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ABSTRACT

Economics of Service Operations: Information, Simplified Controls and Omnichannel
Services

Abhishek Ghosh

In this dissertation we consider how simple operational levers affect a firm’s revenue and

consumer surplus. In particular, we focus on information disclosure as an useful control

for omnichannel services.

In the first chapter we consider a revenue-maximizing service firm that caters to price

and delay-sensitive customers. The firm offers a menu of service grades where each grade

is associated with a posted price and expected delay. An optimal menu size could be

as large as the number of customer classes. However, in practice, we do observe that

firms offer a handful number of service grades. We study the revenue loss when the

firm offers a simplified menu with a few service grades. Our analysis utilizes a large

system approximations under the assumption that the firm has ample capacity to serve

the entire market. We set up an optimization model and make use of Taylor series and

asymptotic arguments to obtain the revenue loss. We show that, under a simplified menu,

the firm could lose a significant fraction of its revenue in the worst case scenario. This

happens when there is significant heterogeneity between the customer classes in terms of
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their delay sensitivities and their valuation for service. In contrast, noting that customer

heterogeneity may typically be less extreme, we show that the firm can in fact provide a

simplified menu while providing a guarantee on worst case revenue that can be obtained

as a fraction of the optimal. We characterize the worst case optimal menu and provide

asymptotic bounds to the worst case revenue loss as the number of customer types grow

without bound. Characterization of the firm’s worst case revenue loss in terms of a

measure of heterogeneity can be used to guide decision making when offering a simplified

menu of service grades.

In the second chapter we examine the role of information disclosure in omnichannel

services. With evolving mobile technologies, an increasing number of firms are running

multiple channels to serve customers. Due to the novelty of these systems, questions

related to the design of such omnichannel systems and their implications for the firm and

customers remain open. In particular, the question of whether or not a firm should disclose

queue information to its customers in an omnichannel setting has not been extensively

addressed in prior literature. Using a queuing game-theoretic framework, we address

some of these open questions of design of omnichannel service system, especially focusing

on the issue of congestion information disclosure and its impact on customer channel

choice behavior. We benchmark the omnichannel model against a conventional single

channel model, and compare these settings in terms of the firm’s throughput and average

consumer surplus. We find that from the firm’s perspective there is no silver bullet; no

channel arrangement delivers the highest throughput for all system parameters. From the

customers’ perspective, we once again find that neither the omnichannel nor the single

channel system dominates the other in terms of the average consumer surplus for both type
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of customers combined. The overall consumer surplus depends on the relative proportion

of app users and non-app users in the system. Indeed, it is possible that both segments

are worse-off when online ordering is offered.

In the third chapter, we extend the omnichannel setting to a competitive environment.

Increasingly many firms in the quick service industry are offering digital ordering apps to

customers. While the option of app-ordering is attractive to customers, still, not all firms

offer an app. Even if we ignore the upfront cost of implementation of an app, it is not

clear whether offering an app necessarily leads to an increase in revenue for the firm in

a competitive setting. A proper evaluation needs to take into consideration the relative

capacity of the firms and the sizes of their customer bases. To this end, we examine what

is the best-response for a firm when faced with a competitor who offers an app. We find

that it might not always be in the firm’s best interest to match its competitor in offering

an app.
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Preface

The goal of this dissertation is to consider various simplified operational controls and

how they affect the economics of service systems. A primary focus of this study is to

consider information disclosure in terms of what information about the service system

is available to customers and in terms of the firm’s lack of private information about

customers. We examine how information disclosure plays a role as an operational lever

for the firm, and how it plays a role in determining the type of simplified control that is

available to the firm.

This dissertation consists of three chapters. The first considers a revenue-maximizing

firm that cannot observe private information about customers. As a result, the firm offers

an incentive-compatible menu of price and delay-differentiated service grades. Customers

then self-select into their preferred service grade. In order to limit the complexity of the

offered menu, the firm restricts the number of service grades it offers. We study the effect

of offering a simplified menu of service grades on the firm’s revenue.

The second chapter deals with omnichannel services where customers can order re-

motely using a digital app. In particular, this chapter examines whether or not an om-

nichannel firm should disclose congestion information about the service system to cus-

tomers via the app, and further examines how this decision affects customers’ ordering
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strategy. In this case, the decision of whether or not to disclose congestion informa-

tion acts as an operational lever for the firm. We evaluate how the firm’s revenue, and

consumer surplus is affected by this control.

Finally, the third chapter considers competing service providers, with the goal of

examining whether offering an app always leads to an increase in the firm’s revenue when

its competitor firm offers an app. An app reveals congestion information to customers, and

also offers customers the ability to order whenever and from wherever they want. Thus,

in a competitive setting, a firm’s decision of whether or not to offer an app potentially

affects how customers choose from which firm to seek service. We examine the impact

of this decision of whether or not to offer an app on the firm’s revenue when it faces a

competitor who offers an app.
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CHAPTER 1

Value of Simple Menus with Price and Delay Sensitive

Customers (Joint work with Achal Bassamboo and Ramandeep

Randhawa)

1.1. Introduction

Motivation and Research Question. Firms serving price and time-sensitive cus-

tomers often provide a menu of differentiated service grades with posted prices and lead-

times (or delays) where the impatient customers are charged a premium in return for

expedited service. For example, firms like Amazon have multiple delivery options where

patient customers can opt for a free regular delivery whereas impatient customers can pay

a delivery fee for same-day or expedited delivery. Parcel delivery services like UPS offer

expedited overnight shipping for a higher price as compared to regular ground shipping.

Most theme park operators provide their customers with the option of paying for a pass

(for example, Universal offers Express Pass and Six Flags offers THE FLASH Pass) which

essentially acts as priority access and allows its customers to skip the line and reduce the

time they spend waiting. We can refer to numerous other similar examples in the areas of

communication, transportation and government services, where the customers are simul-

taneously differentiated based on their willingness to pay for service and their sensitivity

to delays experienced in service. Revenue maximizing firms use this differential pricing

as a tool to extract higher revenue from the less patient customer base.
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Customers are heterogeneous and have private information about their own prefer-

ences relating to their willingness to pay for service and their sensitivity to delays. Some

customers might be willing to pay higher than the others for instant service (valuation)

and some customers might value faster service more than the others (delay sensitivity).

Throughout the paper, we use customer class to refer to customer “type” which is char-

acterized by the valuation that the customer has for the service, and the delay sensitivity

of the customer. Multiple customer classes could potentially be served by a single service

grade with a posted price and lead-time. By offering a menu of price and delay differ-

entiated service grades, the firm lets individual customers self-select into their preferred

service grade. Customers are self-interested in their choice of service grades. The firm

does not possess information about the individual customer’s preferences. As a result, a

mechanism needs to be designed so that the customers choose the grade of service that is

designed for them. In this sense, the mechanism/menu must be incentive compatible.

Since the firm caters to a heterogeneous customer base, it is expected that a revenue

maximizing menu should offer a large number of service grades which increases with the

number of heterogeneous customer classes. However in practice, we see that in order to

limit the complexity of the offered menu, the number of service grades offered by these

firms is typically limited. By offering a menu with limited number of service grades, the

firm could potentially leave money on the table. In our paper, we study the following

research question: How much revenue can the firm lose by offering a simplified menu that

has limited number of service grades as compared with the revenue maximizing optimal

menu?
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Methodology. Our analysis utilizes a large system approximation where we assume

that the firm has ample capacity to serve the entire market. This approximation implies

that the size of each customer class proportionately scales with firm’s capacity while

maintaining the stability of the system. In this setting of ample capacity, we note that

any work conserving policy would result in zero lead times. As a result, it would be

socially optimal and incentive compatible to serve everyone with a price and lead-time

of zero. However, revenue maximization would entail artificially inflating the lead times

to differentiate across customer classes. This would dis-incentivize the impatient classes

from joining the cheaper and slower service grades. Therefore, the delays in our framework

do not arise from the congestion in the system due to queuing effects, rather they arise

solely due to induced server idleness necessary for satisfying the incentive compatibility

constraints. Our ample capacity assumptions allows us to focus on these delays without

being mired with tackling the queueing dynamics.

In order to answer our research question, we study the firm’s revenue under a menu

with limited number of service grades possibly fewer than the number of customer classes,

as a fraction of the maximum possible revenue under the optimal menu. Using this study,

we capture the performance of the firm in terms of the revenue relative to the optimal

revenue. Thus, a higher value of this ratio corresponds to a lower optimality gap and a

lower value indicates significant revenue loss and sub-optimal performance by the firm.

With this ratio as the objective function, we measure the performance of a simplified menu

using a worst case analysis by solving a minimization problem in terms of the valuation

and delay sensitivities of the customer classes. The solution of this optimization problem

corresponds to the maximum possible revenue loss by the firm and hence we refer to it as
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the worst case revenue ratio (WCRR) and the resulting valuation and delay sensitivities

as the worst case parameters. We derive structural properties for the optimal menu under

the worst case scenario and make use of Taylor series and asymptotic arguments to derive

the solution to this problem.

Contribution and Summary of Results. We show that, in general, the firm could

lose a significant fraction of its revenue by offering a limited menu of service grades in the

worst case scenario. That is, we show that the WCRR converges to zero as the number

of customer classes grows without bound. We further investigate the parameter regime in

which these significant losses to revenue are realized and find that this happens in settings

in which the heterogeneity in delay sensitivity and valuations is significant even between

any two customer classes.

Noting that customer heterogeneity may typically be less extreme, we analyze the

case of bounded heterogeneity between customer classes. We find that there is a big

difference between the cases of unlimited and limited heterogeneity with respect to how

customer classes are segmented in the optimal menu under the worst case scenario, that

we refer to as the optimal worst case menu. In the unlimited heterogeneity setting, the

optimal worst case menu separates out each customer class customer class is differentiated

from each other. In contrast, in the limited heterogeneity setting, some customer classes

may be pooled. Thus, in the latter case, the number of candidate segmentations of

customer classes grows exponentially with the number of customer classes. We show that

this complexity can be reduced so that one only needs to consider a strict subset of the

possibilities that is quadratic in the number of customer classes. We characterize the

worst case optimal menu, and use it to show that, under limited heterogeneity, the firm
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can in fact provide a simplified menu while providing a guarantee on worst-case revenue

that can be obtained as a fraction of the optimal. Mathematically, we prove that the

WCRR for the firm can be bounded away from zero even if the number of classes grows

without bound. Further, we characterize the firm’s worst case revenue loss in terms of

a measure of heterogeneity, which can be used to guide decision making when offering a

simplified menu of service grades.

1.2. Literature Review

Our paper contributes to the vast literature on pricing and scheduling in queuing sys-

tems with strategic customers. The work on strategic customers in queues dates back

to the seminal paper by Naor (1969). Mendelson and Whang (1990) was the first pa-

per to look at the pricing problem from a social welfare maximization perspective when

serving multiple customers types with type dependent delay sensitivities and linear de-

lay cost. Subsequent papers have considered the social welfare maximization problems

(Van Mieghem, 2000; Hsu et al., 2009). It turns out that the pricing mechanism is incen-

tive compatible and the optimal scheduling policy is work-conserving. This same problem

when studied from a revenue maximization perspective becomes fairly complicated.

Afeche (2013) addresses this problem in the revenue maximization setting in presence

of two customer types and shows that externality pricing and delay cost minimization are

no longer optimal in this setting. Moreover, the paper shows that in the optimal solution,

the service provider artificially delays one customer type (“strategic delay”) beyond what

is obtained from the work-conserving policy. Yahalom et al. (2006) extends this problem

to non-linear delay costs and multiple customer types. Partial extensions of this approach
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to more than two customer types in an M/M/1 setting is studied in Katta and Sethuraman

(2005) and Afeche and Pavlin (2016) under additional assumptions on the relationship

between valuations and delay costs.

Doroudi et al. (2013) considers an M/G/1 queue where arriving customers draw val-

uation from a common distribution and have waiting costs that are proportional to their

realized valuations. The bulk of their analysis focuses on offering a continuum of priorities

but they do demonstrate numerically that a coarse priority scheme with a limited number

of priority classes performs very well. They explicitly compute the optimal menu of prices

in closed form for some specific customer valuation distributions. Katta and Sethuraman

(2005) considers a model with multiple, finite customer types with each customer type

having a constant type-dependent valuation and delay sensitivity coefficient. Under as-

sumptions on valuation and delay coefficients, the authors characterize the structure of

the optimal pricing and scheduling policy. Furthermore, similar to our setting, they con-

sider the case where the service provider is restricted to use a limited number of service

levels. Although, these papers focus on characterizing the optimal policy, due to the com-

plex nature of the problem, there is a lack of insight into the value of offering simplified

menus. Nazerzadeh and Randhawa (2018) use an asymptotic analysis to show that, when

delay sensitivities are linear or sub-linear in the customer valuation, a very coarse priority

scheme is sufficient; in a large system, two levels of priority is asymptotically optimal and

capture nearly all of the possible system value.

Our work focuses on the revenue optimization problem and best relates with Naz-

erzadeh and Randhawa (2018), Afeche and Pavlin (2016), Doroudi et al. (2013) and

Katta and Sethuraman (2005). In relation to these papers, our paper is similar in the
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sense that, we seek to understand the value of offering a simplified menu. While most

of these papers focus on the exact characterization of the optimal policy, we take a large

system asymptotic approach similar to Nazerzadeh and Randhawa (2018) and Maglaras

et al. (2013). To study our problem, we assume that the firm has ample capacity, which

gets rid of queuing related congestion. Consequently, we do not focus on the scheduling

problem. We perform a worst-case analysis of the optimality gap in the firm’s revenue

under limited offering. We consider discrete customer types, similar to Katta and Sethu-

raman (2005), and present the asymptotic lower bound on the firm’s revenue loss as the

number of customer types grow without bound. We make use of Taylor series arguments

for our analysis, similar to Nazerzadeh and Randhawa (2018) and Maglaras and Zeevi

(2003).

In our paper, we study the worst case scenario for the firm. As an outcome of this worst

case analysis, we find that the delay sensitivities would be increasing in valuations, i.e.,

higher valuation customers will be more delay sensitive. In contrast, previously mentioned

papers study the value of offering a simplified menu under the assumption of a monotone

relationship between customer valuations and the delay cost. For e.g., Afeche and Pavlin

(2016) considers the case in which the customer delay sensitivity coefficient is affine in

valuation whereas both Katta and Sethuraman (2005) and Nazerzadeh and Randhawa

(2018) assume that delay sensitivities are sublinear in valuations. Furthermore, depending

on the waiting cost structure, the revenue maximizer may pool some types together,

impose a common price and offer the same expected wait, see Katta and Sethuraman

(2005). Additionally, a revenue maximizer may use a complex service discipline that may

pool customers or exclude some or impose strategic delay, see Afeche and Pavlin (2016).
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Similarly, we find in our worst-case analysis, that the optimal menu might pool multiple

classes into a single service grade or exclude some of the customer classes or offer price-

delay differentiation through strategic delay. Finally, we focus on static price-delay menus

in contrast to dynamic price-lead time quotations which is studied in Plambeck (2004),

Çelik and Maglaras (2008) and Ata and Olsen (2013). Our focus in this paper is on posted

pricing; one could consider other price-service mechanism such as priority auctions, see

Afèche and Mendelson (2004).

Finally, there are papers which consider similar setting but address different research

questions. Gurvich et al. (2018) compares how priority scheme is implemented by a rev-

enue maximizer and a social planner, and addresses the question of how priority schemes

affect consumer surplus. Maglaras and Zeevi (2003) studies the pricing and capacity

sizing problem for systems with shared resources under revenue and social optimization

objectives. Maglaras et al. (2013) considers this problem in a large system asymptotic

regime and uses these asymptotic finding to provide interesting contrasts between social

welfare and revenue optimization.

1.3. Model

We model price and time sensitive customers who are heterogeneous in their valuations

for service, and delay sensitivities. We use N to denote the total number of customer

classes. All customers of class i have valuation (willingness-to-pay) vi for service and incur

a linear delay cost of hi per unit time spent in the queue waiting for service to commence.

We use λi to denote the arrival rate for customer class i. Without loss of generality, we

index customer classes in decreasing order of their valuations, i.e. v1 > v2 > · · · > vN .
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Thus, (vi, hi, λi) ∈ R3
+ fully characterizes class i of customers. We use v, h and λ to denote

the valuation, delay sensitivity and arrival rate vectors (v1, v2, . . . , vN), (h1, h2, . . . , hN)

and (λ1, λ2, . . . , λN) respectively. We use λl to denote
∑l

m=1 λm for brevity, throughout

the rest of this paper.

Upon arrival to the service system, customers are faced with a menu of K service

grades that are differentiated in terms of price and delay offered by a monopolistic firm.

The parameters for the kth service grade are denoted by (pk, dk) ∈ R2
+ where pk is the

price and dk is the delay experienced, for all k = 1, 2, . . . , K. A menu with K service

grades is denoted by {(pk, dk) | 1 ≤ k ≤ K}. Without loss of generality, we index service

grades in decreasing order of the prices, i.e. p1 > p2 > · · · > pK . We model the utility of

a customer of class i who pays price p for service and experiences a delay d, as a linear

function of her valuation net of price paid and the delay cost incurred corresponding to

the total time spent by her in the queue, which is given by vi−p−hid. Customers decide

whether or not to join service, and if they do, which service grade to choose so that their

individual utility is maximized. Thus, for a given customer of class i ∈ {1, 2, . . . , N},

defining

(1.1) j(i) = arg max
k=1,2,...,K

(vi − pk − hidk),

the customer joins service grade j(i) if vi − pj(i) − hidj(i) ≥ 0, and chooses not to join

service if, vi − pj(i) − hidj(i) < 0. If customers are indifferent between joining any two

service grades, we assume that they always join the service grade with lower delay. Based
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on the customer’s choice of service, the effective arrival rate for service grade k is,

φk(pk, dk) =
∑
i∈Ik

λi

where Ik is the set of all customer classes joining service grade k.

The firm’s problem is to offer a menu of K service grades such that it’s revenue is

maximized. We make the following relaxation regarding the firm’s capacity:

Assumption 1. We assume that the firm can offer any delay for all classes, dk ≥ 0

for all k ∈ {1, 2, . . . , K}.

Assumption 1 provides analytical tractability. Further, Assumption 1 is a good ap-

proximation for large scale queuing systems (see §4.1 in Maglaras et al., 2013) where the

size of each customer class proportionately scales with capacity keeping the system stable

by maintaining an overall constant throughput of strictly less than one, holding all other

parameters of the problem fixed. In this way, the customer population grows large, but

the characteristics and behavior of individual customers remain the same. Therefore, any

non-zero delay offered by the firm in our setting can be viewed as “strategic delay” (see

Afeche, 2013) which implies that the firm may strategically induce server idleness in order

to satisfy incentive compatibility. In particular, strategic delay allows the firm to offer

differentiated service grades and charge higher valuation customers a premium for service

grades with lower delays.
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The firm’s optimization problem for the best simplified menu with K grades of service

is given by,

(1.2)

πKN (v, h) = sup
pk,dk

K∑
k=1

φk(pk, dk)pk

s.t. pk ≥ 0, dk ≥ 0 for all k = 1, 2, . . . , K.

In contrast, for the optimal menu that maximizes the revenue, depending on the valuation

and the delay sensitivities of the customers, the firm may need to offer up to N service

grades. We use π∗N(v, h) to denote the revenue of this optimal menu.

Our goal is to study the loss of revenue for a firm offering K service grades, where K ≤ N ,

in comparison to the revenue for the optimal menu under the worst case valuation and

the delay sensitivities. To this end, we are interested in solving the following optimization

problem which represents our worst case analysis:

(1.3) RK
N = inf

v>0,h>0

{
πKN
π∗N

}
.

We refer to RK
N as the worst case revenue ratio (WCRR). We refer to the optimal menu,

which generates a revenue of π∗N under the optimal solution to (1.3), as the worst case

optimal menu (WCOM). Thus, RK
N is the fraction of the optimal revenue, π∗N , that the

firm generates by offering a simplified menu with K service grades, under the worst case

valuations and delay sensitivities. A higher value of RK
N would indicate that a simplified

menu is valuable whereas a lower value would indicate that the firm may lose a lot of

revenue by offering a simplified menu.
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1.4. Analysis: Fundamentals

In this section, we define a set of menus of service grades, and their properties, which

will be essential for the rest of our analysis. In particular, we use these definitions to

characterize the worst case optimal menu, WCOM (see the definition after optimization

problem (1.3)), for our worst case analysis for a given K. We begin by defining the

following customer segmentation.

Definition 1. (Customer Segmentation σ) We say a menu of service grades,

{(pl, dl) | 1 ≤ l ≤ L}, induces a customer segmentation σ(i1, i2, . . . , iL), where 0 = i0 <

i1 < · · · < iL ≤ N , if customer classes il−1 + 1, il−1 + 2, . . . , il join service grade l for all

l = 1, 2, . . . , L, and customer classes iL + 1, iL + 2, . . . , N do not join service, where L

denotes the number of service grades.

Customer segmentation σ implies that blocks of consecutive customer classes join con-

secutive service grades. Next, we define a set of menus that induces customer segmentation

σ.

Definition 2. (σ−Inducing Menus) We define ML as the set of all menus that

offers L service grades, {(pl, dl)|l = 1, 2, . . . , L}, such that these menus induce some

customer segmentation σ(i1, i2, . . . , iL), and the utility of customer class il resulting from

joining service grade (pl, dl) is zero, i.e., vil − pl − hildl = 0 for all l = 1, 2, . . . , L. We

define M = ∪NL=1ML.

Now that we have defined customer segmentation σ and a set of menus that induces σ,

we present the following lemma, which uses these definitions to establish the characteristics

of the WCOM.
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Lemma 1. The optimal menu, WCOM, in the worst case analysis as defined in (1.3),

belongs to set M, when the firm offers a single service grade, i.e. K = 1.

The prices and delays offered on revenue-maximizing menus in set M are characterized

by the proposition below. In addition, we present a condition, which involves the delay

sensitivities and the arrival rates of the customer classes. This condition is necessary in

order for the menus of set M to be able to delay-differentiate customer classes.

Proposition 1. Consider two service grades (pj, dj) and (pk, dk) on a revenue - max-

imizing menu in set M, where j < k, and for corresponding customer classes ij and ik

the following holds:

(i) The delay sensitivities satisfy the relation
hij
hik

>
λik
λij

where λk =
∑k

i=1 λi.

(ii) The prices satisfy pk = vik − hikdk and the delays satisfy

dk =


0 k = 1,

vik−1
−vik

hik−1
−hik

k > 1.

The benefit of delay differentiating any two customer classes comes from the fact that

the customer class with higher valuation is charged a higher price for a faster service.

Simultaneously the lower valuation customer class is charged a lower price for a service

that is sufficiently “degraded,” by offering more delay, to disincentivize the higher valu-

ation customer class from joining it. The offered delay is smaller if these two customer

classes are relatively more delay sensitive to one another. On the other hand, as the

customer classes become less delay sensitive relative to one another, the offered delay

that is required to differentiate them becomes larger. Thus, the revenue coming from the
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higher priced service grade should compensate for the reduction in revenue coming from

the lower priced service grade in order for delay-differentiation to be beneficial to the firm.

Proposition 1(i) highlights this trade-off and says that if customer classes ij and ik are

delay-differentiated, then it implies that these two customer classes are adequately delay

sensitive relative to one another. This would ensure that the resultant price reduction for

the slower service grade, by offering higher delay, does not outweigh the benefit of offering

delay differentiation. This result plays an important role in determining the structure of

the solution to our worst case analysis, especially in §1.7, where we analyze the case with

limited heterogeneity.

In §3.1 we present the revenue-maximizing menu that is optimal for the firm to offer,

when there are two customer classes. We discuss how this menu changes as the valuation

and delay sensitivities of the customer classes change. In addition, we provide the worst

case analysis for the firm’s revenue when it offers a single service grade in the presence

of two customer classes. As the number of classes grow beyond two, characterizing the

revenue-maximizing menu becomes cumbersome, and hence in §3.2, we analyze the WCRR

when the firm faces more than two customer classes. We show that, the worst case

is realized as the consecutive customer classes become infinitely more delay sensitive

and have infinitely more valuation. Finally, in §3.3 we formalize the idea of limited

heterogeneity, which refers to the valuations and delay sensitivities of the customer classes

being bounded, and present the worst case analysis for this case.
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1.5. Analysis: Two Customer Classes (N = 2)

In this section we present the revenue-maximizing menu for the firm in the presence of

two customer classes, i.e. N = 2. In the subsequent section, we use this menu to analyze

(1.3), when the firm offers a single service grade, i.e. K = 1. Afeche (2013) and Maglaras

et al. (2013) provides the optimal price/lead-time menu for two customer classes for a

capacity constrained firm. As a result, some of our results in §3.1.1 would overlap with

theirs.

1.5.1. Properties of Optimal Menu

Consider two customer classes with valuations and delay sensitivities (v1, h1) and (v2, h2)

respectively. The optimal menu could offer either one or two service grades catering to the

two customer classes. We solve for the optimal price-delay menu, {(pk, dk) | 1 ≤ k ≤ 2},

and derive conditions in terms of the customer primitives, under which it is optimal to offer

this menu. Solution to the following optimization problem yields the revenue-maximizing

menu when there are two customer classes:

(1.4)

max
p1,d1,p2,d2

λ1p1 + λ2p2

s.t. v1 − p1 − h1d1 ≥ 0, (IR1)

v2 − p2 − h2d2 ≥ 0, (IR2)

v1 − p1 − h1d1 ≥ v1 − p2 − h1d2, (IC1)

v2 − p2 − h2d2 ≥ v2 − p1 − h2d1, (IC2)

p1 ≥ 0, p2 ≥ 0, d1 ≥ 0, d2 ≥ 0.
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Participation constraints (IR1) and (IR2) ensure that the customer classes get non-

negative utility from joining service. Incentive compatibility constraints (IC1) and (IC2)

ensure that the two classes join their respective service grades. The following lemma

presents the solution to problem (1.4), and hence completely characterizes the revenue-

maximizing menu in terms of the customer primitives:

Lemma 2. If

(
h1

h2

> 1 +
λ2

λ1

)
then it is optimal to offer the following menu:

i) If

(
v1

h1

<
v2

h2

)
then optimal number of service grades, K∗ = 2, and p1 = v1, d1 = 0,

p2 = v2 − h2

(
v1 − v2

h1 − h2

)
, d2 =

v1 − v2

h1 − h2

. Optimal revenue for the firm is λ1v1 + λ2

(
v2 −

h2

(
v1 − v2

h1 − h2

))
.

ii) If

(
v1

h1

≥ v2

h2

)
then K∗ = 1, and p1 = v1, d1 = 0. Optimal revenue for the firm is

λ1v1.

If

(
h1

h2

≤ 1 +
λ2

λ1

)
then it is optimal to offer the following menu:

i) If

(
v1

v2

< 1 +
λ2

λ1

)
then K∗ = 1, and p1 = v2, d1 = 0. Optimal revenue for the firm is

(λ1 + λ2)v2.

ii) If

(
v1

v2

≥ 1 +
λ2

λ1

)
then K∗ = 1, and p1 = v1, d1 = 0. Optimal revenue for the firm is

λ1v1.

We note that, for the revenue-maximizing menu to provide delay differentiated service

grades, it is necessary that the higher valuation customers also have higher delay sensi-

tivity, i.e. if vi > vj then hi > hj. Moreover, for delay differentiation to be optimal, it

is necessary that delay sensitivity per unit valuation for class 1 be greater than that of
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class 2, i.e. h1
v1
> h2

v2
. This ensures that the firm can offer a delay differentiated service

grade to customer class 2 with a non-negative price, p2 = v2 − h2

(
v1−v2
h1−h2

)
, otherwise, if

h1
v1
≤ h2

v2
then offering a single grade becomes optimal (This is same as the price condi-

tion in Proposition 4 and §6.3 of Afeche (2013) for the case with ample capacity). We

observe that there is a positive delay in the second service grade, i.e. d2 > 0, when delay

differentiation is optimal. This is known as strategic delay in the literature. Strategic

delay ensures incentive compatibility of the mechanism, i.e. the higher valuation class 1

joins the service with higher price p1 and lower delay d1, as compared to, the “degraded”

service grade 2, with price p2 < p1 and delay d2 > d1. Furthermore, we note that the

condition
(
h1
h2
≥ 1 + λ2

λ1

)
in Lemma 2, which is necessary for delay-differentiation to be

optimal, can also be obtained by applying Proposition 1. This is same as the segment-size

condition in §6.3 of Afeche (2013).

1.5.2. Worst Case Analysis

Now that we have characterized the properties of the optimal menu, we use it to solve

(1.3), and study the worst case revenue loss associated with offering a simplified menu.

The worst case scenario would be realized when it is optimal for the firm to offer two

service grades and the firm offers a single service grade. To see this, we note that if it

were optimal to offer a single service grade, then the firm would be acting optimally by

offering a single service grade, and hence this couldn’t be the worst case. Thus, we are

interested in the following optimization problem, which solves for the WCRR:

R1
2 = inf

v>0,h>0

{
π1

2

π∗2

}
.
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The service grade offered by the firm would induce one of two possible customer seg-

mentations. Either both customer classes would be pooled into the same service grade

or only the higher valuation customer class 1 would join service. Given the customer

primitives, this leads to two possible revenue-maximizing service grades that the firm

could offer; either (p1 = v1, d1 = 0) or (p2 = v2, d2 = 0). Thus, the firm’s revenue is

π1
2 = max{λ1v1, (λ1 +λ2)v2}. Applying Lemma 2, we note that the optimal menu consists

of the following two service grades,

(p1 = v1, d1 = 0) and

(
p2 = v2 − h2

(
v1 − v2

h1 − h2

)
, d2 =

v1 − v2

h1 − h2

)
.

Thus, the WCRR can be written as,

R1
2 = inf

v>0,h>0

{
max{λ1v1, (λ1 + λ2)v2}

λ1v1 + λ2

(
v2 − h2

(
v1−v2
h1−h2

))}(1.5)

s.t. v1 > v2,(1.6)

h1

h2

>
v1

v2

.(1.7)

Constraint (1.6) reflects our convention of indexing customer classes by decreasing order

of their valuations. Constraint (1.7) is the price condition which ensures that price p2 and

delay d2 are positive. The following lemma presents the solution to problem (1.5).

Lemma 3. The WCRR for a firm offering a single service grade, i.e. K = 1, when

there are two customer classes, i.e. N = 2, and the arrival rates λ1 and λ2 are fixed, is

given by,

R1
2 =

λ1 + λ2

λ1 + 2λ2

.
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The worst case is realized as the ratio of consecutive delay sensitivities grow without

bound, i.e. h1
h2
→ ∞. Moreover, under the optimal solution to (1.5), the valuations

are such that v1
v2

= λ1+λ2
λ1

, i.e. both service grades (v1, 0) and (v2, 0) would yield the

same revenue. In the expression for price, p2 = v2 − h2

(
v1−v2
h1−h2

)
, we can interpret the

term h2

(
v1−v2
h1−h2

)
as the cost of offering delay-differentiation, as it represents the delay cost

associated with offering differentiated service grades. Since, h1
h2
→ ∞, the offered delay

d2 = v1−v2
h1−h2 approaches zero, and thus the cost of offering delay differentiation goes to

zero as well. This implies that the two customer classes become progressively “easier”

to differentiate, and hence the firm becomes progressively worse off by offering a single

service grade. Thus, under the worst case valuations and delay sensitivities, the firm can

guarantee λ1+λ2
λ1+2λ2

fraction of the optimal revenue by offering a single service grade.

1.6. Analysis: Multiple Customer Classes (N > 2)

Characterizing the revenue-maximizing menu, as we have done in §1.5.1, becomes

cumbersome when there are more than two customer classes. Hence, in this section,

we present the worst case analysis for the firm’s revenue when there are more than two

customer classes, i.e. N > 2, and when the firm offers fewer than N service grades. To

this end, we are interested in characterizing the WCRR, RK
N , as defined in (1.3). The

theorem below summarizes the result of our worst case analysis and characterizes the

WCRR.

Theorem 1. (Worst Case Revenue Ratio) The WCRR for a firm, offering a

menu of K service grades when there are N customer classes, is such that, 1
N
≤ RK

N ≤ K
N

.
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In the remainder of this section, we set up optimization problem (1.3) and highlight

certain characteristics of the optimal solution. This will help develop intuition and will

lead into the subsequent sections. we begin with our analysis of (1.3) for K = 1, i.e. when

the firm offers a single service grade. we obtain an exact expression for R1
N . However,

deriving an exact expression for RK
N when K > 1, is cumbersome. Therefore, we use the

structure of the optimal solution for K = 1 and derive an upper bound to (1.3) when

K > 1, i.e. when the firm offers multiple service grades.

Single Service Grade (K = 1). When there are N customer classes and the

firm offers a single service grade, i.e. K = 1, there are N possible revenue-maximizing

service grades that the firm could offer. The service grade denoted by (pk = vk, dk = 0)

would result in customer classes 1, 2, . . . , k being pooled into one service grade and the

remaining classes not joining service, for all k = 1, 2, . . . , N . The optimal menu would

offer N incentive compatible service grades targeting each of the N customer classes.

Applying Lemma 1, we know that the worst case optimal menu belongs to set M. Hence,

we can apply Proposition 1 to characterize the prices and delays offered by the optimal

menu. Thus, the optimal menu would offer N service grades {(pk, dk)|1 ≤ k ≤ K}, where

p1 = v1, d1 = 0, and pk = vk−hk
( vk−1−vk
hk−1−hk

)
and dk = vk−1−vk

hk−1−hk
for all k = 2, 3, . . . , N . Thus,

the WCRR is given by,

(1.8)

R1
N = inf

λ>0,v>0,h>0

{
max1≤k≤N{λkvk}

λ1v1 +
∑N

k=2 λk
(
vk − hk

( vk−1−vk
hk−1−hk

))}

s.t. vk > vk+1,
hk
hk+1

>
vk
vk+1

, for all k = 1, 2, . . . , N − 1.



38

The worst case is realized as the ratio of the consecutive delay sensitivities grow without

bound, i.e. hk
hk+1
→ ∞, for all k = 1, 2, . . . , N − 1. As a result, any two customer classes

could be differentiated by offering infinitesimally small delay. This allows for maximum

possible delay-differentiation as the delay cost, hk
( vk−1−vk
hk−1−hk

)
, goes to zero. Thus, we can

rewrite (1.8) as follows:

(1.9)

R1
N = inf

λ>0,v>0

{
max1≤k≤N{λkvk}∑N

k=1 λkvk

}
s.t. vk > vk+1, for all k = 1, 2, . . . , N − 1.

