
NORTHWESTERN UNIVERSITY

Group Actions via Interval Exchange Transformations

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Mathematics

By

Christopher Novak

EVANSTON, ILLINOIS

June 2008



2

c© Copyright by Christopher Novak 2008

All Rights Reserved



3

ABSTRACT

Group Actions via Interval Exchange Transformations

Christopher Novak

This dissertation addresses the structure of the group of interval exchange transfor-

mations. The two primary topics considered are:

a) the classification of interval exchange actions for certain groups; and

b) properties of the interval exchange group which are reflected in the dynamics of

interval exchange maps.

In Chapter 3 a classification is given for the continuous interval exchange actions of the

group of real numbers. The interval exchange group is endowed with a natural topological

group structure, with respect to which any continuous one-parameter action must factor

through a toral action generated by disjointly supported rotation groups.

In Chapter 4 the asymptotics are classified for the number of discontinuities exhibited

by the iterates of an interval exchange. It is seen that the number of discontinuities is

either bounded or exhibits linear growth; no intermediate growth rates are possible. It is

further shown that any map with bounded discontinuity growth is essentially an element

of a toral rotation action.
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In Chapter 5, the dichotomy in discontinuity growth is used to prove that no finitely

generated subgroup of the interval exchange group contains a distortion element. Conse-

quently, no group having a distortion element can act faithfully via interval exchanges.

Chapter 6 contains a complete classification of centralizers in the interval exchange

group. The structure of an element’s centralizer is controlled by three types of dynamic be-

havior: the existence of periodic points, minimal sets with bounded discontinuity growth,

and minimal sets with linear discontinuity growth.

The classification of centralizers is used in Chapter 7 to compute the automorphism

group of the interval exchange group. Since automorphisms preserve the group structure of

centralizers, they also preserve the associated dynamics. Consequently, an automorphism

must be induced under conjugation by a map on the circle. It is then seen that the group

of outer automorphisms is generated by an order-two orientation reversing map on the

circle.
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CHAPTER 1

Introduction

An interval exchange transformation is an invertible transformation on the circle T1 =

R/Z that acts as a finite piecewise translation on subintervals. In short, an interval

exchange is defined by partitioning T1 into finitely many subintervals and rearranging

the placement of these subintervals in a non-overlapping, orientation-preserving manner.

By convention, interval exchanges are assumed to be right-continuous; thus, a translation

applied to an open interval (a, b) ⊆ T1 extends to a translation on [a, b).

The dynamics of interval exchange transformations were first studied in depth during

the late 1970’s by Keane [4] [5], who formulated the conjecture that almost every interval

exchange is uniquely ergodic. This conjecture was proven independently by Masur [9]

and Veech [11] in 1982. More recently, Avila and Forni [2] have shown that almost all

interval exchanges are weakly mixing. A good introduction to the dynamics of interval

exchanges and their connection to translation surfaces may be found in Viana [12].

To give a precise definition and to introduce notation, consider the following construc-

tion, which defines an interval exchange as a transformation on the interval [0, 1). Let

π ∈ Σn be a permutation, and let λ be a vector in the unit simplex

Λn :=
{
λ = (λ1, . . . , λn) : λi > 0,

∑
λi = 1

}
⊆ Rn.
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The vector λ induces a partition of [0, 1) into intervals

(1.1) Ij =

[
βj−1 :=

i=j−1∑
i=1

λi, βj :=

i=j∑
i=1

λi

)
, 1 ≤ j ≤ n.

Let f(π,λ) be the interval exchange which translates each Ij so that the ordering of these

intervals within [0, 1) is permuted according to π.

More precisely, the amount by which f(π,λ) translates each interval Ij is calculated in

the following way. Define the linear map Ωπ : Rn → Rn by

(1.2) Ωπ(λ)j =
∑

i:π(i)<π(j)

λi −
∑
i: i<j

λi.

For λ ∈ Λn, the number Ωπ(λ)j represents the translation applied to Ij under the

reordering induced by π. Observe from Figure 1.1 that the term
(
−
∑

i<j λi

)
in (1.2)

corresponds to translating the interval Ij from its original position to the left end of [0, 1),

and the term
(∑

π(i)<π(j) λi

)
corresponds to translating it from the left end to its image

under the map f(π,λ). The upper half of Figure 1.1 illustrates the initial partition induced

by λ, and the bottom half depicts the images of these interval under f(π,λ).

I1

I1 I2

I2

I3

I3

0 1
!1 !1 + !2

Figure 1.1. An interval exchange transformation: π = (1, 3)
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Given π and λ, the vector ω = Ωπ(λ) is called the translation vector of f(π,λ). The

map f(π,λ) may now be expressed by the formula

(1.3) f(π,λ)(x) = x+ ωj, if x ∈ Ij.

In addition, for any interval exchange f, define the translation function ωf : [0, 1)→ R

by the formula

(1.4) ωf (x) = f(x)− x,

where f is considered as a transformation [0, 1)→ [0, 1).

A general topic in dynamical systems is the study of group actions. Their dynamics

generalize the dynamical behavior of a single invertible map. From a group-theoretic

standpoint, one goal is to gain some understanding of the subgroup structure within a

large group of transformations. This may be achieved by investigating the interplay be-

tween the algebraic structure of subgroups and the dynamics of the maps through which

they are realized. Group actions have been studied extensively in the context of homeo-

morphisms and diffeomorphisms on the circle or other higher-dimensional manifolds. A

good introduction to continuous group actions on the circle is found in Ghys [3].

As was mentioned above, the dynamics of individual interval exchange transformations

have been well studied, but relatively little attention has been given to the study of groups

which act by interval exchanges. Let E represent the space of all interval exchanges on

T1, which forms a group under the composition of maps. If G is a group, then an

interval exchange action of G, also called an action of G via interval exchanges, is a
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group homomorphism

G→ E .

An action is faithful if the above homomorphism has no kernel. It generally suffices to

consider faithful actions, since it is always possible to replace G with its quotient by the

action’s kernel. One basic question to consider is:

Question 1.1. Given a group G, do there exist faithful interval exchange actions of

G? If so, can they be classified in any way?

A faithful interval exchange action of a group G is an embedding of G into E , so a

faithful action may be identified with its image in E . Thus, the previous question may be

rephrased as:

Question 1.2. Given a group G, does E contain subgroups isomorphic to G, and can

they be classified?

Such a classification is discussed in Chapter 3, in the case where G is the group R of

real numbers and we restrict to continuous actions. In order to do so, a natural topology

is defined on E , giving it a topological group structure. A ready source of examples of

continuous R-actions are the one-parameter subgroups of rotation actions. A rotation

action is an action of Tn = Rn/Zn whose image is generated by rotations supported on

disjoint subintervals; see Figure 1.2 for an example, and see Section 3.1 for a complete

definition. The map in Figure 1.2 is invariant on the intervals [0, 1/2) and [1/2, 1), and it

rotates these subintervals by 1
2
s and 1

2
t, respectively.

The only continuous actions of R are one-parameter subgroups of rotation actions.
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Theorem 1.3. Up to conjugacy in E , any continuous homomorphism R → E is a

one-parameter rotation action.

A B

B

C

C

0 1

(s,t)

1/2

D

DA

1/2(1-s) 1 - (1/2)t

Figure 1.2. A rotation action of T2

In contrast to R, there are groups which do not have any faithful interval exchange

actions, namely those groups which possess distortion elements. Let G be a finitely

generated group, and let S = {g1, . . . , gn} be a set of generators. An element f ∈ G is a

distortion element if f has infinite order and

lim inf
n→∞

|fn|S
n

= 0,

where | · |S denotes the minimal word length in terms of the generators and their inverses.

For example, the central elements of the discrete Heisenberg group are distortion elements.

The main result of Chapter 5 is the following.

Theorem 1.4. Distortion elements do not exist in E.
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In short, this theorem states that no finitely generated subgroup of E can have a

distortion element. As a consequence, it is shown that a large class of higher-rank lattices

in semisimple Lie groups do not act faithfully via interval exchanges.

A key idea in the proof of the previous theorem is an analysis of the growth rate

exhibited by d(fn), the number of discontinuities of fn. As discussed in Chapter 4, there

is a fundamental dichotomy for the asymptotic behavior of d(fn). Given an interval

exchange f , either d(fn) exhibits linear growth with respect to n, or d(fn) is bounded

independently of n. By extending a result of Li [6], which gives a criterion for when an

interval exchange is conjugate to an irrational rotation, the following result is shown.

Theorem 1.5. Let f be an infinite-order map such that d(fn) is bounded. Then some

fk, k ≥ 1, is conjugate to a product of disjointly supported irrational restricted rotations.

The fundamental dichotomy for discontinuity growth is useful for investigating other

aspects of the group structure of E , and this dichotomy is reflected in a very strong

algebraic manner. Given an interval exchange f ∈ E , the centralizer of f in E is the

subgroup of E containing all interval exchanges which commute with f :

C(f) = CE(f) := {g ∈ E : fg = gf}.

A complete classification of centralizers in E is given in chapter 6. This classification relies

on analyzing three cases:

(i) f has periodic points;

(ii) f is minimal and has bounded discontinuity growth; and

(iii) f is minimal and has linear discontinuity growth.
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Minimality here refers to the property that every orbit of f is dense in T1. The peri-

odic case is characterized by the fact that C(f) contains a subgroup isomorphic to the

entire group E . In the bounded growth case, C(f) is virtually abelian and contains a

continuously embedded copy of R/Z. Finally, if f is minimal and has linear disconti-

nuity growth, the centralizer C(f) is virtually cyclic. Thus, the three basic dynamical

behaviors exhibited by interval exchanges are reflected in the algebraic structure of their

centralizers.

The classification of centralizers in Chapter 6 is used in Chapter 7 to compute the

automorphism group of E . Intuitively, one would hope that all automorphisms of E

reflect the underlying geometric action on T1. This is the case, and it is shown that any

automorphism of E is induced from conjugation by some transformation on the circle.

Theorem 1.6. Aut(E) ∼= E o 〈ΨT 〉.

The factor E is the group of inner automorphisms, and the factor 〈ΨT 〉 is generated by

an order-two automorphism which is essentially conjugation by the map T : x 7→ −x.
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CHAPTER 2

General Results

This chapter discusses the general dynamic behavior of interval exchange transforma-

tions, and a normal dynamical form is described. In addition, a useful invariant on E is

introduced.

Let P denote the set algebra which consists of all finite unions of half-open subintervals

[a, b) ⊆ T1 = R/Z. For any f ∈ E , several dynamically defined f -invariant sets are

members of the algebra P . For x ∈ T1, let Of (x) denote the orbit of x under f :

Of (x) = {fn(x)}n∈Z.

The set Per(f) of periodic points for f is the set of all points x such that Of (x) is finite,

since a point has a finite orbit if and only if fn(x) = x for some n ≥ 1.

Lemma 2.1. For any f ∈ E, Per(f) ∈ P.

Proof. It will first be shown that Fix(f), the set of fixed points for f , is a member

of P . Consider the translation function ωf , as defined in (1.4). This function is right

continuous and piecewise constant, so for any y, the pre-image ω−1
f {y} is a member of P .

In particular, Fix(f) = ω−1
f {0} is in P .

Using the fact that Fix(f) ∈ P for any interval exchange, it can be seen that for any

k ∈ N,

Perk(f) := {x : |Of (x)| = k} ∈ P .
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In particular, note that

Fix(fk) =
∐
d|k

Perd(f).

It immediately follows that Perk(f) ∈ P if k is prime, and it follows for any k ∈ N by

induction on the number of prime factors of k.

To prove that Per(f) =
∐

k∈N Perk(f) ∈ P , it suffices to show that this disjoint union

has only finitely many nonempty elements. If Perk(f) is nonempty for some k, let p be

a left boundary point of Perk(f). If f were continuous at each of the k points in the

orbit Of (p), then p would be an interior point of Perk(f). Thus Of (p) must contain a

discontinuity point of f . Since the sets Perk(f) are pairwise disjoint and each nonempty

member of this family contains at least one discontinuity of f , it follows that Perk(f) is

nonempty for only finitely many values of k. �

All interval exchange maps preserve Lebesgue measure on T1. By Poincaré recurrence,

the first return map of f to a subinterval J is well-defined. In fact, it can be shown that

this first return map is also an interval exchange map.

Lemma 2.2 (Viana [12] and Veech [10]). Fix f ∈ E. Given any subinterval J = [a, b),

there exists a partition {Jj : 1 ≤ j ≤ k} of J and integers n1, . . . , nk ≥ 1, such that

(1) f i(Jj) ∩ J = ∅ for all 0 < i < nj and 1 ≤ j ≤ k;

(2) each fnj |Jj is a translation from Jj to some subinterval of J ;

(3) the subintervals fnj(Jj), 1 ≤ j ≤ k are pairwise disjoint.
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Corollary 2.3 ([12]). The union Ĵ of all forward iterates of J is an f -invariant

element of P.

Proof. [12] From the lemma,

Ĵ =
k⋃
j=1

nj−1⋃
i=0

f i(Jj) ∈ P . �

Proposition 2.4. Let f ∈ E and suppose x ∈ T1 is such that the orbit O(x) := Of (x)

is infinite. Let J be the right-closure of O(x):

J := {y ∈ T1 : [y, y + ε) ∩ O(x) 6= ∅,∀ ε > 0}.

Then J is a member of P.

Proof. The set J is f -invariant, since f is right-continuous. In addition, J contains no

periodic points: if y ∈ Per(f), then by Lemma 2.1, [y, y + ε) ⊆ Per(f) for some ε > 0.

