specifically, we use game predictions

from Twitter pertaining to four major sporting tournaments and financial predictions from

prediction market, Estimize, about Revenue and Earnings Per Share related to stock releases

of various companies. We rely on the wisdom of crowds (WoC), the phenomenon that the

average of various estimates pertaining to a topic by a crowd of people tends to be more

accurate than the estimate by any one individual in the crowd, often matching or even

exceeding the accuracy of estimates by experts. Using majority vote as our WoC method

and Logistic Regression as a machine learning approach, we show that it is possible, in

certain cases, to arrive at accurate predictions of game outcomes. We find evidence of the

important of certain features of data that aid in prediction. However, the relationship among

the features are non-trivial and warrant further study to gain more insights on their nuanced

behavior, which should lead to more accurate predictions. With the Estimize data, we

use majority vote and Linear Regression to synthesize predictions and compare them with

predictions by Wall St., which we consider expert predictions for our scenario. We show that

both majority vote and Linear Regression outperform Wall St. when used with small groups

or subsets of predictions from among a much larger corpus.

We recognize the need for further studies to investigate the intricate relationships and

characteristics of our data features and the data corpuses themselves to derive more accurate

predictions at scale. We slate such inquiries for future research to continue to better under-

stand WoC and event prediction toward the goal of uncovering truth in Web information.

Our research leads to a number of questions that can form the basis for fascinating future

work. From our very earliest experiments, the contrarianness of individuals whose predic-

tions we use has indicated the possibility of its having a role in predictions. While we have
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not found strong evidence of contrarianness’ being important, we have not found evidence of

the contrary either. Does contrarianness drive prediction accuracy? Diversity is considered

a core tenet of the WoC phenomenon. What are ways to measure diversity outside of the

various methods we use in our research? Does the size of the group used for prediction seem

to play a role in predictions as observed in other research? These are questions that we find

very motivated to answer, and we are very encouraged by our own findings to follow through

with future research for the very goal of answering them.
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CHAPTER 7

Appendix

Tables begin on the next page.
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Game All Games Game Top Games

LR MV LR MV
sri lanka-new zealand 0.72 0.69 england-australia 0.50 0.55
england-australia 0.45 0.53 india-pakistan 0.52 0.32
india-pakistan 0.78 0.38 new zealand-scotland 1 0.91
south africa-zimbabwe 0.92 0.87 bangladesh-afghanistan 0 0.09
west indies-ireland 0.82 0.90 australia-bangladesh 0.33 0
new zealand-scotland 0.95 0.95 pakistan-west indies 0.08 0.19
bangladesh-afghanistan 0.02 0.07 south africa-india 0.85 0.77
zimbabwe-united arab emirates 0.63 0.52 south africa-west indies 0.90 0.87
australia-bangladesh 0.27 0.50 pakistan-zimbabwe 0.97 0.75
new zealand-england 0.55 0.50 south africa-ireland 0.62 0.40
sri lanka-afghanistan 0.20 0.28 pakistan-united arab emirates 0.97 0.88
pakistan-west indies 0.15 0.18 new zealand-afghanistan 0.92 0.89
south africa-india 0.93 0.79 australia-sri lanka 0.88 0.79
england-scotland 0.40 0.52 zimbabwe-ireland 0.15 0.28
west indies-zimbabwe 0.63 0.34 england-bangladesh 0.52 0.64
ireland-united arab emirates 0.42 0.26 south africa-pakistan 0.97 0.90
sri lanka-bangladesh 0.85 0.70 india-ireland 0.92 0.86
australia-new zealand 0.69 0.46 south africa-united arab emirates 0.92 0.80
south africa-west indies 0.92 0.84 india-zimbabwe 0.98 0.91
afghanistan-scotland 0.52 0.40 australia-scotland 0.98 0.92
pakistan-zimbabwe 0.93 0.81 pakistan-ireland 0.93 0.86
england-sri lanka 0.48 0.63 bangladesh-new zealand 0.53 0.58
south africa-ireland 0.58 0.41 england-afghanistan 0.88 0.82
bangladesh-scotland 1 0.98 sri lanka-south africa 0.43 0.54
pakistan-united arab emirates 0.92 0.84 bangladesh-india 0.75 0.73
new zealand-afghanistan 0.97 0.90 australia-pakistan 0.02 0.22
australia-sri lanka 0.95 0.78 new zealand-west indies 0.97 0.86
zimbabwe-ireland 0.23 0.24 new zealand-south africa 0.50 0.43
england-bangladesh 0.58 0.58 australia-india 0.25 0.27
south africa-pakistan 0.92 0.87 new zealand-australia 0.57 0.40
india-ireland 0.93 0.80
south africa-united arab emirates 0.92 0.78
sri lanka-scotland 0.59 0.63
india-zimbabwe 0.97 0.87
australia-scotland 0.97 0.92
pakistan-ireland 0.97 0.85
bangladesh-new zealand 0.52 0.46
west indies-united arab emirates 0.54 0.67
england-afghanistan 0.88 0.82
sri lanka-south africa 0.63 0.52
bangladesh-india 0.88 0.79
australia-pakistan 0.05 0.20
new zealand-west indies 0.95 0.86
new zealand-south africa 0.57 0.45
australia-india 0.43 0.35
new zealand-australia 0.67 0.50
Average 0.67 0.61 Average 0.66 0.61