We solve problem (1.9) exactly, and Theorem 1 establishes this result. Under the optimal

solution to (1.9), the valuations are such that they satisfy λkvk = λk+1vk+1 for all k =

1, 2, . . . , N−1. Using this relationship between the worst case valuations and arrival rates,

we can reformulate (1.9) as an optimization problem over arrival rates only. In particular,

by dividing both the numerator and the denominator in (1.9) by λkvk we get,

(1.10)

R1
N = inf

λ>0

{
1∑N

k=1
λk
λk

}
,

where λk =
k∑
i=1

λi for all k = 1, 2, . . . , N.

Equivalently, we could also express (1.9) as an optimization problem over valuations only.

Thus, minimizing the revenue ratio over valuations is equivalent to minimizing the revenue

ratio over arrival rates. Optimal solution to problem (1.9) is achieved as the ratio of the

consecutive valuations grow without bound, i.e. vk
vk+1
→∞. This implies that λk+1

λk
→∞,

which can be shown to be equivalent to λk+1

λk
→ ∞. Hence, the worst case is realized as
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the valuations for consecutive customer classes get infinitely higher and the arrival rates

get infinitely smaller in such a way that λkvk remains constant for all k = 1, 2, . . . , N .

Multiple Service Grades (K > 1). Now, if the firm offers a menu with more than

one service grade, i.e. K > 1, deriving an exact expression for RK
N would be cumbersome.

Lemma 1 characterizes the worst case optimal menu for K = 1. However, characterizing

the worst case optimal menu and the expression for the revenue associated with this

menu, would not be as straight forward for K > 1, as compared to K = 1. Deriving

an upper bound for RK
N , would be sufficient for us to generate insights and analyze the

WCRR. Since, we are not interested in characterizing the optimal menu for K > 1, we

argue that, in (1.3) if we use revenue expressions πKN and π∗N that correspond to feasible

menus then it would result in an upper bound to RK
N . To see this, we note that, the

correct revenue expressions in (1.3), would result in the least value of the revenue ratio,

resulting in the WCRR. Any other feasible revenue expression in (1.3), can only result

in a higher value of the revenue ratio, since (1.3) is a minimization problem. Hence,

this would result in an upper bound. Thus, we assume that both the optimal menu and

the K-service grade revenue-maximizing menu offered by the firm belong to set M of

σ-inducing menus. The K-service grade revenue-maximizing menu, {(pk, dk)|1 ≤ k ≤ K}

which is given by Proposition 1, is such that p1 = v1, d1 = 0, and pk = vik −hik
( vik−1

−vik
hik−1

−hik

)
and dk =

vik−1
−vik

hik−1
−hik

for all k ∈ {1, 2, . . . , K}. From Definition 1 we know that customer

classes ik−1 + 1, ik−1 + 2, . . . , ik would join service grade (pk, dk) for all k = 1, 2, . . . , K.

Thus, choosing the K service grades is equivalent to choosing the indices i1, i2, . . . , iK , as

per Definition 1. Moreover, the optimal menu would offer N incentive compatible service

grades targeting each of the N customer classes. Thus, the worst case analysis formulation
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for this problem is given by,

(1.11)

R
K

N = inf
λ>0,v>0,h>0

{
max{i1,i2,...,iK}{λi1vi1 +

∑K
k=2(λik − λik−1

)
(
vik − hik

( vik−1
−vik

hik−1
−hik

))
}

λ1v1 +
∑N

k=2 λk
(
vk − hk

( vk−1−vk
hk−1−hk

)) }
,

s.t. vk > vk+1,
hk
hk+1

>
vk
vk+1

, for all k = 1, 2, . . . , N − 1.

Again, since we are deriving an upper bound, we can simply use the solution for problem

(1.9), which would be a feasible solution for (1.11). In particular, we let

λi+1

λi
→∞, vi

vi+1

→∞ and
hi
hi+1

→∞ such that λivi = κ and
vi/vi+1

hi/hi+1

→ 0

where κ is some constant. Using the conditions hi
hi+1
→ ∞ and vi/vi+1

hi/hi+1
→ 0 in (1.11) we

get,

(1.12) R
K

N = inf
λ>0,v>0

{
max{i1,i2,...,iK}{λi1vi1 +

∑K
k=2(λik − λik−1

)vik}∑N
k=1 λkvk

}
.

Additionally, condition λi+1

λi
→∞ along with condition λivi = κ imply

(1.13) R
K

N = inf
λ>0,v>0

{
max{i1,i2,...,iK}{

∑K
k=1 λikvik}∑N

k=1 λkvk

}
=

max{i1,i2,...,iK}{
∑K

k=1 κ}∑N
k=1 κ

=
K

N
.

Theorem 1 implies that the WCRR converges to zero as the number of customer classes

grows without bound. Note that we have,
RK+1
N

RKN
= 1 + 1

K
which implies that in the worst

case scenario, marginal benefit of offering an additional service grade is the highest going

from K = 1 to K = 2 and diminishes as the number of offered service grades, K, increases.

Also, we note that the rate of convergence of RK
N to zero is 1

N
, which implies that the

firm loses a lot of revenue fairly quickly as the number of customer classes increase. This
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happens since the worst case scenario for the firm is realized as the consecutive customer

classes become infinitely more impatient with infinitely higher valuation, which minimizes

the value of offering a simplified menu. Thus, the firm faces customer classes that are

extremely heterogeneous in terms of their valuations, delay sensitivities and arrival rates.

Although customer classes could potentially differ from each other a lot in terms of

their valuations, delay sensitivities and arrival rates, in practice, we expect that cus-

tomer classes have limited heterogeneity. As a result, a natural question arises as to how

the WCRR, would get affected if the valuations, delay sensitivities and the arrival rates

are bounded. We consider this question in the subsequent sections and investigate the

value of offering simplified menus with a limited number of service grades, under limited

heterogeneity.

1.7. Worst Case Analysis Under Limited Heterogeneity: Delay Sensitivity

So far we have established that, the worst case scenario is realized when the firm

faces customer classes that are infinitely more delay sensitive having infinitely higher

valuations relative to one another. As a result, offering a simplified menu becomes less

valuable with increasing number of customer classes and Theorem 1 in fact establishes

that RK
N converges zero as the number of customer classes grows without bound. Although

customer classes could potentially differ from each other a lot in terms of their valuations,

delay sensitivities and arrival rates, in practice, we expect that customer classes have

limited heterogeneity. In this section, we focus on the worst case analysis when the

arrival rates and the delay sensitivities for the customer classes are bounded (and hence

the term limited heterogeneity, which we formalize in subsequent sections). First, in
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§1.7.1 we analyze the effect of having bounded arrival rates, on the WCRR. We show that

although the WCRR converges to zero, having bounded arrival rates slows down its rate

of convergence. Following this, in §1.7.2 we present the worst case analysis for the firm’s

revenue when it offers a single service grade, i.e. K = 1, under limited heterogeneity in

delay sensitivities and arrival rates. In particular, we assume that the ratio of the delay

sensitivities of any two customer classes is bounded and arrival rates for the customer

classes are fixed. Using the results in this section, we analyze the WCRR under bounded

valuations and delay sensitivities in §1.8. In §1.7.2 and §1.8 we focus our worst case

analysis on the single service grade case, i.e. K = 1. The reason for this, as stated earlier,

is that it is complicated to characterize the structure of the worst case optimal menu for

K > 1 (see Remark 1).

1.7.1. Bounded Arrival Rates

In this section, we analyze the effect of having bounded arrival rates on RK
N . In particular,

we use m > 0 to denote a lower bound on λk
λ1

, i.e. m ≤ λk
λ1

for all k = 1, 2, . . . , N . We

use M < ∞ to denote an upper bound on λk
λ1

, i.e. λk
λ1
≤ M for all k = 1, 2, . . . , N . If

the arrival rates are bounded then the exact analysis of (1.9), the WCRR for K = 1, is

possible. We evaluate R1
N by solving problem in (1.10) under the assumption of bounded

arrival rates. Thus, we have,

(1.14)

R1
N = inf

λk>0

{
1∑N

k=1
λk
λk

}

s.t. m ≤ λk
λ1

≤M for all k = 1, 2, . . . , N.
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where λk =
∑k

i=1 λi for all k = 1, 2, . . . , N . The objective function in (1.14) can be

rewritten as 1∑N
k=1

λk/λ1
λk/λ1

. Applying the bounds on arrival rates, i.e. m and M , we have

(1.15) R1
N =

1

1 +
∑N

k=2

M

1 + (k − 1)m

.

Next, for K > 1, we derive an upper bound to RK
N using (1.11), and using the solution to

(1.9) as a feasible solution to (1.11), similar to what we did in §1.6. In particular, we let

hi
hi+1

→∞ and vk =
1

λk
.

Replacing these values in (1.11) we get the following upper bound:

max{i1,i2,...,iK}{K −
∑K

k=2

λik−1

λik
}∑N

k=1
λk
λk

≤ K∑N
k=1

λk
λk

.

Using the fact that the arrival rates are bounded, we choose the values of λk
λk

in the right

hand side of the inequality such that it gives us the tightest bound. Thus we have,

(1.16) RK
N ≤

K

1 +
∑N

k=2

M

1 + (k − 1)m

.

The following proposition combines (1.15) and (1.16) to characterize the WCRR, RK
N ,

under the assumption of bounded arrival rates.
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Proposition 2. If the arrival rates are bounded, i.e. m ≤ λk
λ1
≤ M for all k =

1, 2, . . . , N where m > 0 and M <∞, the WCRR is such that,

m/M

log(N) + γN
≤ RK

N ≤
K

log(N) + γN

where γ < γN < γ + 1
2
, limN→∞ γN → γ and γ is the Euler-Mascheroni constant.

We note that the WCRR still converges to zero as the number of customer classes

grows without bound. However, Proposition 2 says that if the arrival rates are bounded

then the rate of convergence of RK
N to zero slows down such that RK

N ∝ 1
log(N)+γN

, as

compared to RK
N ∝ 1

N
when arrival rates are unbounded.

1.7.2. Bounded Delay Sensitivity and Fixed Arrival Rates

In the last section, we have observed that the worst case is realized as the ratio of consec-

utive delay sensitivities grows without bound. In this section, we perform the worst case

analysis for the firm’s revenue when it offers a single service grade under the assumption

that the ratio of delay sensitivities of any two customer classes is bounded. In particular,

since the consecutive classes become progressively more delay sensitive, we assume that

h1
hN
≤ ∆h for some ∆h > 1, where h1 ≥ h2 ≥ · · · ≥ hN . Furthermore, we assume that

the arrival rates for all the customer classes are bounded and fixed. In particular, a fixed

sequence {λk}Nk=1 denotes the arrival rates for N customer classes, where m ≤ λk
λ1
≤M for

all k = 1, 2, . . . , N for some constant m > 0 and M < ∞. We maintain this assumption

throughout the rest of this section unless otherwise specified. Thus, we are interested in
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solving the following optimization problem:

(1.17)

R1
N(∆h) = inf

v>0,h>0

{
π1
N

π∗N

}
s.t.

h1

hN
≤ ∆h, h1 ≥ h2 ≥ · · · ≥ hN .

Lemma 1 establishes that the worst case optimal menu, WCOM, belongs to set M of

menus which induces customer segmentation σ. WCOM, under unlimited heterogeneity

offers full differentiation, i.e., all customer classes join service, and each service grade serves

a single customer class. However, in the case with limited heterogeneity, this need not

necessarily hold. To see this, we note that in order to provide a menu which differentiates

all N customer classes, the necessary condition h1
hN

> λN
λ1

, as given by Proposition 1(i)

needs to hold. Therefore, if the value of ∆h is such that ∆h <
λN
λ1

, then we have, h1
hN
≤

∆h <
λN
λ1

, which violates the condition in Proposition 1(i). This illustrates that the worst

case optimal menu might not differentiate all N customer classes. As a result, depending

on ∆h, the optimal menu would result in pooling of some subset of customer classes in

one service grade while differentiating some other customer classes.

In particular, for N customer classes, if the worst case optimal menu offers L service

grades, then applying Definition 1 of customer segmentation σ(i1, i2, . . . , iL), we can infer

that indices i1, i2, . . . , iL can be assigned in
(
N
L

)
= N !

L!(N−L)!
different ways. For e.g., if

N = 4 and L = 3 then, depending on ∆h, the worst case optimal menu could result in one

of the following four customer segmentations: i) classes 1, 2 and 3 join separate service

grades and class 4 does not join service, or all four classes join service but ii) classes 1 and

2 are pooled together, iii) classes 2 and 3 are pooled together, iv) classes 3 and 4 are pooled

together into one service grade. Moreover, L could take a value in {2, 3, . . . , N} (L has to
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be greater than 1, because the firm offers a single service grade, i.e. K = 1, and therefore

the worst case would not be realized if the optimal menu offers a single service grade, i.e.

L = 1). Thus, for N customer classes,
∑N

L=2

(
N
L

)
= 2N − N − 1 denotes the number of

candidate customer segmentations that the worst case optimal menu could induce. We

note that, the number of such candidate customer segmentations grow exponentially with

N . However, Lemma 4 along with Definition 3 presents a characteristic of the worst case

optimal menu which reduces the number of candidate customer segmentations.

Definition 3. We defineMij as a set of menus of service grades such thatMij ⊂ML

(here L = j − i + 1), which results in customer segmentation σ(i1, i2, . . . , iL) as per

Definition 1, such that i1 = i, i2 = i+ 1, . . . , iL = j where, 1 ≤ i < j ≤ N , and N denotes

the number of customer classes.

Lemma 4. Under the optimal solution to (1.17), the optimal menu, WCOM, belongs

to set Mij.

Lemma 4 implies that the worst case is realized when the optimal menu segments all

the customer classes into three subsets. The first subset comprises higher valuation classes

1, 2, . . . , i that are pooled into a single service grade (classes are indexed in the decreasing

order of their valuations). The second subset consists of classes i+ 1, i+ 2, . . . , j that are

differentiated from each other and from all the pooled classes (i.e., each of the classes in

this subset joins a service grade that is uniquely different from all other classes in terms

of the offered price and the delays). The third subset is comprised of classes j + 1, . . . , N

that are not served (i.e., these classes do not join any of the service grades). We note that

i could take a value of 1, in which case there would be no pooled class. Similarly j could



47

take a value of N , in which case all the customer classes enter service. The number of

ways in which i and j, in Definition 3, can be assigned is
(
N
2

)
= N(N−1)

2
. Thus, Lemma 4

decreases the number of candidate customer segmentations under the worst case optimal

menu from exponential to quadratic in N .

The revenue corresponding to any menu in set Mij is denoted by π(Mij), which is

given by

π(Mij) = λivi + λi+1vi+1

(
δi − vi

vi+1

δi − 1

)
+ · · ·+ λjvj

(δj−1 − vj−1

vj

δj−1 − 1

)
,

where, δi = hi
hi+1

. In order to ensure that the offered prices are positive, we need the price

condition, δk >
vk
vk+1

for all k = i, i + 1, . . . , j − 1. Thus, i and j in addition to v and h

are decision variables in the optimization problem (1.17), which can be rewritten as,

(1.18) R1
N(∆h) = min

1≤i<j≤N
rijN

where

(1.19)

rijN = inf
vk>0,δk

{
maxk∈{1,2,...,N} λkvk

π(Mij)

}

s.t.
N−1∏
k=1

δk ≤ ∆h,

δk ≥ 1, vk > vk+1 for all k = 1, 2, . . . , N − 1,

δk >
vk
vk+1

for all k = i, i+ 1, . . . , j − 1.
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In order to solve the optimization problem (1.18), first we focus on the solution of the

inner optimization problem (1.19) which is equivalent to (1.18) holding i and j fixed. The

following proposition characterizes the optimal valuations and delay sensitivities.

Proposition 3. Under the optimal solution to (1.19),

(i) Valuations, vk, are such that, 1 ≤ vk
vk+1

≤ λk+1

λk
for all 1 ≤ k ≤ i − 1,

vk
vk+1

=

λk+1

λk
for all i ≤ k ≤ j − 1 and

vk
vk+1

≥ λk+1

λk
for all j ≤ k ≤ N − 1.

(ii) Delay sensitivities, hk, are such that they satisfy the equation:
∏j−1

k=i δk = ∆h

where δk =
hk
hk+1

. Moreover, δk = 1 for all 1 ≤ k ≤ i − 1 and j ≤ k ≤ N −

1, and δi, δi+1, . . . , δj−1 are such that they satisfy the set of implicit equations:

δi
ci(ci + 1)(δi − 1)2

=
δi+1

ci+1(ci+1 + 1)(δi+1 − 1)2
= · · · =

δj−1

cj−1(cj−1 + 1)(δj−1 − 1)2
,

where, ck =
λk
λk+1

and λk =
∑k

i=1 λi.

For N = 4, by using Lemma 4, we see that there are N(N−1)
2

= 6 possible customer

segmentations under the worst case optimal menu. Figure 1.1 depicts the WCRR for each

of these possible customer segmentations that could be induced by the optimal menu,

which are obtained by solving (1.17) multiple times, each time holding the customer

segmentation fixed.

The benefit of differentiating any two customer classes comes from the fact that the

higher valuation customer class can be charged a higher price as compared to the lower

valuation class. For the firm to be able to differentiate two customer classes, the ser-

vice grade joined by the lower valuation class should offer higher delay as compared to

the service grade joined by the higher valuation customer class. As these two customer
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Figure 1.1. WCRR corresponding to all possible customer segmentations
induced by the optimal menu, with number of customer classes, N = 4,
under bounded delay sensitivities, i.e. h1

h4
≤ ∆h. For any given ∆h, the

customer segmentation that results in the least value of the WCRR is the
customer segmentation that is induced by the optimal menu under the
solution to problem (1.17). For illustration purposes we set the arrival
rates for all classes to one, i.e., λk = 1 for all k = 1, 2, . . . , N .

classes become less delay sensitive relative to one another, the offered delay that is re-

quired to differentiate these customer classes increases and vice versa. The expression∏j−1
k=i δk = ∆h from Proposition 3(ii) implies that, as higher number of customer classes

are differentiated, i.e., as j − i gets larger, δk gets smaller and consequently the offered

delay becomes larger. As the offered delay become larger, the price charged for the ser-

vice grade become smaller. This highlights a trade-off involved in problem (1.17) between

offering delay-differentiation to a higher number of customer classes and pooling multiple

customer classes into a single service grade. This trade-off is not relevant when delay

sensitivities are unbounded. We recall that the optimal solution to (1.8) is achieved as
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the ratio of consecutive delay sensitivities grow without bound. For bounded delay sen-

sitivities this trade-off becomes relevant, and indeed we observe this in Figure 1.1. We

note that for higher values of ∆h, the customer segmentation that results in the least

value of WCRR, is such that it differentiates a higher number of customer classes. On the

other hand, if ∆h is lower, customer segmentations that pool multiple customer classes

together, result in lower values of the WCRR.

Now, we consider the objective function in the optimization problem (1.19), which is

given by,

(1.20)
maxk∈{1,2,...,N} λkvk

λivi + λi+1vi+1

(
δi−

vi
vi+1

δi−1

)
+ · · ·+ λjvj

(
δj−1−

vj−1
vj

δj−1−1

) .
The valuations under the optimal solution to (1.19), as given in Proposition 3(i), imply

that the maximum value in the numerator of the objective function in (1.20) is achieved

for indices i ≤ k ≤ j−1. By choosing k = i and dividing both numerator and denominator

by λivi, we can rewrite (1.20) as,

1

1 +
∑j−1

k=i

λk+1vk+1

λivi

(
1 +

1− vk
vk+1

δk − 1

) .

Defining ck := λk
λk+1

and applying Proposition 3(i) we get, vk
vk+1

= λk+1

λk
= 1 + 1

ck
for all

k = i, i+ 1, . . . , j− 1. By expressing vk
vk+1

in terms of ck and rearranging the terms we can

rewrite (1.20), which is given by,

1

1 +
∑j−1

k=i

(
1

1 + ck
− 1

ck(ck + 1)(δk − 1)

) .
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Thus, using the results from Proposition 3, we have expressed the objective function in rijN ,

as given in (1.19), in terms of just δk as opposed to vk and hk. Since, we consider arrival

rates {λk}Nk=1 as fixed, ck defined as ck := λk
λk+1

are constants in the optimization problem

(1.18). Solving (1.18) for any finite N is analytically intractable, hence, we consider

optimization problem (1.18) as the number of customer classes, N , grows without bound.

Thus, we are interested in solving the following optimization problem:

(1.21)

R1
∞(∆h) = min

1≤i<j
inf
δk

{
1

1 +
∑j−1

k=i

(
1

1 + ck
− 1

ck(ck + 1)(δk − 1)

)}

s.t

j−1∏
k=i

δk ≤ ∆h, δk > 1 +
1

ck
for all k = i, i+ 1, . . . , j − 1.

We note that the constraint δk > 1 + 1
ck

for all k = i, i + 1, . . . , j − 1 is the price con-

dition. Reformulation (1.21) in terms of ck will be particularly useful going forward in

the next section when we consider bounded valuations. The following Theorem provides

the solution to (1.21) and thus, characterizes the WCRR and the asymptotically optimal

menu.

Theorem 2. (i) For any given ∆h > 1, such that h1
hN
≤ ∆h where h1 ≥ h2 ≥

· · · ≥ hN , and for any given bounded sequence of arrival rates, the worst case

revenue ratio (WCRR) for a firm offering a single service grade, K = 1, as the

number customer classes grows without bound, i.e. N →∞, is given by,

R1
∞(∆h) =

1

1 + 1
4

log(∆h)
.

(ii) R1
N(∆h) is bounded from below by R1

∞(∆h) for all finite N .
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(iii) The worst case optimal menu, WCOM, offers infinitely many differentiated ser-

vice grades, i.e. (j∗ − i∗) → ∞. For the special case where all the arrival

rates are equal, i.e. if λk = 1 for all k = 1, 2, . . . ,∞, the optimal indices

i∗ and j∗ satisfy i∗ =
j∗√
∆h

, and the worst case delay sensitivity ratios are

δ∗k = 1 +
2

k + 1
for all i∗ ≤ k ≤ j∗ − 1.

As the number of customer classes increase, by offering a simplified menu, the firm

can only get worse off in terms off its revenue loss, i.e. the WCRR can only (weakly)

decrease. Hence for any given ∆h, the firm’s WCRR under the asymptotically optimal

menu, R1
∞(∆h), provides a lower bound to R1

N(∆h) (see Figure 1.2).

Optimization problem (1.21) assumes that there is a fixed sequence, {λk}∞k=1, of arrival

rates which implies that ck = λk
λk+1

are constants in (1.21). Moreover, since we have

assumed that the arrival rates are bounded, i.e. m ≤ λk
λ1
≤ M , this implies that m

M
k ≤
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Figure 1.2. Gap between the WCRR for finite number of customer classes,
N , and the asymptotically optimal menu under equal arrival rates. The
dotted lines represent the worst case revenue ratios corresponding to all
candidate customer segmentations induced by the optimal menu. We do not
enumerate the dotted lines as the number of dotted lines increase quadrat-
ically with N .
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ck ≤ M
m
k for all k = 1, 2, . . . ,∞. To see this, we recall that ck is defined as ck = λk

λk+1
=∑k

n=1 λn/λ1
λk+1/λ1

. Thus, using the bounds on the arrival rates, we have m
M
k ≤

∑k
n=1 λn/λ1
λk+1/λ1

≤ M
m
k.

Hence, m
M
k ≤ ck ≤ M

m
k for all k = 1, 2, . . . ,∞. However, it is important to note that

R1
∞(∆h), as given by Theorem 2, does not depend either on m or on M . Thus, the bounds

on the arrival rates do not affect the WCRR. Furthermore, we also note that the arrival

rates, λk, do not appear in the expression for R1
∞(∆h) for any k = 1, 2, . . . ,∞. This

observation leads to the following Corollary.

Corollary 1. For any given bounded sequence of arrival rates {λk}∞k=1, the optimal

solution to problem (1.21) does not depend on λk, and hence it does not depend on ck, for

any k ∈ {1, 2, . . . ,∞}.

Proposition 3(i) links the arrival rates and the valuations in the worst case analysis

such that vk
vk+1

= λk+1

λk
for i ≤ k ≤ j − 1, where λk+1

λk
is expressed in terms of ck as

λk+1

λk
=
(
1 + 1

ck

)
. Using these two relations we arrive at the following equality,

(1.22)
vi
vj

=

j−1∏
k=i

vk
vk+1

=

j−1∏
k=i

(
1 +

1

ck

)
.

The optimal solution to (1.21) is achieved as both decision variables i and j grow without

bound such that
∏j−1

k=i

(
1+ 1

ck

)
approaches

√
∆h (see proof of Theorem 2). For the special

case of equal arrival rates, i.e. if λk = 1 for all k = 1, 2, . . . ,∞, we get ck = λk
λk+1

= k,

which implies that
∏j−1

k=i

(
1 + 1

ck

)
=
∏j−1

k=i
k+1
k

= j
i
. This establishes the optimal values

i∗ and j∗ satisfy j∗

i∗
=
√

∆h, as presented in Theorem 2(iii). (For a quick check, we

note from Proposition 3(ii) that,
∏j−1

k=i δk = hi
hj

= ∆h. Moreover, from Proposition 1 we

have hi
hj

>
λj
λi

= j
i

since classes i and j are differentiated. Combining these we have,
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∆h = hi
hj

> j
i

=
√

∆h.) In general, under the optimal solution to (1.21), the specific

relationship between i∗ and j∗ would depend on {ck}∞k=1, and thus it would depend on

the sequence of arrival rates, {λk}∞k=1.

Now, Corollary 1 implies that if we relax the assumption of fixed arrival rates and

make ck a decision variable in (1.21), for all k = i, i + 1, . . . , j − 1, we would get the

following equivalent formulation:

(1.23)

min
1≤i<j

inf
δk,ck

{
1

1 +
∑j−1

k=i

(
1

1 + ck
− 1

ck(ck + 1)(δk − 1)

)}

s.t

j−1∏
k=i

δk ≤ ∆h, δk > 1 +
1

ck
, ck > 0 for all k = i, i+ 1, . . . , j − 1.

We note that in problem (1.23), we can rename the decision variables ck and δk as ck−i+1

and δk−i+1 respectively, for all k = i, i + 1, . . . , j − 1, without altering the optimization

problem. Thus, we rename decision variables {ci, ci+1, . . . , cj−1} to {c1, c2, . . . , cj−i}. Sim-

ilarly, we rename decision variables {δi, δi+1, . . . , δj−1} to {δ1, δ2, . . . , δj−i}. In addition,

we have established in Theorem 2(iii) that the the WCOM offers infinitely many differ-

entiated service grades, i.e. (j∗ − i∗)→∞. Hence, we can rewrite (1.23) as follows:

(1.24)

inf
δk,ck

{
1

1 +
∑∞

k=1

(
1

1 + ck
− 1

ck(ck + 1)(δk − 1)

)}

s.t
∞∏
k=1

δk ≤ ∆h, δk > 1 +
1

ck
, ck > 0 for all k = 1, 2, . . . ,∞.

As already mentioned, the optimal value in problem (1.21) is achieved as
∏j∗−1

k=i∗

(
1 + 1

ck

)
approaches

√
∆h. Since formulation (1.24) is equivalent to (1.21), it implies that the
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optimal value of (1.24) is achieved as
∏∞

k=1

(
1 + 1

ck

)
approaches

√
∆h. Equivalently,

v1
v∞

approaches
√

∆h, as established by the equality in (1.22). Finally, this leads us to

investigate the effect of having bounded valuations on the WCRR, which is what we

consider in the next section.

1.8. Worst Case Analysis Under Limited Heterogeneity: Delay Sensitivity

and Valuation

In this section, we analyze the effect of bounded valuations and bounded delay sen-

sitivities on the WCRR when the firm offers a single service grade, i.e. K = 1. First,

in §1.8.1 we provide the asymptotic lower bound to the WCRR as the number of cus-

tomer classes, N , grows without bound. Following this, in §1.8.2, we numerically compute

the WCRR for finitely many customer classes and compute the gap with respect to the

asymptotic lower bound.

1.8.1. Asymptotic Lower Bound

We are interested in solving problem (1.24) with the added constraint v1
v∞
≤ ∆v such that

vk > vk+1 for all k = 1, 2, . . . ,∞, where ∆v > 1 represents the bound on the valuations.

As previously mentioned, the constraint v1
v∞
≤ ∆v is equivalent to

∏∞
k=1

(
1 + 1

ck

)
≤ ∆v

as established by the equality in (1.22). Thus, we are interested in solving the following
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problem:

(1.25)

R1
∞(∆h,∆v) = inf

δk,ck

{
1

1 +
∑∞

k=1

( 1

1 + ck
− 1

ck(ck + 1)(δk − 1)

)}

s.t.
∞∏
k=1

δk ≤ ∆h,

∞∏
k=1

(
1 +

1

ck

)
≤ ∆v,

δk > 1 +
1

ck
, ck > 0 for all k = 1, 2, . . . ,∞.

We note that since ck is a decision variable in (1.25) for all k = 1, 2, . . . ,∞, we are es-

sentially optimizing over arrival rates. Thus, for solving (1.25) we do not impose the

assumption of bounded arrival rates, that we maintained in section §1.7.2. The Theo-

rem below provides the solution to optimization problem (1.25), which is the asymptotic

lower bound for the WCRR when the firm provides a single service grade under limited

heterogeneity in valuations and delay sensitivities.

Theorem 3. (Asymptotic Lower Bound) For any given ∆h > 1 and ∆v > 1

such that h1
hN
≤ ∆h and v1

vN
≤ ∆v, where h1 > h2 > · · · > hN and v1 > v2 > · · · > vN , and

the number of customer classes N → ∞, the WCRR for a firm offering a single service

grade, i.e., K = 1 is:

R1
∞(∆h,∆v) =



1

1 +
log(∆v)

log(∆h)
log

(
∆h

∆v

) ∆v <
√

∆h,

1

1 +
1

4
log(∆h)

∆v ≥
√

∆h.
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Figure 1.3. The asymptotic lower bound for WCRR, R1
∞(∆h,∆v), as a func-

tion of the delay sensitivity bound, ∆h, and the valuation bound, ∆v. The
curve ∆v =

√
∆h separates the two regions with different functional forms.

The color scale represents the value of R1
∞(∆h,∆v).

Theorem 3 present the asymptotic lower bound to the WCRR for a firm offering a sin-

gle service grade under the assumption of limited heterogeneity. We note that R1
∞(∆h,∆v)

is bounded from below away from zero. This suggests that offering a single service grade,

as opposed to a menu of multiple service grades, can be valuable and the firm would be

guaranteed a fraction of the optimal revenue. We study the dependence of ∆v and ∆h

on R1
∞(∆h,∆v) in the numerical study (see §1.8.2) and show that R1

∞(∆h,∆v) changes

very slowly. For any given ∆v such that ∆v <
√

∆h, we see that R1
∞(∆h,∆v)→ 1

1+log(∆v)

as ∆h → ∞ which is the WCRR under bounded valuations and unbounded delay sen-

sitivities. Similarly, for any given ∆h, by letting ∆v → ∞, we can recover the result in

Theorem 2(i), the WCRR under bounded delay sensitivities.
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Another interesting observation from Theorem 3 and Figure 1.3 is that for any ∆v ≥
√

∆h, changes in ∆v have no effect on the WCRR. This happens as a result of the price

condition. For the firm to be able to differentiate customer classes by providing service

grades k and k + 1 with non-negative prices, it is necessary that vk
vk+1

< hk
hk+1

. This is the

reason, why the bound on valuations, ∆v, does not affect our worst case analysis when

∆v ≥
√

∆h.

Remark 1. (Offering Multiple Service Grades) In this paper, our goal has

been to analyze the worst case revenue loss by a firm offering a simplified menu of service

grades. This analysis relies on the structure of the worst case optimal menu when the firm

offers a single service grade, i.e. K = 1. We have established this structure in Lemmas 1

and 4. However, trying to establish the structure for the worst case optimal menu when

the firm offers multiple service grades, i.e. K > 1, becomes complicated. We can use the

result in Theorem 3 to establish a lower bound to RK
∞(∆h,∆v). In particular, we have

R1
∞(∆h,∆v) ≤ RK

∞(∆h,∆v).

A firm offering a menu with more than one service grade can always choose to offer a

single service grade, if it were optimal to do so. Hence, by having the option of offering

more than one service grade, the firm cannot be worse-off in terms of maximizing its

revenue. Therefore RK
∞(∆h,∆v) can only (weakly) increase as K increases.
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1.8.2. Computational Results

For any finite N , as ∆h and ∆v grow without bound, R1
N(∆h,∆v) approaches R1

N = 1
N

,

as established in Theorem 1. Consequently, R1
∞(∆h,∆v) should approach zero as ∆h and

∆v grow without bound. In this section, we numerically compute R1
N(∆h,∆v), for a set of

values of ∆h, ∆v and N , and illustrate the convergence of R1
N(∆h,∆v) to its asymptotic

lower bound R1
∞(∆h,∆v), as presented in Theorem 3. In particular we compute the

following gap,

R1
N(∆h,∆v)−R1

∞(∆h,∆v).

From Theorem 3, we note that R1
∞(∆h,∆v) does not change for ∆v ≥

√
∆h. With this

in mind, we pick the values of ∆v such that it is comparable to
√

∆h. From Table 1.8.1

we observe that, for a given value of N , the gap between R1
N(∆h,∆v) and R1

∞(∆h,∆v)

∆h ∆v R1
3(∆h,∆v)(%) R1

5(∆h,∆v)(%) R1
10(∆h,∆v)(%) R1

∞(∆h,∆v)(%)

5 2 71.97 71.77 71.72 71.70

5 3 71.58 71.38 71.33 71.31

10 2 67.86 67.49 67.39 67.36

10 4 64.09 63.63 63.50 63.47

20 3 60.00 59.23 59.02 58.97

20 5 58.28 57.46 57.23 57.18

60 5 52.55 51.10 50.69 50.59

60 8 51.48 49.95 49.52 49.42

100 12 49.04 47.16 46.62 46.48

200 15 46.30 43.89 43.19 43.02

500 25 43.44 40.32 39.39 39.16

Table 1.1. Gap between the WCRR for finite number of customer classes
under limited heterogeneity, R1

N(∆h,∆v) for N = 3, 5 & 10, and the as-
ymptotic lower bound, R1

∞(∆h,∆v).
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increases as ∆h and ∆v increase. However, this gap is fairly small as compared to 1
N

,

and grows fairly slowly with ∆h and ∆v. Moreover, for given values of ∆h and ∆v, the

gap closes significantly faster as the number of customer classes, N , increase. Thus, the

value of N need not be too large for the gap between R1
N(∆h,∆v) and R1

∞(∆h,∆v) to be

significantly small even for fairly large values of ∆h and ∆v.