Since all points in O(x) have infinite orbits, [y, y+ ε)∩O(x) is empty, and it follows that

y /∈ J .

Let A = T1 \ (J ∪ Per(f)); it suffices to show A ∈ P . Consider a point y ∈ A (if A

is empty then J = T1 \ Per(f) ∈ P). Then there exists some ε > 0 such that [y, y + ε)

contains no points in O(x), and consequently [y, y + ε) ⊆ A. By Corollary 2.3 and the

invariance of A, the point y is contained in an f -invariant set B ∈ P , such that B ⊆ A.

Moreover, the set B must contain a discontinuity point of f . Since all points in B

have infinite orbits under f , there must be a left boundary point p ∈ B which is mapped

by f to an interior point of B. Since points immediately to the left of p are not in B,

they cannot be mapped into the interior of B, which implies that f is discontinuous at p.
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It is now possible to construct A as a finite union of members of P . Pick any y1 ∈ A

and construct an f -invariant B1 ∈ P as above, such that y1 ∈ B1 ⊆ A. If B1 = A, then

we’re done. If not, choose some y2 ∈ A \ B1. Since B1 ∈ P , there is some [y2, y2 + ε)

contained in A \ B1, and it is possible to construct an f -invariant set B2 ∈ P , disjoint

from B1, such that y2 ∈ B2 ⊆ A. Seemingly, this process will continue as long as the Bk

do not cover all of A. However, the process must terminate after a finite number of steps,

since each Bk must contain a discontinuity point of f . Thus A is a finite union of the sets

Bk, which implies that A ∈ P . �

Corollary 2.5. Suppose that O(x) is infinite, and let J be its right-closure. If y ∈ J ,

then O(y) is infinite and dense in J . Thus, f |J is minimal.

Proof. It has already been shown that J contains no periodic points. The right-closure

K of O(y) is an f -invariant member of P , and it is contained in J since O(y) is a sub-

set of J . SinceO(x) is dense in J , it follows from f -invariance that K coincides with J . �

From the above results, it can be seen that for any f ∈ E , there is a finite partition of

T1,

T1 =

(
k∐
i=1

Ji

)
q Per(f),

where each Ji is an f -invariant member of P , such that f |Ji is minimal. The sets Ji,

as well as the restricted mappings f |Ji , are called the minimal components of f . An

interval exchange f is said to be in normal form if its minimal components are intervals

Ji = [ai−1, ai), where 0 = a0 < a1 < · · · < ak ≤ 1. Note that after replacing f by a
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conjugate in E , it may be assumed that f is in normal form.

There is a generalization of the notion of rotation number which is defined for interval

exchange transformations. Let f = f(π,λ) ∈ E be defined by a partition vector

λ = (λ1, . . . , λk) and a translation vector ω = (ω1, . . . , ωk) = Ωπ(λ), as described in

Chapter 1. The scissors invariant of f , denoted φ(f), is defined by

φ(f) =
k∑
i=1

λi ⊗Q ωi ∈ R⊗Q R.

Lemma 2.6 (Arnoux [1]). φ : E → R⊗Q R is a group homomorphism.

Proof. The translation function ωf (x) = f(x)−x is piecewise constant, so an equivalent

definition of φ is

φ(f) =

∫ 1

0

(1⊗Q ωf (x)) dµ(x).

This formulation shows that φ is independent of the choice of λ and ω. Moreover, since

all interval exchanges preserve the Lebesgue measure µ,

φ(gf) =

∫ 1

0

(1⊗Q ωgf (x)) dµ(x) =

∫ 1

0

[1⊗Q (ωg(fx) + ωf (x))] dµ(x)

=

∫ 1

0

(1⊗Q ωg(x)) d(f∗µ)(x) +

∫ 1

0

(1⊗Q ωf (x)) dµ(x)

= φ(g) + φ(f). �

To motivate the claim that φ may be viewed as a type of rotation number, consider

the scissors invariant of a rotation rα. As illustrated in Figure 2.1, λ = (1 − α, α) and
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ω = (α, α− 1) for this map. Thus,

φ(rα) = (1− α)⊗ α + α⊗ (α− 1) = 1⊗ α− α⊗ 1 = 1 ∧Q α.

In particular, φ(rα) = 0 if α ∈ Q, so one may think of φ as detecting the rotation

contributed by the infinite-order dynamics of the map.

A

A B

B

0 1
1-!

!

Figure 2.1. The rotation rα

Given real numbers α and β, such that 0 ≤ α ≤ β ≤ 1, let rα,β denote the restricted

rotation by α on the interval [0, β). Precisely, rα,β is defined by the permutation π =

(1, 2) ∈ Σ3 and the partition vector λ = (β − α, α, 1− β). See Figure 2.2 for a diagram of

rα,β. The map rα,β has translation vector ω = (α, α−β, 0), and a short calculation shows

that φ(rα,β) = β ∧Q α.

Lemma 2.7 (Arnoux [1]). E is generated by the collection of restricted rotations.

Corollary 2.8. The homomorphism φ takes values in the alternating algebra R∧Q R.

Proof of Lemma 2.7. Given an interval exchange f, it is possible to construct a finite

sequence of restricted rotations which successively reverse the translations induced by f
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A

A B

B

0 1
!-"

"

C

C

!

Figure 2.2. The restricted rotation rα,β

on its partition intervals. Suppose f is defined by λ = (λ1, . . . , λk) and ω = (ω1, . . . , ωk),

and let Ij = [βj−1, βj) be the associated partition intervals, as defined in (1.1). Since Ik

is the right-most partition interval, ωk ≤ 0. Let αk = −ωk, and consider the composition

fk = rαkf . By its construction, fk fixes the inteval Ik. Moreover, all other partition

intervals Ij are mapped by f to subintervals of one of the two partition intervals of rαk ,

and thus the map fk acts by translating the same collection of partition intervals {Ij}.

In general, for 1 ≤ j ≤ k − 2, recursively define

αk−j = − (ωk−j + αk + αk−1 + · · ·+ αk−j+1) ,

and let

fk−j = rαk−j ,βk−j ◦ rαk−j+1,βk−j+1
◦ · · · ◦ rαk ◦ f.

In short, αk−j is defined to be the opposite of the necessarily nonpositive translation

that fk−j+1 applies to Ik−j. By induction it is seen that fk−j fixes Ik−j, . . . , Ik. Thus,

the map f2 is the identity, which exhibits the original map f as a product of restricted

rotations. �
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CHAPTER 3

Continuous Interval Exchange Actions

In order to consider continuous actions of R, the group E is given a metric space

structure. For x = x̃+ Z and y = ỹ + Z in T1, let

ρT1(x, y) = min
k,j∈Z
{|(x̃+ k)− (ỹ + j)|}.

The function ρT1 is a multiple of the metric induced by the standard embedding of the

circle into R2. Given two interval exchanges f and g, the distance between them is defined

as

ρ(f, g) =

∫
T1

ρT1(fx, gx)dµ(x),

where µ is Lebesgue measure . This function is essentially the L1 distance between

functions on T1 which take values in T1, so it is not surprising that

Lemma 3.1. The function ρ is a metric on E.

Proof. ρ(f, g) ≥ 0 for any f, g ∈ E , since the function ρT1 is nonnegative. If ρ(f, g) = 0,

then it follows that ρT1(fx, gx) = 0, for µ-a.e. x ∈ T. However, since f and g are interval

exchanges, ρT1(fx, gx) is piecewise constant. Thus ρT1(fx, gx) = 0 for all x, which implies

f = g.
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The function ρ is symmetric since the metric ρT1 is symmetric. The triangle inequality

follows similarly:

ρ(f, h) =

∫
ρT1(f, h) ≤

∫
ρT1(f, g) +

∫
ρT1(g, h) = ρ(f, g) + ρ(g, h). �

The next issue is to show that the group operations of E are continuous under this

metric.

Proposition 3.2. The metric space (E , ρ) is a topological group.

Proof. Suppose there are convergent sequences fn → f and gn → g. It will be shown

that the products fngn converge to fg. Given ε > 0, choose some δ0 < min{ε2, 1
100
}. Since

f is a finite piecewise isometry, it is possible to choose δ1 < δ0 such that

µ
({
x ∈ T1 : f is a translation on

(
x−

√
δ1, x+

√
δ1

)})
> 1−

√
δ0.

Let the set in the previous expression be denoted by C.

By convergence,

(3.1) ρ(fn, f) < δ0 and ρ(gn, g) < δ1

hold for all sufficiently large n. Fix one such n, and define

A =
{
x ∈ T : ρT1(fnx, fx) >

√
δ0

}
,

B =
{
x ∈ T : ρT1(gnx, gx) >

√
δ1

}
.

Then µ(A) ≤
√
δ0 and µ(B) ≤

√
δ1, since otherwise (3.1) would be contradicted.
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An estimate of ρ(fngn, fg) is achieved by estimating the measure of the set

D =
{
x ∈ T1 : ρT1(fngnx, fgx) > 2

√
δ0

}
.

Since

ρT1(fngnx, fgx) ≤ ρT1(fngnx, fgnx) + ρT1(fgnx, fgx),

it follows that if ρT1(fngnx, fgx) > 2
√
δ0, then either

(3.2) ρT1(fngnx, fgnx) >
√
δ0, or

(3.3) ρT1(fgnx, fgx) >
√
δ0.

The condition (3.2) is satisfied only for gnx ∈ A⇔ x ∈ g−1
n (A), and µ(g−1

n (A)) ≤
√
δ0,

since gn preserves µ. The condition (3.3) fails if gx ∈ C and ρT1(gx, gnx) ≤
√
δ1; i.e.,

if x ∈ g−1(C) and x ∈ T1 \ B. Thus the set on which (3.3) holds is contained in

B ∪ (T1 \ g−1(C)), and

µ
(
B ∪ (T1 \ g−1(C)

)
) <

√
δ1 +

√
δ0 < 2

√
δ0.

Thus, µ(D) < 3
√
δ0; consequently, using the fact that ρT1 ≤ 1,

ρ(fngn, fg) =

∫
D

ρT1(fngnx, fgx) +

∫
T1\D

ρT1(fngnx, fgx)

< 3
√
δ0 + 2

√
δ0 < 5ε.
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This estimate holds for all sufficiently large n, and thus composition in E is continuous

with respect to the metric ρ.

It remains to show that inversion in E is continuous. To see this, note that the

metric ρ is invariant under right translation in the group, since all interval exchange

transformations preserve Lebesgue measure. Thus,

ρ(f, id) = ρ(id, f−1).

Consequently, if fn → id, then f−1
n → id. Thus inversion is continuous at the identity.

In general, if fn → f , the continuity of composition implies that f−1fn → id. But then

f−1
n f → id, and applying the continuity of composition again yields f−1

n → f−1, as de-

sired. �

Remark: The metric ρ is invariant under conjugation by a rotation r = rα of T1.

Using the right-invariance of ρ for any interval exchange and the fact that ρT1 is rotation

invariant,

ρ(r−1fr, r−1gr) = ρ(r−1f, r−1g) =∫
ρT1(r−1f, r−1g) =

∫
ρT1(f, g) = ρ(f, g).

Discussing interval exchanges as being defined on the interval [0, 1) amounts to choosing

a base point of T1; consequently, the choice of base point has no effect on the structure

of E as a metric space.
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Recall the definition in Chapter 1 of the interval exchange f(π,λ), where π ∈ Σn and

λ ∈ Λn. One initial drawback of these coordinates is that they are not unique. For

instance, the data

π = (1, 2) ∈ Σ2, λ = (1− α, α), and

π′ = (1, 2, 3) ∈ Σ3, λ
′ = (1− α− β, β, α)

both define the rotation rα; see Figure 3.1.

A B C

CAB

A

A

B

B

1-! 1-!

! !

Figure 3.1. Multiple choices of π and λ defining the same map

In order to have unique coordinates associated to an interval exchange, a restriction

is made on the permutations that are used.

Definition: A permutation π ∈ Σn is said to be unpartitioned if

π(j + 1) 6= π(j) + 1, for all j such that 1 ≤ j ≤ n− 1.

π is said to be partitioned if equality holds above for some j.
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Observe that if π is partitioned (suppose π(j+1) = π(j)+1), then, for any λ ∈ Λn, the

intervals Ij and Ij+1 are adjacent and in the same order before and after the application

of the map f(π,λ). Thus, f(π,λ) restricts to a translation on Ij∪Ij+1, and f(π,λ) is continuous

at βj. In fact,

Lemma 3.3. π ∈ Σn is unpartitioned if and only if, for any λ ∈ Λn, the interval

exchange f(π,λ) is discontinuous, as a map [0, 1)→ [0, 1), at precisely each of β1, . . . , βn−1.

Proof. It remains to consider the situation when π is unpartitioned. If f = f(π,λ) is

continuous at βj, then both Ij and Ij+1 are translated the same distance by f . This is

only the case if π(j + 1) = π(j) + 1, which is impossible if π is unpartitioned. Thus f

is discontinuous at each βj, 1 ≤ j ≤ n − 1, and f has no further discontinuities, since f

restricts to a translation on each Ij. �

Remark: The remainder of this chapter is concerned with the structure of E in terms of

the coordinates (π ∈ Σn, λ ∈ Λn). Consequently, it is more natural here to consider an

interval exchange f as being a map [0, 1)→ [0, 1). In particular, for the remainder of this

chapter, the discontinuities of f refer to discontinuities of f : [0, 1)→ [0, 1).