Table 7.0.1. Cricket Logistic Regression (LR) Results. LR accuracies vs. MV
accuracies, for all 46 games on the left (All Games) and the top 30 games on
the right (Top Games: those with 90 or more predictions).
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Game All Games Game Top Games

LR MV LR MV
spain-netherlands 0.73 0.28 spain-netherlands 0.82 0.22
belgium-russia 0.70 0.32 belgium-russia 0.77 0.25
usa-germany 0.67 0.37 usa-germany 0.75 0.36
ghana-usa 0.73 0.41 nigeria-argentina 0.67 0.37
italy-uruguay 0.79 0.42 colombia-ivory coast 0.65 0.42
argentina-iran 0.53 0.42 ghana-usa 0.77 0.44
colombia-ivory coast 0.65 0.43 italy-costa rica 0.63 0.44
nigeria-argentina 0.58 0.45 uruguay-england 0.52 0.46
italy-costa rica 0.58 0.45 argentina-iran 0.58 0.50
nigeria-bosnia and herzegovina 0.53 0.51 australia-spain 0.50 0.52
cameroon-brazil 0.47 0.52 bosnia and herzegovina-iran 0.50 0.52
australia-spain 0.52 0.53 cameroon-brazil 0.53 0.52
uruguay-england 0.58 0.53 nigeria-bosnia and herzegovina 0.52 0.54
bosnia and herzegovina-iran 0.53 0.53 honduras-ecuador 0.47 0.55
croatia-mexico 0.45 0.56 croatia-mexico 0.47 0.57
honduras-ecuador 0.52 0.59 netherlands-chile 0.32 0.57
netherlands-chile 0.43 0.60 korea-algeria 0.33 0.58
korea-belgium 0.42 0.64 germany-portugal 0.35 0.61
korea-algeria 0.58 0.64 switzerland-france 0.08 0.75
greece-ivory coast 0.56 0.69 portugal-ghana 0.10 0.76
germany-portugal 0.32 0.71 belgium-algeria 0.05 0.89
honduras-switzerland 0.67 0.72
switzerland-france 0.67 0.78
japan-colombia 0.88 0.82
portugal-ghana 0.70 0.83
belgium-algeria 0.65 0.85
mexico-cameroon 0.90 0.92
Average 0.61 0.57 Average 0.49 0.52

Table 7.0.2. Soccer Logistic Regression (LR) Results. LR accuracies vs. MV
accuracies, for all 46 games on the left (All Games) and the top 30 games on
the right (Top Games: those with 90 or more predictions).
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Game All Games Game Top Games

LR MV LR MV
vikings-49ers 1 0 lions-cowboys 1 0.08
titans-browns 1 0 ravens-patriots 1 0.09
rams-vikings 1 0 seahawks-packers 1 0.05
dolphins-bills 1 0 packers-cowboys 0.98 0.22
dolphins-jets 1 0 cardinals-panthers 0.98 0.01
lions-rams 1 0 bengals-colts 0.85 0.26
falcons-jaguars 1 0 seahawks-patriots 0.65 0.5
cardinals-panthers 1 0.02 ohio state-alabama 0.37 0.51
lions-cowboys 1 0.05 florida state-oregon 0.33 0.52
seahawks-rams 1 0.15
titans-saints 1 0.23
cardinals-seahawks 1 0.37
bears-lions 1 0.46
chiefs-vikings 1 0.5
vikings-lions 1 0.67
texans-jaguars 1 0.83
vikings-raiders 1 0.83
bengals-bills 1 1
buccaneers-falcons 1 1
rams-bengals 1 1
... ... ...
texans-bengals 0.14 0.73
chargers-chiefs 0.14 0.79
buccaneers-redskins 0.14 0.83
texans-colts 0.13 0.69
chiefs-texans 0.11 0.51
bills-chiefs 0 0
titans-jets 0 0
raiders-titans 0 0.17
cardinals-49ers 0 0.17
chiefs-broncos 0 0.5
vikings-falcons 0 0.5
dolphins-chargers 0 0.53
giants-buccaneers 0 0.67
jets-texans 0 0.81
vikings-bears 0 0.83
saints-redskins 0 0.96
raiders-chargers 0 1
bears-rams 0 1
49ers-seahawks 0 1
bengals-49ers 0 1
Average 0.54 0.5 Average 0.8 0.25

Table 7.0.3. Football Logistic Regression (LR) Results. LR accuracies vs. MV
accuracies, for all 170 games on the left (All Games) (only the top 20 and the
bottom 20 as sorted by LR accuracy shown due to limited space) and the top
9 games on the right (Top Games: those with 90 or more predictions).
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