1.9. Conclusion

We consider a revenue-maximizing firm which caters to price and time-sensitive cus-

tomers by offering a menu of service grades. In order to limit the complexity of the offered

menu, in practice, firms offer a menu with fewer service grades than the number of cus-

tomer classes. Motivated by this, we quantify the firm’s worst case revenue loss, incurred

by offering a simplified menu of service grades as compared to the revenue-maximizing

optimal menu. We characterize this gap in revenue by evaluating the minimum value of

the ratio of the firm’s revenue under a simplified menu and the revenue under the optimal

menu, the WCRR. We show that the WCRR converges to zero as the number of customer

classes grow without bound which indicates significant loss of revenue by the firm. More-

over, this worst case is realized when there is unlimited heterogeneity among the customer

classes. In particular, consecutive customer classes are infinitely more delay sensitive with

infinitely higher valuation for service, which minimizes the value of offering a simplified

menu. Thus, as the number of customer classes grow without bound, any menu offering

a finite number of service grades would be insufficient in capturing any given fraction of

the optimal revenue.
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Although customer classes could potentially differ from each other a lot in terms of

their valuations, delay sensitivities and arrival rates, in practice, we expect that customer

classes have limited heterogeneity. Hence, we analyze the WCRR under limited hetero-

geneity. In the unlimited heterogeneity setting, the worst case optimal menu results in a

customer segmentation such that all customer classes are differentiated from each other.

In contrast, in the limited heterogeneity setting the customer segmentation that is in-

duced by the worst case optimal menu depends on the limited heterogeneity bounds on

the delay sensitivity and valuation. The number of such candidate customer segmenta-

tions grows exponentially with the number of customer classes. This poses a challenge in

analyzing the limited heterogeneity setting. We overcome this challenge by characterizing

the worst case optimal menu and showing that it induces a customer segmentation which

pools a subset of customer classes with higher valuations, while differentiating a subset of

customers classes with lower valuations. This characterization of the worst case optimal

menu allows us to reduce the growth of the number of candidate customer segmentations

from exponential to quadratic in the number of customer classes. We show that, under

limited heterogeneity, even if the number of customer classes grow without bound, the

WCRR for the firm has a lower bound that is strictly greater than zero. This suggests

that offering simplified menus could be valuable, and in doing so, the firm could recover a

significant portion of the optimal revenue. Using Taylor series arguments, we provide an

asymptotic lower bound to the WCRR as the number of customer classes grow without

bound. The asymptotic lower bound is fairly robust to changes in the bounds on valu-

ations and delay sensitivities. Characterization of the firm’s worst case revenue loss in



62

terms of a measure of heterogeneity can be used to guide decision making when offering

a simplified menu of service grades.
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CHAPTER 2

The Queue Behind the Curtain: Information Disclosure in

Omnichannel Services (Joint work with Achal Bassamboo and

Martin Lariviere)

2.1. Introduction

How do you order a coffee? For many tech-savvy customers, the answer is to pull

out their phone and use an app. Quick service restaurants (QSRs) such as Starbucks,

Dunkin’ and Chipotle have developed innovative online technology that allows customers

to order whenever and from wherever they want. Online channels offer a convenient

and streamlined ordering experience that aims to reduce the time customers wait in the

store by letting them order before they arrive. By maintaining two channels, firms create a

choice for tech-savvy customers. They may use the online channel to order before reaching

the store or they may use the conventional offline channel and order after traveling to the

physical store. With increased smartphone penetration, increasing number of customers

are shifting from offline to online. In the third fiscal quarter of 2019, Chipotle’s digital

sales rose 88%, which constitutes about 18% of the total sales for the chain, with some

stores pushing 30% (see Kelso, 2019).

Due to the novelty of these omnichannel systems, there are many open questions

about their design and their implications for firms and the customers. For example, how

do customers decide whether to order online or offline? Customers, as utility maximizers,
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are presumably strategic in their channel choice. They are time-sensitive and prefer to

minimize their time at the store. While delay sensitivity is an important factor, in the

context of QSRs, there is another significant consideration that goes into customers’ choice

of channel: quality. Imagine a customer ordering a latte via the Starbucks app. Assuming

she prefers a hot drink, she would not want her latte prepared long before she arrives to

pick it up. Similarly, a Chipotle customer would prefer not to have a cold burrito. These

examples highlight the fact that customers, while being time-sensitive, are also sensitive

to potential degradation in product quality. This results in a trade-off when deciding

whether or not to order using the mobile app; less time spent waiting may result in a

degraded product. We explore this trade-off in our paper.

Another open issue relates to the design of omnichannel systems: Whether to disclose

congestion information to online customers? Some firms (e.g., Starbucks) provide app

users with information such as expected wait-time, which signals the current state of the

system. If queue information is provided through the app, tech-savvy customers have the

possibility to sample the queue before arriving at the physical store. They could either

order online immediately or they could wait until they arrive at the store and then order

if they see a favorable evolution of the queue. Customers’ choice of channel depends on

their knowledge of the level of congestion in the system. System congestion, in turn,

depends on the cumulative behavior resulting from individual customer decisions. In the

absence of such real-time information, self-interested customers’ decision is based on their

rational expectations about the steady state behavior of the system. Thus, for an accurate

evaluation of the performance of these omnichannel systems, it is essential to address the

issue of information disclosure.
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In this paper we address these questions regarding the design of omnichannel services.

Specifically, we study the following:

(1) How does customer ordering strategy change as the service system moves from a

single channel to an omnichannel system?

(2) Should service providers disclose current congestion levels (e.g. the queue length)

to customers before they decide whether to place an online order?

(3) Are firm’s better-off, in terms of revenue, by running multiple channels?

(4) Is an online option better for customers, in terms of increasing consumer surplus?

We consider two types of customers, app users and the non-app users. App users are

tech-savvy customers who could either order remotely (online) or walk into the physical

store to order (offline). In contrast, non-app users never use the online option; they visit

the store and decide whether or not to enter the queue. The non-app user group could be

comprised of, but not limited to, customers who are not tech-savvy or customers who do

not frequent the store often enough to have the mobile app installed on their phones. If

online ordering option is not offered, then app users, like non-app users, choose the offline

option.

We adopt a game-theoretic discrete-time queueing framework to model the strategic

behavior of customers in omnichannel systems, both with and without information disclo-

sure to online customers. A single virtual queue holds orders from both customer types.

All the orders (from app users and non-app users) are fulfilled in a first-come-first-served

manner. Additionally, consistent with the literature (see Baron et al., 2019), we assume

that the entire order queue is visible to all store customers (both app users, when they
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arrive at the store, and non-app users). This assumption is motivated by firms, like Mc-

Donald’s, using digital boards to display the number of orders in the system that are

pending and being currently worked on.

For non-app users, we assume that they arrive to the market by physically appearing

at the store. In contrast an app user arrives to the market when she is physically away

from the store, but she will reach the store in the following time period. This customer

faces a choice. She could place an order online; in which case her order may be prepared

in parallel with her travels. Alternatively, she could wait until she reaches the store then

decide whether to order or not to order. Each class of customer has a type-dependent

wait-sensitivity. Additionally, app users are also quality sensitive. App users must then

balance waiting and quality costs. If the firm discloses queue information, we find that

the app users follow a queue-length dependent dual-threshold policy where they alternate

between walking in (to avoid the quality penalty), ordering online (to shorten their wait),

and walking in (to avoid a really long wait and potentially balking) as the queue grows.

In the absence of online queue length information, app users’ ordering decision is based

on their steady-state expectation of the system. In this case, there are three possible

customer behavior under equilibrium: all app users either order online, choose the offline

option or potentially randomize between these two actions.

We find that the relative wait-sensitivities of app users and non-app users play a

significant role in determining which channel arrangement delivers highest overall system

throughput. Non-app users get crowded out by app users in omnichannel systems. If

non-app users are relatively more wait-sensitive, so many of them may balk that the

overall throughput in an omnichannel system is less than the throughput of a single
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channel system. On the other hand, if app users are more wait-sensitive, then omnichannel

systems outperform the single channel system. Moreover, disclosing queue information in

an omnichannel system results in higher throughput only if app users are either highly

quality sensitive or highly wait-sensitive, or if the system is heavily congested. Offering

more visibility to app users lures them to place order in unfavorable states of the queue,

in which they otherwise would not have joined the system if information were withheld.

Thus, from the firm’s perspective, we find that no channel arrangement dominates the

other two in terms of throughput.

From the perspective of customers, we find that non-app users are consistently better-

off in a single channel system; when online ordering is not offered, non-app users do not

get crowded out and hence their consumer surplus is higher. Interestingly, we find that

the app users might not necessarily benefit from an online ordering option, specifically if

congestion information is withheld. This result illustrates the trade-off between visibility

of system congestion, which is offered by the single channel, and the benefit of ordering

ahead in the omnichannel system. We show that this trade-off is resolved and consumer

surplus for omnichannel system increases if the firm discloses queue information to app

users. We find that, depending on the relative proportion of non-app users and app users

in the system, either single channel or omnichannel system could deliver higher overall

combined consumer surplus. It is certainly possible that both segments are worse-off when

online ordering is offered.

The key take-away from our paper is that the non-app users are worse-off when online

ordering option is offered. Thus, the overall performance of an omnichannel system, both

in terms of firm’s revenue and the quality of service experienced by customers, highly
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depends on the customer primitives and the relative proportion of non-app users and app

users in the system.

2.1.1. Related Literature

Our paper contributes to the literature on the role of information in queues and the rapidly

evolving literature on omnichannel services. The seminal paper by Naor (1969) studies

the throughput and social welfare implications of self-interested customer behavior in an

observable queue. The importance of what information is available to customers in queu-

ing systems was highlighted by Edelson and Hilderbrand (1975), who studied the classic

problem of Naor (1969) in an unobservable queue. Observable and unobservable systems

are compared in terms of social welfare in Hassin (1986), and in terms of throughput in

Chen and Frank (2004). There has been extensive work on this topic, and we refer to

Hassin and Haviv (2003) and Hassin (2016) for a comprehensive review. In more recent

work, Hassin and Roet-Green (2017) and Hu et al. (2018) explore information hetero-

geneity and find that providing queue-length information to a fraction of customers but

not all may improve system performance. Wang et al. (2019) studies an M/M/1 priority

queue with balking under observable/unobservable settings.

The effects of different levels of delay information, with different degrees of precision,

on the overall system was examined in Guo and Zipkin (2007). Veeraraghavan and Debo

(2009) explores how the queue-length information could be used by customers to infer

service quality. Using a cheap talk model, Allon et al. (2011) examines how providing

nonverifiable delay information can improve firm’s profits and customer utility. Hassin

and Roet-Green (2018) considers a setting where customers must travel to the queue to
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get served. They study the effect of providing queue information to customers before they

decide whether to balk or travel to the store. Our paper connects to this literature by

studying the implications of firm’s information disclosure policy where orders could be

processed in parallel while customer travels to the queue. We refer to Ibrahim (2018) for

a comprehensive review on sharing delay information in service systems.

A growing literature on omnichannel retail examines impact of different omnichannel

strategies and fulfilment methods, both analytically and empirically (e.g., Gao and Su,

2017a; Gallino and Moreno, 2014; Nageswaran et al., 2020). The focus of the work

in omnichannel retail is on considerations such as inventory and product management,

which are different from the considerations that are crucial in the context of omnichannel

services, such as throughput and consumer surplus. The common thread in omnichannel

management is exploring the effects of committing inventory or capacity to customers

before they arrive at the retail outlet. Similar issues arise in the context of restaurant

reservations (Cil and Lariviere, 2013), medical appointment scheduling (Ahmadi-Javid

et al., 2017), and delivery in food services (Feldman et al., 2019; Chen et al., 2019). Our

paper contributes to the growing but scant literature in omnichannel services.

Gao and Su (2017b) and Kang et al. (2020) adopt a two-stage tandem-queue (stage 1

is cashier queue and stage 2 is food preparation queue) to model omnichannel system. The

online customers, in their model, bypass the first stage queue by self-ordering, whereas

the walk-in customers go through both stages to get served. Gao and Su (2017b) consid-

ers the capacity planning problem for firms adopting self-ordering technology. Contrary

to popular belief that self-ordering technology would replace human workers, they find
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that it is sometimes optimal for firms to increase workforce level. Kang et al. (2020) fo-

cuses on exploring the importance of prioritization design choices on omnichannel systems

in terms of the throughput and social welfare. They show that implementing a wrong

prioritization policy can have detrimental effects on the throughput of an omnichannel

system with impatient customers. These two papers differ from the rest of the literature

on omnichannel services, including our paper, in that their primary focus is on tactical

queue management.

Baron et al. (2019) explores customer channel choices in omnichannel systems. In their

model, all customers make a one-shot decision of whether to order online or to walk-in.

Customers who choose to order online, do not possess any information about the state of

the queue whereas customers who walk-in can observe the number of orders from both

channels. They find that, when online ordering option is available, individual customer

utility and social welfare could be reduced because of intra-channel interference by online

orders on the walk-in channel.

Roet-Green and Yuan (2019) analyzes a partially observable omnichannel system

where online customers are invisible, and the store customers are visible; all customers

have the same information structure. They show that a two-channel (partially observ-

able) system is more profitable for the firm if customers are not deterred from joining, by

the presence of an invisible queue. However, if the customers are indeed deterred from

joining, it could make a two-channel (partially observable) system more socially desirable

compared to a single channel (fully observable) system. They also consider the case where

service of the visible class is prioritized.
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Liu and Yang (2020) explores the effect of providing queue information to remote

customers, on the firm’s throughput. They compare two models: order-ahead (in which

all customers who wants to place an order must do so using the online channel before they

travel to the store for pick-up), and order-onsite (in which customers can only order in

the physical store). They consider various information provision policies and shows that

under full information provision, their order-ahead model achieves higher throughput than

order onsite model. However, if information is not provided to remote customers, then

their order-onsite model could yield a higher throughput.

Our paper best relates to Baron et al. (2019), Liu and Yang (2020) and Roet-Green

and Yuan (2019). A primary focus of our paper is to characterize customer channel choice

behavior and study how it is affected by queue information disclosure when customers

travel to the store. To the best of our knowledge, Baron et al. (2019) is the only other

paper that considers the customer channel choice problem in the existing literature on

omnichannel services. Our work is differentiated in that the offline ordering option in

our model is available to app users as well; app users could either order online or defer

making an ordering decision until they arrive at the store and observe the queue. We

capture the temporal evolution of the queue as app users travel to the store and study

how it factors in their channel choice strategy. Moreover, we model quality sensitivity,

and consider two customer types with potentially different impatience levels. In terms of

the information structure, our paper relates to Liu and Yang (2020) in that the visibility

for app-users depends on the firm’s information disclosure policy. On the other hand,

non-app users, observe orders from both channels (similar to Baron et al., 2019). With

information disclosure, analyzing the evolution of the queue while the app user travels,
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is intractable under a continuous-time model. A novel feature that separates our paper

from the existing literature on omnichannel services is that we adopt a discrete-time

queuing model to tackle this intractability. Our results compliment Liu and Yang (2020),

Roet-Green and Yuan (2019), and Baron et al. (2019) by showing that, depending on

the relative impatience of app users and non-app users, both of our omnichannel models

(with and without information) could deliver a lower throughput than a single channel

system. Our contribution in terms of the core message is that the non-app users are

disadvantaged by the online orders and their welfare, relative to the app users, needs to

be seriously considered for a proper evaluation of the overall performance of omnichannel

systems.

2.2. Model

In this section, we describe our model. We first describe customer types, their asso-

ciated costs and other parameters of the service system. Following this, we will present

the information structure in the model and define a sequence of events. We also examine

the expected utility of app users.

2.2.1. Customers, Costs and the Service System

We model strategic interaction of customers in omnichannel service systems, which pro-

vide customers the option of ordering online (for e.g. using mobile apps), in addition to

the conventional offline option of ordering in the physical store. We consider two types

of customers: i) app users who are tech-savvy and may choose between either the online

or the offline ordering options, and ii) non-app users who never use the online option. All
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customers are utility maximizers, and have the same valuation, v > 0 for the service. We

further assume that all customers (regardless of their channel choice) pay the same price

for service.

We say that an app user arrives at the market when service requirement arises and

she is located away from the physical store. An app user arriving at the market may

choose to order online, in which case the order is immediately placed in the queue. She

then travels to the physical store to pick it up, with the possibility that her order might

be ready by the time she reaches the store. Customers prefer to have their product as

soon as they are prepared, and in this sense they are quality sensitive (i.e. no one wants

a lukewarm latte). If an app user’s order gets prepared before she reaches the store, she

incurs a fixed cost, cq ≥ 0, for degraded product quality. This results in her utility being,

v − cq. Since non-app users always walk-in, they never incur any quality cost.

Alternatively, an app user may choose to not order online, travel to the store and

then decide whether or not to order after observing the queue. In this case, there is a

possibility that the system might be congested, which would result in her waiting in the

store before she could place her order. Both sets of customers are sensitive to the amount

of time they spend waiting in the store. The wait sensitivities for app users and non-app

users are denoted by cwT ≥ 0 and cwN ≥ 0 respectively (T denotes tech-savvy and N

denotes non-tech-savvy). Thus, if an app user or a non-app user has to wait in the store

for the completion of k orders, including her own, then her resultant utility would be

v − EW (k) · cwT or v − EW (k) · cwN respectively, where EW (k) denotes the expected

number of time periods until she’s served. We assume that there is no cost associated

with a customer traveling to the physical store (see §2.6 for a discussion). As a results,
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app users who choose the offline option always travel to the store and see the queue before

they decide whether to seek service or to balk.

We use a single discrete-time queue (see Remark 2) that serves customers in a first-

come-first-served (FCFS) manner. At each time period t, St denotes the number of service

slots that are generated, where St is an independent and identically distributed random

variable with mean µ. Every customer who joins the queue needs one service slot. We

are agnostic about the number of servers generating these slots, which is independent of

the mix of customers in the queue and is statistically identical each period. If the number

of orders in the system is smaller than the number of generated service slots, the excess

service slots get wasted. Thus, the number of orders getting processed in period t, would

be the minimum of the number of service slots generated and the number of orders in

the system, and in this sense, µ denotes the service capacity of the system. At any point

in time, length of the queue denotes the total number of orders in the system that are

waiting to be processed. If St is a Geometric random variable with expected value µ, then

EW (k) = k
µ

(see Appendix B.1), where EW (k) is defined in the preceding paragraph. In

general EW (k) is increasing in k and decreasing in µ. In the rest of the paper, we are

going to approximate EW (k) by k
µ

even for general distributions of St, which yields good

structural insights.

2.2.2. Information Structures and Sequence of Events

We make a simplifying assumption that the entire order-queue (which includes both offline

and online orders) is visible to all customers who walk-in to the store (see Baron et al.,

2019). For the app users who arrive at the market, we consider the two following settings:
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• Model with Information. The firm provides real-time queue-length informa-

tion (consistent with the literature, see Ibrahim, 2018) through the app. Thus,

the app users know the state of the system before they decide whether to order

online or to defer the ordering decision and re-sample the queue upon arrival at

the store.

• Model without Information. The firm does not provide any information

about the system, and thus the app users make decisions based on their steady-

state beliefs about the system’s state. They decide whether to order early but

blindly, or choose the offline option to sample the queue.

Without loss of generality, we assume that at every time period exactly one app user

arrives at the market. We denote the arrival rate of app users by ΛT , and thus we have

ΛT = 1. Furthermore, it takes exactly one time period for an app user to travel from the

market to the store (see Remark 2). At each time period t, a sequence of four events (see

Figure 2.1) take place in the following order:

(1) Event 1: Arrival of Non-App Users. At the beginning of time period t, non-app

users arrive at the physical store. The number of non-app users who arrive at

the store is denoted by At, which is an independent and identically distributed

random variable with mean ΛN . We specify the probabilities of arrivals as P(At =

k) = ak. The length of the queue in period t before the arrival of the non-app

users is denoted by x0(t). Since customers are wait-sensitive, not everyone who

arrives at the store, joins the queue upon observing x0(t). The effective number

of non-app users who join the system in period t is denoted by nt. We assume
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that the outside option for a customer who balks, is zero. We denote the updated

queue length after the arrival of non-app users by x1(t) = x0(t) + nt.

(2) Event 2: Arrival of App User at the Store. Next, the app user who arrived at the

market in time period t−1, arrives at the physical store (it takes one time period

after arrival at the market to arrive at the store), for either of the following two

purposes:

• To pick up her order, if she ordered online in period t− 1: If her order was

prepared in period t − 1, she incurs a quality cost and leaves the system

immediately without incurring any waiting cost. Otherwise, she does not

incur any quality cost, but does incur a cost of waiting in the store, for her

order to get processed. Since orders are processed in an FCFS manner, she

has to wait until all the orders placed before hers, as well as her own, gets

processed. Position of her order in the queue, when she arrives at the store,

is x0(t). Thus, she has to wait for the completion of x0(t) orders before

she leaves. We note that, the joining of non-app users in period t, does not

affect the position of her order, and hence, does not affect her waiting cost.

We denote the queue length after this event by x2(t). Since, the app user

already placed her order in period t − 1, this event has no bearing on the

Non-App Users 

Arrive

App User from Period 

𝒕 − 𝟏Arrives at the 

Store

New App User at 

Period 𝒕Arrives at 

the Market

Services Occur

Event 1

Period 𝒕

Queue 

Length : 𝒙𝟏(𝒕) 𝒙𝟐(𝒕) 𝒙𝟑(𝒕)𝒙𝟎(𝒕)

Event 2 Event 3 Event 4

Figure 2.1. Sequence of Events in Time Period t
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evolution of the state of the system in period t, and hence, the queue length

remains unchanged after this event, i.e. x2(t) = x1(t).

• To decide whether to place an order, if she did not order online in period

t−1: She observes the current queue length x1(t), and decides whether or not

to order. After this event, the queue length is updated to x2(t) = x1(t) + 1,

if the app user joins, otherwise the queue length remains unchanged, i.e.,

x2(t) = x1(t). Balking yields an utility of zero.

(3) Event 3: Arrival of App User at the Market. The next event in time period t

is the arrival of a new app user at the market. For the model with information,

the current state of the queue, x2(t), is revealed to this app user. She takes this

information into account to decide whether to order online immediately, or to

defer her decision of whether to order or balk, until she arrives at the store in

period t + 1 (for brevity, we will henceforth refer to this action as choosing the

offline option). For the model without information, the app user’s decision is

based on her rational belief over the steady state queue length, x2(t). The queue

length following this event is updated as x3(t) = x2(t) + 1 if the app user orders

online, otherwise, it remains unchanged, i.e., x3(t) = x2(t).

(4) Event 4: Services. Finally, service slots are generated at the end of time period

t. The probability of the number of service slots generated is denoted by P(St =

k) = sk. The queue length following this event is identical to the queue length

at the start of time period t+ 1, and is given by x0(t+ 1) = (x3(t)−St)+, where

z+ denotes max(0, z).
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2.2.3. Customer Utility of App Users

In the model with information, upon arrival at the market, an app user can see the state of

the queue, x2(t), before deciding whether or not to order online. If she observes x2(t) = L

and orders online, her expected utility is given by,

(2.1) Uo(L) = v − ESt [1(St ≥ L+ 1)] · cq︸ ︷︷ ︸
Expected quality cost

−ESt [(L+ 1− St)+] · cwT
µ︸ ︷︷ ︸

Expected waiting cost

.

where 1(·) denotes the indicator function. She incurs a quality cost if the number of

service slots, St, generated in period t, is greater than or equal to the number of orders

(queue length) currently in the system, in addition to her own order. Otherwise, she

incurs waiting cost if there are leftover orders to be processed in period t + 1. The term

(L+ 1−St)+ is equivalent to x0(t+ 1) which is the queue length at the beginning of time

period t + 1. x0(t + 1) also denotes the position of her order in the queue, in the event

that her order is not processed before her arrival.

Upon observing x2(t) = L, her expected utility of choosing the offline option is,

(2.2) Us(L) = ESt,At+1 [max(0, Ûs(L))],

where

(2.3) Ûs(L) = v −
(

(L− St)+ + nt+1(L) + 1
)
· cwT
µ

represents the utility associated with the action of going to the store and placing an order.

We note that in (2.2), the first argument within the max function is zero. This accounts
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for the fact that, an app user who does not order online in period t, can potentially

balk at the store, upon observing the queue length x1(t + 1) in period t + 1. The term

(L − St)
+ + nt+1(L) in (2.3) is equivalent to x1(t + 1). Moreover, nt+1(L) denotes the

dependence of the number of arrival of non-app users in period t+ 1, on L, the observed

queue length by an app user arriving at the market in period t.

If queue information is unavailable to app users, then their utilities of ordering online,

and choosing the offline option are given by,

(2.4)

Ex2(Uo(x2)) =
∞∑
L=0

P(x2 = L) · Uo(L) and Ex2(Us(x2)) =
∞∑
L=0

P(x2 = L) · Us(L)

respectively. We note that these expected utilities depend on the steady state distribution

of the queue. In order to denote the steady state, we suppress the time argument in x2(t).

Remark 2. An app user arriving at the market is uncertain of when her order will be

ready if she orders early but is also uncertain of how long the line will be if she chooses to

visit the store. Probabilistically describing how the system will evolve is much simpler in

a discrete-time model than in a continuous-time model. We use a discrete-time model in

order to maintain tractability while capturing important features of the setting. Addition-

ally, this provides a fair amount of flexibility in the way we model services and arrivals.

Moreover, in regards to our assumption, that it takes one time period for an app user to

travel from the market to the store, the queue can still change significantly, and is driven

by both the services and the arrival of non-app users. Although this happens in a way that

is fundamentally limited, it maintains tractability.
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2.3. Customer Strategy

In this section, we characterize the ordering strategies for non-app users and app users

under general arrival and service processes for the models with and without information.

For the proofs of Theorem and Proposition in this section, we refer to Appendix B.4.

2.3.1. Store Customers

We refer to the non-app users and the app users who choose the offline option as store

customers. Upon observing the queue, store customers decide whether to join the queue

or balk. We note that app users who choose to order online, arrive at the store only for

pick-up and do not make any join/balk decision. Using an approach akin to Naor (1969),

it is straightforward to show that store customers join only if the observed queue length

is below a threshold, and they balk otherwise.

Non-app users, upon observing queue length x0(t), join only if their expected utility

is non-negative. We assume that arriving non-app users are randomly ordered and make

joining decision sequentially. Let nt denote the number of non-app users who join the

queue in period t. Then we have v − x0(t)+nt
µ

cwN ≥ 0, which implies

(2.5) nt ≤
(⌊ vµ
cwN

⌋
− x0(t)

)+

where bzc denotes the greatest integer less than or equal to z. Thus, non-app users join

only if the observed queue length, x0(t), is strictly less than the threshold
⌊
vµ
cwN

⌋
, and

balk otherwise. Hence, the effective number of non-app users joining the queue in period

t, is given by nt = min(At, (
⌊
vµ
cwN

⌋
− x0(t))+).
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An app user who chooses the offline option arrives at the store and observes queue

length x1(t). Similar to non-app users, this app user joins the queue only if her expected

utility is non-negative, i.e. v− x1(t)+1
µ

cwT ≥ 0. This implies that the app user joins only if

(2.6) x1(t) ≤
(⌊ vµ
cwT

⌋
− 1
)+

,

and balks, otherwise.

We denote the store threshold for the app users and non-app users by τs =
⌊
vµ
cwT

⌋
and

τn =
⌊
vµ
cwN

⌋
respectively. To avoid trivialities, we generally assume that τs ≥ 1 and τn ≥ 1,

such that store customers are willing to join, upon observing an empty queue. Both τn

and τs are similar to Naor’s threshold for observable queues (see Naor, 1969).

2.3.2. Online Customers: Model with Information

If queue information is available, an app user arriving at the market in period t faces no

uncertainty regarding the ordering decision of any app user who arrived before period t.

The state of the queue, x2(t), which is observable to the new app user, captures all the

past app user decisions. Thus, this app user follows a dominant strategy in which she

orders online if Uo(L) > Us(L), and chooses the offline option, if Uo(L) ≤ Us(L). Before

characterizing app users’ channel choice strategy, we make the following assumption.

Assumption 2. We assume that P(St = L) > 0 and the function D(L) given by,

D(L) :=

(
ESt,At+1 [nt+1(L)] · cwT

µ
− g(L)

)
−
(
ESt,At+1 [nt+1(L− 1)] · cwT

µ
− g(L− 1)

)
P(St = L)

,

is decreasing for all non-negative integer L, where g(L) = Us(L)− ESt,At+1(Ûs(L)).
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Now, we characterize the channel choice strategy for app users in the proposition

below.

Proposition 4. (Channel Choice Strategy)

(i) If cwT
µ
− cq ≥ 0, then there exists a threshold τu ≥ 0 such that an app user

arriving at the market orders online if 0 ≤ x2(t) ≤ τu, and chooses the offline

option, otherwise.

(ii) If cwT
µ
− cq < 0 and Assumption 2 holds, then

(a) If Uo(L) ≥ Us(L) for some non-negative integer L, there exist two thresholds

τl ≥ 0 and τu ≥ 0, such that, the app user orders online if τl ≤ x2(t) ≤ τu,

and chooses the offline option, otherwise.

(b) If Uo(L) < Us(L) for all L ≥ 0, the app user always chooses the offline

option.

If quality sensitivity is sufficiently low, then upon arriving at the market and observing

a long line, an app user chooses the offline option. Intuitively, a long line promises a long

wait in the store and an app user delays ordering to see if there is a favorable evolution

of the queue, in which case the app user orders at the store, and otherwise balks. On the

other hand, if quality sensitivity is relatively high compared to the waiting cost, then if

she observes a short queue, there’s a high likelihood that her order would be prepared

prior to her arrival at the store. Thus, exploiting the opportunity to sample the queue

twice, app users follow a dual-threshold policy where they alternate between walking in

(to avoid the quality penalty), ordering online (to shorten their wait), and walking in (to

avoid a very long wait) as the queue grows. If the quality sensitivity is extremely high
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compared to the wait sensitivity, for e.g., if cwT = 0 and cq > 0, then the online channel

is not viable, i.e. Uo(L) < Us(L) for all L ≥ 0, and app users always choose the offline

option.

2.3.3. Online Customers: Model without Information

In the absence of queue information, app users’ channel choice strategy depends on their

rational belief over the steady state queue length, x2. The steady state, in turn, depends

on the strategy followed by the app users. Thus, an equilibrium emerges, as presented in

Theorem 4. Since app users are homogeneous, we have a symmetric equilibrium strategy,

θ, which represents the probability than an app user orders online. The expected utilities

of ordering online and choosing the offline option are given by,

(2.7) U o(θ) = Ex2(Uo(x2)) and U s(θ) = Ex2(Us(x2))

respectively, where Uo(x2) and Us(x2) are given by (2.1) and (2.2).

Theorem 4. (Existence of Equilibrium) A symmetric Nash equilibrium, θ, for

app users arriving at the market in an omnichannel system without information, exists

and is given as follows:

(i) If U o(1) > U s(1) then θ = 1.

(ii) If U o(0) < U s(0) then θ = 0.

(iii) If U o(1) ≤ U s(1) and U o(0) ≥ U s(0) then there exists a θ∗ ∈ [0, 1] such that

U o(θ
∗) = U s(θ

∗) and θ = θ∗.
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In Theorem 4(iii), although we do not prove uniqueness, through all the computational

examples we have studied, we never encounter multiple equilibria.

Quality sensitivity is a key driver in determining when app users switch from ordering

online to choosing the offline option. We recall from (2.1), that Uo(L) is monotonically

decreasing in cq. Consequently, it is straightforward to show that, if all app users order

online, i.e. θ = 1, for a given set of parameters with some quality sensitivity ĉq, then

the same equilibrium θ = 1 continues to hold for all cq < ĉq. Conversely, if all app users

choose the offline option, i.e. θ = 0, for a set of parameters with some quality sensitivity

ĉq, all app users continue to choose the offline option, i.e. θ = 0, for all cq > ĉq.

2.4. Analytical Study

In this section, we analytically characterize the average throughput and the average

consumer surplus for single channel and omnichannel systems. To maintain tractability

we consider systems with the following assumptions:

• The number of arrivals of non-app users is such that P(At = 0) = 1
2

and P(At =

1) = 1
2
.

• The number of service slots generated is such that P(St = 1) = 1
2

and P(St =

2) = 1
2
.

• Wait-sensitivity of non-app users is such that 3
4
< cwN

v
≤ 3

2
, which implies that

non-app users join the system only if the queue is empty, i.e. τn = 1. We consider

the following two scenarios for the wait-sensitivity of app users:

(1) The wait-sensitivity of app users is comparable to the non-app users, i.e.,

we assume that 3
4
< cwT

v
≤ 3

2
. This implies that the app users at the store
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join only if the queue is empty, i.e. τs = 1. Alluding to the app users’ wait-

sensitivity, throughout the rest of this section we will refer to this setting as

the Impatient scenario.

(2) App users are less wait-sensitive than the non-app users, i.e., we assume that

1
2
< cwT

v
≤ 3

4
. This implies that the store threshold for app users is τs = 2.

Since, in this setting, the app users are more patient, throughout the rest of

this section we will refer to this as the Patient scenario.

We note that, these assumptions result in a smaller state space, which allows us to char-

acterize the steady state of the queue. This also allows us to explicitly solve for the online

ordering thresholds τl and τu without imposing Assumption 2. The qualitative aspects

of the results presented in this section extend to systems with more general arrival and

service processes for a wide range of parameters and customer primitives, which will be

illustrated in §2.5. For the details on the steady state calculations we refer to Appendix

B.2. For the proofs of results in this section we refer to Appendix B.5.

2.4.1. Customer Strategy and Throughput

In this section, we present and compare the customer strategy and the average throughput

for both scenarios, Impatient and Patient. First, we focus on customer strategy.

Proposition 5. The probability, θ, that an app user arriving at the market orders

online, in the omnichannel (without information) system for the Impatient scenario, is
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given by

θ =



1 if 0 <
cq
cwT
≤ 1

6
+

3

4
· v

cwT
,

12(v − cq)
3v − 2cwT

if
1

6
+

3

4
· v

cwT
<

cq
cwT

<
v

cwT
,

0 if
v

cwT
≤ cq
cwT

<∞.

Figure 2.2a illustrates the ordering strategy, θ, for app users in the Impatient scenario

as a function of their quality sensitivity. From Proposition 5 we note that, when quality

sensitivity is dominated by wait sensitivity, most app users order online. By ordering on-

line, app users reduce the likelihood of having to wait in the store for their order. Keeping

all else fixed, with increasing quality sensitivity, app users become more likely to not order

online and instead choose the offline option to avoid potential quality degradation of the

product. Now, in an omnichannel system with queue information, app users’ strategy

would depend on the queue length they observe. From Table 2.1 we note that, as the
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Figure 2.2. Comparision of combined (app users and non-app users) aver-
age per period throughput for the Impatient and Patient Scenarios, corre-
sponding to single channel, omnichannel (with information) and omnichan-
nel (without information) systems. The graph also illustrates the app users’
ordering strategy, θ, for the omnichannel (without information) system.
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Ordering strategy when

x2(t) 0 <
cq
cwT

<
1

3
+

1

2
· v

cwT

1

3
+

1

2
· v
cwT
≤ cq
cwT

<
v

cwT

v

cwT
≤ cq
cwT

<∞

0 Online Offline Offline

1 Online Online Offline

Table 2.1. Ordering strategy for app users arriving at the market, for the
omnichannel (with information) setting in the Impatient scenario, as a func-
tion of the queue length, x2(t).

ratio of quality sensitivity to wait sensitivity increases, all app users eventually choose the

offline option. This is similar to the case without information. Thus, both omnichannel

systems behave as a single channel system as quality sensitivity increases.