Having restricted to unpartitioned permutations, it follows that

Proposition 3.4. For any interval exchange f ∈ E, there exists a unique n ∈ N, a

unique unpartitioned permutation π ∈ Σn, and a unique λ ∈ Λn, such that f = f(π,λ).

Proof. Let

0 < β1 < β2 < . . . < βn−1 < 1
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be the finite set of points in (0, 1) at which f is discontinuous as a map [0, 1) → [0, 1);

this defines n. Setting β0 = 0 and βn = 1, define λ ∈ Λn by

λj = βj − βj−1, j = 1, . . . , n.

The permutation π is defined as follows. For some i ∈ {1, . . . , n}, the point βi−1 is

mapped to zero by f . Let i = j1 be the index for which this happens, and define π(j1) = 1.

Next, one of the remaining βi−1, i ∈ {1, . . . , ĵ1, . . . , n}, must be mapped to λj1 . Call this

index j2, and define π(j2) = 2. Continuing in this manner defines the permutation π;

i.e., π describes the reordering of the points βi−1, 1 ≤ i ≤ n, induced by the map f . By

construction f = f(π,λ), and π is unpartitioned by Lemma 3.3, since f is discontinuous at

precisely β1, . . . , βn−1.

The uniqueness of (π ∈ Σn, λ ∈ Λn) follows since they were constructed using intrinsic

features of the transformation f . More precisely, suppose (π′ ∈ Σn′ , λ
′ ∈ Λn′) also induce

the map f . The permutations π and π′ are both unpartitioned, so it follows that n = n′,

since both numbers are counting the number of points at which f is discontinuous. These

points of discontinuity also determine the lengths of the intervals which are permuted by

f , and thus λ = λ′. Finally, the above characterization of π as the reordering of the left

endpoints of the partition induced by λ implies π = π′. �

Given some unpartitioned π ∈ Σn, the mapping λ 7→ f(π,λ) defined on Λn may be

extended to a mapping

Γπ : Λn → E ,
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where Λn is the closed simplex

Λn =
{
λ = (λ1, . . . , λn) : λi ≥ 0,

∑
λi = 1

}
.

The space Λn is given the subspace topology induced by Λn ⊆ Rn. Points on the

boundary of Λn map under Γπ to an exchange of n intervals where some of the intervals

are empty. Consequently, the transformation λ 7→ Γπ(λ) = f(π,λ) is well-defined by (1.1)-

(1.3) for all λ ∈ Λn, provided that a degenerate interval [β, β) is interpreted as the empty

set. As π ranges over all unpartitioned permutations, the maps Γπ produce a reasonable

system of coordinates on the metric space (E , ρ). In particular,

Proposition 3.5. For any unpartitioned permutation π, the map Γπ is continuous,

and the restriction Γπ|Λn is a homeomorphism onto its image. Moreover, for any f 6= id

in E, there is a unique unpartitioned π, such that f is the image of an interior point of

Λn under Γπ.

Proof. The last assertion is just a restatement of Proposition 3.4. To show the continuity

of Γπ : Λn → E , suppose that λ(n) → λ in ΛN , and let f (n) and f denote Γπ(λ(n)) and

Γπ(λ), respectively. Given some ε > 0, for all sufficiently large n,

∣∣∣λj − λ(n)
j

∣∣∣ < ε

N
, j = 1, . . . , N.

Then, comparing the difference between boundary points of the partition intervals of

Γπ(λ(n)) and Γπ(λ), we have

∣∣∣βj − β(n)
j

∣∣∣ =

∣∣∣∣∣
j∑

k=1

λk −
j∑

k=1

λ
(n)
k

∣∣∣∣∣ ≤
j∑

k=1

∣∣∣λk − λ(n)
k

∣∣∣ < ε.
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Thus, for sufficiently large n, the partition intervals Ij and I
(n)
j overlap up to a set of

small measure. That is,

µ
(
Ij \ I(n)

j

)
< 2ε.

Next, observe that the translation vectors ω(n) = Ωπ(λ(n)) converge to ω = Ωπ(λ),

since the map Ωπ is linear. Thus, for all sufficiently large n,

∣∣∣ωj − ω(n)
j

∣∣∣ < ε.

Therefore,

ρ(f, fn) =
N∑
j=1

∫
Ij

ρT1(fx, f (n)x) dµ(x) =

N∑
j=1

(∫
Ij∩I

(n)
j

ρT1(fx, f (n)x) dµ(x) +

∫
Ij\I

(n)
j

ρT1(fx, f (n)x) dµ(x)

)
=

N∑
j=1

∫
Ij∩I

(n)
j

ρT1(x+ wj, x+ w
(n)
j ) dµ(x) +

N∑
j=1

∫
Ij\I

(n)
j

ρT1(fx, f (n)x) dµ(x).

The first term in this last expression is bounded by ε, since ρT1(x+wj, x+w
(n)
j ) < ε on the

sets Ij ∩ I(n)
j . The second term is bounded by Nε, since ρT1 ≤ 1/2 and µ(Ij \ I(n)

j ) < 2ε.

Thus ρ(f, f (n)) < (N + 1)ε for all sufficiently large n, which proves that Γπ is continuous.

It remains to show that Γπ is a homeomorphism when restricted to Λn. It has already

been established that this restriction is injective, so it suffices to show that

Γ−1
π : Γπ(Λn)→ Λn
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is continuous. Let f = f(π,λ) ∈ Γπ(Λn), and let fn = f(π,λ(n)) be a sequence in Γπ(Λn)

which converges to f . By the compactness of Λn, the sequence λ(n) must have a limit

point v ∈ Λn. Let λ(ni) be a subsequence which converges to v. The map Γπ : Λn → E

is continuous, so fni converges to f(π,v). Thus f(π,v) = f(π,λ), and it follows that v = λ by

Proposition 3.4. Moreover, it follows that v = λ is the unique limit point of λ(n). In other

words, λ(n) converges to λ in Λn, which implies Γ−1
π is continuous on the image Γπ(Λn). �

3.1. Classification of interval exchange R-actions

Having given E a topological group structure, it is possible to classify the continuous

group homomorphisms R → E . As an initial example of such an action, consider the

following actions of Tn = Rn/Zn. For a given λ ∈ Λn, define the points βj and the

intervals Ij = [βj−1, βj) as before. Given some α = (α1, . . . , αn) ∈ Tn, associate the

following interval exchange:

0 1

A1

A1

B1

B1

An

An

Bn

Bn

!1 !n-1

Figure 3.2. The rotation map fα,λ
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fα,λ : x 7→

 x+ λjα̃j, x ∈ [βj−1, βj − λjα̃j)

x+ λjα̃j − λj, x ∈ [βj − λjα̃j, βj),

where α̃j ∈ R is the unique representative of αj in the interval [0, 1); see Figure 3.2.

The map fα,λ restricts to a rotation by λjα̃j on each interval Ij. Since disjoint rotations

commute, for any fixed λ the mapping

α 7→ fα,λ

is an injective homomorphism Tn → E . One may define an interval exchange action of R

by restricting any such action of a torus to a one-parameter subgroup. Such an action is

called a one-parameter rotation action, since R acts on the circle by rotating a collection

of invaraint subintervals. Note that under a one-parameter rotation action, all orbits are

periodic; however, a one-parameter rotation action can be faithful if the periods of two

invariant subintervals are not rationally related.

Rotation actions are essentially the only possible one-parameter actions.

Theorem 1.3. Up to conjugacy in E , any continuous homomorphism R → E is a

one-parameter rotation action.

If a one-parameter subgroup ft in E is conjugate to the image of a rotation action,

then essentially the maps ft still act by rotations on a collection of invariant subintervals.

These subintervals may now be split into finitely many pieces and reordered within T1,

but this is the only effect that conjugacy in E can have upon a rotation action. To make a
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precise statement, let Fix denote the set of global fixed points for a given one-parameter

subgroup ft.

Lemma 3.6. A one-parameter subgroup ft of E is conjugate to a rotation action if

and only if Fix ∈ P and for all but finitely many x ∈ [0, 1), there exists αx ∈ R and

εx > 0, such that

ft(x) = x+ tαx, if |t| < εx.

In short, if the orbit of all but finitely many points are locally those of a rotation

action, then the action is globally a rotation action.

Proof. It is easy to see that if ft is conjugate to a rotation action, then the action of ft

satisfies the local condition stated in the lemma. Conversely, suppose Fix ∈ P and ft is

locally a rotation at all but finitely many points. Let 0 = x0 < x1 < x2 < · · · < xn = 1 be

the exceptional points, including all boundary points of Fix. Over all x ∈ (xi−1, xi) the

rotation speed αx must be constant, since by definition it is locally constant. It remains

to consider the behavior of ft at the exceptional points.

Consider the interval Ij = [xj−1, xj) of length λj. By replacing t with −t, it may be

assumed that αj, the constant rotation speed on the interior points of Ij, is nonnegative.

The maps ft are all right-continuous at xj−1, and any interval (xj−1, xj−1 + δ), δ � λj, is

translated a distance of tαj under ft, for sufficiently small nonnegative t. It follows that

ft(xj−1) = xj−1 + tαj, for sufficiently small nonnegative t. Moreover, the group ft acts

(locally) on all of (xj−1, xj) by translation by tαj, and so

ft(xj−1) = xj−1 + tαj, for 0 ≤ t <
λj
αj
.
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Consider what happens for t = λj/αj. First, suppose the interval Ij is ft-invariant. If

y = f(λj/αj)(xj−1) is in the interior of Ij, then [y, xj) is a periodic orbit properly contained

in the orbit of xj−1, which is impossible. Thus, f(λj/αj)(xj−1) = xj−1, and the action of ft

on Ij is globally a rotation action.

In general, if Ij is not invariant, suppose that y is in the interior of some Ik, with

k 6= j, since y ∈ Ij would imply invariance. For small t < 0, ft(y) is in Ik, since the ft

locally act as a rotation on the interior of Ik. However, y = f(λj/αj)(xj−1), and it is also

the case that ft(y) is in Ij for small t < 0, which is a contradiction. Thus f(λj/αj)(xj−1)

must be some other exceptional point xk−1. The transformations ft all preserve Lebesgue

measure, and by right-continuity ft(xk−1) = xk−1 + tαk for small t ≥ 0 or small t ≤ 0.

Thus, if f(λj/αj)(xj−1) = xk−1, then αj = αk. Consequently, the orbit of xj−1 is a finite

union of intervals Ik, each of which has the same rotation speed. After applying a suitable

conjugacy, each invariant collection of these intervals may be reassembled into a single

invariant subinterval on which the conjugate action is a rotation action. �

It is possible to improve on the previous lemma’s recharacterization of rotation actions.

In particular, the condition of a point x having an orbit locally given by a rotation action

may be weakened to the condition that t 7→ ft(x) is continuous for t in a neighborhood

of zero. If x satisfies this weaker condition, it is said to have a locally continuous orbit

under ft.
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Proposition 3.7. A one-parameter subgroup ft is a rotation action if and only if

Fix ∈ P and for all but finitely many x ∈ [0, 1), the function R→ [0, 1) defined by

t 7→ ft(x)

is continuous in some open neighborhood around t = 0.

Proof. By applying the previous lemma, it suffices to show that if x has a locally

continuous orbit, then there exists αx, such that ft(x) = x+ tαx for t in a neighborhood

of zero. If ft(x) = x for all t in a neighborhood, then x is a global fixed point of the

action, and αx = 0 will suffice.

Suppose that x is not a global fixed point, and assume that the orbit t 7→ ft(x) is

continuous for t ∈ [−ε, ε]. By reducing ε if necessary, it may be assumed that the function

t 7→ ft(x) is one-to-one on [−ε, ε]. To see this, suppose that

ft1(x) = ft2(x), for − ε ≤ t1 < t2 ≤ ε.

Then ft2−t1(x) = x, and it follows that x has a periodic ft-orbit, with period less than 2ε.

However, if x is periodic under ft with period less than 2ε for arbitrarily small ε, then it

follows that x is a global fixed point, since x has a locally continuous orbit. It has been

assumed that x is not a global fixed point, and consequently t 7→ ft(x) is one-to-one on

[−ε, ε], for some suitably small choice of ε.

By reversing the parameter t, it may be assumed that t 7→ ft(x) is increasing on [−ε, ε].

Define α 6= 0 to satisfy

fε(x) = x+ εα.
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Next, for any n ∈ N, consider the increasing sequence of points

x, f ε
n
(x), f 2ε

n
(x), . . . , fε(x).

Since all ft preserve Lebesgue measure,

µ
([
f (j−1)ε

n

(x), f jε
n

(x)
))

= µ
([
f (k−1)ε

n

(x), f kε
n

(x)
))

,

for all 0 ≤ j, k ≤ n. Thus

f jε
n

(x) = x+ α

(
jε

n

)
, j = 1, . . . , n.

Thus, ft(x) = x+ tα for a dense set of t ∈ [0, ε], and by continuity of the orbit this holds

at all t ∈ [0, ε]. A similar argument shows ft(x) = x + tα′ for all t ∈ [−ε, 0]. Finally,

α = α′ is a consequence of the fact that the ft preserve Lebesgue measure. �

Therefore, to prove Theorem 1.3 it suffices to prove the following:

Proposition 3.8. If ft is a continuous one-parameter subgroup of E, then all but

finitely many x ∈ [0, 1) have locally continuous orbits and Fix ∈ P.

Define the function δ : E → N by

δ(f) = (card {x ∈ (0, 1) : f is discontinuous at x}) + 1.

Thus, δ(f) returns the number of discontinuities of f , considered as a map [0, 1)→ [0, 1),

where 0 is counted as a discontinuity. Observe that if δ(f) = n, then f is in the image of
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the interior of the (n−1)-dimensional simplex Λn under the parametrization Γπ, for some

unique unpartitioned π ∈ Σn. The simplex Λn is compact, the number of unpartitioned

permutations in Σk for k ≤ n is finite, and the parametrizations Γπ are continuous, so the

set

Kn = {f ∈ E : δ(f) ≤ n}

is compact. Therefore, if δ(f) = n,

ρ(f,Kn−1) > 0.

Consequently, for all g in some neighborhood of f , δ(g) ≥ δ(f). In other words, the

function δ is lower semicontinuous.

Lemma 3.9. For any continuous one-parameter subgroup ft, the function t 7→ δ(ft)

is bounded on any compact subset of R.

Proof. Since ft is a one-parameter subgroup, fs+t = fs ◦ ft for all s, t ∈ R. Consequently,

(3.4) δ(fs+t) ≤ δ(fs) + δ(ft), s, t ∈ R.

This inequality records the fact that a composition of two interval exchange maps cannot

have more discontinuities than occur over both of its factors. From this inequality, it also

follows that

(3.5) δ(fs+t) ≥ |δ(fs)− δ(ft)|, s, t ∈ R.
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By (3.4), if δ(ft) is bounded for t ∈ [−ε, ε], then δ(ft) is bounded on all compact

subsets. Thus, if δ(ft) is unbounded on some compact subset, then δ(ft) is unbounded

in any neighborhood of zero. In fact, the inequality (3.5) further implies that δ(ft) is

unbounded in any neighborhood of any t ∈ R.

This local unboundedness and the semicontinuity of δ cannot coexist. To derive a

contradiction, suppose that δ(ft) is unbounded in any neighborhood of any t. Let

An = {t ∈ R : δ(ft) ≤ n} .

By the lower semicontinuity of δ, the sets An are closed, and their complements

Bn = {t ∈ R : δ(t) > n}

are open. If δ is locally unbounded at every point, each set Bn is dense in R. However,

⋂
Bn = {t ∈ R : δ(ft) > n, for all n ∈ N} = ∅,

which is a contradiction by the Baire Category Theorem. Thus, δ(ft) must be bounded

on any compact subset of R. �

Proof of Proposition 3.8. Applying Lemma 3.9, let

n = max{δ(ft) : t ∈ [−1, 1]}.

By the lower semicontinuity of δ, the set {t ∈ [−1, 1] : δ(ft) = n} is relatively open

in [−1, 1]. Therefore, there exists some t0 ∈ (−1, 1) and ε > 0, such that δ(ft) = n
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for t ∈ (t0 − ε, t0 + ε). Let π ∈ Σn be the unique unpartitioned permutation such that

ft0 ∈ Γπ(Λn). By Proposition 3.4, the sets Γσ(Λn) are pairwise disjoint, for σ ranging

over Σ′n, the unpartitioned permutations in Σn. The sets Γσ(Λn) are compact and do not

contain ft0 if σ 6= π, so

ρ(ft0 ,Γσ(Λn) > 0),

for all σ 6= π in Σ′n. Consequently, after possibly replacing ε by a smaller value, it follows

that ft ∈ Γπ(Λn), for all t ∈ (t0 − ε, t0 + ε).

In this situation, it can be seen that the paths

t 7→ ft(x)

are continuous in a neighborhood of t0 for all but finitely many points, namely the dis-

continuity points of ft0 . For t ∈ (t0 − ε, t0 + ε) let λ(t) ∈ Λn be such that

ft = Γπ
(
λ(t)
)
,

where the λ(t) vary continuously in Λn. Thus, if x is an interior point of the interval Ij

induced by ft0 , then

t 7→ ft(x) = x+ Ωπ

(
λ(t)
)
j

is continuous in a neighborhood of t0. Since f−t0 is continuous at all but a finite number

of points, the path t 7→ ft(x) is continous in a neighborhood of zero for all but finitely

many points.
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It remains to consider the set of global fixed points for ft. As before, define β
(t)
j in

terms of λ(t) and let

I
(t)
j =

[
β

(t)
j−1, β

(t)
j

)
.

Suppose the interior of I
(t0)
j contains a global fixed point x. Then for all t in some

(t0− ε, t0 + ε), the point x is located in the interval I
(t)
j . Thus, for each t in (t0− ε, t0 + ε),

the interval I
(t)
j is fixed by ft. In addition, the intervals I

(t)
j−1 and I

(t)
j+1 cannot be fixed by

ft, since otherwise π would be partitioned. As a result, the boundary points β
(t)
j−1 and β

(t)
j

must be constant over t ∈ (t0 − ε, t0 + ε), since otherwise there would be points fixed by

ft for t in some nonempty, proper open set of R, which is impossible. Thus, the set Fix

of global fixed points for ft is a finite union of intervals I
(t0)
j , which implies that Fix is a

member of P . �
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CHAPTER 4

Discontinuity Growth

We now investigate the growth rate of the number of discontinuities for iterates fn

of an interval exchange f . In the context of this and all following chapters, consider

an interval exchange as being defined on the circle T1; let d(f) denote the number of

discontinuities of f : T1 → T1.

For a map f ∈ E , let D̃(f) denote the set of points at which f is discontinuous. Let

D(f) be those discontinuities of f which are not periodic points:

D(f) = D̃(f) \ Per(f).

In other words, D(f) is the set of discontinuity points of f which have infinite f -orbits.

If f is an infinite-order map where D̃(f) is nonempty, then D(f) is also nonempty. To

see this, first note that D̃(f) = D(f) if Per(f) is empty. Otherwise, the set T1 \ Per(f)

of points with nonperiodic orbits is a member of P and a proper subset of T1. Some left

boundary point of this set is mapped into its interior by f , since there are only finitely

many such boundary points. This point is necessarily an infinite-order discontinuity point,

which shows D(f) is nonempty.

If x ∈ D(f), a simple but key observation is the following: both the forward and

backward orbits of x eventually consist entirely of points at which f is continuous. This

is a consequence of the fact that D(f) is a finite set of points with nonperiodic orbits.
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Moreover, for each x ∈ D(f), there is some k ≥ 0, such that f−k(x) is the last point of

D(f) encountered in the backward orbit of x; in particular, f is continuous at all negative

iterates f−n(x), such that n > k.

Definition: A point x ∈ D(f) is a fundamental discontinuity (of f) if f is continuous at

all negative iterates of x: {
f−i(x)

}∞
i=1
⊆ T1 \ D̃(f).

Thus, any discontinuity in D(f) is either fundamental or a forward iterate of a fun-

damental discontinuity. In particular, the set of fundamental discontinuities is nonempty

whenever f has points with infinite orbits. Fundamental discontinuities of f are so-named

because they completely control the asymptotics of d(fn). To state this connection pre-

cisely, additional notation is needed. For any interval exchange f ∈ E , let f− denote the

left-continuous form of f . That is,

f−(x) =

 limy→x− f(y), if f is discontinuous at x;

f(x), otherwise.

Similarly, f+ = f is used to denote the original right-continuous map when the distinction

between f− and f+ is to be emphasized. Observe that (f−)n = (fn)− and (f+)n = (fn)+

for all integers n; such compositions are thus denoted fn− and fn+ without ambiguity.
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For any x ∈ T1 and any interval exchange f , let f(x+) denote the right-hand limit of

f at x:

f(x+) = lim
y→x+

f(y).

Similary, f(x−) denotes the left-hand limit of f at x. The sets

{
fn(x+)

}∞
n=0

and
{
fn(x−)

}∞
n=0

are respectively called the right and left (forward) orbits of x.

It is sensible to refer to these sets as orbits. Since f = f+ is right-continous,

fn(x+) = lim
y→x+

fn(y) = fn+(x).

Similary,

fn(x−) = lim
y→x−

fn(y) = fn−(x).

In essence, the right orbit of x is the orbit of x under the convention that f is right-

continuous, and the left orbit of x is its orbit under the opposite convention.

Let x ∈ D(f) be a fundamental discontinuity. By the definition of D(f), the right

orbit {fn(x+)} is nonperiodic. Since x is fundamental, f is continuous at all points in

the negative orbit of x. Thus, the left and right orbits coincide for negative iterates of f ,

and it follows that the left orbit of x is also nonperiodic. Therefore, since the set D̃(f)

is finite and the left and right forward orbits of x are nonperiodic, both of these forward

orbits eventually consist entirely of points at which f is continuous.

In light of this observation, let n0 be the smallest positive integer such that, for every

fundamental discontinuity x, f is continuous at fn(x+) and fn(x−) for all n ≥ n0. This
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integer n0 is called the stabilization time of f . For any fundamental x ∈ D(f), one of two

things may happen at the stabilization time:

either fn0(x+) = fn0(x−), or fn0(x+) 6= fn0(x−).

In the first of these cases, fn(x+) = fn(x−) for all n ≥ n0, since f is always continuous

at these points. In this situation it is said that x is an eventually resolving fundamental

discontinuity. Similarly, in the second case fn(x+) 6= fn(x−) for all n ≥ n0. In this

situation it is said that x is a nonresolving fundamental discontinuity.

A B

C

C

AB

A

A

B

B

!+"!

C

C

f: g:
D

D

1/2-# 1/2 1-$

Figure 4.1. Nonresolving and resolving fundamental discontinuities

To illustrate these two types of fundamental discontinuity, consider the following ex-

amples. Let f = f(π,λ) be the 3-interval exchange represented by π = (1, 3) ∈ Σ3 and

λ = (α, β, 1 − α − β), where α, β, and 1 are rationally independent; see Figure 4.1. The

map f has fundamental discontinuities at α and α + β. Since f(α + β) = 0, the stabi-

lization time of f is two, and it may be checked that both fundamental discontinuities

are nonresolving. Upon computing large iterates of f , it is observed that d(fn) seems to

grow on the order of 2n.
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Next, let g = g(π′,λ′) be defined by π′ = (1, 2)(3, 4) ∈ Σ4 and λ′ =
(

1
2
− γ, γ, 1

2
− δ, δ

)
,

where γ and δ are both irrational numbers in [0, 1/2); see Figure 4.1. The map g is a

product of two restricted irrational rotations. It has fundamental discontinuities at 1
2
− γ

and 1− δ, both of which are eventually resolving. For instance,

g2

((
1

2
− γ
)+
)

= g(0+) = γ,

g2

((
1

2
− γ

)−)
= g

(
1

2

−)
= γ,

and g is continuous at γ and all of its forward iterates. All iterates gn are products of two

infinite-order rotations, which implies that d(gn) = 4 for all n ≥ 1.

Proposition 4.1. For any infinite-order f ∈ E, exactly one of the following holds:

a) All fundamental discontinuities of f are eventually resolving, in which case d(fn)

is bounded independently of n.

b) The map f has at least one nonresolving fundamental discontinuity, in which

case d(fn) has linear growth.

Proof. It remains only to show that the fundamental discontinuities of f completely

control the asymptotics of d(fn). First, suppose that x ∈ D(f) is not a fundamental

discontinuity, in which case some negative iterate y = f−j(x), such that j ≥ 1, is a

fundamental discontinuity. The right and left orbits of x are only relevant to the continuity

status of finitely many preimages of x. In particular, the fn-continuity status of a point

p is determined by the right and left orbits of the first discontinuity which p meets in its

forward f -orbit. For instance, if k is such that j < k < n, then the right and left orbits
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of f−k(x) are determined by those of the fundamental discontinuity y = f−j(x):

fn((f−kx)+) = fn+(f−kx) = fn−k+j
+ (f−jx) = fn−k+j((f−jx)+) = fn−k+j(y+),

and similarly, since f− = f at points where f is continuous,

fn((f−kx)−) = fn−(f−kx) = fn−k+j
− (f−jx) = fn−k+j(y−).

Consequently, the number of points whose fn-continuity status is determined by a non-

fundamental discontinuity of f is bounded independently of n. Likewise, there is a uniform

bound to the number of points whose fn-continuity status is determined by the periodic

discontinuities of f.

In general, the discontinuities of fn are contained in the set

n−1⋃
i=0

f−i
(
D̃(f)

)
.

In other words, a point x is a discontinuity of fn only if the forward f -orbit of x reaches

D̃(f) in fewer than n iterates. Consequently, to show that d(fn) is bounded when all fun-

damental discontinuities of f are eventually resolving, it suffices to show that the number

of fn-discontinuities in the set {x, f−1(x), . . . , f−(n−1)(x)} is bounded independently of n,

for each eventually resolving fundamental discontinuity x.

Suppose x is an eventually resolving fundamental discontinuity of f, and let n0 be the

stabilization time of f . Then,

fn(x+) = fn(x−)



47

for all n ≥ n0. Thus, for any n ≥ n0, and for all k such that 0 ≤ k ≤ (n − n0), fn

is continuous at the point f−k(x). To see this, note that f is continuous at all forward

iterates of f−k(x) until its orbit reaches x. Thus, the right and left orbits of f−k(x) are

determined by the right and left orbits of x. In fact,

fn((f−kx)+) = fn−k(x+) = fn−k(x−) = fn((f−kx)−),

where the middle equality holds because n − k ≥ n0. It follows that for all n ≥ n0,

{x, f−1(x), . . . , f−(n−1)(x)} contains at most n0 discontinuities of fn. Therefore, d(fn) is

bounded if all fundamental discontinuities of f are eventually resolving.