We, next, contrast this with app users’ strategy for the Patient scenario.

Proposition 6. The probability, θ, that an app user arriving at the market orders

online, in the omnichannel (without information) system for the Patient scenario, is given

by

θ =



1 if 0 <
cq
cwT
≤ 7

6
,

6cwT − 3cq
3cq − cwT

if
7

6
<

cq
cwT

< 2,

0 if 2 <
cq
cwT

<∞.

Similar to the Impatient scenario, in the Patient scenario, the probability that an app

user orders online, θ, decreases with increasing quality sensitivity of app users. Thus, for a

high enough ratio of quality sensitivity to wait sensitivity, all app users choose the offline

option. However, in this regard, the ordering strategy for app users in the omnichannel

(with information) setting for the Patient scenario (see Table 2.2) is different from the
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Impatient scenario. No matter how high the ratio of quality sensitivity to wait sensitivity

is, app users always order online if they observe a queue length of 2, upon arriving at the

market. The app user’s order would not get processed in the current time period since

only a maximum of 2 orders can be processed per period in this system. Thus, no quality

cost is incurred in this case. This illustrates how various aspects of the arrival and service

processes, and the evolution of the queue when the app users travel from the market to

the store, factor in app users’ ordering decision.

Furthermore, from Proposition 6 and Table 2.2, we observe that, keeping quality

sensitivity fixed, app users are more likely to order online as they become more wait-

sensitive. By ordering online, app users reduce the likelihood of having to wait in the store

for their order. Note that the ratio of valuation over wait sensitivities are constrained

in the Patient and Impatient scenarios. Under a more general setting in §2.5, we will

illustrate that, as the wait sensitivity for app users increases keeping all else fixed, all app

users arriving at the market eventually choose the offline option. Intuitively, for moderate

wait sensitivities, app users prefer ordering in advance to lower the likelihood of waiting

in the store. Highly wait-sensitive app users, on the other hand, prefers delaying making

Ordering strategy when

x2(t) 0 <
cq
cwT

< 1 1 ≤ cq
cwT

<
4

3

4

3
≤ cq
cwT

<∞

0 Online Offline Offline

1 Online Online Offline

2 Online Online Online

Table 2.2. Ordering strategy for app users arriving at the market, for the
omnichannel (with information) setting in the Patient scenario, as a func-
tion of the queue length, x2(t).
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an ordering decision until reaching the store for a potentially favorable evolution of the

queue. Thus, the ordering strategy for app users, θ, is not necessarily monotone in app

users’ wait sensitivity.

Next, we discuss the comparison of average throughput.

Proposition 7. The combined average per period throughput for the Impatient sce-

nario, corresponding to single and omnichannel systems are given as follows:

(1) Omnichannel without information:

λONI =



4

3
if 0 <

cq
cwT
≤ 1

6
+

3

4
· v

cwT
,

3v − 2cwT
3cq − 2cwT

if
1

6
+

3

4
· v

cwT
<

cq
cwT

<
v

cwT
,

1 if
v

cwT
≤ cq
cwT

<∞,

(2) Omnichannel with information:

λOI =



4

3
if 0 <

cq
cwT

<
1

3
+

1

2
· v

cwT
,

6

5
if

1

3
+

1

2
· v

cwT
≤ cq
cwT

<
v

cwT
,

1 if
v

cwT
≤ cq
cwT

<∞,

(3) Single channel:

λS = 1.
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See Figure 2.2a for illustration of Proposition 7. First, note that the average through-

put for omnichannel system with information is a step-function where each jump corre-

sponds to a change in the online ordering thresholds, τl and τu. In contrast, the average

throughput for omnichannel system without information changes smoothly with θ.

Figure 2.2a illustrates that, in the Impatient scenario, the omnichannel systems result

in higher average throughput compared to single channel. The online ordering option

draws in the demand early, which results in higher app user throughput. Non-app users,

on the other hand, get crowded out by the presence of the online channel. In the Impatient

scenario, going from single channel to omnichannel, increase in app user throughput

outweighs the reduction in non-app user throughput which results in increased overall

throughput.

Without information disclosure, channel choice made by app users arriving at the

market is based on their rational beliefs about the steady state of the system. If quality

sensitivity is low, then most app users would prefer ordering in advance. By disclosing

queue information, these customers would be deterred from ordering online in those unfa-

vorable states where queue length is too short (see Table 2.1). A shorter queue promises

a quicker service completion and hence a higher likelihood of incurring a quality penalty.

This lowers the average throughput for the omnichannel system with information. On the

other hand, if quality sensitivity is high, most app users would choose the offline option

in the absence of information. Disclosing queue information to these customers, in this

case, would lure them into placing online orders in favorable states of the system. This

increases the average throughput for the omnichannel system with information. Thus,
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neither of the two omnichannel systems delivers the highest average throughput across all

parameter regimes.

Now, we compare these results with the average throughput for the Patient scenario.

Proposition 8. The combined average per period throughput for the Patient scenario

corresponding to single and omnichannel systems are given as follows:

(1) Omnichannel without information:

λONI =



4

3
if 0 <

cq
cwT
≤ 7

6
,

1 +
18c2

q − 36cqcwT + 20c2
wT

36c2
q − 51cqcwT + 18c2

wT

if
7

6
<

cq
cwT

< 2,

4

3
if 2 ≤ cq

cwT
<∞,

(2) Omnichannel with information:

λOI =



4

3
if 0 <

cq
cwT

< 1,

5

4
if 1 ≤ cq

cwT
<

4

3
,

5

4
if

4

3
≤ cq
cwT

<∞,

(3) Single channel:

λS =
4

3
.

Surprisingly, Figure 2.2b illustrates that, the single channel system outperforms the

omnichannel systems in terms of average throughput in the Patient scenario. Note that
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the non-app users are more wait-sensitive compared to the app users. As a result, in the

omnichannel systems, enough non-app users get crowded out by the app users that the

overall throughput drops in comparison to the single channel setting.

Furthermore, we observe from Figure 2.2b that the average throughput for omnichan-

nel (without information) setting drops when app users follow a mixed equilibrium strat-

egy, i.e. they randomize between the online and the offline ordering options. When app

users either order online, i.e. θ = 1, or choose the offline option, i.e. θ = 0, their arrival

process is deterministic since we have assumed that only one app user arrives every time

period. In contrast, when app users follow a randomized strategy, i.e. 0 < θ < 1, their

arrival process becomes stochastic. Due to increase in variability in the arrival process,

the variability in queue length increases as well. Due to this, the queue observed by the

non-app users becomes stochastically larger when 0 < θ < 1. This, in turn, results in

more non-app users to balk in the omnichannel setting compared to the single channel

setting.

Similarly, for the omnichannel (with information) setting, the average throughput

drops in comparison to single channel. This happens when the ordering strategy for app

users (see Table 2.2), is such that, depending on the observed queue length, app users go

back and forth between the online and choosing the offline options. Thus, omnichannel

systems might not necessarily outperform a single channel system in terms of delivering

the highest average throughput. In §2.5, we show that these results hold under a more

general system with a wide range of system parameters and customer primitives.
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Figure 2.3. Comparison of average per period consumer surplus in the Im-
patient scenario for single channel, omnichannel (with information) and
omnichannel (without information) systems. For illlustrative purposes, val-
uation, app user wait sensitivity and non-app user wait sensitivity are fixed
at v = 1, cwT = 1 and cwN = 1.

2.4.2. Consumer Surplus

In this section, we present the analytical results on consumer surplus. We focus on the

Impatient scenario. In characterizing the average per period consumer surplus, we only

consider app users and non-app users who get served (outside option associated with

balking has zero utility). For ease of exposition, we use Figure 2.3 to illustrate these
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results and we refer to Lemmas 17, 19 & 21 in Appendix B.5 for the exact analytical

expressions.

Moving from a single channel to omnichannel systems, the presence of app users in

the system diminishes the consumer surplus for non-app users. From Figure 2.3 (a) and

2.3 (b) we observe that, for low to moderate quality sensitivities, app users benefit from

ordering online in the omnichannel systems. In doing so, the non-app users get crowded

out. In §2.5 we will illustrate that non-app users’ consumer surplus is consistently higher

in the single channel setting, for a wide range of parameters. We will also show that, in

contrast with the non-app users, the app users might not always prefer an omnichannel

system.

We observe from Figure 2.3 (a) that the app users benefit from queue information

disclosure. However, the effect of queue information disclosure on the overall system

depends on the combined effect on both customer types (see Figure 2.3 (c)).

In the Patient scenario, patient app users crowd out less patient non-app users. The

omnichannel systems serve more app users, and deliver higher combined consumer surplus

compared to single channel (see Lemmas 11, 13 & 15). However, using the Impatient

scenario, we show that, when evaluating the consumer surplus for app users and non-app

users combined, there is no channel arrangement that necessarily works best (see Figure

2.3 (c)). Depending on the system parameters and customer primitives, either single

channel system or omnichannel systems could deliver higher combined consumer surplus

than the other.
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2.5. Computational Study

In this section we computationally analyze single channel and omnichannel systems

with more general arrival and service processes. In particular, we assume that the number

of non-app users who arrive at the store each period, and the number of service slots

generated in each period follow independent Poisson distributions. Throughout the rest

of this section we keep valuation, v = 50, and mean service rate, µ = 2, fixed. We

illustrate that the qualitative features of the constrained system studied in §2.4 extend

to setting with a wide range of parameters of models including customer primitives, and

provide additional insights. We provide the details on the computational techniques to

calculate steady state in Appendix B.2.

2.5.1. Customer Strategy and Throughput

In Section 2.4.1 we observed that keeping all other parameters fixed, with increasing

quality sensitivity, app users in omnichannel (with information) system become more
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Figure 2.4. Plot (a) & (b) illustrate the non-monotonicity of average
throughput and the online ordering strategy respectively, for app users in an
omnichannel system without information. For illustration, the parameters
are set to cq = 26, cwN = 1 and ΛN = 0.3.
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likely to choose the offline option (see Propositions 5 and 6). However, with increasing

wait sensitivity, change in the app users’ ordering strategy, θ, is not as straightforward.

For a lower wait sensitivity, compared to quality sensitivity, app users are more likely to

not order online to avoid incurring the quality penalty. Keeping all other parameters fixed,

with increasing wait sensitivity, the possibility of waiting in store for order completion

plays a more dominant role in app users’ ordering decision. Thus, increasingly more app

users order online (see Figure 2.5a) to avoid incurring waiting cost. However, if app users

are highly wait-sensitive then they might not join a congested system. As a result, app

users delay making an ordering decision until reaching the store and checking out how

the queue has evolved. Thus, the fraction of app users ordering online eventually starts

to decrease (see Figure 2.6a) with increasing wait-sensitivity. This leads to the following

observation regarding the ordering strategy for app users in an omnichannel system.

Observation 1. Ordering strategy, θ, and hence, the average throughput for app users

in an omnichannel system without information is non-monotone in app users’ wait sen-

sitivity.

We compare this observation with the linearly decreasing demand function that is

assumed in Gao and Su (2017b). As illustrated in Figure 2.4, we show that the average

throughput (hence the demand), that emerges out of the equilibrium customer behavior,

might increase as app users become more wait-sensitive, and exhibits a non-linear form.

For comparison of the average throughput between a single channel and the omnichan-

nel systems, we consider two different scenarios. In Figure 2.5, the non-app users are more
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Figure 2.5. In these plots, non-app users are more wait-sensitive compared
to app users, i.e. cwT < cwN . Plot (a) shows the ordering strategy, θ, for
app users as a function of cwT . Plots (b), (c) and (d) compare the combined
(app users and non-app users) average per period throughput across single
channel and omnichannel systems by varying cq, cwT and ΛN respectively.
The base value of the parameters are set to cq = 20, cwT = 12, cwN = 30
and ΛN = 0.9.

wait-sensitive compared to the app users, whereas in Figure 2.6, the app users are more

wait-sensitive compared to the non-app users. We observe the following:

Observation 2. (i) If non-app users are more wait-sensitive compared to app users,

then single channel system may deliver higher average throughput compared to the om-

nichannel systems.
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Figure 2.6. In these plots, app users are more wait-sensitive compared to
non-app users, i.e. cwT > cwN . Plot (a) shows the ordering strategy, θ, for
app users as a function of cwT . Plots (b), (c) and (d) compare the combined
(app users and non-app users) average per period throughput across single
channel and omnichannel systems by varying cq, cwT and ΛN respectively.
The base value of the parameters are set to cq = 20, cwT = 54, cwN = 30
and ΛN = 0.9.

(ii) If app users are more wait-sensitive compared to non-app users, then omnichannel

systems deliver higher average throughput compared to the single channel system.

We consistently observe that as we move from single channel to omnichannel systems,

non-app users are crowded out by the app users. If non-app users are relatively more

wait-sensitive, we find that enough non-app users may balk in an omnichannel system
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that the overall throughput falls in comparison to a single channel system. This result

is illustrated in Figure 2.5 for a range of app users’ wait sensitivity, quality sensitivity

and different levels of congestion in the system (we recall that, in our model, we assume

only one app user arrives at the market each time period, and as a result, we alter the

level of congestion in the system by altering the arrival rate for non-app users only).

On the other hand, if app users are relatively more wait-sensitive, then offering online

ordering option increases system throughput, as illustrated in Figure 2.6. We note that

Observation 2(i) depends on the capacity of the system relative to the wait-sensitivity of

app users. When there is ample capacity, having non-app users crowded out negatively

affects throughput. For low capacity, the system utilization could become high enough to

outweigh the effect of the loss in non-app user throughput. Thus, for low enough system

capacity, the server remains busy mostly with online orders from app users. Indeed, the

thresholds τn and τs could be such that neither non-app users nor app users join the queue

in store. However, app users might still order online resulting in a positive throughput

for omnichannel system, as compared to zero throughput for single channel. We refer to

Appendix B.3 for details.

Exploring the effects of disclosing queue information on the average throughput in

omnichannel systems, as illustrated in Figure 2.6, leads us to the following observation:

Observation 3. (i) Which omnichannel information setup delivers the highest com-

bined average throughput depends on the parameters of the system.

(ii) Disclosing queue length information in an omnichannel system increases the combined

average throughput if app users are either highly wait sensitive or highly quality sensitive

or the system is highly congested.
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In the absence of queue information, based on the rational belief about the steady state

of the queue, app users who are highly wait-sensitive or highly quality-sensitive are de-

terred from ordering online. Disclosing queue information lures them into ordering online

in favorable states of the queue, thereby increasing system throughput. This observation

is echoed in our analytical characterization of the average throughput in Proposition 7,

as illustrated in Figure 2.2a. This result also resonates with a similar message by Chen

and Frank (2004) and Hassin and Roet-Green (2018). However, we extend their result

from single channel to omnichannel setting with multiple customer types.

Thus, from the firm’s perspective, there is no silver bullet. No channel arrangement

delivers the highest throughput (and thus revenue) in all parameter regimes.

2.5.2. Consumer Surplus

In this section, we compare the average consumer surplus for app users and non-app

users across single channel and omnichannel systems, as summarized in the following

observation:

Observation 4. (i) Single channel system delivers the highest average consumer sur-

plus for non-app users.

(ii) Average consumer surplus for app users in a single channel system may be higher com-

pared to an omnichannel system without information for moderate to high wait sensitivity

for app users.

The presence of app users in omnichannel systems negatively impacts non-app users,

and hence, single channel system dominates the omnichannel systems in terms of the

average consumer surplus for non-app users. We observe this in Figure 2.7a.
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Figure 2.7. The above plots compare the average consumer surplus for non-
app users and app users, across single channel, omnichannel (with infor-
mation) and omnichannel (without information). The base values of the
parameters in this figure are set to cq = 20, cwT = 25, cwN = 30 and
ΛN = 0.9.

Surprisingly, we find that the app users, on the other hand, might not necessarily

benefit from an omnichannel system, as illustrated in 2.7b. In the absence of queue

information, app users arriving at the market makes ordering decisions based on their

rational beliefs about the steady-state queue. If app users are moderately to highly wait-

sensitive, ordering online can result in loss of consumer surplus since app users might

join the system in unfavorable states with long queue. In contrast, app users walking

in to a single channel system could balk when the queue is unfavorably long. In this

sense, single channel systems offers visibility of congestion. This results in a trade-off

between visibility in a single channel system and the advantage of ordering early in an

omnichannel system without information (Baron et al., 2019 considers a similar trade-off).

As a result, higher app user wait-sensitivity could lower the average consumer surplus for

omnichannel system (without information) in comparison to single channel. Disclosing

queue length information would resolve this trade-off, and result in an increase in the
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average consumer surplus for app users. We illustrate this result in Figure 2.7b where we

note that, for example when cwT = 55, consumer surplus is higher in the single channel

system compared to an omnichannel setting without information.

The main takeaway from this section is summarized in the following observation:

Observation 5. Neither single channel systems nor omnichannel systems dominate

one another in terms of the combined (non-app users and app users) average consumer

surplus.

In Figure 2.8b, the arrival rate for non-app users is half that of the app users’ arrival

rate. In this case, we observe that the single channel is dominated by the omnichannel

systems in terms of consumer surplus. In contrast, as illustrated in Figure 2.8a, single

channel delivers highest consumer surplus when the proportion of non-app users in the
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Figure 2.8. Combined (non-app users and app users) average consumer sur-
plus across single channel, omnichannel (with information) and omnichan-
nel(without information). In plot (a), ΛN > ΛT , and in plot (b) ΛN < ΛT ,
where ΛN and ΛT are arrival rates for non-app users and app users re-
spectively. For illustration purposes, the parameters are set to cwN = 20,
cwT = 22 and cq = 10.
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system is higher. Hence, we need to consider the relative proportion of app users and

non-app users in the system, when comparing the consumer surplus for both customer

types combined. Indeed, it is possible that both customer segments are worse-off when

online ordering is offered.

2.6. Conclusion

Omnichannel services are increasingly commonplace; most quick-service restaurants

have integrated the physical with the digital spaces. While these novel systems aim

to reduce customer wait by drawing in demand through the online ordering option, not

much is known about their design implications on throughput of the system and consumer

surplus generated. In particular, the effect of queue information disclosure on the system

is not well understood. We adopt a discrete-time queuing model to compare single channel

and omnichannel systems (with and without information provision), in terms of customer

strategy, throughput, and consumer surplus. Additionally, we consider a richer customer

utility model by incorporating customers’ sensitivity to product quality.

We find that, the interplay between quality sensitivity and wait sensitivity results

in a dual-threshold policy for app users’ channel choice. In terms of delivering highest

throughput, either single channel or omnichannel systems could dominate depending on

the relative wait-sensitivities of app users and non-app users. Moreover, in an omnichannel

system, the firm could use information disclosure as an operational lever to increase

throughput when app users are either highly quality sensitive or highly wait-sensitive,

or if the system has high congestion. Thus, we find that from the firm’s perspective

there is no silver bullet; no channel arrangement delivers the highest throughput for all
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system parameters. From the customers’ perspective, we once again find that neither the

omnichannel nor the single channel system dominates the other in terms of the average

consumer surplus for both type of customers combined. The overall consumer surplus

depends on the relative proportion of app users and non-app users in the system. Indeed,

it is possible that both segments are worse-off when online ordering is offered.

A common thread in our findings is that the impact of developing an online channel

depends on the reaction of non-app users. Almost by definition, offering online ordering

option disadvantages these consumers. While app users have the choice of when to order,

non-app users are constrained to walking into the store where they may find themselves

crowded out by app users. Thus, forecasting the overall performance of omnichannel

systems requires a careful calibration of customer primitives and consideration of the

relative proportion of non-app users in the system, in comparison to app users.

Our results hinge on the behavior of the non-app users even though several of our

assumptions actually favor these customers. For example, we have used the simple first-

in, first-out queue to model the service system. In reality customers may face a tandem

queue, first queuing to place their order and then having their orders queued for processing.

Mobile orders would be placed directly in the processing queue. A customer at the store

deciding whether to enter the order queue would have to consider both all the work in

front of her as well as mobile orders that might arrive to the processing queue before she

gets to place her order. It is worth noting that moving to a tandem arrangement would

only amplify our key result that omnichannel systems adversely impact those using the

conventional channel and that the loss of these customers may outweigh gains from online

sales.
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A related argument could be made about relaxing our assumption that there is no

cost to visiting the store (Baron et al., 2019 and Roet-Green and Yuan, 2019 make similar

assumptions) in person. Because of this assumption app users in our model do not balk

until they have traveled to the physical store and observed the queue. That is, they have

a choice of when to order. That still holds if there is non-zero traveling cost. However, it

could complicate the app users’ ordering strategy, for example, app users could potentially

randomize between ordering online, choosing the offline option, and balking (before going

to the store). In this sense, a zero travel cost allows parsimony without a significant loss of

insight on app user behavior. Moreover, a non-zero traveling cost for all customers would

adversely affect non-app users. They would now have to evaluate whether the expected

net benefit of going to the store outweighs the cost to get there. A channel structure

that increases the number of app users in the system could then result in fewer non-

app users visiting the store. In our current model, the number of app users visiting the

store is independent of the channel structure; alternative structures just result in different

numbers of non-app users joining the queue. Positive travel costs could exacerbate this

by having fewer non-app users actually enter the store.

In our paper, we consider two type-dependent wait sensitivities. Future research could

explore the effect of incorporating a higher degree of heterogeneity within each customer

type. With respect to information disclosure, consistent with the literature, we focus

on queue length information. One could extend the analysis to explore the effect of

disclosing other type of congestion information, for e.g. expected wait times, to the app

users. Finally, using our model to explore the effect of service prioritization in the presence

of quality sensitive customers could be a worthwhile direction for future research.
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CHAPTER 3

To App or Not to App: Omnichannel Competition Among

Retail Services (Joint work with Achal Bassamboo and Martin

Lariviere)

3.1. Introduction

Large firms in the quick-service industry have taken the lead in developing their own

digital ordering app. Major players such as Starbucks and Dunkin’ have been among the

early adopters of this technology. But even to this day, other players in the industry are

investing resources to develop digital infrastructure in order to offer digital apps to their

customers. While having the app-ordering option is appealing to customers, who seem

to value the convenience of ordering and payment it provides, still not all players in the

industry offer an app. It is not clear whether it is the fixed cost of developing the digital

infrastructure that is deterring these firms from offering apps, or is there something more?

We examine whether offering apps to customers necessarily always leads to higher revenue

for firms in a competitive market even if we ignore the upfront cost of implementing an

app.

In a mature competitive market, through repeated interactions customers develop

loyalty towards particular firms (see Klein, 2018). Firm loyalty could arise from a variety

of factors such as: customers’ affinity towards specific product attributes, convenience

arising from location of a store or due to any number reasons pertaining to customer
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idiosyncrasies. For example, while customer A might prefer Starbucks over a locally owned

independent coffee shop (say, Chicago-based Backlot Coffee), because the Starbucks store

is on the way of her daily commute, customer B might prefer Backlot Coffee because she

likes a particular blend of coffee that is available only at Backlot. In this setting, each

customer when they are in the market for coffee, prefers being served by their preferred

store over the other. However, since most customers are delay-sensitive, they might be

willing to receive service from their second-choice if their first-choice is highly congested.

In this sense, the firms serve a segmented market where each customer in the market has

a preference to be served by a particular firm and visit the other alternative if the waits

at the preferred firm is too long.

In a segmented and competitive market, the level of congestion could depend on

whether or not firms offer apps, since availability of apps affects customers’ ordering

strategy. In particular, there are two aspects of app-ordering that might affect congestion:

advanced-ordering effect and information disclosure. Advanced-ordering effect simply

refers to customers’ ability to order whenever and from wherever they want. Information

disclosure refers to the practice of communicating congestion information to customers via

the app. This assumption is motivated by firms such as Starbucks which offer estimated

waiting time to customers via the app before they decide whether or not to order. While

Backlot stores are often located near Starbucks outlets, Backlot Coffee does not offer app

even though Starbucks does. Now, consider a loyal Starbucks customer opening the app

on her phone and realizing long waiting-time. Should this customer still place an order for

her favorite coffee with Starbucks, possibly ending up waiting a long time before getting

her coffee? Or should she consider walking-in to her second choice, i.e. Backlot Coffee, on
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the off-chance that it is less congested compared to Starbucks? This trade-off is central

to the analysis in our work.

We present a game-theoretic framework to analyze and compare the revenue for two

retail firms when they compete with each other on whether to offer a digital ordering

app or not (even if we ignore the upfront cost of implementing an app). In this work we

address the following research question: Does offering a digital ordering app always leads

to an increase in firms’ revenue in a competitive setting?

3.2. Literature Review

There is an extensive literature on markets where servers compete over delay-sensitive

customers by posting prices. Most of these papers use a two-stage game wherein the first

stage servers announce prices, following which customers in the second stage select servers

accordingly (see Hassin and Haviv, 2003). Our work differs from this literature in that

we consider a market where the firms are price-takers. Instead of price competition, we

consider a competitive setting where we examine to what extent firms’ revenue changes

upon offering digital ordering apps, which provide congestion information and advanced

ordering options.

Our work is also related to the literature on competition in availability. Dana Jr and

Petruzzi (2001), considers a setting where customers incur a cost in case of a stock-out,

which affects firm’s inventory decisions. Lippman and McCardle (1997), and Mahajan and

Van Ryzin (2001) consider similar markets where customers exogenously decide which firm

to visit first but they may switch among competitors if the first firm stocks-out. In our

work we consider a mature market so that customers have a preference of being served by
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a particular firm. However, a congested system might drive customers to the competitor.

Moreover, our paper considers firm’s capacity as exogenously given and focuses on whether

or not to offer digital apps, which affect customer ordering decision through availablity of

congestion information.

There is body of research in revenue management that considers competitive settings

in airline industry, focusing on implications of competitive allocation on seat inventory

control (see Netessine and Shumsky, 2005). In these settings, the allocation of seat in-

ventory among fare classes by one airline affects the quantity of customer demand and

optimal seat allocation of the other airline. In Netessine and Shumsky (2005), the decision

is to allocate fixed capacity among two customer classes. In contrast, in our work instead

of explicit allocation rules, the availibility of apps determine the extent to which capacity

gets allocated among app-users and walk-in customers.

Finally, our work is closely related to the work on restaurant reservation by Alexandrov

and Lariviere (2012). They address the question of whether or not restaurants should

offer reservations. They extend their analysis to a competitive environment. The focus

in their work is on reservations’ ability to influence customer behavior and thus increase

sales. Similar to our work, Alexandrov and Lariviere (2012) considers market uncertainty

with two demand states. In our work, a high demand realization might affect customers’

willingness to walk-in to the firm due to anticipated congestion. This can be counteracted

by offering apps where customers could order in advance. However, in a competitive

setting it is not clear whether offering an app necessarily leads to higher revenue for a

firm.
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3.3. Model

In this section we present a game-theoretic model for analyzing competition among

firms for offering digital apps to customers.

Market. The market is comprised of two revenue-maximizing firms indexed by i =

1, 2. We denote the competitor to firm i by i−. The capacity of firm i to serve customers is

denoted by µi > 0 where i = 1, 2. Every customer in the market has an a priori preference

to be served by one of the two firms. If a customer is served by her most preferred firm,

her valuation for service is denoted by v > 0. On the other hand, if she is served by

her second-choice, then her valuation for service is denoted by v̂, where 0 < v̂ < v. In

this sense, the market is segmented into loyal and non-loyal customers. The size of the

customer segment comprised of customers loyal to firm i is denoted by Λi where i = 1, 2.

All customers in a given segment are homogeneous. The realization of the market sizes

is random, i.e. Λi is a random variable which takes values Hi and Li with probability pi

and 1 − pi respectively, where 0 < Li < Hi. We assume that the realizations for Λ1 and

Λ2 are independent of each other. The parameters pi, Li and Hi are common knowledge

to all the customers and the two firms in the market. Finally, all customers in the market

are delay-sensitive. We model customers’ waiting cost such that customers loyal (or non-

loyal) to firm i seek service with firm i as long as their position in line (if they were to

seek service), among all the customers seeking service, is not greater than a threshold,

τi (or τ̂i). In particular, let Xi denote the line position of a customer if she were to join

the queue for firm i. We model waiting cost ci(Xi) (or ĉi(Xi)) for a customer loyal (or
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non-loyal) to firm i as follows:

ci(Xi) =


0 if Xi ≤ τi

∞ if Xi > τi

, ĉi(Xi) =


0 if Xi ≤ τ̂i

∞ if Xi > τ̂i

.

We assume that τ̂i < τi for i = 1, 2. We can think of τi and τ̂i to be implicitly linked

to either the capacity of the firm or customers’ valuation for service; a customer might

be willing to join a longer line if the firm has larger capacity, or customers have a higher

valuation for service. An exact relationship of τi or τ̂i with capacity or valuation is a

modeling choice. In our model we do not explicitly assume any such relationship (except

in §3.4 Figure 3.2). Furthermore, we focus our analysis on the case where the thresholds

satisfy the following condition:

(3.1) Li + 1 ≤ τi < Hi

for i = 1, 2. Condition (3.1) captures the setting where a high demand realization corre-

sponds to a congested system, such that not all loyal customers choose to join service. On

the other hand, a low demand realization corresponds to a lightly loaded system. Before

the game begins, each of the two firms decides whether or not to offer an app. This

decision is common knowledge to all the customers and both firms in the market.

Game. Now, we describe the game. We propose a two-period game.

Period 1. First, the market sizes, Λ1 and Λ2, are realized but not necessarily observed.

Depending on whether or not firm i offers app, there are two scenarios:
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(i) App. If firm i offers an app, all customers loyal to firm i open the app. These

customers simultaneously decide whether or not to order through the app. We

can think about the app-ordering process as follows. First, these customers are

uniformly randomly ordered. Then, depending upon the threshold τi and the

demand Λi, customers up to τi order through the app. Along with condition

(3.1), this implies that for a low demand realization of Λi = Li, all Li loyal

customers seek service with firm i through the app. However, for a high demand

realization of Λi = Hi, only τi out of Hi loyal customers join the queue for service

through the app. Each of the remaining Hi − τi customers randomly decide

between firm i− and balking at the start of Period 2. We model this decision by

each customer independently flipping a Bernoulli coin with probability θi, where

θi represents the probability that the customer walks-in to firm i− in Period 2.

Probability that the customer balks at the outset is 1−θi. Henceforth, we use the

notation B(n, p) to denote a Binomial random variable with n trials and success

probability p. The total number of customers who walk-in to firm i− in Period 2

is distributed according to a Binomial random variable, B(n, p) where n = Hi−τi

and p = θi.

By opening the app, all customers loyal to firm i gain perfect knowledge of

the realization of Λi. However, this knowledge does not resolve their uncertainty

regarding the realization of the market size Λi− , the customer segment loyal to

competitor firm i−.

(ii) No App. If firm i does not offer app, customers loyal to firm i remain uncertain

about the realizations of both customer segment sizes Λi and Λi− . In the absence
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of an app, customers loyal to firm i cannot order in Period 1. They are faced

with two decisions: (i) first they randomly decide whether to balk in Period 1

and not patronize either of the two firms in Period 2, or (ii) to not balk in Period

1 and subsequently randomly decide which one of the two firms to visit in Period

2. We use αi to denote the probability with which each of the Λi customers does

not balk in Period 1. We further use θi to denote the probability with which each

of the customers, who does not balk, visits the competitor firm i− in Period 2.

Thus, for each customer there are three possible random outcomes: (i) balk in

Period 1 with probabilily 1 − αi, (ii) do not balk in Period 1 and visit firm i−

in Period 2 with probability αiθi, and (iii) do not balk in Period 1 and visit firm

i in Period 2 with probability αi(1 − θi). We will henceforth use the notation

O(Λi, 1 − αi) to denote the random number of customers out of Λi customers

who balk in Period 1, we will use O(Λi, αiθi) to denote the random number of

customers who do not balk in Period 1 and visit firm i− in Period 2, and finally

we will use O(Λi, αi(1 − θi)) to denote the random number of customers who

do not balk in Period 1 and visit firm i in Period 2, where the random vector

(O(Λi, 1 − αi), O(Λi, αiθi), O(Λi, αi(1 − θi))) follows a Multinomial distribution

with Λi trials and the vector of success probabilities (1− αi, αiθi, αi(1− θi)).

Period 2. Depending upon whether or not each of the two firms offer apps, some fraction

of customers in Period 1 visit the two firms in Period 2 according to their decisions in

Period 1, as described above. As a result, first, the markets in Period 2 are realized for

each of the two firms. Each of these markets are potentially comprised of loyal as well

as non-loyal customers corresponding to that firm. Subsequently, all customers in each
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of the Period 2 markets, simultaneously decide whether to seek service or to balk. All

services take place at the end of Period 2. For any given firm i, if there are customers who

joined the queue in Period 1, they are served before the service for Period 2 customers

takes place.

Before we present customer utilities, let us describe the general problem of customers

joining service in Period 2. We will use the notation in this description to represent the

customer utilities, and use the solution for this problem to solve the two-period game.

Description of Period 2 ordering problem. For a given firm i, let Mi and

M̂i denote the number of loyal and non-loyal customers, respectively, who visit firm i in

Period 2 (walk-in customers). Also, let qi denote the initial number of customers who

joined the queue at firm i in Period 1. All customers in the Period 2 market are ordered

uniformly randomly before they decide whether to join firm i or balk. Given any ordering,

all non-loyal customers seek service up to a threshold τ̂i. Similarly, all loyal customers

seek service up to threshold τi. All remaining customers balk. Given thresholds τi and τ̂i

and the realized markets, the probability that a customer loyal to firm i joins service in

Period 2 with firm i, is denoted by,

(3.2) πτi,τ̂i(qi,Mi, M̂i).

Similarly, the probability that a customer not loyal to firm i joins it’s queue in Period 2

is denoted by,

(3.3) π̂τi,τ̂i(qi,Mi, M̂i).
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For brevity of notation, we will henceforth use πi interchangeably with (3.2), and π̂i

interchangeably with (3.3).