Alternately, suppose that x is a nonresolving fundamental discontinuity. Then

fn(x+) 6= fn(x−)

for all n ≥ n0. By an argument similar to the one above, it follows that fn is discontinuous

at f−k(x), for all k such that 0 ≤ k ≤ (n − n0). Thus, for any n ≥ n0, fn has at least

n − n0 discontinuities in the set {x, f−1(x), . . . , f−(n−1)(x)}. Since n0 is fixed relative to

n, this implies that d(fn) has linear growth. Consequently, the presence of at least one

nonresolving fundamental discontinuity implies linear growth of d(fn). �

This proposition raises the question of what may be said about an infinite-order in-

terval exchange f for which d(fn) is bounded. An example of such a map is an irrational

rotation, or, more generally, any map which is conjugate to an irrational rotation. A result

of Li [6] asserts that with some additional conditions, these are the only such examples.
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Recall from Chapter 3 the function δ : E → N,

δ(f) = (card {x ∈ (0, 1)| f : [0, 1)→ [0, 1) is discontinuous at x}) + 1,

which counts the number of intervals exchanged when f = f(π,λ) is uniquely represented

by a length vector λ ∈ Rδ(f) and an unpartitioned permutation π ∈ Σδ(f).

Theorem (Li [6]). An interval exchange map f is conjugate to an irrational rotation

if and only if the following hold:

(i) δ(fn) is bounded by some positive integer N ,

(ii) fn is minimal for all n ∈ N, and

(iii) There are integers k > 0 and M ≥ 2N
3+3N2

such that f̃ = fk satisfies

δ(f̃) = δ(f̃ 2) = · · · = δ(f̃M).

The quantity δ(f) is essentially counting the discontinuities of f as a map on [0, 1), so

generally δ(f) does not equal d(f).Moreover, these two quantities do not differ by the same

constant for all f ∈ E . For example, δ(rα) = 2 and d(rα) = 0, while δ(rα,β) = d(rα,β) = 3,

if β < 1.

To state a version of Li’s theorem in terms of d(f), a closer comparison of these

functions is needed. The function δ(f) always counts 0 ∈ [0, 1) as a discontinuity, but 0

may be a continuity point of f : T1 → T1. If f = f(π,λ), then f : T1 → T1 is continuous at

0 if and only if I1 and In, the first and last partition intervals induced by λ, are mapped

adjacent to each other with their order reversed. Symbolically,

0 /∈ D̃(f) ⇐⇒ π(n) + 1 = π(1).
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In addition, the point f−1(0) is always counted as a discontinuity by δ, but it may also

be a continuity point when f is considered on the circle. Suppose f−1(0) is the boundary

point between the partition intervals Ik−1 and Ik. Then f : T1 → T1 is continuous at

f−1(0) if and only if Ik−1 and Ik are mapped to the right and left ends of the interval,

respectively. That is,

f−1(0) /∈ D̃(f) ⇐⇒ π(k − 1) = n and π(k) = 1.

Thus, for a given f it may be the case that f : T1 → T1 is continuous at either one or

both of the points 0 and f−1(0), which means that d(f) is, respectively, one or two less

than δ(f). This discrepancy is of no account in considering the boundedness of d(fn) or

δ(fn), but it presents problems for the condition (iii) in Li’s theorem, where it is required

that δ(fk) is constant over many values of k. Conceivably, one might observe d(fk) to be

constant over a large range of k, while δ(fk) is changing quite frequently.

This difficulty may be overcome by a good choice of the base point on T1. Recall that

presenting an interval exchange as defined on [0, 1) amounts to specifying a base point 0 at

which to cut the circle. Choosing a new base point amounts to conjugation by a rotation;

since the conclusion of Li’s theorem is up to conjugacy, there is no loss in changing the

base point.

Given any infinite-order f ∈ E , select a nonperiodic point p such that f : T1 → T1 is

continuous at all points on the orbit Of (p). Then for any n ∈ N, fn is continuous at p and

f−n(p). Choosing this point p to be the base point 0, it follows that d(fn) = δ(fn)−2 for

all n ∈ N. Thus, up to conjugacy, showing that d(fk) is constant is equivalent to showing

that δ(fk) is constant.
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Theorem (Alternate Version of Li’s Theorem). An interval exchange map f is con-

jugate to an irrational rotation if and only if the following hold:

(i) d(fn) is bounded by some integer N ,

(ii) fn is minimal for all n ∈ N, and

(iii) after redefining the base point (conjugating by a rotation) so that f is continuous

on the orbit of 0, there are integers k > 0 and M ≥ 2N
3+3N2

such that f̃ = fk

satisfies d(f̃) = d(f̃ 2) = · · · = d(f̃M).

It is natural to consider to what extent this result holds if it is only assumed that

d(fn) is bounded. It is possible to find examples for which condition (ii) fails when d(fn)

is bounded. See Figure 4.2 for an example where f is minimal and f 2 is not. This

complication may be removed by replacing f with a higher iterate.

A B

B

C

C

0 1
1/2

D

D A

1/2(1-!) 1 - (1/2)!

Figure 4.2. A minimal map with a non-minimal square

Lemma 4.2. Suppose that f is minimal and d(fn) is bounded. Then for some k ∈ N,

all iterates fnk are minimal when restricted to each minimal component of fk.
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Proof. Suppose that no such integer k exists. Then f is minimal, but for some

k1 = m1 > 1, fm1 has multiple minimal components. Suppose that this integer k1 has

been chosen to be as small as possible. Since f and fm1 commute, f permutes the minimal

components of fm1 . This permutation induced by f is transitive since f is minimal, and it

must be of order m1, by the choice of m1. Thus fm1 has exactly m1 minimal components,

denoted by J1,1, . . . , J1,m1 .

It has been assumed that no power fk is minimal for all iterates when restricted to

any of its minimal components. Thus, there exists a smallest integer k2 > 1 such that

fm2 , where m2 = k1k2, is not minimal when restricted to some minimal component of

fm1 . Suppose this component is J1,1. The map fm1 permutes the minimal components of

fm2 which are contained in J1,1; fm1 acts minimally on J1,1, and so this permutation must

be transitive and have order k2. Additionally, the original map f permutes the minimal

components of fm2 ; since it also transitively permutes the minimal components of fm1 , it

follows that fm2 must have k2 minimal components in each one of the J1,j. Thus fm2 has

exactly k2k1 = m2 minimal components.

By the assumption that no k satisfies the conclusion of the lemma, this process may

continue indefinitely. In particular, there are sequences of integers ki > 1 and mi =

Πi
j=1kj, such that fmi has exactly mi minimal components.

To arrive at a contradiction with the hypothesis that d(fn) is bounded, observe that

if a map g has m > 1 minimal components J1, . . . , Jm, then it must have at least m

discontinuities. To see this, consider a left-boundary point xi of Ji. Since some iterate

of xi will eventually fall in the interior of Ji, it follows that the orbit of each xi must

contain a discontinuity of g. Since these orbits are distinct, the map must have at least
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m discontinuities. Thus, it is impossible for fn to have an arbitrarily large number of

minimal components if d(fn) is bounded. �

Lemma 4.3. Suppose f has infinite order and d(fn) is bounded. Then for some

N ∈ N, d(fnN) is constant over all n ∈ N.

Proof. By initially replacing f with an iterate, it may be assumed that Per(f) = Fix(f).

Let A = {x1, . . . , xk} be the fundamental discontinuities of f . Since d(fn) is bounded,

each xi is eventually resolving. All other non-fixed discontinuities are found in the forward

orbits of the fundamental discontinuities. Choose an integer N1 > 0 such that any point

of D(f) may be reached from A by at most N1 iterates of f . Such an N1 exists since the

set D(f) is finite.

Choose N2 such that the right and left orbits of all discontinuities in D(f) are stabilized

after N2 iterates of f . In the situation where a non-fundamental discontinuity x ∈ D(f)

is fixed from the left (i.e., f(x−) = x), it is the case that fn(x+) 6= fn(x−) for all n ≥ 1,

since the right orbit of x is nonperiodic. Otherwise, both the right and left forward orbits

of any x ∈ D(f) eventually consist entirely of continuity points of f . Thus, the notion of

stabilization time is well-defined for all x ∈ D(f), not just the fundamental discontinuities.

Finally, choose N > N1 +N2. It will be shown that d(fkN) is constant over all k ∈ N.

Since Per(f) = Fix(f), the set of fixed discontinuities is identical for all nonzero iterates

of f . Thus, it suffices to only consider the set D(fN) of non-fixed discontinuities of fN ;

any such point must be of the form f−i(x), where x ∈ D(f) and 0 ≤ i < N . The non-fixed
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discontinuities of f are contained in the set

N1⋃
i=0

f i(A).

It follows that the non-fixed discontinuities of fN are contained in the set

N1⋃
i=−(N−1)

f i(A).

Let

P = D(fN) ∩

(
N1⋃
i=1

f i(A)

)
, Q = D(fN) ∩

 0⋃
i=−(N−1)

f i(A)

 .

Consider a point x ∈ P . Since this is a discontinuity of fN , the forward f -orbit of

x must encounter a discontinuity of f whose right and left orbits control the continuity

status of x. Since x is in P , this controlling discontinuity is non-fundamental, and it

must be encountered within N1 iterates of f . Since N > N1 +N2, the inequality between

fN(x+) and fN(x−) occurs at a place where the right and left orbits of the controlling

discontinuity have already stabilized. Thus, the right and left orbits of the controlling

discontinuity are nonresolving, and it follows that x is a discontinuity of fn, for all n ≥ N .

In particular, x is a discontinuity for all fkN . Similarly, if a point in
⋃N1

i=1 f
i(A) is a point

of continuity for fN , it must be a point of continuity for all fkN .

Next, consider a point x ∈ Q. This point is a discontinuity of fN whose f -orbit is

controlled by a fundamental discontinuity xi of f . Observe that under fkN , the image of

x is contained in
kN⋃

i=(k−1)N+1

f i(A).
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Consequently, if k ≥ 2, the right and left orbits of x (which are controlled by the right and

left orbits of the fundamental discontinuity xi) have resolved once fkN iterates have been

applied to x. Thus x, as well as all other points in
⋃0
i=−(N−1) f

i(A), are continuity points

for fkN , k ≥ 2. In general, the fkN -continuity status of any point in
⋃0
i=−(kN−1) f

i(A) is

controlled by the right and left orbits of a fundamental discontinuity. Since these orbits

all resolve within N iterates, it follows that

D(fkN) ∩

 0⋃
i=−(kN−1)

f i(A)

 = f−(k−1)N(Q).

The previous two paragraphs have shown that

D(fkN) = P ∪ f−(k−1)N(Q).

This union is always disjoint, so the size of D(fkN) is constant over all k ∈ N. Since

d(fkN) =
∣∣D(fkN)

∣∣+
∣∣{fixed discontinuities of fkN}

∣∣ ,
and the second term in this sum is constant over all iterates of f , it follows that d(fkN)

is constant over all k ∈ N, as desired. �

Theorem 1.5. Let f be an infinite-order map such that d(fn) is bounded. Then some

fk, k ≥ 1, is conjugate to a product of disjointly supported irrational restricted rotations.

Proof. Since f may be replaced with a power of itself, it may be assumed that Per(f) =

Fix(f). By applying Lemma 4.2 to the restriction of f on each of its minimal components,
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there is some k such that any fnk is minimal when restricted to any minimal component

J1, . . . , Jm of fk. Since the result is up to conjugacy in E , it may be assumed that fk is

in normal form.

Consider the restriction fj of fk to its minimal component Jj. This map fj is consid-

ered as being defined on T1; imagine that the subinterval Jj has been cut out and glued

together into a circle. It suffices to show that fj is conjugate to an irrational rotation. The

function d(fnj ) is bounded, and by construction fnj is minimal for all n > 0. Moreover,

by Lemma 4.3, there exists Nj such that d(f
nNj
j ) is constant for all n. Consequently,

the alternate version of Li’s theorem applies to the restricted map fj, and so this map is

conjugate to an irrational rotation. �
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CHAPTER 5

Distortion Elements in E

The results concerning the rate of discontinuity growth may be applied to the question

of whether distortion elements exist in the group E .

Definition: Let G be a finitely generated group with a chosen set of generators S =

{g1, . . . , gn}. For any g ∈ G, let |g|S denote the word length of g in terms of the generators;

i.e., |g|S is the length of the shortest word in the generators and their inverses that

represents g. An element f ∈ G is a distortion element in G if f has infinite order and

lim inf
n→∞

|fn|S
n

= 0.

If G is not finitely generated, f ∈ G is said to be a distortion element in G if it is a

distortion element in some finitely generated subgroup.

As an example, consider the Heisenberg group H, which may be presented by gener-

ators a, b, c, subject to the commutator relations

(5.1) [a, b] = c, [a, c] = [b, c] = id.

More concretely, the group H is isomorphic to the group of strictly upper triangular matri-

ces with integer coefficients. The generators in the above presentation may be represented
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by

a =


1 1 0

0 1 0

0 0 1

 b =


1 0 0

0 1 1

0 0 1

 c =


1 0 1

0 1 0

0 0 1

 .

The element c is a distortion element in H. By the relations (5.1) it may be computed

that

[an, bm] = cnm,

and consequently |cN |S is on the order of
√
N .

Theorem 1.4. Distortion elements do not exist in E.

Proof. By Proposition 4.1, the iterates of any interval exchange transformation have

linear or bounded discontinuity growth. If an interval exchange f has linear discontinuity

growth, then it cannot be a distortion element. To see this, suppose S = {g1, . . . , gk}

generate a subgroup of E in which f is a distortion element, and suppose there is a

constant C > 0 such that d(fn) ≥ Cn for all sufficiently large n. Let

M = max
i
{d(gi)} .

Then

d(fn) ≤M |fn|S,

since fn may be expressed as a composition of |fn|S elements from the set of generators.

Since f is a distortion element,

lim inf
n→∞

|fn|S
n

= 0.
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Thus, for infinitely many n,

|fn|S ≤
Cn

2M
,

and

d(fn) ≤M |fn|S ≤
C

2
n.

This contradicts the assumption that d(fn) ≥ Cn for all sufficiently large n, and it follows

that an interval exchange which has linear discontinuity growth cannot be a distortion

element.

Suppose now that f ∈ E is a distortion element, meaning f is a distortion element in

some finitely generated subgroup

G = 〈g1, . . . , gn〉 < E .

By the previous paragraph, f must have bounded discontinuity growth. By Theorem 1.5,

after conjugation and replacing f by an iterate it may be assumed that f is a product of

disjointly supported infinite-order rotations. Suppose that one of these rotations is the

restricted rotation rα,β. Assume first that α /∈ Q. The case where α is rational and β is

necessarily irrational will be addressed later.

Let V be the Q-vector subspace of R/Q which is generated by the set of distances

that an element of G may translate a point of T1. The space V is a finite-dimensional

Q-vector space, since it is generated by the finite set of translations induced by the

generators g1, . . . , gn.

Fix a basis for V which includes α (precisely, the class [α] ∈ R/Q), and let

Pα : V → Q
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be the linear map which returns the α-coordinate of a vector with respect to this basis.

For a point p ∈ T1 define a function φα,p : G→ Q by

φα,p(g) = Pα(g(p)− p)

Roughly, φα,p(g) measures the α-component by which g translates p. Since the distortion

element f rotates by α on the interval [0, β) and β is not a rational multiple of α, it

follows that

φα,0(fn) = n, for all n ∈ Z.

Now consider the generators g1, . . . , gn. Each one of these maps only induces finitely

many distinct translations (i.e., the components of ωgi), and consequently there is a con-

stant M > 0 such that

|φα,p(gi)| ≤M, 1 ≤ i ≤ n, p ∈ T1.

Thus, for any g ∈ G,

|φα,0(g)| ≤M |g|S.

Since lim inf |fn|S/n = 0,

|fn|S ≤
n

2M
,

for infinitely many sufficiently large n. But then, for such n,

n = φα,0(fn) ≤M |fn|S ≤
n

2
,

which is a contradiction. Thus, f cannot be a distortion element in E .
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Suppose we are in the case where f is a product of infinite-order rotations, but all of

these rotations are by some αi ∈ Q (mod βi /∈ Q). The argument above fails in this case

because the map φα,p cannot be defined when α is rational. However, a similar argument

can be made by tracking the contribution from the irrational number β. Choose a new

basis for V which contains β, and consider the map φβ,0. The rotation by α mod β on

[0, β) will contribute (−1)β for every loop the iterated rotation makes around this interval.

Thus, there exists some constant C > 0, (for instance, any C > β/α), such that

|φβ,0(fn)| ≥ n

C
,

for all sufficiently large n. It is still the case that there is a constant M > 0 such that

φβ,p(gi) ≤M, 1 ≤ i ≤ n, p ∈ T1.

Consequently, a similar contradiction may be reached in the case where α ∈ Q, and it

follows that no distortion elements exist in E . �

As a consequence of Theorem 1.4, it can be shown that a large class of lattices in

higher-rank semisimple Lie groups do not act faithfully via interval exchanges.

Theorem (Lubotzky-Mozes-Raghunathan [7]). Suppose Γ is a non-uniform irre-

ducible lattice in a semisimple Lie group G with R-rank ≥ 2. Suppose further that G

is connected, with finite center and no nontrivial compact factors. Then Γ has distortion

elements, in fact, elements whose word length growth is at most logarithmic.
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If Γ is any lattice satisfying the conditions of the previous theorem, then for any

homomorphism Γ → E , all distortion elements in Γ must map to finite-order interval

exchanges. Consequently, an infinite-order element maps to a finite-order one, and the

action is not faithful. In fact, a much stronger conclusion can be made regarding such

actions. A group is called almost simple if its normal subgroups are all either finite or

finite-index.

Theorem (Margulis [8]). Suppose Γ is an irreducible lattice in a semisimple Lie group

with R-rank ≥ 2. Then Γ is almost simple.

Consequently, if Γ is a lattice which satisfies the conditions of the theorem of Lubotzky,

Mozes, and Raghunathan, then any homomorphism Γ → E must have finite image. The

existence of a distortion element implies that the kernel of the action is infinite. Since Γ is

almost simple, this implies that the kernel actually has finite index. A concrete example

of lattices which satisfy the conditions of the above theorems are the lattices SL(n,Z),

such that n ≥ 3. Thus, any interval exchange action of one of these matrix groups factors

through a finite group.
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CHAPTER 6

Classification of Centralizers in E

For an interval exchange f , let C(f) denote the centralizer of f in the group E :

C(f) = CE(f) := {g ∈ E : fg = gf}.

If f is a minimal transformation, then the structure of C(f) is primarily determined by

the discontinuity growth of f . In considering the situation where d(fn) is bounded, the

first case to consider is when f is an irrational rotation. Let R denote the subgroup

consisting of the rotations {rα : α ∈ R/Z}.

Lemma 6.1. If f = rα is an irrational rotation, then C(rα) is the rotation group R.

See Li [6] for an alternate proof.

Proof. It is clear that R ⊆ C(rα), so given g ∈ C(rα), it suffices to show that g must

be a rotation. For a point x ∈ T1, consider the translation number of the commutator

r−1
α g−1rαg at x. Performing all calculations mod 1, we have

ωr−1
α g−1rαg

(x) = ωg(x) + ωr−1
α g−1rα

(g(x)) = ωg(x) + α + ωr−1
α g−1((rαg)(x))

= ωg(x) + α + ωg−1((rαg)(x)) + ωr−1
α

((g−1rαg)(x))

= ωg(x) + α + ωg−1((rαg)(x))− α

= ωg(x)− ωg((g−1rαg)(x)) = ωg(x)− ωg(rα(x)).
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Since r−1
α g−1rαg = id, it follows that

ωg(x) ≡ ωg(rα(x)) (mod 1).

This calculation holds for any point in T1, from which it follows that ωg is constant (mod

1) on the entire orbit {rnα(x)}. This orbit is dense, and specifying ωg on a dense set will

specify it everywhere, since it is a right-locally constant function. Thus ωg is a constant

(mod 1), which implies that g is a rotation. �

In general, if f is minimal and d(fn) is bounded, by Theorem 1.5 some power fk is

conjugate to a product of disjoint irrational rotations. Suppose that k is chosen to be as

small as possible, and let Ji, 1 ≤ i ≤ l, denote the minimal components of fk. Replace

f by a conjugate so that fk is in normal form: the Ji are assumed to be intervals, and

let ri denote the restricted rotation supported on Ji induced by fk. Since f is minimal

and commutes with fk, f transitively permutes the Ji and induces conjugacies between

all of the ri. Consequently, the Ji are all intervals of length 1/l, and each ri rotates by the

same proportion of 1/l. Let Ri denote the full rotation group supported on the interval

Ji. Then fk is an element of the diagonal subgroup of

R1 × · · · ×Rl,

and it follows from Lemma 6.1 that

C(fk) = (R1 × · · · ×Rl) o Σl,
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where Σl is the embedding of the symmetric group which permutes the Ji by translation.

Proposition 6.2. If f is minimal and d(fn) is bounded, then C(f) is virtually abelian

and contains a rotation subgroup.

Proof. Continue with the notation of the above paragraphs. C(f) is a subgroup of

C(fk) ∼= (R/Z)l o Σl, and so it is a virtually abelian group. Also, f ∈ C(fk) implies that

f has the form

f = r1 · · · rlσ,

where ri ∈ Ri and σ is a permutation of the Ji by translation. In particular, f commutes

with the diagonal subgroup in R1×· · ·×Rl, and so C(f) contains a continuously embed-

ded copy of R/Z. �

Suppose now that f is minimal and d(fn) exhibits linear growth. The discontinuity

structure of f and its powers is significantly more complicated than the bounded case.

Any map g which commutes with f must preserve this structure, and so one would expect

that the centralizer of f should be significantly smaller than in the bounded discontinuity

situation. This is in fact the case:

Proposition 6.3. If f is minimal and d(fn) has linear growth, then C(f) is virtually

cyclic.

Let D = D(f) be the discontinuity set of f and let DNR = {x1, . . . , xk} be the set of

nonresolving fundamental discontinuities of f (see Chapter 4 to recall the definition). By

Proposition 4.1, linear growth of d(fn) is equivalent to DNR being nonempty. Let n0 be
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the symmetric stabilization time for f : n0 is the minimal positive integer such that f is

continuous at f i(x), for all |i| ≥ n0 and all x ∈ D. The following lemma states that if a

sufficiently long piece of f -orbit contains enough discontinuity points for a large power of

f , then the f -orbit must contain a nonresolving fundamental discontinuity of f .

Lemma 6.4. Suppose f is minimal and has symmetric stabilization time n0. Let

M > 3n0, and suppose that for some y ∈ T1 the set

B = {y, f−1(y), . . . , f−M+n0(y)}

contains strictly more that 2n0 +1 discontinuities of fM . Then some fk(y), with |k| ≤M,

is a nonresolving fundamental discontinuity of f .

Proof. For the convenience of notation, let ym denote fm(y). Let j ∈ N be the smallest

positive integer such that fM is discontinuous at y−j. Since fM is discontinuous at y−j,

this point has a controlling f -discontinuity at yk̃ ∈ D(f), where −j ≤ k̃ ≤ −j + M − 1.

Consequently, there must be a fundamental discontinuity of f at some yk, where −j−n0 ≤

k ≤ −j +M − 1.

Since B contains more than 2n0 f
M -discontinuities at points y−i with i > j, there

are more than n0 f
M -discontinuities whose status is controlled by yk. In particular, at

least one of the fM -discontinuities in B is induced by the stabilized behavior of yk, which

implies that yk is a nonresolving fundamental discontinuity of f . �

Proof of Proposition 6.3. Suppose that gf = fg. Consider some integer N such that

N � n0 and N � d(g).
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(For instance, assume N > 100n0 and N − n0 > 100d(g).) Let x ∈ DNR. Since x is a

nonresolving fundamental discontinuity of f , the set

A = {x, f−1x, f−2x, . . . , f−(N−n0)x}

consists entirely of discontinuity points of fN .

Since f and g commute, fN = g−1fNg, so g−1fNg is discontinuous at all points of A.

Consider how this composition acts upon the set A :

A = {x, f−1x, . . . , f−(N−n0)x}

↓ g

g(A) = {gx, f−1(gx), . . . , f−(N−n0)(gx)}

↓ fN

fNg(A) = {fN(gx), fN−1(gx), . . . , fn0(gx)}

↓ g−1

fN(A) = {fNx, fN−1x, . . . , fn0x}

Since the cardinality of the set A is significantly larger than d(g), g acts continuously

on most points of A in the first stage of the above composition. Similarly, g−1 acts

continuously on most points of fNg(A) in the third stage. However, since g−1fNg is

discontinuous at all points of A, it follows that fN is discontinuous at most of the points

in

{gx, f−1(gx), . . . , f−(N−n0)(gx)}.
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By Lemma 6.4, it follows that some f -iterate of g(x) must be a member of DNR. (To

make the estimates above precise using the initial assumptions on N , note that |A| =

N − n0 ≥ 100d(g), from which it follows that fN is discontinuous for at least 0.98|A| of

the points in g(A). This, together with the assumption that N > 100n0, is more than

sufficient to satisfy the conditions of Lemma 6.4.)

The argument in the preceding paragraphs shows that g ∈ C(f) must permute the

f -orbits of the points in DNR = {x1, . . . , xk}. In particular, there is some integer i and

some xj ∈ DNR such that

g(x1) = f i(xj).

This relation determines g on the entire f -orbit of x1 :

g(fnx1) = fn(gx1) = fn+ixj.

Since the orbit Of (x1) is dense, the relation g(x1) = fk(xj) fully determines g.

For each j such that 1 ≤ j ≤ k, let hj denote the unique interval exchange in C(f)

such that

hj(x1) = xj,

if such a map exists. Then, if g ∈ C(f) satisfies g(x1) = fk(xj), it follows that g = fkhj.

In particular, {hi} is a set of representatives for the finite quotient group C(f)/〈f〉. Thus,

C(f) is a virtually cyclic group. �
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Now let f ∈ E be a finite-order map. For simplicity, fix n ≥ 2 and assume that f is a

transitive permutation of the intervals

Ii =

[
i− 1

n
,
i

n

)
, 1 ≤ i ≤ n,

such that f maps each Ii by translation. After conjugation it may be assumed that f is

rotation by 1
n
.

Define the support of an interval exchange f as the complement of its set of fixed

points. Note that the support of an interval exchange is always a set in the algebra P .

For any nonempty A ∈ P , let EA denote the subgroup consisting of all interval exchanges

whose support is contained in A. It follows that EA ∼= E ; a suitable conjugacy gives an

isomorphism between EA and EI for an interval I, and there is an isomorphism EI ∼= E

induced by rescaling I to be the interval [0, 1).

Consider the following subgroups in the centralizer C(r1/n). First, let En∆ represent the

subgroup of maps in C(r1/n) which preserve the intervals Ii:

En∆ = {g ∈ C(r1/n) : g(Ii) = Ii, for 1 ≤ i ≤ n}.