Let us consider an example for the ordering process with firm i in Period 2. Let Mi = 4,

M̂i = 3, qi = 1, τ̂i = 3 and τi = 6. Thus, there are four loyal and three non-loyal customers

in the Period 2 market for firm i, and there is one customer who joined service with firm

i in Period 1. Let n1n2l1n3l2l3l4 denote a possible ordering for the Period 2 customers,

where lk and nk are the kth loyal and kth non-loyal customers respectively. Since we assume

that Period 1 customers get served before Period 2 customers, the effective positions of

customers n1, n2 and l1 are 2, 3 and 4 respectively. These customers join service. Customer

n3 balks since her position is 5 and τ̂i = 3. Now, since n3 balks, effective positions for l2,

l3 and l4 become 5, 6 and 7. Since, τi = 6, customers l2 and l3 join service, but customer

l4 balk.

Customer Utility. As already mentioned, customers’ valuation for being served by

their most-preferred firm and second-preferred firm are v > 0 and v̂ > 0 respectively. In

addition, here we introduce cost D > 0 that the customers incur when they visit a firm

in Period 2 but do not seek service due to congestion. This represents the hassle cost of

being turned away. All customers who balk in Period 1 get zero utility.

First, let us focus on utilities in Period 2 for customers who visit either of the two

firms in Period 2. As per our description of Period 2 above, these customers are first

uniformly randomly ordered, and then they either join service or balk depending on their

position in the ordering. Thus, the utility of a loyal firm i customer who ends up in the
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market for firm i in Period 2 is given by,

(3.4) ui(qi,Mi, M̂i) = πi · v + (1− πi) · (−D).

where, as per (3.2), πi represents the probability that in Period 2 a loyal firm i customer

joins service with firm i. Similarly, the utility of a customer who is not loyal to firm i and

ends up in the market for firm i in Period 2 is given by,

(3.5) ûi(qi,Mi, M̂i) = π̂i · v̂ + (1− π̂i) · (−D).

We note that (3.4) and (3.5) depend on the realizations of qi,Mi and M̂i through πi and

π̂i. Now, depending on whether or not each of the two firms offer an app, there are four

scenarios which is denoted by (yi, yi−) where yi, yi− ∈ {A,NA} are the decisions of firm i

and firm i− respectively (A stands for app and NA stands for no app). For a customer in

Period 1 who is loyal to firm i, we present the expected utility associated with all possible

actions in each of the four scenarios:

Scenario (A,A): As already mentioned, if Λi = Li, all of these Li loyal customers

join firm i through the app in Period 1. If Λi = Hi, there are B(Hi − τi, θi) loyal

customers who visit firm i− in Period 2, where B(n, p) denotes a Binomial random variable

with n trials and success probability p. From (3.5), utility associated with this action is

ûi−(qi− ,Mi− , M̂i−), where Mi− = 0, M̂i− = B(Hi − τi, θi), and qi− = Li− if Λi− = Li− and

qi− = τi− if Λi− = Hi− . Thus, the expected utility is given by,

(3.6) EB,Λi− [ûi−(min(τi− ,Λi−), 0, B(Hi − τi, θi))].
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Scenario (A,NA): Similar to Scenario (A,A), if Λi = Li, all Li loyal customers join

firm i through the app in Period 1. If Λi = Hi, then B(Hi − τi, θi) loyal firm i customers

visit firm i− in Period 2, and the remaining customers balk. Since, firm i− does not offer

an app in this scenario, Mi− = O(Λi− , αi−(1− θi−)) customers loyal to firm i− visit firm

i− in Period 2. The expected utility associated with the action of a firm i loyal customer

visiting firm i− in Period 2 is given by,

(3.7) EB,O,Λi− [ûi−(0, O(Λi− , αi−(1− θi−)), B(Hi − τi, θi))].

Scenario (NA,A): In this scenario, since firm i does not offer app, customers loyal

to firm i choose to visit either firm i or firm i− in Period 2. We present the expected

utilities associated with these two actions. Using (3.4), the expected utility for a loyal

firm i customer visiting firm i in Period 2 is given by,

(3.8) EB,O,Λi,Λi− [ui(0, O(Λi, αi(1− θi)), B(max(0,Λi− − τi−), θi−))].

Using (3.5), the expected utility for a loyal firm i customer visiting firm i− is given by,

(3.9) EO,Λi,Λi− [ûi−(min(τi− ,Λi−), 0, O(Λi, αiθi))].

Scenario (NA,NA): In this scenario neither firm offers an app. The expected utility

of a customer loyal to firm i associated with the action of visiting firm i in Period 2 is

given by,

(3.10) EO,Λi,Λi− [ui(0, O(Λi, αi(1− θi)), O(Λi− , αi−θi−))].
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Finally, the expected utility of a customer loyal to firm i associated with the action of

visiting competitor firm i− is given by,

(3.11) EO,Λi,Λi− [ûi−(0, O(Λi− , αi−(1− θi−)), O(Λi, αiθi))].

In each of the four scenarios described above, customers in Period 1 choose actions that

maximize their expected utility in Period 2 given by expressions (3.6), (3.7), (3.8), (3.9),

(3.10) and (3.11). In all of the four Scenarios, we denote the optimal customer decisions

by α∗i , α
∗
i− , θ

∗
i and θ∗i− .

Throughput. Next, we present the expressions for throughput for firm i in all the

four scenarios.

Scenario (A,A): In this scenario, since firm i offers an app, qi = min(τi,Λi) cus-

tomers join using the app in Period 1. In Period 2, there are Mi = 0 customers from firm

i and M̂i = B(max(0,Λi−− τi−), θi−) customers from firm i−, where B(n, p) denotes a Bi-

nomial random variable with n trials and success probability p. Thus, firm i’s throughput

is given by,

(3.12) EB,Λi,Λi− [qi + π̂i(qi, 0, M̂i) · M̂i].

Scenario (A,NA): Firm i’s throughput in this scenario is given by,

(3.13) EO,Λi,Λi− [qi + π̂i(qi, 0, M̂i) · M̂i].

where qi = min(τi,Λi), Mi = 0 and M̂i = O(Λi− , αi−θi−).
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Scenario (NA,A): In this scenario, since firm i does not offer an app, no customers

join firm i in Period 1. Thus, qi = 0. In Period 2, there are Mi = O(Λi, αi(1 − θi))

customers from firm i and M̂i = B(max(0,Λi−− τi−), θi−) customers from firm i−. Hence,

the throughput for firm i is given by,

(3.14) EB,O,Λi,Λi− [πi(0,Mi, M̂i) ·Mi + π̂i(0,Mi, M̂i) · M̂i].

Scenario(NA,NA): Finally, the throughput for firm i in this scenario where none

of the two firms offer an app, is given by,

(3.15) EO,Λi,Λi− [πi(0,Mi, M̂i) ·Mi + π̂i(0,Mi, M̂i) · M̂i].

where Mi = O(Λi, αi(1− θi)) and M̂i = O(Λi− , αi−θi−).

In the following section, we numerically compute the optimal customer decisions,

α∗i , α
∗
i− , θ

∗
i and θ∗i− , for specific scenarios and parameter values. We then use it to numer-

ically compute the throughput under the scenarios considered, in order to evaluate the

firm’s optimal decision.

3.4. Numerical Results, Discussion and Future Work

In this section, we examine under what parameter regime offering an app increases

throughput for a firm when its competitor offers an app. We consider throughput as

a proxy for the firm’s revenue. We compare the throughput for firm 2 under Scenarios

(A,A) and (NA,A) where firm 1 always offers an app. In particular, for simplification of

our analysis, we examine these two scenarios by setting the value of the parameter D = 0,

which is the hassle cost of visiting the store in Period 2 but not being served. Thus, no
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Figure 3.1. Value of the difference in throughput for Firm 2 between the two
Scenarios (A,A) and (A,NA). Positive values in the color scale correspond to
higher throughput when Firm 2 offers an app, i.e. Scenario (A,A). Negative
values correspond to higher throughput when Firm 2 does not offer an app,
i.e. Scenario (A,NA). Parameter values: v = 1, v̂ = 0.9, τ1 = τ2 = 5,
τ̂1 = τ̂2 = 4, L1 = L2 = 1, H1 = H2 = 10 and D = 0.

customer in Period 1 balks at the outset, and always optimally decides to visit one of

the two firms in Period 2. This implies α∗2 = 1 and θ∗1 = 1, when firm 1 always offers an

app in Scenarios (A,A) and (NA,A). We numerically compute θ∗2 using expressions (3.8)

and (3.9), and use it to compute firm 2’s throughput using expressions (3.12) and (3.14)

under optimal customer decisions. Figure 3.1 and Figure 3.2 specify the values of the

parameters of the model that we solve for, and illustrate our findings.

In Figure 3.1, we look at the difference in firm 2’s throughput between Scenario (A,A)

and Scenario (NA,A), where firm 1 always offers an app. The X-axis and the Y-axis

represent the probabilities, p1 and p2, with which firm 1 and firm 2 respectively have

a high demand realization. The region in Figure 3.1 with positive values according to
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the color-scale correspond to parameters values (p1, p2) where offering an app leads to

higher throughput for firm 2. We keep all other parameters same for both firms. We

observe that, when it is better for firm 2 to offer an app, the probability of high demand

realization is relatively lower for firm 1 compared to firm 2 when all other parameters

of the model are same for both firms. In the absence of an app, firm 2 customers do

not observe the realized demand for firm 2 in Period 1. As a result, in expectation firm

2 customers are more likely to visit firm 1 in Period 2 because they anticipate a higher

likelihood of being served. Offering an app puts firm 2 customers at an advantage; they

get to see the demand realization in Period 1 and order in advance. Thus, by offering an

app, firm 2 keeps loyal customers from defecting. In this case, firm 2’s decision to offer

an app is driven by retaining its loyal customers, given that there are not enough firm

1 customers who would potentially visit firm 2 in Period 2 due to a low probability of a

high market realization for firm 1.

However, when the probability of high demand realization for firm 1 is relatively high

compared to firm 2, offering an app might hurt firm 2. When an app is available, some of

the firm 2 customers order in advance through the app in Period 1. This could prevent

potential firm 1 customers from seeking service at firm 2 in Period 2. This is true especially

since firm 1 loyalists have a lower joining threshold, τ̂2, compared to the threshold, τ2, for

loyal firm 2 customers. As a result, firm 1 customers are deterred from visiting firm 2 in

Period 2. This results in lower throughput for firm 2 since there are relatively more firm

1 customers in the market in expectation compared to firm 2 customers. When an app is

not offered by firm 2, all Period 2 customers in the market simultaneously make joining
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Figure 3.2. Value of the difference in throughput for Firm 2 between the two
Scenarios (A,A) and (A,NA). Positive values in the color scale correspond to
higher throughput when Firm 2 offers an app, i.e. Scenario (A,A). Negative
values correspond to higher throughput when Firm 2 does not offer an app,
i.e. Scenario (A,NA). Parameter values: v = 1, v̂ = 0.9, p1 = p2 = 0.3,
L1 = L2 = 1, H1 = H2 = 10, D = 0. We assume that τ̂1 =

⌊(
v̂
v

)
τ1

⌋
and

τ̂2 =
⌊(

v̂
v

)
τ2

⌋
.

decisions, which increases the likelihood of firm 1 customers joining service with firm 2.

Thus, not offering app in this case results in higher throughput for firm 2.

Again, in Figure 3.2 we look at the difference in firm 2’s throughput between Scenario

(A,A) and Scenario (NA,A), where firm 1 always offers an app. In this case, the X-axis

and the Y-axis represent the joining thresholds for loyal customers of firm 1 and firm 2

respectively. We assume that the threshold for non-loyal customers, τ̂i, weakly increases

with τi. We can implicitly link the change in τi with a change in firm i’s capacity. Thus,

a higher value of τi corresponds to a firm with larger capacity. All other parameters are

fixed at the same values for both firms. An insight similar to Figure 3.1 is generated
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from Figure 3.2. We observe that, for a fixed value of τ2, it is better for firm 2 to offer

an app beyond a certain value of τ1. As we increase τ1 keeping τ2 fixed, τ̂1 increases as

well. Consequently in the event of a low demand realization for firm 1, the likelihood

that a loyal customer from firm 2 visiting firm 1 in Period 2 is served increases as well.

Additionally, in the event of high market realization for firm 1, an increase in τ1 results

in lesser number of firm 1 customers visiting firm 2 in Period 2. Thus, offering an app

allows firm 2 to retain its loyal customers and thus resulting in a higher throughput.

To summarize our work, we consider competing service providers, with the goal of

examining whether offering an app always leads to an increase in the firm’s revenue when

the competitor firm offers an app. Availability of an ordering app affects customers’

choice of firm i) by offering customers visibility to the level of system congestion, and ii)

by offering customers the option to order in advance before arriving at the store. If an app

is not available, customers make decisions a priori without any available information about

the congestion. In this case, customers first decide whether or not to patronize either of

the two firms, and if they do, they additionally decide whether to visit the preferred

firm or the competitor firm. As a result, a firm could potentially lose its loyal customers

to its competitor. Informing customers about congestion in the system via an app may

alleviate this problem. On the other hand, if an app is available, the advanced-ordering

effect may result in a higher congestion in the system, which may deter the competitor’s

customers from joining the system. Thus, taking into consideration the relative sizes of

their customer bases, and the joining thresholds for the two customer segments, offering

an app might or might not be in the firm’s best interest, even if we ignore the upfront

cost of implementing an app. Firms’ app-offering strategy would depend, among other
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factors, on the extent to which they are trying to retain their loyal customers, and the

extent to which they are competing for their competitor’s customers.

In our future work, using the framework described in this chapter, we would like to

solve a simultaneous-move game where both firms decide whether or not to offer an app.

We will analyze the equilibrium outcome of that game under various parameter regime.

Our findings from the example in this section establish that the scenario where both firms

offer an app might not necessarily be an equilibrium outcome of the game, and a firm’s

best response might be to not offer an app given the competitor’s decision to offer an app.

We would like to investigate whether or not there always exists an unique equilibrium.

Additionally, it would be interesting to find out whether or not both firms deciding to

not offer an app could possibly be an equilibrium outcome of the game.
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APPENDIX A

Proofs of Technical Results in Chapter 1

A.1. Proofs of Theorems

Proof of Theorem 1

First we solve problem (1.8) and characterize R1
N . Applying Lemma 5 we have, λ1v1 =

λ2v2 = · · · = λNvN . Thus, we can write λkvk as λkvk = λk−1vk−1 − λk−1vk, which can

be further written as (λ1 + λ2 + · · · + λk−1)(vk−1 − vk) = λ1v1
vk−1

(vk−1 − vk) = λ1v1(1 −
vk
vk−1

). Using this we can express the WCRR as R1
N = infλ>0,v>0

{
λ1v1

λ1v1+λ2v2+···+λNvN

}
=

infλ>0,v>0

{
λ1v1

λ1v1+λ1v1(1− v2
v1

)+···+λ1v1(1− vN
vN−1

)

}
, which is equivalent to,

inf
v>0

{
1

N − v2
v1
− v3

v2
− · · · − vN

vN−1

}
=

1

N
.

Thus, under the optimal solution to (1.8), the valuations are such that vk
vk+1

→ ∞ for

all k = 1, 2, . . . , N − 1. We also note that, the revenue for service grade k in the worst

case optimal menu, λk
(
vk−hk

( vk−1−vk
hk−1−hk

))
, under the optimal solution becomes λkvk. This

implies that as vk
vk+1
→∞ and hk

hk+1
→∞, we have vk/vk+1

hk/hk+1
→ 0 for all k = 1, 2, . . . , N − 1.

Now, if the firm offers K > 1 service grades, the WCRR cannot be lower than it would

be for K = 1 since the firm can always offer one service grade if it were optimal to do

so. Therefore, 1
N

= R1
N ≤ RK

N . Moreover, using the upper bound R
K

N , as established in

(1.13), we have RK
N ≤ R

K

N = K
N

. Thus, we have 1
N
≤ RK

N ≤ K
N

. �
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Proof of Theorem 2

The solution to problem (1.21) can be found equivalently by solving the following problem:

min
1≤i<j

inf
δk

{ j−1∑
k=i

(
1

ck(ck + 1)(δk − 1)
− 1

1 + ck

)}

s.t

j−1∏
k=i

δk ≤ ∆h, δk > 1 +
1

ck
for all k = i, i+ 1, . . . , j − 1.

For fixed i and j, this is a convex constrained optimization problem over δk. The La-

grangian is given by, L(δk, µ) =
∑j−1

k=i

(
1

ck(ck + 1)(δk − 1)
− 1

1 + ck
+µ log δk

)
−µ log ∆h.

We do not include the price condition in the Lagrangian since it is a strict inequality. We

ensure that the optimal solution satisfies price condition. Using the first order optimality

(KKT) conditions, we get, ∇δkL = − 1

ck(ck + 1)(δk − 1)2
+
µ

δk
= 0, which is equivalent to

(A.1)
1

ck(ck + 1)(δk − 1)2
=

µ

δk
.

Equation (A.1) is quadratic in δk. Solve for δk, and ensuring that the price condition

holds, i.e. δk > 1 + 1
ck

for all k = i, i+ 1, . . . , j − 1, we get,

δk =
2ckµ+ (4c2

kµ+ 4ckµ+ 1)
1
2 + 2c2

kµ+ 1

2ck(ck + 1)µ
(A.2)

= 1 +
1

(1 + ck)
√
µ

(
1 +

1

ck
+

1

4c2
kµ

)
+

1

2ck(ck + 1)µ
.(A.3)

The price condition implies that δk > 1 for all k = i, i+ 1, . . . , j− 1. Thus, from equation

(A.1) we note that the Lagrange multiplier, µ, is a strictly positive constant. This implies

that the constraint,
∏j−1

k=i δk ≤ ∆h is binding at optimality. Hence, the optimal values of
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δk are such that

(A.4)

j−1∏
k=i

δk = ∆h.

Since {λk}∞k=1 is a fixed sequence, {ck}∞k=1 is also fixed and is exogenously given in problem

(1.21). Furthermore, our assumption of bounded arrival rates implies that {ck}∞k=1 is a

diverging sequence. To see this, we note that ck is defined as ck = λk
λk+1

=
∑k
n=1 λn/λ1
λk+1/λ1

.

Assumption of bounded arrival rates implies that for some m > 0 and M < ∞, m ≤
λk
λ1
≤ M for all k = 1, 2, . . . ,∞. Thus, using the bounds on the arrival rates, we have

m
M
k ≤

∑k
n=1 λn/λ1
λk+1/λ1

≤ M
m
k. Hence, m

M
k ≤ ck ≤ M

m
k for all k = 1, 2, . . . ,∞. Before we show

that the optimal solution to (1.21) is realized as i→∞, we continue with this assumption

for now and solve the optimization problem. Since we have shown that {ck}∞k=1 is a

diverging sequence, this implies that ck →∞ as i→∞ for all k = i, i+ 1, . . . , j− 1. The

right hand side in equation (A.1) is positive and finite, which further implies that δk → 1

for all k = i, i+ 1, . . . , j − 1. Consequently, from equation (A.4) this further implies that

(j − i)→∞, i.e. the left hand side is an infinite product. Since there are infinitely many

customer classes, it makes sense that the worst case scenario is realized as (j − i) → ∞,

i.e. infinitely many customer classes join service. Now, using (A.3) we can write δk as,

(A.5) δk = 1 + εk = 1 +
1

(ck + 1)
√
µ

+O
(

1

c2
k

)
,

where O
(

1
c2k

)
represents the higher order terms. As ck →∞, ignoring O

(
1
c2k

)
, we get,

(A.6)
1

(ck + 1)(δk − 1)
=
√
µ.
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We can take logarithmic transform on both sides of the equations (A.4) to obtain

j−1∑
k=i

log(δk) = log(∆h)

. Using the Taylor’s approximation log(1 + εk) = εk on log(δk), using (A.5) we get,

(A.7)

j−1∑
k=i

log(1 + εk) =

j−1∑
k=i

1

(ck + 1)
√
µ

= log(∆h).

Now, using (A.6) we can rewrite the objective function as

(A.8)

j−1∑
k=i

(
1

ck(ck + 1)(δk − 1)
− 1

1 + ck

)
=

j−1∑
k=i

(√
µ

ck
− 1

1 + ck

)
.

Since ck → ∞ for all k = i, i + 1, . . . , j − 1, we note that
∑j−1

k=i
1

1+ck
=
∑j−1

k=i
1

ck

(
1+ 1

ck

) =∑j−1
k=i

1
ck

. Denoting
∑j−1

k=i
1

1+ck
=
∑j−1

k=i
1
ck

as Sij and using (A.7) we have
√
µ =

Sij
log(∆h)

.

Thus, we can rewrite (A.8) as

(A.9)

j−1∑
k=i

(√
µ

ck
− 1

1 + ck

)
=

S2
ij

log(∆h)
− Sij.

Now, we have already shown that m
M
k ≤ ck ≤ M

m
k for all k = 1, 2, . . . ,∞. This implies

m
M

∑j−1
k=i

1
k
≤
∑j−1

k=i
1
ck

= Sij ≤ M
m

∑j−1
k=i

1
k
. Thus, Sij is a diverging series. The value of Sij

that minimizes (A.9) is Sij = 1
2

log(∆h). Thus
√
µ = 1

2
. The relationship between optimal

values of the indices i∗ and j∗ is determined by the fact Sij = 1
2

log(∆h). Plugging Sij in

(A.9), we have
∑j−1

k=i

(
1

1 + ck
−
√
µ

ck

)
= 1

4
log(∆h). Thus R1

∞(∆h) in (1.21) is given as,

R1
∞(∆h) =

1

1 + 1
4

log(∆h)
. Now for the specific case of equal arrival rates, i.e., λk = 1 for

all k = 1, 2, . . . ,∞, we have Si∗j∗ =
∑j∗−1

k=i∗
1
k
. Using logarithmic approximation for the
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harmonic series, we get,

Si∗j∗ = (log(j∗) + γ + ej∗)− (log(i∗) + γ + ei∗) = log

(
j∗

i∗

)
+ (ej∗ − ei∗),

where ei∗ → 0 and ej∗ → 0 as i∗ → ∞ and j∗ → ∞ respectively, and γ is the

Euler-Mascheroni constant. Thus Si∗j∗ = log

(
j∗

i∗

)
. We also note from (A.7) that,

Si∗j∗ =
√
µ log(∆h) =

1

2
log(∆h). Equating the two expressions for Si∗j∗ we have log

(
j∗

i∗

)
=

1
2

log(∆h) which implies i∗ =
j∗√
∆h

. In addition, using (A.5), we have δ∗k = 1 + 2
k+1

for all

k such that i∗ ≤ k ≤ j∗ − 1. Finally applying lemma 7, we show that indeed i∗ → ∞

under the optimal solution to problem (1.21). Consequently (j∗ − i∗) → ∞. This also

proves that R1
N(∆h)−R1

∞(∆h) > 0 for any finite N , and R1
N(∆h)→ R1

∞(∆h) as N →∞.

�

Proof of Theorem 3

The solution to problem (1.25) can be found by equivalently solving the following problem:

inf
δk,ck

∞∑
k=1

( 1

ck(ck + 1)(δk − 1)
− 1

1 + ck

)
(A.10)

s.t.
∞∏
k=1

δk ≤ ∆h,(A.11)

∞∏
k=1

(
1 +

1

ck

)
≤ ∆v,(A.12)

δk > 1 +
1

ck
, ck > 0 for all k = 1, 2, . . . ,∞.(A.13)
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We begin by writing the Lagrangian for this problem without constraints (A.13) since

these are strict inequalitites. We will verify that (A.13) satisfies under the optimal solu-

tion. Thus, we have, L =
∑∞

k=1

( 1

ck(ck + 1)(δk − 1)
− 1

1 + ck
+ µh log(δk) + µv log

(
1 +

1

ck

))
− µh log(∆h) − µv log(∆v). Taking the first order optimality (KKT) conditions, we

have ∇δkL = 0 and ∇ckL = 0, which imply

(A.14) µh =
δk

ck(ck + 1)(δk − 1)2
, and µv =

ck
1 + ck

− 1 + 2ck
ck(1 + ck)(δk − 1)

respectively. Solving the above set of equations, (A.14), with constraints (A.13), i.e. for

δk > 1 + 1
ck

and ck > 0, we get,

δk =
2ckµh + (4µhc

2
k + 4µhck + 1)1/2 + 2c2

kµh + 1

2µhck(ck + 1)
,

ck =
δkµv − µv + (δ2

kµ
2
v − 2δkµ

2
v + 4δk + µ2

v)
1/2 + 2

2(δk + µv − δkµv − 1)
.

From (A.14), we note that µh > 0 since the RHS is always positive. However, µv ≥ 0, i.e.,

it can be either zero or strictly positive. Applying Lemma 6, the optimal value of (A.10)

is achieved as ck →∞ for all k = 1, 2, . . . ,∞. Using (A.14), this implies that, under the

optimal solution, δk → 1 for all k = 1, 2, . . . ,∞ since Lagrange multiplier µh is a finite

positive quantity. Thus, ignoring higher order terms, we get

(A.15) δk = 1 +
1

(ck + 1)
√
µh

and

(A.16) 1 +
1

ck
= 1 +

1

2
(1− µv)(δk − 1).
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Combining (A.15) and (A.16), and the fact that ck → ∞ for all k, we get the following

relation between the Lagrange multipliers µh and µv:

(A.17)
√
µh =

1− µv
2

.

We can rearrange the expression for δk in (A.15) to obtain

√
µh

ck
=

1

ck(1 + ck)(δk − 1)
.

Using the above relation and the fact that ck →∞ for all k, we can rewrite the objective

in (A.10) as follows:

(A.18)
∞∑
k=1

( 1

ck(ck + 1)(δk − 1)
− 1

1 + ck

)
=
∞∑
k=1

(√µh
ck
− 1

1 + ck

)
.

We note that
∑∞

k=1
1

1+ck
=
∑∞

k=1
1

ck(1+ 1
ck

)
=
∑∞

k=1
1
ck

as ck →∞ for all k. Thus, defining

S =
∑∞

k=1
1

1+ck
=
∑∞

k=1
1
ck

, we can express (A.18) as

(A.19) S
(√

µh − 1
)
.

Since µh > 0, equation (A.11) binds at optimality. Replacing the value of δk in (A.11)

using (A.15) we get,
∑∞

k=1 log(1 + 1
(1+ck)

√
µh

) = log(∆h). Since, ck → ∞, we can use the

Taylor’s approximation of log(1 + 1
1+ck

) = 1
1+ck

to obtain the following expression:

(A.20)
∞∑
k=1

1

1 + ck
= S =

√
µh log(∆h).

If µv > 0, then equation (A.12) binds at optimality and hence using (A.12) and (A.16)

we get,
∑∞

k=1 log(1 + 1
2
(1− µv)(δk − 1)) = log(∆v). Since δk → 1, we can use the Taylor’s

approximation of log(1 + 1
2
(1− µv)(δk − 1)) = 1

2
(1− µv)(δk − 1) and obtain the following
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expression:
∑∞

k=1(δk − 1) = 2 log(∆v)
1−µv . We can use (A.15) in this equation to obtain:

(A.21)
∞∑
k=1

1

1 + ck
= S =

2 log(∆v)

1− µv
√
µh.

Combining (A.20) and (A.21) we get, log(∆h) = 2 log(∆v)
1−µv . From this equation, we also note

that µv > 0 is equivalent to 2 log(∆v)
log(∆h)

< 1 or ∆v <
√

∆h. Combining this with (A.17), we

get,

(A.22)
√
µh =


log(∆v)

log(∆h)
µv > 0 (∆v <

√
∆h),

1

2
µv = 0 (∆v ≥

√
∆h).

Consequently, combining (A.22) with (A.20) we get,

S =


log(∆v) ∆v <

√
∆h,

1
2

log(∆h) ∆v ≥
√

∆h.

Finally, replacing S using the above expression in (A.19), the optimal solution to (1.25)

is given by,

R1
∞(∆h,∆v) =



1

1 +
log(∆v)

log(∆h)
log

(
∆h

∆v

) ∆v <
√

∆h,

1

1 + 1
4

log(∆h)
∆v ≥

√
∆h.

�
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A.2. Proofs of Propositions

Proof of Proposition 1

A menu in set M induces some customer segmentation σ. This implies that customer

class ik−1 joins service grade (pk−1, dk−1) for k > 1. Incentive compatibility ensures that

customer class ik−1 should have non-positive utility by joining service grade k, which

implies,

(A.23) vik−1
− pk − hik−1

dk ≤ 0.

Using Definition 2, since the menu belongs to set M, we have, vik−1
−pk−1−hik−1

dk−1 = 0.

Subtracting this equation from (A.23), we have (pk−1−pk)+hik−1
(dk−1−dk) ≤ 0. Since we

index service grades in decreasing order of their prices, pk−1 > pk, which implies dk > dk−1.

Again, since the menu belongs to set M, from Definition 2 we have, vik − pk − hikdk = 0.

Subtracting this equation from (A.23), we have (vik−1
− vik) + (hik − hik−1

)dk ≤ 0. Since

vik−1
> vik , this implies hik−1

> hik . This is intuitive, otherwise delay differentiation

wouldn’t have been possible. Using equation vik − pk − hikdk = 0 we can replace dk in

(A.23) to obtain vik−1
− hik−1

hik
vik + pk

(hik−1

hik
− 1
)
≤ 0. As hik−1

> hik , the second term in

this inequality is positive, and we note that a revenue-maximizing menu would increase

pk until the inequality binds. Therefore, the service grade (pk, dk) is characterized by the

following two equations:

(A.24) vik−1
− pk − hik−1

dk = 0 and vik − pk − hikdk = 0.
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Solving these two equations we get pk = vik − hik

(
vik−1

−vik
hik−1

−hik

)
and dk =

(
vik−1

−vik
hik−1

−hik

)
.

Now, for k = 1, all the customer classes 1, 2, . . . , i1 join service grade (p1, d1). Also, from

Definition 2 we have vi1 − p1−hi1d1 = 0. As a result, we can conclude that the price p1 is

maximized if the delay d1 = 0 (with Assumption 1), i.e., p1 = vi1 . This proves the second

part of the Proposition.

We will prove the first part of the Proposition by induction. First, let’s suppose k = 1.

We know that classes 1, 2, . . . , i1 join grade (p1, d1) = (vi1 , 0) and classes i1+1, i1+2, . . . , i2

join grade (p2, d2). Let’s consider an alternative menu which offers service grade (p̂ =

vi2 , d̂ = 0) instead of grades (p1, d1) and (p2, d2) leaving all other service grades in the

menu unchanged. This alternative menu results in a new customer segmentation where

customer classes 1, 2, . . . , i2 to join (p̂, d̂), and the choice of service grade for the other

classes do not change. Since the revenue-maximizing menu offers differentiated service

grades (p1, d1) and (p2, d2), offering (p̂, d̂) instead would lead to a lower revenue. This

implies, λi2 p̂ < λi1p1 + (λi2 − λi1)p2 which is equivalent to

(A.25) λi2(p̂− p2) < λi1(p1 − p2)

where λl =
∑l

m=1 λm. Using equations (A.24) corresponding to k = 1 and k = 2, we can

derive the following relation between p1 and p2: p1 = p2 + hi1(d2 − d1). Using Definition

2, service grade (p̂, d̂) is chosen such that vi2 − p̂−hi2 d̂ = 0. Additionally, from (A.24) we

have vi2 − p2 − hi2d2 = 0. Combining these two equations, we get p̂ = p2 + hi2(d2 − d̂).

Combined with d1 = 0 and d̂ = 0 we have the following two relations: p1− p2 = hi1d2 and

p̂− p2 = hi2d2. Replacing these expressions in (A.25) we get,
hi1
hi2

>
λi2
λi1
.
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Now, let’s suppose k > 1. We consider service grades (pk, dk) and (pk+1, dk+1) on the

revenue-maximizing menu. Similar to the argument for k = 1, let’s consider an alternative

menu which offers service grade (p̂, d̂) instead of grades (pk, dk) and (pk+1, dk+1) leaving all

other grades in the menu unchanged such that customer classes ik−1 + 1, ik−1 + 2, . . . , ik+1

join (p̂, d̂) and the choice of service grade for the other classes do not change. Service

grade (p̂, d̂) is chosen in such a way that it satisfies incentive compatibility constraints and

results in the highest possible revenue corresponding to the new customer segmentation

induced by the alternative menu. Thus, ensuring appropriate incentive compatibility and

individual rationality constraints hold, service grade (p̂, d̂) is chosen such that it is related

to the service grades (pk, dk) and (pk+1, dk+1) in the original menu, through the following

equations:

pk = p̂+ hik−1
(d̂− dk),(A.26)

p̂ = pk+1 + hik+1
(dk+1 − d̂).(A.27)

Moreover, service grades (pk, dk) and (pk+1, dk+1) are related through the following equa-

tion which is derived using the equations (A.24) for indices k and k + 1:

(A.28) pk = pk+1 + hik(dk+1 − dk).

Subtracting (A.26) from (A.28), we get p̂−pk+1 = hik(dk+1−dk)−hik−1
(d̂−dk). Replacing

dk+1 in this equation using (A.27) we get the following expression:

(A.29)
p̂− pk+1

d̂− dk
=
hik − hik−1

1− hik
hik+1

.
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Since the revenue-maximizing menu offers delay differentiated grades (pk, dk) and

(pk+1, dk+1), offering (p̂, d̂) instead would lead to a lower revenue. This implies, (λik −

λik−1
)pk + (λik+1

− λik)pk+1 > (λik+1
− λik−1

)p̂. In this inequality, we can replace pk using

(A.26) to get (λik −λik−1
)(p̂+hik−1

(d̂− dk)) + (λik+1
−λik)pk+1 > (λik+1

−λik−1
)p̂. We use

(A.29) to replace (d̂− dk) in this inequality to obtain

(λik − λik−1
)

(
p̂+ hik−1

(
p̂− pk+1

hik − hik−1

)(
1− hik

hik+1

))
+ (λik+1

− λik)pk+1 > (λik+1
− λik−1

)p̂.

Dividing both sides by (λik −λik−1
) and rearranging the inequality we can cancel p̂− pk+1

from both sides to obtain,

(
hik−1

hik−hik−1

)(
1− hik

hik+1

)
>

(
λik+1

−λik
λik−λik−1

)
which is equivalent to

(A.30)

(
hik
hik+1

− 1

)
>

(
λik+1

− λik
λik − λik−1

)(
1− hik

hik−1

)
.

By induction argument, first we assume that the result holds for k − 1, i.e.
hik−1

hik
>

λik
λik−1

. Now, combining this with inequality (A.30) we get,
hik
hik+1

>
λik+1

λik
, which shows

that the result holds for k. This concludes the induction proof. Finally, for any two

service grades (pj, dj) and (pk, dk) in the menu, we can write
hij
hik

=
hij
hij+1

hij+1

hij+2
· · · hik−1

hik
>

λij+1

λij

λij+2

λij+1
· · · λik

λik−1
=

λik
λij
. �

Proof of Proposition 2

From (1.15) and (1.16) we have 1

1+
∑N
k=2

M
1+(k−1)m

= R1
N ≤ RK

N ≤ K

1+
∑N
k=2

M
1+(k−1)m

. The

arrival rates are such that 0 < m ≤ λk
λ1
≤ M < ∞ for all k = 1, 2, . . . , N . This implies
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0 < m ≤ 1 ≤M <∞. Using m and M , we can come up with the following lower bound:

1

1 +
∑N

k=2
M

1+(k−1)m

≥ 1
M
m

+
∑N

k=2
M

m+(k−1)m

=
1

M
m

∑N
k=1

1
k

.

Similarly, using m and M , we can come up with the following upper bound:

K

1 +
∑N

k=2
M

1+(k−1)m

≤ K

1 +
∑N

k=2
M

M+(k−1)M

=
1∑N
k=1

1
k

.

We can use the logarithmic approximation for the harmonic series to write
∑N

k=1
1
k

=

log(N) + γN where γ < γN < γ + 1
2
, limN→∞ γN → γ and γ is the Euler-Mascheroni

constant. This proves the result. �

Proof of Proposition 3

Optimization problem (1.19) can be rewritten as,

inf
vk>0,δk,z

z

s.t. z ≥ λkvk

λivi + λi+1vi+1

(
δi − vi

vi+1

δi − 1

)
+ · · ·+ λjvj

(δj−1 − vj−1

vj

δj−1 − 1

) , for all k = 1, 2, . . . , N,

log(∆h) ≥
N−1∑
k=1

log(δk),

δk ≥ 1, vk > vk+1 for all k = 1, 2, . . . , N − 1,

δk >
vk
vk+1

for all k = i, i+ 1, . . . , j − 1.

We note that constraints δk ≥ 1 would not be binding for all k where i ≤ k ≤ j − 1.

Hence considering all the weak inequalities, the Lagrangian for this problem can be written
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as,

L = z(1− α1 − α2 − · · · − αN) +
α1λ1v1 + α2λ2v2 + · · ·+ αNλNvN

λivi + λi+1vi+1

(
δi − vi

vi+1

δi − 1

)
+ · · ·+ λjvj

(δj−1 − vj−1

vj

δj−1 − 1

)

+ µ(
N−1∑
k=1

log(δk)− log(∆h)) +
∑

k 6∈{i,i+1,...,j−1}

βk(1− δk)

where αk, βk and µ are the Lagrange multipliers. Taking the first order KKT conditions,

we get,

(A.31) ∇zL = 1− α1 − α2 − · · · − αN = 0

which implies that not all αk are zero. Now, for all k such that 1 ≤ k ≤ i−1 and j+ 1 ≤

k ≤ N , we have, ∇vkL =
αkλk

λivi + λi+1vi+1

(
δi − vi

vi+1

δi − 1

)
+ · · ·+ λjvj

(δj−1 − vj−1

vj

δj−1 − 1

) = 0,

which implies that αk = 0 for all 1 ≤ k ≤ i − 1 and j + 1 ≤ k ≤ N . Moreover, for all

i ≤ k ≤ j, ∇vkL = 0 implies

αkλk =
A

B

∂B

∂vk
where(A.32)

A = α1λ1v1 + α2λ2v2 + · · ·+ αNλNvN and(A.33)

B = λivi + λi+1vi+1

(
δi − vi

vi+1

δi − 1

)
+ · · ·+ λjvj

(δj−1 − vj−1

vj

δj−1 − 1

)
.(A.34)

By dual feasibility conditions, αk ≥ 0 for all k = 1, 2, . . . , N . Furthermore, B is the same

as π(Mij) which is the revenue under the optimal menu. Revenue π(Mij) is comprised

of the prices of service grades i, i + 1, . . . , j, which are determined by vi, vi+1, . . . , vj.
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Perturbing any of these valuations would affect the prices of the service grades and hence

change the revenue π(Mij). Hence, ∂B
∂vk

=
∂π(Mij)

∂vk
6= 0 for all k where i ≤ k ≤ j.

Combining this with the fact that not all αk are zero (from (A.31)) we have A 6= 0 in

(A.33). This implies αk > 0 in (A.32). Thus, we have αk = 0 for all k where 1 ≤

k ≤ i − 1 and j + 1 ≤ k ≤ N and αk > 0 for all i ≤ k ≤ j. By complementary

slackness condition, all constraints corresponding to positive Lagrange multipliers, i.e.

αk > 0, would be strictly binding at optimality which implies that λivi = λi+1vi+1 =

· · · = λjvj. Hence we have vk
vk+1

= λk+1

λk
for all k where i ≤ k ≤ j − 1. Moreover, using

α1+α2+· · ·+αN = 1 from (A.31), and the fact that λivi = λi+1vi+1 = · · · = λjvj, we have

from (A.33), vk = A
λk

for all k = i, i + 1, . . . , j. Constraints corresponding to αk = 0 are

slack (or weakly binding). Hence we have, 1 ≤ vk
vk+1
≤ λk+1

λk
for all k where 1 ≤ k ≤ i− 1

and vk
vk+1
≥ λk+1

λk
for all j ≤ k ≤ N − 1.

Finally, taking derivatives of the Lagrangian with respect to δk yields

∇δkL =


λk+1(vk+1 − vk)

(δk − 1)2

A

B2
+
µ

δk
i ≤ k ≤ j − 1,

µ

δk
− βk 1 ≤ k ≤ i− 1 and j ≤ k ≤ N − 1.

where A and B are defined in (A.33) and (A.34). For the case i ≤ k ≤ j − 1, using

vk = A
λk

, ∇δkL = 0 implies µ =
δk

ck(ck + 1)(δk − 1)2
.
A2

B2
where ck =

λk
λk+1

. This implies

µ > 0. Hence, by complementary slackness condition, the constraint
∏N−1

k=1 δk ≤ ∆h

would be binding at optimality which implies
∏N−1

k=1 δk = ∆h. For the case where 1 ≤

k ≤ i − 1 and j ≤ k ≤ N − 1, ∇δkL = 0 implies βk =
µ

δk
. This implies βk > 0 since

µ > 0. Again, by complementary slackness, the constraints δk ≥ 1 will be binding at

optimality, i.e. δk = 1 for all 1 ≤ k ≤ i − 1 and j ≤ k ≤ N − 1. Combining all of
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these we have,
∏j−1

k=i δk = ∆h and
δi

ci(ci + 1)(δi − 1)2
=

δi+1

ci+1(ci+1 + 1)(δi+1 − 1)2
= · · · =

δj−1

cj−1(cj−1 + 1)(δj−1 − 1)2
. �

A.3. Proofs of Lemmas and Corollary

Proof of Lemma 1

The WCRR for a firm offering K = 1 service grade, when there are N customer classes,

is given by,

R1
N = inf

v>0,h>0

{
π1
N

π∗N

}
.

Let’s suppose, that the worst case optimal menu, WCOM, offers L service grades. Since

π∗N denotes the revenue corresponding to a revenue-maximizing menu, for each service

grade l in the menu, there is at least one customer class among all the customer classes

who join service grade l whose utility is zero. Let us denote this customer class as

(vil , hil), where l = 1, 2, . . . , L. This implies, ul : vil − pl − hildl = 0. Thus, we can

characterize the worst case optimal menu by calculating prices and delays, (pl, dl), by

solving the equations ul = 0, for l = 1, 2, . . . , L. As a result, π∗N would be a function of

only (vil , hil) for l = 1, 2, . . . , L. On the other hand, π1
N = max{λ̄1v1, λ̄2v2, . . . , λ̄NvN}, is

a non-decreasing function of v1, v2, . . . , vN , where λ̄k =
∑k

i=1 λi. Now, let us consider a

customer class k with (vk, hk), which is different from (vil , hil), that joins service grade l.

We argue that, under the solution of (1.3), customer class k also has a utility zero, i.e.,

vk − pl − hkdl = 0. To see this, we note that if this wasn’t true then the value of vk could

be reduced by an infinitesimally small amount to reduce WCRR since we have established

that vk doesn’t appear in the denominator, π∗N , and the numerator, π1
N , decreases as vk
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decreases. Therefore, the worst case analysis ensures that the utility for each customer

class is zero under the worst case optimal menu. Therefore, without loss of generality, we

refer to class il as the customer class joining service grade l, with zero utility and having

the least valuation among all the customer classes joining service grade l.

Let us consider service grades l and l − 1. Customer classes il and il−1 would satisfy

the following incentive-compatibility constraints:

IC1 : vil−1
− pl − hil−1

dl < vil−1
− pl−1 − hil−1

dl−1,

IC2 : vil − pl−1 − hildl−1 < vil − pl − hildl,

These two ICs combined give us the following inequalities:

(A.35) hil(dl − dl−1) < pl−1 − pl < hil−1
(dl − dl−1)

Since service grades are indexed in decreasing order of their prices, we have pl−1 > pl for

all l = 2, 3, . . . , L. Then, equation (A.35) implies dl > dl−1 and hil < hil−1
. We also know

that, vil−1
− pl−1−hil−1

dl−1 = 0, and vil − pl−hildl = 0. Combining these equations with

the IC2, we get the following:

vil−1
− pl−1 − hil−1

dl−1 = 0,(A.36)

vil − pl−1 − hildl−1 < 0.(A.37)

Subtracting (A.36) from (A.37), we get,

(A.38) vil − vil−1
< (hil − hil−1

)dl−1.
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We have already established that hil < hil−1
, which, combined with (A.38) implies vil−1

>

vil . This implies, il−1 < il for all l = 2, 3, . . . , L, since customer classes are indexed in

decreasing order of their valuations. Up to this point we have established the following:

(i) p1 > p2 > · · · > pL, (ii) d1 < d2 < · · · < dL, (iii) vi1 > vi2 > · · · > viL and (iv)

hi1 > hi2 > · · · > hiL . What remains to be shown is that, any customer class whose

valuation lies between vil−1
and vil , joins service grade l. To this end, let us consider a

customer class (v, h), such that vil−1
> v > vil . By definition, class il−1 is the class with

least valuation to join service grade l − 1. This implies, no customer class with a lower

valuation than vil−1
joins any service service grade k where k ≤ l − 1. Thus, in order to

show that, the class with valuation v joins grade l we need to show that it does not join

any grade k > l. We will prove this by contradiction. Let’s suppose, service grade (pk, dk)

is such that k > l, i.e., pk < pl and dk > dl. Let us assume that the class with valuation

v joins grade (pk, dk). Since we have established that all customer classes, irrespective of

which service grades they join, have zero consumer surplus under the worst case optimal

menu, we have,

(A.39) v − pk − hdk = 0.

Moreover, incentive compatibility would require this class to incur negative utility from

joining service grade l. This implies,

(A.40) v − pl − hdl < 0.
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Also, we use the fact that, customer class il joins service grade l, which implies,

(A.41) vil − pl − hildl = 0.

We can rewrite (A.41) as, vil − pl − hildl − pk + pk − hildk + hildk = 0. Rearranging the

terms, we get,

(A.42) (vil − pk − hildk)︸ ︷︷ ︸
Term1

+ (pk − pl + hildk − hildl)︸ ︷︷ ︸
Term2

= 0.

First, subtracting (A.41) from (A.40), we get, (v − vil) + dl(hil − h) < 0. Since, v > vil ,

this implies

(A.43) hil < h.

Secondly, subtracting (A.39) from (A.40), we get,

(A.44) pk − pl + h(dk − dl) < 0.

Since, dk > dl and hil < h from (A.43), replacing h by hil in (A.44) we get,

(A.45) pk − pl + hil(dk − dl) < 0.

The left hand side of (A.45) is the same as Term2 in (A.42). This implies that Term1 in

(A.42) is positive, i.e., (vil − pk − hildk) > 0, which is a contradiction because it violates

incentive compatibility by allowing a positive utility for customer class il by joining service

grade k. Hence, any customer class with valuation v such that vil−1
> v > vil , joins service
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grade l. We have, thus, shown that the worst case menu induces customer segmentation

σ as per Definition 1 and therefore it belongs to set M of menus as per Definition 2. �

Proof of Lemma 2

In the presence of N = 2 customer classes, a revenue-maximizing firm could offer a menu

which would result in either: i) both customer classes joining the same service grade, or,

ii) two customer classes joining separate service grades, or, iii) only the higher customer

class joining service and the lower customer class not joining service. In the first case, we

say that the customer classes are pooled in the same service grade and in the second case

we say that the customer classes are differentiated into separate service grades. For given

valuations, delay sensitivities and the arrival rates, either of these possibilities could be

realized under the optimal (revenue maximizing) menu. Without loss of generality, we

refer to the higher valuation customer class as class 1 and the lower valuation class as

class 2.

First, lets assume that a pooling menu is optimal. So, the firm offers a single ser-

vice grade, (p, d), which is accepted by both customer classes, and the resulting revenue

(λ1 + λ2)p is maximized. The individual rationality constraints corresponding to the two

customer classes, i.e. v1− p−h1d ≥ 0 and v2− p−h2d ≥ 0 need to hold. By Assumption

1, the firm could offer a service grade with d = 0, which allows for maximum possible

price, p. Since by our convention, v1 > v2, this implies p = v2 is the maximum possible

price that allows both customer classes to join service. So the pooling service grade is

(p = v2, d = 0) and the associated maximum revenue is (λ1 + λ2)v2.
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Next, let’s assume that a differentiating menu is optimal. This implies, that the firm

offers two service grades and charges price p1 for the higher valuation customer class 1

and charges a price p2 for the lower valuation customer class 2. The following individual

rationality (IR) constraints,

(A.46) IR1: v1 − p1 − h1d1 ≥ 0,

(A.47) IR2: v2 − p2 − h2d2 ≥ 0,

and the two incentive compatibility (IC) constraints,

(A.48) IC1: v1 − p1 − h1d1 ≥ v1 − p2 − h1d2,

(A.49) IC2: v2 − p2 − h2d2 ≥ v2 − p1 − h2d1

need to hold true. The objective function for the firm is to maximize λ1p1 +λ2p2. We note

that, starting from any feasible value of p1 and p2 that sastify IR and the IC constraints,

we could continue to increase both p1 and p2 by the same amount, and thus increasing

the objective value until one of the IR binds while ensuring the ICs continue to hold. Say,

(A.47) binds, we could next continue to increase p1 until either (A.46) or (A.48) binds.

Let’s say IC1 (A.48) and IR2 (A.47) bind. We will show that this results in IR1 (A.46)

binding at optimality as well. First, IR2 binding implies,

(A.50) p2 = v2 − h2d2.
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Next, IC1 binding implies,

(A.51) p1 = p2 + h1(d2 − d1).

Now IC2 (A.49) combined with (A.50) implies, 0 ≥ v2 − p1 − h2d1. First, substituting

p2 from (A.50) in (A.51) and then using it to replace p1 in (A.49), and using (A.50) to

substitute p2 in (A.49), we get, v2 − (v2 − h2d2 + h1(d2 − d1))− h2d1 ≤ 0, which implies

(A.52) (h1 − h2)(d1 − d2) ≤ 0.

Finally, from IR1 (A.46) we have, v1− p1−h1d1 ≥ 0. Substituting p1 and p2 using (A.50)

and (A.51) in IR1, we get, v1 − (v2 − h2d2 + h1(d2 − d1))− h1d1 ≥ 0 which implies,

(A.53)
v1 − v2

h1 − h2

≥ d2.

Substituting p1 and p2 using (A.50) and (A.51) in the objective function (λ1p1 + λ2p2),

we get,

(A.54) (λ1p1 + λ2p2) = v2(λ1 + λ2)− λ1h1d1 + d2(λ1h1 − λ2h2 − λ1h2).

We note that the optimal revenue depends on the expression (λ1h1 − λ2h2 − λ1h2) in

(A.54). If λ1h1−λ2h2−λ1h2 > 0, which implies, h1
h2
> 1 + λ2

λ1
, then maximum revenue for

the differentiated menu corresponds to d1 = 0 and maximum feasible value of d2 which

is d2 = v1−v2
h1−h2 from (A.53) which implies that IR1 binds. Also (A.52) holds which implies

that these values of d1 and d2 are consistent with IC2. Since p2 = v2 − h2
v1 − v2

h1 − h2

and

p1 = p2 + h1(d2 − d1) = v2 − (h2 − h1)
v1 − v2

h1 − h2

= v1, the optimal revenue for this case is
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given by, λ1v1 + λ2

(
v2 − h2

v1−v2
h1−h2

)
. Hence the differentiating service grades are given by,

(p1, d1) : (v1, 0) and (p2, d2) :
(v2h1 − v1h2

h1 − h2

,
v1 − v2

h1 − h2

)
.

Thus a necessary condition for optimality of a differentiated menu is, h1
h2
> 1 + λ2

λ1
. More-

over, price p2 needs to be non-negative, which implies, h1
h2
> v1

v2
. Otherwise, K∗ = 1, i.e. it

is optimal to just offer service grade 1. If, on the other hand, h1
h2
≤ 1 + λ2

λ1
, from (A.54) we

note that the optimal revenue would be v2(λ1+λ2) which would correspond to d1 = d2 = 0

and p1 = p2 = v2, which is the optimal revenue for the pooling menu. Finally, the pooling

menu would generate higher revenue compared to offering a single service grade catering

to customer class 1 and ignoring class 2, if the valuations and arrival rates are such that

λ1v1 < (λ1 + λ2)v2. �

Proof of Lemma 3

We are interested in solving problem (1.5), which is equivalent to problem (1.8) with

N = 2, under fixed arrival rates. Using Lemma 5, we know that the optimal solution to

(1.8) is such that λ1v1 = λ2v2, and h1
h2
→∞. Thus, the optimal solution to problem (1.5)

is such that

R1
2 =

λ1v1

λ1v1 + λ2v2

=
λ1v1

λ1v1 + λ2λ1v1
λ1+λ2

=
λ1 + λ2

λ1 + 2λ2

.

�
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Proof of Lemma 4

Let us assume that the WCOM, with N customer classes when the firm offers a single

service grade, is such that customer classes i and i+ 1 are pooled into one service grade,

and additionally customer class i− 1 is differentiated, i.e., class i− 1 joins a service grade

that is uniquely different and hence it is not part of the same pool, where i ≥ 2. We

denote the price paid by customer class i − 1 as pi−1 and the price paid by the pooled

classes i and i+1 as p̂ such that pi−1 > p̂ > 0. We are going to prove the statement of the

lemma by contradiction. To this end, we will show that there exist incentive compatible

prices p1 and p2 such that pi−1 > p1 > p̂ > p2 > 0, which differentiates customer class i

and i+ 1 (i.e. customer class i and i+ 1 join different service grades where customer class

i pays p1 and class i + 1 pays p2) as opposed to pooling, and results in a menu with a

higher revenue. This creates a contradiction to our assumption that the menu that pools

class i and class i+ 1 is the WCOM. Lemma 1 establishes that WCOM belongs to set M.

Thus, we can use Proposition 1 to express the revenue-maximizing prices in terms of the

valuations and delay sensitivities. Revenue generated from the service grade that pools

customer classes i and i+ 1 is given by,

(A.55) rp = (λi + λi+1)p̂ = (λi + λi+1)vi+1

hi−1

hi+1
− vi−1

vi+1

hi−1

hi+1
− 1

= (λi + λi+1)vi+1
δ̂ − v̂
δ̂ − 1

where δ̂ = hi−1

hi+1
and v̂ = vi−1

vi+1
. We are interested in solving problem (1.17). Since the firm

offers a single service grade, π1
N is given by π1

N = maxk∈{1,2,...,N} λkvk. We can reformulate
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this problem as,

inf
v>0,h>0

z

s.t. z ≥ λ1v1

π∗N
, z ≥ λ2v2

π∗N
, · · · z ≥ λNvN

π∗N
,

∆h ≥
N−1∏
k=1

δk, δk ≥ 1, vk > vk+1 for all 1 ≤ k ≤ N − 1,

where δk = hk−1

hk
. The Lagrangian for this problem is given by,

L = z(1− α1 − α2 − · · · − αN) +
α1λ1v1 + α2λ2v2 + · · ·+ αNλNvN

π∗N

+ µ(
N−1∏
k=1

δk −∆h) +
N−1∑
k=1

βk(1− δk),

where αk, βk and µ are the Lagrangian multipliers. Taking the first order optimality

(KKT) conditions we get, ∇zL = 1− α1 − α2 − · · · − αN = 0, which implies that not all

αk are zero. Furthermore, ∇vkL =
π∗N .(αkλk)−π1

N .
∂π∗N
∂vk

(π∗N )2
= 0 implies

(A.56) αkλk =
π1
N

π∗N

∂π∗N
∂vk

.

We note that the expression for the optimal revenue, π∗N , does not involve vi and hi,

which can be seen in the expression for price p̂ for this service grade as given by (A.55).

This implies
∂π∗N
∂vi

= 0. However,
∂π∗N
∂vi−1

and
∂π∗N
∂vi+1

are clearly non-zero since the prices in

the optimal menu change if either vi−1 or vi+1 is changed. Since dual feasibility condition

implies αk ≥ 0, from (A.56) we have αi = 0, αi−1 > 0 and αi+1 > 0. By complimentary

slackness condition, the constraints corresponding to strictly positive Lagrange multipliers

would be strictly binding at optimality which implies λi−1vi−1 = λi+1vi+1. Thus, the
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optimal values of this problem (worst case valuations and delay sensitivities) are such

that,

(A.57) v̂ =
vi−1

vi+1

=
λi+1

λi−1

.

Moreover, since αi = 0, by complementary slackness condition λivi ≤ maxk∈{1,2,...,N} λkvk,

i.e., the ith constraint is weakly binding. In order to come up with the new prices, p1

and p2, for the differentiated service grades, we will ensure that the prices are incentive

compatible and the ith constraint remains weakly binding so that π1
N does not change.

If we manage to show that π∗N increases as a result, this will imply that the ratio
π1
N

π∗N

decreases, proving our claim.

We use Proposition 1 to express the prices p1 and p2 in terms of the valuations and

the delay sensitivities. Price p1 is given by p1 = vihi−1−vi−1hi
hi−1−hi and price p2 is given by

p2 = vi+1hi−vihi+1

hi−hi+1
. We express vi as vi = (1 + εv)vi+1 where 0 < εv < ε̄v, and ε̄v ensures

that λivi < maxk∈{1,2,...,N} λkvk. Moreover, we express hi as hi = (1 + εh)hi+1 where

0 < εh < ε̄h and ε̄h = δ̂ − 1 ensures that hi < hi−1. Our goal would be to show that,

leaving all other parameters unchanged, there exist feasible values of εv and εh which will

result in the prices p1 and p2 such that (λi+λi+1)p̂ < λip1+λi+1p2. The revenue generated

from differentiating customer class i and i+ 1 is given by,

rs = λip1 + λi+1p2 = λi
vihi−1 − vi−1hi
hi−1 − hi

+ λi+1
vi+1hi − vihi+1

hi − hi+1

= λivi

hi−1

hi
− vi−1

vi
hi−1

hi
− 1

+ λi+1vi+1

hi
hi+1
− vi

vi+1

hi
hi+1
− 1

,
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which is equivalent to,

(A.58) rs = λivi+1

((1 + εv)δ̂ − v̂(1 + εh)

δ̂ − (1 + εh)

)
+ λi+1vi+1

(
1− εv

εh

)
.

In order to maintain incentive compatibility, the new service grade offering price p1 > p̂

would offer a lower delay as compared to the pooling service grade with price p̂. Similarly,

the new service grade with price p2 < p̂ would offer higher delay. The constraint on

the new price p2 < p̂ implies, vi+1hi−vihi+1

hi−hi+1
< vi+1hi−1−vi−1hi+1

hi−1−hi+1
. Using the previously defined

expressions vi = (1+εv)vi+1, hi = (1+εh)hi+1,
hi−1

hi+1
= δ̂ and vi−1

vi+1
= v̂, we have vi+1

(
1− εv

εh

)
<

vi+1
δ̂−v̂
δ̂−1

which is equivalent to

v̂ − 1

δ̂ − 1
<
εv
εh
.

Let us denote εv
εh
− v̂−1

δ̂−1
= ξ. We will choose ξ → 0 such that p2 → p̂. From (A.55) and

(A.58), we have,

rs − rp = λip1 + λi+1p2 − (λi + λi+1)p̂

= λivi+1

((1 + εv)δ̂ − v̂(1 + εh)

δ̂ − (1 + εh)

)
+ λi+1vi+1

(
1− εv

εh

)
− (λi + λi+1)vi+1

δ̂ − v̂
δ̂ − 1

= vi+1

(
λi

δ̂ − v̂
δ̂ − 1− εh

− λi
δ̂ − v̂
δ̂ − 1

+

Replacing εv
εh

=ξ+ v̂−1

δ̂−1︷ ︸︸ ︷
λi
εv δ̂ − εhv̂
δ̂ − 1− εh

+ λi+1 − λi+1
v̂ − 1

δ̂ − 1
− λi+1

δ̂ − v̂
δ̂ − 1︸ ︷︷ ︸

=0

−λi+1ξ
)

= vi+1

(
λiεh

δ̂ − v̂
(δ̂ − 1)(δ̂ − 1− εh)

+ εhλi
δ̂(ξ + v̂−1

δ̂−1
)− v̂

δ̂ − 1− εh
− λi+1ξ

)
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= vi+1

(
λiεhξ

δ̂

δ̂ − 1− εh
− λi+1ξ

)
= vi+1

(
ξ
εh(λiδ̂ + λi+1)− λi+1(δ̂ − 1)

δ̂ − 1− εh

)
.(A.59)

The denominator in (A.59) is positive since εh < ε̄h = δ̂−1. The numerator is positive for

all εh >
λi+1(δ̂−1)

λiδ̂+λi+1
= εh. We note that, for λi > 0, we have feasible εh such that εh > εh > εh

which would result in rs − rp > 0. Now, we also need to show that there exist feasible

εv such that εv > εv > εv which would be sufficient for rs − rp to be positive. To this

end, from our definition of ξ = εv
εh
− v̂−1

δ̂−1
, we can write εv =

(
ξ + v̂−1

δ̂−1

)
εh. Plugging in

εh = λi+1(δ̂−1)

λiδ̂+λi+1
for εh in εv =

(
ξ+ v̂−1

δ̂−1

)
εh, we get εv >

(
ξ λi+1(δ̂−1)

λiδ̂+λi+1
+ λi+1(v̂−1)

λiδ̂+λi+1

)
. This provides

us with the expression for εv. Thus, we have,

(A.60) εv = ξ
λi+1(δ̂ − 1)

λiδ̂ + λi+1

+
λi+1(v̂ − 1)

λiδ̂ + λi+1

.

We have stated earlier that εv ensures that λivi < maxk∈{1,2,...,N} λkvk holds true such

that π1
N remains unchanged while we set vi appropriately. A sufficient condition for

λivi < maxk∈{1,2,...,N} λkvk would be λivi < λi+1vi+1 since the latter implies the former.

Plugging in vi = (1 + εv)vi+1 in λivi < λi+1vi+1 implies εv <
λi+1

λi
. Thus, we define,

(A.61) εv =
λi+1

λi
.

All we need to show is that εv−εv > 0, which will imply the existence of a feasible εv. From

(A.60) and (A.61) we have the following expression: ε̄v− εv = λi+1

λ̄i
− λi+1(v̂−1)

λiδ̂+λi+1
− ξ λi+1(δ̂−1)

λiδ̂+λi+1
.

From (A.57) we have, v̂ = vi−1

vi+1
= λi+1

λi−1
. Replacing this in the above expression, we can
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rewrite it as,

ε̄v − εv =
λi+1

λ̄i
− λi+1(λi + λi+1)

λ̄i−1(λiδ̂ + λi+1)
− ξλi+1(δ̂ − 1)

λiδ̂ + λi+1

=
λiλi+1λ̄i−1

(
δ̂ + λi+1

λi
− λ̄i(λi+λi+1)

λiλ̄i−1

)
λ̄iλ̄i−1(λiδ̂ + λi+1)

− ξλi+1(δ̂ − 1)

λiδ̂ + λi+1

=
λiλi+1λ̄i−1

(
δ̂ − λ̄i+1

λ̄i−1

)
λ̄iλ̄i−1(λiδ̂ + λi+1)︸ ︷︷ ︸

>0

−ξλi+1(δ̂ − 1)

λiδ̂ + λi+1

.

We know from Proposition 1 that if classes i− 1 and i+ 1 are differentiated then hi−1

hi+1
=

δ̂ > λ̄i+1

λ̄i−1
holds true. This implies that the first term is strictly positive. We can choose

sufficiently small ξ → 0 to make the above expression for ε̄v − εv strictly positive. This

suggests that we can choose prices p1 and p2 by choosing εh and εv such that ε̄v > εv > εv

and ε̄h > εh > εh, holding all other parameters fixed, resulting in an increase in the optimal

revenue π∗N which keeping π1
N unchanged. This in turn results in a lower revenue ratio.

Hence, our assumption that the WCOM pools customer classes i and i+1 and differentiates

class i−1, leads to a contradiction. This implies that the customer segmentation induced

by the WCOM is such that all customer classes that join distinctly separate service grades

form a continuous block in which no two customer classes are pooled into the same service

grade. �

Lemma 5. The optimal solution to problem (1.8) is such that hk
hk+1
→∞ and λkvk =

λk+1vk+1 for all k = 1, 2, . . . , N − 1, where λk =
∑k

i=1 λi.
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Proof. The optimization problem under consideration is as follows:

(A.62)

R1
N = inf

λ>0,v>0,h>0

{
max1≤k≤N{λkvk}

λ1v1 +
∑N

k=2 λk
(
vk − hk

( vk−1−vk
hk−1−hk

))}

s.t. vk > vk+1,

hk
hk+1

>
vk
vk+1

, for all k = 1, 2, . . . , N − 1.

First, let’s assume that the worst case delay sensitivities, under the optimal solution of

(A.62), are such that hk
hk+1

is finite for any k = 1, 2, . . . , N − 1. Then for any arbitrarily

small ε > 0, hk
hk+1

+ε would increase the value of the denominator of the objective function

in (A.62), λ1v1 +
∑N

k=2 λk
(
vk − hk

( vk−1−vk
hk−1−hk

))
, and thus lowers the value of the objective

function. This creates a contradiction since (A.62) is a minimization problem. Hence, the

worst case delay sensitivities are such that hk
hk+1
→∞ for all k = 1, 2, . . . , N − 1. Now, we

can rewrite (A.62) as

R1
N = inf

λ>0,v>0

{
max1≤k≤N{λkvk}∑N

k=1 λkvk

}
.

We can reformulate the above optimization problem as

inf
λ>0,v>0

z

s.t. z ≥ λkvk
λ1v1 + λ2v2 + · · ·+ λNvN

, for all k = 1, 2, . . . , N,

vk > vk+1, for all k = 1, 2, . . . , N − 1.

The Lagrangian for the above problem is

L = z − µ1

(
z − λ1v1

λ1v1 + λ2v2 + · · ·+ λNvN

)
− µ2

(
z − λ2v2

λ1v1 + λ2v2 + · · ·+ λNvN

)
− · · ·
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− µN
(
z − λNvN

λ1v1 + λ2v2 + · · ·+ λNvN

)

= z(1− µ1 − µ2 − · · · − µN) +
µ1λ1v1 + µ2λ2v2 + · · ·+ µNλNvN

λ1v1 + λ2v2 + · · ·+ λNvN

where µ1, µ2, . . . , µN are the Lagrange multipliers. Taking the first order optimality

(KKT) conditions, ∇zL = 0 implies µ1 + µ2 + · · ·+ µN = 1, and ∇vkL = 0 implies

(A.63) µk =
µ1λ1v1 + µ2λ2v2 + · · ·+ µNλNvN

λ1v1 + λ2v2 + · · ·+ λNvN
.

λk
λ1 + λ2 + · · ·+ λk

.

From the dual feasibility conditions, µk ≥ 0 for all k. From the first optimality condition,

µ1 + µ2 + · · · + µN = 1 implies that not all µk can be zero. Since the right hand side

of equation (A.63) is strictly positive, µk is strictly positive as well, i.e., µk > 0 for all

k. Using complementary slackness condition, all constraints with their corresponding

Lagrange multipliers are binding at optimality. Therefore, λ1v1 = λ2v2 = · · · = λNvN . �

Lemma 6. The optimal solution to problem (A.10) under constraints (A.11), (A.12)

and (A.13), is such that ck →∞ for all k = 1, 2, . . . ,∞.

Proof. First, looking at constraint (A.12) we note that, ck cannot be finite for all

k = 1, 2, . . . ,∞. The reason for this is that the left-hand-side of inequality (A.12) is an

infinite product and the right-hand-side is a finite number ∆v. Thus, under the optimal

solution, ck can be finite for only finitely many k. Let us assume that, for any ∆h > 1

and ∆v > 1, the optimal solution to (A.10) is such that ck is finite for finitely many k.

To this end, we define a finite set of indices, K, such that, under the optimal solution

to (A.10), ck ≤ C for all k ∈ K, and ck → ∞ for all k /∈ K, for some arbitrary positive
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constant 0 < C <∞. Using this, let’s rewrite the optimization problem as,

inf
{δk,ck|k∈K}

{∑
k∈K

( 1

ck(ck + 1)(δk − 1)
− 1

1 + ck

)
+ f({δk, ck|k ∈ K})

}
s.t.

∏
k∈K

δk ≤ ∆h,

∏
k∈K

(
1 +

1

ck

)
≤ ∆v,

δk > 1 +
1

ck
, ck > 0 for all k ∈ K,

where f({δk, ck|k ∈ K}) is given by,

f({δk, ck|k ∈ K}) = inf
{δk,ck|k/∈K}

∑
k/∈K

( 1

ck(ck + 1)(δk − 1)
− 1

1 + ck

)
s.t.

∏
k/∈K

δk ≤ ∆̃h,

∏
k/∈K

(
1 +

1

ck

)
≤ ∆̃v,

δk > 1 +
1

ck
, ck > 0 for all k /∈ K

where ∆̃h =
∆h∏
k∈K δk

and ∆̃v =
∆v∏

k∈K

(
1 + 1

ck

) .

Now, we can rename the decision variables in optimization problem f({δk, ck|k ∈ K}) and
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rewrite it as,

(A.64)

f({δk, ck|k ∈ K}) = inf
δ̃k,c̃k

∞∑
k=1

( 1

c̃k(c̃k + 1)(δ̃k − 1)
− 1

1 + c̃k

)
s.t.

∞∏
k=1

δ̃k ≤ ∆̃h,

∞∏
k=1

(
1 +

1

c̃k

)
≤ ∆̃v,

δ̃k > 1 +
1

c̃k
, c̃k > 0 for all k = 1, 2, . . . ,∞.

Problem (A.64) is equivalent to the original optimization problem (A.10) with bounds ∆̃h

and ∆̃v. Hence, by our assumption on the optimal solution to (A.10), c̃k should be finite

for finitely many k. However, by definition of set K, the optimal solution to problem

f({δk, ck|k ∈ K}) is such that ck →∞ for all k /∈ K. This creates a contradiction. Hence,

the optimal solution to (A.10) is such that ck →∞ for all k = 1, 2, . . . ,∞. �

Lemma 7. The optimal solution to the optimization problem (1.21) is achieved as

i∗ →∞.