Note that En∆ is the diagonal subgroup of the product

EI1 × · · · × EIn ,

as induced by the natural isomorphisms E ∼= EIi . In particular, En∆ ∼= E .
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Next, let Pn denote the subgroup of maps in C(r1/n) which preserve r1/n-orbits:

Pn =

{
g ∈ C(r1/n) : ∀x ∈ T1,∃k ∈ Z, such that g(x) = x+

k

n
(mod 1)

}
.

Fix g ∈ Pn, and consider a point x = x1 ∈ I1. Let

xi = x1 +
i− 1

n
, 2 ≤ i ≤ n,

denote the other points in the r1/n-orbit of x, and let σg,x ∈ Σn denote the permutation

that g induces on {xi}:

g(xi) = xσg,x(i).

Since σg,x commutes with the permutation r : i 7→ i+ 1 (mod n) induced by the rotation

r1/n, it follows that σg,x must be a power of r. Thus, the transformation g is described by

a right-continuous (and hence piecewise constant) map

σg : I1 → 〈r〉 ∼= Z/nZ

Conversely, any such right-continuous map I1 → Z/nZ with only finitely many discontinu-

ities defines a map in Pn. Thus, Pn is isomorphic to the abelian group of right-continuous

functions I1 → Z/nZ having finitely many discontinuities, where the group operation is

by addition of functions.
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Proposition 6.5. C(r1/n) = Pn o En∆.

Proof. First, suppose g ∈ Pn ∩ En∆. Then g preserves the intervals Ii, which implies

that σg,x = id for all x ∈ I1. Thus g = id, and the subgroups Pn and En∆ have trivial

intersection.

Next, suppose g is an arbitrary element of C(r1/n). Construct h ∈ Pn as follows. For

x = x1 ∈ I1, define {xi} as before and let σh,x be the permutation such that

g(xi) ∈ Iσh,x(i).

Observe that σh,x ∈ Σn is well-defined since g maps the r1/n-orbit {xi} to another r1/n-

orbit; there is exactly one of the g(xi) in each interval Ij. Since g commutes with

r1/n, the permutation σh,x is a power of the permutation r. Moreover, the function

x 7→ σh,x ∈ Z/nZ[r] is right-continuous and has finitely many discontinuities since g

has these properties. From its construction, it follows that gh−1 preserves each interval

Ii, and so gh−1 ∈ En∆. Thus C(r1/n) = Pn · En∆.

It remains to show that Pn is a normal subgroup of C(r1/n). Let g ∈ Pn and let

h ∈ En∆. If {xi} is an r1/n-orbit, then h maps it to some other r1/n-orbit {yi}, g permutes

the orbit {yi}, and h−1 maps {yi} back to {xi}. Thus h−1gh is invariant on r1/n-orbits,

which implies that h−1gh ∈ Pn. Consequently, Pn E C(r1/n). �

Corollary 6.6. For n ≥ 2, let Gn = Pn o En∆ denote the centralizer of the rotation

r1/n, and let G1 = E. If f is any finite-order map, then C(f) is isomorphic to a finite

direct product of the Gi.
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Proof. Decompose T1 into finitely many nonempty Ij = Perj(f). After replacing f by a

conjugate, it may be assumed that the Ij are intervals on which f acts by a finite-order

rotation. The Ij are invariant under all g ∈ C(f) and C(f) ∩ EIj , the subgroup of maps

in C(f) with support in Ij is isomorphic to Gj. �

By combining the particular cases considered above in light of the normal dynamical

form of an interval exchange f , a general characterization of C(f) can be given. Let

J1, . . . , Jk be the minimal components of f , let A = Per(f) \ Fix(f) and let B = Fix(f).

Assume that all of these sets are intervals. Let fi be the map defined by

fi(x) =


f(x), if x ∈ Ji

x, otherwise.

Let g ∈ C(f). The sets A and B are both g-invariant, but g may permute the minimal

components Ji. If g maps Ji onto Jj, then g induces a conjugacy between fi and fj. After

replacing fj by a conjugate in EIj , it may be assumed that

fi = τijfjτij

where τij is the order-two map which interchanges Ji and Jj by translation and fixes

all other points. Replace f by a further conjugate so that fi = τijfjτij holds for all

pairs i 6= j such that fi and fj are conjugate, and let F be the group generated by all

such τij. Note that F is isomorphic to a direct product of symmetric groups, since the

relation i ∼ j ⇔ (fi is conjugate to fj) is an equivalence relation on {1, . . . , k}. Let
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Ci = CEJi (f) = C(f) ∩ EJi denote the subgroup of maps in C(f) with support in Ji, and

let CA = C(f) ∩ EA.

Proposition 6.7. For f with normal dynamical form as denoted above,

C(f) ∼=

((
k∏
i=1

Ci

)
o F

)
× CA × EB,

where each Ci is either an infinite virtually cyclic group or isomorphic to a subgroup of

(R/Z)n o Σn containing the diagonal in (R/Z)n.

Proof. It is clear that

C(f) ∼= C∪Ji(f)× CA × EB,

since these are disjoint and non-conjugate f -invariant sets which cover T1. The verification

that

C∪Ji(f) ∼=

(
k∏
i=1

Ci

)
o F

is similar to the proof of Proposition 6.5. �

Corollary 6.8. For any f ∈ E, Per(f) is nonempty if and only if C(f) contains a

subgroup isomorphic to E.

Proof. It remains to show that if Per(f) is empty, then no subgroup of C(f) is isomorphic

to E . By the proposition,

C(f) =
k∏
i=1

Ci o F,

where each Ci is either virtually cyclic or isomorphic to a subgroup of (R/Z)n o Σn con-

taining the diagonal. If Ci is virtually cyclic, then for every infinite-order g ∈ Ci, some
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nontrivial power gn is central in
∏
Ci. Similary, if g = r1 · · · rnσ is an infinite-order el-

ement in (R/Z)n o Σn, then for any other infinite-order element h in this group, some

nontrivial powers gn and hm commute, since suitable powers of each map yield elements

in (R/Z)n. Thus, given any two infinite-order g, h ∈ C(f), there are nontrivial powers of

these maps which commute. This property does not hold for the group E . For instance,

consider an irrational rotation rα and any infinite-order map f ∈ E which is not a rota-

tion. No nontrivial powers of rα and f commute. Thus, it is not possible to exhibit E as

a subgroup of C(f) when f has no periodic points. �

Corollary 6.9. For any nonidentity f ∈ E, the index [E : C(f)] is infinite.

Proof. From the structure of C(f) given in the proposition, it suffices to consider the

following three cases:

Case 1: f is periodic. It suffices to consider the case f = r1/n. For any h ∈ E , define

α(h) = min
x 6=y:x=y+j/n

{ρT1(h(x), h(y))}.

The function α measures how close together h is able to map a pair of points in the same

r1/n-orbit. Since transformations in C(r1/n) preserve the collection of sets {x+ i/n}, the

function α is constant on cosets h ·C(f). The function α takes all values in (0, 1/n), and

thus the index of C(f) in E is (uncountably) infinite.
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Case 2: f is minimal, with linear discontinuity growth. By Proposition 6.3, C(f) is

virtually cyclic. In particular, it is countable, which implies that C(f) has (uncountably)

infinite index in E .

Case 3: f is minimal, with bounded discontinuity growth. By the proof of Proposition

6.2, there is a uniform bound for the number of discontinuities possessed by maps in C(f).

Consequently, there is a bound on the number of discontinuities possessed by maps in a

given coset C(f) · h. Thus C(f) must have infinite index, since otherwise there would be

a uniform bound on discontinuities for the entire group E . �
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CHAPTER 7

Automorphisms of E

We now investigate the structure of the automorphism group Aut(E). One ready

source of examples is the group of inner automorphisms. Since E has trivial center,

Inn(E) ∼= E . Another example of an automorphism is induced by switching the orientation

of the circle T1, as illustrated in Figure 7.1. More precisely, let T : T1 → T1 be defined

by T (x) = −x. For any f ∈ E , T−1fT is still an invertible piecewise translation, but it is

now continuous from the left. Let ΨT be the automorphism of E defined by conjugation

by T followed by the natural isomorphism from the group of left-continuous interval

exchanges to the right-continuous interval exchange group E . Note that ΨT is not an

inner automorphism, since it switches the sign of the scissors invariant:

φ(ΨT (rα)) = φ(r−α) = −(1 ∧ α).

A B

C

C

AB

A

A

B

B

!T
C

C

Figure 7.1. The action of the automorphism ΨT
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The inner automorphisms and the automorphism ΨT act by conjugation on E , and

these automorphisms generate Aut(E).

Theorem 1.6. Aut(E) ∼= E o 〈ΨT 〉.

The proof of Theorem 1.6 is based on observing that an arbitrary Ψ ∈ Aut(E) preserves

the structure of P .

Lemma 7.1. An interval exchange f is conjugate to an irrational rotation rα if and

only if the following conditions hold:

(1) C(f) ∼= R/Z;

(2) if g ∈ C(f) has infinite order, then C(g) = C(f).

Proof. By Lemma 6.1, conditions (1) and (2) hold if f = rα is an irrational rotation. In

addition, conditions (1) and (2) are both preserved under conjugacy, so they hold for any

f which is conjugate to an irrational rotation.

Conversely, assume that f satisfies (1) and (2), and consider the normal dynamical

form of f . By Corollary 6.8, Per(f) is empty since no subgroup of R/Z is isomorphic to

E . Next, it will be shown that fn is minimal for all n ≥ 1. To reach a contradiction,

suppose that fn has at least two minimal components, and denote them by Ji. Let g be

the map which is equal to f on J1 and fixes all other points. Then g has infinite order and

commutes with f , so C(g) ∼= R/Z by condition (2). However, g has fixed points, and so

C(g) contains a subgroup isomorphic to E , which is a contradiction. Thus, fn is minimal

for all n ≥ 1.

Furthermore, f must have bounded discontinuity growth. If not, then C(f) would

be virtually cyclic by Proposition 6.3, which is not the case for R/Z. Consequently,
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some power fk must be conjugate to an irrational rotation, by Theorem 1.5. Since

C(f) = C(fk), it follows that f is also conjugate to an irrational rotation. �

Let R < E denote the group of circle rotations {rα : α ∈ R/Z}. For any f ∈ E , let Φf

denote conjugation by f−1; i.e., Φf (g) = fgf−1.

Corollary 7.2. For any Ψ ∈ Aut(E), Ψ maps the rotation group R to a conjugate.

That is, there exists g ∈ E such that Ψ(R) = gRg−1.

Proof. Since conditions (1) and (2) in Lemma 7.1 are purely group theoretic, they are

preserved by any automorphism Ψ. Fix an irrational rotation rα. By the Lemma, Ψ(rα) is

conjugate to an irrational rotation. In particular, there is some g ∈ E and some irrational

β ∈ R/Z such that

Ψ(rα) = Φg(rβ).

Then

Ψ(R) = Ψ(C(rα)) = C(Ψ(rα)) = C(Φg(rβ)) = gRg−1. �

A similar result hold for maps which are conjugate to an infinite-order restricted

rotation rα,β.

Lemma 7.3. An infinite-order interval exchange f is conjugate to an infinite-order

restricted rotation rα,β with β < 1 if and only if the following hold:

(1) C(f) = E∗ ×H, where E∗ ∼= E , H ∼= R/Z, and f ∈ H;

(2) if g ∈ H has infinite order, then C(g) = C(f);

(3) for h ∈ C(f), if the index [C(f) : C(h) ∩ C(f)] is finite and

C(h) % C(h) ∩ C(f), then h is a finite-order element of H.
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Proof. Suppose that f = rα,β with β < 1 and α/β irrational. Let I = [β, 1). Then

C(rα,β) = EI ×Rβ,

where Rβ
∼= R/Z is the group of all restricted rotations rγ,β on [0, β). In particular, any

other infinite-order element of Rβ has the same centralizer as rα,β. Thus, rα,β satisfies

conditions (1) and (2).

To verify condition (3) for f = rα,β, take h ∈ C(rα,β) and write h = hIrγ,β, where

hI ∈ EI and rγ,β ∈ Rβ. Assume that C(h) satisfies the hypotheses of condition (3). Note

that

C(h) ∩ C(rα,β) = CEI (hI)×Rβ.

By Proposition 6.9, the index [EI : CEI (hI)] is infinite unless hI is the identity. However,

[C(rα,β) : C(h) ∩ C(rα,β)] = [EI : CEI (hI)]

is finite by assumption, so h = rγ,β. It has also been assumed that

C(h) % C(h) ∩ C(rα,β) = C(rα,β),

and this is possible only if the rotation h = rγ,β is rational.

Finally, observe that conditions (1)-(3) are all preserved by conjugation in E . Conse-

quently, they hold for any conjugate of rα,β.

Conversely, suppose that f is an infinite-order interval exchange satisfying conditions

(1)-(3). It will first be shown that Fix(f) is nonempty and Per(f) = Fix(f). Since C(f)

contains a subgroup isomorphic to E , Per(f) is nonempty by Corollary 6.8. The map f
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cannot have periodic points of arbitrarily large period, so Fix(fk) = Per(fk) = Per(f)

for some power k. Let A denote Per(f). Since fk fixes A, EA < C(fk). By condition

(2), C(fk) = C(f), and it follows that f fixes all points in A. Similarly, all infinite-order

g ∈ H must fix the set A, and consequently all maps in H must fix A. In other words, H

is contained in EB, where B = T1 \ A.