Proof. We will show that 1
4

log(∆h) −
∑j−1

k=i

(
1

1+ck
− 1

ck(ck+1)(δk−1)

)
> 0 if i is finite.

Thus, we consider the following function:

Gij(δi, δi+1, . . . , δj−1) =
1

4
log(∆h)−

j−1∑
k=i

(
1

1 + ck
− 1

ck(ck + 1)(δk − 1)

)
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where
∏j−1

k=i δk = ∆h from (A.4). Using this, we replace log(∆h) in Gij with
∑j−1

k=i log(δk).

Thus we have,

Gij(δi, δi+1, . . . , δj−1) =

j−1∑
k=i

(
1

4
log(δk)−

1

1 + ck
+

1

ck(ck + 1)(δk − 1)

)
.

We denote the kth term in the above summation as

Gk
ij(δk) =

(1

4
log(δk)−

1

1 + ck
+

1

ck(ck + 1)(δk − 1)

)
.

Taking the price condition, δk > 1 + 1
ck

, into consideration the function Gk
ij(δk) has a

unique global minimum. Taking the first order stationary condition with respect to δk,

the stationary point is given by the following equation:

1

4δk
− 1

ck(ck + 1)(δk − 1)2
= 0.

Solving for δk > 1 + 1
ck

, we get,

δ∗k = 1 +
2 + 2(c2

k + ck + 1)
1
2

ck(ck + 1)
.

Replacing the value of δk in Gk
ij(δk) with δ∗k, we have,

Gk
ij(δ

∗
k) =

1

4
log

(
1 +

2(c2
k + ck + 1)

1
2 + 2

c2
k + ck

)
− 1

ck + 1
+

1

2(c2
k + ck + 1)

1
2 + 2

.

For any ck > 0, Gk
ij(δ

∗
k) has a strictly positive value which strictly decreases as ck increases,

and asymptotically goes to zero as ck →∞. Thus, Gij(δ
∗
i , δ
∗
i+1, . . . , δ

∗
j−1)→ 0 if Gk

ij(δ
∗
k)→

0 for all k = i∗, i∗ + 1, . . . , j∗ − 1. Since {ck}∞k=1 is a diverging sequence, it implies

Gij(δ
∗
i , δ
∗
i+1, . . . , δ

∗
j−1)→ 0 as i∗ →∞. �
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Proof of Corollary 1

Theorem 2 presents the solution to problem (1.21), and the WCRR is given by, R1
∞(∆h) =

1

1 + 1
4

log(∆h)
. Thus, for any given sequence of arrival rates, {λk}∞k=1, the value of R1

∞(∆h)

does not depend on λk or ck for any k. �
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APPENDIX B

Technical Analysis and Proofs of Results in Chapter 2

B.1. Expected Wait for Geometric Service Slot Distribution

We use EW (k) to denote the expected number of time periods an app users or a

non-app user has to wait in store for the completion of k orders, including her own. We

will use the shorthand Wk to denote EW (k). Here, we derive the analytical expression

for Wk when St ∼ Geometric (p), where St denotes the number of service slots generated

in period t. Since St is i.i.d., Wk will satisfy the following recursive equation:

(B.1) Wk = P(St ≥ k) · 0 +
k−1∑
i=0

P(St = i) · (1 +Wk−i)

The expected value of St is µ = 1−p
p

, where P(St = i) = p(1 − p)i. We will prove that

Wk = k
µ

by induction. First, using (B.1), we have W1 = P(St = 0) · (1 + W1), which

implies W1 = 1
µ
. Next, by replacing Wk−i by k−i

µ
in (B.1) we can rewrite the RHS as,

k−1∑
i=0

p(1− p)i ·
(

1 +
k − i
µ

)
=

k−1∑
i=0

p(1− p)i ·
(

1 +
k − i
1− p

p

)

=

(
p+

kp2

1− p

)
·
k−1∑
i=0

(1− p)i − p2 ·
k−1∑
i=1

i(1− p)i−1(B.2)

We use the following two formulae to simplify (B.2):

(B.3)
k−1∑
i=0

ri =
1− rk

1− r
,

k−1∑
i=1

iri−1 =
1− rk

(1− r)2
− krk−1

1− r
.
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Using (B.3), we can rewrite (B.2) as,

(
p+

kp2

1− p

)
·
k−1∑
i=0

(1− p)i − p2 ·
k−1∑
i=1

i(1− p)i−1

=

(
p+

kp2

1− p

)
·
(

1− (1− p)k

p

)
− p2 ·

(
1

p2
(1− (1− p)k)− k

p
(1− p)k−1

)
=(1− (1− p)k) +

kp

1− p
− kp(1− p)k−1 − (1− (1− p)k) + kp(1− p)k−1

=
kp

1− p
=
k

µ
.(B.4)

Thus, from (B.4), we have the RHS in (B.1), and we get Wk = k
µ
. �

B.2. Steady State Analysis of Markov Chain

To compute firm’s throughput and the average consumer surplus, we will construct a

Markov Chain using the events described in §2.2.2. Recall that in every time period t, four

events take place, Event 1 (non-app users arrive at the store), Event 2 (app users from

previous period arrives at the store), Event 3 (a new app user arrives at the market) and

Event 4 (services take place), as defined in §2.2.2. Length of the queue in period t before

Event i + 1 is denoted by xi(t) where i = 0, 1, 2, 3. Additionally, we use ui(t) to track

whether or not there is an undecided app user in period t; presence of an undecided app

user in period t before Event i + 1 is denoted by ui(t) where i = 0, 1, 2, 3. In particular,

at the beginning of time period t, if there is an undecided app user from previous period

t − 1 traveling to the store, we denote it by u0(t) = 1. This undecided app user decides

whether to order or not after observing the queue at the store in period t. Note that,

u0(t) = 0 denotes that the app user who arrived at the market in previous period t − 1

ordered online, in which case, this app user travels to the store for pick-up. Next, in
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Event 1 non-app users arrive, which does not alter the status of the undecided app user.

Therefore, u1(t) = u0(t). In Event 2, the undecided app user decides whether to join or

balk after observing the queue. Hence, after Event 2, the app user’s join/balk decision is

resolved, which is denoted by u2(t) = 0 for all t. Note that right after Event 2 and before

Event 3, there is never an undecided app user in the system. Finally, in Event 3, a new

app user arrives at the market in period t. If this new app user orders online, we denote

it by u3(t) = 0. Otherwise if this app user is undecided and defers his joining decision

until he arrives at the store in the next time period, we denote it by u3(t) = 1. Thus, we

note that ui(t) can only change its value twice; u2(t) = 0 by definition and u3(t) reflects

the decision made by the app user arriving at the market. We henceforth suppress the

time argument in xi(t) and ui(t) and use xi and ui to denote steady state. Finally, we

denote the state of the system by (xi, ui), where the value of i could be chosen as 0, 1, 2 or

3. Note that (xi, ui) is a Markov Chain. Due to the sequence of four events, as defined in

§2.2.2, we decompose every state transition into four intermediate transitions. We begin

by presenting the transition probability matrices associated with the state transitions.

Arrival of Non-App Users. The intermediate transition from (x0, u0) to (x1, u1) takes

place as a result of arrivals of non-app users at the store. The probability of k arrivals

of non-app users at the store in period t is denoted by P(At = k) = ak. For brevity, we

adopt the notation
∑∞

i=k ai = ak. We know from (2.5) that the non-app users follow a

threshold-based joining policy, upon arrival at the store and observing the queue length,

x0. Non-app users join only if the number of orders in the system, x0, is strictly less than

τn. The following matrix, M0, holds the transition probabilities, where the row indices
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correspond to x0, the column indices correspond to x1. Matrix M0 is given by,

M0 =



0 1 2 ··· τn−1 τn τn+1 ··· M

0 a0 a1 a2 · · · aτn−1 aτn 0 · · · 0

1 0 a0 a1 · · · aτn−2 aτn−1 0 · · · 0

2 0 0 a0 · · · aτn−3 aτn−2 0 · · · 0

...
...

...
...

. . .
...

...
...

. . .
...

τn−1 0 0 0 · · · a0 a1 0 · · · 0

τn 0 0 0 · · · 0 1 0 · · · 0

τn+1 0 0 0 · · · 0 0 1 · · · 0

...
...

...
...

. . .
...

...
...

. . .
...

M 0 0 0 · · · 0 0 0 · · · 1



.

where M is some arbitrarily large integer. For the model with information, we set M =

max(τn, τs, τu+1). For the model without information we set the value of M large enough

such that the probability of the queue length being M or larger is arbitrariliy small.

We note that an intermediate transition from (x0, 0) can only lead to (x1, 0) since

u0 = u1. Similarly, a transition from (x0, 1) can only lead to (x1, 1). Thus, the transition

probability matrix corresponding to intermediate transitions from (x0, u0) to (x1, u1) is

given by,

P0 =


(x1,0) (x1,1)

(x0,0) M0 0

(x0,1) 0 M0

,
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where 0 in the matrix P0 denotes a matrix containing zeros, having same dimension as

that of M0.

Arrival of App User at Store. The intermediate transition from (x1, u1) to (x2, u2),

takes place as a result of Event 2. As already mentioned, if u1 = 0, then the app user

chose the online option and is at the store for pick-up. Thus, the queue length remains

unchanged, i.e. (x1, 0) transitions to (x2, 0) where x2 = x1. On the other hand, if u1 = 1,

then the app user chose the offline option and decides whether to order or balk in Event 2.

We have established in (2.6) that an app user at the store follows a Naor-type threshold,

τs, to decide whether or not to join. Thus, (x1, 1) transitions to state (x2, 0), where the

transition matrix M1, is given by,

M1 =



0 1 2 ··· τs τs+1 ··· M

0 0 1 0 · · · 0 0 · · · 0

1 0 0 1 · · · 0 0 · · · 0

...
...

...
...

. . .
...

...
. . .

...

τs−1 0 0 0 · · · 1 0 · · · 0

τs 0 0 0 · · · 1 0 · · · 0

τs+1 0 0 0 · · · 0 1 · · · 0

...
...

...
...

. . .
...

...
. . .

...

M 0 0 0 · · · 0 0 · · · 1



.
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The transition probability matrix corresponding to intermediate transitions from (x1, u1)

to (x2, u2) is given by,

P1 =


(x2,0) (x2,1)

(x1,0) I 0

(x1,1) M1 0

,
where I denotes the identity matrix, and 0 denotes a matrix containing zeros, both I

and 0 having same dimension as that of M1.

Arrival of App User at the Market. The intermediate transition from (x2, u2) to

(x3, u3) occurs as a result of the arrival of a new app user at the market. The strategy

adopted by this app user depends on whether or not the current queue length, x2, is

revealed to her. In Proposition 4, we have established that when queue information is

revealed, there are two thresholds, τl and τu, such that the app user orders online if the

queue length, x2, satisfies τl ≤ x2 ≤ τu, and chooses the offline option otherwise. Note

that depending on the system parameters, τl could be zero. Thus, (x2, 0) transitions to

(x3, 0) when τl ≤ x2 ≤ τu, whereas, transitions happen to (x3, 1) otherwise. Note that, we

always have u2 = 0, as already mentioned. Also, note that u3 reflects the online/offline

decision made by the new app user arriving at the market. The probability matrix for

the intermediate transitions from (x2, u2) to (x3, u3) is given by,

P2 =


(x3,0) (x3,1)

(x2,0) M21 M22

(x2,1) 0 0

,
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where M21 and M22 are given by,

M21 =



0 ··· τl τl+1 ··· τu+1 τu+2 ··· M

0 0 · · · 0 0 · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...
...

. . .
...

τl−1 0 · · · 0 0 · · · 0 0 · · · 0

τl 0 · · · 0 1 · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...
...

. . .
...

τu 0 · · · 0 0 · · · 1 0 · · · 0

τu+1 0 · · · 0 0 · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...
...

. . .
...

M 0 · · · 0 0 · · · 0 0 · · · 0



,

M22 =



0 ··· τl−1 τl ··· τu τu+1 ··· M

0 1 · · · 0 0 · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...
...

. . .
...

τl−1 0 · · · 1 0 · · · 0 0 · · · 0

τl 0 · · · 0 0 · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...
...

. . .
...

τu 0 · · · 0 0 · · · 0 0 · · · 0

τu+1 0 · · · 0 0 · · · 0 1 · · · 0

...
...

. . .
...

...
. . .

...
...

. . .
...

M 0 · · · 0 0 · · · 0 0 · · · 1



.
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Again, 0 in the matrix P2, denotes a matrix containing zeros, having the same dimension

as that of M21 and M22.

Now, if queue-length information is withheld from the app user who arrives at the

market, we have established in Theorem 4 that her joining strategy can be denoted by θ,

which represents the probability with which she orders online. Accordingly, the matrices

M21 and M22, for this case, are given by,

M21 =



0 1 2 ··· M

0 0 θ 0 · · · 0

1 0 0 θ · · · 0

...
...

...
...

. . .
...

M−1 0 0 0 · · · θ

M 0 0 0 · · · 0


, M22 =



0 1 ··· M−1 M

0 1− θ 0 · · · 0 0

1 0 1− θ · · · 0 0

...
...

...
. . .

... 0

M−1 0 0 · · · 1− θ 0

M 0 0 · · · 0 1− θ


.

We note that, if queue information is withheld from the app users, then there is always

a finite probability with which the queue length becomes arbitrarily large. Therefore,

the value of M , in this case, represents some arbitrarily large number which results from

truncation, in order to maintain computational tractability.

Services. Finally, the intermediate transition from (x3, u3) to (x0, u0) occurs due to

services. We denote the probability of generating k service slots by, P(St = k) = sk.

We note that the second component of the state space, u3, remains unchanged in this

intermediate transition. Thus, (x3, 0) transitions to (x0, 0), and (x3, 1) transitions to

(x0, 1). For brevity, we adopt the notation
∑∞

i=k si = sk. The probability matrix for this
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intermediate transition is given by,

P3 =


(x0,0) (x0,1)

(x3,0) M3 0

(x3,1) 0 M3

,
where 0 in the matrix P3 denotes a matrix containing zeros, having same dimension as

that of M3 where M3 is given by,

M3 =



0 1 2 ··· M

0 1 0 0 · · · 0

1 s1 s0 0 · · · 0

2 s2 s1 s0 · · · 0

...
...

...
...

. . .
...

M sM sM−1 sM−2 · · · s0


.

Steady State Probability. For calculating the steady state probabilities correspond-

ing to the system state (xi, ui), the transition probability matrix is given by the following

product of the matrices corresponding to the intermediate transitions,

P i = Pm(i)Pm(i+1)Pm(i+2)Pm(i+3),

where i = 0, 1, 2 or 3, and m(k) denotes the modulo operation, which in this case, equals

the remainder left when k is divided by 4. For example, if we define the system state

as (x2, u2), then P2 = P2P3P0P1. We denote the steady state probability vector cor-

responding to the state (xi, ui) by πi, which is given by the solution of the following
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equation,

(B.5) πi = πiP i.

The dimensions of πi and P i are (1, 2(M +1)) and (2(M +1), 2(M +1)) respectively. The

jth component of πi represents

πi(j) =


P(xi = j, ui = 0) 0 ≤ j ≤M,

P(xi = j −M − 1, ui = 1) M + 1 ≤ j ≤ 2M + 1.

Throughput. Using the steady state probabilities πi, we compute the throughput for

app users and non-app users. Since we have one app user arriving at the market each time

period, arrival rate for app users is given by ΛT = 1. For the model with information,

throughput from online orders is given by,

λo = ΛT · P(τl ≤ x2 ≤ τu)

=
τu∑
k=τl

(π2(k) + π2(k +M + 1))

=
τu∑
k=τl

π2(k) (since u2 = 0).

For the model without information, throughput from online orders is given by,

λo = ΛT · P(app user orders online)

= θ.
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The throughput from offline (in-store) orders by app-users is given by,

λs = ΛT · P({0 ≤ x1 < τs} ∩ {u1 = 1})

=
τs−1∑
k=0

π1(k +M + 1).

Thus, the overall throughput combining both online and offline orders by app users, is

given by, λT = λo + λs.

Effective number of non-app users who join the system depends on the number of

arrivals, At, the length of the queue that they observe upon arrival, x0, and their joining

threshold, τn. The effective number of non-app users who join the system is given by,

min(At, (τn − x0)+), where z+ denotes max(z, 0). Thus, the throughput from the orders

by non-app users is given by,

λN = Ex0,At min(At, (τn − x0)+)

=
τn−1∑
k=0

∞∑
j=0

P(At = j) · (π0(k) + π0(k +M + 1)) ·min(j, (τn − k)+).

Consumer Surplus. Using the steady state probabilities, we compute the average

per period consumer surplus for the app users and non-app users. For the model with

information, average consumer surplus for app users is computed as follows,

CT = Ex2 max(Us(x2), Uo(x2))

=
M∑
l=0

(π2(l) + π2(l +M + 1)) ·max(Us(l), Uo(l))

=
M∑
l=0

π2(l) ·max(Us(l), Uo(l)) (since u2 = 0),
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Figure B.1. Plot (a) and (b) illustrates that Assumption 2 holds. For scaling
purposes we plot log(−D(L)) on the y-axis, which is a monotone transform
of −D(L). If log(−D(L)) is increasing in L that implies D(L) is decreasing
in L. These graphs are plotted for base parameter values used in §2.5.

where Uo(l) and Us(l) are defined in (2.1) and (2.2). For the model without information,

average consumer surplus for app users is computed as follows,

CT = max(Ex2Us(x2),Ex2Uo(x2)).

For non-app users, we have established that, the effective number of customers joining

the system is given by nt = min(At, (τn−x0)+). First we compute the combined consumer

surplus for all joining non-app users conditional on nt, which is given as follows,

c(At, x0) =
nt∑
i=1

(
v − (x0 + i) · cwN

µ

)
.

Now, the average per period consumer surplus for non-app users is given by,

CN = Ex0,Atc(At, x0)

=
M∑
k=0

∞∑
j=0

P(At = j) · (π0(k) + π0(k +M + 1)) · c(j, k).
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Now that we have presented the framework which we will use for computations in

§2.5, we illustrate in Figure B.1 that Assumption 2 holds for the base parameter values

that we consider in §2.5.

B.3. Throughput for Low System Capacity

Here, we will show that there exist a capacity, µ, such that app users arriving at the

market order online after observing an empty system, even if no customer joins the queue

in store. In particular, we assume that v − cwT
µ

< 0. Since, in this setting, non-app

users are more wait-sensitive compared to app users, we have v − cwN
µ
< 0 as well. Thus,

neither non-app users nor app users join in store even if the queue is empty. In addition,

we assume that app users are not quality sensitive, i.e. cq = 0. Now, we consider app

users’ utility for choosing the offline option upon observing an empty system. First, from

(2.3), we have,

Ûs(0) = v −
(

(0− St)+ + nt+1(0) + 1
)
· cwT
µ
.

Since, non-app users do not join , i.e., v − cwN
µ
< 0, we have nt+1(0) = 0. Thus, we have,

Ûs(0) = v −
(

(0− St)+ + 1
)
· cwT
µ

= v − cwT
µ
.

Since, we have assumed that v − cwT
µ
< 0, we have Ûs(0) < 0, and hence Us(0) = 0 from

(2.2). Thus app users do not choose the offline option. Now, we consider the utility of

ordering online. From (2.1), we have,

Uo(0) = v − ESt [(0 + 1− St)+] · cwT
µ

= v − ESt [(1− St)+] · cwT
µ
.
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Since, ESt [(1− St)+] < 1 for any non-zero service process, there exist a capacity, µ, such

that ESt [(1 − St)+] · cwT
v

< µ < cwT
v

, which results in Uo(0) > 0. Thus, for low enough

capacity, even though in-store throughput could be zero, app users still might order online

resulting in positive omnichannel throughput. �

B.4. Proofs of Results in §2.3

Proof of Theorem 4

A strategy, θ ∈ [0, 1], denotes the probability with which an app user arriving at the

market orders online. Before we establish the existence of a symmetric equilibrium, we

look at the best response, which is denoted by the correspondence, χ(θ) : [0, 1] → [0, 1],

and is given by,

(B.6) χ(θ)



= 1, if U o(θ) > U s(θ)

∈ [0, 1], if U o(θ) = U s(θ)

= 0, if U o(θ) < U s(θ)

where U o(θ) and U s(θ) are given by (2.7). In order to prove the existence of a symmetric

equilibrium strategy, it is sufficient to prove the existence of a fixed point for the corre-

spondence χ(θ) : [0, 1]→ [0, 1]. An equilibrium strategy, θ, would be such that θ = χ(θ).

The set of all strategies, [0, 1], is a closed and compact set. Clearly, the correspondence

χ(θ), as defined in (B.6), is convex-valued. To see this, note that for any two elements

r1, r2 ∈ χ(θ) and r1 6= r2, by definition of χ(θ), θ is such that U o(θ) = U s(θ). Therefore,

for any α ∈ [0, 1], r = αr1 + (1−α)r2 ∈ [0, 1], and hence r ∈ χ(θ). If r1 = r2, then clearly,

r ∈ χ(θ). Now, the steady state probabilities π2, are given by the solution of the equation



179

(B.5), where P2 = P2P3P0P1 equals the matrix M21M3M0 +M22M3M0M1, where,

only matricesM21 andM22 are functions of θ. Thus, (B.5) represents a set of equations

that are linear in θ, and hence continuous in θ. As a result, the expected utility functions

given by, (2.7), are also continuous functions of θ. The best response correspondence χ(θ),

as defined in (B.6), is continuous in the function U o(θ)−U s(θ). Since, we have established

that both U o(θ) and U s(θ) are continuous in θ, this implies that χ(θ) is also continuous in

θ, by composition of χ(θ) with U o(θ) and U s(θ). Thus the best response correspondence,

χ(θ), has a closed graph, i.e., the set {(θ, φ) ∈ [0, 1]2 : φ ∈ χ(θ)} is closed as a subset

of [0, 1]2. Hence, by Kakutani’s fixed point theorem, the best response correspondence,

χ(θ), has a fixed point θ such that θ = χ(θ). This is a symmetric Nash equilibrium, as it

is the best response for an app user arriving at the market, when all other app users who

arrive at the market also use the same strategy. �

Proof of Proposition 4

Utility of ordering online is,

Uo(L) = v − ESt [1(St ≥ L+ 1)] · cq − ESt [(L+ 1− St)+] · cwT
µ
.

Utility of choosing the offline option is,

Us(L) = ESt,At+1 [max(0, Ûs(L))],

where,

Ûs(L) = v −
(

(L− St)+ + nt+1(L) + 1
)
· cwT
µ
.
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Since the function f(x) = max(0, x) is convex in x, using Jensen’s inequality we have,

ESt,At+1 [max(0, Ûs(L))] ≥ max(0,ESt,At+1 [Û(L)]).

Since, max(0,ESt,At+1 [Û(L)]) ≥ ESt,At+1 [Ûs(L)], we have Us(L) ≥ ESt,At+1 [Ûs(L)]. Hence,

we will express Us(L) as ESt,At+1 [Ûs(L)] + g(L), where g(L) is a positive function repre-

senting the gap, and is defined over the set of all non-negative integers. The difference,

D(L) := Uo(L)− Us(L), can be written as,

D(L) = Uo(L)− ESt,At+1 [Ûs(L)]− g(L)

= ESt [(L− St)+ + EAt+1nt+1(L) + 1] · cwT
µ

− ESt [1(St ≥ L+ 1)] · cq − ESt [(L+ 1− St)+] · cwT
µ
− g(L)

= ESt,At+1 [nt+1(L)] · cwT
µ

+ ESt [(L− St)+ + 1− (L+ 1− St)+] · cwT
µ

− P(St ≥ L+ 1) · cq − g(L),

which is equivalent to,

(B.7) D(L) = ESt,At+1 [nt+1(L)] · cwT
µ

+ P(St ≥ L+ 1) ·
(
cwT
µ
− cq

)
− g(L).

We are interested in finding out the number of times, the function D(L) crosses zero.

In order to investigate this, it would be helpful to look at the first differences of this

function, D(L)−D(L− 1). The first difference function would tell us how D(L) changes
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as L changes. Computing D(L)−D(L− 1), we have,

D(L)−D(L− 1) = ESt,At+1 [nt+1(L)− nt+1(L− 1)] · cwT
µ

− P(St = L) ·
(cwT
µ
− cq

)
− (g(L)− g(L− 1)).

Therefore, the condition D(L) < D(L− 1) is equivalent to

(B.8)

ESt,At+1 [nt+1(L)− nt+1(L− 1)] · cwT
µ
− (g(L)− g(L− 1))

P(St = L)
<
(cwT
µ
− cq

)
.

As per Assumption 2, the left hand side expression in (B.8) is D(L), and we assume that

P(St = L) > 0 for all non-negative integer L. Now, given that nt+1(L) = min(At+1, (τn −

(L−St)+)+), clearly, nt+1(L) ≤ nt+1(L−1), which implies that the term ESt,At+1 [nt+1(L)−

nt+1(L− 1)] · cwT
µ

, in (B.8) is non-positive. Moreover Lemma 8 establishes that the term

(g(L)− g(L− 1)) in (B.8) is positive. This implies that D(L) is negative for all L.

(i) If cwT
µ
−cq ≥ 0, then (B.8) holds for all L ≥ 0. This implies that D(L) < D(L−1) for all

L ≥ 1. Now, to avoid trivialities we generally assume that τs ≥ 1, i.e. v− cwT
µ
≥ 0. Lemma

10 establishes that D(0) ≥ 0. Hence, there exists a threshold τu, such that D(L) ≥ 0 if

L ≤ τu and D(L) < 0 otherwise. This proves the first part of the proposition.

(ii) If cwT
µ
− cq < 0 and Assumption 2 holds, then either D(L) <

(
cwT
µ
− cq

)
for all L ≥ 0,

i.e. (B.8) holds for all L ≥ 0 which we have covered in (i), or there exists an L∗ such that(
cwT
µ
− cq

)
≤ D(L) if L < L∗ and D(L) <

(
cwT
µ
− cq

)
otherwise. This implies that once

D(L) < D(L− 1) holds for some L∗, it continues to hold true for all subsequent L > L∗,

and hence the function D(L) = Uo(L)− Us(L) is unimodal. Thus, if D(L) ≥ 0 for some
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L ≥ 0, there exist thresholds τl ≥ 0 and τu ≥ 0 such that Uo(L) ≥ Us(L) if τl ≤ L ≤ τu,

and Uo(L) < Us(L) otherwise. �

Lemma 8. The function g(L) defined as,

g(L) := E(max(0, Ûs(L)))− E(Ûs(L))

is increasing in L.

Proof. From (2.3), we have,

Ûs(L) = v − ((L− St)+ + nt+1(L) + 1) · cwT
µ
.

We can rewrite this as,

Ûs(L) = v −XL ·
cwT
µ
,

where XL = (L− St)+ + nt+1(L) + 1 is a discrete positive random variable.

E(max(0, Ûs(L))) can be written as,

(B.9)

E(max(0, Ûs(L))) = E
(

max
(

0, v −XL ·
cwT
µ

))
= v − cwT

µ
· E
(

min
( vµ
cwT

, XL

))
= v − v

γ
· E(min(γ,XL)),
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where we define γ = vµ
cwT

.

Expanding the term E(min(γ,XL)), we get,

(B.10)

E(min(γ,XL)) =

bγc∑
i=1

i · P(XL = i)

=

bγc∑
i=0

P(γ > XL > i).

Now, we expand the term E(Ûs(L)) in a similar manner, we get,

(B.11)

E(Ûs(L)) = v − v

γ
· E(XL)

= v − v

γ
·
∞∑
i=0

P(XL > i).

Finally, combining (B.9), (B.10) and (B.11), we can write,

(B.12)

g(L) =
v

γ
·
( ∞∑
i=0

P(XL > i)−
bγc∑
i=0

P(γ > XL > i)
)

=
v

γ
·
( ∞∑
i=bγc+1

P(XL > i) +

bγc∑
i=0

P(XL > γ)
)
.

Using Lemma 9, we can infer that P(XL > i) is increasing in L for any i. This establishes

our result that g(L) is increasing in L. �

Lemma 9. XL is stochastically increasing in L.

Proof. The discrete positive random variable, XL, is defined as XL = (L − St)+ +

nt+1(L) + 1, where nt+1(L) = min(At+1, (τn − (L− St)+)+).
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First, considering the case St ≥ L+ 1, we have,

XL = 0 + min(At+1, τn) + 1

and

XL+1 = 0 + min(At+1, τn) + 1.

This implies, XL+1 = XL. Now, considering St ≤ L, we get,

XL+1−XL = (L+1−St)−(L−St)+min(At+1, (τn+St−L−1))−min(At+1, (τn+St−L)).

The term min(At+1, (τn + St − L − 1)) − min(At+1, (τn + St − L)), is either 0 or −1,

which implies XL+1 −XL is either 1 or 0. This implies that XL+1 ≥ XL and thus, XL is

stochastically increasing in L. �

Lemma 10. D(0) ≥ 0 if v − cwT
µ
≥ 0 and cwT

µ
− cq ≥ 0.

Proof. D(0) = Uo(0)− Us(0) is equivalent to,

(B.13) D(0) = v−ESt [1(St ≥ 0+1)] ·cq−ESt [(0+1−St)+] · cwT
µ
−ESt,At+1 [max(0, Ûs(0))]

where,

(B.14) Ûs(0) = v −
(

(0− St)+ + nt+1(0) + 1
)
· cwT
µ

= v −
(
nt+1(0) + 1

)
· cwT
µ
.

Now, substituting Ûs(0) from (B.14) in ESt,At+1 [max(0, Ûs(0))], we can rewrite (B.13) as,

(B.15)

D(0) = v−P(St ≥ 1)·cq−(1−P(St ≥ 1))· cwT
µ
−ESt,At+1

[
max

(
0, v−(nt+1(0)+1)· cwT

µ

)]
.
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Since max
(

0, v−(nt+1(0)+1)· cwT
µ

)
≤ max

(
0, v− cwT

µ

)
, we have the following inequality

which follows from (B.15),

(B.16) D(0) ≥
(
v − cwT

µ

)
+ P(St ≥ 1) ·

(cwT
µ
− cq

)
−max

(
0, v − cwT

µ

)
.

If v − cwT
µ
≥ 0 and

cwT
µ
− cq ≥ 0, from (B.16) we have D(0) ≥ 0. �

B.5. Proofs of Results in §2.4

Here, we present the proofs for the propositions presented in §2.4. We denote P(At = 0)

by a and P(St = 1) by s. In both the Patient and the Impatient Scenarios, a = 1
2

and s = 1
2
. For deriving the analytical expressions for the steady state probabilities,

throughput and consumer surplus in the Patient and the Impatient scenarios, we use the

framework presented in Appendix B.2. For both the Patient Scenario and the Impatient

Scenario, we have

(B.17) M0 =



0 1 2 3

0 a 1− a 0 0

1 0 1 0 0

2 0 0 1 0

3 0 0 0 1


, M3 =



0 1 2 3

0 1 0 0 0

1 1 0 0 0

2 1− s s 0 0

3 0 1− s s 0


.
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Moreover, we have

(B.18) M1 =



0 1 2 3

0 0 1 0 0

1 0 0 1 0

2 0 0 1 0

3 0 0 0 1


, M1 =



0 1 2 3

0 0 1 0 0

1 0 1 0 0

2 0 0 1 0

3 0 0 0 1


for the Patient and the Impatient Scenarios respectively.

For the model without information, we have

(B.19) M21 =



0 1 2 3

0 0 t 0 0

1 0 0 t 0

2 0 0 0 t

3 0 0 0 0


, M22 =



0 1 2 3

0 1− t 0 0 0

1 0 1− t 0 0

2 0 0 1− t 0

3 0 0 0 1− t


in both the Patient and the Impatient Scenarios, where we use t to denote the probability

that an app user orders online. For single channel systems,M21 andM22 can be obtained

by putting t = 0 in (B.19), since all app users choose the offline option. For the model with

information, we will specify the matricesM21 andM22 in the proof of the corresponding

Lemmas. For the remainder of this section, we adopt the notation π̂i(k, l) = P(xi =

k, ui = l), and πi(k) = π̂i(k, 0) + π̂i(k, 1).

Proof of Proposition 5

The result follows from Lemma 17. �
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Proof of Proposition 6

The result follows from Lemma 11. �

Proof of Proposition 7

The result follows from Lemma 18, Lemma 20 and Lemma 22 combined. �

Proof of Proposition 8

The result follows from Lemma 12, Lemma 14 and Lemma 16 combined. �

Patient Scenario

System: Omnichannel without information

Lemma 11. (i) The probability, θ, that an app user arriving at the market orders

online, in the omnichannel system without information for the Patient Scenario, is given

by,

θ =



1 if 0 <
cq
cwT
≤ 7

6
,

6cwT − 3cq
3cq − cwT

if
7

6
<

cq
cwT

< 2,

0 if 2 <
cq
cwT

<∞.

(ii) The average per period consumer surplus for the app users in the omnichannel system
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without information for the Patient Scenario, is given by,

CT =



v − 2

3
cq −

2

9
cwT if 0 <

cq
cwT
≤ 7

6
,

36vcq − 42cqcwT − 27vcwT + 34c2
wT

36cq − 27cwT
if

7

6
<

cq
cwT

< 2,

v − 10

9
cwT if 2 ≤ cq

cwT
<∞.

where
4

3
≤ v

cwT
< 2.

(iii) The average per period consumer surplus for the non-app users in the omnichannel

system without information for the Patient Scenario, is given by,

CN =



1

3
·
(
v − 2

3
cwN

)
if 0 <

cq
cwT
≤ 7

6
,

1

2
·

36c2
q − 72cqcwT + 40c2

wT

36c2
q − 51cqcwT + 18c2

wT

·
(
v − 2

3
cwN

)
if

7

6
<

cq
cwT

< 2,

1

3
·
(
v − 2

3
cwN

)
if 2 ≤ cq

cwT
<∞.

where
2

3
≤ v

cwN
<

4

3
.

Proof. The steady state probabilities when an app user arrives at the market, are

given by,

(B.20) π2(0) =
(t2 + t)

(t− 3)(t− 4)
, π2(1) =

2(2 + t− t2)

(t− 3)(t− 4)
, π2(2) =

2(t− 1)

(t− 3)
,

where t denotes the probability that an app user arriving at the market orders online.

Next, we compute the expected utilities of ordering online and choosing the offline option,

for an app user arriving at the market. We recall that the utility of ordering online from
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(2.1) is given by,

Uo(L) = v − ESt [1(St ≥ L+ 1)] · cq − ESt [(L+ 1− St)+] · cwT
µ
.

Thus, we have,

(B.21)

Uo(0) = v − ESt [1(St ≥ 1)] · cq − ESt [(1− St)+] · cwT
µ

= v − cq.

(B.22)

Uo(1) = v − ESt [1(St ≥ 2)] · cq − ESt [(2− St)+] · cwT
µ

= v − s · cq − (1− s) · cwT
µ

= v − cq
2
− cwT

3
.

[
Note: µ = 1 · s+ 2 · (1− s) =

3

2

]

(B.23)

Uo(2) = v − ESt [1(St ≥ 3)] · cq − ESt [(3− St)+] · cwT
µ

= v − [2 · (1− s) + 1 · s] · cwT
µ

= v − cwT .

Now, in the Patient Scenario we have,

2 ≤ vµ

cwT
< 3

which, since µ = 1 · s+ 2 · (1− s) = 3
2
, implies

(B.24)
4

3
≤ v

cwT
< 2.
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The utility of choosing the offline option from (2.2) is given by,

Us(L) = ESt,At+1 [max(0, Ûs(L))]

where Ûs(L) is given by,

Ûs(L) = v − ((L− St)+ + nt+1(L) + 1) · cwT
µ
.

Thus, we have,

Us(0) = ESt,At+1 [max(0, v − (nt+1(0) + 1) · cwT
µ

)].

We know that nt+1(L) = min(At+1, (τn − (L − St)+)+). Thus, nt+1(0) = min(At+1, τn).

Since, we have assumed that τn = 1, we have, nt+1(0) = At+1. Using this, we can rewrite

(B.25) as,

Us(0) = EAt+1 [max(0, v − (At+1 + 1) · cwT
µ

)].

Since, At+1 is either 0 with probability a = 1
2
, or 1 with probability 1− a = 1

2
, and (B.24)

holds, we can rewrite Us(0) as,

(B.25) Us(0) = (v − 2
cwT
µ

) · a+ (v − cwT
µ

) · (1− a) = v − cwT .

Since, nt+1(1) = min(At+1, (τn − (1− St)+)+) = min(At+1, τn) = At+1, we have,

(B.26)

Us(1) = EAt+1 [max(0, v − (At+1 + 1) · cwT
µ

)]

= v − cwT .



191

Finally,

nt+1(2) = min(At+1, (τn − (2− St)+)+)

= min(At+1, (1− (2− St)+)+)

=


0 if St = 1,

At+1 if St = 2.

Thus,

(B.27)

Us(2) = ESt,At+1 [max(0, v − ((2− St)+ + nt+1(2) + 1) · cwT
µ

)]

=


EAt+1 [max(0, v − 2 cwT

µ
)] if St = 1,

EAt+1 [max(0, v − (At+1 + 1) · cwT
µ

)] if St = 2,

=


v − 4

3
cwT , if St = 1,

v − cwT if St = 2,

= (1− s) · (v − 4

3
cwT ) + s · (v − cwT )

= v − 7

6
cwT .

Collecting all the utility expression from (B.21), (B.22), (B.23), (B.25), (B.26) and (B.27)

we have the utility expressions in Table B.1.

We next compute the expected utilities of ordering online and choosing the offline option

by app users arriving at the market, using steady state probabilities given by (B.20).
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L Uo(L) Us(L)

0 v − cq v − cwT

1 v − cq
2
− cwT

3
v − cwT

2 v − cwT v − 7

6
cwT

Table B.1. Utilities of ordering online and choosing the offline option by an
app user when there are L order in the system

First, we compute the expected utility of ordering online,

(B.28) U o(t) =
6cq − 36v + 28cwT + 6cqt+ 21vt− 28cwT t− 3vt2 + 4cwT t

2

3(7t− t2 − 12)
.

Expected utility of choosing the offline option is given by,

(B.29) U s(t) =
9v − 10cwT − 3vt+ 4cwT t

3(3− t)
.

Now, the app users randomize their choice of channel only if they are indifferent between

the online and the offline option. Thus, if 0 < t < 1, then we have, U o(t) = U s(t).

Equating (B.28) and (B.29) we get,

(B.30) t =
3cq − 6cwT
cwT − 3cq

.

Applying the condition 0 < t < 1, we get,

(B.31) 2 >
cq
cwT

>
7

6
.
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Finally, we characterize the average per period consumer surplus for app users as follows:

(B.32) CT =



v − 2

3
cq −

2

9
cwT if 0 <

cq
cwT
≤ 7

6
,

36vcq − 42cqcwT − 27vcwT + 34c2
wT

36cq − 27cwT
if

7

6
<

cq
cwT

< 2,

v − 10

9
cwT if 2 ≤ cq

cwT
<∞,

where the parameters need to satisfy the condition in (B.24).

Now, we compute the average consumer surplus for non-app users in this system. We

recall that in this system non-app users join only if they observe an empty queue. The

steady state probability is given by,

π0(0) =
4(t2 − 2t+ 2)

t2 − 7t+ 12

where t denotes the probability of an app user ordering online. Thus, the average per

period consumer surplus for non-app users is given by,

CN = π0(0) · P(At = 1) · (v − cwN
µ

).

Substituting the expression for t, as given in (B.30), in the expression for π0(0), and using

the condition (B.31) along with the fact that µ = 3
2
, we can rewrite CN as,

(B.33) CN =



1

3
·
(
v − 2

3
cwN

)
if 0 <

cq
cwT
≤ 7

6
,

1

2
·

36c2
q − 72cqcwT + 40c2

wT

36c2
q − 51cqcwT + 18c2

wT

·
(
v − 2

3
cwN

)
if

7

6
<

cq
cwT

< 2,

1

3
·
(
v − 2

3
cwN

)
if 2 ≤ cq

cwT
<∞,
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where, the non-app users’ wait-sensitivity is such that,

(B.34)
2

3
≤ v

cwN
<

4

3
.

�

Lemma 12. The combined average per period throughput in the omnichannel system

without information for the Patient Scenario is given by,

λT + λN =



4

3
if 0 <

cq
cwT
≤ 7

6
,

1 +
18c2

q − 36cqcwT + 20c2
wT

36c2
q − 51cqcwT + 18c2

wT

if
7

6
<

cq
cwT

< 2,

4

3
if 2 ≤ cq

cwT
<∞.

Proof. Steady state probability that a non-app user arriving at the store observes an

empty system is,

π0(0) = π̂(0, 0) + π̂(0, 1) =
2(t2 + t)

(t− 3)(t− 4)
+

2(t− 1)

(t− 3)
=

4(t2 − 2t+ 2)

t2 − 7t+ 12
,

where t denotes the probability that an app user arriving at the market orders online.

Average per period throughput for non-app users is,

λN = P(At = 1) · π0(0)

=
1

2
·
(4(t2 − 2t+ 2)

t2 − 7t+ 12

)
=

2(t2 − 2t+ 2)

t2 − 7t+ 12
.

The steady state probability of an app user arriving at the store and observing an empty

system is π̂1(0, 1) = (t−1)
(t−3)

where t denotes the probability of an app user ordering online.
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The probability of an app user arriving at the store and observing a system of size 1 is

π̂1(1, 1) = (1−t)(t−2)
(t−3)

. Average per period throughput for app users is,

λT = λo + λs = ΛT · (t+ π̂1(0, 1) + π̂1(1, 1))

= t+
(t− 1)

(t− 3)
+

(1− t)(t− 2)

(t− 3)
= 1.

Thus, in this particular system, none of the app users balk at the store and the overall

throughput is same as the arrival rate for the app users, which is ΛT = 1. Thus, the com-

bined average throughput for this system, as a function of the randomization probability,

is,

(B.35) λT + λN = 1 +
2(t2 − 2t+ 2)

t2 − 7t+ 12
.

Using Lemma 11(i) we replace t in (B.35) by the probability, θ, that an app user orders

online and obtain,

λT + λN =



4

3
if 0 <

cq
cwT
≤ 7

6
,

1 +
18c2

q − 36cqcwT + 20c2
wT

36c2
q − 51cqcwT + 18c2

wT

if
7

6
<

cq
cwT

< 2,

4

3
if 2 ≤ cq

cwT
<∞.

�

Patient Scenario

System: Omnichannel with information
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Lemma 13. (i) The average per period consumer surplus for the app users in the

omnichannel system with information for the Patient Scenario is given by,

CT =



v − 2

3
cq −

2

9
cwT if 0 <

cq
cwT

< 1,

v − 1

3
cq −

5

9
cwT if 1 ≤ cq

cwT
<

4

3
,

v − cwT if
4

3
≤ cq
cwT

<∞,

where
4

3
≤ v

cwT
< 2.

(ii) The average per period consumer surplus for the non-app users in the omnichannel

system with information for the Patient Scenario is given by,

CN =



1

3
·
(
v − 2

3
cwN

)
if 0 <

cq
cwT

< 1,

1

4
·
(
v − 2

3
cwN

)
if 1 ≤ cq

cwT
<

4

3
,

1

4
·
(
v − 2

3
cwN

)
if

4

3
≤ cq
cwT

<∞,

where
2

3
≤ v

cwN
<

4

3
.

Proof. An app user arriving at the market, upon observing queue length L, orders

online if Uo(L) > Us(L) and chooses the offline option otherwise. By comparing Uo(L)

and Us(L), from Table B.1, we find the ordering strategy for the app users in terms of cq

and cwT as summarized in Table 2.2.

Now, given the customer strategy, we next compute the steady state probabilities π2(L).
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If 0 < cq
cwT

< 1, using Table 2.2 we have

M21 =



0 1 2 3

0 0 1 0 0

1 0 0 1 0

2 0 0 0 1

3 0 0 0 0


, M22 =



0 1 2 3

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0


.

The steady state probabilities are given by π2(0) = 1
3
, π2(1) = 2

3
, π2(2) = 0. Given

these probabilities, the average consumer surplus for app users is given by,

CT = π2(0) · (v − cq) + π2(1) ·
(
v − cq

2
− cwT

3

)
= v − 2

3
cq −

2

9
cwT .

Similarly, when 1 ≤ cq
cwT

< 4
3
, using Table 2.2 we have

M21 =



0 1 2 3

0 0 0 0 0

1 0 0 1 0

2 0 0 0 1

3 0 0 0 0


, M22 =



0 1 2 3

0 1 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0


.
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The steady state probabilities, π2(L), are given by, π2(0) = 1
6
, π2(1) = 2

3
, π2(2) = 1

6
.

Given these, probabilities, the average consumer surplus for app users is given by,

CT = π2(0) · (v − cwT ) + π2(1) ·
(
v − cq

2
− cwT

3

)
+ π2(2) · (v − cwT )

= v − 1

3
cq −

5

9
cwT .

Finally, when 4
3
≤ cq

cwT
<∞, using Table 2.2 we have

M21 =



0 1 2 3

0 0 0 0 0

1 0 0 0 0

2 0 0 0 1

3 0 0 0 0


, M22 =



0 1 2 3

0 1 0 0 0

1 0 1 0 0

2 0 0 0 0

3 0 0 0 0


.

The steady state probabilities, π2(L), are given by, π2(0) = 0, π2(1) = 1
2
, π2(2) = 1

2
.

Given these, probabilities, the average consumer surplus for app users is given by,

CT = π2(1) · (v − cwT ) + π2(2) · (v − cwT )

= v − cwT .

Combining all the expressions for CT , we have,

(B.36) CT =



v − 2

3
cq −

2

9
cwT if 0 <

cq
cwT

< 1,

v − 1

3
cq −

5

9
cwT if 1 ≤ cq

cwT
<

4

3
,

v − cwT if
4

3
≤ cq
cwT

<∞,
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where, the parameters need to satisfy (B.24), i.e.,

4

3
≤ v

cwT
< 2.

Next, we compute the average per period consumer surplus for the non-app users. Since,

non-app users only join an empty system, we have,

CN = π0(0) · P(At = 1) ·
(
v − cwN

µ

)
.

If 0 < cq
cwT

< 1, the steady state probability, π0(0), is given by π0(0) = 2
3
. Thus, we have,

CN =
2

3
· 1

2
·
(
v − cwN

µ

)
=

1

3
·
(
v − 2

3
cwN

)
.

If 1 ≤ cq
cwT

< 4
3
, the steady state probability, π0(0), is given by π0(0) = 1

2
. Thus, we have,

CN =
1

2
· 1

2
·
(
v − cwN

µ

)
=

1

4
·
(
v − 2

3
cwN

)
.

Finally, if 4
3
≤ cq

cwT
<∞, the steady state probability, π0(0), is given by π0(0) = 1

2
. Thus,

we have,

CN =
1

2
· 1

2
·
(
v − cwN

µ

)
=

1

4
·
(
v − 2

3
cwN

)
.
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Combining all the expressions for CN , the average consumer surplus for the non-app users

is given by,

(B.37) CN =



1

3
·
(
v − 2

3
cwN

)
if 0 <

cq
cwT

< 1,

1

4
·
(
v − 2

3
cwN

)
if 1 ≤ cq

cwT
<

4

3
,

1

4
·
(
v − 2

3
cwN

)
if

4

3
≤ cq
cwT

<∞,

where, the parameters need to satisfy (B.34), i.e.,

2

3
≤ v

cwN
<

4

3
.

�

Lemma 14. The combined average per period throughput in the omnichannel system

with information for the Patient Scenario is given by,

λT + λN =



4

3
if 0 <

cq
cwT

< 1,

5

4
if 1 ≤ cq

cwT
<

4

3
,

5

4
if

4

3
≤ cq
cwT

<∞.

Proof. If 0 < cq
cwT

< 1, the average throughput for non-app users is given by π0(0) ·

P(At = 1) = 2
3
· 1

2
= 1

3
. From, Table 2.2, we know that if 0 < cq

cwT
< 1 then app users always

order online. This implies that the throughput for app users is same as their arrival rate,

i.e. λo = ΛT = 1. Moreover, since all app users order online, none of the app users order

at the store, i.e. λs = 0. Thus the combined throughput is λN + λo + λs = 4
3
.
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If 1 ≤ cq
cwT

< 4
3
, then the average throughput for non-app users is given by, π0(0) ·

P(At = 1) = (π̂0(0, 0) + π̂0(0, 1)) ·P(At = 1) = (1
3

+ 1
6
) · 1

2
= 1

4
. Average throughput for the

app users who order at the store is given by ΛT · (π̂1(0, 1) + π̂1(1, 1)) = 1 · ( 1
12

+ 1
12

) = 1
6
.

We know from Table 2.2 that the app users order online only if they observe either

L = 1 or L = 2. Thus, the throughput for app users who order online is given by,

ΛT · (π2(1) + π2(2)) = 1 · (2
3

+ 1
6
) = 5

6
. Thus, the combined throughput is λN + λs + λo =

1
4

+ 1
6

+ 5
6

= 5
4
.

Finally, if 4
3
≤ cq

cwT
< ∞, then the average throughput for non-app users is given by,

π0(0) · P(At = 1) = 1
2
· 1

2
= 1

4
. Average throughput for the app users who order at the

store is given by ΛT · (π̂1(0, 1) + π̂1(1, 1)) = 1 · (1
4

+ 1
4
) = 1

2
. We know from Table 2.2

that the app users order online only if they observe L = 2. Thus, the throughput for app

users who order online is given by, ΛT · π2(2) = 1 · 1
2
. Thus, the combined throughput is

λN + λs + λo = 1
4

+ 1
2

+ 1
2

= 5
4
. �

Patient Scenario

System: Single channel

Lemma 15. The average per period combined consumer surplus in the single channel

system for the Patient Scenario is given by,

CT + CN =
4

3
v − 10

9
cwT −

2

9
cwN .

where
4

3
≤ v

cwT
< 2 and

2

3
≤ v

cwN
<

4

3
.
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Proof. In the Patient scenario τs = 2, i.e. app users join only if they observe an

empty system or there is a single order in the system. For this system, the probability

that an app user arriving at the store observes an empty system and a system with one

order, are given by π1(0) = 1
3

and π1(1) = 2
3

respectively. Thus the average per period

consumer surplus for app users is given by,

(B.38)

CT = π1(0) ·
(
v − cwT

µ

)
+ π1(1) ·

(
v − 2

cwT
µ

)
= v − 5

3
· cwT
µ

= v − 10

9
cwT .

Next, we compute the average per period consumer surplus for non-app users. The prob-

ability that an app users arriving at the store observes an empty system is given by

π0(0) = 2
3
. Thus we have,

(B.39)

CN = P(At = 1) · π0(0) ·
(
v − cwN

µ

)
=

1

2
· 2

3
·
(
v − 2

3
cwN

)
=
v

3
− 2

9
cwN .

�

Lemma 16. The combined average per period throughput in the single channel system

for the Patient Scenario is given by,

λT + λN =
4

3
.

Proof. In this single channel system, app users order at the store only if they observe

either an empty system or a system with a single order. Thus, the average throughput
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for app users is given by,

λT = ΛT · (π̂1(0, 1) + π̂1(1, 1)) =
1

3
+

2

3
= 1.

The non-app users only join an empty system. Thus, the average throughput for non-app

users is given by,

λN = ΛN · P(At = 1) · (π0(0)) =
1

2
· 2

3
=

1

3
.

�

Impatient Scenario

System: Omnichannel without information

Lemma 17. (i) The probability, θ, that an app user arriving at the market orders

online in the omnichannel system without information for the Impatient Scenario, is given

by,

θ =



1 if 0 <
cq
cwT
≤ 1

6
+

3

4
· v

cwT
,

12(v − cq)
3v − 2cwT

if
1

6
+

3

4
· v

cwT
<

cq
cwT

<
v

cwT
,

0 if
v

cwT
≤ cq
cwT

<∞,

where
2

3
≤ v

cwT
<

4

3
.

(ii) The average per period consumer surplus for the app users in the omnichannel system
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without information for the Impatient Scenario, is given by,

CT =



v − 2

3
cq −

2

9
cwT if 0 <

cq
cwT
≤ 1

6
+

3

4
· v

cwT
,

v

2
− cwT

3
if

1

6
+

3

4
· v

cwT
<

cq
cwT

<
v

cwT
,

v

2
− cwT

3
if

v

cwT
≤ cq
cwT

<∞,

where
2

3
≤ v

cwT
<

4

3
.

(iii) The average per period consumer surplus for the non-app users in the omnichannel

system without information for the Impatient Scenario, is given by,

CN =



1

3
·
(
v − 2

3
cwN

)
if 0 <

cq
cwT
≤ 1

6
+

3

4
· v

cwT
,

1

2
·

36c2
q − 45cqv − 18cqcwT + 18v2 + 6vcwT + 4c2

wT

(3cq − 2cwT )(3v − 2cwT )
·
(
v − 2

3
cwN

)
if

1

6
+

3

4
· v

cwT
<

cq
cwT

<
v

cwT
,

1

2
·
(
v − 2

3
cwN

)
if

v

cwT
≤ cq
cwT

<∞,

where
2

3
≤ v

cwN
<

4

3
and

2

3
≤ v

cwT
<

4

3
.

Proof. The steady state probabilities of the number of orders in the system after

Event 2, is given by,

(B.40) π2(0) =
t

4− t
, π2(1) =

2(2− t)
(4− t)

,
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where t denotes the probability that an app user arriving at the market orders online.

Next, we compute the expected utilities of ordering online and choosing the offline option,

for an app user arriving at the market. We will have the same expected utility expressions

for ordering online as in (B.21) and (B.22). Thus, we have

Uo(0) = v − cq, Uo(1) = v − cq
2
− cwT

3
.

Now, since in the Impatient scenario τs = b vµ
cwT
c = 1, we have 1 ≤ vµ

cwT
< 2. Since,

µ = 1 · s+ 2 · 1
2

= 3
2
, this implies,

(B.41)
2

3
≤ v

cwT
<

4

3
.

The utility of choosing the offline option from (2.2) is given by,

Us(L) = ESt,At+1 [max(0, Ûs(L))]

where Ûs(L) is given by,

Ûs(L) = v − ((L− St)+ + nt+1(L) + 1) · cwT
µ
.

Thus, we have,

Us(0) = ESt,At+1 [max(0, v − (nt+1(0) + 1) · cwT
µ

)].

We know that nt+1(L) = min(At+1, (τn − (L − St)+)+). Thus, nt+1(0) = min(At+1, τn).

Since, we have assumed that τn = 1, we have, nt+1(0) = At+1. Using this, we can rewrite



206

Us(0) as,

Us(0) = EAt+1 [max(0, v − (At+1 + 1) · cwT
µ

)].

Since, At+1 is either 0 with probability a = 1
2
, or 1 with probability 1− a = 1

2
, and (B.41)

holds, we can rewrite Us(0) as,

Us(0) = (1− a) ·
(
v − cwT

µ

)
=
v

2
− cwT

3
.

Since, nt+1(1) = min(At+1, (τn − (1− St)+)+) = At+1, we have the exact same expression

for Us(1) as that of Us(0). That implies,

Us(1) =
v

2
− cwT

3
.

We summarize all the utility expressions for Uo(0), Uo(1), Us(0) and Us(1) in Table B.2.

Now, we compute the expected utilities of ordering online and choosing the offline option

L Uo(L) Us(L)

0 v − cq
v

2
− cwT

3

1 v − cq
2
− cwT

3

v

2
− cwT

3

Table B.2. Utilities of ordering online and choosing the offline option by an
app user when there are L order in the system

by app users using steady-state probabilities (B.40). Expected utility of ordering online

is given by,

(B.42) U o(t) =
t(cq − v)

t− 4
−

(2t− 4)( cq
2
− v + cwT

3
)

t− 4
.
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Since, Us(0) = Us(1), the expected utility of choosing the offline option is given by,

(B.43) U s(t) =
v

2
− cwT

3
.

Now, the app users randomize their choice of channel only if they are indifferent between

the online and the offline option. Thus, if 0 < t < 1, then we have, U o(t) = U s(t).

Equating (B.42) and (B.43) we get,

(B.44) t =
12(v − cq)
3v − 2cwT

.

Applying the condition 1 > t > 0 along with condition (B.41), we get,

(B.45)
1

6
+

3

4
· v

cwT
<

cq
cwT

<
v

cwT
.

Finally, we characterize the average per period consumer surplus for app users as follows:

(B.46) CT =



v − 2

3
cq −

2

9
cwT if 0 <

cq
cwT
≤ 1

6
+

3

4
· v

cwT
,

v

2
− cwT

3
if

1

6
+

3

4
· v

cwT
<

cq
cwT

<
v

cwT
,

v

2
− cwT

3
if

v

cwT
≤ cq
cwT

<∞,

where the parameters need to satisfy (B.41).

Now, we compute the average consumer surplus for non-app users in this system. We

recall that in this system, non-app users join only if they observe an empty queue. The

steady state probability is given by,

π0(0) = 1− t+
2t

4− t
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where t denotes the probability of an app user ordering online. Thus, the average per

period consumer surplus for non-app users is given by,

CN = π0(0) · P(At = 1) · (v − cwN
µ

).

Substituting the expression for t, as given in (B.44), in the expression for π0(0), and using

the condition (B.45) along with the fact that µ = 3
2

we can rewrite CN as,

(B.47) CN =



1

3
·
(
v − 2

3
cwN

)
if 0 <

cq
cwT
≤ 1

6
+

3

4
· v

cwT
,

1

2
·

36c2
q − 45cqv − 18cqcwT + 18v2 + 6vcwT + 4c2

wT

(3cq − 2cwT )(3v − 2cwT )
·
(
v − 2

3
cwN

)
if

1

6
+

3

4
· v

cwT
<

cq
cwT

<
v

cwT
,

1

2
·
(
v − 2

3
cwN

)
if

v

cwT
≤ cq
cwT

<∞,

where the non-app users’ wait-sensitivity satisfies,

(B.48)
2

3
≤ v

cwN
<

4

3
.

�
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Lemma 18. The combined average per period throughput in the omnichannel system

without information for the Impatient Scenario, is given by,

λT + λN =



4

3
if 0 <

cq
cwT
≤ 1

6
+

3

4
· v

cwT
,

3v − 2cwT
3cq − 2cwT

if
1

6
+

3

4
· v

cwT
<

cq
cwT

<
v

cwT
,

1 if
v

cwT
≤ cq
cwT

<∞,

where
2

3
≤ v

cwT
<

4

3
.

Proof. Steady state probability that a non-app user arriving at the store observes an

empty system is,

π0(0) = 1− t+
2t

4− t
,

where t denotes the probability that an app user arriving at the market orders online.

Average per period throughput for non-app users is,

λN = P(At = 1) · π0(0) =
1

2
· t

2 − 3t+ 4

4− t
.

The steady state probability of an app user arriving at the store and observing an empty

system is π̂1(0, 1) = 1
2
− t

2
where t denotes the probability of an app user ordering online.

Average per period throughput for app users is,

λT = λo + λs = ΛT · (t+ π̂0(0, 1))

= (t+
1

2
− t

2
) =

1

2
+
t

2
.
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Thus, the combined average throughput for this system, as a function of the probability

of online ordering, t, is given by,

(B.49) λN + λT =
1

2
· t

2 − 3t+ 4

4− t
+

1

2
+
t

2
=

4

4− t
.

Using (17)(i) we replace t in (B.49) by the probability, θ, of an app user ordering online,

and obtain,

λT + λN =



4

3
if 0 <

cq
cwT
≤ 1

6
+

3

4
· v

cwT
,

3v − 2cwT
3cq − 2cwT

if
1

6
+

3

4
· v

cwT
<

cq
cwT

<
v

cwT
,

1 if
v

cwT
≤ cq
cwT

<∞,

where
2

3
≤ v

cwT
<

4

3
. �

Impatient Scenario

System: Omnichannel with information

Lemma 19. (i) The average per period consumer surplus for the app users in the

omnichannel system with information for the Impatient Scenario is given by,

CT =



v − 2

3
cq −

2

9
cwT if 0 <

cq
cwT

<
1

3
+

1

2
· v

cwT
,

9

10
v − 2

5
cq −

1

3
cwT if

1

3
+

1

2
· v

cwT
≤ cq
cwT

<
v

cwT
,

v

2
− cwT

3
if

v

cwT
≤ cq
cwT

<∞,
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where
2

3
≤ v

cwT
<

4

3
.

(ii) The average per period consumer surplus for the non-app users in the omnichannel

system with information for the Impatient Scenario is given by,

CN =



1

3
·
(
v − 2

3
cwN

)
if 0 <

cq
cwT

<
1

3
+

1

2
· v

cwT
,

3

10
·
(
v − 2

3
cwN

)
if

1

3
+

1

2
· v

cwT
≤ cq
cwT

<
v

cwT
,

1

2
·
(
v − 2

3
cwN

)
if

v

cwT
≤ cq
cwT

<∞,

where,
2

3
≤ v

cwN
<

4

3
and

2

3
≤ v

cwT
<

4

3
.

Proof. An app user, upon observing queue length L, orders online if Uo(L) > Us(L)

and chooses the offline option otherwise. By comparing Uo(L) and Us(L), from Table B.2,

we find the ordering strategy for the app users in terms of v, cq and cwT as summarized

in Table 2.1. Now, given the customer strategy, we next compute the steady state prob-

abilities, π2(L).

If 0 < cq
cwT

< 1
3

+ 1
2
· v
cwT

, using Table 2.1 we have

M21 =



0 1 2 3

0 0 1 0 0

1 0 0 1 0

2 0 0 0 1

3 0 0 0 0


, M22 =



0 1 2 3

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0


.
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The steady state probabilities are given by π2(0) = 1
3
, π2(1) = 2

3
. Given these probabili-

ties, the average consumer surplus for app users is given by,

CT = π2(0) · (v − cq) + π2(1) ·
(
v − cq

2
− cwT

3

)
= v − 2

3
cq −

2

9
cwT .

Similarly, when 1
3

+ 1
2
· v
cwT
≤ cq

cwT
< v

cwT
, using Table 2.1 we have

M21 =



0 1 2 3

0 0 0 0 0

1 0 0 1 0

2 0 0 0 1

3 0 0 0 0


, M22 =



0 1 2 3

0 1 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0


.

The steady state probabilities, π2(L), are given by, π2(0) = 1
5
, π2(1) = 4

5
. Given these,

probabilities, the average consumer surplus for app users is given by,

CT = π2(0) ·
(v

2
− cwT

3

)
+ π2(1) ·

(
v − cq

2
− cwT

3

)
=

9

10
v − 2

5
cq −

1

3
cwT .
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Finally, when v
cwT
≤ cq

cwT
<∞, using Table 2.1 we have

M21 =



0 1 2 3

0 0 0 0 0

1 0 0 0 0

2 0 0 0 1

3 0 0 0 0


, M22 =



0 1 2 3

0 1 0 0 0

1 0 1 0 0

2 0 0 0 0

3 0 0 0 0


.

The steady state probabilities, π2(L), are given by, π2(0) = 0, π2(1) = 1. Given these,

probabilities, the average consumer surplus for app users is given by,

CT = π2(1) ·
(v

2
− cwT

3

)
=
v

2
− cwT

3
.

Combining all the expressions for CT , we have,

(B.50) CT =



v − 2

3
cq −

2

9
cwT if 0 <

cq
cwT

<
1

3
+

1

2
· v

cwT
,

9

10
v − 2

5
cq −

1

3
cwT if

1

3
+

1

2
· v

cwT
≤ cq
cwT

<
v

cwT
,

v

2
− cwT

3
if

v

cwT
≤ cq
cwT

<∞,

where, the parameters need to satisfy (B.41), i.e.,

2

3
≤ v

cwT
<

4

3
.
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Next, we compute the average per period consumer surplus for the non-app users. Since,

non-app users only join an empty system, we have,

CN = π0(0) · P(At = 1) ·
(
v − cwN

µ

)
.

If 0 < cq
cwT

< 1
3

+ 1
2
· v
cwT

, the steady state probability, π0(0), is given by π0(0) = 2
3
. Thus,

we have,

CN =
2

3
· 1

2
·
(
v − cwN

µ

)
=

1

3
·
(
v − 2

3
cwN

)
.

If 1
3

+ 1
2
· v
cwT
≤ cq

cwT
< v

cwT
, the steady state probability, π0(0), is given by π0(0) = 3

5
.

Thus, we have,

CN =
3

5
· 1

2
·
(
v − cwN

µ

)
=

3

10
·
(
v − 2

3
cwN

)
.

Finally, if v
cwT
≤ cq

cwT
< ∞, the steady state probability, π0(0), is given by π0(0) = 1.

Thus, we have,

CN = 1 · 1

2
·
(
v − cwN

µ

)
=

1

2
·
(
v − 2

3
cwN

)
.

Combining all the expressions for CN , the average consumer surplus for the non-app users

is given by,

(B.51) CN =



1

3
·
(
v − 2

3
cwN

)
if 0 <

cq
cwT

<
1

3
+

1

2
· v

cwT
,

3

10
·
(
v − 2

3
cwN

)
if

1

3
+

1

2
· v

cwT
≤ cq
cwT

<
v

cwT
,

1

2
·
(
v − 2

3
cwN

)
if

v

cwT
≤ cq
cwT

<∞,
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where, the parameters need to satisfy (B.34), i.e.,

2

3
≤ v

cwN
<

4

3
.

�

Lemma 20. The combined average per period throughput in the omnichannel system

with information for the Impatient Scenario is given by,

λT + λN =



4

3
if 0 <

cq
cwT

<
1

3
+

1

2
· v

cwT
,

6

5
if

1

3
+

1

2
· v

cwT
≤ cq
cwT

<
v

cwT
,

1 if
v

cwT
≤ cq
cwT

<∞,

where
2

3
≤ v

cwT
<

4

3
.

Proof. If 0 < cq
cwT

< 1
3

+ 1
2
· v
cwT

, the average throughput for non-app users is given

by π0(0) · P(At = 1) = 2
3
· 1

2
= 1

3
. From, Table 2.1, we know that if 0 < cq

cwT
< 1

3
+ 1

2
· v
cwT

then app users always order online. This implies that the throughput for app users is

same as their arrival rate, i.e. λo = ΛT = 1. Moreover, since all app users order online,

none of the app users order at the store, i.e. λs = 0. Thus the combined throughput is

λN + λo + λs = 4
3
.

If 1
3

+ 1
2
· v
cwT
≤ cq

cwT
< v

cwT
, then the average throughput for non-app users is given by

π0(0) ·P(At = 1) = (π̂0(0, 0)+ π̂0(0, 1)) ·P(At = 1) = (2
5

+ 1
5
) · 1

2
= 3

10
. Average throughput

for the app users who order at the store is given by ΛT · (π̂1(0, 1)) = 1 · ( 1
10

) = 1
10

. We

know from Table 2.1 that the app users order online only if they observe L = 1. Thus,
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the throughput for app users who order online is given by, π2(1) = 4
5
. Thus, the combined

throughput is λN + λs + λo = 3
10

+ 1
10

+ 4
5

= 6
5
.

Finally, if v
cwT
≤ cq

cwT
<∞, then the average throughput for non-app users is given by

π0(0) · P(At = 1) = 1 · 1
2

= 1
2
. Average throughput for the app users who order at the

store is given by ΛT · (π̂1(0, 1)) = 1 · (1
2
) = 1

2
. We know from Table 2.1 that the app users

never order online. Thus, the combined throughput is λN + λs + λo = 1
2

+ 1
2

+ 0 = 1. �

Impatient Scenario

System: Single channel

Lemma 21. (i) The average per period consumer surplus for app users in the single

channel system for the Impatient Scenario is given by,

CT =
v

2
− cwT

3
.

(ii) The average per period consumer surplus for non-app users in the single channel

system for the Impatient Scenario is given by,

CN =
v

2
− cwN

3
.

where
2

3
≤ v

cwT
<

4

3
and

2

3
≤ v

cwN
<

4

3
.

Proof. In the Impatient scenario τs = 1, i.e. app users join only if they observe an

empty system. The probability that an app user arriving at the store observes an empty

system is given by π1(0) = 1
2
. Thus the average per period consumer surplus for app users
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is given by,

(B.52) CT = π1(0) ·
(
v − cwT

µ

)
=

1

2
·
(
v − 2

3
cwT

)
=
v

2
− cwT

3
.

Next, we compute the average per period consumer surplus for non-app users. The prob-

ability that an app users arriving at the store observes an empty system is given by

π0(0) = 1. Thus we have,

(B.53) CN = P(At = 1) · π0(0) ·
(
v − cwN

µ

)
=

1

2
·
(
v − 2

3
cwN

)
=
v

2
− cwN

3
.

�

Lemma 22. The combined average per period throughput in the single channel system

for the Impatient Scenario is given by,

λT + λN = 1.

Proof. In this single channel system, app users order at the store only if they observe

an empty system. Thus, the average throughput for app users is given by,

λT = ΛT · (π̂1(0, 1)) =
1

2
.

The non-app users only join an empty system. Thus, the average throughput for non-app

users is given by,

λN = ΛN · P(At = 1) · (π0(0)) = 1 · 1

2
· 1 =

1

2
.

�
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