Next, it will be shown that f has only a single minimal component. As in the proof

of Lemma 7.1, suppose f has minimal components Ji, 1 ≤ i ≤ k, for some k ≥ 2. Let h

be the map which equals f on the component J1 and fixes all other points. Then h has

infinite order and commutes with f . In terms of their normal forms,

C(f) =

((
k∏
i=1

Ci

)
o F

)
× EA,

C(h) =C1 × EA∪J2∪···∪Jk ,

where Ci = C(f) ∩ EJi and F is a finite group which permutes the Ji. In particular,

C(h) ∩ C(f) contains (
∏
Ci) × EA, which has finite index in C(f). In addition, C(h)

strictly contains C(h)∩C(f) since h has a larger fixed point set than f . Thus, condition

(3) implies that h must have finite order, which is a contradiction. A similar argument

may be applied to any infinite-order g ∈ H; consequently, all such maps have a single

minimal component, namely B.

Consider the natural isomorphism

E → EB.
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Let f̃ denote the preimage of f ∈ EB, and let H̃ denote the preimage of H. Then all

infinite-order g̃ ∈ H̃ are minimal, and

C(g̃) = C(f̃) > H̃,

which implies that all infinite-order g̃ have bounded discontinuity growth. As in the proof

of Lemma 7.1, it follows that all g̃ ∈ H̃ are simultaneously conjugate to irrational rota-

tions. Back in the group EB, this implies that H is conjugate to a group of restricted

rotations. �

Corollary 7.4. For any Ψ ∈ Aut(E) and any f which is conjugate to a restricted

rotation, Ψ(f) is also conjugate to a restricted rotation.

Proof. By Lemma 7.3, all maps conjugate to restricted rotations are characterized by

conditions (1)-(3). As these conditions are all purely group theoretic, they are preserved

by the automorphism Ψ. �

Proposition 7.5. For any Ψ ∈ Aut(E) and any nonempty A ∈ P, there is a (neces-

sarily unique) B ∈ P such that Ψ(EA) = EB.

Proof. It suffices to consider A ∈ P to be a proper subset of T1. Let g ∈ E be a map

with support equal to T1 \ A which is conjugate to an infinite-order restricted rotation.

By Corollary 7.4, Ψ(g) is also conjugate to a restricted rotation. Let B = Fix(Ψ(g)).

It will first be shown that Ψ(EA) ⊆ EB. By Lemma 2.7, EA is generated by the infinite-

order restricted rotations with support contained in A. Two infinite-order restricted
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rotations g and h commute if and only if one of the following holds:

(a) their supports coincide and they are simultaneously conjugate to

elements in some Rβ; or

(b) their supports are disjoint.

These two conditions can be detected group-theoretically: condition (a) implies that

C(g) = C(h), while condition (b) implies C(g) 6= C(h). In particular, each condition is

preserved by any automorphism of E .

Any restricted rotation with support contained in A commutes with g and has support

disjoint from that of g. Consequently, all restricted rotations in EA must map under Ψ to

restricted rotations with support in B = Fix(Ψ(g)). These maps generate Ψ(EA), and it

follows that Ψ(EA) ⊆ EB.

Similary, under Ψ−1 all restricted rotations with support in B are mapped to restricted

rotations which commute with g and have support disjoint from that of g. Therefore,

Ψ−1(EB) ⊆ EA, and it follows that Ψ(EA) = EB. �.

7.1. Definition and properties of Ψ̃

Given an automorphism Ψ ∈ Aut(E), Proposition 7.5 implies that Ψ induces a trans-

formation

Ψ̃ : P → P ,

defined by the relation

Ψ(EA) = EeΨ(A), A ∈ P .

In particular, Ψ̃(T1) = T1 and Ψ̃(∅) = ∅, for all Ψ ∈ Aut(E). An interval exchange f ∈ E

also induces a transformation f̃ : P → P , defined by f̃(A) = f(A).
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Proposition 7.6. For all Ψ ∈ Aut(E), the transformation Ψ̃ : P → P has the follow-

ing properties:

(1) Ψ̃ preserves complements: Ψ̃(T1 \ A) = T1 \ Ψ̃(A), ∀A ∈ P.

(2) Ψ̃ preserves inclusion: if A ⊆ B, then Ψ̃(A) ⊆ Ψ̃(B).

(3) Ψ̃ preserves finite unions: Ψ̃(A ∪B) = Ψ̃(A) ∪ Ψ̃(B).

(4) Ψ̃ preserves finite intersections.

(5) For any f ∈ E, Ψ̃(f) = Ψ̃f̃ Ψ̃−1.

(6) The Lebesgue measure µ : P → [0, 1] is Ψ̃-invariant; µ(Ψ̃(A)) = µ(A).

Proof. (1): Suppose A and B are complements in P : they are disjoint and A∪B = T1.

Then the centralizer in E of EA is EB, and vice versa. This same relation will hold for

Ψ(EA) = EeΨ(A) and Ψ(EB) = EeΨ(B), which implies that Ψ̃(A) and Ψ̃(B) are complements.

(2): Observe that

A ⊆ B ⇒ EA ≤ EB ⇒ Ψ(EA) ≤ Ψ(EB)⇒

EeΨ(A) ≤ EeΨ(B) ⇒ Ψ̃(A) ⊆ Ψ̃(B).

(3): The sets A and B are both subsets of A ∪ B, so by (2), Ψ̃(A) ⊆ Ψ̃(A ∪ B) and

Ψ̃(B) ⊆ Ψ̃(A ∪ B). Conversely, suppose that Ψ̃(A ∪ B) * Ψ̃(A) ∪ Ψ̃(B). To derive a

contradiction, let

C = Ψ̃(A ∪B) \
(

Ψ̃(A) ∪ Ψ̃(B)
)
.
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Then C ∈ P is nonempty, and there exists a non-identity interval exchange

f ∈ EC ≤ EeΨ(A∪B). The map f centralizes both EeΨ(A) and EeΨ(B), so the map Ψ−1(f)

centralizes EA and EB. This implies Ψ−1(f) has support disjoint from both A and B.

However, this is impossible since Ψ−1(f) is in EA∪B. Thus, Ψ̃(A ∪B) ⊆ Ψ̃(A) ∪ Ψ̃(B).

(4): This follows from (1) and (3) by DeMorgan’s Law.

(5): Recall Φf ∈ Aut(E) denotes conjugation by f−1. In particular, if f maps the set

A to the set B (f̃(A) = B), then Φf induces an isomorphism from EA to EB.

For any g ∈ E ,

ΨΦfΨ
−1(g) = Ψ(f(Ψ−1g)f−1) = Ψ(f) ◦ g ◦Ψ(f)−1.

Thus ΨΦfΨ
−1 = Φ(Ψf); i.e., the following diagram commutes:

EA
Φf−−−→ EB

Ψ

y yΨ

EeΨ(A) −−−→Φ(Ψf)

EeΨ(B)

Consequently, Ψ̃(f) = Ψ̃f̃ Ψ̃−1.

(6): It will first be shown that if A,B ∈ P are disjoint and µ(A) = µ(B), then Ψ̃(A)

are Ψ̃(B) are disjoint and µ(Ψ̃(A)) = µ(Ψ̃(B)). For disjoint A and B with equal measure,

let f ∈ E be any interval exchange such that f(A) = B. Then f is a conjugacy between
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the subgroups EA and EB :

EB = fEAf−1.

Conversely, suppose A and B are disjoint sets in P such that there exists some map

f which satisfies EB = fEAf−1. Then it can be shown that f(A) = B. For any x ∈ A,

pick some g ∈ EA such that y = g(x) 6= x. Let h = fgf−1. Since f conjugates g to h, f

maps the non-fixed points of g to the non-fixed points of h. Since h ∈ EB, it follows that

f(x) ∈ B. Thus f(A) ⊆ B, and symmetrically f−1(B) ⊆ A, which implies f(A) = B. In

particular, when A and B are disjoint with EA and EB conjugate, it must be the case that

µ(A) = µ(B).

Consider the action of Ψ̃ on disjoint A and B with µ(A) = µ(B). Let f be a map

which induces a conjugacy EB = fEAf−1. By (5), Ψ̃f maps Ψ̃(A) to Ψ̃(B). As a result,

µ(Ψ̃(A)) = µ(Ψ̃(B)), which proves the initial claim.

To prove that µ(Ψ̃(A)) = µ(A) for any A ∈ P , assume first that µ(A) is rational.

Since any Ψ̃ preserves finite disjoint unions by (3) and (4), it may be further assumed

that µ(A) = 1/n. Lebesgue measure is invariant under any conjugacy Φf , so it finally

suffices to consider the case A = [0, 1/n). Each of the intervals

Ai =

[
i− 1

n
,
i

n

)
, 2 ≤ i ≤ n,

has the same measure as A = A1 and is disjoint from it. Thus

µ(Ψ̃(Ai)) = µ(Ψ̃(A)), 2 ≤ i ≤ n.
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Since the sets Ψ̃(Ai) are also pairwise disjoint and cover T1, it follows that µ(Ψ̃(Ai)) = 1/n.

Consequently, Ψ̃ preserves the measure of sets with rational measure. In general, the set

A may be approximated by an increasing family of sets in P having rational measure. �

7.2. Proof of Theorem 1.6

Let Ψ be an arbitrary automorphism of E . It will be seen that Ψ ∈ 〈Inn(E),ΨT 〉 by

showing that the identity may be reached by successively replacing Ψ with a composition

of Ψ and some automorphism in 〈Inn(E),ΨT 〉.

To begin, by Corollary 7.2, Ψ maps the rotation group R to a conjugate Φg(R), for

some g ∈ E . Replacing Ψ by Φ−1
g ◦ Ψ, it may now be assumed that R is invariant under

Ψ:

Ψ(R) = R.

Let ΨR : R/Z → R/Z denote the restriction Ψ|R, where rα 7→ α is the natural

identification of R and R/Z.

Lemma 7.7. ΨR is continuous (w.r.t. the standard topology on R/Z).

Proof. It suffices to show that ΨR is continuous at 0 ∈ R/Z. Suppose that αn → 0.

Then for any nonempty A ∈ P , there exists a constant MA > 0 such that

A ∩ rαn(A) 6= ∅, ∀n ≥MA.

Conversely, this condition characterizes sequences in R/Z which converge to 0. In

particular, given some sequence αn, suppose that there exists a constant MA as above for
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every nonempty A ∈ P . For any ε > 0, let Aε = [0, ε). Then

Aε ∩ rαn(Aε) 6= ∅, ∀n ≥MAε ,

which implies that |αn| < ε for all n ≥MAε . Thus, αn → 0.

Assuming again that αn → 0, define βn = ΨR(αn), so rβn = Ψ(rαn). Let B ∈ P be

nonempty, and let A = Ψ̃−1(B). Then by Proposition 7.6, part (5),

rβn(B) = Ψ̃(rαn(A)).

Consequently, A ∩ rαn(A) 6= ∅ if and only if B ∩ rβn(B) 6= ∅. Therefore, if αn → 0, then

there exists MB (namely, the MA associated with αn), such that

B ∪ rβn(B) 6= ∅, ∀n ≥MB.

From the above characterization of sequences converging to zero, it follows that ΨR is

continuous at zero. �

The only continuous automorphisms of R/Z are the identity and x 7→ −x. Note that

the restriction to R of the orientation reversing automorphism ΨT is the second of these

automorphisms. Subsequently, after replacing Ψ by Ψ ◦ ΨT if ΨR is not the identity, it

may be assumed that ΨR = id.

Lemma 7.8. If Ψ ∈ Aut(E) fixes the rotation group R, then Ψ̃ maps any interval in

P to another interval.
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Proof. Since any rotation will preserve intervals in P , it suffices to consider Ia = [0, a).

Then there exists some ε > 0, such that for any α ∈ (−ε, ε),

µ(Ia ∩ rα(Ia)) = a− |α|.

Therefore, since Ψ̃ ◦ r̃α = Ψ̃rα ◦ Ψ̃ = r̃α ◦ Ψ̃,

µ(Ψ̃(Ia) ∩ rα(Ψ̃(Ia))) = a− |α|,

for α ∈ (−ε, ε).

Suppose that Ψ̃(Ia) has k ≥ 1 components:

Ψ̃(Ia) = A1 ∪ · · · ∪ Ak,

where the Ai are pairwise disjoint intervals. Since the Ai are disjoint, there is some δ > 0

such that

rβ(Ai) ∩ Aj = ∅, for all |β| < δ and i 6= j.

Consequently, if |β| < δ, then

µ(Ψ̃(Ia) ∩ rβ(Ψ̃(Ia))) = a− k|β|.

It follows that k = 1; i.e., Ψ̃(Ia) must be an interval. �

Continue with the assumption that ΨR is the identity. By the previous lemma, Ψ̃

maps the interval Ia = [0, a) to some translate of Ia. After composing Ψ with a suitable
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Φrβ , it may be assumed that ΨR is the identity and Ψ̃(Ia) = Ia. Since

Ψ̃ ◦ r̃β = r̃β ◦ Ψ̃,

for all β ∈ R/Z, it follows that Ψ̃ fixes any translate r̃β(Ia) = [β, a + β). Thus, for any

β, 0 < β < a, Ψ̃ fixes the intersection

Ia ∩ rβ(Ia) = [β, a).

Thus Ψ̃ fixes all translates of arbitrarily small intervals, which implies that Ψ̃ is the

identity on P . Consequently, for any f ∈ E , Ψ(f) acts on the sets in P identically to the

way f does, which implies Ψ is the identity. It has been shown that any Ψ ∈ Aut(E) is

in the group 〈Inn(E),ΨT 〉, and the proof of Theorem 1.6 is complete. �
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